
 

UNIVERSITY OF CALIFORNIA 

Santa Barbara 

 

 

Influences of coastal fog on the physiology and distribution of  

Bishop pine on Santa Cruz Island, California 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Geography 

 

by 

 

Sara Alexa Baguskas 

 

Committee in charge: 

Professor Christopher J. Still, Chair 

Professor Jennifer Y. King, co-Chair 

Professor Carla M. D’Antonio 

Dr. Craig D. Allen 

 

September 2014



The dissertation of Sara Alexa Baguskas is approved. 

 

  ____________________________________________  

  Jennifer Y. King 

 

  ____________________________________________  

  Carla M. D’Antonio 

  

 

  ____________________________________________  

  Craig D. Allen 

 

  

  ____________________________________________  

  Christopher J. Still, Committee Chair 

 

September 2014 



 

 iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Influences of coastal fog on the physiology and distribution of  

Bishop pine on Santa Cruz Island, California 

 

Copyright © 2014 

by 

Sara Alexa Baguskas



iv 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee for contributing their time and energy in support of 

the success of this research. First, my primary advisor, Christopher Still, provided a 

consistent voice of encouragement since day 1. His inquisitive and considerate nature 

fostered my exploration of the natural world. Jennifer King, my co-advisor, set an example 

of excellence of how to thoughtfully navigate the scientific process as a critical thinker. As a 

true student advocate, she attended all of my research presentations and provided timely 

comments on pieces of writing. Carla D’Antonio’s aptitude for thinking and communicating 

ideas clearly influenced my growth as a scientist at each stage in my graduate career. As a 

U.S.G.S. researcher, Craig Allen provided a refreshing and unique perspective to my 

scientific inquiry. I would also like to thank Bodo Bookhagen for contributing his expertise 

to the development of my remote sensing skills, an area of research that was unfamiliar to 

me at the beginning.  

Conducting research is not a one-person job. I have had the pleasure to work with many 

volunteers who accompanied me out to Santa Cruz Island for field sampling (including my 

mother!) and shared their excitement over the natural wonders of the island. In particular, 

Ryan Perroy assisted with collecting essential field data for the remote sensing component 

of my research. I would like to thank Aaron Ramirez for leading field sampling efforts for 

the pressure-volume curve dataset on the island, and enduring many hours of post-collection 

processing in the laboratory with me. The support of Lyndal Laughrin, Brian Guererro, and 

the Island Packers Co. made conducting field work on the island possible. Field research 



v 

 

was also supported by the University of California Natural Reserve System-Santa Cruz 

Island, The Nature Conservancy, and Channel Islands National Park. 

 This work could not have been completed without the generous funding through the 

Kearney Foundation for Soil Science Grant, Mildred E. Mathias Graduate Research Grant, 

Olivia Long Converse Graduate Fellowship, Decagon Devices Instrumentation Grant, the 

Save the Redwoods League, and the Department of Geography Dangermond Travel 

Scholarship. I greatly appreciate the support from the Department of Geography and 

Department of Environmental Studies as a Teaching Assistant and Instructor. These 

teaching positions provided not only financial support, but also the opportunity for me to 

develop my love and appreciation for teaching. 

 Intellectual support from Mariah Carbone, Douglas T. Fischer, A. Park Williams, 

and Bharat Rastogi greatly enhanced my learning process. In addition, I had the opportunity 

to mentor stellar undergraduates, Sabrina Wuu, Jared Nohra, and Kayla Smietanka, on 

independent research projects related to fog-plant interactions, all of which contributed 

intellectually to this body of work. My involvement in the Tuesday night Plant Ecology 

seminar, weekly Biogeosciences group meetings, and King-Chadwick-Still lab meetings at 

UCSB prepared me well for a scientific career beyond graduate school. Thank you for all of 

your honest feedback along the way. 

 

Lastly, thank you to Seth Peterson for his unwavering support as a peer and partner.  

And my folks, Eugene and Barbara Baguskas, for reminding me that I am on a journey. 

 



vi 

 

VITA OF SARA ALEXA BAGUSKAS 

September 2014 

Education 

2014 PhD in Geography, University of California, Santa Barbara (expected)    

2005 BA in Biology, Lewis & Clark College, Portland, Oregon                                               

Research Experience  

 

2014 Research Associate Specialist, Physiological response of trees vs. 

shrubs to changes in seasonal water availability in a rain-snow 

transition zone in the southern Sierra Nevada, CA.  

Mentor: Max Moritz, UC-Berkeley 

2009-2014 Dissertation research, Influence of coastal fog on the physiology and 

distribution of Bishop pine on Santa Cruz Island, California.  

Mentors: Dr. Christopher J. Still and Jennifer Y. King  

2008 Biological technician Botanical surveys in Colorado Plateau, Moab, 

UT. Mentors: Mary Moran (USGS) and Dr. Jayne Belnap (USGS) 

2006     National Park Intern, Island Oak habitat restoration, Santa Rosa 

Island, CA. Mentor: Sarah Chaney (Channel Islands National Park) 

2005-2006 Biological technician, Biological soil crust research, USGS, Moab, 

Utah. Mentor: Dr. Jayne Belnap (USGS) 

2004 Undergraduate research assistant, Pollination biology, Rocky 

Mountain Biological Laboratory (RMBL), Gothic, CO.  

Mentor: Dr. Rebecca Irwin (Dartmouth College) 

2003 NSF-Research Experience Undergraduate Fellow, Pollination 

Biology, RMBL. Mentors: Dr. Allison Brody (Univ. of Vermont) and  

Dr. Paulette Bierzychudek (Lewis & Clark College) 

Teaching Experience (all at UCSB) 

 

Instructor: California’s Channel Islands (ES111/GEOG 149)   2014, 2013 

 

Teaching Assistant:  

Intro to Environmental Ecology (ES100)    2013, 2013 

Biotechnology, Food, and Agriculture (ES166BT)  2012  

Biogeography (GEOG167)      2010, 2008 

Biogeochemistry (GEOG 195)    2009   

California’s Channel Islands (ES111/GEOG 149)  2009 

Land, Water, and Life (GEOG 3B)     2008    

 

Guest lecturer (developed original material):  

Environmental Ecology (ES100): Urban Ecology: Can cities be ecosystems too?  

Santa Barbara County Agrifood System (ES 157): Intro to plant water relations 



vii 

 

 

Publications 

 

Baguskas SA, Peterson SH, Bookhagen B, Still CJ (2014) Evaluating spatial patterns of 

drought-induced tree mortality in a coastal California pine forest. Forest Ecology & 

Management 315: 43-53. 

 

Manuscripts in review 

Baguskas SA, Still CJ, Ramirez A, D’Antonio CM, King JY (in review). Coastal fog 

during seasonal drought: Impact on the water relations of adult and sapling trees in a 

California pine forest. Oecologia. 

 

Manuscripts in prep 

Baguskas, SA, Still CJ, Fischer DT, King JY. (in prep). Impact of fog-drip versus fog 

immersion on the physiology of Bishop pine saplings. 

Fellowships and Research Grants 

 

USDA-NIFA Postdoctoral Fellowship       2015 

Dangermond Travel Scholarship, UC-Santa Barbara     2012 

Grant. A. Harris Research Instruments Fellowship, Decagon Devices Inc.  2011 

Kearney Foundation of Soil Science Graduate Fellowship   2010-12 

Olivia Long Converse Fellowship, UC-Santa Barbara     2009 

Mildred E. Mathias Graduate Research Grant, UC-Natural Reserve System  2008 

Education Award, Student Conservation Association, Americorps   2007 

Student Academic Affairs Board Research Grant, LC-College    2004 

 

Academic Awards 

 

Excellence in Teaching Award, Dept. of Geography, UC-Santa Barbara  2013 

David Martinsen Prize, Biology Departmental Award, LC-College   2005 

Presentations, Workshops, Professional Meetings 

 

2014 October (talk) Impact of fog-drip versus fog immersion on physiological 

function of Bishop pines, MEDECOS XIII, Olmué, Chile 

2013 December (poster) Impact of fog-drip versus fog immersion on physiological 

function of Bishop pines American Geophysical Union Annual 

Meeting, San Francisco, CA 

2013 August (talk) Summertime fog and its impact on the water relations of adult 

and sapling trees in a coastal pine forest, Ecological Society of 

America Meeting, Minneapolis, MN 

2013 February (poster) Fog and its influence on the water relations of a California 

coastal pine forest, University of California Natural Reserve System 

Conference, UCSB 



viii 

 

2012 October (talk) Fog and its influence on the water relations of a California 

coastal pine forest, 8th California Islands Symposia, Ventura, CA 

 

2012 January (talk) Tree mortality, drought stress, and water relations in a 

California coastal pine forest, Annual California Native Plant Society 

(CNPS), San Diego, CA 

2010 December (poster) Understanding the spatial patterns of tree mortality in a 

coastal pine forest in California, American Geophysical Union 

Annual Meeting, San Francisco, CA 

2010 June (poster) Understanding the spatial and temporal variability of tree 

mortality in a coastal pine forest in California, MntClim 2010 

Conference, HJ Andrews Experimental Forest, Blue River, OR 

2010 February (poster) Understanding the spatial and temporal variability of tree 

mortality in a coastal pine forest in California, Southern California 

Botanist Graduate Symposium, San Jose, CA 

2009 August (attendee) Ecological Society of America Meeting, Albuquerque, 

New Mexico 

 

Synergistic Activities 

 

2014 February  Presenter at a USGS Fog Webinar where I led a discussion on fog 

collector design and utility  

2013 May  Invited participant to first interdisciplinary meeting on the topic of 

coastal fog to discuss knowledge gaps and direction for future 

research (organizer: Alicia Torregrosa, USGS researcher, Menlo Park, 

CA) 

2014 June  Invited participant to meeting, ‘Coastal Fog as a System,’ to help 

identify interdisciplinary challenges related to studying coastal fog 

and impacts on terrestrial and aquatic ecosystems (organizer: Dr. 

Kathleen Weathers, research scientist, Cary Institute for Ecosystem 

Studies) 

2010-2012  Mentor for McNair Scholar Program at UCSB, which provides 

opportunities for underrepresented undergraduate students to gain 

research experience. 

2009-present  Participant in weekly meetings of a Biogeosciences Group and Plant 

Ecology Seminar at UCSB 

 

   

Special Courses 

 

Summer 2010 Stable Isotope Course, University of Utah 

Summer 2009 Radiocarbon Short Course, University of California-Irvine 

 



ix 
 

ABSTRACT 

 

Influences of coastal fog on the physiology and distribution of  

Bishop pine on Santa Cruz Island, California 

 

by 

 
 

Sara Alexa Baguskas 

 

In my dissertation research, I investigated how coastal fog influences the water 

relations and distribution of Bishop pine (Pinus muricata D. Don), a drought sensitive 

species restricted to the fog belt of coastal California and offshore islands. I will discuss 

three related projects motivated by the following research questions: 1) Can the current 

spatial pattern of Bishop pine mortality on Santa Cruz Island be explained by important 

environmental and biological controls on plant available water? 2) How do summertime fog 

water inputs affect the water status of Bishop pines? Do adult and sapling trees respond to 

fog differently? and 3) What is the relative importance of fog-drip and fog immersion to the 

physiological function of Bishop pine saplings? I addressed these questions by using a 

variety of approaches ranging from remote sensing techniques to field-based plant 

physiology. The outcomes of these studies provide evidence that coastal fog is an essential 

element to augmenting plant available water during the dry season and that its occurrence 

supports the southern extent of its range on Santa Cruz Island. Moreover, this work 

advances our ability to make mechanistically-based predictions of how foggy coastal forests 

may respond to a warmer, drier climate. 
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Chapter I. Introduction 

While plant species that exist in water-limited areas, such as the southwest corner of 

the United States, have adaptations to deal with especially dry periods, climate change poses 

a significant threat to water resources in these already drought-prone environments. A 

testament to the ecological consequences of more frequent and intense droughts predicted 

for the future is widespread drought-induced tree mortality, which has impacted numerous 

forests around the world (Allen et al. 2010). Understanding the vulnerability and/or 

resilience of dominant plant species to water stress in present day is fundamental to 

developing accurate predictions of how ecosystem structure and function may be affected by 

future changes in climate. 

Water crises that develop during drought periods in California (e.g., 1987-1991, 

2007-2009, 2012-2014) are exacerbated by the onset of the seasonal dry period (June-

September), which occurs several months (~2-3) after the last winter rain. Yet, coastal 

California is somewhat buffered from these stressful conditions due to the occurrence of 

coastal fog. Coastal fog is formed when warm subsiding air interacts with cool air over the 

ocean. Water vapor condenses around nuclei, such as salt spray, forming low marine stratus 

clouds. Coastal fog is defined when these low stratus clouds are advected onshore and 

intercepted by land. While projections of how the fog regime may change in the future are 

highly uncertain, recent studies provide evidence that fog frequency along the California 

coast fog may decline (Johnstone and Dawson 2010). However, patterns of summer coastal 

fog formation have been shown to differ between northern and southern California 

(Iacobellis and Cayan 2013, Swartz et al. 2014); therefore, any changes in the fog regime is 

not likely to be uniform along California’s coastline. As projections of how the fog regime 
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may change in the future are refined, it is critical to also assess how potential changes in fog 

patterns may impact the hydrologic and ecological function of fog-influenced ecosystems.  

There are several direct and indirect mechanisms by which fog can augment plant-

available water during the dry season. At the intersection of the low-stratus coastal clouds 

and land, fog water droplets deposit on plant canopies and drip to the ground, increasing 

shallow soil moisture. Shading effects alone can dampen heat loading and reduce potential 

evapotranspiration. Leaf-wetting from fog immersion (even without drip) can rehydrate 

leaves directly via foliar uptake and/or by suppressing transpiration rates, both of which 

reduce plant demand for soil water. Despite the long history of fog-related research on 

plants, it still remains unclear the mechanisms, magnitude, and direction by which coastal 

fog impacts the water and carbon relations of most plants in foggy ecosystems.  

The objective of my dissertation research was to determine how coastal fog influences 

the water relations and range dynamics of Bishop pine (Pinus muricata D. Don), a drought 

sensitive species restricted to the fog belt of coastal California and offshore islands. The 

distribution of Bishop pine was more widespread when conditions were cooler and wetter in 

the late-Pleistocene (Raven and Axelrod 1967), but now it is restricted to the foggy coastline. 

Today, Santa Cruz Island (SCI) supports the largest populations of Bishop pine at the warmer, 

drier southern extent of its range; therefore, SCI provides an ideal study system for elucidating 

how changes in moisture availability, which are driven by soil water dry-down and fog, 

control physiological function, mortality risk, and the range dynamics of the species as a 

whole. 

Specifically, I investigated the effects of coastal fog on the physiology and 

distribution of Bishop pine trees during seasonal and episodic drought on SCI by 
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implementing three approaches that spanned landscape to leaf-level scales. First, I evaluated 

spatial patterns and underlying environmental drivers of drought-induced tree mortality on 

SCI at a landscape scale using aerial photograph interpretation and remote sensing 

techniques. Second, I conducted a field-based ecophysiological study to advance our 

mechanistic understanding of how fog water inputs during the dry season impact water 

relations of adult and sapling trees. Third, I narrowed the research focus to leaf-level 

interactions with fog to assess the relative importance of fog-drip and foliar absorption on 

the carbon relations of sapling trees relative to plants that receive drip or no fog at all. I 

organized the dissertation into these three parts, which I describe below. 

The first component of my dissertation focused on evaluating the effects of an 

extreme drought in southern California that occurred between 2007 and 2009 on spatial 

patterns of Bishop pine mortality on SCI. While anecdotal evidence supports that these 

drought-induced mortality events had occurred in the past, this was the first attempt to 

quantify the spatial extent and underlying environmental drivers of Bishop pine mortality 

events. Using aerial photograph interpretation, remote sensing techniques, and a decision 

tree analysis, I demonstrated that drought-induced Bishop pine mortality was more prevalent 

in the less foggy areas of the largest Bishop pine stand on SCI. In addition, this study 

provides evidence that smaller trees were more vulnerable to drought stress than larger trees. 

Because the persistence of Bishop pine (and other) tree species in the future relies on the 

longevity of saplings, our ability to predict the response of species to potential changes in 

the fog regime in California and other foggy places hinges on understanding the basic 

relationship between fog-water input and the physiological function of these tree species 

across age classes.  
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The objective of the second component of this dissertation was to examine how the 

water relations and tolerance of Bishop pines from two distinct age classes (adults and 

saplings) were affected by both seasonal dry period as well as coastal fog water inputs. To 

address these objectives, I conducted a field study during summer (June-September) 2010 

and summer 2011 to quantify ecophysiological response variables of adult and sapling trees 

at two sites along a coastal-inland moisture gradient. To quantify fog water inputs in terms 

of potential plant-available water, fog-drip and shallow soil moisture (0-10 cm) were 

measured after fog events in 2011. I found that sapling trees were more vulnerable to 

experiencing water stress during the dry season than adult trees. While fog water inputs that 

increase shallow soil moisture had a positive effect on the water status of both age classes, 

the effect was stronger for sapling than adult trees. The results of this field study support that 

fog-drip to the soil is an important way fog water becomes available to plants; however, 

recent studies provide convincing evidence that foliar absorption of fog water is also 

possible (Simonin et al. 2009; Limm et al. 2010). For Bishop pine, it remains unclear if 

foliar uptake of fog water is possible. Yet, identifying the specific mechanisms by which 

Bishop pine use fog water is necessary for evaluating if and how the water and carbon 

balance of this, and other coastal forest species, may be affected by potential future changes 

in the coastal fog regime (Johnstone and Dawson 2010). 

The final component of my dissertation research assessed the relative importance of 

fog-drip versus fog immersion on the carbon and water relations of Bishop pines. I 

conducted a controlled, manipulative study where fifteen potted Bishop pine saplings were 

randomly assigned one of three treatments during a three-week dry-down period: 1) fog-drip 

and fog-immersion, 2) fog immersion alone, and 3) no fog water inputs. To detect changes 
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in soil moisture across treatment, volumetric soil moisture was measured at 2 and 10 cm 

depth. The plant response variables measured were photosynthetic capacity and maximum 

gas exchange rates of sapling trees. The results from this study support that fog-drip is the 

primary mechanism by which Bishop pine saplings benefit from fog during otherwise dry 

periods; however, foliar wetting from fog events is enough to increase photosynthetic rates 

of Bishop pines. This study provides convincing evidence that foliar absorption is a probable 

mechanism of fog water use by Bishop pines.  

The outcomes of this dissertation research advance our basic understanding of how 

coastal fog affects the physiological function and mortality risk of Bishop pine during 

otherwise dry times of year. Moreover, the results of this work have important implications 

for projecting how climate change, and potential changes in the fog regime (Johnstone and 

Dawson 2010), may impact the water and carbon budgets of coastal fog-influences forests in 

the future. 
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Chapter II. Evaluating spatial patterns of drought-induced tree mortality 

in a coastal California pine forest 

 

1. Introduction  

Across the western United States, widespread increases in tree mortality rates have 

been observed in recent decades (van Mantgem et al., 2009). Many experimental, 

observational, and modeling studies attribute tree mortality to drought stress in response to 

regional warming (Anderegg, et al., 2012; Allen et al., 2010; Williams, et al., 2010; Adams 

et al., 2009; Breshears et al., 2005; Allen and Breshears, 1998). To date, the geographical 

scope of studies of tree mortality in the American West has been limited to continental, 

montane climates (Hanson and Weltzin, 2000). Much less is known about the extent and 

frequency of drought-induced mortality events in coastal forests.  

The maritime influence on weather and climate in coastal forests is assumed to 

buffer coastal ecosystems from extreme climate fluctuations, and therefore help maintain a 

stable distribution of species over time. However, we observed extensive mortality of a 

coastal pine species, Bishop pine (Pinus muricata, D.Don), following a brief, yet intense, 

drought period at the southern extent of its range in California, where they are at the climatic 

margin that can support the species (Williams et al., 2008; Fischer et al., 2009).  

Throughout the Pliocene and Pleistocene, when the California climate was 

considered to be more mesic compared to today, with year-round precipitation, Bishop pine, 

and closely related Monterey pine (P.radiata), were more widely and evenly distributed 

along the California coast (Raven and Axelrod, 1978). Bishop pine populations are currently 
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restricted to a small number of stands scattered along the fog-belt of coastal California and 

northern Baja California (Lanner, 1999). The reduction of suitable habitat for Bishop pine 

(and similar coastal forests) since the late Pleistocene is attributed to the onset of xeric 

Mediterranean climate conditions (warmer temperatures, and reduced seasonal precipitation, 

occurring predominantly during the winter). However, summer precipitation from fog drip, 

and potentially foliar uptake of fog water (Limm et al., 2009, 2010), is thought to enable 

Bishop Pines to persist along the coast and offshore islands (Raven and Axelrod, 1978).  

Fog water inputs to a forest, and its effects on the water relations of trees, are 

spatially heterogeneous because deposition of fog water and shading effects of fog are 

controlled by a variety of factors that range from the landscape to canopy scale. Fog is 

commonly defined as a low-stratus cloud that intercepts land. The mechanisms by which fog 

ameliorates the water stress of trees largely depend on their relative position to the fog layer. 

Shading effects, which reduce evapotranspiration, will benefit trees that are below the fog 

layer (Fischer et al., 2009). Plants immersed in the fog layer benefit from direct water inputs 

because fog droplets deposit on leaves and drip to the ground increasing shallow soil 

moisture (Carbone et al., 2012; Fischer  et al., 2009; Corbin et al., 2005; Dawson, 1998; 

Ingraham and Matthews, 1995; Harr, 1982; Azevedo and Morgan, 1974; Vogelmann, 1973). 

Moreover, vegetation type, and canopy structure of a forest, has been shown to strongly 

influence fog water deposition (Ponette-Gonzalez et al., 2010; Hutley et al., 1997). For 

instance, direct fog water inputs decrease from the windward edge of the forest to its interior 

(Weathers et al., 1995), negatively impacting the water status of trees that receive less fog-

water inputs in the interior (Ewing et al., 2009). Such edge effects can also impact 

recruitment rate of trees, and ultimately forest structure (Barbosa et al., 2010; del-Val et al., 
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2006). In short, the effect of fog on the growth and persistence of tree species in fog-

influenced ecosystems is strongly mediated by the spatial heterogeneity of the landscape, 

namely topographic variation and forest structure (Uehara and Kume, 2012; Gutierrez et al., 

2008; Cavelier et al., 1996; Vogelmann, 1973). Since the influence of summer cloud 

shading and fog drip/immersion on the moisture regime of forested ecosystems vary 

spatially, it is reasonable to hypothesize that the risk of drought-induced mortality in a fog-

influenced forest would follow suit. 

The proportion of dead Bishop pines that followed the recent drought event 

increased from the coast inland, and mortality was more severe at the margins of the stand. 

These spatial patterns seemed to coincide with modeled water deficit, which included the 

influence of fog on the water budget of the ecosystem. Specifically, Fischer et al. (2009) 

found that the combined effects of fog drip and cloud shading can reduce summertime 

drought stress up to 56% in Bishop pine stands, and inland locations are particularly 

sensitive to reduced cloud shading and increased evapotranspiration compared to more 

coastal areas. While observations and water deficit models may infer that fog inundation and 

cloud shading are key climate variables explaining spatial patterns of tree mortality in this 

coastal forest, it is unlikely that a single environmental variable, such as fog frequency, can 

entirely explain the spatial patterns of tree mortality.  

A suite of physical factors, such as landscape features (e.g., soil thickness and type, 

slope, aspect, elevation, topography, and drainage networks), can generate stress gradients 

across the landscape (Gitlin et al., 2006) and may explain the distribution of water stress in 

trees and tree mortality just as well as spatial patterns of climate (Koepke et al., 2010, Olge 

et al., 2000). In addition to landscape factors, biotic factors, such as tree size, may help 
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predict mortality within a forest stand (Floyd et al., 2009). While trees at different life stages 

(for which size can be proxy) may make different physiological adjustments to avoid or 

tolerate water stress, in general, it has been argued that larger trees with an extensive rooting 

distribution should be more capable of accessing stable water resources even during dry 

periods compared to smaller trees, and therefore be less sensitive to drought conditions 

(Cavender-Bares and Bazzaz, 2000; Dawson, 1996; Donovan and Ehleringer, 1994). In 

particular, water status of larger, adult Bishop pines is less affected by the summer dry 

period compared to smaller, sapling trees, which become water stressed by late-summer (S. 

Baguskas, unpublished data). Understanding how interacting environmental factors explain 

the spatial patterns of mortality will improve our ability to assess the vulnerability of coastal 

forests to drought-induced mortality in the future.  

Remote sensing is a powerful tool for quantifying the spatial extent of tree mortality, 

which is often the first step towards elucidating patterns and processes underlying a 

mortality event, such as drought stress (Allen et al., 2010; Williams et al., 2010; Macomber 

and Woodcock, 1994), bark beetle infestation (Edburg et al., 2012; Wulder et al., 2006), and 

the potential impacts on regional carbon budgets (Huang and Anderegg, 2012). While many 

studies have quantified the spatial extent of tree mortality at regional and landscape scales 

using moderate-spatial (>30-m ground resolution) resolution remote sensing data (e.g., 

Meigs et al., 2011; Anderson  et al.¸2010; Fraser and Latifovic, 2005), a growing number of 

studies have used high-spatial (< 5-m ground resolution) resolution remote sensing data to 

examine tree mortality at finer spatial scales in order to detect mortality of individual trees 

(or clusters) within a stand (e.g., Stone et al., 2012: Dennison et al., 2010; Hicke and Logan, 

2009; Chambers et al., 2007; Guo et al., 2007; Coops  et al., 2006; Clark et al., 2004). 
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Developing a way to possibly make large scale estimates and predictions of tree mortality 

based on remotely sensed data can help land managers, who are tasked with making 

decisions about species and land conservation in the future, respond to a future expected to 

become warmer and drier. 

Our research addresses the following questions: 1) What is the spatial distribution of 

tree mortality observed during the 2007-2009 drought period? 2) What is the correlative 

relationship between environmental variables, such as climate, landscape features, and tree 

size, and the spatial distribution of tree mortality? 3) Where is tree mortality likely to occur 

on the landscape during periods of drought stress? 

 

3. Methods 

3.1. Study Site  

This study was conducted in the westernmost and most extensive (3.6 km2) Bishop 

pine stand on Santa Cruz Island (SCI, 34o N, 119o 45’ W), which is the largest of the 

northern islands in Channel Islands National Park (~250 km2 , 38 km E-W extension) 

located approximately 40 km south of Santa Barbara, CA (Figure 2.1.). The Mediterranean 

climate along the California coast and islands offshore is characterized by cool, rainy 

winters and warm, rain-free (yet foggy) summers. While rainfall is highly variable both 

inter- and intra-annually, on average about 80% of rain falls on SCI between December and 

March (Fischer et al., 2009). We observed mortality of Bishop pines during water year 

2006-07 and 2008-09, when fewer than 25 cm of rain fell (median rainfall is 43 cm) (Figure 

2.1A). In 2009, we observed peak mortality of Bishop pine trees in the field based on the 
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high number of tree canopies with red foliage, and we found that no other plant species 

exhibited a mortality response like the Bishop pines did.  

The Bishop pine stand that we studied exists on complex and rugged terrain ranging 

from sea level to just over 400 m in elevation. Bishop pines are almost entirely restricted to 

the wetter, cooler north-facing slopes. There are only a few scattered clusters of trees that 

exist on the drier south-facing slopes, and those tend to occur in drainages. Steep ridges rise 

from the Santa Cruz Island fault that runs E-W through the central part of the island. There 

is a stark ecological and geographical difference between the northern and southern sections 

of the island. The northern half of the island is composed of Santa Cruz Island volcanics and 

is sparsely vegetated compared to the southern half, which is mostly metamorphic in origin 

and supports most of the vegetation (Junak et al., 1995). The habitat for woody vegetation is 

considered to be more suitable at the center of the largest Bishop pine stand where the 

canopies are continuous relative to the margins of the stand where pines are intermixed with 

more drought-tolerant coastal chaparral angiosperm plant species, such as Manzanita 

(Arctostaphylos insularis, A. tomentosa), Ceanothus (Ceanothus arboreus, C.megacarpus 

subsp. insularis), and Scrub Oak (Quercus pacifica, Q. dumosa).  

 

3.2. Datasets  

We used a variety of data sources to quantify the spatial variability and extent of tree 

mortality across the Bishop pine stand (Table 2.1A). We included in our analysis Digital 

Orthophoto Quarter Quads (DOQQ), which are true color aerial photographs at 1-m spatial 

resolution, collected by the United States Geological Survey, from 2005 (pre-drought) and 

2009 (post-drought).  In order for us to accurately identify dead and live trees on a pixel-by-
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pixel basis, source images first needed to be georeferenced (i.e., aligned), with one another. 

The 2005 DOQQ was georeferenced to the 2009 DOQQ using 90 ground control points 

(GCPs) with root mean square error (RMSE) of 1.25 m. GCPs were selected from 

temporally invariant targets, such as road intersections. In conjunction with the DOQQ 

images, we used spectral information of different land cover types from an Airborne Visible 

Infrared Imaging Spectrometer (AVIRIS, 224 bands, 2.3 m) image collected by the Jet 

Propulsion Lab prior to the mortality event (7 August 2007). For the AVIRIS image, a 

geometric look-up table was applied to remove some of the geometric distortion for 

approximate georeferencing. We further improved the registration by georeferencing the 

AVIRIS image to the 2009 DOQQ using unambiguous reference points, such as road edges 

and distinct plant canopies (105 GCPs, 1.07 m RMSE). 

Environmental variables used to explain the spatial patterns of tree mortality were 

derived from remotely sensed data (Table 2.1). These layers were already georeferenced. To 

evaluate the strength of the relationship between summertime cloud shading/fog immersion 

and tree mortality, we compared mortality to average summertime cloudcover frequency 

(Figure 2.2a). Average summertime cloudcover frequency was calculated from composite 

MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m collected daily 

at 10:30 am PST from July to September between 2000 to 2006 (Williams, 2009; Fischer et 

al., 2009). The 10:30 am PST overpass time of the Terra satellite captures the lingering fog 

from a heavy nighttime event, as the fog layer is often present until noon on SCI (Fischer et 

al., 2009; Carbone et al., 2012). For each MODIS pixel, a quality control classification was 

assigned for one of three conditions: clear sky, partial cloud cover, or total cloud cover. We 

determined the average fraction of days each month (i.e., frequency) when the pixels 
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covering our study sites were classified as partially or totally cloudy using these quality 

classifications (Williams, 2009). In the summer, low-level marine stratus clouds are the most 

common cloud types on the California coast (Iacobellis and Cayan, 2013). Cloud frequency 

should be closely related to fog frequency, though information on elevation is required to 

determine whether the clouds were overhead (shading effect) or at the ground (i.e., fog 

immersion).  

Four topographic layers (elevation, solar radiation, slope, and aspect) were included as 

explanatory variables. These variables exert control on the water budget of an ecosystem, 

such as the amount of solar radiation received by a surface (Dubayah, 1994). Topographic 

variables were derived from a digital elevation model (DEM) generated from a dense Light 

Detection and Ranging (LiDAR) point cloud collected by the USGS in January 2012. 

LiDAR return signals were classified into bare-earth and vegetation points and we created a 

regularly spaced grid at 1 m spatial resolution. The resulting DEM (Figure 2.2b) has been 

verified in the field and found to be very robust (cf. Perroy et al., 2010; Perroy et al., 2012). 

Field-based validation points were similar in 2010 and 2012, though the density of return 

signals was greater in 2010. From the DEM, we calculated average daytime solar radiation 

at the surface (i.e., insolation) for the summertime months (1 June – 30 September) at 14-

day intervals using standard GIS techniques (Hetrick, et al., 1993) (Figure 2.2c). The 

primary spatial variations in modeled cloud-free solar insolation for these calculations are 

driven by slope, aspect, and elevation. Slope and aspect (Figure 2.2e and 3f, respectively) 

were calculated from the DEM using standard algorithms. Aspect was rotated by 180 

degrees to avoid discontinuity on north-facing slopes, where Bishop pines are most common 

(i.e. aspects of 1 degree and 359 degrees are not different ecologically but are very different 
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numerically). Therefore, north-facing slopes are 180 degrees, south-facing slopes are 360 

degrees, west-facing slopes are 90 degrees, and east-facing slopes are 270 degrees. We used 

the average value for solar insolation, elevation, slope, and aspect within a 3-m radius from 

each tree point.  

Attributes measuring the surface shape (i.e., the geomorphology of the landscape) can 

help characterize how topography controls and integrates hydrologic processes on a range of 

timescales (Monger and Bestelmeyer, 2006; Sorensen et al., 2006; Moore et al., 1991), and 

therefore strongly influences the spatial distribution of soil moisture and groundwater. We 

included a topographic wetness index (TWI), which describes the amount of water that 

potentially accumulates in every given pixel (Moore et al., 1991) (Figure 2.2g). This index 

was calculated as (ln(upslope catchment area/slope)). We calculated the maximum values 

within a 4.5 m radius of each tree point to best represent the potential water accumulated at 

the rooting zone of the tree, which we estimated to expand at least 1 -2 meters beyond the 

tree canopy. We also included an estimate of the curvature (concavity and convexity) of the 

landscape, which affects the flow path of water (Gessler et al., 2000; Ali et al., 2010) 

(Figure 2.2h). Curvature is the second derivative of the DEM. We calculated the average 

value of curvature within a 3 m radius of each tree point.  

Lastly, we included a data layer of vegetation height, which we calculated from the 

classified lidar point cloud by analyzing the bare earth DEM and canopy-height DEM 

(Figure 2.2d). Because the point of live and dead trees identified in the DOQQ may not 

necessarily capture the apex of the canopy in the lidar DEM, we calculated the maximum 

height for vegetation within the 3-m radius of each tree point to more accurately represent 

the height of each tree. 
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3.3. Map of tree mortality 

We identified dead trees manually in the 2009 DOQQ as areas of red pixels within the 

Bishop pine stand (Figure 2.3a). By combining this base image with the 2005 DOQQ (pre-

drought), we were able to identify trees that died due to the drought period by identifying 

trees with red canopies in 2009 and green canopies in 2005 (Figure 2.3b). We validated our 

remotely sensed map of mortality by measuring distances between dead tree canopies in the 

field and corresponding nearest dead tree canopies identified in the map. We collected 

location data of dead (n=80) trees in the field using a differential GPS unit (Trimble 

Geoexplorer 6000 rover) in July 2010 with accuracy of < 15 cm. We aimed to sample areas 

with low and high density of tree mortality.  

 

3.4 Random Forest analysis  

We used the Random Forest (RF) decision tree algorithm (Breiman, 2001) implemented 

in R (R Development Core Team 2010 version 2.12.2) to identify environmental variables 

that best explain the distribution of dead trees, relative to live trees, across the Bishop pine 

stand. The RF sample population was composed of 1740 trees, of which 869 were identified 

as live, and 871 as dead, a priori. For each of these live and dead tree points, we extracted 

values from the environmental variable raster datasets (Table 2.1), and these values were 

used as input to the RF analysis.  

Decision trees and RF are used to uncover complex hierarchical relationships between 

response variables and diverse environmental variables in multivariate data sets (Michelson 
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et al., 1994; Moore et al., 1991). Non-linear and non-additive relationships are learned from 

the data rather than explicitly modeling them (Michaelsen et al. 1994, Bi and Chung 2011). 

Further, they are non-parametric models, which means that variable normality and 

independence assumptions need not be met (Michaelsen et al. 1994, Bi and Chung 2011). 

Decision trees use threshold values of predictor variables to separate the response variable 

into more and more homogeneous groups, in our case live and dead tree populations. The 

RF approach aggregates the results from hundreds of individual decision trees to provide 

more robust predictions. Specifically, different decision trees are generated for the same data 

set by 1) using a sub-sample of the predictor variables at any given node (or split, based on 

threshold value) in the tree, and 2) using sub-samples of the response variable for training 

and testing each decision tree. Furthermore, values of each predictor variable are varied by 

+/- 10 percent and the resulting effect on classification accuracy is used to quantify variable 

importance through the Mean Decrease in Accuracy (MDA) score (range of 0 to 1) 

(Breiman, 2001). The greater the MDA score, the more important the variable is in 

separating live and dead tree populations. While the RF analysis ranks the importance of 

variables, it does not indicate the nature of the relationships between explanatory variables 

and the dependent variable. In order to identify and illustrate the nature of these 

relationships, we compared the histograms of live and dead tree populations for each of 

these variables, and conducted a Mann-Whitney U test (R version 2.12.2) to test for 

significant differences between median values at the p<0.01 level.  

We acknowledge that some of the environmental variables used in our analysis are 

interdependent, e.g., slope correlates positively with solar insolation and elevation is 

correlated with cloudiness (Table 2.2A). However, the use of correlated variables in RF 
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analyses biases neither the classification output (because RF is non-parametric) nor the 

measure of variable importance (Bi and Chung 2011; Peterson et al., 2012). 

 

3.5. Predictive map of tree mortality 

We created a predictive map of tree mortality using the RF results and the maps of 

environmental variables. Specifically, we used the R function ‘yaimpute’ (R version 2.12.2), 

which takes the 500 decision trees generated by the RF and applies them to the 

environmental variables. The algorithm then averages the 500 resulting predictor maps to 

make one final map. Areas where trees are more likely to die following drought are 

indicated by values closer to one, whereas trees in areas closer to zero are more likely to 

live. To better understand what environmental conditions characterize areas of low and high 

mortality during drought, we compared and contrasted average values of environmental 

variables at five sites that fall along a coastal inland elevation gradient established by 

Fischer et al. (2007). We examined mortality risk at these sites for two reasons: 1) sites 

varied in their levels of probability of mortality, and 2) field data on fog-water inputs were 

available for these locations providing an opportunity for us to relate our remotely sensed 

data of environmental factors with field observations related to potential moisture 

availability.  

 

4. Results  

4.1.Spatial pattern of tree mortality 
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We were able to accurately identify mortality of nearly 900 Bishop pine trees at 1-m 

spatial resolution (Figure 2.3b and 3c). To more clearly represent the spatial distribution of 

dead tree clusters across the stand, we generated a map of dead tree density (Figure 2.3d). 

While there are many isolated patches of dead trees in various locations within the stand, we 

found the highest density of dead trees to be in the eastern, more inland margin. We assessed 

the accuracy of our remote sensing approach with field validation points, and found that 

30% of the remotely sensed dead trees were within 10 m of the ground points (n=80), and 

33% of the dead trees were between 10 and 20 m (Figure 2.2A). In addition, visual 

inspection of the proximity of remotely sensed dead trees to field-based points revealed 

good agreement between the two datasets.  

 

4.2. Relationship between environmental variables and tree mortality 

The variables included in our RF analysis formed interacting, hierarchical relationships 

to distinguish dead (n=871) from live (n=869) tree populations within the stand. These 

variables, however, had different levels of importance (Table 2.3). Cloud frequency and 

elevation received a high rank by the RF analysis (Table 2.3, MDA: clouds = 0.84, elevation 

= 0.79), which suggests that the position of trees relative to the summertime stratus cloud 

layer is important for reducing the likelihood of mortality. Bishop pines on SCI grow along 

an elevation gradient that increases from the coast inland, and along this gradient, 

summertime cloud cover frequency decreases (Figure 2.3A, a). We found most of the dead 

trees were clustered at the upper limits of the elevation range within the stand (~360-400 m), 

where cloud frequency was lowest (Figure 2.3A, b), coinciding with where we observed the 

greatest tree mortality. Live trees spanned a broader range of elevation and cloud 
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frequencies (Figure 2.3A, c).  In particular, most Bishop pines that died were located at or 

above 350 m elevation (Figure 2.4a, median = 351 m) and where cloud frequency was less 

than 27% (Figure 2.4b, median = 0.26) compared to live trees that were more frequently 

found below 300 m (Figure 2.4a, median = 279 m) in cloudier parts of the stand (Figure 

2.4b, median = 0.30).  

Vegetation height was found to be of roughly equal importance to cloud cover and 

elevation in separating live and dead trees (Table 2.3, MDA: veg. height = 0.81). Dead trees 

were significantly shorter than live trees (Figure 2.4c; median dead = 7.4 m, median live = 

9.0 m, p<0.001). We did not find a correlation between tree height and any of the 

environmental factors used in our analysis; however, the spatial distribution of vegetation 

height indicates that taller trees dominate ridges in the southwest portion of the stand where 

tree mortality was minimal (Figure 2.2d).  

The remaining topographic variables (solar insolation, slope, and aspect) contributed 

to distinguishing live and dead tree populations, yet were ranked lower than cloud 

frequency, elevation, and vegetation height (Table 2.3). Nonetheless, the degree of 

spread and skewness in the histograms revealed subtle, but interesting differences 

between groups. The absolute difference in median solar insolation values between live 

and dead tree populations was negligible; however, live trees were normally distributed 

over the entire range of solar insolation values, whereas dead trees occurred more often 

in areas of higher solar insolation (Figure 2.4d; median dead =19.5 MJ m-2, median live 

= 18.5 MJ m-2, p<0.001). Additionally, dead trees were found on more shallow slopes 

compared to live trees (Figure 2.4e; median dead = 25o, median live = 30o). Most Bishop 

pines (dead or live) grew on northeast-facing slopes, yet live trees were slightly more 
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restricted to north-facing slopes compared to dead trees (Figure 2.4f; median dead= 194 

degrees, live = 203 degrees).  

Geomorphic variables that characterize the hydrologic environment (TWI and 

curvature) received the lowest MDA rank relative to other variables in the RF analysis 

(Table 2.3). Both live and dead trees tended to grow in partially channelized areas of the 

landscape as indicated by larger, positive values of TWI (Figure 2.4g). The negative 

curvature values for most of the trees indicate that they also grow in areas with 

convergent flow lines (Figure 2.4h). Certainly Bishop pines grow on ridges as well, but 

these results suggest growing in drainages where more water accumulates is important 

for tree growth, especially during dry years. 

Of the three environmental variables with the highest importance (clouds, elevation, 

and vegetation height), clouds and vegetation height showed linear relationships with 

probability of mortality (correlations of 0.54 and 0.48 respectively). Elevation was not 

linearly correlated with mortality, though the high importance value of elevation 

suggests a non-linear or hierarchical relationship. 

4.3. Accuracy Assessment for Random Forest analysis 

An accuracy assessment of the RF analysis allows us to evaluate how well the RF 

algorithm classified live and dead trees based on the reference map we generated from 

the DOQQ. The accuracy of RF analysis is evaluated using a confusion matrix from 

which the Producer’s, User’s, and overall accuracy are derived (Table 2.2). Producer’s 

accuracy refers to the probability that a certain land-cover category, e.g., dead trees, in 

the reference map was classified as such by the RF algorithm (Congalton, 1991). For 
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example, the Producer’s accuracy of dead trees was 77% because 674 pixels were 

modeled as ‘dead’ by the RF algorithm out of the total 871 identified as dead in our 

reference map. On the other hand, the User’s accuracy refers to the probability that a 

pixel modeled as ‘dead’ is accurately modeled as dead by the RF algorithm (Congalton, 

1991). For example, the User’s accuracy for dead trees is 78% because 674 pixels were 

correctly modeled as dead out of the 863 total pixels modeled as such by the RF 

algorithm. The Producer’s and User’s accuracy results for live trees were similar to that 

of dead trees. Overall, the classification accuracy was high with a score of 78% (kappa 

0.55). The kappa statistic incorporates misclassification information, so is a more robust 

measure of accuracy than overall classification accuracy (Congalton, 1991).  

 

4.4. Predictive map of tree mortality  

The predictive map identifies where trees were most vulnerable to drought-induced 

mortality across the Bishop pine stand given the RF results (Figure 2.5). We present 

these results in terms of probability of mortality, where values closer to one indicate a 

greater probability of dying through a drought period. We found that the probability of 

mortality in the Bishop pine stand ranged from 30-75% and that trees growing in eastern 

and western margins of the stand were at greater risk of mortality (shades of red/brown) 

compared to the central and southwest portions of the stand (shades of blue) (Figure 

2.5).  

We compared the probability of mortality and environmental conditions at five sites 

that fell along a coastal-to-inland elevation gradient for which we also had fog-water 

input data collected in the field (Fischer et al., 2007) (Table 2.3). The sites represent the 
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mid-to-high values of the mortality probability scale (54-70%), and for each area we 

present the average values of the environmental predictor variables (Table 2.3). Sites 

were generally characterized by steep (30-34°), north-facing slopes with moderate solar 

insolation (17.6-18.9 MJ m-2). Sites tended to be located in drainages (~ -0.02 – 0.13 m 

m-2) and where water accumulates (TWI, 7.9-9.1).  There was greater variability in other 

environmental predictive variables across sites.  

Site 1 is located at the western margin of the forest stand relatively close to the coast. 

Mortality risk is highest at this site (Table 2.3; probability of mortality = 70%). Of the 

five sites, site 1 has the highest cloud frequency (32 %), yet the lowest average fog water 

input over the summer (597 ml). This is likely attributed to its position below the cloud 

layer (elevation 141 m). Trees are shorter (5.4 m tall) than at most other sites. Site 2 is 

slightly higher in elevation (201 m). While less cloudy (28%) than site 1, it receives 

more fog-drip (938 ml) (Table 2.3). Trees are relatively tall (9.7 m) here and mortality 

risk low (56 %). Site 3 is at higher elevation (423 m), with the highest solar insolation 

(18.9 MJ m-2) of all the sites. This site has moderate values of cloud cover frequency 

(26%), fog-drip (1300 ml), vegetation height (7.8 m), and risk of mortality (63%) 

relative to other sites. Site 4 is located at the far eastern margin of the Bishop pine stand, 

close in elevation to site 3 (390 m). Probability of mortality (64 %) is also similar to that 

at site 3. While cloud frequency is low (24 %), fog-drip (~1900 ml) exceeded that 

collected at most other sites. Like site 1, vegetation was relatively short (6 m). Site 5 is 

located in the southwest portion of the stand at moderate elevation (275 m) where cloud 

frequency is high (31 %) and receives the most fog-drip (3205 ml). Trees are tall (11 m) 

and grow on northwest facing slopes (131°).  
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5. Discussion 

Spatial patterns of tree mortality 

We accurately identified approximately 900 dead Bishop pine tree clusters in the 

largest Bishop pine stand on SCI. While we are confident that the high-spatial resolution of 

the 2009 DOQQ captured larger trees with red canopies when the photo was acquired 

(Figure 2.3b), we believe that we under-sampled smaller trees (saplings) that we know died 

during the 2007-2009 drought period, based on field observations. For example, the DOQQ 

could not have captured smaller trees growing beneath the canopy of larger trees 

(Meentemeyer et al., 2008), or simply canopies too small to be detected at 1-m spatial 

resolution, e.g., sub-meter diameter or seedlings. Furthermore, we observe that there were 

smaller trees that died, or were very close to dead tree canopies, based on the vegetation 

height data derived from the LiDAR dataset (Figure 2.4c), which has much higher precision 

compared to an aerial photo.  

The discrepancy between field-validation points and the remotely sensed trees (Figure 

2.2A) was likely attributed to the temporal disconnect between when we identified dead 

trees remotely (June 2009) and when we collected validation points (July 2010). Because 

many dead trees that expressed red needles in 2009 had lost their needles by July 2010, we 

could not identify in the field exactly which trees we identified in our remotely sensed map 

of mortality. Despite these shortcomings, the techniques used to identify dead trees were 

robust, and feel that we captured the majority of the trees that died in response to drought. 

 

Environmental controls on tree mortality 
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Our study demonstrates that there is an inverse relationship between drought-induced 

mortality of Bishop pines and the occurrence of summertime clouds along a coastal inland 

elevation gradient on SCI. The spatial clustering of dead trees in the eastern, and more 

inland, margin of the stand is consistent with predictions from previous research. Fischer et 

al. (2009) characterized this area as marginal habitat for Bishop pine based on higher 

modeled soil water deficit, which incorporated the cloud frequency variables used in our 

analysis, as well as fog water volumes collected from the field. The occurrence of fog is 

spatially heterogeneous, thus the strength of its impact on reducing water stress and 

supporting tree growth depends on how it interacts with other landscape and forest elements, 

such as canopy height.  

The vegetation height dataset derived from the 1-m LiDAR DEM provided us with a 

unique opportunity to address how characteristics of vegetation interact with climatic and 

landscape variables. We found that larger trees (>8 m tall) that occurred in cloudier, and thus 

foggier, areas (~30% summertime cloud frequency, Figure 2.2a and 3d) had high 

survivorship following drought. This agrees with previous research that showed Bishop 

pines had higher summertime growth rates in the cloudier portion of the stand compared to 

trees that grow further inland and at higher elevation (Carbone et al, 2012). The positive 

relationship between fog frequency, tree size, and survivability could be explained by the 

fact that larger trees having a greater capacity to intercept fog and generate fog drip to the 

soil, which can significantly offset the effects of drought stress and support growth even 

during low rainfall years (Fischer et al. 2009; Carbone et al., 2012). Therefore, fogginess 

may confer a fitness advantage over trees that grow in the less foggy, and more xeric parts 
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of the stand (del-Val et al.¸2006), which has important implications for the local distribution 

of trees that persist at the water-limited extent of the species range.  

 

Environmental heterogeneity and probability of mortality 

The occurrence of low-stratus clouds in the summertime is not the only factor 

important to the survival of Bishop pine trees during drought. Complex and subtle 

interactions between climate, topography, and vegetation can have large effects on plant-

available water, and the suitability of habitat for growth and survival. We observed that the 

three main distinguishing factors between sites with the highest and lowest mortality risk 

(Table 2.3; site 1 and site 5, respectively) were elevation, volume of fog-drip, and vegetation 

height (Table 2.3). Because cloudiness was equally high at both sites (~31-32%), the large 

difference in fog water input is attributed to where the low-stratus clouds are intercepted by 

land. Based on a climatology of cloud base heights from the Santa Barbara airport, 

interception of low-stratus clouds is 40% more likely at sites between 240-280 m than at 

lower elevation (B. Rastogi, pers. comm). Therefore, topographic relief is necessary for 

cloudiness to translate to direct fog water inputs, which influences plant-available water 

(Fischer et al., 2007). In addition, trees were twice as tall at site 5 than site 1 (Table 2.3).  

The probability of mortality was similarly low between sites 2 and 5. While these sites 

supported the tallest trees, they were dissimilar with respect to other environmental 

variables. Unlike site 5, site 2 is located at the mouth of a large drainage in the central valley 

on SCI, which supports cool, wet conditions compared to sites located in more exposed 

areas. Because ridges rise steeply from the valley floor, this site is also located on a steep, 



27 

 

north-facing slope, which explains why solar insolation was low compared to other sites 

(Table 2.3).  

The similarity in probability of mortality at sites 3 and 4 (63 and 64 %, respectively) 

coincide with many of the environmental factors that characterize these sites. Located on 

ridges at the upper limit of the elevation range for Bishop pines on the island (~ 400 m) 

where cloud frequency was relatively low (24-26 %) suggests that the evaporative losses 

may dominate at these sites.  The distinguishing factor between these sites, other than 

measured fog-drip, is vegetation height. Trees are taller at site 3, therefore may have greater 

access to groundwater, which could compensate for lower fog-water inputs. Conversely, 

trees at site 4 are shorter, but grow on steeper slopes and are less exposed, thus buffered 

from drying effects.  

The results of our study indicate that microhabitat conditions in the Bishop pine stand 

on SCI are critical for determining the survival and persistence of trees during exceptionally 

warm, dry periods. However, just as environmental conditions can vary widely across a 

forested ecosystem, many studies have demonstrated that variation in physiological 

adjustments of trees to stressful conditions, and differential growth patterns, are strong 

predictors of spatial patterns of mortality in forests (McDowell et al., 2008; Suarez et al., 

2004; Wycoff and Clark, 2002; Olge et al., 2000; Pederson, 1998; Cregg, 1994). While we 

did not explicitly test for variation in physiological responses or growth of Bishop pine trees 

in response to drought, we did find mortality risk varied among trees of different size 

classes. The probability of mortality was greater for shorter trees, even if the height 

difference was only 1-2 m (Figure 2.4d). One possible explanation for this pattern could be 

that smaller trees have limited access to stable water reserves deeper in the soil, thus are at a 
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disadvantage during drought periods compared to larger trees that have a greater root:shoot 

ratio (Suarez et al., 2004). Another interpretation of this pattern may be related to how 

drought has historically affected population dynamics (i.e., tree age and size structure) in the 

Bishop pine stand.  

The most recent drought period (2007-09) was not an isolated event. Periodic droughts 

have affected the local distribution of Bishop pine on SCI in the past (Walter and Taha, 

2000). The last major drought occurred between years 1986 and 1991, and killed off large 

swaths of Bishop pines across the island, particularly at the margins of the Bishop pine 

stands (Walter and Taha, 2000; Lyndal Laughrin, pers. comm.). Our results support the idea 

that survivorship of Bishop pine trees is compromised at the stand margins during drought 

(Figure 2.3). However, regeneration of the pine population in these areas has not ceased 

(Fischer et al., 2009). The net effect of these drought cycles are even-aged cohorts 

dominating the stand margins. Therefore, the majority of trees we observed die after the 

most recent drought likely emerged following the previous drought that ended in 1991; thus, 

they were younger and had a shorter stature than the trees more resilient to drought stress 

that dominate the central and southwest parts of the stand.   

 

Implications for management  

Analyzing high-spatial resolution (1 m) aerial imagery and LiDAR remotely sensed 

data of tree mortality can provide more precise spatial information about the growing 

conditions of individual trees, or small tree clusters, and provide a more efficient approach 

to forest inventory (Maggi and Meentemeyer, 2002; Hicke et al., 2012). Specifically, the 

color infrared DOQQ used in our study clearly showed red-attack trees allowing us to 
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delineate dead tree canopies. DOQQ imagery is available at no cost and collected 2-3 times 

per decade for any given local in the United States; therefore, acquiring and analyzing 

imagery that bookends a mortality event is feasible, allowing for a cost-effective method of 

inventorying forest damage. In contrast, LiDAR data is expensive and not readily available 

but the utility of deriving vegetation height and landscape variables was clearly 

demonstrated in this project. 

We found RF to be a power statistical tool for analyzing a large multivariate dataset 

that ranked a suite of environmental variables used to predict tree mortality. This approach 

can be used in a variety of forest management applications that require analysis of large 

datasets where there may be correlation among the predictors and hierarchical and/or non-

linear relationships between predictor and response variables.  

This study supports the idea that low-stratus summertime clouds are important to 

survival of Bishop pines during drought periods at the most southern and water-limited 

extent of its range. However, the distribution of this species is restricted to the narrow fog-

belt of California, despite the fact that precipitation is much higher further north, so fog must 

play a role in the more northern parts of the range as well. There is a great amount of 

uncertainty surrounding how the spatial and temporal variability of fog may change in the 

future; however, evidence suggests that fog frequency may decline in parts of the California 

coastline (Johnstone and Dawson, 2010), which would have negative effects on the 

distribution of Bishop pines and other fog-dependent species. 
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Figure 2.1. (a) Study area is located on Santa Cruz Island (SCI, 34o N, 

119o 45’ W), about 40 km off the coast of Santa Barbara in south-

central California, and it supports the southernmost extent of Bishop 

pine trees in the United States. Other populations in California 

indicated by red marks along the coastline (Lanner, 1999); (b) SCI 

(shaded in gray) is the largest of the islands in Channel Islands 

National Park; (c) Bishop pine stands on SCI are delineated with a red 

outline. Our study area is the westernmost and largest stand of trees. 
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Figure 2.3. (a) Photograph of a single dead Bishop pine in the field and 
associated red tree canopies observed in the 2009 true color aerial photo 
(Digital Ortho Quarter Quad from the U.S.G.S); (b) zoomed in an area 
highlighted by yellow box in (c) of high tree mortality in the 2009 DOQQ 
showing individual dead canopies delineated by cyan colored polygons; (c) 
showing the entire extent of westernmost Bishop pine stand where dead tree 
canopies (n=871) are indicated by cyan polygons; (d) density map of dead tree 
canopies where white circles represent average number of dead tree canopy 
pixels within a 30 m radius of each dead tree. There are only circles where 
there is a value for tree density. Higher densities of dead trees are represented 
by the brighter circles. The highest density of dead tree pixels is 10%, which 
represents about 5-10 dead tree canopies depending on the canopy size. 
Stand boundaries are given by the polygons (white lines). 
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Figure 2.4. Histogram of variables for dead (above dashed line) 
and live (below dashed line) tree populations. Differences 
between median values for live and dead tree populations differed 
significantly at the p<0.01 level, and values are reported in text. 
To interpret aspect, north-facing =180°, south-facing=360°, west-
facing= 90°, and east-facing =270°.  
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Figure 2.5. Predictive map of tree mortality following drought for our study area 
(see Figure 1.1c for reference). Bishop pine stand is delineated with a black line, 

and other land surface types are masked out. Red-colored areas represent areas 

where probability of mortality following drought is high (closer to one) compared 
to blue-colored areas (closer to 0). Numbered areas (1-5) are described in the 
text with respect to how probability of mortality relates to environmental 
conditions and tree height, and are included in Table 1.5.  
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Table 2.1. Potential explanatory variables used in the Random Forest analyses. 
The Mean Decrease in Accuracy (MDA) value ranks the variables based on how 
well they separate live and dead tree populations in the RF analysis. The larger 
the MDA value, the higher ranked the variable, i.e., the greater explanatory 
power.  
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Table 2.2. Average accuracy assessment of 500 decision classification trees in 
Random Forest analysis.  



37 
 

 

  

Table 2.3. Average probability of tree mortality and environmental variables for 
the ten sites indicated in Figure 8. Sample locations were determined based on 
field sites for which we had data on fog-water inputs. The area of each site was 

approximately 20 m
2
. 

*Fog-drip (ml) data was collected in the field at weather stations (Fischer et al., 2007) from 
May-September in 2004. We calculated average volume of fog-water inputs over these 
summer months. 
**Aspect: north-facing =180°, south-facing=360°, west-facing= 90°, and east-facing =270°.  
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Figure 2.1A. Total rainfall (cm) by water year on Santa Cruz Island from 
1970 to 2011. Dashed line is the long term median value (43 cm), and is 
based on rainfall recorded since 1904. Bars highlighted in gray are years 
during which the most recent Bishop pine mortality event was observed 
(2007-2009). There was a severe mortality event in the late 1980s, also 
during a drought period (1987-1990), which ended in 1991.  
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Figure 2.2A. Field validation of remotely sensed 
Bishop pine mortality. Frequency of remotely 
sensed dead Bishop pines (n = 80) from 2009 
DOQQ to nearest GPS point of dead pine in the 
field (July 2010). 
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Figure 2.3A. Relationship between elevation and summertime cloud cover 
frequency . Each data point represents a tree crown or small cluster of  trees 
identified in the 2009 DOQQ. This relationship suggest that: a) Bishop pines 
tend to grow along a coastal inland gradient along which elevation increases 
and summertime cloud cover frequency decreases; b) dead trees (n=871) 
occurred at high elevation and low cloud frequency ; c) live trees (n=869) 
spanned this gradient. 
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Table 2.1A. Data sources used for tree mortality map. 
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Table 2.2A. Correlation coefficients between variables included in the RF 
analysis. See Table 1.2 in text for list of variables and data sources. 
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Chapter III. Coastal fog during seasonal drought: Impact on the water relations of 

adult and sapling trees in a California pine forest 

 

1. Introduction 

Physiological responses and tolerances of plants to changes in seasonal water 

availability vary across life stages (Yoder et al. 1994; Donovan and Ehleringer 1991; 

Phillips et al. 2002; Mahall et al. 2009), and understanding this variation is critical for 

making mechanistically based predictions of how plant species distributions may be affected 

by climate change in the future. Physiological characteristics, such as gas exchange rates, 

can vary with tree age (Ryan et al. 1996, Bond 2000, Cavender-Bares and Bazzaz 2000); 

however, differences in rooting distribution alone can have significant consequences for 

how trees withstand periods of water stress (Weltzin and McPherson 1997, Cavender-Bares 

and Bazzaz 2000). The rooting distribution of trees generally becomes more extensive as 

they grow, allowing greater access to stable water resources at depth (Mahall et al. 2009; 

Kolb and Stone, 2000), whereas younger, smaller trees tend to have a shallow rooting 

distribution, are more susceptible to drought (Mahall et al. 2009), and rely on soil moisture 

that is more ephemeral in space and time (Weltzin and McPherson 1997, Cavender-Bares 

and Bazzaz 2000).  

The difference in the water relations between age classes may also be a function of 

how closely transpiration rates are controlled by stomatal regulation. The hydraulic 

limitation hypothesis proposed by Yoder and Ryan (1997) states that tall, and generally old, 

trees will close stomata more readily than sapling trees to reduce xylem tension (and avoid 
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excessive embolisms), yet the tradeoff is that taller trees will also experience lower gas-

exchange rates and potential growth than shorter trees. In accordance with this hypothesis, it 

has been demonstrated that leaf hydraulic and stomatal conductance are inversely related to 

tree age/size (Hubbard et al. 1999), and carbon assimilation rates are reduced in older, taller 

trees compared to saplings and seedlings (Yoder et al. 1994). However, Donovan and 

Ehleringer (1992) found that reproductive desert shrub species had higher rates of stomatal 

conductance than juveniles. The most parsimonious explanation for this pattern is that 

reproductive plants have greater access to soil moisture and, therefore, can maintain 

adequate leaf hydration to support transpiration (Passioura 1982, Cavender-Bares and 

Bazzaz 2000).  

In regions with Mediterranean climates, such as coastal California, rainfall typically 

occurs in the winter months (November-February), while summer months (June-September) 

are relatively warm and dry; yet summer is also when coastal fog most frequently occurs. 

Coastal fog, a low-stratus cloud at ground level, is considered a critical factor to the growth 

and persistence of numerous plant species because it can offset water stress in several ways: 

1) direct water inputs via fog-drip from the canopy augment the water budget of the 

ecosystem (Dawson 1998; Fischer et al. 2009; Carbone et al. 2012; Sawaske and Freyberg 

2014), 2) shading by cloud cover reduces heat loading and evapotranspiration losses 

(Burgess and Dawson 2004; Fischer et al. 2009), and 3) potential foliar absorption of fog 

water decouples plant water use from the soil (Simonin et al. 2009; Limm et al. 2009; 

Goldsmith et al. 2013). During the rainless, but foggy, months in Mediterranean climates, it 

is reasonable to expect that the water relations of smaller, younger trees (saplings) would be 

disproportionately affected both by drying soil conditions and fog-drip compared to larger, 
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older trees (adults) (Dawson 1998). Dawson (1998) provides convincing evidence that 

smaller coast redwood trees obtain a greater fraction of their annual water from summertime 

fog than do larger trees. The most plausible mechanism by which these small trees access 

fog water is after it drips from plant canopies (fog-drip) and penetrates shallow soil depths 

where small trees also have the greatest proportion of their roots (Dawson 1998). A number 

of studies have shown that fog water can infiltrate soil to reach the rooting zone of several 

conifer tree species other than coast redwood (Ingraham and Matthews 1995; Scholl et al. 

2010), and that these trees use fog water to grow (Williams et al. 2008; Carbone et al. 2012).  

The ability of trees to utilize fog water, which is highly variable in space and time, 

may be important for surviving dry season conditions, and critically important to seedling 

establishment, sapling survival and overall population dynamics (del-Val et al. 2006). For 

example, alleviation of water stress through fog-drip from larger tree canopies facilitates tree 

establishment in California grasslands, which directly impacts plant community composition 

(Kennedy and Sousa 2006). Gutierrez et al. (2008) demonstrate that tree recruitment within 

forest patches in a fog-influenced forest has persisted over hundreds of years despite large 

fluctuations in rainfall patterns, and they strongly suggest that the occurrence of fog-drip 

buffers tree establishment during drier years. In a related study, del-Val et al. (2006) show 

that tree regeneration and forest patch structure is strongly influenced by fog-drip from 

already established trees on the windward (more foggy) side of the forest patch. Coastal fog 

thus likely plays an important role in plant regeneration rates by enhancing trees water 

relations through the most vulnerable early life stages. While these and other studies have 

demonstrated the positive effects of coastal fog on plant water relations in forests during the 
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summer, our study is one of the few to examine the relative importance of coastal fog on the 

water relations of trees of different ages.  

The objective of our study was to determine how the water relations of adult and 

sapling trees were affected by changes in moisture during the foggy summer. We conducted 

our study in the most extensive (3.6 km2) and westernmost bishop pine (Pinus muricata D. 

Don) stand on Santa Cruz Island (SCI, 34o N, 119o 45’ W), which is the largest of the 

northern islands in Channel Islands National Park (~250 km2, 38 km E-W extension) located 

approximately 40 km south of Santa Barbara, California (Fig. 3.3.1a). SCI harbors the 

southernmost extent of this drought-sensitive and relict tree species in California (Axelrod 

1965, Johnson 1977, Raven and Axelrod 1978); a reduction in the population here would 

impact the distribution of the species as a whole. Furthermore, we know that bishop pines on 

SCI are vulnerable to drought-induced mortality (Baguskas et al. 2014; Walter and Taha 

1999), especially compared to more northern populations that receive almost twice as much 

rainfall (PRISM Climate Group, Oregon State University). Moreover, the ability for plants 

to persist through dry periods depends strongly on their access to water resources and 

physiological mechanisms used to regulate water status, which vary with plant size 

(Donovan and Ehleringer 1992). In our research we addressed the following questions: 1) 

How do the water relations and drought tolerance differ between adult and sapling bishop 

pines during the dry season?; and 2) How does fog affect the water relations of these distinct 

age classes? We measured predawn and midday water potentials, transpiration rates, and 

leaf hydraulics (derived from pressure volume curves) to address these questions. 

 

2. Materials and methods 
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Site description 

We compared the water status of adult and sapling trees in a bishop pine forest 

during the foggy and rain-free summer months (June-September) in coastal, southern 

California across two years (2010 and 2011). Age class comparisons were stratified between 

two sites that are part of a coastal-inland moisture gradient (Fig. 3.3.1b, Fischer et al. 2009; 

Carbone et al. 2012). The site located in Sauces Canyon (Sauces) is closer to the coast and at 

a lower elevation (296 m) than the more inland but higher elevation site located in Upper 

Embudo Canyon (Upem – elevation of 427 m). Upem is the more drought-prone site 

because even though annual rainfall tends to be greater at Upem (e.g., 467 mm vs. 391 mm 

in 2008), summer daytime cloud cover is less than at Sauces (e.g., 32% vs. 25% in 2008) 

(Carbone et al. 2012). Therefore, solar radiation, air temperature, and vapor pressure deficits 

are higher at Upem, which together drive higher potential evaporative losses of water and 

lead to lower dry season soil water (Carbone et al. 2012).  

 

Microclimate 

Microclimate conditions were recorded every 15 minutes at each site. Measured 

environmental variables included air temperature (Tair) and relative humidity (RH) 

(HMP45C; Vaisala, Helsinki, Finland), from which estimates of saturated vapor pressure 

deficit (VPD) were calculated. We used Tair and RH to calculate the water potential of the 

atmosphere (Ψatm) based on software provided by M. Loik (personal communication) and 

described by Nobel (2005) and Vasey et al. (2012). Fog water inputs were measured with a 

passive fog-collector connected to an automated tipping-bucket rain gauge (TE 525; Texas 
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Electronics, Dallas, TX, USA). We converted fog water volumetric inputs (ml) to depth 

equivalents (mm) using an established relationship between measured fog water input 

volumes and throughfall from under tree canopies at Sauces (Fischer and Still 2007). 

Monthly averages were calculated for temperature, relative humidity, and VPD. We 

calculated total fog water inputs (mm) for each month of our study. We excluded October 

because we only collected plant measurements on the first two days of the month.  

 

Tree age class 

To determine age classes of trees, we use tree size as a proxy (Porté et al. 2002). 

Tree size was determined by diameter at 1.3 m height (diameter at breast height; DBH) and 

height of trees (m) (Table 3.3.1). DBH measurements of saplings (height < 3 m) were 

collected at the base of the tree. Tree height was measured using a laser rangefinder (Opti-

logic model 100LHA, Tullahoma, TN). We refer to ‘adult’ trees as those that have a DBH > 

10 cm and height > 5 m, and should be greater than 20 years old based on previous research 

that developed size-age relationships for the bishop pines on SCI (Hobbs 1979). Sapling 

trees had DBH < 8 cm measured at the base of the tree and height < 3 m. These trees were 

likely less than 10 years old (Hobbs 1979).  

 

Plant water status  

 Between 28-Jun-2011 and 1-Oct-2011, we measured stem water potential from adult 

and sapling trees (n=6 per age class) at each of the two sites during predawn (0200-0430 hr.) 

and midday (1200-1400 hr.) periods using a Scholander pressure chamber (Model 1000, 

PMS Instruments Inc., Corvallis, OR). Predawn stem water potential (Ѱpd, MPa) is an 
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accepted measure of baseline plant water status on a diurnal timescale (Lambers et al. 2008). 

Midday stem water potential (Ѱmd, MPa) should represent the water status of trees at the 

time of the day of greatest water stress. We conducted a total of eight sampling periods at 

each site between June and October. Stem water potential was measured directly in the field. 

Two stems were clipped from each tree and then placed immediately in a sealed plastic bag 

(and in the dark during midday) to reduce transpiration of samples prior to determining their 

water potential. During midday, stems were sampled from the sunlit side of the tree. During 

predawn, stems were collected from a similar height on the tree to control for variation in 

gravimetric water potential. Water potential was measured within two minutes from the time 

of stem collection. Predawn and midday leaf water potential measurements were also 

collected between June-September in 2010 (n=5 per age class), thus providing an 

opportunity to examine interannual variation in dry season plant water status.  

 

Fog-drip and soil moisture 

To relate fog water inputs measured by the passive fog collector to potential plant 

available water, we collected fog-drip from beneath tree canopies (throughfall) of adult and 

sapling trees at each site after nighttime fog events (number of nights: Sauces=12; 

Upem=11). To do this, we constructed throughfall collectors by placing a 20 cm diameter 

funnel with a mesh filter on top of a 1 L plastic container. For adult trees at each site, we 

positioned collectors approximately one and three meters from the trunk along a northwest 

to southeast axis that paralleled the prevailing wind direction (n=24 collectors, with four 

collectors per adult tree). We placed fewer throughfall collectors beneath sapling trees at 

each site because their canopy diameter was smaller (n=12, with two collectors per sapling 
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tree). We coupled throughfall measurements with instantaneous roving measurements of 

percent shallow soil moisture (0-10 cm) using a portable Time Domain Reflectometry 

(TDR) probe (Mini-TRASE, Soil moisture Equipment Corp., Santa Barbara, CA). Due to 

the limited number of days (12 days total at each site) when we measured both soil moisture 

and throughfall, we combined age class data across sites to increase our sample size; 

therefore, we evaluated the correlation between soil moisture and throughfall between age 

classes, and not between sites.  

 

Stomatal conductance 

We related stomatal conductance (gs) to predawn stem water potential (Ѱpd) and 

compared the slope of the linear regression (β) to gain insights into plant water regulation 

for adult and sapling trees at each site. During 2010, we measured midday (1130 – 1430 hr.) 

gs using a porometer (SC-1 Leaf Porometer, Decagon Devices Inc., Pullman, WA) from 

adult and sapling trees over a few days in August (‘day of year’ [DOY] ~230) and again in 

September (DOY ~263) at both Sauces and Upem. Ten consecutive porometer 

measurements were collected per individual tree (n=5 per age class) from randomly selected 

sunlit needle clusters.  

 

Pressure-volume curves 

We generated pressure-volume (PV) curves following the Sack and Pasquet-Kok 

(2011) “bench dry method”. From these curves, we extracted bulk tissue water relation traits 

(Tyree and Hammel 1972; Sack and Holbrook 2006; Bartlett et al. 2012). In brief, we 

collected stem samples from six individuals per age class at both sites in December 2012 
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and July 2013. We transported samples to the laboratory in sealed plastic bags that were 

kept cool and dark to reduce transpiration. In the laboratory, we excised needles under water 

from the field collected branch samples and rehydrated them overnight before beginning 

measurements. Curves were generated by repeatedly measuring needle water potential using 

a pressure chamber and leaf mass using a 4-digit balance while the needles dried out on a 

bench top. Measurements were plugged into a spreadsheet constructed to visualize the 

developing curves and measurements were stopped when a minimum of five data points 

were observed in the lower (linear) region of the curve. Following these measurements, 

needles were dried to constant weight in a drying oven and dried samples were used to 

obtain dry leaf mass (g). PV-curves were constructed by plotting the inverse of water 

potential (1/ψ) versus the relative water content (RWC). 

From these PV-curves, we estimated leaf water potential at the turgor loss point 

(πtlp, MPa), which also defines the soil water potential beyond which a plant theoretically 

cannot take up water (i.e., the permanent wilting point). Extended periods of turgor loss, i.e., 

when leaf water potential values are consistently more negative than πtlp, can result in loss of 

basic plant functions such as photosynthesis (Bartlett et al. 2012). Other leaf traits derived 

from PV-curves include the following: 1) osmotic potential at full turgor (πo, MPa) and at 

πtlp, which can be used to determine the ability of plants to make osmotic adjustments to dry 

soil conditions; 2) bulk modulus of elasticity at full turgor (ε), which estimates the cell wall 

rigidity and thus the flexibility of the cell to conform to changes in leaf water content; and 3) 

relative water content at the turgor loss point (RWCtlp) (Mitchell et al. 2008; Bartlett et al. 

2012). We used leaf hydraulic traits from the winter and summer PV-curves to compare πtlp 

values between age classes and sites to assess drought tolerance and determine if seasonal 
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adjustments in osmotic potential and/or bulk modulus of elasticity explain shifts in πtlp 

values. 

 

Data analysis 

We calculated the mean and standard deviation for Ѱpd and Ѱmd of age classes at 

each site during each sampling period. A least-squares regression was used to determine the 

relationship between plant water status (Ѱpd and Ѱmd) and DOY for each age class at the two 

sites between late June and early October. We used DOY to describe time in the dry season 

and as a proxy for time since the last large rainfall event (> 50 mm), which occurred in 

February (DOY ~58) in 2010 and in March (DOY ~ 80) in 2011. We also used a least-

squares regression to determine the relationship between: 1) gs and Ѱpd, and 2) Ѱpd and 

changes in soil moisture (0-10 cm) between age classes. We used ANCOVA to test for 

differences between the slopes of these regression relationships (β). Least-squares 

regressions, ANCOVA, and ANOVA were all performed using JMP ver. 10.0.0 software 

(SAS Institute, Cary, SC). 

Following these initial statistical analyses, a linear model was used to predict the 

water status (Ѱpd) of bishop pines at each site with day of year, age class, and fog water 

input as predictors in 2011. We did not include 2010 in this analysis because the sample size 

was much smaller. Other environmental variables (Tair, RH, and VPD) were included in the 

model but they did not enhance the model fit and so were not included in the final model. 

We evaluated model performance with and without fog water inputs by comparing the 

difference in model fit to the data. We used cumulative fog water inputs over four days prior 

to measuring plant water status as our fog water input data because we found the strongest 
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relationship with this time period compared to cumulative fog over two or even six days, for 

example. We used a similar approach to predict shallow soil moisture using throughfall 

(fog-drip), day of year, site, and age class as predictors. All of the model runs were 

performed using a statistical packages (lm) in R 2.12.2 (R development Core Team 2012). 

For leaf hydraulic traits derived from the PV-curve, we used a Wilcoxon Rank Sum 

to test for statistical differences between age classes both within and between sites. This 

analysis was appropriate given our small sample size and unequal variances. We also tested 

for differences between summer and winter πtlp using a Student’s t-test. We performed these 

analyses using JMP ver. 10.0.0 software (SAS Institute, Cary, SC). 

 

3. Results 

 

Microclimate conditions 

Average rainfall on SCI was (~500 mm) during the water year from 1-Oct-2009 to 

30-Sept-2010 and above average (~740 mm) during the water year from 1-Oct-2010 to 30-

Sept-2011, suggesting that the seasonal drought was not as severe during the dry seasons of 

our sampling periods as it is in some years. Cumulative fog water inputs between June and 

October in 2011 were 33% greater at Upem than at Sauces (Table 3.3.2; Upem= 403 mm, 

Sauces= 304 mm), and this difference is consistent with results from previous years 

(Carbone et al. 2012). In addition, fog events differed in their timing and magnitude between 

sites (Fig. 3.3.2). At Sauces, measureable fog events arrived earlier in the summer and were 

generally smaller and less frequent through the dry season. Conversely, Upem experienced 
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consecutive large fog events between mid-July to mid-August and received almost no 

measureable fog in June (Fig. 3.3.2).  

At Upem, Tair was higher, RH was lower, and VPD was much higher compared to 

Sauces (Table 3.3.2). In addition, average monthly water potential of the atmosphere (Ψatm) 

was consistently lower (i.e., more negative) at Upem than at Sauces (Table 3.3.2); however, 

Ψatm was much higher (less negative) during foggy than during non-foggy periods at both 

sites, and this difference was greater at Upem than Sauces sites (Sauces: Ψatm (fog) = -9.4 

MPa, Ψatm (no-fog) = -23.6 MPa; Upem: Ψatm (fog) = -11.5 MPa, Ψatm (no-fog) = -67.5 MPa). 

Because solar radiation data were not complete for 2010 or 2011, we refer to values reported 

by Carbone et al. (2012) who found that annual solar insolation was lower at Sauces than at 

Upem (~670 W m-2 and ~725 W m-2, respectively); this annual difference was due to 

summertime differences driven by cloud cover gradients. In addition, Carbone et al. (2012) 

showed ~33% higher annual rainfall totals at Upem than Sauces. Taken together, 

evaporative effects were stronger at Upem, despite the fact that fog water inputs and rainfall 

were greater at this site than at Sauces. 

 

Change in bishop pine water status during dry season 

In 2011, Ѱpd values declined (i.e., became more negative) during the dry season for 

adult and sapling trees at both sites, but this change was more rapid for sapling than adult 

trees as indicated by the steeper negative slopes (β) (Fig. 3.3a and 3b, Table. 3.2A). In 

addition, the difference in slopes of regression equations were significant between age 

classes at each site (Table. 3.2A). Unlike changes in Ѱpd’s through the dry season, the slope 

of the regression line fit to Ѱmd values were not significantly different between age classes at 
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either site (Fig. 3.3a and 3b; Table. 3.2A). Overall, Ѱmd’s were consistently lower (more 

negative) than Ѱpd for adults and saplings at each site, and water status was generally lower 

for trees at Upem than at Sauces (Fig. 3.3, Table. 3.2A). 

In 2010, Ѱpd and Ѱmd values declined significantly for adult trees at Sauces between 

June and September, but the water status of sapling did not change significantly over the 

same time period (Fig. 3.3c and Table. 3.2A). In addition, there was no significant 

differences in the slope of regression equations between age classes for either predawn or 

midday measurements at Sauces (Table. 3.2A). We observed a different pattern at Upem. 

Ѱpd values of adult and sapling trees tended to increase (i.e., became less negative) between 

June and September (Fig. 3.3d). The positive change in Ѱmd values over time was stronger 

and steeper for both age classes compared to Ѱpd values (Table. 3.2A). The slope of 

regression equations did not differ significantly between age classes at Upem for either Ѱpd 

or Ѱmd values (Table. 3.2A). We found that at this site the difference between Ѱpd and Ѱmd 

values (i.e., xylem tension) was greater in July (adult, 0.82 MPa, sapling, 0.68 MPa) than it 

was following a large, late-season fog event in September (adult, 0.01 MPa, and sapling 0.13 

MPa). In sum, the water status of trees at Upem was higher in September than in July during 

2010 despite the longer drydown period from lack of rain. 

 

Impact of fog events on the water status of adult and sapling trees 

While DOY (a proxy for seasonal variation and time since the last rainfall) explained 

most of the variance in Ѱpd values at each site, antecedent cumulative fog water inputs had a 

positive and significant effect on water availability to both adult and sapling trees (Table 

3.3). We did not find a significant interaction between fog, DOY and/or age at either site, 
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suggesting that the effect of fog on plant water status was similar regardless of time or tree 

age.  

During a single fog event at Upem in August 2010, Ѱpd of adult and sapling trees 

increased as fog water accumulated in the soil (Fig. 3.4); however, the change in water 

status was greater for saplings (0.33 MPa) than for adults (0.13 MPa). Immediately before 

the fog event, average Ѱpd was significantly lower in saplings (adult: -0.89 MPa, sapling: -

1.24 MPa, P=0.02). By the tail-end of the event (DOY 227), age classes differences were 

reduced (adult: -0.73 MPa, sapling: -1.02 MPa, P=0.08). Two days after the event, adult and 

sapling Ѱpd converged on a similarly high, and statistically more similar, value of ~-0.80 

MPa (adult: -0.76 MPa, sapling: -0.91 MPa, P=0.11). Relative to the pre-fog event, the peak 

reduction in water status for adults occurred during the event, while the greatest change for 

saplings was two days afterward, suggesting a lag time for fog water infiltration into the soil. 

In addition, the more rapid response of adults to fog events compared to saplings implies 

potential foliar absorption of fog water by adult trees. Unfortunately, we were not able to 

capture change in tree water status through a single fog event at Sauces, hence the lack of 

site comparison. 

 

Fog-drip, soil moisture, and plant water status 

Percent shallow soil moisture (0-10 cm) measured with a TDR beneath tree canopies 

was positively and significantly correlated with Ѱpd values for both adult and sapling trees 

(Fig. 3.5). In addition, the slope of the linear regression model (β) was significantly steeper 

for sapling than adult trees (Fig. 3.5), suggesting that sapling trees rely more on shallow soil 

moisture to maintain their water status compared to adult trees, regardless of site. The most 
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important explanatory variable of shallow soil moisture was fog-drip from tree canopies 

(throughfall) (Table 3.4; fog-drip =2.84, t-value=2.55, P<0.01), whereas day of year was not 

a significant predictor of soil moisture (Table 3.4, DOY=-0.01, t-value=-0.56, P=0.58). We 

found that soil moisture was significantly lower under sapling trees at Upem compared to all 

other trees (Upem, saplings: 9.9 ± 2.6 %; all other tree groupings: ~13.5%). This could be 

due to higher insolation and soil evaporation and/or greater drawdown due to root uptake 

from transpiration. Fog-drip and soil moisture outside tree canopies were negligible 

compared to beneath tree canopies (data not shown). Throughfall amount was similar per 

unit area for adult and sapling trees at Sauces (adult=0.23 ± 0.05 cm, sapling=0.20 ± 0.05 

cm, P=0.65) likely because sapling trees were in closer proximity to adult trees at this site, 

and thus received fog-drip from adult trees as well as from their own canopies. At Upem, 

throughfall was significantly greater under adult trees compared to saplings (adult=0.32 ± 

0.05 cm, sapling=0.12 ± 0.06 cm, P=0.01), and the lowest throughfall values beneath Upem 

saplings agrees with their having the lowest soil moisture values.  

 

Stomatal control on tree water relations  

In 2010, we observed a negative relationship between midday stomatal conductance 

(gs) and predawn stem water potential (Ѱpd) for both age classes at Sauces, and the slope of 

the linear regression model (β) tended to be stronger and slightly steeper for adult compared 

to sapling trees (Fig. 3.6a). At Upem, we observed no relationship between gs and Ѱpd for 

either adults or sapling trees (Fig. 3.6b). Even though the relationship between gs and Ѱpd 

was variable between sites, adult trees tended to maintain higher conductance rates than 

saplings (Fig. 3.1A). 
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Hydraulic leaf traits derived from pressure-volume curves 

Average turgor loss point (πtlp) estimates derived from PV-curves ranged from -1.30 

MPa to -2.05 MPa with significant variation within and between sites and age classes 

(Table. 3.3A), where lower (more negative) πtlp values suggest greater drought tolerance. 

Minimum Ѱpd values observed in the dry season of 2010 or 2011 did not become more 

negative than πtlp values, except for saplings at Upem in 2011 (Table. 3.3A). To understand 

potential physiological controls on πtlp, we related πtlp to other hydraulic leaf traits. More 

negative values of πo indicate greater solute concentration in plant cells. We found a strong 

positive relationship between dry season (summer) πtlp and osmotic potential at full turgor 

(πo) for adult and sapling trees (Fig. 3.7). The slightly steeper slope for saplings suggests 

osmotic adjustment by saplings was greater than for adults, but did not differ significantly 

between age classes (Fig. 3.7). While we tested for relationships between πtlp and other leaf 

traits, such as elastic modulus, we only found weak correlations with these other variables. 

 

4. Discussion 

 

The results of our study contribute novel information about the degree to which fog 

water inputs affect the water relations of adult versus sapling trees. Specifically, our study 

provides evidence that fog-drip is a significant contributor to changes in soil water content 

within the first 10 cm of the soil (Table 3.4), and fluctuations in soil moisture correlate 

strongly with improved water status of bishop pines, especially sapling trees (Fig. 3.5). Our 
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results corroborate well with results from a study conducted by Dawson (1998), who 

evaluated differences in fog water use by different size classes of trees in the fog-influenced 

northern Californian coast redwood forest and found that smaller trees transpired 40% more 

fog water than larger trees. Similarly, Cavender-Bares and Bazzaz (2000) found oak 

seedlings were more responsive to rainfall events during the dry season compared to larger, 

adult trees, suggesting that these distinct age classes rely on different water resources.  In 

addition, our study shows that a single, large fog event can effectively reverse the dry-down 

trajectory otherwise experienced by bishop pines during the dry season (Fig. 3.3b vs. 3d); 

this effect is likely to be especially critical for buffering against water stress in already 

drought-prone environments.  

We observed a smaller difference in Ѱpd between age classes at Sauces in 2011 

compared to Upem (Fig. 3.3a and b), indicating that sapling and adult trees at Sauces had 

similar access to soil water whereas at Upem they did not. Similarly, Vasey et al. (2012) 

observed that deep and shallow rooted coastal California shrubs had similar access to water 

at a fog-influenced coastal site compared to a warmer, drier interior site. One explanation for 

these site differences is that fog-drip supplemented soil water to the shallowly rooted plants 

such that they had similar access to water as more deeply rooted individuals. We know that 

fog-drip can contribute a significant amount of water to semi-arid and arid ecosystems 

(Azevedo and Morgan 1974; Uehara and Kume 2012), and linkages between fog-drip, 

increased soil moisture, and plant water use have been well established in a variety of 

coastal ecosystems (Ingraham and Matthews 1995; Burgess & Dawson 2004; Corbin et al. 

2005; Scholl et al. 2010). In addition, the structural complexity of the forest canopy is an 

important component to the hydrology of a foggy forest (Barbosa et al. 2010), thus variation 
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in canopy architecture and position of saplings versus adult trees on the landscape may help 

us explain differences in plant water status. A likely explanation for the patterns we 

observed was that saplings were heavily irrigated by fog-drip as they grew beneath the 

overlapping canopies of the larger, adult trees, which would homogenize the impact of fog-

drip on soil moisture at Sauces. In contrast, sapling and adult trees at Upem grew in greater 

isolation, thus, the control of canopy size on fog-drip to the soil was stronger at this site.  

 During a single, large fog event at Upem in 2010, we found that adult tree water 

status improved during the event while there was a two-day lag in the response by sapling 

trees (Fig. 3.4). Based on these results, we surmise that foliar absorption of fog-water is 

likely to occur in bishop pines on SCI and help improve the water status of trees, especially 

for adult trees at the drier part of the stand. Simonin et al. (2009) found a similar increase in 

plant water status during a single fog event in the coast redwoods, and provides evidence 

that foliar absorption of fog water is a viable and important mechanism for foliar hydration 

during foggy periods. This is a potential mechanism that we did not explicitly test for, but 

may help explain the late-season increase in plant water status when soil water deficit is 

usually high. 

 

Do saplings and adults regulate stomatal conductance differently? 

When considering differences in stomatal regulation between age classes, Hinckley 

et al. (1978) notes that thresholds of leaf water potential that induce stomatal closure are 

higher (less negative) for saplings than for adult trees. In accordance with this pattern, we 

found that adult trees tended to maintain higher rates of stomatal conductance than sapling 

trees, and this difference was significant at Upem (Fig. 3.1A). Similarly, Cavender-Bares 
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and Bazzaz (2000) demonstrate that seedling oak trees close stomata early in the day to 

avoid water stress while adult trees access deeper water reserves and have higher rates of 

stomatal conductance. One possible explanation for differences in stomatal conductance 

between age groups in our study could be that the hydraulic safety margin is narrower for 

sapling than for adult trees. While we found that stomatal closure was more sensitive to 

changes in water availability for both age classes at Sauces compared to Upem, it remains 

unclear from our results if there is a threshold leaf water potential above or below which 

bishop pines consistently close stomata to preserve their water status.  

 

Hydraulic leaf traits and drought tolerance of bishop pines 

One reason for measuring leaf hydraulic traits was to combine them with our 

estimates of plant water status and attempt to quantify exposure of SCI bishop pines to water 

stress during the dry season. By comparing πtlp estimates and Ѱpd values from the same 

plants we can determine if bishop pines on SCI lose turgor during the dry season, an 

indicator of water stress (Table. 3.3A).  These comparisons suggest that, in most cases, 

bishop pine trees did not experience water stress during the dry-season of 2010 or 2011. The 

exception is saplings at Upem in 2011, which appear to have lost turgor in late August. In a 

comparable relict foggy forest in coastal Chile, Negret et al. (2013) found that a variety of 

dominant plant species did not experience drought stress during the dry season and 

maintained turgor through various ecological and physiological strategies. However, 

additional measurements would need to be completed to rule out water stress as a driver of 

mortality during more severe drought events. It should be noted that our measurements of 

πtlp, and Ѱpd were completed during different dry seasons. Therefore, any conclusions about 
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the maintenance of turgor during the 2010 or 2011 dry season should be viewed with 

caution. For instance, during drier years (e.g., the years preceding the 2009 dieback of 

bishop pines on SCI, Baguskas et al. 2014), comparisons of πtlp and Ѱpd may tell a different 

story than the data presented here. 

  Consistent with the Bartlett et al. (2012) global analysis of drought tolerance across 

species and biomes, bishop pine across age classes and sites appear to regulate their 

tolerance to drought (πtlp values) primarily through osmotic adjustment (Fig. 3.7). We did 

not find a strong relationship between πtlp and any other leaf trait involved with hydraulic 

regulation; however, we did observed that the elastic modulus (ε) was lower in saplings at 

Upem relative to other groups (Table. 3.3A). A lower ε corresponds to greater flexibility in 

cell walls; therefore, this strategy may compensate for a weaker ability of saplings at Upem 

to adjust to water stress osmotically (Hinckley et al. 1983). Overall, we found that the 

absolute value of the suite of hydraulic leaf traits from PV-curves agree with global averages 

determined for coastal, Mediterranean climates (Bartlett et al. 2012).  

 

Influence of coastal fog on population dynamics 

Our study implies an important role for fog in enhancing bishop pine seedling 

survival through the recruitment bottleneck, as has been found to be important in other 

foggy forests (Gutierrez et al. 2008). Bishop pines become reproductive at an early lifestage 

(~5 years old) and cone generation continues through adulthood (lifespan is about 100 

years). It is possible that generation of a large seed bank is an adaptation to drought-stress 

because the potential for recruitment is high even if reproductive plants die back during 

intense drought events. While recruitment is not likely to be high during drought (Lloret et 
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al. 2004), observations in the field suggest that recruitment is greatest in springtime 

following winter rainfall events; moreover, seedling survival (and growth) appears to be 

greatest under the drip-line of canopy trees, where irrigation by fog-drip, as well as exposure 

to sunlight, are both relatively high during summer. Future research should test the 

hypothesis that recruitment and establishment is higher in the foggier parts of the stand, and 

that saplings in foggier areas have greater survival rates than saplings in less foggy areas of 

the stand. 

 

5. Conclusions 

 

Fog water inputs may only temporarily augment plant-available water, but our study 

shows that fog-drip that delivers water to the soil clearly has positive effects on the water 

relations of bishop pines (and especially sapling trees). The effect of fog-drip on bishop pine 

water relations is especially important for populations, such as our study site, that grow in 

marginal habitat where individuals are most vulnerable to drought-induced mortality. 

Studying the response of bishop pines to fog events at the drier site (Upem) was particularly 

informative as to how important the timing and magnitude of fog events are to the essential 

physiological function of adult and sapling trees alike. A significant increase in bishop pine 

water status following a large fog event at the end of summer (when residual soil moisture 

from winter rains is at its lowest point) provides evidence that fog is important for this 

species to withstand late-season dry periods, especially in areas where trees are most 

vulnerable to drought-stress. This is especially true for sapling trees that are more reliant on 
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fog-drip to maintain water status through the summer than adults. Our results support our 

primary hypothesis that sapling trees rely on fog water to maintain water status more than 

adults, which has significant implications for population dynamics in a future climate likely 

to become both warmer and drier.  
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Figure 3.1. (a) Southernmost extent of the bishop pine range in the United 

States is on Santa Cruz Island (SCI, 34
o 
N, 119

o
 45’ W) (shaded in gray) about 

40 km off the coast of Santa Barbara in south-central California. (b) Our study 
area is the westernmost and largest stand of trees. Within the westernmost 
Bishop pine stand, we have two sites: Sauces (coastal, mesic) and Upem 
(Upper Embudo, inland, xeric) indicated by the ‘S’ and ‘U’ respectively. 
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Figure 3.2. Cumulative daily fog water inputs (mm) collected 
over summer months (June-Sept 2011) by a passive fog 
collector located at each field site, Sauces (solid line) and 
Upem (dashed line). 
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Figure 3.3. Stem water potential of adult (triangles) and sapling 
(circles) trees during predawn (Ѱpd, open symbols) and midday (Ѱmd, 

filled symbols) in relation to day of year during the dry season (June-
September) in 2010 and 2011 at Sauces (a and c) and Upem (b and d), 
respectfully. Sample size was 5 individuals per age class in 2010 and 6 
individuals per age class in 2011. Error bars represent ± SE. Least-
squares regression lines were fitted to the non-averaged leaf water 
potential data. Cumulative daily fog water inputs (ml) are indicated by 
the gray line. See Table 1S for slope differences between age class at 
each site across years. 
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Figure 3.4. Predawn stem water potential (Ѱpd) before, during, 

and after (DOY 224, 227, 230, respectively) a fog event for adult 
(filled triangles) and sapling (open circles) trees at Upem in 2010. 
Degree of statistical difference between age classes at each time 
point it indicated by p-values above data points (α = 0.05). 
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Figure 3.5. Predawn stem water potential (Ѱpd) in relation 

to percent soil moisture (%) between 0-10 cm for adult and 
sapling bishop pine trees. Slopes of the least-squares 
regressions between age classes differ significantly (F(1, 

7)=0.1, p=0.06). Each data point represents the average of 

n=8 trees per age class. Data collected during summer 
2011 and pooled by site. Error bars represent ± SE.  
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Figure 3.6. Midday stomatal conductance (gs) in relation to predawn leaf 

water potential (Ѱpd) for adult (triangles, solid line) and sapling (circles, 

dashed line) bishop pine trees at Sauces (a) and Upem (b) in August 
(DOY~223-30) and September (DOY~264-67) in 2010. Each data point 
represents an individual tree (n=5 per age group) for which we took the 
average gs from 10 porometer readings per individual. Least-squares 

regressions were fitted to these data. Slopes between age classes did 
not differ from one another at either site (Sauces, p=0.91. Upem, p=0.88). 
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Figure 3.7. Relationship between osmotic potential at full turgor 
(πo) and turgor loss point (πtlp) estimates for adult (triangles, solid 

line) and sapling (circles, dashed line) bishop pines at Sauces 
(filled symbols) and Upem (open symbols). Slopes between age 
classes did not differ significantly from one another (F(1, 17)=0.19, 

P=0.66). Leaf hydraulic traits were derived from PV-curve 
generated from samples in July 2013. More negative values of πo 

indicate greater solute concentration in plant cells and more 
negative values of πtlp indicate greater tolerance to drought stress. 
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Table 3.1. Tree size estimates based on average diameter at breast 
height (DBH) and height (m) for each age class at both sites (n=6). 
Error bars represent ± standard error.  
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  Table 3.2. Microclimate variables measured at each site during summer 
months (June-September) 2011. Monthly average values were calculated for 
temperature (Tair), relative humidity (RH), and vapor pressure deficit (VPD). 

For fog water inputs, we present the total water (mm) collected by the passive 

fog collector stationed at each site
a 
. Weather station data was incomplete in 

2010, so not included. 

a
The volume of fog water (ml) was converted to a depth equivalent (mm) using an 

accepted relationship between fog water inputs and throughfall from bishop pine 
canopies (Fischer and Still 2007).  
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Table 3.3. Parameter estimates of a linear  model that predicts water status 
(Ѱpd) of Bishop pines at each site (Sauces and Upem) as a function of day of 

year (DOY), age, and with or without fog water inputs collected by the passive 
fog collectors in the field. Model improves significantly with addition of 
cumulative fog water inputs (mm) four days prior to Ѱpd measurement. There 

was no significant interaction between fog and day of year or age at either site. 
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Table 3.4. Parameter estimates of a linear model that predicts percent soil 
moisture (0-10 cm) beneath bishop pine tree canopies as a function of day of 
year (DOY), fog-drip (throughfall, cm), age, and site class. We did not find 
significant interactions between variables in the model.  
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Fig. 3.1A. Average of stomatal conductance (gs) for adult (filled 

bars) and sapling (open bars) trees at Sauces and Upem. Each bar 
represents the average gs of 5 individual trees per age class pooled 

by date (DOY~223-30 and DOY~264-67) in 2010. We took the 
average gs from 10 porometer readings per individual. Significant 

difference is indicated by asterisk (α = 0.05). 



83 
 

 

  

Table 3.2A. Parameters of linear regression functions (Y=β
o
 + βx ) fitted to 

relationships between predawn leaf water potential (Y) and day of year during dry 
season (x) for adult and sapling trees at each site in 2010 (n=5/age class) and 
2011 (n=6/age class) (also see Fig. 3). P-value indicates if slope if different from 
zero. In addition, for each year, we tested for slope differences between age 
classes at each site. Different letters associated with slope values (β) represent 
statistical differences between age classes within a site (α = 0.05), and 
associated F-statistics and P-values are in the last two columns of the table. 
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Table 3.3A. Average hydraulic leaf traits derived from pressure-volume curves 
generated for sapling and adult trees at each site in December 2012 (Winter) and 
July 2013 (Summer). Traits include water potential at the turgor loss point (πtlp), 

osmotic potential at full turgor (πo), relative water content at the turgor loss point 

(RWCtlp), and the elastic modulus (ε) (Mean ± SE). Minimum predawn stem water 

potential values (Ѱpd (min)) from 2010 and 2011 are provided for comparison with 

summer πtlp values. Different letters indicate a significant difference between age 

classes at each site and between sites for a given parameter based on Wilcoxon-
signed rank test, when replicates were 4, and Student t-test when replicates were 
5 and above. 
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Chapter VI. Impact of fog-drip versus fog immersion on the physiology of Bishop pine 

saplings 

 

1. Introduction 

Coastal fog is a common phenomenon during the dry season climate in a variety of 

Mediterranean ecosystems. In these areas, warm descending air over cool ocean surfaces 

traps a layer of cool, moist air at the surface. Moisture in this marine boundary layer 

condenses forming low-stratus clouds that are pushed inland by onshore winds and 

intercepted by land. The occurrence of coastal fog can offset dry season drought conditions 

in a number of ways: 1) shading by low stratus clouds can reduce potential 

evapotranspiration and suppress transpiration (Bruijnzeel & Veneklaas 1998, Williams et al. 

2008, Berry & Smith 2012, Alvarado-Barrientos et al. 2013), 2) fog droplets drip to the 

ground increasing soil moisture (occult precipitation) (Azevedo & Morgan 1974, Harr 1982, 

Ingraham & Matthews 1995, Carbone et al. 2012) , and 3) foliar uptake of fog water can 

reduce leaf water deficit (Burgess & Dawson 2004, Simonin et al. 2009, Limm et al. 2009, 

Goldsmith et al. 2013) and contribute to whole-plant rehydration (Eller et al. 2013, Laur & 

Hacke, 2014). Coastal fog events have been shown to significantly dampen the effects of 

water stress for many plant species in a variety of coastal ecosystems (Corbin et al. 2005, 

del-Val et al. 2006, Ewing et al. 2009, Carbone et al. 2012, Vasey et al. 2012) as well as 

agroecosystems (Moratiel et al. 2013). While coastal fog may have a narrow spatial 

footprint, foggy areas support a disproportionate number of rare, endemic species as well as 

economically vital industries (e.g. agriculture). As drought conditions become more frequent 

in highly productive, yet water-limited, ecosystems, such as in coastal California, 
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understanding the mechanisms by which coastal fog ameliorates water stress is of increasing 

social, economic, and ecological importance.  

The most obvious contribution of fog water to plants is through fog-drip to the soil; 

however, foliar uptake of fog water has received increased attention by researchers as a 

significant, yet largely overlooked, mechanism of plant water use. Studies have 

demonstrated that foliar water uptake occurs in a wide array of plant species in different 

ecosystems, ranging from coastal forests to high elevation deserts (Boucher et al. 1995, 

Burgess & Dawson, 2004, Breshears et al. 2008, Simonin et al. 2009, Limm et al. 2010, 

Goldsmith 2013, Eller et al. 2013). Our ability to distinguish the relative effects of fog-drip 

and fog immersion (that can result in foliar absorption of water) on water and carbon 

relations of plants is important for making accurate predictions of how potential changes in 

the fog regime may impact hydrologic and ecologic function of fog-influenced ecosystems 

in the future.  

Water typically moves along a water potential gradient from the soil through a plant 

out to the atmosphere from high to low potential. Under certain conditions, however, this 

direction of flow is reversed. In order for leaves to absorb water from the atmosphere (rain 

and fog droplets), relative humidity must be high, leaf surfaces must be wet, and leaf water 

deficit must be high (Goldsmith et al. 2013, Laur & Hacke 2014). However, leaf cuticles are 

generally hydrophobic. Hydrophobicity is evolutionarily favored because it reduces water 

loss from leaves and prevents stomata from becoming clogged with liquid water, which 

would limit CO2 uptake (Ishibashi & Terashima 1995); therefore, shedding water is 

important. Despite cuticle hydrophobicity, numerous studies have shown that liquid water 

can enter leaves. Munne-Bosch (1999) successfully tracked dew into mesophyll cells using 
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fluorescent stains and microscopy and suggested that trichomes facilitated foliar uptake. 

Burgess and Dawson (2004) illustrate that fungal hyphae can penetrate stomata and 

potentially facilitate water entry into the leaf tissue of coast redwoods. In a cloud forest in 

Mexico, Eller et al. (2013) demonstrate that 42 % of total foliar water content in pine trees 

was derived from diffusion of water through leaf cuticles and that cuticles were less 

hydrophobic than predicted. Moreover, reverse sapflow and elevated soil moisture were 

tightly correlated with foliar uptake events. In a recent study, Laur and Hacke (2014) 

provide evidence that once water is absorbed by conifer needles, aquaporins (water channel 

proteins) can facilitate radial water movement from leaves to the vascular tissue. These 

studies not only identify the importance of leaf anatomy, biochemistry, and symbiotic 

relationships in understanding foliar water uptake, but they also highlight this alternative 

path of plant water use that has significant implications for carbon and water balance of 

plants in fog-influenced ecosystems. 

The objective of our study was to distinguish the effects of fog immersion (i.e., leaf-

wetting events) versus fog-drip to the soil on the physiological function of a fog-dependent 

pine species, Bishop pine (Pinus muricata D.Don). Bishop pine is one of many rare and 

endemic plant species restricted to the fog belt of coastal California. Recent studies show 

that the water relations, growth rates, and survival during drought are all improved by 

persistent coastal fog that occurs during the dry season (summer, June-September) 

(Williams et al. 2008, Fischer et al. 2009, Carbone et al. 2012, Baguskas et al. in review). At 

the southern extent of the species range on Santa Cruz Island, CA, Carbone et al. (2012) 

report that cumulative summertime fog-drip can contribute as much as 30-40% to total 

annual precipitation, which is especially important during below average rainfall years 
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(<500 mm). Field observations support the hypothesis that increases in shallow soil moisture 

driven by fog-drip is the leading mechanism by which fog water becomes available to 

Bishop pines (Carbone et al. 2012, Baguskas et al. in review). To date, no study has tested 

whether foliar absorption of water occurs in this species and how important this mechanism 

of water use may be to the carbon balance of Bishop pines relative to fog-drip. In this study, 

we investigated mechanisms of Bishop pine fog water use and consequences on carbon 

assimilation and photochemical potential by addressing the following question: Is fog 

immersion important to maintaining the physiological function of Bishop pine saplings 

relative to trees that also receive fog-drip or no fog at all? 

A widely accepted and commonly used approach to quantify plant stress in response 

to some environmental stressor, such as decline in soil moisture, is to measure the degree of 

chlorophyll fluorescence (Genty et al. 1989, Maxwell & Johnson 2000). Light energy 

absorbed by plants not used for photochemistry is either re-emitted as long-wave radiation 

from the leaf (chlorophyll fluorescence) or dissipated as heat. Unlike leaf gas-exchange 

rates, which are controlled by a variety of environmental factors, chlorophyll fluorescence is 

a metric of the performance of photochemical machinery. Quantum yield of CO2 

assimilation is positively related to the quantum efficiency of photosystem II (ΦPSII) (Genty 

et al. 1989, Epron et al. 1995, Valentini et al. 1995). Furthermore, many studies have 

demonstrated that quantum efficiency of photosystem II (ΦPSII) diminishes as water stress 

increases in a variety of ecosystems (Flexas et al. 1999, Mahall et al. 2009). Based on these 

established relationships, we expected chlorophyll fluorescence in Bishop pine saplings to 

increase with varying degrees of water stress as affected by our watering regimes. 

Specifically, we expected saplings in the fog-drip and immersion (FDI) group to have the 
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highest electron transport rates and highest ΦPSII values through the dry-down period 

compared to the group that only experienced fog immersion (FI). We hypothesized that 

control plants (C), which received no fog at all, would experience the greatest water stress, 

which would induce greater damage to photochemical machinery. 

 

2. Methods 

Experimental design 

To test for the physiological mechanisms underlying fog water use by Bishop pine 

during the dry (yet foggy) season in southern California, we manipulated fog water inputs to 

potted Bishop pine saplings during a three week dry-down period (29 August – 14 

September 2012). In 2010, two-year old saplings were purchased from a native plant nursery 

that sourced seeds from a mainland population about 30 miles north of Santa Barbara, CA. 

Saplings were transplanted to 20 L well-drained black plastic pots using a cactus soil mix 

(Uni-Gro Premium Cactus Mix). Since the cactus soil mix had no additional nutrients, we 

added diluted organic liquid kelp fertilizer (1 ml fertilizer: 250 water ml) to the soil to 

prevent nutrient deficiency. Saplings were 3-4 years old at the time of the experiment.  

We artificially generated nine nighttime (2100 – 0600 hours local time) fog events 

over the three-week dry-down period. We constructed an enclosed ‘fog chamber’ with a 

PVC frame and plastic sheets (~1.2 x 1.5 x 1.2 m) within which fog events were generated 

using an ultrasonic device (model MHS10, Mainland Mart Corp., El Monte, CA), which 

produced fog droplets (droplet size ~10 microns in diameter). The timing and duration of 

our simulated late-season fog events corresponded to typical diurnal patterns of fog events in 

the area, which tend to occur at night and dissipate during early morning (Fischer et al. 
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2009, Carbone et al. 2012). To simulate the dry-down period, all potted plants were watered 

to field capacity at the beginning of the experiment, but not provided additional water (other 

than from the fog treatments) over the three-week period. Fifteen saplings were randomly 

assigned one of three treatments: 1) fog-drip and fog-immersion (FDI), 2) fog immersion 

alone (FI), and 3) no fog water inputs (control, C). In effect, the control (C) group provided 

a baseline for how Bishop pine saplings responded physiologically to soil dry-down. We 

should note that this experiment did not take place within a controlled greenhouse setting, 

thus all plants were exposed to ambient conditions during the day, which were mostly clear, 

sunny days, but sometimes overcast. In addition, C group plants were kept outside of the fog 

chamber at night while plants in the FI and FDI groups were fogged inside the chamber. 

 

Fog treatment 

In the FI treatment group, plant canopies were wet by fog droplets but fog-drip was 

excluded from the soil surface (details below). In the FDI treatment group, plant canopies 

experienced foliar wetting as well as fog-drip to the soil. We excluded drip to the soil from 

the canopy then manually added the same amount of ‘fog-drip’ to each FDI pot to control 

for differences in canopy architecture and harvesting efficiencies. The volume of ‘fog-drip’ 

added was the average fog-drip generated from all five FDI plant canopies after a simulated 

nighttime fog event (450 ml). In the field, average wetting depth ranges from 0.02 to 1.4 cm 

from fog-drip after a fog event. In the greenhouse, adding 450 ml of water resulted in a 

wetting depth of 0.8cm –mid-range of these field observations. ‘Fog-drip’ water was poured 

into a plastic container that had holes punctured in the bottom allowing water to drip into the 

soil. Containers were removed from the soil surface once empty (~10-15 minutes).  
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To exclude fog-drip from the soil surface of FI and FDI plants, we placed plastic 

“skirts” over the pots that extended from the base of the main trunk over the edge of the pot. 

These “skirts” were kept elevated ~ 8 cm above the rim of the pot to allow air flow and 

prevent condensation. In addition, “skirts” were sealed to the trunk with duct seal to prevent 

fog water entering the soil via stemflow. To control for any treatment effect of the plastic 

“skirts,” such as reduced evaporative loss or increased soil temperature, “skirts” were also 

placed on C plants whenever they were placed on FI and FDI plants. Lastly, all plants that 

received fog treatments were placed in the fog chamber at the same time. To standardize the 

effect of fog exposure across fog treatment groups, we rotated the position of plants in the 

chamber between fog events. 

 

Microclimate observations 

To monitor changes in microclimate conditions, we installed temperature and 

relative humidity sensors (model VP-3, Decagon Devices, Inc., Pullman, WA) inside and 

outside the fog chamber. To determine the degree of leaf-wetting during fog events, we 

installed a leaf wetness sensor (model LWS, Decagon Devices, Inc., Pullman, WA) inside 

the fog chamber as well as outside, for comparison. LWS stay wet until humidity drops to 

sufficiently low levels to evaporate off the saturated layer. In the fog chamber, leaf wetness 

measurements after 0800 hr in the morning are irrelevant to our analyses because plants 

were removed from the fog chamber after fog events by 0730 hr. To detect changes in soil 

moisture across treatment and control groups, we installed volumetric soil moisture probes 

(model EC-5 Decagon Devices, Inc.) at 2 and 10 cm depth in each potted plant. In the field, 

soil water potential within the first 15 cm of the soil is positively affected by fog events 
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(Fischer et al. 2007, 2009), hence we monitored soil moisture at 2 and 10 cm depth to 

capture the effect of fog-drip on potential plant-available water. Soil probes were calibrated 

for the soil substrate used in the pots in this experiment. The probes are relatively insensitive 

to temperature variation in the soil, i.e., volumetric soil water content changes by 0.01 cm3 

cm-3 with a change in temperature of about 10 °C. Observations from all sensors were 

recorded every 15 minutes. 

 

Leaf gas exchange measurements 

We measured maximum leaf-level gas exchange rates using a portable 

photosynthesis system (model LI-COR 6400XT, LI-COR Bioscience, Lincoln, NE) from all 

plants on a total of eleven days of the dry-down period. Specifically, leaf gas-exchange rates 

measurements were collected from three randomly selected needles (~6 needles per sample) 

located on sunlit branches on each of the five plants per group. Measurements were 

collected on in the morning (between 0800-1130 hr.) following simulated fog events. The 

light condition in the leaf chamber was set to 1800 µmol m-2 s-1, and CO2 reference 

concentration was 400 ppm. Leaf temperature (Tleaf) and relative humidity (RH) inside the 

leaf chamber were allowed to vary naturally. On average, Tleaf was 25 ± 2.1 °C, and RH was 

41 ± 3.14 %. Water-use efficiency for each treatment and control group was calculated as 

Amax/gs (Field et al. 1983). 

 

Chlorophyll fluorescence measurements 

Concurrent with leaf gas exchange rates, we quantified the photochemical efficiency 

of photosystem II (ΦPSII) (defined as ΔF/Fm’) and electron transport rates (ETR), i.e., the 
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overall photosynthetic capacity of PSII (Maxwell & Johnson, 2000), from three light-

adapted leaves on each plant in the treatment and control groups using a portable 

fluorometer (MINI-PAM, Heinz Walz GmbH, Germany). Specifically, we extracted 

maximum rates of response variables (ΦPSIImax and ETRmax) from light-response curves on 

light-adapted leaves (see equation for curves in Table 1). Light levels (photosynthetic 

photon flux density, PPFD µmol photons m-2 s-1) were established using the Light-Curve 

program with eight consecutive saturating light bursts ranging in intensity (200, 600, 1000, 

1200, 1600, 2200, 3200, 4200 PPFD µmol photons m-2 s-1). In addition to sampling light-

adapted leaves, we quantified maximum chlorophyll fluorescence from dark-adapted leaves 

at the beginning of the experiment. For all measurements, we used a distance clip to 

maintain an exact distance between the leaf surface and fiber-optic cables.  

 

Statistical analysis 

Repeated measures analysis of variance was performed to test for within-subject 

(time since beginning of dry-down) and between-subject (treatment) effects on leaf gas-

exchange rates for all plant groups. A Bonferroni post-hoc test was conducted to test for 

differences between treatment and control groups during the dry-down. We performed a 

Mauchly’s test of sphericity to test for equal variances. Repeated measures and the post-hoc 

test were performed using SPSS (version 18.0, SAS Institute, Cary, NC) statistical software 

package. Pairwise comparisons were performed using a Student’s t-test to assess differences 

between leaf-level responses between fog treatment and control groups at each sampling 

time point. Both of these analyses were performed using the JMP Pro (version 10.0.0, SAS 

Institute, Cary, NC, USA) statistical software package.  
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Non-linear regressions were used to test for correlation between fluorescence 

response variables (ETR and ΦPSII) and light (PPFD). Curve-fitting was performed using 

MATLAB (version R2014a, Mathworks, Natick, MA, USA). Coefficients of the light curve 

equations were generated for each plant on each day of the dry-down. Using the coefficient 

values, maximum ETR values (ETRmax) were extracted at 2000 µmol m-2 s-1 (the light level 

at which the curve began to plateau), and pairwise comparisons were performed to test for 

statistical differences between treatment and control groups. 

Linear regressions were used to test for correlation between leaf physiological 

response variables and volumetric soil water content (VSWC, cm3 cm-3) within each fog 

treatment and control group. Statistical differences between regression lines were tested 

using JMP Pro (version 10.0.0, SAS Institute, Cary, NC, USA) statistical software package. 

 

3. Results  

Microclimate observations 

 All plants were kept outside of the fog chamber on each day of the experiment 

between 0700-2000 hr. Only FI and FDI plants experienced nighttime fog events between 

2100-0600 h. Leaf wetness increased during simulated nighttime fog events inside the fog 

chamber (Fig. 4.1), indicating that sapling needles were wetted by these events. During fog 

events, average relative humidity (RH %) inside the fog chamber (mean ± SD) was 95 ± 

0.03% and average ambient temperature (Tair, C°) was 20.5 ± 2.15 C° (Fig. 4.1A). At night 

outside the fog chamber, average RH was 90 ± 0.03% and average Tair was 17.6 ± 1.1 C°. 

While Tair generally decreases during natural fog events, it appears that the chamber itself 
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had insulating effects, despite the fact that air was mixed with a fan and the water feeding 

the chamber was cool. 

Outside of the fog chamber, average daily Tair was 21.5 ± 1.1 C° and RH was 75 ± 

0.4% (Fig. 4.1A). Small rain events affected the study area in the evening of day 9 (0.5 mm) 

and day 10 (1.0 mm) of the dry-down (Sept. 6th and 7th, 2012, respectively) (data available 

on Santa Barbara county website: 

http://www.countyofsb.org/pwd/water/downloads/hydro/200dailys.pdf). All plants were left 

outside the fog chamber during the rain events. While these rain events were registered by 

the LWS (Fig. 4.1), indicating that sapling canopies got wet, the total amount of rainfall (1.5 

mm) over both nights was minimal (recorded by a local meteorological station) and barely 

wet the soil surface of plotted saplings.  

 

Effect of dry-down and simulated fog events on soil moisture 

Average volumetric soil water content (VSWC, cm3 cm-3) at 2 and 10 cm depth was 

significantly higher in the FDI group (2 cm: 0.34 ± 0.03; 10 cm, 0.32 ± 0.03) compared to FI 

(2 cm: 0.21 ± 0.05; 10 cm: 0.18 ± 0.05) and C (2 cm: 0.16 ± 0.05; 10 cm: 0.13 ± 0.06) 

groups through the dry-down period (Fig. 4.2). We compared VSWC between FI and C 

groups and found that the relative difference in VSWC (at both soil depths) was 15 % higher 

in FI than C saplings at the beginning of the experiment and 90 % higher by the end of the 

dry-down (Fig. 4.2). The relative difference in VSWC between FI and FDI was only 1.5 % 

higher in FDI than FI saplings at the beginning of the dry-down, but 150 and 200% higher at 

2 and10 cm, respectively, in FDI by the end of the experiment (Fig. 4.2). During fog events, 

VSWC increased by 30% at 2 cm and by 10% at 10 cm in the FDI group while soil moisture 

http://www.countyofsb.org/pwd/water/downloads/hydro/200dailys.pdf
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did not change in response to fog events in the FI group. There was no change in VSWC in 

the C group during fog events because these plants were kept outside the fog chamber.  

 

Leaf gas-exchange  

We observed a significant effect of both the drydown (time since water was 

withheld) (P<0.0001) and the interaction between treatment and time (P=0.003) on the 

maximum photosynthetic rates (Amax) of plants (Fig. 4.3a, Table 4.1A). Fog immersion 

alone had a positive effect on Amax of saplings relative to the C group; however, FDI 

saplings had much higher photosynthetic rates than FI or C saplings (Fig. 4.3a). At the 

beginning of the experiment (day 1), average Amax of the C group (4.50 ± 0.46 µmol m-2 s-1) 

was not significantly different from the FI (4.02 ± 0.26 µmol m-2 s-1) and FDI groups (5.01 ± 

0.45 µmol m-2 s-1) (C-FI, P=0.16 and C-FDI, P=0.11, respectively); however, the FI group 

was significantly lower than the FDI group (P=0.004). Differences in Amax among C and fog 

treatment groups did not occur until midway through the dry-down period. On day 8, 

average Amax of FI plants (3.39 ± 0.50 µmol m-2 s-1) fell in-between the FDI (4.57 ± 0.35 

µmol m-2 s-1) and the C plants (2.33 ± 0.32 µmol m-2 s-1). Differences among groups were 

statistically significant (F(2, 13) =23.5, p<0.001). Separation of average Amax values among 

plant groups was maintained through the final day of the dry down, when we observed the 

greatest divergence (Fig. 4.3, FDI=4.37 ± 0.31, FI=2.37 ± 0.42, C=1.14 ± 0.22 µmol m-2 s-1, 

F(2,13) =74.4, p<0.001).  

Maximum stomatal conductance (gs, mol m-2 s-1) showed similar variation between 

fog treatment and control groups through the dry-down period as compared to Amax (Fig. 

4.3b). On day 1, gs of FI plants was slightly lower than FDI plants (Fig. 3b, FDI= 0.10 ± 
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0.01, FI= 0.07 ± 0.01 mol m-2 s-1, P=0.06), but neither fog treatment group differed 

significantly from the C group (0.09 ± 0.02 mol m-2 s-1, P=0.13). FDI plants diverged 

significantly from C and FI plants on day 3 and maintained higher stomatal conductance 

rates for the duration of the dry-down (Fig. 4.3b).  

Maximum electron transport rate (ETRmax, µmol photons m-2 s-1) over the dry-down 

varied similarly to leaf gas exchange rates (Fig. 4.3c). ETRmax values were the same across 

plant groups during the first several days of the experiment; however, by day 8, ETRmax of 

the FDI group (157 ± 6 µmol photons m-2 s-1) increased significantly compared to C plants 

(135 ± 14 µmol photons m-2 s-1) and FI plants (144 ± 21 µmol photons m-2 s-1). The range of 

ETRmax values in the FI group was 120-213 µmol photons m-2 s-1, which generally fell 

within the bounds of FDI and C group values. 

Water use efficiency (WUE) increased for all plants during the dry-down period 

(Fig. 4.4). WUE increased earlier during the dry-down period in the control group than 

either fog-treatment groups, suggesting closer regulation of water loss via stomatal closure 

in plants experiencing higher water stress. For the C group, WUE increased significantly by 

27% between the beginning (avg. day 1 & 2) and middle (avg. day 8 & 9) of the dry-down, 

then stabilized thereafter. For FI and FDI plants, average WUE did not change between the 

beginning and middle of the dry-down, but then increased significantly by 40% and 18%, 

respectively, at the end of the dry-down (Fig. 4.4., P<0.01).  

 

Chlorophyll fluorescence 

  Average maximum quantum efficiency of PS II (Fv/Fm) (from dark-adapted needles) 

was similar across fog treatment and control groups at the beginning of the dry-down 
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(C=0.81 ± 0.03, FI=0.80 ± 0.02, FDI=0.82 ± 0.04, F(2,13)=0.65, P=0.52). The light-response 

curves illustrate that the effect of water availability had a greater impact on the electron 

transport rate (ETR) than quantum efficiency of PSII in light-adapted leaves (ΦPSII) across 

all treatment and control groups (Fig. 4.5 a-f and see Table 4.2A for fit of non-linear 

regression lines). In response to changes in PPFD, ETR, or overall photosynthetic capacity, 

was greatly diminished in the control group by the end of the dry-down period compared to 

plants in the fog treatment groups (Fig. 4.5a, b, and c). Between the beginning and the end 

of the dry-down, the ETRmax was 70 µmol photons m-2 s-1 lower in the control group 

compared to 40 and 10 µmol photons m-2 s-1 lower in the FI and FDI fog treatment groups, 

respectively. ΦPSII was less responsive to changes in PPFD across treatment and control 

groups and between the beginning and end of the dry-down (Fig. 4.5d, e, and f).  

 

Relationship between soil moisture and leaf physiology 

The relationship (β) between leaf response variables (Amax, gs, and ETRmax) and 

changes in soil moisture were all positive and significant in the control group (Fig. 4.6, Amax: 

r2=0.70; β= 14.0 ± 3.08, P=0.0014; gs: r2=0.83; β= 0.35, P<0.001; ETRmax: r2=0.78; β= 408.9 

± 76.3, P=0.0007). For FI plants, the correlation between leaf-level physiology and soil 

moisture was also positive, yet weaker compared to the control group (Fig. 4.6, Amax: 

r2=0.62; β= 7.13 ± 1.86, P=0.0041; gs: r2=0.73; β= 0.24, P=0.0009; ETRmax: r2=0.55; β= 

340.5 ± 108.2, P=0.0137), suggesting plants that experienced fog immersion may have 

relied less on soil moisture to support leaf function compared to plants that received no fog 

at all. The slopes of the regression lines fitted to the relationship between Amax and soil 

moisture were marginally significantly different between FI and C groups (Fig. 4.6, F(1,8) 
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=3.5 p=0.08). Slopes between these two groups did not differ significantly with respect to 

other leaf responses and soil moisture. In the FDI group, leaf physiology was not 

significantly correlated to changes in soil moisture because variation in soil moisture was 

minimal (Fig. 4.6., Amax: r2=0.005; β= -1.73 ± 7.82, P=0.83; gs: r2=0.28; β= -0.23, P=0.09; 

ETRmax: r2=0.14; β= -329.6 ± 278, P=0.26).  

 

Relationship between leaf-gas exchange rates and chlorophyll fluorescence 

 Amax was strongly correlated with gs across treatment and control groups (Fig. 4.7a; 

FDI: r2=0.51; β= 39.4 ± 12.7; FI: r2=0.81; β= 29.2 ± 4.7; C: r2=0.91; β= 41.3 ± 4.14). 

Conversely, Amax was weakly correlated with ETRmax (Fig. 4.7b. FDI: r2=0.13; β= -0.01 ± 

0.009; FI: r2=0.039; β= 0.0042 ± 0.007; C: r2=0.38; β= 0.019 ± 0.008). Only in the C group 

did the relationship between Amax and ETRmax differ significantly from zero (t-ratio=2.22, 

P=0.05). These relationships suggest that stomatal regulation of leaf gas-exchange rates is 

more important to leaf carbon-balance of Bishop pines over a short-term dry down than is 

the efficiency of the photochemical system.  

 

4. Discussion 

Our results show that fog-immersion alone provides sufficient moisture to Bishop 

pine saplings to maintain carbon assimilation rates even as soil moisture declines (Fig. 3). 

Relative to the control group, FI plants maintained higher carbon assimilation rates but had a 

weaker relationship between leaf gas-exchange rates and soil moisture (Fig. 6a & b). These 

results suggest that FI saplings had access to water sources other than soil moisture in order 

to support photosynthesis. It is probable that foliar absorption of fog water is a mechanism 
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by which saplings immersed in fog maintained higher gas exchange rates compared to 

saplings that received no fog at all. Yet, the primary mechanism by which this coastal forest 

tree species benefits from nighttime fog events is through fog-drip, which increases soil 

moisture (Fig. 2).  

The results of our study corroborate with other studies that investigated foliar water 

uptake (Limm et al. 2009, Simonin et al. 2009, Eller et al. 2013, Laur & Hacke 2014). In 

particular, Simonin et al. (2009) provide convincing evidence from both field observations 

and a greenhouse study that foliar water uptake significantly improves the water and carbon 

relations of coast redwoods (Sequoia sempervirens D.Don). They found that leaf-wetting 

events from nighttime fog immersion alone maintained Amax values similar to fully irrigated 

plants (~ 4 µmol m-2 s-1). Similarly, in our study, Bishop pines that were effectively irrigated 

by fog-drip also maintained Amax values between 4-5 µmol m-2 s-1; however, saplings only 

immersed in fog exhibited lower Amax values (~ 3 µmol m-2 s-1) than observed by Simonin et 

al. (2009). In addition, both our study and Simonin et al. show that saplings immersed in fog 

were less sensitive to changes in soil water content compared to plants that receive no fog at 

all (Fig. 6a). 

Cloud immersion has been shown to suppress of transpiration rates and reduce demand for 

soil water in montane cloud forests in Mexico (Berry et al. 2012, Alvarado-Barrientos et al. 

2014), southern Appalachian mountains in the United States (Berry et al. 2012), and even 

agricultural systems in China (Mortiel et al. 2013). It is possible that nighttime transpiration, 

which has been observed in Bishop pines in the field (unpublished data), was suppressed, 

which would result in greater efficiency of nighttime re-equilibration and reduce demand for 
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soil water (Limm et al. 2009). Another explanation for this pattern is that direct foliar 

absorption of fog water reduces the demand for soil water during the day.  

Fog-drip was mainly responsible for higher rates of leaf gas-exchange rates and 

photosynthetic capacity of this species; however, foliar wetting from nighttime fog events 

augments water availability to Bishop pines, regardless of the specific mechanism. By 

increasing shallow soil moisture, fog water that drips beneath plant canopies effectively 

mitigates against soil water deficit during the dry season (Dawson 1998, Corbin et al. 2005, 

Scholl et al. 2010). In support of this primary mechanism of fog water use, we show that 

physiological performance of sapling trees that received both fog-drip and fog-immersion 

was significantly greater than saplings that only experienced fog immersion and drastically 

greater than the plants that did not receive fog at all (Fig. 3a and b, Fig. 4).  

 

Effects of soil dry-down and fog treatments on carbon assimilation and photochemistry 

By quantifying the degree of chlorophyll fluorescence together with instantaneous 

leaf gas-exchange rates, we were able to report on performance of the photochemical system 

in relationship to overall carbon assimilation rates. We found that Amax was strongly 

correlated with stomatal conductance (gs) while weakly correlated with ETR (Fig. 7a and b). 

The relationship between Amax and gs is consistent with results from numerous plant 

physiological studies that show photosynthesis is limited by diffusion of CO2 into the leaf 

when stomata are closed (Wong et al. 1979, Farquhar and Sharkey 1982, Ball et al. 1987, 

Collatz et al. 1991). The potential mechanistic linkages between carbon assimilation and 

ETR are better elucidated by results from the light-response curves.  
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The decline of ETR in the control group between the beginning and end of the dry-

down was greater than in either fog-treatment group (Fig. 4.3 a-c), which supports our 

hypothesis that availability of fog water alleviates leaf-level water stress and improves 

photosynthetic capacity of plants. While ETR appears to be a good indicator of relative plant 

stress between Bishop pines under different water regimes, this was not the case for 

quantum yield of PSII photochemistry (ΦPSII) (Fig. 4.3 d-f). Overall, soil water depletion 

and fog water inputs did not affect the ΦPSII in Bishop pine saplings as much as the overall 

photosynthetic capacity (ETR) of saplings in vivo. The insensitivity of ΦPSII to effects of 

water-stress indicates that damage of PSII was not induced by dehydration, and it further 

suggests that Bishop pine saplings are effective at dissipating excess energy that protects the 

PSII reaction center (Epron et al. 1992). 

All plants increased in their water-use efficiency (WUE) between the beginning and 

end of the dry-down period (Fig. 4.4). Higher WUE occurred earlier for control plants than 

plants in either fog treatment group. Between fog treatment groups, the increase in WUE 

was significantly greater in the FI group compared to the FDI group which supports the idea 

that fog immersion is only secondary to fog-drip in offsetting water stress of Bishop pines.  

 

Fog effects on soil water supply vs. demand 

An interesting pattern emerged in the immersion-only group that elucidates potential 

mechanistic interactions between foliar absorption and soil moisture dynamics. From day 3 

through the end of the dry-down period, we found that soil moisture in the immersion-only 

group was consistently greater at both 2 and 10 cm depth, compared to the control group 

(Fig. 2). This observation, in conjunction with the weaker correlation between Amax and soil 
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moisture for immersion-only plants (Fig. 4.6), suggests that soil water uptake was reduced in 

plants only immersed in fog compared to plants in the control group. Possible mechanisms 

that may explain why FI plants had higher soil moisture than control plants include: 1) 

reduced nighttime transpiration during fog events, or 2) foliar absorption of fog water. 

Because relative humidity was similar inside (95%) and outside (90%) the fog chamber 

during fog events (Fig. 4.1A), it is unlikely that there were large differences in 

evapotranspiration rates between FI and C plant groups. The more probable mechanism is 

that daily leaf water deficit was sufficiently quenched by foliar absorption of water, which 

reduced plant demand for soil moisture. This explanation is consistent with other studies that 

demonstrate reduced demand for soil water in plants that exhibited signs of foliar absorption 

(Dawson 1998).  

 

5. Conclusion 

By distinguishing the effects of fog-drip and fog-immersion on plant physiology, this 

study contributes to our mechanistic understanding of how coastal fog influences plant 

ecophysiology. In particular, our study contributes to a growing list of species for which 

foliar uptake has been shown to be a viable mechanism of plant water use. We demonstrate 

that fog immersion alone significantly buffers sapling trees from experiencing the negative 

effects of soil water deficit on leaf gas-exchange rates. While leaf-wetting from fog 

immersion during soil dry-down augments plant water relations, the effect is secondary to 

the influence of direct fog-drip to the soil. We also show fog-immersion alone can reduce 

plant demand for soil moisture, which has implications for the water balance in fog-

influenced forests. For example, increased soil moisture during the seasonal dry season 
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could change competitive interactions between species and have indirect effects on plant 

species composition in a warmer, drier future.  

Future changes in the fog regime of coastal California (and other foggy places) could 

have detrimental effects on the persistence of many species that distinguish the area as a 

hotspot of biodiversity. Interdisciplinary research efforts are underway to improve our 

predictive power of how increases or decreases in the frequency and extent of coastal fog 

will impact the ecohydrology of natural and managed ecosystems (Williams et al. in press). 

A recent study that examined sources of variability in coastal cloud frequency from southern 

California to the Alaskan Islands shows promise of generating more accurate predictions of 

fog climatologies in the future (Schwartz et al. 2014). Identifying local and regional scale 

fluctuations of fogginess (e.g., the elevation at which the marine layer intercepts land, the 

duration of fog events, and the liquid water content in low-stratus clouds) is critical for 

assessing the vulnerability of many species to drought stress that are already restricted to the 

fog belt of California, such as Bishop pine. At the southern extent of the species range, 

Bishop pine populations are highly susceptible to drought-induced mortality (Baguskas et al. 

2014) and rely on coastal fog to persist through the dry season; therefore, the outcome of our 

study is important for making mechanistically-based predictions of the distribution of 

Bishop pine in the future.  

The findings from the present study are important for informing how changes in the 

fog regime may impact plant performance, and potentially survival, in fog-influenced 

ecosystems. We demonstrate that fog-drip plays a critical role in the ability for the dominant 

tree species in a coastal forest ecosystem to photosynthesize during a period of time when 

they are most vulnerable to drought stress. Furthermore, our findings contribute to a growing 
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body of literature that supports the hypothesis that foliar absorption of fog is possible, and 

that it positively affects the carbon and water relations of fog-dependent plant species. We 

advocate future research to investigate the answers to unresolved questions as to how the 

influence of fog events on plant physiology in the short-term (hours to days) may impact 

plant productivity and hydrologic cycling on longer timescales (months to years).  
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Figure 4.1. Average daily leaf wetness observations inside and 
outside the fog chamber. Height of bars is proportional to the 
wetness of leaves. Natural rain events (‘r’) occurred in the evening 

of the 9
th
 (0.5 mm) and 10

th
 (1.0 mm) day of the dry-down. Rain 

events affected the Santa Barbara area. 
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Figure 4.2. Average volumetric soil water content at 2 and 10 cm depth 
(n=5 and 3, respectively) for each treatment group during the dry-down 
period (circles, fog-drip & immersion; triangles, fog immersion; squares, 
control). Grey bars represent simulated nighttime fog events. Average soil 
moisture among treatment groups and control were significantly different 
from each other at each time point based on pairwise comparisons 
(p<0.001). Within each group, soil moisture at 2 and 10 cm was 
significantly different from day 1 through the dry-down period (p<0.001). 
Error bars represent standard error of the mean. 
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Figure 4.3. (a) Maximum photosynthetic rate (Amax), (b) stomatal 

conductance (gs), and (c) maximum electron transport rate (ETRmax) 

of sapling Bishop pines in fog treatment and control groups during the 
dry-down period. Each point represents the average response value 
for all plants within each group (n=5). Error bars represent standard 
error of the mean. Different letters within the plot indicate significant 
differences among groups on a given day of the experiment based on 
pairwise comparisons (α =0.05), and is only indicated when there is a 
change in significance among groups.  
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Figure 4.4. Average water use efficiency (calculated as maximum 
photosynthesis rate (Amax ) divided by stomatal conductance (gs) of 

sapling Bishop pines at the beginning (day 1 & 2), middle (day 8 & 9), 
end (day 16 & 17) of the dry down. The average of all five plants per 
treatment and control groups were taken over two days. Error bars 
represent standard error of the mean. Within groups, different letters 
indicate significant differences between the beginning, middle, and end 
of the experiment based on pairwise comparisons (α =0.05).  
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Figure 4.5. Average electron transport rate (ETR, µmol photons m

-2
 s

-1
) (upper) 

and the quantum efficiency of PSII photochemistry (ΦPSII) defined as ΔF/Fm’ 

(lower) in response to changes in photosynthetic photon flux density (PPFD, 

µmol photons m
-2

 s
-1

) between the beginning (day 1) and end (day 17) of the dry-
down across treatment and control groups. Light-response curves were 
performed on three light-adapted leaves per plant, and there were 5 plants per 
treatment or control group. Error bars represent standard error. See Table 4.2A 
for model fit parameters (equations, coefficients, and model fit results). 
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  Figure 4.6. Correlation between average volumetric soil water content 
(VSWC) at 2 & 10 cm depths and (a) maximum photosynthetic rate (Amax), 

(b) stomatal conductance (gs), and (c) electron transport rate (ETR) of 

sapling Bishop pines in fog treatment and control groups during the dry 
down period. Each point represents the average value of Amax for all plants 

within each group (n=5) on each day of measurement (total =11 days). Soil 
depths were pooled when calculating average VSWC. Error bars represent 
standard error. A linear regression relationship was fitted to non-pooled 
depth data.  
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Figure 4.7. Relationship between maximum 
photosynthesis (Amax) and a) stomatal conductance (gs) 

rate and b) maximum electron transport rates (ETRmax) 

for Bishop pine saplings in fog treatment (FDI and FI) 
and control (no water) groups.  
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Figure 4.1A. a) Average daytime and nighttime ambient temperature (Tair, C°) 

(range: 19.7-22.6 C°) and relative humidity (RH, %) ((range: 70-82%) outside 
the fog chamber; b) Average nighttime Tair and RH (range: 87-97%) inside the 

fog chamber. FI and FDI plants were only in the fog chamber at night during 
fog events and were otherwise kept outside with the C plants; therefore, open 
symbols indicate points in time irrelevant to plant physiology. 
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Table 4.1A. Repeated measures analysis for the effects of the dry-down (time, within-
subject variation) and treatment (between-subject variation) through time on 
maximum photosynthetic rates (Amax) of Bishop pine saplings.  

Mauchly’s test of Sphericity was not significant (P=0.24), thus assumption of sphericity 
was not violated.  
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Table 4.2A. Fit of non-linear regressions to light-response curve data (see Fig. 
5 a-f) including 95% confidence intervals (n=5). Model fit adopted from Thronley 
(2002) to fit a non-linear regression to the relationship between ETR and PPFD 
as seen in Fig. 5 a-c (y = (a*x + b - sqrt((a*x + b)^2 - 4*a*b*0.75*x))/2*0.75). A 
negative exponential equation was used to fit a non-linear regression to the 
relationship between ΦPSII and PPFD as seen in Fig. 4.5d-f (y=a*exp(b*x)). 
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Chapter V. Conclusions 

5.1. Summary 

5.2. Main Conclusions 

5.3. Recommendations for Future Work 

5.4. Implications 

5.4.1. Linking plant ecophysiology to biogeography 

5.4.2. Past and future patterns of fog, rain, and the distribution of Bishop pine 

5.4.3. Climate change and the fog regime 

5.4.4. Feedbacks between tree mortality and the water budget in a foggy forest 

5.5. Future Directions 

 

5.1. Summary 

The primary goal of this research was to elucidate how and why coastal fog is 

important to the distribution and ecophysiology of a coastal forest in a Mediterranean 

climate. While this work focused on the water relations and mortality risk of Bishop pine 

trees that grow on Santa Cruz Island (SCI), the lessons learned extend beyond the scope of 

this study to other fog-influenced coastal ecosystems. 

Overall, at a broader spatial (1-10 km) and temporal scale (months to years), I have 

demonstrated that the frequency of coastal fog is a significant environmental control on the 

local distribution of Bishop pines on SCI because it buffers the effects of drought stress. At 

the scale of individual trees, my results supports the hypothesis that sapling Bishop pines are 

more vulnerable to experiencing water stress during the dry season compared to adult trees; 
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however, the water status of saplings is also more strongly affected by fog water inputs 

provided by fog-drip to the soil. Implicit from these findings is that fog water inputs are 

important for survival of Bishop pines at early life stages. Meanwhile, my controlled 

experiments provide evidence that increasing soil moisture through fog-drip is not the only 

way Bishop pines use fog water, but foliar uptake is also possible. This is important when 

considering that sapling trees have smaller canopies and are more limited in ‘harvesting’ fog 

water. This research generates many new questions that are important for increasing our 

understanding of the importance of fog to population dynamics: 1) To what extent do fog 

water inputs affect seedling germination and recruitment? and 2) How important is the 

contribution of fog versus rain in advancing Bishop pines though the population bottleneck? 

 

5.2. Main Conclusions  

I used remote sensing techniques to explore the spatial pattern and underlying drivers 

of drought-induced tree mortality in the largest and westernmost Bishop pine forest on SCI. 

Following a two-year drought period, tree mortality was found to be highest in the drier, 

more inland margins of the forest stand. This area of highest mortality is also where 

modeled soil water deficit was greatest based on previous research (Fischer et al. 2009). The 

spatial pattern of dead trees was best explained by the frequency of summertime clouds, 

elevation, and tree height. Specifically, mortality was lowest for larger trees (~8-10 m tall) 

in more foggy parts of the stand located at moderate elevations. Based on a Random Forest 

analysis that evaluated the hierarchical relationships between environmental predictor 

variables, the probability of mortality was also found to be highest at the inland extent of the 
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stand where trees occur at the upper limit of their elevation range (~400 m). The coexistence 

of these main factors with other landscape variables helps identify areas of suitable habitat 

for Bishop pines across the stand and extends our understanding of what limits the local 

distribution of the species. This part of my dissertation was published in 2014 in the journal, 

Forest Ecology & Management. 

Next, I investigated the influence of coastal fog events on the water relations of adult 

and sapling Bishop pines at two sites that differed in their moisture regime on SCI. The 

results of this study showed that sapling trees are more vulnerable to water stress during the 

dry season than adult trees, likely attributed to differences in rooting distribution and access 

to deep soil water resources. Furthermore, the water status of sapling trees was more 

strongly affected by changes in shallow soil moisture driven by fog-drip. By assessing the 

physiological response of multiple life stages of Bishop pine to the dual effects of seasonal 

dry-down and intermittent fog events, this study can contribute to mechanistically based 

predictions of how the distribution of Bishop pines, and other coastal tree species, may be 

affected by changes in available moisture in the future. This work has been submitted for 

publication to the journal, Oecologia, in early September 2014. 

My greenhouse study examined in greater detail the mechanisms by which fog water 

affects the leaf-level physiology of Bishop pines. This study demonstrated that the combined 

effect of fog-drip and fog-immersion effectively maintained carbon assimilation rates 

through a dry-down period. As soil moisture declined, fog immersion alone maintained 

higher carbon assimilation rates and photosystem function than in saplings that received no 

fog at all. The results of this study support the idea that foliar absorption of fog water is a 

viable mechanism of fog water use by Bishop pines, and that such water absorption can 
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moderate the effects of seasonal dry-downs even if the amount of absorbed water is small. 

The outcome of this study elucidates the specific mechanisms of how coastal fog events can 

impact the carbon and water balance of fog-influenced ecosystems. This work will be 

submitted for publication in the journal, New Phytologist, in October 2014. 

 

5.3. Recommendations for Future Work  

Several technical issues that would refine the research presented herein have been 

identified and are discussed below to aid in future work.  

In the remote sensing of tree mortality study (Chapter 2), automating the process 

of identifying dead tree canopies would allow a user to easily and efficiently update the 

coverage of Bishop pine mortality, as was observed following the extreme drought in 2014. 

The 2014 drought was more severe than the 2007-2009 drought and appears to have induced 

Bishop pine mortality in areas that were hypothesized to be buffered from drought stress, 

including cooler, foggier portions of the westernmost Bishop pine stand (Chapter 2, Fig. 5). 

Hence, updating the map of Bishop pine mortality for the 2014 drought event has important 

implications for predicting the effects of intense drought on population dynamics. This could 

be achieved by repeating the classification techniques described in Chapter 2, using a post-

drought image from a 2014 aerial photograph at 1m spatial resolution. However, it would be 

more time efficient to identify dead tree canopies through a change in greenness between pre 

and post-drought imagery. The VARI vegetation index is sensitive to plant water stress and 

can be calculated using color DOQQs, so would be ideal for identifying trees that died. 

Validating the map of tree mortality generated in Chapter 2 could have been 

improved if field-based validation points had been collected closer to the time that the image 
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of red tree canopies was acquired. For researchers interested in quantifying the spatial extent 

of drought-induced tree mortality, I recommend performing the following four steps: 1) 

collect sub-meter accuracy GPS points of dead and live trees in the field as soon as signs of 

mortality become apparent; 2) associate with those points observations of the condition of 

the tree, e.g., % red foliage in the canopy, evidence of bark beetle infestation, and size 

parameters; 3) establish photo points from multiple perspectives to document the process of 

plant degradation following drought; 4) monitor in the field any other plant species that may 

exhibit similar signs of mortality, i.e., are drought-tolerant species also experiencing 

mortality?; 5) contract remote sensing of the study area to overall temporally with field 

work. 

The physical processes that result in coastal fog are complex, and fog events 

themselves are inherently ephemeral in space and time, making generation of fog 

climatologies challenging over multiple spatial and temporal scales. However, using remote 

sensing techniques in conjunction with conducting field-based research on the 

ecohydrologic impacts of coastal fog are both necessary steps to modeling current and future 

dynamics of the fog regime (Rastogi et al. 2013). Generating finer resolution fog maps that 

account for the intersection between the low-stratus clouds and topography has immense 

ecological significance because it will determine where on the landscape there may be direct 

water inputs via fog-drip versus just shading effects, or no effect at all. Applying a finer 

spatio-temporal map of coastal fog frequency that accounts for topographic variation would 

greatly improve the ability to assess the influence of coastal fog on water deficit risk in 

general. 
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In the field-based study (Chapter 3), coupling measurements of plant water status 

to leaf level gas exchange rates would have greatly improved the analysis of the 

physiological response of Bishop pines to changes in seasonal moisture availability (e.g., 

drying soil versus fog-water inputs). The technical challenge in doing this, however, is that 

wet leaves cannot be sampled for leaf gas-exchange rates. Leaves were wet from fog water 

deposition through the hours of the day when it would have been optimal to measure 

photosynthetic rates (0800-1100 hr). While some argue that leaves could be dried off before 

sampling, the risk of contaminating the instrument (model LiCOR 6400 XT, LiCOR Inc., 

Lincoln, NE) with water would be high and the measurements potentially not useful as CO2 

diffusion into leaves is reduced when they are wet. On the other hand, restricting 

measurements to midday when stomata tend to close in response to high vapor pressure 

deficits would also bias the dataset. Resolving this conundrum would have greatly improved 

my ability to assess the mechanistic responses of plants to fog water inputs, i.e., does fog 

influence the threshold of water potential above which trees shut down? Alternatively, 

installing sapflow probes would have provided continuous measurements of water 

movement through the plants, which correlates well to transpiration rates and possibly foliar 

absorption of fog water. A challenge using this technique is installing probes into smaller 

trees. 

Collecting integrated measurements of plant productivity and fitness would have 

complemented the physiological datasets very well. For example, measuring growth of adult 

and sapling trees at monthly increments using dendrometer bands could have provided 

insight into the influence of local environmental conditions on net carbon gain of adult 

versus sapling trees. Recording changes in tree diameter at high frequency (e.g., hourly on a 
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foggy vs. non-foggy day) using dendrometer bands would be an interesting approach to 

quantify water use of trees in response to fog events. In addition to growth, quantifying 

reproductive output is useful for evaluating fitness consequences of trees living in more or 

less stressful environments. One approach could be to establish transects and measure 

seedling recruitment and mortality. In addition, cone production is a measure of potential 

reproductive success; however, germination and establishment of seedlings is a more useful 

fitness metric.  

Selecting multiple sites that stratified the marine layer was an initial goal of this 

project, but was not feasible logistically. Future studies should strongly consider selecting 

sites that consistently fall below, within, and above the marine layer in order to evaluate the 

multiple effects coastal fog has on the water, energy, and carbon budget of the ecosystem. 

Specifically, the relative importance of cloud-shading and fog-drip in a field setting could be 

assessed more rigorously using this approach.  

In the greenhouse study (Chapter 4), to fully assess the lasting effects of fog 

immersion and fog-drip on plant physiology, it would have been advantageous to measure 

leaf physiology in-between fog events as opposed to only immediately after these events. To 

this end, it would have been interesting to continue collecting measurements several 

consecutive days after the fog treatment to assess how long the positive effect of fog 

immersion alone on leaf gas exchange rates lasted.    

Collecting plant water relations data (i.e., predawn and midday xylem pressure 

potential) in addition to leaf-level function would have improved our analysis of the effects 

of fog-drip versus fog immersion on whole-plant water relations. There were two reasons 

why this did not occur. First, Bishop pine saplings had a limited amount of stem and leaf 
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material, thus we did not want to induce a treatment effect by removing too much plant 

material as the experiment progressed. Second, sampling predawn and midday xylem 

pressure potential using the Scholander pressure chamber on single needles was not feasible 

because the rubber gasket fittings in the instrument were too large.  

Including additional depth increments over which soil moisture was measured (e.g., 

2, 5, 10, 15, and 20 cm) would have allowed us to evaluate the degree to which fog water 

percolates into the soil and the importance of deeper water resources on plant function. Also, 

by keeping plants in a more controlled environment, we could have eliminated external 

variables that may have affected plant responses. Though, extending greenhouse results to 

field scenarios would remain a challenge even if these improvements were made. 

 

5.4. Implications 

5.4.1. Linking plant ecophysiology to biogeography 

Correlations between the occurrence of species and present-day climate are a first 

order principle in most species distribution models, e.g.,‘bioclimate envelope’ or 

‘environmental niche’ models. The outcome of this dissertation supports the idea that it is 

necessary to include spatial and temporal variability of coastal fog into climate models to 

accurately project the distribution of Bishop pines, and other fog-dependent species, in the 

future. A shortcoming of this correlative framework for modeling species distribution is that 

the underlying mechanism of species boundaries is based on the vulnerability of different 

life states to mortality and the probability of reproductive success. Additionally, a limitation 

of plant ecophysiological studies is that most do not test for the heritability of physiological 

characteristics (Mooney, 1976). Linking plant ecophysiology to range dynamics requires 
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that physiological mechanisms be connected to fitness consequences of populations (Sexton 

et al, 2009). Recent studies have made salient efforts to combine ecophysiological and 

environmental data with population dynamics to increase the predictive power of species 

distribution models (Angert and Schemske 2005; Sexton et al. 2009; Holt 2005; Eckhart et 

al. 2010). While it was not the explicit goal of this dissertation to parameterize species 

distribution models, the data collected herein can be used to support such efforts.  

 

5.4.2. Past and future patterns of fog, rain, and the distribution of Bishop pine  

Decades of research show that plant species distributions are sensitive to changes in 

climate (Walther et al. 2002, Parmesean and Yohe, 2003). Projecting how species ranges 

will likely shift under different climate change scenarios has important ecological and 

evolutionary implications that can inform conservation efforts to preserve biodiversity. On 

geologic timescales in California, major shifts in species composition along the coast (and 

across the state) coincide with the transition between cooler, wetter conditions of the late-

Quaternary to warmer, drier conditions in the early Holocene (Johnson 1977, Raven and 

Axelrod, 1978). Specifically, greater effective precipitation and cooler temperatures during 

the late-Pleistocene supported continuous stands of coniferous forests from as far south as 

Carpenteria through the northern part of the state in Mendocino county (Johnson 1977, 

Raven and Axelrod 1978, Anderson et al. 2008). The onset of a dry spell (Xerothermic) 

between 8,000 and 3,000 years ago caused a fragmentation of these forests into disjunct 

populations, which occupied cooler, wetter microhabitats along the coast (Axelrod 1967, 

Johnson 1976, Anderson et al. 2010). If climate change projections for California are 

accurate, we can expect conditions to become warmer and drier than they are today (Cayan 
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et al. 2008). With these predictions alone, it is reasonable to expect that populations of 

drought-sensitive plant species restricted to mesic habitats may diminish in the future. This 

outcome is more probable for populations at the southern extent of the species range, such as 

Bishop pines on SCI -- a species which has already exhibited vulnerability to widespread 

mortality following brief, yet intense, droughts in 1989-1990 and 1997-1999. 

In 2014, California experienced the most extreme drought of the past 100 years, and 

the negative impacts across ecological, social, and economic realms have been severe. 

Annual precipitation over three consecutive rainfall seasons (2012, 2013, and 2014) in Santa 

Barbara county has been 66%, 46%, and 41% of the long-term average (~45 cm), 

respectively. Reservoirs in central and southwest California have dropped to 30% of storage 

capacity. Limited water availability to some of the most productive agricultural systems in 

the world has resulted in farmers abandoning thousands of acres of cropland in 2014 (Howitt 

et al. 2014). In natural ecosystems, even drought-tolerant species have exhibited signs of 

mortality. In the Bishop pine populations on SCI, anecdotal evidence and personal 

observation suggest that the extent of tree mortality in response to the 2012-14 drought is 

significantly greater than the area affected by the 2007-09 drought. We learned from the 

spatial analysis of Bishop pine mortality following the 2007-2009 drought that Bishop pines 

were most susceptible to mortality at the margins of the stand and at higher, inland locations 

on SCI (Chapter 2, Fig. 3d). The most recent mortality event is consistent with these 

patterns; however, tree mortality has also occurred in the foggier, cooler, and wetter areas of 

the stand where trees were predicted to be more buffered from drought stress (Chapter 2, 

Fig. 5). These observations raise an interesting point about the role of fog versus rain in the 

water budget of this ecosystem. While the amount of fog water trees receive may allow 
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Bishop pines to persist through the dry season in an average rainfall year, it does not seem to 

be enough to mitigate the effects of drought-induced mortality after consecutive years of 

below average rainfall.  

 

5.4.3. Predicting changes to the coastal fog regime in California.  

It remains highly uncertain how the magnitude, seasonality, and/or spatial extent of 

the fog regime may change in the future. However, several studies over the past five years 

have advanced our understanding of the controls on fog formation and how the fog regime 

may be affected by climate change. Johnstone and Dawson (2010) showed that fog 

frequency in northern California was 33% lower between 1951-2008 than the period 

between 1901 and 1925. They suggest that this trajectory is likely to continue into the future 

with projected increases in sea surface temperature (SST) driven by a weakening of 

upwelling winds associated with a weaker gradient between coastal and inland temperatures. 

Improving our ability to predict how coastal fog patterns may change in the future hinges on 

reducing the uncertainty associated with projections of fog climatologies in present day. 

Recent studies have contributed significantly to this goal. At synoptic and regional scales, 

Iacobellis and Cayan (2013) investigated the variability of summer (June-September) marine 

stratus clouds and how they are associated with surface temperature anomalies along the 

entire California coastline and offshore islands. They report that summer cloud cover is 

correlated strongly with the strength and height of the thermal inversion that caps the 

atmospheric marine layer; moreover, patterns of summer marine stratus formation differ 

between northern and southern California. In both regions, the inland extent of the marine 

layer is limited by coastal topography (Iacobellis and Cayan 2013). Swartz et al. (2014) 
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show similar patterns. At a local scale, Rastogi (2013) combined multiple datasets (remote 

sensing products, digital elevation models, airport observations, and radiosonde data) to 

generate a fog climatology for the northern Channel Islands, which were downscaled to 

biologically meaningful spatial (100 m) and temporal (hourly to monthly) resolutions. The 

map of fog frequency used in the Random Forest analysis in Chapter 2 was 250 m spatial 

resolution. Rastogi’s map of fog inundation was not available at the time of our Random 

Forest analysis of environmental drivers underlying drought induced tree mortality in 

Chapter 2; however, it is clear that using a more finely resolved map of fog inundation in 

this analysis would have resulted in a more accurate projection of where Bishop pine would 

be more or less vulnerable to drought-induced mortality. For example, was the probability of 

surviving drought greater if trees were growing where low-stratus clouds intercepted land 

versus where they were shaded by the cloud cover?  

 

5.4.4. Feedbacks between tree mortality and the water budget in a foggy forest 

Fog is different from rain. Rainfall deposits water more uniformly over the land 

whereas fog water inputs are much more spatially heterogeneous and fog-drip is constrained 

to below the canopy (or intercepting surface). Yet, the total amount of fog water that enters 

the ecosystem from fog-drip can equal or even exceed winter precipitation during a low 

rainfall year (Carbone et al. 2012, e.g., rain=188 mm, fog-drip=326 mm in 2009). Because 

amount of direct water inputs from fog-drip is a function of interception area, i.e., leaf area, 

canopy height, leaf morphology, I suspect that there could be interesting effects of tree 

mortality on the water budget of fog-influenced forests. The high surface area to volume 

ratio of conifer needles makes pines efficient ‘fog harvesters;’ furthermore, the larger the 
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tree, the more fog intercepted and thus fog-drip to the ground. By reducing the number of 

conifer canopies in the forest, drought-induced tree mortality will effectively reduce water 

inputs during the dry season. Though, if the forest was only thinned by drought events, the 

remaining trees would also have less competition for water. Nonetheless, fewer tree would 

also result in reduced shading effects by the canopy and result in greater evaporative losses 

of water during the dry season. We learned from the field work conducted on SCI that 

sapling Bishop pines are also more susceptible to experiencing water stress during the dry 

season, but their water status is more strongly affected by fog water inputs. Changes in 

environmental conditions associated with tree mortality events would leave sapling trees 

most vulnerable to mortality, i.e., with less fog interception by the adults and lower direct 

summer water inputs, will the population be able to persist? Moreover, I do not think that 

the shading effects of fog alone would be able to dampen water stress enough to mitigate the 

effects of drought, even though the marine layer can significantly reduce heat loading 

(Williams et al. 2008, Johnstone et al. 2013). Instead, I speculate that if the Bishop pine 

population were to experience another intense drought (without relief of an above average 

rainfall year), that the local distribution will contract considerably, and areas once 

dominated by Bishop pines will transition to drought-tolerant shrubs. To assess the impact 

of drought on species composition and hydrologic function in this, and other, foggy forests, 

a broader question worthy of future research is: What is the impact of drought-induced tree 

mortality on the water balance of fog-influenced ecosystems? 

 

5.5. Future Directions 
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I believe there are two important priorities that future fog research should address to 

improve our understanding of the complex relationships between fog events and the 

ecohydrologic function of ecosystems. First, develop finer scale spatial (≤ 30 m pixel) and 

temporal (hourly or daily daytime and nighttime events) fog climatologies that are linked to 

cloud properties (liquid water content, height of cloud base), topographic variation (i.e., 

where do clouds intercept land?), and ground-based measurements of energy and water 

budgets of ecosystems (e.g., fog water inputs, streamflow, surface temperature, soil 

moisture). There are a number of studies that are moving the science in this direction 

(Williams et al. in prep, Baldocchi and Waller 2014, Rastogi 2013), but resources and 

collaborations should converge to continue the support of these efforts. Second, expand the 

temporal extent of plant ecophysiological studies to the whole water year rather than just 

focus on the impact of fog during the dry season. By doing this, we could better answer the 

question, To what extent does fog extend the rainy season? This is an especially important 

question to be able to answer because even if precipitation does not change much, 

temperature is projected to increase up to 4.5 °C (Cayan et al. 2008), which will increase 

evaporative loss of water. By accounting for fog water inputs in addition to rain, we will 

gain an improved understanding of how changes in fog will impact the ecohydrology of 

managed and natural ecosystems.  
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