
University of California
Santa Barbara

Throughput and Delay on the Packet Switched
Internet

(A Cross-Disciplinary Approach)

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Daniel Mark Havey

Committee in charge:

Professor Kevin Almeroth, Chair
Fred Baker, Fellow Cisco Systems, Inc.
Professor Elizabeth Belding
Professor Phill Conrad

June 2015

The Dissertation of Daniel Mark Havey is approved.

Fred Baker, Fellow Cisco Systems, Inc.

Professor Elizabeth Belding

Professor Phill Conrad

Professor Kevin Almeroth, Committee Chair

March 2015

Throughput and Delay on the Packet Switched Internet

(A Cross-Disciplinary Approach)

Copyright c© 2015

by

Daniel Mark Havey

iii

This dissertation is dedicated to the one true God who created
the universe full of scientific wonder for us to explore and enjoy.

iv

Acknowledgements

Funding for this PhD was provided by the University of California Santa Barbara,

by Lockheed Martin, by Cisco Systems, Inc, and by Microsoft. This PhD would not

have been possible without the support of many people students, professors and many

others. I would like to offer thanks to all of my friends from San Bernardino who often

said that someday you will be a doctor and I would love to see it. This is the day.

We have made it. To all the professors in my undergraduate work who encouraged me

along the way and guided me towards research in particular Keith Schubert and David

Turner. To the students from my lab at UCSB. To Lara who started after, finished

right before and often suffered through tough times with along with me. To David who

sat behind me during our perplexing first few years and worked with me on our original

TCP experiments that eventually became the starting point of my work. To Rohit,

Sathiish and Devdeep for working with David and I during the split TCP experience

and to many others too numerous to name here.

A special thanks to my advisor Kevin Almeroth who took me in as a student all of

those years ago and stuck with it through tough times and through good. To Elizabeth

Belding for asking the tough questions and teaching me a thing or two about humility.

To Phill Conrad for his excellent editorial work on the final dissertation and especially

to Fred Baker a fine Christian gentleman and “Rock Star” of engineering who taught

me about the importance of latency and having a good and cheerful attitude. Fred,

you are a man with an amazingly humble servant attitude and a powerful force for the

good of the Internet. If I can emulate these two things throughout my career it will be

a fine future and worth living.

My mom really deserves extra special thanks for encouraging my love of learning

from before I was old enough to talk and to this day. Thank you mom! This is just

v

a small token repayment for all your love and encouragement. Also a special thanks

to Sarah Joy who supported me with prayer and encouragement throughout the final

laps of the dissertation process. From providing the logistics for the final defense to

organizing the food to helping me wander through the final bureaucracy required to

complete the PhD. Thank you for listening to me when I was confused and for praying

for me when I was discouraged. I don’t think I could have made the final steps without

you.

As it says in the Proverbs, “There is gold and abundance of costly stones, but the

lips of knowledge are a precious jewel.” Mom encouraged my natural love of learning,

but, God put that love in place. From the beginning of creation He planned the world

including this PhD with all its ins and outs and ups and downs and all of the wonderful

people who have encouraged me along the way. He did this so that it would develop

me into the person He intends me to be. When I look back at who I was when I started

this journey I can see an immense amount of learning and growth both as a researcher

and as a person. Now, much like Jesus said nearly 2000 years ago, “It is finished” and

it is time to give the honor where it is truly due to our Lord and Savior Jesus Christ.

Without Him even knowledge and learning are merely vexation of spirit and a chasing

after the wind. I will always remember this and put my knowledge and learning to its

proper use to honor and glorify our Lord. Used in this manner knowledge and learning

are precious jewels as it says in the Proverb and greatly satisfying to gather, organize

and put to use.

vi

Curriculum Vitæ
Daniel Mark Havey

Education

University of California in Santa Barbara (UCSB) – Ph.D.
in Computer Science, (Fall 2006 - Summer 2014 estimated)
California State University in San Bernardino (CSUSB) –
Bachelor of Arts in Computer Systems, (Fall 2002 - Spring 2006)

Research interests

Emerging markets, mesh networks, Adaptive Bit Rate (ABR)
video streaming, network protocols (application, socket, trans-
port, MAC), wired/wireless, packet scheduling

Academic projects

Advanced transport, UCSB (Sept 2013–current)
Networks in emerging markets such as the one in Macha Zambia
are often plagued with challenging characteristics such as slow
links, high PER, and large RTTs. These characteristics degrade
throughput and latency. In this project we improve throughput
and latency characteristics using TCP port forwarding to ”split”
the large RTT into smaller segments. Leveraging the smaller seg-
ment RTTs we will also explore the use of CoDel style buffer
management techniques to further improve throughput and la-
tency characteristics.
xTCP, Qualcomm (June 2013–Sept 2013)
DASH ABR video streams are sensitive to packet loss and delay.
In this project we design a client side only TCP modification
that is immune to packet loss and highly robust to delay. This
client side kernel modification uses a ”lazy” retransmit scheme
not reacting immediately to packet loss to offset the DASH ABR
video streams sensitivity to packet loss and delay.
Fast Wireless Protocol (FWP), UCSB (March 2012–June
2013)
As wireless speeds increase with 802.11n and 802.11ac the over-
head characteristics become more challenging. In this project we
investigate the use of variable packet aggregation techniques to
reduce overhead and increase throughput. This project is built
with the Atheros ath9k open source 802.11n driver for Linux.

vii

Active Packet Scheduling, Cisco (September 2012–June 2012)
The recent increase in multimedia streaming into the home has
intensified the need for good resource management at the home
access router. In this project we develop network sensing tech-
niques to determine when a packet scheduling profile should be
applied. We also implement an adaptive packet scheduler at the
IP layer to provide superior management of network resources.
Parallel TCP, UCSB (June 2011–Sept 2011)
Parallel TCP is known to be robust against packet loss and delay,
however, it is also known to have two main drawbacks. It is unfair
to other flows, and, it is difficult to distribute the data over the
parallel streams. In this project we develop a parallel TCP with
an application layer fairness mechanism. The fairness mechanism
determines the correct share of bandwidth then distributes the
data over the parallel streams round robin. Our parallel TCP is
fair with single flows as well as robust against packet loss and
delay.

Work experience

Research intern, Qualcomm (June 2013–Sept 2013)
Designed and tested xTCP, a TCP variant that is immune to
packet loss and therefore very robust against delay. xTCP is a
client side kernel modification built on the Linux 3.8.0 kernel. It
uses ”packet injection” techniques to disguise loss from TCP and
a ”lazy” retransmit scheme to retrieve lost packets.
Research intern, Cisco Systems (June 2012–Sept 2012)
Performed a detailed study of ABR and progressive video steams
characterizing the behavior of each video flow in context with net-
work conditions. Built instrumentation at the video server and
the home access router to read TCP service rate, CWND values,
and TCP congestion points. Built an adaptive packet schedul-
ing system using this instrumentation that provides improved re-
source management to the home access network.
Research intern, Aerospace Corporation (June 2010–Sept 2010)
Designed a ground to space emulation system. This ground-space
emulation system component functions as a part of the larger
Mobility Satellite Emulation System (MSET). It addresses the
requirements for ground segment emulation at high speed and
fidelity, with various degrees of mobility.
Research intern, Citrix Online, LLC (June 2009–Sept 2009)
This internship was about bandwidth shaping, modeling, and

viii

adaptivity. Created prototype modules for the Go to Meeting
(G2M) product. Conducted experiments with the Citrix Online
testbed measuring the benefits to quality of customer experience
with the prototype modules.
Research intern, Santa Barbara Labs, LLC (May 2008–May
2009)
Conducted satellite network studies in conjunction with Lockheed
Martin. Produced white paper deliverables for the Air Force’s
TSAT Mission Operations System (TMOS) project. Assisted in
the design and implementation of the Mobility Satellite Emula-
tion Testbed (MSET). Used this testbed to examine the behavior
of mobile IPv6 satellite networks.
Teaching Assistant, UC Santa Barbara (Fall 2006–Fall 2012)
Held weekly classes for 10–20 students to provide additional de-
tail not available in lecture. Held weekly office hours to answer
questions and help students prepare for tests. Designed projects
and homeworks for the students

Selected publications

Refereed Conferences and Workshops
• Daniel Havey, and Keven Almeroth, ”Fast Wireless Protocol:

A Network Stack Design for Wireless Transmission”, IFIP
Networking, May 2013

• Daniel Havey, Roman Chertov, and Keven Almeroth, ”Re-
ceiver Driven Rate Adaptation”, Multimedia Systems (MM-
Sys), February 2011

• Roman Chertov, Daniel Havey, and Kevin Almeroth, ”MSET:
A Mobility Satellite Emulation Testbed”, INFOCOM, March
2010

• Daniel Havey, Roman Chertov, and Keven Almeroth, ”Wired
Wireless Broadcast Emulation”, Wireless Network Measure-
ments (WiNMee), June 2009

• Daniel Havey, Elliot Barlas, Roman Chertov, Kevin Almeroth,
and Elizabeth Belding, ”A Satellite Mobility Model for QUAL-
NET Network Simulations”, MILCOM, November 2008

• David Turner and Daniel Havey, ”Controlling Spam through
Lightweight Currency”, Hawaii International Conference on
Computer Sciences, January 2004

ix

Abstract

Throughput and Delay on the Packet Switched Internet

(A Cross-Disciplinary Approach)

by

Daniel Mark Havey

The Internet has become a vital and essential part of modern everyday life. Services

delivered by the Internet are used by people across the planet every moment of every

day of the year. The Internet has proven a positive force for good improving the lives of

billions of people worldwide. The power of the Internet to deliver this positive good to

humanity relies on its ability to deliver life improving services. In my doctorate work

culminating in this dissertation I have striven to sustain and increase the Internet’s

ability to deliver these services and to have a positive good effect upon humanity.

The overarching purpose of this dissertation is to improve the Internet’s ability

to deliver life improving services. I have further divided this purpose into two goals.

To improve the ability of applications operating in challenging network conditions to

gain their fair share of the bandwidth resources and to reduce the delay with which

these services are delivered. Every service delivered by the Internet consists of Internet

objects that are delivered through communication paths across the Internet. The

delivery of these objects is defined by the two characteristics; Throughput and delay.

Throughput determines how much of an object can be delivered over a period of time

and delay determines how long it takes to deliver an object.

These two characteristics determine the Internet’s ability to deliver objects across

communication paths. Improving these two characteristics (bandwidth and delay) in-

crease the ability of the Internet to deliver objects and thus improve the Internet’s

x

capability to deliver life improving services. To accomplish this goal I present projects

along three areas of effort. These three areas of effort are: (1) Increase the ability

of applications operating in challenging conditions to achieve their fair share of band-

width. (2) Synthesize knowledge required to address the effort to reduce delay. (3)

Develop protocols that reduce delay encountered in the communications paths of the

Internet.

In this dissertation I present projects along these three areas of effort that accom-

plish the two goals (increase bandwidth and reduce delay) to achieve the purpose of

improving the Internet’s ability to deliver essential and life improving services. These

projects and their organization into areas of effort, goals and purpose are my contri-

butions to the networking sciences.

xi

Contents

Curriculum Vitae vii

Abstract x

List of Figures xiv

1 Introduction 1
1.1 Motivation and Overview . 1
1.2 Thesis Statement . 6
1.3 Dissertation Organization . 7
1.4 Contributions . 11

2 The Receiver Driven Rate Adaptation (RDRA) Algorithm 14
2.1 Introduction . 14
2.2 Testbed and Experimental Perimeters 16
2.3 Introduction to Parallel TCP . 18
2.4 Receiver Driven Rate Adaptation (RDRA) 22
2.5 Conclusions and Future Directions for RDRA 36

3 The Fast Wireless Protocol (FWP) Algorithm 39
3.1 Background . 43
3.2 Fast Wireless Protocol . 46
3.3 FWP Implementation . 47
3.4 Evaluation . 55
3.5 Conclusions and Future Work . 64

4 A Cross-Disciplinary Approach to Queue Sizing 66
4.1 Introduction . 66
4.2 Queuing Theory and Network Topology 67
4.3 Transport and Network Sensing . 73
4.4 Packet Scheduling and Queue Management Algorithms 78
4.5 Conclusions . 81

xii

5 The Active Sense Queue Management (ASQM) Algorithm 82
5.1 Introduction . 82
5.2 Active Sense Queue Management . 86
5.3 Evaluation methodology

and testbed . 90
5.4 Evaluation . 92
5.5 Summary, Conclusions and Future Work 103

6 The Bandwidth Delay Product (BDP) Algorithm 104
6.1 Introduction . 104
6.2 Our Bandwidth Delay Protocol (BDP) Algorithm 109
6.3 BDP Testbed . 113
6.4 Evaluation . 115
6.5 Conclusions and Future Work . 124

7 Conclusions 127
7.1 Future Work . 131

Bibliography 133

xiii

List of Figures

1.1 Chapter organization by topic . 7
1.2 Chapter organization by protocol and layer 8

2.1 DETER Lab Testbed Topology . 17
2.2 Meraka Wireless Testbed Topology . 18
2.3 Throughput of Multi-Stream Flows . 20
2.4 Fairness of Multi-Stream Flows . 21
2.5 RTT Estimate with TCP Clock . 23
2.6 Queue Utilization with TCP Clock . 24
2.7 Client Side Congestion Detection . 25
2.8 Stream Control – Outstanding Requests vs CWND Calculation 27
2.9 RDRA System Architecture . 28
2.10 Stream Control – Outstanding Requests vs CWND Calculation 29
2.11 RDRA Throughput . 31
2.12 RDRA Fairness . 32
2.13 RDRA Queue Utilization . 33
2.14 TCP Cubic Queue Utilization . 34
2.15 RDRA Throughput . 35
2.16 Single Stream Cubic TCP Throughput 36

3.1 A-MSDU Frame Aggregation . 44
3.2 A-MPDU Block ACK Window Advance 45
3.3 FWP 802.11 emulator using ADDBA noack 50
3.4 A-MPDU 802.11 emulator . 51
3.5 TCP Compatible Transport . 54
3.6 Emulab testbed . 56
3.7 Throughput gains from 1 FWP station competing with 9 A-MPDU ag-

gregation stations . 58
3.8 Speedup of FWP against number of competing A-MPDU stations . . . 59
3.9 Compatible TCP competing with Cubic over a time series 60
3.10 Throughput variations of compatible TCP against TCP Cubic 61

xiv

3.11 Overhead for Internet path versus wireless hop 63

4.1 Queue Sizing on the edge of the Internet 69
4.2 Typical Consumer Network Neighborhood 71
4.3 Theoretical Internet Path . 77

5.1 Primary Bottleneck – Cable Modem Termination System to Cable Mo-
dem Link (DOCSIS 3.1) . 87

5.2 Hardware emulation testbed . 91
5.3 CoDel RTT CDF (Non-Peak Hours) . 94
5.4 CoDel Throughput CDF (Non-Peak Hours) 94
5.5 PIE RTT CDF (Non-Peak Hours) . 95
5.6 PIE Throughput CDF (Non-Peak Hours) 95
5.7 ASQM RTT CDF (Non-Peak Hours) 97
5.8 ASQM Throughput CDF (Non-Peak Hours) 97
5.9 CoDel RTT CDF (Peak Hours) . 98
5.10 CoDel Throughput CDF (Peak Hours) 98
5.11 PIE RTT CDF (Peak Hours) . 100
5.12 PIE Throughput CDF (Peak Hours) 100
5.13 ASQM RTT CDF (Peak Hours) . 101
5.14 ASQM Throughput CDF (Peak Hours 101

6.1 BDP AQM Algorithm (Download Direction) 111
6.2 BDP Hardware Emulation Testbed . 113
6.3 AQM Throughput at 100 ms RTT . 116
6.4 AQM Throughput at 250 ms RTT . 117
6.5 AQM Throughput at 500 ms RTT . 118
6.6 AQM Throughput at 750 ms RTT . 119
6.7 AQM Throughput at 1000 ms RTT . 120
6.8 BDP AQM RTT CDF . 121
6.9 CoDel AQM RTT CDF . 122
6.10 PIE AQM RTT CDF . 123
6.11 ARED AQM RTT CDF . 124

xv

Chapter 1

Introduction

1.1 Motivation and Overview

The Internet has grown in importance and scale over the past few decades and has

become a part of the daily lives of billions of people worldwide. Services provided by

the Internet are in use twenty four hours and seven days a week on a massive scale.

Services provided over the Internet have become a vital life improving part of our

world that even effects people who do not use the Internet. Because of the essential life

improving nature of the Internet it is important that we keep the Internet functioning

at it’s maximum capacity now and into the future.

There are two key characteristics that we use to define the health and quality of the

Internet: throughput and delay. There are other metrics that measure the quality of the

Internet from various perspectives, but, we have chosen these two because they define

the nature of how Internet objects are delivered. A flow without enough throughput

or with too much delay will be a poor conduit for the delivery of objects that comprise

an Internet service. In addition, throughput and delay are the metrics used to define

the quality of the transport and Internet Protocol (IP) layers of the network stack

1

Introduction Chapter 1

from which the Internet is constructed. The IP layer is a packet switched addressing

protocol and the transport layer is usually the Transport Control Protocol is usually

(TCP) but can be the User Datagram Protocol (UDP) or some other variant.

That throughput is a key determining factor in the deliver of Internet objects is

fairly straightforward. Throughput measures how much data is transmitted over a

period of time. With more throughput available more data can be transmitted in the

same amount of time. However, latency is a little more subtle. Internet objects (web

pages, app data, etc) require a minimum number of Round Trips (RTs) to retrieve be-

cause of DNS lookups, TCP opens, SSL/TLS negotiation and HTTP request/response.

The time required for an RT is usually expressed as Round Trip Time (RTT) and is the

amount of time required for data from the sender to travel accross the network to the

receiver and for the ACK to travel back from the receiver to the sender. An Internet

object may contain many sub-objects each requiring their own minimum number of

RTTs. An object requiring 5 RTTs to retrieve will take about 1 Second to retrieve at

200 ms RTT regardless of the throughput. This time adds up quickly with the number

of objects. As an example the current version of cnn.com contains over 40 objects.

Because of this minimum RTT time encountered there is little benifit in adding band-

width after a certain point. Reducing the path latency however, continues to reduce

the RTT and dramatically reduces object retrieval time.

The packet switched Internet is an end-to-end communication system. The ap-

plication layer (at the sending host) is home to a wide diversity of applications that

use the TCP/IP stack. The transport layer is responsible for flow control and the IP

layer addressing and routing. The IP layer hands the data off to a link layer protocol

for actual transmission. Like the application layer the link layer is home to a variety

of protocols and technologies that are used for actual transmission of data; Ethernet,

Fixed Broadband, WiFi, Mobile Broadband and others. The data travels through any

2

Introduction Chapter 1

number of intermediary hosts: Network Address Translators (NAT), proxies, switches,

routers and others. Usually middle boxes only have the IP and link layers, though

some proxies implement split TCP breaking the end-to-end principle. After traversing

the intermediary path the data reaches the receiving host and is received by the link

layer, up to the IP layer, through the transport and to the receiving application. The

return path is the reverse of this.

Any service delivered by the Internet goes through this communication process in

order to deliver its objects. The Internet path used by a service to deliver its objects

determines the throughput and delay encountered. The throughput is equal to the

smallest throughput of any device in the path. The delay is determined by the slowest

device in the path. The throughput and delay characteristics of an Internet path are

determined by the slowest device in the path with the least throughput. Typically

these are the same device but not always. In order to improve the use of throughput

and reduce the impact of delay I first needed to find the slowest link in the typical

Internet path and the one with the lowest throughput.

I have identified two key areas that present a good opportunity for improving the

throughput and delay characteristics of flows on the Internet from now and into the

future. These two areas are in the last mile wireless link between the end host and

the access link between the router and the ISP equipment. The last mile wireless

link often experiences transmission loss. The link layer implements retransmission

schemes in order to cope with this loss. However, in rural and third world areas the

transmission characteristics are often so challenging that the retransmission system is

overwhelmed causing loss of throughput. In addition, in saturated metropolitan areas

there are often so many collisions that the retransmission scheme is overcome causing

loss of throughput.

The second area is in the access link. The access link is a resource that is shared

3

Introduction Chapter 1

by all of the flows that are using this access link. However, the access link is con-

trolled by an entity (the ISP) that is external to the end hosts even though the flow

control is implemented by the end hosts. This leads to a problem called the tragedy

of the commons defined in Hardin’s work as a dilemma “...arising from the situation

in which multiple individuals, acting independently and rationally consulting their own

self-interest, will ultimately deplete a shared limited resource even when it is clear that

it is not in anyone’s long-term interest for this to happen.” 1

The problem is that protocols and applications share network resources (particu-

larly the access link). An application or protocol can reduce its latency by controlling

its sending rate. However, an individual application or protocol has little incentive to

do so because if even one application or protocol sharing the resource does not behave

in this manner then all will share its fate. The flow that has reduced its throughput in

order to reduce latency will not only still experience latency caused by the misbehav-

ing flow, it will also have reduced its throughput for nothing. In fact the typical TCP

transport behavior is aggressive and will try to grab as much throughput as possible for

itself. If all flows are doing this then the finite resource of throughput will be divided

about equally among them. However, the latency will be uncontrolled. This arrange-

ment not only provides no incentive for a flow to try to reduce latency, it actually

punishes those that do with reduced throughput.

The solution to this problem is to implement queue control to reduce latency at the

access link and reduce the queue size of all flows so that each gets its fair share of the

throughput without adding unnecessarily to the latency. This queue sizing protocol

needs to be implemented beyond the control of any single flow so that it can be enforced

upon each and every flow that is using the shared resource. This is a difficult problem

since the queue size for each flow is determined individually for each flow according to
1http://www.sciencemag.org/content/162/3859/1243.full

4

Introduction Chapter 1

its unique throughput and delay characteristics. Some flows do not require the use of

their full fair share of the throughput resource at the access link. These flows should

be allowed to do this and separated from the other more aggressive flows so that they

are not interfered with in their good behavior.

So we have two problems. One is that in the last mile challenging wireless conditions

often prevent a flow from reaching its full fair share of the throughput and the other

is that flows competing for resources at the access link often cause excessive latency

with their aggressive behavior. I address the first problem in this dissertation in two

ways: (1) By increasing and controlling the aggression of flows that are operating in

the challenging conditions, (2) By causing the flow control system to ignore losses

that have been caused by the link layer retransmission scheme being overwhelmed. I

address the second problem of shared resources at the access link by applying queuing

management discipline to all flows using the shared resource.

I developed protocols at both the MAC and the Session layer designed to improve

the throughput characteristics of individual flows. These protocols achieved the goals

that I set out to accomplish increasing the throughput in a significant and fair manner.

The Receiver Driven Rate Adaptation (RDRA) protocol from Chapter 2 and the Fast

Wireless Protocol from Chapter 3 are robust against loss and latency providing ap-

proximately twice the throughput in challenging conditions. The Active Sense Queue

Management (ASQM) protocol and the Bandwidth Delay Product (BDP) protocol

from Chapter 5 and Chapter 6 provide latency reduction in challenging conditions

where queue management is difficult due to rate changes and/or large RTT flows.

5

Introduction Chapter 1

1.2 Thesis Statement

The Internet has become a vital part of the everyday lives of billions of people

planetwide. throughput and delay are two inherent characteristics for every flow on

the Internet. Increasing the share of throughput for challenged flows and adjusting

the network queue size close to the bandwidth delay product increases the value of the

Internet by enhancing its capability to provide life improving services.

6

Introduction Chapter 1

1.3 Dissertation Organization

The dissertation organization is shown in Figure 1.1 organized into three areas of

contribution to the networking sciences. The first category is increasing throughput

in challenging network conditions. The second category is a distillation and amalga-

mation of knowledge from the networking sciences which are required to understand

the throughput delay tradeoffs caused by queue sizing. The third category is designed

to reduce latency without sacrificing throughput. The first contribution category is

represented in this dissertation by two algorithms; Receiver Driven Rate Adaptation

(RDRA) and the Fast Wireless Protocol (FWP). The second contribution area is a

collection of essential knowledge adapted from various disciplines in the networking

sciences. The third category of contribution is represented by the Active Sense Queue

Management (ASQM) and the Bandwidth Delay Product (BDP) algorithms.

Increase bandwidth share for challenged networks

- RDRA

- App layer

- FWP

- Cross layer

Distillation of knowledge

- Queuing theory

- Network topology

- Transport

- Network sensing

- Scheduling

- Queue management

Queue sizing

- ASQM

- IP layer

-BDP

- IP layer

Overarching purpose:
Increase the Internet’s capability to deliver life improving services

Goal #1
Increase bandwidth

Goal #2
Decrease latency

Efforts

Figure 1.1: Chapter organization by topic

7

Introduction Chapter 1

• Chapter 6

• BDP

• IP Layer

• Chapter 5

• ASQM

• IP layer

• Chapter 3

• FWP

• MAC
Transport

• Chapter 2

• RDRA

• App Layer MMSYS
2011

IFIP 2012

IFIP 2015
(Submitted)

IFIP
2015

(Submitted)

Chapter 3 Network Theory

Figure 1.2: Chapter organization by protocol and layer

Figure 1.2 shows the the five chapters organized into the three categories of con-

tribution outlined in Figure 1.1. Chapter 2 and chapter 3 are throughput increasing

protocols that mitigate throughput loss caused by excessive packet loss. Chapter 4 is

collation of knowledge which details the necessary components adapted from the varied

network sciences that are necessary to address the queue sizing problem. Chapter 5 and

chapter 6 describe queue management solutions that mitigate the loss of throughput

and increased latency caused by improper queue sizing.

In Chapter 2, I describe application layer multi-streaming techniques that use par-

allel TCP in order to increase throughput in challenging networks. Parallel TCP is

more robust against packet loss than single streaming TCP or even retrieving multiple

objects at the same time (pipling). This is because parallel TCP distributes the data

retrieval across multiple streams decreasing the amount of loss caused by packet loss to

8

Introduction Chapter 1

each stream. Parallel TCP is unfair because it uses more TCP streams than other flows

and thus captures an larger share of the available throughput. My Receiver Driven

Rate Adaptation (RDRA) algorithm distributes the data across multiple TCP streams

and manages the fairness problem using a novel fairness mechanism that calculates

RDRA’s fair share of the available throughput (equivalent to a single TCP) and re-

stricts the aggregate flow for all of the streams to the calculated fair share. RDRA is

both robust against loss as well as fair.

Chapter 3 describes FWP a cross layer mechanism that uses 802.11 wireless frame

sequence numbers to separate wireless loss from congestion loss. FWP mitigates

throughput loss caused by inappropriate backoff from non-congestion related losses.

FWP injects filler packets as placeholders in order to hide the wireless losses from

TCP. FWP holds the data in a reorder buffer at the session layer until the missing

data can be replaced before delivering the data to the application layer. FWP increases

throughput in challenging wireless conditions by eliminating inappropriate backoff in

TCP. In Chapter 4, I describe areas of knowledge from the networking sciences that

are necessary to address the queue sizing problem.

In Chapter 5, I describe my Active Sense Queue Management (ASQM) algorithm.

ASQM uses a novel sensory mechanism that injects sense packets into the portion of

the path that needs to be controlled (defined by network topology). ASQM uses this

information in order to control the queue size across an entire link. ASQM has the

ability to control queue size even when the problem moves around throughout the link

according to the network characteristics of the access link. This is important because

the queue sizing problem often shifts into portions of the link that are difficult to

control with queue management techniques. ASQM has the novel ability to control

these queues indirectly providing excellent queue management regardless of where in

the link the queuing problem has shifted.

9

Introduction Chapter 1

Chapter 6 describes my Bandwidth Delay Protocol (BDP) Algorithm. BDP uses a

combination of active and passive sensory mechanisms to calculate what the RTT of

each flow would be if there wasn’t any queuing. BDP is unique in that it calculates the

exact queue size tailored to each flow according to it’s bandwidth delay product. BDP

then uses a novel management system which ranges from gentle management necessary

for large RTT flows to aggressive management required for small RTT flows. BDP is

uniquely adaptable and can manage any flow at any throughput with any RTT.

In this dissertation I address the problem of improving the Internet’s capability to

deliver life improving services. I do this by three main contributions. 1.) Increase

throughput share for applications running in challenging networks. 2.) Collect and

adapt knowledge from various areas of the networking sciences necessary to understand

the queue sizing problem. 3.) Address the problem of excessive latency and loss of

throughput caused by improper queue sizing. I present these contributions in the form

of individual works, however, I believe that ultimately a combination of these efforts is

the solution. Throughput share needs to be increased for apps in challenging network

conditions and queue sizing needs to be controlled. I believe that ultimately the health

of the Internet and the good it provides for humanity relies on both of these things,

however, the queue sizing techniques I present rely on some fundamental assumptions

about the topology of the Internet. In Chapter 7, I describe methods of using these

solutions to cope when the underlying assumptions of how the Internet works change. I

present this vision for future research directions which allow my queue sizing techniques

to be applicable now and into the foreseeable future.

10

Introduction Chapter 1

1.4 Contributions

In this dissertation I make several contributions towards the goal of improving

the Internet’s capacity to deliver life improving services to people worldwide. In this

section I describe the individual contributions according to their category described in

Section 1.3. My work contains contributions that have impact across several research

communities including the end to end community, the bufferbloat community and

transport community.

The first category of contribution is increasing throughput for last hop wireless

links. My specific contributions include the distribution of data over multiple transport

streams, improving the fairness of multi-streaming systems and client side congestion

control systems using the HTTP request/response paradigm. In addition, I have made

contributions in the aggregation of frames over SISO links as well as in the separation

of congestion oriented loss from channel related loss. These specific contributions are

detailed in Chapter 2 and Chapter 3. Specifically RDRA increases the throughput of

stations operating in challenging conditions by as much as double that of a single stream

TCP session and FWP offers perfect separation of channel related versus congestion

losses.

The second category of contribution is the collation and adaptation of knowledge

from many disciplines of networking science into a coherent amalgamation that is

specific to the needs of queue size management. Queue sizing is one of the most

missunderstood disciplines in networking science. It is often regarded as simple though

it is deceptively complex. Underestimation of the complexity of the problem leads

to a belief that the problem has been solved or soon will be solved when there is no

real evidence that this is true. The queue sizing problem has been with us for at

least 20 years and is with us today. To simply declare the problem solved without

11

Introduction Chapter 1

proper study is naive. This is more than just a simple collection of knowledge from

the various disciplines including queuing theory, network topology, transport, network

sensing, packet scheduling and queue management. Knowledge has been taken from

each discipline and distilled and adapted into a coherent and concise collection of

information that is necessary and sufficient to understand and address the queue sizing

problem on the packet switched Internet. This amalgamation of distilled and adapted

information is presented in Chapter 4.

These areas distilled from are queuing theory, network topology, transport, net-

work sensing, packet scheduling and queue management. Queuing theory is necessary

because it provides the underlying equations that describe the size of the queue. Net-

working topology describes where and when the queue should be controlled, transport

describes the end to end flow control that interacts with the network queue and network

sensing describes methods of detecting the actual size of the queue. Packet schedul-

ing provides the class based queuing that is necessary in order to separate flows with

unique and individual queue sizing needs into their own queues and queue management

provides the basic techniques that are needed to control queue size.

The third category of contribution was developed from the second. Queue sizing in

order to reduce latency and prevent the loss of throughput. My specific contributions

in this category include a highly efficient active network sensory mechanism that incurs

very little overhead while achieving a high degree of measurement granularity. ASQM

protects the link against latency regardless of the rate and even when queuing occurs

below the IP layer. These contributions are described in detail in Chapter 5.

In Chapter 6 I describe in detail further contributions in the third category of re-

ducing latency while preserving throughput. These include a combination of active

and passive sensory mechanisms that discover the RTT of a flow without any data in

its queues (even while there is data in the queues). A novel algorithm that separates

12

Introduction Chapter 1

flows into individual queues and calculates their unique queue size determined by their

bandwidth delay product. An adaptive management algorithm that adjusts its aggres-

siveness according to the duration of the RTT and the amount of excessive queuing.

This algorithm is unique in that it does not undersize the queue regardless of the RTT

of the flow. Together as a cohesive unit these research efforts accomplish the purpose

of this dissertation and improve the effectiveness and efficiency of object delivery over

the Internet

13

Chapter 2

The Receiver Driven Rate
Adaptation (RDRA) Algorithm

2.1 Introduction

Wired networks are stable and rarely lose packets except when their queues become

full due to congestion. Packets in wireless networks however, are frequently lost due

changes in the wireless transmission channel characteristics or collisions. The ambigu-

ity as to the source of loss is problematic for the transport protocol. TCP (the most

common transport protocol) is particularly sensitive because it expects that all segment

loss is congestion related. Non-congestion related loss due to transmission causes TCP

to lose throughput. A great deal of effort has been expended in order to create MAC

layer protocols which can hide these losses from the network and transport protocols.

However, in spite of the remarkable success of these protocols excessive non-congestion

related packet loss can still occur in particularly poor conditions such as those com-

monly found in third world nations, rural areas and even in crowded metropolitan

areas, [71, 45, 18, 26]. In addition, the retransmissions contribute to excessive and

highly variable delay across the link.

The problem with packet losses occurring due to non-congestion related sources is

14

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

that the ubiquitously deployed TCP transport protocol cannot distinguish the cause of

a packet loss and it treats all losses as congestion. This leads to an inappropriate backoff

when packet loss is not caused by congestion and a significant loss of throughput.

Many alternatives to TCP were investigated as a solution to this problem such as

the Datagram Congestion Control Protocol (DCCP) which adds congestion control to

UDP, [49]. DCCP allows the Congestion Control (CC) algorithm to be redesigned in

order to accommodate non-congestion related packet losses. The advantage of DCCP

is that the CC algorithm can be changed independently of the TCP protocol therefore

it will not break applications that use the TCP protocol.

Another UDP based protocol is the The Real-time Transport Protocol (RTP), [28,

74]. The RTP protocol has become popular for use in low throughput audio applications

such as radio program streaming. The RTP specification contains the RTP Control

Protocol (RTCP) which transmits periodic control protocol packets to be used for

flow and congestion control. However, RTCP is has become irrelevant because the

audio streaming applications where RTP is popular have extremely low throughput

requirements and CC is not necessary. Though these solutions are innovative and

could have been effective the Internet has converged to the use of TCP for nearly all

traffic, [18, 26, 60]. This is likely because Internet Service Providers (ISPs) often drop

or delay non-tcp packets.

The convergence on the use of TCP for transport has spurred the development of

solutions designed to work withing the TCP framework. Goel et al. reduces sender

side buffering in order to reduce latency and increase throughput, [27]. Hsiao et al.

used delayed ACKs in order to adapt the flow of packets from the server [38]. These

types of solutions work well, however, they require extensive changes to the sender side

making them difficult to implement on an individual basis. Parallel TCP is receiver

based and simple to implement. Kuschnig et al. demonstrated the benefits of parallel

15

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

TCP in video streaming applications, [54, 53, 55, 63, 65]. Parallel TCP style solutions

are much easier to implement.

Parallel TCP is an application layer protocol often used to mitigate these effects.

Parallel TCP is more robust against large amounts of packet loss and/or delay than

single streaming TCP (1 socket connection). However, parallel TCP has a fairness

problem. While it is true that parallel TCP increases the fairness share for connec-

tions operating with high delay and/or loss, it also decreases fairness for connections

operating over more normal conditions. In this Chapter, I present an alternative: the

Receiver Driven Rate Adaptation (RDRA) Algorithm is a parallel TCP algorithm that

stripes data across n TCP streams. RDRA uses an innovative receiver driven fairness

mechanism to manage the throughput share. Using this mechanism RDRA achieves

the same fairness as a single stream TCP while maintaining robustness against delay

and loss.

2.2 Testbed and Experimental Perimeters

The testbeds that I used for the RDRA experiments are shown in Figure 2.1 and

Figure 2.2. I built one testbed in the DETER network security lab. DETER is an

Emulab style testbed that I used to construct our RDRA testbed [91]. Emulab is an

automated testbed format that allows us to easily run repeatable experiments that

are not susceptible to external effects. Unfortunately Emulab has no wireless compo-

nents so I constructed a second RDRA testbed on the Meraka African Institute for

Information and Communications Technology, [44].

The RDRA testbed at DETER is shown in Figure 2.1. All of the nodes in this

testbed are constructed from commodity PCs running the Linux 2.6.x kernel. I induced

16

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

CDN 1

CDN 0

100 ms RTT at 10 Mbps

Bottleneck Router

Wired
Client 0

Emulated
Wireless

Client

100 Mbps Switch
100

Mbps
Switch

Wired
Client 1

0.1 % Packet loss
introduced to
emulate wireless

Figure 2.1: DETER Lab Testbed Topology

50 ms delay in each direction at the bottleneck router using netem 1. To simulate

wireless conditions I induced 0.1% packet loss also at the bottleneck router. The

DETER testbed is fully automated and suitable for repetitive experiments.

The RDRA testbed at Meraka uses 802.11 abg wireless components. Meraka is

a wireless mesh testbed with 49 wireless nodes connected with a 100 Mbps control

plane. The wireless nodes are connected with 802.11 abg interfaces spaced about

800 mm apart. Each node is connected to an antenna with 5 dBi gain through a 30

dB attenuator. The path loss between nodes is 60 dB and the radio signal power is

reduced so that each node can reach its one hop neighbors but not two hops. Our
1http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

17

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

CDN 1

CDN 0

100 ms RTT at 10 Mbps

Bottleneck Router
Wireless

Client

Wireless
Client

100
Mbps
Switch

802.11 abg
Wireless
Router

Figure 2.2: Meraka Wireless Testbed Topology

RDRA testbed at Meraka is shown in Figure 2.2. The wired portion of the RDRA

testbed is constructed on the control plane and the wireless portion on the wireless

data plane. I introduced a delay in each direction of 50 ms at the bottleneck router for

a total RTT of 100 ms (plus any delay introduced by the wireless link).

2.3 Introduction to Parallel TCP

Parallel TCP is frequently used in order to improve application performance in

terms of throughput and delay. Parallel TCP is commonly used because it is easy to

deploy. Application programmers can simply open multiple sockets through their net-

18

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

work API. Because of the simplicity of implementation parallel TCP is widely deployed

in browsers and is being integrated into video streaming applications. However, the

simplicity with which parallel TCP can be invoked by application programmers may

hide the disadvantages involved in the use of multiple streams.

Much work has been done to address the fairness problem created by parallel TCP.

Solutions such as TCP FIT, EMULTCP, and MULTFRC are n adaptive where n is the

number of flows [43, 90, 13]. However, there is little utility in increasing the number of

flows beyond a certain point. In fact having too many flows can lead to a phenomenon

called self-interference. In practice 3 sockets are enough to obtain %90 utilization

and 6 sockets will only yield %95 utilization showing the case of diminishing returns

by increasing the number of flows further, [2]. Many parallel TCP solutions achieve

fairness through the use of a kernel modification, [31, 46, 12, 30, 57, 63]. However,

using a kernel modification limits the utility and ease of use that has made parallel

TCP popular.

2.3.1 Throughput and Fairness

Parallel TCP is often used by programmers in order to obtain more throughput for

their applications. Parallel TCP increases throughput by increasing the aggregate share

of the network queue used by the application. The graphs in Figure 2.3 and Figure 2.3

show the robustness of parallel TCP against packet loss and its fairness characteristics.

As the number of parallel TCP streams increases the robustness against packet loss

increases and the fairness decreases. To test this assertion I conducted experiments in

our DETER testbed from Figure 2.1 comparing two flows competing for resources in a

bottleneck router. Each wired client downloaded a large (10 GB) file from a CDN. One

flow is parallel TCP with an increasing number of streams and the other is a single

19

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 0.002 0.004 0.006 0.008 0.01
0

200

400

600

800

1000

1200

Probability of Packet Loss

T
h

ro
u

g
h

p
u

t
in

 K
B

p
s

8 streams

4 streams

2 streams

single stream

Figure 2.3: Throughput of Multi-Stream Flows

stream TCP.

The theoretical maximum throughput for a TCP flow is given by Padhye’s equa-

tion, [67].

Throughput = MSS

RTT
√

2p
3 +RTO(3

√
3p
8)p(1 + 32p2)

(2.1)

MSS is the Maximum Segment Size, RTT is the Round Trip Time, p is the packet

loss, and RTO is the Round Trip timeOut. With a standard MSS of 1500 Bytes and

discounting the effects of packet loss a flow with an RTT of 100 ms could develop

about 1.5 Mbps. In practice the nominal throughput is less because of packet header

overhead and packet loss.

The throughput results of this experiment are shown in Figure 2.3. With zero

induced packet loss the single stream flow develops about 1 Mbps. Here we see the

effects of diminishing returns as the number of streams increases as described by Altman

et al., [2]. With small amounts of packet loss (< 0.1%) most of the throughput gains are

20

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

1 2 4 8

40

50

60

70

80

90

Number of Competing Streams

F
a

ir
n

e
s
s
 P

e
rc

e
n

ta
g

e

Figure 2.4: Fairness of Multi-Stream Flows

realized by 4 streams and very little is gained by increasing further. As the packet loss

increases the single stream flow loses throughput much more quickly than the parallel

stream flows. Parallel stream TCP gains robustness as the number of flows increases.

The corresponding graph in Figure 2.4 shows the effects of parallel TCP on fairness

as the number of streams increases. The testbed is setup as in Figure 2.3 with two

competing flows and the packet loss fixed at 0.1%. There are 10 experimental runs in

each whisker with the min and max shown as well as the 10-90th percentile and the

mean. The line at 50% indicates perfect fairness where each flow receives exactly the

same throughput. As the number of streams increases the fairness decreases.

21

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

2.4 Receiver Driven Rate Adaptation (RDRA)

RDRA is a receiver driven parallel TCP that uses rate adaptation in order to

maintain fairness while gaining the robustness of parallel TCP. Unlike other parallel

TCP systems RDRA is completely receiver based and maintains the simplicity of use

for application programmers that has made parallel TCP popular. RDRA requires no

sender side or in network changes whatsoever and can be installed on an individual

basis. RDRA works by calculating the TCP fair share of the throughput at the receiver

and limiting the parallel streams to that rate in order to maintain fairness. RDRA is

not an n (number of streams) adaptive algorithm. RDRA uses a fixed number of

streams (8) and limits the amount of data requested in order to maintain fairness.

RDRA is not an equation based TCP either. RDRA uses a TCP simulator calculating

how much the CWND at the sender should be in order to maintain fairness and then

only requesting that much data at a time.

2.4.1 Round Trip Time and Packet Loss

As shown by Padhye’s equation 2.1 TCP throughput is primarly determined by

two parameters; RTT and packet loss. Unfortunately RTT is difficult to determine for

reasons that I will revisit in 5. I tried to methods; using the TCP RTT calculation

algorithm and using a direct sensing method. I found that both methods produce

unsatisfactory results as demonstrated by our series of experiments the results of which

are highlighted in Figure 2.5 and Figure 2.6.

This series of experiments shows the results from using a TCP clock that sends a

dataless packet (64 bytes) from the receiver to the sender and counts the time elapsed

until the returning ACK. The experiments were conducted in our DETER testbed

with 100 ms RTT and no induced packet loss. I found that under load the TCP

22

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

100 120 140 160

0.5

1

1.5

Time in Seconds

E
s
ti
m

a
te

d
 R

T
T

 i
n
 S

e
c
o
n
d
s

Figure 2.5: RTT Estimate with TCP Clock

clock mechanism produces completely unreliable results. For the sake of space I do

not include graphs from the TCP RTT calculation method, however, they were just

as unreliable. I used paced TCP in order to control the loading of the queue in the

bottleneck router. Figure 2.5 shows the results from a typical experimental run. For the

first 120 seconds I paced the TCP to load the bottleneck to about %50 utilization after

that I allowed the TCP to run free as shown in Figure 2.6. At no time during any of

the experiments did the TCP clock (or the TCP RTT algorithm) produce results that

reflected the actual 100 ms RTT. During the %50 utilization period the RTT results

were in excess of 500 ms and during the %100 utilization period the RTT results were

often in excess of 1000 ms.

Our receiver based RTT measurements were completely unsuitable for use in cal-

23

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in Seconds

Q
u
e
u
e
 U

ti
li
z
a
ti
o
n

Figure 2.6: Queue Utilization with TCP Clock

culating fair share throughput for RDRA. Fortunately however, our receiver based

packet loss measurements were more successful. In order to measure packet loss at the

receiver I used an application layer extension to iptables2 called netfilterqueue3. Net-

filterqueue allows us to separate each flow and track sequence numbers from the TCP

headers. Sequence number holes indicate a probable packet loss. In order to determine

that our system of receiver side packet loss detection works I conducted experiments

using our DETER testbed.

The graph in Figure 2.7 highlights the results from this series of experiments. The

experiments consist of a single flow from a CDN to a wired client through the bottleneck

router. Packet loss is indicated by the thick vertical lines and queue size is superimposed
2http://linux.die.net/man/8/iptables
3http://www.netfilter.org

24

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Time in Seconds

P
a
c
k
e
t
L
o
s
s

Figure 2.7: Client Side Congestion Detection

on the graph. I can see that the packet loss detection events correspond very well with

the congestion backoff events indicated by the queue size. This indicated that I could

safely use receiver based packet loss detection in order to determine fair throughput

share for RDRA.

2.4.2 RDRA CWND Calculation

Having developed a reliable means for packet loss detection the next step for RDRA

was to determine the single stream fair TCP share of the throughput. In order to do this

I used the Cubic TCP equation, [29]. The Cubic equation is the default congestion

control mechanism for Linux machines and is very popular on the Internet. Cubic

requires only packet loss and access to the system clock in order to determine the fair

25

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

TCP rate. The Cubic equation is given below:

W (t) = C(t−K)3 +Wmax (2.2)

With Wmax being the CWND at the time of the last congestion event, t the time

elapsed since the last congestion event, and:

K = 3

√
Wmaxβ

C
(2.3)

With C = 0.4, β = 0.8 [29]. I chose the Cubic TCP congestion control mechanism for

our RDRA experiments because it is both popular and compares on a one to one basis

with our Linux testbed. However, much like the pluggable Linux congestion control

mechanism any of the TCP congestion control variants can be used [80, 65, 10, 56, 25,

61]. The notable exception to this are the delay based variants of TCP which require

an accurate RTT measurement [17, 42, 9, 82, 83, 84, 36, 40].

It is impossible to compare the receiver side CWND calculation with the sender side

calculation made by the TCP algorithm because of synchronization issues. However,

in Figure 2.10 I present a plot of the receiver side calculation. I can see that the

algorithm is functioning as it should and is producing the Cubic curve in values that

are commensurate with the throughput being achieved by the sender. This indicated

that the CWND Calculation module is working and suitable for use in RDRA.

2.4.3 RDRA System Design

Having developed a good method for packet loss detection and chosen a congestion

control algorithm the next step was to build the system architecture. Figure 2.9 shows a

block diagram of our RDRA system architecture. RDRA consists of three components

26

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 20 40 60 80 100 120
200

400

600

800

1000

1200

1400

Time in Seconds

C
W

D
 S

iz
e
 i
n
 B

y
te

s

Figure 2.8: Stream Control – Outstanding Requests vs CWND Calculation

and is built in a shim that exists in the session layer of the TCP network stack. As

shown in the diagram of Figure 2.9 the TCP stack remains unchanged except for the

addition of the RDRA as a shim layer. The client connects to the RDRA system.

RDRA stream control splits the flow into 8 streams dividing the data among them

as described in Section 2.4.4. The Congestion Detection mechanism detects sequence

number holes in order to determine congestion and the CWND calculation mechanism

uses a pluggable congestion control mechanism that determines the fair share TCP rate

for RDRA. The fair share rate calculation is given to the stream control mechanism

and a new fair share TCP rate is divided among the streams.

The RDRA system is both modular and built of modules. Any of the three modules

27

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

1.) Stream 3.) Congestion2.) CWND

Standard HTTP
Video Server

Server System

Youtube, Netflix, Dailymotion, etc.

Internet

Control Calculation Detection

Standard MAC/PHY

Standard HTTP
Video Client

Client System

RDRA

Standard TCP Standard IP

Figure 2.9: RDRA System Architecture

that RDRA is built of can be replaced. Stream Control, CWND Calculation and

Congestion Detection can be replaced individually, in pairs or all three and the entire

system is a module that fits into the TCP stack at the session layer in the TCP stack.

In fact the Congestion Detection module has already been replaced. The original used a

teminal based version of wireshark called tshark 4. The current version uses the much

more effective netfilterqueue iptables extension. This modular construction allows

RDRA to be easily upgraded or modified to fit individual user needs.
4https://www.wireshark.org/

28

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 20 40 60 80 100 120
−400

−200

0

200

400

600

800

Time in Seconds

D
if
fe

re
n
c
e
 i
n
 K

B
s

Figure 2.10: Stream Control – Outstanding Requests vs CWND Calculation

2.4.4 RDRA Stream Control

The RDRA Stream Control system is the point where the application connects

to RDRA and where RDRA connects to the transport layer of the network stack. I

accomplished this by means of a custom built HTTP proxy. Stream control receives an

estimate of the fair share TCP rate from the CWND calculation module and attempts

to divide the work among 8 TCP streams. Specifically it does this by waiting for an

individual stream to complete then if the stream was successful it will check with the

CWND calculation module for the latest CWND estimate. The CWND estimate is

then used in the following equation in order to calculate the new size for the chunk of

29

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

data that should be requested by the stream.

chunksize = min{CWNDest − bytesrequested

nStreams
, 1 kB} (2.4)

CWNDest is the estimated fair congestion window size and bytesrequested is the number

of bytes outstanding from requests by other streams. Chunksize is in bytes and the

smallest chunk allowed is 1 kB. The Stream Control interface uses libcurlmulti to make

the parallel TCP requests 5. If a stream has stalled or failed, then libcurl-multi returns

to Stream Control after a timeout. Stream Control then invokes the libcurl-multi

interface closing the stalled socket and opening a new one re-requesting the data. The

experiment indicated that the Stream Control module is working as expected and is

suitable for use in RDRA.

In Figure 2.10 I show a plot of the Stream Control module at work. I plotted the

difference between the CWND estimate and the actual amount of outstanding bytes

requested. In the plot I see that the difference remains near or slightly below zero then

suddenly spikes upward and just as quickly drops back to near zero periodically. This

is due to the effect of one chunk being completed then a new chunk (of a different

size) being requested. This experiment demonstrated that the Stream Control module

keeps the outstanding requests approximately equal to the CWND estimate provided

by the CWND Calculation module.

2.4.5 RDRA Experimental Results

Now that the RDRA modules had been constructed and tested individually the

next step was to evaluate the system as a whole. I examined the throughput increase

achieved by RDRA along with fairness by comparing RDRA to a single stream TCP
5http://curl.haxx.se/libcurl/c/libcurl-multi.html

30

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 0.002 0.004 0.006 0.008 0.01 0.012
0

200

400

600

800

1000

1200

Packet Loss

T
h
ro

u
g
h
p
u
t
in

 K
B

s

n = 8

RDRA

n = 4

n = 2

n = 1

Figure 2.11: RDRA Throughput

flow in our DETER RDRA testbed. In addition, I wanted to look at queue utilization

to verify that it is similar to that of a single stream TCP flow. Finally, I wanted to test

RDRA against a single stream TCP flow using real wireless hardware in our Meraka

testbed.

In Figure 2.11 I highlight the results from a series of experiments in our DETER

testbed that shows the throughput characteristics of RDRA against increasing amounts

of packet loss. The graph shows that at zero packet loss RDRA is completely fair

achieving nearly the same throughput as the single stream TCP. As the packet loss

probability increases RDRA retains nearly twice as much throughput as single stream

TCP which degrades very quickly. RDRA is more robust against packet loss than

single stream TCP. RDRA’s throughput line is similar to a 4 stream TCP but less

31

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

100 120 140 160 180 200

40

50

60

70

80

90

RTT in milliseconds

F
a

ir
n

e
s
s
 P

e
rc

e
n

ta
g

e

Figure 2.12: RDRA Fairness

than an 8 stream TCP. This is because of the fairness action of RDRA’s stream control

mechanism restraining RDRA’s 8 streams to what a single stream TCP would have

achieved without excessive packet loss.

Once I had determined that RDRA has superior throughput characteristics to sin-

gle stream TCP against packet loss the next step was to determine RDRA’s fairness

characteristics. In order to accomplish this I conducted experiments in our DETER

testbed comparing RDRA at a typical (0.1%) packet loss across a range of RTTs from

100 ms to 200 ms. I highlight some of the results of this series of experiments in the

whisker plot shown in Figure 2.12. As in Figure 2.4 the experiment is a competition

between two flows where one flow used RDRA and the other used single stream Cubic

TCP. The experiments were repeated 10 times and the min/max whiskers displayed

along with the 10-90th percentile and the mean and the line at 50% indicating perfect

fairness where each flow receives exactly the same throughput.

In Figure 2.4 two single stream Cubic TCPs consistently achieved between 40 and

32

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 20 40 60 80 100 120
0

20

40

60

80

100

Time in Seconds

P
e
rc

e
n
ta

g
e
 Q

u
e
u
e
 U

ti
liz

a
ti
o
n

Figure 2.13: RDRA Queue Utilization

60% on our fairness scale. I deem this to be TCP fair behavior. The graph in Fig-

ure 2.12 shows that RDRA maintains fairness (with the exception of a few outliers)

across the entire range of RTTs. RDRA achieves the benefits of parallel TCP while

maintaining fairness across a wide range of RTTs. I did not test RDRA’s fairness

against increasing packet loss since from the graph in Figure 2.3 that parallel TCP

does lose throughput against increasing packet loss, it just doesn’t lose as much as

single stream TCP.

Having determined that RDRA is both robust against packet loss and fair with

single stream TCP the next step is to examine RDRA’s queue utilization characteris-

tics. In Figure 2.13 I highlight the results from one of our series of queue utilization

experiments performed in our DETER testbed. The RTT is 100 ms and there is no

induced packet loss. In Figure 2.16 I show the queue utilization of a single stream TCP

33

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

0 20 40 60 80 100 120
0

20

40

60

80

100

Time in Seconds

P
re

c
e
n
ta

g
e
 Q

u
e
u
e
 U

ti
liz

a
ti
o
n

Figure 2.14: TCP Cubic Queue Utilization

for comparison. The graphs show that RDRA maintains a similar queue utilization

as single stream Cubic TCP approximately 50-80%. RDRA like all parallel TCP is

jittery with respect to queue utilization. This is okay because the reason for having

queues is to absorb the jitter. However, in later work described in detail in Section 4 I

have found that high queue utilization is not a good thing because it increases latency.

This is the reason why I had so much trouble with our RTT measurments described

in Figure 2.5 and Figure 2.6. RDRA or any TCP based flow either single streaming

or parallel should be used in conjunction with queue sizing algorithms such as those

described in Sections 5 and 6.

The final series of RDRA experiments that I conducted used real wireless hardware

from our Meraka testbed. In this series of experiments I was trying to determine how

much throughput would typically be gained over a single streaming TCP in the face

34

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

60 120 180 240 300 360 420 480 540
600

620

640

660

680

700

Time in Seconds

T
h
ro

u
g
h
p
u
t
in

 K
B

s

Figure 2.15: RDRA Throughput

of wireless packet loss. I used the testbed topology described in Figure 2.2 with two

competing flows one using RDRA and the other using a single streaming Cubic TCP.

The graphs in Figure 2.15 and Figure 2.16 highlight typical results from this series

of experiments. The y axes of the two graphs are different for the sake of visibility.

On the left hand side in Figure 2.15 I show the throughput results from the RDRA

flow averaging a little less than 700 Kbps throughout the duration of the experiment.

On the right hand side in Figure 2.16 I show the results from the single stream TCP

flow averaging a little less than 200 Kbps throughout the duration of the experiment.

This approximately 250% increase in throughput was consistent throughout all of the

experiments in this series.

35

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

60 120 180 240 300 360 420 480 540

150

200

250

300

350

400

Time in Seconds

T
h
ro

u
g
h
p
u
t
in

 K
B

s

Figure 2.16: Single Stream Cubic TCP Throughput

2.5 Conclusions and Future Directions for RDRA

RDRA is a parallel TCP system with a fairness mechanism built into it in order

to gain the robustness of parallel TCP without suffering from the unfairness caused

by parallel TCP streams. RDRA is completely receiver based preserving the ease of

use of parallel TCP by not requiring any in-network or sender side changes. I have

demonstrated that RDRA develops about twice as much throughput as single stream

TCP against packet loss while remaining fair with a single stream TCP. RDRA achieves

all of the advantages of parallel TCP (throughput) while eliminating the disadvantages

(unfairness). I have examined RDRA’s queuing characteristics and found them to be

roughly equivalent to a single stream TCP (with the exception of some additional

jitter). Finally I tested RDRA and found that it performed well on real wireless

36

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

hardware.

RDRA is completely modular and can be upgraded and modified to fit individ-

ual needs. In particular RDRA has a pluggable congestion control mechanism and

can be upgraded to use other forms of loss based TCP. In future work (that I have

already conducted and describe in Chapters 4 and 5) I have investigated methods of

determining the true RTT of an Internet path thus allowing RDRA congestion control

mechanisms that relay on RTT such as delay based TCP variants. In addition using

the RTT estimate as well as techniques described in Chapter 6 RDRA could be used

to control queuing latency from the receiver.

RDRA is a parallel TCP system and as such it is suceptable to the pitfalls found in

other parallel TCP systems. The two drawbacks are added queuing varablility shown

in Figure 2.13 and initial window (IW) sizing. Parallel TCP does indeed add to the

queuing variability, however, the variablity found in the queues of modern equipment

is quite large even without parallel TCP. Short of the entire Internet switching to a less

variable system of transmitting data such as paced TCP this problem is intractable

and we should just learn to live with the variablity, [89]. The IW sizing problem occurs

because the number of packets injected into the window on connection startup is the

number of streams times the IW size. This can result in a large number of packets

hitting the network queues all at once and lead to queue latency. The solution to the

IW problem (for future work) is to add a slow start phase to RDRA’s algorithm and

to set the IW size to IW
n

.

In addition, it should be noted that research efforts along similar tracks have since

come to our attention. The earliest of these is SCTP a transport level protocol that

uses parallel streaming, [65]. SCTP has not seen wide adoption because of the difficulty

in routing the streams. Since our RDRA work was published there have been two large

research efforts using parallel streaming from the client side at the application layer.

37

The Receiver Driven Rate Adaptation (RDRA) Algorithm Chapter 2

These are called SPDY and HTTP2.6 SPDY had strong buy-in from Google and was

proposed as a standard, however, it was replaced with its successor HTTP2 (also in

RFC draft) before being adopted by the IETF. HTTP2 is very likely to become a

published RFC and has strong adoption from both Microsoft and Google.

6https://datatracker.ietf.org/doc/draft-ietf-httpbis-http2/

38

Chapter 3

The Fast Wireless Protocol (FWP)
Algorithm

The robust and efficient streaming of video over wireless networks poses serious

challenges. Inherent instabilities in the wireless medium lead to large, highly variable

delay, throughput variations, and data loss. To cope with these problems, each layer

of the network stack provides its own varying forms of protection strategy. However,

this layered strategy often does not provide the best overall strategy. A protection

mechanism at one layer may limit the operation of mechanisms at other layers. In

this chapter, I identify and perform analysis on a major source of lost throughput in

802.11nac transmission aggregation systems. As a solution to this problem, I propose

a novel cross layer network stack design using a dirty slate approach. Our dirty slate

approach requires no server side changes or encodings whatsoever. It is constructed

completely within the receiver’s administrative domain. I demonstrate the throughput

advantages of our approach in testbed and emulation and analyze the effects of overhead

created by our system.

There has been much work in attempting to deliver video over wireless, and in

particular, video over HTTP/TCP over wireless. What makes this an important, rele-

vant, and (again) timely topic is the evolution in wireless technology and the demand

39

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

for video at high resolution. Research solutions addressing the efficient utilization of

throughput in wireless networks fall into a few general categories. The most popular of

these being the new generation of DASH video streaming applications. DASH solutions

adapt the quality of the video stream delivered in order to match the bit rate required

for media playout to the available throughput provided by TCP [77]. Examples of this

type of solution are Adobe HTTP Dynamic Streaming server1, Adobe OSMF2, Mi-

crosoft’s IIS Smooth Streaming player,3 and the proprietary protocols used by Netflix,

Move Networks4, and others.

Further work in this area includes an evaluation of Akamai HD Network for Dy-

namic Streaming of Flash over HTTP is provided by Cicco et al. [15]. Of particular

interest in this study are the experiments showing how the player reacts to sharing

the bottleneck router with a greedy TCP flow. In addition, a study by Akhshabi et

al. compare the behavior of Microsoft Smooth Streaming, Adobe OSMF, and the Net-

flix player [1]. These solutions prevent video playout from stopping due to a lack of

throughput. However, they do this by reducing the quality of the video stream, not by

increasing the efficiency of the network stack.

Before the adoption of HTTP/TCP by video streaming service providers, much

research was done to investigate alternatives to the TCP protocol. Prime examples of

this type of solution are the Datagram Congestion Control Protocol (DCCP) [49, 50],

and RTP/UDP [28, 74]. A cross-layer example of a UDP based protocol is provided

in Krishnamachari et al. [59]. Although these types of solutions provide demonstrable

results, they were not adopted for general use. It is a common practice for Internet

service providers to use firewalling to drop UDP packets making non-HTTP solutions
1http://www.adobe.com/products/
2http://www.osmf.org/
3http://www.iis.net/media/experiencesmoothstreaming
4http://www.movenetworks.com/

40

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

unacceptable. However, some streaming applications such as Skype5 will attempt to

find an RTP/UDP connection before falling back to an HTTP/TCP stream.

Many adaptations to TCP’s congestion control algorithms have been studied in [17,

29, 80, 42, 65, 61, 65]. However, these solutions require changes to the TCP sender

as well as the receiver. It has proven difficult to convince large content providers to

change their network stacks. Our solution works within the user kernel and can be

deployed without such large scale changes. Equation based TCP friendly solutions

were studied in, [11, 33]. However, these equations are only fair within a factor of 2.

This is inadequate for TCP fairness. TCP fairness and benchmarks have been studied

in [81, 82, 83, 84, 14, 73, 70]. Multipath TCP has been studied in, [92, 34]. These

types of solutions attempt to increase throughput by using multiple paths through

the Internet. Split TCP solutions separate channel condition loss from congestion loss

thus increasing TCP throughput in lossy networks [41]. However, these solutions do

not address the overhead problems in the wireless network stack.

Erasure coding and it’s use with TCP have been studied by Luby, and Mitzenmacher

et al., [58, 79]. TCP/NC applies network coding in a shim layer between the TCP

and IP layers. This approach is powerful, but it’s positioning in the network stack

requires a large overhead (5n+7) where n is the number of packets involved in a linear

combination). This overhead is caused because of the variable size of TCP packets. Our

solution works at the Session layer where fixed size blocks can be used thus avoiding

almost all of this overhead. In addition, TCP/NC requires sender side kernel changes

making it as difficult to deploy as the above TCP adaptations. The ossification of the

TCP protocol has been studied and it has been found that TCP modifications that

relay on TCP options have difficulty passing through proxies such as those found in

many wireless networks, [37, 32, 72, 4, 51].
5www.skype.com

41

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

These solutions although effective in their own right all solve fundamentally differ-

ent problems than our FWP system. None of these solutions effectively address the

problems encountered in 802.11 frame aggregation. I believe that the best approach

to this problem is to keep the data flowing to the application. However, 802.11 wire-

less interrupts the flow of data because of its in order delivery requirement. 802.11

implements a sliding window system of retransmission. The problem with this system

is that frames lost early in the sequence cause the window to stop and wait for the

missing frames. The stop and wait action of the sliding window interrupts the flow of

data causing lost transmission opportunities. Our approach to solving this problem is

to remove the sliding window mechanism and allow data to be delivered out of order

up through the network stack. In fact I think that it is best to handle data reliability

to the application layer. Fundamentally what I am proposing is a system where the

MAC layer does not worry about reliability or in order delivery. The MAC layers job

is to just deliver the data as fast as possible in whatever order it arrives. The sliding

window never stops and transmission opportunities are never lost.

The trade off with our approach is that reliability comes from the application

and this places additional load on the network because some of the data has to be

retransmitted over the network. I weighed the benefits of our solution in terms of

increased throughput from taking advantage of all transmission opportunities against

the drawback of increased overhead in the network in our evaluation. In this chapter

our contributions are to analyze the source of lost transmission opportunities caused

by the sliding window mechanism in 802.11 wireless. I design our solution the Fast

Wireless Protocol (FWP), I build a prototype of our system and evaluate it using a

testbed that I constructed. I restricted FWP to HTTP/TCP type connections because

most video content is available over HTTP/TCP and these connections easily traverse

firewalls and NATs. For the sake of deployability our FWP system is implemented on

42

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

the receiver stack only. There are no changes to any node in the network other than

the receiver and no special data encodings at the server. Since FWP is implemented

without crossing administrative domains it can be deployed without the need to secure

the cooperation of other administrative entities.

3.1 Background

The 802.11 retransmission scheme causes a tremendous amount of overhead at

higher bit rates. This is because the radio header, the Short Interframe Spacing (SIFS)

wait times, and the ACK transmission take up a significant amount of radio time. In

order to to reduce this overhead two frame aggregation schemes were standardized in

802.11n. The Aggregate Mac Service Data Unit (AMSDU) system, and the Aggregate

Mac Protocol Data Unit (AMPDU) system. Frame aggregation systems combine mac

data units (either service or protocol) into an aggregate with a single header. This sig-

nificantly reduces overhead. The A-MSDU aggregation system combines Mac Service

Data Units (MSDU) into 7935 byte aggregates with one MAC header and the payload

protected by a single CRC.

The A-MSDU frame aggregation system is very efficient in relatively error free

channels. However in error prone channels it suffers. The single CRC error protection

does not allow the decoding of bits that were received correctly and the entire aggregate

must be retransmitted. Figure 3.1 demonstrates the A-MSDU aggregation system. In

time series A frame 2 is lost. There is no per packet checksumming so the entire

aggregate is undecodable. Nothing is received, the entire transmission sequence is

overhead. In time series B all the frames are received correctly and the overhead

to data ratio is good. A-MSDU frame aggregation suffers greatly from error prone

conditions. The A-MPDU system has an error correction protocol to cope with this.

In the A-MPDU system up to 64 frames are aggregated into a single A-MPDU

43

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

Radio

Head

Radio

Head
Frames 1 .. 64 AIFS ACK

Lost 2

Radio

Head

Received

nothing

Radio

Head
Frames 1 .. 64 BIFS ACK

Lost none
Received

64 frames

Figure 3.1: A-MSDU Frame Aggregation

with a single radio header. A checksum of 4 bytes is provided for each frame. With

these checksum bytes the receiver can determine which packets were received correctly

then generate a bit map called a Block Ack (BA) requesting the missing frames. The

Block ACK Window (BAW) sliding window system is implemented to retransmit the

requested missing frames.

Figure 3.2 demonstrates the BAW advance mechanism. In time series A the aggre-

gate is full and 64 frames are transmitted. Frames 2 and 3 were not received correctly

and the BA indicates that they should be retransmitted. The BAW sliding window

cannot be advanced past the first missing frame until a BA indicates that frame has

been successfully received. The BAW is advanced one frame. In time series B a smaller

aggregate is transmitted. Only one new frame (number 65) can be added to the A-

MPDU because the BAW was only advanced by one. The two lost frames can also be

added for a total of 3 frames. The aggregate is now very small compared to the 64

frames that could have been transmitted. In this example frame 3 is lost again leading

to another small aggregate transmission in time series C.

The A-MPDU system is very efficient even in error prone conditions. However,

its sliding window retransmission system can sometimes stall resulting in the trans-

44

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

Radio

Head

Advance

BAW 1

Radio

Head

Advance

BAW 1

Radio

Head

Frames

2, 3, 65
BIFS BAW !3

Lost 3

Radio

Head

Radio

Head
Frames 1 .. 64 AIFS

!2 and !3

BAW

Radio

Head

Frames

3, 66
CIFS

Advance

BAW

BAW 64
Lost none

Lost 2 and 3

Figure 3.2: A-MPDU Block ACK Window Advance

mission of a small aggregate. This becomes a problem when there are other stations

contending for air time. The station has used its transmission opportunity to send

the small aggregate consisting of only a few frames. Now it must wait until it wins

the contention for air time to transmit again. 802.11 wireless frame aggregation sys-

tems are very efficient compared to the transmission of a single frame at a time in

the earlier systems. However, they have their drawbacks. A-MSDU aggregation is

more effiecent than A-MPDU, but, it is only effective when the channel is nearly error

free. A-MPDU aggregation is nearly as effiecient as A-MSDU, but, it transmits small

A-MPDUs causing lost transmission opportunities and lost throughput.

45

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

3.2 Fast Wireless Protocol

Our approach to resolving the problems with 802.11 frame aggregation is to push the

in order delivery and reliability services out of the MAC layer. This resolves the problem

with the sliding window since there is no sliding window. The A-MPDU aggregate will

always be filled and a transmission opportunity will never be lost. However, data will

be delivered up the stack with missing frames.

The data will reach the transport layer with missing segments. This will be a

problem for normal TCP connections. To resolve this I designed a receiver side modi-

fication to TCP called compatible TCP. Compatible TCP pushes the in order delivery

and data reliability requirements up the stack to the session layer. It does this with-

out upseting the congestion control system. The data will arrive at the session layer

with chunks missing where the lost frames were. In order to cope with this problem

I implemented an HTTP retransmission scheme that will replace the missing chunks

with data. Once the retransmission is complete it will release the buffer and deliver

the data to the application. The application remains unaware that the stack has been

rearranged beneath it.

3.2.1 Requirements

In order to make the needs of our FWP system more concrete I have developed a

set of requirements that I believe a solution must have.

1. Remove data protection and in order delivery services from the MAC/DLL.

2. Remove data protection and in order delivery services from the transport layer.

3. TCP congestion control services must remain intact.

4. Implement data protection and in order delivery services at the session layer.

46

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

Requirements 1 and 2 ensure that the flow of data is not inhibited by the lower

layers. Requirement 3 ensures that the design is interoperable with other flavors of

TCP. Requirement 4 ensures that the application is unaware of the new network stack.

Requirement 1 is the most important. This ensures that no small aggregates will

be sent and every transmission opportunity will be fully taken advantage of. I used

A-MPDU aggregation with no ACKs. The receiver can request this behavior during

the connection procedure by specifying ADDBA (add Block ACK) noack mode. AD-

DBA switches on the A-MPDUs, and noack turns off the acknowledgement system.

Also I must reduce the MAC reorder buffer timeout to zero. These steps will satisfy

requirement 1.

Our compatible TCP fulfills requirements 2 and 3. Removing the data protection

and in order delivery services from TCP prevent the transport layer from confusing

missing segments caused by lost frames with congestion and reducing the flow of data

by mistake. TCP uses the same signal for congestion control as it does for data reli-

ability. Because of this requirement 2 may interfere with the TCP congestion control

mechanism. Requirement 3 ensures that congestion control remains intact allowing our

compatible TCP to inter operate with other TCPs fairly. Requirement 4 implements

our data protection and in order delivery systems. This requirements ensures that our

rearrangement of the stack remains transparent to the HTTP over TCP video stream-

ing application. This design decision produces overhead since it retransmits the lost

data over the entire path rather than just the wireless hop.

3.3 FWP Implementation

I implemented a prototype in order to facilitate our evaluation and to make practical

the conceptual framework described in Section 3.2.

47

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

Our FWP prototype design consists of four components.

1. An 802.11 FWP aggregation emulator. Described in subsection 3.3.2

2. An 802.11 A-MPDU aggregation emulator. Described in subsection 3.3.1.

3. A compatible TCP. Described in subsection 3.3.3.

4. An HTTP retransmission scheme. Described in subsection 3.3.4.

The 802.11 A-MPDU aggregation emulator works with the unmodified network

stack. The 802.11 FWP aggregation emulator, however, delivers data to the transport

layer with missing segments. Our compatible TCP is required to resolve this problem.

Our compatible TCP delivers data with missing chunks. Our HTTP retransmission

scheme resolves this problem.

I decided to use an emulator rather than 802.11n drivers and hardware for our

experiments. I made this choice because emulation allowed us to study the effects

of 802.11 frame aggregation without interference from other 802.11 systems. This is

difficult to accomplish with wireless hardware because wireless standards have multiple

systems interacting with each other. The rate adaptation system interacts with the

driver to construct the transmit retry chain, and both of these systems interact with the

packet aggregation system. These interactions between systems are driven by external

effects that are difficult to control in an experiment. In addition, the emulators let us

compare the systems while they are in a constant state. This is critical because I need

to be certain that any effects observed in our experiments are not caused by seemingly

random external effects. For instance if there is a throughput change I need to be

certain that it was not caused by a Modulation and Coding Scheme (MCS) change or

other system interaction.

48

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

I implemented our emulator as a packet scheduler running as a kernel module at the

IP layer. I implemented 4 MIMO streams with channel error calculated independently

on each stream. The channel error rate on each stream is the same in order to facilitate

channel contention experiments. I set MTU size to 1500 bytes making a packet about

equal to a frame. Packets are enqueued to each aggregation queue (1 per MIMO

stream) round robin. I implemented two modes of operation, FWP, and A-MPDU. I

also built an A-MSDU aggregation emulator. However, the performance of A-MSDU

aggregation was so poor that I will not highlight any of the experiments in order to

save space. Also I found that in the Atheros 802.11n drivers that A-MSDU aggregation

is not implemented and I suspect that is the case for other drivers as well.

In the dequeue function of the emulator I implemented the aggregation. When

enough packets have been enqueued to an aggregation queue to fill an aggregate (or to

fill it as much as possible in the case of an A-MPDU) the aggregate is delayed to account

for the overhead of the radio header, IFS, and ACK time. Frame loss is calculated,

then successfull packets are sent across 1 Gbps Ethernet. Many simulators use a Bit

Error Rate (BER) curve to calculate frame loss over wireless channels. However, since

aggregations do not contain error correction bits (only per frame checksums) this is

unnecessary. To streamline in kernel calculation, I used the Frame Error Rate (FER)

model instead. Our designs are based on the open source Atheros driver code and the

IEEE 802.11n standard. Other drivers are proprietary, however, I believe that they

behave in a similar fashion.

3.3.1 802.11 FWP Aggregation Emulator

Requirement 1, Section 3.2 calls for the wireless driver to operate in A-MPDU

mode with no ACKs, this is called ADDBA noack mode. I emulated this by queuing

49

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

Delay

Received
Lost 72

B

A

Delay

Received
Lost 2

1 Gbps
Send

1 Gbps
Send

31 frames

31 frames

Frames 33...64

Frames 1..32

Figure 3.3: FWP 802.11 emulator using ADDBA noack

packets into the aggregation queues. The maximum A-MPDU aggregation size in the

Atheros driver code is 32 rather than the 64 specified in the IEEE standard. I used 32

packets to an aggregate following the Atheros code. Frame loss is calculated using the

FER. Packets representing lost frames are dropped. Packets representing successful

frames are transmitted across 1 Gbps Ethernet after an appropriate delay for wireless

transmission. This is demonstrated in Figure 3.3.

In time series A enough packets to represent 32 frames are queued. Frame 2 is

lost so it’s packet is dropped. A total of 31 frames are received. In time series B the

aggregate is once again filled with 32 packets and the process is repeated with 31 more

frames received. The aggregate is always filled and there is no sliding window. The

throughput with FWP is always linear with frame loss because frame errors are not

corrected.

50

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

1 Gbps
Send

1 Gbps
Send

B

Delay

Advance BAW 1

A

Delay

Received

31 frames

Received

2 frames

Lost 2

Frames 1...32

Frames 2, 33

Advance BAW 32

Figure 3.4: A-MPDU 802.11 emulator

3.3.2 802.11 A-MPDU Aggregation Emulator

In our A-MPDU emulator frame loss is also calculated using FER. However this

time, packets representing lost frames are not dropped. Instead they are held in the

queue. Packets representing successfully transmitted frames are delayed for overhead

then transmitted over 1 Gbps Ethernet. In the next aggregate the BAW is advanced

up to the first lost frame. New packets are added to the aggregate queue to account

for the BAW advance. The aggregation queue now holds these new packets as well as

any packets representing lost frames from the last round.

Figure 3.4 demonstrates this. In time series A frame 2 is lost and the BAW is

advanced 1. The packet representing frame 2 is not transmitted. The successful frames

are delayed and transmitted over 1 Gbps Ethernet. In time series B frame 2 is still in

the queue from last time. The BAW has advanced one so the end of the window now

points to 33. Packets representing frames 2 and 33 are transmitted. Both frames are

successful so the packets are delayed for overhead and then dequeued.

The A-MPDU in time series B represents a lost transmission opportunity. If there

51

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

is no contention then this will not matter much and the A-MPDU system will achieve

high performance. However, in the normal case when there is contention for the wireless

medium the station will not be able to regain airtime until it wins contention again.

In contention with other stations the A-MPDU system will not achieve the same high

performance.

3.3.3 Compatible TCP

A standard TCP such as Cubic, Compound, or New Reno will not work well with

our FWP system because it delivers data to the transport layer with missing segments.

In fact, these TCPs are quite sensitive to sequence number holes. When a sequence

number hole occurs dupACKs are sent for the missing segment until it is received. It

takes approximately one Round Trip Time (RTT) to retrieve a missing segment. In

normal use with RTTs above 30 ms many dupACKs will be sent before the missing

segment is received. This behavior erroneously triggers the congestion control mech-

anism when segments are lost due to wireless transmission through the 802.11 FWP

Aggregation Emulator.

In order to cope with this problem I developed compatible TCP. In keeping with our

dirty slate design philosophy the server side transport layer code remains untouched

implementing whatever congestion control mechanism is selected in the server kernel.

Compatible TCP will fulfill requirements 2, and 3 from Section 3.2. In order to fulfill

requirement 2 (remove in order delivery, and reliability) I monitored the TCP ACK

stream. When a duplicate ACK is detected a placeholder segment is generated. The

sequence number of the placeholder segment is fixed to the sequence number of the

missing segment, and the DATA section is filled with marker data to indicate that the

data in this segment was not received. The placeholder segment is then checksummed

52

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

and injected into the stack filling in the sequence number hole. This prevents TCP

from detecting missing segments removing data protection and in order delivery services

from the transport layer as specified in requirement 2 from Section 3.2.

Requirement 3 specifies that TCP congestion control must remain intact. TCP

congestion control not only prevents congestion collapse but also maintains fairness

with other TCPs. In order to re-establish the congestion control mechanism I operated

our compatible TCP in a bi-stable mode. In one mode the compatible TCP injects

placeholder packets, and in the other state normal TCP behavior is observed. The

802.11n rate adaptation system provides us with the expected frame loss for our current

Modulation and Coding Scheme (MCS). If the loss rate measured over a window of

1 RTT is less than the expected frame loss rate then compatible TCP operates in

placeholder injection mode. If the loss rate exceeds the expected frame loss rate then

compatible TCP operates in normal TCP mode. An example of this is shown in

Figure 3.5. Segment 3 is lost and filled in with a placeholder as soon as the sequence

number hole is detected (when segment 4 arrives). At segment 9 the sequence number

hole count has exceeded the frame error rate reported by the 802.11n rate adaptation

system. In response compatible TCP switches to normal TCP mode. No placeholders

are injected and duplicate ACKs are sent triggering a congestion event.

3.3.4 HTTP retransmission scheme

The final requirement from Section 3.2 implements in order delivery and data pro-

tection services. This allows applications to remain unaware of the rearrangement in

the stack below them. I used an HTTP retransmission scheme in order to accomplish

this. The placeholder packets are easily recognized in the data stream by a character

search. The beginning and the end of the placeholder data indicate the byte range

53

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

x Loss

x Loss

x Loss

x Loss

Congestion

event

Client kernelServer kernel

4

1

2

3

5

Sequence # hole

...

9

Inject placeholder

Sequence # holes

dupACK

dupACK

dupACK

10

11

> FER

(no placeholders)

Figure 3.5: TCP Compatible Transport

that must be requested to replace the missing data. I used curl6 to request the byte

range and insert the missing data into the stream before releasing the buffer to the

application.
6http://curl.haxx.se/

54

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

3.4 Evaluation

I evaluated FWP by observing three key characteristics of our solution, throughput,

TCP interoperability (fairness), and overhead. FWP is designed to take full advan-

tage of every transmit opportunity and achieve better throughput than 802.11 frame

aggregation during contention. I evaluated the throughput gains of our solution over

varying channel conditions and number of competing stations.

In our design I replaced the receiving side TCP with our compatible TCP. To de-

termine interoperability with other TCPs I performed fairness testing. I introduced a

variant of Jains fairness metric to determine whether our TCP solution shares fairly

with other TCPs. In addition I characterized the overhead introduced by our HTTP

retransmission scheme. Although the network stacks are real our wireless hardware is

emulated. I understand that emulators have difficulty modeling the complex interac-

tions of the wireless channel. Because of this I do not rely on our emulator to provide

absolute values, but instead use it to understand behaviors and trends that cannot be

observed in isolation with real hardware.

3.4.1 Testbed

In order to evaluate our FWP solution and compare it against A-MPDU frame

aggregation I built a testbed in Emulab facilities provided by the Flux Group, part

of the School of Computing at the University of Utah7. Nodes 1 through m in Fig-

ure 3.6 are client nodes. Node m is equipped with an FWP stack. Because Emulab

topologies are easily configurable I could vary the number of clients to fit the needs of

the experiments. This allows me to test contention with other nodes in our testbed.

The servers (nodes m+1 through n) are a mirror image of the clients with 1 server per
7https://www.emulab.net/

55

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

emulator

802.11 aggregation

client

nodes

server

nodes

FWP

node

RTT emulation

netem delay

bottleneck

capacity

emulation

tc HTB

. . .

m+1

n

n+2n+1

m

0

. . .

Figure 3.6: Emulab testbed

client. Nodes n+1 and n+2 emulate the Internet path from each server to each client.

All links are 1 Gbps Ethernet.

Because the maximum throughput of a path through the Internet is determined by

the capacity at the bottleneck router I implemented rate control. I used tc8 filters and

an HTB packet scheduler9. RTT is implemented using netem10 to introduce one way

delay on the egress interface of nodes n+1 and n+2.

Table 3.1 shows a list of default experimental parameters. Unless otherwise specified

in an experiment the parameter values will be set as shown in the table. I chose a

default RTT of 40 ms. Although the average RTT of an Internet path is a nebulous

and debatable point our observations have shown that RTTs between 30 and 50 ms are

within reason. Because of the interaction of multiple router queues along an Internet

path RTTs in the Internet are not stable values. Since netem is capable of randomly
8http://www.lartc.org/
9http://linux.die.net/man/8/tc-htb

10http://www.linuxfoundation.org/networking/netem

56

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

Experiment Parameter Default Value
Round Trip Time 40 ms
RTT Variance 10 percent
Bottleneck Throughput 600 Mbps
Frame Loss 10−3 − 10−2

Experiment Duration 120 seconds
Experiment Runs 10

Table 3.1: Default Experimental Parameters

varying the delay according to a distribution I chose to vary the RTTs +/-10% in a

normal distribution about the mean. I chose to use 600 Mbps throughput capacity at

the bottleneck since this is the theoretical maximum of 802.11n. Our links are 1 Gbps

so it was not possible for us to measure more than one 802.11n station operating at

full theoretical maximum. Experiments were run for 2 minutes with 10 experimental

runs.

3.4.2 Throughput

To understand the throughput gains achieved by our FWP system I first highlight

an example from a series of experiments with 10 competing stations sharing 600 Mbps

of throughput. Figure 3.7 shows a comparison of our FWP versus 802.11 frame aggre-

gation measuring throughput achieved at the receiving station against probability of

frame loss. As expected the throughput achieved by our FWP system is very linear

to loss. This is because I transmited a full (32 frame) aggregate every time FWP

won contention and do not stop to retransmit. The A-MPDU system on the other

hand is not linear to loss. The A-MPDU aggregation system suffers a drastic reduc-

tion of throughput at even very small error rates. It achieves about one third of the

throughput of FWP at .05 FER, and about half at .20 FER probability.

The emulation shows that the trending throughput gains are significant especially at

57

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
b
p
s

probability of loss

FWP
A-MPDU

Figure 3.7: Throughput gains from 1 FWP station competing with 9 A-MPDU
aggregation stations

the FER range of 10% to 40%. This range of FER is critical because this is where a rate

adaptation system might make a decision such as 40% FER at 600 Mbps is preferable

to 0% FER at 300 Mbps. Next I sought to determine the effect of the number of

competing stations on our FWP system versus A-MPDU aggregation. Since I know

from our experiments that with no competing stations the throughput achieved by

each system is the same I plotted the throughput gains achieved by 1 FWP station

competing with 1 to 9 A-MPDU stations.

I defined a metric called speedup to measure the throughput gains. Speedup is

the number of times faster that FWP is than A-MPDU aggregation. For instance a

speedup of 1 would be the same throughput, a speedup of 2 would indicate twice as

much throughput. The experiments were each two minutes in duration. The graph

58

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 2 4 6 8 10

s
p
e
e
d
u
p

number of competing stations

loss 10%
loss 40%

Figure 3.8: Speedup of FWP against number of competing A-MPDU stations

in Figure 3.8 shows a whisker plot of 10 experimental runs. The bars in the whisker

plot show values from the 10th to the 75th percentile, and the whiskers show the

minimum and maximum values. Figure 3.8 shows that the throughput gains are more

strongly effected by FER (loss) than by the number of competing stations. In fact the

throughput gains are reasonably flat across the number of competing stations. They

are averaging greater than 1.6 for 10% FER, and greater than 2 for 40% FER.

These experiments that I have highlighted in this chapter demonstrate that the

throughput gains of FWP over current wireless aggregation technology are significant

and not dependent on the number of competing stations. This indicates that in real

wireless hardware FWP would almost always (any non zero channel error condition)

develop significant throughput gains and that these gains would increase with the

amount of channel error.

59

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 420 430 440 450 460 470 480 490 500

M
b
p
s

Time (Seconds)

FWP
Cubic TCP

Figure 3.9: Compatible TCP competing with Cubic over a time series

3.4.3 Fairness

On of the key goals of our dirty slate design for FWP is deployability. Because

of this I had to determine whether our compatible TCP operates fairly with other

TCPs. First I wished to determine if the characteristic competitive behavior of TCP

has been affected by our modifications. This involved many time series experiments to

determine that the waveform generated by our compatible TCP is different from the

waveform generated by a popular TCP such as Cubic.

In Figure 3.9 shows an excerpt from one of this series of experiments. The bottle-

neck router capacity in this experiment was 600 Mbps and the RTT was 40 ms. The

graph shows that the competitive behavior of TCP remains intact in our compatible

TCP. One flow gains an advantage over the other for a time and then the roles reverse.

60

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

 35

 40

 45

 50

 55

 60

 65

 30 40 50 60 70

fa
ir
n
e
s
s
 p

e
rc

e
n
ta

g
e

round trip time (milliseconds)

Perfect Sharing
FWP vs Cubic TCP

Figure 3.10: Throughput variations of compatible TCP against TCP Cubic

Normally the variations in throughput are quite small but sometimes over larger peri-

ods of time the fluctuations are larger. These experiments show that the competitive

behavior of TCP is largely unaffected by our modification. In the next series of exper-

iments I performed a more rigorous system testing of TCP fairness over a variety of

RTTs. In order to clearly present these experiments I defined a metric called fairness.

This is loosely based on Jains fairness index.

I ran this series of experiment for 2 minute durations and determined the varia-

tions in throughput over 1 second intervals. The bottleneck router capacity in these

experiments was 600 Mbps and I plotted the percentage of throughput achieved by our

compatible TCP over a competing Cubic TCP. The design of our compatible TCP can

take up to an RTT longer than a normal TCP to begin congestion control behavior.

This could lead to more aggressive behavior over larger RTTs. I believe that it is okay

61

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

for a TCP to act in a more aggressive manner when the RTT is larger because TCP

throughput gets smaller as RTTs increase. However, the amount of aggression should

not be too great at normal RTTs.

The whisker plot in Figure 3.10 shows our fairness percentage results over 10 exper-

imental runs. The line at 50% fairness indicates ”perfect sharing”. This would mean

that both TCPs (compatible and Cubic) received 1 half of the throughput over each

1 second interval. A “fair” TCP should not fluctuate much above or below this perfect

sharing line. Plus or minus 5% would indicate very good sharing, and +/- 10 % would

still be a very reasonable amount of fairness.

The graph shows that our compatible TCP operates in a reasonably fair manner

when competing with a Cubic TCP across a wide range of RTTs from 30 to 70 ms.

There is a small amount of additional aggression at the higher RTTs (60 - 70 ms),

however, the sharing of bottleneck router resources is still very reasonable. These

experiments have shown that our compatible TCP behaves in a manner consistent

with standard TCP behavior and that it is reasonably fair with other TCPs (TCP

Cubic). I believe that our compatible TCP is interoperable with other TCPs fulfilling

requirement 3 from Section 3.2.

3.4.4 Overhead

One of the tradeoffs with our FWP solution is that the HTTP retransmission

reliability system generates overhead. There are two types of overhead that I examined

in our experimentation. The first is the additional data transfer across the wireless

link. The overhead across the wireless portion of the link is small because the data

portion would have had to have been retransmitted anyways. The only additional

overhead is the HTTP header required to specify which portion of the data needs to

62

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5

p
e
rc

e
n
ta

g
e
 o

v
e
rh

e
a
d

probability of loss

Internet path
wireless hop

Figure 3.11: Overhead for Internet path versus wireless hop

be retransmitted.

The second type of overhead that I examined is the amount additional data transfer

across the Internet path. Because our HTTP retransmission scheme retrieves missing

data from the server this data must be sent all the way across the path. For every other

hop on the path the retransmitted data is pure overhead since the data would have

been transmitted from the access router instead of the server. Figure 3.11 shows the

comparison of both kinds of overhead. The overhead across the Internet path grows

quickly reaching 100% at a 50% FER. This shows that our FWP system places a large

burden on the Internet path rather than the wireless hop.

The overhead for the wireless hop however is quite small. It only reaches 13%

at 50% FER. These experiments have shown that our FWP system provides a great

deal of throughput gain versus overhead from the point of view of the wireless hop.

63

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

However, the increasing overhead across the Internet path becomes a limiting factor.

I plan to address this problem in future work.

3.5 Conclusions and Future Work

In this work I have developed FWP, a very fast wireless protocol. I have done this

using our novel “dirty slate” architecture. The system does not require any in-network

or server side changes whatsoever. In addition, it does not require any special encod-

ings or data formats. Our “dirty slate” architecture solves the deployment problems

encountered by previous work in this area.

However, I found that even though the amount of overhead introduced into the

wireless hop is minimal, the amount of overhead introduced into the Internet path is

large. The true contribution of this work is to separate the losses that occure because of

channel related causes and congestion related causes. Because congestion related losses

occur before ever reaching the wireless hop there is no frame number sequence hole

caused by congestion related segment losses. Congestion related losses are preserved

for TCP and channel related losses are “skipped over”. In future work the overhead

of frame retransmission could be addressed by allowing the 802.11 re-transmission

scheme to retrieve the missing frame. These frames would then be grabbed and sent

via netfilterqueue to the session layer for possible reintegration into the flow.

This possible reintegration of missing data requires smart applications that can

determine whether or not they still want the packet. This is desirable for deadline

driven applications such as live VOIP and video which have no use for the replacement

of missing packets after the playout deadline has passed. These types of applications

would want the ability to release the buffer that is waiting for the missing data if they

have determined that the data is no longer valuable to them. In addition, the concept

64

The Fast Wireless Protocol (FWP) Algorithm Chapter 3

of “look-ahead” where an application can look at the recieved data while it is waiting

for the retransmission to occur. This provides an application the ability to get started

working on data that it might find useful before the retransmission has occured.

65

Chapter 4

A Cross-Disciplinary Approach to
Queue Sizing

4.1 Introduction

The queue sizing problem spans the entire Internet, it has been with us since

the beginning of packet switched networks and will be with us into the foreseeable

future. In order to understand the queue sizing problem it is necessary to take a cross-

disciplinary approach. This cross-disciplinary approach is necessary because no single

discipline encompasses the breadth of knowledge needed to approach the problem in

a holistic manner. The best way to accomplish is to gather together into one body of

knowledge an amalgamation of disciplines in the networking sciences from the following

disciplines; queuing theory, networking topology, network sensing, transport and queue

management.

The body of knowledge encompassed by this chapter is a sufficient and necessary

amalgamation of intimately interconnected knowledge from a variety of networking

science disciplines. Queuing theory is necessary because it provides the essential equa-

tions that our algorithms are based on. Networking topology gives us an understanding

of where and when to apply the algorithms. Network sensing and transport provide

66

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

the essential data that the algorithms require for input and queue management demon-

strates the requisite methodology needed to control the queue size. Packet scheduling

provides the class based queuing that is necessary in order to separate flows with unique

and individual queue sizing needs into their own queues. Queue management provides

the basic techniques that are needed to control queue size. I begin with queuing theory

and network topology.

4.2 Queuing Theory and Network Topology

I grouped queuing theory and networking topology concepts together because queu-

ing theory provides the indispensable equations needed to address the queue sizing

problem and network topology provides an understanding of where the algorithms

must be applied.

4.2.1 Queuing Theory

Queuing theory provides the indispensable equations which drive the algorithms.

The Internet is a massively diverse place that defies creating a unifying set of equations

that work in the general case. This problem is made more tractable by separating the

problem into two parts; the core and the edge. I discuss the difference between these

parts in detail in Section 4.2.2. For the purposes of this chapter it suffices to know that

the core consists of “high speed” routers that receive much traffic and generally are

servicing many long term flows at any given time in addition to bursts of traffic. Core

routers on the Internet are governed by O
(

Capacity√
numberofflows

)
,Appenzellar et al. [3].

In our work I am focused on edge routers because this is where the throughput

and delay experienced by an end user is typically controlled. Core routers also control

their latency and , but, not with an individual customer in mind. The edge of the

67

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

Internet is much closer to the consumer (end user) and the routers are much slower

and often have little or no traffic (though they can be saturated) because they serve

few or even one customer. Flows through edge routers are governed by the bandwidth

delay product equation, Villamizar et al. [86].

The queue sizing equation is elegant and straightforward Q = B ∗ D where Q is

the queue size, B is the throughput and D is the delay or Round Trip Time (RTT).

This is because the sending computer needs to be able to inject enough packets into

the network to keep the slowest router in the path busy for one RTT. At the end of

the RTT the ACKs will begin arriving and the sending host will transmit more. The

correlation between queue size, throughput and delay is demonstrated by the following

equations:

Qsize = B ∗D → B = optimal;D = optimal (4.1)

Qsize < B ∗D → B < optimal;D = optimal (4.2)

Qsize > B ∗D → B = optimal;D > optimal (4.3)

In the above equations Qsize is the queue size in bytes, B the throughput in bytes

and D the delay in seconds. The left hand of the equations represent the condition

(queue size is too small/large/correct) and the right hand side describes the effect upon

the flow of data through this path. For a given flow when the delay is approximately

equal to the Round Trip Time (RTT) times the throughput (the emission rate of the

slowest router) the resulting throughput and delay will be optimal as described in

Equation 4.1. If the queue size is less than the bandwidth delay product then the flow

68

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

Figure 4.1: Queue Sizing on the edge of the Internet

0

0.5

1

1.5

2

50 100 150 200 250

0

50

100

150

200

B
a
n
d
w

id
th

 (
M

b
p
s
)

D
e
la

y
 (

m
s
)

Queue size (ms)

Bandwidth

RTT

will lose throughput according to Equation 4.2. If the queue size is greater than the

bandwidth delay product then the flow will experience excessive delay as described in

Equation 4.3.

The queue sizing effects described in Equations 4.1, 4.2 and 4.3 are shown in the

graph from Figure 4.1. The path characteristics described in the example are for a flow

with 100 ms RTT at 1 Mbps in either the upload or the download direction (it does

not matter for this example). The graph shows that when the queue size is 100 ms

(12,500 bytes) the flow achieves its maximum throughput (1 Mbps) at the minimum

delay (100 ms). This inflection point is circled in the graph from Figure 4.1 and the flow

is operating according to Equation 4.1. When the queue size is smaller than 100 ms

the flow loses throughput and the delay remains 100 ms. In this region of the graph the

69

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

flow is operating according to Equation 4.2. When the queue size is larger than 100 ms

the flow achieves the full 1 Mbps throughput, but, delay increases above the 100 ms

minimum. In this region of the graph the flow is operating according to Equation 4.3.

Clearly the correct queue size for a flow on the Internet is described by Equation 4.1.

This applies to individual flows even though they flow through core routers governed

by Applenzeller’s equation [3]. The reason that Equation 4.1 applies is because queue

buildup for an individual flow occurs at the slowest router in the path. Villamizar’s

equation applies to core routers because they have high throughput and service many

flows. The throughput delay product equation applies to individual flows and occurs

at the slowest router int the path (near the edge). The next step is to examine Internet

topology in order to understand where these equations apply and why.

4.2.2 Network Topology

The topology and network neighborhood of a typical Internet connection is shown

in Figure 4.2. In this dissertation I describe a connection that uses cable technology

for the purposes of demonstration. However, the principles as applied to queue sizing

are technology agnostic and apply to Digital Subscriber Line (DSL), cable, broadband,

satellite and other packet switched technologies equally. Any Internet connection con-

sists of a number of users using wired or wireless connections to connect to an access

router. The access router connects to a modem owned by the Internet Service Provider

(ISP) which connects to a Cable Modem Termination System (CMTS) or other device

depending on the technology used by the ISP through an access link.

The access link has two properties that present unique opportunities for queue

management. The access link is typically the slowest portion commonly called the

primary bottleneck in any given Internet path because this is where the ISP rate

70

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

CPE
Router

Wireless
and

Wired Users

Internet

CDN

CMTS

ISP
Gateway
Router

Modem
2-50 Mbps

Other
Customers

ISP
Internal
Network

Active Sense
ISP Network

CDN

CDN

Unlikely
to Bloat

Possible Secondary
Bottlenecks

Unlikely to Bloat

Primary Bottleneck

Aggregregate Paths Divergent Paths

ISP
Exit

Router

Figure 4.2: Typical Consumer Network Neighborhood

limiting is applied. Applying queue management at the slowest device in a path is

important because this is where the Equations 4.1, 4.2 and 4.3 apply. The access link

is also the place where all flows that share queues are present. This aggregation of flows

property is important because it allows queue management to be applied to all flows

equally. For instance, if the users from Figure 4.2 were to apply queue management

individually then any user joining the network without queue management could fill

the buffers at the modem and defeat the queue management of the other users.

Queue management is typically applied at the modem. I provide much more detail

on the access link, the modem and the CMTS in Chapter 5, but, for this discussion

I will simply refer to the modem as the slowest part of the path. The reason queue

management is normally applied at the modem is because it is the slowest device

where all flows sharing a queue are aggregated. The modem is the slowest point in

71

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

the path for all flows for all users on a given access link and the place where all

flows are present. This set of properties presents a unique opportunity to apply queue

management. The physical topology in figure 4.2 seems to indicate that flows from

other modems aggregate at the CMTS. This is not the case since each access link is

frequency separated from the others. Flows from separate modems do not share queues

until they reach the ISP router. The queuing for a flow in an individual modem cannot

be affected by a flow in another modem and all flows that can affect this flow are

present where they can be managed according to policy.

There are two cases where the modem is not the slowest device in the path for any

given flow. The first is when business disputes between providers result in congestion

at interconnection points and network paths. These secondary bottlenecks shown in

Figure 4.2 can cause performance degradation for users. This problem is out of scope

for this chapter because there is nothing that an AQM algorithm can do about a

secondary bottleneck caused by a business dispute. This problem is not scientific nor

technical and it should be solved by solving the business dispute that is causing a

content providers data path to be slowed down. The problem is in the domain of

politics and business and likely will be resolved when the debate over net neutrality is

resolved one way or another. I do however, in chapter 7 discuss methods to mitigate

the queue sizing problems caused by the throughput reduction imposed.

The second case is where the access link is faster than the wireless or wired link

to the access router. In most cases this type of problem can be fixed by upgrading

from old technology. For instance if a user is running a wired connection over 1 Mbps

Ethernet and the bottleneck moves into the 1 Mbps queues the answer is to simply

upgrade to current technology. However, in cases where the access link is exceptionally

fast (1 Gbps fiber) and wireless connectivity is desired. The Gigabit fiber may operate

faster than any wireless technology available. These cases are atypical in the Internet

72

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

today and our solutions focus on the access link. However, in Chapter 7 I also discuss

methods for adapting our technology to these cases.

4.3 Transport and Network Sensing

Transport and network sensing is necessary to solving the queue sizing problem

because it is the interaction of the transport protocol with the network queue that

causes the queue sizing problem. In addition, network sensing is necessary in order

to gain information about the state of the network queue in order to manage the

queue size to its proper size. I grouped these two disciplines together because they

are so interrelated. Transport contains elements of network sensing and it controls the

network queue size by increasing or decreasing the flow of data.

4.3.1 Transport

The Transport Control Protocol (TCP) is by far and away the most ubiquitous

transport protocol deployed and in use today. Other protocols are in use such as the

User Datagram Protocol (UDP) and I will address the handling of these protocols in

Section 4.4. TCP transport comes in many flavors which can be divided into loss based

and delay based TCP as well as hybrids between the two. Loss based TCPs control

the flow of data by increasing the flow until a packet loss is detected. At that point the

transport protocol decreases the flow of data draining the network queue of packets

and begins to increase again.

Modern TCPs respond to Explicit Congestion Notification (ECN) signals as well

as loss [32, 72]. ECN marks data packets before the queue is filled to the point of

needing to drop packets. The ECN marked data packets flow to the TCP receiver and

the TCP receiver reflects the ECN mark into the ACK. When the ECN marked ACK

73

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

is received by the sender the sending TCP responds to the ECN mark exactly as if a

packet has been dropped. ECN marking allows the lossless transmission of data and is

recommended by the Internet Engineering Task Force in RFC 3168.1 Not all network

devices support ECN marking and the fallback is packet dropping [4, 51].

Loss based TCP algorithms commonly deployed and active on the Internet to-

day include Cubic (Linux), Compound (Windows XP), and NewReno (mac, Windows

Vista+), [19, 68, 80]. Compound is a hybrid and responds to delay as well as loss.

Other examples of loss based TCP algorithms include [17, 65, 61, 10, 56, 25].

Delay based TCP algorithms are sensitive to RTT and reduce queue size when

delay starts to increase. Examples of delay based TCP algorithms are Vegas, CAIA

CDG, and Fast, [36, 82, 9]. Delay based TCPs attempt to manage the queue size

by themselves. However, the problem with this approach is that if a delay based

TCP algorithm shares a queue with a loss based TCP algorithm then the delay based

protocol will reduce its data flow in response to the increased delay caused by the

loss based protocol. This causes the delay based to lose throughput to the loss based

protocol. Unfortunately in the wild there is always a loss based protocol sharing the

queue.

Other examples of TCP include equation based TCP, multipath TCP, network

coding TCP, SCTP and split TCP [33, 34, 65, 41, 79]. Equation based TCP uses the

loss and RTT to calculate the correct throughput, multipath is TCP using multiple

paths, split TCP is a single connection split into two TCP sessions and network coding

TCP uses coding in order to overcome error. In any case though these protocols react

in different manners, they all attempt to fill the network queue to its maximum. As

described in Section 4.2.1 each flow has a unique queue size according to its throughput

and delay characteristics. The proper queue size must be set with respect to these
1https://tools.ietf.org/html/rfc3168

74

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

characteristics, not by simply filling the queue to its maximum size.

4.3.2 Network Sensing

There are many methods of sensing the network that measure various metrics in

both active and passive modes. However, there are only two characteristics that are

relevant to the queue sizing problem. These characteristics are the throughput and

the RTT. I sense the network in two modes; actively and passively. Active measure-

ment consists of injecting sense packets into the network and measuring them. Active

measurement induces overhead caused by the injected sensory packets and creates a

tradeoff between network overhead and sensory granularity. In general the finer the

granularity and hence the more accurate the measurement the more overhead that is

created. Passive sensing does not inject packets into the network and does not create

additional network overhead. Instead passive sensory systems take measurements from

data packets or ACKs that are already traveling the network path.

I measure throughput passively by measuring the length of outgoing data packets

until a threshold level of transmitted bytes has been transmitted as well as the time

required to transmit them. This value is then exponentially smoothed. This method

is consistent with the throughput measurement for queue drain rate as described in

the PIE algorithm [69]. I passively measure the RTT using TCP timestamps and the

equations.2

RTTvar = (1− beta) ∗RTTvar + beta ∗ |SRTT −R| (4.4)

SRTT = (1− alpha) ∗RTTvar + alpha ∗R (4.5)
2https://tools.ietf.org/html/rfc6298

75

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

Where R is the RTT sample, RTTvar is the variance in RTT measurements, SRTT is

the smoothed RTT estimate. The recommended values for the constants are alpha = 1
8

and beta = 1
4 .

Passive measurements do not induce any additional network loading because they

do not inject any packets into the network. They do induce a small amount of CPU

loading. However, modern processors are powerful and these processes are well within

the capacity of a modern CPU at the edge network speeds that I am working with.

I use passive measurement techniques to obtain the measured RTT value shown in

Figure 4.3.

Active measurements are required to obtain the RTT Bloat measurement indicated

in Figure 4.3 because there are no packets that normally travel the path from the

Customer Provided Equipment (CPE) router to the ISP router and back. In order to

obtain this measurement I must inject specially crafted packets into the network. The

structure of these packets is described in detail in Chapter 6. I reduce the overhead

created by injecting these packets in two ways. The first method is to reduce the size

of the packet as much as possible. I use an IP packet header (20 bytes) with an 8 byte

timestamp for a payload. The other way to reduce overhead is to reduce the frequency

of packet injection relative to the number of data packets. This frequency controls the

tradeoff between the amount of overhead created and granularity of the measurement

in terms of accuracy and responsiveness. These tradeoffs are discussed in detail in

Chapter 5 and Chapter 6.

Using these two measurements I calculate the RTT Natural value from Figure 4.3.

RTT Natural is the the value that of the the RTT if the queues were empty or nearly

so. This value is the what the delay should be and is a key value used in our BDP

76

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

Figure 4.3: Theoretical Internet Path

Wireless
And

Wired Users CDN

CDN

CDN
CPE Router
and Modem

ISP Owned
CMTS and Router

Access Link

AQM at the
IP Layer

AQM at the
IP Layer

RTT Bloat

RTT Natural

RTT Natural

RTT Measured

algorithm described in Chapter 6. The RTT Natural value is calculated as follows:

RTTMeasured = RTTNatural +RTTBloat (4.6)

RTTNatural = RTTMeasured −RTTBloat (4.7)

Where RTTMeasured is the computed RTT using the TCP RTT calculation algorithm,

RTTBloat is the queuing delay and RTTNatural is the RTT without any bufferbloat.

Knowing the measured RTT and the bloat RTT I could (using subtraction) calculate

the perfect amount of queuing time for an individual flow.

77

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

4.4 Packet Scheduling and Queue Management Al-

gorithms

Packet scheduling and queue management are both necessary parts of the queue

sizing problem. Packet schedulers separate flows into queues by classification which

is necessary for good management because various flows have different characteristics

and need to be managed differently. Queue management algorithms manage the length

of queues. The two algorithms are often confused and it does not help that sometimes

they are built into the same kernel module.3. However, these algorithms are separate

and complimentary. Both packet scheduling and queue management should be applied.

4.4.1 Packet Scheduling Algorithms

Packet scheduling algorithms are designed to decide which packet to send next.

They do nothing to manage the size of a queue. The scheduling of packets and which

packet to send next is not the topic of this dissertation, however, the classification of

flows is an essential part of queue sizing. Examples of packet scheduling algorithms

include [8, 76, 24, 52, 7, 78]. DiffServ is a broad based framework for packet scheduling

defining queues which will receive more service than others. Typical classifications are

Expidited Forwarding (EF) used for VOIP and other real time flows as well as Assured

Forwarding (AF) which is used for other flows. There are a variety of other DiffServ

codepoints, but, EF and AF are the codepoints typically found in use on the Internet

today.

The important thing from a queue sizing perspective is that packet schedulers

separate flows into different queues. Typically this is done on a basis of traffic class
3http://man7.org/linux/man-pages/man8/tc-fq codel.8.html

78

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

as described in the DiffServ codepoints, however, flows can be classified in many ways

even individually as described in Chapter 6. This separation of flows allows individual

management tailored to the unique requirements of each flow.

4.4.2 Active Queue Management (AQM)

AQM algorithms have been designed to manage a problem called bufferbloat.

Bufferbloat a condition caused by excessive queuing when a flow is in a state described

by Equation 4.3. Bufferbloat is the most obvious side of the queue sizing problem

and results in excessive delay. The other side of the queue sizing problem is caused

when the queue size is too small and the flow is in a state described by Equation 4.2.

Though it is only one side of the queue sizing problem reducing bufferbloat can provide

a substantial benefit to an individual flow and to the Internet in general.

There are two modern AQM algorithms that are being deployed widely though the

state of activation of these algorithms is unclear as of this writing. These two algorithms

are PIE and CoDel (pronounced cuddle) [69, 64]. The key advance in technology from

these two algorithms is that they measure the queue size in time. This is a substantial

advancement over the older algorithms such as RED and others that measured the

queue size in length [22, 21, 20, 23, 48, 64, 66, 69, 93]. CoDel uses a timestamps to

determine queue size. A packet is timestamped upon enqueuing and this is compared

with the time the packet is dequeued to determine how long the packet has been in

the queue. PIE measures the departure rate and multiplies this by the length of the

queue to determine the length of the queue in time.

When CoDel detects that the queue time has been over the threshold parameter

for an interval of seconds then it applies a packet marking/dropping rule. This rule

decreases the mark/drop time in inverse proportion to the number of drops since the

79

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

dropping state was entered. This is meant to create a linear decrease in the rate of pack-

ets, but, is actually dependent on the RTT of a flow. When the queue time gets below

the threshold value then CoDel resets. PIE is a little more complex. When its queue

time gets below the threshold it calculates its drop rate according to Equation 4.11.

if p < 0.01, α = α̂/8; β = β̂/8; (4.8)

if p < 0.10, α = α̂/2; β = β̂/2; (4.9)

if p < 1, α = α̂; β = β̂; (4.10)

p = p+ α ∗ (cur del − ref del) + β ∗ (cur del − old del); (4.11)

Where α and β are tuning parameters, cur del is the currently calculated delay and

old delay is the calculated delay from the last drop time. Equations 4.8, 4.9 and 4.10

are for auto tuning the drop rate.

There are two problems with these algorithms. First the algorithms measure queue

size directly and cannot queuing problems that occur in other queues. This shortcoming

is discussed in detail in Chapter 5. The second problem is that they cannot manage

flows with a large queuing delay. Both algorithms suffer significant loss of throughput as

described by Equation 4.2 as the queuing delay increases beyond 250 ms. as discussed

in Chapter 6. The problems with these two algorithms are caused by the fact that

they directly measure queue length on a single queue rather than across a link and

that they cannot adapt to RTT flows.

80

A Cross-Disciplinary Approach to Queue Sizing Chapter 4

4.5 Conclusions

The collection of networking knowledge in this Chapter allows us to discern the

big picture and understand the problem of “bufferbloat” or queue sizing. The queuing

theory section describes the equations needed to determine the individual queue size for

each flow according to its bandwidth delay product. The networking topology section

tells us that occurs at the slowest link which is nearly always at the edge. In addition,

it shows us that the queuing often occurs within the link below the IP layer. This effect

is described in detail in Chapter 5. The Transport section describes the Interaction

of TCPs with the network queue size and the network sensing chapter describes how

the parameters necessary to operate the bandwidth delay product equations can be

obtained. Packet scheduling is a sister science of queue sizing that is often mistakenly

thought of as a replacement for queue sizing. Packet scheduling determines which

packet to send next while queue sizing determines how many packets to hold in the

queue. These two types of algorithm should be operated together. Finally the AQM

section describes the state of the art in queue management and the shortcomings of

the current generation of algorithms that we address in Chapters 5 and 6.

81

Chapter 5

The Active Sense Queue
Management (ASQM) Algorithm

5.1 Introduction

Active Queue Management (AQM) algorithms have seen a lot of attention in recent

academic literature as well as in the popular press. The problem with traditional AQM

is that it is designed to operate on queues at the IP layer, which is not always where

the problem commonly called “bufferbloat” occurs. Bufferbloat can move about among

many queues some of which are resistant to traditional AQM such as Layer 2 MAC

protocols used in cable/DSL links. I call this problem bufferbloat displacement. I dis-

cussed the causes of the bufferbloat displacement problem in detail in Chapter 4. Our

contribution is a new class of AQM algorithm called Active Sense Queue Management

(ASQM). ASQM is an IP layer AQM protocol that uses active sensing techniques to

gain an understanding of the queuing topology in the network neighborhood. ASQM

uses this additional knowledge of RTTs to manage bufferbloat in neighboring queues.

In the chapter I describe how ASQM is used to manage Layer 2 link delay that

occurs in an ISP access link. This link delay is commonly known as primary bufferbloat.

In this dissertation I describe how to expand the ASQM configuration to help manage

82

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

secondary bufferbloat. The typical causes of secondary bufferbloat are business disputes

where one Autonomous System (AS) uses packet scheduling to slow down traffic from

another AS or provider. Examples of these Advanced DiffServ (Differentiated Services)

packet scheduling algorithms are found in [8, 76, 24, 52, 7, 78]. The packet scheduling

causes a secondary bottleneck in the flow of data causing secondary bufferbloat. ASQM

can be configured to manage either type of bufferbloat. I provide testbed experiments

comparing ASQM’s throughput delay characteristics with traditional AQM algorithms

demonstrating ASQM’s ability to manage bufferbloat displacement where traditional

AQM algorithms cannot.

The Federal Communications Commission (FCC) produces a report every year

called Measuring Broadband America.1 In this report from the years 2010 through 2014

the 80/80 study designed by the North Carolina State University Institute for Advanced

Analytics determines how often the access link does not meet the ISP committed rate

at the IP layer in the modem during peak traffic hours (from 7:00 pm to 11:00 pm).

In 2014 50% of the 16 ISPs measured provided 90% of the committed rate to 80%

of the panelists 80% of the time. The other 50% of ISPs provided less than 90% of

the committed rate. These detailed studies conducted over years demonstrate that

bufferbloat displacement into the ISP access link is a serious problem.

The queue management problem commonly called bufferbloat has been with us for

a long time. It is caused by an interaction between the ubiquitous TCP algorithm and

queue engineering in the path. Typical TCP algorithms are loss based. Examples of

loss based algorithms come in many flavors with varying levels of aggression [17, 65, 61,

10, 56, 25]. Algorithms commonly deployed and active on the Internet today include

Cubic (Linux), Compound (Windows XP), and NewReno (mac, Windows Vista+), [19,
1http://data.fcc.gov/download/measuring-broadband-america/2014/2014-Fixed-Measuring-

Broadband-America-Report.pdf

83

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

68, 80]. Loss based TCP protocols seek to fill the slowest queue as much as possible

and increase bufferbloat. The ubiquitously deployed TCP Cubic and NewReno are loss

based. TCP Compound is a hybrid of loss and delay based TCP.

Recent increases in the range of throughput capabilities found in network devices

have made the problem more exigent. A typical cable modem in use today provides

throughput from 2-50 Mbps. Statically engineering queue size for a device such as

this is essentially impossible because the throughput and delay characteristics vary too

much. A queue engineered for a delay of 100 ms at 50 Mbps would be 25 times too

large at 2 Mbps producing 2.5 seconds worth of delay. Faster speeds are leading to

larger queue sizes making the problem worse for lesser speeds.

Delay based TCP protocols are sensitive to RTT and eliminate bufferbloat except

when in the presence of a loss based TCP such as Cubic or NewReno. This makes delay

based TCP protocols ineffective against bufferbloat in general because they are likely to

face one of the ubiquitously deployed loss based NewReno or Cubic TCPs. However, in

a controlled environment delay based TCP can reduce bufferbloat. Examples of delay

based TCP are Vegas, CAIA CDG, and Fast, [36, 82, 9]. Many other TCP variants have

been created over the years including equation based TCP [33], Multipath TCP [34],

split TCP [41], and Network Coding TCP (NCTP) [79]. However, no TCP variant

exists today that can control bufferbloat in the presence of the ubiquitously deployed

loss based Cubic and NewReno TCPs.

Explicit Congestion Notification (ECN) enhances the performance of AQM by

marking packets rather than dropping them. Loss free data transmission is possi-

ble using ECN because the TCP server (sender) reacts to marked packets as if they

were dropped packets [32, 72]. The state of deployment and activation of ECN in the

Internet is poor but improving, about 40 percent at the core as of this writing [4, 51].

Some middleboxes (proxies) still do not duplicate these options properly, [37]. If ECN

84

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

is deployed then the AQM should use ECN marking instead of dropping. However, an

AQM algorithm must be able to drop packets as a fallback position.

There are two dynamic AQM algorithms deployed today to manage queue size and

control bufferbloat: CoDel and PIE, [64, 69]. The weakness of these algorithms is that

they do not control the bufferbloat problem in queues below the IP layer. I call this

problem bufferbloat displacement. Queuing theory tells us that bufferbloat is displaced

into slowest queue(s) in the path. When the ISP access link cannot meet the IP layer

ISP committed rate then the bufferbloat is displaced into the access link filling the

MAC layer queues and causing bufferbloat that CoDel and PIE cannot detect.

AQM algorithms are designed to manage bufferbloat. The IETF currently recom-

mends that an AQM algorithm should be implemented in network devices in compli-

ment with a DiffServ scheduler.2 Recent and popular AQM algorithms such as CoDel

and PIE use burst size (queue delay over time) to control the queue, [64, 69]. Older

algorithms such as RED and its variants measure queue size directly, [23, 22, 48, 21].

The problem with traditional AQM is that it does not protect Layer 2 MAC pro-

tocols from bufferbloat. These protocols are resistant to traditional end to end AQM

because they are Link Layer protocols and do not communicate with the TCP sender.

In ASQM I take a different approach using active sensing at the IP Layer to determine

the queuing delay across the Link Layer and send a mark/drop signal to the end to

end TCP sender to slow down.

The FCC study shows that a significant amount of bufferbloat occurs during peak

traffic hours that traditional AQM cannot detect because the access link is providing

less than the ISP committed rate. So I develop ASQM to solve this problem. ASQM

uses an active sensing mechanism to detect bufferbloat across a neighboring link. Our

ASQM algorithm runs at the IP layer, but, senses queuing delay across the entire
2http://tools.ietf.org/html/draft-ietf-aqm-recommendation-03

85

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

neighboring link. This novel approach allows ASQM to remove bufferbloat from a

neighboring link such as the ISP access link 100% of the time even during peak traffic

hours when bufferbloat displacement occurs that CoDel and PIE cannot detect.

I believe that a different approach is required. It is unreasonable to expect all ISPs

to maintain 100 percent of the advertised throughput 100 percent of the time. ISPs

are faced with a wide variety of conditions under which they must operate. Distance,

competing traffic, and RF conditions on the wire (especially for twisted pair) affect their

networks and 90 percent of advertised rates during peak periods is quite reasonable

performance. I propose ASQM as an answer to the problem. ASQM uses active sensing

between the IP layers to detect bufferbloat and manage all of the queues between them

regardless of where in the link the bufferbloat is occuring.

ASQM uses an active sensing approach. Active sensing creates a trade-off be-

tween overhead (from the sensory packets), measurement accuracy and feasibility. Our

contribution in this Chapter is to investigate these trade-offs and provide the most fea-

sibility and accuracy with the least amount of overhead. Our ASQM algorithm controls

bufferbloat on par with CoDel and PIE during non-peak traffic hours and continues

to provide excellent bufferbloat protection during peak traffic hours when CoDel and

PIE cannot. Our ASQM algorithm can be deployed on any ISP modem or router and

requires less than 0.5% overhead.

5.2 Active Sense Queue Management

Our ASQM algorithm uses active sense packets to determine the queuing delay in

the access link. Successfully employing an active sensory system requires a detailed

understanding of the queuing arrangements in the layers below the IP as well as the

DiffServ packet scheduling applied by ISPs. In addition active systems create overhead

86

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

DSTC
Layer

Cable
PMD

Upstream
Cable
PMD

Cable MAC

Link Security

802.2 LLCData
Link

Layer

Forwarding

PHY
Layer

DSTC
Layer

Cable
PMD

Upstream
Cable
PMD

Cable MAC

Link Security

802.2 LLC Transparent
Bridging

802.2 LLC

802.3 MAC

802.3 PHY

UDP (TCP)

IP/ICMPv4/6

SNMP TFTP NTP Syslog HTTP

CMTS NSI
Interface
to/from
Network

CMCI Interface
to/from

Customer
PremesisCable Network Coax

QAM Symbols Transmitted
Over OFDMA -- AQM Resistant

CMTS Stack Cable Modem Stack

DHCP

Token Bucket
DiffServ/AQM

IP/ICMPv4/6

SNMP DHCP

UDP

Active
Sense

Figure 5.1: Primary Bottleneck – Cable Modem Termination System to Cable Mo-
dem Link (DOCSIS 3.1)

so careful attention must be taken in order to reduce overhead.

Figure 5.1 shows a detail of the CMTS and modem stacks. DSL technology uses

a similarly arranged stack. Packets flowing through the system in either direction

(upload/download) encounter a hierarchical token bucket rate limiter used by the ISP

located at IP in Layer 3. This is the ISP rate limiter where AQM will be deployed.

As demonstrated in Nichols and Jacobson any queue in the lower layers that is

slower than the advertised (token bucket) rate will defeat the DiffServ/AQM system at

the IP layer [64]. The FCC study Measuring Broadband America indicates that this

happens frequently especially during peak traffic periods from 7:00 pm to 11:00 pm.

This portion of the link is called out in Figure 5.1 by a dashed rectangle. I did not

include the 802.2 LLC since these layers are extremely fast and unlikely to suffer from

bufferbloat. In any case some form of traditional AQM is still possible at the 802.2

LLC layer.

At the cable MAC, AQM activities become impossible without a significant re-

design of the protocol and a re-assignment of layering responsibilities. AQM protocols

must be able to drop packets. Dropping frames is in direct conflict with the MAC’s re-

transmission scheme. ECN marking is preferable to dropping, however, in cases where

87

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

ECN is not implemented in every device in the path dropping is required. Even in

cases where ECN is implemented in every device, it is impossible to guarantee that the

proper bits exist in a MAC frame to signal an ECN mark because fragmentation could

have already occurred.

At layers below the cable MAC, dropping or otherwise signaling the sending end

to slow down is even more improbably difficult. The Discrete Space Time Coder

(DSTC) converts MAC frames into QAM signals for transmission by the Physical

Media Dependent layer across the wire. At this point concepts such as packets and

end to end signaling no longer exist and traditional AQM activities are impossible.

ASQM is our answer to these problems. ASQM is an IP layer protocol that uses active

sensing to determine delay occurring in all of the queues in the lower layers as shown

in Figure 5.1. The active sensing mechanism consists of packets sent from IP Layer to

IP Layer.

ASQM’s sensing packets have been the subject of much discussion and research

in our laboratory. The goal is to measure the RTT of the access link. I have tried

ICMP packets, SNMP packets and injected packets as well as periodic sensory packets

and sensory packets that are proportionate to the flow. Each method offers trade-offs

between overhead, sensing accuracy, scalability and feasibility. For the sake of brevity

I only discuss sensory packet injection in proportion to the flow in detail.

Our ASQM algorithm generates sensory packets by copying a packet header from

the flow, manipulating the IP address fields, marking, timestamping and injecting them

into the stack. These sensory packets flow from the IP layer at the modem (where they

are created) to the IP layer at the ISP router and back. Upon receiving a returning

sensory packet our ASQM algorithm generates link RTT samples by subtracting the

timestamp from the current time. Then our ASQM algorithm generates a link RTT

estimate by smoothing the estimates according to the calculation detailed in RFC

88

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

6928.3

Many (if not all) ISPs employ DiffServ packet scheduling (not a substitue for AQM)

in order to separate voip and other high priority real time traffic from best effort traffic.

The high priority traffic is forwarded into the Expedited Forwarding (EF) queue and

the best effort traffic goes into the Assured Forwarding queue (AF). The EF queue

serves low throughput flows such as voip and needs no AQM. ASQM operates only

on the AF queue for best effort flows. This assures that sensory packets transmitted

across the access link always go through the correct queuing.

The next step is to find ways to reduce overhead. There are two ways of doing this;

reduce the size of the sensory packet and reducing the ratio of sensory packets relative

to data packets. ASQM uses a 20 byte IP packet header with an 8 byte timestamp.

This is the smallest packet I could design and transmitted at a ratio of one sensory

packet for every four data packets this translates into an overhead of less than 0.5%

when using 1500 byte packets and even less when using larger MTUs. These packets

are forwarded using an iptables rule.4 Smoothing is accomplished using the TCP RTT

calculation.

In our design of ASQM’s sensory packets I have taken a great deal of care to reduce

overhead and to ensure that the packets flow through the correct queue at the ISP.

In any case I expect the ISP to cooperate or at least not actively seek to confuse the

sensory packets. With this cooperation in mind I can take a very accurate measurement

of queuing delay encountered in the access link. The next step is to design our ASQM

algorithm to take corrective action (marking/dropping) when bufferbloat is detected

in the access link.

When the smoothed link estimate reaches a threshold value that I call target (de-
3https://tools.ietf.org/html/rfc6298
4http://linux.die.net/man/8/iptables

89

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

fault 100 ms) then our ASQM algorithm takes corrective action. The 100 ms target

queue size is a default tunable parameter. The default target queue size value was

chosen based on our own experiments and on the default value from Nichols and Jacob-

son [64]. This default value has been shown to give good performance for a wide range

of RTTs from 10 ms to 500 ms. ASQM’s dropping/marking activities are governed by a

control law that produces an approximately linear slowdown from the sender. Starting

with an interval of 100 ms (default) each drop interval is reduced by 1/
√
n where n is

the number of marks/drops since the beginning of marking/dropping activity. When

an active sense measurement less than 100 ms is received marking/dropping activity

ceases and n is reset to zero.

ASQM’s active sensing mechanism measures round trip queuing delay in the access

link and the algorithm takes corrective action (marking/dropping) when the queuing

delay exceeds the target threshold. ASQM is designed to be employed in both the

upload and download direction on the best effort (AF) DiffServ queue. Using this

novel mechanism ASQM is able to remove bufferbloat from the access link even during

peak traffic hours when other algorithms are unable to detect the bufferbloat.

5.3 Evaluation methodology

and testbed

The evaluation I undertook tried to illuminate ASQMs queue management capabil-

ities by comparing ASQM to popular AQM algorithms such as CoDel and PIE [64, 69].

The goal of this evaluation was to demonstrate the throughput delay tradeoffs of each

algorithm both when the Layer 2 link was providing 100% of the rated speed and when

the link is only providing 90% because of traffic. All three algorithms performed well

90

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

CPE
Router

Wireless
and

Wired Users

CMTS

ISP
Gateway
Router

Virtual
Machines

Active Sense

Traffic
Modems

ISP
Network

CDN

CDN

CDN

Test
Modem

VMs

VMs

IP
Layer

IP
Layer

CPE
Router

Figure 5.2: Hardware emulation testbed

when the Layer 2 link was providing 100% of the advertised speed. However, ASQM

continued to perform well even when the Layer 2 link was only providing 90% of the

advertised speed as is common during peak usage hours.

The testbed I constructed is shown in Figure 5.2. The traffic was generated by

virtual user machines and CDNs constructed from PCs running the Linux 3.2 kernel.

The traffic was generated as specified in the IETF draft AQM Evaluation Guidelines;

five repeating TCP transfers of 5MB each, one continuous TCP transfer and four HTTP

web traffic (repeated downloads of 700kB).5 This traffic configuration is specifically

designed to investigate bufferbloat particularly with a mix of short flows in combination

with long flows.

Experiments were performed in the upload (data flowing from the users to the

CDNs) as well as in the download direction. Each experiment was run for 120 seconds

with 5 experimental runs then compiled into throughput and delay CDFs. throughput

and delay CDFs were provided for all three algorithms in each link speed configuration

(100% and 90% of the committed speed). The experiments cover a range of RTTs from

50 ms to 200 ms because this range represents in large part the conditions that will be
5http://tools.ietf.org/html/draft-kuhn-aqm-eval-guidelines-00#section-3.2.4

91

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

found in end user access links. In any case all three of the algorithms (CoDel, PIE and

our ASQM) begin to break down above 250 ms and become unusable by 500 ms.

The CPE routers, the modems, the CMTS and the ISP gateway were constructed

from PCs running the Linux 3.15 kernel. The modems and CMTS were equipped with

ASQM, CoDel and PIE, [64, 69]. This was done using a Hierarchical Token Bucket

(HTB) as in common in routers from Cisco and other manufacturers.6 I note that the

HTB is a packet scheduler and does not manage queue size.

5.4 Evaluation

The goal of this evaluation was first to demonstrate that ASQM performs on par

with CoDel and PIE during non-peak usage hours. All AQM algorithms are expected to

perform well when the link is providing 100% or more of the rated throughput. Secondly

I wanted the evaluation to show that ASQM is the only algorithm that continues to

perform well when the link is providing less than 100% of the rated throughput as is

common during peak usage hours.

I have performed thousands of experiments with a large range of network factors

and parameters; RTT 10-1000 ms, throughput 1-50 Mbps, target queue size 10-500 ms

in the upload and download directions. In order to demonstrate that ASQM achieves

both goals I have chosen to present two sets of graphs for each algorithm. I have chosen

to present two sets of CDFs for each algorithm demonstrating AQM behavior during

non-peak hours (100% committed rate or more) and during peak hours (less than 100%

committed rate)

The modems in both sets of experiments were configured to provide 8 Mbps commit-

ted rate and 16 Mbps peak rate (using HTB borrowing). For the non-peak traffic hours
6http://linux.die.net/man/8/tc-htb

92

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

set the link up to provide the peak rate for each modem simultaneously (48 Mbps).

With this configuration I expected to see about 15.5 Mbps from each modem. For the

peak traffic experiments I set the link up to provide about 90% of the committed rate

for each of the three modems (21 Mbps). With this configuration I expected to see

about 6.5 Mbps from each modem.

The CDF’s presented examine the throughput and delay characteristics of each

algorithm in each traffic condition. I found that all algorithms perform well in terms

of throughput in both peak and non- peak traffic scenarios. In terms of RTT all

algorithms perform well in non-peak traffic scenarios, but, only ASQM performs well

when buffering displacement occurs because of peak traffic conditions.

5.4.1 AQM During Non-Peak Hours (100% Committed Rate

or More)

I present this series of CDFs in order to demonstrate that our ASQM algorithm

performs on par with CoDel and PIE during non-peak traffic hours. In Figure 5.3, I

present the end to end delay curves for a CoDel (with default parameters) managed

link. I examined three different RTTs from 50 ms to 200 ms. CoDel had excellent RTT

response across the range of RTTs. At 50 ms RTT CoDel’s management kept the end

to end delay within a range from 50-75 ms. At 100 ms RTT the end to end delay range

was 100-125 ms and at 200 ms RTT the range was 200-225 ms. In Figure 5.4, I present

corresponding throughput curves for these experiments.

Each link had a committed rate of 8 Mbps with a peak rate of 16 Mbps. Since the

the non-peak hours link had enough throughput to supply all three modems with their

full peak rate each modem was able to develop about 15.5 Mbps measured throughput.

They did not reach 16 Mbps because of overhead from Ethernet, IP and Transport

93

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Actual RTT (milliseconds)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.3: CoDel RTT CDF (Non-Peak Hours)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Bandwidth (Mbps)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.4: CoDel Throughput CDF (Non-Peak Hours)
94

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Actual RTT (milliseconds)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.5: PIE RTT CDF (Non-Peak Hours)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Bandwidth (Mbps)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.6: PIE Throughput CDF (Non-Peak Hours)
95

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

headers. When the RTT was 50 ms the CoDel managed link developed full throughput.

However as the RTT increased the throughput decreased slightly. This is because CoDel

was keeping the queue size at about 100 ms (the default) which is slightly too small

for the 200 ms flow.

In Figure 5.5, I present the end to end delay curves for a PIE managed link across

a range of RTTs (50-200 ms). PIE also had an excellent RTT response. It kept the

actual RTT range experienced by the link to about 50-75 ms for a 50 ms RTT link,

100-125 ms for a 100 ms RTT link and 200-225 ms for a 200 ms link for 90% of the

measurements.

In Figure 5.6, I present the throughput curves for PIE. The CDF curves show

that PIE delivered similar throughput performance as CoDel at 50 and 100 ms RTT.

However, PIE delivered slightly less throughput than CoDel at 200 ms RTT. This

shows that PIE was slightly more aggressive with its dropping policy. In any case,

both of these algorithms deliver excellent queue management characteristics across a

wide range of RTTs.

In Figures 5.7 and 5.8, I present the throughput and delay curves for ASQM. ASQM

also delivered excellent RTT response as shown in Figure 5.7 (although not quite as

good as CoDel and PIE). ASQM allowed the actual measured RTT to exceed the link

RTT by only as much as 50 ms. In Figure 5.8, I present the throughput curves for

ASQM. ASQM acheived slightly more throughput than either CoDel or PIE across the

range of link RTTs (50-200 ms). This is because ASQM is slightly less aggressive than

CoDel or PIE in its dropping policy.

These throughput and delay CDFs show that all three algorithms are fully capable

of delivering excellent queue management during non-peak traffic hours when the link

is capable of providing 100% or more of the rated throughput. Each algorithm performs

slightly better or worse than the others in given scenarios. These slight differences are

96

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Actual RTT (milliseconds)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.7: ASQM RTT CDF (Non-Peak Hours)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Bandwidth (Mbps)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.8: ASQM Throughput CDF (Non-Peak Hours)
97

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Actual RTT (milliseconds)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.9: CoDel RTT CDF (Peak Hours)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Bandwidth (Mbps)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.10: CoDel Throughput CDF (Peak Hours)
98

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

insignificant to the end user. As expected each of these three algorithms performed

well in the non-peak traffic scenario and ASQM is on par with the others.

5.4.2 AQM During Peak Hours (Less than 100% Committed

Rate)

I present this series of CDFs in order to demonstrate that our ASQM algorithm

performs continues to perform excellently during peak traffic hours when CoDel and

PIE cannot. In order to demonstrate this performance I designed a series of experiments

designed to emulate peak traffic periods in ISP networks. All three modems had a

committed rate of 8 Mbps and a peak rate of 16 Mbps. The access link however was

only capable of delivering 21 Mbps (about 90% of the committed rates for all three

modems) as is common during peak traffic hours from 7:00pm to 11:00pm. This caused

bufferbloat displacement defeating PIE and CoDel’s ability to manage the queue size.

ASQM was able to manage the queue size regardless of the bufferbloat displacement.

In Figures 5.9 and 5.10, I present the throughput delay curves for CoDel. Figure 5.9

shows that CoDel was unable to manage the queuing delay in this scenario. The

actual RTTs varied widely from 100 ms to about 1500 ms. This is because bufferbloat

displacement caused the queuing delay to move into the link where CoDel cannot detect

it. Even though the real RTT had skyrocketed to 1500 ms CoDel still did not take

corrective action.

Figure 5.10 shows the throughput curves for CoDel. The throughput is a lot more

variable than in the non-peak traffic hours experiments where CoDel was able to control

the queue. This is symptomatic of an uncontrolled queue. Each modem builds up

the queue until full and then a massive number of packets are dropped causing the

throughput of that particular modem to crash. When this happens the other two

99

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Actual RTT (milliseconds)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.11: PIE RTT CDF (Peak Hours)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Bandwidth (Mbps)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.12: PIE Throughput CDF (Peak Hours)
100

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Actual RTT (milliseconds)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.13: ASQM RTT CDF (Peak Hours)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Bandwidth (Mbps)

50 ms RTT
100 ms RTT
200 ms RTT

Figure 5.14: ASQM Throughput CDF (Peak Hours
101

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

modems grab the free throughput allowing their throughput to temporarily surge.

Figures 5.11 and 5.12 show a similar story for PIE. The actual measured RTTs

varied widely from about 200 ms to about 1200 ms. Like CoDel, PIE was unable

to manage the delay effectively when buffering displacement occurred. Actual RTT

reached 1200 ms without PIE taking corrective action. I present the throughput curves

for PIE in Figure 5.12. Like the throughput curves for CoDel during peak traffic hours

PIE’s throughput curves had a lot of variability. The cause of this variability is that

PIE’s control mechanism is not taking corrective action to control the queue.

Figures 5.13 and 5.14 show the throughput delay CDFs for ASQM during peak

traffic hours. ASQM’s active sensing mechanism detected queuing delay across the

link regardless of the buffering displacement. Because of this ASQM took corrective

action when the queuing delay exceeded its target value. Figure 5.13 I see that ASQM’s

delay curves were virtually unaffected by the buffering displacement. Figure 5.14 shows

the throughput curves for ASQM during peak traffic hours. The throughput is stable

at the full available rate because ASQM was controlling the queuing delay.

This evaluation fulfilled both of its goals. I have shown that all three algorithms

perform well in terms of throughput and RTT during non-peak traffic hours when

the access link provides 100% or more of the rated throughput. Additionally I have

shown that during peak traffic hours when bufferbloat displacement commonly occurs

that the other algorithms are unable to control RTT. Of the three only ASQM is able

to provide a stable throughput at the full available rate with a managed RTT when

bufferbloat displacement caused by peak traffic hours occurs.

102

The Active Sense Queue Management (ASQM) Algorithm Chapter 5

5.5 Summary, Conclusions and Future Work

In this Chapter I have presented ASQM. ASQM is a new class of AQM algorithm

using an active sensing mechanism to detect queuing delay across the entire access

link. Traditional AQM algorithms can only detect queuing delay in the IP layer.

I have presented experiments demonstrating how ASQM is able to manage queuing

delay even when bufferbloat displacement occurs during peak traffic hours.

I have conducted thousands of experiments (besides the few presented in this chap-

ter). I have found that it is irrelevant how much less than 100% of the committed

rate is provided. Even the slightest bit less than 100% causes bufferbloat displacement

and defeats PIE and CoDel’s ability to sense bufferbloat. I chose to present a range of

RTTs from 50 ms to 200 ms. I chose these values because they provide a good range

around the 100 ms target delay. Also I wanted to avoid the loss of throughput that

occurs in all algorithms at larger delays. This is a well known problem in the AQM

field called the Long Delay Flow problem.

PIE and CoDel both purport an operating range of 10 ms to 500 ms, ASQM’s oper-

ating range is about the same. However, all three algorithms begin losing throughput

due to the Long Delay Flow problem at around 250 ms. After 500 ms the algorithms

become unusable due to severe throughput loss. I reserve this problem for future work.

103

Chapter 6

The Bandwidth Delay Product
(BDP) Algorithm

6.1 Introduction

The problem commonly called bufferbloat is the result of poorly applied queuing

theory. Setting the queue size too large causes excessive delay. Setting the queue

size too small causes loss of throughput. Queuing theory gives us the bandwidth

delay product equation, but, using this equation in the Internet has proven to be an

extraordinarily difficult problem. Active Queue Management (AQM) algorithms have

been developed to address this problem. The weakness with these AQM algorithms is

that they are not truly parameterless, but, require some tuning to specific operating

conditions. Our contribution consisting of our Bandwidth Delay Protocol AQM (BDP)

is truly parameterless and able to adapt to any operating conditions without user

intervention.

Packet switched networks such as the Internet require queuing because packet ar-

rival time is non-deterministic. There is no guarantee that an arriving packet will be

served immediately. Instead it will wait in a queue until forwarding service is avail-

able. Properly sizing the queue is a science that is deceptively complex. We have the

104

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

bandwidth delay product equation which says that queue size should be equal to the

product of throughput and delay, Villamazar et al. [86]. If I could reliably predict the

throughput and delay values in advance then I could perfectly size the queue for each

TCP flow. However, in practice, these values have proven to be extraordinarily difficult

to predict in advance.

Packet scheduling is a sister science orthogonal to queue sizing. Packet scheduling

algorithms decide which packet to send next while queue management algorithms de-

cide how long the queues should be [8, 76, 24, 52, 7, 78]. Packet scheduling algorithms

do not solve the queue management problem and queue management algorithms do not

solve the packet scheduling problem. AQM algorithms and packet scheduling should

always work in tandem. In fact, in many cases the two algorithms are built into the

same kernel module.1 The important thing about packet scheduling algorithms (from

an AQM perspective) is their ability to separate queues into individual flows without

which AQM would be unmanageable in practice.

Loss based TCP congestion control algorithms come in many flavors with varying

levels of aggression [17, 65, 61, 10, 56, 25]. Algorithms commonly deployed and active

on the Internet today include Cubic (Linux), Compound (Windows XP), and NewReno

(mac, Windows Vista+), [19, 68, 80]. Loss based TCP protocols seek to fill the slowest

queue as much as possible and tend to increase buffering. The ubiquitously deployed

TCP Cubic and NewReno are loss based. TCP Compound is a hybrid of loss and delay

based TCP. These three protocols are the most popular variants of TCP. However, the

combination of using loss based transport along with large unmanaged queues has lead

to a condition popularly called bufferbloat. The problem has grown worse as the range

of throughput and RTTs serviced by a queue grows more diverse.

Delay based TCP protocols are sensitive to RTT and back off in the face of increas-
1http://man7.org/linux/man-pages/man8/tc-fq codel.8.html

105

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

ing delay. The problem with this approach is that loss based TCP protocols do not

back off causing delay based protocols to lose throughput when in competition with a

loss based protocol such as Cubic or NewReno. Unfortunately on the Internet today

(except in certain controlled conditions) there is always a loss based competitor. Ex-

amples of delay based TCP are Vegas, CAIA CDG, TCP-Nice and Fast, [85, 36, 82, 9].

Scavenger protocols turn this drawback into a feature scavenging throughput when

there are no other competitors and backing off when others are using the through-

put. LEDBAT is an example of a scavenging protocol in use with Bit Torrent2 [75].

Many other TCP variants have been created over the years including equation based

TCP [33], Multipath TCP [34], split TCP [41], and Network Coding TCP (NCTP) [79].

However, no TCP variant exists that can properly manage queue size on the today’s

Internet.

Explicit Congestion Notification (ECN) is a specification that enhances the perfor-

mance of TCP by marking packets rather than dropping them. Using ECN routers

mark packets rather than drop them. The TCP sender reacts to ECN marked packets

as if they were dropped packets [32, 72]. The state of deployment and activation of

ECN in the Internet is poor but improving rapidly, about 40 percent at the core as of

this writing [4, 51]. The problem is that many middleboxes (especially proxies) do not

duplicate the ECN option properly.

The options field in the header is the mechanism designed to accommodate exten-

sions to the TCP protocol. Middleboxes that do not properly duplicate the options

field when copying the TCP header defeat the ECN extension to the TCP protocol [37].

However, if the sender requests ECN and the receiver reply’s ECN okay then the ECN

standard is implemented throughout the Internet path. Using ECN it is possible for a

flow to have zero dropped packets. If the ECN reply is okay then ECN should be used.
2http://www.bittorrent.com/

106

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

An AQM algorithm must be able to use ECN if requested or drop packets if it is not.

The queue sizing problem has been around for a long time. There has been a lot of

studies investigating the problem both in the core (Internet backbone) and at the edge

(near the consumer), [39, 6, 87, 88, 47, 16, 62]. The key difference between the core

and the edge is that in the core it is expected that there will be a large number of long

lived TCP flows therefore the queue size will be on the order of O
(

Capacity√
numberofflows

)
, [3].

In contrast, on the edge I expect to have a more sparsely distributed traffic pattern

and the queue size will be on the order of Capacity ∗Delay, [86].

AQM algorithms are designed to manage queue size. The IETF currently recom-

mends that an AQM algorithm should be implemented in network devices in compli-

ment with a DiffServ scheduler.3 Examples of AQM algorithms include CoDel, PIE,

ARED and many others, [22, 21, 20, 23, 48, 64, 66, 69, 93]. Two problems exist with

the current generation of AQM algorithms. They control only a single queue at the

IP layer while buffering may be displaced to another queue either vertically up and

down the stack or horizontally across the network path to another device. The current

generation of AQM algorithms cannot manage a truly large range of RTTs (from 10 ms

to 1000 ms).

Over the last few decades AQM algorithms have evolved to adapt to these problems.

Three algorithms represent the state of the art in queue sizing today. They are Adaptive

Random Early Discard (ARED), Constant Delay (CoDel) and Proportional Integral

controller Enhanced (PIE), [22, 64, 69]. ARED requires advance knowledge of both

the throughput and delay for tuning. Tuning this algorithm is more of an art than a

science and the consequences of improperly tuning the ARED algorithm can be quite

severe: either excessive queuing delay or loss of throughput. This is the primary reason

why despite having been deployed in routers for decades ARED and its cousins have
3http://tools.ietf.org/html/draft-ietf-aqm-recommendation-03

107

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

not seen widespread activation.

CoDel and PIE are more recent works that attempt to address the parameter prob-

lems encountered by ARED. Though these algorithms were originally advertised as pa-

rameterless, in practice they actually target a predetermined delay. This is a large

improvement over ARED, however, they are still not parameterless. Our contribution

to the field of queue sizing in this chapter is our Bandwidth Delay Protocol (BDP)

AQM. Our BDP AQM requires no parameters self tuning to any bandwidth and delay.

I built a prototype of our BDP algorithm as well as a testbed (including live Inter-

net links) to demonstrate the flexibility and parameterless function of our BDP AQM

algorithm in comparison to ARED, CoDel and PIE.

Calculating throughput in advance (as required for ARED) is a difficult prospect.

The ISP gives us a “committed” rate in their Service Level Agreement (SLA). However,

I know that the actual throughput can (and often does) fall below the “committed”

rate during peak traffic times (from 7:00pm to 11:00pm).4 In addition, the actual rate

can exceed the “committed” rate during non-peak traffic hours because of Hierarchi-

cal Token Bucket (HTB) borrowing or PowerBoost technologies, [5].5 This difficulty

combined with the potentially extreme consequences of getting the queue size wrong

(loss of throughput or excessive delay) have make it unlikely that any algorithm requir-

ing accurate prediction of the throughput parameter unlikely to ever see widespread

activation.

CoDel and PIE eliminate the need to predict throughput in advance by calculating

queue time dynamically. Unfortunately due to the difficulty in predicting the actual

RTT of a flow these algorithms target queuing delay to a static parameter. This can

cause loss of throughput when the natural RTT (without bufferbloat) differs from the
4http://data.fcc.gov/download/measuring-broadband-america/2014/2014-Fixed-Measuring-

Broadband-America-Report.pdf
5http://linux.die.net/man/8/tc-htb

108

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

targeted parameter. Our BDP AQM algorithm uses a novel active sensing mechanism

to calculate the natural RTT of a flow (without the bufferbloat) and then uses a novel

corrective algorithm in order to correct the queue size to match Villamazar’s equation.

Our BDP AQM algorithm correctly matches the queue size to any flow with any

throughput and any RTT without the need for parameters.

6.2 Our Bandwidth Delay Protocol (BDP) Algo-

rithm

I designed our BDP AQM algorithm to solve the problem of creating a truly pa-

rameterless AQM algorithm that can handle any RTT and any throughput. In order

to do this I dynamically sense two values; the measured RTT and the bloat RTT.

Using these two values I am able to calculate when AQM marking/dropping action

should take place for any RTT. Also using these two values I am able to calculate an

appropriate marking/dropping rate for any RTT. In this chapter I use cable modem

technology for an example, however, our algorithm is flexible enough to handle most if

not all network architectures.

Our BDP algorithm is shown in Figure 6.1 configured at the CPE modem in the

upload direction. The download direction has a similar configuration. I note that

it is also possible to configure our BDP algorithm at the ISP router, but, normally

AQM algorithms are deployed at the modem. Packets arriving at the CMTS/DSLAM

router encounter Differentiated Services Code Points, DSCP separating the Expidited

Forwarding (EF) marked (VOIP low latency low throughput) from the Assured For-

warding (AF) or best effort queue. The EF queue needs no further processing and is

immediately forwarded. The best effort queue is further classified by our BDP flow

109

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

classifier.

Our BDP flow classifier separates packets into flows by hashing on a triplet con-

sisting of IP address src/dst and IP Flow ID. This hashing separates each flow into its

own queue. At first glance this may seem an undue burden on the router resources,

however, the hashing algorithms used are very efficient and produce little extra load on

the CPU. In addition, the memory requirements are not increased because each packet

must be stored for forwarding anyways regardless of classification. In any case most

modern routers are already using some sort of classification algorithm.

The next step is to collect the RTT values. Beginning with the measured RTT

value (RTTMeasured) I take a passive RTT measurement for each flow. In the past

there was some concern about the CPU load incurred when doing RTT calculations.

However, this is no longer a problem since the calculation has been reduced to only

a few operations per packet and CPUs have become more powerful. The calculation

from RFC 6289 is as follows:6

RTTvar = (1− beta) ∗RTTvar + beta ∗ |SRTT −R| (6.1)

SRTT = (1− alpha) ∗RTTvar + alpha ∗R (6.2)

Where R is the RTT sample, RTTvar is the variance in RTT measurements, SRTT is

the smoothed RTT estimate. The recommended values for the constants are alpha = 1
8

and beta = 1
4 . This CPU load is well within the capabilities of modern router CPUs.

The bloat RTT value (RTTBloat) can be collected in a number of ways: (1) ICMP

packets, (2) SNMP packets, (3) Self addressed dataless IP packets. In this work I use
6https://tools.ietf.org/html/rfc6298

110

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

CPE Router and Modem ISP DSLAM/CMTS
and Router

EF

RFC 6829
RTT

Measurement

Differentiated
Service Code
Points (DSCP)

BDP Flow
Classifier

(Enqueue)

AF

IP Layer

Cable/DSL MAC

DSTC for OFDM
Over the Wire

Physical Media
Dependent (PMD)

Data
Path

N
et

w
o

rk
 S

ta
ck

Physical Link N
et

w
o

rk
 S

ta
ck

Dequeue

Frames

Symbols

BloatRTT

ActualRTT

Active Sense

Figure 6.1: BDP AQM Algorithm (Download Direction)

(3), [35].7 A self-addressed IP packet with a timestamp for payload is sent for every

four packets on each flow. Each sensory packet is 28 bytes (20 bytes for the IP header

+ 8 bytes for the timestamp). This translates to less than 0.5% overhead with a 1500

byte MTU and less for larger MTU sizes. These packets are forwarded using an iptables

rule.8 The RTT is then calculated using the smoothing algorithm from RFC 6829.9 As

shown in Equation 6.1 and Equation 6.2 this requires only a few operations and well

within the capabilities of modern CPUs.

Having collected both of the values that I needed (RTTmeasured and RTTBloat) I
7Under submission to IFIP Networking 2015
8http://linux.die.net/man/8/iptables
9https://tools.ietf.org/html/rfc6298

111

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

calculate the drop threshold.

RTTBloat > min (RTTMeasured/10, 25) (6.3)

If Equation 6.3 is true then our BDP AQM algorithm enters drop mode. This alows

the queue to build up to about 10% of the flows RTT. Queues need to have some

amount of variability in order to absorb short term bursts. Allowing the queue to fill

to a percentage of the total RTT is better than targeting a fixed queuing delay because

it adapts the amount of allowable delay to the RTT of the flow. Larger RTT flows

require more queue in order to absorb short term bursts than smaller RTT flows. I have

experimented with many different values and 10% represents a good tradeoff between

responsiveness and cutting the queue too short. The 25 ms minimum queuing delay

is designed to prevent the queue target from becoming too small and causing loss of

throughput.

Next our BDP AQM algorithm calculates the interval of time that should elapse

between marked/dropped packets. This calculation is very important because our BDP

AQM algorithm is designed to operate on very small RTTs as well as very large RTTs.

A linear drop ratio of 1/sqrtn where n is the number of dropped packets (used in

CoDel) works well with small RTTs, but, is much too aggressive for large RTTs. A

few observations provided insight into in the design of our interval algorithm. (1) The

interval must scale inversely with the RTT (become less aggressive as the RTT grows

larger. (2) If the bufferbloat is large in comparison to the measured RTT then the

interval should become more aggressive. (3) There is no reason to ever mark/drop

more than 1 packet per RTT (TCP will only respond to 1 drop per RTT anyways).

DROPRatio = RTTMeasured/RTTBloat (6.4)

112

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

CPE
Router

Wireless
and

Wired Users

CMTS

ISP
Gateway
Router

Virtual
Machines

Traffic
Modems

ISP
Network

CDN

CDN

CDN

Test
Modem

VMs

VMs
CPE

Router

CPE
Router

Figure 6.2: BDP Hardware Emulation Testbed

NEXTDrop = RTTMeasured ∗DROPRatio (6.5)

My solution for our BDP AQM algorithm was to use a calculated variable that I

called DROPRatio. A large DROPRatio is less aggressive and a small DROPRatio is

more aggressive. Equation 6.4 ensures that the DROPRatio becomes less aggressive as

the RTT increases and that it becomes more aggressive as the amount of bufferbloat

increases. Equation 6.5 ensures that the marking/dropping interval is never less than

1 RTT.

6.3 BDP Testbed

The goal of our evaluation was to demonstrate the parameterless flexibility of our

BDP AQM algorithm by comparing and contrasting it to the best AQM algorithms

available today. I hope to show that the parameterless flexibility of our BDP AQM

algorithm allows it to operate in all conditions without user intervention even when

113

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

other algorithms require re-tuning. In order to facilitate our evaluation goals I con-

structed the testbed shown in Figure 6.2. The testbed was constructed on the Flexnet’s

Emulab platform for academic research [91]. Flexnet’s Emulab is a cloud platform for

networking research constructed of 1/10 Gigabit as well as multicore PC’s and virtual

LANs.

In Figure 6.2 the (download) data flows from the Content Delivery Networks CDNs

(emulated by pcs) to the ISP network and the ISP gateway router. The ISP gateway

router forwards the data streams to the CMTS node which channelizes the data over

the cable broadband link to each modem. The modem delivers the data streams to

CPE routers which forward the data streams to the virtual machines (constructed from

three pcs). Upload data flows in the opposite direction.

The modems, CPE routers, CMTS, and ISP gateway were constructed from pcs

running the linux 3.17 kernel. The modem nodes were equipped with an array of

AQM algorithms including ARED, CoDel, PIE and our BDP algorithm. Each modem

has an Hierarchical Token Bucket (HTB) rate limiter as is common with Cisco and

other manufacturers equipment.10 Each experiment run time was 120 seconds with 5

experimental runs compiled into a CDF. The next step was to compile a set of graphs

from the thousands of experiments that I conducted to compare and contrast our BDP

AQM algorithm with ARED, CoDel and PIE.

In our BDP experiments, traffic is generated from CDNs to virtual user machines

running the Linux 3.2 kernel. The traffic across each modem was generated according

to the AQM Evaluation Guidlines IETF draft; five repeating TCP transfers of 5MB

each, one continuous TCP transfer and four HTTP web traffic (repeated downloads of

700kB).11 This traffic mix was designed to investigate the effects of bufferbloat with a
10http://linux.die.net/man/8/tc-htb
11http://tools.ietf.org/html/draft-kuhn-aqm-eval-guidelines-00#section-3.2.4

114

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

mixture of long term and short flows in combination.

6.4 Evaluation

In this evaluation I sought to demonstrate the flexibility of our parameterless BDP

AQM algorithm. I did this by comparing our BDP AQM algorithm to the best AQM

algorithms available today: ARED, CoDel and PIE. I want to demonstrate that our

BDP AQM algorithm can auto-tune itself to adapt to any operating conditions even

those that would require re-tuning of the other algorithms.

I have run thousands of experiments with a wide variety of parameter settings w.r.t.

RTT and Throughput (RTTs from 10 ms to 1000 ms) and throughputs from 2 Mbps

to 50 Mbps). Of the thousands of graphs generated I present a subset of the CDFs

generated. I present CDFs from a series of experiments with the modems from the

testbed in Figure 6.2 configured for 16 Mbps committed rate and 32 Mbps peak rate.

The access link was configured for a rate of up to 48 Mbps because that is enough to

provide full throughput to all three modems at the same time.

I present graphs with RTTs from 100 ms to 1000 ms. I chose not to present graphs

with RTTs less than 100 ms because 100 ms and less RTT are very favorable conditions.

All four algorithms performed similarly well in these favorable RTT settings achieving

very nearly full throughput and minimum RTT. I also chose not to present graphs

at RTTs above 1000 ms because these RTT conditions are so terrible that the flows

become severely TCP limited and do not need AQM protection.

I tuned the ARED algorithm for 100 ms with 16 Mbps throughput (the committed

rate of the modem) as recommended in the documentation. This corresponds to a

queue size 16 Mbps ∗ 100 ms = 1.6 Mbits = 200, 000 Bytes. This corresponds to the

following parameters minimum = 70000, maximum = 140000 and limit = 210000.

115

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
a
b
ili

ty

Bandwidth (Mbps)

BDP

PIE

CoDel

ARED

Figure 6.3: AQM Throughput at 100 ms RTT

I ran CoDel with its default parameters target = 10 ms and interval = 100 ms and

PIE with its default parameters of target = 20 ms and tupdate = 30 ms. Our BDP

algorithm is parameterless and has no default settings.

All of the experiments include the slow start phase of Cubic TCP and run for

120 seconds allowing time for the TCP algorithm to settle. In Figure 6.3 I present the

throughput curves for ARED, CoDel, PIE and BDP. All four algorithms performed

well in this experiment because 100 ms is well within their operating ranges. It was

no surprise that ARED performed the best since it is exactly what ARED was tuned

for. Our BDP algorithm was the next best contender with CoDel coming in next and

PIE following a little behind. The performance differences between the algorithms in

these vary favorable conditions were detectable but insignificant from the perspective

116

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

b
a
b
ili

ty

Bandwidth (Mbps)

BDP

PIE

CoDel

ARED

Figure 6.4: AQM Throughput at 250 ms RTT

of user performance. All four did very well.

At 16 Mbps a TCP flow can be expected to achieve about 12 Mbps to 15.5 Mbps

because of overhead (packet headers) and TCP contention with the other flows. The

most interesting thing to note from the CDF in Figure 6.3 is the straightness of the

lines for ARED and our BDP AQM algorithm. The curves for CoDel and PIE were

not nearly so straight. This effect is caused the AQM algorithm correcting (slightly)

too aggressively when the queue built up. This drains the queue quickly but causes

a slight loss of throughput. Once the queue is drained the flow refilled the queue

very aggressively allowing the flow to temporarily exceed its committed rate allowing

PIE, CoDel and ARED to achieve 16 Mbps to 18 Mbps temporarily. Our BDP AQM

algorithm did not exhibit this problem.

117

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

b
a
b
ili

ty

Bandwidth (Mbps)

BDP

PIE

CoDel

ARED

Figure 6.5: AQM Throughput at 500 ms RTT

In Figure 6.4 I show the throughput curves for the algorithms at 250 ms RTT

making the environment a little more challenging. The CDF shows that other than

slow start our BDP AQM algorithm was virtually unaffected. The curve is nice and

straight, does not exceed the maximum expected throughput (about 15.5 Mbps) and

does not go below the minimum expected throughput (about 12 Mbps). The small

portion of the line (less than 10% of the packets) that is below 12 Mbps is due to slow

start. The ARED algorithm came in the next best achieving the minimum expected

(or more) throughput of 12 Mbps for 60% of the packets. This is because the 16 Mbps

at 250 ms RTT was not too far from AREDs tuning of 16 Mbps at 100 ms. However,

a trend of losing throughput due to overly aggressive AQM correction is beginning to

show.

118

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

b
a
b
ili

ty

Bandwidth (Mbps)

BDP

PIE

CoDel

ARED

Figure 6.6: AQM Throughput at 750 ms RTT

The PIE and CoDel algorithms did not fare nearly as well. Both of these algo-

rithms are losing throughput due to aggressive AQM correction. Neither PIE nor

CoDel achieved the expected minimum 12 Mbps throughput for 60% of the packets.

This throughput performance for PIE and CoDel was mediocre and the performance of

ARED was slightly better. Clearly all three algorithms are beginning to lose through-

put and only our BDP AQM performed perfectly. This performance by BDP was

because BDP was able to auto tune its parameters to adapt to the changing RTT

conditions.

In Figure 6.5 I present the throughput CDFs for the algorithms at 500 ms RTT.

This is the maximum of the operating range specified by the documentation for CoDel

and PIE. ARED does not have an operating range since it is meant to be tuned to

119

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

b
a
b
ili

ty

Bandwidth (Mbps)

BDP

PIE

CoDel

ARED

Figure 6.7: AQM Throughput at 1000 ms RTT

specific operating conditions and of course our BDP AQM algorithm is parameterless

and auto-tunes itself to any operating conditions. Our BDP AQM algorithm was able

to auto-tune itself to the challenging RTT conditions. After slow start (about 22%

of the packets) our BDP AQM algorithm operated between 14 Mbps and 15.5 Mbps

well within the expected minimum (12 Mbps) and maximum (15.5 Mbps). Once again

our BDP AQM algorithm turned in a near perfect performance demonstrating its

parameterless flexibility.

ARED, CoDel and PIE did not fare well in this more challenging RTT scenario.

The ARED algorithm only managed about 6 Mbps for 50% of the packets clearly

ARED is too far out of its tuning and is much too aggressive with its AQM correction.

This performance by ARED was expected because AREDs operating range is much

120

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
a
b
ili

ty

Actual RTT (milliseconds)

1000 ms

750 ms

500 ms

250 ms

100 ms

Figure 6.8: BDP AQM RTT CDF

narrower (though not clearly defined) than CoDel or PIE. However, CoDel and PIE did

not perform much better with CoDel managing about 7 Mbps and PIE about 8 Mbps

for 50% of the packets. The loss of throughput experienced by ARED, CoDel and

PIE was severe (nearly half) and noticeable. Users operating these algorithms in the

500 ms RTT condition would clearly notice a degradation in throughput performance.

Although the degradation in throughput was expected in the case of ARED, it is

surprising in the case of CoDel and PIE because both of these algorithms are supposed

to be able to operate at this RTT.

In Figure 6.6 I present the throughput CDFs for the algorithms at 750 ms RTT.

At 750 ms RTT TCP is RTT limited and the maximum throughput is 11 Mbps with a

minimum of about 8 Mbps. The CDF shows that once again our BDP AQM algorithm

121

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
a
b
ili

ty

Actual RTT (milliseconds)

1000 ms

750 ms

500 ms

250 ms

100 ms

Figure 6.9: CoDel AQM RTT CDF

goes through slow start (about 22% of the packets) and then reaches a stable oper-

ating throughput between 8 Mbps and 11 Mbps. Our BDP AQM algorithm adapted

to these extremely challenging operating conditions reaching the maximum operating

throughput.

The most interesting thing about this CDF is the curve for ARED. The ARED

algorithm actually fared better at 750 ms RTT than at 500 ms. This was because the

TCP RTT limitation reduced the throughput ARED was expecting a 16 Mbps flow and

it encountered a 10 Mbps flow. The reduced throughput brought ARED closer in tune.

The CoDEL and PIE algorithms did not fare nearly as well with 50% of the packets at

about 4 Mbps or less. These algorithms were clearly not expecting to encounter this

large of an RTT and are too aggressively applying AQM corrective action.

122

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
a
b
ili

ty

Actual RTT (milliseconds)

1000 ms

750 ms

500 ms

250 ms

100 ms

Figure 6.10: PIE AQM RTT CDF

I present our last throughput CDF in Figure 6.7 at 1000 ms RTT. This is about as

large of an RTT as can reasonably expected during typical Internet usage (although

multi-hop satellite links can have larger RTTs). TCP is further RTT limited at this

RTT to between about 7 or 8 Mbps. Our BDP algorithm auto-tuned itself to adapt

to the challenging conditions achieving the maximum possible throughput in these

extremely challenging RTT conditions. The ARED algorithm also did surprisingly well

having been helped out by the further reduction in throughput. CoDel and PIE both

suffered from extreme loss of throughput with 90% of the packets achieving 4 Mbps or

less because of too aggressive AQM correction.

The next step is to examine the RTT characteristics for each of the four algorithms.

I present the RTT CDFs for each of the four algorithms separately for the sake of clarity.

123

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
a
b
ili

ty

Actual RTT (milliseconds)

1000 ms

750 ms

500 ms

250 ms

100 ms

Figure 6.11: ARED AQM RTT CDF

I present BDP in Figure 6.8, CoDel in Figure 6.9, PIE in Figure 6.10 and ARED

in Figure 6.11. The RTT characteristics for each algorithm are shown at 100 ms,

250 ms, 500 ms, 750 ms and 1000 ms. There are minor differences between the RTT

characteristics of each algorithm. However, these differences are insignificant. This is

the point of presenting all four graphs to demonstrate that each algorithm performs

excellently in terms of RTT.

6.5 Conclusions and Future Work

In this work I have presented our parameterless auto-tuning BDP AQM algorithm.

Our BDP AQM algorithm is able to adapt itself to any throughput and any RTT

124

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

that it might encounter by calculating the RTT of a flow and separating it into two

components, the bloat RTT and the natural RTT. Using this information our BDP

AQM algorithm is able to determine whether a flow is actually bloated or if it just has

a large RTT and to calculate a marking/dropping interval that is adaptive to the RTT

of a flow.

I compared our BDP AQM algorithm to the three best AQM algorithms available

today; CoDel, PIE and ARED. All four of the algorithms performed excellently in

terms of RTT across a large range of RTTs up to 1000 ms. In terms of throughput the

ARED algorithm did surprisingly well, but, has the drawback of requiring specialized

tuning for specific operating conditions. CoDel and PIE require less tuning and are

able to operate over a larger range of operating conditions than ARED, however, as

our experiments have shown they suffer from significant loss of throughput at RTTs

above 250 ms that would require significant tuning to fix.

Our BDP AQM algorithm is truly parameterless and needs no tuning regardless of

operating conditions. I have conducted thousands of experiments with many through-

puts (from 2 Mbps to 50 Mbps) and many RTTs (from 10 ms to 1000 ms). Our

experiments have shown that our BDP AQM algorithm gets excellent results in terms

of throughput and RTT throughout any range of operating conditions. Of this ex-

tremely large set of graphs produced by our experiments I chose to present a set of

throughput and RTT CDFs at 16 Mbps and RTTs from (100 ms to 1000 ms).

With the exception of ARED all of these AQM algorithms are throughput agnostic

and other throughput settings will produce similar results. I chose 16 Mbps because

this throughput is representative of a typical consumer access link in America today

according to the FCC study Measuring Broadband in America 2014. I did not choose

to present CDF’s below 100 ms RTT because all of the algorithms perform well in

these favorable conditions. I also chose not to present CDFs above 1000 Mbps because

125

The Bandwidth Delay Product (BDP) Algorithm Chapter 6

TCP is severely RTT limited under these challenging conditions.

I investigated the use of our BDP AQM algorithm implemented at the CPE modem

because this is a typical configuration used in consumer access links. However, other

configurations are possible. Our BDP AQM algorithm could be implemented at the ISP

gateway router or in the user device in order to serve wireless broadband connections. In

addition, AQM algorithms can have interesting interactions with scavenging protocols.

I leave this investigation to future work.

126

Chapter 7

Conclusions

Internet services have become a a vital part of the lives of billions of people world-

wide. Providing these services twenty four hours a day seven days a week had become

indispensable to the quality of life for people across the planet. Ensuring that these

services are maintained and that the needs of future services met requires that the

Internet’s underlying services remain healthy and in good working order. In order to

maintain the health of the Internet I have identified two key metrics that indicate the

health of the Internet. These metrics are bandwidth and delay. Bandwidth and delay

correspond to how many Internet objects can be delivered over time. Regardless of how

much of this resource is actually used these two metrics indicate how much Internet

resource is available. The availability of Internet resources is important because the

resource could be used to deliver life improving services.

I have identified two key ways in which Internet resources are wasted. This waste

occurs when the amount of packet loss is so great that it overcomes the systems that

have been designed and deployed to overcome loss are overwhelmed. Typically this

amount of loss occurs over wireless links in rural areas where wireless connections

are weak and there is much interference and in saturated metropolitan areas where

collisions cause excessive packet loss. The second type of waste occurs when the network

queue is improperly sized for the flows being serviced. Both of these types of waste

127

Conclusions Chapter 7

can cause extreme loss of bandwidth and excessive delay. In this dissertation I have

developed new techniques that mitigate these both of these problems.

In order to address the loss of bandwidth caused by excessive packet loss in wireless

systems that are operating in challenging environments either rural or metropolitan I

have developed the Receiver Driven Rate Adaptation (RDRA) algorithm. RDRA is

a parallel TCP system that increases robustness against packet loss. RDRA divides

data over 8 TCP streams. Eight TCP streams are more robust against packet loss

than a single TCP stream because losses during a single RTT only affect one of the

streams. A comparison demonstrates this effect. A single stream TCP operating at

8 Mbps encountering packet loss will halve its congestion window reducing throughput

to 4 Mbps. If that same 8 Mbps is divided over eight TCP streams operating at 1 Mbps

when packet loss occurs it will reduce the throughput of 1 of the streams to 0.5 Mbps

leaving the others operating at 1 Mbps for a total of 7.5 Mbps. Though reality does not

always work this way and sometimes the loss of multiple packets hits multiple streams

the distribution of load over multiple streams still increases robustness.

Parallel TCP creates an unfairness problem because of the multiple streams. A flow

operating with 8 TCP streams will achieve 8 times the throughput as a flow operating

with 1 TCP stream. RDRA addresses this problem by calculating the throughput

expected of a single stream TCP and reducing the flow of each stream accordingly so

that RDRA’s throughput more closely matches the throughput of a single stream TCP.

RDRA is both more robust against packet loss than a single stream TCP and more

fair than a parallel TCP.

The second technique I developed to address the loss of bandwidth caused by exces-

sive packet loss is called the Fast Wireless Protocol (FWP). The FWP system increases

aggregation of frames in order to increase throughput and overrides the MAC layer re-

transmission in order to hide wireless packet losses from the transport layer above it.

128

Conclusions Chapter 7

The original goals of FWP had Single Input Single Output (SISO) systems in mind.

However, it has turned out that Multiple Input Multiple Output (MIMO) and even

Multi User-MIMO (MU-MIMO) systems have become overwhelmingly popular. In

fact, increasing aggregation is bad for MU-MIMO. In light of this outcome I do not

recommend using the increased aggregation called for in FWP. However overriding the

MAC layer retransmission scheme is still a good idea. The FWP system hides frame

loss from the transport layer by injecting temporary frames in place of frames lost

during wireless transmission. This hides the loss from the transport system and pre-

vents inappropriate backoff by the TCP. The frames are then retransmitted later from

a session layer retransmission system.

The second problem addressed in this dissertation is the excessive delay and or loss

of bandwidth caused by inappropriate queue sizing. The science of queue management

is not new and two modern techniques already exist in order to reduce the excessive

queuing part of the problem. However, two rather large areas of this discipline still

remain unaddressed. These areas are the ability to address the queue sizing problem

wherever it occurs in the access link, and the ability to calculate the right queue

size regardless of the characteristics of the flow. I have designed two novel queue

management techniques that address these problems.

The first technique that I designed addresses the problem of managing the queue size

wherever it is found throughout the access link. Active Queue Management (AQM)

techniques exist. but, they cannot control queues outside of the queue that they

monitor in the IP layer. My algorithm is called Active Sense Queue Management

(ASQM) and it uses an active sensing technique to discover the queue size throughout

the access link rather than simply monitoring the size of the queue at the IP layer.

This sensory mechanism allows ASQM to control queues throughout the access link

even when the queuing occurs in layers below the IP. This is of particular importance

129

Conclusions Chapter 7

since the Federal Communications Commission (FCC) study over the years 2010-2014

has indicated that during peak hours ISPs often do not provide 100% of the rated

bandwidth on their customer access links. When this happens queues within the lower

layers build up causing excessive delay. ASQM monitors these queues and provides

queue management at all times.

The second technique that I designed to address the queue sizing problem is called

the Bandwidth Delay Protocol (BDP). The BDP algorithm is unique among AQM

algorithms in that it separates individual flows into queues and calculates their band-

width delay product producing a queue of the correct size for each flow. The BDP

algorithm accomplishes this using a combination of active and passive sensory tech-

niques to discover the specific queue size required for each flow. I took special care in

crafting the active sensory technique reducing the overhead incurred to 0.5% or less.

The BDP algorithm produces excellent bandwidth and delay characteristics for small

delay flows up to 250 ms RTT (just as CoDel, PIE and ASQM) and continues to pro-

duce excellent results for larger delay flows from 250 ms to 1000 ms where the other

algorithms lose bandwidth because they size the queues too small. The BDP algorithm

can manage any flow at any bandwidth and any RTT.

These four algorithms address fundamental problems faced in the Internet today

and problems that will be faced in the future. The RDRA and FWP algorithms

address the problem of extreme packet loss causing inappropriate backoff and loss of

bandwidth. This is a problem that will always be faced on the edge of the Internet

where challenging wireless transmission characteristics cause a great deal of packet loss

and in saturated metropolitan conditions where collisions also cause extreme packet

loss. The ASQM and BDP algorithms address the queue sizing problem. The queue

sizing problem is ubiquitous across the Internet since packet switching requires queuing

and queuing requires queue sizing. The queue sizing problem can move about across

130

Conclusions Chapter 7

a link occurring at whichever queue is the slowest. The ASQM algorithm addresses

this problem by managing the queue size across the entire link rather than at a single

queue. The BDP algorithm addresses the problem of queue sizing for individual flows.

Each flow has its own unique bandwidth delay product and requires a specific queue

size tailored to its needs.

These four algorithms that I have developed address the fundamental problem of

optimizing bandwidth and delay for all flows on the Internet. The first two algorithms

RDRA and FWP ensure that wireless connections in the last mile faced with challeng-

ing conditions can achieve a closer share of their fair bandwidth. This addresses the

important problem of empowering underserved flows allowing them more bandwidth.

The second two algorithms ASQM and BDP address the queue sizing problem. This

ensures that no flow on the Internet will be bandwidth limited because of its queue

size regardless of its Round Trip Time delay characteristics and that no flow will either

experience or cause excessive delay.

Between these four algorithms I have optimized the flow of data on the Internet

such that each flow can obtain its fair share of the bandwidth resource at its minimum

latency. By optimizing these two characteristics latency and delay I have provided for

the efficient and effective delivery of Internet objects. The smooth and efficient delivery

of Internet objects ensures the continued delivery of current and future life improving

Internet services for billions of people around the world who rely on these services on

a daily basis.

7.1 Future Work

It has been widely reported in the press that business disputes between providers

have been resulting in congestion at interconnection points and network paths lead-

ing to reduced bandwidth and increased latency. I cannot solve this problem since

131

it is a business problem and not a scientific one and I can do nothing about the re-

duced bandwidth because it is intentionally causes the latency is a secondary effect

and can be solved scientifically. Effectively what has happened is one provider has re-

duced the bandwidth for another provider and changed the bandwidth delay product.

An appropriate change in the queue size will eliminate the increased latency. Using

our ASQM techniques a provider experiencing this problem could send active sensory

packets through the provider network that is slowing them down. This would discover

the queue size necessary for the flow and the provider could adjust their queue size

appropriately eliminating the excess latency.

The queue management techniques (ASQM and BDP) expect the core of the Inter-

net to be faster than the edge of the Internet. This is normally the case and is generally

accepted as fact. However, it is not a given that this will always be the case in the

future. It could be that new access technologies outstrip the pace of improvement in

core technologies causing the Internet topology to flip. This would result in the con-

dition that the edge of the Internet is the faster part and that queuing occurs in the

core. Our active sensory techniques could also be used in this case. The sender would

need to participate sending active sensory packets to be returned by the faster edge

router allowing the discovery of the correct queue size. This would allow the sender to

size the queues appropriately minimizing delay and maximizing bandwidth.

132

Bibliography

[1] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP. In MMSYS, pages 157–
168, 2011.

[2] E. Altman, D. Barman, B. Tuffin, and M. Vojnovc. Parallel TCP Sockets: Simple
Model, Throughput and Validation. In Infocom, page 17. Microsoft Research,
Sept. 2005.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers. SIGCOMM,
34(4):281–292, Aug. 2004.

[4] S. Bauer, R. Beverly, and A. Berger. Measuring the State of ECN Readiness in
Servers, Clients, and Routers. In Internet Measurement Conference, pages 171–
180, 2011.

[5] S. Bauer, D. Clark, and W. Lehr. PowerBoost. In HomeNets, pages 7–12, 2011.

[6] N. Beheshti, Y. Ganjali, M. Ghobadi, N. Mckeown, and G. Salmon. Experimental
Study of Router Buffer Sizing. In IMC, pages 197–210, 2008.

[7] J. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms. Net-
working, 5(5):675–689, Oct. 1997.

[8] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
B. Davie, J. Wroclawski, and E. Felstaine. A Framework for Integrated Services
Operation over Diffserv Networks. RFC 2998, Nov. 2000.

[9] L. Brakmo and L. Peterson. TCP Vegas: end to end congestion avoidance on a
global Internet. Communications, 13(8):1465–1480, Oct. 1995.

[10] C. Caini and R. Firrincieli. TCP Hybla: a TCP enhancement for heterogeneous
networks. Satellite Communications and Networking, 22(5):547–566, 2004.

[11] L. Chen. TFRC Modeling and Its Applications. Master’s thesis, University of
Hong Kong, China, 2003.

133

[12] M. Chen and A. Zakhor. Rate control for streaming video over wireless. In
INFOCOM, pages 1181–1190, Mar. 2004.

[13] M. Chen and A. Zakhor. Flow Control Over Wireless Network and Application
Layer Implementation. In INFOCOM, pages 1–12, Apr. 2006.

[14] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms for con-
gestion avoidance in computer networks. Computer Networks and ISDN Systems,
17(1):1–14, 1989.

[15] L. Cicco and S. Mascolo. An experimental investigation of the Akamai adaptive
video streaming. In HCI, pages 447–464, 2010.

[16] A. Dhamdhere and C. Dovrolis. Open issues in router buffer sizing, 2006.

[17] N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi. Proportional rate reduction
for TCP. In IMC, pages 155–170, 2011.

[18] J. Erman, A. Gerber, K. Ramadrishnan, S. Sen, and O. Spatscheck. Over the top
video: the gorilla in cellular networks. In IMC, IMC, pages 127–136, 2011.

[19] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno and SACK
TCP. SIGCOMM, 26(3):5–21, July 1996.

[20] W. Feng, D. Kandlur, D. Saha, and K. Shin. A self-configuring RED gateway. In
INFOCOM, volume 3, pages 1320–1328, Mar. 1999.

[21] W. Feng, K. Shin, D. Kandlur, and D. Saha. The BLUE active queue management
algorithms. Networking, 10(4):513–528, Aug. 2002.

[22] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for in-
creasing the robustness of RED’s active queue management. Preprint, available
at http://www. icir. org/floyd/papers. html, 2001.

[23] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-
ance. Networking, 1(4):397–413, Aug. 1993.

[24] S. Floyd and V. Jacobson. Link-sharing and resource management models for
packet networks. Networking, 3(4):365–386, Aug. 1995.

[25] C. Fu and S. Liew. TCP Veno: TCP enhancement for transmission over wireless
access networks. Communications, 21(2):216–228, Feb. 2003.

[26] A. Gember, A. Anand, and A. Akella. A Comparative Study of Handheld and Non-
handheld Traffic in Campus Wi-Fi Networks. In Passive and Active Measurement,
volume 6579 of Lecture Notes in Computer Science, pages 173–183. 2011.

134

[27] A. Goel, C. Krasic, and J. Walpole. Low-latency adaptive streaming over tcp.
Transactions Multimedia Computing, Communications, and Applications (TOM-
CCAP), 4(3):1–20, Sept. 2008.

[28] h. Schulzrinne, G. Fokus, and S. Casner. RTP: A Transport Protocol for Real-
Time Applications. RFC 1889, Internet Engineering Task Force, Jan. 1996.

[29] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP variant.
SIGOPS, 42(5):64–74, July 2008.

[30] T. Hacker, B. Athey, and B. Noble. The end-to-end performance effects of parallel
TCP sockets on a lossy wide-area network. In Parallel and Distributed Processing
Symposium, pages 434–443, 2002.

[31] T. Hacker, B. Noble, and B. Athey. Improving throughput and maintaining fair-
ness using parallel TCP. In INFOCOM, pages 2480–2489, Mar. 2004.

[32] T. Hamann and J. Walrand. A new fair window algorithm for ECN capable TCP
(new-ECN). In INFOCOM, volume 3, pages 1528–1536, Mar. 2000.

[33] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): Protocol Specification. Technical Report 5348, Internet Engineering Task
Force, Sept. 2003.

[34] S. Hassayoun, J. Iyengar, and D. Ros. Dynamic Window Coupling for multipath
congestion control. In ICNP, pages 341–352, Oct. 2011.

[35] D. Havey and K. Almeroth. Active Sense Queue Management (ASQM). In Under
submission to IFIP Networking 2015, 2015.

[36] D. Hayes and G. Armitage. Revisiting TCP Congestion Control Using Delay
Gradients. In Networking, volume 6641 of Lecture Notes in Computer Science,
pages 328–341. Springer Berlin Heidelberg, 2011.

[37] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. Is
it still possible to extend TCP? In IMC, pages 181–194, 2011.

[38] P. Hsiao, H. Kung, and K. Tan. Video over TCP with receiver-based delay control.
In NOSSDAV, NOSSDAV, pages 199–208, 2001.

[39] S. Iyer, R. Kompella, and N. McKeown. Designing packet buffers for router
linecards. Transactions on Networking, 16:705–717, 2008.

[40] R. Jain. A Delay-based Approach for Congestion Avoidance in Interconnected
Heterogeneous Computer Networks. SIGCOMM, 19(5):56–71, Oct. 1989.

135

[41] R. Jain. Design and implementation of split tcp in the linux kernel. PhD thesis,
2007.

[42] C. Jin, D. Wei, and S. Low. FAST TCP: motivation, architecture, algorithms,
performance. In INFOCOM, volume 4, pages 2490–2501, Mar. 2004.

[43] W. Jingyuan, J. Wen, J. Zhang, and Y. Han. TCP-FIT: An Improved TCP
Congestion Control Algorithm and its Performance. In INFOCOM, pages 1–12,
Apr. 2011.

[44] D. Johnson. Performance Analysis of Mesh Networks in Indoor and Outdoor
Wireless Networks. Master’s thesis, University Of Pretoria, 2007.

[45] D. Johnson. Re-architecting Internet Access and Wireless Networks for Developing
Regions. PhD thesis, University of California Santa Barbara, Goleta, Ca United
States, 2013.

[46] H. Jung, S. Kim, H. Yeom, S. Kang, and L. Libman. Adaptive delay-based con-
gestion control for high bandwidth-delay product networks. In INFOCOM, pages
2885–2893, Apr. 2011.

[47] C. Kellett, R. Shorten, and D. Leith. Sizing Internet Router Buffers, Active Queue
Management, and the Lur’e Problem. IEEE Decision and Control, 2006.

[48] W. Kim and B. Lee. FRED fair random early detection algorithm for TCP over
ATM networks. Electronics Letters, 34(2):152–154, Jan. 1998.

[49] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340, Mar. 2006.

[50] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: congestion control without
reliability. SIGCOMM, 36(4):27–38, Aug. 2006.

[51] M. Kuhlewind, S. Neuner, and B. Trammell. On the State of ECN and TCP
Options on the Internet. In Passive and Active Measurement, pages 135–144,
2013.

[52] S. Kunniyur and R. Srikant. Analysis and design of an adaptive virtual queue
(AVQ) algorithm for active queue management. In SIGCOMM, pages 123–134,
2001.

[53] R. Kuschnig, I. Kofler, and H. Hellwagner. An evaluation of TCP-based rate-
control algorithms for adaptive internet streaming of H.264/SVC. In MMSYS,
pages 157–168, 2010.

136

[54] R. Kuschnig, I. Kofler, and H. Hellwagner. Improving Internet Video Streaming
Performance by Parallel TCP-Based Request-Response Streams. In Consumer
Communications and Networking Conference (CCNC), pages 1–5, 2010.

[55] R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of HTTP-based request-
response streams for internet video streaming. In MMSYS, pages 245–256, 2011.

[56] S. Liu, T. Bacsar, and R. Srikant. TCP Illinois: a loss and delay-based congestion
control algorithm for high-speed networks. In Performance Evaluation Methodol-
gies and Tools, 2006.

[57] D. Lu, Y. Qiao, P. Dinda, and F. Bustamante. Modeling and Taming Parallel
TCP on the Wide Area Network. Parallel and Distributed Processing Symposium,
1:68b, 2005.

[58] M. Luby, T. Stockhammer, and M. Watson. IPT} Systems, Standards and Archi-
tectures: Part II - Application Layer FEC In IPTV Services. IEEE Communica-
tions, 46(5):94–101, May 2008.

[59] m. van der Schaar, s. Krishnamachari, s. Choi, and x. Xu. Adaptive cross-layer
protection strategies for robust scalable video transmission over 802.11 WLANs.
IEEE Journal on Communications, 21(10):1752–1763, Dec. 2003.

[60] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On Dominant Characteristics
of Residential Broadband Internet Traffic. In IMC, IMC, pages 90–102, 2009.

[61] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP westwood:
Bandwidth estimation for enhanced transport over wireless links. In Mobile Com-
puting and Networking, pages 287–297, 2001.

[62] S. Mascolo and F. Vacirca. Congestion control and sizing router buffers in the
internet. In Decision and Control, and the European Control Conference (CDC-
ECC), volume 2005, pages 6750–6755, 2005.

[63] T. Nguyen and S. Cheung. Multimedia streaming using multiple TCP connections.
In Performance, Computing, and Communications Conference (IPCCC), pages
215–223, Apr. 2005.

[64] K. Nichols and V. Jacobson. Controlling queue delay. ACM Communications,
55(7):42–50, July 2012.

[65] L. Ong and J. Yoakum. A Framework for Integrated Services Operation over
Diffserv Networks. RFC 3286, May 2002.

[66] T. Ott, T. Lakshman, and L. Wong. SRED: stabilized RED. In INFOCOM,
volume 3, pages 1346–1355, Mar. 1999.

137

[67] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput:
A Simple Model and Its Empirical Validation. SIGCOMM Commununications,
28(4):303–314, Oct. 1998.

[68] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Reno Perfor-
mance: A Simple Model and Its Empirical Validation. Networking, 8(2):133–145,
Apr. 2000.

[69] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F. Baker, and
B. VerSteeg. PIE: A lightweight control scheme to address the bufferbloat problem.
In High Performance Switching and Routing, pages 148–155, July 2013.

[70] D. Pei. Time for a TCP Benchmark Suite? 2008.

[71] V. Pejovic. Adaptive and Resource-Efficient Rural Area Wireless Networks. PhD
thesis, University of California Santa Barbara, Goleta, Ca United States, 2013.

[72] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP, 2001.

[73] s. Molna, b. Sonkoly, and T. Trinh. A Comprehensive TCP Fairness Analysis
in High Speed Networks. Computer Communications, 32(13-14):1460–1484, Aug.
2009.

[74] H. Schulzrinne, S. Casner, R. Fredrick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550, Internet Engineering Task Force,
July 2003.

[75] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Datagram Congestion
Control Protocol (DCCP). RFC 6817, Mar. 2012.

[76] D. Stiliadis and A. Varma. Efficient fair queueing algorithms for packet-switched
networks. Networking, 6(2):175–185, Apr. 1998.

[77] T. Stockhammer, G. Liebl, and M. Walter. Optimized H.264/AVC-based bit
stream switching for mobile video streaming. EURASIP, 2006:1–19, Jan. 2006.

[78] I. Stoica, H. Zhang, and T. Ng. A hierarchical fair service curve algorithm for link-
sharing, real-time, and priority services. Networking, 8(2):185–199, Apr. 2000.

[79] J. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher, and
J. Barros. Network Coding Meets TCP: Theory and Implementation. Proceedings
of the IEEE, 99(3):490–512, Mar. 2011.

[80] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for
High-Speed and Long Distance Networks. In INFOCOM, pages 1–12, Apr. 2006.

138

[81] A. Tang, L. Andrew, M. Chiang, and S. Low. Transport Layer. In Encyclopedia
of Computer Science and Engineering, pages 2930–2938. Jan. 2009.

[82] A. Tang, J. Wang, S. Hegde, and S. Low. Equilibrium and Fairness of Networks
Shared by TCP Reno and Vegas/FAST. Telecommunication Systems, 30(4):417–
439, 2005.

[83] A. Tang, J. Wang, S. Low, and M. Chiang. Equilibrium of heterogeneous conges-
tion control: existence and uniqueness. IEEE/ACM Transactions on Networking,
15(4):824–837, Aug. 2007.

[84] A. Tang, X. Wei, S. Low, and M. Chiang. Equilibrium of heterogeneous conges-
tion control: optimality and stability. IEEE/ACM Transactions on Networking,
18(3):844–857, June 2010.

[85] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A Mechanism for
Background Transfers. In SIGOPS, pages 329–343, 2002.

[86] C. Villamizar and C. Song. High Performance TCP in ANSNET. SIGCOMM,
24(5):45–60, Oct. 1994.

[87] A. Vishwanath, V. Sivaraman, and M. Thottan. Perspectives on router buffer
sizing, 2009.

[88] F. Wang, M. Hamdi, and J. Muppala. Using parallel DRAM to scale router buffers.
IEEE Transactions on Parallel and Distributed Systems, 20:710–724, 2009.

[89] D. Wei, P. Cao, and S. Low. Tcp pacing revisited. In INFOCOM. Citeseer, 2006.

[90] D. D. M. Welzl. MulTFRC: providing weighted fairness for multimediaapplications
(and others too!). SIGCOMM, 39(3):5–12, June 2009.

[91] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An Integrated Experimental Environment for
Distributed Systems and Networks. SIGOPS, 36(SI):255–270, Dec. 2002.

[92] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation
and evaluation of congestion control for multipath TCP. In Networked Systems
Design and Implementation, 2011.

[93] B. Wydrowski and M. Zukerman. GREEN: an active queue management algorithm
for a self managed Internet. In IEEE Communications, volume 4, pages 2368–2372,
2002.

139

	Curriculum Vitae
	Abstract
	List of Figures
	Introduction
	Motivation and Overview
	Thesis Statement
	Dissertation Organization
	Contributions

	The Receiver Driven Rate Adaptation (RDRA) Algorithm
	Introduction
	Testbed and Experimental Perimeters
	Introduction to Parallel TCP
	Receiver Driven Rate Adaptation (RDRA)
	Conclusions and Future Directions for RDRA

	The Fast Wireless Protocol (FWP) Algorithm
	Background
	Fast Wireless Protocol
	FWP Implementation
	Evaluation
	Conclusions and Future Work

	A Cross-Disciplinary Approach to Queue Sizing
	Introduction
	Queuing Theory and Network Topology
	Transport and Network Sensing
	Packet Scheduling and Queue Management Algorithms
	Conclusions

	The Active Sense Queue Management (ASQM) Algorithm
	Introduction
	Active Sense Queue Management
	Evaluation methodologyand testbed
	Evaluation
	Summary, Conclusions and Future Work

	The Bandwidth Delay Product (BDP) Algorithm
	Introduction
	Our Bandwidth Delay Protocol (BDP) Algorithm
	BDP Testbed
	Evaluation
	Conclusions and Future Work

	Conclusions
	Future Work

	Bibliography

