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Abstract

Middle censoring in the presence of covariates

Elvynna Leong

Middle censoring refers to data that becomes unobservable if it falls within a random

interval (L,R). For some individuals the exact values are available while for others the cor-

responding intervals of censorship are observed. Left censoring, right censoring and double

censoring are special cases of this middle censoring by suitable choices of this censoring

interval. Here, we develop new methods for analyzing data subject to middle-censoring

when covariates are present. The techniques discussed include parametric models as well as

semi-parametric models such as the Cox’s Proportional Hazards model and the Accelerated

Failure Times model.

In survival studies the values of some covariates may change over time. As such, it

is natural to incorporate such time-dependent covariates into the model to be used in sur-

vival analysis. The model used in this research integrates both time-independent and time-

dependent covariates for middle censored data. Both semiparametric and parametric models

are considered when time-dependent covariates are present. Next, discrete lifetime data that

follow a geometric distribution, that is subject to middle censoring is considered. Here, we

include an extension and generalization to the case where covariates are present and present

an alternate approach and proofs which exploit the simple relationship between the geo-

metric and exponential distributions. Also, considered are estimation problems for middle

vi



censored data with two independent competing risks, both for parametric and semiparamet-

ric context.

Simulation studies are performed to demonstrate the usefulness and accuracy of the

methods developed here, and illustrated with a practical example using data from a Stanford

Heart Transplant study.

Professor S. Rao Jammalamadaka

Dissertation Committee Chair
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Chapter 1

Survival Analysis

1.1 Introduction

Survival data often consists of a response variable that measures the duration of time

until a specified event occurs and a set of independent variables thought to be associated

with the event-time variable. This event-time may be death, durations of jobs, conception,

the development of some disease, remission after some treatment, survival times in a clinical

trial, the appearance of a tumor and equipment breakdown.

The purpose of survival analysis is to model the underlying distribution of event times

and to assess the dependence of the event time on other explanatory variables. In many

situations, the event time is not observed due to withdrawal or termination of the study;

this phenomenon is known as censoring. Survival analysis methods correctly use both the

censored and uncensored observations. Let T denote a non-negative random variable repre-

senting the failure time of a subject, that is, the survival variable of interest. For inferences

about T , the survival function and the hazard function are particularly useful for modeling.
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Chapter 1. Survival Analysis

The survival function of T is defined as the probability that T is greater than a certain

time, t and is of considerable interest in failure time analysis. Let S(t) denote the survival

function of T . Then,

S(t) = P (T > t), 0 < t <∞

Assuming that T is continuous and thus its probability density function f(t) exists;

S(t) = 1− F (t) =
´∞
t
f(x) dx.

where F (·) is called the Cumulative Distribution Function (CDF). Thus

f(t) = −dS(t)
dt

They are monotone, non-increasing functions equal to one at zero and zero as time

approaches infinity.

Assume that T is a discrete survival variable taking values t1 < t2 < . . .with probability

functionf(tj) = P (T = tj); j = 1, 2, . . .. Then, the survival function for a discrete random

variable T is given by

S(t) = P (T > t) =
∑

j:tj>t
f(tj)

Another quantity of interest is the hazard function of T at time t, and is defined by

h(t) = lim∆t→0
P [t ≤ T < t+ ∆t|T ≥ t]

∆t
(1.1.1)

It represents the instantaneous probability that a subject fails at time t given that the subject

has not failed before t. Assuming that T is a continuous random variable, then Equation

(1.1.1) can be rewritten as

2



Chapter 1. Survival Analysis

h(t) = 1
P (T>t)

lim∆t→0
P [t≤T<t+∆t]

∆t
= f(t)

S(t)
= −dln[S(t)]

dt

A related quantity is the cumulative hazard function H(t) defined by

H(t) =
´ t

0
h(u)du = −ln[S(t)]

Thus, for continuous lifetimes,

S(t) = exp[−H(t)] = exp[−
´ t

0
h(u)du]

This function is particularly useful in determining the appropriate failure distribution

utilizing qualitative information about the mechanism of failure and for describing the way

in which the chance of experiencing the event changes with time. The restriction on h(t) is

that it is non-negative, i.e. h(t) ≥ 0.

When T is a discrete random variable, the hazard function is given by

h(tj) = P (T = tj|T ≥ tj) =
p(tj)

S(tj−1)
(1.1.2)

where j = 1, 2, · · · and S(t0) = 1. Since the relationship between the lifetime model and

the survival function is given as

p(tj) = S(tj−1)− S(tj)

then the hazard function in Equation (1.1.2) becomes

h(tj) = P (T = tj|T ≥ tj) =
p(tj)

S(tj−1)
= 1− S(tj)

S(tj−1)
,

where j = 1, 2, · · · .

3



Chapter 1. Survival Analysis

Note that the survival function may be written as the product of conditional survival

probabilities

S(t) =
∏
tj≤t

S(tj)

S(tj−1)
=
∏
tj≤t

[1− h(tj)]

1.2 Censoring and Truncation

Censoring is one of the unique features of failure time data. By censoring, it means

that an observation on a survival time of interest is incomplete, that is, the survival time

is observed only to fall into a certain range instead of being known exactly. The various

categories of censoring are right censoring, left censoring and interval censoring. Censored

data are different from missing data as censored observations still provide some partial

information, whereas missing observations provide no information about the variable of

interest (Sun, 2006).

Truncation of survival data occurs when only those individuals whose event time lies

within a certain observational window (YL, YR) are observed. An individual whose event

time is not in this interval is not observed and no information on this subject is available to

the investigator. This is in contrast to censoring where there is at least partial information on

each subject. Because we are only aware of individuals with event times in the observational

window, the inference for truncated data is restricted to conditional estimation.

The main difference between censoring and truncation is that in truncation, survival data

occurs when only those individuals whose event time lies within a certain observational
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Chapter 1. Survival Analysis

window are observed. Whereas in censoring there is at least partial information about the

lifetimes, regardless if the event happens in the observational window or not.

1.2.1 Right Censoring

By right censoring, the failure time of interest is observed either exactly or to be greater

than a censoring time. A typical situation that yields right-censored observation is one in

which survival study has to end due to, for example, time constraints or resource limitations.

In this case, for subjects whose survival events have not occurred at the end of the study,

their survival times are not observed exactly but are known to be greater than the study end

time i.e. they are right-censored. For subjects who have already failed by the end of the

study, their failure times are known exactly. Of course, the study end time could be different

for different subjects, and some subjects may withdraw from the study before the end for

some reasons. Generally, there are two types of censoring: 1. Type 1 censoring -where

censoring occurs at a pre-specified time and 2. Type II censoring - where censoring occurs

once a predetermined number of deaths occur (Klein & Moeschberger, 2003).

Type I censoring occurs when the event is observed only if it occurs prior to some pre-

specified time. For example, a typical animal study or clinical trial starts with a fixed number

of animals or patients to which a treatment is applied. Due to time or cost considerations, the

investigator will need to terminate the study or report the results before all subjects realize

their events. In this case, all censored observations have times equal to the length of the

study period if there are no losses or subject withdrawals.

5



Chapter 1. Survival Analysis

Assume that there is a lifetime X and a fixed censoring time, Cr where the X’s are

assumed to be independent and identically distributed. The exact lifetimeX of an individual

will be known if and only if X is less than or equal to Cr i.e.X ≤ Cr. However, if X is

greater than Cr, the individual is a survivor and so his or her event time is censored at

Cr. The data from this experiment can be represented by pairs of random variables (T, δ),

where δ indicates whether the lifetime X corresponds to an event (δ = 1) or is censored

(δ = 0), and T is equal to X , if the lifetime is observed, and to Cr if it is censored, i.e.

T = min(X,Cr) (Klein & Moeschberger, 2003). An example would be when animals

have different, fixed - sacrifice (censoring) times, this form of Type I censoring is called

progressive Type I censoring.

Type II censoring is another type of right censoring in which the study continues until

the failure of the first r individuals, where r is some predetermined integer (r < n). An

example of Type II censoring is when testing equipment life where all items are put on test

at the same time, and the test is stopped when r of the n items have failed. An advantage of

this type of censoring is that it may save time and money since it could take a long time for

all the items to fail. In this case, note that r is the number of failures and n−r the number of

censored observations are fixed integers and the censoring time T(r), the rth ordered lifetime

is random.

An example is shown in Figure (1.2.1) to illustrate right censoring. The graph describes

the experience of several subjects followed over a certain period until death or the end of the

study. Some of these subjects may be lost to follow up during the study period, withdraw
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Chapter 1. Survival Analysis

from the study or still alive at the end of the study . The subjects who died are denoted

by X. The figure shows that subjects A and E died before the end of the study so they are

uncensored observations. Subject B is lost to follow up while subject D withdraws from

the study for some known/unknown reasons. Subjects C and F were alive at the end of the

study. Hence, subjects B, C, D and F are considered as right-censored observations.

Figure 1.2.1: Study time for six subjects with different status

1.2.2 Left Censoring

Left censoring occurs when a person’s true survival time is less than or equal to that

person’s survival time, that is, the event of interest has already occurred for the individual

before that person is observed in the study at censoring time Cl. For such individuals, they

7



Chapter 1. Survival Analysis

have experienced the event before time Cl but their exact event time is unknown. Left

censored data can be represented by pairs of random variables (T, η), where T is equal to X

if the lifetime is observed and η indicates whether the exact lifetime X is observed (η = 1)

or not (η = 0). Lifetimes are considered doubly censored if both left censoring and right

censoring occur in a study (Turnbull, 1974).

1.2.3 Interval censoring

Another type of censoring occurs when the lifetime is known only to lie in an interval,

instead of being observed exactly. By interval censoring, the study subjects or failure time

processes of interest are not under continuous observation. As a consequence, the failure

or survival time is not always exactly observed or right-censored. For an interval-censored

observation, one only knows of a window, that is, an interval, within which the survival

event has occurred. Traditionally the the term “interval censoring” has been used when all

the data comes in the form of intervals (cf. Sun, 2006).

Interval-censored failure time data occur in many areas including epidemiological, de-

mographical, financial, sociological and medical studies. An example of interval-censored

data occurs in health or medical studies that involve periodic follow-ups. Such interval cen-

soring occurs when patients in a clinical trial or longitudinal study have periodic follow up

and the patient’s event time is only known to fall in an interval (Li, Ri].

Let X be a non-negative random variable representing the failure time of an individual

in a failure time study. An observation on X is interval-censored if instead of observing X

8



Chapter 1. Survival Analysis

exactly, only an interval (L,R] is observed such that X ∈ (L,R] where P (L ≤ R) = 1

(Sun, 2006).

1.2.4 Likelihood construction for censored data

In constructing a likelihood function for censored data, careful consideration needs to be

done on what information each observation gives us. A critical assumption in most studies,

is that the lifetimes and censoring times are independent. For an independent and identically

distributed sample,

T1, T2, · · · , Tn
iid∼ f(t|θ)

with censoring intervals (Li, Ri). Then the most general likelihood can be written in the

form

L ∝
∏

i∈Uncens f(ti)
∏

i∈LC F (Li)
∏

i∈RC [1− F (Ri)]
∏

i∈IC [F (Ri)− F (Li)]

where Uncens is the set of failure times, LC the set of left-censored observations, RC the

set of right-censored observations and IC the set of interval-censored observations. The

goal is to try to find the Maximum Likelihood Estimate (MLE) of this equation. However,

in most cases there is not an explicit solution hence a numerical approach must be used.

Newton-Raphson method is one of the most common approaches used to maximize this.

1.2.5 Left truncation

Truncation of survival data occurs when only those individuals whose event time lies

within a certain observational window (YL, YR) are observed. Left truncation occurs when

9



Chapter 1. Survival Analysis

YR is infinite. Only individuals whose event time T exceeds the truncation time YL are

observed; that is, T is observed if and only if YL < T . Left truncation is very common

in fields like demography and epidemiology. An example is a study on how long people

who have been hospitalized for a heart attack survive taking some treatment at home. The

start time is taken to be the time of the heart attack and only those individuals who survive

their stay in hospital are able to be included in the study. The truncation time is often called

a delayed entry time since we only observe subjects from this time until they die or are

censored (Klein and Moeschberger, 2005).

1.2.6 Right truncation

Right truncation occurs only when YL is equal to zero i.e. the survival time T is observed

only when T ≤ YR. For example, right truncation occurs when estimating the distribution

of stars from the earth and the stars too far away that are not visible are right truncated.

1.3 Estimating the survival function and the cumulative

hazard function

1.3.1 Kaplan-Meier Estimator

The standard non-parametric estimator of the survival function is the Kaplan-Meier es-

timator introduced by Kaplan and Meier (1958). It is a product-limit estimator and has been

extensively studied in the literature. This estimator is defined as follows

10



Chapter 1. Survival Analysis

Ŝ(t) =
∏

tj≤t(1−
dj
Yj

)

Here tj denotes the distinct imputed exact failure time, Yj is the number of individuals who

are at risk at time tj and dj is the number of failures at time tj . This estimator is not well

defined for values of t beyond the largest observation time. If this corresponds to a failure

time, then the estimated survival function is zero beyond this point. If the largest observed

time is right censored, the estimator S(t) in undetermined beyond this point. However,

Efron (1967) suggests estimating Ŝ(t) = 0 for t > tmax. This corresponds to assuming that

the survivor with the largest time on study would have died immediately after the survivor’s

censoring time and leads to an estimator which is negatively biased. Other estimates for

Ŝ(t) have been explored as well, as suggested in Gill (1980).

The product-limit estimator, S(t) is a step function with jumps and discontinous at

time tj’s. Its pointwise variance estimate is given by the well-known Greenwood’s formula

(Greenwood, 1926)

V̂ [Ŝ(t)] = Ŝ(t)2
∑

tj≤t
dj

Yj(Yj−dj)

An alternative estimator of the variance of Ŝ(t) due to Aalen and Johansen (1978) is

given by

Ṽ [Ŝ(t)] = Ŝ(t)2
∑

tj≤t
dj
Y 2
j

For small to moderate samples, both this estimator and Greenwood’s estimator tend to

underestimate the true variance of the Kaplan-Meier estimator. On average, Greenwood’s

estimator tends to come closest to the true variance and has a smaller variance except when

Yj is very small (Klein, 1991).
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1.3.2 Nelson-Aalen estimator

The Kaplan-Meier estimator provides an efficient means of estimating the survival func-

tion for right censored data. It can also be used to estimated the cumulative hazard function

by using the relationship H(t) = −lnS(t). Nelson (1972) suggested an alternate estima-

tor of the cumulative hazard rate, which has better small-sample size performance than the

estimator based on the Kaplan-Meier estimator. Aalen (1978b) then rediscovered the es-

timator who derived the estimator using modern counting estimator, and this estimator is

called Nelson-Aalen estimator of the cumulative hazard function i.e.

H̃(t) =


0 if t ≤ t1

∑
ti≤t

di
Yi

if t1 ≤ t

The estimated variance of the Nelson-Aalen estimator is given by

σ2
H(t) =

∑
ti≤t

di
Y 2
i

Hence, based on the Nelson-Aalen Estimator of the cumulative hazard rate, an alternate

estimator of the survival function is given by the equation S̃(t) = exp(−H̃(t)).

The Nelson-Aalen estimator has two primary uses in analyzing data. The first use is in

selecting between parametric models for the time to event. An example is a plot of H̃(t)

against t will be approximately linear if the exponential distribution with hazard rate λ, fits

the data well. A second use is in providing the crude estimates of the hazard rate h(t) which

is the slope of the Nelson-Aalen estimator.
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1.4 Models with covariates

Consider a failure time X > 0 and a vector ZT = (Z1, · · · , Zp) of explanatory variables

associated with failure time X . The explanatory variables ZT could either be quantitative

variables (such as blood pressure, temperature, age and weight), qualitative variables (such

as gender, race, treatment and disease status) and/or time-dependent variables i.e. ZT(x) =

[Z1(x), Z2(x), · · · , Zp(x)] which will be discussed in Section 5.

1.4.1 Cox Proportional Hazard function

The Cox Proportional Hazard model (PH) is defined by

h(t,Z) = h0(t)e
∑p
i=1 βiZi (1.4.1)

where Z = (Z1, Z2, · · · , Zp) is the explanatory variables and h0(t) is the baseline hazard

function. This model gives an expression for the hazard at time t for an individual with a

given specification of a set of explanatory variables Z. An important property of the Cox

model is that the baseline hazard, h0(t) is an unspecified function. It is this property that

makes the Cox model a semi-parametric model.

A key reason for the popularity of the Cox model is that, even though the baseline

hazard is not specified, reasonably good estimates of regression coefficients, hazard ratio of

interest, and adjustable survival curves can be obtained for a wide variety of data situations.

Cox PH model is a robust model such that the results from using this model will closely

approximate the results for the correct parametric model. Thus, when in doubt, the Cox
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model will give a reliable enough results so that it is a ’safe’ choice of model, and the user

does not need to worry about whether the wrong parametric model is chosen.

The goal of this model is not to estimate the baseline hazard function h0(t) but rather to

estimate the effect of the covariates, Z on lifetimes. The estimates of the parameters of the

Cox model are the maximum likelihood estimates, β̂i and is based on a partial or conditional

likelihood rather than a full likelihood approach. Assume that censoring is non-informative

in that, given Zj , the event and censoring time for the jth subject are independent. Also,

suppose that there are no ties between the event times. Let t1, t2, · · · tD denote the ordered

event times and Z(i)k be the kth covariate associated with the individual whose failure time

is ti. The risk set at time ti, R(ti) is the set of all individuals who are still under study at

a time just prior to ti. The partial likelihood based on the hazard function as specified by

(1.4.1) is expressed by

L(β) =
D∏
i=1

exp[
∑p

k=1 βkZ(i)k]∑
j∈R(ti)

exp[
∑p

k=1 βkZjk]
(1.4.2)

Note that the baseline hazard function does not play a role in the Cox likelihood, thus it

plays no role in the estimation of the regression parameters. The term ”partial” likelihood is

used because the likelihood formula considers probabilities only for those subjects who fail,

and does not explicitly consider probabilities for those subjects who are censored. This is

treated as a usual likelihood and inference is carried out by usual means. It is of interest to

note that the numerator of the likelihood depends only on information from the individual

who experiences the event, whereas the denominator utilized information about all individ-

uals who have not yet experienced the event (including the subjects who will be censored
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later). The (partial) maximum likelihood estimates are found by maximizing (1.4.1) by tak-

ing partial derivatives of log of L with respect to each parameter in the model and then

solving a system of equations. This solution is carried out using Newton-Raphson iteration.

The PH assumption requires that the Hazard Ratio, HR is constant over time, or equiva-

lently, that the hazard for one individual is proportional to the hazard for any other individ-

ual, where the proportionality constant is independent of time. Consider HR that compares

two different specifications Z∗ and Z for the explanatory variables used in the Cox model

i.e.

ĤR =
ĥ(t,Z∗)
ĥ(t,Z)

= e
∑p
i=1 β̂i(Z

∗
i −Zi)

where Z∗ = (Z∗1 , Z
∗
2 , · · · , Z∗p) and Z = (Z1, Z2, · · · , Zp) denote the set of Z ′s for two

individuals. Notice that the final expression does not involve the baseline hazard and time t.

1.4.2 Accelerated Failure Times

Many parametric models are Accelerated Failure Time (AFT) models rather than Pro-

portional Hazard (PH) models. The AFT model specifies that

log T = ZTβ +W (1.4.3)

where β is the vector of regression parameters and W is an error variable with an unknown

distribution function. Under model (1.4.3), the underlying assumption for AFT models is

that the effect of covariates is multiplicative with respect to survival time. It describes the

effect to change the timescale and therefore to accelerate or decelerate the time to failure.

This model has been studied by various authors including Miller (1976), Buckley and James
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(1979), Koul et al. (1981), Louis (1981), Wei and Gail (1983), James and Smith (1984),

Ritov and Wellner (1988), Lai and Ying (1991b), Wei et al. (1990), Tsiatis (1990) and Ritov

(1990).

The survival function of the AFT model is given by

S(t|Z) = S0(exp(βTZ)t)

where exp(βTZ) is called the acceleration factor. The acceleration factor is the key measure

of association obtained in an AFT model. It allows the investigator to evaluate the effect of

predictor variables on survival time just as the hazard ratio allows the evaluation of predictor

variables on the hazard.

1.4.3 Time-dependent covariates

In the previous sections, the hazard function of an individual is modeled as a function

of fixed time covariates. These are explanatory variables recorded at the start of the study

whose values are fixed throughout the course of the study. An example from Klein and

Moeschberger (2003, page 295) is from acute leukemia patients who were given a bone

marrow transplant where there are three risk groups, donor age, recipient age and several

other variables, as fixed time covariates. The basic interest was to evaluate the relationship

of the risk groups to the hazard of relapse or death controlling for possible confounding vari-

ables which might be related to relapse or death. As is typical in survival studies, individuals

are monitored during the study and other explanatory variables are recorded where values

may change during the course of the study. Some of these variables may be instrumen-

16



Chapter 1. Survival Analysis

tal in predicting survival and need to be taken into consideration in evaluating the survival

distribution. Such variables may change over time are called time-dependent variables. A

covariate may be binary with at most one change, depending on the conditions during the

study time (Allison, 1995). It is also possible to include time-dependent covariates that are

essentially continuous where the value of the covariate is a series of measurements of some

explanatory characteristic. Some examples of this type of covariate might be blood pres-

sure, cholesterol, body mass index, size of the tumor, or rate of change in the size of the

tumor recorded at different times for a patient.

A common use of time-dependent covariates is for testing the proportional hazards as-

sumption in Section (1.4.1). For time dependent covariates, it is assumed that their value

is predictable in the sense that the value of the covariate is known at an instant just prior to

time t. The basic model due to Cox (1972) is as in (1.4.1) with Z replaced by Z(t),

h(t|Z(t)) = h0(t)e
∑p
i=1 βiZi(t) (1.4.4)

where Z(t) = [Z1(t), Z2(t), · · · , Zp(t)]T denote a set of covariates at time t which may

effect the survival distributions ofX whereX denote the time to some event. An assumption

of the model 1.4.4 is that the time dependent covariate effect, as measured by its coefficient,

does not depend on time.

From a conceptual point of view, the model (1.4.4) becomes more complicated and

one should give serious consideration to the nature of any time dependent covariate before

including it in the model. Another concern is the potential to over-fit a model when us-

ing time dependent covariates. Inclusion of time-dependent covariates should be based on
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strong clinical evidence. The consequences of using the Cox’s proportional hazards model

when the hazard ratios are far from constant over time are: (1) The power of corresponding

tests decreases because of suboptimal weights for combining the information provided by

the risk sets of times where failure occur (Lagakos & Schoenfeld, 1984) and for other co-

variates with constant hazard ratios, testing power declines as a consequence of an inferior

fit of the model. (2) The relative risk for covariates with hazard ratios increasing over time

is overestimated while for covariates with converging hazards, perhaps the most frequent

violation, the relative risk is underestimated. Fisher and Lin (1999) provide illustrations

of the use of time dependent covariates and discuss related conceptual issues and potential

problems and biases. Andersen, Borgan, Gill and Keiding (1993), Fleming and Harring-

ton (1991) and Kalbfleisch and Prentice (2002) present the topic from the counting process

point of view.

Prediction in survival models with time-dependent covariates would be difficult because

of the changing nature of the covariate with time hence its value at different future times

will be unknown. Also, the survival curves cannot be estimated in this case. This is because

estimating the survival curve would require the value of the time-dependent covariate for

the subject. In this case, knowing this value means that this subject has not been observed

or may still be alive or is in the risk set. Hence, the survival time for this subject cannot be

used to estimate the survivor function (Fisher and Lin, 1999).
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Middle censoring

Jammalamadaka and Mangalam (2003) introduced a general concept of censoring called

“Middle Censoring”. Middle censoring refers to data where some of the observations are

observed exactly while others become unobservable as and when they fall within a random

interval (L,R). Left censoring, right censoring and double censoring are special cases of

this middle censoring by suitable choice of this censoring interval.

For some individuals the exact values are available while for others the corresponding

intervals of censorship are observed. If a subject is temporarily absent or withdrawn from

study and the event of interest occurs during this time interval, the exact time of occurrence

can not be observed but instead we only observe an open interval. Other authors have

referred to this general scheme as “partly interval censored”, “mixed interval censored” etc.

(see Huang, 1999 and Yu et al, 2001)

Suppose there is a random sample of individuals of size n from a specific population

whose true life times are T1, T2, · · · , Tn. It is assumed that the lifetimes are a random
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sample from a common distribution, that is

T1, T2, · · · , Tn
iid∼ F0(t)

Corresponding to each individual in the sample there is a random censoring interval (L1, R1), (L2, R2),

· · · , (Ln, Rn) which are independent of the lifetimes. The censoring intervals are taken to

be i.i.d bivariate random vectors

(L1, R1), (L2, R2), · · · , (Ln, Rn)
iid∼ G(l, r)

where P (Li < Ri) = 1. This is a standard assumption which is equivalent to saying that

the time at which an individual is censored has nothing to do with how long that individual

lives. Thus, for the ith individual Ti is observable only if Ti /∈ [Li, Ri]. Otherwise, only the

censoring interval [Li, Ri] can be observed corresponding to this individual instead of real

observation. Thus the observed data is X1, X2, · · · , Xn, where

Xi =


Ti if Ti /∈ (Li, Ri)

(Li, Ri) if Ti ∈ (Li, Ri)

2.1 Nonparametric Middle-Censoring

In many censoring situations, to estimate the distribution function via the EM algorithm,

the resulting algorithm takes the form

F̂ (t) = EF̂ [En(t)|X]
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as described by Tsai and Crowley (1985), where En is the empirical distribution function.

This equation was first introduced and referred to as self-consistency equation by Efron

(1967).

In the middle censored cases, the self-consistent estimator (SCE) (see Jammalamadaka

and Mangalam, 2003), F̂n satisfies the following equation:

F̂n(t) =
1

n

n∑
i=1

(
δiI[Ti≤t] + (1− δi)I[Ri≤t] + (1− δi)I[t∈(Li,Ri)]

F̂n(t)− F̂n(Li)
F̂n(Ri−)− F̂n(Li)

)
(2.1.1)

where δi = I{Ti /∈ (Li, Ri)}

An exact solution to equation (2.1.1) does not exist but can be solved via the EM algo-

rithm. It can be computed by the iterative formula

F̂ (m+1)(t) = EF̂ (m) [En(t)|X]

where En(t) is the empirical distribution function.

Jammalamadaka and Mangalam (2003) showed that the NPLME satisfies the self-consistency

equation, SCE (2.1.1) and is listed below.

Theorem 2.1. The NPMLE satisfies equation (2.1.1).

A question of interest is whether or not the NPMLE will have all its mass on the uncen-

sored observation. The authors prove the following proposition in answer to this question.

Proposition 2.2. If each observed censored interval (Li, Ri) contains at least one uncen-

sored observation Xj, j 6= i, then any distribution function that satisfies equation (2.1.1)

attaches all its mass on the uncensored observations.
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Jammalamadaka and Mangalam (2003) also consider the case when the censoring in-

terval, (Li, Ri), does not contain an uncensored observation. They suggest assigning the

mass corresponding to that interval to its midpoint when this happens. Hence, the initial

estimator may give equal mass to all uncensored observations and to the midpoints of those

finite censored intervals that contain no uncensored observations. If an infinite censoring

interval happens to be empty of uncensored observations, one can then assign the mass to

any arbitrary point inside this interval for the estimator to have a maximum.

The following theorem by Jammalamadaka and Mangalam (2003) answers questions

about consistency of the SCE under some mild conditions.

Theorem 2.3. The self consistency equation, SCE is uniformly strongly consistent.

See Jammalamadaka and Mangalam (2003) for a thorough proof of the above state-

ments. Jammalamadaka and Iyer (2004) considered a slight variation of this estimator and

proved that it is consistent and converges weakly to a Gaussian process.

2.2 Parametric Middle-Censoring

Middle censoring in the parametric context was first discussed by Iyer, Jammalamadaka

and Kundu (2008) (IJK from now on). Lifetimes, in the parametric context, are assumed

to be an i.i.d sample from a known distribution and the censoring intervals are also i.i.d

bivariate random vectors from another known distribution and are taken to be independent
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of the lifetimes; a common assumption in survival analysis. See Kaplan and Meier (1958),

Turnbull (1974), Jammalamadaka and Mangalam (2003) and IJK (2008).

2.2.1 Exponential distribution

In IJK (2008), the lifetimes Ti are exponentially distributed with mean 1
θ0

. The left point

of the censored interval, Li is an Exponential random variable with mean 1
α

and the length

of the censored interval, Ui is Exponentially distributed with mean 1
β

i.e.

T1, T2, · · · , Tn
iid∼ f(t|θ0) = θ0e

−θ0t

L1, L2, · · · , Ln
iid∼ f(l|α) = αe−αl

U1, U2, · · · , Un
iid∼ f(u|β) = βe−βu

for t > 0, l > 0, u > 0. Moreover, Ti’s, Li’s and Ui’s are all independent of each other. The

observed data Xi’s, just as in the nonparametric set-up in Section (2.1), are given as

Xi =


Ti if Ti /∈ (Li, Ri)

(Li, Ri) if Ti ∈ (Li, Ri)

Since the model is parametrized, the MLE of θ0 can then be solved. Assuming that there

are n1 > 0 uncensored observations and n2 > 0 censored observations, without loss of

generality, re-order the data into uncensored and censored observations. The observed data

is

T1, · · · , Tn1 , (Ln1+1,Rn1+1), · · · , (Ln1+n2,Rn1+n2
)
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where n1 + n2 = n. The likelihood can then be written as

L(θ) = cθn1e−θ
∑n1
i=1 ti

n1+n2∏
i=n1+1

(e−θli − e−θri) (2.2.1)

where c is a normalizing constant depending on α and β. However, the estimation of α and

β are not of interest, thus they are left as a constant. The log-likelihood can be written as

l(θ) = logc+ n1lnθ − θ
n1∑
i=1

ti +

n1+n2∑
i=n1+1

ln(e−θli − e−θri) (2.2.2)

The EM algorithm is used to find the MLE of θ0 since this is an example of incomplete

data. The algorithm is an iterative procedure that finds MLE’s in parametric estimation for

incomplete data by repeating the following steps:

1. E-step: Calculates the conditional expectation of the complete data log-likelihood

given the observed data and the parameter estimates

2. M-step: Given a complete data log-likelihood, the M step finds the parameter esti-

mates to maximize the complete data log-likelihood from the E-step.

The two steps are iterated until the iteration coverage.

Applying integration by parts gives the following equation

E[T |L < T < R] =
e−θL(L+ 1

θ
)− e−θR(R + 1

θ
)

e−θL − e−θR
(2.2.3)

Equation (2.2.3) is used as the E-Step in the EM algorithm and then the required log-

likelihood is given by

l∗(θ) ∝ nlnθ − θ

[
n1∑
i=1

ti +

n1+n2∑
i=n1+1

t∗i

]

24



Chapter 2. Middle censoring

where

t∗i = E[Ti|Li < Ti < Ri] =
e−θLi(Li + 1

θ
)− e−θRi(Ri + 1

θ
)

e−θLi − e−θRi
(2.2.4)

Hence, the EM algorithm can be set up as follows. Choose θ(0) to be the MLE of the

uncensored data. Update the estimates with the following steps:

• Step 1: Suppose that θ(j) is the jth estimate

• Step 2: Compute T ∗i using Equation (2.2.4) with θ = θ(j)

• Step 3: Set θ(j+1) = n∑n1
i=1 ti+

∑n1+n2
i=n1+1 t

∗
i

• Step 4: Repeat until convergence criteria is met

IJK (2008) give sufficient conditions for this algorithm to converge, which is quoted

below.

Theorem 2.4. The iterative process will converge if

n∑
i=n1+1

ri ≤ 2

n1∑
i=1

ti + 3
n∑

i=n1+1

li

To prove that it is a global maximum, IJK (2008) show this in Lemmas (2.5) and (2.6).

Lemma 2.5. 1
n
l(θ)→ g(θ) a.s.

Lemma 2.6. g(θ) is a unimodal function with unique maximum.

It is then proved that the MLE of θ converges to the point at which g(θ) attains its

maximum. IJK (2008) also gave the asymptotic distribution of the MLE of θ which is given

in Theorem (2.7).
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Theorem 2.7. The MLE of θ i.e. θ̂ has the following asymptotic distribution

√
n(θ̂ − θ0)

dist→ N

(
0,
σ2

c2

)

where c and σ have explicit, closed forms. For proofs of the statements see IJK (2008).

To conclude their work, IJK (2008) conducted some numerical simulations to illustrate

these methods and found that the numerics were consistent with the theory in all cases. It

even converges with a large proportions of censored observations.

IJK (2008) also considered a Bayesian approach to this problem. They gave a priori

distribution on θ and since the gamma distribution is a conjugate prior to the exponential

distribution, they use a Gamma(a, b) prior which is given by

π(θ) =
ba

Γ(a)
θa−1e−bθ

When there is at least one censored observation, the posterior distribution is some-

what cumbersome. However, if there is no censored observations, then the posterior is a

Gamma(a+ n, b+
∑n

i=1 ti). The restricted distribution of T is given by

fT |T∈(L,R)(t|θ) =
θe−θt

e−θL − e−θR
(2.2.5)

for t ∈ (L < R).

IJK (2008) propose using a Gibbs sampling technique to obtain a Bayes estimate of θ

and the steps are given below.

• Step 1: Generate θ(1) from a Gamma(a+ n1, b+
∑n1

i=1 ti)

• Step 2: From the restricted distribution (2.2.5), generate the incomplete data t∗i ,
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• Step 3: Generate θ(2) from Gamma(a+ n, b+
∑n1

i=1 ti +
∑n

i=n1+1 t
∗
i )

• Step 4: Go to Step 2 and replace θ(1) by θ(2). Repeat Steps 2 and 3, N times.

Under squared error loss, the Bayes estimate is given by

θ̂Bayes =
1

N −M

N∑
1=M+1

θ(i)

where M is the burn-in sample size. The Bayesian results were found to be consistent with

the EM algorithm results.

Bennett (2011) considered lemma (2.8) and then gave theorem (2.9) to show that a

similar EM algorithm will converge for a much richer class of distributions under the same

censoring mechanism.

Lemma 2.8. Let x ∈ R, θi ∈ (αi, βi) for i ∈ {1, 2, · · · , k}, where the interval can be

infinite. Let f(x, θ) : Rk+1 → R be a continuous function. Define F (θ) =
´ b
a
f(x, θ)dx

where a, b are finite constants. Then F (θ) is a continuous function.

Theorem 2.9. Let x1, · · · , xn1 , (ln1+1,rn1+1), · · · , (ln1+n2 , rn1+n2) be the observed middle -

censored data from a continuous exponential family distribution

f(x|φ) = h(x)c(φ)exp

[
k∑
j=1

wj(φ)tj(x)

]

such that h(x), tj(x), c(φ) and wj(φ) are all continuous functions. Then the EM algorithm

will converge for this data.

See Bennett (2011) for proofs of lemma (2.8) and theorem (2.9).
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2.2.2 Weibull distribution

Bennett (2011) considered lifetime that are Weibull distributed i.e.

T1, · · · , Tn
iid∼ f(t|a, b) = abta−1exp(−bta)

for t > 0. The censoring mechanism is the same as before i.e. the left censoring point for

each individual Li is assumed to be an exponential random variable with mean 1
α

and the

length Zi = Ri − Li is assumed to be another independent exponential random variable

with mean 1
β

. Moreover, the Ti’s and Li’s and Zi’s are all independent of each other.

Reordering the data into the uncensored and censored observations, the observed data

is written as T1, · · · , Tn1 , (Ln1+1, Rn1+1), · · · , (Ln1+n2 , Rn1+n2) where n1 + n2 = n. The

log-likelihood can be written as

l(a, b) ∝n1ln(a) + n1ln(b) + (a− 1)

n1∑
i=1

ln(ti)− b
n1∑
i=1

tai +

n1+n2∑
i=n1+1

ln(e−bl
a
i − e−brai )

The conditional expectations needed in order to use the EM-algorithm are given as

E[T a|L < T < R] =

´ R
L
taabta−1e−bt

a
dt

exp[−blai ]− exp[−brai ]
(2.2.6)

E[ln(T )|L < T < R] =

´ R
L
ln(t)abta−1e−bt

a
dt

exp[−blai ]− exp[−brai ]
(2.2.7)

The conditional expectations (2.2.6) and (2.2.7) do not have a closed form like Equation

(2.2.3) but they can be found numerically. The required log-likelihood for the M-step is
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given as

l∗(a, b) ∝nln(a) + nln(b) + (a− 1)

[
n1∑
i=1

ln(ti) +

n1+n2∑
i=n1+1

ln(ti)
∗

]

− b

[
n1∑
i=1

tai +

n1+n2∑
i=n1+1

(tai )
∗

]
(2.2.8)

where the t∗a’s and ln(t)∗ are found using Equations (2.2.6) and (2.2.7) respectively.

Hence, the EM-algorithm is set up as follows. Choose (a, b)(0) to be the MLE of the

uncensored data. Update the estimates with the following steps:

• Step 1: Suppose that (a, b)(j) is the jth estimate

• Step 2: Compute the incomplete data, T ∗i , using Equations (2.2.6) and (2.2.7) with

(a, b) = (a, b)(j)

• Step 3: Solve equation (2.2.8) for its maximum and set (a, b)(j+1) as that maximum

• Step 4: Repeat until convergence criteria is met

Bennett (2011) showed that the EM algorithm converges by using Theorem (2.9). The

author also conducted some numerical simulations to illustrate these methods and found

that the numerics were consistent with the theory in all cases. It even converges with a large

proportions of censored observations.
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2.3 Parametric models in the presence of time-independent

covariates

2.3.1 AFT model and theoretical results

Bennett (2011) considered a p-parameter AFT model in middle censoring for para-

metric models in the presence of covariates. A general case of these models is where

t1, · · · , tn1 , (ln1+1, rn1+1), · · · , (ln1+n2 , rn1+n2) are the observed middle-censored data from

a p-parameter AFT model with a baseline density being a continuous k-parameter exponen-

tial family distribution

f(t|Z) = f0(eθ
T zt) = h(eθ

T zt)c(φ)exp

[
k∑
j=1

wj(φ)νj(e
θT zt)

]

where h(·), νj(·), c(φ) and wj(φ) are all continuous functions.

It is assumed that there is at least one uncensored observation and at least one uncensored

observation, hence n1 > 0 and n2 > 0. This gives the following complete likelihood:

l(φ, θ) =nln[c(φ)] +

n1∑
i=1

[
ln[h(eθ

T ziti)] +
k∑
j=1

wj(φ)νj(e
θT ziti)

]

+

n1+n2∑
i=n1+1

[
ln[h(eθ

T zili)] +
k∑
j=1

wj(φ)νj(e
θT zili)

]
(2.3.1)

To find the MLE of the parameters in this model, the EM algorithm is implemented. The

estimates are updated with the following steps:

• Step 1: Suppose that (φ, θ)(j) is the jth estimate

• Step 2: Compute T ∗i by calculating E[Ti|li < Ti < ri, (φ, θ) = (φ, θ)(j)]
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• Step 3: Solve Equation (2.3.1) with the T ∗i ’s imputed for the censored observations

for its maximum and set (φ, θ)(j+1) as the values that maximize that equation

• Step 4: repeat until convergence criteria is met

Bennett (2011) showed that the algorithm converges and is stated in Theorem (2.10).

Theorem 2.10. Let t1, · · · , tn1 , (ln1,1, rn1+1), · · · , (ln1+n2 , rn1+n2) be the observed middle

-censored data from an AFT model with p regression parameters and a baseline survival

function coming from a continuous k-parameter exponential family distribution. Then the

EM-algorithm will converge for this data.

The author considered the Exponential AFT and Weibull AFT models and shown in

Sections (2.3.2) and (2.3.3).

2.3.2 Exponential AFT model

An exponential AFT model with middle censoring is considered where each person

has a survival time, Ti, and covariates specific to that individual, Zi. The lifetimes are

Exp(aexp[θTZ]) where θ is the effect of each covariate i.e.

Ti ∼ aexp
(
θTZi

)
exp

[
−aexp[θTZi]t

]
for t > 0, i = 1, 2, · · · , n.

Again, consider the censoring mechanism given in Section (2.2) and assume that there

is at least one censored observation, hence n2 > 0. With this set-up, the log-likelihood is
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given by

l(a, θ) ∝n1ln(a) +

n1∑
i=1

θTZi − a
n1∑
i=1

exp
[
θTZi

]
ti

+
n∑

i=n1+1

ln
[
exp[−aexp

[
θTZi]li]− exp[−aexp(θTZi)ri

]]
Applying the EM-algorithm in the same fashion as Section (2.2). The conditional expecta-

tion is

E[Ti|Li < Ti < Ri] =
e−aexp[a

TZi]Li

(
Li + 1

aeθ
TZi

)
− e−aexp[aTZi]Ri

(
Ri + 1

aeθ
TZi

)
e−aexp[θTZi]Li − e−aexp[θTZi]Ri

(2.3.2)

Then the required log-likelihood is given by

l∗(a, θ) ∝ nln(a) +
n∑
i=1

θTZi − a

(
n1∑
i=1

exp[θTZi]ti +
n∑

i=n1+1

exp[θTZi]t
∗
i

)
(2.3.3)

where the t∗i ’s are found using Equation (2.3.2).

To run the EM-algorithm, choose (a, θ)(0) to be the MLE of the uncensored data. Update

the estimates with the following steps:

• Step 1: Suppose that (a, θ)(0) is the jth estimate

• Step 2: Compute T ∗i using Equation (2.3.2) with (a, θ) = (a, θ)(j)

• Step 3: Solve equation (2.3.3) for its maximum and set (a, θ)(j+1) as that maximum

• Step 4: Repeat until convergence criteria is met

By Theorem (2.10), it is known that the above algorithm will converge, but further

research needs to be done to ensure that convergence point of this algorithm is a global
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maximum and hence the MLE of (a, θ) (Bennett, 2011). The asymptotic distribution of

(a, θ) is also of interest. One should perform the usual check and run this algorithm many

times with different initial values for (a, θ) to ensure that the algorithm is not trapped at

local extrema.

2.3.3 Weibull AFT model

In this section, each person has a survival time Ti and covariates specific to that individ-

ual Zi. The baseline lifetimes will be Weibull(a, b) thus the distribution of Ti is

f(t|Z) = a(bexp[aθTZ])ta−1exp[−(bexp[aθTZ])ta] (2.3.4)

for t > 0.

If the density is as above, each individual lifetime Ti has a Weibull(a, bexp[aθTZi])

distribution. Again, consider the censoring mechanism given in Section (2.2) and also as-

sume that there is at least one censored observation, hence n2 > 0. With this setup, the

log-likelihood is given by

l(a, b, θ) ∝n1ln(a) + n1ln(b) + a

n1∑
i=1

θTZi + (a− 1)

n1∑
i=1

ln(ti)− b
n1∑
i=1

tai exp(aθ
TZi)

+
n∑

i=n1+1

ln
(
exp[−beaθTZilai ]− exp[−beaθ

TZirai ]
)

(2.3.5)

Next, apply the EM-algorithm in the same fashion as Section (2.2). Then the conditional

expectation is needed to do this is given by

g(Ti)
∗ = E[g(Ti)|Li < Ti < Ri] =

ˆ Ri

Li

g(t)f(t|Zi)dt (2.3.6)
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where f(t|Zi) is given by Equation (2.3.4). Then, the log-likelihood required for the EM-

algorithm is

l∗(a, b, θ) ∝nln(a) + nln(b) + a

n∑
i=1

θTZi + (a− 1)

n1∑
i=1

ln(ti)− b
n1∑
i=1

tai exp(aθ
TZi)

+ (a− 1)
n∑

i=n1+1

ln(t∗i )− b
n∑

i=n1+1

(t∗i )
aexp(aθTZi) (2.3.7)

where the t∗i ’s are found using Equation (2.3.6).

Now to run the EM-algorithm, choose (a, b, θ)(0) to be the MLE of the uncensored data.

Update the estimates with the following steps:

• Step 1: Suppose that (a, b, θ)(j) is the jth estimate

• Step 2: Compute g(T ∗i ) using Equation (2.3.6) with (a, b, θ) = (a, b, θ)(j)

• Step 3: Solve Equation (2.3.7) for its maximum and set (a, b, θ)(j+1) as that maximum

• Step 4: Repeat until convergence criteria is met

The previous theorems on Exponential family members cannot be used here, but it has

been proved in Bennett (2011) that the EM-algorithm converges in this case as well which

is given in Theorem (2.11).

Theorem 2.11. Let t1, · · · , tn1 , (ln1+1, rn1+1), · · · , (ln1+n2 , rn1+n2) be the observed middle

- censored data from a Weibull AFT model. Then the EM-algorithm will converge for this

data.
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2.4 Semiparametric models in the presence of time - inde-

pendent covariates

2.4.1 Proportional Hazards Model

Bennett (2011) discussed the Cox proportional hazard model for the semiparametric

models in the presence of covariates in middle censoring. The model has been studied

extensively in the case of right censoring (see Cox, 1972 and Efron, 1977). The Cox model

is given by

S(t|Z) = S0(t)exp(θZ) (2.4.1)

where S(t) is the survival function for a non-negative random variable. With this semipara-

metric setup, the density of lifetimes is given by

f(t|Z) = − ∂

∂t
S(t|Z) = f0(t)exp(θZ)S0(t)exp(θZ)−1 (2.4.2)

where the survival function, S(t|Z) is given in Equation (2.4.1). The baseline survival

function, S0(t) is treated as a nuisance parameter and is not estimated.

Without loss of generality let t1, · · · , tn1 , (ln1+1, rn1+1), · · · , (ln1+n2 , rn1+n2) be the middle-

censored data from equation (2.4.2) under the general censoring scheme. Then the full

likelihood is given by

L(θ) =
∏

uncens

f(t|Z)
∏
cens

(S(l|Z)− S(r|Z))

The corresponding log-likelihood is

lfull(θ) = luncens(θ) + lcens(θ)
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where

luncens(θ) =

n1∑
i=1

ln[f0(ti)] + θ

n1∑
i=1

Zi +

n1∑
i=1

[exp(θZi)− 1]ln[S0(ti)] (2.4.3)

lcens(θ) =

n2∑
i=1

ln[S(li|Zi)− S(ri|Zi)] (2.4.4)

From equations (2.4.3) and (2.4.4), the estimation of the baseline survival function S0(t)

and the baseline density f0(t) are required in order to estimate the covariate effect, θ. The

survival function is estimated nonparametrically using the self consistent estimator in Equa-

tion (2.1.1) given in Jammalamadaka and Mangalam (2003). However, the problem arises

when trying to estimate the baseline density function, f0(t). A possible approach, as sug-

gested by the author, is to fit a smoothing spline to the estimate of the baseline survival

function S0(t) and differentiate this to approximate the desired density. However, while this

is possible, there is a nicer and simpler way to avoid doing this in order to obtain the MLE

of θ.

The key is to write out the derivative of the log-likelihood as follows

l′(θ) =
∂

∂θ
luncens(θ) +

∂

∂θ
lcens(θ) (2.4.5)

where the derivatives of the uncensored and censored data are given in Equations (2.4.6)

and (2.4.7)

∂

∂θ
luncens(θ) =

n1∑
i=1

Zi +

n1∑
i=1

Ziexp(θZi)ln(S0(ti)) (2.4.6)

∂

∂θ
lcens(θ) =

∑
cens

[
Zie

θZiln(S0(li))S0(li)
eθZi − ZieθZiln(S0(ri))S0(ri)

eθZi

S(li, Zi)− S(ri, Zi)

]
(2.4.7)
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From Equations (2.4.6) and (2.4.7), the baseline density f0(t) is not present. Hence, it is

not needed in order to solve for the roots of this equation. Again, while there is no general

closed form solution to Equation (2.4.5), it can be solved numerically. The algorithm to find

the Maximum Likelihood estimate of the regression parameter θ and also to estimate the

baseline survival function S0(t) in a Cox proportional hazard model where the distribution

of covariate values Zi follow aBinomial(1, p) distribution is constructed by Bennett (2011)

as follows:

• Step 1: Estimate S(1)
0 (t) via NPMLE or SCE only using the data with no covariate

effect.

• Step 2: Estimate θ(1) by solving the root of equation (2.4.5) and using S(1)
0 (t) to solve

for the necessary probability in it.

• Step 3: Find t̃i = (S
(1)
0 )−1

[
S

(1)
0 (ti)

exp(θ(1)Zi)
]
. One can find l̃i and r̃i similarly. Note:

If zi = 0, then t̃i = ti by definition of the Cox model.

• Step 4: Estimate S(2)
0 (t) via SCE (or NPMLE) using all t̃i, l̃i and r̃i as your data.

• Step 5: Estimate θ(2) by solving equation (2.4.5) and using S(2)
0 (t) to solve necessary

probability.

• Step 6: Repeat steps (3) - (5) until convergence.

The author conducted some numerical simulations to illustrate these methods and found

that even under high amount of censoring, the fitted CDF and MLE of the parameter θ

perform remarkably well.
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2.4.2 Accelerated Failure Times model

Bennett (2011) then discussed the use of Accelerated Failure Times, AFT model in this

context. The survival function in this case is given as

S(t|Z) = S0(teθZ)

Hence, the density function is given by

f(t|Z) = − d

dt
S(t, Z) = eθZf0(teθZ)

The author stated that a very large underlying assumption needs to be considered which

is, the baseline survival function S0(t) is known. This is a common practice in engineering

and in reliability studies where the exponential distribution is one of the more commonly

assumed lifetime distributions.

Recall that the Cox PH assumption is equivalent to the AFT assumption when the

baseline distribution is an exponential distribution i.e. if T ∼ Exp(a) then for t > 0,

S(t) = e−at. Hence,

S0(teθZ) = exp(−ateθZ) = e−ate
θZ

= S0(t)e
θZ

which shows that these two models are equivalent.

Hence, if it is assumed that the true distribution of lifetimes is an exponential distribu-

tion, then the same methodology described in Section (2.4.1) for the Cox PH model can be

used. The algorithm is given as follows:

1. Estimate S(1)
0 (t) via NPMLE or SCE using all of the data
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2. Estimate θ(1) by solving the root of Equation (2.4.5) and using S(1)
0 (t) to solve the

necessary probabilities in it.

3. Find t̃i = tiexp(θ
(1)Zi). One can find l̃i and r̃i in the same fashion.

4. Estimate S(2)
0 (t) via SCE or NPMLE using all of the t̃i, l̃i and r̃i as your data

5. Estimate θ(2) by solving the root of Equation (2.4.5) and using S(2)
0 (t) to solve for the

necessary probabilities in it

6. Repeat steps (3)-(5) until convergence

The author conducted some numerical simulations to illustrate these methods and found

that even under high amount of censoring, the fitted CDF and MLE of the parameter θ

perform remarkably well and the procedure gives extremely accurate results..

2.5 Discrete middle-censored data

An example of discrete lifetimes is a study in which a women who stop using oral

contraception are followed until pregnancy. The number of cycles rather than the time to

pregnancy is used because the cycle length varies among women and a woman ovulates

only once per menstrual cycle. The number of cycles is a discrete outcome. Davarzani and

Parsian (2011) first discussed middle censoring in a discrete set-up.

Following the spirit of Iyer, Jammalamadaka and Kundu (2008), it is assumed that

there is a random sample of individuals of size n from a specific population with lifetimes
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T1, T2, · · · , Tn. Corresponding to every individual in the sample, there is a random censor-

ing interval [L1, R1], [L2, R2], · · · , [Ln, Rn] which are independent of the lifetimes. Just as

in the previous set-up the observed data Xi’s are given by

Xi =


Ti if Ti /∈ (Li, Ri)

(Li, Ri) if Ti ∈ (Li, Ri)

for i = 1, 2, · · · , n.

Davarzani and Parsian (2011) constructed the following censoring mechanism. Assume

that T1, T2, · · · , Tn are an i.i.d sample from a geometric distribution with mean 1−θ0
θ0

i.e.

with probability function

P (Ti = ti) = θ0(1− θ0)ti

for ti = 0, 1, 2, · · · .

The left point of the censored interval, Li is a geometric random variable with mean

(1− pl)/pl and the length of the censored interval, Si is a geometric random variables with

mean 1/ps i.e.

Li
iid∼ P (Li = li) = pl(1− pl)li

Si
iid∼ P (Si = si) = ps(1− ps)si−1

for li = 0, 1, 2, · · · , si = 1, 2, 3, · · · and Si = Ri − Li.

The lifetimes, Ti, Li and Si are independent for all i. Davarzani and Parsian (2011) pro-

posed solving for the MLE in the case where the lifetimes Ti’s have a geometric distribution

i.e. Ti ∼ Geometric(θ) by using the EM-algorithm.
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The model is completely parametrized, hence the likelihood can be easily written down

and the MLE of θ can be solved. Assume that there are n1 > 0 uncensored observations

and n2 > 0 censored observations where n = n1 + n2. Without loss of generality, after

re-ordering the data, it is assumed that the first n1 are the uncensored observations while the

remaining n2 are the uncensored observations. Hence the observed data is

T1, T2, · · · , Tn1 , [Ln1+1, Rn1+1], [Ln1+2, Rn1+2] · · · , [Ln1+n2 , Rn1+n2 ]

The likelihood function of the observed data is written as

L(θ) = cθn1(1− θ)(
∑n1
i=1 ti+

∑n1+n2
i=n1+1 li)

n1+n2∏
i=n1+1

(1− (1− θ)si+1) (2.5.1)

where c = cn2
1 c

n1
2 is the normalizing constant which does not depend on θ. From Equation

(2.5.1), the log-likelihood function of θ is

l(θ) = ln(c) + n1ln(θ) +

n1∑
i=1

tiln(1− θ) +

n1+n2∑
i=n1+1

liln(1− θ) +

n1+n2∑
i=n1+1

ln(1− (1− θ)si+1)

(2.5.2)

Taking derivative of equation (2.5.2) with respect to θ gives the following equation

∂l(θ)

∂θ
=
n1

θ
− 1

1− θ

(
n1∑
i=1

ti

)
− 1

1− θ

(
n1+n2∑
i=n1+1

li

)
+

n1+n2∑
i=n1+1

(si + 1)(1− θ)si
1− (1− θ)si+1

(2.5.3)

Equation (2.5.3) shows that it is not possible the obtain the MLE of θ in an explicit

form. Also, this is an example of incomplete data. Hence the authors suggested using EM

algorithm to find the MLE of θ.

Eθ(T |L ≤ T ≤ R) =
R∑
t=L

tPθ(T = t|L ≤ T ≤ R)

=

[
L+

(1− θ)− (S + 1)(1− θ)S+1 + S(1− θ)S+2

(1− (1− θ)S+1)(1− (1− θ))

]
(2.5.4)
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Equation (2.5.4) is used as the E-step in the EM algorithm and the required log-likelihood

is given as

l∗(θ) ∝ nln(θ) +

n1∑
i=1

tiln(1− θ) +

n1+n2∑
i=n1+1

t∗i ln(1− θ) (2.5.5)

where

t∗i = Eθ(Ti|Li ≤ Ti ≤ Ri) =

[
Li +

(1− θ)− (Si + 1)(1− θ)Si+1 + Si(1− θ)Si+2

(1− (1− θ)Si+1)(1− (1− θ))

]

Thus, the EM algorithm can be set up as follows. Choose θ(0) to be the MLE of the

uncensored data i.e. θ(0) = n1

n1+
∑n1
i=1 ti

. Update the estimates with the following steps.

• Step 1: Suppose that θ(j) is the jth estimate

• Step 2: Compute T ∗i by using Equation (2.5.4) with θ = θ(j)

• Step 3: Set θ(j+1) = n

n+
∑n1
i=1 ti+

∑n1+n2
i=n1+1 t

∗
i

• Step 4: Repeat until convergence is met.

Davarzani and Parsian (2011) gave a sufficient condition for the algorithm to converge,

proved that the MLE of θ is a consistent estimator and gave an asymptotic distribution of

the MLE.
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Discrete middle-censored data

Middle censoring in a discrete set-up was first discussed by Davarzani and Parsian

(2011) (DP from now on) where the lifetimes as well as the lower limit and length of censor-

ing interval are assumed to have geometric distribution. In this chapter, lifetimes that follow

a geometric distribution as in DP (2011) are considered, but we generalize their set-up to the

important case where covariates are present, as well as provide alternate results and proofs

by exploiting the simple relationship between the exponential and geometric distributions.

In Section 3.1.1 this connection is discussed, and used in Section 3.2 to find the max-

imum likelihood estimates (MLEs) under middle-censoring in the presence of covariates

using Accelerated Failure Time model for the geometric case, and discuss the EM algo-

rithm for obtaining them. The novelty of this approach, contrasted with that in DP (2011),

is to adapt the methods of Iyer, Jammalamadaka and Kundu (2008) to the geometric case.

Simulation studies are carried out, in support of the theory to indicate how well the pro-

posed estimation methods work. The asymptotic distribution of the MLE in terms of Fisher
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information is also considered here. Section 3.3 illustrates the application of the proposed

model to the Stanford Heart transplant study from Crowley and Hu (1977).

3.1 An Alternate Approach to Discrete Lifetimes and with

Covariates

In this section, it can be shown that one can utilize the connection between the geometric

and exponential distributions, so that the results in DP (2011) can be subsumed by what has

been done in Iyer, Jammalamadaka and Kundu (2008) for exponential data. This connection

will also allow us to more readily extend the results to the case of covariates, as we do in

Section 3.2.

3.1.1 An important link

As is known, the geometric distribution can be thought of as the discrete analogue of the

exponential distribution, and the following well-known lemma provides the elegant connec-

tion between the two. We add the short proof for completeness as well as to introduce the

notations:

Lemma 3.1. If X is an exponentially distributed random variable with parameter λ, then

Y = bXc where b c is the floor function (the integer part of x), is a geometrically distributed

random variable with parameter p = 1− e−λ.
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Proof. Let X ∼ exp(λ) with p.d.f. f(x) = λe−λx. Suppose we have Y = bXc. Then,

P (bXc = a) = P (a ≤ X < a+ 1) = e−aλ(1− e−λ) = (1− p)ap

Therefore, Y = bXc ∼ geometric(p) where p = 1 − e−λ, a = 0, 1, 2, · · · , 0 ≤ p ≤ 1 and

λ > 0.

The geometric distribution also inherits the interesting property known as the memo-

ryless property which the exponential distribution has. For integers, s > t, it is the case

that

P (X > s|X > t) = P (X > s− t)

that is, the geometric distribution ’forgets’ what has occurred. The probability of getting an

additional s− t failures, having already observed t failures, is the same as the probability of

observing s− t failures at the start of the sequence.

Applying the property of memorylessness and using the relationship of exponential and

geometric distributions from Lemma (3.1) to middle censoring, the geometric lifetimes can

be generated from the exponentially distributed lifetime, Ti ∼ Exp(λ).The geometric dis-

tributed lifetimes is Yi = bTic ∼ geometric(p) with probability function

P (Yi = yi) = p(1− p)yi

for yi = 0, 1, 2, · · · and p = 1− e−λ.

The left point of the censored interval, Ui = bLic ∼ geometric(pu) with probability

function

P (Ui = ui) = pu(1− pu)ui
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where Li ∼ Exp(α), pu = 1 − e−α and ui = 0, 1, 2, · · · while the length of the censored

interval is Wi = bSic ∼ geometric(pw) with probability function

P (Wi = wi) = pw(1− pw)wi−1

where Si ∼ Exp(β),Si = Ri − Li, pw = 1− e−β , wi = 1, 2, · · · and Wi = Vi − Ui where

Vi is the right point of the censored interval. The lifetimes Yi, Ui and Wi are independent

for all i.

3.2 Geometric model in the presence of covariates

In this section, a geometric lifetime with middle censoring in the presence of covariates

is considered. The covariates that are considered here are fixed, that is, known at baseline or

entry to the study. The relationship between an exponential distribution and the geometric

distribution discussed in Section (3.1.1) can also be applied here for a geometric lifetime in

the presence of covariates. Here, each person has a survival time, Ti and covariates specific

to that individual Zi.

It may be recalled that when the baseline distribution is an exponential, the Cox pro-

portional hazard assumption is equivalent to the accelerated failure time assumption. See

e.g. Cox and Oakes (1984, pages 70-72) who show that the exponential regression model

is an example of an accelerated failure time model with proportional hazards. Hence,

the lifetimes, Ti are first generated from an exponential accelerated failure model or a

Cox PH model when the baseline distribution is the exponential distribution i.e. Ti ∼
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Exponential(λeθ
TZi) with p.d.f.

f(t|Zi) = λeθ
TZiexp(−λeθTZit)

where θ is the effect of each covariate Z, and the superscript T stands for transpose oper-

ation. Hence one can generate geometric lifetimes from the generated exponential lifetime

that is, Yi = bTic ∼ geometric(pi) where pi = 1− e−λeθ
TZi . We take the left end-point of

the censored interval U i ∼ geometric(pu) while the width of the censored interval is taken

to be W i ∼ geometric(pw) where W i = V i − U i and V i is the right censored point of

the censored interval.

Since the model is completely parametric, the likelihood can be written down and the

MLE of p can be solved. Suppose that there are n1 > 0 uncensored observations and

n2 > 0 censored observations where n = n1 + n2. After re-ordering the data, without

loss of generality, it is assumed that the first n1 are the uncensored observations while the

remaining n2 are the censored observations. Hence the observed data is

{Y1, Y2, · · · , Yn1 , [Un1+1, Vn1+1], [Un1+2, Vn1+2] · · · , [Un1+n2 , Vn1+n2 ]} .

Similar to the methods used in DP (2011) in Section 2, the likelihood function of the

observed data is written as

L(pi) = cpn1
i (1− pi)(

∑n1
i=1 yi+

∑n1+n2
i=n1+1 ui)

n1+n2∏
i=n1+1

(1− (1− pi)wi+1) (3.2.1)
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where c = cn2
1 c

n1
2 is the normalizing constant which does not depend on pi where pi =

1− e−λeθ
TZi . From Equation (3.2.1), the log-likelihood function of pi is

l(pi) =ln(c) + n1ln(pi) +

n1∑
i=1

yiln(1− pi) +

n1+n2∑
i=n1+1

uiln(1− pi)

+

n1+n2∑
i=n1+1

ln(1− (1− pi)wi+1) (3.2.2)

Applying the EM algorithm to find the MLE of p, the following conditional expectation

is required:

Ep(Y |U ≤ Y ≤ V ) =
V∑
y=U

yPp(Y = y|U ≤ Y ≤ V )

=

[
U +

(1− p)− (W + 1)(1− p)W+1 +W (1− p)W+2

(1− (1− p)W+1)(1− (1− p))

]
(3.2.3)

Equation (3.2.3) is used as the E-step in the EM algorithm and the required log-likelihood

is given as

l∗(pi) ∝ nln(pi) +

n1∑
i=1

yiln(1− pi) +

n1+n2∑
i=n1+1

y∗i ln(1− pi) (3.2.4)

where

y∗i = Epi(Yi|Ui ≤ Yi ≤ Vi) =

[
Ui +

(1− pi)− (Wi + 1)(1− pi)Wi+1 +Wi(1− pi)Wi+2

(1− (1− pi)Wi+1)(1− (1− pi))

]
Thus, the EM algorithm can be set up as follows. Choose p0 to be the MLE of the uncen-

sored data. Update the estimates with the following steps.

• Step 1: Suppose that p(j) is the jth estimate

• Step 2: Compute Y ∗i by using Equation (3.2.3) with p = p(j)

• Step 3: Solve Equation (3.2.4) for its maximum and set p(j+1) as that maximum.
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• Step 4: Repeat until a convergence criterion is met.

A simulation study is performed to illustrate the usefulness of this approach. Simulations

are carried out in R using N = 100 replications with a common sample size n = 250. Each

sample is then censored and the EM algorithm described above is applied to the censored

data. The censoring mechanism is as follows; the left endpoint of the censored interval is

geometric distributed with mean 0.5 and the length of the censored interval is also geometric

distributed with mean 0.1. Three covariates are used in this simulation. The covariates Z1

and Z2 are generated from a binomial distribution with one trial and probability of success

equal to 0.5. The third covariate, Z3 is generated from a standard normal distribution. Three

cases for the true covariate effects are considered here, similar to Pan (1999). They are

θ = (1, 1, 1), θ = (1, 0, 0) and θ = (0, 0, 1) and are chosen since they represent the case

where the covariates have an equal effect, where only one Bernoulli covariate has one effect,

and where only the normally distributed covariate had an effect. The true values of λ are

chosen to be 0.5 and 0.3 as shown in Table 3.1. A number of different starting points were

used in the EM-algorithm in order to capture the global maximum.

The ‘Initial est’ is the average value of theN = 100 estimates using only the uncensored

observations, ‘MLE’ reported is the average value of the N = 100 estimates obtained using

the model and the estimated mean-squared error, EMSE is calculated using the equation

EMSE(p̂) =
1

N

N∑
i=1

(p̂− p)2

where p̂ is the estimate of p and a total of N simulation were computed. The standard

deviation (SD) of the estimates are evaluated in the simulation and their confidence intervals
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could be evaluated. The ‘Censored proportion’ line in the table gives the mean proportion

of censoring in the N = 100 simulated samples.

In the N = 100 simulations, the samples were found to be between 14% and 29% cen-

sored. The MLE’s of λ, θ1, θ2, θ3 were computed using the EM algorithm described above.

See Table 3.1 for the results from these simulations. The maximum likelihood estimates,

(MLE) are fairly close to the actual value compared to the initial estimates (Initial Est) and

the estimated mean-squared errors (EMSE) are small. The standard deviation (SD) of the

estimates are evaluated in the simulation and their confidence intervals could be evaluated.

This approach yields very useful, accurate and reliable results. Note that we initialized the

EM-algorithm from a number of different starting points and it shows that the likelihood

does have a unique maximum.

As an illustration, box plots shown in Figures 3.2.1-3.2.4 are constructed to compare the

difference between the estimates found using just the uncensored observations and the MLE

using our model when the true values are λ = 0.5, θ1 = 1, θ2 = 1 and θ3 = 1. For each of

the figures, the box plot on the left represents the estimates found using only the uncensored

observations while the box plot on the right shows the MLEs found using our model. All

four figures show that the MLEs using our model, evident from the right box plots, are

closer to the true values compared to the estimates using the uncensored observations only.

This shows how well the information lost due to middle censoring is recovered using our

estimation methods.
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Figure 3.2.1: True value, λ = 0.5
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Figure 3.2.2: True value, θ1 = 1
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Figure 3.2.3: True value, θ2 = 1
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Figure 3.2.4: True value, θ3 = 1
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Parameter True Value Initial Est MLE SD EMSE Censored Prop
λ 0.5 0.5636 0.5312 0.1161 0.0150 0.1452
θ1 1.0 1.0838 1.0308 0.2869 0.0855
θ2 1.0 1.0432 1.0387 0.2788 0.0790
θ3 1.0 1.0673 1.0597 0.1888 0.0365
λ 0.5 0.5553 0.5428 0.1074 0.0119 0.1444
θ1 1.0 1.0745 1.0678 0.2229 0.0501
θ2 0.0 0.1038 0.0627 0.2256 0.0589
θ3 0.0 0.0088 0.0067 0.1120 0.01307
λ 0.5 0.5698 0.5394 0.0699 0.0051 0.1688
θ1 0.0 0.0992 0.0774 0.2929 0.0869
θ2 0.0 -0.0199 -0.0101 0.2927 0.0876
θ3 1.0 1.1005 1.0878 0.1745 0.0315
λ 0.3 0.3510 0.3401 0.0516 0.0028 0.2006
θ1 1.0 1.1099 1.0343 0.2741 0.0787
θ2 1.0 1.1212 1.0456 0.2750 0.0766
θ3 1.0 1.1129 1.0376 0.1457 0.0222
λ 0.3 0.0366 0.3365 0.0513 0.0027 0.2910
θ1 1.0 1.2802 1.1600 0.2126 0.0476
θ2 0.0 0.0187 0.0174 0.2592 0.0688
θ3 0.0 0.0211 0.0128 0.0876 0.0078
λ 0.3 0.3450 0.3365 0.0388 0.0016 0.2990
θ1 0.0 -0.0099 -0.0086 0.3144 0.0989
θ2 0.0 0.0651 0.0541 0.3122 0.0978
θ3 1.0 1.1089 1.0811 0.1585 0.0287

Table 3.1: Simulation results for Geometric model in the presence of 3 covariates

3.2.1 The case of no covariates

The case where there are no covariates which is considered in DP (2011) comes out

as a special case of what we already have, by taking Z = 0. In this case, the likelihood

function of the observed data is written as in equation (3.2.1) but with p = 1 − e−λ. The

log-likelihood function of p, the conditional expectation for the E-step of the EM algorithm
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and the log-likelihood required for the M-step are shown in equations (3.2.2), (3.2.3) and

(3.2.4) respectively. Hence the EM algorithm is set up as follows. Choose p(0) to be the

MLE of the uncensored data i.e. p(0) = n1

n1+
∑n1
i=1 yi

. Update the estimates with the following

steps.

• Step 1: Suppose that p(j) is the jth estimate

• Step 2: Compute Y ∗i by using Equation (3.2.3) with p = p(j)

• Step 3: Set p(j+1) = n

n+
∑n1
i=1 yi+

∑n1+n2
i=n1+1 y

∗
i

• Step 4: Repeat until convergence is met.

Simulations are run in order to test the validity of the program. We considered different

sample sizes namely n = 50, 100, 250 and 500. For each sample size n, N = 100 samples

were simulated. Each sample was then censored and the EM algorithm described above was

applied to the censored data. See Table 3.2 for the results from these simulations. The ’p

est’ reported is the average value of the N = 100 estimates obtained.

The geometric model converges numerically to the true value in all cases, which is

consistent with the result found in DP (2011) for the geometric lifetimes. The estimates are

converging to the true values as the sample size, n increases but it appears to converge rather

slowly.
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n (pl, pz) (0.5,0.9) (0.2,0.9) (0.3,0.8)
50 p est 0.3159 0.3109 0.3097

EMSE of p 0.0017 0.0019 0.0018
SD 0.0288 0.0276 0.0309

Censored Proportion 0.1526 0.1538 0.0912
100 p est 0.3092 0.3095 0.3086

EMSE of p 0.0009 0.0008 0.0008
SD 0.0236 0.0229 0.0227

Censored Proportion 0.1438 0.1628 0.1003
250 p est 0.3056 0.3077 0.3050

EMSE of p 0.0003 0.0004 0.0003
SD 0.0178 0.0176 0.0170

Censored Proportion 0.1471 0.1592 0.0968
500 p est 0.3054 0.3065 0.3035

EMSE of p 0.0002 0.0002 0.0002
SD 0.0136 0.0135 0.0131

Censored Proportion 0.1468 0.1605 0.0946

Table 3.2: Simulation results for Geometric (0.3) lifetimes

3.2.2 Asymptotic distribution of the MLE

It can be checked that the conditions for the validity of the properties of the MLEs,

hold. For completeness, we give below the derivatives of the log-likelihood function from

equation (3.2.2) where p = 1− e−λeθ
TZi :

∂l

∂λ
=

n1∑
i=1

eθ
TZi

eλe
θTZi − 1

−
n1∑
i=1

yie
θTZi −

n1+n2∑
i=n1+1

uie
θTZi +

n1+n2∑
i=n1+1

eθ
TZi(wi + 1)

eλe
θTZi (wi+1) − 1

and for j = 1, 2, 3,

∂l

∂θj
=

n1∑
i=1

Zjλe
θTZi

eλe
θTZi − 1

−
n1∑
i=1

yiZjλe
θTZi −

n1+n2∑
i=n1+1

uiZjλe
θTZi +

n1+n2∑
i=n1+1

Zjλe
θTZi(wi + 1)

eλe
θTZi (wi+1) − 1
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The second derivatives are given by

∂2l

∂λ2
= −

n1∑
i=1

eλe
θTZi+2(θTZi)

(eλe
θTZi − 1)2

−
n1+n2∑
i=n1+1

(
(wi + 1)2eλe

θT Zi (wi+1)+2(θTZi)

(eλe
θTZi (wi+1) − 1)2

)

∂2l

∂λ∂θj
=−

n1∑
i=1

Zje
θTZi(λeλe

θTZi+θTZi − eλeθ
TZi

+ 1)

(eλe
θTZi − 1)2

−
n1∑
i=1

yiZje
θTZi −

n1+n2∑
i=n1+1

uiZje
θTZi

−
n1+n2∑
i=n1+1

(wi + 1)Zje
θTZi(λ(wi + 1)eλ(wi+1)eθ

TZi+θTZi − eλ(wi+1)eθ
TZi

+ 1)

(eλ(wi+1)eθ
TZi − 1)2

(3.2.5)

∂2l

∂θ2j
=−

n1∑
i=1

Z2
j λe

θTZi(λeθ
TZi+λe

θTZi − eλeθ
TZi

+ 1)

(eλe
θTZi − 1)2

−
n1∑
i=1

yiZ
2
j λe

θTZi −
n1+n2∑
i+n1+1

uiZ
2
j λe

θTZi

−
n1+n2∑
i=n1+1

Z2
j λ(wi + 1)eθ

TZi(λ(wi + 1)eθ
TZi+λ(wi+1)eθ

TZi − eλ(wi+1)eθ
TZi

+ 1)

(eλ(wi+1)eθ
TZi − 1)2

(3.2.6)

∂2l

∂θj∂θk
=−

n1∑
i=1

ZjZkλe
θTZi(λeθ

TZi+λe
θTZi − eλeθ

TZi + 1)

(eλe
θTZi − 1)2

−
n1∑
i=i

yiZjZkλe
θTZi

−
n1+n2∑
i=n1+1

uiZjZkλe
θTZi

−
n1+n2∑
i=n1+1

ZjZkλ(wi + 1)eθ
TZi(λ(wi + 1)eθ

TZi+λ(wi+1)eθ
TZi − eλeθ

TZi + 1)

(eλe
θTZi − 1)2

(3.2.7)

By substituting the MLE found by using the algorithm above into the information matrix, we

obtain the “observed information” matrix, namely the Hessian matrix of the log-likelihood

function (see Efron and Hinkley, 1978) as follows

Î4×4 =



∂2l
∂λ2

∂2l
∂λ∂θ1

∂2l
∂λ∂θ2

∂2l
∂λ∂θ3

∂2l
∂θ1∂λ

∂2l
∂θ21

∂2l
∂θ1∂θ2

∂2l
∂θ1∂θ3

∂2l
∂θ2∂λ

∂2l
∂θ2∂θ1

∂2l
∂θ22

∂2l
∂θ2∂θ3

∂2l
∂θ3∂λ

∂2l
∂θ3∂θ1

∂2l
∂θ3∂θ2

∂2l
∂θ23
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where λ = λ̂ and θi = θ̂i. Hence θ̂ = (λ̂, θ̂1, θ̂2, θ̂3) is asymptotically Normal with mean

zero and covariance I(θ)−1. This large sample approximation can be used to construct the

required confidence intervals, as we do in Section 3.2 and the ensuing illustration.

3.3 A practical example

In this section, the proposed techniques are applied to a Stanford Heart Transplant study

in Crowley and Hu (1977) as in Section (5.4). We take the variables namely age at ac-

ceptance in years (Z1) and prior surgery (Z2) as the covariates with respective regression

coefficients θ1 and θ2.

For the complete data set it is observed that the maximum likelihood estimates of λ, θ1

and θ2 are 0.00824, 0.02231 and -0.40420 respectively. In order to create a set of middle-

censored data, we randomly choose several actual failure data and replace them by random

censoring intervals. The data were censored by a random interval whose left end was a

geometric random variable with mean 300 and the width was geometric with mean 1000. It

is found that 21.51% of data were censored resulting in 135 uncensored observations and

37 censored observations. Applying the model given in Section 3.2, it is found that the

estimates of the regression coefficients are λ̂ = 0.00737, θ̂1 = 0.01989 and θ̂2 = −0.62468.

The 95% confidence intervals based on the asymptotic distribution of λ, θ1 and θ2 are

(0.00605,0.00870), (0.00246,0.03731) and (-1.07574,-0.17361) respectively. These results

are consistent with what the other studies discovered.
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In order to assess how much of a change it makes in the estimates or confidence inter-

vals when one uses the discretized geometric distribution in lieu of the original exponential

distribution, we fit this model with the exponential distribution instead of the geometric

distribution. The estimates of the regression coefficients are λ̂ = 0.00736, θ̂1 = 0.02714

and θ̂2 = −0.77792. The 95% confidence intervals based on the asymptotic distribution

of λ, θ1 and θ2 are (0.00726,0.00747), (0.00840, 0.04587) and (-1.15766,-0.39818) respec-

tively. The data were censored exactly like the geometric case resulting in 19.77% censored

observations, specifically 138 uncensored observations and 34 censored observations. These

comparisons show that the estimates are very close as are the confidence intervals.
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Competing risks models for middle
censored data

4.1 Introduction

Standard survival analysis focuses on failure-time data that have a single type of failure.

Competing risks arise when a failure can result from one of several causes and one cause

precludes the others (Andersen et al., 1995; Klein, 2010; Klein and Moeschberger, 2003;

Marubini and Valsecchi, 1995; Pintilie, 2006). An investigator is often interested in the

assessment of a specific risk in the presence of other risk factors. Examples of competing

risks can occur in many fields, including public health, reliability analysis, and demography.

For example, a person can die from lung cancer or from a stroke, but not from both (although

he could have both lung cancer and atherosclerosis before he dies). A logical objective for

competing risks data is to assess the relationship of relevant predictors to the failure rate

or corresponding survival probability of any one of the possible events allowing for the

competing risks of the other ways to fail.
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In analyzing the competing risks model, it is assumed that data consists of a failure time

and an indicator denoting the cause of failure. Several studies have carried out under this

assumption for both the parametric and the nonparametric set up. For the parametric set up,

it is assumed that different lifetime distributions follow some special parametric distribu-

tion such as exponential, Weibull and gamma. Berkson and Elveback (1960), Cox (1959),

David and Moeschberger (1978) considered this problem from the parametric point of view.

Kaplan and Meier (1958), Efron (1967) and Peterson (1977) analyzed the nonparametric

version of this model. Miyawaka (1984) considered a model where the failure time of that

item/individual is observed but the corresponding cause of failure is not observed.

In classical competing risks, the observed outcome comprises of the time to failure, T

and the cause or type of failure, C. The failure time T is taken to be continuous and the

cause C takes one of a number of values labeled 1, 2, · · · , k. The probability framework

is a bivariate distribution in which the component C is discrete and T is continuous. It is

assumed that to every failure, only one cause is assigned from the given set of k causes. For

data with competing risks, the cause-specific hazard function denoted by hj(t), describe the

rate of failure at time t for event type j given that the follow up time is at least t is

hj(t) = lim4t→0
P (t < T < t+4t, C = j|T ≥ t)

4t

If the failure at time t for event type j is assumed to be mutually exclusive and that

follow up terminates from one and only one event, then the overall hazard function is

h(t) =
k∑
j=1

hj(t)
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It follows that the overall, event free, survival function is

S(t) = exp(−H(t)) = exp

(
−

k∑
j=1

Hj(t)

)
= exp

(
−

k∑
j=1

ˆ t

0

hj(u)du

)

The cumulative incidence function denoted by Fj(t) is the probability of failure due to

cause j prior to time t

Fj(t) = P (T ≤ t, C = j) =

ˆ t

0

hj(u)S(u)du

where k = 1, 2, · · · , K.

Consider a life test with n items with two competing risks causes which are indepen-

dently distributed with cumulative distribution functions F1(t), F2(t) and the related proba-

bility density functions f1(t), f2(t) respectively.

Suppose the total competing risks middle censored data is expressed as

{(T1, δ1), (T2, δ2), · · · , (Tn1 , δn1), [(Ln1+1, Rn1+1), δn1+1], · · · , [(Ln1+n2 , Rn1+n2), δn1+n2 ]}

where n1 + n2 = n and δi is the indicator function defined as

δi =


1 if failure is due to cause 1

2 if failure is due to cause 2

The joint likelihood function of failure is given by

L(t) =

n1∏
i=1

[f1(ti)F̄2(ti)]
I(δi=1)[f2(ti)F̄1(ti)]

I(δi=2)

2∏
j=1

n∏
i=n1+1

[Fj(Ri)− Fj(Li)]I(δi=j)

where I(·) denotes the indicator function. Note that
∑2

j=1 I(δi = j) = 1 for i = 1, 2, · · · , n,∑n
i=1 I(δi = j) denotes the number of failure by cause j, j = 1, 2 and

∑2
j=1

∑n
i=1 I(δi =

j) = n.
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4.2 Parametric models

Lifetimes that follow an exponential distribution and Weibull distribution are considered

in this section. Under the same censoring mechanism, theorem (4.1) shows that the EM

algorithm will converge for these distributions.

Theorem 4.1. Let

{(x1, δ1), (x2, δ2), · · · , (xn1 , δn1), [(Ln1+1, Rn1+1), δn1+1], · · · , [(Ln1+n2 , Rn1+n2), δn1+n2 ]}

be the the observed middle-censored data where δi is the indicator function defined as

δi =


1 if failure is due to cause 1

2 if failure is due to cause 2

from a continuous exponential family distribution

fs(x|φ) = hs(x)cs(φ)exp

[
k∑
j=1

wsj(φ)tsj(x)

]

such that h(x), tj(x), c(φ) and wj(φ) are all continuous functions and s = 1, 2. Then the

EM algorithm will converge for this data.

Proof. The complete log-likelihood is given as

l(φ) ∝
n1∑
i=1

I(δi = 1)ln[f1(xi)F̄2(xi)] +

n1∑
i=1

I(δi = 2)ln[f2(xi)F̄1(xi)]

+
n∑

i=n1+1

I(δi = 1)ln[f1(xi)F̄2(xi)] +
n∑

i=n1+1

I(δi = 2)ln[f2(xi)F̄1(xi)]

where n1 + n2 = n.
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The conditional expectation E[tsj(xi)|φ∗, ai < xi < bi] are continuous functions by

Lemma (6) of Bennett (2011) since each function is continuous in each argument. Note that

Fs(x|φ) is a continuous function by the same lemma.

Hence E[l(φ|complete data)|φ∗, censored data] is a continuous function in both φ and

φ∗. Thus, the EM algorithm will converge by Theorem 2 of Wu (1983).

4.2.1 Exponential distributed lifetimes

Consider that the lifetime distributions T1 and T2 due to cause 1 and cause 2 are both

exponential distributed with CDFs and PDFs

Fj(t; θj) = 1− e−θjt and fj(t; θj) = θje
−θjt

respectively where θj > 0, j = 1, 2 are unknown parameters and t > 0.

Again, we can reorder the data into the uncensored and censored observations. Hence,

our observed data is

{(T1, δ1), (T2, δ2), · · · , (Tn1 , δn1), [(Ln1+1, Rn1+1), δn1+1], · · · , [(Ln1+n2 , Rn1+n2), δn1+n2 ]}

where n1 + n2 = n. Now, the likelihood function can be written as

L(t; θ) ∝
n1∏
i=1

θ
I(δi=1)
1 θ

I(δi=2)
2

n1∏
i=1

(e−tiθ1−tiθ2)
2∏
j=1

n∏
i=n1+1

(e−liθj − e−riθj)I(δi=j) (4.2.1)
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Based on equation (4.2.1), the corresponding log-likelihood is

l(θ1, θ2) ∝
n1∑
i=1

I(δi = 1)lnθ1 +

n1∑
i=1

I(δi = 2)lnθ2 −
n1∑
i=1

(tiθ1 + tiθ2)

+
2∑
j=1

n∑
i=n1+1

ln[e−Liθj − e−Riθj ]I(δi=j) (4.2.2)

The EM algorithm is used to find the MLEs of the parameters involved. In the E-step,

the conditional expectation needed for the incomplete data is given as

E[T |L < T < R] =

´ R
L
tθ
I(δi=1)
1 θ

I(δi=2)
2 (e−tθ1−tθ2)dt

F (R|θ1, θ2)− F (L|θ1, θ2)
(4.2.3)

Thus the required log-likelihood is

l(θ1, θ2) =

n∑
i=1

I(δi = 1)lnθ1 +

n∑
i=1

I(δi = 1)lnθ2 −
n1∑
i=1

(θ1ti + θ2ti)−
n∑

i=n1+1

(θ1t
∗
i + θ2t

∗
i ) (4.2.4)

where the t∗ is found using Equation (4.2.3).

The EM Algorithm is used to solve for the MLE’s of θ1 and θ2. The steps involved in

algorithm are as follows

• Step 1: Suppose that θ(0)
j , j = 1, 2 are the initial guess values of the maximum likeli-

hood estimate of θj .

• Step 2: Compute T ∗i using equation (4.2.3) with (θ1, θ2) = (θ1, θ2)(j)

• Step 3: Solve equation (4.2.4) for its maximum and set (θ1, θ2)(j+1) as the maximum

• Step 4: Repeat until a convergence criterion is met
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(c1, d1), (c2, d2) n θ̂1 θ̂2 Cens1 Cens2

(1,1.2) , (1,1.2) 50 1.1379 1.1032 0.12 0.11
EMSE 0.1017 0.1517

100 1.0859 1.0782 0.11 0.11
EMSE 0.0377 0.0652

250 1.0467 1.0336 0.11 0.13
EMSE 0.0160 0.0219

500 1.0214 1.0162 0.11 0.11
EMSE 0.0119 0.0114

(0.5, 1.5), (0.5, 1.5) 50 1.1312 1.1414 0.06 0.07
EMSE 0.1987 0.2589

100 1.0913 1.0831 0.07 0.08
EMSE 0.1890 0.2178

250 1.0626 1.0388 0.06 0.07
EMSE 0.1094 0.0251

500 1.0313 1.0027 0.07 0.07
EMSE 0.0099 0.0098

(1, 2), (1, 2) 50 1.1211 1.0705 0.07 0.09
EMSE 0.1835 0.1258

100 1.0634 1.0378 0.08 0.09
EMSE 0.0813 0.0545

250 1.0504 1.0244 0.09 0.09
EMSE 0.0284 0.0444

500 1.0151 1.0093 0.09 0.07
EMSE 0.0119 0.0065

Table 4.1: Numerical results for Exponential model

A simulation study was performed to illustrate the usefulness of the approach. For

each sample size n,N = 50 replications were simulated. Each sample was censored and

the above EM algorithm was applied to the censored data. The censoring mechanism is

as follows; the left endpoint and right endpoint of the censored interval for cause i are

exponentially distributed with mean ci and di respectively for i = 1, 2. The true values for

the simulation are θ1 = 1, θ2 = 1. The MLE’s of θ1 and θ2 were computed using the EM
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algorithm and the results are shown in Table 4.1. The estimates of all the parameters in all

cases are close to the actual value and they are converging to the true values as the sample

size, n increases. The estimated mean squared errors (EMSE) for the estimates are small.

Hence, this approach yields very useful, accurate and reliable results.

4.2.2 Weibull distributed lifetimes

In this section, consider that the lifetime distributions T1 and T2 due to cause 1 and cause

2 are both Weibull distributed with CDFs and PDFs

Fj(t; aj, bj) = 1− e−bjt
aj

fj(t; aj, bj) = ajbjt
aj−1e−bjt

aj

respectively where aj > 0, 1
bj
> 0, j = 1, 2 are unknown parameters and t > 0.

The likelihood function is written as

L(t; a, b) ∝
n1∏
i=1

[a1b1t
a1−1
i e−b1t

a1e−b2t
a2 ]I(δi=1)[a2b2t

a2−1
i e−b2t

a2e−b1t
a1 ]I(δi=2)

2∏
j=1

n∏
i=n1+1

(e−bj l
aj
i − e−bjr

aj
i )I(δi=j)

where the corresponding log-likelihood is

l(a1, b1, a2, b2) ∝
n1∑
i=1

I(δi = 1)[ln(a1b1) + (a1 − 1)ln(ti)]−
n1∑
i=1

(b1t
a1
i − b2t

a2
i )

+

n1∑
i=1

I(δi = 2)[ln(a2b2) + (a2 − 1)ln(ti)]

+
2∑
j=1

n∑
i=n1+1

I(δi = j)ln[exp(−bjl
aj
i )− exp(−bjr

aj
i )] (4.2.5)
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We need to use the EM algorithm to find the MLEs of the parameters involved. In the

E-step, the conditional expectations for the incomplete data are given as

E[T aj |L < T < R] =

´ R
L
taj (a1b1t

a1−1e−b1t
a1−b2ta2 )I(δi=1)(a2b2t

a2−1e−b2t
a2−b1ta1 )I(δi=2)dt

F (R|a1, b1, a2, b2)− F (L|a1, b1, a2, b2)
(4.2.6)

E[ln(T )|L < T < R] =

´ R
L
ln(t)(a1b1t

a1−1e−b1t
a1−b2ta2 )I(δi=1)(a2b2t

a2−1e−b2t
a2−b1ta1 )I(δi=2)dt

F (R|a1, b1, a2, b2)− F (L|a1, b1, a2, b2)

(4.2.7)

Then the required log-likelihood is

l(a1, b1, a2, b2) =

n∑
i=1

I(δi = 1)ln(a1b1) +

n∑
i=1

I(δi = 2)ln(a2b2) + (a1 − 1)

n1∑
i=1

I(δi = 1)ln(ti)

+ (a1 − 1)

n∑
i=n1+1

I(δi = 1)ln(ti)
∗ + (a2 − 1)

n1∑
i=1

I(δi = 2)ln(ti)

+ (a2 − 1)

n∑
i=n1+1

I(δi = 2)ln(ti)
∗ −

n1∑
i=1

(b1t
a1
i + b2t

a2
i )−

n∑
i=n1+1

(b1t
a1∗
i + b2t

a2∗
i )

(4.2.8)

where the taji and ln(ti)
∗ are given in Equations (4.2.6) and (4.2.7) respectively.

The EM algorithm can now be set up as follows. To make this more explicit, choose

(a1, b1, a2, b2)(0) to be the MLE of the uncensored data. Update the estimates with the

following steps:

• Step 1: Suppose that (a1, a2, b1, b2)(j) is the jth estimate

• Step 2: Compute equations (4.2.6) and (4.2.7) with (a1, b1, a2, b2) = (a1, b1, a2, b2)(j)

• Step 3: Solve equation (4.2.8) for its maximum and set (a1, b1, a2, b2)(j+1) as that

maximum

• Step 4: Repeat until a convergence criterion is met

67



Chapter 4. Competing risks models for middle censored data

A simulation study was performed to illustrate the usefulness of the approach. For

each sample size n,N = 50 replications were simulated. Each sample was censored and

the above EM algorithm was applied to the censored data. The censoring mechanism is

as follows; the left endpoint and right endpoint of the censored interval for cause i are

exponentially distributed with mean ci and di respectively for i = 1, 2. The true values for

the simulation are a1 = 2, b1 = 1, a2 = 2 and b2 = 1. The MLE’s of a1, b1, a2 and b2 were

computed using the EM algorithm and the results are shown in Table 4.2.

(c1, d1), (c2, d2) n â1 b̂1 â2 b̂2 Cens1 Cens2

(1, 1), (1, 1) 50 2.2541 0.8505 2.2417 0.9088 0.12 0.11
EMSE 0.0020 0.0014 0.0018 0.0006

100 2.2015 0.8819 2.1822 0.9119 0.19 0.12
EMSE 0.0012 0.0009 0.0010 0.0005

250 2.1992 0.9124 2.1461 0.9322 0.13 0.11
EMSE 0.0012 0.0005 0.0006 0.0003

500 2.1106 0.9671 2.0835 0.9621 0.12 0.13
EMSE 0.0004 0.0001 0.0002 0.0001

(1, 0.5), (1, 0.5) 50 2.2299 0.9119 2.2956 0.9110 0.24 0.18
EMSE 0.0017 0.0005 0.0027 0.0004

100 2.2173 0.9280 2.2502 0.9378 0.20 0.18
EMSE 0.0016 0.0003 0.0021 0.0002

250 2.1926 0.9948 2.1698 0.9711 0.20 0.21
EMSE 0.0014 0.0000 0.0009 0.0000

500 2.1653 0.9998 2.1622 0.9964 0.19 0.22
EMSE 0.0008 0.0000 0.0008 0.0000

(2, 1), (2, 1) 50 2.2450 0.9012 1.9552 0.9003 0.22 0.24
EMSE 0.0013 0.0009 0.0009 0.0006

100 2.1279 0.9340 2.1236 0.9191 0.26 0.24
EMSE 0.0005 0.0003 0.0005 0.0004

250 2.1218 0.9434 2.1236 0.9400 0.20 0.24
EMSE 0.0004 0.0002 0.0005 0.0003

500 2.0498 0.9564 2.0992 0.9667 0.21 0.22
EMSE 0.0001 0.0001 0.0003 0.0001

Table 4.2: Numerical results for Weibull model
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The estimates of all the parameters in all cases are close to the actual value and they are

converging to the true values as the sample size, n increases, but it appears to be converging

slowly. It also performs reasonably well even with a large proportion of censored observa-

tions and the estimated mean squared errors (EMSE) for the estimates are small. Hence, this

approach yields very useful, accurate and reliable results.

4.3 Parametric models in the presence of covariates

Lifetimes that follow an exponential AFT model and Weibull AFT model are considered

in this section. It is shown in Theorem (4.2) that under the same censoring mechanism, the

EM-algorithm will converge for these distributions. Note that the exponential AFT model

is a special case of the Weibull AFT model. At this stage of development, we only deal with

one single covariate Z.

Theorem 4.2. Let

{(x1, δ1), (x2, δ2), · · · , (xn1 , δn1), [(Ln1+1, Rn1+1), δn1+1], · · · , [(Ln1+n2 , Rn1+n2), δn1+n2 ]}

be the the observed middle-censored data from a Weibull Accelerated Failure Time model

where δi is the indicator function defined as

δi =


1 if failure is due to cause 1

2 if failure is due to cause 2

Then the EM algorithm will converge for this data.
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Proof. The complete log-likelihood is given as

l(aj, bj, θj) =

n1∑
i=1

I(δi = 1)log(a1b1) + a1

n1∑
i=1

I(δi = 1)θ1Zi

+ (a1 − 1)

n1∑
i=1

I(δi = 1)ln(ti)− b1

n1∑
i=1

I(δi = 1)ta1i exp(a1θ1Zi)

− b2

n1∑
i=1

I(δi = 1)ta2i exp(a2θ2Zi) +

n1∑
i=1

I(δi = 2)log(a2b2)

+ a2

n1∑
i=1

I(δi = 2)θ2Zi + (a2 − 1)

n1∑
i=1

I(δi = 2)ln(ti)

− b2

n1∑
i=1

I(δi = 2)ta2i exp(a2θ2Zi)− b1

n1∑
i=1

I(δi = 2)ta1i exp(a1θ1Zi)

+ (a1 − 1)
n∑

i=n1+1

I(δi = 1)ln(ti)− b1

n∑
i=n1

I(δi = 1)ta1i exp(a1θ1Zi)

− b2

n∑
i=n1+1

I(δi = 1)ta2i exp(a2θ2Zi) + (a2 − 1)
n∑

i=n1+1

I(δi = 2)ln(ti)

− b2

n∑
i=n1+1

I(δi = 2)ta2i exp(a2θ2Zi)− b1

n∑
i=n1+1

I(δi = 2)ta1i exp(a1θ1Zi)

The conditional expectations

E[ln(t)|a∗j , b∗j , θ∗j , l < t < r] =

ˆ r

l

ln(t)
[
a∗1b
∗
1exp(a

∗
1θ
∗
1Zi)t

a∗1−1exp
(
−b∗1ea

∗
1θ

∗
1Zita

∗
1
)
exp

(
−b∗2ea

∗
2θ

∗
2Zita

∗
2
)]I(δi=1)

×
[
a∗2b
∗
2exp(a

∗
2θ
∗
2Zi)t

a∗2−1exp
(
−b∗2ea

∗
2θ

∗
2Zita

∗
2
)
exp

(
−b∗1ea

∗
1θ

∗
1Zita

∗
1
)]I(δi=2)

dt

E[tajexp(ajθjZi)|a∗j , b∗j , θ∗j , l < t < r] =

ˆ r

l

ta
∗
j exp(a∗jθ

∗
jZi)

[
a∗1b
∗
1exp(a

∗
1θ
∗
1Zi)t

a∗1−1exp
(
−b∗1ea

∗
1θ

∗
1Zita

∗
1
)
exp

(
−b∗2ea

∗
2θ

∗
2Zita

∗
2
)]I(δi=1)

×
[
a∗2b
∗
2exp(a

∗
2θ
∗
2Zi)t

a∗2−1exp
(
−b∗2ea

∗
2θ

∗
2Zita

∗
2
)
exp

(
−b∗1ea

∗
1θ

∗
1Zita

∗
1
)]I(δi=2)

dt
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are both continuous functions by Lemma 6 of Bennett (2011) since each function is contin-

uous is its argument(s). Hence, E[l(φ, θ)|complete data|φ∗, θ∗, censored data] is continuous

in a1, a
∗
1, b1, b

∗
1, a2, a

∗
2, b2, b

∗
2, θ1, θ

∗
1, θ2 and θ∗2. Thus, the EM algorithm will converge by

Theorem 2 in Wu (1983).

4.3.1 Exponential Accelerated Failure Time model

Consider that the lifetime distributions T1 and T2 due to cause 1 and cause 2 are both

exponential Accelerated Failure Time distributed with CDFs and PDFs,

Fj(t; aj, θj) = 1− exp(−ajeθ
T
j Zt)

fj(t; aj, θj) = aje
θTj Zexp(−ajeθjZt)

respectively where θj, j = 1, 2 are unknown parameters and t > 0. The censoring mecha-

nism is as follows. The left point of the censored interval is an exponential random variable

with mean 1/c and the length of the censored interval is an exponentially distributed with

mean 1/d.

As in Section (4.2.1), reorder the data into the uncensored and censored observations as

follows.

{(T1, δ1), (T2, δ2), · · · , (Tn1 , δn1), [(Ln1+1, Rn1+1), δn1+1], · · · , [(Ln1+n2 , Rn1+n2), δn1+n2 ]}

71



Chapter 4. Competing risks models for middle censored data

where n1 + n2 = n. Now, the likelihood function is

L(a1, a2, θ1, θ2) =

n1∏
i=1

{aI(δi=1)
1 a

I(δi=2)
2

[
eθ1Ziexp(−a1e

θ1Ziti)exp(−a2e
θ2Ziti)

]I(δi=1)

×
[
eθ2Ziexp(−a2e

θ2Ziti)exp(−a1e
θ1Ziti)

]I(δi=2)}

×
2∏
j=1

n∏
i=n1+1

(Sj(Li)− Sj(Ri))
I(δi=j) (4.3.1)

The corresponding log-likelihood is

l(a1, a2, θ1, θ2) =

n1∑
i=1

I(δi = 1)ln(a1) +

n1∑
i=1

I(δi = 2)ln(a2)

+

n1∑
i=1

I(δi = 1)(θ1Zi − a1e
θ1Ziti − a2e

θ2Ziti)

+

n1∑
i=1

I(δi = 2)(θ2Zi − a2e
θ2Ziti − a1e

θ1Ziti)

+
2∑
j=1

n∑
i=n1+1

I(δi = j)ln
[
exp(−ajeθ

T
j Zili)− exp(−ajeθ

T
J Ziri)

]
(4.3.2)

The EM algorithm is used to find the MLEs of the parameters involved. The conditional

expectation needed for the incomplete data is given as

E[T |L < T < R] =

´ R
L
tf(t|a1, a2, θ1, θ2)dt

F (R|a1, a2, θ1, θ2)− F (L|a1, a2, θ1, θ2)
(4.3.3)

The required log-likelihood is

l(a1, a2, θ1, θ2) =

n∑
i=1

I(δi = 1)ln(a1) +

n∑
i=1

I(δi = 2)ln(a2)

+

n1∑
i=1

I(δi = 1)(θ1Zi − a1eθ1Ziti − a2eθ2Ziti)

+

n∑
i=n1+1

I(δi = 1)(θ1Zi − a1eθ1Zit∗i − a2eθ2Zit∗i )

+

n1∑
i=1

I(δi = 2)(θ2Zi − a2eθ2Ziti − a1eθ1Ziti)

+

n∑
i=n1+1

I(δi = 2)(θ2Zi − a2eθ2Zit∗i − a1eθ1Zit∗i ) (4.3.4)
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where the t∗i is found using equation (4.3.3).

The EM Algorithm is used to solve for the MLE’s of a1, a2, θ1 and θ2 and it is set up as

follows

• Step 1: Suppose that a(0)
j and θ(0)

j , j = 1, 2 are the initial guess values of the maximum

likelihood estimate of aj and θj respectively.

• Step 2: Compute T ∗i using equation (4.3.3) with (a1, a2, θ1, θ2) = (a1, a2, θ1, θ2)(j)

• Step 3: Solve equation (4.3.4) for its maximum and set (a1, a2, θ1, θ2)(j+1) as the

maximum

• Step 4: Repeat until convergence criteria is met

A simulation study was performed to illustrate the usefulness of the approach. For

each sample size n,N = 100 replications were simulated. Each sample was censored and

the above EM algorithm was applied to the censored data. The censoring mechanism is

as follows; the left end point and right end point of the censored interval for cause i are

exponentially distributed with mean ci and di respectively for i = 1, 2. The true values for

the simulation are a1 = 1, a2 = 1, θ1 = 1, θ2 = 1 and the covariate Z is generated from

a standard normal distribution. The MLE’s of a1, a2, θ1, θ2 were computed using the EM

algorithm and the results are shown in Table 4.3.

The estimates of all the parameters in all cases are close to the actual value and they are

converging to the true values as the sample size, n increases. It performs quite well even

with a large proportion of censored observations and the estimated mean squared errors
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(EMSE) for the estimates are very small. Hence, this approach yields very useful, accurate

and reliable results.

(c1, d1), (c2, d2) n â1 â2 θ̂1 θ̂2 Cens1 Cens2

(1, 2), (1, 2) 50 1.1595 1.4054 1.0193 1.0182 0.29 0.30
EMSE 0.0004 0.0082 0.0001 0.0002

100 1.0900 1.2984 1.0144 1.0192 0.27 0.29
EMSE 0.0001 0.0045 0.0000 0.0000

500 1.0885 1.0654 1.0119 1.0076 0.27 0.29
EMSE 0.0000 0.0000 0.0000 0.0000

(1, 3), (1, 3) 50 1.2153 1.3204 1.0542 1.0444 0.30 0.30
EMSE 0.0015 0.0051 0.0004 0.0001

100 1.1543 1.2609 1.0534 1.0367 0.32 0.32
EMSE 0.0008 0.0034 0.0001 0.0000

500 1.1076 1.1420 1.0326 1.0055 0.33 0.33
EMSE 0.0000 0.0000 0.0001 0.0000

(3, 5), (3, 5) 50 1.1080 1.4274 1.0342 1.0221 0.19 0.20
EMSE 0.0004 0.0091 0.0001 0.0000

100 1.0734 1.1581 1.0115 1.0073 0.20 0.20
EMSE 0.0002 0.0013 0.0000 0.0000

500 1.0611 1.0940 1.0028 1.0032 0.20 0.20
EMSE 0.0000 0.0000 0.0000 0.0000

Table 4.3: Numerical results for Exponential AFT model

4.3.2 Weibull Accelerated Failure Time model

Consider that the lifetime distributions T1 and T2 due to cause 1 and cause 2 are both

Weibull Accelerated Failure Time distributed with CDFs and PDFs,

Fj(t; aj, bj, θj) = 1− exp(−bjeajθ
T
j Ztaj)

fj(t; aj, bj, θj) = ajbjexp(ajθ
T
j Z)taj−1exp(−bjeajθ

T
j Ztaj)
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respectively where aj, bj, θj, j = 1, 2 are unknown parameters and t > 0. Again, we will

consider the censoring mechanism as follows; the left point of the censored interval is an

exponential random variable with mean 1/c and the length of the censored interval is an

exponentially distributed with mean 1/d. It is also assumed that there is at least one censored

observation i.e. n2 > 0. The likelihood function is then given as

L(a1, a2, b1, b2, θ1, θ2) =

n1∏
i=1

(a1b1)I(δi=1)(a2b2)I(δi=2)

×
[
ea1θ1Zita1−1

i exp(−b1e
a1θ1Zita1i )exp(−b2e

a2θ2Zita2i )
]I(δi=1)

×
[
ea2θ2Zita2−1

i exp(−b2e
a2θ2Zita2i )exp(−b1e

a1θ1Zita1i )
]I(δi=2)

×
2∏
j=1

n∏
i=n1+1

(Sj(Li)− Sj(Ri))
I(δi=j) (4.3.5)

Based on equation (4.3.5), the corresponding log-likelihood is given as

l(a1, a2, b1, b2θ1, θ2) =

n1∑
i=1

I(δi = 1)ln(a1b1) +

n1∑
i=1

I(δi = 2)ln(a2b2)

+ a1

n1∑
i=1

I(δi = 1)θ1Zi + a2

n1∑
i=1

I(δi = 2)θ2Zi

+ (a1 − 1)

n1∑
i=1

I(δi = 1)ln(ti) + (a2 − 1)

n1∑
i=1

I(δi = 2)ln(ti)

− b1

n1∑
i=1

ea1θ1Zita1i − b2

n1∑
i=1

ea2θ2Zita2i

+
2∑
j=1

n∑
i=n1+1

I(δi = j)ln
[
exp(−bjeajθ

T
j Zil

aj
i )− exp(−bjeajθ

T
j Zir

aj
i )
]

(4.3.6)
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Applying the EM algorithm in the same fashion as Section (4.3.1), the conditional ex-

pectation needed is given as

E[ln(T )|L < T < R] =
´ R
L
ln(t)(a1b1e

a1θ1Zita1−1
i )I(δi=1)(a2b2e

a2θ2Zita2−1
i )I(δi=2)e−b1e

a1θ1Zi t
a1
i e−b2e

a2θ2Zi t
a2
i dt

F (R|a1, a2b1, b2, θ1, θ2)− F (L|a1, a2, b1, b2θ1, θ2)

(4.3.7)

E[T aj |a∗1, a∗2, b∗1, b∗2, θ∗1, θ∗2, L < T < R] =
´ R
L
taj(a1b1e

a1θ1Zita1−1
i )I(δi=1)(a2b2e

a2θ2Zita2−1
i )I(δi=2)e−b1e

a1θ1Zi t
a1
i e−b2e

a2θ2Zi t
a2
i dt

F (R|a1, a2b1, b2, θ1, θ2)− F (L|a1, a2, b1, b2θ1, θ2)

(4.3.8)

Then the required log-likelihood is

l(a1, a2,b1, b2, θ1, θ2) =

n∑
i=1

I(δi = 1)ln(a1b1) +
n∑
i=1

I(δi = 2)ln(a2b2) + a1

n∑
i=1

I(δi = 1)θ1Zi

+ a2

n∑
i=1

I(δi = 2)θ2Zi + (a1 − 1)

[
n1∑
i=1

I(δi = 1)ln(ti) +
n∑

i=n1+1

I(δi = 1)ln(ti)
∗

]

+ (a2 − 1)

[
n1∑
i=1

I(δi = 2)ln(ti) +
n∑

i=n1+1

I(δi = 2)ln(ti)
∗

]

− b1

[
n1∑
i=1

ea1θ1Zita1i +
n∑

n1+1

ea1θ1Zita1∗i

]
− b2

[
n1∑
i=1

ea2θ2Zita2i +
n∑

n1+1

ea2θ2Zita2∗i

]

(4.3.9)

where ln(t)∗ and ta∗ are found using equations (4.3.7) and (4.3.8) respectively.

The EM algorithm used to solve for the MLE’s of a1, b1a2, b2, θ1 and θ2 can now be set

up as follows.
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• Step 1: Suppose that a(0)
j , b

(0)
j and θ(0)

j , j = 1, 2 are the initial guess values of the

maximum likelihood estimate of aj, bj and θj respectively.

• Step 2: Compute equations (4.3.7) and (4.3.8) with

(a1, b1, a2, b2, θ1, θ2) = (a1, b1, a2, b2, θ1, θ2)(j)

• Step 3: Solve equation (4.3.9) for its maximum and set (a1, b1, a2, b2, θ1, θ2)(j+1) as

the maximum

• Step 4: Repeat until convergence criteria is met

A simulation study was performed to illustrate the usefulness of the approach. For

each sample size n,N = 100 replications were simulated. Each sample was censored and

the above EM algorithm was applied to the censored data. The censoring mechanism is

as follows; the left end point and right end point of the censored interval for cause i are

exponentially distributed with mean ci and di respectively for i = 1, 2. The true values for

the simulation are a1 = 2, b1 = 1, a2 = 2, b2 = 1, θ1 = 1, θ2 = 1 and the covariate Z

is generated from a standard normal distribution. The MLE’s of a1, b1, a2, b2, θ1, θ2 were

computed using the EM algorithm and the results are reported in Table 4.4. The estimates

of all the parameters in all cases are close to the actual value and they are converging to

the true values as the sample size, n increases. Again the estimated mean squared errors

(EMSE) for the estimates are found to be very small. Hence, this method yields reliable

results with reasonable accuracy for the Weibull AFT model.

77



Chapter 4. Competing risks models for middle censored data

Although Theorem (4.2) shows that the EM algorithm will converge, one needs to con-

firm that the convergence is the global maximum. To that end, one should run this algorithm

many times with different initial values for (a1, b1, a2, b2, θ1, θ2) in our case, and check that

the algorithm is not trapped at local extrema, as suggested by Bennett (2011).

(c1, d1)

& n â1 b̂1 â2 b̂2 θ̂1 θ̂2 Cens1 Cens2

(c2, d2)
(1, 2) 50 1.9320 0.8911 1.9662 0.9011 1.0529 1.0361 16.06 16.07

& EMSE 0.0011 0.0012 0.0008 0.0010 0.0010 0.0011
(1, 2) 100 1.9554 0.9219 1.9700 0.9219 1.0361 1.0265 17.40 16.00

EMSE 0.0009 0.0007 0.0006 0.0008 0.0008 0.0009
250 1.9622 0.9422 1.9798 0.9518 1.0222 1.0197 13.90 16.90

EMSE 0.0006 0.0004 0.0003 0.0005 0.0006 0.0008
500 1.9929 0.9699 1.9910 0.9789 1.0110 1.0187 19.16 13.64

EMSE 0.0004 0.0001 0.0001 0.0002 0.0004 0.0005
(2, 3) 50 1.9494 0.9012 1.9529 0.9281 0.9644 0.9440 14.40 7.40

& EMSE 0.0012 0.0016 0.0009 0.0013 0.0010 0.0010
(3, 2) 100 1.9544 0.9213 1.9699 0.9310 0.9661 0.9559 13.60 7.90

EMSE 0.0010 0.0011 0.0007 0.0010 0.0008 0.0008
250 1.9801 0.9666 1.9771 0.0.9577 0.9819 0.9799 12.00 8.40

EMSE 0.0004 0.0004 0.0005 0.0008 0.0007 0.0005
500 2.0129 0.9987 1.9839 0.9831 1.0144 1.0039 14.84 7.60

EMSE 0.0001 0.0003 0.0003 0.0005 0.0005 0.0002
(3, 5) 50 1.9356 0.9110 1.9217 0.9210 0.9693 0.9551 11.96 11.04

& EMSE 0.0016 0.0012 0.0009 0.0015 0.0008 0.0009
(3, 5) 100 1.9440 0.9299 1.9501 0.9567 0.9801 0.9610 11.00 10.40

EMSE 0.0011 0.0009 0.0007 0.0012 0.0006 0.0005
250 1.9501 0.9587 1.9605 0.9771 0.9889 0.9899 11.80 9.60

EMSE 0.0007 0.0005 0.0004 0.0002 0.0003 0.0004
500 1.9737 0.9777 1.9843 0.9810 1.0031 1.0045 11.88 11.11

EMSE 0.0004 0.0003 0.0002 0.0000 0.0001 0.0002

Table 4.4: Numerical results for Weibull AFT model
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4.4 Semiparametric models in the presence of covariates

The most general proportional hazards model has cause-specific hazard function

h0j(t)exp(θ
T
j Z)

which allows for a cause-specific baseline hazard and cause-specific estimates of effect.

With this semiparametric setup, the density of lifetimes is given by

fj(t|Z) = f0j(t)e
θTj ZS0j(t)

exp(θTj Z)−1

Again, at this stage of development we will only deal with a single covariate, Z. Without

loss of generality, let our observed data be

{(T1, δ1), (T2, δ2), · · · , (Tn1 , δn1), [(Ln1+1, Rn1+1), δn1+1], · · · , [(Ln1+n2 , Rn1+n2), δn1+n2 ]}

where n1 + n2 = n. Assuming that we have at least one censored observations i.e. n2 > 0,

the likelihood function of failure is given by

L(θ1, θ2) =

n1∏
i=1

[f1(ti)F̄2(ti)]
I(δi=1)[f2(ti)F̄1(ti)]

I(δi=2)

2∏
j=1

n∏
i=n1+1

[Fj(Ri)− Fj(Li)]I(δi=j)

The corresponding log-likelihood is

lfull(θ1, θ2) = luncens(θ1, θ2) + lcens(θ1, θ2)

where

luncens(θ1, θ2) =

n1∑
i=1

(I(δi = 1)[lnf01(ti) + θT1 Zi + (eθ
T
1 Zi − 1)lnS01(ti) + eθ

T
2 ZilnS02(ti)]

+ I(δi = 2)[lnf02(ti) + θT2 Zi + (eθ
T
2 Zi − 1)lnS02(ti) + eθ

T
1 ZilnS01(ti)]) (4.4.1)
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lcens(θ1, θ2) =
2∑
j=1

n∑
i=n1+1

ln[Sj(li)− Sj(ri)]I(δi=j) (4.4.2)

From equations (4.4.1) and (4.4.2), in order to estimate the parameters θ1 and θ2, we

require the estimation of the baseline survival function S0j(t) for j = 1, 2 and the baseline

density f0j(t). The survival function can be estimated nonparametrically by using the self-

consistent estimator given in Jammalamadaka and Mangalam (2003) but difficulty arises

when wanting to estimate the baseline density function. This can be avoided by taking the

derivative of the log-likelihood.

l′(θ) =
∂luncens(θ)

∂θj
+
∂lcens(θ)

∂θj
(4.4.3)

where the derivatives of the uncensored and censored data are given below

∂luncens(θ1, θ2)

∂θ1
=

n1∑
i=1

I(δi = 1)
(
Zi + lnS01(ti)Zie

θT1 Zi
)
+ I(δi = 2)

(
lnS01(ti)Zie

θT1 Zi
)

(4.4.4)

∂luncens(θ1, θ2)

∂θ2
=

n1∑
i=1

I(δi = 1)
(
lnS02(ti)Zie

θT2 Zi
)
+ I(δi = 2)

(
Zi + lnS02(ti)Zi(e

θT2 Zi)
)

(4.4.5)

∂lcens(θ1, θ2)

∂θ1
=

n∑
i=n1+1

I(δi = 1)

(
Zie

θT1 Zi ln(S01(li))(S01(li))
eθ
T
1 Zi − Zieθ

T
1 Zi ln(S01(ri))(S01(ri))

eθ
T
1 Zi

S01(li)e
θT1 Zi − S01(ri)e

θT1 Zi

)

(4.4.6)

∂lcens(θ1, θ2)

∂θ2
=

n∑
i=n1+1

I(δi = 2)

(
Zie

θT2 Zi ln(S02(li))(S02(li))
eθ
T
2 Zi − Zieθ

T
2 Zi ln(S02(ri))(S02(ri))

eθ
T
2 Zi

S02(li)e
θT2 Zi − S02(ri)e

θT2 Zi

)

(4.4.7)

From equations (4.4.4), (4.4.5), (4.4.6) and (4.4.7), the baseline density f0j(t) is not

present, hence we do not need to estimate it in order to solve the roots of this equation. Since
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there is no general and closed form solution to equation (4.4.3), it can be solved numerically.

Here, it is assumed that Zi follows a Binomial(1, p) distribution. The algorithm to find the

MLE of the regression parameters θ1 and θ2 is given below. For j = 1, 2,

• Step 1: Estimate S(1)
0j (t) by using SCE (or NPMLE) using the data with no covariate

effect i.e. use all of the ti such that Zi = 0

• Step 2: Estimate θ(1)
j by solving the root of (4.4.3) and using S(1)

0j (t) to solve for the

necessary probabilities in it

• Step 3: Obtain t̃i = S
(1)
0j

−1
[
S

(1)
0j (ti)

exp(θ
(1)
j )Zi

]
. l̃i and r̃i can be found the same way.

• Step 4: Estimate S(2)
0j (t) by using SCE (or NPMLE) using all of the t̃i, l̃i and r̃i as

your data

• Step 5: Find θ(2)
j by solving for the root of (4.4.3) and using S(2)

0j (t) to solve for the

necessary probabilities in it

• Step 6: Repeat steps (3)-(5) until convergence criteria is met

To ensure that the algorithm works, a simulation is done. The baseline density for cause

1, f01(t) and cause 2, f02(t) are assumed to be exponential with mean 10 and 8 respec-

tively. The censoring mechanism is as follows: the left censoring point for each individual

is assumed to be an exponential random variable with mean 5 and the length of the inter-

val is assumed to be another independent exponential random variable with mean 6. The

covariates, Zi were generated from a Binomial(1, 0.5) distribution and the true covariate
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effects are θ1 = 1 and θ2 = 1. Graphs of the final estimate of F0(t) with sample sizes

n = 50, 100, 250 and 1000 are shown in Figures (4.4.1) - (4.4.4). In each of these figures,

the empirical CDF of the uncensored data is given as a starting point, the true CDF and the

fitted CDF are shown. From the figures, it is clear that as the sample size n increases, the

estimated CDF does a significantly better job at estimating the true distribution.

In this simulation, N = 30 samples were run with sample sizes n = 50, 100, 250, 500.

The results of this study are given in Table 4.5. As the sample size increases, the accuracy of

the MLEs of θ1 and θ2 increases slowly. Their EMSE decreases as shown in the table which

means that their variability decreases. The variables Censoredi for i = 1, 2 are the average

amount of censoring in these N = 30 samples. On average, 12% of these observations are

censored.

n 50 100 250 500
θ̂1 0.8022 0.8515 0.9368 0.9783
θ̂2 0.8420 0.8887 0.9062 0.9501

EMSE(θ̂1) 0.0009 0.0005 0.0001 0.00001
EMSE(θ̂2) 0.0012 0.0003 0.0002 0.00006
Censored1 0.11 0.11 0.13 0.13
Censored2 0.12 0.14 0.11 0.11

Table 4.5: Simulations for Cox model with Binomial covariates
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Figure 4.4.1: Semi-parametric model, n = 50
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Figure 4.4.2: Semi-parametric model, n = 100
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Figure 4.4.3: Semi-parametric model, n = 250
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Figure 4.4.4: Semi-parametric model, n = 500
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4.5 A practical example

In this section, again we apply the proposed techniques to a Stanford Heart Transplant

study in Crowley and Hu (1977) as in Section (5.4) and (3.3). Previous open-heart surgery

for each patient is indicated by the variable surgery taken as the time-independent covariate

Z with respective regression coefficient θi for i = 1, 2. We create a variable called risk and

randomly chose two causes of risk generated from a binomial distribution with probability

0.50.

In order to create a set of middle-censored data, we randomly choose several actual

failure data and replace them by random censoring intervals. For cause 1, the data were

censored by a random interval whose left end was an exponential random variable with mean

1 and the width was exponential with mean 10 while for cause 2, the data were censored by

a random interval whose left end was an exponential random variable with mean 1 and the

width was exponential with mean 12. It is found that 7% of data were censored for cause 1

resulting in 7 uncensored observations and 30 censored observations while for cause 2, 10%

of data were censored resulting in 10 uncensored observations and 56 censored observations.

It is observed that the maximum likelihood estimates of θ1 and θ2 of the complete data are

−0.6240 and −0.6838 respectively. Applying the model given in Section 4.4, it is found

that the estimates of the regression coefficients are θ̂1 = −0.6141 and θ̂2 = −0.7253. These

estimates are close to the maximum likelihood estimates found using the complete data

which shows that this approach yields reliable, useful and accurate results.
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Middle censoring in the presence of
time-dependent covariates

5.1 Time-dependent covariates

One advantage of using Cox proportional hazard model is its ability to incorporate time-

dependent covariates (see e.g. Cox, 1975 and Therneau and Grambsch, 2000). The time

dependent covariates refers to a variable whose value itself changes over the duration of

follow up. Examples of time-dependent covariate in biomedical research are 1. cumulative

dosage of radiation or of a pharmaceutical agent, 2. receipt of an organ transplant and 3.

compliance with a medication intended for chronic use (Austin, 2011). In the first exam-

ple, cumulative dosage of radiation is a continuous time-dependent covariate, whose value

is non-decreasing over time. In the second example, receipt of an organ transplant is a di-

chotomous exposure of treatment. For example, subjects may change their exposure status

from unexposed to exposed at most once during the follow-up interval. It is assumed that

once exposed, the subject remains exposed for the duration of follow up. One common
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approach to model this type of covariate is to use a step function which takes the value 1

for smoking and 0 otherwise within each follow-up interval (Fisher and Lin, 1999). In the

third example, current medication use also represents a dichotomous exposure. However in

this case, subjects may move from unexposed to exposed and from exposed to unexposed

during the course of follow up.

Cox (1975) proposed the use of time-dependent covariate in the Cox Proportional Haz-

ard models and gave the partial likelihood analysis and also generated the partial likelihood

function for censored data. An algorithm was introduced by Peterson (1986) for estimating

the parameters of parametric models in the presence of time-dependent covariates. Seaman

and Bird (2001) discuss the proportional hazard model with interval censored data when

time-dependent covariates are present. Parametric survival models for interval-censored

data with time-dependent covariates were discussed in Sparling et al (2006).

If time-dependent variables are considered in a study, the Cox model from Equation

(2.4.1) may still be used but such a model no longer satisfies the proportional hazard as-

sumption. The model that integrates both time-independent and time-dependent covariates

is called the extended Cox model (Kleinbaum and Klein, 2012, pages 244-245).

The hazard function for the extended Cox model is given by

h(t|Z,Z(t)) = h0(t)e
∑p1
i=1 θiZi+

∑p2
j=1 δjZj(t) (5.1.1)

The assumption is that the effect of a time-dependent variable Zj(t) on the survival proba-

bility at time t depends on the value of this variable at that same time t, and not on the value
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at an earlier or later time. i.e.

h(t|{Z(µ), µ ∈ [0, t]}) = h(t|Z(t))

The extended Cox model in (5.1.1) can be written in another way that simultaneously

considers all time-independent variables of interest. This model is written as

h(t|Z,Z(t)) = h0(t)e
∑p1
i=1 θiZi+

∑p2
j=1 δjZjgj(t)

where gj(t) is some function of time for the jth variable. Some common examples of g(t)

are t, log(t) and the heaviside functions (Kleinbaum and Klein, 2012, pages 254-255). The

choice of time-dependent covariates may be based on theoretical considerations and strong

clinical evidence.

The hazard ratio, HR at time t for the two individuals with different covariates Z and

Z∗ is given by

ĤR(t) = exp

(
p1∑
i=1

θ̂i[Z
∗
i − Zi] +

p2∑
j=1

δ̂j[Z
∗
j (t)− Zj(t)]

)

Note that in this hazard ratio formula, δj represents overall effect of Zj(t) considering all

times at which this variable has been measured in this study. However, the hazard ratio

depends on time, t which means that the hazards of event at time t is no longer proportional,

and the model is no longer a PH model.

To check the PH assumption using a statistical test, consider H0 : δ1 = δ2 = · · · =

δp = 0. Under H0, the model reduces to the PH model. The test can be carried out using

a likelihood ratio, LR test which computes the difference between the log likelihood statis-

tic, −2lnL for the proportional hazard, PH model and the log likelihood statistic for the
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extended Cox model. The test statistic has approximately a chi-square distribution with p

degrees of freedom under the null hypothesis, where p denotes the number of parameters

being set equal to zero under H0. i.e. Under H0, the likelihood ratio test,

LR = −2lnLPH − (−2lnLExtCox) ∼ χ2
p

In addition to considering time-dependent variable for analyzing a time - independent

variable not satisfying the PH assumption, there are variables that are inherently defined

as time-dependent variables. One of the earliest applications of the use of time-dependent

covariates is in the report by Crowley and Hu (1977) on the Stanford Heart Transplant

study. Time-dependent variables are usually classified to be internal or external. An internal

time-dependent variable is one that the change of covariate over time is related to the charac-

teristics or behavior of the individual. For example, blood pressure, disease complications,

etc. The external time-dependent variable is one whose value at a particular time does not

require subjects to be under direct observation, i.e., values change because of characteristics

external to the individuals such as the level of air-pollution.

When no particular distribution is known, the semiparametric model is used with no

specific form for the hazard function. If a particular distribution can be specified for the

survival data, parametric model is the appropriate approach. The estimates obtained from

the parametric model will be more accurate and the relative efficiency against the semipara-

metric model increases. Both semiparametric and parametric models may be extended to

accommodate time-dependent covariates as shown in Section (5.3) and (5.2) respectively.
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5.2 Parametric model

Lifetimes that follow an exponential and Weibull distribution model are considered

in this section. Two types of time-dependent covariates which are a dichotomous time-

dependent covariate that changes at most once from one status to another and a continuous

time-dependent covariate are explored.

5.2.1 A dichotomous time-dependent covariate

Suppose that the time-dependent covariate is a dichotomous time-dependent covariate

that can change at most once from untreated to treated. Let t0 denote the time at which the

time-varying covariate changes from untreated (Z = 0) to treated (Z = 1). Hence, we have

Z(t) =


0 if t < t0

1 if t ≥ t0

Lifetimes that follow an exponential distribution and a Weibull distribution are consid-

ered in this section.

Exponential distributed model

Consider an exponential distributed model with middle censoring in the presence of

time-dependent covariate. Here, each person has a survival time, T and covariates specific

to that individual, Z and Z(t). The lifetimes will be Exponential(λexp(θTZ + δTZ(t)))

where θ and δ are the effect of each covariate.
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Suppose that there is one time-independent covariate, Z and one time-dependent covari-

ate denoted by Z(t). Let θ be the vector of regression coefficients associated with the vector

of fixed covariate, Z while δ is the regression coefficient associated with Z(t). Hence, the

hazard function, h(t) is given as

h(t|Z,Z(t)) = λexp(θZ + δZ(t))

and the cumulative hazard function, H(t) is written as

H(t|Z,Z(t)) =

ˆ t

0

λexp(θZ + δZ(u))du

The cumulative hazard function, H(t) for t < t0 and t ≥ t0 is given as the following.

The derivation of this expression is presented in Appendix A.

H(t|Z,Z(t)) =


λexp(θZ)t if t < t0

λexp(θZ)(t0 + exp(δ)t− exp(δ)t0) if t ≥ t0

The survival function of the above model is then given as

S(t|Z,Z(t)) =


exp(−λexp(θZ)t) if t < t0

exp(−λexp(θZ)(t0 + exp(δ)t− exp(δ)t0) if t ≥ t0

where S(t) is defined as S(t) = exp(−H(t)). The above survival function can be rewritten

as

S(t|Z,Z(t)) = exp
[
−λeθZ [t(1− Z(t)) + eδtZ(t) + (1− eδ)t0Z(t)]

]
Hence, the density of lifetimes is given by

f(t|Z,Z(t)) =λeθZ [1− Z(t) + eδZ(t)]

× exp
[
−λeθZ [t(1− Z(t)) + eδtZ(t) + (1− eδ)t0Z(t)]

]
(5.2.1)
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Assume that there is at least one censored observation i.e. n2 > 0 and consider the

censoring mechanism given in Section (2.2). The log-likelihood of the exponential lifetimes

with one time-independent covariate, Z and one time-dependent covariate, Z(t) is

l(t|Z,Z(t)) = n1ln(λ) +

n1∑
i=1

(θZi + ln[1− Zi(ti) + exp(δ)Zi(ti)])

−
n1∑
i=1

λeθZi [ti(1− Zi(ti)) + exp(δ)tiZi(ti) + (1− exp(δ))t0iZi(ti)]

+
n∑

i=n1+1

ln(S(li|Zi, Zi(li))− S(ri|Zi, Zi(ri)) (5.2.2)

Now, applying the EM algorithm in the same fashion as Section (2.2), the following

conditional expectation required is

t∗ =

´ r
l
tf(t|Z,Z(t))dt

S(l|Z,Z(l))− S(r|Z,Z(r))
(5.2.3)

Then the log-likelihood required is written as

l∗(λ, θ, δ) =nln(λ) +
n∑
i=1

[θZi + ln(1− Zi(ti) + exp(δ)Zi(ti))]

−
n1∑
i=1

λexp(θZi)[ti(1− Zi(ti)) + exp(δ)tiZi(ti)]

−
n∑

i=n1+1

λexp(θZi)[t
∗
i (1− Zi(ti)) + exp(δ)t∗iZi(ti)]

−
n∑
i=1

λexp(θZi) [1− exp(δ)] ti0Zi(ti) (5.2.4)

where the t∗i ’s are found using Equation (5.2.3).

The EM algorithm can now be set up as follows. To make this more explicit, choose

(λ, θ, δ)(0) to be the MLE of the uncensored data. Update the estimates with the following

steps:
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• Step 1: Suppose that (λ, θ, δ)(j) is the jth estimate

• Step 2: Compute Equation (5.2.3) with (λ, θ, δ) = (λ, θ, δ)(j)

• Step 3: Solve Equation (5.2.4) for its maximum and set (λ, θ, δ)(j+1) as that maximum

• Step 4: Repeat until convergence criteria is met

A simulation study is performed to illustrate the usefulness of this approach. Simu-

lations are carried out in R using N = 100 replications with a common sample size of

n = 250. The censoring mechanism is that the left endpoint of the censored interval is

exponentially distributed with mean 1 while the length of the censored interval is also expo-

nentially distributed with mean 1. The covariate, Z is generated from a binomial distribu-

tion. The covariate, Z(t) is a dichotomous time-dependent covariate that can change at most

once from untreated to treated. Let t0 denote the time at which the time-varying covariate

changes from unexposed (Z = 0) to exposed (Z = 1). Hence, we have

Z(t) =


0 if t < t0

1 if t ≥ t0

The survival time can be simulated from the following equations.

T =


−ln(u)
λexp(θZ)

if − ln(u) < λexp(θZ)t0

−ln(u)−λexp(θZ)t0+λexp(θZ+δ)t0
λexp(θZ+δ)

if − ln(u) ≥ λexp(θZ)t0

where u ∼ Uniform(0, 1). The derivation of the expression is shown in Appendix A.
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Three cases for the true covariate effects were considered. They are (θ, δ) = (1, 1), (1, 0)

and (0, 1). The true value for λ is taken to be 0.5 in all cases and t0 is taken to be exponen-

tial distributed with rate 0.5. In these N = 100 simulations, the samples were in average

between 23% to 25% censored. The true values λ, θ and δ were compared with their MLE’s

using the EM algorithm described above. Table 5.1 reports the results from these simula-

tions. The MLE’s of all the parameters are quite close to the actual value with small esti-

mated mean squared error (EMSE). The estimated mean squared error EMSE is calculated

using the equation

EMSE(θ̂) =
1

N

N∑
i=1

(θ̂ − θ)2

Hence, this approach yields accurate, useful and reliable results.

λ θ δ

True Value 0.5 1 1
MLE 0.5048 0.9468 1.0632

EMSE 0.0021 0.0358 0.0832
Censored Proportion 0.2468

True Value 0.5 1 0
MLE 0.4996 1.0463 0.1069

EMSE 0.0015 0.01813 0.0184
Censored Proportion 0.2342

True Value 0.5 0 1
MLE 0.5003 0.0209 1.0216

EMSE 0.0040 0.0064 0.0491
Censored Proportion 0.2526

Table 5.1: Numerical results for exponential AFT model in the presence of a

dichotomous time-dependent covariate
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Weibull distributed model

Consider a Weibull distributed model with shape α and scale β with middle censoring in

the presence of one time-independent covariate, Z and one time-dependent covariate, Z(t).

Each person has a survival time T and covariates specific to that individual, Z and Z(t). As

in the exponential model, let θ be the vector of regression coefficients associated with the

vector of fixed covariates, Z while δ is the regression coefficient associated with Z(t). The

hazard function, h(t) is given as

h(t|Z,Z(t)) = αβtα−1exp(θZ + δZ(t))

and the cumulative hazard function, H(t) is given as

H(t|Z,Z(t)) =

ˆ t

0

αβuα−1exp(θZ + δZ(u))du

The cumulative hazard function, H(t) for t < t0 and t ≥ t0 is given as the following.

The derivation of this expression is presented in Appendix C.

H(t|Z,Z(t)) =


βexp(θZ)tα if t < t0

βexp(θZ)(tα0 + exp(δ)tα − exp(δ)tα0 ) if t ≥ t0

The survival function of the above model is then given as

S(t|Z,Z(t)) =


exp(−βexp(θZ)tα) if t < t0

exp(−βexp(θZ)(tα0 + exp(δ)tα − exp(δ)tα0 )) if t ≥ t0

where S(t) is defined as S(t) = exp(−H(t)). The above survival function can be rewritten

as

S(t|Z,Z(t)) = exp[−βexp(θZ)(tα(1− Z(t)) + exp(δ)tαZ(t) + (1− exp(δ))tα0Z(t))]
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Hence, the density of lifetimes is given by

f(t|Z,Z(t)) =βexp(θZ)[(1− Z(t))αtα−1 + exp(δ)Z(t)αtα−1]×

exp[−βeθZ(tα(1− Z(t)) + eδtαZ(t) + (1− eδ)tα0Z(t))] (5.2.5)

Again, assume that there is at least one censored observation i.e. n2 > 0 and consider

the censoring mechanism given in Section (2.2). The log-likelihood is

l(t|Z,Z(t)) = n1ln(β) +

n1∑
i=1

(θZi + ln[(1− Zi(ti))αtα−1
i + exp(δ)Zi(ti)αt

α−1
i ])

−
n1∑
i=1

βeθZi [tαi (1− Zi(ti)) + exp(δ)tαi Zi(ti) + (1− exp(δ))tα0iZi(ti)]

+
n∑

i=n1+1

ln(S(li|Zi, Zi(li))− S(ri|Zi, Zi(ri)) (5.2.6)

Applying the EM algorithm in the same fashion as Section (2.2), the following condi-

tional expectations required are

t∗α =

´ r
l t

α × f(t|Z,Z(t))dt
S(l|Z,Z(l))− S(r|Z,Z(r))

(5.2.7)

t∗α−1 =

´ r
l t

α−1 × f(t|Z,Z(t))dt
S(l|Z,Z(l))− S(r|Z,Z(r))

(5.2.8)
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Then the log-likelihood required is

l∗(α, β, θ, δ) =nlnβ +
n∑
i=1

(θZi)−
n∑
i=1

βexp(θZi)[(1− exp(δ))tαi0Z(ti)]

+

n1∑
i=1

ln[(1− Zi(ti))αtα−1
i + exp(δ)Z(ti)αt

α−1
i ]

+
n∑

i=n1+1

ln[1− Zi(ti))αt∗α−1
i + exp(δ)Z(ti)αt

∗α−1
i ]

−
n1∑
i=1

βexp(θZi)[t
α
i (1− Z(ti)) + exp(δ)tαi Z(ti)]

−
n∑

i=n1+1

βexp(θZi)[t
∗α
i (1− Z(ti)) + exp(δ)t∗αi Z(ti)] (5.2.9)

where the t∗αi ’s and the t∗α−1
i are found using Equation (5.2.7) and (5.2.8) respectively.

The EM algorithm can now be set up as follows. To make this more explicit, choose

(α, β, θ, δ)(0) to be the MLE of the uncensored data. Update the estimates with the following

steps:

• Step 1: Suppose that (α, β, θ, δ)(j) is the jth estimate

• Step 2: Compute Equations (5.2.7) and (5.2.8) with (α, β, θ, δ) = (α, β, θ, δ)(j)

• Step 3: Solve Equation (5.2.9) for its maximum and set (α, β, θ, δ)(j+1) as that maxi-

mum

• Step 4: Repeat until convergence criteria is met

A simulation study is performed to illustrate the usefulness of this approach. Simu-

lations are carried out in R using N = 100 replications with a common sample size of

n = 250. The censoring mechanism is that the left endpoint of the censored interval is
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exponentially distributed with mean 1 while the length of the censored interval is also expo-

nentially distributed with mean 1. The covariate, Z is generated from a binomial distribu-

tion. The covariate, Z(t) is a dichotomous time-dependent covariate that can change at most

once from untreated to treated. Let t0 denote the time at which the time-varying covariate

changes from unexposed (Z = 0) to exposed (Z = 1). Hence, we have

Z(t) =


0 if t < t0

1 if t ≥ t0

The survival time can be simulated from the following equations.

T =


(
−ln(u)
βexp(θZ)

)1/α

if − ln(u) < βexp(θZ)tα0(
−ln(u)−βexp(θZ)tα0 +βexp(θZ+δ)tα0

βexp(θZ+δ)

)1/α

if − ln(u) ≥ βexp(θZ)tα0

where u ∼ Uniform(0, 1). The derivation of the expression is shown in Appendix C.

Three cases for the true covariate effects were considered. They are (θ, δ) = (0.5, 0.5),

(1.0, 0.5) and (0.5, 1.0). The true value for α and β are taken to be 0.6 and 0.5 respectively

in all cases and t0 is taken to be exponential distributed with rate 0.5. In these N = 100

simulations, the samples were in average between 17% to 22% censored. The true values

α, β, θ and δ were compared with their MLE’s using the EM algorithm described above.

Table 5.2 reports the results from these simulations. The MLE’s of all the parameters are

close to the actual value with small estimated mean squared error (EMSE). As expected, this

approach yields reliable, useful and accurate results.
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α β θ δ

True Value 0.6 0.5 0.5 0.5
MLE 0.6327 0.4743 0.5243 0.4821

EMSE 0.0080 0.0039 0.0065 0.0153
Censored Proportion 0.1760

True Value 0.6 0.5 1.0 0.5
MLE 0.6049 0.4777 1.1845 0.4779

EMSE 0.0003 0.0039 0.0052 0.0378
Censored Proportion 0.1840

True Value 0.6 0.5 0.5 1.0
MLE 0.5915 0.4512 0.5254 1.1491

EMSE 0.0003 0.0055 0.0059 0.0072
Censored Proportion 0.2240

Table 5.2: Numerical results for Weibull AFT model in the presence of a di-

chotomous time-dependent covariate

5.2.2 Continuous time-dependent covariate

Suppose that we have a continuous time-dependent covariate whose value is non - de-

creasing over time. Just as a matter of illustration, the time-dependent covariate Z(t) is

assumed to be a linear function Z(t) = s + kt, where k > 0 and t > 0. This would be

the case when a subject is exposed to a uniform dose during each unit of time during follow

up. An example of this case would be when subjects are exposed to a fixed dose of medi-

cation each day or when patients take a certain dose of medication each day (Austin, 2011).

Lifetimes that follow an exponential distribution and a Weibull distribution are considered

in this section.
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Exponential distributed model

Consider an Exponential distributed model with rate λ in the presence of one time-

independent covariate, Z and one time-dependent covariate, Z(t) where Z(t) = s + kt.

Let θ be the vector of fixed covariates, Z and δ is the regression coefficient associated with

Z(t). The cumulative hazard function, H(t) is given as the following. The derivation of this

expression is presented in Appendix B.

H(t|Z,Z(t)) = λexp(θZ+δs)
δk

[exp(δkt)− 1]

The survival function of the above model is given as

S(t|Z,Z(t)) = exp(−λexp(θZ+δs)
δk

[exp(δkt)− 1])

where S(t) is defined as S(t) = exp(−H(t)).

Therefore, the density of lifetimes is given by

f(t|Z,Z(t)) = λexp

(
λ

δk
eθZ+δZ(t)(e−δkt − 1) + θZ + δZ(t)

)
Now assume that there is at least one censored observation i.e. n2 > 0 and consider the

censoring mechanism given in Section (2.2). The log-likelihood is written as

l(t|Z,Z(t)) =n1ln(λ) +

n1∑
i=1

(
λ

δk
eθZi+δZi(ti)(e−δkti − 1) + θZi + δZi(ti)

)

+
n∑

i=n1+1

ln(S(li|Zi, Zi(li))− S(ri|Zi, Zi(ri)) (5.2.10)

The conditional expectation required for applying the EM algorithm is given as

t∗ =

´ r
l
tλexp

(
λ
δk
eθZ+δZ(t)(e−δkt − 1) + θZ + δZ(t)

)
dt

S(l|Z,Z(l))− S(r|Z,Z(r))
(5.2.11)
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Then the log-likelihood required is

l∗(λ, θ, δ) =nlnλ+
n∑
i=1

θZi + δ

(
n1∑
i=1

Zi(ti) +
n∑

i=n1+1

Zi(t
∗
i )

)

+
λ

δk

(
n1∑
i=1

[
eθZi+δZi(ti)(e−δkti−1)

]
+

n∑
i=n1+1

[
eθZi+δZi(t

∗
i )(e−δkt

∗
i−1)

])

(5.2.12)

where the t∗i ’s are found using Equation (5.2.11).

The EM algorithm can now be set up as follows. To make this more explicit, choose

(λ, θ, δ)(0) to be the MLE of the uncensored data. Update the estimates with the following

steps:

• Step 1: Suppose that (λ, θ, δ)(j) is the jth estimate

• Step 2: Compute Equation (5.2.11) with (λ, θ, δ) = (λ, θ, δ)(j)

• Step 3: Solve Equation (5.2.12) for its maximum and set (λ, θ, δ)(j+1) as that maxi-

mum

• Step 4: Repeat until convergence criteria is met

Now, a simulation study is performed to illustrate the usefulness of this approach. Sim-

ulations are carried out in R using N = 100 replications with a common sample size of

n = 250. The censoring mechanism is that the left endpoint of the censored interval is

Exponentially distributed with mean 1 while the length of the censored interval is also Ex-

ponentially distributed with mean 1. The covariate, Z is generated from a Binomial dis-

tribution. The covariate, Z(t) is a continuous time-dependent where Z(t) = s + kt and
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s = 1, k = 5. The survival time can be simulated from Equation (5.2.13)

T =
1

δk
ln

[
1 +

δk(−ln(u))

λexp(θZ + δs)

]
(5.2.13)

where u ∼ Uniform(0, 1). The derivation of the expression is shown in Appendix B.

Three cases for the true covariate effects were considered. They are (θ, δ) = (1.0, 1.0),

(1.0, 0.5) and (0.0, 1.0). The true value for λ is taken to be 0.5 in all cases. In theseN = 100

simulations, the samples were in average between 14% to 25% censored. The true values

λ, θ and δ were compared with their MLE’s using the EM algorithm described above. Table

5.3 reports the results from these simulations. The MLE’s of all the parameters are good

as they are close to the actual value. Again, the estimated mean squared errors (EMSE) are

small for all parameters. Again, this approach yields useful, reliable and accurate results.

λ θ δ

True Value 0.5 1.0 1.0
MLE 0.5327 1.0373 1.0078

EMSE 0.0038 0.0042 0.0007
Censored Proportion 0.1488

True Value 0.5 1.0 0.5
MLE 0.5213 1.2232 0.5038

EMSE 0.0106 0.0577 0.0062
Censored Proportion 0.2127

True Value 0.5 0.0 1.0
MLE 0.5089 -0.0955 1.0324

EMSE 0.0033 0.0205 0.0046
Censored Proportion 0.2539

Table 5.3: Numerical results for Exponential AFT model in the presence of con-

tinuous time-dependent covariate
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Weibull distributed model

When the event times follow a Weibull distribution with shape α and scale β, the cumu-

lative hazard function, H(t) is given as equation (5.2.14). The derivation of this expression

is presented in Appendix D. Again, suppose there is one time-independent covariate, Z and

one time-dependent covariate, Z(t) where Z(t) = s+ kt with k > 0.

H(t|Z,Z(t)) =
αβδ

1 + α
exp(θZ + δs)

[
exp(kt1+α)− 1

]
(5.2.14)

The survival function of the above model is given as

S(t|Z,Z(t)) = exp
(
− αβδ

1+α
exp(θZ + δs) [exp(kt1+α)− 1]

)
where S(t) is defined as S(t) = exp(−H(t)).

Hence, the density of lifetimes is given by

f(t|Z,Z(t)) = αβδktαexp

(
−αβδ(ektα+1 − 1)eθZ+δs

α + 1
+ θZ + ktα+1 + δs

)

Now assume that there is at least one censored observation i.e. n2 > 0 and consider the

censoring mechanism given in Section (2.2). The log-likelihood is written as

l(t|Z,Z(t)) =n1ln(αβδk) +

n1∑
i=1

(
− αβδ

α + 1
(ekt

α+1
i − 1)eθZi+δs + θZi + ktα+1

i + δs

)

+ α

n1∑
i=1

ln(ti) +
n∑

i=n1+1

ln(S(li|Zi, Zi(li))− S(ri|Zi, Zi(ri))) (5.2.15)
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Applying the EM algorithm in the same fashion as Section (2.2), the following condi-

tional expectations required are

ln(t)∗ =

´ r
l
ln(t)αβδktαexp

(
−αβδ(ektα+1−1)eθZ+δs

α+1
+ θZ + ktα+1 + δs

)
dt

S(l|Z,Z(l))− S(r|Z,Z(r))
(5.2.16)

t∗a+1 =

´ r
l
ta+1αβδktαexp

(
−αβδ(ektα+1−1)eθZ+δs

α+1
+ θZ + ktα+1 + δs

)
dt

S(l|Z,Z(l))− S(r|Z,Z(r))
(5.2.17)

Then the log-likelihood required is

l∗(α, β, θ, δ) =nln(αβδk) + α

(
n1∑
i=1

ln(ti) +
n∑

i=n1+1

ln(ti)
∗

)
+

n∑
i=1

(θZi + δs)

− αβδ

1 + α

[
n1∑
i=1

(ekt
α+1
i − 1)eθZi+δs +

n∑
i=n1+1

(ekt
∗α+1
i − 1)eθZi+δs

]

+ k

[
n1∑
i=1

ta+1
i +

n∑
i=n1+1

t∗a+1
i

]
(5.2.18)

where the ln(ti)
∗’s and t∗a+1

i ’s are found using Equation (5.2.16) and (5.2.17) respectively.

The EM algorithm can now be set up as follows. To make this more explicit, choose

(α, β, θ, δ)(0) to be the MLE of the uncensored data. Update the estimates with the following

steps:

• Step 1: Suppose that (α, β, θ, δ)(j) is the jth estimate

• Step 2: Compute Equation (5.2.16) and (5.2.17) with (α, β, θ, δ) = (α, β, θ, δ)(j)

• Step 3: Solve Equation (5.2.18) for its maximum and set (α, β, θ, δ)(j+1) as that max-

imum

• Step 4: Repeat until convergence criteria is met
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A simulation study is performed to illustrate the usefulness of this approach. It is carried

out in R using N = 100 replications with a common sample size of n = 250. The censoring

mechanism is that the left endpoint of the censored interval is Exponentially distributed

with mean 1 while the length of the censored interval is also Exponentially distributed with

mean 1. The covariate, Z is generated from a Binomial distribution. The covariate, Z(t) is

a continuous time-dependent where Z(t) = s+ kt and s = 1, k = 5. The survival time can

be simulated from Equation (5.2.19)

T =

[
1

k
ln

(
1 +

(1 + a)(−ln(u))

αβδexp(θZ + δs)

)]1/1+α

(5.2.19)

where u ∼ Uniform(0, 1). The derivation of the expression is shown in Appendix D.

Three cases for the true covariate effects were considered. They are (θ, δ) = (1.0, 1.0),

(1.0, 0.5) and (0.5, 1.0). The true value for α and β are taken to be 2 and 1 respectively

in all cases. In these N = 100 simulations, the samples were in average between 22% to

29% censored. The true values α, β, θ and δ were compared with their MLE’s using the

EM-algorithm described above. Table 5.4 reports the results from these simulations. The

MLE’s of all the parameters are close to the actual value with small estimated mean squared

error (EMSE). This approach yields reliable, useful and accurate results.
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α β θ δ

True Value 2.0 1.0 1.0 1.0
MLE 1.9330 0.9223 0.9754 1.0643

EMSE 0.0360 0.0221 0.0189 0.0100
Censored Proportion 0.2288

True Value 2.0 1.0 1.0 0.5
MLE 1.9895 1.0919 1.0038 0.5430

EMSE 0.0234 0.0673 0.0518 0.0064
Censored Proportion 0.2996

True Value 2.0 1.0 0.5 1.0
MLE 1.9674 0.9905 0.5631 0.9872

EMSE 0.0252 0.0133 0.0117 0.0064
Censored Proportion 0.2376

Table 5.4: Numerical results for Weibull AFT model in the presence of continu-

ous time-dependent covariate

5.3 Semiparametric model

The extended Cox model is introduced in Section (5.1) which incorporates both time-

independent and time-dependent covariates. The hazard function for the extended Cox

model is given by

h(t|Z,Z(t)) = h0(t)exp
(
θTZ + δTZ(t)

)
where h0(t) is the baseline hazard function. In this model, the baseline hazard function,

h0(t) is interpreted as the hazard function for whom all the variables are zero at the time

origin and remain at this same value through time.

The survival function for the model can be defined as

S(t|Z,Z(t)) = exp

(
−
ˆ t

0

h0(u)exp(θTZ + δTZ(u))du

)
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This function depends on the baseline hazard function, h0(t), the fixed covariates Z and the

time-dependent covariates Z(t) from time 0 to t. Hence, S(t) depends on the future values

for the time-dependent covariates which are generally unknown (Collett, 2003).

With this semiparametric set-up, the density of lifetimes is given by

f(t|Z,Z(t)) = h0(t)exp

(
θTZ + δTZ(t)−

ˆ t

0

h0(u)eθ
TZ+δTZ(u)du

)
(5.3.1)

Without loss of generality, let t1, · · · , tn1, (ln1+1, rn1+1), · · · , (ln1+n2 , rn1+n2) be the mid-

dle censored data from equation (5.3.1). Then the full likelihood is given by

L(θ, δ) =
∏

uncens

f(t|Z,Z(t))
∏
cens

(S(l|Z,Z(l))− S(r|Z,Z(r)))

The corresponding log-likelihood is

lfull(θ, δ) = luncens(θ, δ) + lcens(θ, δ)

where

luncens(θ, δ) =

n1∑
i=1

ln(h0(ti)) +

n1∑
i=1

[
θTZi + δTZi(ti)−

ˆ t

0
h0(ui)e

θTZi+δ
TZi(ui)du

]
(5.3.2)

lcens(θ, δ) =

n2∑
j=1

ln

(
e−
´ l
0 h0(ui)e

θT Zi+δ
T Zi(ui)du − e−

´ r
0 h0(ui)e

θT Zi+δ
T Zi(ui))du

)
(5.3.3)

From Equations (5.3.2) and (5.3.3), the estimation of the baseline hazard function, h0(t) is re-

quired to estimate the covariate effect θ and δ. One approach to estimate the baseline hazard function

is to fit a smoothing spline. See Wang (2011) for details on smoothing spline.

To obtain the MLE of θ, find the derivative of the log-likelihood

∂

∂θ
l(θ, δ) =

∂

∂θ
luncens(θ, δ) +

∂

∂θ
lcens(θ, δ) (5.3.4)
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where

∂

∂θ
luncens(θ, δ) =

n1∑
i=1

Zi −

[
n1∑
i=1

ˆ ti

0
h0(ui)Ziexp(θ

TZi + δTZi(ui))du

]
(5.3.5)

∂

∂θ
lcens(θ, δ) =

n2∑
j=1

 ∂
∂θ (e

−
´ lj
0 h0(uj)e

θT Zj+δ
T Zj(uj)du − e−

´ rj
0 h0(uj)e

θT Zj+δ
T Zj(uj))du)

e−
´ lj
0 h0(uj)e

θT Zj+δ
T Zj(uj)du − e−

´ rj
0 h0(uj)e

θT Zj+δ
T Zj(uj))du

 (5.3.6)

Similarly, to find the MLE of δ, find the derivative of the log-likelihood

∂

∂δ
l(θ, δ) =

∂

∂δ
luncens(θ, δ) +

∂

∂δ
lcens(θ, δ) (5.3.7)

where

∂

∂δ
luncens(θ, δ) =

n1∑
i=1

Zi(ti)−

[
n1∑
i=1

ˆ ti

0
h0(ui)Zi(ui)exp(θ

TZi + δTZi(ui))du

]
(5.3.8)

∂

∂δ
lcens(θ, δ) =

n2∑
j=1

 ∂
∂δ (e

−
´ lj
0 h0(uj)e

θT Zj+δ
T Zj(uj)du − e−

´ ri
0 h0(uj)e

θT Zj+δ
T Zj(uj))du)

e−
´ li
0 h0(ui)e

θT Zj+δ
T Zj(uj)du − e−

´ ri
0 h0(uj)e

θT Zj+δ
T Zj(uj))du

 (5.3.9)

While there is no general closed form solution to Equations (5.3.4) and (5.3.7), the maximum

likelihood estimate of θ and δ can be solved numerically. To do this, first estimate h0(t) by fitting a

smoothing spline.

Then, the EM algorithm can now be set up as follows. To make this more explicit, choose

(θ, δ)(0) to be the MLE of the uncensored data. Update the estimates with the following steps:

• Step 1: Suppose that (θ, δ)(j) is the jth estimate

• Step 2: Compute g(T ∗i ) = E[g(Ti|ai < g(Ti) < bi), θ = θ(j), δ = δ(j)]

• Step 3: Solve the log-likelihood in the M-step with the g(Ti)∗’s imputed for the censored

observations for its maximum and set (θ, δ)(j+1) as the values that maximize that equation

• Step 4: Repeat until convergence criteria is met
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5.3.1 A simulation study

A simulation study is performed to illustrate the usefulness of this approach. Simulations are

carried out in R using N = 100 replications with sample sizes n = 50, 100, 250 and 500. The

censoring mechanism is that the left endpoint of the censored interval is exponentially distributed

with mean 1 while the length of the censored interval is also exponentially distributed with mean 1.

The true covariate effects are θ = 1 and δ = 1 in all cases and t0 is taken to be exponential distributed

with rate 0.5. The covariate, Z is generated from a binomial distribution. The covariate, Z(t) is a

dichotomous time-dependent covariate that can change at most once from untreated to treated. Let

t0 denote the time at which the time-varying covariate changes from unexposed (Z = 0) to exposed

(Z = 1). Hence, we have

Z(t) =


0 if t < t0

1 if t ≥ t0

Again, suppose that there is one time-dependent covariate, Z and one time-dependent covariate

denoted by Z(t). Let θ be the vector of regression coefficients associated with the vector of fixed

covariates, Z(t). Suppose that the baseline hazard function is a cubic spline as in equation (5.3.10).

h0(t) = 1.125 + 2.75(t− 0.5) + 1.5(t− 0.5)2 + (t− 0.5)3 (5.3.10)

Hence, the hazard function, h(t) is given as

h(t|Z,Z(t)) = (1.125 + 2.75(t− 0.5) + 1.5(t− 0.5)2 + (t− 0.5)3)exp(θZ + δZ(t))

and the cumulative hazard function, H(t) is given as

H(t|Z,Z(t)) =


exp(θZ)

(
t2 + t4

4

)
if t < t0(

t20 +
t40
4

)
[exp(θZ)− exp(θZ + δ)] +

(
t2 + t4

4

)
exp(θZ + δ) if t ≥ t0
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The survival function of the above model is then given as

S(t|Z,Z(t)) =


exp

(
−eθZ

(
t2 + t4

4

))
if t < t0

exp
(
−
(
t20 +

t40
4

) [
eθZ − eθZ+δ

]
−
(
t2 + t4

4

)
eθZ+δ

)
if t ≥ t0

where S(t) is defined as S(t) = exp(−H(t)). The survival function can be rewritten as

S(t|Z,Z(t)) = exp

[
−eθZ

[(
t2 +

t4

4

)[
1− Z(t) + eδZ(t)

]
+

(
t20 +

t40
4

)
(1− eδ)Z(t)

]]
Hence, the density of lifetimes is given by

f(t|Z,Z(t)) = (t3 + 2t)(eδZ(t)− Z(t) + 1)×

exp

[
−eθZ

(
t20 +

t40
4

)(
1− eδ

)
Z(t) + θZ −

(
t2 +

t4

4

)(
eδZ(t)− Z(t) + 1

)
eθZ
]

Now, assume that there is at least one censored observation i.e. n2 > 0 and consider the censor-

ing mechanism given in Section (2.2). The log-likelihood is

l(t|Z,Z(t)) =
n1∑
i=1

ln(t3i + 2ti) +

n1∑
i=1

ln[eδZi(ti)− Zi(ti) + 1] +

n1∑
i=1

θZi

+

n1∑
i=1

[
−eθZi

(
t2i0 +

t4i0
4

)(
1− eδ

)
Zi(ti)−

(
t2i +

t4i
4

)(
eδZi(ti)− Zi(ti) + 1

)
eθZi

]

+

n∑
i=n1+1

ln[S(l|Zi, Zi(li))− S(ri|Zi, Zi(ri))]

Applying the EM algorithm in the same fashion as Section (2.2), the following conditional ex-

pectations required are

t∗ =

´ r
l tf(t|Z,Z(t))dt

S(l|Z,Z(l))− S(r|Z,Z(r))
(5.3.11)

t2∗ =

´ r
l t

2f(t|Z,Z(t))dt
S(l|Z,Z(l))− S(r|Z,Z(r))

(5.3.12)

t3∗ =

´ r
l t

3f(t|Z,Z(t))dt
S(l|Z,Z(l))− S(r|Z,Z(r))

(5.3.13)

t4∗ =

´ r
l t

4f(t|Z,Z(t))dt
S(l|Z,Z(l))− S(r|Z,Z(r))

(5.3.14)
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Then the log-likelihood required is

l∗(α, β, θ, δ) =

n1∑
i=1

log(t3i + 2ti) +
n∑

i=n1+1

log(t3∗i + 2t∗i ) +
n∑
i=1

log[eδZi(ti)− Zi(ti) + 1]

+
n∑
i=1

θZi +
n∑
i=1

[
−eθZi

(
t2i0 +

t4i0
4

)
(1− eδ)Zi(ti)

]

−
n1∑
i=1

(
t2i +

t4i
4

)(
eδZi(ti)− Zi(ti) + 1

)
eθZi

−
n∑

i=n1+1

(
t2∗i +

t4∗i
4

)(
eδZi(ti)− Zi(ti) + 1

)
eθZi (5.3.15)

where the t∗i ’s, t2∗i ’s,t3∗i ’s and t4∗i ’s are found using Equations (5.3.11), (5.3.12), (5.3.13) and (5.3.14)

respectively.

The survival time can be simulated from the following equations.

T =



[
2
(
1− ln(u)

eθZ

)1/2
− 2

]1/2

if − ln(u) < eθZ
(
t20 +

t40
4

)
2
1 +

−ln(u)−
(
t20+

t40
4

)
(eθZ−eθZ+δ)

eθZ+δ

1/2

− 2


1/2

if − ln(u) ≥ eθZ
(
t20 +

t40
4

)

where u ∼ Uniform(0, 1). The derivation of the expression is shown in Appendix E.

In these N = 100 simulations, the samples were in average between 29% to 30% censored. The

true values θ and δ were compared with their MLE’s using the EM algorithm described above. Table

5.5 reports the results from these simulations. The MLE’s of all the parameters are close to the actual

value with small estimated mean squared error (EMSE).
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n 50 100 250 500
θ̂1 0.9047 0.9394 0.9589 0.9960
δ̂1 0.9489 0.9623 1.0128 1.0106

EMSE(θ̂1) 0.0007 0.0002 0.0000 0.0000
EMSE(δ̂1) 0.0009 0.0005 0.0000 0.0000
Censored 0.2938 0.2969 0.3000 0.3042

Table 5.5: Simulations for semiparametric model with a dichotomous time-

dependent covariate

5.4 A practical example

In a 1977 report on the Stanford Heart Transplant study, patients identified as being eligible for

a heart transplant were followed until death or censorship (Crowley and Hu, 1977). The Stanford

Heart Transplant program began in October 1967 where patients are admitted to the program after

review by a committee and then they wait for donor hearts to become available. The data contains

survival time in days of 103 patients, 69 of whom received transplants. For each patient in the pro-

gram, there is a birth date (birth.dt), date of acceptance into the program (accept.dt), the date of

transplant (tx.date), date of the end of follow-up (fu.date). The survival time is defined as fu.date -

accept.dt, denoted by futime in days. The survival time is said to be censored (fustat=0) or uncen-

sored (fustat=1) depending on whether fu.date is the date of death or the closing date of the study.

The age of acceptance into the program is denoted by age in years. Previous open-heart surgery for

each patient is denoted by the variable Surgery. The waiting period in days for a transplant recipient

is denoted by wait.time. For each transplant recipient, there are three other variables (mismatch,

hla.a2, mscore) of tissue-type mismatching. Patients are accepted into the study if physicians judge

them suitable for heart transplant. When a donor becomes available, physicians choose the trans-
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plant recipients according to various medical criteria. The variable of interest here is heart transplant

status (transplant) at time t defined as

transplant =


0 if the patient has not received the transplant by time t i.e. if t < wait.time

1 if the patient has received the transplant at time t i.e. if t ≥ wait.time

(5.4.1)

Hence, for a patient who did not receive a transplant during the study, the value of transplant will

remain 0 at all times. For a patient receiving a transplant, the value of transplant is 0 from the start

of eligibility until the time at which the patient receives the transplant which then changes to 1 and

remains 1 throughout the study.

We take the variables namely age at acceptance in years, age and heart transplant status, trans-

plant as the covariates with respective regression coefficients θ and δ. For the complete data set it

is observed that the maximum likelihood estimates of θ and δ are 0.6301 and 691.9513 respectively.

In order to create a set of middle-censored data, we randomly choose several actual failure data and

replace them by random censoring intervals. The data were censored by a random interval whose

left end was an exponential random variable with mean 1 and the width was exponential with mean

15. It is found that 18.44% of data were censored resulting in 84 uncensored observations and 19

censored observations. We fit a cubic spline to estimate the baseline hazard function using just the

uncensored observations. This is shown in figure (5.4.1). Applying the model given in Section 5.3,

it is found that the estimates of the regression coefficients are θ̂ = 0.6511 and δ̂ = 692.1225. These

estimates are close to the maximum likelihood estimates found using the complete data which shows

that this approach yields reliable, useful and accurate results.
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Figure 5.4.1: Baseline hazard function using cubic spline

It needs to be noted that interpretation of the parameter estimates needs to be done carefully

depending on the type of time-dependent covariates, that is, if they are an internal covariate or an

external covariate.
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Chapter 6

Conclusions and Future Work

New methods for analyzing data subject to middle censoring when covariates are present are

developed in this dissertation. In all cases, the EM algorithms are used which are theoretically shown

to converge, and further demonstrated through simulations that the convergence is to estimates that

are close to the true parameter values.

In Chapter 3, we considered inference for discrete lifetimes, when the data is middle-censored

and extend it to the case when covariates are present. We also validate and confirm the estimation

and inference procedures discussed, from extensive simulation studies, which show that the MLE of

the regression coefficients are very close to the true values in all cases.

The competing risks model in Chapter 4 focuses only on one covariate. Again, it would be of

interest to extend this methodology to include more than one covariate. Also, for the semiparametric

model, only covariates from a Binomial distribution is explored in this dissertation. Thus, the next

step would be to extend the existing methodology when the covariate comes from a continuous

distribution. However, Bennett (2011) suggested to bin such continuous responses into discrete

groups and transforming the continuous covariate into a categorical variable. With this approach, the

methods that was discussed in this thesis could be used.
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In Chapter 5, we study middle censoring in the presence of only one time-dependent covariate.

The next logical step is to extend this methodology to include more than one covariate. Through an

iterative method, these methods are assumed to work in high dimensions, but more work needs to be

done. Two types of time-dependent covariates are considered here which are 1. A dichotomous time-

dependent covariate that can change at most once from untreated to treated and 2. A continuous time-

dependent covariate whose value is non-decreasing over time. However, another time-dependent

covariate that may be interesting to explore is a dichotomous time-dependent covariate with multiple

changes between treated and untreated which is common in survival analysis. This is the case where a

subject may repeatedly move between untreated and treated conditions and assuming that all subjects

are untreated at time, t = 0.

In this dissertation, we assumed that for each individual in the sample, there is a random censor-

ing interval which are independent of the lifetimes. This is a pretty standard assumption equivalent

to saying that the time at which an individual is censored has nothing to do with how long that indi-

vidual lives. However, the assumption of independence between the survival time and the censoring

time is open to debate. For example, in some clinical trials, potentially aggressive therapies may have

side effects on patients depending on their tolerance, and the patients may need to be withdrawn from

the clinic for a period of recovery. The time of withdrawal in such case depends on the risk of time-

to-event and if the event happens within the censoring interval, dependent middle censored data is

encountered. Davarzani and Parsian (2010) considered dependent right-censoring where the lifetime

and censoring variables have a Marshall-Olkin Bivariate Exponential distribution. Following this

context, research could be done for dependent middle-censored data with the presence of covariates.

Bayesian approach to middle censoring in both the parametric models and semi-parametric mod-

els could be a very interesting topic to consider. For the exponential and geometric models respec-
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tively, Iyer, Jammalamadaka and Kundu (2008) and Davarzani and Parsian (2011) considered Bayes

approaches using prior distributions on all the parameters and evaluating the performance of the

Bayes estimates obtained by doing this. That would be an interesting extension which is worth

pursuing.
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Appendix A

Exponential distribution lifetimes with a
dichotomous time-dependent covariate

If the event times follow an exponential distribution, then when t < t0,

H(t|Z,Z(t)) =
ˆ t

0
λ(exp(θZ + δZ(u)))du

=

ˆ t

0
λexp(θZ)du

= λexp(θZ)t

When t ≥ t0

H(t|Z,Z(t)) =
ˆ t

0
λ(exp(θZ + δZ(u)))du

= λexp(θZ)

ˆ t

0
exp(δZ(u))du

= λexp(θZ)

[ˆ t0

0
exp(δZ(u))du+

ˆ t

t0

exp(δZ(u))du

]
= λexp(θZ)

[ˆ t0

0
du+

ˆ t

t0

exp(δ)du

]
= λexp(θZ)(t0 + exp(δ)t− exp(δ)t0)
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ate

The domain of H(t|Z,Z(t)) can be partitioned into two mutually exclusive intervals: A1 =

(0, t0) and A2 = [t0,∞). The range of the cumulative hazard function over each of A1 and A2 are

R1 = (0, λexp(θZ)t0) and R2 = [λexp(θZ)t0,∞) respectively.

When H(t|Z,Z(t)) < λexp(θZ)t0, we have

t =
H(t|Z,Z(t))
λexp(θZ)

Hence, the inverse cumulative hazard function

H−1(t|Z,Z(t)) = t

λexp(θZ)

if t < λexp(θZ)t0

When H(t|Z,Z(t)) ≥ λexp(θZ)t0,

t =
H(t|Z,Z(t))− λexp(θZ)t0 + λexp(θZ + δ)t0

λexp(θZ + δ)

The inverse cumulative hazard function is given as

H−1(t|Z,Z(t)) = t− λexp(θZ)t0 + λexp(θZ + δ)t0
λexp(θZ + δ)

if t ≥ λexp(θZ)t0

Hence, the survival time can be simulated from

T =


−log(u)
λexp(θZ) if − log(u) < λexp(θZ)t0

−log(u)−λexp(θZ)t0+λexp(θZ+δ)t0
λexp(θZ+δ) if − log(u) ≥ λexp(θZ)t0

where u ∼ Uniform(0, 1).
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Exponential distribution lifetimes with
continuous time-dependent covariate

If the event times follow an exponential distribution, then

H(t|Z,Z(t)) =
ˆ t

0
λ(exp(θZ + δZ(u)))du

= λexp(θZ)

ˆ t

0
exp(δZ(u))du

= λexp(θZ)

ˆ t

0
exp(δ(s+ ku))du

=
λexp(θZ + δs)

δk
[exp(δkt)− 1]

We then have

t =
1

δk
ln

(
1 +

δk(H(t|Z,Z(t)))
λexp(θZ + δs)

)
The corresponding inverse cumulative hazard function is

H−1(t|Z,Z(t)) = 1

δk
ln

(
1 +

δk(t)

λexp(θZ + δs)

)
where u ∼ Uniform(0, 1) and k > 0.

Hence, the survival time can be simulated from

T =
1

δk
ln

(
1 +

δk(−ln(u))
λexp(θZ + δs)

)
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Weibull distribution lifetimes with a
dichotomous time-dependent covariate

If the event times follow a Weibull distribution, then when t < t0,

H(t|Z,Z(t)) =
ˆ t

0
αβtα−1exp(θZ + δZ(u))du

= βexp(θZ)

ˆ t

0
αuα−1du

= βexp(θZ)tα

When t ≥ 0

H(t|Z,Z(t)) =
ˆ t

0
αβuα−1(exp(θZ + δZ(u)))du

= αβexp(θZ)

ˆ t

0
uα−1exp(δZ(u))du

= αβexp(θZ)

[ˆ t0

0
uα−1exp(δZ(u))du+

ˆ t

t0

uα−1exp(δZ(u))du

]
= αβexp(θZ)

[
tα0
α

+ exp(δ)

(
tα

α
− tα0
α

)]
= βexp(θZ)(tα0 + exp(δ)tα − exp(δ)tα0 )
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The domain of H(t|Z,Z(t)) can be partitioned into two mutually exclusive intervals: A1 =

(0, t0) and A2 = [t0,∞). The range of the cumulative hazard function over each of A1 and A2 are

R1 = (0, βexp(θZ)tα0 ) and R2 = [βexp(θZ)tα0 ,∞) respectively.

When H(t|Z,Z(t)) < βexp(θZ)tα0 , we have

t =

(
H(t|Z,Z(t))
βexp(θZ)

)1/α

Hence, the inverse cumulative hazard function

H−1(t|Z,Z(t)) =
(

t

βexp(θZ)

)1/α

if t < βexp(θZ)tα0

When H(t|Z,Z(t)) ≥ βexp(θZ)tα0 ,

t =

(
H(t|Z,Z(t))− βexp(θZ)tα0 + βexp(θZ + δ)tα0

βexp(θZ + δ)

)1/α

The inverse cumulative hazard function is given as

H−1(t|Z,Z(t)) =
(
t− βexp(θZ)tα0 + βexp(θZ + δ)tα0

βexp(θZ + δ)

)1/α

if t ≥ βexp(θZ)tα0

Hence, the survival time can be simulated from

T =


(
−log(u)
βexp(θZ)

)1/α
if − log(u) < βexp(θTZ)tα0(

−log(u)−βexp(θZ)tα0 +βexp(θZ+δ)tα0
βexp(θZ+δ)

)1/α
if − log(u) ≥ βexp(θZ)tα0

where u ∼ Uniform(0, 1).

124



Appendix D

Weibull distribution lifetimes with
continuous time-dependent covariate

If the event times follow a Weibull distribution, then

H(t|Z,Z(t)) =
ˆ t

0
αβuα−1exp(θZ + δZ(u))du

= αβexp(θZ)

ˆ t

0
uα−1exp(δ(s+ ku))du

=
αβδexp(θZ + δs)

1 + α

[
exp(kt1+α)− 1

]
We then have

t =

[
1

k
ln

(
1 +

(1 + α)H(t|Z,Z(t))
αβδexp(θZ + δs)

)]1/1+α

The corresponding inverse cumulative hazard function is

H−1(t|Z,Z(t)) =
[
1

k
ln

(
1 +

(1 + α)t

αβδexp(θZ + δs)

)]1/1+α

where u ∼ Uniform(0, 1) and k > 0.

Hence, the survival time can be simulated from

T =

[
1

k
ln

(
1 +

(1 + α)(−ln(u))
αβδexp(θZ + δs)

)]1/1+α
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Appendix E

Semi-parametric model with cubic spline
as the baseline hazard function

When the baseline hazard function is assumed to be a cubic spline, specifically

h0(t) = 1.125 + 2.75(t− 0.5) + 1.5(t− 0.5)2 + (t− 0.5)3

then when t < t0,

H(t|Z,Z(t)) =
ˆ t

0

(
1.125 + 2.75(u− 0.5) + 1.5(u− 0.5)2 + (u− 0.5)3

)
exp(θZ + δZ(u))du

=

ˆ t

0

(
1.125 + 2.75(u− 0.5) + 1.5(u− 0.5)2 + (u− 0.5)3

)
exp(θZ)du

= exp(θZ)

(
t2 +

t4

4

)
When t ≥ t0

H(t|Z,Z(t)) =
ˆ t

0

(
1.125 + 2.75(u− 0.5) + 1.5(u− 0.5)2 + (u− 0.5)3

)
exp(θZ + δZ(u))du

= exp(θZ)

ˆ t

0

(
1.125 + 2.75(u− 0.5) + 1.5(u− 0.5)2 + (u− 0.5)3

)
exp(δZ(u))du

= exp(θZ)[

ˆ t0

0

(
1.125 + 2.75(u− 0.5) + 1.5(u− 0.5)2 + (u− 0.5)3

)
du

+

ˆ t

t0

(
1.125 + 2.75(u− 0.5) + 1.5(u− 0.5)2 + (u− 0.5)3

)
exp(δ)du]

=

(
t20 +

t40
4

)
[exp(θZ)− exp(θZ + δ)] +

(
t2 +

t4

4

)
exp(θZ + δ)
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Appendix E. Semi-parametric model with cubic spline as the baseline hazard function

The domain of H(t|Z,Z(t)) can be partitioned into two mutually exclusive intervals: A1 =

(0, t0) and A2 = [t0,∞). The range of the cumulative hazard function over each of A1 and A2 are

R1 =
(
0, exp(θZ)

(
t20 +

t40
4

))
and R2 =

[
exp(θZ)

(
t20 +

t40
4

)
,∞
)

respectively.

When H(t|Z,Z(t)) < exp(θZ)
(
t20 +

t40
4

)
, we have

t =

[
2

(
1 +

H(t)

exp(θZ)

)1/2

− 2

]1/2

Hence, the inverse cumulative hazard function

H−1(t|Z,Z(t)) =

[
2

(
1 +

t

exp(θZ)

)1/2

− 2

]1/2

if t < exp(θZ)
(
t20 +

t40
4

)
When H(t|Z,Z(t)) ≥ exp(θZ)

(
t20 +

t40
4

)
,

t =

2
1 +

H(t)−
(
t20 +

t40
4

)
[exp(θZ)− exp(θZ + δ)]

exp(θZ + δ)

1/2

− 2


1/2

The inverse cumulative hazard function is given as

H−1(t|Z,Z(t)) =

2
1 +

t−
(
t20 +

t40
4

)
[exp(θZ)− exp(θZ + δ)]

exp(θZ + δ)

1/2

− 2


1/2

if t ≥ exp(θZ)
(
t20 +

t40
4

)
Hence, the survival time can be simulated from

T =



[
2
(
1 + −ln(u)

eθZ

)1/2
− 2

]1/2

if − ln(u) < eθZ
(
t0 +

t20
2

)
2
1 +

−ln(u)−
(
t20+

t40
4

)
[eθZ−eθZ+δ]

eθZ+δ

1/2

− 2


1/2

if − ln(u) ≥ eθZ
(
t0 +

t20
2

)

where u ∼ Uniform(0, 1).
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