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Abstract

Quantum Dot Lasers Epitaxially Grown on Silicon

by

Alan Young Liu

This thesis investigates the growth, fabrication, and performance of III-V semicon-

ductor quantum dot lasers epitaxially grown on silicon based substrates as an enabling

technology for the realization of low cost, size, weight, and power (cSWaP) photonic inte-

grated circuits. The use of large area, low cost silicon or silicon on insulator (SOI) based

substrates as a photonic integration platform is attractive due to existing economies of

scale and potential to recycle advanced CMOS fabrication tools already developed for

silicon microelectronics. The indirect bandgap of silicon presents a major hurdle towards

the complete integration of photonic devices on silicon - in particular a laser. To cir-

cumvent inefficient light emission from silicon’s indirect bandgap, current methods to

fabricate silicon-based lasers typically rely on a separate material for the generation and

amplification of light. These methods include integration of III-V materials onto silicon

via wafer bonding or direct epitaxial growth, as well as band-gap engineering of group

IV elements such as Ge or GexSn1−x grown on silicon for direct gap light emission.

Direct growth of high gain III-V compound semiconductors onto silicon substrates

is well suited for high volume applications. Unfortunately, large dislocation densities

typically result from the growth process due to fundamental material differences between

III-Vs and Si, which is detrimental to both the device efficiency as well as reliability.

In this thesis, we demonstrate III-V laser diodes epitaxially grown on silicon with world

record performance. Key to our approach is the use of III-V self-assembled quantum

dot light emitters in place of traditional quantum wells, offering advantages of reduced
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sensitivity to dislocations, reduced sensitivity to reflections/optical feedback, and low

values of threshold current (densities). In particular, the reduced sensitivity of quantum

dot active regions to dislocations allows us to employ direct epitaxial growth for the

integration of III-V quantum dot lasers on silicon substrates with minimal compromise

in light emission efficiency.
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Chapter 1

Introduction

1.1 Silicon Photonics

Silicon photonics is an emergent technology that leverages large area, low-cost sili-

con substrates for the manufacturing of high functionality photonic integrated circuits

in a commercial silicon foundry. The development of this technology has historically

been driven by the anticipation of low cost optical interconnects to meet ever increasing

bandwidth demands (predominantly in datacenters, with applications in metro and com-

putercom as well). There are now emergent applications for silicon photonics in sensing

as well, including medical diagnostics, and LIDAR to name a few [1, 2]. Compared to

traditional III-V substrates such as GaAs or InP, silicon affords more than an order of

magnitude reduction in price per area (see Table 1.1), with high-throughput processing

in a silicon foundry presenting additional advantages of cost and yield.

Si SOI GaAs InP
Substrate cost ($/cm2) 0.20 1.30 1.65 4.55
Maximum size (mm) 450 450 150 150

Table 1.1: Maximum size and normalized cost of common semiconductor substrates.

2
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1.2 Silicon based lasers

The functionality of a photonic integrated circuit derives from the generation of pho-

tons from a light source, manipulation of the light via its phase, amplitude, polarization,

or a combination thereof, and detection of the light with a photodetector. Unfortunately.

silicon is an indirect bandgap material and inefficient at generating light. To circumvent

the inefficient light emission from silicon, current methods to fabricate silicon-based lasers

typically utilize gain from a separate material. These methods include integration of III-

V lasers onto silicon via wafer bonding or direct epitaxial growth, band engineering of

group IV elements such as Ge or GexSn1−x for direct gap light emission, and rare earth

doping of silicon/silica based waveguides. An excellent review of silicon based lasers can

be found in [3, 4]. Integration of III-V lasers - a proven technology - onto silicon is the

most attractive approach from a performance point of view. Most integrated silicon pho-

tonics demonstrations to date have used wafer bonded III-V layers which were originally

grown on native substrates [5, 6]. Though impressive device results have been demon-

strated, use of III-V substrates for the laser growth can be costly and imposes a limit on

the maximum bonding size set by the largest available III-V substrate, typically no larger

than 150 mm. Direct growth on silicon substrates offer better economies of scale, not

limited by the III-V substrate size and cost. These structures may be used as-grown or

bonded to patterned silicon-on-insulator wafers for efficient waveguide coupling, making

available the full suite of technologies that have been developed on the hybrid silicon

platform [6].

3
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Material Si GaAs InP GaSb AlSb GaN

a|| (nm) 0.5431 0.56533 0.58688 0.60959 .61355 .3189/.5189

a/asi-1 0 4.09% 8.06% 12.24% 12.97% 16.9% on Si(111)

αL(10−6K−1) 2.6 5.7 4.6 7.75 4.22 5.59

αL/α
Si
L -1 0 119% 76.9% 198% 62.3% 115%

Ed (eV) - 1.25 1.2 1.2 - 2.1

Vd (µm/yr) - 1∼5 10 15 - 1×10−13

Table 1.2: Basic properties of Si and III-V semiconductors (RT values)[7, 8] α||=lattice
constant, αL = linear thermal expansion coefficient, Ed=activation energy for dislo-
cation motion, Vd = dislocation velocity.

1.3 Quantum dot lasers on silicon

Direct growth of high gain III-V laser material onto large area, low cost silicon sub-

strates is well suited for high volume applications. Unfortunately, large dislocation den-

sities result from the growth process due to fundamental material differences between

III-V compound semiconductors and silicon - as shown in Table 1.2. For example, GaAs

layers grown on silicon typically have greater than 108/cm2 threading dislocations gener-

ated from the 4.09% lattice mismatch, as well as the 119% thermal expansion mismatch

(see Table 1.2). Anti-phase domains have historically been an issue due to the polar-

ity mismatch between III-Vs and silicon, but can be largely eliminated with a proper

misorientation in the substrate [9]. Despite several decades of research, the threading

dislocation problem remains largely unsolved, necessitating the need for thick buffer lay-

ers, cyclic annealing, and/or strained superlattices in order to generate adequate device

quality layers. Room temperature quantum well lasers have been demonstrated using this

approach, however these devices still suffer from high thresholds and/or poor reliability

due to remnant threading dislocation densities, dislocation climb, and rough surfaces

from the strained heteroepitaxial growth front [10, 11]. These issues are usually com-

pounded when the laser is designed to emit at longer datacom and telecom wavelengths,
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Year Ith (mA)/Jth (A cm−2) Max lasing temp (oC) Device size (µm2) λ(µm) Ref.

1999 788/3850 (Pulsed 80 K) - 800×50 1 (80 K) [17]

2005- 500/900 (Pulsed) 95 (Pulsed) 600× 80 (lowest threshold) 1 [18, 19, 12]

2009 800×8 (highest temperature)

2011 1087.5/725 (Pulsed) 42 (Pulsed) 3000×50 1.3 [20]

2012 45/64.3 (Pulsed) 84 (Pulsed) 3500×20 (lowest threshold) 1.26 [21]

114/163 (CW) 30 (CW) 3000×20 (highest temperature)

2014 150/200 (Pulsed) 111 (Pulsed) 3000×25 1.25 [22]

2014 16/430 (CW) 119 (CW) (700-1200)×(4-12) 1.25 [23]

>130 (Pulsed)

2016 100/62.5 (CW) 75 (CW) 3200×50 1.32 [24]

Table 1.3: Representative summary of In(Ga)As/GaAs self-assembled quantum dot
lasers epitaxially grown on silicon

which necessitates the use of higher indium content wells with larger strain (with respect

to both silicon and GaAs) that are more easily dislocated. A primary focus of III-V

growth on silicon has therefore been to minimize the number of generated dislocations as

much as possible. Despite significant reductions in dislocation density to 105-106 cm−2,

dislocation densities near native substrate levels (103 cm−2) appear difficult to achieve in

planar bulk layers.

Recent reports investigating the use of quantum dot active regions in place of tra-

ditional quantum wells to mitigate the negative effect of residual dislocations on laser

performance have yielded very promising results [12, 13, 14]. Efficient capture and three-

dimensional confinement of injected carriers by the individual dots leads to reduced

nonradiative recombination at defects or dislocations [15, 16]. As a result, the effect

of dislocations still present in the active layer is greatly diluted by the total number

of dots, which are independent of each other. Table 1.3 is a representative sample of

various different quantum dot lasers grown on silicon which have been reported over the

years. As is evident in the table, there has been rapid progress in this field in recent years.

5
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1.4 Thesis Outline

The outline of this thesis is as follows. We begin with an introduction to semiconduc-

tor quantum dots, followed with the method for their growth in Molecular Beam Epitaxy.

We will then review the performance of two different kinds of InAs/GaAs quantum dot

lasers directly grown on silicon-based substrates as quantified by lasing threshold, out-

put power, and maximum operating temperatures. In the first part, quantum dot lasers

grown on intentionally miscut Ge/Si substrates are studied, and a comparison with In-

GaAs quantum well lasers on similar substrates and with the same device design will

be shown. Accelerated aging studies of the aforementioned quantum dot lasers will be

presented and compared to previous results of GaAs based quantum well lasers on silicon.

In the second part, quantum dot lasers grown on GaP/Si substrates without offcut are

studied. Measurements of the relative intensity noise of the aforementioned devices sub-

jected to various levels of optical feedback will be shown, which suggests their potential

for stable operation without the need for an optical isolator. Finally, we outline research

avenues towards improved performance as well as possible applications that leverage the

inherent advantages of this technology.

6



Chapter 2

Background

This thesis assumes a working knowledge of semiconductor lasers, thus an introduction of

which will be omitted. The reader is referred to Professor Larry Coldren’s excellent text-

book - Semiconductor Lasers and Photonic Integrated Circuits [25], from which I gained

most of my semiconductor laser knowledge. The background information presented in this

chapter will thus focus on quantum dots and quantum dot lasers specifically. Quantum

dot lasers present several advantages over quantum well lasers: 1) lower threshold current

(densities); 2) high temperature operation; 3) reduced sensitivity to defects/dislocations

which enables us to grow them on silicon as well as make smaller devices without suffering

from surface recombination; and 4) reduced reflection sensitivity, which may allow them

to operate without an isolator. Items 1-3 will be detailed in the subsequent sections,

while the reduced sensitivity of quantum dot lasers to reflections/optical feedback will

be introduced in Chapter 6.

7
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2.1 Semiconductor quantum dots

A semiconductor quantum dot is formed when a low bandgap semiconductor ma-

terial - such as InAs - is surrounded in all three spatial dimensions by a material of

higher bandgap - such as GaAs. Assuming the band alignments form a type I straddling

alignment [26], electrons and holes in the conduction and valence bands respectively are

likely to be “trapped” or spatially confined to the low band-gap region. Electronically,

this looks like a three dimensional potential well, and the carriers are forced to exist in a

bound state with discrete allowed energies, as opposed to the continuous band of energies

associated with typical bulk semiconductors. An upper bound on the confinement energy

levels can be described by the energy levels for the infinite potential well [25]:

Etot = Ex + Ey + Ez

E∞i (n) =
n2
ih

2

8mL2
, E∞(1) ≈ 3.76

(m0

m

)(100Å

L

)2

meV

where L is the confining distance along the dimension of interest, m is the particle (elec-

tron or hole) mass, and m0 is the free electron mass. Thus we see that the emission

wavelength of quantum dots can be easily tuned by controlling the dot size and confine-

ment potential/composition profile. Since actual band offsets will always be finite, the

actual quantum confinement energies will be slightly lower than the infinite potential

well.

InAs/GaAs quantum dots will be the primary focus of this thesis. As will be detailed

in the sections below, this quantum dot system is very versatile and allows for the real-

ization of a wide range of wavelengths and morphology. Figure 2.1 compares two samples

grown at different growth conditions. One sample was grown at 505◦C by depositing 2.2

ML of InAs at 0.06 ML/s and capped with GaAs, while the other was grown at 500◦C

8
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Figure 2.1: Left and center: 1×1µm2 AFM scans of InAs/GaAs quantum dots grown
at different conditions. The sparse sample was grown at 505◦C by depositing 2.2 ML
of InAs at 0.06 ML/s and capping with GaAs, while the denser sample was grown at
500◦C by depositing 2.75 ML of InAs at 0.11 ML/s and capping with In0.15Ga0.85As.
The plot on the right compares the photoluminescence spectra of the two samples, with
the blue curve corresponding to the sparse sample and the red curve corresponding
to the dense sample.

by depositing 2.75 ML of InAs at 0.11 ML/s and capped with In0.15Ga0.85As. With these

two growth conditions we are able to tune the dot density from 1.7×1010 cm−2 to 5×1010

cm−2, and the peak wavelength from 1000 nm to 1300 nm.

2.2 Quantum dot lasers

Not too long after the quantum well laser was invented, Arakawa and Sakaki pro-

posed the use of three dimensionally confined structures for further improvement in laser

performance, giving rise to the field of quantum dot (QD) lasers [27]. Since then, semi-

conductor quantum dot lasers have gone from a pure thought experiment to widespread

commercialization.[27, 28, 29] Semiconductor QD lasers have been the subject of intense

interest in recent years due to the promise of being more efficient and stable light emit-

ting devices than current state of the art quantum well (QW) lasers. 1.3 µm InAs/GaAs

self-assembled quantum dot lasers are the most well studied semiconductor quantum dot

9
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Figure 2.2: Historical trends of threshold current densities (Jth) for semiconductor
lasers, showing lower ultimate values of Jth with each additional degree of confine-
ment. InAs/GaAs quantum dot lasers hold the lowest threshold current density values
reported to date among all semiconductor lasers (10 A/cm2). From [30], c© Elsevier
Ltd 2011.

system and have demonstrated the lowest threshold current densities (10 A/cm2, Fig-

ure 2.2) and highest lasing temperatures (220◦ C) of any semiconductor laser [30, 31].

They are thus an attractive light source to meet low power consumption and athermal

performance demands for silicon photonics devices.

2.2.1 Reduced threshold and high temperature operation

Self assembled quantum dots (SAQD) are easily grown using Molecular Beam Epitaxy

(MBE) or Metal-organic Chemical Vapor Deposition (MOCVD), and the InAs/GaAs

QD system has been extensively studied since their discovery. Being essentially a zero-

dimensional structure compared to the spatial extent of the carrier wave-functions, the

density of states - ρ - of an ensemble of QDs are discrete peaks slightly broadened from

the finite size distribution of the dots, meaning a large number of states are available

to carriers in a small energy range (see Figure 2.3). This results in higher material gain

10
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Figure 2.3: Variation in the density of states with degrees of quantum confinement. A
perfect quantum dot ensemble has discrete peaks for its density of states. From [32],
c© IEEE 2011.

(g ∝ ρr(Fc − Fv)), a lower threshold carrier density Nth (less carriers are required for

population inversion), and subsequently low threshold current densities [32]. Further-

more, because of large intersubband separations on the order of 75-85 meV, QD lasers

can be made to sustain lasing at high temperatures. With the addition of modulation

p-doping they can have essentially a constant threshold current density over a wide range

of temperatures [28]. Their emission wavelength can be easily tuned by controlling the

dot size and/or composition to tune the quantum confinement energy, allowing emission

between 900-1300nm with the InAs/GaAs system as was shown in Figure 2.1. The max-

imum wavelength is limited by the critical thickness for inelastic strain relaxation from

excessive indium content or accumulated strain. Longer wavelengths ( ≥1.5µm) may be

achieved with the InAs/InP system [33].
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2.2.2 Reduced sensitivity to dislocations

One key advantage offered by quantum dots that is exploited for this thesis is the fact

that quantum dot optoelectronics exhibit decreased sensitivity to dislocations compared

to quantum wells [16, 34, 35]. This unique property among semiconductor quantum dots

has allowed for the recent achievement of room temperature 1.3 µm lasing on silicon and

germanium by direct epitaxial growth [36, 20, 21, 14]. The physical mechanism for this

trait is because in a layer of QDs, carriers are confined to the spatial extent of the dots

themselves. Thus, defects and dislocations will only affect carriers in the near vicinity

of the dislocation and degradation to the device performance is minimized. Conversely

in a quantum well, the active region may be rendered useless given the same density of

dislocations since carriers in the well are still free to move about within the plane of the

well and encounter a defect prior to recombining radiatively. This principle is illustrated

in Figure 2.4.

Another way to view this is that the non-radiative capture cross section of a defect

depends on the mean diffusion length of the carrier, and related to the non-radiative

lifetime as: τnonrad = 4
π3ρtddD

, where D is the ambipolar diffusion coefficient, and ρtdd is

the threading dislocation density [37]. To first order, the presence of a high density of dots

serves to decrease the mean carrier diffusion length or diffusivity D, thereby increasing

the nonradiative lifetime. Figure 2.5 shows the relative variation in internal quantum

efficiency (ηIQE = τnonrad
τnonrad+τrad

) as a function of dislocation density in GaAs computed

using reported ambipolar carrier diffusion coefficients for InGaAs QWs (20 cm2/s) [38]

and QDs (2 cm2/s) [39]. The radiative lifetime τrad was assumed to be roughly 3 ns

and is roughly the radiative lifetime at a current density of 500 A/cm2, extracted from

a quantum dot gain model based on microscopic theory fitted to experimental data [40].

As can be seen, a decrease in the ambipolar carrier diffusivity has profound impact on
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In-plane band diagram:
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Figure 2.4: The three dimensional confinement potential of quantum dots significantly
reduces carrier migration to defect states, unlike the quantum well case where carriers
are free to move in the plane of the well.

the device efficiency at relatively high dislocation densities. In essence, as long as the

dot density far exceeds the dislocation density, the laser should be able to operate with

high efficiency despite high dislocation densities. The same logic is the reason why GaAs

quantum dot lasers are also observed to have significantly lower surface recombination

velocities compared to GaAs quantum well lasers, as the reduced carriers diffusivity in

a quantum dot active region limits the amount of carrier that are able to diffuse to a

surface [41].

2.3 Characterization of quantum dots using photo-

luminescence

Photoluminescence is the main method used to ascertain the optical quality of quan-

tum dot samples grown for this thesis. Using a combination of low and high power

photoluminescence we can estimate the relative material gain/threshold current for a

given QD sample against a reference sample with known photoluminescence character-
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Quantum well like

Quantum dot like

Figure 2.5: relative variation in internal quantum efficiency (ηIQE = τnonrad
τnonrad+τrad

) as
a function of dislocation density in GaAs computed using reported ambipolar carrier
diffusion coefficients for InGaAs QWs (20)[38] and QDs (2 cm2/s [39]. The radiative
lifetime τrad was assumed to be 3 ns.

istics, and a well characterized laser made with same quantum dot growth conditions.

Then by comparing PL characteristics we can infer what the threshold will be like rel-

ative to the reference sample without having to process and test devices [42, 43]. The

main PL characteristics of interest are peak intensity and full width at half maximum

(FWHM) of the ground-state peak, as well as separation and relative intensities between

the ground state peak and the various excited states and wetting layer peaks.

Disclaimer: many things can affect the PL intensity. These include but are not limited

to sample quality, PL pump laser power, free space attenuation losses of the PL optics,

reflections or scatterings from the sample surface, or the phase of the moon. One should

always bear this in mind when suspicious looking measurement results arise. Many of

these uncertainties can be eliminated by always having a reference PL sample from which

the laser characteristics are well known, such that if ever the setup configuration is in

doubt it can be re-measured and compared with a prior measurement to see if the setup

conditions has drifted to affect the absolute intensity, from which intensity variations due
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to relative material quality can be accurately deduced.

For a comprehensive review of the underlying physics see [43]. In brief, recombination

processes in a laser (below threshold) is a combination of nonradiative recombination Rnr

(which may be defect related Shockley-Read-Hall processes proportional to the carrier

density ∝ AN , or Auger which is proportional to the cube of the carrier density ∝ CN3),

and/or radiative recombination Rsp, proportional to the carrier density squared ∝ BN2:

Rrec = Rnr +Rsp = AN +BN2 + CN3 [25]

The total recombination rate should be equal to the carrier generation rate (proportional

to pump power):

Rrec =
Pinηin
hν

= AN +BN2 + CN3

where ηinPin is the input PL laser pump power, and ηin is the coupling coefficient that

accounts for any attenuation of the pump light on the path to the sample surface as well

as any reflection or scattering from the semiconductor-air interface. The detected PL

signal intensity (power out from the wafer) can be expressed as:

Pout = ηouthνRsp = ηouthνBN
2

Where ηout is the output optic collection efficiency. The uncertainty in the absolute values

of ηin and ηout can be eliminated in the end by making relative comparisons, as alluded

to above.

If the material quality is poor and the quantum dot active region is full of defects or

dislocations, SRH processes will dominate and:

Pin = ANhν/ηin,−→ Pout ≈ ηoutB(ηinPin/(Ahν))2, or Pout ∝ P 2
in
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Figure 2.6: PL intensity dependence on pump power for various dominating recombi-
nation mechanisms

If the material quality is good, radiative recombination dominates and:

Pin ∝ BN2,−→ Pout ∝ Pin

If Auger dominates, then:

Pin ∝ CN3,−→ Pout ∝ P
2/3
in

Since we can measure Pout (just the intensity of the PL signal) and Pin (the PL laser

pump power), we can gauge the sample quality by looking at the dependence of the

output PL signal with varying PL pump power (see Figure 2.6).

A full sweep of PL intensity versus the input pump power is the most accurate way to

observe the described relations above. Because we need to screen through many samples,

in this thesis two representative PL measurements for the same sample were taken, one

at low PL excitation chosen as the lowest pump power at which an appreciable signal
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can be obtained and one at high PL excitation that is close to the saturation power of

the pump laser. Typical PL characteristics of 1.3 µm QDs are shown in Figure 2.7. For

good laser operation the following characteristics are desirable:

• High ground state (GS) peak intensity at low excitation (indication of low defect

density & high radiative efficiency)

• Narrow PL linewidth at low excitation (to minimize QD size distribution and max-

imize material gain at peak emission wavelength)

• High GS peak intensity at high excitation (indication of high dot density & high

maximum modal gain). QWs have a very high density of states in the non-confined

dimensions, and as a consequence show no saturation in high pump power PL.

1.3 µm QDs on the other hand, have well defined ground and excited states per

dot, and due to their finite density can be easily saturated with a sufficiently high

pump power. Because of this, the saturated PL intensity can be correlated with the

number density of active QDs, allowing us to quantify the maximum modal gain of

the QD layer and compare with other samples through the saturated ground state

PL intensity.

• Low wetting layer (WL) intensity at high excitation (indication of efficient carrier

capture & strong carrier confinement by the QDs)

• Large separation between the first excited state (ES) and GS peak wavelengths at

high excitation. In a similar vein, it is desirable to maximize the separation between

the ground state and the WL peak. These metrics are effectively a measure of the

depth of the confinement potential. In addition, a low WL peak intensity with

respect to the QD peaks at high excitation is desirable because it tells us that

more carriers are recombining in the QD than the WL (and/or that the carriers
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are well confined to the dots themselves and not escaping out of the QDs). As one

may guess these two factors are typically related, and in general the shorter the

emission wavelength the brighter the WL peak because of the reduced confinement

potential. The major reason for poor thermal stability of the lasing threshold

(characterized by the characteristic temperature T0 in the Ith(T ) = I0e
T/T0) in QD

lasers is due to carriers escaping out of the QDs into the wetting layer at elevated

temperatures, as well as inhomogeneous broadening (i.e. carriers escaping out of

a QD that subsequently are captured by a different sized quantum dot which does

not contribute to the lasing mode). Thus for good T0 it is desirable to have the

same PL characteristics that indicate good carrier confinement (large WL and GS

separation, low WL intensity), and a narrow PL linewidth at low excitation. This

is even more important for heteroepitaxial lasers on silicon because good carrier

confinement will keep carriers away from dislocations generated from heteroepitaxy

and mitigate the increase in threshold. In general adding more indium to the active

region increases the QD size, which reduces the quantum confined energy levels

with respect to the conduction (and valence) bandedge, and overall increases the

confinement potential (band offset between QD and matrix material). As explained

above this keeps carriers away from defects in the barrier region outside of the dots,

and improves T0. But excess indium will generate dislocations from the lattice

mismatch, decrease the radiative efficiency of the material, and increase threshold.

Luckily we can compare these different characteristics in PL to determine the best

growth conditions.

At UCSB, the pump laser on our PL setup has a wavelength of 785 nm. This is

below the bandgap of GaAs and therefore will be absorbed by not just the quantum dot

layers but also the surrounding GaAs matrix. One must therefore consider the carrier
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Figure 2.7: Typical PL characteristics of 1.3 µm QDs at low (left) and high (right)
PL excitation. Under high excitation, one should be able to resolve the ground state
(GS), two excited states (ES), the wetting layer (WL), and the GaAs peak.

transport process when comparing PL intensities. It may be useful to acquire a new

pump laser whose wavelength is transparent to GaAs such that it will only be absorbed

by the active region. Comparing the relative intensities of two measurements made with

these two separate lasers, one that is transparent to the cladding layers and one which is

absorbed by the cladding, could then tell us how much of a change in the PL intensity

is due to a change in the radiative efficiency of the active region versus carrier transport

issues in the cladding or waveguide layers.

2.4 MBE Growth of Quantum Dots

Self assembled InAs quantum dots form via the Stranski-Krastinow (SK) growth

mode, which is a strain relaxation driven process. The characteristic of this growth

mode is an initial pseudomorphically strained 2D layer growth, followed by the formation

of three-dimensional islands with additionally deposited strained layers, illustrated in

Figure 2.8. For a very small growth window, the three-dimensional islands are coherent
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Figure 2.8: An illustration of self assembled quantum dot formed via Stranski-Kras-
tanow (SK) growth. From [44], c© 2001 Elsevier Science B.V.

with the surrounding lattice and can be dislocation free. If too much strained material is

deposited, then inelastic strain relaxation involving the creation of additional dislocations

will occur. The evolution from initial strained 2D layer growth to elastically relaxed 3D

growth (coherent formation of QDs), to inelastic strain relaxation (dislocation generation)

occurs on the order of just a few monolayers of deposited InAs, as shown in Figure 2.9.

Growth of high optical quality quantum dots thus necessitates a very precise control of

the deposition thickness and growth conditions.

In MBE growth of self-assembled quantum dots the initial transition from 2D to 3D

growth modes characteristic of the SK formation of QDs can be easily monitored with

in situ Reflection High Energy Electron Diffraction (RHEED), as shown in Figure 2.10.

Since the formation of the dots via SK growth marks a change from two dimensional

to three dimensional growth, the RHEED pattern will change from a streaky to spotty

pattern indicative of the transition. As deposition continues, the RHEED intensity in-

creases indicating a concurrent increase in the density of the QDs as well. The following

subsections describe how the desired optical properties of InAs QDs can be achieved by
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Figure 2.9: A phase diagram of Stranski-Krastanow growth of InxGa1−xAs quantum
dots on GaAs. The initial growth is layer by layer, past a certain thickness which is
demarked by the solid line three dimensional islands begin to form. However a very
small growth window exists for the coherent growth of these islands, and as growth
proceeds further with deposition of strained In(Ga)As inelastic strain relaxation via
dislocation nucleation will occur. From [45], c© Springer-Verlag Berlin Heidelberg
2003.

tuning their growth conditions.

2.4.1 Adatom diffusion length

An important concept for controlling the morphology of SAQDs is recognizing the

different growth parameters that affect the mean adatom mobility or diffusion length on

the growth front. In general, longer mean diffusion length/increased adatom mobility

means bigger and more uniform QDs at the expense of lower QD density, and vice

versa. Factors that affect adatom mobility in MBE growth include substrate temperature,

growth rate, growth interruptions, V/III flux ratio, and surface roughness.
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Figure 2.10: RHEED pattern and intensity evolution with increasing InAs deposition
thickness during InAs/GaAs quantum dot growth in MBE. From [46], c© Elsevier
2011.

2.4.2 Size/wavelength control

For growth on GaAs, self assembled InAs QDs form via SK growth around a nomi-

nal InAs deposition thickness of 1.6 MLs. By increasing deposition the average QD size

(and emission wavelength) can be continuously increased. Other methods to control the

average size of QDs involves changing growth parameters to tune adatom mobility as

was alluded to above. At higher temperatures, indium adatoms are more mobile and

can therefore traverse large distances to be incorporated into stable nucleation centers

resulting in a larger dot size for the same amount of material deposited. Likewise, the

effect is similar for slower growth rates (low indium flux) and low arsenic overpressure in

MBE, as the mean diffusion length of indium adatoms on the surface increases with de-
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Figure 2.11: Evolution of the optical properties of quantum dots as a function of
growth temperature for excitation densities of 1.17 (left) and 59.36 (right) W/cm2,
respectively.

creasing impinging flux due to less collisions with other adatoms or QD nuclei. However,

at too high temperatures or too low V/III ratios, indium desorption from the surface

becomes significant, leading to a wavelength blueshift due to the decrease in average

indium content [47]. These effects are illustrated in Figures 2.11 and 2.12.

2.4.3 Density control

Contrary to adjusting the size of QDs by increasing the mean diffusion length, for

a high density of QDs it is desirable to decrease the diffusion length to increase the

number nucleation sites. Therefore to increase density one may either decrease the growth

temperature, increase the growth rate, or increase the arsenic overpressure. Note that

changing these parameters will also change the average size of the dots for the same

amount of material deposited as was discussed in the previous section, so one should

properly compensate for these effects by increasing or decreasing the total amount of

material deposited.
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Figure 2.12: The influence of different V/III ratios on the optical properties of
InAs/GaAs quantum dots.

One common method to increase the density of QDs on GaAs without changing any

of the growth conditions is by depositing a thin (∼2 nm) InxGa1−xAs buffer layer (with

x < 20 %). The existing strain field inside the InGaAs buffer causes material from both

the InGaAs buffer and the SK wetting layer to be absorbed into the QDs [48]. A similar

method for increasing the QD density is the use of antimony (Sb) assisted growth whereby

the QD growth surface is irradiated with Sb to form a Sb-terminated surface prior to

commencing growth. Upon deposition of InAs on the Sb terminated surface, very high

densities of QDs can be obtained. The mechanism for this is not yet clear, although

Sb is known to have surfactant like properties and InAs deposited on a Sb terminated

surface has been observed to form a high density of one dimensional wires prior to QD

formation, which could provide an increased number of QD nucleation sites. [49]

2.4.4 Uniformity /size distribution

Historically, a major perceived negative characteristic of physical QDs is the so called

“inhomogeneous broadening” caused by size fluctuations within the ensemble. Unless

these size fluctuations were minimal, QDs were predicted to offer no significant advantage
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over bulk or QW materials in terms of optical gain [50]. Self-assembled QDs, in particular

InAs/GaAs QDs, have now been sufficiently developed in the past two decades such

that inhomogeneous broadening can be minimized and photoluminescence linewidths

comparable to QWs can be obtained. In other applications, it may even be advantageous

to have a large inhomogeneous broadening or a wide gain spectrum, such as broad band

light sources.

Size uniformity is generally improved with increasing adatom mobility. If adatoms

on the surface have very little time to move around before being incorporated into a QD

nuclei, then there will be a large variation in the average size of the QDs due to local

fluctuations in adatom mobility, surface energy/chemical potential, etc. If the migration

time were increased, then these fluctuations would be averaged out statistically and as

a result one will get a fairly uniform ensemble of QDs. Therefore we can expect more

uniform dots for low growth rates, low arsenic over-pressures, longer post-growth ripening

times, and high temperatures. In the photoluminescence (PL) spectra of an ensemble of

QDs, the full width at half maximum (FWHM) of the ground state peak can be used to

directly quantify the size fluctuations of the QD ensemble and is inversely proportional

to the size uniformity of the dots. For laser devices a small FWHM (high uniformity)

is desirable to attain a high gain in the active region. Typically, quantum confinement

in the growth direction dominates the total confinement energy, and therefore improving

the height uniformity of the dots can lead to significant improvements in the PL FWHM.

This is detailed in the following section on the quantum dot capping process.

2.4.5 Capping

The QD capping process is a critical step in the growth of optical quality QDs. The

emission wavelength, crystalline quality, and inhomogeneous broadening of the QDs are
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all strongly influenced by this step. For InAs/GaAs QDs, the natural capping material

would be GaAs. Although this scheme provides strong confinement, the large lattice

mismatch between GaAs and InAs generates large strain fields during the capping process

and can cause strain driven dissolution of QDs [51], formation of nanovoids [52], and in

certain instances dislocations [53]. The emission wavelength of this system is also limited

to 1.2 µm.

The aforementioned negative characteristics associated with GaAs capping can be

eliminated by using a strain-reducing InGaAs capping layer [51, 53, 52]. Longer emission

wavelengths can be obtained by this technique because the InGaAs cap suppresses indium

diffusion out of the QDs and reduces the confinement potential. One must carefully

control the composition of the InGaAs and avoid growing thick layers of this strained

material to avoid the formation of dislocations (see Figure 2.9) [45]. Other capping

materials include InAlAs and GaAsSb to extend the emission wavelength beyond 1.3 µm

[51]. In general InGaAs is the most commonly used capping material because it produces

high optical quality QDs and minimizes the growth complexity.

Improvement of the QD size uniformity in the growth direction and subsequent re-

duction of the FWHM in PL is also possible through the indium flush method [54]. The

premise of this method is to partially cap the quantum dots, then pause the growth.

During the growth interruption, the exposed portions of uncapped quantum dots can

either desorb from the surface or planarize themselves by diffusing away from the apex

of the quantum dots to the side, thus evening out the height of the quantum dots. Since

most of the confinement energy is from the Z-confinement (growth) direction, this can

result in significant improvements in the PL FWHM. A similar method can be used

whereby the dots are capped to cover all but the largest dots which are likely to be inco-

herent and form dislocations upon fully capping, then raising the growth temperature to

intentionally evaporate out the large and incoherent dots before resuming growth [55].
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Figure 2.13: A capping process to selectively evaporate out large and dislocated dots.
From [55], c© 2002 MAIK “Nauka/Interperiodica”.

2.5 Relating dot properties to laser performance

The tricky thing with quantum dots is that it is not very straightforward to optimize

every desirable characteristic, and almost always there is some sort of trade off for an

improvement in a different aspect. For example, shorter wavelength QDs have brighter

luminescence compared to longer wavelength QDs because they are smaller so higher

densities can be achieved, and they are not as strained as the larger/longer wavelength

dots so there are in general less growth related defects. However they generally have

poor confinement and T0. Therefore, the grower/device-designer bear in mind these facts

when trying to engineer quantum dots to meet specific performance metrics.

A theoretical model was developed by Weng Chow from Sandia National Labs which

can be used to predict how qualitative changes in dot properties will affect the modal

gain versus current density in a laser using the dots as the active region [40, 56]. This

model makes use of experimental data from this thesis. The experimentally measured

spontaneous emission spectra (photoluminescence) as well as modal gain curves (ex-

tracted from devices presented in Chapter 3, shown in Figure 3.27) are first compared

with microscopic theory to extract values of the inhomogeneous broadening (20 meV)
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and non-radiative losses (A=1.2 × 109 s−1, C=10−28 cm−6 s−1). The material gain in

this case was defined for an 8 nm In0.15Ga0.85As quantum well embedding 5× 1010/cm2

of quantum dots and the associated wetting layer. The material gain is multiplied by

the confinement factor Γ to obtain the modal gain Γg, wherein information on the phys-

ical properties of the dots (e.g. volume and density) is taken into account through Γ.

Holding everything else constant, the dot density, inhomogeneous broadening, and the

Shockley-Read-Hall (SRH) recombination rate (A) is then varied and the resulting modal

gain curve is computed and compared with the reference experimental data, shown in

Figure 2.14. We observe that doubling of the dot density doubles the maximum satu-

rated gain at the expense of increased transparency current density, similar to the effect

of increasing the number of quantum wells in a multi-quantum well laser. Decreasing

the defect or Shockley-Read-Hall recombination rate decreases the transparency current

density while keeping everything else the same. Finally, maintaining the same density

and SRH recombination rate but decreasing the inhomogeneous broadening by a factor

of two increases the maximum saturated gain by a factor of two without any trade-off in

transparency current density.
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Figure 2.14: Predicted change in the modal gain versus current density J against
measured experimental results (black) for: doubling of the dot density (red), halving of
the Shockley-Read-Hall recombination rate (green), or halving of the inhomogeneous
broadening (blue), with everything else kept the same in each case [40, 56]. Note that
the current density plotted here J is the total experimentally applied current density
instead of just the amount that reaches the active region (ηiJtot).

29



Chapter 3

InAs/GaAs quantum dot lasers on

Ge/Si

3.1 First generation devices

3.1.1 Sample growth

Ge-on-Si substrates with a 500 nm Ge buffer grown by chemical vapor deposition

(CVD) and an additional 1 µm GaAs buffer grown by MBE were used for the laser

growth. The silicon wafer was (100) with a 6◦ miscut towards [111] to suppress the for-

mation of antiphase domains. The Ge and GaAs layers were deposited by IQE. During

the MBE growth process, the thermal treatment of the Ge surface along with the GaAs

nucleation conditions were critical to obtain films with mirror-like surfaces and reason-

able dislocation densities. The process employed was previously optimized, and includes

a thermal anneal to form biatomic step arrays on the Ge surface to promote proper GaAs

nucleation [57]. The entire GaAs nucleation and buffer layer was grown as a single-stage

process at a constant substrate temperature around 600◦C, totaling 1 µm in thickness.
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Figure 3.1: Cross sectional transmission electron microscopy (TEM) image of the
GaAs buffer grown by molecular beam epitaxy (MBE) on Ge-on-Si substrates.

The sample was then unloaded and diced into smaller pieces to be used as virtual GaAs

substrates for the laser growths. The dislocation density in the GaAs layer of the sub-

strate was estimated to be of the order of ∼ 108 cm−2 by cross sectional TEM, shown

in Figure 3.1. Following a solvent clean and a dilute HF dip, samples were loaded into

the MBE machine where they were subsequently cleaned with cracked atomic hydrogen

for 30 minutes at a substrate temperature of 420 ◦C under a hydrogen beam equivalent

pressure (BEP) of 3.5× 10−6 torr (filament temperature 2200 ◦C). After the hydrogen

cleaning the RHEED was (2x4), corresponding to the GaAs surface reconstruction. A

standard in-plane separate confinement heterostructure was then grown (see Figure 3.2.)

The active region consisted of 5 layers of InAs quantum dots (∼2.96 ML) embedded in

an 8 nm In.15Ga.85As quantum well separated by 37.5 nm GaAs spacer layers, grown at

520◦C, and 0.09 ML/s, in punctuated growth mode with a V/III ratio of 35.

3.1.2 Device Fabrication

The as-grown sample was processed into narrow ridge lasers of varying widths (4 −

12µms) and cavity lengths (800, 1000,&1200 µm) using standard lithography, dry &

wet etching, and metalization techniques. After dry-etching a mesa to define the ridge

waveguide, AuGe/Ni/Au (85/15/500 nm) and Ti/Pt/Au (5/30/1000 nm) were deposited
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Figure 3.2: Layer structure of the ridge waveguide laser grown on Ge-on-Si substrate.

as the N and P contact metals respectively. The ridge was then passivated with a PECVD

SiNx layer. After etching vias through the passivation dielectric to expose the contact

metal, Ti/Au (30/3000 nm) was deposited as the probe metal. The lasers were then

diced and the facets polished down to 20 nm RMS roughness.

a) b)

Figure 3.3: a) An optical micrograph of the fabricated chip with four dies. b) A SEM
micrograph of two rows of lasers.
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3.1.3 Results and discussion

The devices were tested with a broad area InGaAs detector at room temperature

under both pulsed (5 µs pulse width, .5% DC) and continuous wave (CW) conditions.

Under pulsed operation, the threshold current varied from around 100 to 200 mA for 800

to 1200 µm long devices, respectively. Figure 3.4 shows a comparison of the best laser on

GaAs compared with the best laser on silicon. Under CW operation, the threshold current

was as low as 160 mA for an 1200 × 8 µm device with maximum output power around 5

mW (see Figure 3.5). The most promising aspect of the devices was that the threshold

current and slope efficiency for the best devices on silicon were comparable to reference

devices grown on GaAs and processed together with the ones on silicon (see Figure 3.4).

Devices grown on GaAs and silicon both exhibited excited state lasing around 1.15µm

compared to the ground state at 1.25µm as was resolved by photoluminescence (samples

on silicon had slightly blue-shifted spectra compared to samples on GaAs), suggesting

that lasing is from the ground state and that there was significant room for improvement

in terms of the optical quality of the active region quantum dots and that even lower

thresholds are attainable.

3.2 Second generation devices

The main issues with the first generation devices were: excited state lasing, high

thresholds, and poor continuous-wave performance. Several significant changes were

made with respect to the design of the first generation devices to improve device perfor-

mance:

• Digital alloy graded composition layers were added to the interfaces to reduce het-

erojunction resistance.
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Figure 3.4: Best devices on GaAs and silicon under pulsed measurements at room
temperature. Photodetector responsivity is ∼0.9 A/W at the lasing wavelength (the
coupling loss from the laser to the photodetector was not properly calibrated for this
measurement, thus we refrain from converting to absolute power values).

Figure 3.5: Best devices on GaAs and silicon under CW measurements at room tem-
perature. Photodetector responsivity is ∼0.9 A/W at the lasing wavelength (the
coupling loss from the laser to the photodetector was not properly calibrated for this
measurement, thus we refrain from converting to absolute power values).
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• A low loss doping profile was implemented.

• The cladding composition was reduced to 40 percent aluminum from 80 percent,

which compromised the confinement factor but was better for doping efficiency and

reliability, and therefore continuous wave operation [58].

• The number of active region quantum dot layers was increased from five to seven

to increase the maximum modal gain to ensure ground state lasing.

Additionally, the quantum dot growth conditions were completely overhauled and re-

optimized, as described below.

3.2.1 Photoluminescence Optimization of the Quantum Dot Ac-

tive Region

Special photoluminescence structures were grown on semi-insulating GaAs substrates

to determine the quantum dot optical quality and for growth optimization. After oxide

desorption at 620◦C for 5 minutes, the substrate temperature was ramped down to 600◦C

and a 100 nm GaAs buffer was grown to planarize the surface, followed by a 50 nm

digital alloyed Al.4Ga.6As barrier and an additional 50 nm GaAs layer. A dot in a well

(DWELL) structure was then grown consisting of InAs quantum dots embedded in 8 nm

of In.15Ga.85As [48]. A 50 nm GaAs/50 nm Al.4Ga.6As/50 nm GaAs stack completed the

growth.

Growth conditions for the InAs quantum dots were optimized as follows: starting

from a common set of growth conditions, a set of three or more samples were grown

varying only a single growth parameter. Photoluminescence (PL) spectra of each sample

was recorded, with care taken to ensure that each sample was measured under identical

conditions. An outline for photoluminescence optimization of quantum dots for use in
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lasers was given in Chaper 2. At low excitation, defect states are unpopulated and a

high GS PL intensity indicates good material quality and high radiative efficiency, while

a narrow linewidth is desirable for a uniform dot distribution to maximize gain at the

peak emission wavelength. At high excitation, defect states are populated and the GS

peak intensity is now directly proportional to the dot density (and the modal gain). A

high GS peak intensity along with a low wetting layer intensity are desirable implying

high modal gain and efficient carrier capture by the quantum dots. Thus our growth

conditions were optimized to give these characteristics, which are beneficial for laser

operation (Figure 3.6). Here we define “low excitation” as the minimum pump laser power

needed to resolve a clear GS peak, which for our setup corresponds to approximately 1.17

W/cm2. “High excitation” is taken to be the largest available laser pump power, and

is limited to 59.36 W/cm2 on our setup. The optimum growth conditions from the best

sample were then used for the next set of samples while varying a different parameter.

This process was repeated for the growth temperature, growth rate, amount of material

deposited, V/III ratio, growth interruption time, capping sequence, and post growth

annealing time. The optimum growth conditions derived from this process for a high

optical quality DWELL structure are: 2.75 ML of continuously deposited InAs at 510◦C

at a growth rate of 0.11 ML/s, V/III ratio of 35, growth interruption time of 60s after

QD formation, and an annealing time of 5 minutes at 600◦C after punctuated capping

at the QD growth temperature.

A major problem with quantum dot laser growth is potential In-Ga intermixing which

occurs during the overgrowth of the upper cladding and contact layers at higher temper-

atures relative to the quantum dot growth temperatures (i.e. GaAs/AlGaAs is typically

grown >580◦C while InGaAs is grown around 510◦C) [60]. This was found to be an

issue for the first generation devices, and historically has impeded the development of

high quality long wavelength InAs quantum dot lasers in MOCVD due to the relatively
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Figure 3.6: Low (1.17 W/cm2) and high excitation (59.36 W/cm2) PL spectra of the
original and improved growth conditions after optimization (left and right, respec-
tively). The higher ground state peak indicates higher dot density, which translates
into higher modal gain for lasers, and the lower ratio of wetting layer to ground state
peak intensities indicates a larger fraction of carriers are recombining in quantum dots.
From [59], c© 2014 AIP Publishing LLC.

hotter growth temperatures needed for efficient precursor pyrolysis [61]. Our improved

growth conditions show no significant PL degradation after a 1 hour in situ anneal at

typical GaAs/AlGaAs growth temperatures of 600◦C. On the other hand, quantum dots

grown with the original conditions show a 20 nm peak wavelength blueshift and a 6 meV

increase in linewidth after annealing, as shown in Figure 3.7. The improvement is hy-

pothesized to arise from the colder growth temperatures and faster growth rates, which

suppresses initial In-Ga intermixing during the quantum dot growth and the capping

layer growth. The higher dot density in the newly optimized dot samples may also help

to suppress In-Ga intermixing, if we consider that the intermixing occurs to relieve local

strain (and therefore a higher density of dots will result in lower reduction of local strain

from intermixing). The punctuated capping process may also play a role by allowing

excess indium on the growth surface to reincorporate into smaller quantum dots or be

“flushed” from the surface, [54] reducing alloy intermixing upon overgrowth with GaAs

at hotter temperatures.
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ANNEAL

Figure 3.7: Low excitation PL spectra of 5 layer quantum dot samples grown with
the original and improved conditions before (left) and after (right) a 50 minute in situ
anneal at 600◦C. While a 20 nm blueshift accompanied by a 6 meV PL broadening was
observed for the original conditions used in the first generation devices, the improved
growth conditions show negligble broadening and wavelength shift.

3.2.2 Second generation laser growth

The new quantum dot growth conditions were used for the growth of new lasers on

Ge/Si with the additional design changes mentioned above. The substrates were de-

greased with a solvent clean followed by a 30s dip in dilute (10%) HF prior to loading

into a Varian Gen II MBE machine. After a dehydration bake at 200 ◦C in the load lock,

the substrate was transferred into the MBE prep chamber where the surface was cleaned

with a (Veeco) atomic hydrogen source for 45 minutes at a substrate heater temperature

of 420 ◦C and a hydrogen beam equivalent pressure of ∼ 3.5× 10−6 torr to remove resid-

ual carbon or oxygen impurities prior to commencing growth. Two GaAs/AlxGa1−xAs

graded index separate confinement heterostructure (GRINSCH) lasers were grown on

such substrates. InAs quantum dots embedded in an 8 nm In0.15Ga0.85As quantum well

and separated by 37.5 nm GaAs barriers were grown as the active region. In one laser,

the GaAs barriers separating the quantum dots was modulation p-doped using beryllium,

otherwise the two structures are nominally the same, as shown in Figure 3.8. A separate

photoluminescence structure similar to the ones used for optimizing growth conditions
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Figure 3.8: Complete layer structure for the GRINSCH quantum dot laser with a
modulation p-doped active region. From [59], c© 2014 AIP Publishing LLC.

was grown with the optimal conditions on an identical silicon substrate to compare with

quantum dots on GaAs.

The same mask and fabrication process was used to fabricate ridge waveguide lasers

out of the new material. AuGe/Ni/Au and Ti/Pt/Au were used as the N and P contacts,

respectively. Plasma enhanced chemical vapor deposition (PECVD) SiO2 was used as

an electrical isolation layer, and vias were opened to the contacts prior to deposition of

Ti/Au probe metal. The lasers were then diced into varying cavity lengths and the facets

were formed by polishing. A subset of devices were coated with 95% high reflection (HR)

coating on the rear facet, while another subset of these devices were coated with 20-25

nm of silicon nitride on both facets before applying HR coating to the rear facet. The

difference in facet reflectivity due to the nitride layer is determined to be less than 4%

from simulation and measurements on calibration samples, thus yield data for the two sets

are presented together. The labels ‘HR/SiN’ and ‘HR/Polish’ will be used to differentiate

nitrided and non-nitrided devices, respectively. Likewise, the labels ‘undoped’ and ‘p-
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Figure 3.9: Left: A cross-sectional schematic of the ridge waveguide laser devices.
Right: A cross-sectional slice created via focused-ion-beam milling as viewed in SEM.

doped’ will be used to distinguish between devices with intrinsic or modulation p-doped

active regions, respectively. Laser bars were probed on a copper heat sink and thermal

paste was applied to the substrate side to ensure temperature uniformity. A device

schematic along with a corresponding cross-sectional view is shown in Figure 3.9.

3.2.3 Results and Discussion

Morphological and optical properties of quantum dots grown with the optimized

conditions are compared by photoluminescence and atomic force microscopy (AFM) scans

(Figure 3.10 and Figure 3.11). Compared to growth on native GaAs substrates, the

room temperature peak PL intensity of the QDs on Si shows a slight degradation in

intensity to ∼ 80% with an approximate 25 nm blueshift in the peak wavelength. The PL

characteristics between the two are otherwise qualitatively similar. A similar blueshift

has been seen in other InAs quantum dots grown on silicon, possibly due to residual

compressive stress between GaAs and silicon [62, 13]. The quantum dots grown on

silicon are similar in morphology to those grown on GaAs. Although the quantum dots

on GaAs seem to be slightly denser compared to those grown on silicon (∼ 5×1010/cm−2

on GaAs versus ∼ 4 × 1010/cm−2 on silicon), it is unclear to what extent this is due to
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Figure 3.10: Low excitation PL spectra of InAs QDs grown with the optimized con-
ditions on GaAs (solid blue) and silicon (dashed green).

a) b)

Figure 3.11: 1×1 µm2 AFM scans of the optimized InAs quantum dots grown on
GaAs (left) and silicon (right).

unintentional run-to-run variations in growth conditions, or the effect of residual stress on

the quantum dot formation kinetics. A more systematic study will be needed to resolve

these effects in order to make a fair comparison between the two cases.

Uncoated devices

Ridge waveguide lasers fabricated from the as grown material exhibit repeatable con-

tinuous wave (CW) performance higher than previous quantum dot lasers grown on

silicon. Figure 3.12 shows the light output-versus-current (LI) curve of a 1155×5 µm2
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Figure 3.12: (Color online) Continuous wave light output versus current (LI) at 20◦C
for a p-doped 1155×5 µm2 laser with polished facets. (Inset: Room-temperature
continuous wave lasing spectra of a p-doped laser at 1.2×Ith. A clear lasing peak is
observed around 1258 nm.) From [59], c© 2014 AIP Publishing LLC.

p-doped device with a CW threshold of 42 mA and more than 40 mW of output power

from a single facet. Figure 3.13 shows CW LI curves taken at different temperatures

for an identically sized p-doped device on a different part of the die, with a similar LI

curve at room temperature as the one in Figure 3.12. Modulation p-doping of the active

region has been used to significantly enhance the T0 of InAs quantum dot lasers grown

on native GaAs substrates,[63] and we achieve the same effect for InAs quantm dot lasers

grown on silicon. T0 of 75K between 20-60◦C and 52K between 60-120◦C are calculated

from pulsed measurements to eliminate self heating effects. These values are higher than

typical values of T0 for 1.3 µm quantum dot lasers with intrinsic active regions, which

are around 30 to 60 K [36]. Ground state lasing for these devices occurs around 1258 nm

at room temperature (inset of Figure 3.12). The maximum CW lasing temperature for

the device shown in Figure 3.13 is 95◦C.
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Figure 3.13: (Color online) Continuous wave light output versus temperature for a
1155×5 µm2 p-doped laser. T0 is 75K between 20-60◦C and 52K between 60-120◦C.
From [59], c© 2014 AIP Publishing LLC.

HR Coated Devices

Continuous wave (CW) thresholds as low as 16 mA and output powers exceeding 50

mW are simultaneously achieved for a 937×4 µm2 HR/Polish device with an intrinsic

active region measured at 20◦C, shown in Figure 3.14. Emission spectra as a function

of injection current is shown in Figure 3.15 for the same device, displaying clear lasing

peaks around 1250 nm which coincide with the ground state photoluminescence peak

(Figure 3.10). This device has a maximum CW lasing temperature of 110◦C (Figure 3.16).

Pulsed light-current (LI) curves were used to calculate T0 to eliminate self heating effects,

yielding a value of 43 K from 20-110◦C. Previous work on 1.3 µm InAs quantum dot lasers

with intrinsic active regions grown on Ge and Ge-on-Si substrates showed similar values of

T0 as reported here with CW lasing up to 60◦C and 30◦C, respectively.[36, 21] Figure 3.17

shows the light-current-voltage (LIV) plot for an undoped 1130×10 µm2 HR/SiN laser

with up to 176 mW of output power in CW operation, the highest reported for telecom
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Figure 3.14: LIV plot of an undoped 937×4 µm2 HR/Polish laser. Inset: threshold
kink at 16 mA. From [14], c© 2014 AIP Publishing LLC.

lasers on silicon. The maximum single side wall plug efficiency for this device is 18% at

150 mA with a corresponding differential efficiency of ∼37%.

Similar device characteristics are obtained for the same nominal laser structure grown

on a separate wafer but with modulation p-doped active regions. For example, a p-doped

1155 × 4 µm2 HR/Polish device has a 21 mA threshold with nearly 54 mW of output

power at 20◦C. Figure 3.18 shows LI curves at different temperatures for a p-doped

993×5 µm2 HR/SiN device. T0 for this device as estimated from pulsed measurements

is 143K from 20-40◦C and 41K from 40-120◦C. Examination of the lasing spectra as a

function of current and temperature indicates that the second kink in the LI curve at

70◦C is due to the onset of dual state lasing with the excited state, commonly reported

for InAs quantum dot lasers where gain and carriers are not fully clamped at threshold.

As the temperature is increased, the ground state power is reduced until ground state

lasing is quenched around 100◦C in pulsed operation and 80◦C in CW operation. For

the device shown in Figure 3.18, CW lasing continues in the excited state up to 119◦C,

while lasing continued in pulsed operation until testing was stopped at 130◦C. This is
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Figure 3.15: Room temperature continuous wave emission spectra of the device in
Figure 3.14 at different injection currents. From [14], c© 2014 AIP Publishing LLC.
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Figure 3.16: CW LI curves at various stage temperatures for the device in Figure 3.14
showing lasing up to 110◦C. From [14], c© 2014 AIP Publishing LLC.
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Figure 3.17: LIV plot of an undoped 1130×10 µm2 HR/SiN laser. Threshold is 38
mA with 176 mW of output power at 20◦C. From [14], c© 2014 AIP Publishing LLC.

the highest CW lasing temperature for lasers on silicon, exceeding the previous record of

105◦C reported for a 1.3 µm AlGaInAs quantum well hybrid silicon laser[64].

Threshold versus temperature is plotted for several p-doped devices with 4-5 µm ridge

widths and various cavity lengths in Figure 3.19 and compared with the undoped device in

Figure 3.14. The data range is restricted to 20-70◦C where ground state lasing is dominant

and the beneficial effects of p-doping are most pronounced. Near room temperature (20-

40◦C) T0 is usually in the range of 100-200K for p-doped devices, generally increasing

with cavity length (lower mirror loss). Similar T0 values and high temperature pulsed

lasing over 100◦C were reported for p-doped InAs quantum dot lasers grown on native

substrates and wafer-bonded to silicon, although no CW characteristics were reported

[65]. The change in lasing wavelength versus stage temperature in pulsed operation for a

p-doped HR/SiN laser is shown in Figure 3.20, with an approximate change of 0.4 nm/K

from 20 to 100◦C, until a switch to excited state lasing at 110◦C.
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Figure 3.18: CW LI curves at various stage temperatures for a p-doped 993×5µm2

HR/SiN laser. CW lasing is observed up to 119◦C (see inset). Pulsed T0 for this
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Figure 3.19: Pulsed threshold versus stage temperature for various p-doped devices
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Figure 3.20: Lasing wavelength versus stage temperature for a p-doped HR/SiN laser
in pulsed operation.

Yield data

Laser performance for ridges widths from 4 to 12 µm were studied. Mask splits for the

ridge widths are 1×4 µm, 2×5 µm, 3×6 µm, 4×7 µm, 5×8 µm, 4×9 µm, 3×10 µm, 2×

11 µm, 1× 12 µm, hence less data points are available for the narrowest or widest ridges.

The data presented in Figure 3.21-Figure 3.23 are of more than 330 working lasers from

the two separately grown wafers.

Current-voltage (IV) data and visual inspection indicates that the main reason for

turn-on failure are probe metal shorts, while other discrepancies in performance are pri-

marily related to facet damage incurred during polishing (see Appendix B). The threshold

data shows a remarkably linear trend over the entire range of ridge widths studied, imply-

ing minimum sidewall recombination and lateral carrier diffusion due to excellent carrier

confinement within the quantum dots (inset of Figure 3.21)[41]. A histogram of the cor-

responding threshold current densities show a very narrow spread and implies excellent

material uniformity across the two different chips (Figure 3.21). The lowest threshold

current density was 253 A/cm2, and with the average centered around 500 A/cm2. Note
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a) b) 

Figure 3.21: A) A histogram of CW threshold current density at 20◦C (both p-doped
and undoped). The lowest threshold current density was 253 A/cm2, and with the
average centered around 500 A/cm2. b) Corresponding threshold currents plotted
against ridge width, the dashed best fit line has a slope of 4.75 mA/µm.

that the difference in cavity lengths will induce a small spread in the average threshold

current density as well, due to the difference in mirror loss. Similarly, output power

increases more or less linearly with the ridge width, although the data is more scattered

due to non-uniform facet polishing (Figure 3.22). The maximum output power versus the

corresponding drive current (the roll-over inflection point in the LI curve) are plotted for

all devices in Figure 3.23. The slopes of the best fit lines for the undoped and p-doped

data points in this plot are 0.2252 and 0.1752 W/A, respectively, and can be used as a

conservative estimate of the average slope efficiency for our devices. The higher slope

efficiency of undoped laser devices are in agreement with the expected increase in optical

loss from p-doping the active region, leading to slightly higher thresholds and lower slope

efficiencies [63]. The highest output powers and lowest thresholds were from devices with

intrinsic (undoped) active regions.

Overall the performance of the second generation devices were significantly improved

from the first generation devices. This was mostly due to the improved growth conditions

and epi design as detailed previously, as well as improved device processing and the

application of HR coatings. The plot in Figure 3.24 illustrates the relative improvement
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Figure 3.22: Maximum CW output power at 20◦C (both p-doped and undoped)
plotted against ridge width. The dashed best fit line has a slope of 6.73 mW/µm.
From [14], c© 2014 AIP Publishing LLC.
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Figure 3.23: Maximum CW output power at 20◦C (both p-doped and undoped)
versus corresponding drive current. The solid and dashed lines are best fits for the
undoped and p-doped devices with slopes of 0.2252 and 0.1752 W/A, respectively.
From [14], c© 2014 AIP Publishing LLC.

50



InAs/GaAs quantum dot lasers on Ge/Si Chapter 3

Figure 3.24: A LI comparison of lasers from the two different generations of devices.
The ‘original’ curve is the laser on silicon shown in Figure 3.5, while the ‘improved’
curve is the device shown in Figure 3.14

between the two generations of devices.

3.3 Quantum dot versus quantum well lasers epitax-

ially grown on silicon

Up to this point we have been operating under the assumption that quantum dots are

inherently more tolerant of dislocations compared to quantum wells. While our initial

results of lasers on Ge/Si substrates are very good relative to previous lasers epitaxially

grown on silicon, we cannot claim a priori that this is solely due to the benefit of having

a quantum dot active region. Therefore we set out to conduct a systematic comparison

with quantum well lasers grown on the same Ge/Si substrates, having the same layer

structure and device design/fabrication steps as the quantum dot lasers. The goal is to

compare both the relative change in performance of either quantum dots or quantum wells
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Figure 3.25: Layer structure of the QW or QD GaAs/AlGaAs lasers on silicon. From
[35], c© 2015 Chinese Laser Press.

for the same lasers on GaAs versus Ge/Si substrates, as well as the relative performance

of quantum dots to quantum wells on the same substrates.

3.3.1 Experimental Procedures

Ideally we would compare the same material system at the same wavelength of 1.3

µm. However the emission wavelength of InGaAs/GaAs quantum wells is limited to

around 1100 nm by the strain of the system, as longer wavelengths require high indium

content and/or thicker wells that are likely to cause inelastic strain relaxation and misfit

dislocation formation. In0.20Ga0.80As/GaAs quantum well (QW) lasers emitting around

980 nm are one of the most mature laser systems on GaAs and also well developed at
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UCSB by the Coldren group for high speed VCSELs. They were thus chosen for this

study to compare with 1.3 µm InAs/GaAs quantum dot (QD) lasers. The following cases

are examined:

• InGaAs QW lasers vs. InAs QD lasers on native GaAs substrates (dislocation

density ≤ 103 cm−2)

• InGaAs QW lasers on silicon vs. InAs QD lasers on silicon (dislocation density

≥ 108 cm−2)

Both photoluminescence (PL) and full laser structures are studied. Growth was per-

formed by Molecular Beam Epitaxy (MBE). The PL structures consist of a single QW or

QD active region cladded on either side by GaAs (50 nm)/Al0.40Ga0.60As (50 nm)/GaAs

(50 nm). Growth procedures for the QDs have been reported previously [59]. Growth

conditions for the QW are: 8 nm of In0.20Ga0.80As grown at 2.23 A/s, 530◦C, and under

a V/III ratio of 20.

GaAs/AlxGa1−xAs laser structures were grown with either 3×[In0.20Ga0.8As (8 nm)

/ GaAs (8 nm)] multiple quantum wells, or InAs QD/GaAs (37.5 nm) multiple quantum

dot layers (five for lasers on GaAs and seven for lasers on silicon) (see Figure 3.25).

Samples on GaAs were grown on cleaved pieces of a semi-insulating two inch GaAs (100)

wafer, and samples on silicon were grown on 2×2 cm2 pieces diced from a 150 mm GaAs

(1 µm)-on-Ge (500 nm)-on-Si template provided by IQE, the same ones as was used

in the above sections. The as-grown epi were then processed into either broad area or

narrow ridge waveguide lasers using standard lithography, dry etching, and metallization

techniques.
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3.3.2 Results and discussion

Broad area laser and modal gain characteristics

50 µm wide broad area lasers with as-cleaved facets were first fabricated from the

GaAs wafers with either 5x InAs/GaAs quantum dots or 3x InGaAs quantum wells as the

active region to assess the quality of the active region. For each type of laser (QD or QW),

the light-vs-current (LI) characteristics for lasers with various cleaved cavity lengths

were measured on over 100 devices. From the measured LI curves, the inverse of the

external differential quantum efficiency was plotted against the cavity length, as shown

in Figure 3.26. Injection efficiency (ηi) and optical loss (αi) were extracted from the best

fit line of the average inverse differential efficiency versus the cavity length. The extracted

values for the injection efficiency and waveguide loss are: ηi = 0.61±0.04, αi = 3.17±0.41

cm−1 for the QD lasers; and ηi = 0.64± 0.03, αi = 6.79± 0.59 cm−1 for the QW lasers.

Pulsed measurements with a duty cycle of 0.5% (5 µs pulse width, 1000 µs pulse period)

were used for this analysis, although continuous wave measurements were also performed

with both quantum well and quantum dot lasers demonstrating good performance at

room temperature.

Subsequently, a modal gain (Γgth = 1
L

Ln 1
0.32

+ αi) versus current density curve was

generated by plotting the modal gain versus average threshold current density of each dif-

ferent cavity length. Also plotted are the average threshold current densities as a function

of cavity length, both of which are shown in Figure 3.27. The modal gain versus cur-

rent density curve was fitted with a simple logarithmic function: Γgth = Γg0JLn(J/Jtr).

The extracted average transparency current density Jtr per layer of quantum dots is 11.6

A/cm2, and 72.8 A/cm2 for the quantum wells. The gain coefficient Γg0J is 2.36 cm−1 per

layer of quantum dots, and 19.26 cm−1 per layer of quantum wells. We see that in low

loss cavities, quantum dots hold a significant advantage in terms of lower transparency
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Figure 3.26: Broad area laser cut-back measurements of In0.2Ga0.8As quantum well
and InAs quantum dot lasers on GaAs substrates. In each case various cavity lengths
were measured in pulsed mode, and the inverse external differential quantum efficiency
plotted against cavity length, then fitted to a line to extract the modal loss and
injection efficiency.

and threshold current density. Note that for all plots and analysis shown here the cur-

rent density value plotted is the total experimentally applied current density, before any

injection efficiency losses (i.e. not ηi × Japplied). In general both types of active regions

were performed reasonably well for the devices on GaAs.

This analysis which relies on measurements of the external differential quantum ef-

ficiency assumes complete pinning of the Fermi levels past threshold. This assumption

may not be completely valid for the analysis of quantum dot lasers, for which the carrier

density (and ηi) may not completely pin at threshold but can still increase slightly with

increasing current density [66]. This is a result of the inhomogeneous broadening and

non-equilibrium carrier distribution within quantum dot ensembles. More measurements

and simulations will be necessary to address this issue, which is beyond the scope of the

present investigation.

Photoluminescence comparison

Room temperature PL spectra of the same QW or QD structure grown on GaAs

versus silicon is shown in Figure 3.28. While the ground state intensity of the QW
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(a) (b)

Figure 3.27: Room temperature broad area laser characteristics of In0.2Ga0.8As quan-
tum well and InAs quantum dot lasers on GaAs substrates: (a) threshold current
versus cavity length and (b) modal gain versus injected current density. Fitting pa-
rameters are listed in Table 7.1. From [35], c© 2015 Chinese Laser Press.

degraded by more than a factor of 10 when grown on silicon, the ground state intensity

of the InAs QDs is roughly 80% of the reference QDs grown on GaAs with comparable

linewidths (∼35 meV).

Cross-sectional TEM comparison

Cross-sectional transmission electron microscopy (TEM) images of the QD and QW

laser structures grown on silicon are shown in Figure 3.29. Similar dislocation densities

are observed for both structures, thus we may infer that the dislocation densities in the

PL structures grown on silicon are also comparable (since the substrates were all diced

from the same parent wafer).

Ridge laser comparison

Ridge waveguide lasers were fabricated from the two different kinds of laser epi on

silicon using the same fabrication procedure as described in the earlier sections. Contact

resistance measured from devices on the two separate silicon based epi were similar at

around 1×10−6Ω cm2, as to be expected since doping levels were nominally identical and
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(a) (b)

Figure 3.28: Room-temperature photoluminescence comparison of (a) single InAs
quantum dot layer and (b) single 8 nm In0.20Ga0.80As quantum well grown on GaAs
versus silicon substrates. From [35], c© 2015 Chinese Laser Press.

1 µm  1 µm  

(a) (b) 

Figure 3.29: Bright field cross sectional TEM images of (a) the QW laser and (b)
the QD laser grown on silicon. Dislocations manifest as irregular dark lines. (Scale is
approximate). From [35], c© 2015 Chinese Laser Press.
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(c) (d) 

QD QW 
(a) (b) 

Figure 3.30: Room-temperature continuous wave current-voltage (a-b) and light-ver-
sus-current (c-d) plots for both the In0.20Ga0.80As quantum well (a, c) and InAs
quantum dot lasers (b, d) grown on silicon substrates. From [35], c© 2015 Chinese
Laser Press.

the metallization procedures were the same. I-V characteristics between devices from

the two separate wafers also show similar series resistance (Figure 3.30 a&b). However,

contrary to the case of the two lasers on GaAs substrates, in this case none of the

quantum well devices were able to achieve continuous wave lasing at room temperature

(Figure 3.30c). In comparison, the InAs quantum dot lasers grown on silicon show very

reasonable continuous wave lasing characteristics, shown in Figure 3.30d and reported

in detail in the previous sections [14]. The turn-on voltage of the quantum well lasers

are also lower than what would be expected from the bandgap of the quantum wells,

indicating some possible current leakage. These results clearly confirm the hypothesis

that quantum dot lasers can be much less sensitive to dislocations compared to quantum

wells.
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3.4 Summary

We have demonstrated repeatable record performance 1.3 µm InAs quantum dot

lasers epitaxially grown on silicon with low thresholds (16 mA), high output power (176

mW), high temperature lasing (up to 119◦C), and high T0 (> 200 K). These continuous

wave output power levels and lasing temperatures are the highest reported for lasers on

silicon. These results are a significant improvement from the first generation devices, re-

sulting from a combination of improved quantum dot growth, device design, and device

fabrication. We have also provided a systemic study of InAs/GaAs quantum dot versus

In0.15Ga0.85As/GaAs quantum well lasers grown on the same Ge/Si substrates and with

the same device design/fabrication process. The results of the latter study show unequiv-

ocally the reduced sensitivity to dislocations of quantum dot active regions compared to

quantum wells.
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Chapter 4

Reliability of InAs/GaAs quantum

dot lasers on Ge/Si

4.1 Introduction

GaAs/AlGaAs compounds are known to be susceptible to recombination enhanced

defect reactions, whereby energy released from non-radiative recombination at point

defect or extended defect (dislocation) sites contribute to a local enhancement of de-

fect/dislocation mobility and density [67]. This phenomenon is a common cause of fail-

ure in GaAs/AlGaAs quantum well lasers, and becomes more pronounced with higher

dislocation densities [68, 11]. For GaAs based quantum well lasers epitaxially grown on

silicon - where relatively high dislocation densities are present compared to growth on

native substrates - reported lifetimes have ranged from a few seconds [69] to around 200

hours [70] under room temperature testing.

Long-term reliable operation is a pre-requisite for consideration in commercial ap-

plications. There have been several reports on the reliability of InAs/GaAs quantum

dot lasers grown on native GaAs substrates [71, 72, 31], however the reliability charac-
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teristics of previous quantum dot lasers epitaxially grown on silicon have not yet been

reported. Here we present the first study on the reliability of InAs/GaAs quantum dot

lasers epitaxially grown on silicon and a comparison with similar devices grown on GaAs.

4.2 Experimental procedure

Ridge waveguide Fabry-Perot cavity lasers were fabricated from InAs/GaAs quantum

dot laser material emitting around 1.3 µm grown by molecular beam epitaxy on both

native (100) GaAs substrates as well as GaAs/Ge/Si templates [14, 59], where the Si

substrate is (100) with a 6◦ miscut towards [111]. The growth and fabrication steps of

all the lasers used for reliability testing were identical except for the choice of substrate

(GaAs vs. GaAs/Ge/Si), the number of active layers (five on GaAs substrates and

seven on GaAs/Ge/Si), and the facet formation process. For the lasers grown on silicon,

the cavities were defined by dicing the metallized chips into laser bars, facet polishing,

deposition of a thin 20-25 nm SiN passivation layer on both facets and a 95% highly-

reflective (HR) dielectric coating on one facet. The lasers on GaAs were cleaved with no

subsequent facet coating. Detailed epitaxial growth and device fabrication procedures

have been reported previously [14, 59].

Figure 4.1 shows a cross-sectional transmission electron microscope (XTEM) image

of unprocessed laser material on silicon from a separate wafer but grown with the same

conditions as the material used for device fabrication. The viewing area is ∼ 11µm wide.

A high density of threading dislocations is visible. Despite the high density of disloca-

tions, lasers fabricated from such material have shown reasonably good performance as

characterized in detail in Chapter 3, demonstrating the unique advantage of quantum

dots.

Nine devices of various sizes were selected for aging in an accelerated aging test rack
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QDs

Figure 4.1: Cross-sectional TEM (XTEM) of the as-grown laser epi on Ge/Si sustrates.
The threading dislocation density is estimated to be 4×108 cm−2. From [23], c© 2015
IEEE.

at Aurrion Inc. Of the selected devices, three were quantum dot lasers grown on GaAs

substrates, while the rest were on silicon. Laser bars containing one or more individual

devices to be tested were mounted onto AlN carriers with non-conductive epoxy and the

contacts wire-bonded to probe pads on the carrier. A thermistor was mounted onto the

carrier as well to monitor the temperature during aging.

All devices were aged in auto current control (ACC) mode at 30◦C under 100 mA of

constant applied current (1.1-2.5 kA/cm2 depending on device size). The initial single

facet output powers at these conditions varied from 3.3-16.6 mW. Periodic light-current-

voltage (LIV) sweeps at 30◦C were taken to monitor changes in the lasing characteristics,

where the light was collected from a photodiode normal to the facet of the aged devices

in the aging rack. Due to limitations of the mask layout and the wire-bonding setup,

only a single wire-bond was done for the p and n contacts of each laser - namely due

to the small size of the probe pads compared to the minimum achievable wirebond size
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Figure 4.2: A SEM photograph of the packaged laser for lifetime testing. Two devices
are being aged in this case. The thermistor is not visible. The original mask design
constrained us to a single n and p wire bond per device.

(see Figure 4.2). Because of this, the differential resistance of the wire-bonded lasers at

the aging current of 100 mA increased by 0.205-0.735 ohms compared to direct probing.

This manifested in a reduced maximum output power and earlier thermal rollover in the

LI curves of the mounted/wire-bonded lasers measured at room temperature.

One additional laser on silicon was tested in-house at UCSB so as to be able to

perform additional characterization during the aging process (Figure 4.4, VII). In this

case, a packaged laser device on an AlN carrier without any wire bonding was directly

probed on a heated copper stage and operated continuously using a Keithley 2602 current

source. Periodic LIV sweeps were programmed with a MATLAB script and the output

light was collected with an integrating sphere. With the exception of modulation p-

doping in the active region, the epitaxial material and device structure were identical to

the ones tested at Aurrion.
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Figure 4.3: Aging data (at 30◦C/100 mA) for three quantum dot lasers on GaAs. The
discontinuity around 1400 hours coincides with relocation of the testing equipment.
The legends denote the device size as (cavity length) x (ridge width). From [23], c©
2015 IEEE.

4.3 Lifetime testing results

4.3.1 Threshold behavior

Figure 4.3 shows the aging data for the quantum dot lasers on GaAs. A small increase

in threshold (2-3 mA) over the course of the aging period is observed for all lasers, with

most of the increase occurring in the early stages of testing. The threshold behavior was

otherwise relatively stable. Sudden kinks in the threshold versus time plots at around

1400 hours coincide with relocation of the testing setup.

Figure 4.4 shows the aging data for the lasers on silicon. The data is grouped into three

subsets according to active region area/applied current density for the devices stressed

together in the aging rack (labeled I through VI), and separately for the p-doped laser

aged on a probe station (VII). The lasers can be seen to degrade at various rates during
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Figure 4.4: Aging data (at 30◦C/100 mA) for six quantum dot lasers on silicon stressed
in a commercial laser reliability aging test rack (I-VI). VII is a laser with p-doping in
the active region and stressed on a probe station. The legends denote the device size
as (cavity length) x (ridge width). From [23], c© 2015 IEEE.
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the aging process, but no catastrophic failures are observed. Devices II, III and IV slowly

degraded until the threshold was too high to permit lasing. After 600 hours, devices I

(still lasing) and II were removed for TEM characterization. Aging of V, VI, and VII

were stopped after 2736, 2736, and 2100 hours, respectively.

A sub-linear model is used to fit the threshold behavior over time as was proposed in

an earlier work [73, 74]:

Ith(t) = Ith(0)(1 + atm)

MTTF =

(
1

a

)1/m

In the above equations, t is the elapsed aging time and Ith(t) is the threshold as a function

of aging time. The MTTF criterion can take on various levels of rigor depending on the

device application. Here we define it as a doubling of the threshold for ease of comparison

with similar reliability data of epitaxial lasers on silicon. The p-doped laser showed the

best lifetime with an extrapolated MTTF of 4627 hours. Typically, semiconductor laser

lifetime is modeled by a temperature and applied current density dependence:

MTTF = AJ−n exp

(
Ea
kT

)

where T is the junction temperature, Ea is an activation energy that describes the change

in degradation rate across a temperature range, and n describes the current-density

dependence on degradation. MTTF versus applied current density is plotted in Figure 4,

and the current exponent is estimated to be ∼ 2.7 for devices I-VI (data for VII was not

included for consistency because of the different gain characteristics and carrier dynamics

of p-doped lasers, as well as the different testing setup). We note that this is only a rough

estimate due to the small sample size as well as other effects present, which cannot be

properly decoupled such as differences in thermal and electrical resistances of different

66



Reliability of InAs/GaAs quantum dot lasers on Ge/Si Chapter 4

Figure 4.5: MTTF versus the applied current density for devices I-VII. The blue line
is a best fit curve for devices I-VI (VII not included due to the different testing setup
and p-doping in the active region). The current exponent n is approximately 2.7.
From [23], c© 2015 IEEE.

device sizes. Due to lack of temperature dependent data we are unable to estimate the

thermal activation energy.

4.3.2 (S)TEM investigation

Plan-view TEM (PVTEM) specimens were prepared from device I which has been

heavily degraded after 600 hours, as well as unaged devices spaced approximately 300

µm away on the same laser bar for comparison. The PVTEM specimens were taken

from approximately the center of the InAs quantum dot active region, and estimated

to be 100-120 nm thick, with ∼20 nm of amorphous material on each side of the foil

caused by FIB damage. Due to significant warping of the TEM foils causing irregular

diffraction conditions across the sample, the images were taken in multi-beam diffraction

conditions in STEM mode to best illuminate the dislocations. The results are visible in

Figure 4.6. A network of misfit dislocations is visible in both the aged device as well as

the unaged one, which was not readily observable in cross-sectional TEM. The majority
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Figure 4.6: Plan-view TEM images of the active region of an unaged laser (a &
c), and that of device II which was aged for 600 hours (b & d). Boxed regions in
a&b correspond to the regions where c&d were imaged, respectively. The speckled
background is due to individual quantum dots. The dislocation density is on the order
of 108 cm−2 in both cases. The helical component of the misfit dislocations in the
aged sample is characteristic of dislocation climb. From [23], c© 2015 IEEE.

of them are aligned nearly parallel to the [011] direction separated by an angle that is

proportional to the substrate offcut [75], forming V shapes where they cross. The total

dislocation density is on the order of ∼108 cm−2 in both cases. Comparing the aged and

un-aged cases, the dislocations in the aged device seem to acquire a helical component,

characteristic of growth by dislocation climb [76]. We note that this device (I) was still

lasing with roughly 4 mW of maximum output power at the time testing was stopped

for TEM characterization.
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Figure 4.7: Reverse leakage current for device VII measured in roughly 500-hour
intervals at the aging temperature of 30◦C. Inset: reverse current at -10V as a function
of aging time. From [23], c© 2015 IEEE.

4.3.3 Reverse bias leakage current versus aging time

The reverse bias leakage current was measured at different aging time intervals for

device VII at 30◦C. The results are shown in Figure 4.7. After a relatively large initial

increase in the leakage current, the rate of increase becomes smaller for roughly the same

time interval as aging progresses (see inset of Figure 4.7). This trend is similar to the

threshold versus time data. Materials with defects or dislocations typically exhibit much

higher reverse leakage currents compared to low defect density material [76, 77, 78]. This

suggests that the degradation is due to defect/dislocation growth within the material, and

is consistent with the observation of dislocations with signatures of climb in Figure 4.6.

4.3.4 Post-aging lasing spectra

Figure 4.8 shows the lasing spectra at 30◦C for device VII after the aging process was

stopped at 2100 hours. The measured threshold after 2100 hours of testing was 57 mA

at the aging temperature. Sharp lasing peaks at the wavelength of 1267 nm are visible in
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Figure 4.8: Lasing spectra at 30◦C for device VII after 2100 hours of lasing. A lasing
peak at the wavelength of 1267 nm appears at 60 mA and becomes well developed by
65 mA, confirming lasing action in this device. From [23], c© 2015 IEEE.

the lasing spectra at 60 mA and become well developed at 65 mA, confirming sustained

ground state lasing oscillation during and after the aging process.

4.4 Discussion

Since the quantum dot (QD) lasers grown on GaAs exhibited good lifetime charac-

teristics, we conclude that the degradation of QD lasers on silicon is caused by either

the higher dislocation density from growth on silicon and/or damage induced from the

facet polishing process (examples are given in Appendix B). While we cannot rule out

the latter, for applications in silicon photonic integrated circuits facets are either formed

in a passive waveguide material decoupled from the active gain media or not used at all,

making III-V facet damage less relevant for reliability [74]. We will focus our discussion

on the evidence of dislocation growth in the active region. Both threading dislocations

and misfit dislocations are present within the lasers on silicon at high densities, visible
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in the TEM images in Figure 4.6. The high density of misfit dislocations in the active

region was unexpected and could have been caused by relaxation of the In0.15Ga0.85As

quantum well confining the QDs. A literature survey of GaAs based lasers grown on

silicon reveals a surprising finding: despite the fact that pseudomorphically strained

InxGa(1−x)As/GaAs quantum well (QW) lasers significantly outperform their unstrained

GaAs QW counterparts when grown on GaAs, the opposite is true for the same lasers on

silicon where InGaAs QWs have failed to show the same superior performance compared

to unstrained GaAs/AlGaAs QW devices [79, 80, 81]. Although the reason has not been

extensively investigated, it is possible that this is due to a metamorphic relaxation of the

strained InGaAs typically grown near the critical thickness on GaAs. Extra compressive

strain induced by the temperature increase from quantum well/dot growth temperatures

to hotter GaAs growth, along with an increased possible number of nucleation sites for

misfit dislocations from the presence of pre-existing threading dislocations and an inher-

ent surface roughness, likely induces an earlier critical thickness for plastic relaxation of

the InGaAs QWs (or InAs QDs). Increased misfit dislocations in the QW when grown on

Si versus growth on native substrates have also been observed experimentally by TEM

in a recent study [81].

Although strained InGaAs quantum well lasers show significantly improved lifetimes

compared to unstrained quantum well lasers, it has been demonstrated that when grown

near or past the critical thickness, their lifetimes become worse than those of unstrained

GaAs quantum well lasers [82]. The study in [82] looked at three sets of lasers where the

quantum well thickness varied by approximately 2 nm. The corresponding lifetimes varied

from well over 3000 hours for the laser that was below the critical thickness, to 1000 hours

near the critical thickness, to less than 100 hours above the critical thickness. Therefore,

the creation of extra misfit dislocations possibly related to the strain relaxation of the

DWELL may be an important factor in the lifetime of these devices. In many studies,

71



Reliability of InAs/GaAs quantum dot lasers on Ge/Si Chapter 4

the same growth conditions are used to compare material grown on GaAs to growth

on Si for consistency. However, in light of this analysis, this is not an optimal route

as the same growth conditions on GaAs may exceed the critical thickness on silicon.

Strain compensation via the introduction of tensile barriers or proper adjustment of

the layer composition and thickness should be made for growth on silicon for better

reliability. Degradation in this case most likely proceeds via non-radiative recombination

of minority carriers at such dislocations outside the InAs QDs (i.e. in the confining

In0.15Ga0.85As well and GaAs barriers), which leads to subsequent dislocation climb.

This recombination enhanced process has been shown to be proportional to the current

density [67, 83], which in the active region is governed by the lasing threshold condition

involving different competing carrier processes such as carrier capture and escape within

individual dots or defect states.

4.5 Degradation model

A schematic in-plane band diagram illustrating the various processes present is shown

in Figure 4.9. The non-radiative lifetime associated with a defect or trap state can be

roughly expressed as τNR = 1/(σvthND) where σ is the capture cross-section of the

defect, vth is the thermal velocity of the minority carrier, and ND is the defect density.

The internal quantum efficiency can then be expressed as [84]:

ηIQE =

(
1 +

τr
τNR

)−1
= (1 + τr(σvthNd))

−1 = (1 + C(σND))−1 (4.1)

For QD lasers, the capture cross-section of the defect would be inversely proportional to

the dot density (or the mean diffusion length). As the dislocation length increases through

recombination enhanced dislocation climb, the the product σND increases causing de-
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Figure 4.9: A simplified schematic of the aging process showing the various cap-
ture (C), emission (E) and recombination (non-radiative: NR; or radiative/stimulated
emission: ST) processes involved. Only electron processes are shown for simplicity.
Here, the defect is an electron trap. When carriers are injected into the active region
(1), they may relax via radiative transitions if captured by a quantum dot (2a) or a
non-radiative transition if trapped by a defect (2b). In the latter case, recombination
enhanced defect reactions (REDR) may lead to growth or formation of new defects
(3). Laser efficiency (internal quantum efficiency ηIQE inside active region, injection
efficiency ηi outside active region) decreases and absorption loss increase(4). (GS
ground state; ES excited states).
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creases in the injection efficiency and/or internal quantum efficiency, while introducing

additional absorption loss αi into the cavity. This subsequently increases the threshold

current density within the device, and leads to more non-radiative recombination events

[11, 85].

Consider the recombination enhanced defect reaction mechanism, which is at the heart

of the degradation process. The basis of this reaction is that thermal energy released from

a non-radiative recombination (NRR) process helps to overcome an activation energy

barrier for the growth of dislocations, ostensibly through migration of point defects.

This enhanced reaction rate can be given by [67]:

RRE = η
exp[∆S/k]

Ni

Rnr exp[
−(Em − Enr)

kt
] (4.2)

where exp[∆S/k] is an entropy factor, Ni is the number of diffusion jumps required to each

the final state, and η is an efficiency factor representing the probability that only a small

fraction of recombination events will result in the configuration that allows activation

over the migration barrier. This factor is usually� 1, and for GaAs it is ≈ 10−3 [67, 86].

Setting the valence band maximum as our reference energy, the maximum possible energy

released from a non-radiative recombination at a trap is the trap energy itself Ed, so the

equation becomes:

RRE = η
exp[∆S/k]

Ni

Rnr exp[
−(Em − Ed)

kt
] (4.3)

The reaction in consideration is the absorption of point defects (either native to the

material or created by bond breaking and emission of vacancies) to already existing

extended defects, thus resulting in an increase in the dislocation length and effective

defect density. Here we must make a clarification: although point defects may also have
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an associated energy level with them, rapid degradation is typically associated with the

growth of extended defects such as dislocations, therefore we take trap or defect levels

here to mean dangling bond levels associated dislocations [87]. We further assume that

the rate limiting step in this reaction is the concentration of dislocations, i.e. the reaction

rate is independent of the point defect concentration in the material.

Ignoring Auger recombination in this analysis, the non-radiative component of the

threshold is assumed to be purely due to Shockley-Read-Hall (SRH) recombination. This

recombination rate, assuming equal capture cross sections of electrons and holes for

simplicity, is defined as [84]:

Rnr = Rd = σvthNd
pn− n2

i

n+ p+ 2nicosh
(Ed−Ei)
kbT

(4.4)

Where σ is the capture cross section in cm2 of the defect, vth =
√

3kBT/m∗ is the thermal

velocity (≈ 107 cm/s at RT), and Nt is the trap density in cm−3. Degradation will be

monitored by the evolution of the lasing threshold versus time. Taking into account the

two dominant choices for recombination in the diagram above (2a and 2b), the threshold

current of the laser is defined as:

Ith =
qV

ηi
(Rsp(Nth) +Rnr(Nth)) (4.5)

Where ηi is the injection efficiency, Rsp is the radiative spontaneous recombination

rate, RNR is the total non-radiative recombination rate, and Nth is the threshold carrier

density. Here we make the approximation that the radiative and non-radiative current

terms are “non-interacting”. That is to say, as defects grow during the aging process

the optical quality of quantum dots are unaffected, the total optical gain remains the

same for the same amount of radiative current, and that increases in threshold are due
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to increases in the non-radiative current term. We base this approximation on the fact

that individual quantum dots are more or less non-interacting with neighboring dots

or dislocations, carriers captured by a quantum dot become localized and can no longer

diffuse toward a dislocation. Further, considering that the dot density is usually hundreds

of times that of the defect density ( 5× 1010 dots versus 108 dislocations per cm2), this

is not an unreasonable approximation at least for the early stages of degradation (see

Figure 4.10).

Figure 4.10: A typical plan-view TEM image of the quantum dot active region, illus-
trating that the surface coverage ratio of quantum dots is much greater than that of
dislocations.

4.5.1 Numerical Algorithm

The above model can be used to generate a numerical algorithm to simulate the aging

process. We begin by identifying the time dependence in the relevant equations that one

may expect during aging. Here we assume that past lasing threshold the carrier density
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in the active region is Nth which is the same for p and n:

Rnr(t) =σvthNd(t)
N2
th(t)− n2

i

2Nth(t) + 2ni cosh (Ed−Ei)
kbT

(4.6)

RRE(t) =η
exp[∆S/k]

Ni

exp[
−(Em − Ed)

kt
]

[
σvthNd(t)

N2
th(t)− n2

i

2Nth(t) + 2ni cosh (Ed−Ei)
kbT

]
(4.7)

Nd(t) =Nd(0) +

∫ T

0

Nd(0)RRE(t)dt (4.8)

τnr(t) =
1

σvthNd(t)
(4.9)

Nth(t) =Nr +Rnr(t)× τ(t) (4.10)

Algorithm:

1. Set initial threshold carrier density Nth(0) (assume p=n), initial defect density Nd,

initial Rnr

2. Compute current non-radiative lifetime as τnr = 1
σvthNd

, and τ = τrτnr
τr+τnr

3. Compute corresponding non-radiative carrier density Nnr as Nnr = Rnrτ

4. Compute new threshold carrier density as Nth = Nth(0) +Nnr

5. Compute defect density growth from present Rnr as Nd = Nd +Rredt

6. Compute new Rnr with new defect density and threshold carrier density

7. repeat 2-6

An attempt was made to evaluate the above algorithm to estimate the minimum

acceptable defect level needed for lifetimes required of commercial applications. Unfor-

tunately, it seemed that no matter what the initial parameters, the final threshold carrier

density converged to a finite value proportional to the non-radiative recombination rate,
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indicating a logical flaw with the physics assumed for the algorithm. Although this model

is flawed, I included it here in the hopes that it will be taken up and improved by one

more skilled in the arts of numerical modeling and laser reliability than myself. However

we can speculate on the aging behavior from a qualitative standpoint. Examining (4.6)-

(4.10), we see that they can be re-written as a set of coupled differential equations. The

solutions, given the self-dependence on time, are most likely some form of exponentials.

Thus, we expect that laser lifetimes should exhibit an exponential dependence on the

defect density (or some equivalent combination of defect level and defect density. This

has been observed experimentally, at least for GaN laser diodes [88].

The Shockley-Read-Hall analysis does not take into account kinetic or occupancy

limitations (e.g. carrier diffusion, state of the trap level). However, some generic con-

clusions can be made. In general, defect density affects the lifetime much more than the

trap level positioning, unless the traps are very shallow. Laser lifetimes are expected to

show an exponential dependence on defect density. Future models should incorporate a

better method to estimate the evolution of threshold versus time. Perhaps by estimating

carrier leakage loss or cavity optical absorption loss versus defect density, from which a

the threshold can then be estimated from an experimentally measured gain curve. Fur-

ther, here we assumed an infinite source of point defects to fuel defect growth. This is

not strictly true as degradation usually follows two stages, the first a rather“rapid” stage

followed by decreasing rate of degradation where local point defect concentrations have

been depleted and the reaction rate is thus reduced. This suggests that future models

should also take into account the “atomic-hop-distance” accounted through inclusion of

Ni in (4.2).
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4.6 Miscellaneous considerations for reliability

There are many other important factors relevant to the lifetime of this system. These

include the wavelength of the laser itself (which is related to the maximum energy re-

leased in a non-radiative recombination event), the effect of a non-pinned carrier density

above threshold in a QD laser (resulting in increased carrier density for non-radiative

recombination) [66], the uniformity of the QD ensemble, the position of the dangling

bond levels within the bandgap [89], and residual tensile stress from the thermal expan-

sion mismatch [10, 90]. Here we briefly discuss the implication of each in light of the

proposed degradation model.

4.6.1 Impact of lasing wavelength

LED and laser lifetime is in many cases ∝ K/Eg or directly proportional to the wave-

length [91, 92]. Absorption driven degradation processes will obviously depend on the

energy of the photon absorbed, therefore it is reasonable to expect a similar dependence

on the wavelength/bandgap energy for the lifetime.

4.6.2 Carrier dynamics

It is interesting to note that the best performing laser also has a p-doped active region.

In a laser with an intrinsic active region, and assuming very low background doping levels,

both electrons and holes are the minority carriers. The diffusion length of the minority

carrier in the active region is related to both the carrier capture and recombination rate.

In modulation doped active regions, the minority carrier becomes the opposite carrier

type. In p-type modulation doped InAs quantum dot lasers, the electron capture rate

has been measured by time-resolved photoluminescence to be nearly three times as fast

as the undoped case [93]. P-doping also decreases the temperature sensitivity of the laser
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threshold current, and has been postulated to result in a negative Auger coefficient with

temperature, such that Auger recombination decreases with increasing temperature. At

the moment we are seeing different degradation rates for our lasers with undoped active

regions versus lasers with p-doped active regions. The p-doped laser shows significantly

slower degradation rate than its undoped counterparts. However, a direct comparison is

not possible because of the following reasons:

• The undoped lasers are aged on a carrier in an oven with single wirebonds to the

n and p contacts, which significantly increased the series resistance ( 0.5 Ω) and

device heating.

• The p-doped laser is aged at UCSB on a heater stage with multiple probes to

its n-and p contacts, thus minimizing device heating compared to the wirebonded

lasers.

• Although the p-doped laser is aged on a heater stage at nominally the same tem-

perature as the ones at Aurrion in the oven rack, the ambient temperature can be

cooler and thus the device may be not at the same temperature as those being aged

at Aurrion.

However this is not to rule out that p-doped lasers may have better reliability than

undoped lasers, since the minority carrier diffusion length may be three times less in the

p-doped lasers. The carrier pinning (or non-pinning) past threshold may also be different

between the two cases. Degradation depends on the square of the injected current as in

buried heterostructure lasers [11]. Quantum dot lasers may have more injected current

dependence on degradation because the fermi level is not pinned unlike other quantum

well lasers [66].

If we instead dope the active region n-type instead of p-type, the minority carrier

becomes holes. Holes are more massive than electrons and naturally have shorter diffusion
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lengths. In addition, optical losses due to n-type doping is much less than p-type doping.

Furthermore, it has been shown that n type GaAs is a harder material than undoped

GaAs, and thus can slow the dislocation glide velocity (by a factor of 2) [11]. Perhaps

it is possible to improve the reliability of InAs quantum dot lasers on Silicon using this

doping scheme.

In essence, we’d like to ensure that most of the carriers injected into the active region

are funneled into the quantum dots, that a strong confinement potential exists to localize

exciton pairs long enough for them to recombine radiatively within the dot, and should

any carriers escape out of the dot its mean diffusion length should be made to be less than

the distance from the parent dot to the nearest dislocation but longer than the distance

to the next nearest dot (and thus will be more likely to be captured by a different dot

than a dislocation).

4.6.3 Effect of aging temperature

As was mentioned above, we were unable to study the activation energy for the ther-

mal dependence of the degradation rate for our devices. In general, lasers tend to degrade

faster at higher temperatures because carrier capture rate into a dislocation is limited by

the thermal carrier velocity in the material bulk. Dislocations are also more mobile at

higher temperatures, resulting in easier glide or climb processes. Furthermore, threshold

current density always increases at higher temperatures, thus it would be reasonable to

assume that dislocated materials would degrade faster at higher temperatures [94]. How-

ever, it has been previously observed that in GRINSCH lasers where there is a built in

field, degradation in the graded regions where there is a built in field may actually de-

crease at higher temperatures because the higher temperatures increases the probability

of thermal escape of carriers out of the defect state, and subsequently being swept away
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by the built in field before recombining non-radiatively [95].

4.6.4 Effect of residual stress

The thermal expansion mismatch results in formation of dislocations upon cool-down

from growth temperature, as well as a residual biaxial tensile stress which enhances

degradation rate. For reliable laser operation, the stress should not exceed 108 dyne

cm−2 [96]. For GaAs films heterepitaxially grown on silicon, for any thickness above

100 nm, the film will have a net tensile strain upon cooling down from growth to room

temperature due to the difference in thermal expansion coefficients with silicon [90]. The

presence of this strain may serve to enhance dislocation glide velocity, often a function

of strain:

v = v0τ
me−Up/(kT )

Where τ is the applied shear stress, and m is an exponent that is usually 1.4-2 [97].

4.6.5 Role of dangling bonds

There is an explicit dependence on the average defect level in the expression for the

Shockley-Read-Hall recombination rate (4.4). Indeed, different rates of degradation have

been correlated with the position of average dangling bond levels in different materials

[89, 11, 98]. This is manifested in the different aging characteristics of GaAs lasers

versus that of InP based lasers. GaAs based lasers are susceptible to recombination

enhanced defect reactions, which drives dislocation climb and leads to rapid and/or

catastrophic failures. InP based lasers, on the other hand, are not as susceptible to this

mode of failure. This difference has been surmised to be due to the fact that dangling

bond levels are shallow or outside of the bandgap in most InP and related compounds,

whereas GaAs/AlGaAs defect levels are typically mid-gap. One may also observe that
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Year Description Aging condition J(0) P(0) Dislocation density Longest time Ref.

(A/cm2) (mW ) (method used) to failure*

1987 GaAs/AlGaAs SQW RT APC – 2 107cm−2 ≤ 10s [69]

1991 In0.05Ga0.95As/AlGaAs SQW RT APC ∼2000 2 - 10 hours [79]

2000 In0.2Ga0.8As “quantum dot like” RT APC 1320 0.5 - 80 hours** [101]

active region

2001 GaAs/AlGaAs SQW on RT APC 810 1 2× 106cm−2 200 hours [70]

epitaxial lateral overgrowth stripe (etch pits)

2003 GaAs/AlGaAs SQW RT ACC 270 < 1 2× 106cm−2 4 hours** [80]

on graded GexSi1−x/Si (PVTEM + etch pits)

2014 InAs/GaAs QDs on Ge/Si 30◦C ACC 2000 16.6 2×108cm−2 (PVTEM) 4600 hours [23]

2016 InAs/GaAs QDs on Si 26◦C ACC 131 7 ∼ 105cm−2 (XTEM) ∼101000 [24]

Table 4.1: A summary of representative lifetime data for GaAs based lasers grown
on silicon. *Time to failure is defined either by 2x increase in drive current in APC
mode, 2x increase in threshold in ACC mode, or **actual catastrophic failures. The
entry in bold is this work.

surface recombination velocities are an order of magnitude less in InP as compared to

GaAs. We note that InP quantum well lasers grown on silicon have shown excellent aging

characteristics [99, 100].

4.7 Summary

Table 4.1 summarizes some representative lifetime data that have been reported for

GaAs based lasers grown on silicon to date. Compared to previous quantum well lasers,

the best quantum dot lasers tested in this study have >23x longer lifetimes at harsher

operating conditions, despite the very high dislocation densities present (> 108 cm−2)

within the laser material. This apparent improvement in lifetime over GaAs quantum well

lasers on silicon cannot be ascribed to differences in material quality, as previous works

have mostly reported lower dislocation densities than what is found here. A graphical

form of the results tabulated here is shown in Figure 4.11.

We attribute the improvement in lifetime to the same principle that enables the

operation of quantum dot lasers despite high defect/dislocation densities, namely that
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Figure 4.11: A summary of the data shown in Table 4.1, showing mean time to failure
(MTTF) plotted against the applied current density used for the stress test. The
results reported in this thesis represent the longest obtained lifetimes at the harshest
testing conditions so far.

once carriers are captured by a quantum dot they become localized and can no longer

diffuse laterally toward dislocations, unlike the quantum well case [16]. If the dot density

far exceeds the dislocation density (in this case, >200:1 with a corresponding dot density

of ∼ 4x1010 cm−2), then the non-radiative capture cross section of individual dislocations

or defects is effectively reduced due to competing radiative capture of the quantum dot

ensemble. The net result is a reduction of the non-radiative recombination rate, which

drives device degradation. Further, the strain field of the InAs quantum dots presents

an additional mechanical barrier for the propagation of growing dislocation loops (a

precipitation hardening effect), and some loops may become pinned by the dots [72].
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Chapter 5

Quantum dot lasers on GaP/Si (001)

5.1 Introduction

In the previous sections we described 1.3 µm quantum dot lasers epitaxially grown on

Ge/Si substrates with intentionally offcut silicon to suppress antiphase disorder arising

from the III-V (polar) on silicon (non-polar) heteroepitaxy. To fully capture their added

value, these lasers should be compatible with existing silicon CMOS foundry process flows

to enable their integration with other photonic devices on a common silicon substrate.

Deviation from the (001) axis would affect both carrier mobility in CMOS transistor

channels as well as any processing steps that depend on the crystallographic orientation

of silicon, such as KOH etching. Previous work on III-V lasers epitaxially grown on on-

axis (001) silicon include continuous wave optically pumped 1.3 µm InAs quantum dot

microdisk lasers on patterned (001) silicon [102], pulsed operation of optically pumped 1.3

µm InGaAs/InP distributed feedback lasers on patterned (001) silicon [103], and pulsed

operation of electrically pumped 1 µm InGaAs/GaAs quantum well lasers on GaP/Si [81].

Continuous wave operation under electrical pumping has thus far not been demonstrated.

In this section, we will demonstrate the first electrically pumped continuous wave III-V
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quantum dot laser operating at room temperature and above epitaxially grown on on-axis

GaP/silicon substrates without offcut or germanium buffers.

The epitaxial laser stack was grown on a GaP/Si (001) template provided by NAsP

III-V GmbH. The original template was a 775 µm thick (001) on-axis p-doped Si sub-

strate, with 200nm thick n-doped Si homo-epitaxial buffer and a subsequent 45 nm thick

n-doped GaP nucleation layer, deposited by metal organic chemical vapor phase epitaxy.

A 2.3 µm GaAs buffer layer was then grown on the GaP/Si template in solid source

MBE, as previously reported in [81]. Following this, an InAs quantum dot laser embed-

ded in a GaAs/AlGaAs graded index separate confinement heterostructure (GRINSCH)

waveguide was re-grown on top of the GaAs buffer (see Figure 5.1). The active region

consisted of seven stacks of InAs quantum dot layers embedded in 8nm In0.15Ga0.85As

quantum wells, which were separated by partially p modulation doped (pMD) GaAs bar-

riers, following previously reported conditions [59]. The same laser structure was also

grown on a GaAs substrate for comparison.

37.5 nm	p/UID	GaAs

50	nm	GaAs:UID

30 nm	Al0.2Ga0.8As:Be	SCH (4×1017	cm-3)

7x

1000	nm	GaAs:Si	(2×1018	cm-3)
50	nm	0 →	36%	AlxGa(1-x)As:Si	 (1×1018	cm-3)

20 nm	20 →	36%	AlxGa(1-x)As:Be (4×1017	cm-3)

1.4	μm	Al0.36Ga0.6As:Si	cladding	(2×1017	cm-3)

1.4	μm	Al0.36Ga0.6As:Be	cladding	(7×1017	cm-3)
50	nm	36 →	0%	AlxGa(1-x)As:Be (1×1019	cm-3)

20 nm	36 →	20%	AlxGa(1-x)As:Si (2×1017	cm-3)

300	nm	GaAs:Be (2×1019	cm-3)

30 nm	Al0.2Ga0.8As:Si	SCH	(2×1017	cm-3)

2300nm	GaAs:si (1-5×1018	 cm-3)

12.5 nm	UID	GaAs

45	nm	GaP
Si	(001) NAsPIII-V GmbH

UCSB

Yale	University

Figure 5.1: A schematic of the epitaxial stack.
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Figure 5.2: Stitched image of an entire fabricated die. The mask contains broad area
lasers (left), different ridge laser designs (center), optical amplifiers (upper right), and
mode-locked lasers (bottom right).

4 μmSilicon substrate

nGaAs

nAlGaAs

pAlGaAs

1	mm

(a) (b)

Figure 5.3: a): An optical micrograph of one section of the fabricated chip showing
ridge lasers (top), electroluminescence windows, and short-cavity ridge lasers (bot-
tom). b): A scanning electron microscope image of the cleaved cross section for
a narrow ridge waveguide laser on GaP/silicon. The shaded red area indicates the
approximate position of the active region.

The as grown material was then processed into deeply etched ridge waveguide lasers

with varying stripe widths using standard dry etching and metallization techniques. The

Ti/Pt/Au p-contact was deposited on top of the etched mesa and AuGe/Ni/Au n-contact

metal deposited on the exposed nGaAs layers. An optical micrograph of a complete die

is shown in Figure 5.2. Two types of laser geometries were fabricated: the first are

broad area lasers 20 or 50 µm wide to ascertain material quality; the second are narrow
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ridge waveguide lasers with smaller stripe widths between 2 − 10 µm wide and cavity

lengths between 750 − 1500 µms long. Laser facets were formed by either cleaving or

polishing. High reflection facet coatings were applied to the narrow ridge waveguide

devices, with ∼ 95% reflectors on the back facet and either ∼ 55% (single DBR pair)

or ∼ 80% (double DBR pair) on the front. Optical and scanning electron microscope

images of the fabricated devices are shown in Figure 5.3. Unless stated otherwise, all

laser measurements presented in this section were conducted in continuous wave (CW)

mode.

5.2 Experimental Methods

Si

GaP 45 nm

GaAs 2.3 μm

Figure 5.4: An electron channeling contrast image of the GaAs/GaP/Si template pro-
vided by Yale, showing a surface threading dislocation density of roughly 3×108cm−2.
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Figure 5.5: 1 × 1µm2 AFM scans of InAs/GaAs quantum dots deposited on either
a) native GaAs substrates, or b) GaP/Si templates. Qualitatively, the morphology
of the quantum dots are similar across the two templates. c): Room temperature
photoluminescence comparison of the as-grown laser stacks on GaP/Si to a reference
laser grown on GaAs substrate under incident pump power density of 1.17 W/cm2.

5.3 Results and Discussion

5.3.1 Material characterization

Prior to laser growth, the GaAs/GaP/Si buffer was characterized with electron chan-

neling contrast imaging, which revealed a threading dislocation density of ∼ 3×108/cm2,

as shown in Figure 5.4. 1 × 1µm2 AFM comparisons of InAs/GaAs quantum dots de-

posited on either native GaAs substrates or GaP/Si templates are shown in Figure 5.5.

Qualitatively, the morphology of the quantum dots are similar across the two templates.

A room temperature photoluminescence comparison of the as grown laser material on

GaP/Si to the reference structure grown on GaAs under 1.17 W/cm2 of excitation from a

785 nm pump laser is shown in Figure 5.5c. Both samples show a similar peak wavelength

of 1280nm, while the laser on GaP/Si has a relative peak intensity of 57% compared to

the reference sample on GaAs.
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Figure 5.6: Room temperature continuous wave threshold current density (Jth) versus
cavity length for 51 different broad area lasers (either 50 or 20 µm wide) on GaP/Si
measured from the fabricated chip shown in Figure 5.2.

5.3.2 Broad area lasers

A plot of the threshold current density Jth versus cavity length for 51 broad area lasers

on GaP/Si is shown in Figure 5.6. Although there is significant scatter, the lowest Jth

value decreases with increasing cavity length, as expected. The lowest measured Jth is 667

A/cm2. Figure 5.7 shows CW light-current (LI) and current-voltage (IV) comparisons

of five broad area lasers on GaAs to five on GaP/Si, with the exact same cavity size (2

mm x 20 µm) and no extra high reflection coatings applied to the facets. The lowest

threshold current (densities) of the aforementioned devices are 190 mA (475 A/cm2) for

lasers on GaAs, and 345 mA (862 A/cm2) for GaP/Si. The corresponding differential

quantum efficiencies of the aforementioned devices are 16.87% for the laser on GaAs and

8.80% for the one on GaP/Si. As shown in the same figure, single facet output powers up

to 110 mW were obtained from the lasers on GaP/Si. We should also note that the lasers

on GaP/Si had much lower voltages compared to their counterparts on GaAs. This is
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surmised to be due to the higher doping levels used in the GaAs buffer for the devices

on GaP/Si (5 × 1018cm−3), whereas the devices on GaAs used the substrate as the n-

contact which had doping levels of around 2 × 1018cm−3. The temperature dependent

performance of one of the broad area lasers on GaP/Si is shown in Figure 5.8, showing

lasing up to 55◦C.

It is interesting to note that the relative percentage increase in threshold current

density and decrease in differential quantum efficiency for devices on GaP/Si relative to

devices on GaAs are roughly the same. The differential efficiency and threshold current

densities are often expressed as:

ηd = ηi

(
αm

αm + αi

)

Jth =
Jtr
ηi
e

(
αm+αi

Γg0J

)

where αi is the cavity optical loss, αm = 1
L

ln
(
1
R

)
is the distributed mirror loss, ηi is the

injection efficiency, Jtr is the transparency current density, and Γg0 is an experimentally

extracted gain coefficient for the material. We see that differences in either ηi or αi would

have a simultaneous impact on both differential quantum efficiency as well as the thresh-

old current (density). To dissect the problem, we performed cut-back measurements of

20 µm wide broad area lasers of various cavity lengths for both devices grown on GaAs

as well as on GaP/Si. As was done before in Chapter 3, we plot the inverse differential

quantum efficiency versus cavity length and extract injection efficiency and modal gain

parameters from the best fit line. The results are shown in Figure 5.9. As is visible there

is significant scatter in the data. The argument can be made that the best possible data

represents the true laser properties because the scatter is mostly due to extrinsic yield

defects (from polishing, cleaving imperfections, oval defects, etc.), therefore the fit was
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done using the best values of of inverse differential quantum efficiency from each cavity

length.

Figure 5.7: Room temperature light-versus-current comparisons of 2mm long by 20
µm wide broad area lasers without facet coating on GaAs (blue) and GaP/Si (red).
Five devices of each type are shown. The lowest threshold current (densities) of the
aforementioned devices is 190 mA (475 A/cm2) for lasers on GaAs, and 345 mA (862
A/cm2) for GaP/Si, with corresponding differential quantum efficiencies of 16.87%
and 8.80%.

The extracted values of ηi, αi, Jtr and Γg0J are displayed in Table 5.1. We can

see that the ratio of the injection efficiency values between lasers on GaAs to those

on GaP/Si is very nearly the same as the observed difference in threshold and slope

efficiency. Therefore we can attribute the bulk of the difference in performance to the

difference in injection efficiency, which is presumably lower for the lasers on GaP/Si due

to the presence of extended defects, which are encountered by carriers during transport

from the contact to the active region. The threshold modal gain versus current density

curves are plotted in Figure 5.10. After taking into account the discrepancy in injection

efficiency, the two curves still do not exactly overlap. If we make the argument that the

intrinsic material gain should not vary with the choice of substrate, then the difference

would have to come from the confinement factor Γ, which is proportional to the size

and density of the dots. Noting that the emission wavelength (and therefore dot size) is
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Figure 5.8: Continuous-wave lasing up to 55◦C for a 2mm long by 20 µm wide broad
area laser on GaP/Si (also shown in Figure 5.7).
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Figure 5.9: Inverse (single side) differential efficiency plotted versus cavity length for
20µm wide broad area laserse on either GaAs or GaP/Si.
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Figure 5.10: Threshold modal gain versus the fraction of injected current reaching
the active region ηiJ . The curves are fitted with a logarithmic fit to extract the gain
coefficient Γg0J and transparency current density Jtr: Γg = Γg0J ln(J/Jtr).

the same for the devices on the two substrates, we may then infer that any difference in

Γ would come from a difference in dot density. Referring back to the AFMs shown in

Figure 5.5, it was determined that the density of dots on silicon is slight less than those

on GaAs (4.36 versus 4.66×1010 cm−2, respectively). This would account for roughly 6%

of the 24% difference in the relative Γg0J values. We attribute the remaining uncertain

to fitting and experimental error. As is visible from Figure 5.9, the scatter in the data

points is very large and inclusion or exclusion of certain points from the fitting would

change the extracted values significantly. For example, in the case of the GaAs devices,

the 750 and 1250 µm values were re-cleaved from material that was near the edge of the

fabricated chip, and clearly do not fit with the rest of the data points. If we removed

those from the plot, then the fit would yield an injection efficiency of 1.07, a cavity loss

αi of 5.07 cm−1, and a modal gain curve that would almost exactly overlap with the

GaP/Si devices. However we have included these data points for completeness, and also

because an injection efficiency greater than unity is unphysical.
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GaAs GaP/Si

ηi 0.87 0.52

αi (cm−1) 3.16 5.63

Jtr (A/cm2) per layer 29.01 30.76

Γg0J (cm−1) per layer 2.47 1.87

Table 5.1: Gain and loss values extracted from cutback mesurements shown in Fig-
ure 5.9 and Figure 5.10 for seven layer p-doped InAs/GaAs quantum dots lasers grown
on either GaAs or GaP/Si substrates.

5.3.3 Ridge lasers

Figure 5.11: Room temperature continuous wave light-versus-current comparisons of
1 mm long by 7 µm wide ridge lasers on GaAs (Ith=44 mA) and on GaP/Si (Ith=105
mA), both with as-cleaved facets.

Figure 5.11 shows room temperature CW LI comparisons of 1 mm long by 7 µm wide

ridge lasers on GaAs (Ith=44 mA) and on GaP/Si (Ith=105 mA), both with as-cleaved

facets. Once again, the threshold current roughly a factor of two higher for the laser

on GaP/Si. A separate batch of ridge lasers were made by facet polishing followed by

high-reflection coating of the facets. Figure 5.12 shows room temperature light-current-
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Figure 5.12: Room temperature continuous wave light-current-voltage curve for an
HR/HR coated (95/55%) 750×4 µm2 laser with a threshold of 32 mA.

Figure 5.13: Room temperature continuous wave threshold currents for 68 different
HR/HR coated (95/55%) ridge waveguide lasers of various cavity sizes.
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voltage (LIV) measurements of a 750x4 µm2 device with a 32 mA threshold and slope

efficiency of 0.106 W/A. A plot of the threshold current versus ridge width for 68 different

measured lasers with cavity lengths ranging from 750 to 1500 µm is shown in Figure 5.13.

The threshold decreases as expected for smaller cavities, with the lowest threshold being

30 mA. We hypothesize that the statistical scatter is mostly due to chipping of facet

material from the high aspect ratio waveguides during the polishing process, as confirmed

by visual inspection. Figure 5.14 shows a typical room temperature lasing spectrum for

a laser on GaP/Si. The lasing wavelength of 1280nm matches closely with the measured

photoluminescence peak.

(a) (b)

Figure 5.14: a) Coarse electroluminescence spectra below and above threshold at room
temperature showing ground state lasing at 1280 nm. b) High resolution scan of the
above threshold lasing spectrum showing the many Fabry-Perot longitudinal modes
centered around 1280 nm.

Figure 5.15 demonstrates high temperature continuous wave operation of a longer

device (1500x3.5 µm2) up to 90◦C. There is a discontinuously large increase in threshold

between 80−90◦C, which we think is due to the saturated ground state gain being unable

to compensate for the cavity loss, resulting in lasing from the excited state. A plot of the

CW threshold current versus stage temperature for the devices in 5.15 along with several

other measured lasers is shown in Figure 5.16. The average characteristic temperature T0
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is ∼100K between 20− 40◦C, and ∼40K between 40− 80◦C. This behavior is roughly in

line with what we have previously observed for similar lasers grown on Ge/Si substrates

[14, 59].

Figure 5.15: A 1500×3.5µm2 device lasing in continuous wave mode up to 90◦C.

We note that the sidewalls for the deeply etched mesa stripes defining the laser cavity

showed significant roughness from the fabrication process (Figure 5.17). While not a

serious issue for the broad area devices with wide stripe widths, the roughness likely

limited the performance of the narrow ridge waveguide lasers where the mode sees a

higher overlap with the sidewalls, resulting in increased sidewall scattering loss (and

sidewall recombination current). We therefore expect further improvements in device

performance from optimized processing.

5.4 Summary

The first electrically pumped continuous wave III-V quantum dot lasers epitaxially

grown on on-axis (001) silicon without offcut or germanium layers have been presented.
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Figure 5.16: A plot of threshold current versus stage temperature for various different
laser cavities. The average characteristic temperature T0 is ∼100K between 20−40◦C,
and ∼ 40K between 40− 80◦C

Figure 5.17: SEM images showing the sidewall roughness, which possibly developed
during a n-metal rework.
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Narrow ridge waveguide lasers show thresholds down to 30 mA and lasing to 90◦C,

while broad area lasers with threshold current densities of 862 A/cm2 and output powers

up to 110 mW have been demonstrated. This work demonstrates the compatibility of

high performance monolithic III-V light sources with on-axis silicon substrates, and the

their potential for foundry integration. A comparison of broad area laser characteristics

between devices grown on GaAs to those grown on GaP/Si suggests that the majority

of the degradation in performance for devices on GaP/Si is from the lower injection

efficiency. This also suggests that future research should focus on methods to improve

the injection efficiency for lasers epitaxially grown on silicon.
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Chapter 6

Sensitivity to optical feedback

6.1 Introduction

In the previous sections we have demonstrated various kinds of quantum dot lasers

epitaxially grown on silicon, to be used as an integrated light source in a silicon pho-

tonic integrated circuit. As an integrated component of a photonic integrated circuit

and/or optical system, unintentional reflections from various possible interfaces such as

active/passive transitions, waveguide crossings, regrowth interfaces, process imperfec-

tions, etc. can produce unwanted feedback to the laser. The behavior of quantum well

lasers under optical feedback has been studied extensively, with a well known diagram

classifying laser response under five distinct regimes of different feedback strengths and

phases [104]. Outside of very narrow regimes where feedback is beneficial for inducing

linewidth narrowing, the majority of feedback levels causes deleterious effects such as

linewidth broadening, mode hopping, and/or increased amplitude noise [104, 105]. For

data communication systems this would be undesirable as the increase in laser amplitude

or phase noise would degrade the bit error rate. Lasers integrated with a silicon photonic

chip are particularly susceptible to these effects, as the low loss waveguides and high in-
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dex contrast inherent to the platform are particularly conducive to the creation of strong

unintentional feedback. Isolators are typically used to limit unwanted feedback to the

laser, and silicon based on-chip isolators have been recently demonstrated with maximum

isolation ratios up to 32 dB [106]. However, the integration of an isolator increases cost,

process complexity, chip area, and adds additional loss. Alternatively, the laser itself can

be engineered to be more stable under feedback, eliminating the need for an integrated

isolator altogether or at least relaxing the performance requirements for the isolator.

A common analytical expression for predicting the critical feedback level where the

laser enters a coherence collapse regime is derived in [107]:

fcrit =
τ 2L(Kf 2

r + γ0)
2

16|Ce|2
(

1 + α2

α4

)
(6.1)

where τL is the roundtrip delay within the gain cavity, α the linewidth enhancement

factor, |Ce| = 1−R
2
√
R

the coupling strength from the laser cavity to the external cavity,

γ = (Kf 2
r + γ0) is the damping rate of the relaxation oscillations with fr being the

resonance frequency, K the K-factor, and γ0 is the damping factor offset. Feedback is

defined as the ratio of the reflected power over the emitted power. This expression is

derived assuming weak feedback and a long external cavity delay (such that the delay time

>> 1/fr, and is derived for the minimum linewidth external cavity mode. Although this

expression calculates a feedback threshold above which the laser is stable, the absolute

value of this threshold will obviously vary depending on measurement conditions and

laser design, and thus this expression is better used as a qualitative guide for the relative

feedback tolerance of a laser. The major dependencies in feedback sensitivity in (6.1) are

as follows:

• the internal laser cavity roundtrip time τL
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• the linewidth enhancement factor α

• the damping rate of the relaxation oscillation frequency ΓRO = Kf 2
r + γ0 defined

by the K-factor of the laser, the relaxation oscillation frequency fr, an the offset

damping frequency γ0

• and the coupling efficiency back to the laser C2
e = 1−R

2
√
R

, where R is the facet

reflectivity

Therefore, feedback tolerance increases for:

• longer cavity lengths

• higher facet reflectivities or cavity Q’s

• higher driving currents/output powers (via increase in fr), but not necessarily true

for quantum dot lasers as will be detailed below

• higher K factors

• smaller α

6.2 Advantage of quantum dot lasers for feedback

tolerance

Referring back to the expression in (6.1), two factors intrinsic to quantum dots should

give them an advantage in feedback sensitivity. The first is the approximate inverse square

dependence on the linewidth enhancement factor α, and the second is the dependence

on the relaxation oscillation damping rate. It is well known that quantum dot lasers

have much lower direct modulation bandwidths compared to quantum wells, typically
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limited to 10-15 GHz for the 1.3 µm InAs/GaAs quantum dot system [108]. The primary

reason for this is strong gain compression and low saturated gain in quantum dot active

regions. Nonlinear gain compression is estimated to be 10 times higher in quantum dots

than in quantum well lasers, and has been postulated to be due to unequal carrier scat-

tering/capture rates of electrons and holes within quantum dot lasers [109]. This results

in higher K-factors for quantum dot lasers compared to quantum wells, and therefore

strong damping of the relaxation oscillation and limited small-signal bandwidths. An

analytical expression for K factor was given in [108]:

K =
4π2

νgr

 1

α
+

ε

amax

(
1− α

Gsat

)
 (6.2)

where amax is the largest value of differential gain, ε is the coefficient of nonlinear

gain saturation, Gsat maximum saturated gain of the ground state, and vgr is the group

velocity. Efforts to increase the small signal modulation bandwidth have primarily been

concentrated on increasing the maximum saturated ground state gain. However the high

K-factor and damping of the relaxation does lend itself to a predicted lower sensitivity

to reflections, as seen in the expression in (6.1). The predicted lower amplitude-phase

coupling (α) factors of quantum dots relative to quantum wells [110, 111, 108, 112] would

also lend itself to higher feedback tolerance, although this parameter is rather difficult

to quantify and the same formalism used to define it for quantum wells may not apply

to quantum dots [110, 113]. For a detailed dissection of feedback dynamics in quantum

dot lasers the reader is referred to Christian Otto’s excellent thesis [112].

A numerical evaluation of (6.1) is shown in Figure 6.1 for two different values of the K

factor characteristic of either quantum dot lasers (K=1 ns) [108] or quantum well lasers

(K=0.265 ns) [25], with everything else kept the same. As can be seen, the difference

in the K factor alone is predicted to result in a 10 dB increase in fcrit for quantum dot
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lasers relative to quantum wells, with any differences due to the α factor between dots and

wells resulting in even larger increases to the critical feedback level for coherence collapse.

Furthermore, the peak relative intensity noise (RIN) of semiconductor lasers under optical

feedback is capped by the inverse of the damping rate of relaxation oscillations: RINpeak =

1
γ

[114]. Thus, feedback induced noise is expected to be highly suppressed in quantum dot

lasers as well. In this work, we experimentally quantify these predictions for quantum dot

lasers epitaxially grown on silicon by measuring their relative intensity noise (RIN) under

different levels of feedback and comparing with heterogeneously integrated quantum well

lasers on silicon.

Figure 6.1: A numerical evaluation of (6.1) for two different values of the K factor
characteristic of either quantum dot lasers (K=1 ns) [108] or quantum well lasers
(K=0.265 ns) [25], with everything else kept the same (τL=4 ps, fr=3 GHz, γ0=0.65
GHz, R=0.3. The different K factors leads to a ∼10dB improvement in reflection
sensitivity for quantum dot lasers, with additional improvements possible depending
on the difference in α.
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Figure 6.2: A schematic of the measurement setup used in this study.

6.3 Experimental methods

6.3.1 Measurement setup

The measurement setup used is shown in Figure 6.2. Light from the device under test

(DUT) is first coupled to a lensed fiber and split by a 50:50 directional fiber coupler. The

power in one arm is fed into a spectrum analyzer to monitor the relative intensity noise,

and an optical isolator with 60 dB of isolation ratio isolates the DUT from uncontrolled

reflections. Power in the other arm is reflected back to the DUT with a Faraday mirror,

which along with an in-line Faraday rotator shifts the polarization of the reflected light

by 180 degrees. This ensures that any changes to the original polarization state of the

output light caused by fiber birefringence will be undone on the return trip, ensuring

that the polarization of the feedback is nearly the same as the original output. The

amplitude of the feedback is controlled with an in-line variable optical attenuator. A 1%

fiber coupler tap right after the lensed fiber monitors the power levels in the forward and

backward directions, and the feedback level is defined as the ratio of the backward to

forward powers. The fiber couplers were dual-band couplers for operation at 1550 and

1310nm, while the other wavelength sensitive components (isolator, Faraday rotator,

and Faraday mirror) were swapped out as needed for the wavelength of the DUT. With
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the exception of the spectrum analyzer interface, all the fiber connections had angled

connectors. The external cavity round trip path length is roughly 13 meters for the

quantum well devices, and 15 meters for the quantum dot lasers, due to different fiber

pigtail lengths of the components used. For this study, we examined the relative intensity

noise (RIN) spectrum from 100 MHz to 10 GHz. This range of frequencies was chosen to

be within the highest sensitivity range of the spectrum analyzer. Resolution bandwidth

was 3 MHz for all measurements, with a video bandwidth of 100 kHz.

Figure 6.3: Typical light-current characteristics of the quantum dot lasers on GaP/Si
and heterogeneously integrated quantum well lasers in this study.

6.3.2 Devices studied

To make the comparison as fair as possible, the quantum dot and quantum well

devices used in this study were down-selected from available devices in our lab with the

criteria that they both be of similar type (in this case Fabry-Perot), have similar cavity

lengths (due to the implicit dependence of fcrit in (6.1) on the length of the gain section

through τL), and operating in or close to single transverse mode. The heterogeneously

integrated quantum well lasers studied have 7 compressively strained InAlGaAs quantum
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wells as the active region, lasing around 1580 nm at room temperature (RT). These lasers

are roughly 1560 µm in length with 1048µm long III-V gain sections (as measured from

taper to taper) and the rest being purely passive silicon waveguide sections [115]. The

III-V mesa widths are 26 µm wide with implant defined current channel width of 4 µm.

The quantum dot lasers measured are deeply etched ridge waveguide lasers epitaxially

grown on GaP/silicon substrates around 1 mm long in length and 3-3.5µm in width, with

7 layers of InAs/GaAs quantum dots as the active region, and lasing around 1280 nm at

RT. The output facet for the quantum well lasers is an uncoated silicon waveguide facet

with ∼ 30% reflectivity, whereas for the quantum dot lasers it is a coated III-V facet with

approximately ∼ 55% reflectivity. Figure 6.3 shows typical measured light-versus-current

plots for the two types of lasers. Because the external cavity delay time is much longer

than the time scale of the relaxation oscillations (Lext > c/(2fr)), we expect the feedback

behavior to be independent of the feedback phase, and the feedback is incoherent with

the emitted radiation.

6.3.3 Short-term reliability of the GaP/Si QDLs

During the early trials of this experiment, it was quickly discovered that the data

collection process was very time consuming, as will be detailed below. For each bias

current of the laser, it can take up to 20 minutes to measure and collect the RIN data for

the various feedback levels studied (approximately 20 different data points), even though

the measurement has been automated to the maximum extent possible. To repeat the

measurement for a single laser at 4-5 different bias points, and also allowing for down-time

as well as time required for fiber alignment, means that full characterization of a single

laser can take up to a few hours. One must consider the fact that the laser is under CW

bias this entire time. In light of the reliability study conducted in Chapter 4, a quick stress
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0 to 6 hours

b)a)

Figure 6.4: a) LI curve of a 1250×2µm2 laser with 95/80% HR coatings, stressed at
200 mA (8 kA/cm2) and at 20C. The black curve is the LI curve taken before the
stress test. b) Threshold of the device in a) plotted as a function of aging time in
hours.

test was conducted at UCSB to check that the devices are not rapidly degrading during

the course of the measurement. For the study we chose a fairly small laser and biased at

around the maximum current to be applied to the devices in this study (∼ 200mA) to

simulate the worst case scenario in terms of possible degradation over the course of the

measurement. The stage temperature was held at 20C, and the corresponding applied

current density is 8 kA/cm2. Note that this is more than three times higher than the

maximum applied current density for the devices studied in Chapter 4. The results of the

study are shown in Figure 6.4. We do observe some degradation in the six hours that the

device was stressed at, but determined that this rate of degradation was acceptable for

the purposes of this measurement since the stress-test was created to simulate harsher

conditions than would be encountered by devices used in this measurement (namely,

smaller average applied current densities over the course of the measurement as well as

shorter testing times).
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6.3.4 Relative Intensity Noise measurements

Relative Intensity Noise (RIN) was measured using a HP70810B lightwave signal

analyzer that can automatically correct for thermal and shot noise. Light from the laser is

collected by a built-in InGaAs photo-diode (bandwidth between 1200-1600 nm), with the

DC component of the photo-current used to calculate the average received optical power.

The AC component of the photocurrent is amplified and beat with a local oscillator to

determine the noise spectrum, from which the relative intensity noise is calculated after

dividing by the average received optical power squared. This initial measured noise is

the total noise present in the system and will be termed “System RIN”. This measured

quantity contains contributions from the laser, thermal noise from the built-in electronics,

as well as the shot noise:

RINsystem =RINlaser +RINthermal +RINshot (6.3)

RINsystem =RINlaser +
Nth

RL(rPAV G(opt))2
+

2q

rPAV G(opt)

(6.4)

In (6.4), Nth is the spectral density of the thermal noise from the electronics (amplifier

after the photodiode), RL is the load resistance of the amplifier input, r is the responsivity

of the photodiode, and PAV G(opt) is the average received optical power. After the first

measurement of the system RIN, the laser input port is blanked off and the system then

takes a “dark” measurement, from which it calibrates for the thermal noise due to the

electronics. The shot noise can be calculated from the received optical power or the DC

component of the photocurrent. The laser RIN can then be calculated by subtracting the

thermal and shot noise contributions from the measured system RIN. Because both α

and fr have a dependance on the applied current density, we study the effect of feedback

on the RIN at several different bias points above threshold. In particular, the α factor
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Figure 6.5: The various components of RIN versus feedback for a 1 mm×3 µm quan-
tum dot laser on GaP/Si, measured at 2×Ith and at four different sampling frequencies.

of quantum dot lasers tend to have a strong dependance on current due to saturation

effects [116, 110], and we provide evidence for this later.

To check that the spectrum analyzer was working correctly, we first used it to measure

the RIN from the amplified spontaneous emission of an erbium doped fiber amplifier

(EDFA). An unseeded EDFA can be approximated as a pseudo-thermal source whose

power spectral density is roughly inversely proportional to the gain bandwidth, giving

typical RIN values of around -124 dBc/Hz for common bandwidths of 2.5 THz [117].

Using our spectrum analyzer we measured relatively flat RIN values around ∼-122 and

∼-123 dBc/Hz for 40 and 80 mW of output power, respectively. This confirms that our

measured RIN values are reasonably accurate.
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Figure 6.6: The various components of RIN versus feedback for a heterogeneously
integrated quantum well laser on silicon, measured at 2×Ith and at four different
sampling frequencies.

Unfortunately due to the archaic nature of the HP70810B lightwave signal analyzer,

there is no efficient way to download the calculated laser RIN data without the system

repeating the dark measurement to re-calibrate the thermal noise at each discrete data-

point. Thus it becomes very time consuming to obtain the various different components

of RIN for the entire frequency range which is defined by 800 different sampling points.

This can be an issue for the accuracy of the measurement because the alignment of the

lensed fiber to the laser will drift over time, which could lead to false readings of the

RIN. For this study, we sampled four different frequency points across the 100 MHz to 10

GHz frequency range chosen for the RIN study to obtain the true laser RIN. Figure 6.5
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and Figure 6.6 shows the evolution of the total measured system RIN versus feedback

at four different frequencies in the total RIN spectrum for a quantum dot laser and a

heterogeneously integrated quantum well laser, each biased at 2× Ith, respectively. Also

plotted are the various contributions to the total system RIN, broken down into the laser

noise, thermal noise, and shot noise. The thermal and shot noise components remain

fairly constant across the different feedback levels, as would be expected since the feed-

back has no impact on the built in electronics and at these levels a minimal impact on

the output power. We see that for both the quantum dot and the quantum well case the

low frequency noise is the most sensitive to optical feedback, which we will focus on in

the subsequent sections.

6.4 Results and discussion

6.4.1 Comparison of low frequency RIN versus feedback

Figure 6.7 shows the low frequency laser RIN at 100 MHz (with thermal and shot

noise subtracted out) for two different heterogeneously integrated quantum well lasers

compared to two different quantum dot lasers on silicon, each subjected feedback levels

varying approximately from -60 to -10 dB. For each laser, RIN was measured for five

different bias currents (and corresponding output powers). Of note is the observation

that the low frequency RIN at 100 MHz for the quantum well lasers show a sharp increase

with increasing feedback for each bias current, up to 30 dB. On the other hand, RIN for

the quantum dot lasers show a much smaller increase with increasing feedback, with the

largest increase for each bias current being roughly 10 dB within the same measurement

range. The RIN values of the quantum dot lasers at the highest level of feedback (-10

dB) are matched by the quantum well lasers at nearly 20 dB weaker feedback levels (-30
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Figure 6.7: Laser RIN at 100 MHz with thermal and shot noise subtracted out versus
various levels of optical feedback for two different heterogeneously integrated quantum
well lasers (left) and two different quantum dot lasers on silicon (right). The legend
indicates the bias current applied to the laser as well as the optical power received at
the spectrometer. While the quantum well lasers sometimes exhibit increases in RIN
up to 30 dB over the range of feedback values, the variation in RIN for the quantum
dot lasers is limited to within 10 dB of the measured bias currents.

dB).

6.4.2 Comparison of noise spectrum at weak and strong feed-

back limits

The coherence collapse regime is characterised by the appearance of satellite modes

appearing at roughly multiples of the relaxation oscillation frequency away from the main

lasing mode [104]. Figure 6.8 shows the measured system RIN - the sum of laser, thermal,

and shot noise - of a heterogeneously integrated quantum well laser as well as a quantum
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Figure 6.8: Total system RIN from 100 MHz to 10 GHz, for quantum well and quantum
dot lasers biased at 1.5×Ith. The measured quantum well lasers exhibited signatures
of coherence collapse, while this is not observed in the quantum dot lasers.

Figure 6.9: Measured low frequency system RIN at weak and strong feedback levels
at 2×Ith. Enhanced RIN peaks are visible under strong feedback for both types of
lasers at frequencies separated by the external cavity roundtrip frequency. However
the increase under strong feedback is much less for the quantum dot laser.
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dot laser, both biased at 1.5×Ith. In each case, RIN was measured at the maximum and

minimum attainable values of feedback with our testing setup. In the weak feedback

limit (∼-60 dB), the laser RIN of both lasers is below the thermal noise floor and the

spectrum - essentially the thermal noise - is fairly flat. In the strong feedback limit (∼

-10 dB), the RIN spectrum for the quantum well laser exhibits signatures of coherence

collapse, with groups of large spikes in the RIN spectrum separated by presumably the

relaxation oscillation frequency of roughly 2 GHz, which has been previously measured

for other heterogeneously integrated quantum well lasers [105]. The RIN spectrum for the

quantum dot lasers is almost unchanged, with only a small increase in the low frequency

RIN. This corroborates the predicted higher threshold of coherence collapse for quantum

dot lasers compared to quantum wells. Figure 6.9 shows the low frequency RIN for

both lasers at 2×Ith from 100 to 200 MHz, averaged over 10 scans to better resolve the

spectral features. Under strong feedback, enhanced RIN peaks separated by ostensibly

the external cavity roundtrip frequency are visible for both types of lasers, with a slightly

smaller spacing for the quantum dot laser due to the longer external cavity length. In

agreement with the data shown in Figure 6.7, the overall increase in RIN is lower for the

quantum dot laser over the frequency range measured. Along with the data presented in

Figure 6.8, we can conclude that the increase in total integrated RIN will also be larger

for the quantum well lasers relative to the quantum dots.

6.5 Saturation effects in quantum dot lasers

The quantum dot lasers studied in the above section were devices that conformed

with the average yield and lased (predominantly) from the ground state. One feature

of quantum dots is that because the number of dots per sheet is finite, their density of

states and thus maximum gain is also finite and can be saturated. This is unlike the
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case in quantum well lasers where for all intents and purposes the density of states is

infinite. In certain cases, quantum dots are known to lase from the first excited state

if the ground state gain is insufficient to overcome cavity losses, or exhibit dual-state

lasing behavior once the ground state gain has been saturated. We have speculated in

Chapter 4 that these saturation effects may be important from a lifetime perspective,

since the likelihood of carriers outside of the dots increases as the ground state gain is

saturated, where they are free to recombine non-radiatively. In addition, the α factor

of quantum dot lasers is highly dependent on the presence of saturation effects as well,

often manifesting as a strong dependance on the applied current [116, 110].

Previous studies - both experimental and theoretical - have shown that the α factor

can diverge to large values (> 10) for quantum dot lasers operated near full inversion

of the ground state. In accordance with (6.1), this would then translate to a smaller

coherence collapse threshold. In the course of this study we identified a few quantum

dot lasers with yield defects which were quite noisy, especially under strong feedback.

Figure 6.10 shows the measured RIN data for one such device - labeled B13. We observe

a higher than average increase in the low frequency RIN versus feedback. Furthermore

we see signatures of coherence collapse in the full RIN spectrum under strong feedback,

while biased at 4× Ith (200 mA). We were able to correlate this increased sensitivity to

feedback with the presence of excited state lasing, which is an indication of saturated

ground state gain. Figure 6.11 shows signatures of gain saturation and excited state

lasing in this device. Of note is the fact that in the LI curve comparison, the two devices

are nominally made from the same material and with the same cavity size. However,

the larger threshold and lower slope efficiency suggests that the cavity of B13 is lossier,

meaning that the laser is operating closer to gain saturation. A closer examination reveals

a kink in the LI curve at around 180 mA, typically an indication of the onset of excited

state lasing. The optical spectra of B13 biased at 200 mA confirms this, as a lasing peak
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near 1220 nm is clearly visible in addition to the ground state lasing peaks near 1280

nm.

b)a)

Figure 6.10: a) The low frequency RIN versus feedback of a 1 mm×3µm QDL on
Si, showing higher than average increase in RIN versus feedback. b) The entire RIN
spectrum of the same device at 4 × Ith (200 mA) showing signatures of coherence
collapse.

6.6 Summary

The reflection sensitivity of quantum dot lasers epitaxially grown on silicon was stud-

ied for the first time. Compared to heterogeneously integrated quantum wells, the quan-

tum dot lasers show nearly 20 dB reduced sensitivity to feedback while maintaining low

levels of RIN over the entire feedback range. These results demonstrate their potential for

isolator free operation, an important differentiation over quantum well lasers for achiev-

ing low system cost, size, weight, and power. We further demonstrated the importance

of saturation effects in quantum dot lasers as related to their RIN and feedback tolerance

properties, highlighting the importance of designing quantum dot lasers to operate far

away from gain saturation.
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b)	a)	

Figure 6.11: a) Comparison of the LI curves between two devices with the same
nominal material and cavity size. B13 is the device with high RIN, and B14 is the
quantum dot laser in Figure 6.8, Figure 6.9, and ‘QD Laser 1’ in Figure 6.7. For B13
a kink in the LI curve at around 180 mA is visible, which is typically an indication
of the onset of excited state lasing. b) The corresponding optical spectrum of B13 at
4× Ith (200 mA) showing a lasing peak at 1220nm, confirming lasing from an excited
state.
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Chapter 7

Conclusions and Future Work

7.1 Summary

Several advances of quantum dot lasers for silicon photonics focusing on direct epi-

taxial growth onto silicon (both offcut and on-axis) have been reported in this thesis. In

Chapter 3 we reported 1.3 µm InAs/GaAs quantum dot lasers grown on offcut Ge/Si

substrates demonstrating continuous wave lasing up to 119◦C, 176 mW of output power,

and thresholds down to 16 mA. A comparison with In0.2Ga0.8As quantum well lasers

grown on the same Ge/Si substrates which failed to lase demonstrated the reduced sen-

sitivity to dislocations of quantum dot lasers. Reliability of the aforementioned devices

was reported in Chapter 4. A mean time to failure of 4700 hours has been achieved,

which is more than 23x longer over the previously best reported lifetime for GaAs based

lasers on silicon. The same quantum dot material was used to fabricate lasers on on-axis

GaP/Si (001) substrates as reported in Chapter 5, an important consideration for inte-

gration with a traditional silicon CMOS foundry. Finally, measurements of the reflection

sensitivity of quantum dot lasers on GaP/Si were presented and systematically compared

to heterogeneously integrated quantum well lasers in Chapter 6. The quantum dot lasers
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Figure 7.1: A graphical representation of the data presented in Table 1.3, illustrating
the progress made with quantum dot lasers epitaxially grown on silicon thus far.

showed 20 dB suppression in feedback induced RIN, which suggests their potential for

isolator free integration. A summary of the historical progress made in this field with

recent results from this thesis included is shown in Figure 7.1, highlighting the rapid

progress in recent years. In the sections below we briefly outline some possible avenues

of future research to further advance the field.

7.2 General improvements to quantum dots

Continued improvement of the quantum dot active region is the one common factor

that will lead to improvements in all aspects of device performance (including static

performance, reliability, and reflection sensitivity). A blueprint was provided in Chapter

2 towards this end. Figure 7.2 shows how changes in the most important parameters will

qualitatively affect the modal gain versus current density characteristics benchmarked
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Figure 7.2: Predicted change in the modal gain versus current density against mea-
sured experimental results (black) for: doubling of the dot density (red), halving of
the Shockley-Read-Hall recombination rate (green), or halving of the inhomogeneous
broadening (blue), with everything else kept the same in each case [40, 56].

against the experimental results of this thesis. Significant improvements can be made to

the currently still modest gain characteristics of our quantum dot lasers via increasing

the dot density (to increase the maximum saturated gain at the expense of increased

transparency current density), and decreasing the inhomogeneous broadening (to increase

the maximum saturated gain by a factor of two without any trade-off in transparency

current density) [40, 56].

The sheet density of any quantum dot layer is limited for a given wavelength by the

minimum size needed to achieve said wavelength from confinement energies. For typical

1.3µm DWELL InAs quantum dots with an average diameter of 30nm, the maximum

achievable density is ∼ 1011 cm−2 assuming near perfect packing (6 × 1010cm−2 is the

highest that has been achieved practically) [118]. The workaround to this limit would be

to decrease the size of the quantum dots (e.g. by growing colder or faster) while increasing

the indium content of the parent well such that the emission wavelength is preserved while
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a higher density of quantum dots may be achieved. 15% InGaAs wells are currently being

used, the indium content may possibly be increased up to around 20% without incurring

additional dislocations from strain relaxation [48]. Antimony (Sb) assisted quantum dot

growth may also provide an interesting pathway towards higher dot densities and/or

improved uniformity. In this process the QD growth surface is irradiated with Sb to

form a Sb-terminated surface prior to commencing growth, and/or a constant Sb flux is

supplied throughout the QD growth process [119, 118]. Sb is known to have surfactant

like properties and InAs deposited on a Sb terminated surface has been observed to form

a high density of one dimensional wires prior to QD formation, which could provide an

increased number of QD nucleation sites [118].

Increasing the localizing potential is necessary to decrease carrier escape out of quan-

tum dots. This requires increasing the conduction band offset between the InAs quantum

dot and its matrix material, and more importantly increasing the intersubband separa-

tion between the ground state and excited state within a quantum dot. Lasing at a record

temperature of 220◦C has been achieved with a high intersubband separation of 80 meV

[31], while our current structures have only 70 meV separation. The quantization energy

levels are predominantly determined by the z-confinement, but the in-plane confinement

between the quantum dots provides another tuning parameter. For typical DWELL

structures the in-plane and z confinement are controlled by the same capping/matrix

material, which is typically some sort of InxGa1−xAs alloy. However it is well known

that during deposition, the capping material tends to grow around the quantum dots

first because the top of the quantum dots are strain relaxed and thus pose the largest

lattice mismatch to the host/cap material [52]. By first depositing a GaAs layer that fills

in the spacing between the quantum dots and finishing with a normal InGaAs cap the

in-plane confinement may be increased due to the (slightly) larger band offset obtained

with GaAs. However it remains to be seen whether this would lead to other issues with
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In-Ga interdiffusion during higher temperature overgrowth steps. We note that this tech-

nique has been applied with AlAs for increasing the confinement potential of quantum

dot micropillars [120].

An alternative method to increase the effective confinement potential and intersub-

band spacings is shown in Figure 7.3. In a typical DWELL structure such as the one

we currently use, a thin (2 nm) InGaAs buffer is first grown prior to the deposition of

InAs quantum dots, and is a well established method to enhance the dot density [48].

We may instead directly nucleate on GaAs and cap with a two step GaAs/InGaAs cap

with a relatively higher Indium content to maintain the same emission wavelength. In

this manner the effective confinement is increased for the quantum dots (by virtue of the

slightly larger band offsets with InAs/GaAs vs InAs/InGaAs), the intersubband spacing

within a quantum dot is increased (dots are smaller so the energy separation is greater).

There may be a trade-off in the dot density, which may need to be compensated for. Of

course, each of these different growth details must be optimized separately. It is also

unclear the extent to which the laser injection efficiency will suffer from this new scheme,

as the DWELL scheme is beneficial for increasing injection efficiency by funneling carriers

into the quantum dots.

7.3 Prospects for improving reliability

At present, the typical reliability requirement for optical transmission systems is 100

FIT (100 failures in 109 device hours) or a median time to failure (MTTF) in excess of

10000000 h under full rated power [73]. Longer lifetimes are to be expected by increasing

the ratio of lasing quantum dots to dislocations. The latest advances in self-assembled

1.3 µm InAs quantum dot growth indicates that it is possible to achieve at least a 50%

increase in dot density and improved dot uniformity from the present work [121]. Further,
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Currently: Dots-in-a-well Proposal: 
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Figure 7.3: Increasing the intersubband level separation by removing the underlying
InGaAs buffer, growing a high density of smaller dots, and capping with a higher
indium content well to maintain the lasing wavelength.

it is reasonable to expect at least one or two orders of magnitude decrease in defect

density from optimized Ge buffers or strained layer superlattices [80, 122]. Combining

such improvements of the quantum dot gain region with reductions in defect density is

expected to produce reliable and efficient laser operation in future devices.

An in-depth discussion on the various factors affecting the lifetimes of quantum dot

lasers on silicon was given in Chapter 4. To summarize, we can assume that the degra-

dation is predominantly caused by defect growth driven by non-radiative recombination

current, which is determined by both % of injected carriers captured by QDs (i.e. depen-

dent on dislocation density and dot density), and current density in active region (i.e.

threshold current density, which somewhat clamps at threshold). The data in Chapter

5 also revealed that the majority of the reduction in performance between quantum dot

lasers on native GaAs substrates to those grown on silicon is accounted for through a

reduction in the injection efficiency. So to first order, the quickest route to improving

lifetime is through the following factors:

1. reducing initial dislocation density, which seeds the degradation through dislocation

climb
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2. improving quantum dot density/uniformity which competes with dislocations for

carriers, as well as determining what the gain curve looks like (and subsequently

threshold)

3. device design to minimize the threshold current density, which reduces carrier heat-

ing effects

4. minimizing quantum dot saturation effects through quantum dot growth optimiza-

tion or stacking, and minimizing cavity loss

We further point out two cases in literature that are worth studying. The first is the

success of GaN for both LEDs and lasers despite the lack of high-quality, low dislocation

density free-standing substrates. In the case of GaN, high efficiency LEDs have been

made despite the prescence of large dislocation densities 1010 − 1012 cm−2 [123]. This

has been postulated to be due to very short minority carrier diffusion lengths in the

active region material (i.e. as long as the minority carrier diffusion length is less than

the spacing of dislocations, high efficiency LEDs can be made). InGaN UV laser diodes

with lifetimes in excess of 10000 hours have been demonstrated [123].

The second case is the fact that InP/InGaAsP laser diodes seem to be in general more

reliable than GaAs/AlGaAs based laser diodes, and do not suffer from rapid degradation

phenomena caused by recombination enhanced dislocation climb [11]. Mechanical prop-

erties aside, the major reasons are theorized to be that the bandgap of InP compounds

are lower and thus maximum energy supplied by non-radiative recombination is less.

Furthermore, trap states related to intrinsic vacancies in InP/InGaAsP are hypothesized

to be above the conduction band, i.e. no mid-gap states which significantly reduces the

likelihood of non-radiative recombination. As a result, dislocation induced climb (a ma-

jor cause of failure in GaAs based laser diodes) is much less of an issue in InP/InGaAsP

based laser diodes.
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7.4 Quantum dot nanolasers on silicon

Significant reductions in size, cost, and power consumption of optical interconnects

are desirable to facilitate their implementation in high volume short-reach communication

links (i.e. chip to chip or shorter) [124]. Here we consider the possibility of quantum dot

enabled nanolasers epitaxially grown on silicon as a low cost, low SWaP (size, weight,

and power) light source in silicon photonic integrated circuits to meet these requirements.

Such nanolasers would contain one (or multiple) layers of a high uniformity ensemble of

III-V quantum dots embedded in a low loss cavity a few tens of square microns in area

grown on silicon. A quantum dot based nanolaser configuration on silicon presents several

advantages:

• The combination of a low transparency current density quantum dot active region

with a miniaturized low loss cavity can produce the very low lasing thresholds

necessary for low power consumption optical links (see Figure 7.4).

• By limiting the total device area to tens of square microns or less, epitaxial neck-

ing and dislocation image forces can facilitate dislocation glide out of the crystal

sidewalls, and the total dislocation count within the active layers can be very low

[125, 126]. The use of a quantum dot active region is expected to further miti-

gate any negative effects from residual dislocations, as was demonstrated above in

section 2.

• The small form factors of these devices also lends itself to higher on-chip integration

densities, favorable from an energy efficiency perspective to minimize interfacial

coupling losses and signal attenuation, and necessary to achieve high interconnect

bandwidth density [124, 127].

• Epitaxial growth will allow this technology to scale with the largest available silicon
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wafer size, taking advantage of economies of scale not available for III-V substrates.

Changing from a continuous planar epi coverage to limited area epitaxy in this

case reduces the total amount of accumulated thermal stress in accordance with

the reduced epi filling factor, which can mitigate wafer yield issues due to thermal

stress induced cracking [128].

Figure 7.5 shows the computed thresholds (dashed) and current required for 0.5 mW

of output power (solid) of InAs/GaAs quantum dot lasers of various different cavity

lengths. Reducing the launch power of the laser may be beneficial for energy efficiency

depending on the link design and utilization percentage. For any given link budget, it

is desirable to minimize the current required to drive the laser to generate the required

output power to overcome link losses. Thus we can imagine that for short-reach links

where the output power requirement, Figure 7.5 indicates that the least power-hungry

solution is to use smaller lasers which require less input current for the same amount of

output power. In the sections below we examine various technical aspects of the proposed

structure in detail.

7.4.1 Waveguide coupling

Figure 7.6 shows one approach to achieve waveguide coupling where the optical mode

is butt-coupled to a silicon rib waveguide. In this embodiment, the III-V cavity is selec-

tively grown onto the handle wafer of a SOI substrate and the height of the active region

is aligned with the silicon waveguide layer to maximize optical coupling. The handle

wafer can serve as a contact layer as well as an excellent heat sink for the III-V layers.

Fig. 7.7 shows the calculated profile of the fundamental transverse electric (TE) mode

for an InAs/InP quantum dot nanolaser stack side by side with a silicon rib waveguide

with a partial etch depth of 250 nm and a total waveguide height of 500 nm. In this
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Figure 7.4: Scaled broad-area laser threshold currents versus cavity length for both
GaAs and InP based quantum dots. A facet reflectivity R=95% was assumed for both
cases. Gain parameters used are listed in Table 7.1. From [35], c© 2015 Chinese Laser
Press.

case, the maximum mode overlap is computed to be 92.35% (∼0.35 dB coupling loss, not

accounting for reflections which will increase this figure). The etch depth of the partially

etched silicon layers may be varied to tailor the transverse mode profile of both the III-V

and silicon waveguide sections to further optimize the coupling efficiency.

7.4.2 High reflectivity mirrors

High mirror reflectivity is crucial in reducing mirror loss of short cavity lasers. Quan-

tum dot lasers will also have a distinct advantage over quantum well lasers in terms of

energy efficiency if the total cavity loss is low enough to allow for operation near the

transparency current density, which will be inherently lower in quantum dot systems

compared to quantum wells (see Figure 3.27). Possible approaches to reduce mirror loss

include: high quality factor (Q) ring cavities, Bragg reflectors (distributed feedback or

distributed Bragg reflectors), dielectric mirrors, and metallic mirrors. Figure 7.8 shows

a schematic for the various types of mirrors.
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Figure 7.5: Computed thresholds (dashed) and current (solid) required for 0.5 mW
of output power (solid) of InAs/GaAs quantum dot lasers of various different cavity
lengths. Gain parameters are listed in Table 7.1.
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Figure 7.6: (a) A transverse cross-sectional schematic of the proposed quantum dot
nano-laser where the output is butt coupled to a Si rib waveguide (WG); (b) a top–
down view of the active region plane. The active region is aligned to the thicker Si rib
waveguide to maximize coupling while the partial etch depth can be varied to tailor
the transverse index profile. A calculated mode profile is shown in Fig 7.7. From [35],
c© 2015 Chinese Laser Press.
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Figure 7.7: Calculated fundamental TE mode profiles of an InAs/InP quantum dot
nanolaser on SOI with seven quantum dot layers (left) and a half etched Si rib waveg-
uide to which the laser may be butt coupled to (right). The estimated coupling loss
due to mode overlap is ∼ 0.35 dB. The confinement factor for the quantum dot lay-
ers is ∼1.95%. The depth of the partially etched Si layers may be varied to tailor
the transverse index/mode profile to maximize coupling. From [35], c© 2015 Chinese
Laser Press.

Bragg reflectors are a preferable choice for obtaining high reflectivity with low loss,

where the reflection strength can be tailored by the etch depth and number of grating

periods. In our proposed structure the Bragg reflectors can be realized by etching gratings

in the silicon waveguide or as distributed feedback gratings in the upper cladding layer

(see Figure 7.8 a&b). First order Bragg gratings require high precision lithography and

etching. Higher order gratings may simplify fabrication but at the expense of some excess

mirror loss due to variations in duty cycle.

Metallic mirrors can provide polarization and wavelength independent reflection with

relatively simple fabrication. However, the material loss limits the reflection to ∼97.5%

[129]. Two metal plugs deposited on either side of the laser can form a high quality factor

(Q) resonator (Figure 7.8 c), and the light can be coupled out using a directional coupler

parallel to the active region as described in [129]. A combination of metal mirror on one
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Figure 7.8: Schematic of the longitudinal cross-section for an InAs/InP quantum dot
nano-laser showing different possible mirror designs: (a) distributed Bragg reflector
mirrors in silicon, (b) distributed feedback gratings, (c) metal or dielectric high reflec-
tion coatings, (d) high Q ring cavity coupled to an output waveguide (shown on the
left traveling perpendicular to the page). From [35], c© 2015 Chinese Laser Press.

side and a Bragg mirror on the other can also be used for a uni-directional output. High

reflection metal or dielectric facet coatings are also an option, but would have limited

applicability for on-chip light sources.

High Q ring cavities may be used to achieve low cavity loss in place of conventional

Fabry-Perot cavities. In this configuration, light from a whispering gallery mode cir-

culating inside the ring cavity can be coupled to a nearby silicon waveguide, shown in

Figure 7.8 (d). Additional reflectors can be defined on one end of the silicon waveguide

to achieve unidirectional lasing, as described in [130].
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7.4.3 Surface recombination

Surface recombination can be a dominant factor in determining device performance

and reliability of small devices. Improved lateral carrier confinement in quantum dots

with respect to quantum wells is yet another compelling reason to employ quantum

dots for nanolasers, which can significantly reduce the surface recombination current

compared to quantum wells [39, 41]. The impact of surface recombination on the scaling

of the broad-area threshold current for both InAs/GaAs quantum dots and InAs/InP

quantum dots is quantified here by following the approach outlined in [41], where it was

shown that InAs/GaAs quantum dot lasers have an order of magnitude lower surface

recombination velocities and ∼5x shorter mean ambipolar diffusion lengths compared

to InGaAs/GaAs quantum well lasers. In these calculations a simple rectangular fully

etched mesa was assumed. From simulations of various waveguide geometries, the lateral

TE mode cutoff is around 0.5 µm, which we took for a lower bound ridge width in the

calculations. Changes in lateral confinement versus ridge width was accounted for via

the effective index method, although the magnitude of the variation versus width was

not large (∼ 5% reduction at a width of 0.5 µm).

The different parameters and assumptions used are listed in Table 7.1. The results

are shown in Figure 7.9 and Figure 7.10. Although the overall threshold of GaAs based

quantum dots are lower, the threshold at a ridge width of 0.5 µm and assuming an am-

bipolar diffusion length of 1 µm is 5.88x the scaled broad-area laser threshold, whereas InP

based quantum dots show a 2.6x increase due to the lower surface recombination velocity.

Despite the high surface recombination current at sub-micron scales, very low thresholds

are still achievable. If the optical properties of InAs/InP quantum dots can be improved

to the level of InAs/GaAs quantum dots, they may be a superior material system for

nanolasers due to the reduced recombination velocity. Various surface treatments and
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Figure 7.9: Calculated threshold currents versus ridge width for both GaAs
(vs = 5 × 104 cm/s) and InP (vs = 1 × 104 cm/s) quantum dots and various dif-
fusion lengths. A mean diffusion length of 1 µm was reported in [41]. A cavity length
of 50 µm, R=95%, and 7 quantum dot layers were assumed for both cases (see Table
7.1). From [35], c© 2015 Chinese Laser Press.

passivation techniques may be used to further reduce the surface trap density and the

surface recombination velocity [131, 132, 133].

7.5 Conclusion and Outlook

In the last few years, incredible progress has been made in the development of 1.3 µm

InAs/GaAs quantum dot lasers epitaxially grown on silicon. Work remains to elevate the

performance of these devices towards native substrate levels, and to solve the remaining

lifetime issues. An outline towards achieving these goals was provided in this thesis.

Various avenues of research rich in physics a well as device applications lie ahead, enabled

by quantum dot active regions. I look forward to continuing to assist in and witnessing

the further growth of this field.
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Figure 7.10: Corresponding threshold current densities for the devices shown in Figure 7.9.

InAs/GaAs InAs/InP

vs (cm/s) 5×104 1× 104

τ (ns) 2.8 2.8

αi (cm−1) 3.16 4

Jtr (A/cm2) 11.6 39

ηi 0.6 0.26

Γg0J (cm−1 per
layer)

2.36 5

R 0.95 0.95

Table 7.1: Parameters used for the calculations in Figures 7.4 and 7.9. Gain and loss
values are from Fig Figure 7.2 for InAs/GaAs quantum dots and [33] for InAs/InP
quantum dots. Recombination velocities and carrier lifetimes are from [132, 41].
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Appendix A

Growth rate calibrations in MBE

A.1 GaAs/AlAs growth rate cals

Growth rate calibrations for GaAs and AlAs on GaAs substrates are determined by

fitting a theoretical reflection spectrum to the real measured spectrum of a pair of micro-

cavity samples (one where the λ cavity is made of GaAs, and another where it is AlAs)

sandwiched by GaAs/AlAs DBR pairs. This method is detailed in Daniel Lofgreen’s the-

sis (Chapter III page 38). In this thesis the cavity wavelength was set to 980nm (i.e. the

nominal microcavity thickness is 980nm divided by n(λ) - the refractive index of GaAs or

AlAs at 980nm - and the thickness of the DBR stacks are quarter wavelength variations

thereof - 980nm/(4*nGaAs/AlAs). The structures grown are shown in Figure A.1. The ac-

tual resonant wavelength of this microcavity is theoretically determined by the thickness

of the cavity layer plus the thickness and number of the individual DBR pairs (which

affects the effective mirror length of the DBRs, and thus the total cavity length), and

can be fitted to the measured spectrum (measured using the Cary 500 Spectrometer).

An optimization scheme is used for the fitting which searches for the minimum of the

inverse of the overlap integral between experimentally measured and theoretically calcu-
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Figure A.1: The DBR microcavity samples used to calibrate GaAs and AlAs growth
rates in this thesis. Using these two samples, the two unknowns (GaAs and AlAs
growth rates) can be calculated by fitting the measured reflection spectrum of the
microcavity samples with a theoretical curve.

lated reflection spectra, with the thickness of the DBR and microcavity layers varied to

obtain the best fit. From the best fit, the actual layer thicknesses are extracted, and the

actual growth rate calculated by multiplying the assumed growth rate with the ratio of

(actual thickness/nominal thickness).

A.2 InAs growth rate cals

For QD growth on GaAs, we first obtain an estimate of the InAs growth rate using

RHEED oscillations of InAs deposited on a native InAs substrate. RHEED oscillations

are typically 1-5% off from the true growth rate due to the presence of flux transients

immediately after the shutter opening. For QD growth, a second round of optimizations

is usually done to optimize the amount of material deposited versus PL intensity and

linewidth, so the small deviation from the true growth rate is not critical. A rapid

check of growth rate accuracy can be done by by growing 8 nm In0.2Ga0.8As/GaAs PL

cals, where the emission wavelength should be roughly around 980nm if the growth

rates are accurate. These PL cals are usually grown as reference samples to ascertain
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Figure A.2: RHEED of the InAs surface at 500◦C after oxide desorption

system health throughout the growth campaign, and so large deviations in wavelength can

indicate that the growth rates (or temperature) is off and needs to be recalibrated. The

procedure for RHEED oscillations for InAs is as follows: four or more cell temperatures

with corresponding fluxes roughly spanning the desired growth rates of interest are first

measured in the morning of the calibration, to guarantee an accurate fit. A quarter of

a 2” InAs wafer is loaded into the growth chamber, with the oxide desorbed by holding

the wafer at 500◦C for 10 minutes as read by an optical pyrometer, after which it should

show a 4x reconstruction in one of the crystallographic directions (see Figure A.2). After

oxide desorption, the Indium shutter is opened and InAs is grown at the highest cell

temperature/growth rate of the series for enough time until a sufficiently thick (≥ 200

nm) InAs homoepitaxial buffer layer has been deposited to smooth out the surface. After

this is done, the shutter is closed, substrate temperature set to 470-480◦C (no oscillations

are observed at higher temperatures), the V/III ratio adjusted to between 10-20, RHEED

beam blanked, the surface is given a few minutes to smooth out, then the calibrations

begin. Using a specular spot in the RHEED, intensity oscillations are tracked using a

software as the shutter is opened, with the shutter being closed once the oscillations are
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Figure A.3: Intensity oscillations (right) of the specular spot enclosed by the red box
in the RHEED pattern shown on the left.

damped out and the RHEED beam blanked for 2-3 minutes to allow the surface time to

smooth out before the next measurement. One oscillation is typically understood to be

equal to the growth of one monolayer, and thus the average growth rate can be calculated

by counting oscillations and converting to ML/s or A/s. Usually it is desirable to have

many oscillations over a long deposition time to average out shutter transient effects, but

because the InAs QD deposition time is very short, a smaller number of oscillations are ok

and may actually better represent the real growth rates during deposition if oscillation

observation time is close to the actual deposition time. In this thesis, typically 8-10

oscillations were used to compute the average growth rate from a single measurement.

This process is repeated to obtain at least five measurements per cell temperature,

with the average value taken between the five. If the process is done correctly a standard

deviation of less than 1% relative to the average among the measured growth rates should

be possible for a given cell temperature/flux. After average growth rates for all the cell

temperatures have been obtained, the average growth rate versus average cell flux can be

plotted to generate a curve, and the growth rate should be roughly linear with cell flux.
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Figure A.4: Average growth rate versus indium flux determined from RHEED oscillations

The R2 value from the fit should be ≥0.99 if the calibrations were done well. An example

is shown in Figure A.4. Note that the measured growth rates are for growth on InAs.

For QD growth on GaAs or InP where there is a difference in lattice constant with InAs,

the growth rate will be slightly different if the material is pseudomorphically strained.

The conversion factor is simply the ratio of the lattice constants cubed if growth rate is

defined in A/s, or squared if defined as ML/s (i.e. GR
A/s
GaAs = GR

A/s
InAs ∗ (aGaAs

aInAs
)3).

A.3 InGaAs/InAlAs/InP lattice matching and growth

rate cals

Unlike GaAs/AlAs which are naturally lattice matched binaries to GaAs substrates,

growth of InP related compounds in Arsenic MBE without a phosphorous source re-

quires the ternary system InGaAs/InAlAs or InAlGaAs to achieve lattice matching to

InP. Thus, lattice matching conditions must be determined before doing growth rate

calibrations. The nominal lattice matching compositions to InP are In0.532Ga0.468As

and In0.523Al0.477As, respectively. Lattice matching conditions for In0.532Ga0.468As and
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In0.523Al0.477As were performed in System C as follows: with the indium flux held con-

stant, a corresponding flux for either Ga or Al that yields the lattice matching composi-

tion is guessed from a previous growth. The Ga or Al cell temp is then varied to yield

roughly plus and minus 5-10% of the nominal lattice matching flux (for 10% difference it

is usually ± 5 degrees at the typical cell temperatures for 0.8 µm/hr growth rates). Then

the following three-layer stack is grown on a semi-insulating InP substrate: nominally

lattice matched InGaAs or InAlAs, InGaAs or InAlAs with 10% less Ga/Al, InGaAs

or InAlAs with 10% higher Ga/Al. The layer thickness should be sufficiently thick to

force metamorphic strain relaxation for accurate determination of the lattice constants,

typically each layer was grown to be 500-750 nms. The samples are then measured in

X-ray which should yield three distinct peaks and the substrate peak, each of the layer

peaks corresponding to one of the three separate layers with its own corresponding aver-

age lattice constant. Plotting the lattice constants of the three layers versus the different

Ga/Al fluxes, and finding the intercept point of the best fit line with the substrate lattice

constant value should then yield the lattice matching flux of Ga/Al for the corresponding

Indium flux used, see for example Figure A.5.

After the lattice matching conditions are determined, a pair of samples with super-

lattices are grown, where the nominal superlattice period (e.g. total InGaAs+InAlAs

thickness) remains constant between the two samples but individual InGaAs and InAlAs

cell thicknesses switched among the two. XRD is once again used to measure the fringe

spacing in the samples due to the superlattice, from which the actual superlattice period

is extracted (see Figure A.6). Two equations relating the measured superlattice thickness

from the two separate samples can be written with the two unknown growth rates as the

variables, solving the equations then yields the actual growth rates.

141



Growth rate calibrations in MBE Chapter A

Figure A.5: XRD measurements of an InGaAs lattice matching calibration sample

Figure A.6: XRD measurements of an InGaAs growth rate calibration sample
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Appendix B

Facet polishing

In this thesis, most of the facets for the lasers on silicon were created by dicing and polish-

ing (with some facets receiving high-reflection coatings). Facet polishing is hypothesized

to be the biggest yield limiting step - as the facets are easy to damage and the polish

quality can widely vary. This appendix shows the varying degrees of facet quality and

some common mishaps encountered during polishing.

B.1 Polished facets

Typically, a well polished facet will look clean and fairly smooth under both optical

and Nomarski microscope.

B.2 Scratched or dirty facets

When polishing hybrid facets, metal from the contacts can easily peel off and scratch

the facet. Below is an example where the facet is severely scratched by the small pieces

chipped off from the probe metal.
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20 μm

Figure B.1: Optical (top) and differential interference contrast (bottom) microscope
images of polished facets.
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Figure B.2: Excessive chipping from the metal probe layers which subsequently com-
promises facet quality.

B.3 Cracked facets

Facet material can also easily chip off if not supported properly. Below is an example

where this has happened.

B.4 HR coated facets

Sometimes the polished facets are coated with a layer of dielectric for either passiva-

tion or to increase the reflectivity. Adhesion problems can arise due to cleanliness of the

facet or stress between the film and facet. Below is an example where a thin SiN layer is

observed to have spalled.
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Figure B.3: A cracked facet from polishing.

Figure B.4: Optical micrograph of facets with spalled SiN coating.
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Spalled nitride	coating

Figure B.5: SEM of a facet with spalled SiN coating.
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