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Abstract

Robotic Surveillance and Deployment Strategies

Rushabh Patel

Autonomous mobile systems are becoming more common place, and have the

opportunity to revolutionize many modern application areas. They include, but

are not limited to, tasks such as search and rescue operations, ad-hoc mobile

wireless networks and warehouse management; each application having its own

complexities and challenging problems that need addressing. In this thesis, we

explore and characterize two application areas in particular.

First, we explore the problem of autonomous stochastic surveillance. In par-

ticular, we study random walks on a finite graph that are described by a Markov

chain. We present strategies that minimize the first hitting time of the Markov

chain, and look at both the single agent and multi-agent cases. In the single agent

case, we provide a formulation and convex optimization scheme for the hitting

time on graphs with travel distances. In addition, we provide detailed simulation

results showing the effectiveness of our strategy versus other well-known Markov

chain design strategies. In the multi-agent case, we provide the first characteriza-

tion of the hitting time for multiple random walkers, which we denote the group

hitting time. We also provide a closed form solution for calculating the hitting
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time between specified nodes for both the single and multiple random walker cases.

Our results allow for the multiple random walks to be different and, moreover,

for the random walks to operate on different subgraphs. Finally, we use sequen-

tial quadratic programming to find the transition matrices that generate minimal

group hitting time.

Second, we consider the problem of optimal coverage with a group of mo-

bile agents. For a planar environment with an associated density function, this

problem is equivalent to dividing the environment into optimal subregions such

that each agent is responsible for the coverage of its own region. We study this

problem for the discrete time and space case and the continuous time and space

case. For the discrete time and space case, we present algorithms that provide

optimal coverage control in a non-convex environment when each robot has only

asynchronous and sporadic communication with a base station. We introduce the

notion of coverings, a generalization of partitions, to do this. For the continuous

time and space case, we present a continuous-time distributed policy which al-

lows a team of agents to achieve a convex area-constrained partition in a convex

workspace. This work is related to the classic Lloyd algorithm, and makes use

of generalized Voronoi diagrams. For both cases we provide detailed simulation

results and discuss practical implementation issues.
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Chapter 1

Introduction

You must construct additional pylons.

- StarCraft (1998)

The applications of multi-agent systems to accomplish complex tasks in a

complex environment are vast. Environmental monitoring [78], search and rescue

operations [58] and ad-hoc mobile wireless networks [38] are just a few areas where

multi-agent systems can have significant impacts. A common problem which

arises in many robotic network applications is that of dividing workload amongst

agents, so tasks can be accomplished quickly and efficiently. The way workload is

distributed amongst a multi-agent platform poses unique challenges for different

application areas. For example, in ocean surveillance the cost of travel is large,

so instead of each agent traveling around the entire region of interest, it is more

effective for each agent to survey small subsets of the larger region. Placement of

agents within such regions can also be of importance. In the case of surveillance or

warehouse management, it is desirable to be at the center of your region so tasks
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Chapter 1. Introduction

are more easily serviced. Simultaneous placement of agents and specification of

those agents’ regions is also of general interest, however, this can be complicated

as the two problems are often coupled. In this thesis we study two closely related

robotic applications; robotic surveillance and robotic partitioning and coverage

control.

Robotic surveillance The design of surveillance algorithms for quickest detec-

tion of intruders and anomalies appear frequently. Specific examples include the

monitoring of oil spills [20], the detection of forest fires [48], the tracking of border

changes [81], and the periodic patrolling of an environment [30, 68]. Other appli-

cations in single and multi-agent systems include minimizing emergency vehicle

response times [7] as well as servicing tasks in robotic warehouse management [86].

In areas of research outside of robotics, applications include, but are not limited

to, determining how quickly epidemics spread [85], how information propagates in

a social network [5] and how quickly information packets get transferred in a wire-

less node network [75]. In this paper we propose stochastic surveillance strategies

based on Markov chains. More specifically, we look at the analysis, generalization

and minimization of the hitting time of a random walk governed by a Markov

chain for both single and multiple random walkers. This problem is not only of

interest in the context of robotic surveillance, but is also of general mathematical

2



Chapter 1. Introduction

interest in the study of Markov chains and random walks; similar to the fastest

mixing Markov chain, the first hitting time is a metric by which to gauge the

performance of a random walk.

Coverage control In applications such as environmental monitoring or ware-

house logistics a team of robots is asked to perform tasks over a large space.

The distributed environment partitioning problem consists of designing control

and communication laws for individual robots such that the team divides a space

into regions in order to optimize the quality of service provided. Coverage control

additionally optimizes the positioning of robots inside of a region. Coverage con-

trol and territory partitioning have applications in many fields. In cyber-physical

systems, applications include automated environmental monitoring [33], fetching

and delivery [86], and other vehicle routing scenarios [35]. In this thesis we con-

sider two variations of the partitioning problem. In the first problem we provide a

method for partitioning a discretized environment using an asynchronous one-to-

base station communication law. In the second problem we look a the partitioning

of continuous environment in which each agent only has communication with its

neighbor. In both cases we consider different multi-center cost functions and de-

termine optimal partitions in relation to those cost functions.

3



Chapter 1. Introduction

1.1 Literature review

1.1.1 Robotic surveillance and the hitting time of a ran-

dom walk

In this paper we study strategies to surveil an environment, to provide a desired

coverage frequency, and to detect an intruder in minimum time. The surveillance

problem has appeared in the literature in various manifestations. The authors

of [80] look at minimizing time of detection of noisy anomalies via persistent

surveillance strategies, and in [55] wireless sensor networks are utilized for in-

truder detection in previously unknown environments. In [4], the authors explore

strategies for surveillance using a multi-agent ground vehicle system which must

maintain connectivity between agents. A non-cooperative game framework is uti-

lized in [19] to determine an optimal strategy for intruder detection, and in [69]

a similar framework is used to analyze intruder detection for ad-hoc mobile net-

works. In our setup we model the environment as a graph and design random walks

on this graph imposing restrictions on the stationary distribution of the walk. In

other works with a similar setup, Markov chain Monte Carlo methods [36, 79]

are used to design surveillance strategies. In [36] convexity results for symmetric

matrices are utilized to further optimize those strategies. Deterministic policies

have been used to minimize the visit frequencies in a graph [29, 80], however, a
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Chapter 1. Introduction

main result of [79] shows that deterministic policies are ill-suited when designing

strategies with arbitrary constraints on those visit frequencies. We take an al-

ternate approach and design policies using Markov chains with minimal hitting

time.

The hitting time of a random walk governed by a Markov chain, is the expected

time taken by a random walker to travel between any two nodes in a network. For

a single finite discrete-time Markov chain, this quantity is also well-known as the

Kemeny constant of the Markov chain, the mean first passage time of a Markov

chain or, for the case of reversible Markov chains, the eigentime of a Markov

chain. We refer to this quantity as the first-hitting time or simply hitting time

of a Markov chain, due both to the descriptive nature of this coinage as well as

its prevalence in the literature. The hitting time of a Markov chain for a finite

irreducible Markov chain first appeared in [47], however, it was rediscovered for

finite reversible Markov chains in [11]. Since its original discovery, the hitting

time has been further developed by several groups [45, 49, 70]. The authors

of [45, 53] give bounds on the hitting time for various graph topologies and in [18]

an alternate formulation is explored. Recently, the authors of [70] extended the

notion of the hitting time to networks with travel distances and provide a scheme

for its optimization, and the authors of [2] provided the first formulation of the

hitting time for continuous time reversible Markov chains.

5



Chapter 1. Introduction

The hitting time is closely related to several other well-studied Markov chain

properties. We focus on four quantities that are of particular interest, however,

several others exist. The first and most closely related quantity is the pairwise

hitting time between two nodes, which is the expected time to travel between a

specified pair of nodes. Clearly, the hitting time is simply the expectation of all

possible pairwise hitting times of a Markov chain. Using the relation between

reversible Markov chains and electrical networks [25] the authors of [82] give an-

alytic expressions for hitting times in terms of effective resistance. Using the

electrical framework, closed form expressions for pairwise hitting times have also

been given for special cases of certain Markov chains [67, 66], however, to the

best of our knowledge no general closed form expression exists. Second, the cover

time of a graph is the expected time it takes to reach every node in the graph

at least once. This quantity is sometimes interpreted as a function of a single

node, or more generally, in the context of an arbitrary set of nodes. There are

several works relating the cover time to the hitting time of a transition matrix [61];

many of these works bound the cover time in terms of pairwise hitting time (most

often the worst case pairwise hitting time). Third, the mixing rate of an irre-

ducible Markov chain is the rate at which an arbitrary distribution converges to

the chain’s stationary distribution. The influential text [54] provides a detailed

review of the mixing rate and of other notions of mixing. Recently, [49] refers to

6



Chapter 1. Introduction

the hitting time as the “expected time to mixing” and relates it to the mixing

rate. Finally, the Kirchhoff index [50], also known as the effective graph resistance

[28], is a related metric quantifying the distance between pairs of vertices in an

electric network. The relationship between electrical networks and random walks

on graphs is explained elaborately in [25]. For an arbitrary graph, the Kirchoff

index and the hitting time can be calculated from the eigenvalues of the conduc-

tance matrix and the transition matrix, respectively. The relationship between

these two quantities for regular graphs is established in [65].

In this work, we also look at the hitting time of multiple random walkers.

More specifically, we analyze the expected first time to reach any single node in

a network given that there are an arbitrary number of random walkers in that

network. Recently, the authors of [27] look at bounds on hitting times and cover

times for multiple random walkers. In [3] alternate bounds on cover time are

formulated for reversible Markov chains and tight bounds were explored in [31, 32].

The authors of [22, 21] find solutions for cover times in the limit as the number

of nodes in the graph becomes infinite. However, as far as we can discern, a key

assumption made by all work presented thus far in the literature is that results

are based on k copies of a simple random walk over a single graph. We make

no such assumptions in our work; every random walker can move according to

a different and arbitrary random walk and need not share the same underlying

7



Chapter 1. Introduction

graph topology. Also, as opposed to prior work, our results are not bounds but

exact analytic expressions.

To achieve our results, we utilize the notion of Kronecker graphs. Preliminary

results for undirected Kronecker graphs were introduced in [84], showing condi-

tions under which the Kronecker product of two graphs generates a connected

graph. In [51, 52] the authors consider and analyze special Kronecker graphs that

are created by products of the same n × n edge matrix in order to model large

networks and also introduce the concept of “stochastic” Kronecker graphs to gen-

erate large networks. This method of generating networks is further refined for

the special case of n = 2 in [59, 76]. In our work we also utilize the notion of

Kronecker products between stochastic matrices, but this should not be confused

with the notion of “stochastic” Kronecker graphs previously mentioned. In this

work we are not attempting to generate network models, but instead are utilizing

novel aspects of Kronecker products and stochastic matrices that have, to the best

of our knowledge, not been deeply explored; the ideas presented here would most

closely be linked to that of [84] of the previously mentioned works.

1.1.2 Partitioning and coverage control

A broad discussion of partitioning and coverage control is presented in [13]

which builds on the classic work of Lloyd [56] on algorithms for optimal quan-

8



Chapter 1. Introduction

tizer design through “centering and partitioning.” The Lloyd-type approach was

first adapted for distributed coverage control in [24] and has since seen many

variations, including non-convex environments [73, 6] and self-triggered coverage

algorithms [62].

Many existing coverage control algorithms assume that robots can communi-

cate peer-to-peer [24], but in some environments this is impractical. For example,

underwater acoustic communication between ocean gliders is very low bandwidth

and hilly or urban terrain can block radio communication. Instead, we present a

coverage control algorithm for a team of robots which collectively maintain com-

plete coverage of the environment and individually have only occasional contact

with a central base station. This one-to-base-station communication model can

represent ocean gliders surfacing to communicate with a tower [72], UAV data

mules that periodically visit ground robots [77], or cost-mindful use of satellite or

cellular communication. Our algorithm optimizes the response time of the team

to service requests in a non-convex environment represented by a graph, with

optimality defined by relevant “multi-center” cost functions for overlapping terri-

tories. Early work in coverage control of discrete non-convex domains (represented

by graphs) is presented in [26]. Discrete coverage problems are closely related to

the literature on data clustering and k-means [46], as well as the facility location

or k-center problem [83].

9
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This work also utilizes the notion of generalized Voronoi partitions. Results

on specific manifestations of generalized Voronoi partitions and partitioning can

be found in [64]. Results on the existence of power diagrams (a special general-

ized Voronoi partition manifestation) with area-constraints, along with a method

to determine them are presented in [71]. More detailed results on existence of

generalized Voronoi partitions for arbitrary area constraints are presented in [23].

Linear programming is used to handle generalized Voronoi partitions in [17] for

fixed agents, showing that generalized Voronoi partitions are optimal for a certain

class of multicenter functions. Similar results are obtained in [23], together with

a discrete-time algorithm to solve the problem of optimal deployment of agents,

while satisfying constraints on the areas.

1.2 Contributions

In this section, we highlight the contributions of the thesis organized by chap-

ter.

Chapter 2 Before stating our contributions, it is worth mentioning that all

work to date on the hitting time and mixing rate of a Markov chain on a graph

has been completed under the assumption of homogeneous travel time along the

edges of the graph. The contributions of this chapter are then six fold. First,

10
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we provide a convex optimization framework to minimize the hitting time of a

reversible Markov chain given the underlying graph topology of the random walk

and the desired stationary distribution. Second, using doubly-weighted graphs

we extend the formulation of the hitting time to the network environments with

non-homogeneous travel times, a generalization not yet looked at in the literature.

We denote this extension the weighted hitting time. Third, we derive a closed form

solution for the weighted hitting time and show its relation to the hitting time.

Fourth, we provide a convex optimization framework to minimize the weighted

hitting time of a Markov chain with desired stationary distribution. Fifth, we

provide a semidefinite program (SDP) formulation for the optimization of the

hitting time and the weighted hitting time. Finally, we look at two stochastic

surveillance scenarios; in the first scenario we provide a setup in which minimizing

the weighted hitting time leads to the optimal Markov-chain strategy. In the

second surveillance scenario we establish through numerical simulation that the

Markov chain with the minimum weighted hitting time performs substantially

better compared with other well-known Markov chains (i.e., the fastest mixing

chain and the Metropolis-Hastings Markov chain).

Chapter 3 There are several key contributions of this chapter. First, we pro-

vide a novel method for the computation of the hitting time of a Markov chain. In

11
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the process, we also provide the first closed form method for calculating pairwise

hitting times between any two nodes for an arbitrary irreducible Markov chain.

To the best of our knowledge, results for determining pairwise hitting times un-

til now require restriction to reversible Markov chains, where knowledge of the

Markov chain stationary distribution is known in advance. Our solution has no

such restrictions. Second, we extend the notion of pairwise hitting time to an

irreducible Markov chain with travel distances between nodes. Third, we define

and provide the first closed form solution for computing the hitting time given

multiple (different) Markov chains on the same graph. We denote this extension

the ‘group’ hitting time. Fourth, our results also allow for the extension and cal-

culation of the pairwise hitting time to the hitting time between any set of nodes

for multiple random walkers; for any combination of specified starting nodes, we

can calculate the first hitting time to a specified desired node. Fifth, we further

extend the notion of group hitting time and hitting times between sets of nodes

from multiple random walks on the same graph to random walks on multiple sub-

graphs. Finally, we provide a detailed numerical analysis to build intuition on the

transition matrices that generate a minimal group hitting time. Before stating the

paper organization, it is worthwhile to note that we achieve our analytical results

by introducing a method of proof that utilizes the Kronecker product; thus our

12
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work not only provides results in Markov chain behavior, but also gives general

insight into Kronecker graphs and stochastic matrices.

Chapter 4 The contributions of this chapter are four-fold. First, we present

the first coverage control algorithm for an asynchronous one-to-base-station com-

munication model. This model is realistic and relevant for a variety of application

domains. We handle the time delay between when robots communicate with the

base station using overlapping regions instead of a partition. The algorithm can be

adapted for various cost-functions and also allows for heterogeneity among agents.

Second, we prove that the algorithm converges to a centroidal Voronoi partition

in finite time for two relevant cost-functions. Our Lyapunov argument is based

on an adaptation of the standard partition-based coverage cost function. Third,

we introduce the notion of Pareto-optimal partitions and provide a cost-function

to achieve such a partition using our algorithm. Finally, we describe how the al-

gorithm can seamlessly handle changes in the environment as well as unscheduled

arrival, departure or change in functionality of robots from the team. This feature

leverages overlapping regions, and also eases integration of coverage control with

task servicing.

Chapter 5 The contributions of this chapter are four-fold. First, we design

a provably correct, spatially-distributed continuous-time algorithm to compute
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area-constrained generalized Voronoi partitions of a convex environment. Our

approach improves upon the work done in [71] for power diagrams both in gen-

erality and in numerical stability. Second, we build on work in [23], by introduc-

ing a continuous-time spatially-distributed algorithm to compute centroidal area-

constrained generalized Voronoi partitions of a convex environment. Although an

approximate method is proposed in [71] to achieve this for power diagrams, here

we introduce a simpler generalized method which bridges the gap between [71]

and [23] in that it is the continuous-time analogue to [23]. More precisely, the

continuous-time algorithm presented in this paper and the discrete-time algorithm

in [23] both converge to the set of centroidal area-constrained Voronoi partitions,

which shall be formally defined below. Our proposed continuous-time algorithms

are not only of academic interest in their own right, but also fill application gaps

where a discrete-time algorithm may fall short. One such application is in mo-

bile robotic networks, when there is a need to have continuous adaptive coverage

and the understanding of the region’s underlying density distribution changes fre-

quently. For such cases, in the discrete time setting it is possible that, before

the agents arrive at their optimal configuration, the optimal configuration has

changed due to a new understanding of the density distribution. Moreover, the

path that is taken may cause coverage cost to increase temporarily, since only

the configuration is optimal not the path taken. In the continuous-time setting,
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the agents are always moving in a path that improves their coverage cost, and

a change in the underlying distribution simply means a correction in their path.

Third, we introduce a practical method for implementation of our algorithms,

and show their performance in simulation. Finally, as theoretical contributions,

we prove that the set of mappings that generate area-constrained partitions are

unique up to translation and we compute several novel partial derivatives of rel-

evant operators. Specifically, we generalize a classic result about multi-center

optimization: the partial derivative of the multicenter function evaluated at area-

constrained Voronoi partitions has the same direction as the vector connecting

the robot locations to the centroids of their regions.
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Chapter 2

The Weighted Hitting Time of a
Random Walk

This chapter is organized as follows. In Section 2.1 we summarize the notation

which we use in this chapter and in Chapter 3, and briefly review properties of

Markov chains. In Section 2.2 we give relevant background for the hitting time and

present our results for its minimization. In Section 2.3 we introduce and provide

detailed characterization of the weighted hitting time as well as its minimization.

In Section 2.4 we provide practical surveillance applications of the weighted hitting

time. In the final section we summarize our findings.

2.1 Notation and Markov chains

We use the notation A = [ai,j] to denote a matrix A with the element ai,j in its

i-th row and j-th column and, unless otherwise indicated, use bold-faced letters to
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denote vectors. Letting δi,j denote the Kronecker delta, Ad = [δi,jai,j] represents

the diagonal matrix whose diagonal elements are the diagonal elements of the

matrix A. The column vector of all ones and length n is denoted by 1n ∈ Rn×1

and I represents the identity matrix of appropriate dimension. We use diag[b] to

denote the diagonal matrix generated by vector b and Tr[A] to denote the trace

of matrix A.

A Markov chain is a sequence of random variables taking value in the finite

set {1, . . . , n} with the Markov property, namely that, the future state depends

only on the present state; see [43, 47] for more details. Let Xk ∈ {1, . . . , n} denote

the location of a random walker at time k ∈ {0, 1, 2, . . . }. We are now ready to

summarize some terminology and results for Markov chains. (1) A Markov chain

is time-homogeneous if P[Xn+1 = j|Xn = i] = P[Xn = j|Xn−1 = i] = pi,j, where

P ∈ Rn×n is the transition matrix of the Markov chain. (2) The vector π ∈ Rn×1

is a stationary distribution of P if
∑n

i=1 πi = 1, 0 ≤ πi ≤ 1 for all i ∈ {1, . . . , n}

and πTP = πT . (3) A time-homogeneous Markov chain is said to be reversible if

πipi,j = πjpj,i, for all i, j ∈ {1, . . . , n}. For reversible Markov chains, π is always a

steady state distribution. (4) A Markov chain is irreducible if there exists a t such

that for all i, j ∈ {1, . . . , n} , (P t)i,j > 0. (5) If the Markov chain is irreducible,

then there is a unique stationary distribution π, and the corresponding eigenvalues

of the transition matrix, λi for i ∈ {1, . . . , n}, are such that λ1 = 1, |λi| ≤ 1 and
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λi 6= 1 for i ∈ {2, . . . , n}. For further details on irreducible matrices and about

results (4) and (5) see [60, Chapter 8]. In this thesis we consider finite irreducible

time-homogeneous Markov chains.

2.2 The hitting time of a Markov chain and its

minimization

Consider a undirected weighted graph G = (V , E , P ) with node set V :=

{1, . . . , n}, edge set E ⊂ V × V , and weight matrix P = [pi,j] with the prop-

erty that pi,j ≥ 0 if (i, j) ∈ E and pi,j = 0 otherwise. We interpret the weight

of edge (i, j) as the probability of moving along that edge. Therefore, element

pi,j in the matrix represents the probability with which the random walk visits

node j from node i. Throughout this document we assume that the underlying

undirected graph (V , E) associated to the transition probabilities P is connected.

In this section we look into a discrete-time random walk defined by a Markov

chain on a graph G. At each time step (hop) of the random walk we move to a new

node or stay at the current node according to the transition probabilities described

by a transition matrix P as discussed above. We do this with three objectives

in mind. The first objective is to analyze the random walk and characterize the

average visit time between nodes in the graph. The second objective is to minimize
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the average visit time between any two nodes and the final is to achieve a long

term (infinite horizon) visit frequency πi at node i. Here, the frequency πi is the

ratio of visits to node i divided by the total number of visits to all nodes in the

graph. Throughout the paper, we describe the random walk using realizations of

a Markov chain with transition matrix P = [pi,j].

2.2.1 The hitting time for a weighted graph

Let Xk ∈ {1, . . . , n} denote the location of the random walker at time k ∈

{0, 1, 2, . . . }. For any two nodes i, j ∈ {1, . . . , n}, the first passage time from i to

j, denoted by Ti,j, is the first time that the random walker starting at node i at

time 0 reaches node j, that is,

Ti,j = min{k ≥ 1 | Xk = j given that X0 = i}.

It is convenient to introduce the shorthand mi,j = E[Ti,j], and to define the mean

first passage time matrix M to have entries mi,j, for i, j ∈ {1, . . . , n}. The mean

first passage time from start node i, denoted by hi, is the expected first passage

time from node i to a random node selected according to the stationary distribu-

tion π, i.e.,

hi =
n∑
j=1

mi,jπj.
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It is well known [45] that the mean first passage time from a start node is inde-

pendent of the start node, that is, hi = hj for all i, j ∈ {1, . . . , n}. Accordingly,

we let H = hi, for all i ∈ {1, . . . , n}, denote the hitting time, also known as the

Kemeny constant, of the Markov chain.

Next, we provide formulas for these quantities. By definition, the first passage

time from i to j satisfies the recursive formula:

Ti,j =


1, with probability pi,j,

Tk,j + 1, with probability pi,k, k 6= j.

Taking the expectation, we compute

mi,j = pi,j +
n∑

k=1,k 6=j

pi,k(mk,j + 1) = 1 +
n∑

k=1,k 6=j

pi,kmk,j,

or in matrix notation,

(I − P )M = 1n1Tn − PMd, (2.1)

where P is the transition matrix of the Markov chain. If the Markov chain is irre-

ducible with stationary distribution π, then one can showMd = diag[{1/π1, . . . , 1/πn}],

and

πTMπ =
n∑
i=1

πi

n∑
j=1

πjmi,j =
n∑
i=1

πihi = H.

Clearly, the hitting time can be written as the function P 7→ H(P ), however, to

ease notation we simply write H and use H(P ) only when we wish to emphasize

its dependence on P .
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The hitting time H = πTMπ can be computed from equation (2.1) or can be

expressed as a function of the eigenvalues of the transition matrix P as is stated

in the following theorem [45].

Theorem 1. (Hitting time of an irreducible Markov chain): Consider a Markov

chain with an irreducible transition matrix P with eigenvalues λ1 = 1 and λi,

i ∈ {2, . . . , n}. The hitting time of the Markov chain is given by

H = 1 +
n∑
i=2

1

1− λi
.

Using Theorem 1, we derive the following equivalent expression for reversible

Markov chains in terms of the trace of a symmetric positive definite matrix. Before

stating our result, we first introduce some notation. Given a stationary distribu-

tion vector π ∈ Rn×1 for a Markov chain with transition matrix P ∈ Rn×n,

we define the matrix Π ∈ Rn×n as Π = diag[π] and the vector q ∈ Rn×1 as

qT = (
√
π1, . . . ,

√
πn). We are now ready to state our first result.

Theorem 2. (Hitting time of a reversible irreducible Markov chain): The hit-

ting time of a reversible irreducible Markov chain with transition matrix P and

stationary distribution π is given by

H = Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
. (2.2)
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Proof. We start by noting that P is an irreducible row-stochastic matrix therefore

the eigenvalues of P are {λ1 = 1, λ2, . . . , λn}, where |λi| ≤ 1 and λi 6= 1 for

i ∈ {2, . . . , n}. It follows that the eigenvalues of (I−P ) are {0, 1− λ2, . . . , 1− λn}.

Since P is irreducible and reversible, there exists a stationary distribution π ∈ Rn
>0

implying Π is invertible and that Π1/2(I−P )Π−1/2 = I−Π1/2PΠ−1/2 is symmetric.

It can easily be verified that I−P and I−Π1/2PΠ−1/2 have the same eigenvalues

and that q is the eigenvector associated with the eigenvalue at 0. Next, notice the

matrix (I−Π1/2PΠ−1/2+qqT ) is symmetric and that (I−Π1/2PΠ−1/2+qqT )q = q.

Therefore, (I−Π1/2PΠ−1/2+qqT ) has an eigenvalue at 1 associated with the vector

q. Since (I − Π1/2PΠ−1/2 + qqT ) is symmetric, the eigenvectors corresponding

to different eigenvalues are orthogonal; implying for eigenvector v 6= q that (I −

Π1/2PΠ−1/2 + qqT )v = (I − Π1/2PΠ−1/2)v since the eigenvalue at 1 is simple.

Therefore, the eigenvalues of (I −Π1/2PΠ−1/2 + qqT ) are {1, 1− λ2, . . . , 1− λn}.

Thus, H = Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
= 1 + 1/(1− λ2) + . . .+ 1/(1− λn) =

H.

Given the above result, we are now ready to state our first problem of interest.

Problem 1. (Optimizing the hitting time of a reversible Markov chain): Given the

stationary distribution π and graph G with vertex set V and edge set E, determine
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the transition probabilities P = [pi,j] solving:

minimize Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
subject to

n∑
j=1

pi,j = 1, for each i ∈ {1, . . . , n}

πipi,j = πjpj,i, for each (i, j) ∈ E

0 ≤ pi,j ≤ 1, for each (i, j) ∈ E

pi,j = 0, for each (i, j) /∈ E .

(2.3)

Remark 3. All feasible solutions P to Problem 1 are inherently irreducible transi-

tion matrices: when P is not irreducible, the matrix (I−Π1/2PΠ−1/2 +qqT ) is not

invertible. Moreover, a feasible point always exists since the Metropolis-Hastings

algorithm applied to any irreducible transition matrix associated with G, gener-

ates a reversible transition matrix which is irreducible and satisfies the stationary

distribution constraint [39].

The following theorem establishes the convexity of the hitting time for transi-

tion matrices with fixed stationary distribution.

Theorem 4 (Convexity of Problem 1). Let Pπ denote the set of matrices associ-

ated to irreducible reversible Markov chains with stationary distribution π. Then,

Pπ is a convex set and P 7→ H(P ) is a convex function over Pπ.

Proof. Let S denote the set of symmetric positive definite matrices, for any sta-

tionary distribution π ∈ Rn
>0, denote the set SP,π := {I−Π1/2PΠ−1/2+qqT | P ∈
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Pπ}. We begin by showing that Pπ is a convex set. Let P1, P2 ∈ Pπ, then Pπ is

convex if for an arbitrary θ ∈ [0, 1] that

θP1 + (1− θ)P2 = P3 ∈ Pπ. (2.4)

Pre and post multiplying (2.4) by Π1/2 and Π−1/2, respectively, we have that

θΠ1/2P1Π−1/2 +(1−θ)Π1/2P2Π−1/2 = Π1/2P3Π−1/2. Then Π1/2P3Π−1/2 is symmet-

ric since Π1/2P1Π−1/2 and Π1/2P2Π−1/2 are symmetric. Pre multiplying (2.4) by

πT we easily verify that the stationary distribution P3 is πT and similarly, post

multiplying by 1n verifies that P3 is row stochastic. Finally taking the left hand

side of (2.4) to the n-th power gives (θP1 + (1− θ)P2)n = θnP n
1 + (1− θ)nP n

2 + ζ,

where ζ denotes the sum of all other terms in the expansion and has the property

ζi,j ≥ 0 for all i, j since P1 and P2 are non-negative element-wise matrices. More-

over from irreducibility, there exists a sufficiently large N such that for n > N ,

(P n
1 )i,j > 0 and (P n

2 )i,j > 0 for all i, j, which implies (P n
3 )i,j > 0, therefore P3 ∈ Pπ

and Pπ is convex.

Next we show that SP,π ⊂ S. From the proof of Theorem 2 we have for

P ∈ Pπ that I −Π1/2PΠ−1/2 + qqT has eigenvalues {1, 1− λ2, . . . , 1− λn}, where

λi for i ∈ {1, . . . , n} are the eigenvalues of P , where λi ≤ |1| for all i and λi 6= 1

for i ∈ {2, . . . , n}. Therefore, all eigenvalues of I −Π1/2PΠ−1/2 + qqT are strictly

greater than zero. Finally, since P is reversible Π1/2PΠ−1/2 is symmetric implying

(I − Π1/2PΠ−1/2 + qqT )T = I − Π1/2PΠ−1/2 + qqT and so SP,π ⊂ S.
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Finally, define the mapping g : Pπ 7→ SP,π by g(X) = I −Π1/2XΠ−1/2 + qqT .

This is an affine mapping from the convex set Pπ to a subset of S. From [34] we

know that Tr[X−1] is convex for X ∈ S, therefore the composition with the affine

mapping g : Pπ 7→ SP,π ⊂ S, Tr[g(X)−1] is also convex [10, Chapter 3.2.2].

Problem 1 includes constraints on the stationary distribution of the transition

matrix, a notion which has not been looked at in the literature before. The author

of [49] provides bounds to determine the set of transition matrices such that H is

minimized and [45] gives special matrices for which the optimal hitting time can

be found, but these are all approached for the general setting with no constraint

on the actual stationary distribution. In real-world settings, constraints on the

stationary distribution are important and have many practical interpretations.

For example, it is often desirable to visit certain regions more frequently than

other based on each region’s relative importance.

2.2.2 SDP framework for optimizing the hitting time

Here we show how Problem 1 can be equivalently rewritten as an SDP by

introducing a symmetric slack matrix.

Problem 2. (Optimizing the hitting time of a reversible Markov chain (SDP)):

Given the stationary distribution π and graph G with vertex set V and edge set E,
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determine X = [xi,j] and the transition probabilities P = [pi,j] solving:

minimize Tr[X]

subject to I − Π1/2PΠ−1/2 + qqT I

I X

 � 0

n∑
j=1

pi,j = 1, for each i ∈ {1, . . . , n}

πipi,j = πjpj,i, for each (i, j) ∈ E

0 ≤ pi,j ≤ 1, for each (i, j) ∈ E

pi,j = 0, for each (i, j) /∈ E .

The first inequality constraint in Problem 2 represents a linear matrix inequal-

ity (LMI) and denotes that the matrix is positive semidefinite. Since the matrix

in the LMI has off-diagonal entries equal to the identity matrix, it holds true if

and only if X is positive definite and (I − Π1/2PΠ−1/2 + qqT ) −X−1 is positive

semidefinite [1, Theorem 1]. This implies (I − Π1/2PΠ−1/2 + qqT ) is positive

definite and that X � (I − Π1/2PΠ−1/2 + qqT )−1. Therefore, the SDP given by

Problem 2 minimizes the hitting time.
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2.3 The weighted hitting time of Markov chain

and its minimization

In most practical applications, distance/time traveled and service costs/times

are important factors in the model of the system. We incorporate these concepts

by allowing for an additional set of weighted edges in our graph in addition to the

edge weights which describe the transition probabilities. Such a system can be

represented by the doubly-weighted graph G = (V , E , P,W ), where W = [ωi,j] is

a weight matrix with the properties that: if (i, i) ∈ E , then ωi,i ≥ 0; if (i, j) ∈ E ,

i 6= j, then ωi,j > 0 ; and if (i, j) /∈ E , then ωi,j = 0. The weighted adjacency

matrix P = [pi,j] has the same interpretation as before as an irreducible row-

stochastic transition matrix P which governs the random walk on the graph. An

example of a doubly-weighted graph is shown in Figure 2.1. In the following, we

will interpret ωi,j, i 6= j as the time to travel between two nodes, i and j, in

the graph and ωi,i as the service time at node i. We discuss another motivating

example and interpretation for ωi,j in a later section.

Recall that Xk = i denotes that the random walker is at node i at time k.

If a sample trajectory of the random walk is X0 = i, X1 = j, X2 = k, then the

time instant at which a random walker arrives in state X2 is ωi,j + ωjk. Thus the
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Figure 2.1: Example of a doubly-weighted graph G = (V , E , P,W ) with three
nodes: (a) shows the edge set, E , allowed for the graph with three nodes, (b)
shows the probabilities, pi,j to move along each edge, and (c) shows the time (i.e.,
distance traveled), ωi,j to move along each edge.

time interval between two consecutive steps of this random walk depends on the

weighted adjacency matrix, W , of the graph and is not constant.

In the following analysis, we look at several characterization and optimization

objectives: The first involves extending the notion of the hitting time to doubly-

weighted graphs and providing a detailed characterization of this extension. The

second involves the minimization of the hitting time of a doubly-weighted graph

and the third involves characterization and minimization of the mean time to

execute a single hop. The first and second objectives are motivated by the need

to minimize visit times to nodes in the graph, and the third is motivated by the

desire to minimize resource consumption when moving between nodes. We seek to

design transition matrices P with stationary distribution π which optimize each

problem. We start with the first objective.
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2.3.1 The hitting time for a doubly-weighted graph

The mean first passage time for the Markov chain on a weighted graph G =

(V , E , P ) by definition, is simply its hitting time. Recall that the mean first

passage time for node i, defined by hi, is determined by taking the expectation

over the first passage times mi,j, from node i to all other nodes j. We present

an analogous notion of the first passage time between two nodes on a doubly-

weighted graph. We start with defining the first passage time random variable for

a random walk on a doubly-weighted graph and provide a recursive formulation

for its expectation.

As in Section 2.2.1, for any two nodes i, j ∈ {1, . . . , n}, the first passage time

from i to j is the first time that the random walker starting at node i at time 0

reaches node j, that is,

Ti,j = min
{ k−1∑
n=0

wXn,Xn+1 , for k ≥ 1 | Xk = j given that X0 = i
}
.

Lemma 5. (First passage time for a doubly-weighted graph): Let mi,j(W ) =

E[Ti,j] denote the mean first passage time to go from i to j for a graph with weight

matrix W and transition matrix P . Then

mi,j(W ) = pi,j(ωi,j) +
∑
k 6=j

pi,k(mk,j(W ) + ωi,k), (2.5)

or, in matrix notation,

(I − P )M = (P ◦W )1n1Tn − PMd, (2.6)
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where (P ◦W ) is the element-wise product between P and W and where Md =

[δi,jmi,j(W )].

Proof. By its definition, the first passage time satisfies the recursive formula:

Ti,j =


ωi,j, with probability p,ij,

ωi,k + Tk,j, with probability pi,k, k 6= j.

(2.7)

Therefore, the results follows from taking the expectation:

E[Ti,j] = ωi,jpi,j +
∑
k 6=j

pi,k(E[Tk,j] + ωi,k).

The matrixM, which we call the mean first passage time matrix for a doubly-

weighted graph thus satisfies an equation similar to (2.1) for the passage time

matrix M of a graph with a single weight matrix, the transition matrix P . In fact,

we see that equation (2.6) is equivalent to (2.1) when wi,j = 1 for all (i, j) ∈ E

(i.e., for an unweighted graph).

The random variable tracking the time interval between consecutive visits to a

node has been referred to as the refresh time of that node [68] and mi,i(W ) is the

expected value of the refresh time for the random walk. We now obtain a relation

between π and the refresh times mi,i(W ).
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Theorem 6 (Refresh times for doubly-weighted graphs). Consider a Markov

chain on a doubly-weighted graph G = (V , E , P,W ) with stationary distribution

π and associated mean first passage time matrix M. The refresh time for node i

is given by mi,i(W ) = (πT (P ◦W )1n)/πi, implying that

Md = πT (P ◦W )1nMd.

Proof. The stationary distribution of the transition matrix P is π ∈ Rn×1. There-

fore, premultiplying equation (2.6) by πT , we obtain

0 = πT (P ◦W )1n1Tn − πTMd,

where the left hand side of equation (2.6) is zero since πT (I − P ) = πT − πT = 0.

Now we have that (πT (P ◦W )1n)1Tn = πTMd. Since Md is a diagonal matrix

and πT (P ◦ W )1n is a scalar, we get that πimi,i(W ) = πT (P ◦ W )1n. Thus,

dividing by πi we have that mi,i(W ) = πT (P ◦ W )1n/πi, and in matrix form

Md = πT (P ◦W )1ndiag({1/π1, . . . , 1 πn}) = πT (P ◦W )1nMd .

This theorem implies that the refresh time mi,i(W ) of the random walk is

directly proportional to the visit frequencies 1/πi. Therefore, the relative visit

frequencies of one node compared to another are not a function of the weight

matrix W and only depend on the stationary distribution of the transition matrix

P .
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We now investigate the properties of the hitting time of the weighted random

walk. The hitting time for a doubly-weighted graph G = (V , E , P,W ) with associ-

ated passage times matrix M is given by HW = πThW , where hW =Mπ is the

vector of first passage times and the i−th entry hW,i in hW denotes the mean time

to go from i to any other node. We refer to the hitting time for a doubly-weighted

graph, HW , as the weighted hitting time. We now provide an analytic expression

for the vector hW ∈ Rn×1.

Lemma 7. (First passage times for a doubly-weighted graph): Given a Markov

chain on a doubly-weighted graph G = (V , E , P,W ) with stationary distribution π

and associated first passage time matrix M, the following equality holds:

(I − P )hW = (P ◦W )1n − 1nπ
T (P ◦W )1n, (2.8)

where hW =Mπ.

Proof. Post multiplying equation (2.6) on both sides by π gives

(I − P )Mπ =(P ◦W )1n1Tnπ − PMdπ,

(I − P )hW =(P ◦W )1n − P (πT (P ◦W )1n)1n

=(P ◦W )1n − 1nπ
T (P ◦W )1n.
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The right hand side of (2.8) gives the insight that, in general, hW,i 6= hW,j on

the doubly-weighted graph, unlike the counterpart for the single-weighted graph

(where hi = H for all i ∈ {1, . . . , n}). Interestingly enough however, there does

exist a relation between the weighted hitting time HW and the hitting time H as

is stated in the following theorem, whose proof is postponed to Section 8.

Theorem 8. (Weighted hitting time of a Markov chain): For the doubly-weighted

graph G = (V , E , P,W ), the weighted hitting time HW of the Markov chain is given

by

HW = πT (P ◦W )1nH, (2.9)

where H is the hitting time associated with the irreducible transition matrix P

with stationary distribution π .

Remark 9. The expected number of hops to go from one node to another in a

Markov chain with transition matrix P is its hitting time. The expected distance

travelled (and hence time taken) executing one hop is
∑

i πi
∑

j pijωi,j = π(P ◦

W )1n. Hence, it is consistent with intuition that the expected time to travel from

one node to another should be HπT (P ◦W )1n as is formally shown in Section 8.

Given the above results, we are now ready to state another problem of interest.

Problem 3. (Optimizing the weighted hitting time of a reversible Markov chain):

Given the stationary distribution π and graph G with vertex set V, edge set E and
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weight matrix W , determine the transition probabilities P = [pi,j] solving:

minimize(
πT (P ◦W )1n

) (
Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

])
subject to

n∑
j=1

pi,j = 1, for each i ∈ {1, . . . , n}

πipi,j = πjpj,i, for each (i, j) ∈ E

0 ≤ pi,j ≤ 1, for each (i, j) ∈ E

pi,j = 0, for each (i, j) /∈ E .

The following theorem establishes the convexity of the weighted hitting time

for transition matrices with fixed stationary distribution.

Theorem 10 (Convexity of Problem 3). Given the graph G with vertex set V,

edge set E and weight matrix W , let PG,π denote the set of matrices associated

with G that are irreducible reversible Markov chains with stationary distribution

π. Then, PG,π is a convex set and P 7→ πT (P ◦W )1nH(P ) is a convex function

over PG,π.

Proof. Let S denote the set of symmetric positive definite matrices, for any sta-

tionary distribution π ∈ Rn
>0, denote the set SG,P,π := {I − Π1/2PΠ−1/2 +

qqT | P ∈ PG,π}. The proof of convexity of the set PG,π is similar to that of

the proof of Pπ in Theorem 4 and so is omitted for brevity. Then from the proof

of Theorem 4 we know there exists an affine mapping g(X) : PG,π 7→ SG,P,π given
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by g(X) = I − Π1/2PΠ−1/2 + qqT . We know from [34] that f(X) = Tr[X−1] is

convex, therefore the perspective function h(X, t) = {tf(X/t) | t > 0} is also con-

vex [10, Chapter 3.2.6]. Moreover the composition of h(X, t) with the affine map-

ping g(X), h(g(X), t) is also convex. Let t = (πT (X ◦W )1n)1/2, and notice that

πT (X◦W )1n > 0 for X ∈ PG,π and therefore t > 0. Also notice that for a constant

k ∈ Rn
>0 and matrix X ∈ Rn×n that Tr[(X

k
)−1] = kTr[X−1]. Then h(g(X), t) =

tTr[(g(X)
t

)−1] = t2Tr[(g(X)−1] = πT (X ◦W )1nTr[(I −Π1/2XΠ−1/2 + qqT )−1] for

X ∈ PG,π.

2.3.2 SDP framework for optimizing the weighted hitting

time

In a similar fashion to Problem 1, we can formulate Problem 3 as an SDP by

introducing the symmetric slack matrix X ∈ Rn×n and the scalar variable t as is

shown in the following.

Problem 4. (Optimizing the weighted hitting time of a reversible Markov chain

(SDP)): Given the stationary distribution π and graph G with vertex set V, edge
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set E and weight matrix W , determine Y = [yi,j], X and t solving:

minimize Tr[X]

subject to t(I + qqT )− Π1/2YΠ−1/2 I

I X

 � 0

n∑
j=1

yi,j = t, for each i ∈ {1, . . . , n}

πiyi,j = πjyj,i, for each (i, j) ∈ E

0 ≤ yi,j ≤ t, for each (i, j) ∈ E

yi,j = 0, for each (i, j) /∈ E

πT (Y ◦W )1n = 1

t ≥ 0.

Then, the transition matrix P is given by P = Y/t.

As in Problem 2, the first inequality constraint in Problem 4 represents an LMI.

Before noting when the LMI holds, first note that the constraints in Problem 4

imply that Pt = Y and that t = 1
πT (P◦W )1n

. Hence, using a similar argument as

in Problem 2, the LMI constraint holds true if and only if X � πT (P ◦W )1n(I −

Π1/2PΠ−1/2 + qqT )−1 where X and πT (P ◦W )1n(I − Π1/2PΠ−1/2 + qqT )−1 are

both positive definite, and therefore the SDP given by Problem 4 minimizes the

weighted hitting time.

36



Chapter 2. The Weighted Hitting Time of a Random Walk

2.3.3 Minimizing single hop distance

We now look at the objective of minimizing the mean time for a single hop of

a random walk. At time k, let Si,j be the time required to transition from i to j

in a single hop along an edge of length ωi,j. Then,

E [S] =
n∑
i=1

n∑
j=1

pi,jSi,j

=
n∑
i=1

P [Xk = i]
n∑
j=1

ωi,jP [Xk+1 = j]

=
n∑
i=1

n∑
j=1

πiωi,jpi,j = πT (P ◦W )1n. (2.10)

The function πT (P ◦W )1n is clearly convex in P . If one assumes that ωi,i = 0 for

all i ∈ {1, . . . , n}, then minimizing (2.10) over P yields the trivial solution P = I.

We can take into account both the single hop distance as well as the hitting time

to design a Markov chain as follows.

Problem 5. (Optimizing hitting time and mean distance): Given the stationary

distribution π and graph G with vertex set V, edge set E and weight matrix W ,

and given user specified constant α ∈ [0, 1], determine the transition probabilities
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P = [pi,j] solving:

minimize αTr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
+ (1− α)πT (P ◦W )1n

subject to
n∑
j=1

pi,j = 1, for each i ∈ {1, . . . , n}

πipi,j = πjpj,i, for each (i, j) ∈ E

0 ≤ pi,j ≤ 1, for each (i, j) ∈ E

pi,j = 0, for each (i, j) /∈ E .

(2.11)

This problem is convex since the sum of two convex problems is convex, more-

over, it can be extended to an SDP utilizing the LMI defined in Problem 2. In

the context where ωi,i = 0 for all i ∈ {1, . . . , n}, varying the parameter α can be

used to control the connectivity of the Markov chain; the choice α = 1 ensures

connectivity, and the choice α = 0 minimizes the single hop distance while making

the graph disconnected.

2.4 Applications of the hitting time to surveil-

lance

The results on hitting time for doubly-weighted graphs (i.e., the weighted

hitting time) presented in this work provide a general framework which can po-
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tentially be applied to the analysis and design in a myriad of fields. We focus

on one application in particular; the intruder detection and surveillance problem.

We look at two variations of this problem:

Scenario I In practical stochastic intruder detection and surveillance scenar-

ios, there is often a desire to surveil some regions more than others (i.e.,have a

pre- specified stationary distribution) while simultaneously minimizing the time

any one region has to wait before it is serviced. For this setup, in every step of

the random walk, the agent must move to a new region and execute its surveil-

lance task. Assuming we are working on a doubly-weighted graph described by

G = (V , E , P,W ), let us also assume there is a fixed persistent intruder in the

environment and it takes si time for an agent to determine if the intruder is in

region i ∈ V . Denote the time to move from region i to region j by di,j, where

we can assume, without loss of generality, that di,i = 0. Then, we can define the

weight corresponding to the edge from i to j as ωi,j = di,j + sj. In this scenario

we wish to minimize the expected time to capture the persistent intruder when

no prior knowledge of their position is known.

Scenario II In this scenario we consider the intruder detection problem and

adopt a similar setup to Scenario I, however, we now assume a set of intruders

are distributed throughout the environment. Each intruder performs a malicious
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activity in its host region for a fixed duration of time, which we call the intruder

life-time, followed instantaneously by another intruder. The intruder is caught

only if the agent is in the same region as the intruder for any duration of the

intruder life-time. For simplicity only a single intruder appears at a time.

In the following subsections we analyze the performance of various stochastic

surveillance policies as applied to Scenario I and Scenario II described above.

More specifically, we gauge the performance of other well-known Markov chain

design algorithms against the algorithms presented in this paper.

2.4.1 Optimal strategy for Scenario I

In the context of Scenario I the weighted hitting time of the agent’s transi-

tion matrix, P , corresponds to the average time it takes to capture an intruder

regardless of where the agent and intruder are in the environment. Therefore

by definition of the hitting time, we have the following immediate corollary for

Scenario I.

Corollary 11 (Optimal surveillance and service strategy). The transition matrix

P which has minimal hitting time is the optimal strategy for the intruder detection

problem described by Scenario I.
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This tells us that if we restrict ourselves to reversible Markov chains, then not

only is the chain with minimal hitting time optimal, but given the results from

Section 2.2 and 2.3, we can also optimally design this chain.

2.4.2 Numerical analysis of Scenario II

In Scenario II the transition matrix with minimum hitting time is not guar-

anteed to be the optimal policy, and thus to gauge its performance compared to

other policies we analyze both homogeneous (uniform service/travel times) and

heterogeneous environment cases. To compare performance we generate a random

walk for the environment using the Metropolis-Hastings, fastest mixing Markov

chain (FMMC) [9], and hitting time algorithms. While game theoretic frame-

works [19, 8] also generate stochastic policies, they are based on assumptions on

the intruder behavior. We avoid such assumptions here and, therefore, omit them

from our comparative analysis.

We first look at the homogeneous case which is described by the discretized

environment shown in Figure 2.2. We assume that a single surveillance agent exe-

cutes a random walk in the environment, spending 1 time unit in each region, and

that the agent transitions between two connected regions instantaneously. Also,

we assume a uniform stationary distribution on the transition matrix (each node

in the region must be visited with equal likelihood). The Markov chain generated
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by the Metropolis-Hastings algorithm is generated by applying the algorithm to

the random walk described by pi,j = 1/di for i 6= j and pi,j = 0 for i = j, where

di is the degree of a node i (excluding self-loops) [39]. The intruder life-time is

set to 66 time units and 500 intruders appear per simulation run (the sequence in

which the intruders appear is determined before each simulation run), for a total

simulation run of 33, 000 time units. As stated in the scenario description, the

intruder is caught if the surveillance agent is in the same region as the intruder for

any portion of the intruder life-time. Table 2.1 summarizes the statistical perfor-

mance of each algorithm after 200 runs of the simulation and justifies our use of

the hitting time algorithm as a valid surveillance strategy; the hitting time algo-

rithm captures intruders more frequently than the other two algorithms, and its

worst case performance is still better than the worst case performance of the other

two algorithms. Although results for an intruder life-time of only 66 time units

are presented here, we have found that the hitting time algorithm always outper-

forms the other two algorithms or is equivalent; the algorithms become equivalent

in the limiting case, when the intruder life-times are so low that no intruder can

be caught, or when the intruder-life times are so large that the intruder is always

caught.

For the heterogeneous case, we work with the environment shown in Figure 2.3.

In this environment the time taken by the agent to travel an edge is no longer
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Figure 2.2: Environment with two obstacle represented by an unweighted graph.

Algorithm Min Mean Max StdDev H

Hitting time 26.6 32.4 38.2 2.1 207
FMMC 24.6 29.8 34.4 1.9 236

Metropolis-Hastings 24.8 31.1 37 2.1 231

Table 2.1: Statistics on the percentage of intruders caught in 200 simulation runs
for the environment in Fig. 2.2.

instantaneous and has travel weights as shown in the figure. Once in a new region,

the agent is required to spend 1 time unit examining the region for malicious

activities. We again assume that each node in the region must be visited with equal

likelihood. We again also assume an intruder is caught if the surveillance agent is

in the same region as a intruder for any portion of the intruder life-time, but now

set the intruder life-time to 11 time units with a intruder appearing 500 times

(total of 5500 time units per simulation run). Since the design of the FMMC and

Metropolis-Hastings algorithms do not inherently account for non-uniform travel

and service times, we also compare the performance of the random walk generated
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by the weighted hitting time algorithm against the random walk generated by

solving Problem 5 with α = 0.1 (smaller α emphasizes minimizing the length

of the average edge traveled in the graph). Table 2.2 summarizes the statistical

performance of each algorithm after 200 runs of the simulation. The weighted

hitting time algorithm’s performance compared to the FMMC and Metropolis-

Hastings stochastic policies in this scenario is significantly better than what was

seen in the first scenario. We also note that the random walk policy determined by

solving Problem 5 performs comparably to the weighted hitting time policy. This

is to be expected since the Metropolis-Hastings and FMMC stochastic policies

do not account for heterogeneous travel/service times on the graph. To get a

better understanding of each algorithm’s performance in this intruder scenario,

the simulation is run for different intruder life-times, the results of which can be

seen in Figure 2.4. There are several key items worth noting from the simulation.

First, we see that the weighted hitting time algorithm significantly outperforms

the other algorithms for a large range of intruder life-times. This matches our

intuition since the algorithm inherently minimizes average travel time between

nodes. Second, notice that the Markov chain generated by solving Problem 5 (with

α = 0.1) performs well for small intruder life-times but its performance plateaus

quickly. This is due to the fact that the transition matrix generated by solving

Problem 5 forces agents to stay at a given node rather than jump nodes; as one
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Figure 2.3: Various airport hub locations (top), and the corresponding weight
map (bottom). Edge weights between two hubs account for travel time between
hubs plus required service time once at hub. Self loops have no travel time so
encompass only service time required at hub.

would suspect, once intruder life-times increase, a strategy which places emphasis

on an agent that moves between regions will begin to perform relatively better.

Finally, observe that as intruder life-time increases, the algorithms’ capture rates

start to converge. As in the homogeneous case, this is due to the fact that once the

intruder’s life-time is long enough, the agent will almost surely reach the intruder

regardless of the policy it follows.

45



Chapter 2. The Weighted Hitting Time of a Random Walk

Algorithm Min Mean Max StdDev HW

Weighted Hitting Time 44 50.1 56 2.2 19.5
Hitting Time+Mean Dist. 40.6 47.1 53 2.2 23.1

FMMC 29.8 35.4 40.4 2.2 26.2
Metropolis-Hastings 30.4 36 41.6 2.1 26.5

Table 2.2: Statistics on the percentage of intruders caught in 200 simulation runs
for the environment in Fig. 2.3.
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Figure 2.4: Percentage of intruders detected for varying intruder life-times by
a surveillance agent executing a random walk according to the Markov chain
generated by the hitting time algorithm (circle), FMMC algorithm (square), M-
H algorithm (asterisk), and the Markov chain generated by solving Problem 5
(diamond). Average points and standard deviation error bars are taken over 200
runs, where the intruder appears 500 times for each run.

To solve for the Markov chains with minimal hitting time (Problem 2 and

Problem 4) and with fastest mixing rate, we use CVX, a Matlab-based package

for convex programs [37]. The execution time to solve each Markov chain for the
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examples described above takes on the order of a couple seconds using a computer

with a 1.3 GHz processor.

2.5 Summary

We have studied the problem of how to optimally design a Markov chain which

minimizes the hitting time to go from one region to any other region in a connected

environment. We have presented the first formulation of the hitting time for a

doubly-weighted graph, which we refer to as the weighted hitting time, and have

also provided a provably correct convex formulation for the minimization of both

the hitting time and the weighted hitting time. Finally, we have shown that

both problems can be written as SDPs and, moreover, have demonstrated the

effectiveness of using a Markov chain with minimal hitting time as a surveillance

policy as compared to other well-known Markov chain policies.

In the next chapter we look at extending the hitting time of a Markov chain

to multiple random walkers.
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2.6 Proofs and supplemental material

2.6.1 Proof of Theorem 8

Proof of Theorem 8. Let β = πT (P ◦W )1n, then from Theorem 6 we have that

Md from (2.6) can be written as βMd. Now from Theorem 13 the general solution

to (2.6) is

M = G((P ◦W )1n1Tn − βPMd) + (I −G(I − P ))U, (2.12)

where G is a generalized inverse of (I−P ) (see Theorem 15) and U is an arbitrary

matrix as long as the consistency condition

(
I − (I − P )G

)(
(P ◦W )1n1Tn − βPMd

)
= 0 (2.13)

holds. Substituting (2.18) from Lemma 16 in for (I − P )G in (2.13) gives that

(
I − (I − P )G

)(
(P ◦W )1n1Tn − βPMd

)
=
tπT

πT t
((P ◦W )1n1Tn − βPMd),

=
t

πT t
(πT (P ◦W )1n1Tn − βπTPMd),

=
t

πT t
(β1Tn − β1Tn ) = 0,

and so we have that the system of equations is consistent. This implies we can

design U to reduce (2.12). We start by seeing how the second term in (2.12)

can be reduced. Using (2.19) from Lemma 16 we have that (I − G(I − P ))U =
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1nuT

uT 1n
U = 1nk

T , where kT = uTU
uT 1n

. Hence, we can re-write (2.12) as

M = G((P ◦W )1n1Tn − βPMd) + 1nk
T , (2.14)

designing U reduces to designing the n elements of k. Let K = diag[k], then

1nk
T = 1n1TnK. Also, let Ξ = 1nπT , where Ξd = diag[π]. Utilizing these

expressions in (2.14) and taking the diagonal elements gives

(
M = G((P ◦W )1n1Tn − βPMd) + 1n1TnK

)
d
,

=⇒ βMd = (G(P ◦W )Ξ)dMd − β(GP )dMd +K,

=⇒ K = βMd − (G(P ◦W )Ξ)dMd + β(GP )dMd,

where we use Lemma 14 to get the initial diagonal reduction. Substituting the

expression for K into (2.14), and recalling that 1nk
T = 1n1TnK gives

M =
(
G(P ◦W )Ξ− 1n1Tn (G(P ◦W )Ξ)d (2.15)

+ β(1n1Tn (GP )d −GP + 1n1Tn )
)
Md,

where we use the fact that 1n1Tn = ΞMd. Now from (2.19) we have that I −G−

GP = 1nuT

uT 1n
. Notice that 1n1Tn (I − G − GP )d = 1n1Tn (1nuT

uT 1n
)d = 1nuT

uT 1n
and so this

implies that 1n1Tn − 1n1TnGd + 1n1Tn (GP )d = I − G + GP , which implies that

1n1Tn + 1n1Tn (GP )d − GP = I − G + 1n1TnGd. Substituting this into (2.15) gives
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the following reduced form.

M =
(
G(P ◦W )Ξ− 1n1Tn (G(P ◦W )Ξ)d (2.16)

+ β(1n1TnGd + I −G)
)
Md.

Observing the definition of the generalized inverse, G, given by Theorem 15 part

(ii) and recalling that Ξ = 1nπT , we can rewrite the first term on the right hand

side of (16) as G(P ◦W )Ξ = (I − P + tuT )−1(P ◦W )1nπT . Substituting (2.20)

in for the right hand side with t = (P ◦W )1n gives G(P ◦W )Ξ = 1nπT

uT 1n
= 1

uT 1n
Ξ,

and so 1n1Tn (G(P ◦W )Ξ)d = 1n1Tn ( 1
uT 1n

Ξ)d = 1
uT 1n

Ξ = G(P ◦W )Ξ. Therefore,

the first two terms in (2.16) cancel giving the equality

M = β(1n1TnGd + I −G)Md. (2.17)

We have already defined t in the generalized inverse G but not u. Let u = π and

multiply the right hand side of (2.17) by π and the left hand side by πT . Utilizing

equality (2.21) from Lemma 16 gives

πTMπ = πTβ(1n1TnGd + I −G)Mdπ

= β(1TnGd + πT − π
T

β
)1n

= β(1TnGd1n + 1− 1

β
)

= β(Tr[G] + 1)− 1.
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Noting that the eigenvalue at 1 for an irreducible row-stochastic matrix is unique,

it can be easily verified using the orthogonality property of left and right eigen-

vectors that the eigenvalues of G−1 are λ̄i = (1− λi) for i ∈ {2, . . . , n}, where λi

are eigenvalues of P and λi 6= 1. Therefore, it only remains to find λ̄1. Taking the

trace of G−1 gives Tr[I − P + (P ◦W )1nπT ] = Tr[I − P ] + Tr[(P ◦W )1nπT ] =∑n
i=1(1−λi)+πT (P ◦W )1n, which implies that λ̄1 = πT (P ◦W )1n = β. Therefore,

β(Tr[G] + 1)− 1 = β( 1
β

+
∑n

i=2
1

1−λi + 1)− 1 = β(1 +
∑n

i=2
1

1−λi ).

2.6.2 Supplemental Material

For completeness, we include the following results which are needed in the

proof of Theorem 8. We begin with some standard results on generalized inverses.

For more details refer to [43, Chapter 4] or [42] .

Definition 12 (Generalized inverse). A generalized inverse of an m × n matrix

A is defined as any n×m matrix A− that has the property

AA−A = A.

It should be noted that a generalized inverse always exists, although it is not al-

ways unique. However, for non-singular matrices the generalized inverse is unique

and corresponds to the usual notion of a matrix inverse. The following theorems

summarize practical considerations when working with generalized inverses.
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Theorem 13. The equation Ax = b admits a solution if and only if every gen-

eralized inverse A− satisfies

AA−b = b.

Then, we say Ax = b is consistent and all its general solutions are given by

x = A−b+ (A−A− I)z,

where z is an arbitrary vector. Moreover, a necessary and sufficient condition for

the equation AX = C to be consistent is that (I −AA−)C = 0, in which case the

general solution is given by

X = A−C + (I − A−A)U,

where U is an arbitrary matrix.

The next two results come from [44, Chapter 7].

Lemma 14 (Diagonal matrix properties). For π with positive non-zero elements,

let 1nπT = Ξ, where Ξd = diag[π]. Also, let Λ be any diagonal matrix, X any

square matrix of same dimensions as Λ, and D = (Ξd)−1, then

(i.) (XΛ)d = (Xd)Λ, and

(ii.) (X1n1Tn )d = (XΞ)dD, and
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(iii.) 1n1TnΞd = Ξ.

Theorem 15 (Generalized inverse of I−P ). Let P ∈ Rn×n be the transition matrix

of a irreducible Markov Chain with stationary distribution π. Let u, t ∈ Rn be

any vectors such that uT1n 6= 0 and πT t 6= 0, then

(i.) I − P + tuT is nonsingular, and

(ii.) (I − P + tuT )−1 is a generalized inverse of I − P .

Lemma 16 (Properties of the generalized inverse of I−P ). Let G = (V , E , P,W )

be a doubly-weighted graph with associated weight matrix W and irreducible tran-

sition matrix P with stationary distribution π. Also let G = (I − P + tuT )−1

denote the generalized inverse of (I − P ), then the following relations hold.

(I − P )G = I − tπ
T

πT t
, (2.18)

G(I − P ) = I − 1nuT

uT1n
, and (2.19)

1n
uT1n

= Gt. (2.20)

If t = (P ◦W )1n and uT = πT then

πTG =
πT

πT (P ◦W )1n
(2.21)
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Proof. First, notice that (I − P + tuT )(I − P + tuT )−1 = I implies that

(I − P )G = I − tuTG. (2.22)

Multiplying both sides on the left by πT and noting that πT (I − P ) = 0 gives

that πT = (πT t)uTG. Dividing through by (πT t) gives

πT

πT t
= uTG, (2.23)

and substituting (2.23) into (2.22) gives (2.18).

Following a similar procedure as before with (I−P +tuT )−1(I−P +tuT ) = I,

where we now multiply both sides on the right by 1n and note that (I−P )1n = 0

results in (2.20), which after appropriate substitution gives (2.19).

For the proof of equality (2.21), first we check that t = (P ◦W )1n and uT = πT

satisfy the conditions of Theorem 15. The definition of W guarantees that P ◦W

has at least one non-zero element which implies πT t = πT (P ◦W )1n 6= 0. Also,

uT1n = πT1n = 1. Now substituting u and t into (2.23) gives (2.21).
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Chapter 3

The Hitting Time of Multiple
Random Walks

This chapter further extends notions of the hitting time described in Chapter 2

and is organized as follows. In Section 3.1 we introduce special tensor notation that

is specific to this chapter only and review useful concepts of Kronecker products

and Markov Chains. In Section 3.2 we provide an alternate formulation for the

hitting time and weighted hitting time. In Section 3.3 we introduce the ‘group’

hitting time and hitting time between sets of nodes for a Markov chain, and

provide a detailed characterization. In Section 3.4 we provide insight into optimal

group hitting times through numerical simulation, and finally in Section 3.5 we

summarize our findings.

As in the previous chapter, we work with finite irreducible time-homogeneous

Markov chains (see Section 2.1 for details).
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3.1 Tensor notation and the Kronecker product

In this section we define various useful concepts and notation. In particular,

we introduce the notation that will be used throughout this chapter to deal with

tensors, and conclude with a brief summary of the Kronecker product (also known

as a tensor product) and some of its properties.

We use the notation A = [ai1...ik,j] to denote the matrix generated by elements

ai1...ik,j, where the j index denotes the j-th column of A and the rows of A are

determined by cycling through index ik, then ik−1, and so forth. For example,

consider i1, i2, j ∈ {1, . . . , n}, then

A = [ai1i2,j] =



a11,1 a11,2 . . . a11,n

a12,1 a12,2 . . . a12,n

...
... . . .

...

a1n,1 a1n,2 . . .
...

a21,1 a21,2 . . .
...

...
... . . .

...

...
... . . . . . .

ann,1 . . . . . . ann,n



.

For the case where A = [ai,j] this corresponds to the classic interpretation with

element ai,j in the i-th row and j-th column of A. To avoid ambiguity, especially

in cases when A = [ai1...ik,j], at times we will refer to the (i, j) element of A by
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A(i, j). Unless otherwise mentioned, vectors will be denoted by bold-faced letters

(i.e., a). We use the notation diaga to indicate the diagonal matrix generated by

vector a and vec[A] to indicate the vectorization of a matrix A ∈ Rn×m where

vec[A] = [A(1, 1), . . . , A(n, 1), A(1, 2), . . . , A(n, 2), . . . , A(m, 1), . . . , A(n,m)]T .

In other words, even if we defineA asA = [ai1...ik,j], the vector vec[A] = vec[[ai1...ik,j]]

is simply a stacking of the columns of A. We also define the special matrix

[Ih1...hn,ki1...in,j
] as the matrix whose entries are all zero except for a single entry at

(h1 . . . hn, k) which has a value of 1, where h1, . . . , hn, k can only take values within

the range of values that i1, . . . , in, j take. With this matrix definition, it is easy

to verify for A = [ai1...in,j] that ah1...hn,k = vec[[Ih1...hn,ki1...in,j
]]T vec[A]. This enables

us to go back and forth between the vectorized notation to the individual matrix

elements. We denote In ∈ Rn×n as the identity matrix of size n, 1n as the vector

of ones of size n and 0n×n as the matrix zeros of size n×n. We define a generalized

Kronecker delta function δi1i2...in,j, by

δi1...in,j =


1, if ik = j for any k ∈ {1, . . . , n},

0, otherwise .

Then, with a slight abuse of notation, Ad = [δi1i2···n,jai1...ik,j] represents the “diag-

onal” matrix generated by the elements of A. In reality, only when A = [ai,j] is

the matrix truly diagonal. Finally, since the subscript operator is already in use,
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we use the superscript operation in parenthesis to delineate between two variables

with the same name. For example we write A(1) and A(2) to distinguish that the

matrices are different. A superscript without parenthesis denotes a matrix raised

to that power (i.e., A2 = AA and (A(2))2 = A(2)A(2)).

We are now ready to review some useful facts about Kronecker products. The

Kronecker product, represented by the symbol ⊗, of two matrices A ∈ Rn×m and

B ∈ Rq×r is a nq ×mr matrix given by

A⊗B =


a1,1B . . . a1,mB

...
. . .

...

an,1B
. . . an,mB

 .

To build some intuition, notice for A ∈ Rn×n, that In⊗A is the block diagonal

matrix with n copies of A on the diagonal:

In⊗A =



A 0n×n . . . 0n×n

0n×n
. . . . . .

...

...
. . . . . . 0n×n

0n×n . . . 0n×n A


. (3.1)

This implies for A = In, that In⊗A = In⊗ In = In2 . The Kronecker product

is bilinear and has many useful properties, two of which are summarized in the

following lemma; see [41] for more information.
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Lemma 17. Given the matrices A,B,C and D, the following relations hold for

the Kronecker product.

(i) (A⊗B)(C ⊗D) = (AC)⊗(BD),

(ii) (BT ⊗A) vec[C] = vec[ACB],

where it is assumed that the matrices are of appropriate dimension when matrix

multiplication or addition occurs. In addition, for matrices A ∈ Rn×n and B ∈

Rm×m with respective eigenvalues λAi , i ∈ {1, . . . , n} and λBj , j ∈ {1, . . . ,m},

(iii) the eigenvalues of A⊗B are λAi λ
B
j for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

3.2 The hitting time of a Markov chain

We begin by recalling some properties of the single random walker hitting time

from Chapter 2, and then provide a new formulation for determining this quantity.

We show that this alternate formulation gives rise to new results for the pairwise

hitting time between two specified nodes, and, in the subsequent section, utilize it

to extend the notion of the hitting time and pairwise hitting time to the multiple

random-walker case.
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3.2.1 The hitting time of a Markov chain

Consider a connected undirected weighted graph G = (V , E , P ) with node set

V := {1, . . . , n}, edge set E ⊂ V × V , and weight matrix P = [pi,j] with the

property that pi,j ≥ 0 if (i, j) ∈ E and pi,j = 0 otherwise. We interpret the

weight of edge (i, j) as the probability of moving along that edge. Therefore, P

is a transition matrix of a Markov chain, where the element pi,j in the matrix

represents the probability with which the random walk visits node j from node i.

As done previously, let Xt ∈ {1, . . . , n} denote the location of a random walker

at time t ∈ {0, 1, 2, . . . }. For any two nodes i, j ∈ {1, . . . , n}, the first passage

time from i to j, denoted by Ti,j, is the first time that the random walker starting

at node i at time 0 reaches node j, that is,

Ti,j = min{t ≥ 1 | Xt = j given that X0 = i}.

The mean first passage time from i to j is then given by mi,j = E[Ti,j]. Denoting

the mean first passage time matrix M as the matrix whose i, jth entries are given

by mi,j, recall that the hitting time, H(P ), can be written as H(P ) = πTMπ.

Given the definition of the hitting time, one quickly sees that it can also be

determined using the matrix M as follows,

πTMπ = (π⊗π)T vec[M ] =
n∑
i=1

πi

n∑
j=1

πjmi,j = H, (3.2)
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where the relation πTMπ = (π⊗π)T vec[M ] follows from identity (ii) in Lemma

17. From Chapter 2 we saw that mi,j is described by the following recursive

formula.

mi,j = pi,j +
n∑

k=1,k 6=j

pi,k(mk,j + 1) = 1 +
n∑

k=1,k 6=j

pi,kmk,j.

The above formula can be expressed in various vectorized forms. The classical

form already seen utilizes the matrix representation of M and is given by

(I − P )M = 1n1Tn − PMd, (3.3)

where we recall that Md = diag{1/π1, . . . , 1/πn} and the value for Md is de-

termined by pre-multiplying (3.3) by πT . For reasons which will become clear

later, we vectorize the matrix M to generate a different representation of (3.3).

Applying property (ii) of Lemma 17 to (3.3) gives

(In⊗(In − P )) vec[M ] = 1n2 − (In⊗P ) vec[Md]. (3.4)

Similar to before, Md can be determined from (3.4) with appropriate vector pre-

multiplication.

We know from Theorem 1 that the hitting time can be written as a function

of the eigenvalues of P as

H(P ) = 1 +
n∑
i=2

1

1− λi
.

The proof for Theorem 1 relies on the fact that Md is known, however, as will be

seen next, there exists an equivalent expression for H(P ) which requires no such
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knowledge. Before presenting the alternate formulation for H(P ), we introduce

the following useful result.

Lemma 18. (Eigenvalue shifting for stochastic matrices): Let P ∈ Rn×n be an

irreducible row stochastic matrix, and let E be any diagonal matrix with diagonal

elements Eii ∈ {0, 1}, with at least one diagonal element which is zero. Then the

eigenvalues λi of PE satisfy |λi| < 1 for all i ∈ {1, . . . , n}.

Proof. Consider the case when the kth diagonal element of E is equal to zero,

Ekk = 0 and all other diagonal elements are equal to 1, Eii = 1 for i 6= k.

This has the affect of making the kth column of P zero, pik = 0; the physical

interpretation is that no node can move to node k. Thus the matrix A = PE is

reducible and there exists a permutation matrix S ∈ Rn×n such that SAST is the

block upper triangular matrix

SAST =

 B
(1)
r×r Cr×(n−r)

0(n−r)×r B
(2)
(n−r)×(n−r)

 , (3.5)

where each B(i) is square. Clearly, SAST remains sub-stochastic under permu-

tation and the eigenvalues of the matrix A correspond to the eigenvalues of each

block B(i). Consider the trivial permutation which moves the column k to the

first column. Then, B(1) = [0] ∈ R1×1 and B(2) ∈ Rn−1×n−1. Clearly B(2) is

sub-stochastic since P is irreducible and there exists a path from every node to
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every other node. Now, if B(2) is also irreducible then λmax[B(2)] < 1, [60]. If

it is not, then there exists another permutation matrix,S̄ ∈ Rn−1×n−1, such that

S̄B(2)S̄T is upper block triangular similar to (3.5). Due to the irreducibility of

P each of the diagonal blocks of S̄B(2)S̄T are sub-stochastic. Therefore, if they

are irreducible then λmax < 1 for each block. If not, then we repeat the previous

argument until we are left with diagonal blocks which are irreducible or zero. The

case when more than one column is zero follows from noting that if ai,j ≤ bi,j for

each i and j then ρ[A] ≤ ρ[B], [60, Chapter 7.10].

We are almost ready to present our alternate representation of the hitting

time, but first we must introduce the following equality: notice that vec[Md] =

E vec[M ], when E is defined by E = diag[δi,j]. Using this interpretation of vec[Md]

we are ready to state our result.

Theorem 19. (Hitting times of an irreducible Markov chain): Consider a Markov

chain with an irreducible transition matrix P ∈ Rn×n, then the following properties

hold:

(i) the hitting time of the Markov chain is given by

H(P ) = (π⊗π)T vec[M ], where

vec[M ] = (In2 − (In⊗P )(In2 − E))−11n2 , and
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(ii) the pairwise hitting time between nodes h and k, denoted mh,k, of the Markov

chain is given by

mh,k = vec[[Ih,ki,j ]]T vec[M ].

Proof. First notice that by rearranging (3.4) and substitutingE vec[M ] for vec[Md]

gives that

(In2 − (In⊗P )(In2 − E)) vec[M ] = 1n2 . (3.6)

From (3.2) we know that H = (π⊗π) vec[M ], therefore it only remains to show

that (In2−In⊗P (In2−E)) is in fact invertible. First, recall from (3.1) that In⊗P

results in the block diagonal matrix, whose diagonal blocks consist of copies of P .

Second, notice that (In2 − E) is simply the identity matrix with some diagonal

entries set to zero. It can be easily verified that (In⊗P )(In2 − E) results in the

block diagonal matrix where each block contains the matrix P with one column
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set to zero. For example, for P ∈ R3×3 we have that

(In⊗P )(In2 − E) =



∣∣∣∣∣∣∣∣∣∣∣∣

0 p12 p13

0 p22 p23

0 p32 p33

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

p11 0 p13

p21 0 p23

p31 0 p33

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

p11 p12 0

p21 p22 0

p31 p32 0

∣∣∣∣∣∣∣∣∣∣∣∣



.

Notice that each diagonal block will have at least one column set to zero. Hence,

using Lemma 18, we have that maximum eigenvalue of each block is strictly less

than one in magnitude, and thus
∣∣λmax[(In⊗P )(In2 −E)]

∣∣ < 1. Let λi denote the

eigenvalues of (In⊗P )(In2−E), then since the eigenvalues of (In2−(In⊗P )(In2−

E)) are simply 1− λi and |λi| < 1 for all i ∈ {1, . . . , n2}, this implies the matrix

(In2 − (In⊗P )(In2 − E)) is invertible and vec[M ] is the unique solution to (3.6).

Remark 20. Notice that when the transition matrix P is reducible, the hitting

time H(P ) is infinite (i.e., due to In2−(In⊗P )(In2−E) being singular). In other

words, the hitting time gives a notion of the connectivity of the graph.
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3.2.2 Hitting time for doubly-weighted graphs

Leveraging results from Chapter 2 , Theorem 19 can be easily extended to

account for “travel distances” between nodes. Define the doubly-weighted graph

G = (V , E , P,W ), where W = [ωi,j] is the weight matrix with the properties that:

if (i, i) ∈ E , then ωi,i ≥ 0; if (i, j) ∈ E , i 6= j, then ωi,j > 0 ; and if (i, j) /∈ E ,

then ωi,j = 0. Let P = [pi,j] be the transition matrix associated with G with the

property that pi,j ≥ 0 if (i, j) ∈ E and pi,j = 0 otherwise.

Recall that the first passage time is now denoted by

Ti,j(W ) = min
{ k−1∑
n=0

wXn,Xn+1 , for k ≥ 1 | Xk = j given that X0 = i
}
.

Letting mi,j(W ) = E[Ti,j] denote the mean first passage time from i to j, or in ma-

trix notationM = [mi,j(W )], the following matrix relationship can be determined

(see Section 2.3.1 equation (2.6)).

(I − P )M = (P ◦W )1n1Tn − PMd, (3.7)

where P ◦W denotes the Hadamard product between P and W . Similar to before,

applying property (ii) of Lemma 17 to (3.7) gives

(In⊗(In − P )) vec[M] = vec[(P ◦W )1Tn1n]− (In⊗P ) vec[Md].

Given the above expression, the following Lemma follows from Theorem 19.
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Lemma 21. (hitting time and pairwise hitting times of a doubly-weighted graph):

Given the doubly-weighted graph G = (V , E , P,W ), the following properties hold:

(i) the weighted hitting time HW (P ) of the Markov chain is given by

HW (P ) = (π⊗π)T vec[M], where

vec[M] = (In2 − (In⊗P )(In2 − E))−1 vec[(P ◦W )1Tn1n], and

(ii) the pairwise hitting time between nodes h and k, denoted mh,k(W ), of the

Markov chain is given by

mh,k(W ) = vec[[Ih,ki,j ]]T vec[M].

Now that the single random walker case has been explored in detail, we explore

the case of multiple random-walkers in the following section.

3.3 Group hitting time of multiple Markov chains

In the following sections, we will expand on the single agent hitting time to

the N -agent group hitting time. To build intuition, we initially assume that every

agent can reach all nodes in the graph, and then move to the case where each

agent only needs to have access to a subset of nodes in the graph.
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3.3.1 Random-walkers covering the full graph

Consider h ∈ {1, . . . , N} connected undirected weighted graphs G(h) = (V , E(h), P (h))

with same node sets V := {1, . . . , n} and different edge sets E(h) ⊂ V × V with

corresponding transition matrices P (h) = [p
(h)
i,j ] for h ∈ {1, . . . , N} satisfying the

property p
(h)
i,j ≥ 0 if (i, j) ∈ E(h) and p

(h)
i,j = 0 otherwise. As before, each matrix

P (h) describes a Markov chain on the graph.

Let X
(1)
t , X

(2)
t , . . . , X

(N)
t ∈ {1, . . . , n} denote the location of N random walkers

at time t ∈ {0, 1, 2, . . . }. For any N + 1 nodes i1, . . . , iN , j ∈ {1, . . . , n}, the

first passage time from any ih, h ∈ {1, . . . , N} to j, denoted by Ti1...iN ,j, is the

first time that any random walker reaches node j, when starting from nodes ih,

h ∈ {1, . . . , N}. More formally,

Ti1...iN ,j = min{t ≥ 1 | For h ∈ {1, . . . , N}, any X
(h)
t = j given that X

(h)
0 = ih}.

(3.8)

With this definition, we are ready to state our first result for the N -random-walker

system.

Lemma 22. (Recursive formulation of first passage time for multiple random-

walkers): Let mi1...iN ,j = E[Ti1...iN ,j] denote the first passage time from any ih,

h ∈ {1, . . . , N} to j. Also, let P (h) be the transition matrix associated with G(h),
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then

mi1...iN ,j = 1 +
∑

k1,...,kN 6=j

mk1...kN ,jp
(1)
i1,k1

. . . p
(N)
iN ,kN

,

or, in matrix notation,

M = 1nN 1Tn + (P (1)⊗ · · ·⊗P (N))M − (P (1)⊗ · · ·⊗P (N))Md, (3.9)

where M = [mi1...iN ,j] and Md = [δi1...iN ,jmi1...iN ,j].

Proof. For clarity, we first study the 2-agent case and then generalize. By defini-

tion, the 2-agent first passage time satisfies the recursive formula

Ti1i2,j =


1, with probability p

(1)
i1,j

+ p
(2)
i2,j
− p(1)

i1,j
p

(2)
i2,j
,

Tk1k2,j + 1, with probability p
(1)
i1,k1

p
(2)
i2,k2

such that k1, k2 6= j.

Taking the expectation we have that

E[Ti1i2,j] = p
(1)
i1,j

+ p
(2)
i2,j
− p(1)

i1,j
p

(2)
i2,j

+
∑

k1,k2 6=j

(E[Tk1k2,j] + 1)p
(1)
i1,k1

p
(2)
i2,k2

= p
(1)
i1,j

+ p
(2)
i2,j
− p(1)

i1,j
p

(2)
i2,j

+
∑

k1,k2 6=j

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

+
∑

k1,k2 6=j

p
(1)
i1,k1

p
(2)
i2,k2

.

(3.10)
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Utilizing the row-stochastic property of P (1) and P (2) expand (−p(1)
i1,j
p

(2)
i2,j

) above

to get

−p(1)
i1,j
p

(2)
i2,j

= −(1−
∑
k1 6=j

p
(1)
i1,k1

)(1−
∑
k2 6=j

p
(2)
i2,k2

)

= −1 +
∑
k1 6=j

p
(1)
i1,k1

+
∑
k2 6=j

p
(2)
i2,k2
− (
∑
k1 6=j

p
(1)
i1,k1

)(
∑
k2 6=j

p
(2)
i2,k2

)

= −1 +
∑
k1 6=j

p
(1)
i1,k1

+
∑
k2 6=j

p
(2)
i2,k2
−
∑

k1,k2 6=j

p
(1)
i1,k1

p
(2)
i2,k2

,

substituting this back into (3.10) gives the result

mi1i2,j = 1 +
∑

k1,k2 6=j

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

,

or, in matrix notation,

M = 1n21T2 + (P (1)⊗P (2))M − (P (1)⊗P (2))Md,

where M = [mi1i2,j] and Md = [δi1i2,jmi1i2,j].

Similar to the 2-agent case, theN -agent first passage time satisfies the recursive

formula

Ti1...iN ,j =


1, with probability 1− (1− p(1)

i1,j
)(1− p(2)

i2,j
) . . . (1− p(N)

iN ,j
),

Tk1...kN ,j + 1, with probability p
(1)
i1,k1

p
(2)
i2,k2

. . . p
(N)
iN ,kN

such that k1, . . . , kN 6= j.

Similar to before, we take expectations and utilize the row-stochastic properties

of each P (i) to reach the result.
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Given the formulation for the N -agent first passage time matrix we can define

a quantity similar to the mean first passage time given by (3.2). In order to

do this, we first need to define the frequency of being at any given node in the

graph. This quantity should take into account the probability of being at one node

instead of another in the limit of the random walks. Since the random walks are

evolving in parallel, the relative frequency of being at a specific node is simply the

average of the N random walkers visit frequency at that node. More explicitly,

πave =
∑N

h=1(π(h))/N . Then, similar to the single agent case, the N-agent mean

first passage time from start nodes ih, h ∈ {1, . . . , N}, denoted hi1...iN , is given by

hi1...iN =
n∑
j=1

mi1...iN ,jπave,j.

Therefore, the average time to go from any set of N nodes to a single node in a

graph is given by

HN =
n∑

i1=1

π
(1)
i1
· · ·

n∑
iN=1

π
(N)
iN

n∑
j=1

mi1...iN ,jπave,j

= (π(1)⊗ · · ·⊗π(N))Mπave

= (πave⊗π(1)⊗ · · ·⊗π(N)) vec[M ],

where we denote HN as being the N -agent group hitting time. It is clear the group

hitting time can be written as the function P (1)×· · ·×P (N) 7→ HN(P (1), . . . , P (N)),

but to ease notation we simply write HN .

Given the definition of HN we are now ready to state our next result.
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Theorem 23. (Group hitting time for irreducible Markov chains): Consider N

multiple Markov chains, each with an irreducible transition matrix P (h) ∈ Rn×n.

Let πave = (
∑N

h=1 π
(h))/N , and let E ∈ RnN+1×nN+1

be the diagonal matrix which

satisfies the equality E vec[M ] = vec[Md]. Then the following properties hold:

(i) the group hitting time of the Markov chain is given by

HN = (πave⊗π(1)⊗ · · ·⊗π(N))T vec[M ], where

vec[M ] = (InN+1 − (In⊗P (1)⊗ · · ·⊗P (N))(InN+1 − E))−11nN+1 , and

(3.11)

(ii) the hitting time between nodes h1, . . . , hN and k, denoted mh1...hN ,k, of the

Markov chain is given by

mh1...hN ,k = vec[[Ih1...hN ,ki1...iN ,j
]]T vec[M ].

Proof. Letting P = P (1)⊗ · · ·⊗P (N), notice that (3.9) can be written in the

vectorized form

vec[M ] = 1nN+1 + (In⊗P ) vec[M ]− (In⊗P ) vec[Md].

Rearranging terms and substituting E vec[M ] for vec[Md] gives

(InN+1 − (In⊗P )(InN+1 − E)) vec[M ] = 1nN+1 . (3.12)
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To ease the complexity of our notation, we move forward by looking at the

2-agent case and then generalizing from there. For the two agent case with P =

P (1)⊗P (2) the system (3.12) becomes

(In3 − (In⊗P )(In3 − E)) vec[M ] = 1n3 ,

indicating a unique solution exists if (In3 − (In⊗P )(In3 − E)) is invertible. Let

the eigenvalues λ
(1)
i and λ

(2)
i be associated with transition matrices P (1) and P (2),

respectively. Then, from property (iii) of Lemma 17 the eigenvalues of P (1)⊗P (2)

are λ
(1)
j λ

(2)
k for j, k ∈ {1, . . . , n}. This means, when each P (i) is periodic, the

Kronecker product can results in a Markov chain which has multiple eigenvalues

at 1, making this chain reducible. Therefore, we must show that irreducible blocks

can be constructed that allow the application of Lemma 18 as before. As before

we require that (In⊗P )(In3 − E) has λmax < 1. Recall that In⊗P is a block

diagonal matrix consisting of copies of P . In each block, different columns of P

are set to zero when multiplied by (In3−E), however, unlike the single agent case

(Theorem 19), now multiple columns are set to zero in each block by definition of

E. Therefore, we need only show that in every block, each irreducible component

of P has at least one column set to zero when multiplied by (In3 − E). Thus, we

first examine the structure of P . Since P = P (1)⊗P (2) is reducible we can apply

a series of permutation matrices S(i) for i ∈ {1, . . . ,m} to P ([60, Chapter 8.3])
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such that

P̄ =



A(1) ∗ . . . ∗

0 A(2) . . .
...

...
. . . . . . ∗

0 . . . 0 A(k)


. (3.13)

Where P̄ = SPST with permutations S = (S(m)) . . . (S(1)), and each A(i) is ir-

reducible. Since P is row-stochastic then each irreducible component is either

sub-stochastic (ρ[A(i)] < 1) or stochastic (ρ[A(i)] = 1). Since we need only worry

about the stochastic A(i), let’s denote B ∈ Rr×r as a irreducible stochastic matrix

A(i) ∈ Rr×r in (3.13). For B irreducible, P̄ has the form

P̄ =



A(1) ∗ . . . . . . . . . ∗

0
. . . . . . . . . . . .

...

...
. . . B 0 . . . 0

...
. . . . . . A(l) . . . ∗

...
. . . . . . . . . . . .

...

0 . . . . . . . . . 0 A(k)



.

Notice from the definition of vec[M ] and the block diagonal structure of (In⊗P ),

that the j-th block in (In⊗P ) corresponds to mean first passage times, mi1i2,j,

to node j. Since a permutation matrix simply acts as a relabeling of elements,

assume without a loss of generality, that the elements associated with B vary from
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i1, i2 ∈ {1, . . . , r}. Therefore, the equations associated with B have the form

mi1i2,j = 1+
∑
k1,k2

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2
−
∑
k1
k2 6=j

mjk2,jp
(1)
i1,j
p

(2)
i2,k2

−
∑
k2
k1 6=j

mk1j,jp
(1)
i1,k1

p
(2)
i2,j
−mjj,jp

(1)
i1,j
p

(2)
i2,j

= 1+
∑

k1,k2 6=j

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

,

where the subtracted terms in the expression above are associated with entries of

E (i.e., to the columns of P that are set to zero). If all subtracted terms are zero for

each mi1i2,j, i1, i2 ∈ {1, . . . , r}, this implies that there exists no i1, i2 ∈ {1, . . . , r}

such that p
(1)
i1j
> 0 or p

(2)
i2j
> 0; that can only be true if there exists no path to node

j from any node i1 or i2, which is impossible by definition of each P (i). Therefore,

for each irreducible row-stochastic component of P̄ , there is at least one non-zero

element E such that a column of that component is set to zero, allowing us to

apply Lemma 18.

Now, proceeding to the N -agent case, similar to the 2 agent case, we require

that a unique solution exists for the N agent case if (InN+1− (In⊗P )(InN+1−E))

from (3.12) is invertible. For this to hold true it must be that (In⊗P )(InN+1−E)

has |λmax| < 1. Similar to before, given that In⊗P and hence (In⊗P )(InN+1−E)

is a block diagonal matrix, we need only show that each block has |λmax| < 1.

The proof continues a parallel line of argument to the 2-agent case shown in
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Theorem 23. More explicitly, each P can be deconstructed into block upper

triangular matrix composed of square matrices along the diagonal, each of which

is irreducible. Since P is row-stochastic, then each irreducible block is either

row-stochastic or sub-stochastic. If the irreducible block is row-stochastic then

a column of that block is necessarily set to zero due to the connectivity of the

graph, and hence by Lemma 18 has |λmax| < 1. If the irreducible block is not

row-stochastic then it is necessarily sub-stochastic, and hence |λmax| < 1.

Given this representation of the N -agent group hitting time, a natural question

is whether one can determine a simplified expression for this quantity which is a

function of the eigenvalues of P (h), similar to the expression in Theorem 1. As

mentioned earlier, proof of that theorem relies on the ability to extort knowledge

of Md. Consider for example the 2-agent case; if we try to find the entries of Md in

a similar fashion to the single agent case by pre-multiplying (3.9) with π(1)⊗π(2)

we have that

1Tn = (π(1)⊗π(2))TMd.

This is a system of n equations and 2n−1 unknowns, and thus the solution of Md

is under determined. Therefore, even though one may be able to express the group

hitting time as a function of the eigenvalues, it is currently not well understood

how.
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3.3.2 Random-walkers covering subgraphs

The group hitting time as stated thus far is of interest in its own right. How-

ever, in many applications it is often desirable to have a notion of the same quan-

tity when multiple agents don’t have access to the entire graph. In the following

section we tackle this problem by utilizing reducible graphs. We will leverage the

framework of the N -agent group hitting time for irreducible Markov chains in

order to generalize our results to reducible Markov chains.

Consider h ∈ {1, . . . , N} undirected irreducible weighted graphs G(h) = (V(h), E(h), P (h))

with node sets V(h) ⊂ {1, . . . , n} such that ∪Nh=1 V(h) = {1, . . . , n}. The edge sets

satisfy E(h) ⊂ V(h)×V(h) and have corresponding weight matrices P (h) = [p
(h)
i,j ] for

h ∈ {1, . . . , N} with the property p
(h)
i,j ≥ 0 if (i, j) ∈ E(h) and p

(h)
i,j = 0 otherwise.

As before, each matrix P (h) describes a Markov chain on the graph.

LetX
(h)
t ∈ V(h) denote the location ofN random walkers at time t ∈ {0, 1, 2, . . . }.

For any N + 1 nodes ih ∈ V(h) and j ∈ {1, . . . , n}, the first passage time from any

ih, h ∈ {1, . . . , N} to j, denoted by Ti1...iN ,j, is the first time that any random

walker reaches node j, when starting from nodes ih, h ∈ {1, . . . , N} and is given

by

Ti1...iN ,j = min{t ≥ 1 | For h ∈ {1, . . . , N}, any X
(h)
t = j given that X

(h)
0 = ih}.
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Similar to case where each agent has access to the entire graph, we have the

following Lemma, whose proof is equivalent to that of Lemma 22.

Lemma 24. (Recursive formulation of first passage time for multiple random-

walkers over subgraphs): Consider the graphs G(h) = (V(h), E(h), P (h)) satisfying

the property ∪Nh=1 V(h) = {1, . . . , n} and let P (h) be the transition matrix associated

with G(h). Also, let |V (h)| denote the cardinality of each node set and let mi1i...iN ,j =

E[Ti1...iN ,j] denote the first passage time from any ih ∈ V(h) to j ∈ {1, . . . , n}, then

mi1...iN ,j = 1 +
∑

k1,...,kN 6=j

mk1...kN ,jp
(1)
i1,k1

. . . p
(N)
iN ,kN

,

or, in matrix notation,

M = 1α1Tn + (P (1)⊗ · · ·⊗P (N))M − (P (1)⊗ · · ·⊗P (N))Md, (3.14)

where α =
∏N

h=1 |V (h)|, M = [mi1...iN ,j] and Md = [δi1...iN ,jmi1...iN ,j].

Proof. The formulation of this system follows in a similar fashion the N agent

case, with the exception that now, if node ih has the property that ih /∈ V (h) ⊂

{1, . . . , n} then the corresponding mi1...iN ,j value is zero.

Given the formulation for the N -agent first passage time matrix over multiple

subgraphs, we now determine the average first visit time to any node in the full

graph. Like before, first we calculate the relative frequency of being at any given

node. Unlike before, however, each agent operates over a subset of the nodes in
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the graph. Let π(h) be the stationary distribution associated with Markov chain

P (h) ∈ Rr×r, where r ≤ n, and for convenience assume that V (h) ⊂ {1, . . . , n}

is an ordered ascending set (i.e., V h = {3, 9, 20}). Then, let π̃(h) be the vector

whose entries are given by π̃
(h)

V
(h)
i

= π
(h)
i for i ∈ {1, . . . , |V (h)|} and π̃

(h)
i = 0

otherwise. In other words, π̃(h) corresponds to the stationary distribution of each

agent over the entire graph, not just its subgraph. Therefore if an agent never

visits a node, its visit frequency to that node is 0. Given the padded vector π̃(h),

we write the average visit frequency as π̃ave =
∑N

h=1(π̃(h))/N . Notice that this

interpretation of average visit frequency takes into account that multiple Markov

chains are running in parallel.

Now, the N-agent mean first passage time from start nodes ih, h ∈ {1, . . . , N},

denoted hi1...iN , is given by

hi1...iN =
n∑
j=1

mi1...iN ,jπ̃ave,j.

Therefore, the average time to go from any set of N nodes to a single node in a

graph is given by

HN =

|V (1)|∑
i1=1

π
(1)
i1
· · ·
|V (N)|∑
iN=1

π
(N)
iN

n∑
j=1

mi1...iN ,jπ̃ave,j

= (π(1)⊗ · · ·⊗π(N))M π̃ave

= (π̃ave⊗π(1)⊗ · · ·⊗π(N)) vec[M ],

(3.15)

where as before, we denote HN as the N -agent group hitting time.
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We are now ready to state our main result.

Theorem 25. (Group hitting time for irreducible subgraphs): Consider the N

graphs G(h) = (V(h), E(h), P (h)) satisfying the property ∪Nh=1 V(h) = {1, . . . , n} and

let P (h) ∈ R|V (h)|×|V (h)| be the irreducible transition matrices associated with G(h).

Also, let π̃ave = (
∑N

i=1 π̃
(i))/N , and let E ∈ Rαn×αn be the diagonal matrix which

satisfies the equality E vec[M ] = vec[Md]. Then the following hold:

(i) the group hitting time of the Markov chain is given by

HN = (π̃ave⊗π(1)⊗ · · ·⊗π(N))T vec[M ], where

vec[M ] = (Iαn − (In⊗P (1)⊗ · · ·⊗P (N))(Iαn − E))−11αn,

(3.16)

and α =
∏N

h=1 |V (h)|, and

(ii) the hitting time between nodes h1, . . . , hN and k, denoted mh1...hN ,k, of the

Markov chain is given by

mh1...hN ,k = vec[[Ih1...hN ,ki1...iN ,j
]]T vec[M ].

Proof. The proof of this theorem follows the exact same logic as the proof of

Theorem 23

This theorem immediately leads to the following corollary.

Corollary 26. (Group hitting time for reducible Markov chains): Consider N

multiple Markov chains, each with a transition matrix P (h) ∈ Rn×n satisfying
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the property that if P (h) is reducible, then there exists a permutation matrix S(i)

such that (S(h))TP (h)S(h) is block diagonal with exactly one irreducible component.

Let πave = (
∑N

h=1 π
(h))/N , with the property that πave,j 6= 0 for all j. Also, let

E ∈ RnN+1×nN+1
be the diagonal matrix which satisfies the equality E vec[M ] =

vec[Md]. Then the following properties hold:

(i) the group hitting time of the Markov chain is given by

HN = (πave⊗π(1)⊗ · · ·⊗π(N))T vec[M ], where

vec[M ] = (InN+1 − (In⊗P (1)⊗ · · ·⊗P (N))(InN+1 − E))−11nN+1 , and

(ii) the hitting time between nodes h1, . . . , hN and k, denoted mh1...hN ,k, of the

Markov chain is given by

mh1...hN ,k = vec[[Ih1...hN ,ki1...iN ,j
]]T vec[M ].

Proof. First, note that the Kronecker product of two block diagonal matrices

generates a block diagonal matrix. Second, notice from Definition 17 property (i)

that

(S(1))TP (i)S(1)⊗ · · ·⊗(S(N))TP (i)S(N) =

((S(1))T ⊗ · · ·⊗(S(N))T )(P (1)⊗ · · ·⊗P (N))(S(1)⊗ · · ·⊗S(N)),

and so there exists a permutation matrix (S(1)⊗ · · ·⊗S(N)) that makes (P (1)⊗ · · ·⊗P (N))

block diagonal. Since exactly one block from each matrix is not exactly zero, the
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same is true of (S(1))TP (i)S(1)⊗ · · ·⊗(S(N))TP (i)S(N). This block corresponds to

matrix P in Theorem 25. The rest of the proof follows by noticing that each node

in the graph is reached if and only if πave, j 6= 0 for all j. This is due to the

fact that π
(h)
k 6= 0 when k denotes a persistent reachable node in the graph, and

π
(h)
k = 0 otherwise.

3.3.3 Computational Complexity

Due to the extensive use of Kronecker products, it is important to verify the

memory and computational costs of the group hitting time. Looking at equa-

tion (3.11), we can assert that the group hitting time is affected by the curse

of dimensionality; with n nodes and N agents, the matrix In⊗P (1)⊗ · · ·⊗P (N)

contains n2N+2 elements. For example, given n = 100 nodes and N = 10 agents

the size of that matrix is 1044 × 1044. The most intense operation is the in-

version of In⊗P (1)⊗ · · ·⊗P (N), which requires a cost of O(k3) where k is the

number of elements in the matrix [15], thus in our case this becomes O(n6N+6).

Noticing that the first Kronecker product in (3.12) is between the identity matrix

and the P = P (1)⊗ · · ·⊗P (N) matrix, this implies In⊗P is block diagonal and

therefore we can store and invert single blocks, reducing memory cost to O(n2N)

and inversion cost to O(n6N). For the more general hitting time formula de-

scribed by equation (3.15), the complexity can be further reduced. Given (3.15)
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describes random-walks on subgraphs, then |V (h)| = nβh for some βh ∈ (0, 1],

and therefore the number of elements in the matrix Iαn⊗P (1)⊗ · · ·⊗P (N) is

(
∏N

h=1 β
2
h)n

2N+2. This leads to a computational complexity for the inversion equal

to O
(

(
∏N

h=1 β
6
h)n

6N+6
)

. Similar to before, we can take advantage of the fact

that the first Kronecker product in Iαn⊗P (1)⊗ · · ·⊗P (N) is the identity matrix,

reducing memory and inversion costs to (
∏N

h=1 β
2
h)n

2N and O
(

(
∏N

h=1 β
6
h)n

6N
)

,

respectively.

In special circumstances, the above computational complexity can be dramati-

cally reduced. This happens when the intersection between a subgraph of a single

agent, does not intersect with any other agents’ subgraph. In this case, the dis-

joint agent’s hitting time over its subgraph can be calculated independently of the

group hitting time of the other N − 1 agents. The single agent hitting time can

then be averaged with the N−1 agent group hitting time to generate the N agent

group hitting time. In the case where every agent owns its own disjoint region,

the computational complexity scales to O(
∑N

h=1 |V (h)|12), or to O(
∑N

h=1 |V (h)|6)

when exploiting the Kronecker product between the identity matrix and a tran-

sition matrix as was done previously. It is clear that uniformly partitioning the

graph between agents, or partitioning as close to uniform as is possible, we get

the lowest computational complexity.
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In the next section we compute an optimized group hitting time for various

graph topologies.

3.4 Numerical optimization of the group hitting

time

In the following sections we study the transition matrices that arise from the

numerical optimization of the group hitting time. In particular, we look at the

minimization of (3.16) described by Problem 6 below. The problem is numerically

solved using a sequential quadratic programming solver as implemented by MAT-

LAB’s fmincon optimization algorithm, details of which are discussed in section

3.4.3.

Problem 6. (Group hitting time minimization): Let H
(i)
1 denote the single agent

hitting time for random-walker i ∈ {1, . . . , N}. Given the stationary distributions

π1,π2, . . . ,πN and Graph G with vertex set V and edge set E, find the transitions
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matrices P (1), P (2), . . . , P (N) solving:

minimize (π̃ave⊗π)T (Iαn − (In⊗(P (1)⊗P (2) · · · ⊗P (n)))(Iαn − E))−11αn

subject to P (i)1|V (i)| = 1|V (i)|, for each i ∈ {1, . . . , N}

(π(i))TP (i) = (π(i))T , for each i ∈ {1, . . . , N}

0 ≤ p
(i)
h,k ≤ 1, for each (h, k) ∈ E and i ∈ {1, . . . , N}

p
(i)
h,k = 0, for each (h, k) /∈ E and i ∈ {1, . . . , N}

P (i) is irreducible for i ∈ {1, . . . , N}.

The constraints in Problem 6, including the final one on the irreducibility of

P (i), guarantee that the conditions of Theorem 25 are satisfied. In practice, it is

hard to enforce the irreducibility constraint during each step of an iterative opti-

mization algorithm; our approach is to relax the constraint and verify a posteriori

that the iteratively-computed solution satisfies the irreducibility constraint. In all

the computational settings we considered, we never encountered a solution that

violated the irreducibility constraint.

In order to build intuition on the Markov chain combinations that generate

optimal group hitting time values, we present numerical results for the ring graphs,

complete graph and lattice graph shown in Figure 3.1. We look at two cases in

particular; one in which every random walker is required to visit all nodes in

the graph, and one in which random walkers are allowed to visit subgraphs. For

simplicity, we always restrict the stationary distribution π̃ave to be uniform.
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Figure 3.1: From left to right, example of a 5 node ring, 5 node complete, 9
node lattice and 4 node ring graph with self-loops.

3.4.1 Random-walkers covering the full graph

In the following we study which Markov chains generate optimal group hitting

time values when every random walker must visit every node in the graph. Sur-

prisingly in fact, we will observe the random walks that generate optimal group

hitting times can be different. In each example we define individual agent’s sta-

tionary distribution as the uniform distribution. It is easily verified that with this

choice of stationary distribution, the condition π̃ave,j = π̃ave,k for all j, k is always

met no matter how many agents are added to the system.

We begin with the ring graph. For a singe random walker, the transition

matrix which generates the minimal hitting time is simply the one describing a

cycle (i.e, moving to a neighboring node with probability 1), and for the 5 node

ring graph shown in Figure 3.1. This is as expected as a cycle describes the fastest

time to reach any node from any other node. It turns out, for the multi-agent case

the optimal group hitting time occurs when every agent performs its own cycle; an
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example of this for three random-walkers is shown in Figure 3.2. Moreover, since

the group hitting time averages over all potential initial conditions, the direction

of cycles does not matter. In other words, one agent can go clockwise while the

other goes counter-clockwise. A summary of the optimal group and individual

random walker hitting times on a ring graph shown in Figure 3.1 is given in Table

3.1.

Figure 3.2: Probability to move along each edge of a ring graph (left) and
complete graph (right) for 3 random walkers. In the case above, the probability
to move along each edge is 1 which indicates a cycle. The group hitting time for
the shown trajectories for both ring and complete graph are H3 = 1.8

Random Walker(s) Red Blue Green HN

One 3.0 – – 3
Two 3.0 3.0 – 2.2

Three 3.0 3.0 3.0 1.8

Table 3.1: Group hitting time values for random walks shown in Figure 3.3. The
last column indicates the group hitting time for each case whereas the middle
three columns indicate each random-walkers individual hitting time. Surprisingly,
the ring and complete graph exhibit equivalent hitting time results.

Given the results for a ring graph, one can imply what will happen for the

complete graph for a single agent. As it happens, since a cycle exists, this is also
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the optimal strategy for the complete graph for both the single and multi-random

walker cases. Again direction of cycle does not matter as is seen for the three

agent case shown in Figure 3.2. A summary of the optimal group and individual

random walker hitting times on a complete graph shown in Figure 3.1 is equivalent

to the ring graph and thus is given in Table 3.1.

Next, we look at the lattice graph. Figure 3.3 shows the optimal trajectories

found ranging from a single random walker up to 3 random walkers. It is inter-

esting to note that individual agents trajectories are quite different unlike for the

ring and complete graphs. This can be more easily seen by observing each agent’s

individual hitting time as shown in Table 3.2. What is surprising is that the tran-

sition matrices that generate the optimal group hitting time for the multi-random

waker cases are in fact sub-optimal individually. Interestingly enough, if one sub-

stitutes the optimal single agent transition matrix from the single random walker

case in for any/all of the multi-waker transition matrices, the group hitting time

becomes worse for those multi-waker cases.

Random Walker(s) Red Blue Green HN

One 6.8 – – 6.8
Two 7.7 10.5 – 4.1

Three 7.0 15.9 16.9 2.9

Table 3.2: Group hitting time values for random walks shown in Figure 3.3. The
last column indicates the group hitting time for each case whereas the middle
three columns indicate each random-walkers individual hitting time.
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Figure 3.3: Probability to move along each edge of a lattice graph for 1 random
walker (left), 2 random walkers (middle) and 3 random walkers (right). In each
graph, the opacity of a line indicates the probability to move along an edge.

Thus far we have seen that repeating multiple copies of the fastest random

walk is not always the most optimal. In fact, through simulation we’ve seen that

repeating random walks is only optimal when a cycle is the optimal single agent

strategy. In the following section we explore in more detail how the optimal group

hitting time is affected when working with sub graphs.

3.4.2 Random-walkers covering subgraphs

In the following section we build intuition on how the group hitting time is

affected over subgraphs. We will observe that working with subgraphs sometimes

improves the group hitting time, but can also cause the group hitting time to

worsen. We look at two cases in particular, when the subgraphs overlap and

when they do not (i.e., the nodes are partitioned amongst random walkers). The

subgraphs are not necessarily allocated in any optimal way, they are simply chosen

so that the stationary distribution is uniform over all nodes. For the simple
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examples shown, the stationary distributions for each random walker are defined

as π
(i)
j = π̃ave,j/Nj where Nj denotes the number of agents who share node j. For

example, π
(i)
j = π̃ave,j if node j is only owned by one agent. For comparison with

results presented in the previous section, we work with the ring and lattice graphs

shown in Figure 3.1.

The case when subgraphs overlap is studied for the 5 node ring and 9 node

lattice graph, the results of which can be seen in Figure 3.4. For the ring graph

shown, the optimal group hitting time is H2 = 2.5 in contrast to H2 = 2.2 from full

graph case (Table 3.1). For the lattice graph, the group hitting time is H2 = 3.6

in contrast to H2 = 4.1 (Table 3.2). Therefore, from these two examples, we see

that each agent covering less nodes is not always indicative of lower group hitting

time.

Figure 3.4: Probability to move along each edge of a 5 node ring graph with two
agents (left), and 9 node lattice graph with two agents (right). In each graph, the
opacity of a line indicates the probability to move along an edge.

The case when subgraphs are partitioned is analyzed for the 9 node lattice and

4 node ring graph shown in Figure 3.5. For the ring graph we see that the group
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hitting time is H2 = 1.5 whereas for the case where each agent covers the whole

graph H2 = 1.9; we do not show the figure for the latter case, however, recall that

the optimal full graph trajectory is simply a cyclic tour for each agent. Now, for

the partitioned lattice graph, the group hitting time is H3 = 3.7 in contrast to

H3 = 2.9 (Table 3.2). As before, we see that each agent covering less nodes, which

are partitioned, is not indicative or lower group hitting time.

Figure 3.5: Probability to move along each edge of a 4 node ring graph with two
agents (left), and 9 node lattice graph with three agents (right). In each graph,
the opacity of a line indicates the probability to move along an edge.

Clearly, the small sample study presented here leaves open many future avenues

that can be explored when attempting to optimize the group hitting time. For

example, notice that one can not always partition a graph and achieve an arbitrary

π̃ave. Also, it’s unclear what happens when you allow π̃ave and therefore individual

stationary distributions to vary. We leave these, among other questions to future

work.
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3.4.3 Implementation Notes

In order to generate repeatable and accurate results, we utilize a sequential

quadratic programming (SQP) solver as implemented in MATLAB’s fmincon op-

timization algorithm. Several other solvers are available, however, the SQP solver

has the most desirable mathematical properties. More specifically, with the SQP

solver, given that the maximum number of iterations is not reached, the minimiza-

tion algorithm stops when the first-order necessary Karush-Kuhn-Tucker condi-

tions are approximately satisfied; conditions are satisfied in the norm-sense with a

tolerance of 10−6. For all results used, the first-order optimality stopping criteria

were satisfied.

The group hitting time results presented were taken as the minimum of 1000

optimization runs, each starting from a random initial conditions. Surprisingly,

with the exception of the lattice, every initial condition converged to the minimum

group hitting time value (within a 10−6 to 10−11 tolerance). For the two and three

agent results presented in Table 3.2, we found that solutions converged to the

minimum group hitting time value within a 10−2 tolerance for 96 and 93 percent

of samples, respectively. Therefore, we claim with reasonable confidence that a

local minimum for each group hitting time value was reached, if not a global

minimum. On a desktop computer with an Intel i7-4790 processor and 8 Gb of

RAM running MATLAB 2014b, the lattice with 9 nodes and 3 agents shown in
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Figure 3.2 took the longest time to run, averaging 10 minutes per run, whereas all

other simulations took less than a minute to fractions of a second per case run.

3.5 Summary

We have studied the hitting time of multiple random walkers on a graph and

have presented the first formulation of this quantity, which we denote the group

hitting time. Moreover, we have presented the first closed form solution for cal-

culating the first hitting time between any specified set of nodes in a graph for

both the single and multi-agent cases. Finally, we posed the group hitting time

as an optimization problem and provided detailed simulation results which help

to build insight into the transition matrices that minimize this quantity.

This concludes our discussion of the hitting time. In the next chapter we begin

our discussion on multi-agent coverage control.
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Chapter 4

Partitioning with
One-to-Base-Station
Communication

In this chapter and the following we discuss problems related to partitioning

and coverage control. The chapter is organized as follows. In Section 4.1 we setup

preliminary notation, introduce the concept of partitions and coverings, introduce

the one-to-base station network model and present our problem in technical detail.

In Section 4.2 we introduce some novel cost functions and present the solution

to our problem. In Section 4.3 we discuss implementation issues and present

simulation results. In the final section we summarize our findings.
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4.1 Preliminaries and problem statement

The one-to-base-station communication model studied in this paper requires

that, in the design of coverage algorithms, we adopt overlapping coverings instead

of partitions. In this Section we translate concepts used in partitioning of contin-

uous environments [13] to coverings on graphs. In our notation, R>0, R≥0, and

Z≥0 respectively denote the sets of positive, nonnegative and non-negative integer

numbers. Given a set A, |A| denotes the number of elements in A. Given sets

A,B, their union and intersections are denoted as A∪B and A∩B, respectively,

and their difference is A \B = {a ∈ A | a /∈ B}.

4.1.1 Graphs and Distances

Let the finite set Q be a set of points in a continuous environment. These

points can represent locations or small areas of interest. They are assumed to

be the nodes of an (undirected) weighted graph G(Q) = (Q, E ,Ω) with edge set

E ⊂ Q×Q and, with a slight abuse of notation, weight matrix Ω = [Ωi,j] with the

property that Ωi,j = Ωj,i > 0 if (i, j) ∈ E and Ωi,j = 0 otherwise. We assume that

G(Q) is connected and think of the Ωi,j edge weights as travel distances between

nearby nodes.
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In any weighted graph G(Q) there is a standard notion of distance between

vertices defined as follows. A path in G is an ordered sequence of vertices such

that any consecutive pair of vertices is an edge of G (i.e., if (i, j) ∈ E). The weight

of a path is the sum of the weights of the edges in the path. Given vertices h

and k in G, the distance between h and k, denoted dG(h, k), is the weight of the

lowest weight path between them, or +∞ if there is no path. If G is connected,

then the distance between any two vertices is finite. By convention, dG(h, k) = 0

if h = k. Note that by definition of weights Ωi,j that dG(h, k) = dG(k, h), for any

h, k ∈ Q.

4.1.2 Coverings of Graphs

We will be covering Q with n subsets or regions which will each be owned by

an individual agent.

Definition 27 (n-Covering). Given the graph G(Q) = (Q, E ,Ω), we define a

n-covering of Q as a collection P = {Pi}ni=1 of subsets of Q such that:

(i)
⋃n
i=1 Pi = Q;

(ii) Pi 6= ∅ for all i ∈ {1, . . . , n};

Let Covn(Q) to be the set of n-coverings of Q.
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Note that a vertex in Q may belong to multiple subsets in P , i.e., a vertex

may be covered by multiple agents. The above definition is an important change

from prior work [26], which was limited to partitions of Q, defined as follows.

Definition 28 (n-Partition). A n-partition is a n-covering with the additional

property that:

(iii) if i 6= j, then Pi ∩Pj = ∅.

Let Partn(Q) to be the set of n-partitions of Q.

Among the ways of covering Q, there is one which is worth special atten-

tion. Before we state the partition, let us define the vector of weights w :=

{w1, . . . , wn}, such that wi > 0 and
∑n

j=1wi = 1. For brevity, we denote

W = {w ∈ Rn
>0 |

∑n
i=1wi = 1}. Then given w ∈ W and a vector of dis-

tinct points c ∈ Qn, the partition P ∈ Partn(Q) is said to be a multiplicatively

weighted Voronoi partition of Q generated by c and weighted by w if, for each

Pi and all k ∈ Pi, we have ci ∈ Pi and 1
wi
dG(k, ci) ≤ 1

wj
dG(k, cj), for j 6= i. The

elements of c are said to be the generators of the Voronoi partition multiplicatively

weighted by w. Note that there can be more than one multiplicatively-weighted

Voronoi partition generated by c and w since how to assign tied vertices is un-

specified. Multiplicatively-weighted Voronoi partition allow us to accommodate

heterogeneous agents. For example, if agent i is faster than another agent j (i.e.,
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wi > wj), it would make sense that agent i should control more territory than

agent j. Multiplicatively-weighted Voronoi partitions are a subset of generalized

Voronoi partitions, which will be discussed in further detail in Chapter 5 From

this point forward we refer to multiplicatively-weighted Voronoi partitions sim-

ply as Voronoi partitions and the vector of weights w is given and fixed. Given

that weights are fixed, for the rest of the paper we refer to a Voronoi partition

generated by c and w simply as a Voronoi partition generated by c.

Given the above, we are now ready to state the one-to-base station network

model.

4.1.3 One-to-Base-Station Robotic Network Model

Given a team of n robotic agents and a central base station, each agent i ∈

{1, . . . , n} is required to have the following basic computation capabilities:

(C1) agent i can identify itself to the base station; and

(C2) agent i has a processor with the ability to store a region Si ⊂ G(Q) and a

center si ∈ Si.

Each i ∈ {1, . . . , n} is assumed to communicate with the base station according to

the asynchronous one-to-base-station communication model described as follows:
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(C3) there exists a finite upper bound ∆ on the time between communications

between i and the base station. For simplicity, we assume no two agents

communicate with the base station at the same time.

The base station must have the following capabilities:

(C4) it can store an arbitrary n-covering of Q, P = {Pi}ni=1, a list of locations

c ∈ Qn and weights w ∈ W ;

(C5) it can perform computations on subgraphs of G(Q); and

(C6) it can store and operate on multiple n-coverings of Q, P = {Pi}ni=1 and a list

of locations c ∈ Qn.

4.1.4 Problem Statement

We are now ready to state our problem of interest.

Given weights w ∈ W assume that, for all t ∈ R≥0, each agent i ∈ {1, . . . , n}

maintains in memory a subset Si(t) of environment Q and a vertex si(t) ∈ Si(t).

Our goal is to iteratively update the covering S(t) = {Si}ni=1 and the centers

s(t) = {si}ni=1 while solving the optimization problem:

min
s∈Qn

min
S∈Covn(Q)

U(s, S), (4.1)

for some cost function U(s, S) subject to the constraint that every node in the

environment Q maintains coverage from some agent, and subject to the constraint
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imposed by the robot network model with asynchronous one-to-base-station com-

munication.

4.2 Proposed Solution

In this section we present our proposed solution to the problem described in

Section4.1.4. We begin by first introducing some useful cost functions and their

properties. Then, we present an algorithm that uses these cost functions and show

that it solves (4.1).

4.2.1 Cost Functions

Let weight function φ : Q→ R>0 be a bounded positive function which assigns

a relative weight to each element of Q. The weight assigned to a node by φ can

be thought of as the ”service time” or importance of that node. The one-center

function H1 gives the cost for a robot to cover a subset A ⊂ Q from a vertex

h ∈ A with relative prioritization given by φ:

H1(h;A) =
∑
k∈A

dG(h, k)φ(k).

This cost function leads us to the following definition.
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Figure 4.1: The left image shows a grid environment whose corresponding graph
representation is shown in the right image. Each cell in the grid represents a
node in the graph and if two cells are adjacent, then there is an unit-weight edge
between those nodes. The black nodes in the graph denote the set of generalized
centroids for the corresponding grid environment.

Definition 29 (Centroid). We define the set of generalized centroids of A ⊂ Q

as the set of vertices in A which minimize H1, i.e.,

C(A) := argmin
h∈A

H1(h;A).

In what follows, we drop the word “generalized” for brevity. Note that the

centroid of a set always belongs to the set. Figure 4.1 shows an illustrative example

of the set C(A) for a simple environment.

With these notions, we are ready to define other useful cost functions. We can

define the multi-center function H : Qn×Covn(Q)→ R≥0 to measure the cost for

n robots to cover a n-covering P from the vertices c ∈ Qn by

H(c, P ) =
n∑
i=1

∑
k∈Pi

1

wi
dG(ci, k)φ(k).

Note that if wi = wj for all i, j, then the multi-center cost function above is

the same as in [26]. Furthermore, we define the minimum cost-to-cover mapping
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Hmin : Qn × Covn(Q)→ R≥0 by

Hmin(c, P ) =
∑
k∈Q

min
i

{
1

wi
dG(ci, k) | k ∈ Pi

}
φ(k).

Note that if P is a partition, then Hmin(c, P ) = H(c, P ) for any c. We aim to

minimize these performance functions with respect to both the covering P and

the vertices c. In the motivational scenario we are considering, each robot will

periodically be asked to perform a task somewhere in its region with tasks located

according to distribution φ. When idle, the robots would position themselves at

the vertices c. By minimizing the coverage cost, the robot team minimizes the

expected distance between a task and the furthest robot which can service the

task.

We are almost ready to introduce a notion of optimal partition, the centroidal

Voronoi partition. Our discussion begins with the following results, which are

direct consequences of the above definitions.

Proposition 30 (Properties of H). Let P ∈ Partn(Q) and c ∈ Qn then the

following properties hold:

(i) If P ′ is a Voronoi partition generated by c, then

H(c, P ′) ≤ H(c, P ).

(ii) Let I ⊂ {1, . . . , n}. If c′ ∈ Qn satisfies c′i ∈ C(Pi) for i ∈ I and c′j = cj for

j 6∈ I, then
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H(c′, P ) ≤ H(c, P )

with a strict inequality if ci /∈ C(Pi) for any i ∈ I.

Proposition 31 (Properties of Hmin). Let P ′ ∈ Partn(Q) be a Voronoi partition

generated by c ∈ Qn, then the following properties hold:

(i) If P ∈ Covn(Q) is a covering such that P ′i ⊆ Pi for all i, then

Hmin(c, P ′) = Hmin(c, P ).

(ii) If P ∈ Partn(Q) is a partition satisfying P i ∩P ′i 3 ci for all i, then

Hmin(c, P ′) ≤ Hmin(c, P ).

(iii) Let I ⊂ {1, . . . , n}. If c′ ∈ Qn satisfies c′i ∈ C(P ′i ) for i ∈ I and c′j = cj for

j 6∈ I, then

Hmin(c′, P ′) ≤ Hmin(c, P ′)

with a strict inequality if ci /∈ C(P ′i ) for any i ∈ I.

Propositions 30 and 31 imply that if P ∈ Partn(Q) and (c, P ) minimizes H

(equivalently Hmin), then ci ∈ C(Pi) for all i and P must be a Voronoi partition

generated by c. This motivates the following definition.
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Figure 4.2: The figure shows two environments with two agents. Each cell
denotes a node in a graph and if two cells are adjacent, then there is a unit-weight
edge between those nodes. The left image shows a Voronoi partition generated by
the two agents. Note that the blue agent is not at its region’s centroid. The right
image is instead a centroidal Voronoi partition.

Definition 32 (Centroidal Voronoi Partition). P ∈ Partn(Q) is a centroidal

Voronoi partition of Q if there exists a c ∈ Qn such that P is a Voronoi partition

generated by c and ci ∈ C(Pi) for all i.

For a given environment Q, a pair made of a centroidal Voronoi partition and

the corresponding vector of centroids is locally optimal in the following sense:

the cost functions H and Hmin cannot be reduced by changing either P or c

independently. Figure 4.2 demonstrates the difference between a Voronoi and

centroidal Voronoi partition.

4.2.2 The One-to-Base Coverage Algorithm

Given the cost function defined by U(s, S) and the One-to-Base Network model

described by (C1)–(C6), we introduce the One-to-Base Coverage Algorithm to

solve the optimization problem (4.1).

One-to-Base Coverage Algorithm
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The base station maintains in memory an n-covering P = {Pi}ni=1, vector of
locations c = (ci)

n
i=1 and normalized weights w = (wi)

n
i=1, while each robot i

maintains in memory a set Si and a vertex si. The base station maintains in

temporary memory n-coverings P = {P i}ni=1 and P = {P i}ni=1, along with vectors
c = (ci)

n
i=1 and c = (ci)

n
i=1 for computational purposes. At t = 0, let P (0) ∈

Covn(Q), S(0) = P (0), and let all ci(0)’s be distinct. Assume that at time
t ∈ R>0, robot i communicates with the base station. Let P+, c+, S+

i , and s+
i

be the values after communication. Then the base station executes the following
actions:

1: update P := P , c := c, P := P , c := c,
2: compute sets

Pi,+ :=

{
x ∈ Q

∣∣∣∣ 1
wi
dG(x, ci) < min

{
1
wj
dG(x, cj)

∣∣ x ∈ Pj, j 6= i
}}

Pi,− :=

{
x ∈ Pi ∩

(
∪i 6=j Pj

) ∣∣∣∣ 1
wi
dG(x, ci) ≥ min

{
1
wj
dG(x, cj)

∣∣ x ∈ Pj, j 6=

i
}}

3: update P i := (Pi\Pi,−)∪Pi,+
4: for k ∈ Pi\c do
5: compute sets

Pi,+ :=

{
x ∈ Q

∣∣∣∣ 1
wi
dG(x, k) < min

{
1
wj
dG(x, cj)

∣∣ x ∈ Pj, j 6= i
}}

Pi,− :=

{
x ∈ Pi ∩

(
∪i 6=j Pj

) ∣∣∣∣ 1
wi
dG(x, k) ≥ min

{
1
wj
dG(x, cj)

∣∣ x ∈ Pj, j 6=
i
}}

6: update P i := (Pi\Pi,−)∪Pi,+
7: update ci := k

8: if U
(
c, P

)
< U

(
c, P

)
then

9: update P i := P i

10: update ci := ci
11: P+

i := P i

12: c+
i := ci

13: tell agent i to set S+
i := P+

i and s+
i = c+

i

105



Chapter 4. Partitioning with One-to-Base-Station Communication

Remark 33 (Constant cost). Given the constant cost function U(c, P ) = α for

α ∈ R, for a set of initial conditions (c, P ), the One-to-Base Coverage Algorithm

produces a Voronoi partition generated by c.

Remark 34 (Full coverage). Notice that the set Pi,+ adds points to an agents

environment from other agent’s territory that are closer to it. Also, notice that

Pi,− only removes points from agent i’s territory if another agent is covering that

territory. Defining the sets in this way ensures that every point in the environment

will always have coverage by some agent.

We have the following main result on the limit behavior of the algorithm.

Theorem 35 (Convergence of One-to-Base Coverage Algorithm (Hmin)). Con-

sider a network consisting of n robots endowed with the computation capacities

(C1), (C2) and communication capacity (C3), and a base station with capacities

(C4), (C5) and (C6). Assume the network implements the One-to-Base Coverage

Algorithm with U(c, P ) = Hmin(c, P ). Then the resulting evolution

(s, S) : R≥0 → Qn × Covn(Q)

converges in finite time to a pair (s∗, S∗) composed of a centroidal Voronoi parti-

tion S∗ generated by s∗.
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Pareto-Optimal Partitions

Using the algorithms described thus far, ties along partitions’ boundaries are

not handled in any optimal way and can often be improved. The major source

of sub-optimal boundary allocation is due to the discrete nature of how centroids

of a region are selected. Often times when an agent has more than one “center”

location, the overall partition can become better balanced if the agent takes an

alternate center value as its centroid. The following definition and proposition

make this notion more precise.

Definition 36 (Pareto-Optimal Partition). Given a vector of positions c = {c1, . . . , cn},

the Voronoi partition P generated by c is Pareto-optimal if for all c = {c1, . . . , ci, . . . , cn}

for i ∈ {1, . . . , n} such that ci 6= ci and ci ∈ Pi, the Voronoi partition P generated

by c satisfies H(c, P ) ≤ H(c, P ).

As an immediate consequence of the definition of a Pareto-optimal partition

and of Proposition 30 we can conclude that every Pareto-optimal partition is also

a centroidal Voronoi partition. However, the reverse implication does not hold, as

shown in the following example.

Example 1 (One Dimensional Pareto-optimal Partition). Consider the three en-

vironments in Figure 4.3, each with two agents denoted by the colored circles.

Assume that each cell denotes a node in the graph and that unit-weight edges con-
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nect any adjacent cells. Assume φ is constant. If the environment is partitioned

according to leftmost image of Figure 4.3, then each agent is at the centroid of its

region, and the graph is a centroidal Voronoi partition whose multi-center func-

tion cost-to-cover is H = 4. This partition is clearly not well balanced, and unless

ties are broken in some non-trivial way, this is a valid (worst-case) partition that

the system can reach. If however, the blue agent moves to its other centroid, as

shown in the middle image, then the worst case partition must be a variant of the

partition shown in the rightmost image whose cost-to-cover is H = 3. There exists

no partition with smaller cost-to-cover (w.r.t. H) by moving any single agent, and

hence the partition in the rightmost image is Pareto-optimal.

Figure 4.3: The figure shows three environments with two agents. Each cell
denotes a node in a graph, and if two cells are adjacent then there is an unit-
weight edge between those nodes.

The above results give that Pareto-optimal partitions are a subset of centroidal

Voronoi partitions. We can define the cost function, U(c, P ), in the One-to-

Base Coverage Algorithm such that the algorithm converges to a Pareto-optimal
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partition. We define the new cost function

Hinf(c) =
∑
k∈Q

min
i

{ 1

wi
dG(ci, k) | k ∈ Q

}
φ(k). (4.2)

Notice that this function is different from Hmin in that it looks for the absolute

minimum distance to a point, k. The function Hinf allows the case when k /∈ Pi,

but 1
wi
dG(ci, k) < 1

wj
dG(cj, k), for all j 6= i. The Hinf function is linked to the

multicenter function in the following sense.

Proposition 37 (Properties of Hinf). Given c ∈ Qn and w ∈ W, let P be a

Voronoi partition generated by c, then

H(c, P ) = Hinf(c).

Proof. Voronoi partitions are optimal in the sense that H(c, P ) = Hinf(c) by

definition of Hinf .

We are now ready to state the main result of this subsection. Given the One-

to-Base Coverage Algorithm with U(s, S) = Hinf(c) we have the following result.

Theorem 38 (Convergence of One-to-Base Coverage Algorithm (Hinf)). Con-

sider a network consisting of n robots endowed with the computation capacities

(C1), (C2) and communication capacity (C3), and a base station with capacities

(C4), (C5) and (C6). Assume the network implements the One-to-Base Coverage
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Algorithm with U(c, P ) = Hinf(c). Then the resulting evolution

(s, S) : R≥0 → Qn × Covn(Q)

converges in finite time to a pair (s∗, S∗) composed of a Pareto-optimal partition

S∗ generated by s∗.

Some remarks are in order. First, it is possible for the One-to-base Algorithm

with U = Hmin to converge to a Pareto-optimal partition, however, it is not

guaranteed as in the case with U = Hinf . Second, if a partition is not Pareto-

optimal then the cost to cover a region, in the context of the multi-center function,

can be further decreased by making it Pareto-optimal. This point is clarified

in Proposition 37, which relates the multi-center function to Hinf . Finally, we

emphasize that the difference in the cost-to-cover a region for a Pareto-optimal

partition versus a centroidal Voronoi partition decreases as the map defining a

region becomes less coarse. This is because the notion of a centroidal Voronoi

partition not being Pareto-optimal only exists when a region has more than one

centroid, a property of discrete spaces but not of continuous ones. Therefore, as

the grid approximating a region becomes less coarse, the more likely it is that a

centroidal Voronoi partition is also Pareto-optimal.

110



Chapter 4. Partitioning with One-to-Base-Station Communication

Combining Hmin and Hinf

Although the One-to-Base Coverage Algorithm with U = Hinf is guaranteed

to converge to a Pareto-optimal partition whereas the algorithm with U = Hmin is

not, the algorithm with U = Hmin is still of practical importance. Computing Hinf

requires that for each node in the graph, all agents compare their relative distances

to that node regardless of whether that node exists in the agent’s territory or not.

The Hmin function, however, only requires a comparison if the node belongs in the

agent’s territory. Given the computational capabilities of the base station being

used, one method may be preferred over the other. A user can take advantage

of both algorithm properties by running the algorithm with U = Hmin until it

converges to get an initial partition, and then run the algorithm with U = Hinf

to reach a Pareto-optimal solution, if the solution system has not already reached

it during the U = Hmin portion of the algorithm. With a slight abuse of notation

we will refer to this combined algorithm as the One-to-Base Coverage algorithm

with U = Hmin,inf .

4.2.3 Convergence Proofs

In this section we prove Theorems 35 and 38. Any mention to the One-to-

Base Coverage Algorithm in this section will refer to the algorithm presented

in Section 4.2.2. Their proof is based on the following convergence result for
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set-valued algorithms on finite state spaces, which can be recovered as a direct

consequence of [12, Theorem 4.3].

Given a set X, a set-valued map T : X ⇒ X is a map which associates to an

element x ∈ X a subset Z ⊂ X. A set-valued map is non-empty if T (x) 6= ∅ for

all x ∈ X. Given a non-empty set-valued map T , an evolution of the dynamical

system associated to T is a sequence {xn}n∈Z≥0
⊂ X with the property xn+1 ∈

T (xn) for all n ∈ Z≥0.

Lemma 39 (Convergence under persistent switches). Let (X, d) be a finite metric

space. Given a collection of maps T1, . . . , Tm : X → X, define the set-valued map

T : X ⇒ X by T (x) = {T1(x), . . . , Tm(x)} and let {xn}n∈Z≥0
be an evolution of

T . Assume that:

(i) there exists a function U : X → R such that U(x′) < U(x), for all x ∈ X

and x′ ∈ T (x) \ {x}; and

(ii) for all i ∈ {1, . . . ,m}, there exists an increasing sequence of times {nk | k ∈

Z≥0} such that xnk+1 = Ti(xnk
) and (nk+1 − nk) is bounded.

Let Fi = {x ∈ X | Ti(x) = x} be the set of fixed points of Ti. Then, for all

x0 ∈ X there exist N ∈ N and x̄ ∈ (F1 ∩ · · · ∩Fm) such that xn = x̄ for all n ≥ N .

Note that the existence of a common fixed point for the collection of maps Ti

is guaranteed by this result.
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We now apply Lemma 39 to the evolution of One-to-base Coverage Algorithm

with U(c, P ) = Hmin(c, P ) and U(c, P ) = Hinf(c), respectively. To do so, for each

function given by U(c, P ), we must describe the algorithm as a set-valued map

and find a corresponding Lyapunov function. The first step is possible because

the One-to-Base Coverage Algorithm is well-posed in the sense of the following

immediate result.

Proposition 40 (Well-posedness). Let P ∈ Covn(Q) and c ∈ Qn such that ci ∈ Pi

and ci 6= cj for all i and all j 6= i. Then, P+ and c+ produced by the One-to-Base

Coverage Algorithm meet the same criteria.

Given this result, the One-to-Base Coverage Algorithm can be written as a set

valued map. For any i ∈ {1, . . . , n}, we define the map TU,i : Qn × Covn(Q) →

Qn × Covn(Q) by

TU,i(c, P ) =
{
{c1, . . . , c

+
i , . . . , cN},

{P1, . . . , P
+
i , . . . , Pn}

}
,

where c+
i and P+

i are defined per the algorithm when i is the communicating

robot, and U is dependent on the cost function we are referring to (i.e., U = Hmin

or U = Hinf). Then we can define the set-valued map TU : Qn × Covn(Q) 7→

Qn × Covn(Q) by

TU(c, P ) = {TU,1(c, P ), . . . , TU,N(c, P )}.
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Thus, the dynamical system defined by the application of the algorithm is de-

scribed by {c+, P+} ∈ TU(c, P ).

For our Lyapunov arguments we will need to define M(P ) as the set of vertices

which are owned by multiple agents. We now proceed by stating two useful

propositions, which allow us to conclude Theorem 35.

Proposition 41 (Decaying Hmin cost function). After each iteration of the one-

to-base station algorithm if (c+, P+) 6= (c, P ) then one of the following holds:

(i) Hmin(c+, P+) < Hmin(c, P ); or

(ii) Hmin(c+, P+) = Hmin(c, P ), and

|M(P+)| < |M(P )|.

Proof. If c+ = c then Hmin(c+, P+) ≤ Hmin(c, P ). This is a direct consequence

of how the sets Pi,+ and Pi,− are defined. Points are added to Pi if and only if

they are strictly closer to ci than any other center cj and hence the cost of Hmin

must decrease by the addition of these points. Points are removed if and only if

they are strictly farther away or tied points and so Hmin must decrease or stay the

same. If c+ 6= c then by lines 8-10 of the algorithm Hmin(c+, P+) < Hmin(c, P ).

For the case Hmin(c+, P+) = Hmin(c, P ) then for every x ∈ Pj\Pi, for all j 6= i,

there exists no point that is strictly closer to the center ci than any other center
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cj, j 6= i. Therefore, no points can be added to P+
i , and so if P+ 6= P it must be

the case that |M(P+)| < |M(P )|.

Proposition 42 (Convergence of THmin
). The evolution of the One-to-Base Cov-

erage Algorithm (c(t), P (t)) generated by the map THmin
converges in finite time

to the intersection of the equilibria of the maps THmin,i, that is, to a pair (c, P )

where P is a centroidal Voronoi partition generated by c.

Proof. The proof proceeds with an application of Lemma 39 to (c(t), P (t)). The

algorithm is the mapping THmin
: Qn×Covn(Q) 7→ Qn×Covn(Q) defined above and

is well-posed. We can form a Lyapunov function using Proposition 41 as follows.

Since the set Q is finite, there exists only a finite number of possible values forHmin

and |M |. Let εm be the magnitude of the smallest non-zero difference between

any two values of Hmin. Let αM be larger than twice the maximum possible value

of |M |. Define V : Qn × Covn(Q)→ R≥0 by

V (c, P ) = Hmin(c, P ) +
εm
αM
|M(P )|.

Thanks to this scaling of |M(P )|, Proposition 41 implies that if (c′, P ′) ∈ THmin
(c, P ),

then either V (c′, P ′) < V (c, P ) or (c′, P ′) = (c, P ). Thus, V (c, P ) fulfills assump-

tion (i) in Lemma 39. Moreover, the communication model (C3) assures that

assumption (ii) in Lemma 39 is met. Now, applying Lemma 39, we are assured

that the dynamics converge to a fixed point (c∗, P ∗). It remains to show that P ∗
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is a centroidal Voronoi partition generated by c∗. We do this by refining in three

sequential steps the properties that the fixed point must have: P ∗ is a partition,

(c∗, P ∗) is a a Voronoi partition, and finally (c∗, P ∗) is a centroidal Voronoi par-

tition. First, if P ∗ is not a partition, then P ∗i,− 6= ∅; this establishes that P ∗ is a

partition. Second, if the partition P ∗ is not Voronoi, then P ∗i,+ 6= ∅; this establishes

that (c∗, P ∗) is a Voronoi partition. Third, if P ∗ is a Voronoi partition generated

by c∗, but c∗i /∈ C(P ∗i ) for any i, then from part (iii) of Proposition 31 there exists

a location c∗∗i (at a centroid location) that improves the cost to cover P ∗i ; line 4

of the algorithm guarantees that this location is checked, and lines 8-10 ensure

the position is updated to that location or one with an even lower cost. It should

be noted that an update in location to c∗∗i can simultaneously lead to an update

in territory P ∗i : however, given that P ∗ is a partition, only P ∗i,+ can contribute to

the territory, which further decreases the coverage cost by the definition of Hmin

and P ∗i,+. Therefore, we have established that there exists an update reducing the

cost function THmin
if the fixed point is not a centroidal Voronoi partition. Then,

P ∗ must be a centroidal Voronoi partition generated by c∗. (Note that the fixed

point could also potentially have other properties in addition to being a centroidal

Voronoi partition, however, establishing those properties are beyond the scope of

this proof.)
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Since updates to agent i in base-station memory also occur on the physical

agent, we can conclude the convergence proof of Theorem 35.

Finally, we state two propositions which allow us to conclude Theorem 38.

Proposition 43 (Decaying Hinf cost function). After each iteration of the one-

to-base station algorithm if (c+, P+) 6= (c, P ) using Hinf as the cost function then

one of the following holds:

(i) Hinf(c
+) < Hinf(c); or

(ii) Hinf(c
+) = Hinf(c), and

Hmin(c+, P+) < Hmin(c, P ); or

(iii) Hinf(c
+) = Hinf(c), Hmin(c+, P+) = Hmin(c, P ) and |M(P+)| < |M(P )|

Proof. If c+ = c then Hmin(c+, P+) ≤ Hmin(c, P ) and Hinf(c
+) = Hinf(c). This is

a direct consequence of how we define Hinf and the sets Pi,+ and Pi,−. Points are

added to Pi if and only if they are strictly closer to ci than any other center cj

and hence the cost of Hmin must decrease by the addition of these points. Points

are removed if and only if they are strictly farther away or tied points and so

Hmin must decrease or stay the same. If c+ 6= c then by the lines 8-10 of the

algorithm Hinf(c
+) < Hinf(c). For the case Hmin(c+, P+) = Hmin(c, P ) then for

every x ∈ Pj\Pi, for all j 6= i, there exist no point that is strictly closer to the
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center ci than any other center cj, j 6= i. Therefore, no points can be added to

P+
i , and so if P+ 6= P it must be the case that |M(P+)| < |M(P )|.

Proposition 44 (Convergence of THinf
). The evolution of the One-to-Base Cov-

erage Algorithm (c(t), P (t)) generated by the map THinf
converges in finite time to

the intersection of the equilibria of the maps THinf ,i, that is, to a pair (c, P ) where

P is a Pareto-optimal partition generated by c.

Proof. The proof follows the lines of the proof of Proposition 42, with the impor-

tant modification of using a different Lyapunov function, defined as follows. Let

εi and εm be the magnitude of the smallest possible non-zero difference between

two values of Hinf and Hmin, respectively. Let αm and αM be larger than twice the

maximum possible value of Hmin and |M |, respectively. If we define the function

V as

V (c, P ) = Hinf(c) +
εi
αm
Hmin(c, P ) +

εiεm
αmαM

|M(P )|

and we invoke Proposition 43 and Lemma 39, we conclude that the dynamics

converge to a fixed point (c∗, P ∗).

It remains to show that P ∗ is a Pareto-optimal partition generated by c∗. If

P ∗ is not a partition, then P ∗i,− 6= 0 and if the partition is not Voronoi then

P ∗i,+ 6= 0. Continuing by contradiction, assume that c∗ forms a Voronoi partition

which is not Pareto-optimal. This implies that there exists a c′ ∈ P ∗ where for at
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least one agent c′i 6= c∗i and a partition P ′ generated by c′ such that H(c′, P ′) <

H(c∗, P ∗). By the definition of the algorithm and Proposition 37 this is not

possible. Therefore the fixed point partition is Pareto-optimal.

4.3 Implementation and Simulations

In order to efficiently implement the One-to-Base Coverage Algorithm and

under the assumption of using Hmin or Hinf as cost functions, we provide the

following revised version, which can be easily seen to be equivalent to that in

Section 4.2.2.

One-to-Base Coverage Algorithm – revised

The base station maintains in memory an n-covering P = {Pi}ni=1, vector of
locations c = (ci)

n
i=1 and normalized weights w = (wi)

n
i=1, while each robot

i maintains in memory a set Si and a vertex si. The base station maintains
in temporary memory an n-covering P = {P i}ni=1 and vectors c = (ci)

n
i=1 and

c = (ci)
n
i=1 for computational purposes. At t = 0, let P (0) ∈ Covn(Q), S(0) =

P (0), and let all ci(0)’s be distinct. Assume that at time t ∈ R>0, robot i
communicates with the base station. Let P+, c+, S+

i , and s+
i be the val-

ues after communication. Then the base station executes the following actions:

1: update P := P , c := c, c := c, P i = Q
2: for k ∈ Pi\c do
3: update ci := k
4: if U

(
c, P

)
< U

(
c, P

)
then

5: update ci := k
6: compute sets

Pi,+ :=

{
x ∈ Q

∣∣∣∣ 1
wi
dG(x, ci) < min

{
1
wj
dG(x, cj)

∣∣ x ∈ Pj, j 6= i
}}
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Pi,− :=

{
x ∈ Pi ∩

(
∪i 6=j Pj

) ∣∣∣∣ 1
wi
dG(x, ci) ≥ min

{
1
wj
dG(x, cj)

∣∣ x ∈ Pj, j 6=

i
}}

7: P+
i := (Pi\Pi,−)∪Pi,+

8: c+
i := ci

9: tell agent i to set S+
i := P+

i and s+
i = c+

i

This revised version of the algorithm takes advantage of how the cost functions

Hmin and Hinf , and sets Pi,+ and Pi,− are defined. Indeed, setting P i = Q in line

1 avoids having to calculate Pi,+ and Pi,− for every k ∈ Pi\ci, as was done in

Section 4.2.2, because Hmin and Hinf already distribute costs to nodes that are

closer to one agent as opposed to another. Hence this implementation produces

the same evolutions but requires less memory, as we no longer need the set P , and

less computation time, as the sets Pi,+ and Pi,− are calculated only once.

We are now ready to proceed with our simulation results, which are obtained

by running the revised version of the algorithm. To demonstrate the utility of the

One-to-Base Coverage Algorithm for various values of cost function U , we imple-

mented it using the open-source Player/Stage robot control system and the Boost

Graph Library (BGL). All results presented here are generated using Player 2.1.1,

Stage 2.1.1, and BGL 1.34.1. A non-convex environment (borrowed from [26]) is

specified with three robots. The free space is modeled using an occupancy grid

with 0.6m resolution, producing a lattice-like graph with all edge weights equal

to 0.6m. The 0.6m resolution is chosen so that each robot can fit in a grid cell.
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One example with U = Hmin,inf is shown in Figure 4.4. In the simulation, the

robots have uniform weight assignment defined by wi = 1
3

for i ∈ {1, . . . , 3}. We

start with each robot owning the entire environment and stationed at its unique

centroid as shown in the first panel, and then proceed by choosing a random robot

to communicate with the base station at each iteration. The second panel shows

an intermediate covering of the environment before convergence to a centroidal

Voronoi partition. The third panel shows convergence of the U = Hmin portion of

the U = Hmin,inf algorithm. The fourth panel shows the Pareto-optimal partition

which is achieved after convergence of the U = Hinf portion of the U = Hmin,inf

algorithm. As can be seen, the movement of the robot relative to the third panel

is marginal, but the partition appears to be more balanced and is still centroidal

Voronoi. The cost to cover in terms of the multi-center function, H, decreases

from H = 729 to H = 728. Although the final partition and the decrease in cost-

to-cover change only marginally in this example, the change can be much more

noticeable as is explained in the following.

Another example with U = Hmin,inf is shown in Figure 4.5. As before, the

robot’s have uniform weight assignment defined by wi = 1
3

for i ∈ {1, . . . , 3}.

The example starts with each agent owning the entire territory, the agents being

stationed at their unique centroid, and the simulation continuing with the agents

being selected at random to communicate with the base station. The second panel
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Figure 4.4: Snapshots from a simulation of three robots partitioning an envi-
ronment with black obstacles using the Hmin,inf One-to-base station algorithm.
The free space of the environment is modeled using the indicated occupancy grid
where each cell is a vertex in the resulting graph. The robots’ optimal coverage
position is marked by an X and the boundary of each robot’s territory drawn in
its color. Some cells are on the boundary of multiple territories: for these we draw
superimposed robot colors.

shows the convergence of the U = Hmin portion of the algorithm, which leads to

a final multi-center cost of H = 804. The third panel shows the update after the

first iteration of the U = Hinf portion of the algorithm with the green agent. The

update shows that the lower portion of the environment is getting less than optimal

coverage and is improved by moving an agent closer to that region. The fourth

panel shows the Pareto-optimal partition which is achieved after convergence of

the U = Hinf portion of the U = Hmin,inf algorithm. Notice that in this example,

the final partition is quite different from the partition achieved at the end of the

U = Hmin portion of the algorithm. The final multi-center function cost of this

partition is H = 753, which is a noticeable improvement in coverage.

Thus far we have looked at two representative examples of using the algo-

rithm with U = Hmin,inf . These examples illustrate that, like centroidal Voronoi
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Figure 4.5: Snapshots from a simulation of three robots partitioning an envi-
ronment with black obstacles using the Hmin,inf One-to-base station algorithm.
Note that the initial condition is the same as in Figure 4.4, but the evolution is
different.

partitions, Pareto-optimal partitions are not necessarily unique, and that the evo-

lution under the One-to-base station algorithm is only guaranteed to converge to

a locally optimal solution. To see how the algorithm compares in general and for

different choices of U , we simulate the algorithm with the same initial setup as

shown in both Figure 4.4 and Figure 4.5. The One-to-Base Coverage Algorithm

with U = Hmin, U = Hinf , and U = Hmin,inf is run 100 times for each choice of U .

Table 4.1 summarizes the final cost-of-coverage for each choice of U . We observe

that the One-to-Base Coverage Algorithm with U = Hmin converges to partitions

that have the same minimum cost as those attained with the algorithm using

U = Hinf or U = Hmin,inf . On the other hand, the maximum cost-to-cover with

U = Hmin can be much larger than with the other two choices of U . Of the three

algorithms, the algorithm with U = Hinf converges consistently to partitions with

the lowest coverage costs, however, as discussed earlier it is computationally the
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most expensive. Finally, the algorithm with U = Hmin,inf behaves as expected,

converging on average to partitions with values similar to that of the algorithm

with U = Hinf although with a slightly larger deviation.

Algorithm Min Mean Max StdDev

Hmin 728 746.02 804 27.74
Hinf 728 730.26 732 1.92
Hmin,inf 728 730.38 753 4.91

Table 4.1: Multi-center function cost-to-cover statistics for each algorithm from
100 simulation runs.

4.3.1 Handling Dynamic Changes

Evolving overlapping coverings in the One-to-Base Coverage Algorithm en-

ables simple handling of environmental changes along with dynamic arrivals, de-

partures, and even the disappearance of robots. Changes in the environment along

with robot departures or disappearances can increase coverage cost, but those in-

creases are only a transients and, with the appropriate algorithmic additions, the

system will converge in finite steps after such an event. The One-to-Base Cover-

age Algorithm also has the added advantage that it can account for changes in

robot performance due to changes in capability caused by potential damage to the

hardware. The following algorithmic additions address how to handle the events

described.
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Environment Changes Each region in the environment is initially assigned

an importance according to the weight function φ(x). As robots explore the

environment, they may determine that certain regions are more/less important

than what was originally assigned. Robots can communicate this to the base

station at which point the base station can update φ(x).

Arrival When a new robot i communicates with the base station, it can be

assigned any initial Pi desired. Possibilities include adding all vertices within a

set distance of its initial position or assigning it just the single vertex which has

the highest coverage cost in Q.

Departure & Disappearance A robot i might announce to the base station

that it is departing, perhaps to recharge its batteries or to perform some other

task. In this situation, the base station can simply add Pi to the territory of the

next robot it talks to before executing the normal steps of the algorithm. The

disappearance or failure of a robot i can be detected if it does not communicate

with the base station for longer than ∆. If this occurs, then the departure proce-

dure above can be triggered. Should i reappear later, it can be handled as a new

arrival or given its old territory.
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Performance Malfunction of a robot i can be detected by the agent via self

diagnosis and communicated to the base station. If this malfunction causes the

robot to survey less territory, then wi will have changed, so the base station can

simply re-normalize the vector of weights w.

4.4 Summary

We have described a coverage algorithm, with corresponding cost-functions,

which uses the One-to-Base station communication architecture that drive terri-

tory ownership among a team of robots in a non-convex environment to a cen-

troidal Voronoi partition in finite time. We have also defined the notion of Pareto-

optimal partition and have provided a provably correct method to reach such a

partition using the One-to-Base Coverage Algorithm. Finally, we have demon-

strated the effectiveness of the algorithm through simulation, and have outlined

various ways the algorithm can be adapted to allow for dynamic changes in the

system. We have focused on dividing territory in this work, but the algorithm can

easily be combined with methods to provide a service over Q, as in [14].

In this chapter we looked at coverage control in a discrete time and space

environment with unreliable asynchronous communication. In the next chapter
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we look at what happens in a continuous time and space environment, and when

there are constraints on the area owned by each agent.
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Partitioning with
Area-Constraints

This chapter is organized as follows. In section 5.1 we setup preliminary no-

tation, introduce the concept of generalized Voronoi partitions and present our

problem in technical detail. In section 5.2 we compute some useful properties of

the objective functions of interest. In section 5.3 we state existence properties of

area-constrained generalized Voronoi partitions and present algorithms to reach

the set of area-constrained Voronoi partitions. In section 5.4 we state the main

result of our paper on centroidal equitable generalized Voronoi partitions. In sec-

tion 5.6 we discuss the application of our algorithm to real systems and provide

numerical simulations. In the final section we summarize our findings.
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5.1 Preliminaries and problem statement

Let us have a convex compact set Q ⊂ R2, endowed with a density function

φ : Q→ R≥0, so that the measure (or area) of a region A ⊂ Q is defined as

φ(A) =

∫
A

φ(q)dq,

provided the set A is measurable in the sense of Lebesgue. Without loss of gen-

erality, we assume that Q has unit measure, that is, φ(Q) =
∫
Q
φ(q)dq = 1. Let

p1, . . . , pn denote the positions of n robotic agents inQ. We assume that each agent

is associated with a (measurable) sub-region Wi ⊂ Q, where {Wi}ni=1 partitions Q

into sets whose interiors are pairwise disjoint. A vector can be defined to collect

the measures of the regions of a partition, as φ(W ) = [φ(W1), . . . , φ(Wn)]T . By our

assumptions on Q, we have
∑n

i=1 φ(Wi) = 1. Let f : R→ R be a strictly convex,

increasing, and differentiable function. Then, given n locations p = (p1, . . . , pn)

and a partition W = (W1, . . . ,Wn), the multicenter function is defined by

H(p,W ) =
n∑
i=1

∫
Wi

f(‖q − pi‖)φ(q)dq.

Our goal in this work is minimizing the function H under certain constraints,

namely, that the areas of each region are fixed. Specifically, we consider constants

ci > 0 for each agent i ∈ {1, . . . , n} such that
∑n

i=1 ci = 1 and we require φ(Wi) =

ci for every i. For brevity, we denote S = {c ∈ Rn
>0 |

∑n
i=1 ci = 1}.
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Problem 7 (Multicenter optimization with area constraint). Given c ∈ S, de-

termine the locations of the agents p = (p1, . . . , pn) and the partition W =

(W1, . . . ,Wn) solving:

min
p,W

H(p,W )

subject to φ(Wi) = ci, i ∈ {1, . . . , n− 1}.
(5.1)

Note that the nth constraint φ(Wn) = cn is omitted because it is redundant.

In order to solve this problem, we introduce a useful partitioning scheme. To

begin, we define D := {p ∈ Qn | pi 6= pj, i 6= j} as the set of disjoint positions in

Q. Then, given the function f as above, n distinct locations p ∈ D, and n scalar

weights w = (w1, . . . , wn), the generalized Voronoi partition of Q is the collection

of subsets V f (p, w) = (V f
1 (p, w), . . . , V f

n (p, w)) of Q, defined by

V f
i (p, w) = {q ∈ Q | f(‖q − pi‖)− wi ≤ f(‖q − pj‖)− wj, ∀j 6= i}. (5.2)

Generalized Voronoi partitions enjoy several important properties. First, any gen-

eralized Voronoi partition of Q is in fact a partition of Q. Second, the generalized

partition generated by (p, w) is equal to the generalized partition generated by

(p, w + α1n), for any α ∈ R (Here, 1n is the vector in Rn whose entries are all

equal to 1). Finally, as opposed to Voronoi partitions, for generalized Voronoi

partitions we do not require that pi ∈ V f
i (p, w). Thus, agents need not be located

in their partition. From here onward, we will refer to generalized Voronoi par-
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titions simply as Voronoi partitions. Two important special cases are described

below.

Example 2 (Standard Voronoi Diagram). Given p ∈ D and n scalar weights

w = (w1, . . . , wn), the Standard Voronoi Diagram of Q is given by (5.2) with

w = 0. The partition is given by

V SD
i (p, w) = {q ∈ Q | f(‖q − pi‖) ≤ f(‖q − pj‖)},

regardless of the choice of f(x). We call each V SD
i a standard Voronoi region.

These regions are convex and have boundaries that are given by straight line seg-

ments; moreover, every generator pi is contained in its respective region V SD
i .

Example 3 (Power Diagrams). Given p ∈ D and n scalar weights w = (w1, . . . , wn),

the power diagram of Q is given by (5.2) with f(x) = x2. The partition is given

by

V PD
i (p, w) = {q ∈ Q | ‖q − pi‖2 − wi ≤ ‖q − pj‖2 − wj},

and we call each Voronoi region V PD
i a power cell. Note that Standard Voronoi

Diagrams are a special case of Power Diagrams, since V PD
i (p, 0) = V SD(p). These

regions are convex and their boundaries that are line segments; however, it is

possible that the generators pi are not contained by their respective power cells

V PD
i .

131



Chapter 5. Partitioning with Area-Constraints
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Figure 5.1: The image on the left is the Standard Voronoi Partition generated
by nodes A through E. The image on the right shows the dual graph for this
partition.

We now define the dual graph of a partition {Wi}ni=1, which will be useful

later: the node set is {1, . . . , n}, and there exists an edge {i, j} if the boundary

between agents i and j, denoted ∆i,j, has positive measure. In that case, we say

that j is a neighbor of i and we write j ∈ Ni. The dual graph of the standard

Voronoi Partition is known to be the classic Dirichlet triangulation, as illustrated

in Figure 5.1.

Before we are ready to define a second problem of interest, we first introduce

a useful definition. Given n distinct locations p = (p1, . . . , pn), the set of weights

w = (w1, . . . , wn) such that every partition has non-zero measure is defined by

U = {w ∈ Rn | φ(V f
i (p, w)) > 0 ∀i}. Since V f (p, w) = V f (p, w + α1n) for every

scalar α, this equivalence relation naturally defines equivalence classes in U : with
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a slight abuse of notation, in what follows we sometimes refer to such classes as

the elements of U . The following problem is a simplified version of Problem 7.

Problem 8 (Multicenter Voronoi partition optimization with area constraints).

Given c ∈ S, determine the locations of the agents p ∈ D and weights w ∈ U

solving:

min
p,w

H(p, V f (p, w))

subject to φ(V f
i (p, w)) = ci, i ∈ {1, . . . , n− 1}.

As a preliminary step, we should make sure that this problem has feasible

solutions: this fact is shown in Section 5.3, which also provides a method to find

a set of weights in U for every set of locations. Problems 7 and 8 are known to

be equivalent in the following sense.

Proposition 45 (Proposition V.1 in [23]). Let p ∈ Qn be the agent locations

and w ∈ U a weight assignment which satisfies the area constraint. Then, the

Voronoi partition V f (p, w) optimizes H(p,W ) among all partitions satisfying the

area constraint.

In order to derive a useful consequence of this fact, we consider the simpler

case when there is only one agent in Q: then, the multicenter function becomes

p 7→ H1

(
p,Q

)
:=

∫
Q

f(‖q − p‖)φ(q)dq. (5.3)
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Since f is strictly convex, H1 is too, and the following holds: If Q is convex, then

there is a unique minimizer of (5.3), which we denote by Ce(Q). Moreover, we have

that ∂H1(p,Q)
∂p

= 0 at p = Ce(Q), where ∂H1(p,Q)
∂p

=
∫
Q

∂
∂p
f(‖q−p‖)φ(q)dq from [13].

The Voronoi partition V f (p, w) generated by (p, w) is said to be centroidal if

Ce[V f
i (p, w)] = pi,

for all i ∈ {1, . . . , n}. This notation allows us to state the following fact [23]: for

every solution (p∗,W ∗) of Problem 7, there exists a weight assignment w∗ ∈ U

such that W ∗ = V f (p∗, w∗) and p∗i = Ce(W ∗
i ) for all i ∈ {1, . . . , n}. Equivalently,

the solutions to Problem 7 are centroidal Voronoi partitions whose regions have

the prescribed areas.

In the rest of this paper, we will go beyond this abstract characterization of

the optimal solutions and give an optimization algorithm which is amenable to

practical implementation.

5.2 Relevant partial derivatives

This section is devoted to compute relevant partial derivatives of the multicen-

ter function, which shall be used to solve Problem 8 in the subsequent sections.
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Given p ∈ D, and w ∈ U , we define the partition of Q by V f (p, w). It is

convenient to define the Voronoi multi-center function as

(p, w) 7→ H(p, w) =
n∑
i=1

∫
V f
i (p,w)

f(‖q − pi‖)φ(q)dq,

or equivalently H(p, w) = H(p, V f (p, w)). It is also convenient to define the

generators-to-areas function as

(p, w) 7→M(p, w) =

[∫
V f
1 (p,w)

φ(q)dq, . . . ,

∫
V f
n (p,w)

φ(q)dq

]T
,

or equivalently M(p, w) = φ(V f (p, w)). In the rest of this section, we shall

compute the gradients of the functions H andM. In order to state our results, we

need some notation. Let ∆i,j(p, w) denote the boundary between the ith and jth

Voronoi region and ~ni,j the normal to this boundary, pointing towards region Wj.

Given locations p ∈ D and weights w ∈ U , let La(p, w) and Lbk(p, w), k ∈ {1, 2},

be the n× n matrices, whose entries ai,j and b
(k)
i,j are defined by

ai,j(p, w) =


−
∫

∆i,j
φ(q)

(
∂q
∂wi
· ~ni,j

)
dq, if i 6= j,

−
∑n

i=1 ai,j, otherwise,

(5.4)

and

b
(k)
i,j (p, w) =


−
∫

∆i,j
φ(q)

(
∂q

∂p
(k)
i

· ~ni,j
)
dq, if i 6= j,

−
∑n

i=1 b
(k)
i,j , otherwise,

(5.5)
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where q ∈ R2 has components q(1) and q(2). Clearly, entries ai,j and bi,j are zero if

∆i,j has zero measure.

We are now ready to state the two main results of this section, which imply

that computing the gradients of H(p, w) and theM(p, w) is spatially-distributed

over the dual graph of the Voronoi partition.

Proposition 46 (Partial derivatives of the Voronoi multi-center function). Given

p ∈ D and w ∈ U , let p
(k)
i , k ∈ {1, 2}, denote the two components of pi ∈ R2, for

i ∈ {1, . . . , n}, and define La and Lbk as in equations (5.4) and (5.5). Then, the

partial derivatives of H(p, w) are

∂H(p, w)

∂p(k)
=

[ ∫
V f
i

∂

∂p
(k)
1

f(‖q − p1‖)φ(q)dq, . . . ,∫
V f
n

∂

∂p
(k)
n

f(‖q − pn‖)φ(q)dq

]
+ wTLbk(p, w), (5.6)

∂H(p, w)

∂w
= wTLa(p, w). (5.7)

Proof. Note that we write V for V f throughout the proof and everything is done

with respect to one component of pi where pi ∈ R2 (we drop the k from p
(k)
i for

clarity). Differentiating with respect to pi we see that

∂H
∂pi

=

∫
Vi

∂

∂pi
f(‖q − pi‖)φ(q)dq

+

∫
∂Vi

f(‖q − pi‖)φ(q)

(
∂q

∂pi
· ~ni,j

)
dq

+
∑
j∈Ni

∫
∂Vi ∩ ∂Vj

f(‖q − pj‖)φ(q)

(
∂q

∂pi
· ~nj,i

)
dq, (5.8)
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where (5.8) easily falls out from the conservation law [13, Proposition 2.23]. The

second term on the RHS is defined as

∫
∂Vi

f(‖q − pi‖)φ(q)

(
∂q

∂pi
· n
)
dq

=
∑
j∈Ni

∫
∆i,j

f(‖q − pi‖)φ(q)

(
∂q

∂pi
· ~ni,j

)
dq

=
∑
j∈Ni

∫
∆i,j

(f(‖q − pj‖) + wi − wj)φ(q)

(
∂q

∂pi
· ~ni,j

)
dq,

where f(‖q − pi‖) = f(‖q − pj‖) + wi − wj holds true along the boundary ∆i,j

and is given from the definition of the Voronoi partition. Therefore, combining

the second and third terms on the RHS of (5.8) and noting that ~ni,j = −~nj,i, we

have

∂H
∂pi

=

∫
Vi

∂

∂pi
f(‖q − pi‖)φ(q)dq +

∑
j∈Ni

(wi − wj)
∫

∆i,j

φ(q)

(
∂q

∂pi
· ~ni,j

)
dq. (5.9)

Writing (5.9) in vector form gives ∂H(p,w)
∂p

as defined in (5.6), with matrices whose

entries are defined by (5.5). Similarly the derivative with respect to wi is given as

∂H
∂wi

=
∑
j∈Ni

(wi − wj)
∫

∆i,j

φ(q)

(
∂q

∂wi
· ~ni,j

)
dq. (5.10)

The vector form of this equation can easily be seen to be (5.7) with the Laplacian

matrix La defined by (5.4).

Proposition 47 (Partial derivatives of the generators-to-areas function). Given

p ∈ D and w ∈ U , let p
(k)
i , k ∈ {1, 2}, denote the two components of pi ∈ R2, for
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i ∈ {1, . . . , n}, and define La and Lbk as in equations (5.4) and (5.5). Then, the

partial derivatives of M(p, w) are

∂M(p, w)

∂p(k)
= Lbk(p, w), (5.11)

∂M(p, w)

∂w
= La(p, w). (5.12)

Proof. For clarity, we write V for V f throughout the proof. Looking at the ith

component ofM(p, w) and differentiating with respect to wi, by the conservation

law [13, Proposition 2.23] we get

∂Mi

∂wi
=

∫
Vi

∂

∂wi
φ(q)dq +

∫
∂Vi

φ(q)

(
∂q

∂wi
· ~ni,j

)
dq,

=
∑
j∈Ni

∫
∆i,j

φ(q)

(
∂q

∂wi
· ~ni,j

)
dq, (5.13)

where ∆i,j is the boundary between agents i and j. The first term on the right

hand side of (5.13) is zero since the density function is not dependent on the

weights. Similarly, the derivative of Mj with respect to wi, is given as

∂Mj

∂wi
=

∫
Vj

∂

∂wi
φ(q)dq +

∫
∂Vj

φ(q)

(
∂q

∂wi
· ~nj,i

)
dq,

= −
∫

∆i,j

φ(q)

(
∂q

∂wi
· ~ni,j

)
dq, (5.14)

where we note that ~ni,j = −~nj,i. Therefore it is easily seen that the total gradient

of G with respect to the vector of weights w is given by (5.12), with La(p, w)

defined by (5.4). Similarly for p
(k)
i we get the gradient defined by (5.11) whose

matrix Lbk(p, w) is given by (5.5).
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The following useful Proposition follows from Proposition 47 and Proposi-

tion IV.1 in [23] and is due to the monotonicity properties of the Voronoi parti-

tion. Indeed, any increase in the weights of agent i (keeping the weights of other

agents fixed) guarantees that the area of agent i increases and the areas of the

neighboring agents decrease.

Proposition 48 (Sign-definiteness of the partial derivatives ofM). Given p ∈ D

and w ∈ U , then

∂Mi(p, w)

∂wi
> 0 and

∂Mi(p, w)

∂wj
≤ 0, j 6= i,

where the second inequality is strict if and only if ∆i,j has non-zero measure.

Next, consider the dual graph of the Voronoi partition defined by (p, w) and

assign to each edge {i, j} of this graph the (i, j) entry of La(p, w), which is

strictly-negative by Proposition 48. With this definition, the matrix La(p, w)

is the Laplacian matrix naturally associated to this weighted dual graph of the

Voronoi partition defined by (p, w).

5.3 Area-constrained Voronoi partitions

In this section, we solve the problem of finding, given area constraints and

locations of the agents, suitable weights such that the Voronoi partition generated
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by these locations and weights satisfies the area constraint. We begin by stating

two useful results.

Proposition 49 (Existence and uniqueness of weights for area-constrained Voronoi

partitions). Define constants c ∈ S. Given p ∈ D, there exists a unique vec-

tor w∗ ∈ U , up to translation, such that {V f
1 (p, w∗), . . . , V f

n (p, w∗)} satisfies

φ(V f
i ) = ci for all i.

Proof. Existence follows from Proposition IV.4 in [23]. Before beginning the

uniqueness argument, we introduce the set Vi→j(w
∗, w) as the set of points that

move from agent i to agent j due to a change in weights from w∗ to w. For ex-

ample, if agents i and j are neighbors, wj > w∗j , and wi = w∗i for all i 6= j, then

φ(Vi→j(w
∗, w)) > 0. That is to say that some region is transferred to agent j due

to its weight increasing. With this notation in mind, we begin the proof with a set

of weights, w∗ ∈ U , which define some arbitrary partition. Associated with this

partition are a set of non-zero areas, c∗i > 0 for i ∈ {1, . . . , n}, that correspond

to each agents region. Assume there exists another set of weights, w 6= w∗, such

that M(p, w) = M(p, w∗) = c∗. Since weights are translation invariant, we can

translate w such that w∗1−w1 = 0. Without loss of generality (wlog), assume that

generator 2 is the neighbor of generator 1 in V f (p, w∗), and that w2−w1 < w∗2−w∗1

(w2 < w∗2, since w 6= w∗) or equivalently w2 − w∗2 < w1 − w∗1 = 0. Due to the

monotonicity of the weights, w2 < w∗2 implies that part of the region that was
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once owned by agent 2 in V f (p, w∗) is either now owned by agent 1 or by some

other agent in the partition V f (p, w). Thus φ(V2→i(w
∗, w)) > 0 for some i 6= 2.

This means that agent 2 in V f (p, w) must own the space of some other agent

(or combination of agents) in order to maintain its area-constraint. This can

only happen if there exists at least one neighboring agent (wlog; agent 3) whose

weight satisfies the condition w3 − w2 < w∗3 − w∗2. Thus it must be the case that

w3 − w∗3 < w2 − w∗2 < w1 − w∗1 and w3 < w∗3. Since every agent has at least

one neighbor, we can continue in this fashion of ordering agents, until we reach

agent k such that wj − w∗j < wk − w∗k, where j > k, cannot be satisfied, and so

φ(V f
k (p, w)) < c∗k. Thus, the set of weights that satisfy the area-constraint for a

generalized Voronoi partition are unique, up to translation.

Given this result, for any given set of area constraints c ∈ S, we may formally

define the map wac : D → U as p 7→ wac(p), such that
∑n

i=1(wac(p))i = 0 and

φ(V f
i (p, wac(p))) = ci for all i.

Proposition 50 (Smoothness of mapping from positions to weights). The map

p 7→ wac(p) is continuously differentiable.

Proof. The proof makes use of the implicit function theorem in conjunction with a

modified mapping ofM(p, w), to be described later, to show continuous differen-

tiability of wac(p). Let c ∈ S denote the vector of areas for the constraint surface.
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Then given the mapping wac(p), we have that M(p, wac(p)) = c. Since Voronoi

partitions are translation invariant with respect to weights, w, we can define any

Voronoi partition as a function of n− 1 weights, keeping the nth weight constant

at zero. Define w̃ ≡ [w1, . . . , wn−1]T , and define the modified mapping (p, w̃) 7→

M̃(p, w̃) ∈ Rn−1 ofM(p, w) by M̃(p, w̃) =
[∫

V f
1 (p,w̃)

φ(q)dq, . . . ,
∫
V f
n−1(p,w̃)

φ(q)dq
]T

.

Define the mapping p 7→ w̃ac(p) such that M̃(p, w̃ac(p)) = c̃, where we set c̃i = ci

for i ∈ {1, . . . , n− 1}. Note that this is sufficient to define the constraint surface

since the nth constraint in M(p, w) and the nth weight wn are both redundant.

For clarity, calculations in the rest of the proof are done with respect to one com-

ponent of pi, where pi ∈ R2. Differentiating M̃(p, w̃) = c̃ with respect to w̃ and p

we obtain

∂M̃(p, w̃)

∂w̃
= L̃a(p, w̃),

∂M̃(p, w̃)

∂p
= L̃b(p, w̃),

where L̃b(p, w̃) is defined as Lb(p, w) with the nth row removed and L̃a(p, w̃) is

defined as the Laplacian matrix La(p, w) with the nth column and row removed

(Note Lb(p, w) is dependent on which component of pi we choose). Proposition 48

guarantees that the Laplacian of the Voronoi dual graph is always well-defined,

therefore L̃a(p, w̃ac(p)) ∈ Rn−1×n−1 and is full rank [40, Corollary 6.2.27]. There-

fore, since M̃(p, w̃) is continuously differentiable and ∂M̃(p,w̃)
∂w̃

is invertible, then by
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the implicit function theorem we have that w̃ac(p) is continuously differentiable.

Finally, note that the mapping wac(p) can be written as [w̃ac(p)
T , wac,n(p)]T , where

wac,n(p) is a constant value of zero. Since w̃ac(p) and wac,n(p) are continuously

differentiable, so is wac(p).

We now present an algorithm to compute wac(p) for a specific area-constraint.

Given p ∈ D and w ∈ U , the area-constraint cost function for the Voronoi partition

generated by (p, w) is defined as

J (p, w) = n log

(∫
Q

φ(q)dq

)
−

n∑
i=1

ci log

(∫
V f
i (p,w)

φ(q)dq

)

= n log (φ(Q))−
n∑
i=1

ci log

(
φ
(
V f
i (p, w)

))
(5.15)

where ci for i ∈ {1, . . . , n} are strictly positive constants. Note that n log (φ(Q)) =

0 when φ(Q) = 1. The following result extends [71, Theorem 3.7] to (generalized)

Voronoi partitions, and has the added property of being better conditioned nu-

merically.

Theorem 51 (Gradient of the area-constraint cost function). Let ∆i,j denote the

boundary between the ith and jth Voronoi region and ~ni,j the normal vector along

that boundary. Define constants c ∈ S. Given p ∈ D and w ∈ U , we have

∂

∂wi
J
(
p, w

)
=
∑
j∈Ni

Ξi,j

(
cjφ(V f

i )− ciφ(V f
j )
)
, (5.16)
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where

Ξi,j =
1

φ(V f
i )φ(V f

j )

∫
∆i,j

(
∂q

∂wi
· ~ni,j

)
φ(q)dq, (5.17)

so that

(i) every w generating an area-constrained Voronoi partition is a critical point

of the function w 7→ J
(
p, w), and

(ii) every solution to the negative gradient flow

ẇi = − ∂

∂wi
J
(
p, w

)
, (5.18)

converges asymptotically to wac(p), yielding an area-constrained Voronoi par-

tition such that φ(V f
i ) = ci.

Proof. Let w 7→ J
(
p, w) be a candidate Lyapunov function. First, we check

that J is continuously differentiable. Using (5.13) and (5.14) from the proof of

Proposition 47 and the chain rule, we quickly have (5.16) with coefficients defined

by (5.17). Therefore given p ∈ D, we have that J is continuously differentiable

with respect to the weights w ∈ U . Second, we see with ẇi defined according

to (5.18) that J̇ =
∑n

i=1
∂J
∂wi

ẇi ≤ 0. To determine when J̇ is identically zero,

let yi = 1

φ(V f
i (p,w))

, and rewrite (5.16) and (5.17) in vector notation to get the

following:

∂

∂w
J
(
p, w

)
= yTdiag ([c1, . . . , cn])La(p, w),
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where La(p, w) is the Laplacian matrix defined by (5.4). Let x = yTdiag ([c1, . . . , cn]),

then ∂
∂w
J
(
p, w

)
is identically zero when x = α1Tn for any constant α. Given the

constraints of the system this can only happen when yi = 1
ci

, or equivalently when

φ
(
V f
i (p, w)

)
= ci for all i ∈ {1, . . . , n}. Thus the invariant set for (5.18) is such

that for φ
(
V f
i (p, w)

)
= ci all i and

∑n
i=1 ci = 1. By these observations, we have

proved claim (i). Third, we have to show that trajectories are bounded. From

the gradient descent law (5.18) we deduce that the measures of each agent are

bounded away from zero. Indeed, if the measure of an agent’s region were to

approach zero, then the function J would grow unbounded; this is impossible

because we know J is monotonically non-increasing. Notice that the measures

of the agents depend on the weights, and it is not hard to verify that the sum

of weights stays constant. Hence, if a weight were to become very large, another

weight would become arbitrarily small, which would cause a region to vanish. This

contradicts the fact that the measures are bounded: therefore, the weights must

also be bounded. After these three observations, we can invoke LaSalle Invariance

Principle and deduce that the weights converge to the set of weights w such that

φ(V f
i (p, w)) = ci for all i. Additionally, since the sum of the weights is constant

and the vector of weights that satisfy the area constraint is unique by Proposi-

tion 49, we conclude that the weights converge to the vector of weights w∗ such

that
∑n

i=1w
∗
i =

∑n
i=1wi(0) and φ(V f

i (p, w∗)) = ci for all i, proving claim (ii).

145



Chapter 5. Partitioning with Area-Constraints

We now specialize the gradient (5.18) to the case of Example 3.

Example 4 (Gradient flow for equitable power diagrams). Define the partition of

the region Q according to (5.2) with f(x) = x2 and let ci = 1
n

for all i in (5.15).

From [71] we have that ∂q
∂wi
·~ni,j = 1

‖pi−pj‖ so then the gradient flow (5.18) is given

by

ẇi = −
∑
j∈Ni

(
1

φ(V PD
j )
− 1

φ(V PD
i )

)∫
∆i,j

φ(q)

‖pi − pj‖
dq.

The vector of weights w converges to the value such that φ
(
V PD
i (p, w)

)
= φ

(
V PD
j (p, w)

)
for all i 6= j.

5.4 Centroidal area-constrained Voronoi parti-

tions

Given constants c ∈ S, and given p ∈ D, it is convenient to define the area-

constrained Voronoi partition generated by p as

V f
ac(p) = V f (p, wac(p)),

with Voronoi regions V f
ac,i(p), i ∈ {1, . . . , n} such that φ

(
V f

ac,i(p)
)

= ci for all i.

The associated area-constrained multicenter function is given by

p 7→ H
(
p, V f

ac(p)
)

=
n∑
i=1

∫
V f
ac,i(p)

f(‖q − pi‖)φ(q)dq,
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or equivalently by p 7→ H
(
p, wac(p)

)
. We are now ready for the main result of this

section.

Theorem 52 (Gradient of the area-constrained multicenter function). Given p ∈

D,

∂

∂pi
H
(
p, V f

ac(p)
)

=

∫
V f
ac,i(p)

∂

∂pi
f(‖q − pi‖)φ(q)dq, (5.19)

so that

(i) every p generating a centroidal area-constrained Voronoi partition is a crit-

ical point of the function p 7→ H
(
p, V f

ac(p)
)
, and

(ii) every solution to the negative gradient flow

ṗi = −
∫
V f
ac,i(p)

∂

∂pi
f(‖q − pi‖)φ(q)dq (5.20)

converges asymptotically to the set of centroidal area-constrained Voronoi

partitions.

Proof. Let H(p, wac(p)) = H(p, V f (p, wac(p))), the Voronoi multicenter function

restricted to the area-constraint surface, be our candidate Lyapunov function. By

differentiating with respect to p we obtain

∂

∂p
H(p, wac) =

∂H(p, wac)

∂p
+
∂H(p, wac)

∂w

dwac

dp
,

=

([
∂H1(p1, V

f
ac,1(p))

∂p1

, . . . ,
∂H1(pn, V

f
ac,n(p))

∂pn

]

+ wTLb(p, w)

)
+ wTLa(p, w)

dwac

dp
, (5.21)
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where La(p, w) and Lb(p, w) are defined by (5.4) and (5.5), respectively. Differen-

tiating M(p, wac(p)) = c with respect to p we obtain

∂M(p, wac(p))

∂p
+
∂M(p, wac(p))

∂w

dwac(p)

dp
= 0,

that is, Lb(p, w) +La(p, w)dwac(p)
dp

= 0, therefore La(p, w)dwac(p)
dp

= −Lb(p, w). Sub-

stituting this equality into (5.21) it follows that ∂
∂p
H(p, V f (p, wac)) = ∂

∂p
H(p, wac) =[

∂H1(p1,V
f
ac,1(p))

∂p1
, . . . ,

∂H1(pn,V
f
ac,n(p))

∂pn

]
. Therefore H(p, V f (p, wac)) is continuously dif-

ferentiable with respect to p, and its critical points are characterized, proving claim

(i). For each agent the trajectories under (5.20) point towards the centers of their

region, and since Q is convex and compact this gives that the trajectories stay in Q

and are bounded. We must also show that the agents maintain distinct locations.

If two agents i and j have the same weight (wj = wi), then relative to each other

they generate a Standard Voronoi partition (Example 2) and the center for each

agent stays in the same region as the agent, therefore the agents can not collide.

Now we look at the case when the weights are different. Without loss of generality

let wj > wi and assume that agent j approaches agent i. From (5.2) we have that

for q ∈ Q, the region of agent j satisfies f(‖q − pj‖) − wj + wi ≤ f(‖q − pi‖).

If pj and pi are close enough, all points in a neighborhood of pi belong to region

j. This implies that the measure of region i is zero; this is impossible since the

flow stays along the area-constraint surface. Therefore, agents can not collide and

agent locations remain distinct along the flow. Under control law (5.20) we have
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that

Ḣ(p, V f (p, wac)) =
n∑
i=1

∂H1(pi, V
f

ac,i(p))

∂pi
ṗi

= −
n∑
i=1

(
∂H1(pi, V

f
ac,i(p))

∂pi

)2

.

By LaSalle’s Invariance Principle the positions p converge to the invariant set of

positions such that pi = Ce[V f
ac,i(p)] for all i. Therefore, the positions converge to

the set of centroidal area-constrained Voronoi partitions and claim (ii) is proved.

There are some interesting points worth noting. First, assuming that the set of

centroidal area-constrained Voronoi partitions is finite, the positions and weights

converge to one of the partitions in that set. Second, the gradient descent (5.20)

is not guaranteed to find the global minimum. Finally, the gradient restricted to

the constraint surface is formally the same as the reduced gradient as defined in

nonlinear programming [57].

We now specialize the gradient (5.19) to the case of Example 3.

Example 5 (Constrained gradient flow for power diagrams). Let the partition of

the region Q be defined according to (5.2) with f(x) = x2. Given any powercell

A of Q the center is given by Ce[A] = 1
φ(A)

∫
A
qφ(q)dq. Thus for power diagrams,

Ce is equivalent to the well known expression for center of mass of a region.
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From [13] we have that
∂H1

(
p,V PD

eq,i(p)
)

∂pi
= 1

n

(
Ce[V PD

ac,i ]− pi
)
, therefore the (scaled,

negative) gradient flow (5.20) is given by

ṗi = Ce[V PD
ac,i (p)]− pi.

We easily see that H(p, V PD
ac ) is minimized when pi = Ce[V PD

ac,i (p)] for all i ∈

{1, . . . , n}.

5.5 Simultaneous change of agent positions and

weights

The previous gradient descent laws (5.18) and (5.20), are designed to find the

area-constraint surface and reach the center of a area-constrained region, respec-

tively. In this section, we introduce a distributed algorithm which achieves both

tasks simultaneously. As before, for the desired constraint surface we choose con-

stants c ∈ S. Then, given p ∈ D and w ∈ U , the simultaneous gradient algorithm

is given by

ṗi = −
∫
V f
i (p,w)

∂

∂pi
f(‖q − pi‖)φ(q)dq,

ẇi = −
∑
j∈Ni

Ξi,j

(
cjφ(V f

i )− ciφ(V f
j )
)
, (5.22)
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where

Ξi,j =
1

φ(V f
i )φ(V f

j )

∫
∆i,j

(
∂q

∂wi
· ~ni,j

)
φ(q)dq.

The proposed control law is a natural combination of laws (5.18) and (5.20). If all

the weights are initialized to the same value w, and if ẇi is set to zero, then (5.22)

reduces to the continuous-time Lloyd algorithm presented in [13]. Simulations

show that the proposed law does in fact converge to the set of centroidal area-

constrained Voronoi partitions; however, a proof is not currently available.

We now specialize the gradient (5.22) to the case of Example 3.

Example 6 (Gradient flow for equitable power diagrams). Define the partition of

the region Q according to (5.2) with f(x) = x2 and let ci = 1
n

for all i in (5.15).

From [13] we have that
∂H1

(
p,V PD

i (p)
)

∂pi
= 1

n

(
Ce[V PD

i ]− pi
)
, therefore the (scaled,

negative) gradient flow (5.22) is given by

ṗi = Ce[V PD
i (p)]− pi,

ẇi = −
∑
j∈Ni

(
1

φ(V PD
j )
− 1

φ(V PD
i )

)∫
∆i,j

φ(q)

‖pi − pj‖
dq.

We easily see that the stationary set for this system is achieved when pi = Ce[V PD
ac,i (p)]

for all i ∈ {1, . . . , n} and the vector of weights w converges to the value such that

φ
(
V PD
i (p, w)

)
= φ

(
V PD
j (p, w)

)
for all i 6= j.
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5.6 Implementation and simulations

In this section, we discuss the practical implementation of the control law

(5.20) and compare it against the control law (5.22) using representative simu-

lation examples. Writing the area-constrained gradient flow (5.20), we assume

that we always stay on the constraint surface and thus move along this surface

continuously. In order to put this law into practice, we would need an explicit

formula to instantaneously compute the weights of the current Voronoi partition,

as functions of the generator locations. Since such a formula is not available, we

instead have to rely on system (5.18) in order to determine the weights. We then

design an implementation which alternates dynamics (5.20) and (5.18). Assuming

that the agents start at a feasible configuration, they move their locations accord-

ing to (5.20) for a small time duration δ, while keeping the weights fixed. After

this amount of time, the area constraint is not satisfied: we then let the weights

evolve according to (5.18), while the locations are fixed, until we are within the

proximity of the area-constraint surface.

Some points in this implementation require attention. First, if the positions are

allowed to move too much, the regions can become undefined (i.e., have measure

zero), therefore care must be taken to make sure this does not happen by selecting

a sufficiently small δ. Second, care must also be taken to insure that the agent
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location do not collide (i.e., agent locations must remain distinct). If they do,

the step size δ should be reduced in order to avoid collision. Third, in order to

drive the system exactly back to the constraint surface, we would need to bring

the dynamics of the weights to convergence, which would take an infinitely long

time: in simulations, convergence is approximated up to truncation error. In spite

of these difficulties, in our simulations we have found that the algorithm is not

sensitive to how far the agents deviate from the area-constraint surface (provided

measures stay non-zero) during each movement step: in all our experiments, the

algorithm converges to a centroidal area-constrained Voronoi diagram.

An illustrative example of the performance of the algorithm is presented in

Figure 5.2. In the simulation, 10 agents have been randomly placed in a square

region Q, where the density function φ(x) is constant. The region Q is to be

partitioned according to (5.2) with f(x) = x2, that is, as a power diagram. We

define area-constraint surface such that φ(V f
i ) = i∑n

i=1 i
φ(Q) for all i ∈ {1, . . . , 10};

which means that if i < j, then φ(V f
i ) < φ(V f

j ). The gradient (5.20) is followed

during steps of duration δ = 0.1s. The first panel shows the initial condition of

the system at T = 0, where each agent has been randomly placed and the cor-

responding weights which generate the area-constrained partition determined. In

the second panel, at T = δ, the agents have moved in the gradient direction which

causes each region to have a different area (the agents moved off the constraint
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Figure 5.2: Simulation of 9 agents partitioning a square environment with uni-
form density using the iterative gradient algorithm.

surface of equitable area). The last panel shows the final state of the system at

T = 54.2s. Each agent is at its region’s centroid and the regions have the desired

measure.

Next we observe the performance of control law (5.22), which simultaneously

optimizes the weights and the positions. We set the initial weights of the system

to zero, but we keep the same initial positions and area-constraint requirements

described above. The first panel of Figure 5.3 shows that we do in fact start

with the same initial positions as the previous control algorithm, and since the

weights are zero, the partition is the Standard Voronoi Diagram; the second panel

shows how the position trajectories evolve over time, and the final panel shows

the system’s final configuration. Figure 5.4 shows better how the areas of each

agent’s region evolves over time; the second panel shows how each agent’s position

converges to its regions centroid. It is interesting to observe that given the same
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Figure 5.3: Simulation of 9 agents partitioning a square environment with uni-
form density using the simultaneous gradient algorithm.

initial conditions, the iterative algorithm and control law (5.22) converge to the

same configuration. In fact, we did not come across a case where this did not

happen.

5.7 Summary

In this chapter we studied the problem of how to optimally deploy a set of

agents over a convex workspace while each agent maintains a pre-specified area.

We have designed a provably correct, spatially-distributed continuous-time policy

that solves this optimization problem. We proposed a method for implementation

of the control policy and demonstrated its effectiveness in simulation.
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Figure 5.4: Area (left) and position (right) trajectories for 9 agents partition-
ing a square environment with uniform density using the simultaneous gradient
algorithm.
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Conclusion and Future Work

Coordination in multi-agent networks is becoming more relevant as tasks be-

come increasingly complex and need to be distributed. There are a myriad of

applications for such networks, each with their own complex and interesting prob-

lems. In this thesis we have tackled two important problems in particular.

First, we looked at the problem of surveillance. In particular, we looked

at stochastic surveillance, which has applications when the strategy has unpre-

dictability or predefined visit frequency requirements; in many surveillance prob-

lems there are important regions that needed to be visited more frequently than

others. We showed how to formulate such problems and how to optimally find

stochastic surveillance strategies.

Second, we studied the problem of deployment and territory partitioning with

a mobile robotic network. This problem has many variations which depend on

the type of communication law used and constraints applied. We looked at two
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cases. We began by looking at the case where there is sporadic, asynchronous

communication between agents in the network and a central base-station. This

sees applications when continuous line of sight communication is not readily possi-

ble; underwater vehicles and spacecraft are two examples of this. Then, we looked

at the case when there is continuous communication with neighboring agents and

there is a constraint on the amount of coverage each agent must provide. This

arises in applications where workload needs to be distributed in a predefined way,

such as distributing workload amongst mobile cell towers.

6.1 Summary

We started in Chapter 2 by formally formulating the stochastic surveillance

problem over a graph. We modeled our surveillance strategy as a Markov chain

described by a transition matrix and showed that minimizing the hitting time

of that Markov chain gives the optimal strategy for a certain class of problems.

Using the hitting time of the Markov chain, we showed for reversible transition

matrices that the hitting time can be formulated as an SDP, and thus a globally

optimal solution, if it exists, can always be found. Then, we extended the notion

of hitting time to graphs with travel distances and showed, for reversible transition

matrices, that the weighted hitting time can also be formulated as a SDP. Since

158



Chapter 6. Conclusion and Future Work

the weighted hitting time accounts for travel distances, it proved to be far superior

than other reversible Markov chain based surveillance strategies.

In Chapter 3 we further developed the notion of hitting time, and were able to

extend hitting time to multiple random walkers, coining it the group hitting time.

As a consequence, our results also allowed us to determine the hitting time between

any set of nodes, a quantity that could previously only be calculated for (1) a single

random walker with (2) a very specialized structure. These results also allowed us

to extend the weighted hitting time by finding analytic expressions for the pairwise

hitting times for a graph with travel distances, however, this was only possible for

the single random walker case. Finally, we provided extensive simulations showing

the random walks that generate optimal group hitting times can have a predictable

structure for some graph topologies, and highly unpredictable structure for others.

In Chapter 4 we started looking into problems in coverage control. We consid-

ered a discrete environment and modeled the environment by a graph as was done

in the previous two chapters. In this chapter we defined the one-to-base station

communication protocol and provided an algorithm that, using the one-to-base

protocol, converged to centroidal Voronoi partitions. We also introduced the no-

tion of Pareto-optimal partitions and provided a provable method to converge to

those partitions. In addition, we discussed various real-world application cases,

and how to handle each using the algorithms presented.
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Finally, in Chapter 5 we studied the area-constrained coverage problem over

a convex workspace. Using generalized Voronoi partitions, we showed that when

each agent can talk to its territory neighbor, that we can design a provably correct,

spatially-distributed continuous-time policy that converges to the set of centroidal

area-constrained partitions.

6.2 Future Work

This work leaves open various directions for further research.

Hitting time For the single agent weighted hitting time in Chapter 2, it was

only optimized over the transition matrix. It would be interesting to see the impli-

cations of optimizing both the weight matrix and transition matrix simultaneously.

This can have the interpretation of optimizing the “capacity” or “resistance” of

the graph, a topic in optimization which is of independent interest [34].

For the multiple Markov chains scenario, a clear extension is to consider the

case of heterogeneous travel times similar to what was done in Chapter 2. In ad-

dition, although we provide a method for determining the hitting time of multiple

random walkers, in general, it can be difficult to compute when the size of the

graph and number of agents increases. It would be of practical interest to find

a formulation which is computationally less expensive or a method in which the
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group hitting time can be calculated in a distributed way. On a related note, we

found in Chapter 3 that the minimal group hitting time is linked to the underlying

graph topology of each random walker. It would be of interest to find a way to

incorporate spatial partitioning algorithms, such as those in Chapter 4 or [26], to

find graph partitions/coverings that generate lower hitting times. Finally, given

the maximum pairwise hitting time of a Markov chain, there exists bounds on the

cover time for multiple copies of that Markov chain running in parallel [27, 3]. It

would be interesting to see if our results can be leveraged to extend those bounds

to multiple heterogenous Markov chains running in parallel.

Coverage Control For the one-to-base algorithm it would be worthwhile to

adapt the algorithm to allow for area-constrained partitions similar to the work

done in Chapter 5. Also, we would like to extend the One-to-base Coverage

Algorithm to other communication settings (e.g., directional or pair-wise gossip)

to take advantage of the notion of Pareto-optimal partitions.

For area-constrained partitions (Chapter 5) our main approach is based on

alternating phases, during which we either improve the objective function, or en-

force the area constraint. In contrast to our main solution, we would like to

prove convergence of the proposed policy in which agents converge to the con-

straint surface while simultaneously optimizing the coverage problem. So far, the
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effectiveness of this policy has been observed in simulations. Second, our pol-

icy requires synchronous and reliable communication along the edges of the dual

graph associated to the Voronoi partition. It would be of practical interest to relax

this requirement, using asynchronous, event-based, or unreliable communication

as in Chapter 4 or [12, 62]. In addition, our approach is based on the assumption

that the environment we partition is convex, and finding policies that work over

non-convex environments would be of great practical use: works in this direction

include [16] and [26]. Finally, we assume that the density function φ is known to

the agents, which may be hard to satisfy in practice; several papers have recently

appeared to overcome this assumption, including [63] and [74].

162



Bibliography

[1] A. Albert. Conditions for positive and nonnegative definiteness in terms of
pseudoinverses. SIAM Journal on Applied Mathematics, 17(2):434–440, 1969.

[2] D. Aldous and J. A. Fill. Reversible Markov Chains and Random Walks on
Graphs, 2002. Unfinished monograph, recompiled 2014, available at http:

//www.stat.berkeley.edu/~aldous/RWG/book.html.

[3] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, and M. R. Tuttle. Many
random walks are faster than one. Combinatorics, Probability and Computing,
20, 7 2011.
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