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Abstract

The role of fluctuating food supply on recruitment, survival and

population dynamics in the sea

Daniel Kenji Okamoto

This collection of work focuses on dynamics of two marine taxa with very different life

histories, both of whom are sensitive to changes in food supply. Chapters 1 and 2 focus

on black surfperch (Embiotoca jacksoni), a direct developer with internal reproduction

while chapters 3 and 4 focus on the purple sea urchin (Strongylocentrotus purpuratus) a

broadcast spawner with pelagic larvae. Chapter 1 was published in Proceedings of the

Royal Society: B in 2012, and is co-authored by Russ Schmitt, Sally Holbrook and Dan

Reed. In this chapter I used long-term data on surfperch and their prey to illustrate how

variability food for surpferch corresponds to changes in the number of young that adults

produce and how well those young survive. Chapter 2 provides evidence that survival in

adult surfperch responded to both prey availability and competition among adults. This

work is a collaboration with Russ Schmitt and Sally Holbrook. Chapter 3 focuses on

fertilization dynamics in sea urchins and the role that varying egg concentrations during

spawning can have on the rate of fertilization when mixed with sperm. I conducted

laboratory experiments and developed new models to show that the per capita rate of

interactions among eggs and sperm slow down as egg concentrations increase. Finally,

in chapter 4 I used a 23-year dataset of larval settlement of purple urchins at seven sites

to investigate whether settlement patterns were related to major climatic and biological
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variables including food supply and temperature. This chapter is an ongoing collabora-

tion with Steve Schroeter, Dan Reed and several others. These analyses show a strong,

negative relationship between settlement and El Niño cycles as well as temperature in

southern California, indicating that multi-year fluctuations in climate may regulate the

patterns of settlement that are highly variable in time. Collectively, these chapters high-

light the importance of considering complex interactions and nonlinearities in dynamics

of marine species.
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Chapter 1

Fluctuations in food supply drive
recruitment variation in a marine
fish
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Abstract

Reproductive rates and survival of young in animal populations figure centrally in

generating management and conservation strategies. Model systems suggest food supply

can drive these often highly variable properties, yet for many wild species, quantifying

such effects and assessing their implications have been challenging. I used spatially ex-

plicit time series of a well-studied marine reef fish (black surfperch Embiotoca jacksoni)

and its known prey resources to evaluate the extent to which fluctuations in food sup-

ply influenced production of young by adults and survival of young to subadulthood.

My analyses reveal: 1) variable food available to both adults and to their offspring di-

rectly produced an order of magnitude variation in the number of young-of-year (YOY)

produced per adult, and 2) food available to YOY produced a similar magnitude of vari-

ation in their subsequent survival. I then show that such large natural variation in vital

rates can significantly alter decision thresholds (biological reference points) important

for precautionary management. These findings reveal how knowledge of food resources

can improve understanding of population dynamics and reduce risk of overharvest by

more accurately identifying periods of low recruitment.

Key Words: population dynamics; stock-recruitment; food limitation; marine fish;

population regulation; biological reference points.
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Introduction

Properties governing reproductive rates and survival of young help shape a popu-

lation’s risk of extinction (Coulson et al. 2001) and resilience to perturbation or har-

vest (Mace 1994). As a result, understanding how environmental change alters these

properties remains a fundamental but elusive challenge that has direct implications to

conservation (Shaffer 1981) and resource management (Myers 2001). A large body of

evidence suggests that food supply can influence population dynamics by, for example,

altering reproductive performance of adults and/or survival of young. This has been

documented for a range of vertebrates, including terrestrial mammalian herbivores (e.g.

Koskela et al. 1998, Mduma et al. 1999), marine mammals (e.g. Reid and Croxall 2001),

passerine birds (e.g. Newton 1998), seabirds (e.g. Ashbrook et al. 2010, Reid and Croxall

2001) and freshwater (Mason 1976) and marine fish (e.g. Hjermann et al. 2007, Maunder

and Deriso 2011, Olsen et al. 2011). Although fluctuations in food supply are ubiqui-

tous in nature, conservation and management strategies frequently assume populations

have constant mean vital rates through time. Such constancy typically is assumed for

population viability analyses based on life tables or matrix projection models (Morris

and Doak 2002), as well as for many stock-recruit models in fisheries (Quinn and Deriso

1999). In marine fishes, for example, basic stock-recruitment models are expected to

perform well only where there is comparatively low temporal variability in recruitment

(Koslow 1992), which could be a major reason why many stock-recruit models account

3



for little variation in the data (Wootton 1998). If externally driven temporal variation

in vital rates is high, then the application of such simplistic models could lead to severe

mismanagement, particularly if periods of recruitment failure are underestimated.

One solution to better predict or understand risk of recruitment failure has been to

map variation in fecundity or survival onto physical environmental variables (Quinn and

Deriso 1999). However, this correlative approach (Hilborn and Walters 1992) appears

best supported when species occupy harsh physical environments (Myers 1998). In

stock-recruitment models of marine fish, difficulty in assessing food supply and other

more direct drivers at appropriate scales has resulted in the use of environmental indices

(Mueter et al. 2002) or regime metrics (“good” vs. “poor”) (Kitaysky et al. 2010) to

account for variation in adult reproduction and survival of young. Thus, even when there

is strong environmental correlation with demographic rates, the descriptor variables (e.g.,

sea surface temperature (Mantua and Hare 2002)) usually are far removed from the

underlying biological mechanism. As a result, such correlations often have not proved

especially useful (McClatchie et al. 2010, Myers 2001).

The growing availability of appropriate long-term data is enabling more direct as-

sessments of the roles of food and other such drivers of dynamics for marine fishes

and other species (Beaugrand and Kirby 2010, Maunder and Deriso 2011, Olsen et al.

2011). However, even when food has been considered explicitly, few empirical studies

have addressed the dynamical consequences of the cumulative effect of fluctuations in

food across multiple life stages over time. The replenishment of adult stock may not
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be limited by a bottleneck at a single life history stage; rather a cohort may be sus-

ceptible to food stressors at multiple stages (Maunder and Deriso 2011). For example,

low food availability to adults during the reproductive period may yield few offspring,

but subsequent high food availability for those offspring may offset such effects due to

above normal survival. In contrast, successive years of low food may lead to low adult

fecundity and poor offspring survivorship that collectively result in recruitment failure.

Thus, identifying the effect of food resources on multiple life stages may substantially

improve predictions of recruitment failure in managed populations.

Here I investigated 1) the extent to which food supply explained observed variation in

reproduction and survival of a common marine reef fish (the black surfperch Embiotoca

jacksoni), and 2) how refined estimates of vital rates for this species altered a common

decision threshold (i.e., a biological reference point) used for precautionary management

of fisheries. I formulated a priori hypotheses from detailed knowledge of black surfperch

feeding and reproductive ecology (Baltz 1984, Holbrook and Schmitt 1984, 1986, Schmitt

and Holbrook 1986, 2007) and evaluated those using spatially explicit time series data

on age-structure and food availability. I first constructed several basic models for two

important dynamical processes: production of young-of-year (age 0, YOY) by mature

adults (age 2+ (Baltz 1984)); and subsequent survival of YOY to subadulthood (age 1,

immature subadults). I then compared these basic models to those that incorporated

food available to one or more age classes in the model (adults, YOY, subadults). In

this manner, my model construction and selection framework served to quantitatively
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evaluate and describe functional relationships between availability of food known to be

important and recruitment dynamics. This yielded insight regarding the circumstances

under which incorporating such information can alter a common biological reference

point used to forecast impaired recruitment (i.e., the adult stock size required to produce

50% of maximum recruitment (Mace 1994)).

Methods

Study system

Black surfperch occupy shallow temperate reefs. Females are viviparous and annually

produce well developed, locally retained young (for more details see (Holbrook and

Schmitt 1986, Schmitt and Holbrook 1986). This quality facilitates tracking of adults

and offspring on a reef over multiple years. Young consume the same general taxa as

adults (Holbrook and Schmitt 1984), with diets dominated by caprellid and gammarid

amphipods and other small crustaceans living within benthic, reef dwelling macroalgae

(Schmitt and Holbrook 2007).

Time series data

Data on age-specific abundance of black surfperch, the amount of foraging habitat

and the availability of their food were collected at 11 sites on the north side of Santa

Cruz Island, CA annually in autumn (when fish copulate (Froeschke et al. 2007)) inter-
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mittently from 1982 - 1992 and annually from 1993 - 2008. At each site, three fixed 40

m transects at 3, 6, and 9 m depth contours (the typical depth range) were surveyed

annually for black surfperch (in a 40 x 2 m swath), their foraging habitat and principal

food using SCUBA. Counts of fish were always made by the same observer (R. Schmitt)

and included the number of YOY, subadults and mature adults. In this study prey were

identified as caprellid and gammarid amphipods that were within the gape limitation of

black surfperch since they composed the majority of prey biomass in algal samples (84%)

and in diets of black surfperch (Ebeling and Laur 1986, Schmitt and Holbrook 1984).

The index of food availability for a given year was calculated as the mean biomass of

each prey taxon within suitable foraging habitats in that year multiplied by the cover

of appropriate habitat at each site in each year. For further details see Appendix A:S1.

Data used in analyses are available from http://metacat.lternet.edu/knb/metacat/knb-

lter-sbc.60.

Young-of-year production

To examine the extent to which food availability influenced the production of young-

of-year (YOY), I incorporated into stock-recruit (S-R) models: 1) availability of food

in the year that females became pregnant and 2) availability of food in the following

year when their newly produced YOY feed. I used three typical S-R models (Beverton-

Holt, Cushing, Ricker) (Quinn and Deriso 1999) as well as a density independent (linear)

form (Figure 1.1a-c). I hypothesized that increasing food available to adults and/or YOY
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directly modified the YOY-per-adult relationship; thus the S-R function was multiplied

by the food variables (see Appendix A:S2 for model construction). Because the food

effect may taper with increasing food, I added a shape parameter in the exponent of

each food variable that allowed this behavior. The general structure of the full models

used was:

Y OYt+1,i = αf(At,i)e
[γ1 ln(Ft,i)+γ2 ln(Ft+1,i)+εt,i]

= eψf(At,i)(Ft,i)
γ1(Ft+1,i)

γ2eεt,i (1.1)

Where α = eψ is the density-independent productivity parameter, At,i is adult density

in year t at site i, f(At,i) is one of the stock-recruit relationships in Figure 1.1, Ft,i is food

available to those adults, Ft+1,i is food available to the YOY they produce, γ1 and γ2 are

shape parameters for the food variables, and εi,t is an error term. ψ was allowed to vary

randomly among sites to account for site variation, avoid pitfalls of pseudoreplication

and induce correlation among multiple observations within a site among years. I fit the

relationships as non-linear mixed effects models (NLMMs) (Pinheiro et al. 2011) using

a Gaussian likelihood after natural log transformation. Stock-recruit relationships tend

to exhibit lognormal error structure so the models were natural log-transformed, with a

small constant added to YOY (1/9, the minimum, non-zero mean density observed). By

convention both sides of the model were divided by the number of adults to fit models

on a per capita basis (YOY per adult). Model predictions (in log-space) were back-

8



transformed to the original scale using a bias correction (by adding σ2
residual/2 before

taking the antilog, where σ2
residual is the estimated within-site error variance (Baskerville

1972)), which is necessary because back transforming the mean of log transformed data

otherwise yields the median on the original scale which will be biased low.

To test hypotheses, I compared models with 1) no food information, 2) food infor-

mation for either adults or YOY, and 3) food information for both adults and YOY.

All model comparisons in this study were performed using corrected Akaike Informa-

tion Criterion (AICc). AICc values were compared using the following criteria: 1) the

simplest model(s) within 2 units of the minimum is (are) favored, 2) models 4+ units

from the minimum are rejected with caution, and 3) models 10+ units greater than the

minimum effectively have no statistical support and are rejected with confidence (Burn-

ham and Anderson 2002). Comparing models with different fixed effects requires use of

Maximum Likelihood (ML), yet comparing models with different random effects requires

Restricted Maximum Likelihood (REML) (Pinheiro and Bates 2000, Zuur et al. 2009).

Thus I first confirmed that parameters other than ψ should not vary randomly by site

by comparing models fit using REML (see Appendix A:S2), then compared models with

different fixed effects fit using ML, and finally refit models using REML to get unbiased

parameter estimates. In the best-fit models I detected no significant effect of residual

autocorrelation using AICc (Appendix A:S3).
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Young-of-year survival

I evaluated the effect of food on indices of YOY survival to subadulthood by including

food available to YOY in year (t) at the ith site and food available to subadults in year

(t+1) in models of YOY survival. Note that I use the term survival to mean an index of

survival, not a true estimate of survival per se because YOY are cryptic in comparison

to subadults. As a result, YOY densities are assumed to be underestimated, particularly

at low densities and therefore the ratio of subadults in year (t+ 1) and YOY in year (t)

can exceed 1 when YOY are scarce. In the same fashion as for YOY production, I used

a general relationship for YOY survivorship:

St+1,i = δf(Y OYt,i)e
[γ1 ln(Ft,i)+γ2 ln(Ft+1,i)+εt,i]

= eζf(Y OYt,i)(Ft,i)
γ1(Ft+1,i)

γ2eεt,i (1.2)

Where δ = eζ is the density independent subadult-YOY ratio, Ft,i is food available

to YOY in year (t) at the ith site, Ft+1,i is food available to subadults in year (t + 1)

at the ith site, γ1 and γ2 are shape parameters for the food variables, and f(Y OYt,i)

is either: 1) a linear relationship between YOY and subsequent subadults (Figure 1.1,

constant survival) or 2) an accelerating to linear function (Figure 1.1d); this accom-

modates subadult/YOY ratios >1 caused by low biased YOY estimates (see Appendix

A:S4). NLMMs were fit in log-space (fit as subadults + 1/9 per YOY, with 1/9 again
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being the smallest non-zero value) using a Gaussian likelihood (after log-transformation)

and back-transformed predictions were bias-corrected. Only δ was allowed to vary by

site (see Appendix A:S2 for results for comparison of random effect structures). For

model selection I used the same process as outlined for YOY production models. For

precautionary purposes I used a first order autoregressive model [AR(1)] to account

for potential autocorrelation as its inclusion allowed the model to conform to residual

normality (see Appendix A:S3) and slightly modified model parameter estimates.

Subadult abundance predicted by reproductive adults and food availability

I combined the most statistically supported YOY production and YOY survival mod-

els into a single, parameterized model to assess how well these models together explained

variation in subadult abundance. I compared the predictions of this best combined model

to those that combined the previously-parameterized standard Beverton-Holt, Cushing

or Ricker models with the standard linear YOY survival models (each lacking food in-

formation) hereafter referred to as the standard (non-food) combined models. For each I

estimated variance explained in subadult densities as well as mean bias of the predictions

(predicted-observed) for each combined model.

Impact of food information on the biological reference point B50%R

To explore how explicit information on food might alter biological reference points

(BRP), I examined a major BRP used to indicate stock thresholds for impaired re-
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cruitment. The adult stock size required to produce 50% of the maximum estimated

recruitment produced at high biomass (B50%R) is a generally reliable threshold (Mace

1994). Ricker and Beverton-Holt models have estimable theoretical maximum recruit-

ment levels, while the Cushing model requires estimating recruitment at historical adult

mean-maximum densities (13 adults per 80 m2 in this case). I solved the best-fit YOY

production model with food to estimate how proportional reductions in mean food avail-

ability would alter B50%R in comparison to that from the corresponding model without

food and used residual bootstraps to calculate 95% confidence intervals (999 iterations)

whereby I 1) added randomly sampled residuals (with replacement) to the fitted values,

2) re-estimated model parameters using these data and 3) calculated 2.5 and 97.5%

quantiles.

Results

Temporal variation in the study system

Abundances of adult black surfperch and their foraging habitat were highest in the

early years of the study and declined substantially during the late 1980s and early 1990s

(Figure 1.2a, b). From 1993-2008 the densities of all age classes exhibited an increase

(Figure 1.2b, Figure 1.3a). Food availability showed substantial inter-annual variability

(Figure 1.3b, SD of site means= 3.714) with much smaller inter-site variability (SD of

annual means = 0.940).
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Young-of-year production

The Cushing model that included food levels for both adults and YOY explained

41 percent of the variance and was strongly supported as the best of the models tested

(AICc value 7.7 to 50.0 units less than all other models, Table 1). The model indicated

that YOY production was positively influenced by adult density (At,i), food available

to adults (Figure 1.4a, b) and food available to YOY. In the model, the food effect

decreased as food became more available, indicated by shape parameters with values

<1 (γ1 = 0.68 0.12 SE, P <0.001; γ2 = 0.46 0.11 SE, P <0.001). Random site

effects for ψ varied substantially (ψ = -1.70 0.20 SE, P <0.001, = 0.43 [SD of random

effects]), suggesting substantial variation by site not accounted for by my measure of

food (Appendix A:S2). The best model fit did not violate normality assumptions for

residuals or random effects (Appendix A:S5). Removing the effects of food availability

to either adults or YOY significantly reduced the quality of the fit of the Cushing model.

Variance explained dropped to 16 to 31% for models with food information for one life

stage and to 1 to 4% for traditional models lacking food information altogether (Table

1). The Beverton-Holt and Ricker models that included food levels for both adults and

YOY were both improvements over models with no food information, but nonetheless

had little statistical support when compared with the full Cushing model (Table 1).
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Young-of-year survival

The model for young-of-year survival with the best statistical support included an

accelerating to linear YOY to subadult function, and positive effects of food available to

YOY in year (t) and food available to subadults in year (t+1) (Table 2; Figure 1.5a, b).

This model explained 72 percent of the variance. The effect of food decreased as food

became more available, as indicated by shape parameters with values <1 (γ1 = 0.57

0.10 SE, P <0.001; γ2 = 0.26 0.11 SE, P = 0.019). There was substantial variation in

survival by site (ζ= -1.73 0.29 SE, P <0.001, σz= 0.61 [SD of random effects]). The

best model fit did not violate normality assumptions for residuals or random effects

(Appendix A:S5).

Removing food components of the model structure significantly reduced explanatory

power, but the far more important one was food available to YOY (indicated by an

increase in AICc of only 3.0 when food to subadults was removed in contrast to an

increase of 20.2 when food to YOY was removed; Table 2). However, food variables

only became statistically significant when the nonlinear functional relationship between

YOY and subadults was incorporated (Table 2). Subadult abundance predicted by

reproductive adults and food availability

The best combined model (predicting subadult densities from adult densities two

years prior and food covariates from lags 0, 1, and 2 years using parameter estimates

shown above) far outperformed the standard (non-food) combined models that did not

include food as explanatory variables. The best combined model explained much more
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of the variation in subadult densities (R2 = 0.68, Figure 1.6) than the standard com-

bined models,(R2 = 0.31-0.36). Furthermore, the best combined model did not exhibit

significant bias (bias = 0.07, t129 = 1.02, P = 0.31, Figure 1.6) whereas the standard

(non-food) combined models showed significant, positive bias (overprediction) ranging

from 0.66 to 0.69 (Appendix A:S5).

Impact of food information on the biological reference point B50%R

When reductions in mean annual food availability were greater than 35%, the

estimated number of adults required to produce 50% of maximum mean-recruitment

(B50%R) by the best model significantly exceeded B50%R estimated by the model

without food information (Figure 1.7). For black surfperch, such reductions in mean

annual food availability may be due to either changes in availability of foraging habitat

or density of prey within such habitat. Once food is reduced by >40%, the number of

adults required to produce sufficient recruitment is equal to or greater than the historical

mean maximum (indicated by the arrow in Figure 1.7). In contrast, with no or modest

change in food availability, the number of adults is less than or equal to that estimated

by the model without food information because of stronger density dependence in the

full model (a smaller β).
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Discussion

My findings not only show that fluctuations in food to a marine fish can substantially

shape both the production of young and their subsequent survival, more importantly

they demonstrate the serious consequences that can arise from failing to account for

such food limitation in models used to describe population dynamics or guide manage-

ment decisions. Relatively simple models are still the dominant choice to characterize

complex population dynamics and at times can prove to be as effective as models with

more biological realism (Adkison 2009). In the realm of such realism, food limitation

remains a central research frontier in fisheries science and population dynamics, par-

ticularly of marine vertebrates. Although a plethora of research demonstrates direct

and often cascading roles of predators in regulating populations in both marine and ter-

restrial systems (2010), top-down influences do not necessary render bottom-up forcing

unimportant, including for marine fishes (Anderson 2001, Anderson and Sabado 1995).

In the case of black surfperch, whose individual and population attributes indeed are af-

fected by predators (Holbrook and Schmitt 1988, Schmitt and Holbrook 1985), I found

that more than an order of magnitude of natural variation in several vital rates was

driven by natural fluctuations in the amount of food available to multiple life stages.

In systems exhibiting such food limitation, knowledge of food supply can substantially

alter estimates of useful biological reference points, particularly when reductions in food

are severe.
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Food-driven variability in the number of young black surfperch produced by adults

challenges traditional assumptions made by many population models that fecundity and

survival of young is purely intrinsic. Such effects result from either increased survival of

newly produced offspring or increased reproductive output. The latter may result from

increased size-specific fecundity in response to food (Kjesbu et al. 1998) or increased

growth rates of adults when food availability is high, allowing higher fecundity via a

consistent length-fecundity relationship. Species such as surfperch that exhibit the ca-

pacity to abort or resorb embryos in response to stress (Schultz 2008), show plasticity

in their size-fecundity relationship (Behrens 1977), or exhibit increased growth rates in

response to food (Anderson and Sabado 1995, Holbrook and Schmitt 1986) may be es-

pecially susceptible to such size-specific fecundity effects when either foraging habitat or

the density of food therein changes substantially through time. In either case, I found

strong effects of food in all model forms, with the most pronounced in the Cushing. The

strong fit in the Cushing model may have resulted from the fact that adult densities

were seldom at or above historically high levels throughout the period of this study,

limiting the opportunity for asymptotic recruitment or overcompensation to occur. Like

production of young by adults, the effect of food availability on survival of juveniles has

been widely suspected, especially for marine fish (Olsen et al. 2011, Shelbourne 1957),

and was also strongly supported by my analyses.

For black surfperch, the large effect of food on production and survival of young

diminished as food supply increased. Since fecundity must have an upper limit, survival
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cannot exceed 100% and fish are likely to become food satiated at some point, it is bio-

logically sensible that their positive relationships with food decelerate and they become

increasingly influenced by other factors. While black surfperch is not a fished species,

my analyses do not include the effects of other factors that affect demographic rates such

as the density of their main predator (kelp bass Paralabrax clathratus) (Holbrook and

Schmitt 1988), structural complexity of refuge habitat (Schmitt and Holbrook 1985),

and competition with other species (e.g., Embiotoca lateralis (Schmitt and Holbrook

1990)). Because the best combined model (which included food) explained 68 percent of

observed variation in subadult density, these types of external factors could account for

some portion of the unexplained variance. Furthermore, for a given supply of food, pro-

duction of young and survival to subadulthood varied substantially among study sites,

suggesting the potential importance of external factors. As young-of-year and, to a lesser

extent, subadults are subject to predation, variation in predator densities and/or the

abundance of foliose algae that provide refuge may account for some of the unexplained

variation. However, my analyses cover population trends of black surfperch during a

period when both predator densities (California Department of Fish and Game 2006)

and foliose algae (Figure 1.2) were consistently low. I expect that large fluctuations in

predator densities, although not seen since the late 1980’s, may give rise to synchronous

changes in survival of young.

Given that food rarely will be the sole constraint of populations, an approach such as

ours that focuses on food resources is perhaps best suited to predict recruitment failure
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(via low reproductive or survival rates) rather than to predict production of banner year

classes. Models that incorporate only food resource information are likely to be less

accurate in predicting high recruitment events because other factors likely increase in

importance as food availability increases. In contrast, large reproductive output or high

survival of young is not expected when food is scarce regardless of predator densities or

other external factors. Thus management decisions and conservation measures should

carefully consider resource driven predictions when conditions are poor, but place less

confidence in such predictions when food is abundant. Such conclusions are evident

from my analyses of the biological reference point (BRP) based on the adult stock

that produces 50% of the maximum number of recruits (i.e., B50%R). Inclusion of food

information had no substantive effect on estimates of B50%R when food availability

remained constant, but a large decline in food supply, such as observed in the black

surfperch system in the 1980’s, predicted such dramatic reductions in productivity that

the stock would be considered impaired with respect to recruitment even if the stock

was at its historical mean maximum density. Thus, basing inference upon models and

associated BRPs that ignore food information can be imprudent. While calculations as

performed here require high quality food information that is often unavailable, adaptive

BRPs could be estimated in the absence of such data where annual demographic vital

rates such as adult survival, adult fecundity, and mortality of young can be measured

in season. Such measurements may in some cases provide better estimates of BRPs

than those provided by resource informed models, but would lack abilities to anticipate
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and evaluate environmental vs. anthropogenic effects on demographic rates. For species

subject to changes in foraging habitat, such as black surfperch, evaluating the subsequent

effect on vital rates and BRPs has the potential to substantially alter recruitment-based

management policies in an adaptive setting.

It is reasonable to infer that, for many fishes and other taxa, adult fecundity and

survival can exhibit strong plasticity to the availability of food in a manner similar to

black surfperch. I suggest that populations exposed to highly variable environments may

be more likely to exhibit recruitment dynamics that fluctuate as a result of substantial

changes in food availability to a host of life-history stages. Moreover, the history of

environmental forcing matters; multiple years of low food will likely lead to recruitment

failure in such systems. In contrast, alternating years of high food may buffer a co-

hort against a single low food year. The surprising lack of definitive evidence for such

phenomena stems historically from logistical and analytical limitations and because high

quality, long-term data series of food information are often unavailable. However, accrual

of more long-term data and continued advancement of our understanding of ecological

systems should lessen such constraints. Tandem investment in time-series estimates of

population abundance, age structure and known food resources coupled with experimen-

tation and modeling should improve our ability to assess and manage populations whose

food resources vary through time.
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Tables

Table 1.1: Fit of YOY production models with columns indicating the Stock-Recruit
model functional form, food variables included [food available to adults year (t) at site
i (Ft,i) and/or to YOY the next year (Ft+1,i), number of estimated parameters (k),
corrected Akaike Information Criterion (AICc), increase in AICc over the best model,
and variance explained in YOY produced per adult by the model.

stock-recruit function food variables included df AICc ∆AICc R2

Cushing Ft,i Ft+1,i 6 447.0 0.0 0.41
Beverton-Holt Ft,i Ft+1,i 6 454.7 7.7 0.40
Cushing Ft,i — 5 462.2 15.2 0.31
Ricker Ft,i Ft+1,i 6 468.6 21.6 0.27
Beverton-Holt Ft,i — 5 471.3 24.3 0.30
Cushing — Ft+1,i 5 473.7 26.7 0.23
Ricker Ft,i — 5 478.9 31.9 0.18
Beverton-Holt — Ft+1,i 5 482.0 35.0 0.16
Ricker — Ft+1,i 5 482.5 35.5 0.16
Cushing — — 4 494.6 47.5 0.04
Linear — — 3 495.2 48.2 0.01
Beverton-Holt — — 4 497.1 50.1 0.01
Ricker — — 4 497.1 50.1 0.01
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Table 1.2: Fit of YOY survival models with columns indicating the functional form
of survival, the food variables included [food available at the ith site to YOY and in
year (t) at site i (Ft,i) and/or to subadults the next year (Ft+1,i), number of estimated
parameters (k), corrected Akaike Information Criterion (AICc), increase in AICc over
the best model, and variance explained in survival by the model.

survival function food variables included df AICc ∆AICc R2

accelerating to linear Ft,i Ft+1,i 7 197.8 0.0 0.72
accelerating to linear Ft,i — 6 200.8 3.1 0.67
accelerating to linear — Ft+1,i 6 218.0 20.3 0.62
accelerating to linear — — 5 221.9 24.1 0.57
linear — — 4 240.7 42.9 0.26
linear — Ft+1,i 5 262.7 64.9 0.16
linear Ft,i — 5 263.0 65.3 0.21
linear Ft,i Ft+1,i 6 264.5 66.7 0.19
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Figure 1.1: Nonlinear functional forms used in (a-c) YOY production models and (d)
YOY survival models.
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Figure 1.2: Temporal patterns of (a) adult black surfperch densities (mean SE) and
(b) percent cover of foraging habitat . Foraging habitat is defined as foliose understory
and turfing algae in which black surfperch feed.
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Figure 1.3: Temporal patterns (mean SE) of (a) YOY and subadult black surfperch
densities and (b) index of food available to black surfperch.
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Figure 1.4: (a) Cushing YOY production model predictions, made with food available
to YOY in year (t) fixed at its mean value of 0.35 g per 0.1 m2. Lines are selected
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densities of YOY in year (t+1) that were produced by adults in year (t) on the right
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combination. Lines correspond to those in (a).

35



● ●

●

●●● ●●

●

●
●

●

●

●

● ●●●●●● ●

●●

●

●

●

● ●

●

●●●

●
●

●

●
●

● ●

●

●●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

● ●●●●●●●●

●●

●

● ●

●

●●●●

●

●

● ●

●

●●

●
●

●●

●

●

●

●

●

●
●●

● ●

● ●
●

●
●

●

● ●

●

●

●
● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

a)

R2 = 0.68

Bias = 0.07ns

●●

●

● ●●●●

●

●
●

●

●

●

●●●● ●●●●

● ●

●

●

●

●●

●

●●●

●
●

●

●
●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●●●●● ●● ●●

● ●

●

●●

●

●●● ●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●
●●

●●

● ●
●

●
●

●

●●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

b)

R2 = 0.36

Bias = 0.66*

0.1

1

5

10

0.1 1 5 10 0.1 1 5 10
pred. subadultst+ 2,i  (+1/9)

ob
s.

 su
ba

du
lts

t+
2,

i (
+

1/
9)
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Appendix A: Electronic Supplement S1-S5

The electronic supplement including electric supplementary sections S1-S5 for can be

downloaded for free at http://rspb.royalsocietypublishing.org/content/suppl/

2012/09/20/rspb.2012.1862.DC1/rspb20121862supp1.pdf
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Chapter 2

Food supply and density
dependence interact to drive annual
survival in adult fish
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Abstract

A traditional view of fish populations is that recruitment and not variable adult

survival primarily controls population fluctuations. I challenged the assumption that

adult survival is effectively independent of food availability or density by exploring a

stage-structured, multi-decadal time series dataset for black surfperch (Embiotoca jack-

soni). Using a Bayesian, state-space modeling approach, I found strong evidence from

these time series that both food supply and population density regulate adult survival.

Analysis of time series data and model simulation illustrate that food-mediated density

dependence can dramatically alter the expected behavior of populations with respect

to the mean and variance of adult density. The impact of such temporal variation in

adult survival on population variance and equilibrium density rivaled the influence of

recruitment variation; moreover density dependent adult survival dampened the impact

of variability arising from stochastic recruitment. Results suggest that variability in

food supply may contribute significantly to population fluctuations by regulating both

recruitment and compensatory adult survival simultaneously.
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Introduction

In moderate to long-lived vertebrates, population fluctuations have been argued to

result in large part from variation in recruitment rather than in adult survival. This

stems from the observation that variability in recruitment (driven by fecundity, juvenile

survival rates, and/or variable delivery of new colonists) greatly exceeds that of adult

survival (Charnov 1986, Gaillard et al. 2000, 1998, Gaillard and Yoccoz 2003). As a

result, an assumption of constant adult survival rates is often deemed adequate or even

to be a necessary simplifying assumption for modeling population dynamics (Brodziak

et al. 2011, Quinn and Deriso 1999). However, several key findings of models suggest

the potentially critical importance of considering the nature of variation in adult sur-

vival rates. First, population growth rates commonly exhibit higher elasticity to adult

survival than recruitment processes (Gaillard and Yoccoz 2003, Heppell et al. 2000).

Second, adult survival rates that covary with recruitment can either amplify or dampen

population variance depending upon the sign of covariance (Shelton and Mangel 2011).

Finally density dependent vital rates can lead to instability and hydra effects (Abrams

2009).

In marine species, several mechanisms that result in substantial changes in adult

survival have been identified outside of direct fishing mortality, including variable pre-

dation (e.g. Hollowed et al. 2000) and environmental perturbations that lead to mass

mortality (e.g. Lafferty and Kuris 1993). By contrast, the interactive influence of food
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supply and adult density is more poorly understood. Food limitation in competitive

systems can arise via changes in food supply, changes in adult density or both; such

changes can potentially lead to reductions in fecundity, as well as survivorship of juve-

niles and adults (Clutton-Brock et al. 1997, Eberhardt 2002, Elliott and Hurley 1998,

Fryxell 1987, Mduma et al. 1999). While examples of density-dependent population

regulation are widespread for many vertebrates (Knape and de Valpine 2012), strong

empirical evidence for food regulated density dependent adult survival, and the resul-

tant implications for population dynamics, remains scarce (but see Clutton-Brock et al.

1997, Mduma et al. 1999). If adult mortality rates depend directly upon food supply

and/or adult density, then the theoretical and practical understanding of a population’s

dynamics may contrast sharply to scenarios where adult survival rates are assumed to

be constant.

Among marine reef fishes, there is considerable evidence of density-dependent mortal-

ity, primarily of juveniles, for species that shelter from predators (Holbrook and Schmitt

2002, Osenberg et al. 2002, Schmitt et al. 1999). That notwithstanding, marine fish are

prime examples of systems in which population models commonly assume constant adult

survival; a parameter that in many cases is poorly estimated or simply chosen (Quinn

and Deriso 1999). Despite this convention, the pitfalls of using erroneous estimates of

adult survival are well established and include inaccurate assessments of productivity,

temporal trends in abundance or resilience to anthropogenic perturbation (Clark 1999,

Lapointe et al. 1992). Moreover, survival rates can be shown to vary through time
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when sufficient data to test for non-stationarity exist (Jiao et al. 2012). Thus, given

the widespread evidence that adults of fish (as well as many other vertebrate taxa)

occasionally experience nutritional stress and competition for food, variability in food

supply has the potential to influence population dynamics via adult survival as well as

via recruitment processes for some taxa.

Several biological mechanisms provide substantial challenges to understanding the

population-level implications of food limitation in adults. Adults of a variety of verte-

brates can buffer against food limitation by adjusting fecundity (Tyler and Dunn 1976)

or skipping reproduction altogether (Rideout and Tomkiewicz 2011). However, sacri-

ficing fecundity first under nutritional stress is neither expected nor observed to be a

universal trait among fish (Jørgensenn et al. 2006) and adults doing so are likely to

experience decreases in survival once reproductive energy stores are expended. In ad-

dition to individual plasticity, the effects of food supply are likely to differ at different

densities (Eberhardt 2002). At lower densities, food supply may have little impact and

recruitment dynamics may dominate population trends over time. In contrast, at high

adult densities food supply may buffer against variation in recruitment. Thus, while

recruitment variation is generally thought to control population variability (Shelton and

Mangel 2011) to my knowledge no studies have estimated the individual and combined

effects of food and density mediated adult survival on fish population dynamics. I used

a Bayesian state-space modeling approach to evaluate whether conspecific density and

food supply simultaneously affect adult survival rates in the black surfperch (Embiotoca
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jacksoni), and whether incorporating any such effects alters expectations of population

size and variance. Black surfperch provide a tractable system for studying this issue be-

cause they exhibit strong competition for foraging habitat (benthic turf and macroalgae)

and the crustacean prey therein (Hixon 1981, Holbrook and Schmitt 1984, 1986, Schmitt

and Holbrook 1984, 1986). Moreover, recruitment dynamics in this species are correlated

with variation in food supply (Okamoto et al. 2012). I used multi-generational time se-

ries data for black surfperch from Santa Cruz Island, California to evaluate the evidence

for, and expected implications of, resource-mediated compensatory adult survival. First

I tested whether estimated survival varied through time. I then estimated and tested

support for models that related survival to conspecific density, food supply and habitat

availability. Using the estimated models of survival, I calculated effect size measures in

terms of expected equilibrium densities and temporal variation in population density.

Finally, I analyze a simple, generalized version of this population model to illustrate the

general consequences of compensatory adult survival on population variance in the face

of stochastic recruitment dynamics.

Methods

Field surveys

Data on stage-specific abundance of black surfperch, the amount of foraging habitat

and the availability of their food were collected at 11 sites on the north shore of Santa
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Cruz Island, CA in autumn intermittently from 1982 - 1992 and annually from 1993 -

2008. At each site, three fixed 40 m transects at 3, 6, and 9 m depth contours (the

typical depth range of black surfperch) were surveyed for black surfperch (in a 40 x 2 m

swath) and their foraging habitat by divers using SCUBA, and samples were collected

to estimate their principal crustacean food items. Counts of fish distinguished among

young-of-year (YOY), juveniles (1 year old subadults) and mature adults (≥ 2 years

old). Habitat and food density

Foraging habitat for each site in a given year was defined as the average percent cover

of all low lying turf and foliose algae averaged across all transects within each location

in each year, as these are the substrates from which surfperch harvest their crustacean

prey (Holbrook and Schmitt 1984, Laur and Ebeling 1983, Schmitt and Holbrook 1984).

Food density was defined as the biomass density of prey (g wet mass m−2), which in-

cluded jaeropsid isopods, idoteid isopods, gammarid amphipods, caprellid amphipods

and crabs within the gape limitation of adult black surfperch (Schmitt and Holbrook

1984). Estimates of food density for each site were calculated as described in Okamoto

et al. (2012) and include the density of prey sampled from replicate 0.1 m2 patches of

foraging habitat in each year from which individual prey were counted and sized. Food

biomass was not normalized by the habitat percent cover on transects (as was done

in Okamoto et al. (2012)) so habitat and density of food biomass could be evaluated

independently. Annual means of the biomass density of food averaged over all sites for

each year of the time series were used as values for food availability in all analyses.
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Though predator densities may also influence survival of surfperch, in this system re-

gional predator abundance (primarily harbor seals and California sea lions) remained

relatively consistent over the period covered in our study (Carretta et al. 2011).

Modeling framework & model selection

I used stage-structured, state-space models formulated in a hierarchical Bayesian

framework to estimate the strength of the relationships between survival rates and con-

specific density and food availability. The basic stage structured model considers survival

as a function of adult density in year (y) at the ith site (Ay,i), adults in the following

year at that location (Ay+1,i) and one-year-old (juvenile) density in year (y) at the ith

site (Jy,i). However, A and J were estimated from visual surveys and not truly known.

Thus I used a hierarchical state-space model formulated as follows:

Ay+1,i = [Ay,isy,i + Jy,isy,ig]eεy,i (2.1)

Ây,i = Ay,i + εA,y,i (2.2)

Jy,i = Ĵy,i + εJ,y,i (2.3)

where sy,i is adult survival from year (y) to (y+ 1) at site i and g is the maturation rate

of juveniles in year (y) to adulthood in year (y + 1) (juveniles either graduate or die),

and Ây,i and Ĵy,i are the observed densities from all surveys at that site in that year.

εA,y,i and εJ,y,i are the errors associated with each variable and eεy,i is the multiplicative
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process error. Eq. (2.2) facilitates probabilistic estimates of the actual but unobserved

adult abundance, and eqn. (2.3) facilitates integrating inference over the error associated

with juvenile abundance. To estimate error functions for eqns. (2.2) and (2.3) I used an

independent training dataset in which fish surveys were replicated repeatedly over the

late summer and fall season within each of several years (see Appendix B, Figure B.1

for details).

Using the survey data and estimates of survey error, I first evaluated evidence

that survival varies by year using the product space method (Carlin and Chib 1995,

Lodewyckx et al. 2011) and compared model support using Bayes factors. Bayes factors

(Gelman et al. 2013, Kass and Raftery 1995) provide a metric of data-driven evidence

in favor of a hypothesis after accounting for its prior probability, and 2 ln(Bayes factor)

(hereafter referred to as 2lnB) transforms it to an interpretable scale. Values of 2lnB

>10 are very strong evidence against the null (requiring greater than 99% support),

which I used as a conservative threshold, while negative values support the null. I then

estimated models that consider annual survival as a function of food availability in the

previous year (y) and current year (y + 1), foraging habitat in year (y) and (y + 1),

and conspecific density (adults and juveniles independently) with two model forms: the

Logistic and the Shepherd. The Logistic Model (eq. 2.4) relates survival to density, food
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and foraging habitat availability using a logistic function:

sy,i =
1

1 + exp
[
(β0i + β1Ay,i + β2x2y,i + ...+ β6x6y,i)t

] (2.4)

Logistic Model

where β0 is a scale parameter (intercept that controls the density independent survival

rate), Ay,i and x2 − x6 represent covariates (adult density, juvenile density, habitat and

food supply) with β1 − β6 their associated coefficients, s represents the survival rate

in year y at the ith location, and t is the exact fraction of the year elapsed since the

previous time period.

The Shepherd Model (Shepherd 1982) provides additional flexibility and ease of bi-

ological interpretation (derived in Quinn and Deriso (1999)):

sy,i =
e−zit

1 + (1− e−zit)K (Ay,i)
γ (2.5a)

Shepherd Model

where e−z is the density independent survival rate at the ith site, γ controls the intensity

(shape) of density dependence, and K controls the strength of density dependence. If

one considers K to be a function of environmental covariates, then the Shepherd Model

can be represented as a linear combination of log scale predictors and coefficients as
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shown in eq. (2.5b).

sy,i =
e−zit

1 + (1− e−zit) exp(β0i + γ lnAy,i+β2 lnx2y,i + ...+ β6 lnx6y,i)
(2.5b)

The Shepherd Model provides unique flexibility in the parameterization because it

can range from density independent (γ = 0), to a decelerating but non-saturating density

dependent form (0 <γ <1), to a saturating form (γ = 1), and finally to an overcompen-

satory form (when γ >1) in which survivors (eventually) approach zero as abundance

increases indefinitely. However, this model also requires an additional parameter be-

cause it separates the density independent survival rate (e−z) from the scale parameter

β0, which now becomes a nuisance parameter. Thus I used the Logistic Model (eq. 2.4)

for statistical simplicity and the Shepherd Model (eq. 2.5b) for biological flexibility. I

compared the emergent properties of the two model forms to evaluate their qualitative

agreement.

I applied stochastic search variable selection (SSVS, George and McCulloch (1993)) to

the Logistic and Shepherd Models using Gibbs sampling to evaluate which combination

of variables exhibited strong correlations with adult survival rates. SSVS searches across

the multitude of unique covariate combinations and returns the probability that unique

combinations should be included. Following SSVS model selection I re-estimated the

best Shepherd and Logistic Model for analysis including only covariates supported by

2lnB >10 in the SSVS procedure. In performing model selection I included an AR(1)

model on the error terms to account for potential bias due to serial autocorrelation in the
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dataset. In all models I used vague or uninformative priors. Posterior predictive checks

(Gelman et al. 2013), a table of prior specification and prior vs. posterior comparisons are

provided in Appendix B. Posteriors were sampled using JAGS (Plummer 2013) called

from R (R Core Team 2014). Comparative effect size of food supply on equilibrium

abundance

The estimation of effect size is critical in generating inference (Osenberg et al. 2002).

Thus I sought to determine the magnitude by which food supply and density depen-

dence impact population dynamics in terms of equilibrium abundance and population

variability using the modified Shepherd Model (eq. 2.5b) posterior. To quantify in-

dividual and combined effects of each significant covariate in the models, I combined

correlative stock-recruit models (see Okamoto et al. 2012) with the modified Shepherd

Model (eq. 2.5b) and numerically solved for the equilibrium density under steady food

conditions. I did this for food supply ranging from low to high as it impacts both re-

cruitment and adult survival, which allowed us to compare effect sizes of constant food

supply on expected equilibria via adult survival and via recruitment. While these solu-

tions provided information about mean effect sizes, I recognized that the environment

is not constant and I expanded the analysis to evaluate expected population variability

in response to simulated environmental variability.

50



Comparative effect size of nonlinearity and food supply on population vari-

ance

To assess how density dependent adult survival, recruitment variability, and food

supply for adults comparatively impact population variability, I simulated temporal

variability in food supply and projected the population size through time (using the

parameterized model from the previous section) under 4 different alternative scenarios:

(1) recruitment is unchanged by food supply, (2) adult survival is compensatory but

unchanged by food supply, (3) adult survival is constant [fixed at the mean of (2)] with

no compensatory response, and (4) both recruitment and adult survival respond to food

supply, with compensatory adult survival. I simulated variability in food supply that is

temporally correlated in time using a truncated multivariate normal distribution, with

the truncation set to the maximum and minimum observed values with the correlation

between food supply for adults and food supply for recruitment set to the observed

value (r = 0.88). To simulate a relatively strong autocorrelated food supply, I generated

values using Markov chain Monte Carlo, and tuned each simulation to provide a partial

autocorrelation at lag 1 of φ = 0.65. Simulations with no autocorrelation in the food

supply provide qualitatively similar results.
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Generalized buffering effect of density-dependent adult mortality against

recruitment variation

Both the degree of adult density dependence and the average ratio of juveniles to

adults are likely to dictate the sensitivity of adult fluctuations to recruitment variability.

Moreover, a variety of mechanisms (beyond food supply) may impose density dependent

survival such as variability in shelter habitat. To generalize beyond this surfperch system,

I explored the sensitivity of adult fluctuations to recruitment variability in hypothetical

populations under a range of adult density dependence and recruitment productivity

scenarios in a simplified, more general population model. To generalize the model, I

combined the basic Shepherd Model of adult survival (eq. 2.5a) with a standard Cushing

stock-recruitment function to provide a flexible model of adult survival and recruitment.

Ay+1 = surviving adults (Shepherd Model) + recruitment (Cushing SR function)

Ay+1 =
Aye

−zt

1 + (1− e−zt)K (Ay)
γ + α (Ay−2)

β (2.6)

where α is the density independent per-capita productivity parameter, and β controls

density dependence in recruitment. Using this generalized model, I simulated how adult

population variability responded to a gradient of temporal variability in α (CV = 0.1 to

1) across a factorial gradient of mean recruitment productivity values (ᾱ ) and strength of

adult density dependence (γ). I ranged γ from 0 (no density dependence) to 1 (saturating

survival) up to 4 (strong overcompensation); ranged from = 0.25 to 1.50 (mean adult to
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recruit ratios thus ranged from 0.1 to 0.5). For each set of simulations within a given level

of variability in α, I tuned the density independent adult mortality (z) such that across

the gradient of γ the time averaged adult survival rate was constant. Here I report results

of simulations where α exhibited serial correlation at lag 1 of φ = 0.65. Simulations with

no autocorrelation in the food supply provide qualitatively similar results. Because CV

in adults tended to increase linearly with CV in α , I measured sensitivity of population

fluctuations to recruitment variability as the slope of this relationship, given by eq. (2.7).

∆CV adults

∆CVα
(2.7)

Sensitivity of adult fluctuations

Results

These analyses indicated that adult survival rates varied among years; there was

strong evidence against a single, static survival rate (2lnB = 19.4), despite large un-

certainty in survival estimates within each year. The SSVS procedure with both the

Logistic and Shepherd Models revealed strong correlations between estimated changes

in survival and both food supply (positive) and adult conspecific density (negative)

(Table 3.4; Figure 2.1). The posterior suggests that adult survival rates declined as

density increased or as food became scarce (Figure 2.2). Moreover, the impact of food

supply diminishes as adult density decreases, as indicated by the similar survivorship

across the range of food supply for low-density circumstances (Figure 2.2). Despite the
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strength and weight of evidence in favor of interactions observed, there was also sub-

stantial uncertainty in the estimated effects of adults and food supply. The Shepherd

Model indicates competition exists, with parameter estimates in the 95% credible set

ranging from very weak to strong overcompensatory dynamics (Figure 2.2). Likewise,

food impacts are strong but are highly uncertain where increased food supply and adult

density occur together, illustrated by highly variable predictions of survivorship (Figure

2.2). Qualitatively similar results were obtained for the Logistic Model (see Appendix

B, Figure B.3). Effect size of food supply on equilibrium population size

Model results indicate that the magnitude of the estimated effect on equilibrium

densities from variation in adult survival due to food is nearly identical to that of the

expected effects of recruitment variation due to food across the range of observed values.

Unsurprisingly, these effects also combine to increase equilibrium densities. The impacts

of food via recruitment and via adult survival, in this case, were estimated to be of near

equal and additive importance (assuming temporally constant environmental conditions)

(Figure 2.3). Comparative effect size of nonlinearity and food supply on population

variability

These results revealed three key findings with respect to the response of population

variability to food supply. First, the importance of recruitment variation on simulated

fluctuations in adult numbers was diminished by compensatory survival. Second, simu-

lated population variability was impacted similarly by variation in both recruitment and

adult survival due to variability in food supply. Third, simulated variability in adult
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numbers responded stronger to combined effects of recruitment variation and variation

in adult survival due to food than individual effects alone. Variability in simulated

adult density increased steeply with variability in food when variation in recruitment

was driven by food supply and adult survival (Figure 2.4). However, by incorporating

adult density dependent survival this variability in adult population size was minimized

because not all recruitment variation is incorporated into adults (Figure 2.4. The sep-

arate impacts of food variability via recruitment and density dependent adult survival

are similar in magnitude and when combined, result in markedly increased variability.

Generalized effects of density-dependent adult mortality on population

variance

The final aspect of this study explored a general model of effects of fluctuations

in adults regardless of the underlying mechanism. Increasing the strength of adult

compensatory survival buffers against stochastic recruitment variability across a range

of ᾱ (density-independent per-capita reproductive rates) (Figure 2.5). This effect is

independent of the mean adult survival rate because that rate is controlled for directly in

the simulation. The dampening effect is strongest with overcompensatory adult survival

and increases as ᾱ increases. This change with increasing ᾱ occurs because the overall

contribution of new individuals to the adult stage (ratio of juveniles to adults) increases

as ᾱ increases; thus larger ᾱ values make the contribution of recruitment overwhelm any

adult density-related feedback.
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Discussion

When populations are subject to dramatic decreases in food supply, it is reasonable in

some cases to expect corresponding decreases in adult survival, especially when densities

of competing adults are high. Whether populations actually experience a decrease will

depend upon the magnitude of temporal variability in food availability and the extent

to which reductions in fecundity, energy reserves or somatic growth can buffer survival

against nutritional stress in adults (Charnov 1986, Gaillard and Yoccoz 2003). Here I

demonstrated strong evidence that variation in adult density and food abundance impact

survival rates of adult fish. These correlations run counter to the common assumption

in many population models that adult survival is constant and density independent. I

show that the estimated relationships provide very different expectations of population

equilibria and temporal variance compared to the case where survival is assumed to be

constant (Figure 2.4). In the case of black surfperch, the estimated effect size of food-

driven adult survival on population size rivaled that of food-driven recruitment both in

terms of estimated equilibrium density (Figure 2.3) and variance (Figure 2.4). Moreover,

density dependent survival dampened the impact of recruitment variation on population

variability (Figure 2.4). While parameter estimates of these models include uncertainty

(Figure 2.2), the general conclusions from these analyses apply across a spectrum of

parameter values and to systems where competition for resources varies through time

(Figure 2.5).
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Several questions remain unanswered regarding why black surfperch appear to exhibit

resource-mediated density dependent survival of adults. Specifically, how the density-

survival interactions are manifested mechanistically remains uncertain because I cannot

parse the density related feedback into the components that drive survival. These data

contain no sex specific information, nor any direct estimates of the demographics of adult

mortality. In addition, extrinsic factors such as predation or habitat availability may be a

mediator of these estimated food-density impacts. Predation, for example, may provide

the ultimate source of mortality simply because weak fish are eaten (Cushing 1975), so

while densities of their main predators remained steady at the site over the duration

of the study (Carretta et al. 2011), predation rates may still increase as surfperch food

becomes scarce and surfperch are either weaker or required to spend more time foraging

(Holbrook and Schmitt 1988). In a similar fashion, low availability of foraging habitat

may increase susceptibility of individuals to fluctuations in food density within those

habitats. Black surfperch depend strongly upon their foraging habitat (Hixon 1981,

Holbrook and Schmitt 1984, 1986, 1988, Schmitt and Holbrook 1986) and prior to the

period covered by this study, a marked decrease in habitat availability corresponded with

a decline in overall black surfperch abundance (Okamoto et al. 2012). Since then, habitat

availability in the system exhibited little variability in comparison to within-habitat food

density, which varied by an order of magnitude. The black surfperch population may

therefore require higher food density currently than it did when habitat availability

was greater. These other potential interactions point to the fact that the strength of
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any density-resource interactions are likely to change over time via a complex set of

interacting mechanisms. Thus, while there is a rich history of incorporating predator,

food and ratio dependence into behavioral responses (Abrams and Ginzburg 2000), for

most time series studies of population dynamics, the present included, the ability to

capture the“true” functional responses rather than just general correlations is an elusive

challenge.

This study highlights the general problem of low confidence in relationships between

food, density and other factors driving demographic rates for most species. For many

species, even estimating a mean survival rate over time provides a substantial challenge

and there remains debate about whether it is possible without direct, empirical mea-

surement (Francis 2012, Lee et al. 2011). Such assessments of annual vital rates through

time often require ongoing mark recapture or other methods, and these approaches typi-

cally involve substantial logistic challenges and costs. So what alternatives remain given

the potentially high likelihood of mischaracterizing dynamics by assuming stationary

survival? Several powerful alternatives to standard stock-assessment type models exist

that relax simplifying assumptions about complex systems. These include state-space

reconstruction (SSR) techniques with little to no underlying model structure that have

the potential to outperform explicit models in short term forecasting (Perretti et al.

2013). However, if the system population is strongly influenced by resources such as

food availability, these methods still require experiments and ecosystem based studies

to identify and provide time-series that can benefit predictive power (Dixon et al. 1999).
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These findings provide important insight into the dynamics and stability of stage

and age structured populations. In populations where adult survival and recruitment

(via fecundity or juvenile survival) are sensitive to variation in food supply, there is a

potential two-fold impact. Positive covariance between adult survival and recruitment

can magnify the impact of the other (Jongejans et al. 2010). In this case, food supply

directly lowers the number of reproductive adults but also reduces the number of recruits

per adult. Yet environmental variability can be buffered or amplified by both density

dependence as well as cohort effects (Lindström and Kokko 2002); thus the inertia of

perturbations in affecting variability can be complicated and perhaps unpredictable. Re-

cent studies using standard models suggest decreases in overall survival via fishing may

increase population fluctuations (Anderson et al. 2008, Rouyer et al. 2012, Shelton and

Mangel 2011). Here I show an important mechanism that can drive such variability:

density dependent adult survivorship buffers against fluctuations driven by recruitment

variability. As a result, a change in the density independent survival rate via exploitation

will reduce this feeback and make populations much more sensitive to environmentally

driven recruitment. As a result, fishing mortality (or any other surplus mortality) can

decrease the stability of these systems by tampering with negative feedbacks in the adult

stage. Given the challenges these concepts impose, standard metrics of population re-

silience and stability may be dangerously erroneous if density-dependent feedbacks and

environmental variation individually or interactively drive survival of mature individu-

als. As a result, thorough, process-based studies are desperately needed to continually

59



evaluate whether the common assumptions of stationarity and linearity are valid and/or

acceptable.

Acknowledgements

Funding for this research was provided by the National Science Foundation in sup-

port of the Santa Barbara Coastal Long Term Ecological Research (LTER) site and

earlier awards to Russ Schmitt and Sally Holbrook from NSF and the Minerals Manage-

ment Service. This work would not be possible without the valuable insight of Cherie

Briggs, Robert Warner or Dan Reed. The field and lab services of Keith Seydel, Clint

Nelson, Shannon Harrer and Jessica Nielsen, as well as countless others through time

were indispensable.

60



References

Abrams, P. A. 2009. When does greater mortality increase population size? The long

history and diverse mechanisms underlying the hydra effect. Ecology Letters 12:462–

474.

Abrams, P. A., and L. R. Ginzburg. 2000. The nature of predation: prey dependent,

ratio dependent or neither? Trends in Ecology & Evolution 15:337–341.

Anderson, C. N., C.-h. Hsieh, S. A. Sandin, R. Hewitt, A. Hollowed, J. Beddington, R. M.

May, and G. Sugihara. 2008. Why fishing magnifies fluctuations in fish abundance.

Nature 452:835–839.

Brodziak, j., J. Ianelli, K. Lorenzen, and R. D. Methot. 2011. Estimating natural mor-

tality in stock assessment applications. U.S. Dep. Commer., NOAA Tech. Memo.

NMFS-F/SPO-119.

Carlin, B. P., and S. Chib. 1995. Bayesian model choice via Markov chain Monte Carlo

methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

57:473–484.

Carretta, J. V., K. A. Forney, E. Oleson, K. Martien, M. M. Muto, M. S. Lowry, J. Bar-

low, J. Baker, B. Hanson, D. Lynch, L. Carswell, R. L. B. Jr., J. Robbins, D. K.

Mattila, K. Ralls, P. Opay, B. Norberg, J. Laake, D. Lawson, J. Cordaro, E. Petras,

61



D. Sweetnam, and C. Yates. 2011. U.S. Pacific Marine Mammal Stock Assessments.

U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-488.

Charnov, E. L. 1986. Life history evolution in a” recruitment population”: why are

adult mortality rates constant? Oikos 46:129–134.

Clark, W. 1999. Effects of an erroneous natural mortality rate on a simple age-structured

stock assessment. Canadian Journal of Fisheries and Aquatic Sciences 56:1721–1731.

Clutton-Brock, T., A. Illius, K. Wilson, B. Grenfell, A. MacColl, and S. Albon. 1997.

Stability and instability in ungulate populations: an empirical analysis. American

Naturalist 149:195–219.

Cushing, D. 1975. The natural mortality of the plaice. Journal du Conseil 36:150–157.

Dixon, P. A., M. J. Milicich, and G. Sugihara. 1999. Episodic fluctuations in larval

supply. Science 283:1528–1530.

Eberhardt, L. 2002. A paradigm for population analysis of long-lived vertebrates. Ecol-

ogy 83:2841–2854.

Elliott, J., and M. Hurley. 1998. Population regulation in adult, but not juvenile, resident

trout (Salmo trutta) in a Lake District stream. Journal of Animal Ecology 67:280–286.

Francis, R. 2012. The reliability of estimates of natural mortality from stock assessment

models. Fisheries Research 119:133–134.

62



Fryxell, J. 1987. Food limitation and demography of a migratory antelope, the white-

eared kob. Oecologia 72:83–91.

Gaillard, J.-M., M. Festa-Bianchet, N. Yoccoz, A. Loison, and C. Toigo. 2000. Temporal

variation in fitness components and population dynamics of large herbivores. Annual

Review of Ecology and Systematics 31:367–393.

Gaillard, J.-M., M. Festa-Bianchet, and N. G. Yoccoz. 1998. Population dynamics of

large herbivores: variable recruitment with constant adult survival. Trends in Ecology

& Evolution 13:58–63.

Gaillard, J.-M., and N. G. Yoccoz. 2003. Temporal variation in survival of mammals: a

case of environmental canalization? Ecology 84:3294–3306.

Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. 2013. Bayesian

Data Analysis. 3rd ed. Chapman & Hall, London.

George, E. I., and R. E. McCulloch. 1993. Variable selection via Gibbs sampling. Journal

of the American Statistical Association 88:881–889.

Heppell, S. S., H. Caswell, and L. B. Crowder. 2000. Life histories and elasticity patterns:

perturbation analysis for species with minimal demographic data. Ecology 81:654–665.

Hixon, M. 1981. An experimental analysis of territoriality in the California reef fish

Embiotoca jacksoni (Embiotocidae). Copeia 3:653–665.

63



Holbrook, S. J., and R. J. Schmitt. 1984. Experimental analyses of patch selection

by foraging black surfperch (Embiotoca jacksoni Agazzi). Journal of Experimental

Marine Biology and Ecology 79:39–64.

———. 1986. Food acquisition by competing surfperch on a patchy environmental

gradient. Environmental Biology of Fishes 16:135–146.

———. 1988. Effects of predation risk on foraging behavior: mechanisms altering patch

choice. Journal of experimental marine biology and ecology 121:151–163.

———. 2002. Competition for shelter space causes density-dependent predation mor-

tality in damselfishes. Ecology 83:2855–2868.

Hollowed, A. B., J. N. Ianelli, and P. A. Livingston. 2000. Including predation mortality

in stock assessments: a case study for Gulf of Alaska walleye pollock. ICES Journal

of Marine Science 57:279–293.

Jiao, Y., E. P. Smith, R. O’Reilly, and D. J. Orth. 2012. Modelling non-stationary

natural mortality in catch-at-age models. ICES Journal of Marine Science 69:105–

118.

Jongejans, E., H. De Kroon, S. Tuljapurkar, and K. Shea. 2010. Plant populations track

rather than buffer climate fluctuations. Ecology letters 13:736–743.

Jørgensenn, C., B. Ernande, Ø. Fiksen, and U. Dieckmann. 2006. The logic of skipped

spawning in fish. Canadian Journal of Fisheries and Aquatic Sciences 63:200–211.

64



Kass, R. E., and A. E. Raftery. 1995. Bayes factors. Journal of the American Statistical

Association 90:773–795.

Knape, J., and P. de Valpine. 2012. Are patterns of density dependence in the Global

Population Dynamics Database driven by uncertainty about population abundance?

Ecology Letters 15:17–23.

Lafferty, K. D., and A. M. Kuris. 1993. Mass mortality of abalone Haliotis cracherodii on

the California Channel Islands: tests of epidemiological hypotheses. Marine Ecology

Progress Series 96:239–239.

Lapointe, M., R. Peterman, and B. Rothschild. 1992. Variable natural mortality rates

inflate variance of recruitments estimated from virtual population analysis (VPA).

Canadian Journal of Fisheries and Aquatic Sciences 49:2020–2027.

Laur, D. R., and A. W. Ebeling. 1983. Predator-prey relationships in surfperches. En-

vironmental Biology of Fishes 8:217–229.

Lee, H.-H., M. N. Maunder, K. R. Piner, and R. D. Methot. 2011. Estimating natural

mortality within a fisheries stock assessment model: an evaluation using simulation

analysis based on twelve stock assessments. Fisheries Research 109:89–94.

Lindström, J., and H. Kokko. 2002. Cohort effects and population dynamics. Ecology

Letters 5:338–344.

65



Lodewyckx, T., W. Kim, M. D. Lee, F. Tuerlinckx, P. Kuppens, and E.-J. Wagenmakers.

2011. A tutorial on Bayes factor estimation with the product space method. Journal

of Mathematical Psychology 55:331–347.

Mduma, S. A., A. Sinclair, and R. Hilborn. 1999. Food regulates the Serengeti wilde-

beest: A 40 year record. Journal of Animal Ecology 68:1101–1122.

Okamoto, D., R. Schmitt, S. Holbrook, and D. Reed. 2012. Fluctuations in food supply

drive recruitment variation in a marine fish. Proceedings of the Royal Society B:

Biological Sciences 279:4542–4550.

Osenberg, C. W., C. M. St Mary, R. J. Schmitt, S. J. Holbrook, P. Chesson, and

B. Byrne. 2002. Rethinking ecological inference: density dependence in reef fishes.

Ecology Letters 5:715–721.

Perretti, C. T., S. B. Munch, and G. Sugihara. 2013. Model-free forecasting outperforms

the correct mechanistic model for simulated and experimental data. Proceedings of

the National Academy of Sciences 110:5253–5257.

Plummer, M. 2013. Just Another Gibbs Sampler (JAGS) Software, Version 3.4.0.

http://mcmc-jags.sourceforge.net/, 3rd ed.

Quinn, T., and R. Deriso. 1999. Quantitative fish dynamics. 1st ed. Oxford University

Press, New York.

66



R Core Team. 2014. R: A language and environment for statistical computing. R Foun-

dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rideout, R. M., and J. Tomkiewicz. 2011. Skipped spawning in fishes: More common

than you might think. Marine and Coastal Fisheries 3:176–189.

Rouyer, T., A. Sadykov, J. Ohlberger, and N. C. Stenseth. 2012. Does increasing mor-

tality change the response of fish populations to environmental fluctuations? Ecology

letters 15:658–665.

Schmitt, R. J., S. Holbrook, and C. Osenberg. 1999. Quantifying the effects of multiple

processes on local abundance: a cohort approach for open populations. Ecology Letters

2:294–303.

Schmitt, R. J., and S. J. Holbrook. 1984. Gape-limitation, foraging tactics and prey size

selectivity of two microcarnivorous species of fish. Oecologia 63:6–12.

———. 1986. Seasonally fluctuating resources and temporal variability of interspecific

competition. Oecologia 69:1–11.

Shelton, A. O., and M. Mangel. 2011. Fluctuations of fish populations and the magnify-

ing effects of fishing. Proceedings of the National Academy of Sciences 108:7075–7080.

Shepherd, J. 1982. A versatile new stock-recruitment relationship for fisheries, and the

construction of sustainable yield curves. Journal du Conseil 40:67–75.

67



Tyler, A., and R. Dunn. 1976. Ration, growth, and measures of somatic and organ

condition in relation to meal frequency in winter flounder, Pseudopleuronectes amer-

icanus, with hypotheses regarding population homeostasis. Journal of the Fisheries

Research Board of Canada 33:63–75.

68



Tables

Table 2.1: Table of log-scale Bayes factors for variables influencing annual adult sur-
vival. Values greater than +10 are very strong evidence in favor of inclusion (shown in
bold, requiring > 99% support given even prior odds); negative values indicate the null
has more support than the alternative hypothesis. The values are calculated as 2lnB
measuring strength of inference from the data in favor of the alternative hypothesis
against the null. See Methods for model descriptions.

Variable Shepherd Model Logistic Model

Adult Density (y) 12.3 14.9
Prey Density (y) 12.0 15.8
Juvenile Density (y) -4.9 -8.9
Prey Density (y + 1) -2.4 -7.3
Habitat Availability (y) -4.9 -6.7
Habitat Availability (y + 1) -4.8 -6.7
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Figure 2.1: Added variable plots from the Logistic Model showing isolated relationships
between logit-scale survival and A) adult density and B) food density in year (y) from
the posterior samples with error bars showing the 10th and 90th posterior quantiles.
Variables are adjusted by regressing both survival and the shown covariate against other
covariates. The line represents the slope of the mean estimated relationship in the
Logistic Model where this visualization technique can be applied; because the nonlinear
survival function of food and adult density in the Shepherd Model is not linear under
direct transformation, similar plots are not shown for this model. Non-dimensional axes
are shown for simplicity because the data are residuals and are not directly interpretable.
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Figure 2.2: Survivorship as a function of both adult surfperch density and density of
food based on posterior samples from the modified Shepherd Model (eq. 2.5b). The
gridded surface represents the posterior mean expectation, while the grey surfaces rep-
resent the 95% posterior credible set for survival (z-axis) in each x-y combination. For
a similar plot from the Logistic Model see Appendix B.
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Figure 2.4: Effect of food variability on fluctuations in adult density under different
model assumptions shown as the coefficient of variation (CV) in adult density versus
CV in food supply. Top (grey) line: food variability only impacts the stock-recruit
function, survival is density-independent and unaffected by food; bottom (black) line:
food only impacts the stock-recruit function, survival is density dependent but unaffected
by food; dashed line: food variability impacts only adult survival (with density depen-
dence) and the stock recruit function is constant; dotted line: food variability impacts
both recruitment and density dependent adult survival. Top (grey) line vs bottom
(black) line: Reduction in slope due to density dependent adult survival alone. Top
(grey) line vs dashed line: Isolated effects of food via adult survival vs recruitment.
The first order autocorrelation in food supply for was set to φ = 0.65; simulation sample
size = 1000; parameter estimates were the posterior mean from the modified Shepherd
Model and fitted values from the stock-recruit dynamics from Okamoto et al. (2012).
Results from simulations with no autocorrelation are shown in Appendix B.
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Figure 2.5: Contour plot of sensitivity of adult population fluctuations to stochas-
tic recruitment variability as a function of adult density dependence (γ) and density-
independent, per capita reproductive rate (mean recruitment productivity, ᾱ) in a sim-
ple, generalized population model ( 6). Stochasticity influences only α (i.e. no stochastic
variability in γ) and for each level of ᾱ density independent adult mortality is adjusted
in the analysis such that the mean adult survival rate is constant for all values of γ.
Sensitivity of adult fluctuations is the slope of the relationship between CV in adult
density and CV in α (analogous to the slope of lines in Figure 2.4) and are indicated by
the contour lines. Simulations for each ᾱ− γ combination included simulating a unique
10,000 year time series for CV(α) ∈ 0.1, 0.2, , . . . , 1.0.
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Appendix B Supplemental tables and figures for “Ef-

fects of food limitation, density dependence and an-

nual adult survival in a marine fish”
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Figure B.1: Training dataset illustrating observed site densities versus the empirical
mean for that site within that year. The grey bar represents the estimated standard
error of 1.06 about the 1:1 line. The standard error was estimated using generalized
least squares. There was no evidence that during this period within site error variance
increased as a function of the mean, among years or among sites. These data represent
sites that were visited by divers during late summer and early fall 4-16 times per year
for replicate observation.
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Table B.1: Parameter description for the Shepherd model under the SSVS procedure along with prior specification.
The logistic model uses the same specification with the exception that there is no scale coefficient.

Parameter Description Prior

logit (e−zi) logit-scale density-independent annual survival rate for the ith site N (µ[logit (e−z)], σ[logit (e−z)])
µ[logit (e−z)] mean of logit (e−zi) N (0, 1.5)
σ[logit (e−z)] among site variance in logit (e−zi) Uniform (0, 1.5)

β0i scale coefficient for the ith site N (µ[β0], σ[β0])
µ[β0] mean scale coefficient Uniform (−5, 5)
σ[β0] among site variance in scale coefficient Uniform (0, 5)

γ density dependent shape coefficient (1− ψγ) N (0, 0.05) + ψγN (0, 5)
β2, . . . , β6 other variable coefficients (1− ψi) N (0, 0.05) + ψiN (0, 5)

g annual juvenile maturation rate Uniform (0, 1)
φ first-order autoregressive coefficient Uniform (0.9, 0.9)
σεi process error for the ith site Uniform (0, 100)
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Figure B.2: Posterior (grey histograms) and prior (black line) densities for primary
parameters in the Shepherd Model. Prior probabilities and parameter descriptions are
shown in Table 3.4
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Figure B.3: Survivorship as predicted for given adult density and the observed range
of prey density using posterior samples from the Logistic Model (eq 2.4). The gridded
surface represents the posterior mean expectation, while the grey surfaces represent the
95% posterior credible set for survival (z-axis) in each x-y combination.
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Figure B.4: Posterior predictive checks. Y-axes represent the predicted value, while x-
axes represent realized statistics. P-values represent the number of values above the 1:1
line, where P-values approaching 0 or 1 represent a deviation from model assumptions.
A) Spearman rank-order correlation statistics testing for correlation between error and
the response values. B) Kolmogorov-Smirnov test statistics comparing adequacy of the
lognormal likelihood function. C) Chi-squared goodness of fit-test statistics.
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Chapter 3

Density-dependent sperm-egg
interactions alter dynamics of
fertilization and polyspermy in
external fertilizers
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Abstract

Current theory for species that have external fertilization suggests that the rates

of fertilization and polyspermy (sperm toxicity) are dictated primarily by sperm con-

centrations. Although this suggests that individual zygote production and thus fitness

increases monotonically with egg release rates, it ignores potentially important mech-

anisms such as competition for sperm among eggs and the potential for attraction of

sperm to eggs, crowding effects or other density-dependent rates of sperm-egg interac-

tion. Density-dependent interaction rates (such as attraction or crowding effects) may

allow egg concentrations to affect the probability of viable fertilization. I experimentally

test whether such egg effects occur using the urchin Strongylocentrotus purpuratus and

expanded existing models to account for non-random interactions. The experiments re-

vealed that at low sperm concentrations, eggs compete for sperm while at high sperm

concentrations, high egg concentrations reduce the incidence of polyspermy. These ob-

servations are inconsistent with the random collision models but highly consistent with

density-dependent sperm-egg interactions. As a result, there is a fitness trade-off of

egg release: as sperm range from scarce to superabundant, interactions among eggs

transition from highly competitive to facilitative in terms of viable fertilization rates.
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Introduction

Fertilization of eggs tends to follow a fitness “Goldilocks” principle. Too few sperm

results in low probability of fertilization while too many leads to polyspermy (multiple

sperm entering one egg) and egg death (Franke et al. 2002, Levitan and Ferrell 2006,

Levitan et al. 2007, Sewell et al. 2013). Because egg production is generally costly to fe-

males, achieving a middle ground for fertilization confers a substantial fitness advantage

(Levitan 2004). Empirical and theoretical work on fertilization in broadcast spawners

and has focused mostly on the role of sperm concentrations in shaping fertilization. In

contrast, how egg concentrations affect fertilization dynamics remains surprisingly unex-

plored (but see Levitan et al. 1991 and Vogel et al. 1982). Egg concentrations have the

potential to impact fertilization maxima in two primary ways. First, egg concentrations

can alter the sperm-egg ratio and as eggs concentrations increase more sperm are needed

to maximize fertilization because eggs deplete the sperm population. Second, the rate

of per-capita sperm-egg interactions (also called ”collision rates” ) may depend on egg

concentrations with the result that faster or slower collision rates may shift the optimal

range of sperm concentrations. If fertilization rates are dependent on the concentration

of eggs then fitness of females may depend not only on sperm concentrations, but also

on the rate of egg release during spawning.

Under existing models of broadcast spawning with purely random sperm-egg colli-

sions, egg concentrations have little to no impact on fertilization rates (Bode and Mar-
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shall 2007, Lauzon-Guay and Scheibling 2007, Levitan et al. 1991, Vogel et al. 1982).

These models assume collision rates are unaffected by attraction of sperm to eggs, non-

random search patterns or egg crowding effects. Yet sperm can exhibit attraction (Evans

et al. 2012, Kaupp et al. 2006, Zimmer and Riffell 2011), structured search patterns

(Farley 2002) and chemical cues from eggs can induce behavioral changes in swimming

direction (Guerrero et al. 2010) and swimming speed (Wood et al. 2007) These properties

provide strong potential for density-dependent collision rates, where per capita collision

rates (no. per sperm, per egg, per second) decrease as egg concentrations increase.

Empirically demonstrating the presence of interaction parameters that vary with den-

sity presents a serious challenge for many biological processes, including disease trans-

mission (McCallum et al. 2001) and predator-prey interactions (Cosner et al. 1999) in

part because directly observing the interactions remains difficult. Instead interaction

rates are estimated from the product of interactions integrated over space and time (i.e.

total number of people infected, prey consumed or fertilized zygotes produced), yet this

product often results from a complicated, unknown and highly variable series of pro-

cesses. Because of its mathematical simplicity density-independence in interaction rates

is commonly assumed. Whether or not this assumption is valid can have significant

theoretical and practical consequences

Despite arguments in favor of the random sperm-egg collision model (also described

as “mass action”; Millar and Anderson 2003, Styan 1998, Vogel et al. 1982), sperm and

eggs from free-spawning species have the potential to exhibit per capita collision rates
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that vary with egg concentration. For example, sperm that are attracted to eggs may

move towards eggs when flow dynamics allow such autonomous behavior (Riffell and

Zimmer 2007, Zimmer and Riffell 2011). To illustrate how this behavior leads to density

dependent per capita rates of interaction, consider the following two circumstances: A)

eggs are abundant and densely concentrated or B) eggs are rare and sparsely concen-

trated. Sperm concentrations are initially identical between the two. Sperm that are

attracted to eggs will aggregate in higher density around individual eggs in case (B)

than case (A). This greater density leads to higher overall interaction rates per sperm,

per egg in (A) than (B). Thus, as egg concentrations vary from dense to sparse, the

per capita collision rate increases and is likely to saturate at some maximum (restricted

perhaps by limitations to attraction and motility). This is sensible given that chemoat-

tractants can increase the “target size” of eggs (Jantzen et al. 2001), which is directly

related to the collision rate. In contrast, purely random interactions (assumed by most

models) yield identical per capita interaction rates between cases (A) and (B). Other

mechanisms beyond attraction may yield similar density-dependent collision functional

responses, such as crowding (where increasing concentrations of eggs can inhibit search

patterns of sperm, for example).

If autonomous movement such as attraction is responsible for density-dependent per

capita collision rates, then patterns in nature are likely to only exhibit such dynamics

contextually. Specifically, water velocity and shear stress can alter the effectiveness

of attractive behavior because the capacity form sperm autonomous motion of sperm
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diminishes (Riffell and Zimmer 2007, Zimmer and Riffell 2011). In this case, laboratory

systems are unlikely to relate well to nature and direct comparisons across taxa from lab

experiments may not be possible. Bias may result from using or comparing conditional

subsets of highly variable parameter space. Thus, from both a theoretical and practical

standpoint it is important to understand whether the extend to which fertilization is

governed by density-dependent interaction rates.

In this study I evaluate whether egg concentrations impact fertilization maxima,

and explicitly test for random versus density-dependent sperm-egg collision rates. To

achieve these goals I developed a new dynamic model, expanding upon existing fertiliza-

tion dynamics models and then conducted an extensive laboratory fertilization experi-

ment using purple sea urchin (Strongylocentrotus purpuratus) eggs and sperm. Finally

I paramerterized and compared the performance of models that included random or

density-dependent collision parameters by utilizing several different basic model forms

and my empirical observations of fertilization and polyspermy.

Methods

In order to evaluate whether the trade off in sperm concentration is affected by

egg concentrations I conducted multiple trials of a laboratory experiment that vary

concentrations of eggs and sperm. I used two analytic approaches to test hypothe-

ses. First I used a classical statistical approach by estimating generalized linear mixed

effects models and tested for effects of sperm and egg concentrations on fertilization
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and polyspermy. This method is valuable for empirically determining the effects of

interaction rates on fertilization and polyspermy. Second I generated a set of new dy-

namic model and within this new model and within existing models compare constant

vs density-dependent sperm-egg collision rates using a Bayesian hierarchical framework.

This method is useful for comparing hypothetical dynamic processes rather than just

emergent properties of the system.

Expanded dynamic and modified fertilization models

Existing models

Existing fertilization kinetics models, and interpretations thereof, assume purely ran-

dom interactions between sperm and eggs. This means the instantaneous per capita rate

of sperm-egg interactions (number of interactions per sperm, per egg) are independent

of sperm and egg concentrations. Specifically, the model of Vogel et al. (1982) and

extensions to include effects of polyspermy by Styan (1998) and Millar and Anderson

(2003) are based upon a system of equations that describe the loss of viable sperm (S)

and the reduction in unfertilized eggs (EU) over time. These models assume: (1) sperm

(S) attack a fixed population of eggs (fertilized or unfertilized, ET ) at a constant, per

capita rate β, (2) a fixed proportion of sperm attacks result in fertilization (φ), and (3)
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a sperm collision with an egg (successful or unsuccessful) renders that sperm inert. Such

dynamics are given by eqns (3.1a) & (3.1b):

dS

dt
= −βS(t)ET (3.1a)

dEU
dt

= −φβS(t)EU (3.1b)

This system of differential equations has solution given by eqns. (3.2a) & (3.2b):

S(t) = S0 exp (−tβET ) (3.2a)

EU(t) = E0 exp

(
−φ S0

ET
(1− exp (−tβET ))

)
(3.2b)

Styan (1998) and subsequently Millar and Anderson (2003) used this solution to gener-

ate an equation for the number of eggs that are fertilized and viable (EM , monospermic

zygotes); hereafter their models are referred to as the Styan and MA models (see Ap-

pendix C for the explicit model forms). These models explicitly describe the hypothetical

process by which eggs mount defensive polyspermy block following the first successful

sperm to penetrate the jelly layer. They consider the block to be a step function in

that some time period after the first invader eggs are no longer penetrable, but are fully

susceptible in the interim to a second fertilizer.

87



There are two drawbacks to using these methods as a null model against which to

test for density-dependent interactions. First, there is no explicit term for sperm degra-

dation over time. Instead Vogel et al. (1982) suggest substituting a sperm “half-life”

(τ) for the duration of sperm-egg ”contact time” t if the t > τ . This assumes that the

asymptotic dynamics are equivalent to a step function where there is no degradation

until contact time reaches τ , and thereafter τ 100% of the sperm are not viable. A

dynamic process of sperm viability decay is preferable to this method. Moreover, the

Vogel et al. (1982) method of estimating τ is biased towards higher values as sperm

concentrations increase (see Appendix C). Second, the models are also not generaliz-

able to other applications because the dynamical system does not explicitly incorporate

additional compartments; additional compartments which in this case include a) fertil-

ized eggs vulnerable to polyspermy, b) polyspermic eggs, and c) monospermic zygotes

invulnerable to a second sperm.

New dynamic model

In addition to using the Styan and MA models, I also generated an expanded model

based upon a fully compartmentalized system of differential equations and I subsequently

introduced non-random interactions to each of the three model forms. In the case of the

new dynamic model, sperm (S) decay (per capita) at a natural rate r after release and,

like eq. (3.1a), sperm collide with eggs (ET ) at a constant rate β (density-depdendent

interactions are accounted for later). The overall loss rate of sperm is given by eq. (3.3a):
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dS

dt
= −βS(t)ET (t)− rS(t) (3.3a)

Unfertilized eggs (EU) are fertilized at a rate given by eq. (3.3b):

dEU

dt
= −φβS(t)EU(t) (3.3b)

but newly fertilized eggs (EV ) are still vulnerable to a second fertilizer. If these eggs

induce a polyspermy block at rate θ and are fertilized by a second sperm at the same

rate as unfertilized eggs, then the rate of change of vulnerable eggs is given by eq. (3.3c):

dEV

dt
= φβS(t)EU(t)− θEV (t)− φβS(t)EV (t) (3.3c)

Clearly this is a simplistic representation of polyspermy block dynamics, but I use this

representation for simplicity. Eggs that successfully induce a polyspermy block without

being fertilized by a second sperm (EM) accumulate at the rate given by eq. (3.3d):

dEM

dt
= θEV (t) (3.3d)

while eggs that become fertilized by a second sperm (EP ) accumulate at the rate given

by eq. (3.3e):

dEP

dt
= φβS(t)EV (t) (3.3e)
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The value of such a system of equations is that the equations can be expanded to

a system of partial differential equations (for time and space), to include advection of

sperm and eggs, to incorporate any sperm degradation function, or to include intro-

duction of fresh sperm and eggs as additional individuals spawn in space and time.

The system above can easily be applied to laboratory settings for testing of hypotheses

concerning fertilization dynamics.

Application to closed laboratory environments

If the system is closed (i.e. no advection) and fresh, virgin sperm and eggs are

introduced all at once to the system at time t = 0, then the system which includes

equations (3.3a), (3.3b), and (3.3c) can be integrated analytically with respect to t (and

does not depend on equations (3.3d) or (3.3e)). In this case, ET (t) becomes the constant

ET (initial number of eggs), all eggs at time t ≈ 0 are unfertilized (i.e. EU(t = 0) = ET
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and let S(t = 0) = S0. The solutions in such a circumstance are given by eq. (3.4a)-

(3.4c):

S(t) = S0 exp (t (−β0ET − r)) (3.4a)

EU(t) = ET exp

(
− β0S0φ

β0ET + r
− β0S0φe

−t(β0ET+r)

−β0ET − r

)
(3.4b)

EV (t) =
βETS0φ

(
et(βET−θ+r) − 1

)
exp

(
t(βET − θ + r) + βS0φe

t(−(βET+r))

−βET−r
+ βS0φ

βET+r
+ θt

)
(βET − θ + r)

(3.4c)

The number of eggs successfully fertilized by a single sperm that are invulnerable to a

second sperm (the integral of eq. (3.3d)) cannot be generated analytically. However,

because eq. (3.3d) is solely a function of θ and EV (t), its solution can be expressed as

given by eq. (3.4d):

EM(t) = θ

∫ t

0

EV (t)dt (3.4d)

where EV (t) is given by eq. (3.4c). This is now a single differential equation and the

integral can quickly and accurately be approximated numerically using simple numer-

ical integration methods (see Parameter estimation for the dynamic model and other

fertilization models).
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Addition of density-dependent sperm-egg interactions to kinetics models

Incorporation of non-random sperm-egg interactions, specifically attraction, can be

incorporated into models of fertilization in a variety of ways (including the above systems

as well as the model of Styan (1998) or Millar and Anderson (2003)). The simplest man-

ner of incorporating such dynamics is by allowing therate at which sperm attack eggs (β)

to vary with egg concentration. The justification for such an approach is the fact that the

chomoattractant act to increase the “target siz” of eggs. I incorporate varying collision

rates by simply allowing unique collision rates (βi) for each egg concentration treatment

(ET i) which is valuable given there is no known functional relationship that drives non-

random sperm egg interactions. One could easily employ a Type II functional response

(Cosner et al. 1999, Holling 1959) on the per-capita collision parameter, but without

experimentation there is no way to evaluate what shape is biologically appropriate.

Laboratory experiments

I conducted eight laboratory trials of an experiment the purple sea urchin Strongy-

locentrotus purpuratus between February 23 and March 8, 2014 during their spawning

season. Each trial included a factorially crossed gradient of four egg concentrations with

six sperm concentrations, using gametes from one male and one female. The experiment

took place in a climate-controlled room at 13 C, and each experimental unit consisted

of a 20 ml vial with 10 ml seawater. For each trial I first added 8 ml seawater to the

24 experimental vials, followed by 1ml appropriate egg solution and finally providing
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each vial with 1ml freshly diluted sperm solution. Vials were gently agitated and left for

120 minutes to allow fertilization and first cleavage to occur. Following the 120 minute

incubation period,vials were agitated and emptied into shallow petri dishes for exam-

ination under an inverted compound microscope where 100 random, undamaged eggs

were scored for fertilization, cleavage and polyspermy. Fertilization criteria included

the presence of a raised vitelline membrane or cell division; cleavage criteria included

only cells that divided normally (radial division) at least once; positive recognition of

polyspermy required tetrahedral or further abnormal division of the cell.

Urchins were collected with the help of the Santa Barbara Coastal Long Term Eco-

logical Research (SBC LTER) program at a depth of approximately 7 m below mean

low water at the Mohawk Reef near Santa Barbara, California in late February, 2014.

I maintained urchins in flow through seawater tables until needed (generally 3-5 days).

To obtain eggs, females were induced to spawn by injecting 1 ml 0.55M KCl adjacent to

the Aristotle’s lantern, gently agitated, and placed upright into a small container with

seawater. Once a female began profusely extruding eggs, 1 ml of concentrated egg ma-

terial was extracted in 200 µl batches directly from the gonopores and placed into 50 ml

seawater. This solution was then diluted and added to each vial such that vials had final

concentrations of approximately 1, 0.25, 0.0625, or 0.0124 eggs µl−1. To obtain sperm, I

injected males with KCl in the same manner as females but extracted 100 µl “dry” sperm

directly from the gonopore without submerging the animal. Sperm were immediately

diluted 100x in seawater, directly followed by six serial 10x dilutions. Sperm solutions
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were then added in 1ml aliquots to the vials prepared with eggs (final concentrations

≈ 10−3, 10−4, 10−5, 10−6, 10−7 & 10−8 µl−1). Actual sperm concentrations in vials varied

slightly because of small variability in sperm counts (see Figure 3.1 for range).

To estimate sperm concentrations used in each trial, I preserved the 10−3 µl−1 sperm

solution with 2% buffered formalin and conducted five replicate sperm cell counts on a

hemocytometer. I estimated egg concentrations for each trial by counting the number of

eggs in five replicate 100 µl subsamples (agitated and homogeneous) using an inverted

microscope.

Classic statistical analysis

I first analyzed data using generalized linear mixed effects models (GLMMs) with

a binomial likelihood to evaluate whether egg concentrations influence rates of fertil-

ization and polyspermy. I conducted separate analyses on the proportion of eggs that

were fertilized and the proportion of eggs with polyspermy. In each model, trial (an

individual-male female combination) was treated a random effect. Covariates for fertil-

ization included a third order polynomial of the log of sperm concentration, log of egg

concentration and their interaction as the full model. For polyspermy I used the log of

sperm concentration and log of egg concentration as the full model. I tested hypotheses

of individual effects of eggs and sperm on fertilization using likelihood ratio tests. I

estimated GLMMs using the R library lme4 (Bates et al. 2014). These statistical mod-
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els were employed to evaluate whether fertilization rates responded to sperm and egg

concentrations.

Parameter estimation for the dynamic model and other fertilization mod-

els

In contrast to the statistical models described above, I employed the mechanistic

models to test whether collision rates exhibit random or density dependent behavior. I

estimated all models within a Bayesian hierarchical framework via the no-U-turn sampler

variant of Hamiltonian Monte Carlo (HMC) (Hoffman and Gelman 2014) in Stan (Stan

Development Team 2014a,b) using R (R Core Team 2014). The hierarchical framework

is essential to account for potential among-pair variability in dynamics while also esti-

mating overall means for those parameters. For all model formulations (the dynamic

model, and the Styan and MA models), I included hierarchical effects for sperm colli-

sion rates (β) and egg selectivity (φ) to account for potential variability in rates among

pairs. I assume no among-pair variability in other parameters. I assumed the response

variable (fraction of 100 assessed eggs that were fertilized and viable = fraction fertilized

- fraction with polyspermy) conformed to a binomial likelihood for all models.

For each model form (the Styan and MA models and the dynamic model) all param-

eters were given uniform priors over the boundaries of their realistic range. A constant

sperm half-life was used for the Styan and MA models (though results are qualitatively

insensitive to whether a constant value or a sperm concentration-dependent equation
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provided by Levitan (1993) is used (see Appendix C for estimation of the sperm de-

cay rate for the dynamic model, as well as for estimation and justification for using a

constant sperm ”half-life” for the Styan and MA models).

All parameters are described, along with their priors, in Table 3.1. For each parent

model form I estimated models that consider the sperm collision rate (β) fixed (random

collision model) or a function of each mean egg concentration. Sampling included 3200

total iterations from four chains, each of which included a 200 iteration burn in period.

Because (3.4d) does not have an explicit form, each iteration in the MCMC chain of the

dynamic model included generating the numerical solutions (expected fertilization given

the parameter values) using Gauss-Legendre quadrature rules for each observation given

parameter values.

I compared models using WAIC (widely applicable information criterion, Watanabe

2010), a Bayesian analog to the Akaike Information Criterion (AIC) with full theoretical

support (Watanabe 2010).

Results

There was a clear trade-off between maximizing total fertilization and minimizing

polyspermy in terms of both egg and sperm concentration. Egg concentration nega-

tively affected the rate of fertilization, requiring more sperm to achieve similar fertil-

ization rates with higher egg concentrations (Figure 3.1A, Table 3.2). The densest egg

concentrations (1 µl−1) required an order of magnitude more sperm than sparsest egg
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concentrations ( 1
64
µl−1) to achieve the same fertilization rate (Figure 3.1A) with interme-

diate egg concentrations showing intermediate sperm requirements. In contrast rates of

polyspermy decreased with egg concentration, where low concentrations of eggs resulted

in much higher rates of polyspermy (Figure 3.1B, Table 3.2). Sparse egg concentrations

increased rates of polyspermy by 25% at the highest sperm concentrations compared to

the most concentrated egg samples.

Fertilization models

In all model forms, there was strong support for density-dependent interaction rates

(Table 3.3). When allowed to vary, collision rates declined substantially as egg concen-

tration increased. Compared to the lowest egg concentration ( 1
64

eggs µl−1), the sperm

collision rate declined by an estimated 45%, 108% and 138% at 1
16

, 1
4
, and 1 eggs µl−1

(Figure 3.2), respectively in the dynamic model (given as a proportion of the collision

rate at 1
64

eggs µl−1 in Table 3.4). None of the 95% credible sets for the decreases in

collision rates overlap except those at 1 and 1
4

eggs µl−1. A similar decrease in collision

rate was found for all three model forms. Predictions from the density-dependent col-

lision model forms were consistent with the results of the experiment, reproducing the

observed separation in fertilization curves between egg treatments (Figure 3.3)

In terms of model expectations, the largest difference between the random and

density-dependent forms was between rates of polyspermy. The random collision mod-

els, where collision rates are constant, exhibit no separation among egg treatments at
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high sperm concentration. In contrast, inclusion of collision rates that varied by egg

concentration were consistent with the results of the experiment and had strong support

over the null models (Table 3.3, Figure 3.4 C,D) for all three model forms. In other

words, the effects of egg concentrations on polyspermy cannot be explained with the

basic model outlined in eqns. (3.3a)-(3.3e) or the models of Styan (1998) or Millar and

Anderson (2003).

The variability in total fertilization among egg concentrations (Figure 3.1A) can only

partially be explained by the null model, while the density-dependent models explain

the patterns well (Figure 3.4 A,B). This is because when sperm are rare, egg concentra-

tions can affect fertilization by two independent processes The reduction in fertilization

rates in the null model due to egg concentrations is solely a result of exploitative com-

petition for sperm (i.e. more eggs use up more sperm, leaving fewer sperm attacks per

individual egg). In contrast, both interference and exploitative competition explain the

phenomenon in the density-dependent model. In this case, more eggs exist to attract

sperm reducing the effective concentration around each egg (interference) and more eggs

use up more sperm.

The observed pattern in Figure3.1A can plausibly be explained by exploitation of

sperm by eggs alone, while the observed divergence in Figure 3.1B requires density-

dependent collision rates in addition to depletion of sperm by eggs to yield the combined

curve shown in Figure 3.3. The best supported models and the data illustrate that
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increasing egg concentrations effectively shift the fertilization curve, thereby shifting the

region of optimal sperm concentrations, previously expected to be static.

In all models there was considerable uncertainty in the parameter estimate for egg

selectivity (φ, Table 3.4). This means that parameter estimates are averaged over the

realistic range for this parameter. While the uncertainty in parameter estimates is

substantial, this uncertainty does not undermine the support of the more complex models

over the null given that WAIC directly accounts for parameter uncertainty. Thus, despite

the lack of information about φ, there is sufficient information to support the density-

dependent model over the null.

Results are robust to the sperm “half-life” that is used in the Styan (1998) or Millar

and Anderson (2003) models. This occurs because using a longer or shorter half-life

simply results in an inversely proportional change in the baseline collision rate because

in all cases for these two models the two are multiplied together. Thus, while exact esti-

mates of the collision rates differ, the WAIC, as well as estimates of all other parameters

do not change.

In all cases, the Styan and MA models had far less support than the new dynamic

model (Table 3.3).

Discussion

A rich body of evolutionary and ecological work is based upon the dynamics of

sperm limitation in fertilization across a host of taxa (Bode and Marshall 2007, Levitan
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1993, 1998, 2010, Parker and Lehtonen 2014, Podolsky and Strathmann 1996, Yund

2000). Yet current models of external fertilization assume random collision rates between

sperm and eggs; moreover most work ignores the impact of egg concentrations (but see

Levitan et al. 1991). If per-capita sperm-egg collisions are instead dependent upon

egg concentrations this complicates the basic dynamics governing fertilization success

and may provide additional targets of selective pressure. Here I show that 1) controlled

laboratory experiments produced observations consistent with density-dependent sperm-

egg collision rates, and 2) models that explicitly include such dynamics are required to

capture the observed behavior at high sperm concentrations. These findings illustrate

that changes in egg concentrations can cause considerable shifts in the range of sperm

concentrations required for maximizing rates of fertilization.

The observed shifts in fertilization due to egg concentration are not trivial given

the importance of successful fertilization in maximizing lifetime fitness, especially for

external fertilizers. Evidence for such fitness effects include both selective pressure on

gamete traits related to fertilization and plasticity in those traits. For example frequency

of alleles associated with egg selectivity may have changed in association with average

population density in the red urchin Strongylocentrotus franciscanus (Levitan 2012).

Moreover, gamete traits appear to be directly controlled by both males and females

depending upon the density of spawning adults in the tunicate Styela plicata (Crean

and Marshall 2008).
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In this study, the effect of egg concentration on fertilization presents a potential ad-

ditional source of selective pressure. Releasing too many eggs under conditions of low

sperm concentrations can further reduce the already probability of fertilization. In con-

trast releasing fewer eggs at high sperm concentrations heightens the risk of polyspermy

by increasing the rate of sperm attacks per egg. The density-dependent sperm-egg inter-

actions may provide another behavioral source of selection in terms of egg release rate

if these interactions also exist in nature. Under this model, females locally exposed to

high concentrations of sperm during a spawning event may benefit from releasing many

eggs rapidly to minimize polyspermy. In contrast, females surrounded by low sperm con-

centrations may benefit from releasing fewer eggs over longer durations or over multiple

spawning events to maximize fertilization probability. Yet how predictions play out in

nature remains speculative because the mechanism behind the density-dependence are

at present unknown.

Accumulation of sperm near eggs is a likely mechanism for the observed density-

dependent interactions. This can arise directly from attraction. In their original work

Vogel et al. (1982) discounted the possibility of attraction of sperm by eggs. Others,

however, have subsequenty demonstrated to occurrence of sperm chemotaxis in broad-

cast spawners (Kaupp 2012, Riffell et al. 2004). To my knowledge there are not any

studies that provide an explicit demonstration of attraction via directional chemotaxis

in S. purpuratus in the laboratory. Yet observations of sperm aggregating around indi-

vidual eggs in S. purpuratus date back more than a century (Elder 1912) and a primary
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commercial chemoattractant (speract) derived from S. purpuratus eggs (Hansbrough and

Garbers 1981) is capable of altering the behavior and swimming speed of S. purpuratus

sperm (Wood et al. 2007). Moreover, directional chemoattraction is not needed to yield

accumulation of sperm around eggs (Jaiswal et al. 1999). In addition to attraction,

other mechanisms may explain the density-dependent collision rates. For example, egg

crowding effects that interfere with sperm search patterns may also explain the pattern

consistent with density-dependent interactions. Regardless of the mechanism that leads

to density-dependent collision rates, my results illustrate that the assumptions of ran-

dom collisions and minimal impact of egg concentrations on fertilization are, in this case,

invalid.

Models include simplifying assumptions for tractable purposes, yet inferences gleamed

from simplistic models parameterized with laboratory data remain constrained by the

unique context of the study. Historical use of simple fertilization kinetics models includes

comparison of parameters across taxa, across experimental treatments and extrapolation

of parameters to the field. In such cases, experimental analysis should carefully examine

sensitivity of results to relaxation of those assumptions. In controlled laboratory studies,

water motion is generally minimal and sperm and eggs are introduced simultaneously.

In nature, spawning events can occur in a dynamic fluid environment where sperm and

eggs meet in turbulent circumstances. Flow and shear stress can inhibit the ability of

sperm to directionally seek eggs and alter fertilization rates (Riffell and Zimmer 2007,

Zimmer and Riffell 2011) and turbulence may overwhelm such mechanisms (Denny and
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Shibata 1989). Thus, if accumulation of sperm around eggs is the process that results

in density-dependent collision rates, then such density-dependence will likely be relaxed

if sperm behavior is altered by physical conditions. Moreover, sperm often exhibit cir-

cular or patterned search behavior (Farley 2002) that can induce complex vortexes and

the hydrodynamic conditions controlling such behavior likely differ in the ocean. Such

differences include the dispersal of chemoattractive gradients, shear stress that impedes

swimming speed and direction, or heterogeneity in sperm concentrations where wisps

of sperm rather than broad clouds mix with pockets of eggs in suspension. In ad-

dition to the challenges in extrapolating from the laboratory to the field, comparisons

across taxa, even among congeners can be dangerous. For example fertilization dynamics

inStrongylocentrotus franciscanus, the congener of S. purpuratus, showed no sensitivity

to egg concentration in the laboratory (Levitan et al. 1991) in stark contrast to results

shown here. Despite these concerns, my findings clearly indicate that egg concentrations

can, in some taxa, play an important role in controlling fertilization rates.

The capacity for egg concentrations to alter fertilization dynamics may empower fe-

males with an additional behavioral control over fertilization. Varying in egg release

rates may provide a buffering effect against both under-fertilization (because of too few

sperm) and polyspermy (too many sperm). Fewer eggs released when sperm are sparse

increases collision rates and decreases the number of sperm depleted, thereby increas-

ing fertilization probabilities. More eggs released when sperm are abundant decreases

collision rates and buffers against polyspermy. As a result fertilization rates and thus
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reproductive efficiency may be controlled not only by the timing of egg release (Levitan

2005) but by varying the rate of egg release as well. As sperm concentrations increase,

the effect of eggs on one another transitions from passive competition for sperm to

cooperation.
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Tables

Table 3.1: Description of parameter values and state-variables in the system of differ-
ential equations described by eqns. (3.3a)-(3.3e).

Parameter Description
β sperm collision rate
φ egg selectivity
θ per capita polyspermy block rate
r viable sperm decay rate
S0 initial sperm concentration
ET total number of eggs in the system

State Variable Description
EU unfertilized eggs in the system
EV fertilized eggs vulnerable to polyspermy
EM monozygotic eggs invulnerable to polyspermy
EP eggs fertilized by multiple sperm (polyspermy)
S viable sperm in the system
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Table 3.2: Parameter estimates, confidence intervals and likelihood ratio tests for generalized linear mixed effects models
represented in Figure 3.1-3.3. Biological model results are shown in Table 3.4. All models include a random effect of
trial pair (i.e. intercepts vary by individual male-female pairs), the standard deviations among pairs is listed as σpair.
Predictor variables (sperm and egg concentration) were log-transformed in the analyses.

Response Parameter Estimate 95% CI χ2 df P-value

log(Eggs) -0.56 -0.56 : -0.61 501.74 1 < 0.0001
Total log(Sperm) [ 1 polynomial ] 48.2 46.3 : 51.3 14850 3 < 0.0001

Fertilization [ 2 polynomial ] 0.40 -1.29 : 2.44
(Fig 1A) [ 3 polynomial ] -4.33 -5.59 : -2.57

intercept 0.40 0.01 : 0.85
σpair:intercept 0.55 0.25 : 0.79

log(Eggs) -0.72 -0.84 : -0.58 124.45 1 < 0.0001
Polyspermy log(Sperm) 1.55 1.42 : 1.67 1455.5 1 < 0.0001

(Fig 1B) intercept -7.56 -6.99 : 8.11
σpair:intercept 0.52 0.22 : 0.76
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Table 3.3: WAIC of individual models within each base model and assumption thereof. The model with the lowest
WAIC is favored.

Base Model Interaction form WAIC pWAIC ∆WAIC
dynamic model (eqns 3.4c-3.4d) density-dependent 2346.7 164.0 0.00

Styan (1998) density-dependent 2368.5 162.6 21.8
Millar &Anderson (2004) density-dependent 2377.2 162.7 30.5

dynamic model (eqns 3.4c-3.4d) random 2494.0 183.2 147.3
Styan (1998) random 2549.0 163.1 202.4

Millar &Anderson (2004) random 2564.2 167.6 217.5
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Table 3.4: Table of parameters, description, estimated posterior mean, 95% credible set
from the MCMC posterior, and the range provided in the uniform prior for the dynamic
model with unique collision rates (the model with the lowest WAIC)

Param. Description Mean 95% Cred. Set Uniform Prior
β 1

64
mean collision rate ( 1

64
) 1.43 ×10−3 (0.18 - 2.46) ×10−3 0.00− 0.10

β 1
16
/β 1

64
collision rate ratio 0.70 0.62 - 0.78 0.00− 2.00

β 1
4
/β 1

64
collision rate ratio 0.49 0.42 - 0.56 0.00− 2.00

β1/β 1
64

collision rate ratio 0.42 0.36 - 0.50 0.00− 2.00

φ mean egg selectively 0.089 0.005 - 0.148 0.000− 0.150
θ polypsermy block rate 0.91 0.81 - 1.01 0.20− 20.00
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Figure 3.1: Percent total egg fertilization (A) and percent polyspermy (B) in exper-
imental treatments. Broken lines represent GLMM model fixed effects (see Table 2);
deviation from the fixed effect consists of both error within and among individual pairs.
Egg dilution represents the mean concentration (µl−1) of eggs. Colors indicate different
egg concentrations, with blue representing lower concentrations.
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Figure 3.2: Estimated % change in collision rate (β) at each mean egg concentration
(egg concentration among pairs varied slightly) from the collision rate at 1/64 eggs µl−1.
Each unique collision rate is estimated as the collision rate at 1/64 eggs µl−1 times the
value shown. Egg dilution represents the mean concentration (µl−1).
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in experimental treatments. Lines represent the hierarcichal mean from the dynamic
model with density-dependent sperm-egg interactions (different collision rates by egg
dilution). Egg dilution represents the mean concentration (µl−1). Models with purely
random sperm-egg interactions do not capture the separation by egg dilution in rates of
polyspermy at high sperm concentrations. Colors indicate different egg concentrations,
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Figure 3.4: Model predictions under density-dependent collision rates (A & C) or
random collision rates (B & D) for %total fertilization (A & B) and polyspermy (C & D).
Lines represent the hierarcichal mean from the dynamic model. Panels A & C represent
the same predictions as Figure 3.3 parsed into total fertilization and polyspermy. Colors
indicate different egg concentrations, with blue representing lower concentrations.
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Appendix C: “half-life” and decay rates

The sperm “half-life” is described by Vogel et al. (1982) as the time after which

total fertilization capacity of sperm in solution is reduced to 50% of the capacity at

release. However, the degradation of sperm does not linearly scale with the fertilization

capacity of that population of sperm. Let the definition of Vogel et al. (1982) be called

“fertilization half-life” and the half-life of sperm be called “sperm half-life”. It can

easily be shown that a sperm half-life can be independent of sperm concentration but

fertilization half-life is not, as observed by Levitan (1993) and Levitan et al. (1991). The

exact bias of the Vogel et al. (1982) method will differ depending upon the sperm loss

function. Consider a constant decay rate as in eq. (3.3a). In this case percent fertilization

at a given time is 1 − EU(t)/EU(t = 0), where EU(t) is provided by eq. (3.4b). The

sperm half life is given by log(0.5)/r. If we use parameter estimates from the model

estimated here (with constant egg concentrations) the sperm-half life is constant but

the fertilization half-life is biased and increases with sperm concentration
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Thus using the definition of Vogel et al. (1982) will naturally produce biased estimates

if the decay function is independent of sperm concentration. To produce unbiased esti-

mates, one must 1) estimate the empirical relationship between sperm concentrations and

fertilization rates for virgin sperm at age ≈ 0. 2) conduct a factorial age-concentration

experiment, 3) use only sperm concentrations that produce less than 100% fertilization

at age ≈ 0 , 4) for each result calculate the number of sperm required to achieve such

fertilization 5) estimate the loss of sperm at each age within each concentration and 6)

estimate the age at which 50% of initial sperm concentrations are lost.

A better solution is to directly estimate the decay rate and use a model that explicitly

includes decay rate, such as eqns. (3.3a)-(3.3e).

Experimental estimation of “half-life” τ and decay rate r

In order to estimate the sperm decay rate (r) and half-life, I conducted an experiment

identical to that described above, but used only one egg concentration (assuming egg

concentration does not affect the intrinsic decay rate), adding sperm to vials containing

eggs at t ∈ 0, 600, 1200, 2700, 3600 and 7200 seconds after initial sperm release and dilu-

tion for each of four sperm dilutions (10−4, 10−5, 10−6, & 10−7 µl−1). I excluded sperm

concentration treatments that started with 100% fertilization for age 0 sperm. For each

I used the fertilization fraction and the empirical fertilization-sperm concentration rela-

tionship (see figure 3.1) to calculate the expected initial sperm concentration. From these

curves I then calculated both the expected decay rate and the ”half-life”. In addition
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to a constant decay rate, I also estimated other decay functions including: Gompertz,

logistic, log-logistic and decay rates that vary by sperm concentration. Each function

was estimated using nonlinear least squares and compared using AICc (corrected Akaike

Information Criterion).

Table C.1: Table of model comparison of nonlinear decay functions. Lower AICc values
are favored and the model within 2 AICc units of the minimum is preferred.

Model AICc df ∆ AICc AICc weight
constant decay 29.9 2 0.1 0.36

decay (varies by sperm concertration) 32.2 4 2.4 0.11
log-logistic 29.8 3 0.0 0.38
Gompertz 31.7 3 1.9 0.15

logistic 41.2 2 11.5 0.01

There is no support from these data for a decay rate that varies by sperm concen-

tration. However, these data are not explicitly designed to test for such differences and

thus may lack power for such inference.

From the constant decay function the decay rate is estimated to be r = 2.7 × 10−4

per second (±0.34× 10−4), from which the ”half-life” is estimated to be 2310.5 seconds.
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Chapter 4

Climatic regulation of planktonic
recruitment in purple sea urchins
(Strongylocentrotus purpuratus) in
California
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Abstract

Purple sea urchins Strongylocentrotus purpuratus serve as a model system to evaluate

how oceanographic conditions interact with food supply for adults and larvae to influ-

ence patterns of planktonic settlement in benthic marine invertebrates. Using spatially

replicated, 23-year time series of sea urchin settlement I show that multi-year fluctua-

tions in the strength of settlement exhibit a strong, negative relationship with both sea

surface temperature and the El Niño Southern Oscillation on the monthly and annual

scale, but do not appear related to food supply for larvae, food supply for adults, or local

offshore transport. Such correlations are consistent in southern California throughout

the time series. Several potential mechanisms could explain these patterns, including

temperature limitation to adult spawning or changes in ocean transport. Importantly,

interannual patterns of regional settlement were correlated with subsequent densities of

juvenile sea urchins, indicating that the mechanisms affecting the magnitude of larval

settlement play a pivotal role in regional population dynamics.
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Introduction

Settlement of larvae in species of benthic marine invertebrates often varies dramat-

ically in time. Such variability has the potential to exert strong control on adult pop-

ulation dynamics (Shanks and Roegner 2007) and ecological communities (Gaines and

Roughgarden 1985). Yet the underlying factors that drive variability in settlement re-

main poorly understood for many species, especially those with planktonic larvae. Major

bottlenecks to settlement of larvae at a destination include 1) production and fertiliza-

tion of gametes, 2) delivery of larvae from source to destination, 3) growth, development,

and survival of larvae during transport, and 4) successful metamorphosis and settlement.

Each of these includes potential for control by various exogenous environmental factors,

many of which are interrelated in space and time. Understanding how patterns of set-

tlement are related to global and local scale environmental dynamics can help identify

testable hypotheses regarding what drives major temporal trends in settlement of larvae.

For decades research has focused on the role of adult stocks in driving recruitment

patterns in space and time (Shepherd and Cushing 1980). Yet for many species the

relationship between adults and recruitment is weak, perhaps because environmental

filtering can mask any such relationships. These filtering effects can occur via impacts on

reproduction or survival and delivery of larvae. In purple sea urchins Strongylocentrotus

purpuratus for example, size-specific female fecundity can vary by orders of magnitude

between urchins living in food rich vs. food poor habitats (see Appendix D), and their
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food supply (primarily kelp) varies substantially from year to year in response to climate

(Cavanaugh et al. 2011). Thus, production of larvae may be controlled not only by the

number of adults but also their individual reproductive capacity. Moreover, settlement

at a destination is also impacted by current patterns that can vary dramatically in time

(Mitarai et al. 2009, Siegel et al. 2008).

Variability in ocean circulation is thought to drive temporal patterns in larval supply

(Ebert and Russell 1988, Gaines and Roughgarden 1985, Parrish et al. 1981, Roughgar-

den et al. 1988). Strong wind-driven upwelling periods have been hypothesized to force

larvae offshore to upwelling fronts, reducing their probability of settling on suitable

habitat (Connolly et al. 2001, Roughgarden et al. 1991, Shkedy and Roughgarden 1997,

Wing et al. 2003). However, behavioral responses, such as position in the water col-

umn, appear to be able to partially buffer against this effect (Morgan and Fisher 2010,

Morgan et al. 2009a,b, Poulin et al. 2002, Shanks and Brink 2005). In addition to the

simplistic offshore/onshore delivery dichotomy, complex processes of ocean circulation

vary dynamically from year to year and season to season (Mitarai et al. 2009) causing

significant variation in larval source/sink dynamics.

While upwelling is hypothesized to negatively affect the shoreward transport of lar-

vae, it also generally corresponds to changes in primary productivity and sea surface

temperature. For obligate planktotrophic larvae, the abundance of phytoplankton can

affect growth, development and survival in planktotrophic larvae (Beddingfield and Mc-

Clintock 1998, Bertram and Strathmann 1998, Byrne et al. 2009, Hoegh-Guldberg and
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Pearse 1995, Meidel et al. 1999, Meyer et al. 2007, Miller and Emlet 1999, Miner 2007,

Strathmann 1987, Väıtilingon et al. 2001). Direct effects of temperature can also play

a role in larval survival by influencing metabolic rates, growth, development or survival

(Azad et al. 2012, Byrne et al. 2008, Chen and Chen 1992, Hoegh-Guldberg and Pearse

1995, Ling et al. 2008, McEdward 1985, Padilla-Gamiño et al. 2013, Väıtilingon et al.

2001). For example, temperature tolerance of larvae is the hypothesized mechanism for

poleward range expansion and rear edge contraction for two disparate species in of sea

urchins in Tasmania (Ling et al. 2008).

Finally, these hypothetical drivers of larval settlement are all potentially affected by

global oceanographic dynamics, such as El Niño or decadal scale regime fluctuations

as indicated by the Pacific Decadal Oscillation (Mantua and Hare 2002). Multiannual

fluctuations in global ocean conditions can have complex and cascading impacts on

local sea surface temperature, primary productivity, current patterns, and many other

biological and physical processes that may affect larvae individually or interactively.

I investigated how temporal settlement patterns of the purple urchin S. purpuratus

in different regions along the California coast are related to 1) global indices of ocean

conditions and 2) local environmental metrics that include temperature, upwelling, food

supply for larvae, food supply for adults, and adult density. To do this I used a 23-year

dataset of settlement at seven different sites in three major regions spanning California.

I conducted analyses on both the annual scale and the monthly scale using a combina-

tion of linear mixed effects models, generalized additive mixed effects models, quantile
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regression and partial wavelet coherence analysis. I used settlement data at four sites

in conjunction with benthic monitoring data to investigate whether regional patterns in

settlement translate to subsequent recruitment of juvenile urchins.

Methods

Study system

Populations of S. purpuratus occupy shallow subtidal and intertidal rocky substrata

from roughly 23◦N on the western coast of the Baja Peninsula to southern Alaska.

S. purpuratus are broadcast spawners and the seasonality of spawning in California is

generally thought to be driven by photoperiod (Cochran and Engelmann 1975, Gonor

1973, Pearse et al. 1986). Fertilized zygotes develop into planktonic echinoplutei and

are obligate planktivores that consume phytoplankton. After spending anywhere from

several weeks to 86 days in the plankton (Strathmann 1978), individuals begin final

metamorphosis and sink to the benthos. Along the geographic range, there is clear

evidence for annual variation in settlement of these newly metamorphosed larvae among

many sites (Ebert 2010, Ebert et al. 1994).
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Collection of newly settled urchins along the coast of California, USA

(1991-2013)

Settlement of newly metamorphosed urchins was sampled at three major regions

along the California coast from 1991 through 2013. Sampling regions (from south to

north) included San Diego County ( 32.7◦N, two sites [Scripps Pier and Ocean Beach]),

the Santa Barbara Channel ( 34◦N, four sites [Anacapa Island, Scripps Pier, Ellwood

Pier and Gaviota Pier]) and Fort Bragg ( 39◦N, one site) (Figure 4.1). San Diego County

and the Santa Barbara Channel lie within the Southern California Bight and Fort Bragg

is in northern California. At each site, urchins were collected using nylon-bristled scrub

brushes (2.5 cm long bristles and a 6 x 9 cm wooden base) suspended 1 to 2 m from the

benthos. The majority of deployments included eight replicate brushes collected weekly

from 1991 to 2003, and biweekly thereafter through 2013. Upon collection brushes were

transported to the laboratory in zip-loc plastic bags and rinsed through a 350 µm mesh

sieve. S. purpuratus individuals were then sorted from other organisms, counted and

preserved. Counts of newly settled purple sea urchins were converted to average number

of settlers per brush, per day for each month during the 23-year study period.

Global covariate time series data

I used two major global indices of oceanographic climate. These include
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• The multivariate El Niño Southern Oscillation Index (MEI) provides a

metric of the intensity of El Niño/La Niña fluctuations and is derived from several

metrics of sea surface temperature, surface winds, sea level pressure, and cloudiness

of the sky (Wolter and Timlin 1993, 1998).

• The Pacific Decadal Oscillation (PDO) is the 1st principle component of sea

surface temperature variability in the north Pacific (Mantua and Hare 2002).

Regional/local covariates

• Bakun Index (monthly, 1991-2013)

The Bakun index provides an index of coastal upwelling and specifically de-

scribes the volume of water that is transported offshore from Ekman transport

(Bakun 1973, available from http://www.pfel.noaa.gov/). Negative values in-

dicate downwelling and surface waters that moved onshore, while positive values

indicate upwelling and surface waters moving offshore. This index has been used

in relation to delivery of larvae onshore and advection from shore in addition to

its value as a metric of coastal productivity. For the Southern California Bight

sites, I used data from the 33◦N-119◦W lat-long site, while in Northern California

I used data from the 39◦N-125◦W lat-long site.

• Sea surface chlorophyll (monthly, 1997-2013)
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Satellite imagery of sea surface chlorophyll provides a spatially and temporally

well-resolved metric of ocean primary productivity that in situ sampling cannot

provide. Thus, as a metric of planktonic food availability around each site I used

merged OCTS, SeaWIFs and MODIS time series (Kahru et al. 2012) and used

the biweekly time series available from http://spg.ucsd.edu/Satellite_Data/

California_Current/.

Because sea surface chlorophyll concentration data are spatial grids of time

series, I included averaged cells meeting particular geographic conditions for each

site. For mainland sites, all cells had to lay within 5 km offshore of the mainland

coastline that stretched 150 km in coastline length from the urchin settlement col-

lection point or within 5 km of any island coastline of any island within a 150

km radius. For the site at Anacapa Island, I included any point within a 150

km radius and within 5 km of any coastline. I used 150 km because that is the

Lagrangian estimate for dispersal distances for species with a 30-day planktonic

larval duration (PLD). However, this is potentially an overestimate for a 30-day

PLD as behavior and complex current patterns may reduce this distance substan-

tially (Shanks 2009). Figure 4.1 depicts the chlorophyll boundary used for Fort

Bragg, Stearns Wharf and Scripps Pier.

• Sea surface temperature (monthly, 1991-2013)

I used sea surface temperature data derived from Pathfinder AVHRR (advanced

very high resolution radiometer) that were optimally interpolated on 1 day and
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0.25◦latitude/longitude resolution (Reynolds et al. 2007, available from http://

www.ncdc.noaa.gov/thredds/oisst-catalog.html);. To produce monthly scale

time series, I ran data through a 30-day moving average filter with a rectangular,

backwards looking window in order to capture general temporal trends in the data.

SST data are also a spatial grid of time series. The data are already interpo-

lated and exist at lower resolution than chlorophyll data. Thus, I used the same

boundary conditions, modified to points within 10 km of those coastline ranges.

Figure 4.1 illustrates mean spatial trend in winter sea surface temperature for the

entire study region.

• Fall kelp canopy coverage (Santa Barbara Channel and San Diego County

only, 1991-2010)

The regional biomass of giant kelp Macrocystis pyrifera can fluctuate dramati-

cally from year to year (Cavanaugh et al. 2011). Giant kelp is a major constituent

of S. purpuratus diets in southern California. Given that fecundity in S. purpura-

tus can vary by orders of magnitude as a result of food supply, these fluctuations

in M. pyrifera may in part influence urchin reproduction. Thus, the aerial extent

of M. pyrifera was derived from LANDSAT 5 Thematic Mapper satellite imagery

(Cavanaugh et al. 2014). Data were aggregated over the Santa Barbara Chan-

nel including both islands and mainland (from Point Conception to Santa Monica

Bay) or San Diego region (from the US-Mexico border to Los Angeles County).

I used the 3-month running mean during the period leading into the spawning
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season because marked declines in reproductive capacity require several months of

consistently low food supply (see Appendix D).

• Mean adult urchin density in the Channel Islands (Santa Barbara Chan-

nel only)

As an index of regional adult densities in the Santa Barbara Channel, I used the

weighed average of survey data from The Channel Islands Kelp Forest Monitoring

Program (Kushner et al. 2013). Specifically I used S. purpuratus density data

from 33 sites across the Channel Islands from 1991 through 2011. Because the

data include size frequency information, I calculated the density of adults in each

location by multiplying total S. purpuratus density by the fraction of urchins that

were above 2.5 cm in test diameter (the approximate cutoff size for reproduction;

Kenner and Lares 1991). For each year I used the weighted average among islands.

General model averaging framework

I used a model averaging approach in multiple regression models to evaluate the sta-

tistical significance of covariate relationships with urchin settlement. Model averaging

weights parameter estimates and standard errors by applying information-theory across

all candidate models rather than having to select a single best model, which can increase

the chances of identifying spurious relationships (Burnham and Anderson 2002, Lukacs

et al. 2010). Thus, for all multiple regression type models I used the following model av-

eraging approach: 1) estimate models with every possible combination of environmental
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covariates available using maximum likelihood; 2) for each model calculate the corrected

Akaike Information Criterion (AICc) and the AICc weight for that model; and 3) use

the full set of AICc weights to calculate model average coefficients, standard errors and

statistical significance (see Lukacs et al. (2010) and Burnham and Anderson (2002) for

details).

Dealing with covariates that only partially overlap in time

Because time series of covariates are not all equal in temporal and spatial cover-

age, analyses were repeated for each subset of overlapping covariates and examined for

agreement in space and time. For example, there are two windows for analysis on the

monthly scale: analyses with all covariates including sea surface chlorophyll (1997-2013)

and analyses excluding sea surface chlorophyll (1991-2013).

Models incorporating only global indices of ocean conditions

To evaluate how settlement patterns were related to global indices of ocean climate

I estimated linear mixed effects models of settlement and included the mean winter

(December through April) MEI and the mean winter (December through April) PDO

index as covariates in the model, allowing the relationships to vary between the Santa

Barbara Channel and San Diego County. I used means from December through April

because most settlement occurs in the winter and spring. Data limitations at Fort Bragg

preclude its use in multiple regression and so I only present simple correlations for this
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site. To evaluate statistical support and statistical significance of individual covariates

in the models, I used the model averaging approach outlined above. I included site as

a random effect and to account for potential problems associated with serial correlation

within each site, I included first order autoregressive models [AR(1)] on the regression

errors (for each analysis AR(1) models adequately addressed serial correlation in the

full models and thus were included in all regression models). I estimated mixed-effects

models using the R package nlme (Pinheiro et al. 2011).

Because correlations may arise from a few major anomalies or consistent paired fluc-

tuations in time, I examined the coherence between settlement and significant variables

using wavelet coherence analysis (Cazelles et al. 2008, Ng and Chan 2012). Wavelet

coherence analysis calculates the coherence at different frequency domains (i.e., do time

series fluctuate together at the monthly, annual, inter-annual or decadal scales). This

method is also useful for evaluating whether correlations are persistent over time be-

cause unlike standard spectral analysis, wavelet coherence analysis allows relationships

to vary through time. Because monthly scale data included here are also highly seasonal,

I directly accounted for seasonality as an explicit covariate in the analysis.

Models incorporating regional/local covariates

Settlement for purple sea urchins generally begins in December, and thus the set-

tlement year was considered December through September for all locations. I analyzed

monthly data in a multiple regression framework using generalized additive mixed effects
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models (GAMM, Wood 2011) for sites in the Southern California Bight. Data from

Fort Bragg were too sparse for multiple regression. GAMM models are useful for 1)

incorporating potential nonlinear relationships between the response and the covariates

and 2) directly accounting for inherent seasonality in the system. For environmental

covariates I imposed cubic regression splines with a maximum of 3 degrees of freedom

(i.e., the shape can range from linear, hump shaped, curvilinear or S-shaped, but cannot

extend beyond these). For the seasonal trend, I imposed cyclic cubic regression splines

(which forces the trend at the beginning of December to match the value at the end

of November) with a maximum of 6 degrees of freedom (allowing for a maximum of 2

modes). Model averaging of GAMM regressions provides a challenge because different

models potentially include different smoother shapes for each covariate. Thus I report

only the sign of the general relationship if there was strong support from cumulative

AICc weights and relationship was consistently the same sign and significantly different

than zero (e.g., a relationship was reported as negative if the models included either a

curvilinear trend or a linear trend that was statistically significant, negative and collec-

tively supported with AICc weights).

I used unique lags for each time series in the monthly analysis because echinoplutei

spend substantial time in the plankton, and each variable may influence settlement at

different lags. I examined cross correlations from 0 to 60 day lags and for each time

series chose the lag with the maximum significant correlation coefficient. For final lags

I used 60 days for offshore transport, 30 days for sea surface temperature and 15 days
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for sea surface chlorophyll. Despite these choices, results are robust to choice of lags

because of the moving average window.

As before I considered site a random effect and accounted for within site serial au-

tocorrelation using an AR(1) model on the residuals. The errors also tended to increase

with the mean and varied by site so I allowed the site-specific error variance to increase

exponentially with the predicted response.

I supplemented the GAMM models with quantile regression because long-term pat-

terns in settlement may be driven by the upper quantiles rather than the mean settle-

ment. I only included covariates in the quantile regressions that were significant in the

GAMM models in order to describe how the upper and lower range of settlement relates

to those variables. I allowed for similar nonlinear trends by imposing a b-spline with 3

degrees of freedom (see above) to the selected covariates and 6 degrees of freedom to the

seasonal trend. I estimated quantile regressions using the R package quantreg (Koenker

2013).

Finally, as in the global analysis, I conducted partial wavelet coherence analysis

between settlement at Gaviota Pier and the individual significant monthly covariates in

that region while controlling for seasonal trends in settlement.

Impact of settlement patterns on juvenile recruitment

I evaluated whether interannual variability in settlement patterns translate generally

to variability in subsequent juvenile densities on reefs. I aggregated the annual mean
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density of new juvenile recruits in benthic quadrats across the Channel Islands and

compared it to the annual mean settlement patterns (from brushes) in the Santa Barbara

Channel using Gamma regression.

Results

Monthly settlement patterns varied by orders of magnitude among years and among

sites, though sites in southern California (including both the Santa Barbara Channel

and San Diego County) generally showed some synchrony in interannual fluctuations

(Figure 4.2). The seasonal pattern in southern California sites was pronounced, generally

increasing from December, peaking around April or May and tapering off during summer

months (Figure 4.3). Settlement in the Santa Barbara Channel generally exceeded that

in San Diego County and at Fort Bragg (for periods when data were available).

Models incorporating only global indices of ocean conditions

Annual settlement data from sites in the Southern California Bight were negatively

correlated with the multivariate El Niño Southern Oscillation index (MEI) while data

from Fort Bragg were positively correlated with MEI (Figure 4.4). When including

only global scale indices of ocean condition on the annual scale, mixed-effects model

results for the Southern California Bight included a significant, negative relationship

between settlement and the El Niño Southern Oscillation as measured by the MEI

(Table 4.1) after accounting for serial correlation and random site level effects. There
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MEI relationships with settlement did not differ significantly between San Diego County

and the Santa Barbara Channel in this analysis. There was no significant relationship

with the Pacific Decadal Oscillation (Table 4.1). Partial wavelet coherence analysis of

monthly data at the Gaviota Pier in the Santa Barbara Channel indicates that settlement

and the MEI time series exhibit coherence throughout the time series. The time series

were coherent at the 36-60 month (3-5 year) period and after 2007 coherence shifted to

the 18-24 month (1.5-2 year) period (Figure 4.5a). In contrast to southern California,

settlement at Fort Bragg was positively correlated with MEI (r = 0.65, t10 = 2.69, P

= 0.023, Figure 4.4) [insufficient data for multiple regression]) but not with the PDO

(r = 0.49, t10 = 1.76, P = 0.11). There were insufficient continuous monthly data at

Fort Bragg to conduct partial wavelet coherence analysis.

Models incorporating only regional/local covariates

Settlement data in the Santa Barbara Channel and San Diego County showed a sig-

nificant, negative correlation with temperature (Figure 4.6). While data at Fort Bragg

were limited, settlement exhibited a positive correlation with temperature (Figure 4.6).

Annual scale models using data only from sites in the Santa Barbara Channel (the

only region where adult density estimates were available) included a significant nega-

tive relationship with mean winter sea surface temperature and a significant positive

relationship with adult density from the previous summer (Table 4.2). Mean winter sea

surface chlorophyll concentrations (Dec-April), and mean winter offshore and onshore
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transport (Dec-April) (Table 4.2). Fall kelp canopy coverage actually showed a signifi-

cant negative relationship (Table 4.2) which contradicts my hypothesis concerning kelp

availability amplifying settlement. When I included data from both the Santa Barbara

Channel and San Diego County in the models (but excluded adult density), there was

also a significant negative winter sea surface temperature relationship with no significant

difference in slopes between the Santa Barbara Channel and San Diego County (Table

4.3). These results for southern California were robust to the different time domains

that incorporated covariates with different time spans (Table 4.3). Urchin settlement

at Fort Bragg, where water was generally colder than in the Southern California Bight,

exhibited a positive correlation with sea surface temperature (r = 0.69, t10 = 3.02, P =

0.01), but not with net offshore transport (r= -0.35, t10 =1.2, P = 0 .26) or chlorophyll

concentrations (r = 0.49, t10 = 1.76, P = 0.11).

Monthly settlement data in the Southern California Bight also showed significant,

negative correlations with temperature. The GAMM models for these regions include

consistent, negative sea surface temperature relationships after accounting for season-

ality, random site effects, serial autocorrelation and heteroscedasticity in error variance

(Table 4.4). There was not strong support for different relationships between the Santa

Barbara Channel and San Diego County sites. As with the annual analyses, monthly sea

surface chlorophyll and mean monthly offshore transport indices did not factor signifi-

cantly into the GAMM models. These models include unimodal mean seasonal patterns

of settlement in the Southern California Bight that were similar among the 6 Southern
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California Bight sites (increase in AICc of 2.9 when allowing seasonality to vary by site

versus using a constant seasonality among sites, Figure 4.3). These results are consis-

tent regardless of the time domain used (i.e., when excluding sea surface chlorophyll

that restricts analysis to 1997 and later).

Quantile regressions also showed significant negative sea surface temperature rela-

tionships in the Santa Barbara Channel (at and above the 0.20 quantile to the 0.80

quantile, the upper quantile examined) and San Diego County (above the 0.45 quantile

to the 0.80 quantile). The SST relationship versus the 0.2 and 0.8 quantiles are shown

as dashed lines in Figure 4.6. These results indicate the lower limit of settlement was

similar among even the warmest (El Niño years) and coldest periods (La Niña years)

but the median and upper limits, as well as the mean (as indicated by the GAMM

regressions) were much higher during those cold periods. Correlations result primarily

from out-of-phase coherent fluctuations that occur on multi-year time scales in the time

series. Partial wavelet coherence analysis of data from the Gaviota Pier show there was

significant coherence between monthly settlement and sea surface temperature at the

36-60 month (3-5 year) period after accounting for seasonality that persists throughout

the time series (Figure 4.5b).

Relationship between settlement and subsequent juvenile densities

Mean settlement from the winter and spring across the Santa Barbara Channel sites

were positively correlated with the mean density of juvenile sea urchins averaged across
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the Channel Islands (χ2 = 5.15, df = 1, P = 0.003, deviance explained (D2) = 0.32,

adjusted D2 = 0.29). In years when settlement was extremely low, mean juvenile density

was less than 5 m−2, while in years of high settlement the mean density of juveniles was

consistently greater than 10 m−2 (Figure 4.7).

Discussion

Settlement patterns in S. purpuratus in the Southern California Bight showed nega-

tive correlations with sea surface temperature and El Niño Southern Oscillation . On the

annual scale, this correlation represents a more than an order of magnitude reduction

in recruitment from the coldest years (La Niña) to the warmest (El Niño). In contrast,

settlement at Fort Bragg in Northern California shows the opposite trend. Such tem-

poral changes have the potential to impact population dynamics given that settlement

patterns are correlated with subsequent juvenile urchin densities in the Santa Barbara

Channel.

Results from southern California are consistent with prior observations of sea urchin

recruitment. Between 1969 and the early 1980’s recruitment patterns of juvenile sea

urchins were anomalously low in years with persistently warm sea surface temperatures

(Ebert 1983, Tegner and Dayton 1991). Between 1969 and 1977, recruitment was lowest

during the three El Niño years of 1970, 1973, and 1977 at False Point, California near San

Diego (Ebert 1983). At nearby Point Loma, similar reductions in recruitment followed

the 1982-83 El Niño event (Tegner and Dayton 1991). These patterns are consistent
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with my results that show a persistent temperature/ENSO correlation with sea urchin

settlement in southern California.

In contrast, sea urchin settlement at Fort Bragg exhibited a positive correlation

with temperature and El Niño. Unfortunately the data are limited at Fort Bragg,

making it difficult to evaluate whether offshore transport on the monthly scale influences

settlement. The positive temperature correlation may be consistent with this hypothesis,

and off the coast of northern California and Oregon, strong, persistent upwelling periods

are thought to negatively impact settlement patterns (Connolly et al. 2001, Ebert and

Russell 1988, Gaines and Roughgarden 1985, Parrish et al. 1981, Roughgarden et al.

1988, Shkedy and Roughgarden 1997, Wing et al. 2003). However, measurements of

pelagic larvae have thus far not supported this hypothesis (Morgan and Fisher 2010,

Morgan et al. 2009a,b, Shanks and Shearman 2009)

Potential mechanisms underlying correlations with settlement and SST/ENSO

in southern California

The negative correlations between settlement and both ENSO and temperature in

southern California may persist for several reasons. Warm, El Niño type events are

also associated with different patterns of circulation in the Southern California Bight.

Thus, these observations may arise from direct effects of temperature (i.e., direct survival

impacts on larvae or impediments to reproduction) or patterns of circulation associated

with ENSO fluctuations.
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Along the California coast, interannual and seasonal variation in current patterns

may have altered delivery of larvae from adequate source populations to suitable desti-

nations (Mitarai et al. 2009, Shanks and Eckert 2005). For example, the strong El Niño

event of 1998 included a major shift from net equatorial flow in the California Current

to net poleward flow (Lynn and Bograd 2002). In this case, water masses that reached

San Diego and the Santa Barbara Channel may have increased connectivity to regions

near or beyond the southern boundary of S. purpuratus. Similarly, El Niño events may

have limited thermal stratification which can inhibit onshore delivery. Finally, unfortu-

nately we have no metric of pelagic larval supply and inference about total delivery and

connectivity is challenging without such data (Pineda 2000, Pineda et al. 2007).

Direct effects of temperature may also have played a role in producing the observed

trends. The exact temperature ranges that impact survival in nature for S. purpuratus

are unknown. Azad et al. (2012) showed that larvae of S. purpuratus survived optimally

in the laboratory between 11-14◦C, with stark changes in survival at 17◦C and Schroeder

and Battaglia (1985) showed abnormal larval development occurred above 16◦C. Tem-

perature may also impact zygote formation in S. purpuratus, and several observations

suggest that even healthy adults may not produce viable gametes above approximately

17◦C (Basch and Tegner 2007, Cochran and Engelmann 1975) despite observations of

urchins with large and healthy gonads when living above this value (Lester et al. 2007).

These thresholds lie above the typical range experienced in the Southern California

Bight by adults and larvae of S. purpuratus. However, if in certain years nearshore

145



water pushed larvae from the southern boundary on the Baja California Peninsula into

the Southern California Bight, then direct temperature effects may have played a role

in driving the observed patterns.

Lack of correlation with sea surface chlorophyll in Southern California

Surprisingly, settlement patterns show no direct correlation with sea surface chloro-

phyll. The lack of evidence for planktonic food limitation (or other potentially influential

exogenous dynamics for that matter) does not imply it was not important for larvae.

In general, capturing a relationship between food supply and nutrition of planktonic

provides a substantial challenge because of limitations on the spatial resolution of food

availability and the difficulty in determining exactly where larvae have fed. Partic-

ular geographic areas can retain productive water, producing a highly heterogeneous

environment (Vander Woude et al. 2006). Thus, incorporating information only where

larvae were likely to actually be present (i.e., along the paths from source to destination

for a given time period) may provide a valuable avenue for examining food limitation

hypotheses for planktonic larvae. However, in the Santa Barbara Channel chlorophyll

concentrations were not linearly correlated with recent El Niño/ La Niña events (Otero

and Siegel 2004) and thus are unlikely to explain the correlation with recent ENSO

cycles.
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Importance of regional adult density and larval production

Data from the Santa Barbara Channel revealed a positive correlation between density

of S. purpuratus adults in the Channel Islands in the prior summer and subsequent settle-

ment (Table 4.2). While the positive correlation is supported and statistically significant

after model averaging, interpreting the real meaning of this correlation presents a chal-

lenge. Specifically the question of whether adults increase recruitment or recruitment

increases adults is unanswered. There is a debate over the value of such stock-recruit

type correlations because of a chicken or egg dilemma where one can often mistake a

recruit-stock relationship for a stock-recruit relationship (Szuwalski et al. 2014). Thus,

observed adult-settlement correlations should be interpreted with caution.

There is no evidence my results that regional kelp coverage positively impacts set-

tlement patterns. However, there is no metric for total adult food supply. Tegner and

Dayton (1991) hypothesized that decreases in S. purpuratus recruitment during the

1983-1984 El Niño occurred because of decreased reproductive capacity inferred from

fisheries yields. Change in adult urchin food supply may still have impacted recruitment

and is worth future exploration in red urchins (S. franciscanus) where fisheries yields

might lend insight into changes in per capita reproductive capacity through time.
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Importance of settlement on juvenile recruitment

Regardless of what drives settlement patterns, settlement patterns are related to

subsequent recruitment of juvenile urchins (Figure 4.7). Specifically, the spatial means

among the Channel Islands show a strong correlation between settlement and subsequent

juvenile recruitment. Patterns of juvenile density at individual sites respond to local

stressors (i.e., predation or habitat limitation (Rowley 1989)). However when larval

settlement is driven by regional forces (as appears the case here) the average recruitment

of juveniles throughout the Channel Islands appears to have responded.

Conclusions

Here I demonstrate that settlement dynamics of S. purpuratus in Southern Califor-

nia are negatively correlated with sea surface temperature and El Niño fluctuations.

The patterns are consistent across sites in southern California, where settlement dy-

namics appear to fluctuate somewhat synchronously, indicating at least some of the

major variability may result from factors influencing ocean conditions throughout the

Southern California Bight. These negative correlations with El Niño and sea surface

temperatures appear to extend beyond the present time series (1991-2013) back to the

El Niño events in the 1970s and early 1980s. These unique time series provide a relatively

unprecedented illustration of climate related impacts on settlement dynamics that are

notoriously difficult to investigate. Given that patterns of settlement tend to translate

148



into recruitment of juveniles, mechanistic investigations focusing on what processes lead

to these observations can lend insight into how climate change may influence regional

population dynamics in this and other marine species.
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Tables

Table 4.1: Table of coefficients, adjusted P-values, and cumulative AICc weight for
the Multivariate El Niño Southern Oscillation Index (MEI), Pacific Decadal Oscillation
(PDO) and regional interactions in the linear mixed effects models of annual settlement
(December - September) at sites in the Santa Barbara Channel and San Diego. AICc
was calculated for every possible combination of covariates (8 total models) and model
averaged coefficient estimates and standard errors were calculated using AICc weights
for each estimate to account for model uncertainty in estimates, standard errors and
P-values. All models included an autoregressive model [AR(1)] on the errors to account
for the observed significant first order serial autocorrelation.

variable sign P-value ΣAICc weights

MEI (El Niño/La Niña) - <0.001 >0.999
PDO NS 0.855 0.280
Int[MEI : SB channel vs. SD] NS 0.164 0.796
Int[PDO : SB channel vs SD] NS 0.954 0.052
Site Only 0.000
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Table 4.2: Table of coefficient signs, adjusted P-values, and cumulative AICc weight for each variable in the linear
mixed effects models of annual settlement (December - September) at sites in the Santa Barbara Channel. AICc was
calculated for every possible combination of covariates (i.e.,64 models for data between 1997 and 2008) and model
averaged coefficient estimates and standard errors were calculated using AICc weights for each estimate to account for
model uncertainty in estimates, standard errors and P-values. The analyses are repeated in each overlapping time span
due to inconsistent coverage of covariates. All models included an autoregressive model [AR(1)] on the errors to account
for the observed significant first order serial autocorrelation.

(1997-2008) (1991-2008) (1997-2012)

variable sign P-value Σ weights sign P-value Σ weights sign P-value Σ weights

SST - <0.001 >0.999 - <0.001 >0.999 - <0.001 >0.999
adult density + <0.001 0.994 + <0.001 0.999 + <0.001 0.997
kelp coverage - 0.001 0.990 - <0.001 0.998
upwelling + 0.876 0.057 - 0.898 0.137 - 0.455 0.481
downwelling + 0.999 0.051 + 0.910 0.134 + 0.569 0.358
chlorophyll - 0.247 0.663 - 0.816 0.200
site only 0.000 0.000 0.000

[64 combinations: N= 28] [32 combinations: N= 41] [32 combinations: N= 48]

(1991-2012) (1991-2013)

variable sign P-value Σ weights sign P-value Σ weights

SST - <0.001 >0.999 - <0.001 >0.999
adult density
kelp coverage
upwelling - 0.396 0.556 - 0.396 0.556
downwelling - 0.959 0.232 - 0.959 0.232
chlorophyll
site only 0.000 0.000

[16 combinations: N= 68] [8 combinations: N= 72]
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Table 4.3: Table of coefficient signs, adjusted P-values, and cumulative AICc weight
for each variable in the linear mixed effects models of annual settlement (December
- September) at sites in the Southern California Bight (including the Santa Barbara
Channel and San Diego area sites). AICc was calculated for every possible combination
of covariates and nested interactions (i.e.,113 models for data between 1997 and 2008)
and model averaged coefficient estimates and standard errors were weighted by AICc
weights for each estimate to account for model uncertainty in P-values. The analyses are
repeated in each overlapping time span due to inconsistent coverage of covariates. All
models included: (1) an autoregressive model [AR(1)] model on the errors to account for
the observed significant first order serial autocorrelation, and (2) separate error variance
by site to account for heteroscedasticity.

(1997-2008) (1991-2098)

variable sign P-value Σ weights sign P-value Σ weights

SST - <0.001 >0.999 - <0.001 >0.999
kelp coverage - 0.640 0.289 - 0.708 0.301
chlorophyll - 0.770 0.189
upwelling - 0.900 0.244 - 0.323 0.761
downwelling + 0.927 0.152 + 0.786 0.268
Int[SST: SB vs SD] + 0.919 0.018 + 0.882 0.070
Int[kelp coverage SB vs SD] + 0.872 0.029 + 0.789 0.083
Int[chlorophyll: SB vs SD] + 0.979 0.001
Int[upwelling:SB vs SD] - 0.833 0.080 - 0.636 0.331
Int[downwelling: SB vs SD] - 0.993 0.000 - 0.825 0.060
site only 0.000 0.000

[113 combinations: N= 49] [43 combinations: N= 72]

(1997-2013) (1991-2013)

variable sign P-value Σ weights sign P-value Σ weights

SST - <0.001 >0.999 - <0.001 >0.999
kelp coverage
chlorophyll - 0.001 0.991
upwelling - 0.474 0.556 - 0.603 0.671
downwelling + 0.643 0.334 + 0.628 0.369
Int[SST: SB vs SD] + 0.714 0.151 + 0.681 0.206
Int[kelp coverage SB vs SD]
Int[chlorophyll: SB vs SD] + 0.890 0.062
Int[upwelling:SB vs SD] + 0.884 0.258 - 0.590 0.423
Int[downwelling: SB vs SD] - 0.963 0.017 - 0.933 0.036
site only 0.000 0.000

[43 combinations: N= 96] [17 combinations: N= 137]
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Table 4.4: Cumulative support for individual covariates from generalized additive model multiple regression in the
Southern California Bight (Santa Barbara Channel and San Diego County). Sign represents the general direction of the
smoother, and is only shown when significant under model uncertainty. Cumulative AICc weight represents cumulative
AICc support from all possible covariate combinations. All models included (1) an autoregressive model [AR(1)] on
the errors to account for the observed significant first order serial autocorrelation and (2) error variance that increased
exponentially with the predicted response.

(1996-2013) (1991-2013)

variable smoother sign ΣAICc weights smoother sign ΣAICc weights

SST - >0.999 - >0.999
offshore transport NS 0.953 NS 0.127
chlorophyll NS 0.200
site & seasonal trend only 0.000 0.000

[8 combinations: N= 845] [4 combinations: N= 1197]
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Figure 4.1: Map of collection sites in California superimposed on mean winter sea
surface temperature (Dec 21-Mar 21) in each1/4 ◦Lat/Long cell from AVHRR satellite
imagery. From North to South, sites are Fort Bragg, GP = Gaviota Pier, EP = Ellwood
Pier, SW = Stearns Wharf, AI = Anacapa Island (on the North shore), SIO= Scripps
Pier at Scripps Institute of Oceanography and OB = Ocean Beach Pier. The grey
areas along the coastline represent the spatial buffers from which sea surface chlorophyll
concentration data are included for around Fort Bragg, Stearns Wharf or Scripps Pier
(see Methods for details).
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Figure 4.2: Monthly mean settlement density at each collection site, grouped by region.
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Figure 4.3: Monthly settlement by month at each site. Lines represent the GAMM
smoother of the average seasonal trend with dotted lines indicating upper and lower 95%
confidence intervals.
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Figure 4.4: Annual mean settlement at each collection location versus the mean Mul-
tivariate El Niño Southern Oscillation Index (MEI) from January through April. Lines
represent the predictions from the linear mixed effects model. The LME includes an
AR(1) model of the errors with each site.
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Figure 4.5: Partial wavelet coherence between fluctuations in settlement and tem-
perature time series generated for the Gaviota Pier. The seasonal settlement cycle is
accounted for directly in the analysis. Coherence between the time series is significant
and persistent at the 3-5 year period (significant coherence denoted by black contour
lines), indicating coherent fluctuations occur on the multi-year scale. Arrows indicate
the phase relationship; those pointing to the left indicate time series are out of phase
(i.e.,negatively correlated) while arrows pointing downward indicate MEI or SST leads
settlement.
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Figure 4.6: Monthly scale: Monthly mean settlement versus spatially averaged sea
surface temperature (SST). Solid lines represent the GAMM prediction of the mean
while dashed lines represent the 20th and 80th quantile from quantile regressions. Both
the model forms directly account for the seasonal trend (Figure 4.3). Predictions shown
are for the month of March. Annual scale: Annual mean settlement at each collection
location versus the mean SST composite from December through April. Lines represent
the predictions from the linear mixed effects model with regional interactions.
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Figure 4.7: Mean summer juvenile urchin density (<2 cm test diameter) across the
Channel Islands versus mean density of settlers in the preceding winter season (December
through April) in the Santa Barbara Channel (mean of settlement at Gaviota Pier,
Stearns Wharf, Ellwood Pier and Anacapa Pier) from 1992 through 2011.
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Appendix D

Experimental comparison of reproductive capacity of

barren versus kelp forest urchins

I conducted three studies to evaluate the impacts of urchin barrens and malnourish-

ment on reproductive capacity in the purple urchin Strongylocentrotus purpuratus. First

I collected urchins from one barren and one nearby healthy kelp forest through time to

illustrate the persistence of reproductive depression in barrens in comparison to the sea-

sonal changes in reproductive mass in kelp forests. Second, I estimated total fecundity

in female urchins from several urchin barrens and several kelp forests by inducing them

to spawn. Finally, I conducted an experiment in which I fed urchins from barrens and

starved urchins from healthy kelp forests to ascertain the approximate length of time

required for kelp forest urchins to resemble barren urchins (in terms of gonad index) and

visa versa.
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Methods

Time series of gonad index in a healthy kelp forest and an urchin barren

I monitored urchin gonad mass from one barren (Carpinteria reef) and one kelp forest

site (Mohawk reef) with the help of the Santa Barbara Coastal Long Term Ecological

Research (SBC LTER) program approximately every two months from mid-2011 to early

2014. I collected ≈ 20 urchins from each site, measured test diameter and test height,

and measured dry mass of one intact gonad. I dried gonads in a drying oven at 60

for three to five days (until the mass leveled off at a constant value) and weighed each

to the nearest 0.01 gram. I used dry mass because replicate wet mass measurements

were highly variable (and likely overestimates) due to associated seawater content and

blotting techniques during the reproductive period tended to remove copious amounts of

gamete material. I only removed one gonad because of the challenge in acquiring more

than a single gonad before the tissue oozed substantial gamete material. I multiplied

the dry mass of the single intact gonad by 5 (the number of gonads per individual) to

estimate the total dry gonad mass of that individual. I calculated the gonad index as the

total dry mass divided by adjusted test volume (the volume minus the baseline volume
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associated with size at first reproduction which [diameter = 2.5 cm, volume ≈ 32.7 cm3).

Urchin test volume was calculated via the formula for a spheroid:

test volume =
4π

3
r2h (D.1)

where r is the maximum longitudinal test diameter and h is the test height (anus to

peristomal opening)

Female fecundity in healthy kelp forests and urchin barrens

To evaluate size specific fecundity of urchins in barrens vs. urchins in kelp forests, I

collected urchins and induced them to release their eggs. I collected urchins from a range

of sizes at 7 locations: 4 kelp forest and 3 barrens near those kelp forests in January of

2012. The three urchin barrens had nearby kelp forests available for sampling, but were

still hundreds of meters away (i.e. distinct but adjacent sets of reefs). Once colliected,

urchins were held in flow through seawater tables for 24 hours and monitored for egg

release. Any female that extruded eggs prior to artificial spawning (either in transit or

in the lab) was not a candidate for sampling.

Fecundity was estimated by inducing egg extrusion until urchins released no more

eggs. Induction of egg extrusion was accomplished via serial injection of 1 ml 0.55 M

KCl into the body cavity. Once a pulse of egg release ceased, I waited approximately

20 minutes and injected another 1 ml of KCl. I repeated this process until injection

yielded no further egg extrusion from live urchins. While extruding eggs, urchins were
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submerged in containers filled with seawater that were themselves partly submerged in

a flow through seawater table to maintain adequate temperature. I replaced seawater

periodically by carefully decanting the container (eggs are visible and negatively buoyant

and thus remain on the container bottom if undisturbed). Once all egg release had ceased

and injections of KCl into live urchins no longer induced further egg extrusion, I removed

each urchin and immediately dissected it for gonad sampling. I then carefully decanted

water from the container and poured the concentrated egg solution into a graduated

cylinder and diluted to 100 ml. I homogenized the solution was homogenized and

removed a 1ml subsample and placed it into a 1.75 ml microcentrifuge tube with 0.5 ml

of 2% formaline to preserve the sample for quantitative microscopy.

I compared egg extrusion of females by size in urchin barrens vs in kelp forests using

a two step process. First I fit a logistic regression to estimate probability of releasing

eggs in urchins from barrens (100% of urchins from kelp forests released eggs) and if this

probability varied by test volume. Second I used mixed effects models to estimate the

effect of reef state (kelp forests vs barren) while controlling for urchin size (test volume).

I allowed the intercepts to vary by site, and checked to make sure that the x-intercept in

the fecundity-test volume relationship roughly agreed with the minimum reproductive

size (see above).
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Impact of starvation or re-nourishment on urchin gonads

In order to evaluate the time required for a “healthy” kelp forest urchin to become

similar in reproductive capacity to emaciated urchins from urchin barrens, I conducted

an experiment in which I starved healthy urchins for variable time periods leading up to

mid December and compared those to barren and kelp forest urchins that were fed for

the same period of time as well as urchins freshly collected from both barrens and kelp

forests. The experiment was stopped in mid-December because urchins tend to reach a

maximum gonad size at approximately this time.

Treatments included A) urchins from kelp forests that were starved for 24, 18, 12, or

6 weeks before mid December, B) urchins from kelp forests that were fed two uniformly

cut 10 cm diameter discs of Macrocystis twice per week for the same time periods as

A, and C) urchins from barrens that were fed the same rations and frequency as A.

The feeding rations were initially chosen according to the slowest consuming urchins.

Thus most urchins consumed their individual ration by the next feeding period but some

urchins were still consuming the previous ration at this point.

Urchins for each period were collected from the field, and test height and width

measurements were taken, and only 8 urchins ranging from approximately 4.5 to 5.5

cm in test diameter were used for each treatment in each period. Once urchins were

measured, I placed each within an individual 1 liter ventilated cell within a flow through

seawater table. Cells were porous such that only very small (<2 cm) particles were

capable of escaping the container and would sink if they escaped. To ensure that urchins
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were not consuming fecal matter, the floor of the cells were lined with plastic light diffuser

(“egg crate”) that effectively trapped and isolated all feces from urchin grazing. The

trapped feces was cleaned 1-2 times per week. Each cell had its own individual water

source piped in but shared a common sea table and set of drains with all urchins. Urchins

were monitored and if any urchin died within 1 week of being placed in the experiment,

it was replaced with reserve urchins collected form the same location at the same site

that kelp in an adjacent holding tank and had been provided the same rations. Any

urchin dying after 1 week was not replaced.

At the end of the experiment, all urchins were remeasured (height and diameter), and

one gonad extracted to measure dry mass and the gonad index defined above. In addition

to urchins for the experiment, 15 additional reference urchins from each location were

collected during each period (24, 18, 12, 6, and 0 weeks). These urchins were measured,

dissected and one gonad was weighed for dry mass.

Results

Time series of gonad index in a healthy kelp forest and an urchin barren

Gonad index at Mohawk kelp forest always exceeded those in the Carpinteria barren

(Figure D.1). Urchins from Carpinteria on average had 0.13 g total dry gonad mass while

urchins from Mohawk had on average 1.57 g total gonad mass. Urchins from Mohawk

showed clear seasonal patterns of reproductive allocation, with an obvious decline in
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gonad size in the spring. In contrast, urchins from Carpinteria barrens showed little

seasonal change in gonad index or gonad size.

Female fecundity in healthy kelp forests and urchin barrens

100% of individuals from kelp forest areas extruded eggs in contrast to only 33% of

urchins from barren grounds. The fraction of adults that extruded eggs in the Carpinteria

barrens did not appear to change in test volume (χ2 = 0.78, p = 0.38) . With respect

to total egg extrusion, on average urchins in barrens that extruded eggs produced 95.9%

(95% CI = 86.6-98.7%) fewer than those from kelp forest sites for a given size (i.e., a

95.9% reduction in the fecundity-size relationship) which was a significant decline in the

slope of the fecundity relationship (χ2 = 47.0, P <0.001). When combined with the

extrusion probability the cost of being in an urchin barren for an extended period of

time is close to a 99% reduction in expected fecundity (if urchins that did not extrude

eggs are considered to have fecundity of 0). Egg extrusion-size relationships and data

are displayed in Figure D.2. Urchins from kelp forests that were induced to extrude

eggs appeared to release the majority of their gametes. Inspection of the gonads showed

very few eggs remaining and the gonad index was on average reduced to that of the

pre-reproductive period (black dots, Figure D.1)
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Impact of starvation or re-nourishment on urchin gonads

On average, healthy urchins that were then starved for four months had gonad indices

indistinguishable from the mean gonad index of urchins in the Carpinteria barrens. In

contrast the healthy urchins that were fed modest rations maintained a gonad index

similar to individuals on their collection date (blue points versus grey points to which

they connect, Figure D.3), though it was lower than that of the urchins freshly collected

in December (last grey point versus blue points, Figure D.3).

Starved urchins that were fed modest rations required approximately several months

to achieve a gonad index similar to the kelp forest urchins in the experiment, while those

fed for two months showed only a small recovery in this time period.
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Figure D.1: Time series of gonad indices from barren and kelp forest urchins. The
solid black points represent the spawned out gonads from Carpinteria and Mohawk,
respectively, from the spawning experiment.
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Figure D.2: Relationship between test volume (with associated diameter displayed in
brackets) and estimated fecundity (in millions) for females from urchin barrens and kelp
forests in January 2012. The dotted line represents the mean estimated relationship
(fixed effects) for each reef state. The line in the barrens panel includes the estimated
33% probability of extruding eggs and is thus the product of this probability and the
estimated relationship when eggs are extruded. Symbols denote the four different reefs,
including Arroyo Quemado, Carpinteria, Isla Vista and Mohawk (note: Mohawk reef
had no barren areas at the time of collection). Note that the x-intercept for for Mohawk
is near 2.5 cm, the approximate minimum size for reproduction.
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Figure D.3: Urchin gonad indices under different experimental treatments (blue =
fed, red= starved) or from reference individuals dissected directly after collection. Lines
connected to the grey points indicates the length of time for which the urchins were
fed or starved (i.e. the grey point is the original reference on the day the urchins were
collected and treatments initiated. The blue or red points indicated the final value at
the end of the experiment when urchins were dissected.

183


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Fluctuations in food supply drive recruitment variation in a marine fish
	References
	Tables
	Figures
	Appendix A: link to electronic supplement

	Food supply and density dependence interact to drive annual survival in adult fish
	References
	Tables
	Figures
	Appendix B

	Density-dependent sperm-egg interactions alter dynamics of fertilization and polyspermy in external fertilizers
	References
	Tables
	Figures
	Appendix C

	Climatic regulation of planktonic recruitment in purple sea urchins (Strongylocentrotus purpuratus) in California
	References
	Tables
	Figures

	Appendix D

