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Abstract

Transport Properties of III-N Hot Electron Transistors

by

Donald J. Suntrup III

Unipolar hot electron transistors (HETs) represent a tantalizing alternative to es-

tablished bipolar transistor technologies. During device operation electrons are injected

over a large emitter barrier into the base where they travel along the device axis with

very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over

the barrier and contribute to collector current while low-energy electrons are quantum

mechanically reflected back into the base. Designing the base with thickness equal to or

less than the hot electron mean free path serves to minimize scattering events and thus

enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio

of transmitted to reflected electrons. Although III-N HETs have undergone substantial

development in recent years, there remain ample opportunities to improve key device

metrics.

In order to engineer improved device performance, a deeper understanding of the

operative transport physics is needed. Fortunately, the HET provides fertile ground

for studying several prominent electron transport phenomena. In this thesis we present

results from several studies that use the III-N HET as both emitter and analyzer of

hot electron momentum states. The first provides a measurement of the hot electron

mean free path and the momentum relaxation rate in GaN; the second relies on a new

technique called electron injection spectroscopy to investigate the effects of barrier height

inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive

theory of coherent electron transport that allows us to model the transfer characteristics

x



of complex heterojunctions. Such a model provides a theoretical touchstone with which

to compare our experimental results. While these studies are of potential interest in their

own right, we interpret the results with an eye toward improving next-generation device

performance.
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What kind of universe is it

that so runs riot?

— Chet Raymo
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Chapter 1

Introduction

The hot electron transistor (HET) is a vertical, unipolar device that relies on the ballistic

transport of high-energy electrons across highly scaled layers. While the concept of a

ballistic HET has existed for decades, the particular challenges associated with building

the device have stunted progress relative to more successful transistor technologies like

the heterojunction bipolar transistor (HBT) and the high-electron-mobility transistor

(HEMT). These devices have enjoyed widespread technical success and the sustained

attention of device researchers. By contrast, the relatively scant development of hot

electron devices has left ample room for further device improvements and for a deeper

understanding of the relevant device physics.

In this opening chapter we will first introduce the hot electron transistor, discussing

basic device function and relevant design parameters. Then, we will review previous

efforts to build a technologically relevant HET using various materials and designs. Third,

we will introduce the concept of hot electron spectroscopy and discuss the ways in which

the HET can be used to study hot carrier transport in semiconductors. Fourth, we will

discuss the III-N material system and highlight the ways in which the material properties

of the III-Ns lend themselves to superior HET design. Finally, we will summarize and
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Introduction Chapter 1

present an outline of the work contained in this thesis.

1.1 The hot electron transistor: basic device func-

tion and design

The hot electron transistor (HET) is three-terminal device with a vertical topology

(Figure 1.1). The device has of a double mesa structure with the emitter on top and

the collector on the bottom. Each layer has a set of dedicated metal contacts allowing

for the application of bias between layers and for the injection of current. A simple

conduction band diagram along the intrinsic region of the device (pictured as the dashed

line from z to z′) is also shown in Fig. 1.1. The band diagram is composed of two

back-to-back barriers to electron flow surrounding the base layer. The simplest way to

realize this band diagram is to use three narrow bandgap materials in the base and in

the emitter and collector contact regions and two wide band gap materials in the regions

in between. The emitter-base and base-collector barrier heights are labeled φEB and φBC,

respectively. At varying points in this thesis the barrier height (φ) may have units of

either V or eV, depending on the context. Typically, the barrier height has units of eV

when labeled on conduction band diagrams (to avoid the clutter of having to add q) and

units of V when appearing in equations (to honor the traditional notation). The emitter

and collector contact regions and the base are all highly n-type doped, which brings

the Fermi level close to the conduction band edge. Therefore, the hole concentration

is negligible throughout the device. Finally, the base thickness (tB) is defined as the

distance between the emitter and collector barrier maxima.

At zero bias (Fig. 1.1), the net electron flow across each junction in the device is

zero. The HET is biased into active mode by applying a forward bias to the emitter

2
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φEB

φBC

E

B

C

z

z′

EC

EF

tB

Figure 1.1: Hot electron transistor topology and conduction band diagram along the
line z to z′ at zero bias. The three regions corresponding to the emitter (E), base (B)
and collector (C) have been labeled and the metal contacts are pictured in red. The
emitter-base and base-collector barrier heights are labeled φEB and φBC, respectively,
and the base thickness is labeled tB. The Fermi level (EF) is pictured as a dashed red
line.

3



Introduction Chapter 1

and a reverse bias to the collector (Fig. 1.2). This lowers the barrier on the emitter side

causing electrons to be injected from the emitter into the base. Because the conduction

band drops so abruptly in the base, the injected electrons instantaneously acquire a large

kinetic energy in the direction perpendicular to the plane of the junction. These high-

energy, “hot” electrons transit the base where they undergo scattering events that relax

their longitudinal momenta. Upon arriving at the collector barrier, those electrons with

kinetic energy larger than φBC can surmount the barrier and become collector current;

electrons that have lost appreciable kinetic energy to scattering events are quantum

mechanically reflected from the collector barrier. These reflected electrons continue to

relax in the base, ultimately reaching the Fermi level where they contribute to base

current. The HET obeys the usual current continuity condition relating the magnitudes

of these three currents: IE = IB + IC.

There are several important figures of merit or performance metrics to consider when

appraising transistor performance. The first, and most important, is the current gain

(β) of the device. This metric represents the degree to which an output signal (IC)

is amplified with respect to an input signal (IB): β ≡ IC/IB. Transistor amplifiers are

characterized by β > 1 and, all else equal, larger β is associated with higher performance.

A different, but related, performance metric is the current transfer ratio (α), defined as

the fraction of the emitter current that makes it into the collector: α ≡ IC/IE. We can

use the current continuity equation to write the current gain in terms of the transfer

ratio: β = α
1−α . From this relationship it is clear that a current gain of unity corresponds

to the collection of half of the injected electrons (α = 0.5).

Based on this physical description of transistor action, it is clear that β is highly

dependent upon the energy difference between the hot electrons arriving at the collector

and the collector barrier height. As such, we can identify several key design parameters

that most strongly affect this energy difference. The first parameter is the difference

4
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IE

IB

IC

IE

IB

IC

Ileak

Ileak

Figure 1.2: Forward active mode of hot electron transistor operation. The pathways
for the emitter, base and collector currents have been labeled on the device schematic
and on the conduction band diagram. The parasitic base-collector leakage current is
also shown.
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between emitter and collector barrier heights (φEB − φBC). To achieve β > 1 this dif-

ference should be large and positive, ensuring that the electrons are launched at a high

energy with respect to the collector barrier. The second parameter that affects the elec-

tron arrival energy is the base thickness (tB). Excessive scattering events reduce the

longitudinal electron kinetic energy thereby degrading β. These scattering events can be

minimized by designing the base thickness to be smaller than the hot electron mean free

path: tB < λMFP. If this condition is satisfied, the injected electrons will retain their

initial kinetic energy and travel quasi-ballistically across the base.

Ballistic transport of this kind is desirable for high-frequency transistor amplifiers.

Minority carrier transport in the base of a bipolar device is diffusive in nature. On a

microscopic level, diffusive transport is thermally generated and, therefore, random. This

means that diffusing electrons will experience many scattering events during their highly

nonlinear trajectories across the base, resulting in a relatively long transit time. Ballistic

electrons, by contrast, follow a straight-line trajectory through the base to the collector.

The ballistic nature of electron transport in the HET promises to dramatically reduce

the transit time delays that appear in bipolar devices.

In addition to transistor gain, the access resistance in the contact layers is an impor-

tant metric to consider when evaluating transistor performance. Low-resistance contact

regions enable the precise control of the intrinsic device by the extrinsic metal contacts.

Achieving high-quality contact to the highly-scaled base layer is particularly challenging

in most material systems. A trade-off typically exists between reducing the base thickness

to improve current gain, and increasing the base thickness to improve access resistance.

Lastly, it is important to consider the magnitude of parasitic leakage paths, particularly

base-collector diode leakage (Ileak), which determines the breakdown voltage of the device

(see Fig. 1.2). Beyond breakdown leakage currents begin to overwhelm the hot electron

current in the collector and transconductance drops sharply.

6
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The hot electrons traveling ballistically across the base are completely out of equi-

librium with the host lattice. As such, these electrons have their own characteristic

distribution of momenta, separate from the thermal electrons occupying the energy lev-

els close the conduction band edge. If the hot electrons travel completely ballistically,

we may assume that their momentum distribution follows that of the source electrode

(i.e. a Fermi-Dirac distribution). However, even one scattering event renders the precise

hot electron distribution unknowable a priori. We will discuss methods to approximately

determine the scattered electron distribution later in this section. Furthermore, it is im-

portant to note that the assignment of a Fermi level or “electron temperature” to a hot

electron ensemble is not always physically appropriate. Such an assignment requires a

sufficient density of electrons so that electron-electron interactions occur on a time scale

that is fast compared with the transit time. This condition is not necessarily satisfied

for hot electrons in the base of a HET.

Having established the general design, operating principles and relevant elementary

physics, we will now discuss past efforts to build a functioning HET.

1.2 The hot electron transistor: a historical perspec-

tive

The idea of the hot electron transistor (HET) was proposed over half a century ago

as a potential alternative to the bipolar junction transistor (BJT). Early proponents sug-

gested that implementation of a majority carrier device like the HET would eliminate

charging delays from the minority carrier diffusion capacitance in BJTs while also in-

creasing minority carrier mobility in the base. It was believed that these improvements

would inevitably lead to unprecedented high-frequency performance. Since then, device

7
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development has proceeded in fits and starts as researchers have struggled with the chal-

lenges inherent in building a ballistic device. While originally proposed as a potential

breakthrough technology, HETs were also recognized as an effective tool to study hot

electron transport in semiconductors. In this section we will briefly review the history of

the HET from both a technological and a scientific perspective.

1.2.1 The HET as technology

The first hot electron transistor was developed by Mead[1] using a metal-oxide-metal-

oxide-metal (MOMOM) configuration. The first metal-oxide junction served as a tunnel

emitter of electrons into a thin metal base while the second junction served as the collector

barrier. The thin metal base layer provided a highly conductive pathway to the intrinsic

device without adding excessively to the hot electron transit length. However, it was

difficult to evaporate thin metal layers without forming pinholes and the resulting current

gain in these devices was 0.01− 0.1. Subsequent analysis suggested that the current gain

of semiconductor-metal-semiconductor (SMS) HETs would be similarly low[2], owing to

the difficulty of growing high-quality semiconductor crystals on thin metal films.

The idea was shelved for over a decade until Shannon proposed replacing the metal

base with a degenerately doped semiconductor layer[3, 4]. This solution was designed to

avoid the poor material quality of semiconductor-on-metal designs. A Schottky barrier

and n− p−n junction were proposed for the emitter and collector barriers, respectively.

Subsequent device simulations[5] seemed to suggest that the golden age of HETs was once

again upon us. A few years later, a variation of this design, which used a thin tunnel

junction emitter, was proposed[6] and implemented[7, 8] in GaAs. Second-generation

tunnel injector HETs in GaAs had current gain of ∼ 1.3 at 40 K while InGaAs/InAlAs

HETs had gain of only ∼ 0.01[9]. Resonant tunnel HETs were also developed in GaAs

8
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and had an improved current gain of ∼ 10 at 77 K[10]. The relatively small band offsets

characteristic of the III-As material system required the exclusive use of low-temperature

measurements to avoid thermionic emission of base electrons into the collector. Because

room temperature operation was prohibitively difficult to realize, GaAs HETs never found

use in real technological applications and were, therefore, abandoned.

The first HETs to have current gain at room temperature were developed by Levi

et al.[11, 12]. These devices contained an AlSbAs emitter, an InAs base and a GaSb

collector. The emitter and collector barrier heights were 1.3 and 0.8 eV, respectively,

large enough to block thermionic leakage currents at 300 K. Furthermore, the low bandgap

InAs layer ensured fairly low-resistance contacts to the 10 nm base layer. All in all these

devices had a room-temperature common-emitter current gain of 10. Despite the success,

increasing β beyond 10 proved to be extremely difficult and, until very recently, this device

represented the only room temperature HET ever demonstrated. Beyond considerations

of gain, state-of-the-art HBTs outperformed the AlSbAs/InAs/GaSb HET along almost

every other important device metric. HETs were, therefore, not considered to be a viable

and competitive device technology at the time.

Despite these technical challenges, HETs were successfully used as a spectroscopic tool

to study hot electron transport. Such an application does not require the transistor to

have gain and, therefore, has the benefit of requiring less stringent performance metrics.

1.2.2 The HET as a scientific tool

Several decades ago, as device dimensions began to approach carrier scattering lengths,

researchers proposed ballistic devices for both analog and digital device applications[13].

With these proposals came the desire for a deeper understanding of ballistic transport

effects like velocity overshoot, which can be critically important for high-speed lat-

9
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eral devices. Experimental techniques like photoemission spectroscopy had established

themselves as reliable methods for probing hot carrier dynamics in metals[14] and in

semiconductors[15, 16]. However, these methods almost always probed energy rather

than momentum relaxation processes, which are most relevant for studying carrier mo-

bility and other transport effects in electronic devices.

The idea to use the HET as a tool to study hot electron transport was first proposed by

Hesto et al.[17] with the goal of unambiguously demonstrating ballistic transport across

thin layers. To better understand the ways in which the HET may be used to study

transport, we will briefly describe a generalized version of the hot electron spectroscopy

method.

Figure 1.3 shows a simple conduction band diagram and two classes of electron en-

sembles (pictured in light blue): the majority carrier electrons near the band edge and

the minority carrier hot electrons. The thermalized (majority carrier) electrons are re-

sponsible for carrying current between the intrinsic region (i.e. the intrinsic base and the

layers immediately adjacent) and the ohmic contacts. The minority carrier hot electrons

are created when thermalized electrons cross over the emitter-base barrier. Upon enter-

ing the base, these electrons gain a large amount (∼ φEB) of kinetic energy along the

device axis resulting in a narrow distribution of highly directional longitudinal momenta.

The hot electrons travel across the base with energies well above the conduction band

edge. Scattering events in the base may partially relax the electron momenta causing

the momentum distribution to widen. Once the electrons arrive at the collector, those

with energies greater than φBC can cross over the barrier into the drift region of the col-

lector, while those with energies less than φBC are reflected off the barrier. In this sense

the collector barrier serves as a high pass filter for incoming electrons with the collector

current given by

10
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φBC

E B C

φEB

VBC

JC = q
∫∞
φBC

n(Ez)v(Ez)dEz

Ez

z

Figure 1.3: Hot electron spectroscopy using the HET. In this device φEB is constant
while φBC = f(VBC).

JC = q

∫ ∞

φBC

n(Ez)v(Ez)dEz, (1.1)

where n(Ez) is the distribution of electrons just to the left of the collector barrier and

v(Ez) is the component of their velocity perpendicular to the barrier interface. If φBC

could be made variable, using a planar doped barrier, for example, measuring the change

in JC with collector bias (VBC) can provide an estimate of the hot electron distribution

function n(Ez). In particular, if φBC varies linearly with VBC, it is straightforward to

show[18] that

dJC

dVBC

∝ n(Ez). (1.2)

Equation (1.2) provides a means to extract information about the hot electron distribu-

tion n(Ez) by measuring the dependence of JC on VBC. Once the barrier is biased away

by applying VBC ∼ φBC, the collector current (along with the derivative) increases rapidly

due to thermally generated base-collector diode leakage. The experimental signature of

quasi-ballistic transport is, therefore, a peak in the curve dJC/dVBC vs. VBC whose width

is approximately equal to the width of the hot electron ensemble.

This method has been applied to GaAs HETs[19, 8] where it was used to unambigu-
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Figure 1.4: Device schematic and hot electron spectrum taken from Ref. [21]. For
VCB < 0 clear peaks in dIC/dVCB are observed. Such peaks provide very strong
evidence of high-energy, quasi-ballistic transport in a GaAs HET.

ously detect ballistic electrons at cryogenic temperatures[20, 21]. A device schematic and

hot electron spectrum from Ref. [21] is shown in Fig. 1.4. In this experiment electrons

were tunnel injected into the base, the collector was swept from negative to positive bias,

and the collector current was measured. The plot of dIC/dVCB (or “Gc” in the original

figure) vs. VCB shows clear peaks, which are energetically separated from the Fermi level.

These data were used to show that roughly 50% of the injected electron ensemble traveled

across the base without appreciable scattering.

In addition to simply demonstrating the presence of ballistic electrons, the HET has

been used to measure the hot electron scattering rate[22] and the mean free path[23]

in GaAs. In particular, it was discovered that if hot electrons were injected below the

optical phonon energy in GaAs (∼ 36 meV), they could travel for up to several microns

before scattering[24]. These results strongly suggested that optical phonon emission is

the dominant scattering mechanism for hot electrons in GaAs. Hot electron spectroscopy

can also be used to estimate the optical phonon energy by varying the electron injection

energy while measuring the transfer ratio. As the injection energy is scanned through
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the optical phonon energy, there is a sharp increase in the carrier scattering rate causing

the transfer ratio to momentarily decrease[25].

While these experiments differed in the details of their execution, they all leveraged

the collector barrier as an analyzer of longitudinal momentum states and can all, there-

fore, be considered a form of hot electron spectroscopy. The scientific studies undertaken

in this thesis will make use of the collector barrier in a conceptually similar way. In Chap-

ters 3 and 5 we will present two different versions of electron spectroscopy to study both

barrier-limited and hot carrier transport in III-N materials. Previous interpretations of

electron spectroscopic data were incomplete because the detailed transfer properties of

the collector barrier were neglected[25]. Our analysis will improve upon these methods

by including the effects of potentially complicated transmission characteristics on the

observed spectra.

In the next section we will discuss III-N material properties and their implications

for HET design.

1.3 The III-N material system

The development of III-N materials has enabled dramatic technological advances

in energy efficient solid state lighting and high-power switching applications. The III-

Ns burst onto the technological scene with the invention of tunable, short-wavelength

LEDs[26, 27] and laser diodes[28, 29] with InxGa1−xN active regions. In the years since

there have been impressive advances in the epitaxial growth of nitride films[30, 31, 32] as

well as a deepening understanding of III-N material properties and bandstructure[33, 34,

35]. Such progress has enabled both optoelectronic devices like the ultralow threshold

ultraviolet laser[36] and record-breaking high-frequency[37, 38, 39] and high-power[40]

electronic devices like the high-electron-mobility transistor (HEMT). In this section we
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Figure 1.5: Band gaps and lattice constants for a variety of wurtzite and zincblende
materials[41]. The wurtzite III-Ns span a very large range of band gaps but also have
a large lattice mismatch to available substrate materials like Al2O3.

will review the material properties of the III-Ns, paying particular attention to those that

affect hot electron transistor design.

The III-Ns (AlN, GaN, InN and their alloys) span a very large range of material band

gaps (Fig. 1.5). In fact, the entire visible spectrum is theoretically accessible to the

InxGa1−xN alloy, making it an ideal candidate for light-emitting devices. For electronic

devices, the wide range of bandgaps enables large heterojunction band offsets (> 1 eV)

that can be engineered to provide tunable barriers to current flow. One can imagine using

such a band offset to form large emitter and collector barriers in a HET, thus enabling

room temperature operation. This can immediately be identified as an advantage of

III-N HETs over their III-As counterparts, which struggled to achieve barrier heights of

more than a few hundred meV and, therefore, were unable to achieve room temperature

transistor operation.

Gallium nitride can crystallize in either the zincblende or wurtzite structure, though

the latter is more stable. The highly ionic Ga−N bond gives rise to a distribution of
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Figure 1.6: Crystal structure of wurtzite GaN. Polar c-plane growth occurs in the plane
perpendicular to the [0001] direction.[43] Several nonpolar and semipolar planes are
also pictured.

microscopic dipole moments oriented along the bonding axes. The symmetry properties

of zincblende crystals ensure that the vector sum of these microscopic dipole moments

is zero. Displacement of the constituent atoms from their equilibrium positions can,

however, induce a nonzero polarization field in the zincblende crystal via the piezoelectric

effect. Wurtzite crystals also contain piezoelectric polarization fields upon the application

of strain. In fact, the piezoelectric coefficients in the wurtzite III-Ns are an order of

magnitude larger than other III-V and II-VI compounds[42]. Additionally, the lack of

inversion symmetry in the wurtzite phase gives rise to spontaneous polarization along

the crystal c-axis [0001](Fig. 1.6). The resulting polarization fields can have dramatic

effects on the conduction band diagram of c-plane III-N devices.

There are two polar (c-plane) crystal orientations available for growth: the plane

perpendicular to the [0001] direction is called Ga-polar; the plane perpendicular to the

[0001] direction is called N-polar. These orientations are named for the atom that lies

on the top of each hexagonal bilayer in the wurzite structure. While both Ga-polar and
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N-polar orientations exhibit nonzero spontaneous polarization, the net dipole moment

points in opposite directions. The nonpolar and semipolar planes pictured in Fig. 1.6

are preferred for certain optoelectronic devices where the presence of strong polarization

fields is undesirable. In this thesis, however, all device structures are grown either directly

on c-plane or slightly (4◦) off axis.

Owing to the relative youth of III-N materials, a sufficiently large, cost-effective single-

crystal substrate for nitride homoepitaxy has yet to be developed. As a result, III-N films

are usually grown heteroepitaxially on lattice-mismatched substrates like Al2O3 (sap-

phire). The resulting strain accumulation leads to nonplanar growth modes, especially

near the substrate interface. To separate crucial epitaxial layers from this highly defec-

tive region, thick GaN buffer layers are grown and allowed to strain relax with respect to

the substrate. This method enables the subsequent growth of two-dimensional films but

at the cost of introducing a high density (108− 1010 cm−2) of threading dislocations into

the crystal. We will briefly discuss the potential effect of dislocations on device behavior

in a later chapter.

Because the GaN buffer layer is strain relaxed, thin InGaN or AlGaN epilayers grown

on the buffer will be coherently strained to GaN. This introduces piezoelectric fields in the

material that add to (subtract from) the spontaneous polarization field in AlGaN (InGaN)

layers. The discontinuity in the polarization field at each III-N heterointerface results in

a nonzero net interfacial polarization charge (Qπ). These charges produce strong dipolar

electric fields that can be used to engineer barriers to electron flow. Because AlGaN/GaN

and InGaN/GaN heterojunction barriers tend to have very high leakage currents, we will

rely exclusively on these so-called polarization dipole barriers to form the emitter and

the collector barriers in III-N HETs.

To understand how polarization engineering can be used to design electron bar-

riers consider the structures shown in Fig. 1.7. The band diagrams of a Ga-polar
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GaN GaNInGaN

+Qπ,1

−Qπ,1

GaN GaNAlGaN

−Qπ,2

+Qπ,2

(a) (b)

−ns,1 −ns,2

+ns,2+ns,1

[0001] [0001]

Figure 1.7: Conduction band diagram of a Ga-polar (a) InGaN and (b) AlGaN po-
larization dipole structure. The net polarization charge at each interface is labeled
Qπ. In the absence of doping, the band diagram follows the thick black lines. Intro-
ducing dopants on either side of the dipole layer causes the +Qπ,i to become screened
and the bands to flatten on one side (dashed grey lines). This is the mechanism for
polarization dipole barrier formation.
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GaN/InGaN/GaN and a GaN/AlGaN/GaN junction are shown in Fig. 1.7(a) and (b),

respectively. The interface charges that results from the polarization discontinuity are

labeled Qπ,i. For a material with no free electrons, the Qπ,i are the only charges in the

vicinity of the dipole layer and the band diagram resembles the solid black lines in Fig.

1.7. In this case the bands on the +Qπ side will continue to rise and a barrier cannot

form. However, if shallow n-type dopants are added near, but not directly adjacent to,

the dipole region, mobile electrons from the donor atoms will be attracted to the +Qπ,i

charge. The resulting accumulation of electrons screens the +Qπ,i and flattens the bands

on one side (dashed grey lines). Thus an asymmetric barrier to electron flow is formed.

It is important that on the −Qπ,i side the dopants be placed sufficiently far from the

dipole layer so as not to cause excessive band bending, which reduces the asymmetry of

the barrier. Also, recall that the above arguments apply to Ga-polar heterojunctions.

For N-polar structures, the signs of the net interfacial polarization charges will all be

reversed causing the bands in Fig. 1.7 to be reflected about the vertical axis.

The free electrons that accumulate at an Al(In)GaN/GaN interface are confined

to a small longitudinal dimension (1−2 nm) and can thus be considered to be a two-

dimensional electron gas (2DEG). For AlGaN/GaN junctions with sufficiently high Al

content or AlGaN thickness, 2DEG densities can approach 2 × 1013 cm−2. The high

charge density renders the AlGaN/GaN 2DEG uniquely suited to carrying current in

highly scaled layers like the base of the HET. The use of the 2DEG to provide base

charge represents a key improvement over past designs, which relied on bulk doping the

base layer to get charge. In these structures scaling the base necessarily led to a reduc-

tion in base charge and, therefore, higher base resistance. By contrast, the base layer

in a III-N HET can be scaled to < 3 nm without significantly degrading the 2DEG

charge density. Therefore, we will make use of an AlGaN/GaN junction as the emitter

in Ga-polar HETs and as the collector in N-polar HETs.
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InGaN InGaNAlGaN AlN
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φEB
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Figure 1.8: (a) N-polar and (b) Ga-polar HET designs and conduction band diagrams.

The InGaN polarization dipole also accumulates electrons on the highly doped side of

the junction. Therefore, using the InGaN polarization barrier as the collector (emitter) in

Ga-polar (N-polar) HETs adds additional charge to the base and further reduces the base

resistance. The design structures and conduction band diagrams for both the Ga-polar

and N-polar HET are shown in Fig. 1.8. The electric field in the dipole layers can reach

∼10 MV/cm allowing for the design of large (0.75−1.5 eV) emitter and collector barriers

using the polarization dipole method. These large barriers enable the injection of very

high-energy electrons while simultaneously enabling room temperature HET operation.

In each of the designs pictured in Fig. 1.8, the compositions and thicknesses of the dipole

layers are chosen to ensure that φEB > φBC whenever possible.

1.4 Outline of the thesis

As the title suggests, the goal of this thesis is to better understand the transport

physics of the III-N HETs pictured in Fig. 1.8 with the goal of ultimately improving

device performance. Broadly speaking, there are two main areas on which we will focus
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our attention: first, we would like to understand electron transport in the vicinity of

the barrier regions. In the HET there are two barriers, the emitter and the collector,

and we will describe the transport properties of both. An important distinction to

make is that the source electrons incident on the emitter barrier are thermally generated

while those incident on the collector are hot electrons from the base. Second, we would

like to understand quasi-ballistic electron transport across the highly-scaled base layer.

In this case there are no major barriers to electron flow and hot electron scattering

processes become the main focus. Chapters 2−4 will cover barrier-limited transport

phenomena while Chapter 5 will deal with quasi-ballistic base transport. Throughout our

discussions we will point out the implications of our findings for transistor performance

before summarizing and proposing several follow-up experiments in Chapter 6. Below

we provide a more detailed outline.

In Chapter 2, we will present a theory of electron transmission through an arbitrary

potential barrier. We will compare the three most popular methods for calculating the

transmission probability before choosing the method most suited to our needs. The abil-

ity to determine the transmission characteristics of an arbitrary barrier will allow us to

simulate the behavior of a hot electron wavepacket arriving at the collector barrier in

a HET. This will help us to better understand experimental transistor data presented

in later chapters. Then, we will use the barrier transmission characteristics to derive

an expression for diode current density as a function of voltage and temperature. This

expression will improve upon the canonical thermionic emission formula by including the

effects of thermionic field emission on the diode current. The simulated diode charac-

teristics can then be compared with experimental results presented in later chapters to

help determine the physical causes of diode nonidealties. We will conclude Chapter 2 by

presenting the theory of barrier height inhomogeneity and providing a sample analysis of

a GaN Schottky diode.
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Chapter 3 will begin with a presentation of the III-N Nitrogen-polar HET design.

Then, we will analyze the common-emitter current characteristics of the first-generation

N-polar HET and discuss major device advantages and deficiencies. Next, we will discuss

the nonideal transport characteristics of the InGaN polarization dipole emitter diode in

light of barrier height inhomogeneity theory. Such an analysis will allow us to extract

quantitative information about the magnitude of lateral barrier height fluctuations and

to propose a physical cause. Finally, we will present the HET as a tool to study emitter

barrier transport by using the collector as an analyzer of emitted electron momentum

states. Temperature-dependent HET measurements will be shown to corroborate the

conclusions drawn from the emitter diode analysis.

In Chapter 4 we will present the III-N Ga-polar HET design and discuss its advantages

over N-polar HETs. Then, we will present the common emitter current characteristics

of a hybrid MOCVD/MBE HET device before moving on to discuss AlN emitter diode

transport. We will apply an abbreviated version of the methods used in Chapter 3 to

briefly analyze the emitter current characteristics before discussing the implications of

the results for device operation.

In Chapter 5, we will discuss transport characteristics of hot electrons in the base of

the HET. We will review possible electron scattering mechanisms in wurtzite GaN and

determine which processes are most relevant for the hot electrons in our devices. Then

we will present a method to measure the hot electron mean free path and momentum

relaxation rate using the hot electron transistor before analyzing the extracted relaxation

rates and discussing the implications for device performance. Finally, in Chapter 6 we

will summarize our conclusions and propose a road map for future work.
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Chapter 2

Coherent transport theory

Nearly all modern semiconductor devices make use of heterojunctions. Along with classi-

cal electric fields arising from space charge regions, for example, heterojunctions provide

a means to precisely control the flow of charged carriers on extremely short time scales.

Simply stated, a heterojunction is a plane in a crystal where the proportion of con-

stituent elements changes, often abruptly. This change in crystal composition results in

a spatially varying density of states that modulates the free carrier wavefunction in the

direction perpendicular to the heterointerface. In order to understand heterojunction

diode characteristics we must first understand the nature of the electron wavefunction in

these regions.

Our treatment in this chapter will proceed by first discussing the coherent dynamics

of conduction band electrons near a heterointerface. In particular, we will outline three

different methods to calculate the transmission probability in these regions, discussing

the merits and limitations of each method. Crucially, we will neglect electron-electron

interactions so that each momentum eigenstate can be considered independently. This

assumption allows us to use statistical considerations to calculate the total device cur-

rent by performing a weighted sum of the current carried by each momentum eigen-
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state. Coupled with a proprietary Schrödinger-Poisson solver that generates the device

band diagram, this method enables a complete numerical simulation of current-voltage-

temperature characteristics for arbitrary junctions. Such a simulation provides a theoret-

ical standard with which to compare the experimental data presented in later chapters.

Furthermore, simulating the transmission characteristics of an arbitrary collector barrier

enables a theoretical estimate of the current transfer ratio in a HET.

Once we have derived an equation describing ideal diode transport, we will introduce

the concept of barrier height inhomogeneity (BHI) and discuss its effects on transport

properties.

2.1 The transmission coefficient

The problem of determining the motion of conduction band electrons in solid state

systems has preoccupied scientists for over a century. The most rigorous treatment

of this problem involves solving the many-body Schrödinger equation, but this turns

out to be computationally prohibitive particularly on length scales that are relevant

for macroscale devices. One the other hand, the maturation of growth techniques like

molecular beam epitaxy (MBE) and metal-organic-chemical-vapor deposition (MOCVD)

has enabled the aggressive scaling of device dimensions over the past several decades.

The ability to grow semiconductor films composed of 1-10 monolayers has precluded the

option to ignore quantum interference effects all together in favor of an entirely semi-

classical treatment. Therefore, the intermediate length scales present in modern devices

necessitate an approximate, yet still explicitly quantum mechanical, treatment of carrier

transport.

In lieu of exact solutions, computationally tractable approaches like density functional

theory (DFT)[44, 34] and Monte-Carlo[45, 46] simulations have become popular tools
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for studying band structure and transport. These methods, however, usually require

complicated numerics and sizable computational power. Here, we will use an alternative

approach based on the effective mass theorem and the envelope function description [47].

While this will simplify the problem dramatically, it will also restrict the applicability of

the theory to high symmetry points in the Brillouin zone. Furthermore, our model will

ignore the effects of inelastic scattering, which requires a higher level treatment.

According to Bloch’s theorem, the wavefunction near, say, the Γ valley minimum has

the form

Ψ(~r) = ψ(~r)uk=0(~r), (2.1)

where u(~r) is periodic in the material lattice constant and ψ(~r) is a slowly varying en-

velope function. The central assumption of the envelope description is that the periodic

components u(~r) are nearly identical in every region of a heterostructure. This, in turn,

requires that all materials be latticed matched in the plane of a heterointerface [48]. Cru-

cially, this condition is satisfied both for lattice matched junctions like AlGaAs/GaAs as

well as for coherently strained materials like the III-Ns. Making this assumption allows

us to factor out the atomic-scale oscillations represented by u(~r) from the dynamical

equations. What remains is the one-dimensional Schrödinger equation for the envelope

functions:

−~2

2

∂

∂z

1

m∗(z)

∂

∂z
ψ(z) + EC(z)ψ(z) = Eψ(z), (2.2)

where ẑ is the direction perpendicular to the interface, EC is the position-dependent

conduction band minimum, E is the total energy, m∗ is the position-dependent effective

mass, and ~ is the reduced Planck’s constant. All atomic-scale effects are implicitly

contained in the effective mass and in the dispersion relation E(~k). It is important to

note that m∗ is an explicitly bulk property and that the very concept of effective mass is

not well-defined in the vicinity of a heterojunction or within a thin layer. Nevertheless, we

24



Coherent transport theory Chapter 2

will adopt the assumption that local electron properties, even in the vicinity of boundary

layers, resemble the material properties of the bulk. While this assumption is useful from

a mathematical perspective, the physical meaning of effective mass in these regions is

unclear.

Our goal will be to determine, for an arbitrary potential barrier and a given initial

electron momentum ki, the ratio of the transmitted to the incident current density. In all

cases considered in this chapter, we will assume that the barrier in question is surrounded

by electron reservoirs that emit a thermal distribution of electron momenta toward the

barrier. In practice these reservoirs are composed of highly doped semiconductor layers

with ohmic metal contacts. Device bias will be reflected in different electrochemical

potentials (or Fermi levels) in the reservoirs. Because the free carrier concentration is

very high in the reservoirs, the conduction band is flat and the incoming and outgoing

electrons can be considered to be plane waves:

ψi = Aie
ikiz +Bie

−ikiz,

ψf = Afe
ikf z, (2.3)

where ki,f =
√

2m∗i,f (E − ECi,f )/~. We have stipulated here that carriers are incident

only from the left. Furthermore, each wavefunction has an associated probability current

density given by

J =
~

2m∗i

(
ψ∗
∂ψ

∂z
− ψ∂ψ

∗

∂z

)
. (2.4)

The transmission probability is then the ratio of incident to transmitted probability

current density. Combining Eqs. (2.3) and (2.4) for incoming and outgoing waves and

taking the ratio gives

T̃ =
Jf
Ji

=
|Af |2
|Ai|2

vf
vi
, (2.5)
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where vi and vf are the initial and final electron velocities, respectively.

In the following sections, we will discuss three methods to calculate the transmission

probability and compare their ability to describe relevant heterostructures.

2.1.1 The WKB approximation

The most commonly used method to estimate the transmission probability of charged

carriers in the vicinity of one-dimensional potential barriers is based on the Wentzel-

Kramers-Brillouin (WKB) approximation[49, 50, 51]. This method is popular for device

simulations because of its analytical simplicity and ease of use. In this section we will

briefly outline the WKB method and highlight both its abilities and limitations.

As a starting point, the simplest form of the one-dimensional Schrödinger equation

is

− ~2

2m∗
∂2

∂z2
ψ(z) + EC(z)ψ(z) = Eψ(z). (2.6)

This is a second order differential equation for the wavefunction ψ and is not analytical

except in a very few special cases. One such case is that of a constant potential (i.e.

EC(z) = E0
C), which has oscillatory, plane wave solutions:

ψ(z) = Ae±ikz, k ≡
√

2m∗(E − E0
C)/~, (2.7)

where A is a complex constant and the deBroglie wavelength associated with ψ is λ =

2π/k. While this a tidy and simple solution, it describes an extremely limited, and not

very interesting, subset of problems. The scope of this solution widens if the assumption

is made that the potential, while not strictly constant, varies slowly compared with the

deBroglie wavelength. This means that from the prospective of a traveling charge at any

given moment, the potential “looks” locally constant. The physical situations that most
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accurately satisfy this approximation are high energy carriers (i.e. small λ) and smoothly

and slowly varying potentials. Intuitively we might expect that if the potential varies

slowly enough, the wavefunction could remain oscillatory while the amplitude (A) and

phase (k(z)z) vary gradually. This picture of a wavefunction that gradually adapts to

changes in potential inspired an alternate name for WKB: the adiabatic approximation.

Solving the Schrödinger equation (2.6) with this updated form of the wavefunction

yields[52]:

ψ(z) ∼ C√
2m∗(E − EC(z))

e±
i
~
∫ √

2m∗(E−EC(z))dz, (2.8)

where C is another complex constant. This solution implies that for a slowly varying

potential barrier between zi and zf , the transmission probability at energy E is given by:

T̃ (E) ' exp

(−2

~

∫ zf

zi

√
2m∗(EC(z)− E)dz

)
. (2.9)

For arbitrary barriers the integral in Eq. (2.9) can be evaluated numerically for E <

EC,max (T̃ (E) = 1 for E > EC,max)[53]. The WKB approximation breaks down at the

so-called classical turning points where E ' EC and care must be taken so that the

wavefunction does not diverge to infinity in these regions. This issue is particularly prob-

lematic when trying to adapt the WKB treatment to bound state calculations. However,

even for unbound, current-carrying states, the WKB method becomes less accurate at

higher energies when the tunneling probability become appreciable.

Equation (2.9) also does not account for wavefunction interference effects arising from

reflections at multiple material boundaries. Such interference effects are most pronounced

when the barrier width is on the order of the deBroglie wavelength as is the case in III-N

polarization dipole layers, for example. Historically as semiconductor device structures

were scaled to dimensions comparable to the electron deBroglie wavelength, it became

clear that conventional analytical approaches based on the WKB approximation were no
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longer valid[54]. A more rigorous, numerical solution was needed.

2.1.2 The transfer matrix method

The following approach for solving for the transmission characteristics of arbitrary

potential barriers arose out of a desire to model tunnel currents in multiquantum well

structures[55, 56, 57]. The approach, known as the transfer matrix method (TMM), in-

volves breaking the potential into segments in which the exact solution to the Schrödinger

equation is known. Enforcing continuity of the wavefunction and its spatial derivative

at each boundary leads to a 2× 2 matrix for each interface. Multiplying these matrices

together yields a direct relationship between incoming and outgoing wave components.

The Schrödinger equation is directly solvable for a constant or for a linearly varying

potential segment and indeed these are the two most widely used segment shapes[58, 59,

60]. The potential barriers formed by III-N polarization dipoles lend themselves well to

linear potential segments and this is the approach we will take in this section.

Consider the stepwise linear potential pictured in Fig. 2.1. In any one of the labeled

segments, the one-dimensional, the time-independent Schrödinger equation reads

∂2ψ

∂z2
+

2m∗

~2
(E − EC(z))ψ = 0, (2.10)

where within any segment [zi, zi+1], the conduction band minimum is linear:

EC(z) = EC(zi) +
EC(zi+1)− EC(zi)

zi+1 − zi
(z − zi). (2.11)
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Figure 2.1: Piecewise linear potential used to derive the transmission coefficient via
the transfer matrix method. The boxed numbers indicate potential segments and the
EC,i represent values of the conduction band edge at various points.

If we define two constants for each linear region:

αi ≡ −
(

~2

2m∗i

zi+1 − zi
EC(zi+1)− EC(zi)

)1/3

,

βi ≡ −
(

2m∗i
~2

)1/3(
zi+1 − zi

EC(zi+1)− EC(zi)

)2/3(
E − EC(zi) + zi

EC(zi+1)− EC(zi)

zi+1 − zi

)
,

(2.12)

and make the substitution ui(z) ≡ βi − z/αi we find that the wavefunction in region i

evolves according to

d2ψi
du2

− ui(z)ψi = 0. (2.13)

This is the Airy equation whose solutions are the well-known Airy functions:

ψi(z) = AiAi(ui(z)) +BiBi(ui(z)), (2.14)
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Af

Bf

Figure 2.2: Schematic of the incoming and outgoing plane waves in the TMM method.
For the example in the text, i = 1 and f = 4.

where Ai and Bi are complex constants.

We can derive transfer matrices at each boundary by writing the wavefunction in each

region and enforcing continuity of ψ and (1/m∗)∂ψ/∂z. Note that these two conditions

are implied by the continuity of probability flux as defined in Eq. (2.4). In the example

pictured in Fig. 2.1, the wavefunctions in each region are:

ψ1(z) = A1e
ik1z +B1e

−ik1z,

ψ2(z) = A2Ai(u2(z)) +B2Bi(u2(z)),

ψ3(z) = A3Ai(u3(z)) +B3Bi(u3(z)),

ψ4(z) = A4e
ik4z +B4e

−ik4z, (2.15)

where k1 =
√

2m∗1(E − EC,0)/~, k4 =
√

2m∗4(E − EC,5)/~, and

ui(z) = −
(

2m∗i
~2

)1/3(
zi+1 − zi

EC(zi+1)− EC(zi)

)2/3

(E − EC(z)) ,

u
′
i(z) =

dui(z)

dz
=

(
2m∗i
~2

)1/3(
EC(zi+1)− EC(zi)

zi+1 − zi

)1/3

. (2.16)

Our goal is to determine the propagation matrix (P̂ ) connecting the wave components
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on the left side of the barrier with those on the right (see Fig. 2.2):




Ai

Bi


 = P̂




Af

Bf


 =




P11 P12

P21 P22







Af

Bf


 . (2.17)

To this end we treat each region of Fig. 2.1 separately and recognize that

P̂ =
n∏

i

P̂i, (2.18)

where n is the number of boundaries between potential segments. Note that the order of

matrix multiplication is such that the matrix index increases from left to right.

We impose the condition that our initial and final rightward traveling wavefunctions

are plane waves with wave vectors ki and kf , respectively. Equations (2.5) and (2.17)

together imply

T̃ =
|Af |2
|Ai|2

vf
vi

=
1

|P11|2
vf
vi
. (2.19)

The problem is then reduced to finding the propagation matrix for each potential region,

multiplying them together, and taking the ratio given by Eq. (2.19).

To derive the exact form of the P̂i in Eq. (2.18), we write the explicit forms of ψ and

(1/m∗)∂ψ/∂z immediately to the left and right of each boundary and equate them. These

boundary conditions imply the following propagation matrix for an electron crossing the

plane at z1 in Fig. 2.1:

P̂1 =
1

2




e−ik1z1
(

Ai(u2) + γ1Ai
′
(u2)

)
e−ik1z1

(
Bi(u2) + γ1Bi

′
(u2)

)

eik1z1
(

Ai(u2)− γ1Ai
′
(u2)

)
eik1z1

(
Bi(u2)− γ1Bi

′
(u2)

)


 , (2.20)

where γ1 =
u
′
2

ik1

m∗1
m∗2

, and all functions and their derivatives are evaluated at z1. This matrix

applies generally for an electron crossing a plane from a flat to a sloping band.
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For the plane at z2, the propagation matrix is found to be

P̂2 = π




Ai(u3)Bi
′
(u2)− γ2Ai

′
(u3)Bi(u2) Bi(u3)Bi

′
(u2)− γ2Bi

′
(u3)Bi(u2)

−Ai(u3)Ai
′
(u2) + γ2Ai

′
(u3)Ai(u2) −Bi(u3)Ai

′
(u2) + γ2Bi

′
(u3)Ai(u2)


 ,

(2.21)

where γ2 =
u
′
3

u
′
2

m∗2
m∗3

, and all functions and their derivatives are evaluated at z2. Here, we

have made use of the property that Ai(ui)Bi
′
(ui) − Bi(ui)Ai

′
(ui) = π−1. The form of

this matrix applies to any electron crossing a plane between sections with two different,

nonzero slopes.

Finally, for the plane at z3, the propagation matrix is

P̂3 = π




eik4z3
(

Bi
′
(u3)− γ3Bi(u3)

)
e−ik4z3

(
Bi
′
(u3) + γ3Bi(u3)

)

eik4z3
(
−Ai

′
(u3) + γ3Ai(u3)

)
e−ik4z3

(
−Ai

′
(u3)− γ3Ai(u3)

)


 , (2.22)

where γ3 =
m∗4
m∗3

ik4
u
′
3

, and all functions and their derivatives are evaluated at z3. This matrix

applies for an electron crossing a plane from a sloping band to a flat band. With these

three matrices describing all possible boundaries, we are able to construct a propagation

matrix for any arbitrary barrier according to Eq. (2.18).

While this method has accurately described the transport of free electrons near barrier

regions, its application to quasi-bound state transport has resulted in numerical insta-

bilities, especially for thick barriers. Furthermore, the evaluation of the Airy functions

in the case of nearly flat bands tends to produce singularities[61]. A more widely appli-

cable method, one that can accurately describe both flat and sloping bands and remains

numerical stable for thick barriers, is described in the next section.
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2.1.3 The quantum transmitting boundary method

The quantum transmitting boundary method (QTBM) was initially proposed by

Lent[62] to address the problem of coherent electron transport in two-dimensional sys-

tems. The method we will outline here is a simplified, one-dimensional version of this

method developed primarily by Frensley[63, 64]. This method differs from the transfer

matrix method in several important ways: first, the conduction band diagram produced

from the Schrödinger-Poisson solver is directly used (i.e. no fitting of line segments

is necessary). Secondly, rather than assuming an analytical form for the wavefunction

and solving piecewise for the coefficients, the entire wavefunction is solved for directly.

Thirdly, and most importantly, the QTBM is not prone to the numerical overflow issues

that can restrict the applicability of the transfer matrix method.

For a system with position-dependent effective mass, the simplest Hermitian form of

time-independent, 1-D Schrödinger equation is

−~2

2

∂

∂z

1

m∗(z)

∂

∂z
ψ(z) + EC(z)ψ(z) = Eψ(z). (2.23)

The QTBM relies on finite difference methods to transform Eq. (2.23) from a differential

operator equation on continuous variables to a matrix equation with a finite number of

elements. To this end we define a mesh size ∆ such that any position can be written as an

integer multiple of the mesh: zj = j∆. Furthermore, we will insist that the effective mass,

the potential and the wavefunction be defined only on mesh points with the following
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notation:

m∗(zj) ≡ m∗j ,

ψ(zj) ≡ ψj,

EC(zj) ≡ EC,j. (2.24)

To discretize the kinetic energy operator in equation Eq. (2.23) we will assume that ∆

is small enough that both m∗(z) and ψ(z) vary linearly between mesh points. The latter

assumption allows us to make use of the two-point, central difference approximation to

the first derivative[65]:

∂

∂z
ψ(z)

∣∣∣∣
z=zj

' ψ(zj + ∆
2

)− ψ(zj − ∆
2

)

∆
=
ψj+ 1

2
− ψj− 1

2

∆
, (2.25)

where we have made use of the property that zj ± ∆/2 = zj± 1
2
. We can use this same

approximation to write:

−~2

2

∂

∂z

1

m∗z

∂

∂z
ψ(z)

∣∣∣∣
z=zj

= − ~2

2∆

(
1

m∗
∂ψ

∂z

∣∣∣∣
j+1/2

− 1

m∗
∂ψ

∂z

∣∣∣∣
j−1/2

)

= − ~2

2∆

(
1

m∗j+1/2

ψj+1 − ψj
∆

− 1

m∗j−1/2

ψj − ψj−1

∆

)
. (2.26)

Now we use the piecewise linearity of m∗ to write m∗j±1/2 = 1
2
(m∗j + m∗j±1) so that Eq.

(2.23) is transformed to[66]:

Hψj = −sjψj−1 + djψj − sj+1ψj+1 = Eψj, (2.27)
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z0

a1

b1 an

bn

z1 zn zn+1
Figure 2.3: Coordinate system for the QTBM calculation. The amplitude of incoming
and outgoing plane waves are labeled a and b, respectively.

where

sj =
~2

∆2

(
1

m∗j−1 +m∗j

)
,

dj =
~2

∆2

(
1

m∗j+1 +m∗j
+

1

m∗j−1 +m∗j

)
+ EC,j. (2.28)

Note that the assumptions of piecewise linearity for both m∗ and ψ ensure that the usual

continuity requirements for ψ and (1/m∗)∂ψ/∂z are satisfied everywhere, including across

potential discontinuities. Therefore, the boundary conditions at such a discontinuity are

automatically satisfied and need not be separately imposed.

Equation (2.27) represents a set of linear equations for ψ. For a closed (or isolated)

system, the tridiagonal matrix can be immediately diagonalized to yield the eigenvalues.

To achieve a complete description of an open system, where the barrier region is connected

to two large electron reservoirs (i.e. ohmic contacts), Eq. (2.27) must be supplemented

with appropriate boundary conditions.

To this end we will assume that the contact regions emit plane wave electrons into

the barrier region. The coordinate system for this situation is pictured in Fig. 2.3. In

the regions j ≤ 1 and j ≥ n the potential is constant and the wavefunctions are given
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by:

ψ(zj) =





a1e
ik1(zj−z1) + b1e

−ik1(zj−z1), zj ≤ z1

ane
−ikn(zj−zn) + bne

ikn(zj−zn), zj ≥ zn.
(2.29)

If we define a propagation factor ζj ≡ eikj∆, we can write Eq. (2.29)

ψj =





a1ζ
j−1
1 + b1ζ

1−j
1 , j ≤ 1

anζ
n−j
n + bnζ

j−n
n , j ≥ n.

(2.30)

We then obtain the following expressions for the wavefunction near the boundaries:

ψ0 = a1ζ
−1
1 + b1ζ1,

ψ1 = a1 + b1,

ψn = an + bn,

ψn+1 = anζ
−1
n + bnζn. (2.31)

Combining the first and second pair of Eqs. (2.31) to eliminate b yields:

(α1 − E)ψ0 − s1ψ1 = a1s1(ζ−2
1 − 1),

−sn+1ψn + (αn − E)ψn+1 = ansn+1(ζ−2
n − 1), (2.32)

where α1 −E ≡ s1ζ
−1
1 and αn −E ≡ sn+1ζ

−1
n . Combining the two equations (2.32) with

the system of equations represented by (2.27) allows us to write the matrix representation
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of the discrete Schrödinger equation:




α1 − E −s1

−s1 d1 − E −s2

−s2 d2 − E −s3

. . . . . . . . .

−sn dn − E −sn+1

−sn+1 αn − E







ψ0

ψ1

ψ2

...

ψn

ψn+1




=




a1s1(ζ−2
1 − 1)

0

0

...

0

ansn+1(ζ−2
n − 1)




.

(2.33)

Given incident wave amplitudes a1 and an the full wavefunction can be calculated by

diagonalizing the above matrix provided that α1 and αn are known. This, in turn,

requires that we specify the propagation factors ζ1,n at the boundary points. To do this

we will make use of the fact that the forward and backward traveling waves must satisfy

the Schrödinger equation separately in the contact regions. Furthermore, in these regions

the effective mass is constant and the wavefunction values on mesh points are related via

simple phase shifts. Using these facts to solve the Schrödinger equation in the contacts

yields the following energy-dependent boundary conditions:

E = d1 − s1(ζ−1
1 + ζ1),

E = dn − sn(ζ−1
n + ζn), (2.34)

or

ζi =
di − E

2si
± 1

2

√(
E − di
si

)2

− 4. (2.35)

Concerning the sign in Eq. (2.35), the root is chosen such that =(ζ) ≥ 0, which corre-

sponds to incoming electron waves per Eq. (2.30). Once calculated the ζi are used to

determine the αi, which are then plugged in to complete the matrix (2.33).
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As a review, the QTBM method proceeds as follows: first, the s and d values are

calculated from position-dependent effective masses and from the potential; second, for

a given incoming energy E, the propagation factors ζ1,n are calculated and used to de-

termine α1,n; finally, the matrix is populated according to Eq. (2.33) and the equation

is solved for ψ.

We again assume that we have only left-incident electrons (i.e. an = 0) so that the

transmission probability is given by:

T̃ =
|ψn|2
|a1|2

vn
v1

, (2.36)

where vi is the electron velocity at the boundary points.

To determine the relative accuracy and applicability of these three methods, we will

calculate the transmission probability using all three methods discussed in this chapter

and compare them for a typical barrier. Consider the triangular barrier pictured in Fig.

2.4. The transmission probability for this barrier is pictured in Fig. 2.5.

From the figure the three methods give very similar results for small incident electron

energies. However, at energies near and above the highest point of the barrier, the WKB

result deviates from the numerical methods. It is well-known from quantum mechanics

that incident electrons with energies larger than the barrier potential can nonetheless be

reflected due to wavefunction interference effects. This reflection is the cause of T̃ < 1 at

high energy as seen in the TMM and QTBM curves. We will be interested in accurately

simulating this high energy behavior in two instances: first, in diodes where most of the

barrier has been biased away, the current carrying electrons will have high energy with

respect to the conduction band edge in the grounded electrode; second, when estimating

the collector transfer characteristics in a hot electron transistor, the electrons arriving

at the collector may have high energies. For these reasons the WKB approach is not
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Figure 2.4: Triangular conduction band diagram used in the comparison of the trans-
mission calculation methods. The wavefunction for an electron with incoming energy
0.9 eV, as calculated by the QTBM, is pictured in blue. The transmission probabil-
ity can be understood graphically as the ratio of the wavefunction amplitudes at the
edges of the barrier region.

suitable to our analysis. The other two methods, the TMM and the QTBM, give nearly

identical results for the triangle barrier.

While the TMM and QTBM give comparable results in this case, there are two

situations where the TMM is unreliable: first, for flat or nearly flat bands the values of

the Airy functions appearing in Eqs. (2.20)−(2.22) become extremely large (as a result

of the divergence of the ui in Eq. (2.16)). Successive multiplication of matrices composed

of these exponential growing terms leads to numerical overflow. This can result in large

rounding errors when calculating theoretical diode currents. Second, the TMM is prone

to numerical overflow when calculating bound states as in a two-dimensional electron gas

(2DEG) or quantum well (in this case the ui diverge in the complex plane). Therefore,

the QTBM is the most widely applicable method for calculating transfer characteristics

and this is the method we will use for the remainder of this thesis.
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Figure 2.5: Transmission probability on a linear (a) and semilog (b) scale for the
barrier in Fig. 2.4 calculated using the WKB, TMM and QTBM approaches. The
three methods are in general agreement at low energies but the WKB curve begins to
deviate from the TMM and QTBM curves at high energy.
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2.2 Calculation of diode currents: The Tsu-Esaki

formula

The ability to calculate the transmission coefficient of an arbitrary potential barrier

is very useful when applied to the collector side of the HET. However, in order to accu-

rately model diode transport and ultimately compare with experimental results, we must

leverage the transmission probability to build a device-scale model of thermionic and

thermionic field transport. Statistical physics allows us to transform the microscale de-

scription of the previous section into a macroscale description that is directly applicable

to devices.

The conceptual picture of the model is as follows: the reservoirs surrounding the

barrier region emit free electrons toward the barrier; each electron momentum state

coherently evolves according the Schrödinger equation in the barrier region; finally, the

transmitted component of the electron wave is collected by the reservoir on the opposite

side of the barrier. In the previous section, we determined the precise nature of the

interaction between each single electron and the barrier region. In this section we will add

up the contributions from the thermally distributed electrons emitted from the reservoirs

and thereby derive an expression for the voltage-dependent current. It should be noted

that throughout this treatment we will neglect drift-diffusion and trap-assisted processes

for simplicity. The theory of electron thermionic field emission from one parabolic band

to another was first described by Tsu[67] and in this section we seek to elaborate upon

this theory. Consider the simple potential barrier shown in Fig. 2.6. The differential

current flowing from region 1 to region 2 is given by

dJ1→2 = qvzdn1→2, (2.37)
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Figure 2.6: Generalized schematic potential used in the derivation of the Tsu-Esaki
formula. The conduction band minima and quasi Fermi levels on either side are labeled
EC,i and EF,i, respectively. The applied bias is labeled V and the barrier height qφB.

where q is the elementary charge, vz is the electron velocity in the direction perpendicular

to the barrier (i.e. ẑ), and dn1→2 is the differential electron concentration flowing from

region 1→ 2. The latter quantity is the product of the density of states in region 1, the

occupation of full electron states in region 1, the occupation of empty electron states in

region 2, the transmission probability of the barrier and the k-space volume element:

dn1→2 = g1(kx, ky, kz)T̃ (kz)f1(ε)(1− f2(ε))dkxdkydkz. (2.38)

Here g1 is the density of available electronic states in region 1 per volume in k-space, T̃ (kz)

is the transmission probability at longitudinal momentum kz and fi(ε) is the Fermi-Dirac

function in region i. Note that dn1→2 has units of inverse volume as expected.

Throughout this section we will adopt the following notation: energies labeled with

the Roman letter E will refer to absolute energies while those labeled with the Greek letter

ε will refer to kinetic energies. For example, an electron with kinetic energy ε has total
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energy E = EC + ε where EC represents the energy at the conduction band edge. Also,

transmission probabilities will be labeled with a tilde (as in T̃ ) while absolute temperature

will be labeled with the usual T . To avoid confusion, functions of temperature will always

appear immediately next to powers of the Boltzmann constant (kB).

With those conventions in mind, we can use Eq. (2.38) write the total current flowing

from region 1 to region 2 as

dJ1→2 = qvzg1(kx, ky, kz)T̃ (kz)f1(ε)(1− f2(ε))dkxdkydkz. (2.39)

The density of states g1 is calculated by assuming that the semiconductor is a cube of

length L, which is much larger than a lattice constant. By applying periodic boundary

conditions at the cube edges so that available free electron states are quantized, the

k-space density of states can be calculated to be 1/4π3 (including spin degeneracy).

Furthermore, we can make use of the dispersion relation for electrons in parabolic bands

to write the following equations:

ε =
~2

2m∗
(
k2
x + k2

y + k2
z

)
,

vz =
1

~
∂ε

∂kz
=

~kz
m∗

,

εz =
~2k2

z

2m∗
,

vzdkz =
1

~
∂ε

∂kz
dkz =

1

~
dεz, (2.40)

where m∗ is the parabolic band effective mass, assumed here to be isotropic.

Making these substitutions into Eq. (2.39) we find

dJ1→2 =
q

4π3~
T̃ (εz)dεzf1(ε)(1− f2(ε))dkxdky. (2.41)
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We will now change coordinates from Cartesian (kx,ky) to cylindrical (kρ,ϕ) via the

following relations:

kρ =
√
k2
x + k2

y,

ϕ = tan−1

(
kx
ky

)
,

ερ =
~2k2

ρ

2m∗
,

dερ =
~2kρ
m∗

dkρ,

dkxdky = kρdkρdϕ. (2.42)

Substitution into Eq. (2.41) and integration over εz, ερ and ϕ gives

J1→2 =
qm∗

2π2~3

∫ ∞

0

T̃ (εz)dεz

∫ ∞

0

f1(ε)(1− f2(ε))dερ. (2.43)

Note that because the integrands do not depend on the azimuthal angle, integration over

ϕ has produced a factor of 2π.

The tunnel current from region 2 to region 1 is identical to Eq. (2.43) but with the

Fermi-Dirac function indices swapped:

J2→1 =
qm∗

2π2~3

∫ ∞

0

T̃ (εz)dεz

∫ ∞

0

f2(ε)(1− f1(ε))dερ. (2.44)

The total current is then

J = J1→2 − J2→1

=
qm∗

2π2~3

∫ ∞

0

T̃ (εz)dεz

∫ ∞

0

(f1(ε)− f2(ε)) dερ
︸ ︷︷ ︸

≡N(εz)

, (2.45)
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where N(εz) is the supply function and is related to the difference in supply electron

concentrations on each side of the barrier. The first important result is:

J =
qm∗

2π2~3

∫ ∞

0

T̃ (εz)N(εz)dεz. (2.46)

To obtain a closed-form expression for Eq. (2.46) we need an analytical expression for

the supply function N(εz).

2.2.1 The supply function

The supply function appearing in Eq. (2.46) describes the source electron distribution

that emerges from the reservoirs surrounding the barrier. We will assume the reservoir

electrons follow a Fermi-Dirac distribution:

f(ε) =
1

1 + exp
(
ε+EC−EF

kBT

) , (2.47)

where ε = εx+εy+εz and EF and EC are the Fermi level and conduction band minimum,

respectively, in the region of interest. The Fermi level at a given temperature and doping

level is determined by solving the charge neutrality equation iteratively. Crucially, we also

assume that the tunnel current does not affect the electron distribution at the barrier edge.

This is tantamount to an assumption of quasi-equilibrium conditions in and around the

barrier. It is also worth noting that while we will assume a Fermi-Dirac distribution for

the simulations in this thesis, Eq. (2.46) is generally applicable to any carrier distribution

functions that are isotropic in the plane of the barrier.

Recasting the distribution function as the sum of two terms we find

N(εz) =

∫ ∞

0

f1(ε)dερ −
∫ ∞

0

f2(ε)dερ. (2.48)
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If we again rewrite ε in terms of cylindrical components, the first term in Eq. (2.48)

becomes ∫ ∞

0

f1(ε)dερ =

∫ ∞

0

1

1 + exp
(
εz+ερ+EC,1−EF,1

kBT

)dερ, (2.49)

where EF,1 is the quasi Fermi level and EC,1 is the conduction band minimum in region

1 (See Fig. 2.6).

Finally, we define x ≡ εz+ερ+EC,1−EF,1

kBT
and the resulting integral can be found in an

integral table:

∫ ∞

0

f1(ε)dερ = kBT ln

(
1 + exp

(
EF,1 − εz − EC,1

kBT

))
. (2.50)

Adding the contribution from region 2 we find

N(εz) = kBT ln




1 + exp
(
EF,1−εz−EC,1

kBT

)

1 + exp
(
EF,2−εz−EC,2

kBT

)


 . (2.51)

Plugging this into Eq. (2.46) gives

J =
qm∗

2π2~3
kBT

∫ ∞

0

T̃ (εz)ln




1 + exp
(
EF,1−εz−EC,1

kBT

)

1 + exp
(
EF,2−εz−EC,2

kBT

)


 dεz. (2.52)

This is the Tsu-Esaki formula[67]. It describes the thermionic and thermionic field emis-

sion current carried by electrons in parabolic bands. We can rewrite the prefactor using

the Richardson constant

A∗ ≡ 4πqm∗kB

h3
, (2.53)
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to obtain

J =
A∗T

kB

∫ ∞

0

T̃ (εz)ln




1 + exp
(
EF,1−εz−EC,1

kBT

)

1 + exp
(
EF,2−εz−EC,2

kBT

)


 dεz. (2.54)

For typical textbook derivations of thermionic emission currents (see Ref. [68], for ex-

ample) the transmission characteristics are simplified such that

T̃ (εz) = 0, εz < εz,min

T̃ (εz) = 1, εz ≥ εz,min. (2.55)

In other words electrons that have kinetic energy in excess of the barrier maximum are

perfectly transmitted while those below are completely reflected. Plugging this condition

in to Eq. (2.54) gives

J =
A∗T

kB

∫ ∞

εz1,min

ln

(
1 + exp

(
EF,1 − εz − EC,1

kBT

))
dεz

−A
∗T

kB

∫ ∞

εz2,min

ln

(
1 + exp

(
EF,2 − εz − EC,2

kBT

))
dεz, (2.56)

or

J = A∗T 2

(
exp

(
EF,1 − εz1,min − EC,1

kBT

)
− exp

(
EF,2 − εz2,min − EC,2

kBT

))
. (2.57)

If we consider the right hand lead in Fig. 2.6 (region 2) to be a metal, EF,2 = EC,2 = 0

and εz2,min = qφB. In region 1, εz1,min = qφB− qV −EC,1 +EF,1. Plugging in these values

to Eq. (2.57) gives:

J = A∗T 2exp

(−qφB

kBT

)(
exp

(
qV

kBT

)
− 1

)
= JS

(
exp

(
qV

kBT

)
− 1

)
, (2.58)
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where

JS ≡ A∗T 2exp

(−qφB

kBT

)
(2.59)

is the saturation current. The saturation current is equal to either the leftward or right-

ward flowing current density at zero bias. These two currents, of course, cancel each

other out at zero bias leading to zero net current flow by definition.

Equation (2.58) is the canonical thermionic emission current formula. Despite the

simplicity of this equation, the more general expression given by Eq. (2.54) should be used

to calculate diode current whenever possible. Equation (2.54) retains the contribution

from tunneling electrons (i.e. thermionic field emission) and allows for the reflection

of electrons that have kinetic energy in excess of qφB. For III-N barriers, which often

employ thin polarization dipole layers containing large electric fields, electron resonance

effects can lead to appreciable electron reflection even at high energy. Accurate diode

simulations must account for this. All diode simulations that appear in this thesis will

be generated with Eq. (2.54) using the QTBM method to calculate the transmission

probability. A sample calculation, based on the triangular barrier in Fig. 2.4, is pictured

in Fig. 2.7.

A modified form of Eq. (2.58) is usually used to analyze experimental I−V −T data:

J = JS

(
exp

(
qV

nkBT

)
− 1

)
, (2.60)

where n is called the ideality factor. Ideal diodes described by purely thermionic transport

are characterized by n = 1 and, in general, the magnitude of n in excess of unity is a

measure of the nonideality of the device characteristics. Broadly speaking there are two

causes of the condition n > 1: first, voltage partitioning reduces the proportion of the

applied bias that appears across the intrinsic device. Partitioning can be due to ohmic

voltage drops in the device contacts and access regions or to a spatial separation between
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Figure 2.7: Numerical calculation of diode I − V − T characteristics based on Eq.
(2.54). Pictured are (a) the conduction band diagram and (b) the bias-dependent
transmission probability. The forward bias I − V − T curves are pictured in (c).
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the barrier maximum and the control electrode. Both of these effects are straightforward

to understand and will be explored in the coming chapters. Second, n > 1 can be

caused by the existence of current transport processes that are not strictly thermionic.

A classic example is the presence of generation-recombination currents in p−n diodes,

which causes n ∼ 2 in certain regimes of device bias[68]. Processes like field emission (i.e.

tunneling) and trap-assisted transport can also cause n > 1. For extreme cases where

n� 1, the exponential in Eq. (2.60) can be Taylor expanded to first order in the applied

bias resulting in J ∝ V , or ohmic transport. On the other hand, n = 1 represents

the smallest possible dynamic resistance for intraband transport between Fermi-Dirac

ensembles. We may, therefore, consider the magnitude of n to be directly proportional

to the “resistivity” of the transport process in question.

Throughout this thesis both simulated and experimental diode I−V −T characteris-

tics will be analyzed by using Eq. (2.60) to extract the temperature and bias-dependence

of the barrier height (φB) and ideality factor (n). As we will see, such an analysis will

allow us to better understand the transport processes that dominate in real devices.

2.3 Example: The GaN Schottky diode

To test the efficacy of our model based on Eq. (2.54) and to understand the procedure

for analyzing real devices we will now compare simulated and experimental results using

a GaN Schottky diode as a test structure (Fig. 2.8). Our goal will be to determine

the degree to which potentially anomalous diode characteristics can be attributed to

thermionic field emission effects.

The method for comparing theoretical and experimental results of the GaN Schottky

diode will proceed as follows: first, a set of theoretical I − V − T curves is generated

using Eq. (2.54) and a design band diagram. Second, epitaxial layers are grown by metal-
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Figure 2.8: Layer structure and associated conduction band diagram for the GaN
Schottky diode.

organic chemical vapor deposition (MOCVD) in the Ga-polar orientation on a sapphire

substrate according to the design pictured in Fig. 2.8. Diode structures are fabricated and

I−V −T data are taken. Next, both sets of data are fitted and analyzed according to the

procedure outlined in this section. Finally, the theoretical and experimental quantities

that are extracted from the analysis are compared. As the data are presented, we will

pause to consider any relevant implications for device transport.

The theoretical and experimental forward bias I − V − T characteristics of a GaN

Schottky diode are pictured in Fig. 2.9. Thermionic emission currents are exponentially

dependent on forward bias so that the current increases by many orders of magnitude

over a relatively small bias range. For this reason a semilog scale is most appropriate for

our analysis.

For low biases the current increases exponentially and the semilog current is linear.

In the experimental data (Fig. 2.9(b)), ohmic voltage drops in the device extrinsic

regions limit the magnitude of the forward current and cause a flattening of the curves

at high bias. These extrinsic effects are not accounted for in the simulations and are,

therefore, not present in the theoretical curves. Because we are interested in intrinsic
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Figure 2.9: Semilog plot of theoretical (a) and experimental (b) forward bias I−V −T
curves for the GaN Schottky diode. The linear fit for each temperature is represented
by a dashed line.
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device transport, we will restrict the following analysis to low bias regimes where resistive

voltage drops are negligible.

Comparing the low bias regimes of the theoretical and experimental curves pictured in

Fig. 2.9, we find good agreement at high temperatures; at low temperatures theoretical

calculations underestimate the magnitude of the current present in the real device. There-

fore, we may make the following hypothesis at the outset of our analysis: the thermionic

emission model represented by Eq. (2.54) accurately describes charge transport in the

GaN Schottky diode at high temperatures; at low temperatures, an additional, unknown

transport mechanism dominates. This simple observation is crucial; however, further

analysis is needed to obtain a more detailed picture of device transport.

To this end we rewrite Eq. (2.60) on a semilog scale:

ln(J) = ln(JS) +
q

nkBT
V, (2.61)

where we have assumed that the diode is sufficiently forward biased that the reverse

current contribution is negligible. A linear fit to ln(J) − V data that obey Eq. (2.61)

has slope q/nkBT and ordinate axis intercept ln(JS). In our analysis such a linear fit is

performed at each temperature for both the theoretical and experimental data. These

fits are represented by dashed lines in Fig. 2.9. From the slope and the intercept of the

fit line, n and JS can be determined, respectively.

If the Richardson constant (A∗) is known, the barrier height can be determined from

JS via Eq. (2.59):

φB =
kBT

q
ln

(
A∗T 2

JS

)
. (2.62)

The ideality factor and the barrier height are extracted from the theoretical and

experimental I − V curves using this method and the known theoretical value of the
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Richardson constant in GaN (26.4 A/cm2K2). The results are pictured in Fig. 2.10.

The data in Fig. 2.10 demonstrate the close agreement between theoretical and exper-

imental quantities at high temperatures. This agreement reinforces our earlier observa-

tion that the thermionic field emission model accurately describes the high temperature

physics of real Schottky diodes. However, at low temperatures, experimental values of

the ideality factor are higher and calculated barrier heights are lower than theoretical

predictions. To understand these results, we will first discuss the theoretical values.

For an ideal diode described by Eq. (2.58), n and φB are independent of temperature

(i.e. n = 1). However, Fig. 2.10 reveals gentle dependencies of both of these simulated

quantities on temperature. As we will see, these trends can be explained entirely by the

thermionic field emission component of the current given by Eq. (2.54). Consider first the

increase in the theoretical n from ∼ 1.05 to ∼ 1.1 with decreasing temperature. We can

consider the integral in Eq. (2.54) to be the sum of two components: the thermionic field

component of the total current is carried by electrons with kinetic energy less than the

barrier height (φB); the purely thermionic component is carried by electrons with energies

greater than φB. Therefore, by integrating Eq. (2.54) up to εz = φB and dividing by the

total current, we can determine the fraction of the total current attributed to thermionic

field emission at each temperature (Fig. 2.11).

Because the transmission probability is variable for tunneling electrons, thermionic

field emission appears to be more “resistive” than pure thermionic transport. To un-

derstand this, consider the assumption of perfect transmission for high energy electrons

incident on a barrier. This assumption implies that the barrier acts as a perfect high

pass filter for incident electrons. The exponential distribution of incident electrons, there-

fore, ensures a perfectly exponential I − V relationship. By contrast, if we allow for the

possibility of quantum mechanical reflections at the barrier interface, the transmission

probability will vary within the energies occupied by the incident electron distribution.
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Figure 2.10: Simulated and experimental values of (a) the ideality factor and (b) the
barrier height. The latter were calculated using A∗ = 26.4 A/cm2K2. Theoretical and
experimental values agree well for high temperatures but diverge as the temperature
decreases.
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Figure 2.11: Thermionic field emission current contribution as a function of temper-
ature. Because the thermionic field emission process is more resistive, the increase
in the thermionic field component with decreasing temperature leads directly to the
increase in simulated ideality factor.

Therefore, the barrier no longer transmits the exponential tail of the incident distribution

as it does for pure thermionic emission, but rather acts as a comparatively more compli-

cated electron filter. The result is that as thermionic field emission becomes dominant,

n increases beyond unity.

Next, we will consider the slight increase in the theoretically extracted barrier height

with temperature seen in Fig. 2.10(b). This phenomenon is best understood by consid-

ering the energy distribution of transmitted electrons T̃ (Ez)N(Ez) (Fig. 2.12). These

curves indicate the relative contribution from electrons in the energy range Ez to Ez+dEz

to the total current, which is simply the area under each curve in Fig. 2.12 multiplied

by A∗T/kB.

For a given temperature, the electron concentration decreases with energy while the

transmission probability increases. These opposing trends result in local maxima in the

product T̃ (Ez)N(Ez) (labeled as colored dots in Fig. 2.12). These maxima indicate
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Figure 2.12: Energy distribution of the emitted electrons at a forward bias of 0.7 V.
The dots on each curve represent the maximum value of the product T̃ (Ez)N(Ez).
These curves are an indicator of which injection energies contribute most to overall
diode current. The increase in the energy of these maxima leads to an increase in
barrier height with temperature as seen in simulated I − V − T curves.

which electron energies contribute most to overall device current. As the temperature

increases, the local maxima move to increasingly higher energies. In other words, the

average electron injection energy increases with temperature such that φB appears to

increase. The observed trends in both simulated n and simulated φB with temperature

can, therefore, be clearly explained by thermionic field emission effects.

The ideality factor and the barrier height contain the effects of voltage and tem-

perature, respectively, on device current. The overall magnitude is determined by the

Richardson constant (A∗). Up to this point, calculating φB has required an input value

of A∗. The advantage of this method is that φB can be determined from a single tem-

perature I − V curve; however, it is sometimes difficult to accurately predict the value

of A∗ a priori. A more rigorous method is to use a family of I − V − T curves to extract

both φB and A∗ simultaneously. To do this we rewrite the expression for the saturation
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Figure 2.13: (a) Simulated (red) and experimental (blue) Richardson plots. The
dashed lines represent linear fits to the high temperature data. (b) Table of barrier
height and Richardson constant values extracted from the high temperature linear
fits.

current in Eq. (2.59) on a semilog scale:

ln

(
JS

T 2

)
= ln(A∗)− qφB

kBT
. (2.63)

A plot of the left hand side of Eq. (2.63) versus q/kBT is called a Richardson plot. In the

event that such a plot is linear, φB and A∗ can be determined from the slope and intercept

of a linear fit, respectively. A Richardson plot of the theoretical and experimental data

is pictured in Fig. 2.13.
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The Richardson data are linear at high temperatures for both the theoretical and

the experimental data. Linear fits are performed in this high temperature region and

the extracted barrier heights and Richardson constants are listed in Fig. 2.13(b). These

values are in excellent agreement, again verifying the accuracy of the simulation at high

temperature. At low temperatures both sets of data experience “bowing” or nonlinear-

ity. The slight bowing in the theoretical Richardson data is due to the thermionic field

emission effects discussed earlier. In particular, as the apparent barrier height decreases

with temperature, JS/T
2 decreases at a rate that is slower than would be expected if the

barrier height were independent of temperature. The comparatively large bowing present

in the experimental data, therefore, cannot be explained by thermionic field emission ef-

fects alone. This suggests the presence of a transport mechanism that has not yet been

accounted for.

The theoretical value of the Richardson constant (26.4 A/cm2K2) is derived under the

assumption of perfect transmission for high-energy electrons. As we have seen, there can

be appreciable electron reflection at the metal-semiconductor interface that can affect

the extracted value of A∗. To determine the effect of quantum mechanical reflection

on the Richardson constant, we turn to the conditions (2.55). Formally, we assumed

that the transmission probability for electrons with energy equal to or larger than the

barrier maximum is unity. If we modify this assumption so that these electrons are

instead transmitted with probability T̃0, it is straightforward to show that Eq. (2.59) is

preserved with the modified Richardson constant

A∗∗ ' T̃0A
∗. (2.64)

Strictly speaking, the transmission probability is not constant over the entire energy

range occupied by the source electrons. Therefore, Eq. (2.64) is useful primarily as an
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Figure 2.14: Transmission probability of the GaN Schottky diode. The yellow box
indicates the energy of the barrier maximum.

order of magnitude estimate. Consider the value A∗ = 6.45 A/cm2K2 extracted from

the simulated I − V − T curves along with the transmission characteristics for the GaN

Schottky diode shown in Fig. 2.14. If we take the transmission probability in the vicinity

of the barrier maximum to be ∼ 0.25, we would expect a Richardson constant of 0.25×

26.4 A/cm2K2 = 6.6 A/cm2K2, nearly identical to the value we extract. For more extreme

cases like the tunnel injectors used in Ga-polar HETs (see Chapter 4), we expect small

tunneling probabilities to result in A∗ � 26.4 A/cm2K2.

The data presented in this section have demonstrated the need for a conceptual shift

in our understanding of A∗. Whereas the Richardson constant was formally thought to

be a strictly material quantity (determined by the effective mass in the source electron

material), a more accurate picture is one where A∗ is both a material and a device

concept. In other words, we cannot separate the value of A∗ from the specific device

structure under consideration. There is no “Richardson constant for GaN” but rather a

“Richardson constant for device X.”
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In this section we have accurately described the relevant I−V −T characteristics for

simulated and high-temperature experimental diode currents. In particular, we have at-

tributed the slight temperature dependence of simulated values of φB and n to thermionic

field emission effects. Furthermore, we have discussed the effect of quantum mechanical

reflections at the barrier interface on the extracted value of A∗. However, none of these

concepts can explain the experimental low-temperature behavior of the GaN Schottky

diode. For real diodes, the low-temperature changes in φB, n and the linearity of the

Richardson plot are all more extreme than thermionic field emission theory would sug-

gest. In the next section, we will introduce a new effect that can account for the extreme

low-temperature behavior of experimental diodes.

2.4 Barrier height inhomogeneity theory

In the final section of this chapter, we will discuss the effects of laterally inhomoge-

neous barrier heights on measured transport properties. Until now we have implicitly

assumed that the barrier height in Eq. (2.59) is constant in the plane of the band dis-

continuity. In real devices this barrier height can fluctuate in the lateral dimension (Fig.

2.15) and give rise to nonideal current characteristics. We will discuss the physical origin

of these fluctuations and the requisite data analysis methods in later chapters. In this sec-

tion we aim only to determine the effects of lateral inhomogeneity on Eqs. (2.58)−(2.59).

Barrier height inhomogeneity (BHI) has become a leading candidate to explain anoma-

lous I − V behavior in real Schottky diodes. The presence of BHI was first proposed to

explain the large discrepancy between barrier heights extracted via I − V and C − V

methods[69, 70]. A parallel conduction model, in which a nominally uniform barrier is

replaced with two or more barriers in parallel, was found to accurately describe such
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Figure 2.15: 3-dimensional schematic of the conduction band diagram for a laterally
(a) homogeneous and (b) inhomogeneous triangle barrier.
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nonideal behavior in IrSix/Si Schottky diodes. The physical origin of BHI in these diodes

was thought to be the coexistence of several stable phases of IrSix, each of which forms a

unique interface dipole with Si. Several years later internal photoemission spectroscopy

was done on both n-Si[71] and p-Si[72] Schottky diodes and the observed BHI was at-

tributed to nonuniform native oxide thickness and nonuniform interface state density,

respectively.

The first comprehensive theory describing the effects of BHI on the transport proper-

ties of thermalized electrons was proposed by Tung[73]. The theory holds that an applied

bias can distort the inhomogeneous barrier potential via the “pinch-off” effect[74] caus-

ing the mean barrier height to increase with bias. Furthermore, the thermalized electron

distribution near the barrier varies with lattice temperature so that at high tempera-

ture, for example, a larger number of electrons “sample” high barrier regions than at

low temperature. These two effects conspire to produce I − V − T characteristics that

are more accurately described by replacing the constant barrier height with a bias and

temperature-dependent barrier height (φB → φ′B(V, T )) in the usual thermionic emission

equations.

To understand this effect quantitatively, we begin with Eq. (2.59) and replace φB with

a statistical distribution of barrier heights. In general, one can consider any arbitrary

distribution of barrier heights and calculate the resulting I−V −T characteristics. Most

of these distributions require the use of simulation software to obtain numerical results.

Here, we will consider a Gaussian distribution of barrier heights to obtain analytical

results, which can be more easily interpreted. Such a distribution has the form

P (φB) =
1

σS

√
2π

exp

(
−(φB − φB)2

2σ2
S

)
, (2.65)

where φB is the mean barrier height and σS is the standard deviation. The distribution
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has been normalized such that
∫∞
−∞ P (φB)dφB = 1.

To obtain the saturation current for an inhomogeneous barrier we replace exp(−qφB/kBT )

in Eq. (2.59) with a weighted sum over the distribution:

JS = A∗T 2

∫ ∞

−∞
P (φB)exp

(−qφB

kBT

)
dφB

=
A∗T 2

σS

√
2π

∫ ∞

−∞
exp

(
−(φB − φB)2

2σ2
S

)
exp

(−qφB

kBT

)
dφB

= A∗T 2exp

( −q
kBT

(
φB −

qσ2
S

2kBT

))
. (2.66)

The details of the integral evaluation can be found in Appendix A. Equation (2.66) can

be rewritten

JS = A∗T 2exp

(−qφ′B
kBT

)
, (2.67)

where

φ
′
B ≡ φB −

qσ2
S

2kBT
. (2.68)

We are, therefore, able to model a Gaussian barrier distribution and its effect on thermal

electrons with a single homogeneous, temperature-dependent barrier.

The voltage dependence of φ
′
B is implicitly contained in the term σS, which is, in

general, bias-dependent. To understand this consider the inhomogeneous barrier in Fig.

2.15(b) to be composed of “patches” within which the barrier height is constant. If

these patches responded to bias-induced electric fields identically, one would not expect

σS to depend on bias. In this case the values of the barrier height in each patch may

change with bias, but the overall shape of the distribution would remain constant. In

actuality the patches do not respond identically to bias. For a given applied bias, the

low barrier patches allow more current to flow and are thus less able to absorb additional

applied voltage than the high barrier patches. The result is that the low and high barrier
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patches respond differently to bias in such a way that the overall barrier distribution is

distorted. In particular, forward bias lowers the high barrier regions more than it does

low barrier regions so that the overall barrier distribution becomes more homogeneous.

Therefore, strictly speaking the apparent barrier height is a function of both bias and

temperature. When discussing inhomogeneous barriers, we will refer only to values of

φ
′
B, or the apparent barrier height, and φB the mean value of an inhomogeneous barrier

distribution. Because we have shown that the apparent barrier height depends on both

bias and temperature, the unqualified concept of “barrier height” (φB) has no relevant

physical meaning.

Including the effects of thermionic field emission (via A∗∗) and of BHI (via φ
′
B(V, T )),

we may write a single master equation describing real diode transport:

J = A∗∗T 2exp

(
−qφ

′
B(V, T )

kBT

)(
exp

(
qV

kBT

)
− 1

)
. (2.69)

Note that there is no explicit use of the ideality factor n in Eq. (2.69). An alternate

form of Eq. (2.69) can be written by replacing the bias-dependent apparent barrier height

with the barrier height at zero bias (φ
′
B(V, T )→ φ

′
B(0, T )) and by replacing V with V/n.

This replacement makes it clear that the physical source of the ideality factor within BHI

theory is the bias-dependence of σS in Eq. (2.68). Setting these two forms of the diode

equation equal to each other yields an expression for the ideality factor:

n =

(
1− q

2kBT

σ2
S(0)− σ2

S(V )

V

)−1

, (2.70)

where σS(0) is the standard deviation of the barrier height fluctuations at zero bias.

Equation (2.70) suggests that the ideality factor will decrease with increasing tempera-

ture, as it does in Fig. 2.10, as a larger number of high-energy carriers “rides above” the

65



Coherent transport theory Chapter 2

20 40 60 80 100 120

q/kBT (eV−1)

10−40

10−35

10−30

10−25

10−20

10−15

10−10

J
S
/T

2
(A

/c
m

2
K

2
)

Simulated

Experimental

φB = 1.12 eV

A∗ = 5.33A/cm2K2

σS = 0.09 eV

Figure 2.16: Simulated (red) and experimental (blue) Richardson plots. The blue
dashed line represents a quadratic fit to the data and A∗∗, φB and σS are extracted
via Eq. (2.71).

potential fluctuations.

Finally, we turn to the effect of BHI on the Richardson plot. The replacement of φB

with φ
′
B(V, T ) modifies Eq. (2.63) in such a way that it becomes nonlinear in powers of

q/kBT :

ln

(
JS

T 2

)
= ln(A∗∗)−

(
q

kBT

)
φB +

1

2

(
q

kBT

)2

σ2
S. (2.71)

A quadratic fit to a plot of ln (JS/T
2) vs. q/kBT immediately yields A∗∗, φB and σS

from the zeroth, first and second order coefficients, respectively. A modified Richardson

plot of the GaN Schottky data displaying the quadratic fit is pictured in Fig. 2.16. The

quadratic equation (2.71) provides an excellent fit to the experimental Richardson data.

Additionally, the extracted values of φB and A∗∗ are nearly identical to the expected

values. The relatively small barrier height standard deviation of 8% results in a large

nonlinear component as the temperature becomes small.
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Figure 2.17: Apparent barrier height from experimental data (blue) and BHI theory
(dashed line). The latter are calculated using the values of φB and σS extracted from
the nonlinear Richardson plot in Fig. 2.16.

Using the values of φB and σS extracted from the nonlinear Richardson plot, we can

compare the expression (2.68) to the experimental values of the apparent barrier height

(Fig. 2.17). We find that Eq. (2.68) accurately describes the temperature dependence

of the apparent barrier height over the entire temperature range.

In this chapter we have developed a theory of coherent electron transport that allows

us to calculate the transmission probability for an arbitrary barrier. Such a calculation

enables the generation of theoretical diode I − V − T curves that include the effects of

thermionic field emission. We have also introduced the concept of barrier height inho-

mogeneity and shown that its presence can explain anomalous low-temperature Schottky

diode I − V . In the next two chapters, we will analyze experimental hot electron tran-

sistor (HET) and emitter diode data in light of the theories we have developed in this

chapter. Chapter 3 will cover N-polar HETs with InGaN injector barriers; Chapter 4

will cover Ga-polar HETs with AlN injector barriers.
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Chapter 3

N-polar HETs and InGaN emitter

diode transport

In this chapter we will discuss the material and electrical characteristics of the Nitrogen-

polar HET. We will begin by describing the N-polar HET design and its advantages over

Ga-polar devices. Second, we will discuss the growth, fabrication and current transport

characteristics of a first-generation device. Third, we will introduce the N-polar HET

as a tool to study InGaN emitter barrier transport. More broadly we will demonstrate

that such a tool can provide a useful probe into fundamental materials science phenom-

ena. Numerical simulations will supplement our analysis of experimental data whenever

possible. Finally, we will discuss the implications of our analysis for current-generation

N-polar HETs.

3.1 Device design, growth and fabrication

The design structure of the N-polar HET is based on the polarization dipole bar-

rier approach discussed in Chapter 1. However, because the signs of the polarization
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Figure 3.1: Conduction band diagram for the N-polar HET with 10 nm GaN base.
The regions of the band diagram that correspond to the emitter, base and collector
have been labeled along with the equilibrium Fermi level (dashed red line).

charge discontinuities are opposite those of Ga-polar interfaces, the roles of the InGaN

and AlGaN polarization dipole barriers are reversed with respect to Ga-polar HETs.

Specifically, an InGaN polarization dipole is used to form the emitter barrier while an

AlGaN polarization dipole forms the collector. A typical band diagram for an N-polar

polarization dipole barrier HET is shown in Fig. 3.1.

N-polar polarization dipole HETs have several distinct advantages over their Ga-polar

counterparts. First, the majority of the 2DEG charge is induced by the AlGaN/GaN

junction, which is located on the collector side of the base rather than on the emitter

side. Therefore, etching off the emitter does not deplete the base charge in the access

regions as it does in Ga-polar HETs. Second, because InGaN has a smaller band gap

than GaN, depositing ohmic metals directly on the InGaN layer provides a low-resistance,

unalloyed ohmic contact to the GaN base layer underneath[75]. Accurate etching to the

thin base layer can then be achieved with simple timed etches rather than with selective

etches, which are required for current-generation Ga-polar devices[76]. Third, in the
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Figure 3.2: First generation N-polar HET layer structure and processed device
schematic. The layers that compose the emitter, base and collector have been la-
beled and the metal contacts are pictured in red. The z-axis as it appears in Fig. 3.1
has also been labeled.

forward active mode of device bias (VBE > 0, VCB > 0), the 2DEG density increases with

respect to equilibrium. This is due to electron accumulation at the AlGaN/GaN interface

that results from the application of a positive bias at the collector contact. The result is

that the base resistance decreases as the device is biased further into active mode rather

than increasing as in Ga-polar HETs. Finally, in contrast with the current-limiting tunnel

emitters used in Ga-polar HETs, the InGaN emitter diode acts as a thermionic emission

barrier allowing for larger emitter current densities, which will ultimately be necessary

for RF performance.

3.2 First-generation N-polar HETs

A processed device schematic and layer structure for the first-generation N-polar

HET is pictured in Fig. 3.2. The device was grown by MOCVD on a 4◦ miscut sap-

phire substrate. The precise composition of the 2 nm AlGaN interlayer in Fig. 3.2 is
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a) b)

Figure 3.3: Atomic force microscope (AFM) images of the N-polar HET surface over
a 10µm×10µm area. Sample (a) shows significant step bunching with rms roughness
of 2.7 nm; sample (b) shows smooth surface morphology with rms roughness of 1.2
nm. .

unknown, owing to the unintentional incorporation of Ga into MOCVD AlN films[77].

It is known that the surface morphology of N-polar films grown by MOCVD is highly

dependent upon the epitaxial growth conditions[78, 32]. Because of the very thin layers

present in the N-polar HET, it is necessary to obtain films with a root mean squared

(rms) surface roughness of less than ∼ 2 nm over a 100µm2 area. This will ensure

that electrical short paths cannot form between adjacent step edges. Obtaining such

low surface roughness throughout a layer structure composed of both compressively and

tensiley strained materials is a significant challenge. If the adatom surface mobility is

too low, 3-dimensional hexagonal features tend to form[79]; if the surface mobility it

too high, step bunching occurs (Fig. 3.3(a)). Therefore, to successfully grow a smooth,

two-dimensional HET structure, the growth conditions must be carefully optimized to

ensure intermediate adatom surface mobility throughout.

After growth the sample was processed using traditional optical lithography and reac-

tive ion etching (RIE) with BCl3/Cl2 etch chemistry. First, the emitter mesa was etched

to a depth of ∼ 20 nm above the InGaN layer. Next, the collector mesa isolation was per-
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formed with a second RIE etch. Third, a series of timed RIE etches were performed using

the base contact mask layer. Finally, an ohmic metal stack consisting of 30 nm/300 nm

Al/Au was deposited on the emitter, base and collector using e-beam evaporation. This

is the standard HET process that allows for DC measurement of device characteristics at

room temperature. Because the temperature-dependent measurement setup in our lab

was equipped only with ground-signal-ground (GSG) probes, several additional process

steps were required to allow transistor I − V − T measurements. After completing the

standard process outlined above, a blanket 100 nm layer of PECVD SiO2 was deposited.

Vias were made in the oxide layer using an inductively coupled plasma (ICP) etch with

CHF3 gas. Finally, large contact pads consisting of 30 nm/200 nm Ti/Au were deposited.

The complete process flow is shown in Fig. 3.4.

Previous measurements of Ga-polar III-N HETs were performed in the common-base

configuration[80]. It has been demonstrated[81] that for HETs with high base resistance

and large base-collector diode leakage, both common-base and Gummel measurements

can yield erroneously high values of transistor gain as the base-collector diode leakage

current is mistaken for hot electron current. For such a device, no clear current mod-

ulation is evident in the common-emitter configuration. A more rigorous measurement

procedure consists of an initial common-emitter measurement to demonstrate transistor

action and measure device current gain (β = JC/JB). For properly functioning devices,

a subsequent measurement in the Gummel configuration should yield an identical value

for β. Accordingly, we will first analyze the common-emitter characteristics of the first

generation N-polar HET before moving on to Gummel measurements. It is important

to demonstrate the accuracy of the Gummel measurement because, as we will see in the

next section, it represents the most natural configuration for studying emitter barrier

transport.

The emitter (JE) and collector (JC) current densities measured in the common-emitter
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Figure 3.4: GSG-compatible N-polar HET process flow. The blue arrows represent
BCl3/Cl2 RIE etches and the purple arrows represent CHF3 ICP etches. Metal con-
tacts are pictured in red. The final process step for the DC and the GSG devices have
also been labeled.
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configuration are shown in Fig. 3.5(a) and (b), respectively. In this configuration, the

emitter terminal is grounded, a fixed base current density (JB) is injected and the collector

is swept from zero to reverse bias. The measurement is repeated for a series of prescribed

base current values. The sign of the injected base current is positive, corresponding to

the extraction of electrons from the base contacts. Because the transistor control element

is a current rather than a voltage, for each applied collector bias (VC), the potential in

the base adjusts to maintain the prescribed base current. The voltage appearing across

the emitter-base junction will, therefore, depend upon the device resistance and the

current gain at each combination of JB and VC. This point is essential for understanding

common-emitter device characteristics. We will assume that the base access resistance is

very small such that the potential difference between the base contacts and the intrinsic

base region is nearly zero. We will justify this assumption later in this section.

For zero base current, the potential in the base is zero. Because the emitter is also

grounded, no emitter current flows. As VC increases, the collector current remains zero

until the base-collector diode begins to leak (around 4 V in Fig. 3.5(b)). The device

breakdown is, therefore, determined by the ability of the collector barrier to block current

in reverse bias. For nonzero base current, the intrinsic base has a positive potential with

respect to ground. For VC = 0, this causes both the emitter and the collector diodes to

inject current into the base. However, if the collector barrier is smaller than the emitter

barrier, the positive potential in the base will cause the collector to inject more current

than the emitter. Thus, the required base current is supplied by the injected collector

current and the emitter current remains very small. The collector current, meanwhile, is

negative, corresponding to electron flow from the collector into the base.

As VC is increased from zero, the forward bias across the base-collector diode decreases

so that the magnitude of the injected collector current decreases (i.e. JC becomes less

negative). In order to maintain a constant base current, the emitter must inject more
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Figure 3.5: Common emitter I − V characteristics for the N-polar HET at room
temperature. The emitter current is shown in (a) while the collector current is shown
in (b). The three regimes of transistor operation are labeled as (1) - turn-on, (2) -
saturation and (3) - breakdown.
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current into the base (JE increases). This is called the turn-on region of the device (region

(1) in Fig. 3.5(b)). At VC ∼ 0.75 V, the current injected from the collector is zero and

all base and collector current is supplied by the injected emitter current. At this point,

further application of VC has little effect on JE or JC. This is the saturation regime of

device operation (region (2)) and is the operating region of transistor amplifiers. Finally,

as VC is increased further, the base-collector diode leakage current becomes larger than

the hot electron collector current and the device breaks down (region (3)).

In the saturation region (1 V < VC < 4 V), JE and JC are nearly, but not exactly,

constant. For ideal transistors, the emitter and collector regions are completely decoupled

from one another and the saturation currents are flat. The nonzero slope of the saturation

current present in real devices is called output conductance and is a measure of the

coupling of the emitter and collector terminals. This coupling is undesirable because

it reduces the voltage gain of the device. In bipolar transistors, output conductance is

caused by modulation of the base-collector depletion region width, which leads to base

width narrowing[68]. This, in turn, causes an increase in emitter current in order to

satisfy the boundary conditions on the diffusion charge in the base. By contrast, output

conductance in the HET is caused primarily by the bias-dependent transfer characteristics

of the collector barrier. As the collector is reverse biased, it becomes more transparent

to incoming hot electrons. Therefore, increasing the collector bias causes an increase in

the current transfer ratio (α) and, therefore, β. Because fewer electrons are reflecting off

the collector and contributing to base current, the emitter must inject more current to

maintain constant base current. By this mechanism, increasing VC leads to increases in

JE, JC and α.

To demonstrate this effect, we will calculate the transfer ratio of the collector bar-

rier for various values of VC using the techniques outlined in Chapter 2. The calcula-

tion proceeds as follows: first, for each collector bias and corresponding band diagram
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Figure 3.6: (a) Collector barrier conduction band diagrams for base-collector reverse
biases of 0−2 V. (b) Simulated transfer ratios for a Gaussian packet of electrons with
mean arrival energy Ez. For a given arrival energy, which is fixed by the injection
energy and the base width, the barrier becomes more transparent with increasing
collector bias and α increases.

(Fig. 3.6(a)), the energy-dependent transmission probability (T̃ (Ez)) is calculated via the

QTBM method. Second, because the electrons arriving at the collector are not monoen-

ergetic, a mean energy (Ez) is chosen and a normalized Gaussian distribution (P (Ez, Ez))

of electron energies is populated around the mean. The width of the distribution is equal

to the full width at half maximum of the corresponding Fermi-Dirac function (∼ 0.03 eV

at room temperature). The transfer ratio at each Ez is then calculated via

α(Ez) =

∫
P (Ez, Ez)T̃ (Ez)dEz. (3.1)

The simulated function α(Ez) is pictured in Fig. 3.6(b). The transfer ratio increases

with Ez as expected. Furthermore, for a constant Ez, α increases with collector bias,

which causes nonzero output conductance via the mechanism discussed earlier.

For the real device, the common-emitter current transfer ratio was measured to be

α = 3.88× 10−3 for a drive current of JB = 200 A/cm2 and VC = 0.8 V. The DC current
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gain was β = α
1−α = 3.9× 10−3. While these values are very low and must be improved

upon, this device represents the first demonstration of common-emitter modulation in

an N-polar III-N HET. The main cause of low β in this device is the large base-collector

barrier, which reflects the vast majority of incoming hot electrons. From Fig. 3.6(b),

α ∼ 0.004 corresponds to a mean arrival energy of about 0.5−0.6 eV. To achieve current

gain (β > 1) with this collector barrier, we must achieve α > 0.5 or an arrival energy of

about 1 eV.

To confirm our results, we performed an additional measurement in the Gummel

configuration: the base and collector were grounded while a negative bias was applied

to the emitter. The resulting base and collector currents were then measured (Fig. 3.7).

Both the base and collector currents rise with emitter forward bias (V ). Ohmic voltage

drops become significant for applied biases in excess of ∼ 0.9 V, beyond which the rate

of increase of JB with V slows dramatically. These resistive voltage drops ultimately

limit the achievable injection current density in the HET. To compare the current gain

measured in the Gummel configuration with common-emitter, the bias point V = 1.0 V

was chosen. This bias corresponds to the base current (∼ 200 A/cm2) that was used in

the common-emitter extraction of β. At 1 V, β = 4.2 × 10−3, very similar to the value

extracted from common-emitter measurements.

The contacts to the highly-scaled based layer were characterized via the transfer

length method (TLM) and the results appear in Fig. 3.8. The contacts are ohmic and

the contact and sheet resistances are 0.34 Ω · mm and 517 Ω/�, respectively. These

are excellent values for unalloyed, unoptimized base contacts, and they demonstrate the

promise of N-polar HETs for achieving ultralow contact resistance to a highly scaled

base layer. This measurement allows us to revisit our earlier claim that the voltage drop

between the base contacts and the intrinsic base region is nearly zero. Given the values

of Rc and Rsheet as well as the device geometry, the voltage drop in the base extrinsic
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Figure 3.7: (a) Gummel I − V characteristics for the first generation N-polar HET
at room temperature. (b) Current gain (β = JC/JB) calculated from (a). The noisy
data for V < 0.3 V is due to the collector current noise in (a).

regions is calculated to be ∼ 0.003 V for an emitter-base bias of 1.25 V (see Appendix B

for details regarding the calculation). This value of emitter-base voltage corresponds to

the maximum JB in common-emitter measurements and, therefore, represents the largest

possible extrinsic voltage drop. The very small value of the extrinsic base resistance

(1.56 Ω) demonstrates that the base contacts have a negligible effect on transistor I − V

characteristics.

Summarizing our results to this point, we have demonstrated the first N-polar III-N

HET with common-emitter transconductance. The large base-collector barrier reflects

most of the incoming hot electrons resulting in very low current gain (β = 0.004). How-

ever, the base-collector diode has fairly low leakage and the base access resistance is very

low. Therefore, it is possible to obtain accurate values for the current gain and trans-

fer ratio from Gummel I − V characteristics without the corrupting effects of erroneous

leakage currents. The N-polar HET must be improved dramatically before it can be-

come a viable transistor technology. However, these first-generation devices can already
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Figure 3.8: Base layer TLM measurements of the first-generation HET. (a) Ohmic
V − I behavior is seen for all TLM spacings. (b) The contact and sheet resistances
are found to be 0.34 Ω ·mm and 517 Ω/�, respectively.

be used to study fundamental transport physics in III-N heterostructures. Such studies

have important materials science implications, as we will see in the next section.

3.3 InGaN polarization dipole barrier transport

We turn our attention now to an investigation of the N-polar HET emitter barrier.

The goals of this analysis are two-fold: from a scientific perspective, we hope to leverage

the capability of the collector barrier as an analyzer of hot electron states to study emitter

barrier transport; from a technological perspective, we would like to determine the effects

of nonideal emitter characteristics on transistor performance. We will begin this section

by discussing two-terminal InGaN polarization dipole diode (PDD) characteristics. Then,

we will present transistor measurements as a way to fortify the conclusions drawn from

the diode analysis.

80



N-polar HETs and InGaN emitter diode transport Chapter 3

0 20 40 60 80 100 120 140

z (nm)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
C
(e
V
)

(a)

φ′
B

Buffer + Sapphire

In0.1Ga0.9N 5 UID

GaN 200 5e18

Material thickness doping
(nm) (cm−3)

GaN 100 UID

GaN 50 5e18

z

(b)

Figure 3.9: (a) Conduction band diagram of the InGaN PDD. The apparent barrier
height (φ′B) is labeled along with the zero bias Fermi level (dashed red line). (b) PDD
layer structure with z-axis orientation as it appears in (a).

3.3.1 InGaN polarization dipole diode analysis

The InGaN PDD used in this study was designed to closely mimic the emitter barrier

that appears in the N-polar HET. The conduction band diagram and layer structure are

shown in Fig. 3.9. The PDD was grown by MOCVD on a miscut sapphire substrate

and was fabricated using a truncated version of the process shown in Fig. 3.4 (BCl3/Cl2

mesa isolation and Al/Au ohmic contacts).

During measurement, the diode was placed in a vacuum chamber and brought to

target temperatures in the range 100−400 K using a Lake Shore 330 model temperature

controller with a PID feedback loop. Temperatures below ambient were achieved using

liquid nitrogen as a cooling agent. At each target temperature, the sample was left

for 10− 15 minutes before measurements were made to ensure thermal equilibrium was

achieved between the device and the sample stage. Then, the top contact was grounded

and the voltage on the bottom contact swept from −3 V to +3 V while measuring the

current.

The InGaN emitter diode I − V − T characteristics are shown in Fig. 3.10. At
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Figure 3.10: I−V −T data for the InGaN polarization dipole diode for the temperature
range 100− 400 K. Ohmic voltage drops limit the achievable current density beyond
1 V applied bias. The linear fits to the forward bias current are performed within the
first 200 mV of device turn-on.

low bias the current increases quasi-exponentially for all temperatures. For an applied

forward bias of about 1 V, the current begins to saturate as ohmic voltage drops become

appreciable. The device turn-on voltage decreases with increasing temperature, a result of

the increased supply of high-energy electrons incident on the barrier at high temperature.

While the turn-on voltage increases at low temperatures, it remains less than 0.5 V at 100

K, nearly half of the design barrier height of ∼ 0.9 eV (see Fig. 3.9(a)). This suggests the

presence of an unknown, low-energy current pathway that dominates low-temperature

transport.

Following the procedure outlined in Chapter 2, a linear fit to the low-bias forward

current at each temperature is performed. The slope of this linear fit is q/nkBT and

the intercept is ln(JS), where JS is the saturation current. Assuming A∗ = 26 A/cm2K2

allows us to calculate the apparent barrier height (φ′B) from JS while the ideality factor

(n) is calculated from the slope. This procedure is done for both the experimental data
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pictured in Fig. 3.10 and for simulated I−V −T curves generated using the band diagram

in Fig. 3.9(a) and the methods outlined in Chapter 2. The results for the simulated and

experimental ideality factors and apparent barrier heights are pictured in Fig. 3.11.

The high-temperature ideality factor for the simulated diode current is ∼ 1.2. There

are two contributions to n > 1 in the simulated data: first, voltage partitioning ensures

that only a fraction of the applied bias is dropped in the UID GaN above the InGaN layer.

The remainder appears across the InGaN dipole layer, which causes the barrier height to

increase with bias. This effect is due to simple electrostatic considerations and is present

whenever the barrier maximum is not immediately adjacent to the control electrode. In

particular, if the barrier maximum is a distance t2 away from the control electrode and t1

away from the grounded electrode, the ideality factor attributed to voltage partitioning

is:

nV = 1 +
t2
t1

ε1
ε2
, (3.2)

where εi is the low-frequency dielectric constant in the ith material. In the PDD, t1

= 100 nm and t2 = 5 nm so that nV ∼ 1.05. Voltage partitioning can also arise from

resistive access regions and barrier-limited contacts. However, these contributions can

be shown to be negligible for the very small currents considered here.

The second contribution to n > 1 in the simulated data is thermionic field emission

(see Chapter 2 for a detailed discussion). Note that the background doping is relatively

high in N-polar GaN (∼ 2 × 1017 cm−3). This leads to increased band bending and,

therefore, a larger thermionic field current than in Ga-polar devices. The ideality factor

due to thermionic field emission is nTFE ∼ 1.14. The combined effect of voltage par-

titioning and thermionic field emission is given by the product of the ideality factors:

nV × nTFE = 1.2, the total high-temperature ideality factor. Voltage partitioning and

thermionic field emission are also present in real PDD devices. However, the simulation,
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Figure 3.11: Simulated and experimental values of (a) the ideality factor and (b) the
apparent barrier height. The latter were calculated using A∗ = 26 A/cm2K2. Theo-
retical and experimental values begin to converge at high temperatures but diverge as
the temperature decreases. The dashed blue line in (a) represents the product of the
BHI contribution to n (Eq. (3.3)) and the simulated values. The dashed blue line in
(b) represents Eq. (3.4) with the values of φB and σS taken from the second-order fit
in Fig. 3.12.
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which takes into account only these two effects, produces ideality factors that are smaller

than experimental values. Therefore, there must be an additional source of n > 1 in real

PDDs.

Similarly, the simulation overestimates the value of φ′B. Thermionic field emission

causes φ′B to increase with temperature but at a slower rate than the experimental values.

Like the Schottky diode in Chapter 2, the simulated and experimental values of φ′B match

well at high temperatures but diverge at low temperatures. The Richardson plot (Fig.

3.12) reveals a similar relationship between simulated and experimental results.

These discrepancies can be clearly explained by barrier height inhomogeneity (BHI)

in the InGaN PDD. The deviation of the low-bias current from perfect linearity in Fig.

3.10 is characteristic of inhomogeneous barrier transport[82]. A detailed discussion of

the effects of BHI on measured diode characteristics can be found in Chapter 2. Here we

summarize the important results:

1. Upon application of forward bias, the inhomogeneous barrier distribution is dis-

torted and the mean barrier height increases causing n > 1. The temperature and

bias dependence of n is given by

n =

(
1− q

2kBT

σ2
S(0)− σ2

S(V )

V

)−1

. (3.3)

2. For a Gaussian distribution of barrier heights, the canonical thermionic emission

equation remains valid if we substitute an apparent barrier height,

φ′B = φB −
qσ2

S

2kBT
, (3.4)

for the constant quantity φB. In Eq. (3.4), φB is the mean, zero-bias barrier height

and σS is the zero-bias standard deviation of the barrier distribution.
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Figure 3.12: (a) Simulated and experimental Richardson plot for the PDD. The val-
ues of A∗, φB and σS are extracted from the quadratic fit (dashed blue line) to the
experimental Richardson data via Eq. (3.5).

3. The Richardson data are no longer linear but obey the quadratic equation:

ln

(
JS

T 2

)
= ln(A∗)−

(
q

kBT

)
φB +

1

2

(
q

kBT

)2

σ2
S. (3.5)

For diodes containing inhomogeneous barriers, a second-order fit to the Richardson

data simultaneously yields A∗, φB and σS from the zeroth, first and second order coeffi-

cients, respectively. The fit is performed on the PDD Richardson data and is shown in

Fig. 3.12 (dashed blue line). The extracted value A∗ = 23.8 A/cm2K2 is nearly equal to

the theoretical value of 26 A/cm2K2 for GaN, a confirmation that the BHI model accu-

rately describes the transport physics of the diode. Furthermore, φB is almost exactly

equal to the design barrier height in Fig. 3.9(a). The standard deviation of the barrier

height fluctuations (σS) amounts to a ∼10% lateral variation in barrier height across the

device area.
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The dashed line in Fig. 3.11(b) represents Eq. (3.4), with the values of φB and σS

taken from the second-order fit coefficients according to Eq. (3.5). The experimental

data are well-described by the dashed line, confirming the accuracy of the functional

form of Eq. (3.4). The dashed line in Fig. 3.11(a) is generated by multiplying the

BHI contribution to n given by Eq. (3.3) with the simulated values; we find excellent

agreement between this line and the data. If only the BHI contribution is considered,

calculated values of n do not agree with experimental values. This strongly suggests

that three entirely distinct effects contribute to the experimental ideality factor: voltage

partitioning, thermionic field emission and barrier height inhomogeneity. The analysis

we have presented demonstrates that these three effects can be “factorized” and their

magnitudes separately determined with the help of numerical I − V − T simulations.

For high temperatures, the quadratic term in Eq. (3.5) becomes small and the data

are approximately linear in powers of q/kBT . This is consistent with the commonly

observed linearity of high-temperature Richardson data. As such, it may be tempting

to perform a linear fit to the high-temperature data in order to extract A∗ and φB. To

demonstrate the limits of this method, we performed such a fit on the high-temperature

data in Fig. 3.12. The fit yields a value for A∗ and φB of 0.13 A/cm2K2 and 0.63 eV,

respectively. This underestimation of the Richardson constant and the barrier height

from a high-temperature linear fit was observed in a previous report of InGaN LED

data[83]. These results suggest that the homogeneous thermionic emission equation does

not capture all the relevant physics in our devices, even at high temperature where the

data appear to be linear.

We propose that the physical origin of the lateral barrier height fluctuations observed

in the PDD is random, nanoscale fluctuations in indium composition. Indium fluctuations

as high as 25 − 50% of the nominal alloy composition have been observed in InGaN

films using atom probe tomography[84, 85, 86]. Other studies have linked compositional
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Figure 3.13: Distribution of In compositions corresponding to the measured value
σS = 0.09 eV.

fluctuations with the anomalously low turn-on voltage observed in multiquantum well

LEDs[87, 83].

For the device structure pictured in Fig. 3.9, the extracted σS corresponds to a

compositional standard deviation of only 2% In across the device area. A Gaussian

distribution with a mean In composition of 10%, the nominal design composition, and a

standard deviation of 2% is shown in Fig. 3.13. The distribution reveals that there is

a nonzero proportion of the device area locally containing no more than 5% In. For the

PDD in this study, this composition corresponds to a barrier height of 0.44 eV, nearly

identical to the value of φ′B at 100 K (see Fig. 3.11(b)). This confirms the assertion that

inhomogeneous barrier transport, particularly at low temperature, is dominated by low-

barrier regions and further implicates In compositional fluctuations as the physical source

of BHI. Furthermore, there is no evidence of In clustering[88, 89] or phase segregation

in the dipole layer of our device. Such an effect would imply the existence of regions

where the local In composition is nearly zero. These regions would provide low-resistance

short paths through the barrier that would become clearly evident at low temperature.

The fact that the diode exhibits signatures of barrier-limited transport even at 100 K
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Figure 3.14: 3-dimensional schematic of the conduction band diagram for a laterally
(a) homogeneous and (b) inhomogeneous InGaN PDD with σS = 0.09 eV.

suggests that the local In composition does not fall to zero. A 3-dimensional schematic

of a homogeneous and inhomogeneous InGaN PPD with σS = 0.09 eV is pictured in Fig.

3.14.

In this section we have shown that BHI theory can accurately explain the transport

characteristics of the InGaN PDD. Simulation data suggest that voltage partitioning and

thermionic field emission, while clearly present in the real device, cannot fully account

for the observed experimental data. Despite the seeming success, so far we have relied

only on diode data and have no independent demonstration that BHI is the cause of the

anomalous diode I − V . As such we would like to test the predictions of BHI theory,

specifically that lateral fluctuations produce a bias and temperature-dependent apparent

barrier height. For that we turn to temperature-dependent transistor measurements,

which are discussed in the next section.
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3.3.2 Electron injection spectroscopy using the N-polar HET

While the BHI model seems to accurately describe the PDD data, a direct correlation

between φ′B and the electron injection energy has not yet been established. In fact,

researchers routinely refer to φ′B as the “apparent barrier height”[90, 91, 92], a name

that reveals the uncertainty regarding its physical interpretation. Simply put, we seek

to answer the question: “is φ′B equal to the average energy of electrons emitted from the

diode?”. The answer to this question will have important device implications for III-N

HETs. In this section we introduce a method called electron injection spectroscopy, which

provides a direct measurement of the signature of BHI by using the collector barrier of

the HET as an analyzer of hot electron states. Such a measurement will demonstrate the

effects of BHI on transistor performance and will help provide a physical interpretation

of φ′B.

To date the most popular method for directly measuring BHI and its effect on localized

band structure is ballistic electron emission microscopy (BEEM)[93, 94]. In this method

a scanning tunneling microscope (STM) tip serves as the emitter of ballistic electrons into

a very thin base provided by the Schottky metal while the semiconductor material serves

as the collector. By varying the injection energy of the ballistic electrons and measuring

the resulting collector current, the local barrier height can be determined with a lateral

resolution of ∼1 nm. This method has been applied to study BHI in a wide variety of

Schottky junctions[95, 96, 97] and semiconductor heterointerfaces[98, 99].

While BEEM methods are sensitive to the effects of BHI on ballistic electrons, which

are out of equilibrium with the semiconductor lattice, the first comprehensive theory

describing the effects of BHI on the transport properties of thermalized electrons was

proposed by Tung[73]. In Chapter 2 we demonstrated that in the presence of BHI, the

constant barrier height in the canonical thermionic emission equation must be replaced
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with a bias and temperature-dependent barrier height (φB → φ′B(V, T )):

J = A∗T 2exp

(
−qφ

′
B(V, T )

kBT

)(
exp

(
qV

kBT

)
− 1

)
. (3.6)

Specifically, φ′B increases with both increasing temperature (see Fig. 3.11(b)) and increas-

ing forward bias. If such a barrier is placed in a HET where it emits electrons toward

an analyzer provided by the collector barrier, relative changes in the electron injection

energy will reveal themselves as changes in the current transfer ratio α. In particular,

as the injection energy increases the probability of transmission at the collector, and

therefore α, increases. Because the injection energy is determined by the emitter barrier

height, changes in α are correlated with changes in φ′B.

The layer structure of the HET used in this study was identical to the device pictured

in Fig. 3.2 except that the GaN base layer thickness was 3 rather than 10 nm. This device

was chosen in order to minimize electron scattering events in the base and simplify the

analysis. The growth and processing details were also identical. During measurement

the HET was placed in a vacuum chamber whose sample stage was cooled with liquid

nitrogen. At each target temperature, the transistor was measured in the modified Gum-

mel configuration: the base and collector terminals were grounded while a forward bias

(V ) was applied to the emitter. In this configuration there was no bias applied between

the base and the collector so that the quantum mechanical transfer characteristics of the

collector remained constant for all emitter biases and temperatures. In this sense the

electron “filter” was kept constant. The applied forward bias was swept between 0− 1.5

V and the emitter and collector currents were measured. Because we were ultimately

interested in the transfer ratio JC/JE, the Gummel plot has been modified to display JE

and JC rather than JB and JC, which appear in conventional Gummel plots.

The modified Gummel plot for the III-N HET in the temperature range 100 − 400
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Figure 3.15: (a) Modified Gummel I −V characteristics for the bias and temperature
range 0− 1.5 V and 100− 400 K, respectively. The arrows label each family of curves
representing the temperature series for JE and JC. (b) Corresponding transfer ratio
(α = JC/JE) for the same temperature and bias range. The yellow box indicates the
values of α plotted in Fig. 3.16(a).
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K is shown in Fig. 3.15(a). The emitter and collector currents both rise with emitter

forward bias, and, because the collector barrier is large, JE � JC. Ohmic voltage drops

become significant for applied biases in excess of ∼ 0.75 V, beyond which the I − V

curves in Fig. 3.15(a) flatten. These ohmic voltage drops ultimately limit the achievable

intrinsic emitter forward bias and the magnitude of JE. Furthermore, in these ohmic

regions some portion of the applied voltage drops in the extrinsic regions of the device

making it difficult to determine the precise intrinsic emitter bias accurately. Therefore,

we will restrict the subsequent analysis to V < 0.75 V. The collector current resolution

is limited by the instrument noise floor as well as the zero bias current noise at each

temperature.

The bias and temperature-dependent current transfer ratio is pictured in Fig. 3.15(b).

For a single temperature, between the voltages corresponding to the noise floor and to

the point where ohmic voltage drops become significant, α exhibits a clear upward trend

with bias. Additionally, for a fixed applied bias, α increases with increasing temperature

(Fig. 3.16(a)). The applied bias value of 0.65 V was chosen for Fig. 3.16(a) because at

this value, ohmic voltage drops are negligible and collector current noise is limited for

most temperatures (see yellow box in Fig. 3.15(b)). This ensures that nearly all of the

applied bias appears across the intrinsic emitter-base junction for all temperatures. At

0.65 V and T < 200 K the collector current, and therefore α, becomes noisy. Therefore,

the data below 200 K in Fig. 3.16(a) are likely unreliable.

Because the quantum mechanical transfer characteristics at the base-collector junction

are constant for all emitter biases and temperatures, an increase in α can only result from

a corresponding increase in electron injection energy. This, in turn, can only be explained

by an increase in the mean emitter barrier height with bias and temperature. As we will

see in Chapter 5, the hot electron mean free path in GaN was measured to be ∼ 10 nm.

Because the base in the III-N HET is 8 nm thick (5 nm InGaN + 3 nm GaN), electron
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Figure 3.16: (a) Experimental transfer ratio at an emitter bias of 0.65 V for the
temperature range 100 − 400 K. These values are represented by the yellow box in
Fig. 3.15. (b) Simulated transfer ratio for a Gaussian distribution of electrons with
mean longitudinal energy Ez. The experimental values in (a) are mapped onto the
simulated values in (b). This mapping enables an estimate of the mean energy of the
hot electron ensemble incident on the collector barrier at each temperature (see Fig.
3.17).

scattering in the base should be minimized. In this quasi-ballistic regime, the number

of scattered electrons is a very weak function of injection energy and temperature. This

ensures a close correspondence between increases in α and increases in emitter barrier

height.

To further reinforce this correspondence, the energy-dependent transfer ratio for the

AlGaN collector barrier was calculated. The details of the calculation were discussed

earlier in this chapter (see Eq. (3.1)) and the results are pictured in Fig. 3.16(b). This

calculation provides a one-to-one relationship between the transfer ratio and the mean

kinetic energy of electrons arriving at the collector. Considering Fig. 3.16(a) and (b)

together allows us to estimate the mean arrival energy of electrons in the HET we have

measured. The temperature-dependent arrival energies and apparent emitter barrier

height, as measured from emitter diode I − V − T , are pictured in Fig. 3.17.
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Figure 3.17: Apparent barrier height of the emitter diode (red squares) and electron
arrival energies corresponding to the measured transfer ratios in Fig. 3.16(a)(blue
dots). For T > 200 K, these two quantities are nearly equal, confirming both that the
increase in α is due to the increase in φ′B and that the base electrons travel ballistically.

There are two important observations and accompanying conclusions to make about

Fig. 3.17: first, the values φ′B and Earrival increase with temperature at identical rates

above 200 K. This implies that the increase in α is indeed due to an increasing emitter

barrier height caused by BHI. This trend also suggests that the apparent barrier height

is approximately equal to the mean electron injection energy. In other words φ′B has a

clear and direct physical meaning and need not be considered an “apparent” quantity.

Second, φ′B and Earrival are nearly equal above 200 K. This implies that the average hot

electron kinetic energy on the emitter and the collector side of the base are equal and

that electron transport across the base is, therefore, ballistic.

These trends do not hold at the lowest temperatures. The apparent barrier height

continues to fall with temperature while the estimated arrival energy remains constant.

This is likely due to the current noise floor of the measurement apparatus as discussed

earlier. Namely, the low temperature transfer ratios are likely unreliable due to collector
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current noise. The arrival energies at low temperature are, therefore, similarly unreliable.

In the previous section, we proposed alloy fluctuations as the most likely cause of

the observed BHI in InGaN PDDs. Despite the likely existence of such compositional

fluctuations, several additional physical sources of barrier height inhomogeneity can be

proposed. Because the polarization dipole barrier height is determined both by the In

composition and the InGaN thickness, thickness fluctuations of ≤ 1 nm can provide

the necessary σS. Scanning capacitance microscopy measurements of MOCVD-grown 3

nm InGaN/GaN quantum wells have revealed InGaN thickness fluctuations of several

monolayers[100]. Barrier height fluctuations could also result from an inhomogeneous

distribution of conductive threading dislocations that provide a low-energy current path-

way though the band gap. The magnitude of leakage currents has been observed to scale

with threading dislocation density in LEDs [101, 102] and in GaN Schottky diodes[103].

While it is difficult to diagnose the exact physical cause of BHI from a single device,

these analysis methods can be applied to a series of InGaN PDDs designed to test each

of the above hypotheses.

The analysis presented in this chapter has several important implications for the

HET: first, the presence of lateral barrier height fluctuations results in a lower average

electron injection energy than the design barrier would suggest. This means that we have

been unable to make full use of the InGaN emitter barrier to launch hot electrons. In

the example presented in this chapter, BHI causes a ∼ 100 meV reduction in electron

injection energy at room temperature. This is roughly equivalent to the energy lost in a

single longitudinal optical phonon scattering event.

Secondly, current transport through inhomogeneous barriers is more resistive than in

their homogeneous counterparts (see the discussion about the ideality factor in Section

3.3.1). This causes the flat-band diode resistance to be higher, which limits the achievable

forward current density. To understand this, consider the discussion of extrinsic voltage
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drops from Section 3.2. Using TLM measurements and calculations based on the device

geometry, we demonstrated that the voltage drops in the extrinsic base region were

negligible. TLM measurements were also performed on the emitter layer and the contact

and sheet resistances were found to be 5.6 Ω · mm and 1622 Ω/�, respectively. Per

the method outlined in Appendix B, the emitter resistance and emitter voltage drop are

found to be 100 Ω and 0.4 V, respectively, at an applied bias of 1.25 V. Immediately we

learn that the emitter extrinsic regions are more resistive than those in the base. More

importantly, however, there is an additional 0.85 V being dropped across the intrinsic

device region in spite of the fact that the barrier has ostensibly been biased away at 1.25

V. This voltage drop corresponds to an intrinsic emitter resistance of 214 Ω, more than

twice the resistance of the extrinsic emitter. Therefore, we may conclude that it is, in fact,

the intrinsic emitter barrier that chokes the forward diode current! The physical cause

of this choke is the resistive, low-barrier regions of the inhomogeneous InGaN barrier.

As long as these inhomogeneities are present, they will have a deleterious effect on the

achievable forward current density.

In this chapter we have presented the first demonstration of the III-N Nitrogen-polar

HET. While the measured common-emitter current gain was very low, the excellent con-

tacts to the highly-scaled base layer enabled otherwise ideal device operation. We used

the working devices to study InGaN polarization dipole diode transport and to demon-

strate the physical relevance of the apparent barrier height, which plays a central role

in barrier height inhomogeneity theory. We determined that the most likely physical

cause of barrier height inhomogeneity in the N-polar HET emitter is small-scale In com-

positional fluctuations. These fluctuations were shown to decrease the average injection

energy of the PDD emitter and limit the emitter current density. To this point we have

considered the transport properties of electrons in the vicinity of the emitter and collector

barriers in the N-polar HET. In the next chapter, we will briefly analyze the transport
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properties of Ga-polar HETs.
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Chapter 4

Ga-polar HETs and AlN emitter

diode transport

In this chapter we will present a brief analysis of the Ga-polar HET and the AlN emitter

diode with the goal of comparing the results to the N-polar HET data presented in

Chapter 3. The majority of the measurement and analysis methods are identical to

those used for N-polar HETs. Therefore, we will refer the interested reader to Chapter 3

for a detailed description of these methods and provide only an abbreviated version here.

The chapter will be organized into two brief sections: first, we will present the Ga-polar

HET design and discuss its advantages over N-polar designs. We will also present and

briefly analyze Ga-polar transistor data. Second, we will analyze the AlN emitter diode

using I − V − T measurements and BHI theory before discussing the implications of the

results for HET operation.
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4.1 Device design, growth and fabrication

The Ga-polar HET design is based on the polarization dipole approach discussed in

Chapter 1. The conduction band diagram for such a design in pictured in Fig. 4.1. The

emitter and collector barriers are formed using thin AlN and InGaN polarization dipole

barriers, respectively. There are several important differences between this design and the

N-polar design presented in Chapter 3. First, there is no large dipole barrier present at

the base-collector interface as there is in the N-polar HET. This should reduce quantum

mechanical reflections for moderate emitter barrier heights and lead to an increase in

current gain. Second, the InGaN dipole emitter in N-polar HETs is intended to be

a thermionic injector while the AlN diode in Ga-polar HETs is designed as a tunnel

injector. Because the AlN layer is very thin, we expect electrons to be injected at the

top of the drift field region of the emitter barrier in Fig 4.1 or at about 1.3 eV (see blue

arrow in the figure). In Chapter 3 we found that lateral barrier height fluctuations led

to resistive voltage drops in the emitter that ultimately limited the achievable current

density. Because the AlN diode is a tunnel injector, we expect that the current choke

may be even more severe in the Ga-polar HET.

A processed device schematic and layer structure for the Ga-polar HET is pictured

in Fig. 4.2. The device was grown using an experimental hybrid technique: the collector

barrier was grown by MOCVD and the emitter barrier by plasma-assisted MBE. The

purpose of such a hybrid growth process was to avoid the unintentional incorporation of

Ga into MOVCD-grown AlN films[104, 77]. Because the polarization charge discontinuity

is higher at AlN/GaN junctions than at AlGaN/GaN junctions, growth of pure AlN by

MBE enables a large electron injection energy without introducing a thick tunnel barrier

into the emitter[81].

During device processing base mesa isolation was performed using a low-power re-
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Figure 4.1: Conduction band diagram for the Ga-polar HET with an 8 nm GaN base.
The regions of the band diagram that correspond to the emitter, base and collector
have been labeled along with the equilibrium Fermi level (dashed red line). The thin
AlN dipole layer provides a tunnel injector of hot electrons into the base (blue arrow).
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Figure 4.2: Ga-polar HET layer structure and processed device schematic. The layers
that compose the emitter, base and collector have been labeled and the metal contacts
are pictured in red. The bottom half of the layer stack was grown by MOCVD and
the top half by PAMBE.
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active ion etch (RIE) with BCl3/Cl2 etch chemistry. To form an ohmic contact to the

base through the wide-bandgap AlN interlayer, a selective BCl3/SF6 inductively coupled

plasma (ICP) etch was performed. During etching the BCl3 plasma removes GaN until

the AlN layer is exposed. The subsequent reaction between the SF6 plasma and the

exposed AlN leads to the formation of a nonvolitile AlF3 complex that prevents etching

of AlN. After the selective etch was completed, the AlF3 was removed with a 10 minute

400◦C anneal in N2[105]. An ohmic tunnel contact to the base layer was formed by de-

positing an Al/Au metal stack on the AlN interlayer. The emitter and collector contacts

were also formed via Al/Au metal stacks deposited using e-beam evaporation.

4.2 Room temperature transistor operation

Common-emitter characteristics of the Ga-polar HET are shown in Fig. 4.3. The

various regimes of transistor operation are labeled in the figure and discussed in detail in

Chapter 3. The relatively smaller collector barrier in the Ga-polar HET has three effects:

first, the device turn-on voltage is larger because the collector injects more current into

the base for small collector biases; second, the device breakdown voltage is lower than in

N-polar devices; and third, the current gain (β) is ∼ 0.21, over an order of magnitude

larger than in N-polar HETs. This corresponds to a transfer ratio of ∼ 0.18. The

large increase in gain from N-polar to Ga-polar HETs highlights the detrimental effect

of the AlGaN polarization dipole in the collector of N-polar devices. The base contacts

were characterized using TLM measurements and the contact and sheet resistances were

found to be 1.15 Ω ·mm and 4085 Ω/�, respectively. These values are substantially larger

than those of N-polar HETs (0.34 Ω · mm and 517 Ω/�). This is consistent with our

statement in Chapter 3 that the low-bandgap InGaN layer in the N-polar HET enables

low-resistance ohmic contacts to the base and, therefore, provides an advantage over Ga-
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Figure 4.3: Common-emitter collector I − V characteristics for the Ga-polar HET
at room temperature. The three regimes of transistor operation are labeled as (1) -
turn-on, (2) - saturation and (3) - breakdown. The current gain of the transistor is
∼ 0.2.

polar HETs. Based on these data we may conclude that for polarization dipole HETs,

Ga-polar devices have superior current gain but inferior quality base contacts.

4.3 AlN polarization dipole barrier transport

In this section we will follow an abbreviated version of the method presented in

Chapter 3 for analyzing polarization barrier transport in the AlN emitter. Because a

detailed analysis has already been performed in Chapter 3, here we aim only to introduce

the analysis method in the context of tunnel barriers and discuss the effects of our results

on transistor function. We will start by considering diode I−V −T data, which is shown

in Fig. 4.4. Note that this figure shows the emitter current in the modified Gummel

configuration, which is equivalent to a two-terminal diode I − V measurement. At low

bias, the emitter current increases slowly until device turn-on (V ' 1 V). After turn-

on the current increases exponentially before ohmic voltage drops begin to dominate.
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Figure 4.4: Forward bias AlN emitter diode I − V − T characteristics for the temper-
ature range 100− 400 K.

Furthermore, the low-bias current is temperature-dependent, which suggests the presence

of a thermally-activated leakage mechanism for V < 1 V. If this leakage path were not

present, the high temperature current would decrease to the noise floor at low bias as it

does at low temperature.

In order to extract the saturation current (JS) from the diode I − V a data analysis

algorithm was developed to identify the point where the slope of the current (dJE/dV )

is maximized. A small bias range is selected around this point and a line is fitted to

the data in this range. The saturation current is then determined from the ordinate

axis intercept of the fit line. The resulting Richardson plot is pictured in Fig. 4.5.

The Richardson data are clearly nonlinear as they were for the InGaN diode discussed in

Chapter 3. We hypothesize that this nonlinearity is cause by barrier height inhomogeneity

(BHI). Following the discussions presented in Chapters 2 and 3, we assume a Gaussian
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Figure 4.5: Richardson plot for the AlN emitter diode. The values of A∗, φB and σS

are extracted from the second order fit (blue dashed line). A linear fit to the high
temperature data is also shown (black dotted line).

distribution of barrier heights and fit the data to the second-order equation:

ln

(
JS

T 2

)
= ln(A∗∗)−

(
q

kBT

)
φB +

1

2

(
q

kBT

)2

σ2
S, (4.1)

where A∗∗ is the effective Richardson constant, φB is the mean barrier height and σS

is the standard deviation of the barrier height distribution. The values of A∗∗, φB and

σS are then extracted from the zeroth, first and second order coefficients, respectively.

The extracted mean barrier height is nearly identical to the designed injection energy in

Fig. 4.1. The standard deviation in the barrier height amounts to a 9% variation over

the device area. The effective Richardson constant, on the other hand, is two orders of

magnitude smaller than the theoretical value for GaN (26 A/cm2K2). We can understand

this by appealing to the argument presented at the end of Chapter 2. Rather than

regarding the Richardson constant as a material quantity, we should instead consider it
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Figure 4.6: Transmission characteristics of the AlN diode. In the range of electron
injection energies the transmission probability is 10−3 − 10−2.

to be device quantity. To this end we defined the effective Richardson constant using the

approximate expression

A∗∗ ' T̃0A
∗, (4.2)

where A∗ = 26 A/cm2K2 and T̃0 is the transmission probability of the barrier close to the

mean electron injection energy. To test the applicability of this definition the transmis-

sion characteristics of the AlN polarization dipole barrier are calculated via the methods

presented in Chapter 2 (Fig. 4.6). The figure demonstrates that the transmission prob-

ability for electrons around 1.3 eV is ∼ 5 × 10−3. When plugged into Eq. (4.2) this

gives A∗∗ ' 0.13A/cm2K2, much closer to the value obtained from the fit in Fig. 4.5.

This result validates our reinterpretation of the Richardson constant in light of nonunity

transmission at the barrier interface. Furthermore, the depressed value of A∗∗ suggests

that, even in the absence of BHI, the current provided by the AlN tunnel barrier will be

reduced by two orders of magnitude compared with a thermionic emission barrier.

To demonstrate the limitations of traditional fitting methods, a linear fit to the high-

106



Ga-polar HETs and AlN emitter diode transport Chapter 4

temperature Richardson data is performed (black dotted line in Fig. 4.5). From this

linear fit and the traditional Richardson equation, we find A∗ = 5.01 × 10−5 A/cm2K2

and φB = 0.76 eV. These results are consistent with previous observations that the high-

temperature linear fit underestimates the value of A∗ and φB (see [83] and Chapter 3 of

this thesis). Therefore, the quadratic fitting method is the only acceptable approach for

analyzing nonlinear Richardson data.

Finally, the apparent barrier height and the ideality factor of the AlN diode are

extracted from the forward bias diode I − V (Fig. 4.7). The dashed blue line in Fig.

4.7(a) represents the equation:

φ′B = φB −
q

2kBT
σ2

S, (4.3)

where the values of φB and σS are taken from the quadratic fit in Fig. 4.5. It is important

to note that when calculating φ′B from JS in Fig. 4.7(a), the correct value of A∗ must

be used. If the theoretical value of 26 A/cm2K2 is used, Eq. (4.3) will not match well

with the experimental data. This result demonstrates the fundamental nature of the

Richardson plot and of JS. By contrast, φ′B is a derived quantity that requires accurate

inputs from the Richardson plot. Simulated values of φ′B span the range from 1.1 eV

at 100 K to 1.37 eV at 400K, all larger than the values pictured in Fig. 4.7(a). This is

similar to the results presented in Chapter 3. Therefore, as with the InGaN diode, the

emitted electrons are not launched with the full barrier height energy. Barrier height

inhomogeneity ensures that even if a 1.3 eV barrier is designed, the injection energy

remains < 1 eV at room temperature. This difference is energetically equivalent to the

emission of more than three optical phonons in the base (~ωOP ' 92 meV)! This is clearly

detrimental for device gain and has important implications for future device designs (see

Chapter 6).
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Figure 4.7: (a) Apparent barrier height and (b) ideality factor for the AlN emitter
diode. The dashed blue line is generated using Eq. (4.3).

Beyond 1.6 V in Fig. 4.4, ohmic voltage drops in the intrinsic region become apprecia-

ble. This phenomenon was discussed in detail in Chapter 3. To summarize, fluctuations

in barrier height give rise to current crowding effects in the vicinity of low barrier regions,

which, in turn, cause resistive transport beyond a certain current density threshold. The

resistance associated with the fluctuations is added to the previously mentioned tunnel

resistance, albeit in a highly complicated and nonlinear fashion. Nonetheless, the fluctu-

ations and the tunnel barrier together conspire to dramatically reduce the AlN emitter

current density. This limits the potential of the Ga-polar, AlN emitter HET for high-

frequency applications. Without a method for reducing these resistive voltage drops,

emitter currents densities will remain prohibitively low.

At this time the physical source of the observed barrier height inhomogeneity is

unknown. Because AlN is a binary, alloy fluctuations cannot be the cause of BHI in

these diodes. Simulation data suggest that the high-temperature ideality factor due to

thermionic field emission is ∼ 1.2. Therefore, as with the InGaN diode in Chapter 3,

thermionic field emission alone cannot account for the experimentally derived ideality

factors, which are ∼ 1.9 at high temperatures. It is more likely that thermionic field
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emission plus either lateral thickness fluctuations or nonuniform threading dislocation-

mediated transport is producing the temperature-dependent barrier height and the large

ideality factor.

In this chapter we have presented an analysis of the Ga-polar HET and found it to

have superior gain when compared with N-polar HETs. This is due to the relatively

smaller InGaN collector barrier used in Ga-polar designs. The AlN emitter diode was

analyzed and evidence of BHI was found. A quadratic fit to the Richardson data yielded

accurate values for the mean barrier height and a standard deviation of about 10% across

the device area. The values for the apparent barrier height suggested that the electrons

were not emerging with the full designed injection energy but rather were injected into

the base through low barrier regions. The depressed value of the effective Richardson

constant was understood by simulating the tunneling probability through the thin AlN

layer. The low electron tunneling rate and the observed BHI choke the forward emitter

current and severely limit the ability of the AlN diode to provide large current densities.

So far we have considered the transport properties of electrons in the vicinity of the

emitter and collector barriers in both N-polar and Ga-polar HETs. In the next chapter,

we will round out our analysis by investigating quasi-ballistic electron transport in the

base.
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Chapter 5

Hot Electron Mean Free Path in

GaN

In this chapter we will investigate hot electron transport in the base region of the HET.

In particular, we will demonstrate how the HET can be used to measure the hot electron

mean free path or, equivalently, the momentum relaxation rate in GaN. First, we will

discuss the various electron scattering mechanisms in wurtzite GaN, paying particular

attention to those likely to dominate for high-energy electrons at room temperature.

Second, we will discuss relaxation rates and previous attempts to measure them in III-

N materials. Third, we will derive a formula that quantifies the effect of momentum

relaxation on the transistor transfer ratio. This will allow us to obtain information about

microscale electron transport phenomena from macroscale device metrics. Fourth, we

will present the device design and experimental procedure used to measure the mean free

path in GaN and present measurement results and analysis. Finally, we will conclude by

discussing the implications of our results for hot electron transistor operation.
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5.1 Scattering mechanisms in wurtzite GaN

In this section we will review the scattering processes present in wurtzite GaN. The

relative magnitudes of each scattering process depend on the material properties, the

local electric field and the temperature. Our goal will be to determine which processes

are most likely to dominate for hot electrons in the base region of the HET. This will

enable a more complete physical understanding of the experimental results presented

later in this chapter.

In general, when an electron is scattered, it undergoes a transition from initial mo-

mentum state k to a final state k′. Elastic (energy-conserving) scattering events are

characterized by |k′| = |k| and inelastic events by |k′| 6= |k|. Transition rates are typi-

cally calculated by specifying the perturbing potential, calculating the interaction matrix

elements connecting k and k′ and using Fermi’s Golden Rule. These rates are dependent

upon the angle between k and k′ as well as the energy difference in the case of inelastic

scattering (see Ref. [106] for calculations of the generalized scattering rates for a wide

variety of processes). To determine the effects of scattering on an ensemble of electrons,

the wavepacket is decomposed into its constituent k states using Fourier methods, the

scattering rates of each state are calculated separately and a new wavepacket is recon-

structed from the scattered distribution of k′. Although the electron ensemble injected

into the base of a HET has a finite spread in k, we will assume that we have a rela-

tively narrow distribution such that the conclusions drawn from a single representative

momentum state apply to the larger ensemble.

Broadly speaking, there are two distinct categories of scattering events: lattice scat-

tering, which occurs even in perfect crystals, and defect scattering, which results from

imperfections introduced into the lattice during growth and/or device fabrication. In

this section we will briefly consider the relevant physical processes responsible for these
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scattering events and estimate the scattering rate for each.

Lattice scattering in semiconductors is caused by the interaction of conduction band

electrons with the vibrating atoms that make up the crystal lattice. The bandstructure

of a semiconductor is calculated by assuming a static background of lattice atoms that

gives rise to a perfectly periodic potential. In real semiconductors the lattice atoms

oscillate about their equilibrium positions due to thermal excitation. The time-dependent

displacement of these atoms causes perturbations in the lattice potential that scatter

mobile electrons. Quantum mechanics stipulates that the energy and, therefore, the

displacement amplitude, of these lattice vibrations is quantized in units of ~. These

quanta of energy are called called phonons. Being bosons, the phonon occupation at a

given frequency and temperature is given by the Bose-Einstein function. Furthermore,

the relative phase of oscillation between nearest neighbor lattice sites determines the

energy and momentum spectrum of the associated phonon. An in-phase oscillation of

nearest neighbors is called an acoustic phonon while an out-of-phase oscillation is called

an optical phonon.

Because the overall size of the crystal is equal to an integer multiple of the lattice con-

stant, only certain combinations of wavevector and frequency will satisfy the boundary

conditions at the crystal edges. These combinations are given by the dispersion relation

ω(k). Every crystalline material has its own characteristic phonon spectrum determined

by the masses of the constituent atoms and the bond strength. Generally speaking, the

acoustic phonon spectrum is characterized by a relatively small k and a linear dispersion

relation (ω(k) ∝ k). Optical phonons, by contrast, possess large k and a nearly flat dis-

persion relation (ω(k) 6= f(k))[107]. In all cases phonon scattering events must conserve

both energy (E = E ′ + Eph) and momentum (k = k′ + kph). These conservation laws

constrain the set of phonon states allowed to participate in a given interaction.

With these general features in mind, we will first discuss the scattering processes
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attributed to acoustic phonons. Electron-acoustic phonon coupling can occur via two

distinct mechanisms: deformation potential scattering and piezoelectric scattering. De-

formation potential scattering occurs because the material bandgap is a strong function

of the local lattice spacing. Deviations from the equilibrium lattice spacing, therefore,

modulate the bandgap and lead to the the formation of local density-of-states barriers to

electron flow. This is precisely the same mechanism that limits current flow in designed

heterojunction barriers. We can use a linear dispersion relation and typical values for

the wavevector and material sound speed (107 cm−1 and 5 × 105 cm/s, respectively) to

calculate a typical acoustic phonon energy of 1 − 5 meV. Because this energy is small

compared to kBT at room temperature (∼ 25 meV), deformation potential scattering

can be considered to be elastic except for T < 100 K. For electrons with a kinetic energy

of 1 eV, the deformation potential scattering rate in GaN is ∼ 8 × 1012 s−1 at room

temperature[108, 109].

The second mechanism of electron-acoustic phonon coupling is piezoelectric scatter-

ing. This scattering process arises from the modulation of the local piezoelectric field

caused by the perturbed position of the lattice atoms. Unlike deformation potential scat-

tering, this process arises from classical position-dependent electrostatic fields rather than

quantum mechanical effects. The scattering rate for high-energy electrons due to piezo-

electric coupling is ∼ 1× 1011 s−1 at room temperature[109, 110]. This relatively slower

rate implies that deformation potential scattering is the dominant acoustic scattering

mechanism for hot electrons at room temperature.

For antiphase lattice oscillations, the dominant scattering mechanism is polar optical

phonon (POP) scattering. In a highly ionic crystal like GaN, the Ga and the N atoms

acquire a slight negative and positive charge, respectively. These oppositely charged

atoms vibrate out of phase with one another and produce an oscillating dipole field

that scatters electrons. The allowed vibrational modes are dependent upon the crystal
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symmetry so that optical phonon emission may be preferentially directed along certain

crystal axes. The POP energy in GaN is larger than that of other III-V materials (∼ 92

meV) owing to the relatively strong Ga−N bond. In order to emit a POP, an electron

must acquire a kinetic energy greater than the phonon energy. Therefore, the POP

emission rate is zero for electron kinetic energies less than ∼ 0.09 eV but rises quickly for

higher energies[111]. The electron-POP interaction time is often estimated using a model

based on the polar Frölich interaction, which predicts an emission time given by[112]:

1

τe−ph

=
e2

4π~

√
2m∗~ωPOP

~2

(
1

ε∞
− 1

ε0

)
, (5.1)

where ~ωPOP is the polar optical phonon energy, m∗ is the effective mass and ε0 and

ε∞ are the DC and high-frequency dielectric constants, respectively. Plugging in the

known material constants for GaN yields τe−ph ' 9 fs or a scattering rate of ∼ 1 ×

1014 s−1. This is more than an order of magnitude faster than the deformation potential

scattering rate, which suggests that POP emission is the dominant phonon-mediated

relaxation mechanism for electrons in GaN. In the absence of hot phonon effects, the

phonon absorption rate is ∼ 0.5×1012 s−1[111] owing to the relatively smaller occupation

of POPs at room temperature. Note that, unlike thermalized bulk or 2DEG electrons,

POP scattering for hot electrons with energies > 1 eV is a fairly elastic process.

In addition to intravalley POP processes, optical phonons can also mediate intervalley

scattering events in which an electron experiences an abrupt change in both wavevector

and effective mass. The closest satellite valley in GaN is the L valley, which researchers

estimate is 1 − 2 eV above the Γ valley minimum[113, 114, 115, 116]. An electron with

kinetic energy greater than the L valley minimum may scatter from Γ→ L with an optical

phonon providing the necessary momentum difference. This kind of scattering event is

potentially important for hot electrons in III-N HETs, which are routinely launched
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with energy > 1 eV. If present, intervalley scattering can dramatically increase electron

reflection at the collector barrier by inducing a large effective mass mismatch between

electron states in the base and the collector.

Phonon scattering processes are always present even in perfect crystals. Real semi-

conductor crystals invariably contain defects, whether they be structural defects like

threading dislocations or impurities like vacancies or ionized dopants. Many of these

defects can be treated as isolated point or line charges, which scatter electrons according

to a Rutherford-like formula[117]. The scattering cross section depends inversely on the

square of the incident energy so that high-energy carriers “see” a smaller target area

than do low-energy carriers. As such we would expect charged defect scattering to be

less prominent for hot electrons than for thermalized electrons near the band edge.

It has been shown that for doping densities of ∼ 1018 cm−3 the defect-limited mobility

is over an order of magnitude larger than the optical phonon-limited mobility for 2DEG

electrons at room temperature[41] . This implies that defect scattering rates are at least

an order of magnitude slower than POP scattering rates. Furthermore, these rates are

calculated for thermalized electrons close to the conduction band edge. For reasonable

doping levels (1016−1019 cm−3) the high-energy electron scattering rates drop by an order

of magnitude compared with the low-energy rates[118, 18]. For this reason we expect

defect scattering to be relatively slow and POP scattering to be the dominant overall

scattering mechanism for hot electrons in GaN. It should be noted that for electron

energies in excess of 1.5 eV, deformation potential scattering becomes appreciable and

cannot be neglected. In the experiment presented in this chapter, however, electrons

are launched with an energy of ∼ 1 eV, safely below the onset of deformation potential

scattering.

115



Hot Electron Mean Free Path in GaN Chapter 5

5.2 Energy and momentum relaxation rates in GaN:

concepts and previous measurements

The electron-phonon scattering time (τe−ph) discussed in the previous section is the

most fundamental time scale associated with scattering interactions. However, it is usu-

ally not possible to measure τe−ph directly. Rather, the effects of phonon scattering are

evident in the processes of momentum and energy relaxation. These relaxation events

have their own characteristic time scales, which can be directly probed in real semiconduc-

tor films and devices. Here we discuss these processes conceptually and experimentally

with the goal of better understanding the mean free path measurement in the HET.

The difference between energy and momentum relaxation can be most readily un-

derstood by considering the schematic in Fig. 5.1. The figure depicts an ensemble of

electrons injected with initial longitudinal momentum k0
z . For t > 0, the electrons un-

dergo scattering events that perturb their individual momenta and cause the ensemble

average momentum, 〈kz〉, to decrease from k0
z . After a time equal to the momentum

relaxation time (τm), the longitudinal momenta are partially randomized such that 〈kz〉

has decreased by 1/e. Note that we have assumed that the scattering events are fairly

elastic so that at t = τm the kinetic energy (represented by the length of the arrows in

Fig. 5.1) is approximately equal to its initial value: 〈Ez〉 ∼ E0
z = (~k0

z)
2
/2m∗. In other

words, we are assuming that the energy loss per collision is small compared with the

initial kinetic energy. Furthermore, it is known that the electron-POP interaction favors

small angle scattering events[110]. This implies that the electrons must undergo multiple

scattering events in order to relax their momentum (i.e. τm > τe−ph). For t > τm the

electrons continue to scatter, losing a small amount of kinetic energy with each collision.

Eventually, after a time equal to the energy relaxation time (τE), the electrons have

lost most of the excess kinetic energy acquired at injection and have partially relaxed
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t = 0

t < τm

t = τm

t = τE

〈kz〉 = k0
z

〈kz〉 < k0
z

〈kz〉 = (1/e)k0
z

〈Ez〉 = (1/e)E0
z

Figure 5.1: Schematic representation of momentum and energy relaxation for an in-
jected electron ensemble with initial momentum k0

z [106]. Momentum relaxation oc-
curs when the direction of propagation is mostly randomized; energy relaxation occurs
when most of the electron kinetic energy in excess of kBT is lost.

to the band edge. At this point the average kinetic energy in the z-direction is equal

to (1/e)E0
z . Understanding these processes allows us to compare the magnitudes of the

three characteristic time scales: τe−ph < τm < τE.

For reasonably elastic scattering events τE can be substantially larger than τm. In the

III-N HET in particular hot electrons have Ez � ~ωPOP, implying that POP scattering

is largely elastic. We may, therefore, expect τE > τm in this case. This inequality was

confirmed by ensemble Monte Carlo calculations, which found that for 1 eV electrons

in GaN, the momentum relaxation rate is an order of magnitude faster than the energy

relaxation rate[119].

Attempts to measure or extract these characteristic time scales experimentally have

resulted in a broad range of values. One common technique used to measure relaxation

rates is the optical pump-probe scheme. In this method femtosecond optical pulses

are used to generate hot carriers in bulk GaN layers and probe the subsequent energy
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relaxation rate. One study found this rate to be 680 fs[120]. The authors then used an

energy loss rate model to determine the value of τe−ph that best matched their data; they

estimated a value of τe−ph = 200 fs. In another approach photoluminescence spectroscopy

was done on a high-electron-mobility transistor (HEMT) to determine the high-field

electron temperature in the channel[121]. When combined with the same energy loss

rate model, these measurements yielded τe−ph = 100 fs. Both of these values for τe−ph

are an order of magnitude larger than the theoretical prediction given by Eq. (5.1).

The authors explain this discrepancy with a combination of hot phonon absorption and

screening effects due to the high density of excited electrons (∼ 1020 cm−3 in Ref. [121]).

Electrical measurements have also been used to probe relaxation rates in GaN. In

one study, pulsed transport and heat pulse measurements were used to probe the energy

relaxation dynamics in bulk GaN epilayers[122]. Again the data was fitted using power

loss rate equations, from which τe−ph = 5 − 10 fs was extracted. In another study,

measurements of the optical-phonon-limited hall mobility in an AlGaN/GaN HEMT

yielded an estimated momentum relaxation time of τm ∼ 4 fs[123]. This implies a value

of τe−ph < 4 fs, less than half the value of the theoretical prediction.

There are a variety of possible explanations for the large range of τe−ph values and

their deviation from the theoretical prediction. First, it is known that τe−ph is directly

proportional to the density of states, which increases with energy[124]. This dependence

is not accounted for in Eq. (5.1), which implicitly assumes that the carriers reside

relatively close to the conduction band edge. Therefore, any value of τe−ph extracted

from relaxation rates will depend on the specific excitation conditions. Furthermore, the

loss rate models used in these studies may rely on assumptions (e.g. strong electron-

electron interactions) that do not apply to the given experimental conditions. For these

reasons it is very difficult to extract a reliable value of τe−ph from experimentally measured

relaxation rates. There are simply too many measurement-specific factors that must be

118



Hot Electron Mean Free Path in GaN Chapter 5

accounted for. However, the measured relaxation times do provide a reliable estimate

of an upper bound on τe−ph. This statement may not impress researchers as much as

quoting a value for τe−ph, but such a statement is undoubtedly more trustworthy.

The experimental results discussed above probe only intravalley scattering events.

One study has examined intervalley Γ → L scattering times using wavelength-tunable

pump-probe spectroscopy[125]. Their results suggest that the L valley lies approximately

1.1 eV above the Γ valley minimum and that transitions from Γ → L occur in 1.02

ps. Interestingly, the transition from L → Γ takes 20 times longer, implying that L

valley states scatter very slowly compared to Γ valley states. To determine the effect

of Γ → L scattering on quasi-ballistic electrons in the HET, we can compare the hot

electron transit time in the base to τΓ→L. A previous report[126] calculated that for

electron transport along the crystal c-axis in GaN, the group velocity at energies around

1 eV is 8.5 × 107cm/s. For a total base width of 15 nm, the transit time is, therefore,

about 18 fs, much shorter than τΓ→L. From these results we may conclude that while hot

electrons in the base may have enough energy to scatter from Γ→ L, this process is too

slow to appreciably affect hot electron transport in the HET.

5.3 Theory: the effect of hot electron scattering on

the transfer ratio

In order to extract the hot electron mean free path from transistor measurements,

we must form a quantitative connection between microscopic scattering events in the

semiconductor and measurable, macroscopic device metrics like the transfer ratio (α).

The conceptual picture of hot electron transport in the base is roughly equivalent to the

process shown in Fig. 5.1. Electrons are injected from the emitter into the base with
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a narrow distribution of momenta centered around k0
z . As they travel across the base,

these electrons experience an increasing number of scattering events and the ensemble

average, 〈kz〉, decreases toward zero. A depressed value of 〈kz〉 results in increased

reflection at the base-collector barrier and a measurable decrease in α. By this logic we

expect that the transfer ratio of the device will decrease with increasing base width. In

order for this simple trend to be scientifically useful, we must determine the quantitative

relationship between scattering events in the base and α. It is important to note that

because the transmission characteristics of the collector barrier depend only on kz the

HET is sensitive to momentum rather than to energy relaxation. In other words, the

collector barrier provides a filter for kz (or Ez) but not for E.

We start with several assumptions: first, we will assume that after electrons are in-

jected into the base, they experience highly directional, quasi-ballistic transport. Carriers

receive kinetic energy from the electric field in the case of a polarization dipole emitter

and from the crystal lattice in a heterojunction emitter. This picture contrasts with that

of diffusive transport where carrier motion is thermally generated and, on a microscopic

level, random. Secondly, we assume that each electron in the base scatters independently.

This is tantamount to an assumption of low-level injection such that electron-electron

interactions are negligible. Finally, we will restrict our analysis to situations involving a

few scattering events at most. While unrealistic for bulk semiconductors, this assumption

is reasonable for the highly scaled base layers that appear in the HET.

These assumptions allow us to write the following simple differential equation for

electron scattering in the base:

dnE
dt

= CnE, (5.2)

where nE is the number of electrons with energy E that have not scattered and C is a

constant related to the scattering rate. This equation implies a constant, independent
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scattering rate for each electron irrespective of its initial kinetic energy. This approxi-

mation is reasonably accurate for the narrow electron distributions that are injected into

the base because the scattering rate is very weakly dependent on energy over that range.

The solution to Eq. (5.2) is a decaying exponential of the form

nE = n0
Eexp(−t/τ), (5.3)

where n0
E is the injected electron density at energy E and τ is the (energy-independent)

time between scattering events. The following intuitive boundary conditions are satisfied:

at t = 0 the number of unscattered electrons is n0
E, or the total number of electrons at

energy E (i.e. no carriers have scattered). As t → ∞ the number of nonscattered

electrons vanishes as expected.

The mean free path is given by the product of the injected electron group velocity

and the scattering time:

λMFP = v0
Eτ. (5.4)

If we define z ≡ v0
Et along the device transport axis we may write Eq. (5.3):

nE = n0
Eexp(−z/λMFP). (5.5)

Equation (5.5) is valid for any low-density, narrow distribution of hot electrons traveling

ballistically. To obtain an expression containing macroscopic variables, we must make

one additional assumption: the electrons that have scattered, even once, have a random-

ized distribution of momenta. This is equivalent to stipulating that it only takes one

scattering event to relax the momentum. While not physically accurate, this assumption

will drastically simplify the algebra without compromising the final result. Furthermore,

compared with the unscattered electrons, the relaxed electrons will contribute a negligible
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amount to collector current. This is because the ensemble average of kz is much smaller

for the scattered electrons so that they are much more likely to be reflected at the col-

lector barrier. We may then write the following expressions connecting the unscattered

electron distribution to the transfer ratio (α):

α =
1

N

∫
nET̃ (E)dE,

α0 =
1

N

∫
n0
ET̃ (E)dE, (5.6)

where N =
∫
n0
EdE is the total number of injected electrons. The first expression in

Eq. (5.6) states that the ratio of transmitted to incident electrons is the product of

the unscattered electron distribution and the transmission probability at the collector.

There is no contribution from scattered electrons because we have assumed that their

transmission probability vanishes. The second expression specifies the transfer ratio in

the absence of scattering (α0) or for zero transit length.

Multiplying both sides of Eq. (5.5) by (1/N)T̃ (E)dE, integrating and substituting

expressions (5.6) produces the main result of this section:

α = α0exp(−z/λMFP) . (5.7)

Insofar as Eq. (5.7) captures the relevant hot electron physics, a plot of α vs. base

width on a semilog scale will be linear with slope −1/λMFP and ordinate axis intercept of

ln(α0). It is important to remember our earlier assumption that the mean free path does

not depend on kinetic energy for narrow distributions of injected electrons. This allows

us to remove λMFP from the integrals (5.6) and obtain the simple expression above.
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5.4 Device design and experimental results

To make use of Eq. (5.7) to extract the mean free path, three HET samples were

grown with different base thicknesses but otherwise identical design. The layer structure

of the three HETs and the processed device topology is shown in Fig. 5.2; the conduction

band diagram for the 10 nm GaN base HET is shown in Fig. 5.3. The emitter-base (φEB)

and base-collector (φBC) barriers were formed by thin InGaN and AlGaN polarization-

dipole layers[127], respectively, and the thicknesses of the GaN layer in the base (tGaN)

were designed to be 3, 7 and 10 nm.

Strictly speaking, the base is composed of all layers in between the emitter and

collector barrier maxima. Electrons that are injected over the emitter barrier must travel

across the 5 nm InGaN dipole layer as well as the GaN base layer before arriving at the

collector barrier. As such, the true base width is given by tB = tInGaN + tGaN. While

the presence of the InGaN layer clearly affects the magnitude of the transistor gain, this

layer is common to all three devices and, therefore, does not play a role in the extraction

of the mean free path.

The three HETs were grown by MOCVD on the nitrogen-polar (0001̄) plane on 4◦

miscut sapphire substrates. The contact layers were doped to 5 × 1018 cm−3 to allow

for low-resistance ohmic contacts while the remaining layers were unintentionally doped

(∼ 2×1017 cm−3). During device processing emitter and base mesa isolation was achieved

with conventional optical lithography and low-power reactive ion dry etches (RIE) with

BCl3/Cl2 chemistry. Typical emitter mesa dimensions were 5µm × 50µm. Non-alloyed

Al/Au ohmic contacts were deposited on the emitter, base and collector layers using

e-beam evaporation. Low sheet resistance in the highly scaled base was enabled by the

polarization-induced 2-dimensional electron gas (2DEG) at the AlGaN/GaN interface.

Furthermore, as discussed in Chapter 3, the N-polar growth orientation enabled the direct
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Figure 5.2: Processed layer structure for the mean free path N-polar HET series. The
layers that make up the emitter, base, and collector have been labeled along with the
z-axis orientation as it appears in Fig. 5.3.

deposition of ohmic base metals on the low-bandgap InGaN layer to achieve low contact

resistance[75].

It is known that biasing a HET with large base resistance and large base-collector

leakage in the common-base configuration can lead to erroneously high values of α because

the base-collector diode leakage current is mistaken for hot electron current (see Chapter

3 of this thesis or Ref. [81] for a detailed discussion). This results in the overestimation of

the mean free path as seen in a previous report[128]. To ensure an accurate measurement

of α, the devices were biased in the common-emitter configuration: a constant base

current density (JB) was injected and the collector voltage (VC) swept from zero to reverse

bias while measuring the collector current density (JC). Furthermore, the collector barrier

was made large (φBC ∼ φEB) in order to reduce base-collector diode leakage. This design

is optimal for achieving reliable values for α and for measuring λMFP but is, of course,

not suitable for achieving superior transistor performance.

The common-emitter I − V characteristics of the three HET samples are shown in
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Figure 5.3: Conduction band diagram for the HET with tGaN = 10 nm. The emit-
ter-base and base-collector barrier heights are labeled φEB and φBC, respectively and
the total base thickness is labeled tB. The dashed red line indicates the Fermi level of
the device at zero bias.

Fig. 5.4. All three devices show clear current modulation and a saturation region span-

ning about 3 V. The breakdown voltage is about 4 V for tGaN = 10 nm and increases

for tGaN = 3, 7 nm as the hot electron current becomes relatively larger than the base-

collector leakage current (for a detailed discussion of the common-emitter operation re-

gions see Chapter 3 of this thesis). It is immediately clear that the collector current and,

therefore, the transistor gain increases with decreasing tGaN as expected from Eq. (5.7).

Furthermore, the output conductance becomes more severe as tGaN decreases. This is

because the electrons arriving at the collector barrier have higher energy for tGaN = 3 nm

than they do for tGaN = 10 nm and are thus more sensitive to changes in collector trans-

mission with bias. This is the case only because the electron arrival energies are smaller

than φBC. If the arrival energies could be made larger than φBC, increasing gain would,

in fact, reduce output conductance. Therefore, a more general statement is appropriate:

the closer the electron arrival energies are to φBC, the higher the output conductance.

The contact and sheet resistances for the three HETs were extracted via the transfer
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Figure 5.4: Common-emitter I − V characteristics for (a) the 10 nm, (b) the 7 nm
and (c) the 3 nm GaN base devices.
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Figure 5.5: Base contact resistance (blue dots) and sheet resistance (red squares)
extracted from TLM measurements for different GaN base width (tGaN).

length method (TLM) on the base layer and the results are shown in Fig. 5.5. Base

contacts are ohmic for all three values of tGaN. The contact resistance increases from

0.34 to 0.91 Ω · mm and the sheet resistance from 517 to 1455 Ω/� as tGaN decreases.

This is because the 2DEG at the AlGaN/GaN interface moves closer to the InGaN layer

on the collector side of the base with decreasing tGaN, where it experiences more frequent

alloy scattering events. This results in a reduced 2DEG mobility and a resulting increase

in base resistance.

To extract the transfer ratio (α), three devices were measured for each tGaN. For

each device and each JB, α was calculated from the common-emitter I − V at the knee

voltage. These values were then averaged to produce one value for each combination

of tGaN and JB (Fig. 5.6(a)). The values of α increase with increasing JB as explained

in Chapter 3. The transfer ratios for JB = 200 A/cm2 along with the exponential fit

function are pictured in Fig. 5.6(b). From the fit we extract a value of λMFP = 10.3 nm

and α0 = 0.009.

We can use the extracted mean free path to calculate the momentum relaxation
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JB = 200 A/cm2. The data in (b) are taken from the yellow box in (a).
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time via: τm = λMFP/vg, where vg = (1/~)(dE/dk) is the group velocity of the injected

electrons. We will use the value vg = 8.5×107cm/s for 1 eV electrons given in Ref.[126] to

calculate: τm = 12.1 fs. This relaxation time is very similar to the low-energy theoretical

scattering time: τe−ph = 9 fs. The similarity between τm and the theoretical prediction for

τe−ph suggests that indeed optical phonon emission is the primary source of momentum

relaxation for hot electrons in GaN. Additionally, we can speculate that for our specific

injection conditions, τe−ph < 10 fs. This is very reasonable in light of our earlier discussion

where we determined that τe−ph decreases from 9 fs with increasing energy.

If we consider that the InGaN layer provides an additional 5 nm of scattering length,

then the true base thicknesses used in this experiment were tB = 8, 12 and 15 nm. A

mean free path of 10 nm implies that only the HET with tGaN = 3 nm was truly ballistic

while electrons in the 7 and 10 nm GaN base samples experienced majority momentum

relaxation. This result confirms the observation made in Chapter 3, where we analyzed

the launch and arrival energies in the 3 nm GaN base HET and determined that the

electrons were indeed traveling ballistically.

The value α0 is the transfer ratio that would result from removing the GaN in the

base entirely (tGaN = 0). The low value of α0 = 0.009 suggests that removing the GaN

would not improve the device gain appreciably, owing to the large φBC, which would

continue to reflect the vast majority of electrons. Furthermore, the collector simulations

presented in Chapter 3 suggest that an α0 of 0.009 corresponds to a mean electron arrival

energy of about 0.8 eV. This is similar to the emitter injection energy and, therefore,

suggests that there is little electron relaxation occurring in the 5 nm InGaN dipole layer.

In this chapter we have investigated quasi-ballistic hot electron transport in the base

layer of the III-N hot electron transistor. By using the HET as a filter of electron

momentum states, we have measured a hot electron mean free path of 10.3 nm and a

corresponding momentum relaxation time of 12.1 fs. These results confirm our earlier
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hypothesis that polar optical phonon emission is the dominant relaxation mechanism for

hot electrons in GaN. Reducing the GaN thickness in the base was found to increase

transistor current gain (β) but not enough to overcome the effects of the large base-

collector barrier, which ensures that β remains much less than 1.

This concludes the data analysis section of this thesis. In the final chapter, we will

summarize our results and suggest future experiments.
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Chapter 6

Conclusions and Future Work

In this thesis we have explored various transport phenomena that affect III-N hot elec-

tron transistor performance. These phenomena fall within one of two categories: barrier-

limited transport of majority carrier electrons in the vicinity of a heterointerface and hot

electron transport of minority carriers in the base layer. Because our primary method

for analyzing device performance is current-voltage-temperature measurements, it is nec-

essary to determine the effects of microscale transport phenomena on measurable device

metrics. To this end we have developed several theories to assist in the device analysis.

In Chapter 2 we developed a comprehensive theory of coherent electron transport in

the vicinity of a barrier. We reviewed various methods for calculating the transmission

probability before selecting the quantum transmitting boundary method for our devices.

The ability to determine the precise transmission characteristics of an arbitrary barrier

allowed us to model the effect of a wavepacket of hot electrons incident on the collector

barrier of a HET and thus determine the arrival energy of these electrons from sim-

ple transistor measurements. Furthermore, the transmission probability was combined

with the Tsu-Esaki formula to generate theoretical current-voltage-temperature curves

for relevant barriers. These simulations were compared with experimental data to help

131



Conclusions and Future Work Chapter 6

determine the effects of tunneling and voltage partitioning on observed device behav-

ior. We also redefined the concept of the Richardson constant to account for nonunity

tunneling probability at a barrier interface. The simulations developed in Chapter 2 are

generally applicable to a wide variety of barriers and devices, including, but not limited

to, HETs.

At the end of Chapter 2, we presented the theory of lateral barrier height inhomo-

geneity and explored the effects of barrier fluctuations on electron transport. We found

that the primary indicator of barrier height inhomogeneity is a nonlinear Richardson

plot. Moreover, we are the first to propose replacing the linear fit to the Richardson data

with a second order fit, which simultaneously yields values for the effective Richardson

constant, the mean barrier height and the standard deviation. We used this theory to

provide an accurate description of the temperature-dependent transport properties of a

GaN Schottky diode.

In Chapter 3 we investigated the properties of the N-polar HET and found that N-

polar designs offer extremely low base resistance but at the cost of dramatically reduced

current gain. The cause of both the low base resistance and the low gain was found to be

the large AlGaN collector dipole barrier. We went on to analyze the InGaN emitter diode

and found strong evidence of barrier height inhomogeneity, which was most likely caused

by microscale fluctuations in indium composition in the barrier layer. These fluctuations

give rise to resistive voltage drops in the intrinsic barrier region, which ultimately lim-

ited the forward current density. The InGaN diode results were corroborated via electron

injection spectroscopy with the N-polar HET. These measurements along with a simu-

lation of the transfer characteristics of the collector barrier demonstrated that the hot

electron injection and arrival energies were nearly identical. This observation confirmed

the barrier height inhomogeneity hypothesis and implied that electrons were traversing

the base without appreciable scattering loss. We concluded that, although the current
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gain is much less than unity, we have indeed achieved ballistic transistor operation in the

N-polar HET.

In Chapter 4 we investigated the Ga-polar HET and found that the base resistance was

higher than the N-polar device but that the current gain was substantially larger. Both

of these observations were attributed to the smaller InGaN collector barrier. Analysis of

the AlN emitter diode also revealed the presence of barrier height inhomogeneity, and

subsequent fits produced barrier metrics that were in line with design expectations. The

effective Richardson constant was found to be 100 times smaller than the theoretical

value due to the tunnel barrier present in the AlN diode. This result suggested that the

large current densities needed for high-frequency device operation cannot be achieved

with this kind of tunnel injector. The physical cause of barrier height inhomogeneity in

AlN tunnel diodes remains unknown and further investigation is needed.

Finally, in Chapter 5 we discussed hot electron transport in the base. We reviewed

the possible relaxation mechanisms for hot electrons in GaN and found that polar optical

phonon scattering was likely the dominant mechanism. By growing several N-polar HETs

and measuring the dependence of the transfer ratio on the base width we were able to

extract a hot electron mean free path of 10.3 nm. This value corresponded to a hot

electron relaxation time of 12.1 fs, similar to the theoretically derived electron-phonon

emission time of 9 fs. For future ballistic devices with moderate injection energies, the

base must have a total thickness equal to or less than 10 nm.

6.1 Future Work

Future experimental work on III-N HETs could be driven by technological goals,

scientific goals or, preferably, both. In the technological space, III-N HETs are still a

long way from competing with state-of-the-art bipolar devices. The most immediate

133



Conclusions and Future Work Chapter 6

hurdle to achieving technologically relevant performance is the low gain that is present

in both Ga-polar and N-polar HETs. In both cases, the gain is limited by the relatively

small difference between emitter and collector barrier heights. For N-polar devices the

emitter and collector barrier heights are, at best, comparable. Currently, it is not possible

to build a III-N heterojunction barrier that holds even a few volts without appreciable

leakage currents. Therefore, one path forward (not discussed in this thesis) involves

reducing the leakage currents through nitride heterostructures. Assuming the leakage is

caused by conductive threading dislocations, this can be done either by growing HETs

exclusively on bulk GaN substrates or by inserting thin p-doped layers to create a planar

doped barrier. Reducing leakage would allow us to reduce the collector barrier height

thus increasing gain without losing control of the device.

Assuming that either the leakage currents cannot be eliminated or that bulk GaN

substrates are prohibitively expensive as a long-term solution, the other method for

improving gain is to better understand and improve the emitter diode characteristics

in both Ga-polar and N-polar devices. As we have seen, barrier height inhomogeneity

causes the mean electron injection energy to decrease as electrons preferentially travel

through low barrier regions of the emitter. This is particularly troubling because it is

possible that, depending on the physical source of the inhomogeneity, the magnitude of

the fluctuations increases with mean barrier height. That is, if barrier fluctuations tend

to exist as a roughly fixed percentage of the total barrier height, increasing the AlN

thickness or the indium composition will not cause a corresponding increase in injection

energy and gain. In addition, we have seen that barrier height inhomogeneity chokes

the emitter current density, which is an additional hurdle to overcome in the future.

Therefore, the physical sources of inhomogeneity must be unambiguously identified if we

hope to eliminate these deleterious effects.

This brings us to the scientific aspect of future HET research. Ultimately, sustained
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progress will be enabled by a thorough understanding of device function and the relevant

transport physics. As such, barrier height inhomogeneity and its role in HET function

must be more thoroughly understood. In this thesis we have provided a few experimental

and analytical methods that can be used to characterize these effects. However, there is

much that remains unknown. At this point, our hypothesis that BHI in N-polar HETs

is caused by indium compositional fluctuations is just that, a hypothesis. Perhaps half

a dozen more devices must be grown before the physical cause can be clearly identified.

For example, one could imagine growing an indium composition series so that the effects

of alloy composition on dipole barrier transport can be determined. Also, growth on

bulk or freestanding GaN substrates will help identify the role, if any, of dislocations on

nonideal transport characteristics.

The most interesting studies would investigate the effects of changing growth condi-

tions on device properties. For example, if the indium composition could be fixed while

changing the temperature or ammonia flow (for MOCVD) or gallium flux (for MBE),

diode measurements could provide a probe into the surface kinetics of the adatoms. Per-

haps changing one of these conditions causes the indium and the gallium to segregate,

which would increase the magnitude of the barrier height fluctuations. We could imag-

ine asking the following research questions: for the Ga-polar emitter diode, does the

growth temperature of the AlN affect the observed transport characteristics? Perhaps

temperature affects the uniformity of the AlN layer and, therefore, the magnitude of the

fluctuations. Also, what length scales are relevant? Do these effects disappear as the

device is shrunk to submicron size or do the fluctuations occur on a scale that is too small

to approach with the technology at our disposal? These questions are surely relevant for

building a high-performance HET. But they are also relevant in their own right as studies

that would more likely be found in a materials science department.

Despite the success of the electrical measurement technique and the proposed analysis
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methods, materials characterization techniques would be extremely illuminating. For

example, transmission electron microscopy (TEM) could be used to determine whether

there are AlN thickness fluctuations on length scales comparable to our device size. Such

a technique might also be used to probe for thickness fluctuations in the InGaN layer.

Future experiments that rely primarily on device measurements to answer these kinds

of questions will have to be accompanied by suitably rigorous transport models. As

we have seen, device behavior that deviates from idealized concepts is nothing except

confusing without a framework within which our observations may be understood. To

this end, efforts must be made to improve and refine the models proposed in this thesis.

Such models are bound to encounter the natural limits of their applicability at which

point they become insufficient. It has been said that the physical world tends to hide her

true nature and there may be no place where this is more true than in the hot electron

transistor. Still, I believe that with enough curiosity and bravery future researchers will

find within the HET many fascinating phenomena to discover and loads of rich physics

to comprehend.
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Appendix A

Evaluation of the Gaussian integral

We want to evaluate the integral:

A∗T 2

σS

√
2π

∫ ∞

−∞
exp

(
−(φB − φB)2

2σ2
S

)
exp

(−qφB

kBT

)
dφB. (A.1)

We make the following substitutions:

uS ≡
q(φB − φB)

kBT
,

σT ≡
qσS

kBT
,

duS =
q

kBT
dφB, (A.2)

so that the integral is transformed into

A∗T 2

σT

√
2π

exp

(−qφB

kBT

)∫ ∞

−∞
exp (−uS) exp

(−u2
S

2σ2
T

)
duS. (A.3)
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This is a standard Gaussian integral of the form:

∫ ∞

−∞
exp

(
−ax2

)
exp (−2bx) dx =

√
π

a
exp

(
b2

a

)
, (A.4)

so that Eq. (A.3) evaluates to

A∗T 2

σT

√
2π

exp

(−qφB

kBT

)√
2πσTexp

(
σ2

T

2

)
, (A.5)

which simplifies to Eq. (2.66).
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Appendix B

Calculation of extrinsic voltage

drops

The device structure that we will analyze is pictured in Fig. B.1. Because these structures

usually appear in the context of a vertical transistor, the top layer will be called the

emitter (E) and the bottom layer the base (B). The relevant resistances, thicknesses and

length scales have been labeled accordingly. Our goal is to determine the proportion of

an applied bias that appears across the extrinsic regions. To do this, we first calculate

the values of each resistor appearing in Fig. B.1(a) before multiplying by the current to

get the voltage drop.

From TLM measurements the contact resistance (rC) is extracted from the intercept

of the fit line on a plot of resistance times pad width vs. TLM spacing. Common units

for rC are Ω ·mm. The resistance between the emitter contact and the emitter bulk is:

RE,C =
rE,CLT

AE,C

, (B.1)

where AE,C is the area of the emitter contact and LT is the transfer length, equal to the
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Figure B.1: (a) Side view and (b) top down view of the device mesa.

140



Calculation of extrinsic voltage drops Appendix B

negative of the x-intercept on the resistance vs. TLM spacing plot.

The spreading resistance in the emitter mesa (RE,bulk) is calculated by first determin-

ing the bulk resistivity:

ρE = RE,sheettE, (B.2)

where tE is the thickness of the emitter contact layer. The spreading resistance is then

RE,bulk = ρE
tE
lEwE

= RE,sheet
t2E
lEwE

. (B.3)

The next resistor in Fig. B.1(a) is rEB or the dynamic resistance of the diode. This

is the intrinsic, bias-dependent device resistance and we will leave this as an unknown.

The bulk resistance in the base layer is

RB,bulk = RB,sheet
lEB

lB,C
. (B.4)

Note that Eq. (B.4) is equal to the resistance of only one of the four sides of the access

region in Fig. B.1(b). Therefore, we will only consider currents flowing into the part of

the base contact whose length is labeled lB,C. The current flowing into this side of the

contact (I ′) is given by:

I ′ = I
lB,C

2lB,C + 2wB,C

. (B.5)

Finally, the resistance between the base contact and the base bulk is

RB,C =
rB,C

lB,C
, (B.6)

where rB,C is the contact resistance measured from the base TLMs. The reduced current

I ′ also flows through RB,C.
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Putting it all together, the voltage drop in the extrinsic regions at current I is:

Vext = I

(
rE,CLT

AE,C

+RE,sheet
t2E
lEwE

+RB,sheet
lEB

2lB,C + 2wB,C

+
rB,C

2lB,C + 2wB,C

)
. (B.7)

Measurements of the contact and sheet resistance in the emitter and base layers thereby

enable the complete determination of the extrinsic voltage drops.
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