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Abstract

Experimental apparatus for the study of Faraday waves on

time-varying domains

Rory E. Hartong-Redden

A variation of a classical fluid dynamics experiment on Faraday waves is moti-

vated by interest in understanding pattern formation on time-dependent domains.

In the classical studies, a fluid layer when vibrated vertically will generate stand-

ing waves known as Faraday waves. To investigate the effect of a time-varying

domain on Faraday waves, a vibrating fluid container with dimensions which can

be controlled in a time-dependent fashion was designed and constructed. This

thesis covers the design of an experimental apparatus and the application of a

measurement technique for use in future studies.
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Chapter 1

Physical motivation

It is often the case that experiments motivate theory. After Michael Faraday’s

discovery of his namesake phenomena in 1831 [1] it was over 100 years until a

convincing theoretical explanation was given [2]. Only recently was this classi-

cal problem considered solved when experiments [3] found good agreement with

theory [4].

Over the decades of modern science Faraday waves were used as a testbed for

new physics and paradigms. In the 1980s when Chaos was in fashion, studies

focused on Faraday waves as a model for chaotic dynamics [5]. Starting in the

1990s, more powerful digital cameras and computers enabled broader studies of

the phase space of Faraday waves and with it an understanding of the complex

symmetries found in Faraday wave patterns [6, 7].

Along these lines, this investigation focuses on the role of the domain in deter-

mining Faraday waves patterns. The waves exist on a domain, typically a cylin-
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Chapter 1. Physical motivation

drical container, but no study has considered varying the size of the container

in real-time while observing the effect on the resultant waves. Theoretical tools

are being developed [8] to treat problems with time-dependent domains, which

also find application in other numerous areas such as biological stripes, chemistry,

metallurgy and fluid dynamics.

Any physical problem comprises a governing equation and a set of boundary

conditions. Early experiments sought to disentangle the role of the boundary

conditions from the physics in the bulk of the fluid and many experiments framed

domain effects as a hindrance in their observation of Faraday waves [9]. Simonelli

and Gollub [10] were the first to focus on the geometry of boundary conditions

of Faraday waves when they compared patterns in a square container with those

in slightly non-square (rectangular) container. Another experimental variation

investigated the time-dependence of the forcing by extending the forcing from one

to two frequencies [6].

The proposed experiment will investigate how a time-varying domain affects

the Faraday wave patterns. To that end, the experiment must produce Fara-

day waves (a non-trivial task in itself), time-dependently change the container

dimensions, and measure the characteristics of the resultant patterns.
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Chapter 2

Identifying requirements for
setup

This chapter introduces important aspects of Faraday waves and looks at the

published literature as a guide for the development of this experiment. The mo-

tivating research interest is translated into engineering design targets.

2.1 Faraday waves

When a container is filled with a liquid, typically water or oil, and vibrated

sufficiently forcefully in the direction of gravity, surface waves are generated as in

Figure 2.1. A shaking container may generate capillary waves due to motion of

the contact line; these waves travel from the outer edge of the container inward.

Emerging in the center of the fluid are standing waves which are generated from

another source. These waves owe their existence to an instability of vibrating fluid

3



Chapter 2. Identifying requirements for setup

Figure 2.1: A simplified physical picture of Faraday waves [9] illustrating why
the Faraday wave period T0 is twice the driving period T , T0 = 2T .

and are called Faraday waves. Seen from above, the waves have patterns with a

large variety of shapes and symmetries depending on the fluid properties, depth,

driving conditions, and sometimes the boundary conditions.

A simplified physical picture of the waves is presented in Figure 2.1. As the

container accelerates upward the fluid interface is destabilized and deforms. When

an up-down cycle is completed, the surface returns to the flat state but inertia

carries the maxima into the minima, inverting the waves. As a result, Faraday

waves oscillate at half the forcing frequency.
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Chapter 2. Identifying requirements for setup

2.1.1 Dispersion relation

Some additional insight into the physics of Faraday waves is gained by taking a

mathematical approach. The first successful treatment was a linear stability anal-

ysis of an inviscid fluid, which showed that the origin of the waves is a parametric

resonance and that the amplitude of the waves obeys the Mathieu equation [2].

A common example of parametric resonance is kicking your legs on a swing to go

higher. Faraday waves are often called parametric resonance waves in recognition

of their origin.

Following [11, 2] and without going into too much detail, we retrace the analysis

of Faraday waves. Consider again Figure 2.1 with a fluid of depth h with interface

z = ζ(x, y, t). The interface is expanded into Fourier modes ζk(t),

ζ(x, y, t) =

∫ ∞
−∞

dk ζk(t)eik·r . (2.1)

For an inviscid fluid, taking into account surface tension and gravity and neglecting

nonlinear terms in surface deformation and boundary effects, we find that each

eigenmode ζk(t) obeys the Mathieu equation

ζ̈k + ω2
0(t)ζk = 0 , (2.2)

where the natural frequency ω0(t) of each mode is found from the dispersion

relation

ω2
0(t) = tanh(kh)

(
g(t)k +

γ

ρ
k3
)
. (2.3)

5
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Time-dependence enters through an imposed gravitational oscillation g(t) = g −

a cos(ωt), in the frame of the moving fluid, and the condition for parametric

resonance is when the natural frequency ω0 is half the driving frequency ω, ω0 =

ω/2. The excited wavelength, then, is governed by this inviscid dispersion relation

for surface waves of depth h, wavenumber k = 2π/λ, angular driving frequency

ω, and surface tension γ. Often the pattern size is smaller than the fluid depth,

kh > 3, so that the infinite depth approximation tanh(kh) = 1 can be invoked.

There are two competing forces in Equation (2.3). The gravitational term

balances the capillary term when

k =

√
ρg

γ
. (2.4)

For clean water, γ = 72 dyne/cm, the forces balance at the capillary length,

λc ∼ 1/k = 2.7 mm. The capillary length is also the length scale of ripples which

imposes the resolution requirement discussed in §2.3.

2.1.2 Threshold acceleration

After the initial success with the inviscid analysis, attention turned in the early

1990s to incorporating viscosity and to predicting the minimum acceleration or

threshold acceleration for which Faraday waves form [11]. In the infinite depth

6
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approximation and the capillary regime, the threshold acceleration ac is [6]

ac = 8

(
ρ

γ

)1/3

ν ω5/3 . (2.5)

A few results for ac follow:

• dependence on the surface tension and density is weak,

• acceleration threshold scales with viscosity,

• threshold increases quickest with frequency.

Equation (2.5) provides broad insights useful for designing an experiment.

Given the linear dependence on viscosity, an experiment probing high acceler-

ation thresholds may prefer a viscous silicon oil to water in order to keep the

driving frequencies low. The maximum forcing acceleration, determined by the

driven mass and force output, sets the highest achievable wave frequency, from

Equation (2.5), and consequently the smallest pattern size, from Equation (2.3).

2.2 Size of experiment

As mentioned above, the total mass of the system and the peak force of the

shaker determine the maximum achievable acceleration of the system. However,

vibration systems increase exponentially in cost as the rated force increases from

10 N to 10 kN and higher. When the size of the experiment increases so does its

weight which in turn requires a more expensive vibration system. The appropriate

7
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Authors Size (cm) Depth
(cm)

Kinematic
viscosity
(cm2/s)

Surface
tension
(dyne/cm)

Driving
frequency
(Hz)

Benjamin and Ursell [2] Ø 5.4 25 0.01 72 16
Ciliberto and Gollub [5] Ø 12.7 1 0.01 72 15–17
Douady and Fauve [12] 8.06 x 8.06 0.5 - - -
Simonelli and Gollub
[10]

6 x 6 2.5 0.03 24 12

Douady [9] 6.5 x 1.6 0.5 0.01 29.5 20–30
Edwards and Fauve [6] Ø 12 0.29 1.00 65
Bechhoefer et al. [11] Ø 10,

11.4 x 11.4
1.0, 0.7,
0.24

0.5–2 26–30 20–80

Lioubashevski [13] Ø 14.40 0.1–0.3 0.4 - 1.7 29.6–31.0 20–80
Binks and van de Water
[14]

Ø 44.0 2.0 0.034 18.3 25–45

Shats et al. [15] Ø 17.8 3.0 0.01 73 10–200

Table 2.1: Experimental parameters for a number of notable Faraday wave ex-
periments arranged by publication date. For comparison, pure water has a surface
tension value of 72 dyne/cm (mN/m) and viscosity of 0.01 cm2/s. The viscosity of
oils are often varied with temperature, producing a range of experimental values.

system size, even given a choice of working fluid, was an important consideration;

to this end, it is useful to consider what length scale was used in previous exper-

iments. Table 2.1 illustrates the range of experimental length scales along with

the working fluid properties in a number of Faraday wave experiments. Many

experiments use circular geometries about 12 cm in diameter (Ø) with water as

the working fluid.

It is often mentioned by experimenters that the ideal depth is in the infinite

depth regime, with a fluid depth larger than the nominal excited wavelength, but

shallow enough to damp long wavelength modes [11]. In practice this translates to

8
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0.1–1 cm but at high enough driving frequency the pattern size becomes smaller

than any given fluid depth which can then be considered infinite.

2.3 Design requirements

Summarizing the above discussion, we arrive at the following design require-

ments for a Faraday wave experiment. First and foremost, the vertical motion

must be in the regime where Faraday waves are generated. For a variety of work-

ing fluids over a span of viscosities, we set a goal for the vertical actuator to

generate up to 10 g (100 m/s2) at a frequency up to 500 Hz.

In addition to the vertical motion, the horizontal motion must modulate the

container size. The requirements here are low-level acceleration, or no acceleration

for constant motion in the mm/s range, which does not disrupt the oscillating

Faraday waves.

To quantitatively study the Faraday waves, we seek to measure the fluid in-

terface z = h(x, y, t) with the appropriate spatial and temporal resolution. The

spatial resolution is dictated by the smallest feature of interest, the capillary

length, which is about 3 mm for water. Furthermore, this resolution must hold

across the entire fluid interface. The sampling frequency should be at the drive

frequency, or twice the natural frequency of the standing waves, up to 100 Hz.

9
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Parameter Design goal Comments

Container size 15 cm x 15 cm Length by width
Container depth 1.27 cm (0.5 in) Typical fluid depth is 1 cm
Horizontal frequency 0–0.5 Hz Cycle frequency
Horizontal amplitude 0–0.3 g Acceleration
Horizontal speed 0–20 mm/s Constant speed motion
Vertical frequency 5–500 Hz Sinusoidal motion
Vertical amplitude 0–10 g Acceleration
Measurement frequency 100 Hz Sample rate
Measurement resolution 3 mm Lateral (x, y) and height (z)
Measurement area 300 cm2 Sample area

Table 2.2: The requirements for the experimental apparatus and measurement
system are summarized with these design goals.

10



Chapter 3

Engineering design

This chapter describes the scope of the Faraday wave experiment and the

underpinning engineering design. Section 3.1 is an overview of the experiment

which is then described in more detail in the following sections. The operational

details are left for the appendix §A.

3.1 Overview

The basic idea for the experiment is given in Figure 3.1. Faraday Waves are

generated by imposing a sufficiently large vertical acceleration g(t). To vary the

domain size in time, the container dimensions are modulated using two indepen-

dent sidewalls moving in the horizontal direction. The container consists of four

walls, two which are fixed and two which are free to move linearly, and a trans-

parent bottom. We study the fluid interface inside this container, ignoring fluid

outside this defined space. To keep the fluid depth constant in the container

11



Chapter 3. Engineering design

the moving walls do not reach the bottom of the container, allowing flow under-

neath the wall. While the two sidewall locations, x1 and x2 from Figure 3.1, can

be controlled independently the rest of the experiment as implemented assumes

x1 = −x2, i.e. they move symmetrically with respect to the centerline of the

container.

Figure 3.1: Schematic showing a side view of the rectangular container with two
moving walls on the left and right; the entire container moves vertically in time
according to acceleration g(t).

The experiment allows g(t) to be an arbitrary bounded function. The variation

of driving acceleration was not investigated and we take the canonical function in

these experiments where g(t) is a sine wave:

g(t) = a sin(2πfvt) . (3.1)

The frequency fv is arbitrary as well, in practice we take fv ∼ 20 Hz.

The left and right walls can be freely moved along one dimension. For sim-

plicity, we vary the area of the domain linearly and the walls move with constant

12



Chapter 3. Engineering design

speed,

ẋ1(t) = ±v , (3.2)

going forward and backward for equal durations over a period T . Considering

that moving the walls x1 and x2 quickly generates waves which can overwhelm

the Faraday waves, the time scale of horizontal motion is necessarily larger than

that of the vertical motion. The frequency of the prescribed horizontal motion

cycle is two orders of magnitude less than the vertical motion and fh = 1/T ∼ 0.1

Hz.

3.2 Components

The design components are classified according to their function. The optics

system is a separate structure, apart from the Faraday apparatus in Figure 3.2,

which images and measures the Faraday waves. Table 3.1 lists the main compo-

nents — which each function independently — as horizontal actuators, vertical

transducers, optics, or the mechanical structure.

13



Chapter 3. Engineering design

Figure 3.2: The Faraday assembly rendered here was designed using CAD soft-
ware. The main parts of the assembly are labeled by number: (1) base plate, (2)
vertical column, (3) horizontal column, (4) stepper motor, (5) shaft, (6) traveling
nut connector, (7) moving wall, (8) wall connector, (9) container support rim, (10)
parallel container walls, (11) container bottom (on top of #9), (12) U-Channel.
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Chapter 3. Engineering design

Components Function
Camera

Optics
Projector
Mirrors
Vertical stages
Stepper motors

Horizontal actuators
Moving walls
Controllers
Computer program
Shaker

Vertical transducersAccelerometers
LabVIEW
Base plate

Mechanical structure
Vertical pillars
Horizontal beams
Container support rim
U-Channel

Table 3.1: Different components of the design function independently on top of
the mechanical structure.

3.3 Vertical motion

The vertical accelerations which generate Faraday waves require relatively

large forces (300 N) fluctuating on small timescales (100 µs). From a design

point of view, small voicecoil actuators are sufficiently responsive but not forceful

enough while electric motors can be very powerful but lack responsiveness. An

actuator with these characteristics is an audio amplifier and speaker system, a

vibration system.

The system consists of a high quality speaker (shaker) and amplifier (linear

amplifier). Referring to Figure 3.4, the path for the driving acceleration signal
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Figure 3.3: Fully assembled experimental setup: shaker (bottom center), con-
tainer with linear actuators (middle), mirror mounted to vertical stage, video
camera atop video projector on vertical stage (right), at the bottom right is the
DAQ.

begins with the PC where a LabVIEW Virtual Instrument which generates a

digital signal, the signal is converted to an analog voltage by the Data Acquisition

Device (DAQ), the voltage is then amplified to drive the shaker. An accelerometer,

interfacing with a signal conditioner, sends the measured signal to an oscilloscope

and DAQ for readout.
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Figure 3.4: Shown is a system chart of components used to produce and measure
vertical motion. Arrows indicate the direction of the flow of information, e.g. from
the sensor to computer, and dashed arrows indicate possible future connections.

In a fully-functional system the PC will control each of the experimental func-

tions and communicate with the shaker, signal conditioner and camera. This

unified control will enable the synchronization of the images with the acceleration

measurement as well as location of the moving walls; when each system is oper-

ated individually without a common reference, the time-stamps on the data do

not correspond.

3.3.1 Vibration system

The Labworks LB–139.141–75 is a vibration test system similar to an audio

system in the sense that like audio systems it contains a speaker and amplifier

with the addition a cooling blower. Vibration systems are typically used in vibra-

tion testing where any number of driving forces such as impulsive, sinusoidal, or

random can be applied to test a system.

17



Chapter 3. Engineering design

The shaker is the speaker component of the system where a permanent magnet

and surrounding coils convert electrical current into mechanical motion. The

linearity of the system allows simple and effective open-loop control.

In sinusoidal motion, the shaker is limited by frequency and amplitude. The

frequency response of the shaker is 0–6,500 Hz which is limited on the upper end

by the resonance frequency of the shaker. The maximum payload is 7 lbs (3.2

kg) and with decreasing payload the peak acceleration increases: 13 g peak with

5 lb load and 38 g with 1 lb. At high frequencies the amplitude limitation is

imposed by the 75 lb peak force but at low frequencies the limitation is due to

the maximum displacement of 1 inch peak-to-peak. Therefore, the lower working

limit of the shaker is 5 Hz.

The shaker is sensitive to the center of mass of the load. That is, the shaker

is only designed to provide a uniaxial force so the center of mass of the load is

ideally located on the central axis of the shaker. Side-to-side motion not only is

an unwanted noise but can damage the delicate shaker. Therefore, it is important

that the Faraday apparatus mounted on top of the shaker maintain a constant

center of mass.
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3.3.2 Computer interface

An important design consideration was that all components interface with a

computer. When the driving signal is generated digitally any functional form

is possible whereas an analog function generator limits output to a handful of

predefined forms.

We chose a data acquisition system (DAQ) from National Instruments (NI).

The main requirements of the DAQ is that it has a 100 kHz sample rate or higher

and multiple analog input and outputs. We chose a DAQ based on the PCI express

platform, the NI PCIe-6363, with 32 analog inputs sampled at 2 million samples

per second (MS/s) and 4 analog outputs sampled at 2.86 MS/s. The DAQ is more

than adequate for the demands of 100 Hz signals we expect in this experiment.

One analog output is dedicated to the driving signal for the linear amplifier and

two analog inputs are required for the pair of accelerometers. Additional inputs

and outputs enable future functions to be incorporated into the existing setup.

3.3.3 Accelerometers

Accelerometers are used to measure the level of forcing applied the fluid. Two

Brüel and Kjær Type 4513 accelerometers were chosen because they come with a

factory-provided calibration and accuracy of 1%. The pair of accelerometers are

each powered by a Type 1704-A-001 signal conditioner which also amplifies the
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signal for the DAQ or oscilloscope. The primary accelerometer, aligned vertically,

measures the amplitude of the forcing acceleration. The second accelerometer is

mounted horizontally to measure the off-axis acceleration, or noise. The signal

conditioners amplify the accelerometer output to a range appropriate for the DAQ,

±5 V.

3.4 Horizontal motion

Two horizontal linear actuators position two sliding walls which vary the size of

the container in one dimension. The horizontal actuators in Figure 3.6 mounted on

the Faraday apparatus which is fastened to the shaker at the base. The leadscrew,

nut, nut connector, shaft, wall connector, sliding wall, and stepper motor comprise

a linear actuator which converts the rotatory motion of the stepper motor into

linear motion.

The mass and center of mass of the horizontal actuators were key considera-

tions because they are driven by the shaker along with the rest of the Faraday

apparatus. As seen in figure 3.6, symmetrically opposing motion of walls keeps

the center of mass located over the center of the shaker. To reduce the load on

the shaker, the actuators are simple, light, and stiff, weighing less than 1 kg each.
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Figure 3.5: A power supply provides power to both controllers, one of which
is connected to a computer which then communicates with the second controller.
Each controller drives a single stepper motor without feedback.

Tracing the flow chart in figure 3.5, the path of the control signal originates

with the PC, as with the vertical system. The signal goes from the PC to a pair

of controllers where each drives a stepper motor actuating a moving wall.

3.4.1 Linear actuators

The requirements of low mass forced the design to a simple linear actuator

setup. The Parker LD28 stepper motor and leadscrew system was chosen for

its low mass: 0.6 kg including a leadscrew allowing 12 cm of travel. With the

leadscrew and nut a simple, stiff, lightweight linear actuator design arose. As a

compromise between speed and accuracy, the nut is threaded at 3 mm/revolution

which enables the nut to travel between 0 and 45 mm/s, the nominal speed is 1

mm/s. The small NEMA 11 motor has a peak torque of 0.06 Nm so the traveling

nut can accelerate up to 2 g (20 m/s2).
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Figure 3.6: Two horizontal linear actuators position two sliding walls. The actu-
ator on the right is described from right to left: the stepper motor and leadscrew
is attached to the end of the u-channel, the threaded nut moves along the lead-
screw, the nut connector fastens to the shaft which slides in two linear bearings,
the wall connector at the end of the shaft fastens to the Teflon sliding wall.
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Each traveling nut is connected to a sliding wall. Two sets of walls were made

of Delrin and Teflon. The latter was chosen for its lubricating properties and

ability to slide inside the outer container walls. The moving walls and actuators

provide unimpeded optical access from above and below the container.

3.4.2 Computer control

With the vertical control system, an important design criterion was digital

computer control. As shown in Figure 3.5, each stepper motor is driven by a

ViX controller which in turn is controlled by one computer. The controllers come

with a software interface called Easi-V which provides a complete programming

language with a number of present motion profiles as well as the ability to define

an arbitrary motion profile. One software program can be called upon to drive

multiple actuators individually. Given the symmetry of the setup, the two motors

follow the same commands and the result is mirror symmetrical motion.

During construction and testing, constant speed motion was chosen for the

motion profile; the moving wall velocity was ±1 mm/s with ramp-up acceleration

of ±3 mm/s. The actuator system is capable of increasing or decreasing the

velocity and acceleration values by an order of magnitude.
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3.5 Optics

Capturing the motion of the fluid interface presented the biggest challenge.

The design goal was to capture the dynamics of the water-air interface, z =

h(x, y, t), with a sampling frequency at the drive frequency. The target sample

rate was 20 Hz which meant that waves oscillating at 10 Hz were sampled twice

a period, up and down. The Fourier transform profilometry (FTP) technique

was chosen due to its demonstrated success in measuring gravity waves in a fluid

dynamics experiment [16]. While a transmission-mode technique with similar

capabilities exists [17], it is difficult to implement without affecting the surface

tension of water.

3.5.1 Fourier transform profilometry

The FTP setup consists of a camera recording images, a projected grating

pattern and an object whose height is to be measured. The output of the technique

is a height measurement for each pixel in a camera image.

The general crossed optical-axes geometry is displayed in Figure 3.7. A camera

and projector are both a distance L from the reference plane O and separated by

a distance D. In the limiting case where the optical axes are aligned, θ = 0, both

the geometry and mathematical formulas are simplified. A fringe pattern with
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Figure 3.7: The setup [18] consists of a projector which displays a fringe pattern
onto a deformed surface b, relative to the reference plane a, which is captured by
the camera separated by a distance D. The deformed surface results in a deformed
fringe pattern with phase offsets ∆ψ(y).

the fringes varying in the y-direction is projected onto a general object with a

surface topography of interest. A camera records an image of the fringes on the

object from which the height is determined, z = h(x, y). Here and elsewhere, x

and y are coordinates in the images recorded by the camera. Measurement of the

deformation of the fringes, relative to the fringes on a reference plane, is a phase

∆ψ from which the height of the object, here a fluid interface, is computed.

The phase-to-height relation is arrived at through geometric arguments intro-

duced by [19] and later corrected [18],

h(x′, y′) =
L∆ψ

∆ψ − ω0D
(3.3)
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where x′ = x− h
L
x and y′ = y− h

L
y are the corrected image coordinates. The fringe

frequency ω0 is the frequency of the recorded fringe pattern in radians/length.

Measuring the phase shift ∆ψ is analogous to measuring the height. Since the

fringes have a well-defined frequency by design, taking a Fourier transform of the

images yields a power spectrum which is peaked at the fringe frequency ω0. The

phase shift is determined by filtering around this peak frequency [19].

3.5.2 Implementation

The camera is positioned directly above the projector on a vertical stage; see

Figures 3.3 and A.11. The distance between the optical axes of the camera and

projector is fixed at 11.4 cm (4.5 in) since they move together on the vertical

stage. To view the fluid interface from above, a mirror is positioned horizontally

across from the camera on another vertical stage with the container positioned

below the mirror. The optical path length is reduced by lowering the projector

and mirror using the vertical stages. The field of view may be reduced in the

camera by optically zooming in, and the projector’s resolution (the size of the

projected pixel) may be adjusted similarly.

The surface conditions of the fluid interface are a key consideration. When

imaging an opaque and diffuse material, incoming light is scattered in all directions

and the camera captures light from the entire surface. However with a reflective
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surface like water, incoming light rays reflect back at a unique angle so an image of

surface waves captures only the surfaces angled such that light from the projector

is reflected into the camera. This reflection-mode imaging technique is often used

to image Faraday waves and produces excellent images for qualitative study; see

Figure 3.8.

For the FTP technique to work the surface must be opaque and diffusive.

For water to be used as a working fluid, a white pigment is added. Fortunately,

titanium dioxide, which we use, was well-characterized [20] and does not affect the

properties of water. Most importantly, the pigment is provided as a chemically

pure powder without surfactants or other chemicals which can add a surface film

and affect the surface tension of our water, both of which must be avoided in a

controlled experiment.
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Figure 3.8: The Faraday pattern [6] is visualized using circular lighting such
that the camera records reflected light when the surface normal is between 2.4◦

and 3.1◦ from horizontal.
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Optical measurement
demonstration

The results shown below in a series of figures demonstrate the imaging and

measurement capability developed for the study of time-dependent Faraday wave

patterns. A number of challenges were overcome by optimizing parameters in the

optics setup and post-processing using extensive trial and error. We demonstrate

3D megapixel surface height sampling with millimeter height resolution and a

sample rate of 20 Hz.

One challenge was capturing sufficient information in images to be useful for

later processing. Initially, images used less than 1% of the dynamic range of

the camera which resulted in a poor signal-to-noise ratio and an unreliable height

calculation. This challenge was addressed in part by optimizing the brightness and

contrast of the projected grating image in Figure 4.1 to utilize the full dynamic

range of the projector, from white to black. Additionally, the geometry of the
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Figure 4.1: Digital image with the sinusoidal fringe pattern with 90 fringes. The
resolution is 1920 x 1080 (1080p HD).

camera/projector system was optimized while maintaining a field of view of 15

cm x 15 cm. The contrast of the imaged fringes in Figure 4.3 was improved to

10%.

Compounding the imaging challenge is the direct reflection of light from the

projector into the camera. An example of these reflections is the bright spots at

the bottom of Figure 4.4. These reflections saturate the pixels and the information

in these pixels is lost. Direct reflections were minimized by choosing the offset

between the projector and camera so incoming rays were reflected out of the field

of the camera. Such reflections completely avoided only in the quiescent reference

image in Figure 4.3. Since the bright spots in Figure 4.4 are confined to the
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Figure 4.2: The amplitude of the Fourier spectra is plotted along with the Gaus-
sian filter centered on the maximum(the Gaussian filter is not plotted to scale).
The axes units are based image pixels but are arbitrary. The peak amplitude is
located at the fringe frequency, here 77, and the width of the filter is scaled to
one third this value, σ = 25. The zero frequency content was filtered prior to this
step.

bottom of the image, the effect is a reduction in measured area rather than an

altogether unusable measurement.

The outlines of the analysis routine are well documented [21, 19, 18], but

present the data analysis without necessary addressing the subtle difficulties. The

key step, shown in Figure 4.2, is the filtering of the Fourier spectra about the

fringe frequency. The width of the Gaussian filter required fine-tuning on a case-

by-case basis for best results. In general, the width of the window is one third
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the fringe frequency which ensures the window is broad enough to capture the

phase information of the peak harmonic while filtering unwanted noise from other

carrier harmonics.

To further aid the visibility of the fringes, the diffusivity of our transparent

working fluid, water, was enhanced with the addition of is the white pigment

titanium dioxide. However, the pigment is not water soluble and experimenta-

tion found that mechanical stirring dispersed it into the water. Settling of the

particles with time is a concern but was shown to be mitigated by the mixing

effect of gravity-capillary waves generated a horizontal wavemaker [20]. Whether

Faraday waves generate sufficient mixing to prevent settling is an open question;

in any case, the effect of settling on the measurement of the fluid interface can be

measured and accounted for.

The results shown below are a sample of the analysis. Each video frame is

processed from which the surface height is extracted. The result is a video or

animation where each frame looks like Figure 4.4. Further data analysis such as

automated pattern modeling and pattern identification is possible since the data

are simply a series of 2D matrices.
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Parameter Value Comments

Frame rate 20 frames/sec Imaging frame rate
Bit depth 8 bits 8 bits per pixel
Captured frames 1000 50 seconds
Image resolution 1280 x 1024 Pixels, full resolution
Projector resolution 1920 x 1080 Pixels, full resolution
Driving frequency 20 Hz Wave frequency is 10 Hz
Image contrast 0.10 Used 10% of the dynamic

range of the camera
Pigment concentration 12.5 g/L Titanium dioxide in pure

water
Fluid depth 0.89 cm Depth of water in container
D 11.4 cm Distance from camera to

projector
L 63.5 cm Distance from camera to

fluid

Table 4.1: The main design goals are driven by the vertical forcing, horizontal
motion, and measurement capabilities.

Figure 4.3: This is a unaltered image of the projected fringes on a flat surface
of water and defines the reference plane for this image sequence.
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Figure 4.4: An image captured later after the formation of Faraday waves which
are not visible. The bright spots at the bottom on the image is the projector
filament since once standing waves form with a sufficiently large slope, light is
reflected from the projector directly into the camera.
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Figure 4.5: Extracted height from figure 4.4; note the z scale is 2 mm while the
lateral scale is 200 mm. The spurious points around Y = 200 are located where
the glare saturated the pixels.
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Figure 4.6: Here is second image from another experimental trial under different
conditions which again demonstrates the measurement capability of the optics
setup.
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Conclusion

Physical problems on time-dependent domains are common in nature; a theo-

retical treatment of such problems motivated this experiment on Faraday waves

as a case study. For the study of Faraday waves on time-dependent domains,

an experimental apparatus was built where Faraday waves form in a container

of variable dimensions. To quantitatively capture the Faraday wave patterns, an

optical measurement system capable of resolving the patterns in space and time

was implemented.

Faraday waves are generated by vibrating a container of fluid vertically using a

vibration system composed of a linear amplifier, shaker, and signal generator. The

necessity to place the horizontal motion system on top of the vertical shaker led

to a number of challenges, namely that the system must remain balanced, tolerate

vertical vibration, and be light. In response to these challenges, two bespoke lin-
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ear actuators incorporating small stepper motors, which move the symmetrically

opposing walls, were constructed .

The study of Faraday waves, particularly on time-varying domains, called for

a measurement method capable of recording the motion of a fluid interface in

space and time, z = h(x, y, t). The FTP technique provides a single-shot method

which is scalable in sample rate (as quickly as images can be captured) as well

as in resolution (depending on the resolution of the camera and projector). We

demonstrated a fluid interface measurement using a megapixel image captured at

20 Hz with an anticipated resolution of 1 mm in height across a relatively large,

10 cm x 10 cm, area.

Although the FTP technique is a powerful tool, its implementation for use

in fluid interface measurements was not straightforward. The surface of water

is reflective and transparent and thus the opposite of the diffuse and opaque

surface for which the technique was developed. By adjusting the optical geometry

(camera/projector separation and optical path length) and the titanium pigment

concentration, a solution was found which mitigated reflections while projecting

a bright fringe pattern.

Future work on the experiment will require a detailed calibration of horizon-

tal actuators, vertical vibration, and optical profilometry. To date, only cursory

calibrations have been performed, principally for troubleshooting purposes. The
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vertical and horizontal actuators should present no difficulty to calibrate, when

operating individually as well as operating simultaneously. A key question to be

addressed prior to running controlled experiments is the quantification of noise or

undesirable acceleration to which the fluid is exposed.

An improvement that can be made is in the integration of the different func-

tions of the experiment. The current setup operates the horizontal and vertical

motion as wells as and measurement system independently even though the ca-

pability of simultaneous, unified control exists. It would be advantageous for all

the components to have a common interface, so that for example, the acceleration

reading can be associated with each fluid interface measurement.

The constructed setup will help one to understand Faraday waves on time-

dependent domains, the knowledge of which will be useful in a wider class of

systems which was the motivation for the present work.
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Appendix A

Operating manual

This appendix is a basic operating manual for the experiment. Each experi-

mental function is presented at an operational level starting with §A.1 on vertical

motion, §A.2 on horizontal motion, and §A.3 on the optics setup and implemen-

tation.

A.1 Vertical motion

This section contains guidelines, procedures and safety information on the

vertical motion system consisting of the Labworks vibration system, LabVIEW

computer interface, and accelerometers.
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Figure A.1: Partially disassembled experimental setup with the apparatus re-
moved from the shaker and fastened to an optical post to prevent damage to the
shaker while work is done on the experiment. The stepper motors and sliding wall
assemblies have also been removed.
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Figure A.2: Pictured is the shaker and its connection to the linear amplifier
(lower left corner) and the accelerometer (center) mounted to the base plate.

A.1.1 Shaker

The Faraday apparatus is mounted to the shaker mounting plate with five

10-32 socket head cap screws which meet the length specification in the Labworks

manual. General precautions:

1. Do not twist the armature. Any work on the apparatus (eg fastening screws)
should be done off the shaker.

2. Keep metal filings or any other ferromagnetic materials away from the
shaker.

3. Keep the area around the shaker dry.

4. The shaker has mechanical stops enforcing 1 inch of vertical displacement.
Generating large acceleration at low frequencies can break the stops and
damage the shaker.
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Figure A.3: Front panel of the amplifier with a voltage and current indicator,
on/off power switch, and gain knob.

5. At audible frequencies the shaker and amplifier are a powerful sound system;
use ear protection for large amplitude motion at frequencies above 50 Hz.

6. Running the system at the top of the amplifier’s output range requires the
cooling blower prevent the shaker from overheating.

A.1.2 Linear power amplifier

The amplifier takes the signal provided by the LabVIEW DAQ and amplifies

it to drive the shaker. The amplifier is run in VOLTAGE MODE. The gain knob,

when not in use, is turned completely counterclockwise to the RESET position.

1. Check the cooling vacuum pump for obstructions before Step 2.

(a) Check that the Faraday apparatus is securely fastened and balanced.

(b) The GAIN knob should be in the RESET, or off, position as shown.

2. Turn on the amplifier. The vacuum pump will start if it is plugged into the
back panel of the amplifier.
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Figure A.4: Back panel of the amplifier with labels of the input signal, interlock
interrupt and the power outlet.

3. Provide a low-level signal to amplifier (∼ 100 mV pk-pk)

4. Slowly increase the gain, turning the gain knob clockwise, rotating 45◦ or
less from the off position is typical.

5. With the range set by the gain on the amplifier, further adjustment is made
using the DAQ/LabVIEW VI

6. Turn DAQ output to 0 V and turn gain down to RESET (off position)

7. Allow amplifier to cool for a few minutes before powering off

Three connections are made on the back panel by the user: (1) the input

signal from the DAQ, (2) the interlock interrupt, and the (3) power to the cooling

blower. The amplifier has a safety mechanism requiring the cooling blower to be

installed if the interlock is not shorted as shown. More information is available in

the amplifier manual provided by Labworks.
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Figure A.5: Signal generation 2 - Continuous Output Example.vi is a
simple sine wave generator provided by LabVIEW with real-time control of the
frequency and amplitude. The output shown is a 3 V peak-to-peak 10 Hz sine wave
sampled at 10,000 samples/second with one period stored in the buffer memory.

A.1.3 Signal generation in LabVIEW

The BNC analog output 1 (AO1) is connected to the input on the back panel

of the amplifier. Figure A.5 shows VI which generates a signal, displays it on the

screen, and outputs it through the DAQ device. Before running the program set

the Max Voltage and Min Voltage (±5 V), the Sample Rate and the Number of

Samples. The signal discretized in time by the sample rate and by the number
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Figure A.6: Two accelerometer signal conditioners with only the top in use. The
BNC output is split and sent to the DAQ and oscilloscope.

of samples determines the length of the signal stored in the buffer memory —

the signal is repeatedly read out from the buffer to the DAQ. The frequency and

amplitude can be adjusted while the program is running. It is a good practice to

start and stop the VI from a zero amplitude signal.

A.1.4 Acceleration measurement

Acceleration is measured using two Brüel & Kjær accelerometers. They are

constant current line drive (CCLD) type sensors powered by the signal conditioner.

The green LED light on the signal conditioner indicates that it is receiving power
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Figure A.7: The linear actuator is driven by a stepper motor, the traveling nut
connects to the shaft which is connected to the moving wall.

from the AC adapter. To enable measurement from the accelerometer, push the

CCLD and POWER toggles to ON from the signal conditioner front panel.

The sensors both are rated at 10 mV/g so when gain is set at x100 the output

voltage is 1 V/g. The sensors have a range of ±50 g and typical motion produces

low-level signals requiring amplification; the gain can be reduced should the sig-

nal exceed 10V. The documentation with each sensor gives the factory-provided

calibration 10.10 mV/g and 10.44 mV/g.
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Figure A.8: Driving the two stepper motors are three pieces of Parker electronics:
in the center is a power supply which powers the controllers on the left and right.

A.2 Horizontal motion

The horizontal actuator system is shown schematically in figure 3.5. Each

controller is responsible for driving a single stepper motor which moves one wall.

Control of the stepper motors is open-loop, no position feedback is available. Both

controllers are powered by a single power supply.
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In Figure A.8 we see the equipment that runs the two linear actuators. In the

center is the power supply, on the right is Controller 1 and on the left is Controller

2. The three pieces of equipment are fastened to a simple structure designed to

keep the equipment compact and accessible.

The biggest safety hazard to be aware of is the 110 V wall-power connection

to the power supply; these connections should be tight and with no exposed wire.

A.2.1 Controller connections

The RS232 connection with the computer is made using the Parker-supplied

RS232 cable and a USB-to-RS232 adapter. The connection will not work without

the Parker RS232 cable because Parker use a non-standard pin configuration.

A CAT5 ethernet cable (also called RJ45) daisy-chains the two controllers. The

bottom front connection (OUT) on the right controller is made with the bottom

rear connection (IN) on controller on the left (see page 42 in VIX manual).

Both controllers are powered by the same power supply. The top half of the

controller connections are made with the power supply and the bottom half are

motor connections. The power supply’s connection pins are duplicated in pairs so

wires in Figure A.8 alternate going to the left controller and right controller.

The cable hard-wired to the stepper motor terminates in 5 separate strands

which constitute the motor connections. Making the connections requires identi-
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X1 Pin
Number

Function Wire
Color

Class

10 + High Voltage Red
9 - High Voltage Green
8 Protective Earth Green Power Connections
7 24V DC Red
6 24V Ground Green
5 Motor Ground Bare wire
4 Motor Phase (A+) Red
3 Motor Phase (A-) Black Motor Connections
2 Motor Phase (B+) White
1 Motor Phase (B-) Green

Table A.1: Pin connections on the front panel of each controller. Half go to the
power supply and half to the stepper motor.

fying which wire goes into which pin: motor cables are identified using the Parker

Quick Start Guide, and pins in the controller are identified in the ViX Connector

Pin Layout (ViX manual page 27).

Table A.1 lists the wiring of the controller: power connection in and motor

connections out. The X1 connection block is the top left and pin numbering

convention is the bottom pin is 1 and the top pin is 10.

The M11xx Option values in Figure A.9 provide the NEMA 11 stepper motor

parameters and are used during the Easi-V setup below.

A.2.2 Actuators control

The two linear actuators are controlled using the EASI-V software.

1. Launch the Windows XP-Mode virtual machine
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Figure A.9: The technical details of the motor are provided in the M11xx Option

column.

2. The RS232-USB connection isn’t automatically detected. In the USB menu,
attach the USB-Serial Controller. (The driver for the installed RS232
connection is in the .zip file on the DAQ Dell desktop.)

3. The controller should be powered on before attempting to connect

4. Launch Easi-V

5. Accept the default setting (Parker 250IM controller)

6. Click Connect

7. If successfully connected a DOS-style text interface is established with the
controller

8. Start the program in the controller memory by typing 0GOTO(START)

A.2.3 Motion profile

The code used to run the linear actuators is in Appendix C.1. Two lines of

code set the speed, acceleration, distance and number of repetitions. The motion
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Time

Rotations per second

Figure A.10: Plotted is the motion profile control signal implemented by the
ViX controllers and sent to both stepper motors.

profile in Figure A.10 is composed of 4 motion segments, repeated once: (1)

constant acceleration (rps/s), (2) constant motion (rps) (3) constant deceleration,

(4) change direction

Segments 1–3 are defined in line 25 which sets the parameters of the motion

profile: 0PROFILE1(1,2,250000,.33)

1 = 1 rps2, the rate of acceleration

2 = 2 rps2, the rate of deceleration

250000 = 250, 000 steps, the total distance to travel

.33 = 0.33 rps, the rotation rate

The direction is changed in line 62 with the command 0H.
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The rotating leadscrew moves the traveling nut by 3 mm per rotation:

0.33 rotations/sec ∗ 3 mm/rotation = 1 mm/s.

Line 52 defines the number of steps per revolution:

0MOTOR(201,0.5,50000,1000,4,2.80,3.40).

50000 = 50, 000 steps/rotation

Therefore, the distance traveled in each direction is

250, 000 steps/50, 000 steps/rotation ∗ 3 mm/rotation = 15 mm.

Browsing the 200 page documentation provided with the ViX controller, it is

apparent they are highly configurable. Synchronizing the horizontal motion with

the vertical motion, if desired, can be achieved by setting a trigger to start the

pre-defined horizontal motion. That way, both the vertical motion and horizontal

motion would be controlled through the same software — the Virtual Instrument

in LabVIEW.

A.3 Optics

The camera is mounted directly above the projector, see Figure A.11, and the

distance between the camera and projector is fixed at 11.4 cm (4.5 in) and they
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Figure A.11: Seen from the side, from left to right: are the vertical stage, mirror,
plexiglass container, projector, and camera.

move together on the vertical stage. The mirror is positioned horizontally across

from the camera with the container positioned below the mirror. The optical path

length and field of view may be reduced by lowering the projector and mirror using

the vertical stages. The field of view may be also be adjusted using the optical

zoom on the projector and camera individually.

The ViewSonic Digital projector has a maximum resolution of 1080p (1920x1080)

at 60 frames per second (fps). To limit flickering (brightness variation in the cap-

tured images) the projector may be operated at a reduced resolution but at its

highest frame rate of 120 fps. Images captured at 30 fps average over many pro-

jected images and flickering is eliminated. The projector can alter the output

digitally: adjusting the keystone (to correct for image distortion), reducing the
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resolution, altering the brightness and contrast as well as via analog optics: zoom

and focus.

The center of a projected image is above the optical axis of the projector;

projected images are higher than the projector. Since the field of view of the

camera and projected image need to overlap, the natural position of the projector

is directly below the camera.

Figures A.11 and A.12 show the parallel optical axes configuration. Even

though the projector is below the camera their fields of view overlap. The camera

sits atop the projector and the vertical offset between the camera and projector is

minimized because the range of measurable surface slopes increases as the camera

and projector are brought closer together [19].

A.3.1 Projected grating images

Grating images are projected with the camera and projector stacked vertically

such that the grating stripes are aligned horizontally.

The discrete representation of the cosine wave in Figure A.13 is apparent

because larger grating frequencies, with fewer samples per sine wave, reduce mea-

surement error [18]. The full resolution of figure A.13 is 1920 x 1080 pixels. It is

stored as a 16 bit uncompressed png image. The sampling of the cosine function

is chosen to maximize the dynamic range of the projected image. The grating in
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Figure A.12: Seen from the side is the projector and camera supported by a
vertical stage.

Figure A.13: A portion of a grating image, note the discrete steps in grayscale
as the pattern varies between white and black. The grayscale values are plotted
in figure A.14 along the line segment shown in the center of the image.
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Figure A.14: Profile plot of the grayscale intensity along the vertical line in
Figure A.13.

Figure A.13 is plotted along a vertical segment in Figure A.14, with 12 sampled

grayscale points per cycle, the grating frequency is 1080/12 = 90 and there are a

total of 90 stripes.

I(y) ≈ cos

(
2πf0
N

x

)
, x = 1, 2, 3, . . . N − 1 (A.1)

A.3.2 Image analysis progam

The MATLAB program im_analyze5_2.m processes a stack of images and

returns the surface height in three stages: initialization, analyzing reference image,

processing image stack.
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The program operates at a low-level and requires user input during the first

two steps to process the data properly. When processing the images in the list,

set a number of debug points throughout the program to pause and examine

figures or to perform calculations. The program, often produces unreliable results

so results must be saved manually, using the save function in MATLAB. The

program outputs a small movie showing each plotted figure in sequence.

Task Program Variable
1 Set image directory location im_dir

2 Specify images to be analyzed im_list

2a 1st image is reference image im_list(1)

2b Choose no more than 30 images due to
memory limitation

3 Input geometrical data
3a Distance from camera to reference plane L_0

3b Distance from projector to camera D

3c Pixel Pitch – physical size of pixels in im-
age

pixel_pitch

Table A.2: Initialization phase tasks and variables.

Task Program Variable
1 Set region of interest ROI

2 Check contrast
2a Poor contrast can limit the FTP tech-

nique
2b Choose no more than 30 images due to

memory limitation
3 Check window gauss_filter_ratio

3a The window should be centered on the
peak of the plot

L_0

3b Window needs to cut off before next peak D

Table A.3: Analyzing the reference image, tasks and variables
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Task Program Variable
1 Process the rest of the images in the list
2 Save height data im.h

Table A.4: Processing the image stack, the final result is stored in the variable
im.h.

Here are a few final considerations:

1. set a debug point and save the variables in memory: the variable im.h

contains the final result,

2. check how noise in horizontal and vertical directions compare.

3. excessively noisy images lead to problems in the angle function and jumps

of 2π.

A.3.3 Variables used in MATLAB program

The variable im uses an advanced type of variable in MATLAB called a struc-

tured array (struct). A struct, in contrast with an n-dimensional matrix, can

accommodate different types of data. Here, im contains matrices, strings and

images.

Once the data are processed, a matrix of height data — one data point per

pixel — may be plotted using the surf or mesh functions each of which plot

z = h(x, y). The 3D plots in §4 utilized the mesh function.
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Variable Name Description Typical value Comments

im_dir Image Direc-
tory

Trial 32_8\ Locates stack of images or
video, to process. 1st image
is the reference.

im_list Image List [10:30] or All Images or frames to read
plots_on Generate Plots 2 Generate diagnostic plots,

generally leave on
L_0 Length (mm) 812.8 Distance from camera to

reference plane
D Length (mm) 120.65 Distance from camera to

projector
pixel_pitch Pixel Pitch

(pixels/mm)
ROI Region of In-

terest
[200,90,1050,990]

or off
Defines a rectangle: X
Start (1st column), Y start
(1st row), X End (last col-
umn), Y end (last row)

rotate_on Rotate Image 0 or 1 Rotates image gratings
aligned horizontally

high_pass_wid High pass win-
dow size

80 Width of filter centered on
0 frequency

gauss filter -

ratio

Gaussian filter
ratio

1/3 Ratio of standard deviation
of filter to wavenumber

im Image struct 1x21 struct array

with fields:

image

name

phase

h

1xN struct array for N im-
ages

im.name Image name trial_32_80009.tif Image file name
im.image Image data im(1).image =

<1024x1280>

Image data, stored as a ma-
trix

im.fft Fourier trans-
form

1/3 Intermediate stage

im.phase Phase data 1/3 Phase data, penultimate
step

im.h Height data 1/3 Final result

Table A.5: Variables in the image analysis program with a field value and brief
comments.

62



Appendix B

Technical documents

B.1 Design components

Manufacturer Model Name Description

Brüel and Kjær Type 4513 Accelerometer Accelerometer sensor
Brüel and Kjær Type 1704-A-

001
Signal Condi-
tioner

Signal Conditioner and am-
plifier for accelerometer

Dell Precision T7600 Computer Computer
Edmund Optics #41–405 Mirror Optically-flat mirror: 4-6

Wave, 169mm x 194mm
Fisher Scientific S25818 Titanium diox-

ide
100g, 98% TiO2, white pow-
der pigment

Labworks LW–139.141–75 Vibration sys-
tem

75 lbs shaker system

Labworks ET-139 Shaker Electrodynamic shaker
Labworks PA-138 Amplifier Linear power amplifier
Labworks CB-152-139 Cooling blower Cooling vacuum pump
Mathworks Matlab Matlab Data analysis
Microsoft Windows Vir-

tual PC
Windows XP
Mode

Software for XP emulator for
Windows 7

National Instru-
ments

BNC 2120 Connector ter-
minal

BNC connector terminal

National Instru-
ments

PCIe–6363 DAQ Data acquisition card
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Manufacturer Model Name Description

National Instru-
ments

LabVIEW Labview Software for data input/out-
put

Parker-Hannifin ViX 250IM Controller Stepper motor controller
Parker-Hannifin XL-PSU Power supply 80V motor power supply
Parker-Hannifin LD28 Controller Stepper motor controller
Parker-Hannifin Easi-V Easi-V XP Software for ViX con-

trollers
PixeLINK PL-B741U Camera 1.3 Mp monochromatic cam-

era
PixeLINK Capture OEM Camera inter-

face
Software interface to camera

Vexta PK296-03BA-
A3

Linear Stage Leadscrew vertical stage
with stepping motor

ViewSonic PJD7820HD Projector Small digital projector

Table B.1: All of the equipment used for the experiment is listed by
manufacturer.
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B.2 Engineering drawings

Drawing title Quantity Material

Base Plate 1 Aluminum
Container bottom 1 Acrylic (Plexiglass)
Container support
rim

1 Power supply

Horizontal beam 2 1010 profile T-Slot from
80/20

Leadscrew
adapter

2 Delrin

Moving Wall 2 Delrin
Parallel container
wall

2 Delrin

Perpendicular
container wall

2 Delrin

Wall connector 2 Delrin
Sliding wall 2 Teflon
U-Channel 2 Aluminum
Threaded standoff 2 Delrin
Vertical beam 2 1010 profile T-Slot from

80/20

Table B.2: A table of the engineering drawings in the section.
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Software programs

C.1 EASI-V code for controllers

Below is the SETUP2.PRG file which operates the ViX drive.

1 ;**********************************************************

2 ; Example setup program for ViX -IM drive

3 ; Generated by Easi -V

4 ;**********************************************************

5 ; Notes:

6 ; 1) Prefix ALL commands with an axis address number

7 ; 2) Spaces are not allowed in any command e.g. 2GOSUB (FRED

)

8 ; is a syntax error

9 ; 3) A semi -colon (;) denotes the start of a comment

10 ; 4) Comments are not stored in the drive

11 ; 5) CLEAR all routines before re-defining them

12 ; 6) DECLARE user -defined labels before use

13 ; 7) Define a PROFILE before USEing it

14 ;**********************************************************

15 0K ;Kill any program that is running

16 0CLEAR(ALL) ;Erase all routines , etc

17
18 0START: ;Define power -up START routine

19 0DECLARE(MOVE) ;Declare routine ’MOVE ’

20 0DECLARE(INIT) ;Declare routine ’INIT ’

21
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22 0ON ;Enable motor

23 0O(000) ;Outputs off

24
25 0PROFILE1 (1 ,1 ,250000 ,.33) ;Move profile 1

26 0USE(1) ;Use profile 1

27 0LOOP(MOVE ,10) ;Call ’MOVE ’ routine 10 times

28 0END ;End of routine

29
30 0INIT: ;Define INIT routine

31 0OFF ;Disable motor

32
33 0W(AO ,0) ;Analogue offset

34 0W(AB ,0) ;Deadband

35
36 0W(EX ,3) ;Communications settings

37 0W(EQ ,0) ;Echo queueing

38 0W(BR ,9600) ;BAUD rate

39
40 0W(CQ ,1) ;Command queueing

41
42 0W(IC ,8160) ;I/O configuration

43 0W(EI ,2) ;Following encoder inputs

44 0W(EO ,2) ;Simulated encoder outputs

45 0LIMITS (3 ,1 ,0 ,200.00) ;Travel limits

46
47 0W(IT ,10) ;Settling time

48
49 0W(ES ,1) ;Drive enable sense (can over -ride

input)

50
51 ;Motor configuration

52 0MOTOR (201 ,0.5 ,50000 ,1000 ,4 ,2.80 ,3.40)

53 0W(MS ,50) ;% current standby reduction

54
55 0END ;End of routine

56
57 0MOVE: ;Define ’MOVE ’ routine

58 0O(1) ;Output1 on

59 0G ;Do move

60 0O(0) ;Output1 off

61 ;0T1 ;Wait

62 0H ;Switch direction
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63 0END ;End of routine

64
65 0ARM00 ;No auto -run on power -up

66 0GOTO(INIT) ;Execute INIT routine

67
68 ;Ensure you save changes (SV) and reset the drive (Z) AFTER

the GOTO(INIT)

69 ;If auto -run of START routine is not enabled (ARM1x), type

in:

70 ;0GOTO(START) in the TERMINAL window to run START

C.2 MATLAB Code

Below is the MATLAB script or code im_analyze5_2.m which analyzes

the images and outputs the surface topography of the given images.

1 function im_analyze5_2 ()

2 % im_analyze5_2.m

3 % Generates a movie output

4 % -------------- Program Variables

--------------------------------%

5 im_dir = ’trial_32_8_3 \’; % Folder where images or video

are stored

6 % im_dir = ’Trial 30_1\’; % Folder where images or video

are stored

7 % im_dir = ’Nov 6\’;

8 % im_list = ’All ’; % Images or frames to read. 1st

image sets reference plane

9 % im_list = [1:3, 46:51]; % Trial 32_8_2

10 im_list = [55:91]; % Trial 32_8_3

11 % im_list = [1:4, 160:169]; % For Trial 30_1

12 plots_on = 1; % Generate diagnostic plots

13
14 % ----------- Experimental Parameters

-----------------------------%

15 L_0 = (28+4) *25.4; % Distance from object to camera &

projector: mm
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16 D = 4.75*25.4; % Distance from camera to

projector: mm

17 % f_0 = 13.5/25.4; % Fundamental frequency of

observed grating , gratings/mm

18 % pixel_pitch = 190/25.4; % pixels / mm

19 pixel_pitch = 6.59; % Trial 30 -- pixels / mm

20 % win_length = 40; % = 1/ standard deviation: pixels

^-1

21
22
23 % -------- Data analysis variables

-----------------------------%

24 ROI = [1, 1, 1280, 1024]; % Trial 32_8

25 % ROI = [210, 40, 1150, 750]; % X Start (1st column), Y

start (1st row),

26 % % % X End (last column), Y end

(last row)

27 % ROI = ’off ’;

28 rotate_on = 0; % 0 if gratings are horizontal (default)

, 1 rotates images

29 high_pass_wid = 90; % Width of high pass gaussian

filter

30 gauss_filter_ratio = 1/10; % Ratio of standard deviation

to wavenumber

31 Avg_height = 0;

32
33 % ------------ Read images ------------------------------%

34 files = dir(im_dir);

35 if strcmpi(files (3).name(end -2: end),’avi ’)

36 if ischar(im_list)

37 im_list = 1: length(files); % Create a list of

all frames in video to import

38 end

39
40 num_images = length(im_list);

41 readerobj = mmreader(strcat(im_dir , files (3).name));

42 im.name = readerobj.Name;

43 for i = 1: num_images

44 temp = read(readerobj ,im_list(i)); % Read frame

45 im(i).image = temp (:,:,1); % for B&W images

only use R of RGB

46 end
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47 else

48 if ischar(im_list)

49 im_list = 1:( length(files) -2); % Create a list of

all images in directory

50 end

51 num_images = length(im_list);

52 for i = 1: num_images

53 im(i).image = imread(strcat(im_dir , files(im_list(i)

+2).name));

54 im(i).name = files(im_list(i)+2).name;

55 end

56
57 end

58
59 % ------------- Region of Interest ------------------------%

60 if plots_on >= 1

61 subplot (1,2,1)

62 imshow(im(1).image , [0 mean(max(im(1).image))])

63 title(’Reference image ’)

64 end

65 if ~ischar(ROI (1))

66 if plots_on

67 hold on

68 plot([ROI (1),ROI (3),ROI (3),ROI (1),ROI (1)],[ROI (2),

ROI(2) ,...

69 ROI (4),ROI (4),ROI (2)], ’Color ’,’red ’, ’LineWidth

’,1) % Rectangle over ROI

70 hold off

71 end

72
73 % Discard subset of image not in ROI

74 for i = 1: num_images

75 im(i).image = im(i).image(ROI (2):ROI (4),ROI (1):ROI

(3));

76 end

77 end

78
79 if rotate_on

80 for i = 1: num_images

81 im(i).image = im(i).image ’;

82 end

83 end
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84
85
86 % ----------- Analysis & processing

------------------------%

87 [N c] = size(im(1).image); % N is the length of the

column vectors = fft length

88 % NFFT = 2^ nextpow2(N); % Next power of 2

89 mid_x = floor(c/2);

90 mid_y = floor(N/2);

91 x_p = 0:c-1; % X Pixels

92 y_p = 0:N-1; % Y Pixels

93
94 y_range = floor (.45*N:.55*N);

95 mich_contrast = double(max(im(1).image(y_range ,mid_x)) - min

(im(1).image(y_range ,mid_x)))...

96 / double(max(im(1).image(y_range ,mid_x)) + min(im(1).

image(y_range ,mid_x)));

97
98
99 if plots_on >= 1

100 subplot (1,2,1)

101 hold on

102 plot([ROI (1)+mid_x ,ROI (1)+mid_x],[ROI (2)+y_range (1),ROI

(2)+y_range(end)],...

103 ’Color ’,’blue ’, ’LineWidth ’,1);

104 hold off

105
106 subplot (1,2,2);

107 plot(y_range ,im(1).image(y_range ,mid_x))

108 title(sprintf(’Michelson Contrast = %1.2f’,

mich_contrast))

109 xlabel(’Y (pixels)’)

110 ylabel(’Intensity ’)

111 % xlim ([1 2])

112 end

113
114 % % Remove average

115 % im_1 = im_1 - mean(mean(im_1));

116 % im_2 = im_2 - mean(mean(im_2));

117
118 % ---------- Take Fourier Transform -----------
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119 filt = fspecial(’disk ’,3); % Initialize averaging

filter

120
121 for i = 1: num_images

122 % im(i).image = imfilter(im(i).image , filt); % Filter

image first

123 im(i).fft = fft(imfilter(double(im(i).image),filt));

124 % im(i).image = fft(im(i).image); % Fourier

transform columns

125 end

126
127
128 % --------- Plot power spectrum ---------------

129 f0 = (-N/2:N/2-1);

130
131 % % Plot single -sided amplitude spectrum.

132 % f = 1/2* linspace (0,1,NFFT /2+1);

133 % plot(f,2*abs(im(1).fft(1: NFFT /2+1, mid_x)))

134 % title(’Single -Sided Amplitude Spectrum of y(t) ’)

135 % xlabel(’Frequency (Hz) ’)

136 % ylabel(’|Y(f)|’)

137
138 if plots_on >= 3

139 % 2D Plot

140 mesh(x_p ,f0 ,fftshift(abs(im(1).fft)))

141 end

142
143 % ----------- Window (filter) data ------------

144 % High -pass filter (remove lowest frequencies)

145 win = 1-gausswin(N,high_pass_wid);

146 if plots_on >= 2

147 plot(fftshift(abs(im(1).fft(:,mid_x))))

148 hold on

149 plot(win*max(abs(im(1).fft(:,mid_x))))

150 hold off

151 end

152
153 win = repmat(win ,1,c);

154 for i = 1: num_images

155 im(i).fft = ifftshift(fftshift(im(i).fft).*win);

156 end

157
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158 % im_1 = ifftshift(fftshift(im_1).* repmat(win ,1,c));

159 % im_2 = ifftshift(fftshift(im_2).* repmat(win ,1,c));

160
161 % Identify where to filter using reference image (this

happens once)

162 [C I] = max(abs(im(1).fft(:,mid_x)));

163 % shift_length = I;

164 shift_length = I-round(N/2);

165 win_length = (I-1)*gauss_filter_ratio; % Standard

deviation of window

166 win = circshift(gausswin(N,(N/2)/( win_length)),shift_length)

; % Generate and shift gaussian window

167 win = win/max(win);

168
169 if plots_on >= 1

170 plot(abs(im(1).fft(:,mid_x))/N)

171 hold on

172 plot(win*max(abs(im(1).fft(:,mid_x)))/N)

173 title(sprintf(’Gaussian Filter with Sigma = %1.2f’,

win_length))

174 xlim ([0 3*I])

175 hold off

176 end

177
178 win = repmat(win ,1,c); % Apply window to fft data

179 for i = 1: num_images

180 im(i).fft = im(i).fft.*win;

181 end

182 clear win

183
184 % ----- Transform back to real space -------

185 filt = fspecial(’disk ’,13); % Initialize averaging filter

186
187 for i = 1: num_images

188 im(i).phase = ifft(im(i).fft);

189 im(i).fft = []; % Clear fft to save memory

190 im(i).image = []; % Clear image as well

191 end

192
193 f_0 = (I/N)*pixel_pitch; % Gratings / pixel * pixel/

mm
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194 % ---- Calculate delta_phi (change of phase with respect to

reference)---

195 for i = 2: num_images

196 im(i).phase = angle(im(i).phase .*conj(im(1).phase));

197
198 im(i).phase = imfilter(im(i).phase , filt); % Image

filter

199
200 im(i).phase = unwrap(im(i).phase); % Remove jumps

along columns

201 im(i).phase = unwrap(im(i).phase ’) ’; % Check for

jumps along rows too

202
203 im(i).h = L_0 * im(i).phase ./(im(i).phase -2*pi*f_0*D); %

Compute height from phase

204 im(i).phase = []; % Clear phase

data to save memory

205
206 if rotate_on ==1

207 im(i).h = im(i).h’; % flip back to original

orientation

208 end

209
210 Avg_height(i) = mean(mean(im(i).h));

211 ind = find(abs(im(i).h - Avg_height(i)) > 4* mean(std(im

(i).h))); % Toss out extreme , spurious points

212 im(i).h(ind) = Avg_height(i); % Replace spurious

points with avg height

213
214 % % figure (1)

215 % mesh(x_p/pixel_pitch , y_p/pixel_pitch , im(i).h)

216 % if i == 2

217 % title(sprintf(’Image %g of %g’, i-1, num_images -1))

218 % xlabel(’X (mm) ’)

219 % ylabel(’Y (mm) ’)

220 % zlabel(’Z (mm) ’)

221 % zlim([-2 2])

222 % % axis tight

223 % set(gca ,’nextplot ’,’replacechildren ’);

224 % end

225 % F(i-1) = getframe;

226
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227 % figure (2)

228 %

229 % subplot (2,2,1)

230 % plot(f0 ,fftshift(abs(im(i).fft(:,mid_x))))

231 % title(’Filtered Frequency ’)

232 % subplot (2,2,2)

233 % plot(y_p ,im(i).phase(:,mid_x))

234 % title(’Unwrapped Phase ’)

235 % ylabel(’Radians ’)

236 % subplot (2,2,3)

237 % plot(y_p/pixel_pitch ,im(i).h(:,mid_x))

238 % title(’Middle X Slice ’)

239 % xlabel(’Y (mm) ’)

240 % subplot (2,2,4)

241 % plot(x_p/pixel_pitch ,im(i).h(mid_y ,:))

242 % title(’Middle Y’)

243 % ylabel(’Height (mm) ’)

244 % xlabel(’X (mm) ’)

245 end

246
247 mesh(x_p/pixel_pitch , y_p/pixel_pitch , im(2).h)

248 title(sprintf(’Image %g of %g’, 1, num_images -1))

249 xlabel(’X (mm)’)

250 ylabel(’Y (mm)’)

251 zlabel(’Z (mm)’)

252 zlim([-1 1])

253
254 % set(gca ,’nextplot ’,’replacechildren ’);

255 drawnow

256 pause (1)

257 F(1) = getframe(gcf);

258 [X,Map] = frame2im(F(1));

259
260 for i = 3: num_images

261
262 mesh(x_p/pixel_pitch , y_p/pixel_pitch , im(i).h)

263 title(sprintf(’Image %g of %g’, i-1, num_images -1))

264 xlabel(’X (mm)’)

265 ylabel(’Y (mm)’), zlabel(’Z (mm)’), zlim([-1 1])

266 drawnow

267 pause (.5)

268 F(i-1) = getframe(gcf);
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269 [X(:,:,:,i-1),Map(:,:,:,i-1)] = frame2im(F(i-1));

270 end

271
272 % h2 = figure;

273 % movie(h2 , F,2,1)

274
275 % ---- Make a Movie ------

276 mov = immovie(X,Map);

277 movie2avi(mov ,’test6 ’,’fps ’,1)

278 % zlim ([0 .3])

279 % figure

280 % plot(y_p/pixel_pitch ,im.h(mid_x ,:))

281 end
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