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Abstract

Level Set Strategy for SCFT

Gaddiel Ouaknin

This thesis investigates the design of sharp interface level set methods in the context

of self-consistent field theory (SCFT) in polymer physics. SCFT computes the structure

and energy of inhomogeneous self-assembling polymers at thermodynamic equilibrium.

Level set methods are based on an implicit representation of free boundaries, which

enable motions with arbitrary change in topology. In addition, recent advances on how

to impose Robin boundary conditions enables the study of free boundary problems of

interest in the community interested in self-assembly.

We first present a computational framework, encoded on a forest of quad/oct-trees in

a parallel environment. We then present results of imposing sharp Neumann boundary

conditions as was first proposed by de Gennes, which enables SCFT computations of

meaningful quantities at the boundary of irregular geometries. We then introduce the

concept of functional level-set derivative in the context of SCFT and rigorously derive

expressions for the change of energy of a diblock copolymer with respect to an enclosing

shape. The level-set derivative is then used to embed SCFT into a variable shape

simulator, where the internal structure and the enclosing shape are coupled together

and evolve in tandem in order to reduce the energy of the diblock copolymer. Finally

an algorithm for solving the inverse problem for directed self-assembly is presented.
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Chapter 1

Introduction

Block copolymer self-assembly find a myriad of applications, from the micro elec-

tronics industry for patterning in lithography [84, 83] to drug delivery systems [46, 70]

to food sciences [63]. In the case of an infinite domain, the emerging structures depend

only on the interactions between the blocks. Self-Consistent Field Theory (SCFT) has

provided a predictive computational framework that enables the study of such systems

[7]. However, this veritable formalism, now over 40 years old, has never succumbed to

numerical solutions in other than prescribed domain shapes. In the case of free sur-

face polymers, it is the coupling between the free surface shape and the polymers that

determines the thermodynamic equilibrium [32]. We introduce a multiscale simulation

framework for free boundary block copolymers, which enables investigations of the in-

terplay between the free surface’s geometry and the self-assembled morphology. This

represents a new frontier for SCFT and paves the way to enabling the solution of a wide
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range of important problems to be addressed, from spreading of block copolymer droplets

and films, to predictions of shape evolution during copolymer nanoparticle synthesis, to

understanding the mysterious cubosome phases formed by edible surfactants in food sci-

ence. Furthermore, the methodology we introduce can also be used as an inverse solver

in the context of directed self-assembly (DSA), which could be extremely influential as

semiconductor chip and storage manufacturers have increasingly turned to DSA as they

seek to pattern microelectronic devices at ever smaller scales while limited by expensive

photolithography tools that have not kept up with the pace of miniaturization.

The distinct agents of polymeric materials are long chains with organic molecules

attached to the backbone of the chain. Diblock copolymers are polymer chains where one

fraction of the chain is made of molecule A and the remaining from molecule B. When

placed together, they will self assemble into ordered structures due to the competition

between entropic and chemical forces. The entropy contributes to the mixing of all

the chains and form a disordered phase, whereas the chemical force contributes to the

segregation of A and B into two different spatial regions.

The theory of inhomogeneous polymers has been developed through the 60’s to the

beginning of the 80’s. The mathematical model considers an Hamiltonian that takes into

account the entropy energy and the interaction energy between the components A and

B using the pair (fA, χAB). Using an Hubbard-Stratonovitch transform the Hamiltonian

is represented through an integral over fields instead of densities. The mean field theory

2



referred, or self consistent field theory (SCFT), has been initiated by Helfand in 1975

[35, 36] and has become a mature theory.

The use of SCFT as a computational tool has started in the 90’s and has had a

profound impact. In 1994 [58] the self consistent theory was used as a computational

tool to build a phase diagram. This methodology was able to map the parameters

(fA, χAB) into a phase diagram with BCC, cylindrical and lamellar phases among other.

In addition it did find new phases that had not been predicted by simpler theories.

For instance the gyroid phase was found to be a stable phase between the lamellar

and the cylindrical phases. In addition, it helped to predict how to stabilize particular

phases using a blend of diblock-homopolymer [61]. It is used to guide how to play with

parameters to obtain long range order and to affect the order itself. Since then SCFT

has been used as a computational tool and has been able to predict phase diagrams for

many different polymer architectures and component combinations [7] and shapes with

success [52, 51, 50, 49, 48, 47]. More Recently, SCFT is used to investigate order in thin

films [9, 8, 39]. SCFT is therefore a predictive computational tool that has impacted

many fields of science and engineering.

Considerable research has advanced our understanding of which phases develop in

the bulk of diblock copolymer melts. Understanding and controlling phase formations in

free boundary domains, however, is still in its infancy. Free boundary domains present

additional scientific and technological challenges due to the delicate balance between size

effects, substrate interactions, surface tension forces, the concentration of the minority
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component, incompressibility and other constraints, in addition to the copolymers’ nat-

ural propensity to segregate into phases. When the polymeric material is confined to

a specific shape, its structure and topology are a function of the shape and size of the

confinement domain. When polymeric materials are immersed as a non-solvent into a

fluid, their shape is free to evolve and in this case the equilibrium shape and phase are

both unknown. This is also the case of a polymeric material wetting a substrate, where

the bottom substrate is fixed but the upper surface is free. These are extremely chal-

lenging problems because of the two-way coupling between the shape of the confining

domain or free surface and the possible phase morphologies. This constitutes an infinite

dimensional parameter space that is particularly difficult to study. One of the crucial

goals of a predictive computational tool in this case is to enable the inverse problem

design, i.e. given a targeted design, what is the shape of the confined domain or free

surface (in addition to the usual parameters such as the pair (fA, χAB) in the case of

block copolymer) that will produce that design. However, the understanding of the be-

havior of diblock copolymers in free boundary domains is crucial for many important

applications. In addition to constituting a simple model system that can inform how

more general systems self-assemble, block copolymer with a free surface possess crucial

commercial and scientific applications. Gyroid phases can be used for drug de livery

systems, e.g. the cubosome, which is a cavernous gyroid structure [16], can be tailored

for solubilizing and delivering different therapeutic and diagnostic agents and can be

used as a controlled-release, intravenous drug delivery engine. Cylindrical phases can be
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used to create connections between layers of integrated circuits in the computer industry,

with the goal of advancing Moore’s Law at sub-20 nanometer resolution and decrease the

cost of manufacturing semiconductor components. Yet, without a predictive simulation

tools that can consider the interplay between the kinetics and thermodynamics effects

of free boundary copolymers, a clear understanding of how to control these phenomena

will remain illusive.

In none of previous of computational studies [53, 54, 34, 33, 14, 90, 56] was the shape

considered to be arbitrary and no optimization procedures can consider the geometry

of the confined domain or free surface as a parameter. In recent studies, researchers

have worked towards that goal and have introduced methodology to consider either

shape optimization in lithography or for free surfaces. In [53, 54], Latypov proposes

an inverse design algorithm where the shape is unknown and the input is a target

density. However, this approach uses a linearization of the mean field equations and the

shape is expressed through a parametric form and therefore constrained to that specific

shape parametrization. In [90], Stasiak et al. describe the free surface of a AB diblock

copolymer by adding a fictitious polymer C. This approach enables the motion of the

free surface of the AB diblock polymer. However, some careful choices of the segregation

parameters χAB, χAC and χBC must be provided in order to avoid the case where the

C component penetrates AB. In addition, shape optimization can not be performed

with this strategy. In [56], the authors use a slightly different strategy than that of

Stasiak et al. [90] and add terms to the Hamiltonian to represent the vapor phase of the
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polymer melt. In [34, 33, 14], a set of proposed strategies for inverse design lithography

is presented where they do not solve for the optimal confinement but instead solve for

the optimal location of posts inside the domain to obtain a desired pattern. While it is

a successful strategy it does not enable the change in the confinement’s shape.

We introduce a computational framework that enables the study of free boundary di-

block copolymers by combining the level-set formulation [73] for free boundary problems

with the self-consistent field theory description of self-assembly of diblock copolymers.

The level-set is an implicit non-parametric representation that can describe closed curves

of any shapes. We can thus consider optimizations in the parameter space (fA, χAB, φ)

where the geometry is represented by a level set function. In particular, we focus on two

important classes of applications. The first concerns the study of free surface copolymers.

The second type of problem is in the context of Directed Self- Assembly (DSA), a pattern-

ing technique for next generation lithography [52, 51, 50, 49, 48, 47, 53, 54, 34, 33, 14].

In this context, the challenge is to find template shapes that can direct the self-assembly

of the diblock copolymer into various cylindrical structures with a targeted topology.

In both cases, the computational approach is capable of combining the description of

self-assembly from a statistical mechanics approach, while considering a free boundary.

The symmetric diblock with a free surface is an excellent example. We consider a sim-

ple drop immersed in a fluid where the surface of the polymer behaves as the interface

between the polymer and the fluid. We simulate this process with our computational

engine where we apply homogeneous Neumann boundary conditions on the interface
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[21]. Figure 1.1 gives an example of free surface for symmetric diblock copolymers (in

this case, we added to the free energy Hamiltonian a surface tension term). The inter-

play between the phase and the shape in this case is subtle. In the bulk, a symmetric

diblock will have a lamellar morphology [24]. The lamellar morphology means that there

is a symmetry in the axes perpendicular to the lamellar direction. The density of the

polymer will vary only in the direction orthogonal to the lamellae. On the other hand,

when immersed in a fluid as a droplet, surface tension will also play a role. If the shape

is driven by surface tension only, the droplet will generate a perfect circle. But in our

case, due to the lamellar phase which emerges inside the drop, the polymer will prefer to

push in the x direction to minimize stretching by forming domains of uniform thickness

and create an oval shape. The interesting points here are (i) that the shape plays a role

in the thermodynamic equilibrium phase of the self assembled material that is no less

important than the entropy and the chemical forces (ii) the phase plays a role on the

shape at equilibrium. Our computational approach demonstrates that it can properly

take into account the two-way coupling between these competing effects. In this case,

the phase diagram will be a function of the triplet (fA, χAB, V ), where V is the volume

of the polymer, instead of the simpler pair (fA, χAB).
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Figure 1.1: Drop Evolution (fA, χAB) = (0.5, 16)

Here we conserve the volume of the physical domain and evolve the shape such as

to minimize the free energy. We start from a circular shape and end up with a shape

elongated in the lamellar direction. The shape velocity has a higher net contribution in

the direction of the lamellar structure which forces the material to stretch itself in this

direction until the surface tension forces balance out. It does mean that the internal

anisotropic lamellar structure is transferred to the shape that follows the symmetry of

the internal structure. The cubosome is a fascinating three dimensional structure. The

minority region consists of a continuous network of a gyroid-like shape. It has various

chemical properties and can be used for many applications. One important of them is

drug delivery in the human body.

For the drug delivery to be successful, many things have to happen concurrently. The

most important is that it must carry it. The cubosome can do that due to its particular

morphology. Its particular cavernous structure allows it to trap the drug inside the

network. Then if used with a set of appropriate chemical properties such as hydrophilic,

hydrophobic philippic flavors, it delivers the drug in a controlled and sustained way.

To predict the morphology of the cubosome at thermodynamic equilibrium, one would
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either perform experiments, computations or both. A computation of such a problem

requires a variable shape SCFT solver to allow the investigation of the interplay between

the shape and the structure. A better understanding would allow to design cubosome

with the desired surface ratio and curvature to improve the drug delivery process both

for the transport and the storage of the drug.

Another important application of cubosome is in the food industry as one wants

to add cubosome to nutritional products to improve their flavor and or conservation

qualities. In this case the morphology of the cubosome may affect final flavor of the

food product and the interplay shape/structure is of importance.

In figure 1.2, we show an example of a 3D cubosome with a free surface. The shape

is evolved to minimize the free energy and we can see the continuous network of A inside

the cubosome. Simulations in this case can answer many questions: (i) do we obtain a

network structure, (ii) do we obtain a continuous or bicontinuous structure, (iii) what

is the surface/volume ratio obtained, (iv) how much the structure obtained is cavernous

and (v) how the parameters such as fA, χAB, the surface tension and the volume of the

cubosome affect all of these properties. From the result presented in figure 1.2 questions

(i)-(iii) can be answered for the set of parameters this simulation was run with: we

obtained a continuous network structure with a high surface/volume ratio.
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Figure 1.2: Cubosome Evolution (fA, χAB) = (0.36, 20)

Cubosomes have a network structure of the cubic phase and consist of cavernous

structures separating two channels and a large interfacial area [29]. They are at the

same time hydrophobic, hydrophilic and amphiphilic [29]. Due to their unique structure

cubosome materials can be used for cubosomal drug delivery such as melanoma therapy

[29]. They can be tailored for solubilizing and delivering different therapeutic and diag-

nostic agents and can be used as controlled release or intravenous drug delivery engine

[28, 70]. In a recent study it is shown how self-assembled structures are leveraged for

ophthalmic drug delivery [28] and in [70] they exploit the full range of properties of the

cubosome. They use the cubosome to sustain a drug and to deliver it in a controlled

way. The high ratio surface property is used to carry the drug and the phobic and

philic properties to provide a long duration sustained release of an hydrophobic drug.

In addition to drug delivery cubosome structures have been found in food materials

[63, 89]. A good understanding of the self-assembly process with a free surface will

improve our understanding of food materials and then their production. In the case of
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the micro electronic industry, one tries to direct the self assembly (DSA) of polymers

and to leverage the self-assembly of polymeric materials to create fine features. DSA

helps selecting position and orientation of features and to remove defects. A mask is

fabricated and a polymeric material is filled inside. In this application, a self-assembled

cylindrical phase is targeted. That is, the minority region of component A creates a two

dimensional topology of cylinders that is surrounded by the B component. By applying

dry or wet etching processes that are selective to A, the A component is removed and

small-scale features, e.g. channels, are created. These channels are then filled with con-

ductors/semiconductors, creating components that can be used in circuit design. The

challenge in DSA is to obtain the desired center to center distance of the components

and complex topologies of the design. Another use of polymer in the electronic industry

is to use body centered cubic (BCC) spheres on a thin film with long range order to

fabricate high density hard drives [83]. Last but not least is the inverse DSA problem.

In this case one wants to enforce a particular topology and morphology. While the pair

(fA, χAB) enforces the phase, long-range order is hard to obtain as natural defects can

emerge. Also in confined domains in some cases the shape can change the phase. Even

if we successfully obtain a phase cleaned of defects, we still need to obtain a certain

desired topology. So it is an inverse problem where we want to find (fA, χAB) as well as

the shape that will produce a desired output with specific characteristics. We evolve the

shape in such a way that when we the final shape obtained to solve the direct problem
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we obtain our density target. That is we solve an inverse problem with respect to the

shape.

In figures 1.3 and 1.4 we show examples with different topologies and distance to

distance center. The shape is the output of a shape optimization algorithm. These kind

of topologies are of high interest in the lithography industry where two or more cylinders

need to be put adjacent to each other with a specific distance between them. We can see

that the method proposed here is robust for different topologies. It can find the optimal

shape for different designs.

(a) dcc = 3.2Rg (b) dcc = 3.8Rg (c) dcc = 4.2Rg (d) dcc = 4.4Rg (e) dcc = 4.8Rg (f) dcc = 5.0Rg

Figure 1.3: Different center-to-center distances with (fA, χAB) = (0.3, 36)

(a) π/6 (b) π/2 (c) π/3 (d) π/6 (e) two junc-

tions

(f) l-shape

Figure 1.4: Different configurations with (fA, χAB) = (0.3, 36)

In the next chapter a level set based computational framework for Neumann bound-

ary conditions is presented [77]. In the subsequent chapter the functional level set deriva-
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tive is derived rigorously, a level set based shape optimization strategy is proposed and

illustrative examples are presented [75]. Finally in the last chapter the inverse geometric

problem is presented along examples with different topologies [76, 78]. At the end of this

thesis can be found an appendix with the derivation of the SCFT equations required in

this document.

13



Chapter 2

SCFT on arbitrary domains with

Neumann boundary conditions

2.1 Introduction

We introduce a framework for simulating the mesoscale self-assembly of block copoly-

mers in arbitrary confined geometries subject to Neumann boundary conditions. We em-

ploy a hybrid finite difference/volume approach to discretize the mean-field equations on

an irregular domain represented implicitly by a level-set function. The numerical treat-

ment of the Neumann boundary conditions is sharp, i.e it avoids an artificial smearing

in the irregular domain boundary. This strategy enables the study of self-assembly in

confined domains and enables the computation of physically meaningful quantities at the

domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees
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in parallel to automatically refine the grid where the statistical fields vary rapidly as

well as at the boundary of the confined domain. This approach results in a significant

reduction in the number of degrees of freedom and makes the simulations in arbitrary

domains using effective boundary conditions computationally efficient in terms of both

speed and memory requirement. Finally, in the case of regular periodic domains, where

pseudo-spectral approaches are superior to finite differences in terms of CPU time and

accuracy, we use the adaptive strategy to store chain propagators, reducing the memory

footprint without loss of accuracy in computed physical observables.

Block B

Block A

monomer a

monomer b

Figure 2.1: Schematic of a diblock

copolymer in the lamellar phase.

Block copolymers are macromolecules com-

prised of two or more chemically distinct sequences

(or ”blocks”) of repeated and chemically bound

monomers. Ensembles of these molecules exhibit

fascinating characteristics: in the melt state, they

self-assemble into periodic ordered structures in a

wide range of morphologies, thus offering the pos-

sibility of designing materials with a broad property spectrum [7]. As such, polymeric

materials offer many advantages such as scalability, tunability, ease of functionalization,

mechanical flexibility, compatibility with various processing methods and a relatively

low cost. We focus here on the important class of diblock copolymers, in which each

polymer chain is made of two components (see figure 2.1): a minority block component

A made of monomers a and a majority block component B made of monomers b. Di-
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block copolymers are of particular interest because they produce regular structures with

a length scale (5 to 100 nm) that is difficult to access with other patterning techniques.

As such, they are used in a myriad of applications in the electronics, energy and health

industries [16, 69, 83, 19, 62].

At the mean-field level, the thermodynamic behavior of diblock copolymer melts is

dictated by just two dimensionless parameters: the fraction, fA, of block A along with

χABN . χAB is the Flory-Huggins interaction parameter which quantifies the chemical

repulsion between the blocks A and B and N is the number of segments (monomers)

in the copolymer chain. One of the most important aspects in the study of diblock

copolymers is to predict which ordered structures of polymeric materials can form at

equilibrium as a function of fA and χABN [24, 7, 35]. The self consistent field theory

(SCFT) [24, 35, 36] is a successful mean-field theory and a mature computational tool

for describing inhomogeneous phases in the parameter space (fA, χABN). It has enabled

researchers to predict self-assembly in a wide range of situations [24, 60, 61, 59]. Within

this framework, the physical observables such as the densities of the A and B components

are expressed in terms of chain propagators, which represent the statistical weight of

a polymer chain at a given location and contour length and satisfy a Fokker-Planck

equation. In the case of unbounded block copolymer melts, it is justified and convenient

to impose periodic boundary conditions and to employ fast pseudo-spectral solvers [81].

In the case of confined domains, other boundary conditions must be imposed. At

the atomistic level, the density displays an oscillatory profile in a “boundary layer” with
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size below ∼ 1nm but at the mesoscopic scale, we are not interested in the details of

the solution in this boundary layer. In principle, a Dirichlet boundary condition should

be imposed; however the use of a Dirichlet boundary condition is incompatible with

the incompressibility assumption [24]. De Gennes thus proposed the use of an effective

(Neumann) boundary condition for molten polymers at air or solid interfaces [21, 24].

Currently, the technique that is used to predict self-assembly of block copolymers in

confined domains, while still using a fast pseudo-spectral approach, is to impose a wall

density to emulate the presence of a physical wall [8, 39, 15, 43, 49, 44]. Effectively, the

wall defines a mask that varies smoothly from 0 to 1 over a length scale defined by a pa-

rameter describing the width of the “soft” wall. However, while this technique produces

accurate solutions inside the irregular domain, it produces fast varying solutions near

the boundary that are arbitrarily specified by the mask. In turn, estimating numerically

the solution and its derivatives near the boundary, which are needed in the context of

free boundary optimization problems [76, 78], produces far less robust results.

Here we introduce a hybrid finite-difference/finite-volume discretizations of the SCFT

equations on irregular domains where effective boundary conditions are imposed in a nu-

merically sharp fashion. In addition, we present an adaptive mesh refinement technique

that focuses the computational resources in regions where the densities vary rapidly.

The adaptivity is based on a forest (or collection) of Quad-/Oc-tree data structures in

a parallel environment [11, 68]. The paper is organized as follows: in section 3.2, we

present the mathematical model describing the theory of copolymer thermodynamics
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and the SCFT algorithm. Section 2.3 details the numerical approach, while section

2.4 presents the extension to (potentially massively) parallel environments. Section 2.5

presents a set of numerical results for confined domains and section 2.5.5 presents the

numerical results demonstrating that the use of adaptive grids can be beneficial in term

of memory requirement, even in the case where one uses a pseudo-spectral approach.

2.2 Self-Consistent Field Theory

In this section we describe the equations of the self-consistent field theory (SCFT)

[35, 36] used in the current computational study. A detailed development of these models

can be found in [24] and the references therein, and a more physically-oriented derivation

can be found in [57].

2.2.1 SCFT Incompressible Model for AB Diblock Copolymer

The physical system under consideration is a melt composed of AB diblock copoly-

mers. The success of the field-based theory of polymer thermodynamics rests on the use

of a Hubbard-Stratonovich transform that converts the partition function from a parti-

cles representation to a field representation, hence providing a tractable computational

approach. In the mean field approximation, where fluctuations are neglected, the free

energy of the melt is given by the Hamiltonian, H, evaluated at the saddle point field

configuration, i.e.
δH

δw(r)
= 0. We therefore search for the statistical fields w− and w+
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that give the extremum of the Hamiltonian1:

H[w+, w−] =
1

V

∫
(−w+(r) +

w2
−(r)

χABN
) dr − lnQ[w+, w−], (2.1)

where the normalized partition function Q can be formulated as:

Q[w+, w−] =
1

V

∫
q(s = 1, r; [w+, w−]) dr.

In these equations, w+(r) acts as a pressure potential that enforces the incompressibility

constraint while the exchange potential, w−(r), accounts for the interaction between A

and B segments. The functionals q(s, r) and q†(s, r) are solutions of the Fokker-Planck

equations with initial conditions q(s = 0, r) = q†(s = 0, r) = 1. Here, s ∈ [0, 1] is a

scaled contour variable that describes the location along the backbone of the polymer

chain. The chain propagators q and q†, represent the probability of a statistical segment

of the chain at location r and contour length s, and satisfy the forward and backward

Fokker-Planck equations, respectively:
∂sq(s, r) = 52q(s, r)− q(s, r)w(r, s) forward.

∂sq
†(s, r) = 52q†(s, r)− q†(s, r)w†(r, s) backward.

(2.2)

These equations are supplemented with periodic boundary conditions in the case of

periodic phases and homogeneous Neumann boundary conditions in the case of confined

1The Hamiltonian H that we compute is actually H/n where n is the number of polymeric chains.
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domains [24]. The forward potential w(r, s) is given by:

w(r, s) =


wA(r) = w+(r)− w−(r) 0 < s < fA,

wB(r) = w+(r) + w−(r) fA < s < 1,

and the backward potential w†(r, s) = w(r, 1 − s). Finally, the normalized densities of

the components A and B (local volume fraction) are obtained through the functional

derivatives of Q with respect to wA(r) and wB(r) and can be written as integrals of q

and q† over the contour variable:

ρA(r; [w+, w−]) =
1

Q[w+, w−]

∫
fA

0
q†(1− s, r, [w+, w−])q(s, r, [w+, w−]) ds.

ρB(r; [w+, w−]) =
1

Q[w+, w−]

∫
1

fA
q†(1− s, r, [w+, w−])q(s, r, [w+, w−]) ds.

(2.3)

The SCFT algorithm (see algorithm 1) searches iteratively for the saddle point of

H[w+, w−] in terms of the statistical fields. The driving forces of the optimization

procedure are obtained through the functional derivatives of H with respect to w+(r)

and w−(r) and are given by:

f+(r) = ρA(r) + ρB(r)− 1

f−(r) =
2w−(r)

χABN
+ ρB(r)− ρA(r)

, (2.4)

where w+ acts as a Lagrange multiplier to enforce incompressibility. For the optimization

algorithm we use the simple Euler step:
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
wt+1

+ (r) = wt+(r) + λ f+(r)

wt+1
− (r) = wt−(r)− λ f−(r)

, (2.5)

where λ is the fictitious time step of the optimization.

Algorithm 1 SCFT Optimization

Set F− and F+ defined in (2.6) arbitrarily large.

while max(F+, F−) > ε do

1. Solve the two diffusion equations given in (B.4) from s = 0 to s = 1 with a step

∆s.

2. Compute the local volume fractions ρA, ρB according to (2.3).

3. Compute the driving forces using (2.4).

4. Advance the potentials w using (2.5).

5. Compute the free energy H and compute F− and F+ defined in (2.6).

The convergence is established when the L2-norms:

F− =

(
1

V

∫
V

f 2
−(r)dV

) 1
2

and F+ =

(
1

V

∫
V

f 2
+(r)dV

) 1
2

(2.6)

are less than a given tolerance ε. The while loop in algorithm 1 is referred to as “the

mean field steps”. We note that the algorithm does not ensure that one finds the global

minimum, but a local minimum only. As any global optimization problem, the outcome

depends on the initial seed and simulations with different seeds are usually performed

to ensure that a stable phase is obtained [24].
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2.2.2 SCFT Weakly Compressible Model with Mask for AB

Diblock Copolymer

Imposing Neumann boundary conditions in arbitrary geometries is difficult or im-

possible in the case of the pseudo-spectral approach. As a consequence, researchers have

introduced a technique that emulates the presence of a wall. This is accomplished by

considering a normalized local volume fraction ρw that augments the pressure field and

thus repels the polymeric material inside the confined domain, hence emulating a physi-

cal wall. This approach is the so-called “mask” model [8, 39, 15, 43, 49, 44]. Specifically,

the Hamiltonian for a confined compressible polymer is given by:

H[w+, w−, ρw] =
1

V

∫
−0.5(ζN)−1

0.5χABN(ζN)−1 + 1
w2

+(r) +
ρw(r)− 1

0.5χABN(ζN)−1 + 1
w+(r) dr

+

∫
w2
−(r)

χABN
dr − ρ̄d lnQ[w+, w−],

(2.7)

In this case the total normalized density is ρA+ρB +ρw, where ρw is the wall normalized

density.

Effectively, the wall density defines a mask that takes a value of 1 deep outside the

confined domain, 0 deep inside, 0.5 at the wall’s boundary and varies smoothly from

inside to outside the domain on a length scale defined by δw, a parameter of the model

describing the width of the “soft” wall. The parameter (ζN)−1 in equation (2.7) is the

compressibility tolerance, which tends to zero as the material becomes incompressible.
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In this work, we use for convenience a level-set function φ(r) (see section 2.3) to

define the wall density as:

ρw(r) =
1

2

(
eφ(r/δw) − e−φ(r/δw)

eφ(r/δw) + e−φ(r/δw)
+ 1

)
.

The level-set is a non-parametric representation that is convenient in describing arbitrary

geometries [73]. It also provides an efficient procedure to compute the signed distance

function to the boundary of any domain.

The definitions of the quantities Q[wA, wB], wA(r), wB(r), w(r) and w†(r) as well as

the equations for q(s, r) and q†(s, r) are the same as in section 2.2.1. The local volume

fractions ρA and ρB are now:

ρA(r; [wA, wB]) =
ρ̄d

Q[wA, wB]

∫
fA

0
q†(1− s, r, [wA, wB])q(s, r, [wA, wB]) ds

ρB(r; [wA, wB]) =
ρ̄d

Q[wA, wB]

∫
1

fA
q†(1− s, r, [wA, wB])q(s, r, [wA, wB]) ds

, (2.8)

where ρ̄d is the effective domain fraction defined as:

ρ̄d =
1

V

∫
1− ρw(r) dr. (2.9)

Finally, the pressure and the chemical forces of the optimization procdedure are given

by:

f+(r) = ρA(r) + ρB(r) +
−(ζN)−1

0.5χABN(ζN)−1 + 1
w+(r) +

ρw(r)− 1

0.5χABN(ζN)−1 + 1
,

f−(r) =
2w−(r)

χABN
+ ρB(r)− ρA(r).
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The SCFT optimization with the mask is solved with standard periodic boundary

conditions using the fast Fourier transform [18] and its optimized FFTW implementation

[25, 26].

2.3 Sharp Numerical Approach

We present a numerical approach that avoids the need to consider a mask, and there-

fore approximate the effective Neumann boundary condition suggested by de Gennes [21]

in a sharp fashion. In addition, we consider a computational framework on adaptive grids

in order to provide efficient computations. Finally, we consider Cartesian adaptive grids

on which the geometry and the effective boundary condition are implicitly captured in-

stead of explicitly defined; this strategy avoids the difficulties associated with meshing

procedure of body-fitted approaches.

Within the context of predicting the self-assembled structures at equilibrium in ar-

bitrary domains, adaptive grids are desirable when considering sharp approaches since

a FFT cannot be used. Adaptive grids reduce the number of degrees of freedom, hence

reducing both the memory and CPU requirement. Cartesian grids based on Quadtree

data structures in two spatial dimensions and Octree data structures in three spatial di-

mensions are effective at capturing inhomogeneous spatial scales. Figure 2.2(a) gives an

example of an Octree Cartesian grid for which the minimum level is 1 and the maximum

level is 3, where ‘level’ corresponds to the number of local refinements. Computational

cells are split into four children in 2D and eight children in 3D depending on proper
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refinement criteria. We use the level-set formalism [73] to describe irregular confinement

domains and also as a way to automatically refine near interfaces between A and B

regions. Within this framework, the boundary, Γ, of a confined domain in Rn, where n

is the physical dimension, is described implicitly as the zero level-set of a function φ in

Rn+1, i.e. Γ = {r ∈ Rn : φ(r) = 0}. The interior of the confined domain is represented

as Ω− = {r ∈ Rn : φ(r) < 0} and its exterior as Ω+ = {r ∈ Rn : φ(r) > 0}.

We use the unconditionally stable Crank-Nicholson scheme to solve the equations

in (B.4). For example, denoting qs the solution vector at the contour length s, the

discretization of the forward case without the external field is:

qs+1 − qs

∆s
=

1

2

(
∇̃2qs+1 + ∇̃2qs

)
, (2.10)

where ∇̃2 refers to the discretization of the Laplace operator approximated as follows: we

distinguish the treatment of nodes adjacent to the irregular domain (boundary nodes),

which are treated using a finite volume approach as in [79] (see section 2.3.2), to the

others (called interior nodes) for which finite differences are used (see section 2.3.1).

2.3.1 Finite Difference Discretization for Interior Nodes

We use the finite difference approximation of standard operators on Octrees intro-

duced in [66]. For the sake of completeness, we will present here the principal results

needed for the current study. Typical second-order accurate finite difference approxima-

tions require two neighbors in each spatial direction, hence, in the case of adaptive grids,

T-junction nodes require the definition of ghost neighborhood nodes. For example, in
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(a) A level (1, 3) Octree grid.
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s9
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s7

(b) General local configuration of a

T-junction node v0.

Figure 2.2: Discretization with an Octree Cartesian Grid.

the case of figure 2.2(b), the degree of freedom q0, sampled at the node (or vertex) v0,

requires two ghost values q4 and q6, located at the virtual vertices v4 and v6. In [66, 67],

the authors introduced third-order accurate definitions of ghost values:

qG6 =
s8q7 + s7q8

s8 + s7

− s8s7

s2 + s1

(
q2 − q0

s2

+
q1 − q0

s1

)
,

and

qG4 =
s11s12q11 + s11s9q12 + s10s12q9 + s10s9q10

(s10 + s11)(s9 + s12)

− s10s11

s2 + s1

(
q2 − q0

s2

+
q1 − q0

s1

)
− s9s12

s5 + s6

(
q5 − q0

s5

+
qG6 − q0

s6

)
,

where the si’s refer to the distances between the nodes v0 and vi. From the definitions

of these ghost values, [66] introduced a discretization for the Laplace operator that
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produces second-order accurate solutions and second-order accurate gradients:

∇̃2 q0 ≈α(
q5 − q0

s5

− q0 − q6

s6

)
2

s5 + s6

+ β(
q3 − q0

s3

− q0 − q4

s4

)
2

s3 + s4

+ γ(
q1 − q0

s1

− q0 − q2

s2

)
2

s1 + s2

,

with

α = 1− s10s11

s4(s3 + s4)
, β = 1− s9s12

s4(s3 + s4)
− α s7s8

s6(s5 + s6)
and γ = 1.

The approximation of the Laplacian on the grid can thus be written as:

∇̃2q = Mq,

where M is a matrix that depends only on the Octree data structure (the coefficients of

q depend only on the distances si). The Crank-Nicholson scheme can thus be written:

(
I − ∆s

2
M

)
qs+1 =

(
I +

∆s

2
M

)
qs.

Reintroducing the external field, we solve the Fokker-Planck equation (B.4) with an

external potential using the Strang splitting [91]:

qs+1 = e−w
∆s
2
IM−1

2 M1e
−w∆s

2
Iqs, (2.11)

where M1 =
(
I + ∆s

2
M
)

and M2 =
(
I − ∆s

2
M
)
. We note that M−1

2 has been shown to

exist in [66].
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2.3.2 Finite Volume Discretization for Boundary Nodes

One of the main challenges in the case of a confined domain is to solve equation (B.4)

with homogeneous Neumann boundary conditions at the domain’s boundary. In [79, 80],

the authors introduced a numerical method for solving a diffusion equation with Robin

boundary conditions, which can be trivially adapted to the case of a diffusion equation

with effective Neumann boundary conditions and an external potential. For the sake of

clarity, we summarize the main steps.

qbt

qtp

qlt

qrt
qft

qbk

Figure 2.3: Local configuration of a node qc near a confined domain’s boundary.

Referring to figure 5.3 and considering the Crank-Nicholson time stepping, the dis-

cretization of the diffusion equation is based on a finite volume approach on the dual
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cell, C, with center qc, giving:∫
C∩Ω−

qs+1
c − qsc

∆s
dV =

1

2

∫
∂C∩Ω−

∇qs+1
c · n dA+

∫
∂C∩Ω−

∇qsc · n dA

 ,

where we have used the homogeneous Neumann interface condition to cancel the bound-

ary term. The surface integrals are then approximated with central differences, giving:∫
∂C∩Ω−

5qc · ndA =
qrt − qc
h

A+x +
qbk − qc

h
A+y +

qtp − qc
h

A+z

+
qlt − qc
h

A−x +
qft − qc

h
A−y +

qbt − qc
h

A−z,

where the A±x refer to the area of the dual cell’s faces in the ±x-direction; A±y and A±z

are defined similarly. Finally, we approximate the volume integrals with the geometric

procedures detailed in [64, 65].

The discretizations of sections 2.3.1 and 2.3.2 produce a linear system of equations

for qs+1 on which we apply a Strang splitting of the form of equation (5.20). We note

that, for efficient implementation, M1 and M2 need to be computed only once for a given

mesh and can then be used throughout the solution process for q.

2.3.3 Refinement Strategy

Given a level-set function φ(r) which represents a signed distance function from some

interface, refining near that interface can be enforced by splitting a cell if:

‖φ(r)‖ < cell size× L, (2.12)

where choosing the Lipschitz constant to be L = 1 gives a grid graded from the interface

[67, 42]. The refinement criteria is applied recursively until the maximum preset tree
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level is achieved. The level-set technology on Quad/Octree grids [67] is flexible and

many variants of this criterion can be employed. For instance, we can in addition choose

to refine uniformly inside the region where φ is negative by splitting cells if:

φ(r) < cell size× L. (2.13)

We will use this refinement for generating finer grids near the confined domains’ bound-

ary and to generate adaptive grids inside the bulk in order to capture the rapid transition

in the solution near regions between the A and B components. Other refinement crite-

ria can be used, e.g. to impose a band of uniform cells near a boundary; we refer the

interested reader to [67] for the details. For confined domains, we generate the level-set

when we specify the domain’s geometry. We set negative values at the nodes inside the

confined domain and positive values outside. We then reinitialize the level-set function

to transform it into a signed distance function by solving the reinitialization equation

[92]:

∂φ(r, τ)

∂τ
+ sign (φ(r, τ)) (‖∇φ(r, τ)‖ − 1) = 0, (2.14)

where the time τ in the equation is a pseudo time.

The refinement strategy adopted inside the bulk exploits the structure of the block

copolymer mesophases, which are composed of near homogeneous regions that can easily

be clustered (figure 2.4 [left] gives a typical example) and across which the fields undergo

large variations (see Figure 2.4 center and right). In particular, the exchange potential

is a good indicator of the interface between the A and B regions (see figure 2.4 center).
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Figure 2.4: Example of a BCC morphology (left) with fA = 0.1, χABN = 200 and the

variations of the exchange potential w− (center) and pressure potential w+ (right) along

the < 111 > direction of the computational domain.

Now that we have outlined the refinement strategies given an interfacial distance

function φ, we discuss how we construct φ. At the saddle point of the free energy H, the

interface between the A an B components can be described by w− = 0, so one could use it

as an initial condition for the level-set reinitialization equation (2.14). However, w− = 0

does not necessarily represent the interface between A and B in the early stages of the

mean field steps. We thus use a different strategy based on the hybrid k-means/level-set

algorithm of [30]: k-means is an efficient algorithm to segregate k-components from a

data set by iteratively finding the centers of k clusters and assigning each point in the

data set to a cluster in such a way that it minimizes the Euclidian distance between the

data points to their respective cluster’s center [55]. Only a few steps (typically between 2

and 4) of k-means steps are necessary, leading to a linear complexity. Once the k-means

procedure is done, the clusters’ boundaries are represented by a level-set function φ, as

described in Algorithm 2. Once the level-set function is obtained with this step, it
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is used to generate the adaptive grid. This refinement can naturally be embedded in a

SCFT solver as described in Algorithm 3.

Algorithm 2 Hybrid level-set/k-Means [30]

Step 1: Input a data set w. Set k (k = 2 in the case of diblock) and take an initial

guess for the clusters’ centers, ck

Step 2:

while (ci change) do

1. Compute for each data point j its Euclidian distance from ci,

2. Assign each of the data points to the cluster with minimum distance.

3. Recompute the centers ci as the centers of the clusters: ci =
1

Ni

∑Ni
j=1wj, where

Ni is the number of points in cluster i.

Step 3: Reinitialize the level-set function using the reinitialization equation [92, 67].

As an illustration, figure 2.5 depicts typical adaptive grids that are automatically

generated in the case of different morphologies. The lamellar phase is obtained with

the pair (fA = 0.5, χABN = 20), the cylinder phase is obtained with the parameters

(fA = 0.18, χABN = 72) and the gyroid phase is obtained with (fA = 0.36, χABN = 20).
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Algorithm 3 Optimization of H on an adaptive grid

Set F− and F+ defined in (2.6) arbitrarily large.

while max(F+, F−) > ε do

1. Create a binary data set from the potential.

2. Define the level-set function using the hybrid level-set/k-means procedure of

Algorithm 2.

3. Build the adaptive grid according to the level-set.

4. Remap all the variables from the previous tree to the new tree with interpolation

procedures [67].

5. Solve the two diffusion equations given in (B.4) from s = 0 to s = 1 with a step

∆s.

6. Compute the densities ρA, ρB according to (2.3).

7. Compute the driving forces using (2.4).

8. Advance the potential w using (2.5).

9. Compute the free energy H and compute F− and F+ defined in (2.6).
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Figure 2.6: An adaptive quadtree grid equally partitioned between 16 processors to

achieve load balance where each color represents a different processor.

(a) Lamellar phase (b) cylindrical phase (c) Gyroid phase

Figure 2.5: Adaptive grids automatically generated during an SCFT computation.
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2.4 Parallel Computation Strategy - Forest of Oc-

trees

Our solver uses the methodology outlined in [68], which is built on top of the open

source p4est library [11], providing a suite of parallel algorithms for refining, coarsen-

ing, and partitioning Quadtree and Octree meshes. Once the grid is locally refined, as

described in section 2.3.3, it is partitioned equitably across processes to achieve load

balancing as can be seen in figure 2.6. After partitioning, each process obtains from

its neighboring processes a layer of ghost cells, which is later used to update the so-

lution values across processes. Finally, both the local and the ghost cells are utilized

to construct a local hierarchical representation of the grid. This is done by starting

from the root of all local trees and recursively searching and splitting local cells in the

hierarchy data-structure such that all p4est cells have a corresponding cell in the local

representation (see [68] for details).

Once the local representation is constructed, all the discretization operations can be

performed locally. Furthermore, these local calculations can be overlapped efficiently

with communication: local computations are performed simultaneously with message

passing, such that processors do not need to wait passively for messages from other

processors: hence “hiding” communication. The interested reader is referred to [68]

for more details. We use the PETSc library for all linear algebra operations, for storing

discretization matrices and for distributing ghost vectors. Finally, as detailed in [68], this
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domain decomposition has been scaled up to 4096 processes (the limit of our account at

that time) on the Stampede supercomputer at the Texas Advanced Computing Center

(TACC).

2.5 Numerical Results

Sections 2.5.1-2.5.4 present numerical examples illustrating the two main novel as-

pects of this paper: (i) the capability to consider the self-assembly of block copoly-

mer in confined domains with effective boundary conditions and (ii) the computational

speedup provided by the parallel environment on Octree Cartesian grids. Section 2.5.5

will present the data compression results for high χABN and low fA in the case where

one uses a pseudo-spectral method on a uniform grid while using the adaptive framework

to store the chain propagators.

2.5.1 One Spatial Dimension

We first compare the results of the simulations with different numerical strategies in

one spatial dimension in order to highlight the characteristics of each approach. The

numerical methods we consider are the present hybrid finite difference/volume discretiza-

tions with effective boundary conditions (HFDV), the discrete Fourier transform (DFT)

with a formulation that uses a mask (see section 2.2.2), and the discrete cosine trans-

form (DCT). We note that HFDV and DCT use a strictly incompressible model. i.e.
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(ζN)−1 = 0, while DFT employs a weakly compressible model, here (ζN)−1 = 0.001, to

avoid stiffness in the solution near the mask’s boundary.

Recall that HFDV can be applied to either periodic or effective boundary conditions,

in regular or irregular domains and on uniform or adaptive grids. DFT can be used with

periodic boundary conditions but only on regular domains (and uniform grid). Consider-

ing irregular domain thus require the use of a mask with a compressible approximation,

as discussed in section 2.2.2. DCT can be used with homogeneous Neumann boundary

conditions but only on regular domains (and uniform grids); thus DCT cannot be used

to consider confined domains. On the other hand, the accuracy of our HFDV is that

of a finite difference scheme; it is not spectral as it is the case of DFT. The numerical

results we present in one spatial dimension thus seek to answer the following questions:

1. How does HFDV compare to DCT in the case where effective boundary conditions

are imposed? Even though DCT is not spectral, it is interesting to confirm that

the same density profiles are obtained with HFDV and DCT, and that they have

similar convergence behaviors.

2. Confined domains can be simulated with periodic boundary conditions by using a

mask and the compressible assumption. What are the implications of this approx-

imation in terms of the accuracy near the confined walls? In particular, since the

width δw of the mask’s wall is a parameter that can be chosen, what is its effect

on the simulated results and how do those results compare to the present method

that is sharp?
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Figures 2.7 and 2.8 depict the results of several simulations, from which we can

answer the questions above. The simulations use a uniform grid with 512 points. The

parameters used are (fA, χABN) = (.5, 20), ∆s = 0.0025, λ = 0.5. We take Lx = 8Rg

for HFDV and DCT, and we take Lx = 10Rg and (ζN)−1 = 0.001 for the compressible

mask. Rg is the radius of gyration, which represents the root mean squared distance

between the segments on the polymeric chain and the center of mass of the polymer

chain. Figures 2.7(a) and 2.7(b) depict the density profiles of A. We distinguish two

regions, one is near the wall and the other is in the bulk. In the bulk, all methods

produce the same results. Near the wall, however, one observe qualitative differences

between DFT and the other two approaches. First, figures 2.7(a) and 2.7(b) confirm

that both HFDV to DCT correctly imposed the effective boundary condition. Also,

the density profiles obtained from HFDV and DCT coincide. Figure 2.7(c) and 2.7(d)

illustrate that the forces driving the optimization converge at the same rate until the

numerical accuracy of HFDV prevents the computation of forces smaller than what the

finite difference approximation enables at this grid resolution. Second, we observe in

figures 2.7(a) and 2.7(b) that the effect of the mask in a DFT computation is apparent

near the wall, which is assumed to be neutral, i.e. not attractive nor repulsive. Since

the mask imposes an arbitrary density profile in a region of length δw, the solution

in that region is meaningless. A consequence is that the use of the mask prevents

the polymer to “wet” the wall of the confined domain. In addition, we observe that

decreasing δw past 1/64 does not decrease the size of region where the DFT solution
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differs from those obtained with DCT and HFDV. Figures 2.7(c) and 2.7(d) also infer

that decreasing the size of the wall’s thickness slows down the convergence of the forces

driving the optimization process due to the added numerical stiffness. Finally, we note

that the size of the computed forces are characteristic of the accuracy of the numerical

approximations and should not be confused with the accuracy of the simulation. For

example, even though the forces in the case of DFT with δw = 1/4 depicted in figure

2.7(d) reach the level of the HFDV simulation (and will even eventually be smaller), the

resulting density converges to a profile that is arbitrary near the walls. The drawback

of the mask representation can be significant in the case where one seeks to define

meaningful quantities near the walls. For example, it is interesting to define a shape

optimization process that takes into account w+ near the walls [76, 78]. In a sharp

HFDV approach, this quantity is well-defined, whereas it is less clear how this can be

computed in the mask approach. Figure 2.8(a) depicts the maximum difference between

the density obtained with HFDV on uniform grids with size from 16 to 2048 and the

density obtained with a DCT simulation on a grid with 4096 points. Likewise, figure

2.8(b) depicts the results the same analysis for the free energy H. In both cases, good

agreement is obtained.
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(a) Local volume fraction of A (b) Zoom near the wall’s boundary

(c) Pressure force w+ (d) Exchange force w−

Figure 2.7: Comparison between the different numerical methods considered in the

present manuscript.
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(a) Error in the density. (b) Error in the energy.

Figure 2.8: Errors in the density and energy in the L∞-norm for the HFDV method

using a uniform grid with varying levels of resolution from 24 to 211. The solutions are

compared with a DCT simulation on a grid with 4096 points.

2.5.2 Two Spatial Dimensions

As a next step, we carried out simulations in two spatial dimensions to study onver-

gence on non-uniform grids and to compare the present approach to the conventional

mask technique. We first consider a diblock copolymer confined in a cylindrical pore

(see figure 2.9), which can be simulated in 2D if we assume the pore to be homogeneous

in the z-direction. We then simulate a polymer confined in a “wavy” cylindrical pore

with regions of high curvature (see figure 2.11). We present in figure 2.10 a detailed

study of convergence for both the disk and the “wavy” geometries.

In these investigations, we consider Quadtree grids of size (minlevel,maxlevel), where

maxlevel controls the size of the uniform grid inside the confined domain and minlevel
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controls the size of the coarsest cell of the nonuniform grid outside the confined domain.

We also use Quadtree grids with size (minlevel,middlelevel,maxlevel), as depicted for ex-

ample in figure 2.11 (a), where we use the minlevel outside the confined domain, maxlevel

at the domain’s boundary and middlelevel inside the domain. In figure 2.13 (d), we use

the minlevel for the grid outside the confined domain, maxlevel inside the A minority re-

gion, near the AB interface and at the domain’s boundary and middlelevel inside the B

majority region. The results of figure 2.10(a) indicate that convergence is achieved on

a level (4, 8) Quadtree grid in the case where the geometry of the confined domain is

a simple cylinder whereas figure 2.10(c) demonstrates that higher resolution is needed

in the case of the “wavy” cylinder to capture the solution in regions of high curvature.

In both cases, the energies (H) converge, see 2.10(b) and 2.10(d). The insets in figures

2.10(a) and 2.10(c) (resp. 2.10(d) and 2.10(b)) give, for the last mean field step, the

differences (in the L1-norm) in density (resp. energy) between the different grid refine-

ment strategies and a uniform Quadtree grid with level 9 inside the domain. For both

geometries, the density and energy converge under grid refinement. It is also interesting

to observe the influence of the grid size, especially in the case where fine features occur

near the confined domain. For example, in the case of the “wavy” geometry, one obtain

better results in the case of a (4, 7, 9) grid than in the case of a (4, 8) grid. It is thus

sufficient to consider coarser grids inside the confined domain, so long as a finer grid is

placed near the boundary.
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Figure 2.9: Densities obtained with a SCFT simulation in a confined domain using the

present sharp computational approach. The parameters used are (fA, χABN) = (.3, 25),

∆s = 0.005, Lx = 16Rg, Diameter = 10.66Rg, λ = 0.25. The grid levels are (4, 9). The

axes are in units of Rg.

Figure 2.11 illustrates the results of SCFT simulations with both the HFDV method

and the mask approache in the case of a confined domain with a “wavy” boundary. This

case exemplifies the behavior of the solution near regions of high curvatures. We consider

a seed with a radial symmetry to highlight the differences between the two approaches.

As in the one-dimensional case, we observe that the use of a mask prevents the polymer

to wet the confined domain’s boundary. In the case of the sharp approach with effective

boundary conditions, the polymer fully contacts the confined domain’s boundary. We

note again that one can improve the mask results by taking a sharper δw. In this case the

polymer can penetrate the petals (see figures 2.11(c) versus 2.11(b)) but still not fully

wet the walls. In the case of a mask approach, the parameter δw must thus be adjusted

to the curvature of the confined domain’s boundary. Figure 2.12 shows the optimization
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forces evolution contrasting the sharp approach with effective boundary condition and

with the mask approach.

(a) max(F+, F−) in the case of the disk (b) Energy in the case of the disk

(c) max(F+, F−) in the case of the wavy ge-

ometry

(d) Energy in the case of the wavy geometry

Figure 2.10: Convergence under grid refinement of the present method. The levels of

the Quadtrees are (4, 7), (4, 8) and (4, 9) in the case of the disk and (4, 7), (4, 8), (4, 7, 9)

and (4, 9) in the case of the wavy geometry. (a) and (c) give the evolution of the L2

norm of the force. (b) and (d) give the energy evolution as function of the number of

mean field steps. The parameters are fA = 0.3, χABN = 25, ∆s = 0.005, Lx = 16Rg

and λ = 0.25.
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(a) HFDV (b) mask δw = 0.25 (c) mask δw = 0.0625

Figure 2.11: Densities of A obtained with HFDV and with a mask approach. For (a),

we used a Quadtree with levels 4 outside the confined domain, level 7 inside and 9 near

the wall using equation (2.12). (b) and (c) illustrate the effects of δw on the density

in the mask approach. The parameters used are fA = 0.3, χABN = 25, ∆s = 0.005,

Lx = 16Rg, λ = 0.25 and δw = 0.25 and (ζN)−1 = 0.001 with a grid size of 512 × 512

for the mask. We chose a seed such that we get the same morphology with HFDV and

the mask.

(a) F− (b) F+

Figure 2.12: Convergence of the mean-field optimization in the case of the “wavy”

configuration. The parameters used are fA = 0.3, χABN = 25, ∆s = 0.005, Lx = 16Rg,

λ = 0.25, δw = 0.25 and (ζN)−1 = 0.001. The grid size is 512× 512.
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In figure 2.13 we provide another example where the geometry of a confined domain

guides the self-assembly to five disks with radius 0.8Rg, arranged in two rows. We

consider four different refinement strategies and study the results of SCFT simulations

using the HFDV method. In particular, the refinement shown in figures 2.13 (c) and (d)

capture both the self-assembly features and the confinement geometry, but use far less

degrees of freedom than the uniform grid of figure 2.13 (a). Table 2.1 clearly highlight

that this strategy enables a speedup over a (7, 7) uniform grid without sacrificing accu-

racy. Other examples and further discussion of refinement criteria are given in section

2.5.5.

(a) (6, 6) grid (b) (7, 7) grid (c) (4, 7 grid) (d) (4, 4, 7) grid

Figure 2.13: SCFT simulation on Quadtrees using different refinement strategies. The

parameters are (fA, χABN) = (.18, 72), ∆s = 0.01, λ = 0.5 and Lx = 12.8Rg.

2.5.3 L-Shaped Confined Domain in Two Spatial Dimensions

As a further illustration, we consider a confined domain with a L-shaped geometry

and present speedups obtained with both approaches in a parallel environment. In this
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(6, 6) (7, 7) (4, 7) (4,4,7)

∆H/H 0.17 0 0 0.0016
‖∆ρ‖2 0.02 0 0 0.007
‖∆ρ‖∞ 0.32 0 0 0.09

N/Nuniform 0.25 1 0.42 0.22
t/tuniform 0.19 1 0.46 0.26

Table 2.1: Comparison of quantities obtained with a uniform (7, 7) grid and different

adaptive grids. ∆H/H is the relative energy error, ∆ρ is the error in density, N is the

total degrees of freedom and t is the computational time per mean field step on the

adaptive grid. Nuniform and tuniform are defined similarly for the uniform (7, 7) grid.

section and figure 2.16, we consider confined domains with geometries that occupy a

small part of the computational domain, for which the adaptive finite difference approach

is computationally more efficient than the mask approach. For confinement shapes that

cover a large part of the computational domain, the mask approach is computationally

more efficient, owing to the FFTW [25, 26]

(a) Quadtree with levels (4, 8) (b) Quadtree with levels (4, 9) (c) Quadtree with levels (4, 10)

Figure 2.14: Convergence of a SCFT simulation under grid refinement for an L-shaped

domain using the present sharp method. The parameters are χABN = 36, fA = 0.18,

∆s = 0.01, λ = 0.5 and Lx = 128Rg.
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Figure 2.14 depicts the results of the sharp approach on adaptive grids, which in-

dicate that a minimum resolution of (4, 9) is needed to capture the fine features of the

self-assembly’s morphology and the center-to-center distances between features. The

effective resolution, i.e. the size of the smallest grid cell corresponds to a 512 × 512

uniform grid. We have checked that a 512× 512 uniform grid is also needed in the case

of the mask approach to capture the same features. In such cases, where the confined

domain occupies a small portion of the computational domain, the adaptive approach

has a computational advantage since the number of degrees of freedom is significantly

lower than in the pseudo-spectral approach.

(a) speedup on a pc (b) speedup on a cluster

Figure 2.15: Comparison of wall time between HFDV and the mask approach (using

a DFT) for a SCFT simulation in terms of grid levels and number of processors. (a)

Comparison on a shared memory machine. (b) Comparison on a distributed memory

cluster. The parameters for these simulations are χABN = 36, fA = 0.18, ∆s = 0.01,

λ = 0.5, Lx = 128Rg.
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In terms of computational efficiency, figure 2.15 provides a summary of speedups for

the two approaches in a parallel environment. We find a net speedup of about 4 in the

case of HFDV compared to mask approach for levels (4, 8), (4, 9) and (4, 10) using

1, 2 or 4 processors on a shared memory machine. We also find a speedup for levels

(4, 12) on 16, 32, 64 and 128 processors on a distributed memory cluster. Figure 2.15

(a) highlight the weak scaling typical in scientific computing: the speedup with finite

difference solver plateaus when we use 4 processors instead of 2 for grid levels 9 and 10

while the mask approach still enjoys a speedup. This is due to the fact that the number

of degrees of freedom in the case of the mask approach is much larger than in the case

of the adaptive grid. As a consequence, the computational time spent by each process

dwarf the communication time. In the case of the adaptive approach, each process

is assigned less grid points and in turn the cost of communication is more apparent.

Nevertheless, for this example where the confined domain occupies a small region of the

entire computational domain, the HFDV approach is more efficient than the mask on

both shared and distributed machines. In fact, for this example, HFDV on one processor

is faster than DFT on 4 processors. On figure 2.15 (b), we show that for levels (4-12),

HFDV is always faster than the solver based on DFT.
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2.5.4 Three Spatial Dimensions

(a) Helix with (fA, χABN) =

(.25, 40)

(b) Helix with (fA, χABN) =

(.1, 54)

(c) 3D “L-shaped” domain

Figure 2.16: Densities obtained with a SCFT simulation using HFDV in parallel on

a (4-8) Octree. The parameters for (a) are (fA, χABN) = (.25, 40), ∆s = 0.0025 and

λ = 0.25. The parameters for (b) are (fA, χABN) = (.1, 54), ∆s = 0.01 and λ = 0.5.

The parameters for (c) are (fA, χABN) = (.3, 25), ∆s = 0.01 and λ = 0.5. In all cases

Lx = 64Rg.

Figure 2.17: Parallel scaling for the example of figure 2.16.
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In this section, we present results of simulations in three spatial dimensions using

the HFDV approach. The first example considers an helix-shaped confined domain.

Figure 2.16 depicts the confined domain and the densities obtained with different pairs

of (fA, χABN), which lead to a self-assembled materials that follows the structure of

the confined domain (figure 2.16(a)) or the generation of spheres (2.16(b)). Figure 2.17

shows the parallel scaling on a distributed memory cluster for 100 mean-field steps on

a level (4, 8) Octree grid, which corresponds to 1,547,301 degrees of freedom and an

effective resolution of a 2563 uniform grid. One can observe a linear scaling up to 64

processors, followed by a plateau. This illustrates a typical weak scaling, where the

cost of communication dominates the computation beyond a given number of processes

for a particular problem size. For this particular problem size, the optimal number of

processes is 64. For a simulation with 64 processors, the average computational time

for one mean field step is 15 seconds for the HFDV approach versus 60 seconds for the

pseudo spectral approach in the case of figure 2.16(a). The factor of 4 speedup for HFDV

is rooted in the sparsity of the Quadtree grid that requires only for 9% of a 2563 uniform

grid (i.e. 16.8 M degrees of freedom). For the example on figure (2.16(b)) the average

time for a mean field step on 128 processecors is 2 seconds for the HFDV approach versus

12 seconds for the FFTW on the corresponding 2563 uniform grid, hence a speed-up of 6

in favor of HFDV.

We consider a final example in three spatial dimensions on a level (4, 8) Octree grid,

with a “3D L-shaped” confined domain depicted in figure 2.16(c). Again in this case the
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average time for a mean field step on 128 processors is 2 seconds for the HFDV approach

versus 12 seconds for the FFTW, hence a speed-up of 6 in favor of HFDV.

We emphasize again that the computational superiority of the adaptive finite differ-

ence approach is for confined domains that occupy a small portion of the computational

domain.

2.5.5 Hybrid Uniform/Adaptive Pseudo-Spectral Approach

In the case where the computational domain is periodic and densely filled with block

copolymer, i.e., bulk periodic mesophases, it is advantageous to consider a pseudo-

spectral approach because of its computational efficiency. In this case, one can take

advantage of the nature of the SCFT algorithm and the data structure hierarchy to

compress the storage requirements of a simulation. There are two kinds of iterations

in a SCFT simulation: those associated with the diffusion solver and those associated

with the mean field optimization. The mean field iterations only require the potentials

w−(r) and w+(r), the forces f+(r) and f−(r) and the densities ρA(r) and ρB(r). These

quantities are all r-dependent, but s-independent. On the other hand, even though the

diffusion iterations evolve quantities q(s, r) and q†(s, r) from s = 0 to s = 1, one needs

to store the entire sequence q(s, r) and q†(1 − s, r) in s for each grid point in order to

compute the densities and the forces. The key point is that one can use a uniform grid to

solve the diffusion iterations (e.g. in order to use a FFT algorithm for fast computations)

but the adaptive grid is enough to store the data, hence reducing the memory footprint.
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The densities, forces and potentials are subsequently only computed at the nodes of the

adaptive grid. The values on the uniform grid that are required are interpolated from

the adaptive grid using the procedures described in [67]. Conversely the storage does

not require interpolations since the Quad-/Oc-tree nodes corresponds to grid points on

the uniform grid. This strategy combines the advantages of a spectral convergence and

the reduction of memory on adaptive grids. This strategy is illustrated in Algorithm 4.

Algorithm 4 Diffusion Iteration FFT on uniform grid but storage of q on an AMR grid

1. q
s+1/3
n = exp(−wn∆s

2
)qsn, n ∈ Uniform Grid

2. q̂
s+1/3
k = FFT(q

s+1/3
n ), k,n ∈ Uniform Grid

3. q̂
s+2/3
k = exp(−4dπ2k2)(q̂

s+1/3
k ), k,n ∈ Uniform Grid

4. q
s+2/3
n = IFFT(q̂

s+2/3
k ), k,n ∈ Uniform grid

5. qs+1
n = exp(−wn∆s

2
)q
s+2/3
n n ∈ Uniform Grid

6. store qs+1
n n ∈ Adaptive Grid

In a distributed environment the mapping from the uniform FFT grid to the AMR

grid is complicated by data distribution. An efficient strategy is required to map from

the uniform grid to the adaptive grid and to send and receive off-process data. In this

case, we use parallel index sets and scattering contexts of the PETSC library [4] to

manage parallel vectors related to unstructured grids. To each node on the adaptive

grid we calculate the node on the uniform grid on global numbering. The scattering

context stores two parallel index set vectors (not of the same size) and two parallel data
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vectors. The scattering uses these two pairs of vectors to transfer and map off-processor

information from the adaptive grid to the uniform grid without any interpolation. We

note that it is still necessary to interpolate the potential from the adaptive grid to the

uniform grid but this is done only once at each mean field step instead of at each diffusion

iteration.

Refinement Criteria tree levels α ‖ · ‖∞ ‖ · ‖2 ∆H/H[%]

Criterion 1 (6-6) 1 0 0 0
Criterion 1 (5-5) 8 1.07× 10−1 1.7× 10−2 5× 10−3

Criterion 2 (4-6) 3.72 1.4× 10−2 6× 10−4 7× 10−2

Criterion 3 (4-6) 3.16 2.7× 10−3 2.07× 10−4 5× 10−2

Criterion 4 (4-6) 2.62 1.5× 10−3 1.2× 10−4 1× 10−2

Table 2.2: Simulation results comparing the density ρA(r) obtained with a pseudo-

spectral solver and the storage on an adaptive grid with the density obtained with the

full pseudo-spectral solver for a BCC sphere phase in a 3D unit cell. The grid for the

pseudo spectral solver is (6, 6) and the parameters used are (fA, χABN) = (.14, 100) and

Lx = 5.4559Rg. The compression ratio α is defined as Nuniform/Namr, where Nuniform

and Namr are the number of grid points on the uniform and adaptive grids, respectively.

Table 2.2 compares the densities of the converged field between different methods

and demonstrates that when using the pseudo-spectral method with an adaptive storage,

memory compression is obtained while accuracy, expressed both as the L∞ and L2 norms

of the error in the density, is kept. Using Algorithm 2 with w− and w+, we obtain two

functions φ(w−) and φ(w+), from which we defined the following refinement criteria:

• Criterion 1: A uniform grid is imposed in the entire computational domain.
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• Criterion 2: The highest resolution is imposed only near the boundary between

the minority and majority regions using equation (2.12) with φ(w−).

• Criterion 3: Same as criterion 2 and in addition, the grid is uniform inside the

minority region.

• Criterion 4: The highest resolution is imposed using equation (2.12) with both

φ(w−) and φ(w+) and the grid is uniform inside the minority region.

In all cases the Octree grid provides a compression of the data and the error is below

2%. Specifically, we define the compression ratio as α =
Nuniform
Namr

, where N and Namr

are the number of grid points on the uniform and adaptive grids, respectively. We also

used this computational strategy with a full mean field optimization for an Octree with

(fA, χABN) = (.1, 200) (see figure 2.4 (a)) and found a compression ratio of about 5

without sacrificing accuracy.

2.6 Conclusion

We have presented a hybrid finite difference/volume method for conducting self-

consistent field theory simulations of self-assembly of diblock copolymers under confine-

ment with an effective Neumann boundary condition. In addition, we have implemented

adaptive grids encoded by Quad-/Oc-trees and extended the method to parallel envi-

ronments for increased computational efficiency. The advantage of this approach is that

it provides a computationally and memory efficient way to tackle self-assembly within
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irregular confined domains in two and three spatial dimensions. The method is further

shown to be an attractive alternative to the use of a mask technique that imposes uniform

resolution and mandates a weakly compressible model. In particular, the development

of a sharp numerical approach approximating the effective boundary condition enables

robust computations of the solution and its derivative near the boundary. Future work

will explore the use of this promising HFDV technique to investigate diblock copolymer

assembly in a domain with a free surface.
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Chapter 3

Functional Level Set Derivative

We derive functional level-set derivatives for the Hamiltonian arising in self-consistent

field theory, which are required to solve free boundary problems in the self-assembly of

polymeric systems such as block copolymer melts.. In particular, we consider in detail

the case of Dirichlet, Neumann and Robin boundary conditions. We provide numerical

examples that illustrate how these shape derivatives can be used to find equilibrium and

metastable structures of block copolymer melts with a free surface in both two and three

spatial dimensions.

3.1 Introduction

The use of polymers in confined situations is ubiquitous in science and engineering,

ranging from novel lithography techniques at the sub 22-nanometer scale for next gener-

ation computer chips to the study of drug delivery carriers with controlled release to the
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study of thin films [47, 50, 49, 52, 84, 83, 46, 70]. Self-consistent field theory (SCFT) pro-

vides an accurate description of the self-assembly of dense collections of long polymers

at equilibrium by considering a Fokker-Planck equation that describes the probability

of polymer segments to be at a certain location and given chain contour location. This

technique has been successfully used in the case of periodic as well as confined domains.

The more difficult case of free boundaries is still in its infancy, although some authors

have recently provided specialized solutions in the context of directed self-assembly, by

considering a parametric description of the free boundary [54, 53]. We focus here on

the versatile free boundary description proposed by Ouaknin et al. [77, 78, 76], which is

based on an implicit level-set representation [73, 71, 86].

An important question in the context of free surfaces is how the self-assembled solu-

tion responds to a change in the free boundary’s shape. Answering this question requires

to either explicitly solve the direct problem several times in order to a posteriori esti-

mate the sensitivity or to derive appropriate functional derivatives with respect to the

level set to a priori estimate it. The advantage of an a priori approach is that it en-

ables the development and implementation of algorithms that optimize for the coupling

between the fields and the shape. In the context of SCFT, functional shape derivatives

have been derived for orthorhombic shapes only [6]. In the present paper, we derive

functional shape derivatives with arbitrary shapes.

Shape derivatives have been derived for many systems described by partial differential

equations with various boundary conditions; a rigorous derivation of the methods and
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examples can be found in the seminal book of Sokolowski and Zolesio [88]. The level-

set framework has also been used to study shape optimization of a variety of physical

[74, 10, 1, 13], but no work exists for free boundary polymer self-assembly within the

framework of SCFT. The present work fills this gap in the literature.

The paper is structured as follows: in section 3.2 we present the SCFT equations,

in section 3.3 we derive functional level-set derivatives for SCFT for various boundary

conditions and in section 3.4 we present examples of shape optimization using these

level-set derivatives in both two and three spatial dimensions.

3.2 Self-Consistent Field Theory Model

In this section, we describe the governing equations for self-consistent field theory [24,

35, 36, 57] in the context of an incompressible melt of diblock copolymers composed of

two monomer species A and B. This physical system is characterized by two parameters:

(1) fA, the fraction of block A and (2) χAB, the repulsion interaction between A and B

polymer segments. The field-based theory of polymer thermodynamics uses a Hubbard-

Stratonovich transform to convert the partition function from a particles representation

to a field representation. If one further imposes the mean-field, or self-consistent field,

approximation, the SCFT equations are obtained by finding for the statistical fields w−
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and w+ that optimize the Hamiltonian1:

H[w+, w−] =
1

V

∫
Ω

(
− w+(r) +

w2
−(r)

χAB

)
dr − lnQ[w+(r), w−(r)], (3.1)

where the normalized partition function Q can be formulated as:

Q[w+, w−] =
1

V

∫
Ω

q(r, s = 1; [w+(r), w−(r)]) dr.

In these equations, w+(r) acts as a pressure potential that enforces the incompressibility

constraint while the exchange potential, w−(r), describes the interaction between A and

B. The functionals q(r, s = 1; [w+, w−]) and q†(r, s = 1; [w+, w−]) are the solution of

a Fokker Planck equation, which has to be solved from s = 0 to s = 1, with initial

conditions q(s = 0, r) = q†(s = 0, r) = 1, where s is the contour chain. The functionals

q and q†, called the chain propagators, represent the statistical weight of piece of chain

at location r and contour length s and satisfy the following forward and backward

Fokker-Planck equations:
∂sq(s, r) = ∆q(s, r)− q(s, r)w(r, s) forward.

∂sq
†(s, r) = ∆q†(s, r)− q†(s, r)w†(r, s) backward.

(3.2)

The boundary conditions at the free boundary that we consider in this study are:

1. Homogeneous Dirichlet:

q(s, r) = 0 and q†(s, r) = 0.

1This is actually H/n, where n is the number of molecular chains. Likewise χAB is in fact χABN
where N is the number of molecular segments per chain.
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2. Homogeneous Neumann:

∂q(s, r)

∂n
= 0 and

∂q†(s, r)

∂n
= 0.

3. Homogeneous Robin:

q(s, r) + αA
∂q(s, r)

∂n
= 0, for 0 < s < fA and

q(s, r) + αB
∂q(s, r)

∂n
= 0, for fA < s < 1,

q†(s, r) + αB
∂q†(s, r)

∂n
= 0, for 0 < s < 1− fA and

q†(s, r) + αA
∂q†(s, r)

∂n
= 0, for 1− fA < s < 1.

where we can denote α(s) for αA or αB in the Robin boundary condition for q and q†

which describe the attraction or the repulsion from the wall for the A and B species

[24]. The forward potential w(s, r) is calculated as follows:

w(s, r) =


wA(r) = w+(r)− w−(r) 0 < s < fA

wB(r) = w+(r) + w−(r) fA < s < 1

, (3.3)
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and w†(s, r) is defined as w†(s, r) = w(1 − s, r). The normalized densities of the com-

ponents A and B are obtained through the functional derivatives with respect to wA(r)

and wB(r),
δH

δwA(r)
,

δH

δwB(r)
and are computed using q and q†:

ρA(r; [w+, w−]) =
1

Q[w+, w−]

∫
fA

0
q†(1− s, r, [w+, w−])q(s, r, [w+, w−]) ds

ρB(r; [w+, w−]) =
1

Q[w+, w−]

∫
1

fA
q†(1− s, r, [w+, w−])q(s, r, [w+, w−]) ds

In the mean-field or SCFT approximation, where fluctuations are neglected, the free

energy of the melt is then given by the Hamiltonian at the saddle point, i.e. when

δH

δw(r)
= 0. The forces of the optimization process are obtained through the functional

derivatives with respect to the statistical fields,
δH

δw+(r)
,

δH

δw−(r)
, and are given by:



f+(r) = ρA(r) + ρB(r)− 1

f−(r) =
2w−(r)

χAB
+ ρB(r)− ρA(r)

. (3.4)

3.3 Level-Set Representation and Functional Level-

Set Derivatives

In this work, the shape is described through a level-set function, φ(r), which describes

an irregular domain, Ω, in an implicit way (see figure 3.1): φ(r) is negative inside Ω,

positive outside, and zero at its boundary Γ. The Fokker-Planck equations are thus

solved in Ω where φ < 0 with the boundary conditions imposed at the interface Γ, where
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φ(r) = 0. The volume of the polymer V is equal to |Ω| =
∫
H(−φ(r))dr where H is the

Heaviside function. In this study we choose φ(r) to be a signed distance function, i.e.

|∇φ(r)| = 1. The outward normal to Ω is thus defined as n = ∇φ(r), the local mean

curvature is κ(r) = ∇ · ∇φ(r) and
∂q(r)

∂n
= ∇q · ∇φ.

� : � = 0

� > 0

⌦ : � < 0

Figure 3.1: Level-set representation of an irregular domain Ω with boundary Γ.

With such a representation, the Hamiltonian is a functional of φ(r), in addition to the

pressure field w+(r) and the exchange field w−(r); thus one writes H = H[w+, w−, φ].

To quantify how the Hamiltonian H responds to a change in the irregular domain’s

shape, we need to find how Q changes and in turn how the chain propagators q(s = 1, r)

and q†(s = 1, r) vary. The change in the shape is expressed through a perturbation of

the interface Γ via the level-set function φ(r) → φ(r) + δφ(r) (see figure 3.2). In turn

we need to find how q(s = 1, r)→ q(s = 1, r) + δq(s = 1, r) and q†(s = 1, r)→ q†(s =

1, r) + δq†(s = 1, r). In what follows, we derive the shape derivative for H in the weak

form and provide in the appendix the derivation in the strong form.
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Figure 3.2: Schematic illustrating how q(r, s), the solution of ∂sq = ∇2q−wq, varies to q+δq,

and by consequence how the free energy H varies to H + δH, as the shape is perturbed

from φ to φ+ δφ.

3.3.1 Shape Derivative Theorems

For completeness, we recall the shape derivative theorems that are required for the

current study and we refer the interested reader to [88] for detailed proofs.

Theorem 1: Consider a functional, J [u(r)] =
∫

Ω
u(r)dr, defined in Ω. Given a

change δφ(r) of the shape, the corresponding change of the functional is given by:

δJ [u(r)] =

∫
Ω

δu(r)dr −
∫

Γ

u(r)δφ(r)dΓ,
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where the integral over Γ is over the original shape’s boundary (unchanged).

Theorem 2: Consider a functional, J [u(Γ)] =
∫

Γ
u(Γ)dΓ, defined on Γ. Given a change

δφ(r) of the shape, the change of the functional is given by:

δJ [u(Γ)] =

∫
Γ

δu(Γ)dΓ−
∫

Γ

κ(r)u(Γ)δφ(r)dΓ.

In the particular case that u(Γ) = u(r)
∣∣∣
Γ

and δu(Γ) = δu(r)
∣∣∣
Γ
− ∂u

∂n
(r)
∣∣∣
Γ
δφ(r), the

change of the functional can be rewritten as:

δJ(u) =

∫
Γ

δu(r)
∣∣∣
Γ
dΓ−

∫
Γ

(∂u(r)

∂n

∣∣∣
Γ

+ κ(r)u(r)
)
δφ(r)dΓ,

where κ(r) is the curvature of Γ and as in Theorem 1 the integrals over Γ are over the

original boundary shape (unperturbed).

Theorem 3: This theorem gives a formula for integrating by parts on the surface

Γ:∫
Γ

∇f(r) · ∇g(r)dΓ =

∫
Γ

−f(r) ·∆g(r)dΓ +

∫
Γ

[
∂f(r)

∂n

∂g(r)

∂n
+
∂2g

∂n2
+ κ(r)f

∂g

∂n
]dΓ,

We note that we have assumed in theorems 1-3 that the level-set function φ(r) is a

distance function i.e, n = ∇φ, |∇φ| = 1 and more importantly that the change of the

shape is measured by δφ(r).

3.3.2 Overview

In [12], Cea introduced a method based on a Lagrangian functional to calculate the

shape derivative of a functional J [φ, u], where u(r) is solution of a partial differential
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equation E(φ, u(r)) = 0. Details of the Cea method are given in [12] and a summary

of it is given in Appendix D. This approach rests on the idea that one can optimize

a functional J [u] under the constraint E(u(r)) = 0 by finding the stationary points of

the Lagrangian functional L = J +
∫

Ω
λ(r)E(u)dr, where λ(r) is a dual variable inside

the integral. As described in [12], we consider the change, δLδu, of L in response to the

change, δu, in u and the change, δLδφ, of L in response to the change, δφ, in φ, i.e.

δLδu = L(φ, u+ δu)−L(φ, u) and δLδφ = L(φ+ δφ, u)−L(φ). Setting δLδu = δLδλ = 0

we obtain an adjoint problem for λ and an expression for δLδφ.

In sections 3.3.3-3.3.4, we use the method introduced by Cea, i.e we derive the func-

tional derivatives in the weak form by treating the δu terms through the Lagrangian. In

appendix B, we use Theorems 1-2 and we treat the terms corresponding to δu explicitly

(strong form). We will also use theorem 3 to show the equivalence between the (weak

form) expressions found in section 3.3 and the (strong form) expressions of appendix B.

3.3.3 Functional Level-Set Derivatives for the Hamiltonian H

Considering shape optimization in the context of self-consistent field theory iscom-

plicated by the fact that the functional H not only depends on φ but also on the fields

w+(r) and w−(r). We thus have:

δH =

∫
Ω

[
δH

δφ(r)
δφ(r) +

δH

δw+(r)
δw+(r) +

δH

δw−(r)
δw−(r)]dr.
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Section 3.2 provides expressions for
δH

δw+(r)
and

δH

δw−(r)
. In what follows, we denote

δHδφ = H[φ+ δφ, w+, w−]−H[φ,w+, w−] =

∫
Ω

δH

δφ(r)
δφ(r)dr

and derive expressions for
δH

δφ(r)
.

Using theorem 1 for the field terms in H and writing the δ lnQ =
1

Q
δQ term in

equation (3.1) for the Hamiltonian, we have:

δHδφ

= − 1

V

∫
Γ

(
− w+(r) +

w−(r)2

χAB

)
δφ(r) dΓ

− 1

Q
δQδφ −

δVδφ
V 2

∫
Ω

(
− w+(r) +

w2
−(r)

χAB

)
dr − −δVδφ

V 2
Q,

(3.5)

where the fields w+(r) and w−(r) are kept constant. In the case of a polymeric material

with a fixed volume and fixed amount of material this expression simplifies to:

δHδφ = − 1

V

∫
Γ

(
− w+(r) +

w−(r)2

χAB

)
δφ(r) dΓ− 1

Q
δQδφ. (3.6)

The term δQδφ requires one to take into account the change in the solution to the

Fokker-Planck equation and the associated boundary conditions, for which we use the

method introduced by Cea [12] (see Appendix C). In the following derivations we are

going to treat the term δQδφ only which can be reintroduced in (3.6), and we note that

all the other terms do not have a dependence on q(r, s).
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3.3.4 Case of a Robin Boundary Condition

We define the Lagrangian:

L =

∫
Ω×[0,1]

q(s, r)δ(s = 1) ds dΩ

+

∫
Ω×[0,1]

λ(s, r)
(
qs(s, r)−

[
∆q(s, r)− q(s, r)w(s, r)

])
ds dΩ,

where λ(s, r) is a Lagrange multiplier to enforce the Fokker-Planck equation (3.2) for q

in Ω. After integrating by part the Lagrangian can be rewritten as:

L =

∫
Ω×[0,1]

q(s, r)δ(s = 1) ds dΩ

+

∫
Ω×[0,1]

λ(s, r)
(
qs(s, r) + q(s, r)w(s, r)

)
+∇q(s, r) · ∇λ(s, r) ds dΩ

−
∫

Γ×[0,1]

λ(s, r)
∂q(s, r)

∂n
dΓ ds,

and after inserting the Robin boundary conditions of q on Γ:

L =

∫
Ω×[0,1]

q(s, r)δ(s = 1) ds dΩ

+

∫
Ω×[0,1]

λ(s, r)
(
qs(s, r) + q(s, r)w(s, r)

)
+∇q(s, r) · ∇λ ds dΩ

+

∫
Γ×[0,1]

λ(s, r)α(s)q(s, r) dΓ ds,
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• The change of L in response to a change in δq is:

δLδq =

∫
Ω×[0,1]

δq(s, r)δ(s = 1) ds dΩ

+

∫
Ω×[0,1]

λ(s, r)
(
δqs(s, r) + δq(s, r)w(s, r)

)
+∇δq(s, r) · ∇λ(s, r) ds dΩ

+

∫
Γ×[0,1]

λ(s, r)α(s)δq(s, r) dΓ ds,

(3.7)

Integrating by parts in space, we obtain:∫
Ω

λ∆δq dΩ =

∫
Ω

∆λδq dΩ +

∫
Γ

λ
∂δq

∂n
dΓ−

∫
Γ

δq
∂λ

∂n
dΓ (3.8)

Likewise, integrating by parts in the chain contour variable gives:∫ 1

0

λδqs ds = −
∫ 1

0

λsδq ds+ [λδq]10,

with

[λδq]s=1
s=0 = λ(s = 1)δq(s = 1)− λ(s = 0)δq(s = 0),

where the second term drops out since δq(s = 0) = 0. Finally, with the change of

variable s = 1− t, we have:∫ 1

0

λδqsds =

∫ 1

0

λtδq dt+ λ(s = 1)δq(s = 1)

and w(t) = w(1− s) = w†(s) and α(t) = α(1− s) = α†(s).

(3.9)
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Combining equations (3.7)-(3.9), we have:

δLδq =

∫
Ω×[0,1]

(
1 + λ(t, r)

)
δ(t = 0)δq dΩ dt

+

∫
Ω×[0,1]

(
λt(t, r)−∆λ(t, r) + λ(t, r)w†

)
δq(s, r) dΩ dt

+

∫
Γ×[0,1]

λ(t, r)α†(s)δq(s, r) + δq(s, r)
∂λ(t, r)

∂n
dΓ dt,

and following Cea, we require the change in q to be zero to obtain the following

system of equations for λ:

λt(t, r) = ∆λ(t, r)− λ(t, r)w†(t, r) in Ω.

λ(t, r)α†(t) +
∂λ(t, r)

∂n
= 0 on Γ.

λ(t = 0, r) = −1 in Ω.

(3.10)

Also comparing with equation (3.2), we have λ = −q†.

• Using theorems 1 and 2, the change of L in response to a change in δφ is:

δLδφ =−
∫

Γ×T
q(s, r)δ(s = 1)δφ ds dΓ

−
∫

Γ×T
λ(1− s, r)

(
qs(s, r) + q(s, r)w(s, r)

)
δφ(r) ds dΓ

−
∫

Γ×T
∇q(s, r) · ∇λ(1− s, r)δφ(r) ds dΓ

−
∫

Γ×T
κ(r)λ(1− s, r)α(s)q(s, r)δφ(r) dΓ ds

−
∫

Γ×T
α(s)∂n(λ(1− s, r)q(s, r))δφ(r) dΓ ds
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and inserting −q† instead of λ:

δLδφ =−
∫

Γ×T
q(s, r)δ(s = 1)δφ ds dΓ

+

∫
Γ×T

q†(1− s, r)
(
qs(s, r) + q(s, r)w(s, r)

)
δφ(r) ds dΓ

+

∫
Γ×T
∇q(s, r) · ∇q†(1− s, r)δφ(r) ds dΓ

+

∫
Γ×T

α(s)(κ(r) + ∂n)(q†(1− s, r)q(s, r))δφ(r) dΓ ds

(3.11)

One can see that in the case of a Neumann boundary condition the last two terms

drop out and that we recover the expression given by equation (A.6) in the appendix.

Likewise, in the case of a Dirichlet boundary condition the two last terms drop out and

using theorem 3 in equation (3.11) along with the p.d.e for q, one recovers equation

(A.5) of the appendix.

3.4 Examples of Shape Optimization using the Level-

Set Derivatives

In the case of free surface polymers, the self-assembly process is described by the

saddle point of the Hamiltonian, H, with respect to the fields w−(r) and w+(r) as well

as with respect to the shape, here encoded by the level-set function φ(r). In this section,

we provide a few examples to illustrate potential applications of the shape derivatives

derived in this manuscript. In particular, we are focusing on illustrating that the energy

of the systems considered decreases in the case where the domain’s boundary is taken
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as one of the free parameters of the optimization process. These examples show how a

polymeric material with a free surface will change its shape in order to decrease its energy

and transit to a locally stable state with a lower energy. The examples in two spatial

dimensions could be useful in the context of directed self-assembly and the positioning

of channels in integrated circuits or in the study of self-assembly in free surface droplets;

the example in three spatial dimensions could be relevant to the study of free surface

polymeric melts such as cubosomes [84, 83, 85, 32, 46, 70, 63].

Algorithm 5 describes the numerical steps we use to minimize H[w−(r), w+(r), φ(r)].

The optimization with respect to the fields is obtained by solving the standard SCFT

equations of section 3.2 (see Algorithm 6). In our work, we use the framework introduced

in Ouaknin et al. [77], which imposes a Neumann boundary condition for q, as first

proposed in [21], using the method of Papac et al. [79, 80] and the parallel framework of

Mirzadeh et al. [68]. The optimization with respect to the shape drives the boundary Γ

to a local saddle point. In our work, the boundary motion is described by the level-set

equation:

∂φ(r)

∂τ
+ vn(r)|∇φ(r)| = 0, (3.12)

in pseudo-time τ , where vn(r) is the normal velocity at Γ. We use the functional level-set

derivatives derived in section 3.3 and choose δφ(r) = − δH

δφ(r)
so that the total variation

of the free energy is decreased: δH = −
∫

Γ

∣∣∣∣ δHδφ(r)

∣∣∣∣2 dΓ < 0. We thus define vn(r)

to be proportional to −δφ(r). Specifically, the velocity is computed inside Ω and is
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extrapolated in a narrow band outside the domain by solving:

∂vn(r)

∂t
+H

(
φ(r)

)
∇vn(r) · ∇φ(r) = 0, (3.13)

in order to have a well-defined normal velocity at the vicinity of the zero level set of φ.

A similar equation is also used to extrapolate the statistical fields w+ and w−, which

are needed to compute the Fokker-Planck equation in the advected domain φτ+1(r) < 0.

Finally the level-set function is transformed into a signed distance function [71, 86, 67]:

∂φ(r)

∂τ
+ signum

(
φ(r)

)(
|∇φ(r)| − 1

)
= 0, (3.14)

which is desired for the numerical algorithms used in this paper. To regularize the

shape, we add to the normal velocity a surface tension term γ κ, where γ > 0 is a chosen

parameter, and we discretize this term as in [73]. In all of the examples presented below,

the volume and the amount of material are kept constant by subtracting the average

velocity from the velocity obtained by computing the shape derivative.

Algorithm 5 Procedure to find the saddle point of H with optimal shape

I. Perform algorithm 6

II.

while ||δH/δφ||2 > εφ do // εφ is a chosen tolerance.

1. Perform 1-4 steps of algorithm 6

2. Find the velocity for φ(r) and advect φ(r) every O(100) mean-field steps

3. t = t+ 1

III. Perform algorithm 6
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Algorithm 6 Procedure to find the saddle point of H with respect to the fields w− and

w+ (SCFT).

while ||δH/δω||2 > εw do // εw is a chosen tolerance.

1. Solve two Fokker Planck equations q(s, r), q†(s, r)

2. compute the densities ρA(r), ρB(r)

3. compute the force for w+(r) and w−(r)

4. advance the potentials w−(r), w+(r)

5. t = t+ 1

In all of the examples, we first only evolve the fields for O(1000) mean-field steps until

we reach a local saddle point. Then we evolve the fields for another O(10,000) mean-

field steps, but this time in tandem with the optimization with respect to φ, which we

evolve every O(100) mean-field steps. Finally, we fix the boundary and relax the fields

for another O(1000) mean-field steps until we reach a new saddle point. This procedure

ensures that, by changing the shape, we decrease the energy. Figures 3.3, 3.4, 3.5 and

3.6 depicts the decrease in energy during each of the three steps, confirming that the

shape derivatives we developed can be used to optimize the coupled fields and shape in

both two and three spatial dimensions. We define ∆H∆φ as the difference of energy of

the polymer between its initial shape and its optimized shape, which corresponds to the

end of phase I and the end of phase III of algorithm 5, respectively.

As it is always the case in optimization problems that may have multiple local optimal

points, the initial data (here the seed in the fields, which in turn define the polymer
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densities) influences which local saddle point (or metastable equilibrium) is reached.

Figures 3.3 and 3.4 present the results of the shape optimization process obtained with

two different seeds, which lead to significant differences in both the topology of the

densities as well as in the shape of the free boundary.

Figure 3.5 provides an example where the seed consists of an random distribution in

the statistical fields inside a circular free boundary. The optimization process leads to a

symmetric density morphology. Interestingly, the minority region wets the free surface

and locally changes the curvature in order to reduce the AB interfacial region.

Figure 3.6 provides an numerical example in three spatial dimensions that is moti-

vated by the study of cubosomes, which are cubic bicontinuous network morphologies

that have gained a lot of attention recently particularly because of their potential in

food sciences and as drug delivery carriers [46, 70, 63]. Starting with a gyroid seed for

the minority density enclosed into a cubic free surface, the self-assembly process drives

the morphology of both the minority density and the free surface to a nontrivial geom-

etry. In this case, the energy drop is ∆H∆φ = −0.0115, illustrating that complex three

dimensional configurations can be treated by our formalism.
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(a) t=0 (b) t=3,000 (c) t=6,000 (d) t=36,000

(e) Energy

Figure 3.3: Evolution of the densities and the shape: starting from a free surface with

elliptical shape and a minority region enclosed into two ellipses, both the boundary and

the minority region transit to a disk shape. One can also observe a change in topology

in the minority region. The change in shape leads to an energy drop of ∆H∆φ = −0.334.

The parameters for this simulation are (fA, χAB) = (0.3, 36), Lx = 12.8Rg, γ = 0 and

∆s = 0.01.
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(a) t=0 (b) t=3,000 (c) t=6,000 (d) t=36,000

(e) Energy

Figure 3.4: Same example as in figure 3.3, but this time the seeded minority components

are located farther apart. Here, the energy drop is ∆H∆φ = −0.0487. The parameters

for this simulation are (fA, χAB) = (0.3, 36), Lx = 12.8Rg, γ = 0 and ∆s = 0.01.
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(a) t=0 (b) t=5000 (c) t=10,000 (d) t=20,000

(e) Energy

Figure 3.5: Evolution of the densities and the free boundary: starting from a random

density distribution enclosed by a circular free surface, the minority region self-assembles

into a circular morphology. The energy decreases by ∆H∆φ = −0.0357. The parameters

for this simulation are (fA, χAB) = (0.3, 25), γ = 0.5/Rg and ∆s = 0.005.
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(a) t=0 (b) t=20,000 (c) t=40,000 (d) t=60,000

(e) Energy

Figure 3.6: Evolution of the density and the shape: starting with a cube for the shape

and a gyroid seed for the A component. The energy drop is ∆H∆φ = −0.0115. The

parameters are (fA, χAB) = (0.36, 20), γ = 1.00/Rg, Lx = 18Rg, and ∆s = 0.005.

3.5 Conclusion

We derived functional level-set derivatives in strong and weak forms for in the cases

of homogeneous Dirichlet, Neumann and Robin boundary conditions and in the context

of polymer self-consistent field theory. Using these shape derivatives in the Neumann
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case, we provided numerical examples of free boundary SCFT simulations for confined

diblock copolymer melts in two and three spatial dimensions. The minimization process

takes into account the shape of the free boundary in addition to the statistical fields,

which can enable studies of their coupling. In all the cases studied, the minimization

leads to locally stable states with decreased energy. This work could be used for the

exploration of the free surface assembly of a wide range of polymeric materials.

80



Appendix A

Derivation in weak form for

Dirichlet and Neumann

For convenience we derive here in detail for Dirichlet and Neumann as special cases.

A.1 Case of a Dirichlet Boundary Condition

We define the Lagrangian:

L =

∫
Ω×[0,1]

q(s, r)δ(s = 1) ds dΩ

+

∫
Ω×[0,1]

λ(s, r)
(
qs(s, r)−

[
∆q(s, r)− q(s, r)w(s, r)

])
ds dΩ

+

∫
Γ×[0,1]

µ(s, r)q(s, r) dΓ ds,

81



where λ(s, r) is a Lagrange multiplier to enforce the Fokker-Planck equation (3.2) for

q in Ω and µ(s, r) is a Lagrange multiplier to enforce the Dirichlet boundary condition

q = 0 on the boundary Γ.

• the change of L in the direction of δq:

δLδq =

∫
Ω×[0,1]

δq(s, r)δ(s = 1) ds dΩ

+

∫
Ω×[0,1]

λ(s, r)
(
δqs(s, r)−

[
∆δq(s, r)− δq(s, r)w(s, r)

])
ds dΩ

+

∫
Γ×[0,1]

µ(s, r)δq(s, r) dΓ ds

(A.1)

Integrating by parts in space, we obtain:∫
Ω

λ(s, r)∆δq dΩ =

∫
Ω

∆λδq dΩ +

∫
Γ

λ(s, r)
∂δq

∂n
dΓ−

∫
Γ

δq
∂λ

∂n
dΓ (A.2)

Likewise, integrating by parts in time gives:∫ 1

0

λ(s, r)δqs ds = −
∫ 1

0

λsδq ds+ [λδq]10,

with

[λq]s=1
s=0 = λ(s = 1)δq(s = 1)− λ(s = 0)δq(s = 0),

where the second term drops out since δq(s = 0) = 0. Finally, with the change of

variable s = 1− t, we have:∫ 1

0

λδqsds =

∫ 1

0

λtδq dt+λ(s = 1)δq(s = 1) and w(t) = w(1−s) = w†(s).

(A.3)
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Combining equations (A.1)-(A.3), we have:

δLδq =

∫
Ω×[0,1]

(
1 + λ

)
δ(t = 0)δq +

(
λt −∆λ+ λw†

)
δq(s, r) dΩ dt

+

∫
Γ×[0,1]

µδq(s, r) + λ
∂δq

∂n
− δq ∂λ

∂n
dΓ dt,

and thus we obtain the following system of equations for λ:

λt(t, r) = ∆λ(t, r)− λ(t, r)w†(t, r) in Ω.

λ(t, r) = 0 on Γ.

λ(t = 0, r) = −1 in Ω.

(A.4)

as well as the relationship between λ and µ on Γ: µ
∣∣
Γ

= − ∂λ
∂n

∣∣∣
Γ
. Also comparing

with equation (3.2), we have λ = −q†.

• the change of L in the direction of δφ:

δLδφ =−
∫

Γ×T
q(s, r)δ(s = 1)δφ ds dΓ

−
∫

Γ×T
λ(1− s, r)

(
qs(s, r)−

[
∆q(s, r)− q(s, r)w(r)

])︸ ︷︷ ︸
=0 by (3.2)

δφ ds dΓ

−
∫

Γ×T

∂µq(s, r)

∂n
δφ dΓ ds

−
∫

Γ×T
κ(r)µ q(s, r)︸ ︷︷ ︸

=0 (Dirichlet)

δφ dΓ ds
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Using µ
∣∣
Γ

= − ∂λ
∂n

∣∣∣
Γ

and λ = −q†, we obtain:∫
Γ×T

∂µ(s, r)q(s, r)

∂n
δφ

=

∫
Γ×T

(
µ
∂q

∂n
+ q(s, r)︸ ︷︷ ︸

=0 (Dirichlet)

∂µ

∂n
q
)
δφ dΓ ds

=

∫
Γ×T

∂q†(1− s, r)

∂n

∂q

∂n
δφ dΓ ds

and thus:

δL · δφ = −
∫

Γ×T

(
q(s, r)δ(s = 1) +

∂q†(1− s, r)

∂n

∂q(s, r)

∂n

)
δφ(r) dΓ ds. (A.5)

A.2 Case of a Neumann Boundary Condition

As in the Dirichlet case, we introduce the Lagrangian:

L =

∫
Ω×T

q(s, r)δ(s = 1)dsdΩ+

∫
Ω×T

λ(s, r)
(
qs(s, r)−

[
∆q(s, r)− q(s, r)w(s, r)

])
ds dΩ.

After integration by parts and taking into account the homogeneous Neumann boundary

condition on q, we get:

L

=

∫
Ω×T

qδ(s = 1)dsdΩ

+

∫
Ω×T

λ(s, r)
(
qs(s, r) + q(s, r)w(s, r)

)
+∇q(s, r) · ∇λ(s, r) ds dΩ.
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• the change of L in the direction of δq:

δLδq

=

∫
Ω×T

δq(s, r)δ(s = 1)dsdΩ

+

∫
Ω×T

λ(s, r)
(
δqs(s, r) + δq(s, r)w(r)

)
+∇δq(s, r) · ∇λ(s, r) ds dΩ.

Integrating by parts in space, we have:∫
Ω

∇δq(s, r) · ∇λ(s, r)dΩ = −
∫

Ω

∆λ(s, r)δq(s, r)dΩ +

∫
Γ

δq(s, r)
∂λ(s, r)

∂n
dΓ.

Integrate by parts in time and combining the integrals on Ω and Γ as in the

Dirichlet, we obtain the following systems of equation for λ:

λt(t, r) = ∆λ(t, r)− λ(t, r)w†(t, r) in Ω.

∂λ(t, r)

∂n
= 0 on Γ.

λ(t = 0) = −1.

• the change of L in the direction of δφ: substituting λ(r, s) = −q†(r, s) in the

Lagrangian and using theorem 1, we obtain:

δLδφ =−
∫

Γ×T
qδ(s = 1)δφ(r) ds dΓ

+

∫
Γ×T

q†(1− s, r)
(
qs(s, r) + q(s, r)w(r)

)
δφ(r) ds dΓ

+

∫
Γ×T
∇q(s, r) · ∇q†(1− s, r)δφ(r) ds dΓ,

(A.6)
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which is the change of L with respect to the level-set.

Remarks:

1. In the case of homogeneous Neumann boundary conditions, we have ∇q ·

∇q† =
∂q

∂τ

∂q†

∂τ
, where τ is the tangential vector to the boundary Γ.

2. We can use the factorization property of the partition function to write a more

transparent expression for the shape derivative: Q =
1

V

∫
Ω
q(r, s)q†(r, 1− s) dr

for any s. Thus choosing s = 1 gives Q =
1

V

∫
Ω
q(r, s = 1) q†(r, s = 0)︸ ︷︷ ︸

=1

dr

and choosing s = 0 gives Q =
1

V

∫
Ω
q(r, s = 0)︸ ︷︷ ︸

=1

q†(r, s = 1) dr. Thus one can

write Q =
1

2V

∫
Ω
q(r, s = 1) + q†(r, s = 1) dr, and by interchanging q and q†

in equation (A.6), one can write the following:
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δLδφ =−
∫

Γ×T
qδ(s = 1)δφ(r) ds dΓ

+

∫
Γ×T

q†(1− s, r)
[
qs(s, r) + q(s, r)w(r)

]
δφ(r) ds dΓ

+

∫
Γ×T
∇q(s, r) · ∇q†(1− s, r)δφ(r) ds dΓ

=

∫
Γ×T

(
− q(s, r)δ(s = 1) + q†(1− s, r)∆q(s, r)

)
δφ(r) ds dΓ

+

∫
Γ×T
∇q(s, r) · ∇q†(1− s, r)δφ(r) ds dΓ

=

∫
Γ×T
−1

2

[
q(s, r)δ(s = 1) + q†(1− s, r)δ(s = 0)

]
δφ(r) ds dΓ

+

∫
Γ×T

(1

2
q†(1− s, r)∆q(s, r) +

1

2
q(s, r)∆q†(1− s, r)

)
δφ(r) ds dΓ

+

∫
Γ×T
∇q(s, r) · ∇q†(1− s, r)δφ(r) ds dΓ

=
1

2

∫
Γ×T
−
[
q(s, r)δ(s = 1)− q†(1− s, r)δ(s = 0)

]
δφ(r) ds dΓ

+
1

2

∫
Γ×T

∆
[
q(s, r)q†(1− s, r)

]
δφ(r) ds dΓ.

(A.7)

Using equation (3.4) we obtain the following symmetric expression:

δLδφ = −1

2

∫
Γ

(
q(1, r) + q†(1, r)−Q∆f+(r)

)
δφ(r) dΓ. (A.8)
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Appendix B

Derivation in the Strong Form

We provide here the derivation in the strong form1 for completeness.

Using theorem 1 for Q:

δQδφ = − 1

V

∫
Γ

q(s = 1, r)δφ(r) +
1

V

∫
Ω

δq(s = 1, r) dr. (B.1)

We now define δQstress = 1
V

∫
Ω
δq(s = 1, r) dr and deriving δQstress with respect to

δφ(y), we obtain:

δQstress

δφ(y)
=

1

V

∫
Ω

δq(s = 1, r)

δφ(y)
dr. (B.2)

Define g(s, r,y) = δq(s,r)
δφ(y)

with g(s = 0) = 0 as initial condition. We write a PDE for

g when w is kept constant but we move the domain:

δqs(s, r,y)

δφ(y)
=
δ∆q(s, r,y)

δφ(y)
− δq(s, r,y)

δφ(y)
w(s, r)− δw(s, r)

δφ(y)
q(s, r,y) (B.3)

1Not to be confused with the material derivative [88].
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Interchanging δ with the s derivative and the laplacian and using that w is kept

constant the following PDE is obtained for g:

gs(s, r,y) = ∆g(s, r,y)− g(s, r,y)w(s, r) (B.4)

δQstress(s)

δφ(y)
=

1

V

∫
Ω

g(s, r,y)dr =

1

V

∫
Ω

q†(s = 0, r)︸ ︷︷ ︸
=1

g(s, r,y)− g(s = 0, r,y)︸ ︷︷ ︸
=0

q†(s, r)dr =

1

V

∫
Ω×T

(q†(s− t, r)g(t, r,y))tdtdr =

1

V

∫
Ω×T

gt(t, r,y)q†(s− t, r)− g(t, r,y)q†t (s− t, r)dtdr =

1

V

∫
Ω×T

(∆g(t, r,y)− g(t, r,y)w(r))q†(s− t, r)dtdr

− 1

V

∫
Ω×T

g(s, r,y)(∆q†(s− t, r)− q†(s− t, r)w(r))dtdr =

1

V

∫
Ω×T

∆g(t, r,y)q†(s− t, r)− g(t, r,y)∆q†(s− t, r)dσdr =

1

V

∫
Γ×T

q†(s− t, r)︸ ︷︷ ︸
=0 for Dirichlet

∇g(t, r,y) · ∇φ(r)dtdΓ

− 1

V

∫
Γ×T

g(t, r,y)∇q†(s− t, r) · ∇φ(r)︸ ︷︷ ︸
=0 for Neumann

dtdΓ,

(B.5)

where n = ∇φ(r)
|∇φ(r)| and we assume φ(r) is a signed distance function, i.e |∇φ(r)| = 1.
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B.1 Case of a Dirichlet Boundary Condition

Introducing Dirichlet boundary conditions q(s, rΓ(φ), φ) = 0, where rΓ describes the

position of the interface Γ,and take the derivative with respect to δφ(y):

δq(s, rΓ(φ), φ)

δφ(y)
+∇q(s, rΓ(φ), φ) · δrΓ

δφ(y)
= 0 (B.6)

Inserting the Dirichlet boundary conditions in (B.5) , i.e q†(r, s− t) = 0, and using

δrΓ(φ)
δφ(y)

= −∇φ(r)δ(rΓ − y) for a reinitialyzed φ(r) we obtain:

δQstress(s) =
1

V

∫
Γ×T
−∂q(t, r)

∂n

∂q†(s− t, r)

∂n
δφ(r)dtdr

(B.7)

We note the equivalence between equation (A.5) and equation (B.7).

B.2 Case of a Homogeneous Neumann Boundary

Condition

We write the Neumann boundary conditions as f(rΓ(φ), φ) = ∇q(rΓ) · ∇φ(r) = 0:

δf(rΓ(φ), φ)

δφ(y)
=
δ∇q(rΓ)

δφ(y)
· ∇φ(rΓ)δφ(rΓ) +∇q(rΓ)

δ∇φ(rΓ)

δφ(y)
+∇(∇q · ∇φ(rΓ))

δrΓ

δφ(y)

(B.8)

Inserting the boundary conditions as in the Dirichlet case into (B.5) we get:

90



δQstress(s) =
1

V

∫
Γ×T

q†(s− t, r)

(
∂2q(t, r)

∂n2
δφ(r)−∇q(t, r

)
· ∇δφ(r) dtdr (B.9)

Now, using theorems 3 and 4 (theorem 2.67 of Sokolowski and Zolesio in [88]) it can

be decomposed into terms of δφ and terms of ∇δφ by taking f = q†δφ and g = q:∫
Γ×T

q†(1− s, r)

(
∂2q(s, r)

∂n2
δφ(r)−∇q(s, r) · ∇δφ(r)

)
dΓds

=

∫
Γ×T

q†(1− s, r)∆q(r, s)δφ(r) +∇q(s, r) · ∇q†(1− s, r)δφ(r)

− ∂q(s, r)

∂n

∂q†(1− s, r)δφ(r)

∂n
− κq†(1− s, r)δφ(r)

∂q(s, r)

∂n
dΓ ds (B.10)

=

∫
Γ×T

q†(1− s, r)∆q(r, s)δφ(r) +∇q(s, r) · ∇q†(1− s, r)δφ(r) dΓ ds

=

∫
Γ×T

(
q†(1− s, r)

[
qs(s, r) + q(s, r)w(r)

])
δφ(r) dΓ ds,

+

∫
Γ×T

(
∇q(s, r) · ∇q†(1− s, r)

)
δφ(r) dΓ ds,

where in the first equality we use integration by parts on the surface, in the second

equality we use the fact that
∂q

∂n
= 0 and

∂(q†δφ)

∂n
= 0 and in the third we use the PDE.

Again we note the equivalence between equation (A.6) and equation (B.9).
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B.3 Case of a Homogeneous Robin Boundary Con-

dition

We write the Robin boundary conditions as f(rΓ(φ), φ) = ∇q(rΓ)·∇φ(r)+α(s)q(rΓ) =

0:

δf(rΓ(φ), φ)

δφ(y)
=

δ∇q(rΓ)

δφ(y)
· ∇φ(rΓ)δφ(rΓ) +∇q(rΓ)

δ∇φ(rΓ)

δφ(y)
+∇(∇q · ∇φ(rΓ))

δrΓ

δφ(y)
+

α(s)(
δq(s, rΓ(φ), φ)

δφ(y)
+∇q(s, rΓ(φ), φ) · δrΓ

δφ(y)
)

(B.11)

Inserting the boundary conditions as in the Dirichlet and Neumann cases into (B.5) and

transforming
∂q†(s− t, r)

∂~n
to −α†(s− t)q†(s− t, r) we get:

δQstress(s) =

1

V

∫
Γ×T

q†(s− t, r)

(
∂2q(t, r)

∂n2
+ α(t)

∂q(t, r)

∂n

)
δφ(r) dtdr+

1

V

∫
Γ×T
−∇q(t, r) · ∇δφ(r) dtdr

(B.12)
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Now, using theorems 3 and 4 (theorem 2.67 of Sokolowski and Zolesio in [88]) it can

be decomposed into terms of δφ and terms of ∇δφ by taking f = q†δφ and g = q:∫
Γ×T

q†(1− s, r)

(
∂2q(s, r)

∂n2
+ α(s)

∂q(s, r)

∂n

)
δφ(r)−∇q(s, r) · ∇δφ(r)) dΓds

=

∫
Γ×T

q†(1− s, r)∆q(r, s)δφ(r) +∇q(s, r) · ∇q†(1− s, r)δφ(r)

− ∂q(s, r)

∂n

∂q†(1− s, r)δφ(r)

∂n
− κq†(1− s, r)δφ(r)

∂q(s, r)

∂n
dΓ ds

+

∫
Γ×T

α(s)q†(1− s, r)
∂q(s, r)

∂n
δφ(r) dΓ ds

=

∫
Γ×T

q†(1− s, r)∆q(r, s)δφ(r) +∇q(s, r) · ∇q†(1− s, r)δφ(r)

+ α(s)(κ(r) + ∂n)(q(s, r)q†(1− s, r))δφ(r) dΓ ds

=

∫
Γ×T

(
q†(1− s, r)

[
qs(s, r) + q(s, r)w(r)

])
δφ(r) dΓ ds,

+

∫
Γ×T

(
∇q(s, r) · ∇q†(1− s, r)

)
δφ(r) dΓ ds,

+

∫
Γ×T

α(s)(κ(r) + ∂n)(q(s, r)q†(1− s, r))δφ(r) dΓ ds,

where in the first equality we use integration by parts on the surface, in the second

equality we use the fact that
∂q

∂n
= −α(s)q and

∂δφ

∂n
= 0 and in the third we use the

PDE. We can obtain a symmetric expression as in Neumann for the first terms, and by

inserting the densities ρA, ρB instead of q, q† in the second integral and make use of the

boundary conditions to obtain:

δQstress =
1

2

∫
Γ

(
Q∆f+(r)− (κ(r) + ∂n)(αAρA(r) + αBρB(r))

)
δφ(r) dΓ. (B.13)
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Again we note the equivalence between equation (3.11) and equation (B.13). In addition

if we use that αAρA + αBρB = −∂n(ρA + ρB) the last term can be written as (κ(r)∂n +

∂nn)(−Qf+(r)), and get the following symmetric expression:

δQstress =
1

2

∫
Γ

Q(∆ + κ(r)∂n + ∂nn)f+(r)δφ(r) dΓ. (B.14)
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Appendix C

Weak Form .vs. Strong Form

In equations (A.5) and (B.7) we get the same functional level-set derivative in the

case of Dirichlet boundary conditions for both the weak form derivation and the non-

weak form derivation. In equations (B.9), (A.6) at a first sight we do not get the same

functional level-set derivatives using the weak and non-weak form but we showed in

equation (B.10) using integration by parts on the surface that the integral on these two

expressions is equal. However we note that in the weak form we do not get an explicit

partial differential equation for δq(s, r). In the case of the strong form, we obtain for

δq(s, r) =
∫
g(s, r,y)δφ(y)dy the following PDE for a specific and known in advance
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δφ(r) change of the shape, which can be used to gain insight into the behavior of δq:

δq(s, r) = ∆δq(s, r)− w(s, r)δq(s, r) in Ω

Dirichlet δq(s, r) =
∂q(s, r)

∂n
δφ(r) on Γ,

Neumann
∂δq(s, r)

∂n
=
∂2q(s, r)

∂n2
δφ(r)− ∂q(s, r)

∂τ

∂∇δφ(r)

∂τ
on Γ,

δq(s = 0, r) = 0.

(C.1)

The weak form is convenient to implement a shape optimization procedure since we

get a level-set sensitivity linear in δφ in contrast with the expression obtained in (B.9)

which can not be used as is since it has ∇δφ terms.
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Appendix D

Cea’s Method

This appendix outlines the method, introduced by Cea [12], that we use to derive

the level-set derivative in the weak form in section 3.3. Consider a domain Ω = {r :

φ(r) < 0} in Rn, where φ is a level-set function, and a functional J defined as:

J [u, φ] =

∫
Ω

u(r)dΩ.

Let u(r) be constrained to satisfy a partial differential equation

E(φ(r), u(r)) = 0.

To find the change of J with respect to φ one introduces the Lagrangian L[u, φ] =

J [u, φ] +
∫

Ω
λ(r)E(φ, u)dΩ. We highlight the steps of the derivation used by [12]:

1. Since δLδλ =
∫

Ω
δλE(φ, u)dΩ and E(φ, u) = 0, u is the solution of δLδλ = 0.
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2. Since we choose λ to be the solution of δLδu = 0, λ satisfies δJδu+
∫

Ω
λ(r)δEδu(φ, u)dΩ =

0,

3. When the constraint E(u, φ) = 0 is satisfied we can write j[u, φ] = L(u, φ, λ)

so that the change of j[u] with respect to the shape is given by: δjδφ = δLδφ +

δLδuδuδφ + δLδλδλδφ,

4. Finally Hadamard’s theorem states that the change of a functional j[u] with respect

to the shape depends on the values on Γ only [41], thus:

δjδφ = −
∫

Γ

(
u(r) + λ(r)E(φ(r), u(r))

)
δφ(r)dΓ

.
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Chapter 5

Level Set Strategy for Inverse

DSA-SCFT problem

We introduce a level-set strategy to find the geometry of confinement that will guide

the self-assembly of block copolymers to a given target design in the context of lithog-

raphy. The methodology is based on a shape optimization algorithm, where the level-

set normal velocity is defined as the pressure field computed through a self-consistent

field theory simulation. We present numerical simulations that demonstrate that this

methodology is capable of finding guiding templates for a variety of target arrange-

ments of cylinders and thus is an effective approach to the inverse directed self-assembly

problem.
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5.1 Introduction

Directed self-assembly (DSA) of block copolymers is now recognized as a comple-

mentary patterning technique to accompany the continuous miniaturization necessary

for next generation lithography [27, 37]. Similar to conventional patterning techniques

such as photolithography, DSA relies on a prepatterned mask to transfer and print a

target pattern on a wafer. DSA is a bottom-up approach however, and the presence of

the guiding mask is not only necessary to the formation of targeted arrangements, but is

critical for the precise control over long-range order and the elimination of undesirable

defects [5]. In contrast to self-assembly of block copolymers in bulk and thin films, using

chemically prepatterned surfaces [45, 22] or topographical confinement [84] for example,

it was demonstrated in a large body of experimental and numerical studies how DSA can

affect the orientation of the microdomains during phase separation and produce target

features with high reproducibility and minimal defectivity [93, 23].

Of the many components of an integrated circuit, vertical interconnect access (VIA)

structures, also called contact holes, are prime candidates for a simple and cost-effective

implementation of a DSA-assisted patterning technique [17, 82]. In VIA lithography,

the main goal is to produce high resolution cylinders with a reduced critical dimension

relative to a larger guiding template. While the confining template can be generated

using conventional optical lithography, the cylinders within are the result of the self-

assembly of cylinder-forming block copolymers and a subsequent selective etch process

to remove the minority block. Beyond hole shrinking, cylinder placement accuracy is
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also essential to the successful implementation of a DSA scheme for VIA lithography

[95, 52]. Because VIAs are the components of an integrated circuit that connect various

conducting layers, it is imperative that the formed cylinders be accurately located to

allow current to pass through the layers [17].

The forward problem, consisting of predicting the resulting self-assembled features of

block copolymers at equilibrium within a given and fixed confining shape, has received

most of the attention in recent computational studies of DSA for VIA lithography [43,

49, 44]. Using field-based simulations [24], the hole shrinking and placement errors were

extensively characterized in both single and arrays of VIAs in various guiding templates.

Mean-field approachs, such as self-consistent field theory (SCFT), or including thermal

fluctuations, as in complex Langevin (CL) simulations [24], have enabled an exhaustive

exploration of the vast parameter space in VIA DSA. In addition to optimal conditions,

which favor the emergence of defect-free structures, field-based simulations were used to

estimate the formation energies of defective structures and the kinetic barriers for the

melting of such defects into perfect morphologies [51, 52, 40].

Contrary to the forward problem, the inverse problem, which consists of constructing

an adequate confining mask shape that leads to a given self-assembled morphology of the

block copolymers, has received little attention in computational investigations. With the

increasing complexity of design rules of circuit layouts and the decreasing dimensions of

integrated components, there is high demand for the cost-efficient design and fabrication

of mask templates that accurately produce a given arrangement of morphologies on a
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wafer. While technologies based on double and quadruple patterning steps must resort

to multiple concurrent masks to achieve target layouts, a solution to the DSA inverse

problem can potentially offer an inexpensive alternative to produce similar target layouts

while keeping the number of masking steps at a minimum. In the context of VIA

lithography, the emphasis is therefore on mask shapes that can direct the self-assembly

of the block copolymer into various cylindrical structures with a prescribed diameter and

location. Furthermore, the resulting mask must be as smooth as possible to integrate

fabrication constraints.

Recently, Latypov et al. introduced a methodology for shape optimization in DSA

lithography [54, 53]. They proposed an inverse design algorithm where the shape is

unknown and the target density is fixed. While successfully predictive in the proof-of-

concept examples therein, the method relies on a linearization of the mean field equations

along with a primitive parameterization of the unknown shape. The extension of the

algorithm to the full non-linearized equations and complex shapes remains to be inves-

tigated.

The level-set formalism [73] has been successfully used to compute optimal shapes

in a variety of problems, ranging from inverse imaging to structural engineering and

fluid mechanics, e.g. [74, 1, 94, 86, 72] and the references therein. An advantage of

the level-set representation is that no parametrization is required to characterize a free

boundary and its dynamics, making it well-suited to represent arbitrary shapes. Another

advantage is that the level-set function can be used to locate exactly the position of the
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interface in order to impose sharp boundary conditions. In our case, this will prove

useful to impose effective boundary conditions.

In this paper, we introduce a level-set approach for the search of optimal masks in

DSA lithography. We demonstrate how the advantages of the level-set method and the

full nonlinear self-consistent mean field theory (SCFT) can be leveraged in tandem to

compute optimal guiding templates for a variety of target arrangements of cylinders in

the context of VIA lithography. Of course, the shape optimization algorithm we present

could be used with a linearization of the mean field equations, as in [54, 53], benefit-

ing from the advantages of a parametrization-free representation. However, although it

would be straightforward and may provide advantages in terms of computational effi-

ciency, this approach would be at the expense of physical accuracy. We thus use SCFT

simulations and in particular, we consider Neumann boundary conditions. The choice

of Neumann (or effective) boundary conditions for molten polymers at air or solid inter-

faces is justified (see De Gennes [21]) and offers the advantage that values at the mask’s

boundary, where the level-set velocity is computed, remain smooth [79, 77]. In turn,

the level-set evolution is robust to variations in the numerical parameters, a property

that would otherwise be difficult to guarantee. The shape optimization procedure we

introduce involves two stages. In the first stage, the level-set function representing the

mask’s shape is evolved to a steady state using the pressure field obtained from SCFT

simulations. The resulting shape is then fixed and used in the second stage where both

the exchange and pressure fields from SCFT are converged to their saddle point values.
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The algorithm is successful if the target density is obtained at the end of the second

stage. Otherwise, a correction stage is added and the process repeats.

The paper is organized as follows. In section 3.2, we describe both the level-set

equations and the SCFT framework in the case of free moving boundaries. The proposed

shape optimization algorithm, a level-set-based circle detection algorithm that we use in

the correction step, and the numerical strategies will be detailed in section 5.5. Finally,

section 5.6 presents numerical results on several relevant examples of target density

structures.

Diblock copolymer chains are comprised of two connected blocks A and B, and can be

parametrized by the A-block fraction parameter fA along with an interaction parameter

χAB. The first block contains polymerized A monomers and the second block consists of

B monomers. fA is the fraction of A in the chain and χAB quantifies the net repulsive

interaction between monomers of A and B. An important goal in the study of assemblies

of molten diblock copolymers is to understand the pattern selection of self-assembled,

spatially periodic mesophases at equilibrium as a function of fA and χAB [24, 7].

Self consistent field theory (SCFT) is a successful mean-field theory and a mature

computational tool for describing inhomogeneous phases of block copolymers in the

parameter space (fA, χAB) [24, 35, 36]. It has enabled researchers to predict and under-

stand block copolymer self assembly in a wide range of applications [24, 60, 61, 59]. In

the following section, we describe the required equations for the current computational

study in the context of SCFT [24, 35, 36], i.e. a standard model of molten incompress-
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ible diblock copolymer. In 5.3, we present a corresponding model for a compressible

diblock melt confined to an arbitrary domain by a mask. Detailed and rigorous deriva-

tions for the incompressible model can be found in [24] and the references therein and in

[8, 39, 15] for the mask model. A more physically-motivated presentation can be found

in the excellent review of Matsen [57]. For the shape optimization simulations, we use

only the incompressible AB diblock model with Neumann boundary conditions. For the

simulations with an arbitrary initial configuration and a fixed shape (see section 5.6.2),

we use a compressible AB diblock copolymer melt with a mask model (5.3).

5.2 Incompressible AB Diblock Copolymer in the

Melt

The physical system under consideration is an incompressible melt composed of AB

diblock copolymers. The field-based theory of polymer thermodynamics uses a Hubbard-

Stratonovitch transform to convert the partition function from a particles representation

to a field representation (see [24, 35, 36] and references therein). One therefore searches

for the statistical fields w− and w+ that optimize the Hamiltonian1:

H[w+, w−] =

∫
(−w+(r) +

w2
−(r)

χAB
) dr − V lnQ[w+, w−], (5.1)

1This is actually H/n, where n is the number of molecular chains; χAB is actually χABN where we
absorb N, the number of segments in a polymeric chain.
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where the normalized partition function Q can be formulated as:

Q[w+, w−] =
1

V

∫
q(r, s = 1; [w+, w−]) dr. (5.2)

In these equations, w+(r) acts as a pressure potential that enforces the incompressibility

constraint and w−(r) is the exchange potential, which is conjugate to the density dif-

ference between A and B. The functionals q and q† are the solution of a Fokker-Planck

equation, which is solved from s = 0 to s = 1, with initial conditions q(s = 0) = 1.

Here, s ∈ [0, 1] is a contour variable that describes the location along the backbone of

the chain. The functionals q and q†, i.e. the chain propagators, represent the statistical

weight of the chain at location r and contour length s. The boundary conditions are

homogeneous Neumann on Γ,
∂q

∂n
= 0 (see figure 5.1), for the forward and backward

Fokker-Planck equations:
∂sq(s, r) = 52q(s, r)− q(s, r)× w(r) (forward),

∂sq
†(s, r) = 52q†(s, r)− q†(s, r)× w†(r) (backward).

(5.3)

The forward potential w(r) is calculated as follows:

w(r) =


wA(r) = w+(r)− w−(r) 0 < s < fA,

wB(r) = w+(r) + w−(r) fA < s < 1,

(5.4)
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and the backward potential w†(r):

w†(r) =


wB(r) = w+(r) + w−(r) 0 < s < 1− fA,

wA(r) = w+(r)− w−(r) 1− fA < s < 1.

(5.5)

The normalized local densities (volume fraction) of the components A and B are defined

as:

ρA,B(r; [w+, w−]) = − V

Q[w+, w−]

δQ[w+, w−]

δwA,B(r)
. (5.6)

Elaboration of these functional derivatives leads to important equations relating the

densities to the forward and backward propagators:

ρA(r; [w+, w−]) =
1

Q[w+, w−]

∫
fA

0
q†(1− s, r, [w+, w−])q(s, r, [w+, w−]) ds

ρB(r; [w+, w−]) =
1

Q[w+, w−]

∫
1

fA
q†(1− s, r, [w+, w−])q(s, r.[w+, w−]) ds

(5.7)

In the mean field approximation, where fluctuations can be neglected, it is sufficient

to find the saddle point for the Hamiltonian, i.e.
δH

δw(r)
= 0. The free energy of the melt

is then given by the Hamiltonian at the saddle point. The functional derivatives with

respect to the statistical fields, i.e. the driving forces of the optimization procedure2 are

computed using the normalized densities as follows:

f+(r) =
δH

δw+(r)
= ρA(r) + ρB(r)− 1, (5.8)

f−(r) =
δH

δw−(r)
=

2w−(r)

χAB
+ ρB(r)− ρA(r). (5.9)

2These are related to the physical, thermodynamic forces that drive self-assembly.
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We look for the saddle of H[w+, w−] in terms of the statistical fields w− (the exchange

field) and w+ (the pressure field). This is a highly nonlinear functional optimization

problem that requires an iterative solver where w+ and w− are evolved according to:
wt+1

+ (r) = wt+(r) + λf+(r),

wt+1
− (r) = wt−(r)− λf−(r).

(5.10)

The pressure field is evolved in an ascent direction to enforce incompressibility and

the exchange field is evolved in a descent direction to reduce the energy. The convergence

is established when the L2 norms F− = ( 1
V

∫
V
f 2
−(r)dV )1/2 and F+ = ( 1

V

∫
V
f+(r)2dV )1/2

are less than a given tolerance. In this work, we use the method of Ouaknin et al. [77] for

solving the SCFT equations with Neumann boundary conditions on arbitrary domains.

5.3 The Mask Model

The physical system is a compressible melt composed of AB diblock copolymers.

The Hamiltonian for a confined compressible polymer with a mask [8, 39, 15, 43, 49, 44]
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is given by3:

H[w+, w−, φw] =∫
(
−0.5ζ−1

0.5χABζ−1 + 1
w2

+(r) +
(χw+ζ

−1 + 1)φw(r)− 1

0.5χABζ−1 + 1
w+(r) dr

+

∫
2χw−

χAB
φw(r)w−(r) +

w2
−(r)

χAB
dr

− Φ̄wV lnQ[w+, w−],

φw(r) is defined as the wall volume fraction which augments the pressure field to

repel the polymeric material and localize it inside the confined domain. That is the wall

volume fraction defines the mask and takes a value of 1 outside the domain, 0 inside, 0.5

at the interface and varies smoothly at the interface. χw+ = χwa +χwb , χw− = χwa −χwb

where χwa , χwb are the chemical interaction between the polymeric components A and

B with the wall. ζ−1 is the compressibility tolerance and tends to zero as the material

becomes incompressible. The boundary conditions are periodic in all directions q(r) =

q(r + L). The net advantage of this model is the possibility to use the FFT algorithm

[18] with the FFTW library [25, 26]. We use a level-set function φ(r) to define the wall

volume fraction:

φw(r) =
1

2
(
eφ(r/δw) − e−φ(r/δw)

eφ(r/δw) + e−φ(r/δw)
+ 1), (5.11)

where the level-set is the signed distance function such that is negative inside the mask

and positive outside. Φ̄w is the effective domain fraction.

Φ̄w =
1

V

∫
1− φw(r) dr.

3This is actually H/n, where n is the number of molecular chains, χAB , ζ−1, χw− , χw+
are actually

χABN , (ζN)−1, χw−N , χw+N where we absorbed N , the number of segments in a polymeric chain.
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Q[wA, wB], wA(r), wB(r), w(r), w†(r) are defined in the same way than in the incom-

pressible case and q(s, r), q†(s, r) solve the same Fokker-Planck equation than in the

incompressible case.

The normalized local densities (volume fraction) of the components A and B ρA and

ρB are computed as:

ρA(r; [wA, wB]) = Φ̄w
Q[wA,wB ]

∫ f
0
q†(1− s, r, [wA, wB])q(s, r, [wA, wB]) ds.

ρB(r; [wA, wB]) = Φ̄w
Q[wA,wB ]

∫ 1

f
q†(1− s, r, [wA, wB])q(s, r, [wA, wB]) ds.

(5.12)

and the functional derivatives with respect of the statistical fields are given by:

f+(r) =
δH

δw+(r)
= ρA(r) + ρB(r) +

−ζ−1

0.5χABζ−1 + 1
w+(r) +

(χw+ζ
−1 + 1)φw(r)− 1

0.5χABζ−1 + 1
.

(5.13)

f−(r) =
δH

δw−(r)
=

2w−(r)

χAB
+ ρB(r)− ρA(r) + 2

χw−

χAB
φw(r). (5.14)

5.4 Level-Set Equations

In our approach, the shape of the confining template (or mask) is described through a

level-set function φ(r), which describes the boundary of the mask in an implicit way [73].

Specifically, the boundary Γ is defined as φ(r) = 0, Ω− as φ(r) < 0 and Ω+ as φ(r) > 0

(see figure 5.1). The Hamiltonian introduced in section 5.2 is thus now a functional of

φ(r) in addition of the pressure potential w+(r) and of the exchange potential w−(r), i.e

H = H[φ(r), w+(r), w−(r)]. In this work, we use the level-set method on adaptive grids
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introduced in Min and Gibou [67]. In addition we make use of the length and surface

geometric integral procedures introduced in Min and Gibou [64, 65], required to build

the different discretizations and integrate quantities over an arbitrary domain.
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Figure 5.1: The Fokker-Planck equation is solved in Ω− with Neumann boundary con-

ditions on Γ.

There are three main equations in the level-set framework that we will use: the

level-set advection equation (5.15), the level-set reinitialization equation (5.16), and the

equation to extrapolate a scalar quantities across the shape’s boundary (5.17).

The coupling between the SCFT simulations and the level-set framework is through

the definition of the level-set velocity, v(r), which evolves the geometry of the template

it represents via the advection equation:

∂φ(r)

∂t
+ v(r) · ∇φ(r) = 0. (5.15)

As we will explain in more detail later, in the present work we choose a velocity that is

normal to the local boundary and proportional to the pressure field: v(r) = w+(r)n.
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The reinitialization equation receives as input a level-set function and transforms it

into a signed distance function with the same 0-contour. The reinitialization equation

does not couple to the SCFT model; it is a post-processing step required to enforce the

level-set function as a signed distance function, which is desired to compute robustly

spatial derivatives of the level-set function and that can be used in other procedures

[86, 72]. The reinitialization equation is:

∂φ(r)

∂ξ
+ sign(φ(r)(|∇φ(r)| − 1) = 0, (5.16)

where ξ is a pseudo time and sign refers to the signum function.

The extrapolation equation does not change the values of the level-set but uses it

to extrapolate scalar quantities from the inside (φ(r) < 0) to the outside (φ(r) > 0)

of an irregular domain. The extrapolation procedure is used in the present context

to extrapolate the values of the pressure field w+ to a narrow band of width d of the

interface (φ(r) > 0 ∩ φ(r) < d) without changing the values of w+(r) where φ(r) < 0.

This procedure thus specifies the velocity v(r) within a narrow band of the level-set,

which is desirable to obtain robust numerical results. The extrapolation equation (5.17)

for the pressure field is based on solving a partial differential equation as in [2]:

∂w+(r)

∂ξ
+H(φ(r))∇w+(r) · n = 0, (5.17)

where H is the Heaviside function. We also use equation (5.17) to extrapolate the ex-

change field w−(r) in the domain that is swept by the interface during the computational

times t and t+ 1, i.e. the region defined by (φt(r) > 0∩ φt+1(r) < 0), similarly to what
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is done in [31]. The extrapolated values of w+ and w− in (φt(r) > 0 ∩ φt+1(r) < 0) are

used for solving the Fokker-Planck equations and for computing the Hamiltonian at the

next mean field step in the advected domain (φt+1(r) < 0).

5.5 Level-Set-Based Inverse Design Algorithm with

Constraints

5.5.1 Shape Optimization Algorithm

The problem of interest is to find the shape of the confinement template that will

direct the self-assembly of polymer to target density. The algorithm we introduce is

given in Algorithm 7, which consists of two stages: an shape optimization phase and a

standard SCFT optimization stage.

In the shape optimization stage, which seeks to attract the polymer to our desired

design target, we seed w−(r) by setting f−(r) = 0 (see equation (5.9)) and deducing

w−(r) after enforcing ρA(r) and ρB(r) to match the target design:

wseed− (r) =
χAB

2
(ρtargetA (r)− ρtargetB (r)).

In the first stage of the algorithm, the exchange field is frozen and the shape and

the pressure potential are evolved. We initialize the level-set function to contain the

target (see figure 5.2) and the pressure field to be zero everywhere. In the second

stage, the shape is frozen while both the pressure and exchange fields are evolved. We
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Algorithm 7 Procedure to find an optimal shape for a prescribed pattern

Stage 1 (shape optimization): freeze w−(r) and evolve w+(r) and φ(r).

while ||v||2 > εv do

1. Solve two Fokker-Planck equations for q(s, r) and q†(s, r) using (5.3);

2. Compute the densities ρA(r) and ρB(r) via (5.6);

3. Compute the force for w+(r) with equation (5.8) and the velocity v(r) for φ(r);

4. Advance the potential w+(r) and φ(r) with a constraint on the curvature.

Stage 2 (standard SCFT optimization): freeze φ(r) evolve w+(r) and w−(r).

while ||δH/δω||2 > εw do

1. Solve two Fokker-Planck equations for q(s, r) and q†(s, r) using (5.3);

2. Compute the densities ρA(r) and ρB(r) via (5.6);

3. Compute the forces for w+(r) and w−(r) with equations (5.8) and (5.9);

4. Advance the potentials w+(r) and w−(r) via (5.10).
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note that the second stage is the standard SCFT algorithm where we optimize for the

statistical fields w+ and w−. As previously mentioned, we take the level-set velocity to

be v(r) = w+(r)n. The physical intuition for this choice is as follows: w+(r) is positive

(resp. negative) in the case where the pressure potential seeks to expel (resp. attract)

the polymeric material because it violates the incompressibility constraint. In turn, this

means the confined domain should be forced to evolve in that direction.

5.5.2 Level-Set-Based Circle Detection Algorithm

In order to automatically assess if the targeted design is obtained, and correct the

template’s shape in the event it is not, we developed an algorithm that automatically

detects the number of circles, their centers and their radii. Generic circle detection

algorithms can be applied to a wide variety of configurations but may be computationally

expensive and require considerable amount of memory [38, 3, 96, 20]. In the DSA

SCFT context, prior information can be leveraged to develop an O(M) circle detection

algorithm, where M is the number of grid points. The first question that we ask is how

to ensure that we have the desired number of circles and radius size ndesired, Rdesired.

In this context, we compute the length, Lψ, and the surface, Sψ, of the minority

region A. For simplicity, we describe the minority region by another level-set function,

ψ(r): ψ(r) takes negative values in A-rich regions and positive values in B-rich regions

and is zero at the A-B interface. We assume that the circles have the same size so

we can write Sψ = π(nR2)detected and Lψ = 2π(nR)detected, where ndetected and Rdetected
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are the number of circles detected and their corresponding radius, respectively. This

implies that Rdetected =
2Sψ
Lψ

and ndetected =
L2
ψ

4πSψ
. In the case where |ndetected − ndesired|

or |Rdetected − Rdesired| is larger than a given threshold, we conclude that Algorithm 7

has not reached the target design. The quantity |ndetected − ndesired| is a measure of

the deviation from a perfect circle shape or from the target number of circles, while

|Rdetected −Rdesired| quantifies the deviation with respect to the circles’ radius.

The procedure is given in Algorithm 8, where ri, rj are the centers location detected

and rmin is the set of the centers location. To find the length Lψ and surface Sψ of the

minority region we use a level-set approach [64, 65] by segmenting the A region. By using

equation (5.9) at equilibrium with ρA = ρB = 0.5 we see that at the interface between

A and B, the exchange field w−(r) is zero and changes sign. Therefore, we segment the

regions by using w−(r) as initial condition for the level-set ψ(r) and reinitialize ψ(r)

with equation (5.16). Finally, we leverage the fact that if we have only circles of the

same size, the minimums of the level-set values are located at the center of the circles:

to find the centers’ location, we find the ndetected points with the lowest level-set values

and which have a distance higher than Rdetected between themselves.
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Algorithm 8 Procedure to detect circles

1. Take
w−(r)

χAB
as initial condition for a level-set distance function ψ;

2. Reinitialize ψ(r) using the reinitialization equation (5.16);

3. Compute the surface integral Sψ =
∫
ψ<0

1dr as in [64, 65];

4. Compute the length integral Lψ =
∫
ψ=0

1dr as in [64, 65];

5. Determine the number of circles (ndetected) and radii Rdetected from Sψ =

(nπR2)detected and Lψ = 2π(nR)detected;

6. If ndetected = ndesired, find the set of the first ndetected minima rmin such that |ri−rj| <

Rdetected for each ri, rj ∈ rmin.
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Figure 5.2: φ(r) is the level-set function which describes the shape of the confined

domain and ψ(r) is the level-set which describes the density of the A-component of the

polymeric melt, i.e. the target.

In reality, since the w−(r) field will drift in the second stage of Algorithm 7, the

density fields will drift off the target but the mismatch is typically small. We correct

the target centers’ location by an iterative procedure that repositions the circles using
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equation (5.18):

rt+1
target = rttarget + λr(r

0
target − rtdetected) (5.18)

where rttarget and rtdetected are the centers’ locations of the targets and of the circles

detected, respectively at iteration t and λr is the amplitude of the correction. In this

procedure, we neglect the shape or size drifts.

5.5.3 Constrained Curvature

As described in the introduction, in order to integrate fabrication constraints, it is

necessary to constrain the curvature of the optimized shape to a critical curvature κcr.

We simply set vn(r) = 0 in the case where κ(r) > κcr. Doing so enables the shape to

react to the constraint not only locally where the shape would otherwise have a curvature

larger than what is permitted, but globally, as other parts of the shape can rearrange as

a response to the constraint. Another approach could be to perform an unconstrained

shape evolution and then smooth the shape using motion-by-mean-curvature [87], while

keeping the morphology. We use the former approach.

5.5.4 Solving the Fokker-Planck Equation with Neumann Bound-

ary Conditions

The Fokker-Planck equation with Neumann boundary conditions for SCFT is solved

by the method introduced in Ouaknin et al. [77], which is based on a Strang splitting

[91] with boundary conditions imposed with the method of Papac et al. on an adaptive
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quadtree grid [79]. The quadtree (see figure 5.5) is parametrized by its min and max

levels, which correspond to the coarser and finer cells. For example in a [0, 1]2 domain, a

quadtree with levels 4-7 will have the coarsest cells with size 1/24 = 1/16 and finest cells

with size 1/27 = 1/128. The parallelization on adaptive quadtree grids is done using the

recent library parCASL developed by Mirzadeh et al. [68]. The mask model given in 5.3

is solved with pseudo-spectral algorithms for SCFT with a Strang splitting [81] using

the FFT algorithm [18] encoded in the FFTW library [25, 26].

Figure 5.3: Cell-based discretization of the domain (left) and cell cut by the interface

(right)
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(a) initial stage of the grid’s evolving shape (b) grid’s evolving shape (c) final stage of the grid’s evolving shape

Figure 5.4: Shape Optimization: the quadtree grid enables the refinement of regions of

interest; here the domain’s boundary and the interface between the minority region A

and the majority region B.

For the sake of completeness, we will present here the principal results needed for

the current study. We use the unconditionally stable Crank-Nicholson scheme to solve

the equations (5.3) in s. For example, denoting qs the solution vector at the contour

position s, the discretization of the forward case without the external field is:

qs+1 − qs

∆s
=

1

2

(
∇̃2qs+1 + ∇̃2qs

)
, (5.19)

where ∇̃2 refers to the discretization of the ∇2 operator. The nodes adjacent to the

irregular domain (boundary nodes), see figure 5.3, are treated using a finite volume

approach as in [79, 80], while the interior nodes are treated with finite differences on

quadtree as introduced in [66].

The Laplacian can thus be written as:

∇̃2q = Mq,
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where M is a matrix that depends only on the quadtree data structure. The Crank-

Nicholson scheme with Strang splitting for the Fokker-Planck equation can thus be

written as:

qs+1 = e−w
∆s
2
IM−1

2 M1e
−w∆s

2
Iqs, (5.20)

where M1 =
(
I + ∆s

2
M
)

and M2 =
(
I − ∆s

2
M
)
. We note that M−1

2 has been shown to

exist in [66].

Referring to figure 5.3 and considering the Crank-Nicholson time stepping, the dis-

cretization for the boundary nodes is based on a finite volume approach giving:

∫
Ci,j∩Ω−

qs+1
i,j − qsi,j

∆s
dA =

1

2

(∫
∂Ci,j∩Ω−

∇qs+1
i,j · n dL+

∫
∂Ci,j∩Ω−

∇qsc · n dL

)
,

where we have used the homogeneous Neumann interface conditions to cancel the bound-

ary term. The gradients are then approximated with central differences, giving:

∫
∂Ci,j∩Ω−

5qi,j · ndL =
qi+ 1

2
,j − qi,j
h

Li+ 1
2
,j +

qi,j+ 1
2
− qi,j
h

Li,j+ 1
2

+
qi− 1

2
,j − qi,j
h

Li− 1
2
,j +

qi,j− 1
2
− qi,j
h

Li,j− 1
2
,

where Li,j are the lengths fractions of the cell edges inside the domain as depicted in

figure 5.3. We approximate the surface and length integrals with the geometric proce-

dures detailed in [64, 65]. The discretization produces a linear system of equations for

qs+1. We note that, for efficient implementation, M1 and M2 need to be computed only

once for a given mesh and can then be used throughout the solution process for q.
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5.6 Results and Discussion

5.6.1 Typical Results of the Shape Optimization Algorithm

In this section, we describe in details typical results of the shape optimization algo-

rithm. Figure 5.6 ((a)-(d)) depicts the evolution of the template’s shape and the cor-

responding diblock copolymer’s density. The black circles describe the target centers’

location, while the blue + symbols describe the computed centers’ location, demonstrat-

ing that the shape optimization procedure is capable of converging to a template’s shape

that can direct the self-assembly to a target design.

Figure 5.6 ((e)) illustrates the two stages of Algorithm 7: in the first stage, only the

pressure force is relaxed while in the second stage both the pressure and exchange forces

are relaxed. The pressure force is depicted in red for the first stage and pink for the

second stage, while the exchange force is depicted in blue for the first stage and in green

for the second stage. In figure 5.6 ((f)), the intensive energy (H/V ) is shown to decrease

during both stages (in blue for the first stage and green for the second stage) and figures

5.6 ((g), (h)) (in blue for the first stage [shape optimization] and green for the second

stage) demonstrates that the average velocity is negative most of the shape optimization:

the zero-level-set that initially surrounds the target shrinks wrap the desired template’s

shape. In the later stage of the shape optimization process, the average velocity becomes

positive before decreasing to a pre-described threshold, a manifestation of the adjustment
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of the zero-level-set in the later stage of the shape optimization process (see figure 5.6

((k))).

In the beginning of the shape relaxation process, both the absolute value of the

average velocity and the standard deviation increase in magnitude. Indeed, even though

we relax the shape, w+ is set to zero and builds up in the first stage of the optimization

process in tandem with the shape evolution. Ultimately, the shape evolution overcomes

the pressure built-up and both the average velocity and the standard deviation of the

velocity decrease in magnitude until they get lower than a predefined threshold.

Figure 5.7 illustrates the behavior of the correction algorithm. Figure 5.7 ((a)) gives

the initial square template’s shape and the corresponding diblock copolymer’s density.

Figure 5.7 ((b)) depicts the template’s shape and the corresponding density along with

both the target and computed centers’ location obtained after the optimization process

(both the pressure and exchange fields are updated). Figure 5.7 ((b)) illustrates that

there is a slight mismatch between the location of the target’s centers and the computed

centers. To remedy this, we iteratively update the target’s centers with equation (5.18)

and repeat the optimization procedure until convergence. The result of this procedure

is given in figure 5.7 ((c)) and the shape correction is depicted in 5.7 ((d)).

In the case where the target’s features are close together, their boundary layers

overlap and the exact w−(r) is important to describe their interaction. In our algorithm

we fix in the first stage w−(r) and solve for w+(r) and φ(r) and then in the second

stage, we fix φ(r) and solve for w−(r) and w+(r). That is, we guess w−(r) in the first
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stage as either a binary value or a hyperbolic tangent profile but obviously w−(r) solved

in the second stage may be different than the one guessed, which may result in a slight

mismatch between the target centers and the computed centers. To remedy this issue

we used a correction stage introduced previously in the outer loop by correcting the

desired target up to the mismatch obtained as in equation (5.18). In figures 5.8((a)-(d))

we see that the optimization with correction stage based on the level-set based circle

detection algorithm is successful for different topologies such as three aligned circles and

three circles arranged in an isosceles triangle.

The examples of this section are instructive and typical of the inverse DSA problem.

We first note that even for simple target shapes (here two cylinders), it is difficult find

a template’s shape that will guide the self-assembly to the target with the exact desired

center-to-center’s distance. This remark is also clearly communicated in [54, 53].

(a) initial stage of the grid’s evolving shape (b) grid’s evolving shape (c) final stage of the grid’s evolving shape

Figure 5.5: Shape Optimization: the quadtree grid enables the refinement of regions of

interest; here the domain’s boundary and the interface between the minority region A

and the majority region B.
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(a) 100 mean field steps (b) 900 mean field steps (c) 1000 mean field steps (d) 4000 mean field steps

(e) forces (f) intensive energy (g) < v > (h) std(v)

(i) input (j) input (k) input

Figure 5.6: Results of the shape optimization algorithm without correction. First row:

the shape and density evolution. Second row: the pressure and exchange forces and

the intensive energy. Third row: the average velocity and the standard deviation of the

velocity. Bottom row: input design and the optimal shape obtained with the computed

centers location. The parameters for this simulation are (fA, χAB) = (0.3, 36), ∆r =

3.2Rg, λ = 1, ∆s = 0.01, κcr = 2/Rg and the grid levels are 4-7.
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(a) 100 mean field steps (b) 900 mean field steps (c) 4000 mean field steps (d) shape evolution

(e) forces (f) intensive energy (g) < v > (h) std(v)

Figure 5.7: Results of the shape optimization algorithm with correction. Top row:

the shape and density evolution. Bottom row: the pressure and exchange forces, the

intensive energy, the average velocity and the standard deviation of the velocity illustrate

the two cycles of the optimization algorithm. The parameters for this simulation are

(fA, χAB) = (0.3, 36), ∆r = 3.0Rg, λ = 1, ∆s = 0.01, κcr = 2/Rg and the grid levels are

4-7.
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(a) before correction (b) after correction

(c) before correction (d) after correction

Figure 5.8: Examples of the shape optimization with and without correction for three

circles. First row: before and after correction for three aligned circles. Second row:

before and after correction for three circles in an isosceles arrangement. The parameters

for these simulations are (fA, χAB) = (0.3, 36), ∆r = 3.3Rg, ∆s = 0.01, λ = 1, κcr =

2/Rg with grid levels of 4-7 for the three aligned circles and (fA, χAB) = (0.3, 36),

∆r = 3.4Rg, ∆s = 0.01, λ = 1, κcr = 2/Rg with grid levels of 4-8 for the isosceles

arrangement.
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5.6.2 Stability

Recall that the goal of inverse DSA is to find the shape of a template that will direct

the self-assembly to a target design and that our algorithm has two stages: the first stage

freezes w−(r) and evolves w+(r) and φ(r), i.e. finds the template’s shape; the second

stage performs a standard SCFT simulation with the template’s shape φ(r) obtained in

the first stage. The second stage is therefore the simulation of self-assembly given a fixed

template. Since the target can be expressed by the density of the minority component,

one can in principle start a SCFT simulation of the self-assembly process by seeding the

corresponding w−(r) to that of the target. However, in general the self-assembly will

evolve the morphology to a different configuration due to the influence of the template’s

shape. We will say that a configuration is locally stable in the case where w−(r) does not

change when evolving the SCFT algorithm after initializing w−(r) with its target value.

Now, a template that produces local stability may not be enough to ensure that the

self-assembly will converge to the target design from any initial seed. We will say that

the configuration is stable in the case where the target design is obtained when evolving

the SCFT algorithm from an arbitrary w−(r) seed. While we are in general interested

in stability, a first step towards this goal is to find a shape that preserves local stability.

Local Stability

In figure 5.9, we present examples that illustrate that local stability is not straight-

forward in the case where the template’s shape is not that obtained from our algorithm.
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In those SCFT simulations, we first freeze the exchange potential and let only the pres-

sure potential evolve before we evolve both the exchange potential and the pressure

potential. This initialization thus gives the most favorable conditions for local stability.

However, the initial states depicted in figures 5.9 ((a)-(c)) and their corresponding final

states in figures 5.9 ((d)-(f)), demonstrate that local stability is not preserved. For ex-

ample, figures 5.9 ((a), (d)) show that the two initial circles stretch asymmetrically in

the x-direction. Figures 5.9 ((b), (e)) and ((c), (f)) illustrate the lack of local stability

even more drastically: the initial circular shapes morph into non-circular shapes with

centers of mass that are different from those of the initial shapes and the minority region

now wets the walls of the confined domain. In these cases, the original morphology is

completely lost.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Examples showing local instability: a density enforced in the first

stage of algorithm 7 (top row) is not preserved in the second stage (bottom row).

((a),(d)) (∆r, Lx) = (2.8, 14)Rg,((b),(e)) (∆r,Lx) = (3.5, 14)Rg, (((c),(f)))(∆r, Lx)

= (5.33, 32)Rg. The parameters for these simulations are fA = 0.3, χAB = 36, ∆s = 0.01,

λ = 1 and the grid levels are 4-7.

In the previous examples, local stability is not attained due to the inappropriate

templates’ shapes. We now demonstrate that the shape optimization algorithm intro-

duced in this paper produces templates’ shapes that are locally stable. In figure 5.10,

we demonstrate local stability by considering different design targets, finding the tem-

plates’ shapes using Algorithm 7 and using a SCFT simulation, where both w−(r) and

w+(r) are evolved. We used our circle detection algorithm to quantify for the mismatch
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between the desired design and the one obtained by the optimization process. In figure

5.10 the second row depicts the target and the bottom row depicts the output of our

shape optimization. These results show that Algorithm 7 produces templates’ shapes

that provide local stability, even in the case of non-trivial topologies.

(m) (n) (o) (p) (q) (r)

Figure 5.10: Different topologies obtained with the shape optimization algorithm. Top

row: densities inside the optimal shape, second row: input target, bottom row: output

of the shape optimization algorithm where the circles depict the input target centers

and the + depict the actual centers obtained with the optimal design. ((m)) two circles

(fA, χAB) = (0.3, 36) and ∆r = 3Rg ((n)) three aligned circles (fA, χAB) = (0.3, 36)

and ∆r = 3Rg, ((o)) three circles in a isosceles (fA, χAB) = (0.3, 36) and ∆r = 3.4Rg,

((p)) star shape (fA, χAB) = (0.28, 28) and ∆r = 3.5Rg ((q)) V-shape (fA, χAB) =

(0.28, 36) and (∆rtop,∆rdiagonal) = (3.55, 3.2) ((r)) L-Shape (fA, χAB) = (0.28, 36) and

∆r = 4.8Rg. In all the examples, the parameters are ∆s = 0.01, λ = 1, κcr = 2/Rg and

the grid levels are 4-7.
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Stability

In the simulations shown in figures 5.8-5.10, we fixed the exchange field at the begin-

ning of a simulation and we optimized the shape with stage 1 of Algorithm 7 such that

when we start to evolve the exchange field in stage 2 of Algorithm 1 the morphology

is kept. That is, we were looking for a shape to obtain local stability in the morphol-

ogy density target. An important question is what happens when the optimal shape

obtained from Algorithm 1, φopt(r), is used with an arbitrary seed warb− (r). In practice,

this stage uses a standard SCFT optimization with the mask model (see Algorithm 9)

where both the pressure and exchange fields are relaxed. That is, we want to check if

the shape found by Algorithm 7 can be used to obtain stability.
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(a) t=0 (b) t=100

(c) t=200 (d) t=2000

Figure 5.11: Example showing a SCFT optimization from an arbitrary configuration

(top-left) using the mask model, with a template shape obtained with the method

introduced in this manuscript. The parameters for this simulation are (χwa, χwb) =

χAB(1,−1), (fA, χAB) = (0.3, 36), ∆r = 3.2Rg, ∆s = 0.01, λ = 1, κcr = 2/Rg with grid

levels of 4-7.

Although we are only considering a few cases and thus cannot theoretically guarantee

the accuracy of Algorithm 7 for every target design, there is strong indication that the

algorithm performs well for a wide range of targets. Figures 5.11 and 5.12 give examples
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where we run Algorithm 9 with φopt(r) in equation (5.11) given by the shapes obtained

with the inverse design Algorithm 7, and an arbitrary seed uncorrelated to the target.

To obtain stability for the desired target, we vary the wall interaction with the polymer

segments A and B to prevent A to wet the wall as in figure 5.9 ((e), (f)). This can

be achieved by using either Robin boundary conditions [24] or with the mask model

described in appendix A. We present the results with the mask model since it is the

standard model used in this field but we note that we obtained the same results with

Robin boundary conditions. We take
χwa
χAB

= O(1) and
χwb
χAB

= O(1) to obtain the results

shown in this section. Figures 5.11 and 5.12 give examples of the results obtained from

an arbitrary seed:

warb− (r) =
χAB

2
cos(36

2πx

Lx
) sin(36

2πy

Ly
) and w+(t = 0, r) = 0.

We show in figure 5.11 a detailed example of the evolution of the density as a func-

tion of the mean field step. We find that the density converges to the target density,

demonstrating stability.

We now turn our attention to different configurations, noting that we have checked

that all the configuration in figures 5.10 lead to stability. It is important to recall

that during self-assembly, a natural distance between cylinders is selected so that, if the

distance between the target’s cylinders is larger than the natural distance, the template’s

shape needs to prevent them from approaching one another. This is done by increasing

the shape’s concavity and thus limiting the region between the two cylinders to a thin

gap. On the other hand, if the distance targeted is close to the natural distance there
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: Stability: Mean field optimization from an arbitrary seed using the

mask model, with a template shape obtained with the method introduced in this

manuscript: densities for different distances and topologies ((a)-(d)), two circles with

∆r = (3.0, 3.2, 3.6, 4)Rg, ((e),(f)) three aligned circles with ∆r = (3.2, 3.4)Rg, ((g)) three

circles in an isosceles triangle with ∆r = 3.4Rg and grid levels of 4-8, ((h)), L-shape with

∆r = 4.8Rg, fA = 0.28. The parameters for these simulations are (fA, χAB) = (0.3, 36),

(χwa, χwb) = χAB(1,−1), ∆s = 0.01, λ = 1, κcr = 2/Rg with grid levels of 4-7.
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Algorithm 9 Mask model SCFT with arbitrary seed and a fixed shape

Use φopt(r) from Algorithm 7 for (5.11), seed w−(t = 0, r) = warb− (r), evolve

w−(r), w+(r) while φopt(r) is fixed

while ||δH/δw||2 > εw do

1. Solve two Fokker-Planck equations q(s, r), q†(s, r) using (5.3) ;

2. Compute the densities ρA(r), ρB(r) via (5.12);

3. Compute the forces for w+(r), w−(r) with equations (5.13), (5.14) ;

4. Advance the potentials w+(r), w−(r).

is no need for this constraint and the algorithm finds a slight concavity. In figures 5.12

((a)-(d)), we see that by increasing the center-to-center distance, the template’s shape

presents a thinner gap between the circles to compensate for their natural propensity to

be closer one another. Figure 5.12 (top row) indeed illustrates that the region between

two cylinders is thin in the case where the distance between the location of target’s

cylinder is larger than the natural distance.

Finally to describe the effect of the curvature constraint in more details, we present in

figure 5.13 a series of shapes obtained with algorithm 5 for two circles with ∆r = 4Rg,

and different curvature constraints. We can see that the constraint on the curvature

prevents the concavity in the middle of the shape but compensates on the flanks and
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push a bit on the edges. Eventually, constraining further will prevent the shape to

rearrange and we would not have been able to preserve the design.

Figure 5.13: Effect of the curvature constrain κcr. For two aligned circles with a

center-to-center distance ∆r = 4Rg, the optimal shape obtained is depicted for different

curvature constraints. In the concavity zone located in the middle of the shape, we can

see the effect of the curvature barrier. On the left and right flanks and the edges, we can

see the shape rearrangement and the compensation effects. The parameters for these

simulations are (fA, χAB) = (0.3, 36), R = 1.00Rg, λ = 1, ∆s = 0.01, ∆x = 0.1Rg.
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(a) κcr = 4R−1
g (b) κcr = 2R−1

g (c) κcr = 1.5R−1
g (d) κcr = 1R−1

g (e) κcr = 0.7R−1
g

Figure 5.14: Effect of the curvature constrain κcr. For two aligned circles with a center-

to-center distance ∆r = 4Rg, the optimal shape obtained is depicted for different cur-

vature constraints. In the concavity zone located in the middle of the shape, we can see

the effect of the curvature barrier. On the left and right flanks and the edges, we can

see the shape rearrangement and the compensation effects. The parameters for these

simulations are (fA, χAB) = (0.3, 36), R = 1.00Rg, λ = 1, ∆s = 0.01, ∆x = 0.1Rg.

5.7 Conclusion

We have presented a level-set approach to solve the inverse design problem for DSA

applied to lithography using the shape as a free variable of the design. The algorithm

evolves the shape with a normal velocity equal to w+ while freezing the exchange po-

tential until the shape reaches a steady-state. We demonstrated that we can achieve

stability from an arbitrary seed for different designs. We also presented a level-set based

circle detection algorithm that can be used in a correction stage that iteratively adjusts

the distance between the centers of the desired morphology and perform the shape op-

timization until the mismatch between the optimal design and the target is negligible.

Future research will explore optimizing the parameter space (fA, χAB, χwa, χwb) in tan-
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dem with the template’s shape to obtain global stability in an automated way for a given

design.
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A second-order sharp numerical method for solving the linear elasticity equations on

153



irregular domains and adaptive grids – application to shape optimization. Journal

of Computational Physics, In press, 2012.

[95] H. Yi, X.-Y. Bao, J. Zhang, C. Bencher, L.-W. Chang, X. Chen, R. Tiberio, J. Con-

way, H. Dai, Y. Chen, S. Mitra, and H.-S. P. Wong. Flexible control of block

copolymer directed self-assembly using small, topographical templates: Potential

lithography solution for integrated circuit contact hole patterning. Advanced Ma-

terials, 24(23):3107–3114, 2012.

[96] HK Yuen, J Princen, J Illingworth, and J Kittler. Comparative study of hough

transform methods for circle finding. Image and Vision Computing, 8(1):71 – 77,

1990.

154



Appendix A

SCFT for a diblock copolymer melt

This appendix retraces the main steps required to derive the equations used in this

document. It is a very short description of SCFT, and we recommend a reader who

wants to learn about the field to read the excellent monograph of Fredrickson. The

approach used to investigate polymer physics in this work is statistical mechanics. The

polymeric fluid is modeled as a closed system where particles can not enter or exit but

can exchange energy with a big system of temperature T. The partition function is

defined to be:

Z =
∑

exp(−βUi)

where the summation is over all the possible states of the physical system, and β is the

boltzman factor 1
kBT

. The probability to be in a particular state i at equilibrium is given

by:

Pi =
1

Z
exp(−βUi)
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and the average value of a physical observable f is:

< f >=
1

Z

∑
i

exp(−βUi)fi

The polymer chain is modelled as a continuous gaussian chain and the deformation

energy is given by:

U0[r] =
3β

2b2

∫ N

0

ds|dr
ds
|2,

where s goes from 0 to N , N is the number of monomers on the backbone of the chain,

and b is the average bond distance between these monomers. To compute the partition

function, the chain is cut to Ns statistical segments of length 1/Ns and the degrees of

freedom are the positions r(s) along the continuous chain. Then the different states are

enumerated as
∏Ns

i=0

∫
dri then we take Ns to ∞ and define the functional integral:

∫
Dr = lim

Ns→∞

Ns∏
i=0

∫
dri

and then the partition function becomes

Z0 =

∫
Drexp(−βU0[r])

In the case of a diblock copolymer the chain is comprised of two connected compo-

nents A and B, where fA is the fraction of A monomers and 1− fA is the fraction of B

monomers in the chain.
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Figure A.1: Continuous diblock copolymer chain. s is the contour chain and r(s) is

the location of the chain for a given contour s. fA is the fraction of A in the diblock

copolymer chain. In our case we assume that the monomer bond distance b is equal for

A and B.

We are interested in a physical system of n AB diblock copolymer chains at the

molten state. In this case the energy comprises the deformation of the polymer chain

for the short range interaction and for the energy interaction between the two different

types we add a repulsion term s.t the equations who describe the system are given by:

U0 =
3β

2b2

n∑
j=1

∫ N

0

|drj
ds
|2ds
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βU1 = v0χAB

∫
drρA(r)ρB(r)

where,

ρA(r) =
n∑
j=1

∫ fAN

0

dsδ(r − rj(s)),

ρB(r) =
n∑
j=1

∫ N

fAN

dsδ(r − rj(s)),

are the microscopic densities. In addition we have an incompressibility constrain

ρA(r) + ρB(r) = ρ0(r). v0 = 1/ρ0 and rj(s) is the space location of polymer chain j for

a given contour chain s. The partition function is formulated by

Z =
1

n!(λ3
T )nN

n∏
j=1

∫
Drje

−βU0−βU1 × δ[ρ+(r)− ρ0(r)],

where λT = h/(2πmβ)1/2 is the thermal length with h the Planck constant, and m

the mass of a statistical segment. We define ρ+(r) = ρA(r) + ρB(r) and ρ−(r) =

ρA(r)− ρB(r), such that

e−βU1 = e
v0χAB

4

∫
(ρ+(r)2−ρ−(r)2)dr

We are going now to perform a Stratonovich transform: we are going to convert the

partition function from a particles representation to a field representation. We define

the delta functional:
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∫
Dρδ[ρ− ρ0]F [ρ] = F [ρ0]

for any functional F [ρ]. δ[ρ − ρ0] can be viewed as an infinite dimensional version of

the Dirac Delta function that vanishes unless the fields ρ(r) and ρ0(r) are identical. A

complex exponential representation of the δ functional using Mg grid points:

δ[ρ−ρ0] =
∏
r

δ(ρ(r)−ρ0(r)) =
1

(2π)Mg

r∏∫ ∞
−∞

eiw(r)[ρ(r)−ρ0(r)]dw(r) =

∫
Dwei

∫
drnw(r)[ρ(r)−ρ0(r)]

where we used:

δ(x) =
1

2π

∫ ∞
∞

dkeikx

and the last equality comes from restoring the continuum and can be seen as changing

the order of integration between r and w and defining functional integrals. So we can

write:

δ[ρ0 − ρ+] =

∫
Dw+e

−i
∫
dr(ρ+−ρ0)w+ ,

Using functional Gaussian integration and Stratonovich transform it can be shown that:

e−βU1 = e−
χAB

4

∫
(ρ2

+(r)−ρ2
−(r))dr

∝
∫
Dw−e

∫
dr

(
ρ−(r)w−− ρ0

χAB
w2

−

)
and by decomposing U0 to it’s A and B part:

βU0 = β

∫ fAN

0

|dr(s)

ds
|2ds+ β

∫ 1

fAN

|dr(s)

ds
|2ds
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factoring the different contributions of the Hamiltonian by the different densities

we have ρ0(−iw+ +
w2

−
χAB

) , −ρ−w− = −ρAw− + ρBw− and iρ+w+ = ρAiw+ + ρBiw+

which gives for ρA and ρB: ρA(iw+−w−), ρB(iw+−w−). Inserting these results into the

Boltzmann factor of the partition function gives:

Z =
1

n!(λ3
T )nN

n∏
j=1

∫
Drje

−βU0−βU1 × δ[ρ+ − ρ0]

∝
∫
Dw+

∫
Dw−

n∏
j=1

∫
Drje

−β
∫ fAN
0 ds| dr

ds
|2e−β

∫
drρA(iw+−w−)

× e−β
∫N
fAN

ds‖ dr
ds
|2
e−β

∫
drρB(iw++w−) × e−

∫
drρ0(iw+−

w2
−

χAB
)

=

∫
Dw+

∫
Dw−(

∫
Dre−β

∫
ds‖ dr

ds
|2e−β

∫
drρA(iw+−w−))n

× (e
−β

∫N
fAN

ds‖ dr
ds
|2
e−β

∫
drρB(iw++w−))n × e−

∫
drρ0(iw+−

w2
−

χAB
)

=

∫
Dw+

∫
Dw−(

∫
Dre−β

∫N
0 ds‖ dr

ds
|2e−β

∫
drρ(s)w(s))n

× e−
∫
drρ0(iw+−

w2
−

χAB
)

=

∫
Dw+

∫
Dw−e

nlnQ[w] × e−
∫
drρ0(iw+−

w2
−

χAB
)

= Z0

∫
Dw+

∫
Dw−e

−H[w+,w−]

where,

H[w+, w−] = ρ0

∫
dr
(
− iw+(r) +

w−(r)2

χAB

)
− nlnQ[w+, w−]

and the potential w(r, s) is given by

w(r, s) =


wA(r) = iw+ − w− 0 < s < fAN

wB(r) = iw+ + w− fAN < s < fAN
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and Q is defined as:

Q[w+, w−] =

∫
Dre−β

∫N
0 ds‖ dr

ds
|2e−β

∫
drρ(s)w(s)).

It remains to compute the functional Q[w+, w−]. We are going to show that in fact Q

is the normalized partition function of a single diblock copolymer chain interacting with a

potential w(r, s). We derive first the normalized partition function for an homopolymer

continuous gaussian chain which interacts with an external potential w(r) and then for

a diblock copolymer chain. For an homopolymer chain interacting with a potential w

the energy becomes:

U(rN+1) = U0(rN+1) + Uw(rN+1)

where,

U(rN+1) = U0(rN+1) + Uw(rN+1) =
3β

2b2

∫ N

0

ds|dr
ds
|2 + β

∫
drw(r)ρ(r)

U0 is the harmonic stretching energy of the gaussian chain and Uw accounts for the

energy interaction of each bead with the potential field βw(r). The potential energy

associated with an imposed chemical potential field w(r) is as well functional of the

polymer shape r(s). The normalized partition function Q[w] is expressed as a ratio of

path integrals:
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Q[w] =
Z[w]

Z0

=

∫
Dre−βU0[r]e−βU1[r]∫

Dre−βU0[r]
,

The continuous gaussian chain is discretized to N bonds and N + 1 beads

∫
Dr ≈

Ns∏
i=0

∫
dri,

dr

ds
=

∆r

∆s
,

such that

Z0 = V (

∫
dbexp(−βh(|b|)))N ,

where bi = ri − ri−1 and h(x) = 3kBTx
2/(2b2). Defining a transition probability

function:

p(∆r) =
exp(−βh(|∆r|))∫
dbexp(−βh(|b|))

= (
3

2πb2∆s
)3/2exp(

−3|∆r|2

2b2∆s
)

Q[w] =

∫
drN+1exp(−βU(rN+1))

V (
∫
dbexp(−βh(|b|)))N

=
1

V

∫
e−w(rN )∆sp(rN − rN−1)e−w(rN−1)p(rN−1 − rN−2)....

....e−w(r2)∆sp(r2 − r2)e−w(r1)∆sp(r1 − r0)e−w(r0)∆s

4

The partition function is defined in a recursive way by defining a functional q:

q(r, s+ ∆s; [w]) = e(−∆sw(r))

∫
dr′p(r − r′)q(r′, s, [w])

q(r, 0, [w]) = exp(−∆sw(r))
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Q[w] =
1

V

∫
drq(r, N ; [w]))

Using Taylor series we get a partial differential equation for the functional q[w]:

∂

∂s
q(r, s; [w]) =

b2

6
52 q(r, s; [w])− wq

This PDE can be explained as the probability function to be at a certain location r for

a contour s is governed by a random walk interacting with an external potential. And

as initial condition q(r, 0, [w]) = 1.

The continuous Gaussian chain in a potential w(r) has a factorization property:

Q[w] =
1

V

∫
drq(r, N − s; [w])q(r, s, [w])

In the case of a diblock copolymer with total polymerization index of N:

type =


A if 0 < s < fAN

B if fAN < s < N

where fA is the fraction of the copolymer that is type A. The stretching energy of

such a diblock can be expressed as: βU0 =
∫ N

0
ds 3

2[b(s)]2
|dr
ds
|2, and the interaction with a

potential βU1[wA, wB] =
∫
drwA(r)ρA(r)+wB(r)ρB(r), where we abuse notation and the

microscopic densities are now defined for a single chain only ρA(r) =
∫ fAN

0
dsδ(r−rj(s)),

ρB(r) =
∫ N
fAN

dsδ(r − rj(s)).

In this this case we solve two Fokker-Planck equations: one for q when s starts from

the A part and finishes in the B part and another for q† when it starts from the B part

and finishes in the A part.
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∂

∂s
q(r, s; [wA, wB]) =

b2

6
52 q(r, s; [wA, wB])− wq

w(r, s) =


wA(r) if 0 < s < fAN

wB(r) if fAN < s < N

∂

∂s
q†(r, s; [wA, wB]) =

b2

6
52 q†(r, s; [wA, wB])− w†q†

w†(r, s) =


wB(r) if 0 < s < 1− fAN

wA(r) if 1− fAN < s < N

In this case the normalized partition function is written as:

Q[wA, wB] =
z[wA, wB]

z0

=

∫
e−βU0[r]e−βU1[r]∫
Dre−βU0[r]

=

∫
Dre−βU0[r]e−

∫
drwA(r)ρA(r)+wB(r)ρB(r)∫

Dre−βU0[r]
,

and it can be formulated as:

Q[wA, wB] =
1

V

∫
drq(r,N ; [wA, wB]) =

1

V

∫
drq†(r,N ; [wA, wB])

Now using that the density is given by:

< ρ(rN+1) >=

∫
drN+1ρ(rN+1)exp(−βU(rN+1))∫

drN+1exp(−βU(rN+1))

we obtain:
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
ρA(r; [wA, wB]) = − 1

Q[wA,wB ]
δQ[wA,wB ]

δwA

ρB(r; [wA, wB]) = − 1
Q[wA,wB ]

δQ[wA,wB ]
δwB

Finally taking the derivative from the physical expression:

δQ[wA, wB]

δwA(r)
=

1

V
∆s×

fAN∑
j=0

∫
drN+1[e−∆swB(rN )φB(rN − rN−1)e−∆swB(rN1−1)φB(rN1−1 − rN1−2)

...e−∆swA(rfN )φA(rfN − rfN−1)

...e−wA(rj)∆s(−1)δ(r − rj)....e−∆swA(r2)φA(r2 − r1)e−∆swA(r1)φ(r1 − r0)e−∆swA(r0)]

=
−1

V

∫ fAN

0

q†(N − j, r, [wA, wB])q(j, r, [wA, wB])ds

Similarly for ρB

δQ[wA, wB]

δwB(r)
=
−1

V

∫ N

fAN

q†(N − j, r, [wA, wB])q(j, r, [wA, wB])ds

And for the polymer melt to compute the density we just multiply the obtained ex-

pressions for ρA and ρB by n the number of diblock copolymer chains.

Mean field approximation The partition function obtained is not easy to compute

as it involves functional integrals over w+(r) and w−(r) and it is practically impossible

to perform these integrals numerically. At the mean field approximation we assume that

a single field configuration w∗+(r), w∗−(r) dominates the functional integral. This field

configuration is obtained by demanding that H[w+, w−] be stationary with respect to

variations in w+(r) and w−(r),
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δH[w+, w−]

δw+(r)
=
δH[w+, w−]

δw−(r)
= 0

The mean field approximation is pretty accurate for high mass and highly coordi-

nated polymer chains, because the field fluctuations are small. In contrast for light

polymer chains, since the chains can easily change position and so change the potential

experienced on a particular statistical segment, the field fluctuations can’t be neglected.

In other words the mean field approximation can be used on physical systems where the

field fluctuations can be neglected. Before finishing we remind again that this is a very

short description of SCFT, and we recommend a reader who wants to learn about the

field to read the excellent monograph of Fredrickson. Finally we note that the equations

developed here have physical dimensions, while the equations used in the chapters of

this thesis have been scaled and are dimensionless.
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