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9. Núñez, F., and Cipriano, A., Hybrid modeling of froth flotation superficial ap-
pearance applying dynamic textures analysis. Proceedings of the 27th Chinese
Control Conference 2008, 117-121, Kunming, China.
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Abstract

Bio-Inspired Synchronization of Pulse-Coupled Oscillators and its
Application to Wireless Sensor Networks

by

Felipe Eduardo Núñez Retamal

Precise synchronization among networked agents is responsible for phenomena

as diverse as coral spawning and consistency in stock market transactions. The

importance of synchronization in biological and engineering systems has triggered

an avalanche of studies analyzing the emergence of a synchronized behavior within

a network of, possibly heterogeneous, agents. In particular, synchronization of net-

works of coupled oscillators has received great attention since limit cycle oscillators

are a natural abstraction for systems where periodicity is a distinctive property.

Examples of such systems include circadian rhythms and alternate-current power

generators. This work deals with synchronization of pulse-coupled limit cycle os-

cillators (PCOs). A reverse engineering approach is taken with the objective of

obtaining an abstraction for PCO networks able to capture the key properties

observed in the classical biological PCO model, to finally implement it in an en-

gineering system. To this end, we first reformulate the PCO model as a hybrid

system, able to integrate in a smooth manner the continuous-time dynamics of

x



the individual oscillators and the impulsive effect of the coupling. Using our new

model, we analyze the existence and stability of synchronization in a variety of

PCO network topologies, starting from the simplest all-to-all network where global

synchronization is proven to exist, to end giving synchronization conditions in the

general strongly connected network case. Inspired by the strong synchronization

properties of PCO networks we design a PCO-inspired time synchronization pro-

tocol for wireless sensor networks that enjoys all the advantages of our optimized

PCO setup. A pilot implementation is presented going from a simulation stage to a

hardware implementation in Gumstix development boards and industrial acoustic

sensors. To test the potential of the protocol in a real application, we imple-

ment the PCO-based time synchronization protocol in a distributed acoustic event

detection system, where a sensor network combines local measurements over an

infrastructure-free wireless network to find the source of an acoustic event. An

evaluation by simulation is given to illustrate the advantages of using the pulse-

coupled synchronization strategy.

The contributions of this thesis range from the theoretical synchronization con-

ditions for a variety of PCO networks to the design and implementation of a syn-

chronization strategy for wireless sensor networks that seems to be the natural

choice when using an infrastructure-free wireless network due to its simple formu-

lation and natural scalability.

xi
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Chapter 1

Introduction

1.1 Motivation

Synchronization of networks of agents is receiving increased attention due to

its broad applications in biological systems [40, 27, 90, 5], mobile autonomous

agents [49, 21, 86, 6], distributed computing [75, 64], and communication networks

[52, 104, 24, 76]. In particular, synchronization of limit cycle oscillators is a perva-

sive topic in various disciplines where periodicity is a distinctive property. A limit

cycle oscillator is a natural abstraction for periodicity-driven systems so diverse as

alternate-current power generators [25], firing neurons [41, 34, 48, 63] , and com-

puter clocks [43, 76]. Therefore, establishing conditions for the appearance of a

synchronized state in a network of limit cycle oscillators has broad implications.

In the particular setting we will study in this dissertation, an oscillator network is

characterized by the number of, possibly heterogeneous, oscillators N , the struc-
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ture of an underlying communication network that is modeled as a graph R, and

the coupling strategy by which oscillators influence their neighbors, which in this

dissertation is assumed to be impulsive.

In an oscillator network, the role of each agent, i.e., leader or slave, can also

determine the resulting dynamics. Therefore, analyzing the influence of a possible

leader on the resulting synchronized state is of great importance. In fact, in the

achievement of synchronization the interplay between a global cue and local interac-

tions between agents is an important feature [99]. For example, in the mammalian

olfactory bulb, ensembles of neurons synchronize to discriminate odors by utilizing

intercellular interplays among individual neurons while at the same time receiving

a global driving odorant stimulus via the odorant receptors [91]. In engineering,

the coordination of a network of unmanned ground vehicles is achieved by means of

the interplay between individual vehicles and external coordination from the cen-

tral resources [86], while in clock synchronization of wireless networks a standard

approach is to synchronize different time references in a real-time network through

internal interactions between different nodes and external coordination from the

central server [52, 31]. In this dissertation, we will analyze two different scenarios:

purely decentralized synchronization (leaderless) and synchronization to a unique

leader agent.
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In the following, we will denote a non-linear limit cycle oscillator, as the dy-

namical system given by:

ż = H(z, t, u) (1.1)

where H is a non-linear mapping that satisfies the classical smoothness properties

required for existence and uniqueness of solutions from an initial condition z0, and

u is a measurable function describing the input applied to the oscillator. We write

as ϑ(t, z0, u) the solution of (1.1) from the initial condition z0 and input u. The

characteristic property of a limit cycle oscillator is that its zero-input steady-state

behavior is periodic. Hence, we assume that the system ż = H(z, t, 0) admits a

stable periodic orbit ζ, sufficiently attractive, with period T = 2π
w

, with w being

the natural frequency of the oscillator. To analyze limit cycle oscillator networks, a

usual approach is to map the dynamics of the multidimensional limit cycle oscillator

into the one dimensional phase space [0, 2π] (where 0 and 2π are mapped one into

the other) via phase reduction techniques [47, 14]. After the phase reduction stage,

the dynamics of the network are entirely described by the relationship between the

oscillators’ phases; such interconnected systems are known as phase-coupled oscil-

lators. This dissertation focuses on synchronization of networks of interconnected

oscillators described in the phase space, i.e., on phase-coupled oscillators.

Regarding the effect of the input function u, this has to be addressed carefully.

In general, the attractiveness of the periodic orbit ζ will limit the strength of the

3
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input u since a strong perturbation can cause the oscillator to damp. In this

dissertation, we will assume that the periodic orbit is sufficiently attractive, i.e.,

the basin of attraction is sufficiently big, such that the oscillator (1.1) converges to

the periodic orbit after an impulsive perturbation is applied. In the corresponding

phase space, the effect of the input function u is characterized by a phase response

curve (PRC) [18, 22, 105, 106, 88], which tabulates the phase shift of an oscillator

resulting from the application of a stimulus. In the remainder of this dissertation,

we will focus on limit cycle oscillators coupled in an impulsive rather than smooth

manner, i.e., the input function u is a train of impulses. From a terminology point of

view, the impulsive coupling has two connotations: 1) oscillators that interact only

at discrete time instants are known as firing oscillators; and 2) an ensemble of firing

oscillators is known as a pulse-coupled network, or as pulse-coupled oscillators.

Pulse-coupled oscillators (PCOs) are limit cycle oscillators that are coupled

together to form a network by exchanging pulses at discrete time instants. A pulse

has two effects on the network state: 1) it resets the phase at the originating

oscillator, and 2) it induces a jump on the phase of the receiving oscillators. The

magnitude of the impulsive jump induced is, in general, phase dependent and is

given in the form of a phase response curve (PRC) Q. Moreover, a usual approach

is to include a coupling strength l to scale the effect of the PRC. In this setting,

the value of l can be interpreted as the extra energy needed to synchronize the
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system, as is indeed the case when PCOs are realized using passive circuits, or as

an extra gain present at the receiver side.

The dynamics of a network of PCOs, and thus its synchronization properties,

are fully determined by the interaction topology (communication network) R, the

number of oscillators in the network N , the initial phases x0, and the feedback

strategy given by Q and l, i.e., the PRC and the coupling strength. Despite

the simple formulation and behavior of an isolated firing oscillator, networks of

PCOs are able to exhibit intricate collective dynamics. For this reason, PCOs have

emerged as a powerful modeling and design tool in complex networked biological

and engineering systems. Examples of biological systems that have been modeled

using PCOs include cardiac pacemakers [78], crickets that chirp in unison [98], and

rhythmic flashing of fireflies [15, 16]. While one of the most important applications

of PCOs in engineering is time synchronization in sensor networks [76, 42, 43, 45,

51, 7].

Synchronization of PCOs has been analyzed since the first appearance of the

integrate and fire oscillator model by Peskin [78]. In his work, Peskin made the

following conjectures: 1) for arbitrary initial conditions, the system approaches a

state in which all of the oscillators fire synchronously, and 2) this remains true,

even when the oscillators are not quite identical. Numerous studies addressing

these conjectures have been conducted, with variable success. In one of the most
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remarkable studies [62], using a slightly different PRC than the one used in [78],

the authors proved that synchronization of identical PCOs in an all-to-all setting

is possible from every initial condition except from a set of zero Lebesgue mea-

sure, yet the non-identical and general coupling topology cases are not examined.

Under the assumption of weak coupling, several authors have continued study-

ing networks of PCOs using the phase model in [47] for different communication

topologies and coupling functions. By exploiting weak coupling, the impulsive up-

dates can be replaced by their average, hence resorting to an equivalent ordinary

differential equation to do the analysis. However, the weak coupling assumption

needed to apply the techniques in [47] reduces the applicability, making it harder

to claim a general result. Synchronization in networks of PCOs has proven difficult

to establish and it is still not clear whether it is feasible or not to achieve synchro-

nization in networks more general than all-to-all coupled. Recently, [57] showed

that all-to-all connected PCOs exhibit a dichotomic behavior, i.e., the network can

either synchronize, or the oscillators form clusters distributed in the unit circle,

depending on the characteristics of the PRC. Considering the PRC a variable ele-

ment rather than given is an appealing strategy for synthetic PCOs, and the work

in [57] illustrates how important the PRC is for the existence and stability of a

synchronized state. A further step in this direction is the one taken in [102, 100]

where the PRC is considered to be a design parameter and shaped accordingly
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to improve the synchronization rate of the network, giving as a result an optimal

PRC in the sense of synchronization rate that should be used to gain understand-

ing of networks with arbitrary coupling structure. The lack of results regarding

synchronization of arbitrary coupled PCOs is mainly due to the difficulties arising

in the analysis when the coupling is not all-to-all. Typical methods for conducting

the analysis rely on an invariant firing sequence, which is not present when the

network is not all-to-all coupled. However, arbitrary coupled networks are of great

importance and thus a strong theoretical understanding is needed. For example,

interconnected oscillators interacting on cycles, or rings, have been used to model a

variety of physiological phenomena such as segmental undulations in the leech, and

hexapodal gait generation in insects [26]. In engineering, ring buses are pervasive

in industrial computer networks. Furthermore, in an engineering system such as a

large-scale sensor network, all-to-all coupling is extremely unlikely to exist. This

gap motivates the study of synchronization conditions for networks of PCOs with

a general coupling structure. However, not only synchronization conditions are im-

portant; also the attractiveness of the synchronized state is a preponderant matter,

especially in engineering applications of PCOs where global synchronization of gen-

eral networks is a desirable property. Nonetheless, a precise characterization of the

basin of attraction of the synchronization manifold for networks of PCOs is not

available.
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In this dissertation, we aim to fill the gap regarding synchronization properties

of arbitrary coupled PCOs and the corresponding structure of the basin of attrac-

tion. Of particular interest is to find conditions for global synchronization. The

previous work on PCOs relied on the direct use of the biological model (after a

phase reduction stage), which leads to a fixed feedback strategy since the PRC is

a property of the firing oscillator. In this dissertation we propose to re-design the

PCO model to combine successful synchronization strategies taken from biology

with modern control techniques to improve performance. Specifically, in this dis-

sertation PCOs are first modeled as a hybrid dynamical system, as suggested in

[58], to handle the impulsive behavior naturally. We then analyze the resulting

model to establish synchronization conditions for a variety of networks based on

both, the PRC Q, and the coupling strength l. Our primary focus is to study

the synchronization properties of networks coupled using the rate optimal PRC in

the sense of [102, 100]. To show the implications of our theoretical findings in a

real-world setting, we design a time synchronization protocol based on and sup-

ported by the PCO paradigm and apply it to a practical synchronization problem

in wireless sensor networks.
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1.2 Objectives, Contributions, and Organization

The main objective of this work is to gain a deep understanding of the prin-

ciples leading to the appearance of a stable synchronized state in a network of

biological PCOs, and to combine these principles into a rigorous abstraction to be

applied in engineering applications. We focus on the application of pulse-coupled

synchronization principles to the problem of time synchronization in infrastructure-

free (ad-hoc) networks, particularly wireless sensor networks (WSNs). We refer to

this process as reverse engineering biological pulse-coupled synchronization into

time synchronization in WSNs. This dissertation presents the reverse engineering

process in four main chapters, which are briefly outlined in the following.

In Chapter 2 we review the classical formulation of the biological model of

PCOs starting with the integrate and fire oscillator model by Peskin [78] and its

formulation as a network. Early synchronization results derived from the biolog-

ical model of PCOs are reviewed, of particular relevance is the work [62], which

can be regarded as the first rigorous formulation of a network of PCOs and its

synchronization properties. We use the abstraction in [62] as starting point for our

developments. The first contribution of this work is presented at the end of Chapter

2: a new hybrid model of PCOs. Motivated by the fact that the existing analysis

relies heavily on the use of weak-coupling approximations [47] or the assumption

that the firing order is invariant [62, 57], we opted to reformulate the PCO model
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in a framework that allows analyzing the PCO network in a general case. Our new

model integrates in an harmonious way the continuous-time nature of a limit cycle

oscillator and the impulsive nature of the coupling by using a hybrid dynamical

systems formulation. Moreover, the appearance of advanced tools for the analysis

of hybrid systems allows us to draw strong conclusions regarding synchronization

without the need of using weak-coupling approximations or restricting the network

to maintain a fixed firing order, which, in turn, allows us to study synchronization

in networks with general coupling topology and coupling strength.

Chapter 3 deals with synchronization of PCOs under different coupling (or

communication) topologies and system structures, i.e., with and without a leader.

We start by analyzing the case where a network of PCOs synchronizes to an om-

nipresent leader, i.e., an agent that can reach every other agent in the network

and does not react to any incoming pulse. Synchronization conditions are given

for the identical natural frequencies case and conditions for synchronization in fre-

quency (a weaker synchronization notion) are given for the non-identical natural

frequencies case. For the leaderless case, the main contributions of this chapter are

conditions for global synchronization in all-to-all, strongly rooted, and connected

bi-directional networks. We finish the leaderless section studying in detail the cycle

network case, for which we give the exact value of the critical coupling strength, as

a function of the number of oscillators in the cycle, that leads to global synchro-
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nization. Numerical examples for all the theoretical results presented are given at

the end of the Chapter to support our analytical findings.

In Chapter 4 a PCO-based synchronization protocol for time synchronization

in wireless sensor networks is presented. We start the chapter by reviewing exist-

ing packet-based synchronization protocols, as well as pulse-based synchronization

protocols. The rest of the Chapter focuses on the translation of the PCOs ab-

straction into a protocol suitable for operation in a wireless network, which is the

main contribution of the Chapter. First, we present the operating philosophy of

the algorithm, which is based on the CSMA and IEEE 802.11 protocols, combining

carrier sense for collision avoidance and control packets for coupling information.

Next, we present the event-driven algorithmic formulation of the protocol, its main

configuration parameters, and operation modes, i.e., its data sending capabilities,

synchronization mode, and sleep mode to save energy by reducing idle listening.

The synchronization properties of the protocol and the implementation strategy

as a MAC layer protocol are given next. To test the protocol in a realistic envi-

ronment, we use simulations in QualnetTM [85], a network simulation tool that can

be used to simulate wireless and wired communication networks. The two final

sections of the chapter present pilot implementations of the pulse-coupled syn-

chronization protocol in Gumstix development boards and a network of acoustic

sensors provided by BioMimetic Systems, Inc.
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In Chapter 5, the application of our pulse-coupled time synchronization algo-

rithm to a distributed acoustic event detection system is presented. Acoustic event

detection systems are highly sensitive to synchronization errors, hence, a precise

time synchronization protocol is needed to ensure correct localization. We start the

chapter by describing the sensor network-based distributed acoustic event detec-

tion system. A rigorous formulation of the centralized and distributed localization

problem is presented. We contribute a novel strategy to solve the distributed lo-

calization problem using a protocol based on double linear iterations and linear

consensus algorithms. A performance example is then given to show the necessity

of having a precise time synchronization protocol for both, centralized and dis-

tributed localization. The main contribution of this chapter is the application of

our time synchronization protocol to the distributed localization of the acoustic

source. We present a strategy that integrates the distributed localization proto-

col and the PCO-based time synchronization in an harmonious manner over an

infrastructure-free wireless network. We finish the chapter by presenting an eval-

uation by simulation of the distributed acoustic event detection system operating

with pulse-coupled time synchronization.

The dissertation concludes in Chapter 6 where general conclusions and future

directions of research are given.
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The main findings of this dissertation resulted in a series of publications cur-

rently available or under evaluation. Results from Chapter 3 can be found in [69],

[70], [71], and [74]. Results from Chapter 4 can be found in [101], [102], and [103].

Results from Chapter 5 can be found in [68] and [73].

1.3 Preliminaries

1.3.1 Basic Notation and Definitions

In this work, R denotes the real numbers, R≥0 denotes the set of nonnegative

real numbers, Z≥0 denotes the set of nonnegative integers, Rn denotes the Euclidean

space of dimension n, and Rn×n denotes the set of n × n square matrices with

real coefficients. In denotes the n by n identity matrix. For a vector v ∈ Rn,

diag(v) ∈ Rn×n denotes the diagonal matrix with the elements of v in the diagonal.

We denote as 1 the column vector of all ones of appropriate dimension. Throughout

the dissertation, ε ∈ R denotes a real number sufficiently small. For a real number

a, [a] denotes its integer part. For a countable set χ, we denote its cardinality

as |χ|; for two sets Λ1 and Λ2, we denote their difference as Λ1 \ Λ2.A set-valued

mapping Φ : A⇒ B associates to the element α ∈ A the set Φ(α) ⊆ B; the graph

of a set-valued mapping is the set: graph(Φ) := {(α, β) ∈ A × B : β ∈ Φ(α)}. A

13



Chapter 1. Introduction

set-valued mapping Φ is outer semi-continuous if and only if its graph is a closed set

[79, Theorem 5.7(a)]. The acronym w.l.o.g. stands for without loss of generality.

1.3.2 Hybrid Systems Preliminaries

In this work we follow the framework given in [36, 37]. A hybrid system H̃

consists of continuous-time dynamics (flows), discrete-time dynamics (jumps), and

sets on which these dynamics apply:

H̃ :


ẋ ∈ F (x), x ∈ C

x+ ∈ G(x), x ∈ D

(1.2)

where the flow map F and the jump map G are set-valued mappings, C ⊆ Rn

is the flow set, and D ⊆ Rn is the jump set, (F, C, G,D) is the data of H̃. A

subset E ⊂ R≥0 × Z≥0 is a hybrid time domain if it is the union of infinitely

many intervals of the form [tj, tj+1] × j, or of finitely many such intervals, with

the last one possibly of the form [tj, tj+1] × j, [tj, tj+1) × j, or [tj,∞) × j. A

solution to H is a function φ : domφ→ Rn where domφ is a hybrid time domain

and for each fixed j, t 7→ φ(t, j) is a locally absolutely continuous function on the

interval Ij = {t : (t, j) ∈ domφ}. φ is called a hybrid arc, and is such that: for

each j ∈ N for which Ij has nonempty interior φ̇(t, j) ∈ F (φ(t, j)) for almost all

14



Chapter 1. Introduction

t ∈ Ij, φ(t, j) ∈ C for all t ∈ [min Ij, sup Ij); for each (t, j) ∈ domφ for which

(t, j + 1) ∈ domφ, φ(t, j + 1) ∈ G(φ(t, j)), φ(t, j) ∈ D. A solution φ is nontrivial

if its domain contains at least one point different from (0, 0), is maximal if it can

not be extended, and is complete if its domain is unbounded.

1.3.3 Graph Theory

Throughout this dissertation we use several concepts from algebraic graph the-

ory. An extensive treatment of the topic can be found in [35, 61]. Consider a

network with N ∈ Z≥0 agents. The communication between agents is modeled by

a weighted directed graph R = {V , ER,AR}, where V = {1, . . . , N} is the node set

of the graph. ER ⊆ V×V is the edge set of the graph, whose elements are such that

(i, k) ∈ ER if and only if node k receives the pulse emitted by node i, we assume

that the self edge (i, i) /∈ ER unless it is explicitly required. AR = [aik] ∈ RN×N

is the weighted adjacency matrix of R with aik ∈ {0, l}, where aik = l if and

only if (i, k) ∈ ER. We use the notation R̄ = {V , ĒR, ĀR} when we explicitly

restrict the graph to be bidirectional, or undirected, i.e., (i, k) ∈ ĒR if and only

if (k, i) ∈ ĒR. A directed graph R is said to be strongly connected if there is a

directed path between any pair of nodes; the equivalent concept for undirected

graphs is the graph being connected. For node i, N i+ = {k ∈ V : (k, i) ∈ EG}

denotes its out-neighbors, i.e., the set of nodes that receive the pulse emitted by
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i. Similarly, N i− = {k ∈ V : (i, k) ∈ EG} denotes the in-neighbors of node i, i.e.,

the set of nodes whose pulses are received by i. If the graph is restricted to be

bidirectional, we denote the set of neighbors of node i as N i (note that in this case

N i+ = N i−). For a network, we define its indegree as mini∈V |N i−|. A graph R

is strongly rooted [19] if a node can reach all other nodes, i.e., there exists i ∈ V

such that |N i+| = N − 1; such node i is called the root of R. For a given square

matrix A∗ ∈ RN×N , we will refer to its underlying graph as the graph formed by

N nodes with an edge from i to k if and only if the ikth entry of A∗ is nonzero.
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Chapter 2

Pulse-Coupled Oscillators

As an introduction to the results developed in the rest of this dissertation, this

Chapter presents an overview of mathematical models of firing oscillators and their

interconnection to form a network of pulse-coupled oscillators.

2.1 Historical Perspective

Firing oscillators were introduced as early as the work by Lapicque in 1907 [1]

where they were used as a one dimensional abstraction for a firing neuron. The

success of the firing oscillator model to emulate firing neurons has placed it as the

top choice to study the collective behavior of neural networks, although the simple

RC circuit used by Lapicque has evolved into higher order state-space models as the

one by Hodgkin and Huxley [41], which is able to describe the neuron’s dynamics

more accurately than the original RC circuit. However, a multi-dimensional model

presents several drawbacks to study the collective behavior in a large network of
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firing oscillators, posing the necessity of obtaining a low dimensional abstraction

able to mimic the high order dynamics while being mathematically tractable when

a large number of oscillators are coupled. The integrate and fire oscillator appears

as a one-dimensional reduction of multidimensional firing dynamics that focuses

only in the“slow”part of the cycle and models the“fast”part as an impulsive reset.

In his study about mathematical aspects of heart physiology, Peskin [78] used

the integrate and fire model to construct an abstraction for the cardiac pacemaker.

Starting from a version of the Hodgkin and Huxley neuron model specially adapted

to the heart by Noble and Tsien [67], Peskin developed a reduced one dimensional

model able to capture the firing dynamics of the cardiac pacemaker. Peskin’s

integrate and fire model is given by:

ż = −γz + S0 + u(t) > 0 (2.1)

where z ∈ [0, 1] is the state variable, γ > 0 is the inhibition coefficient, and S0 > γ

is the internal driving signal of the oscillator. When the state reaches the upper

limit z = 1, the oscillator fires and resets its state to z = 0. The model (2.1) is

known as the “leaky integrate and fire model”, which is widely used in neuroscience

to study ensemble of firing neurons since it is a direct simplification of the Hodgkin

and Huxley model.
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While complex high order models (e.g. the Hodgkin and Huxley model) focus

on the entire cycle of the oscillator, including the firings, the simplified dynamics

of the integrate and fire model focuses only on the sub-cycle between the firings,

and the firings are considered purely as impulsive resets. The approximation is

relevant yet not restrictive, especially when considering a network of coupled firing

oscillators. In this case, the behavior of the whole network does not depend on the

fast firings but on the evolution between two firings. Nonetheless, the use of an

integrate and fire model reduces the cost of numerical simulations and dramatically

simplifies analytical studies.

An important contribution of Peskin’s work is the analysis of a network of leaky

integrate and fire oscillators and the formulation of the synchronization question.

In the networked system proposed by Peskin, each oscillator follows the dynamics

given by (2.1) with u(t) = 0. Every time an oscillator reaches the upper limit z = 1,

it resets its state to z = 0 and induces an increment of ε/N in the state of every

other oscillator [78]. It is important to note that Peskin’s model considers all-to-all

communication and requires a weak coupling. Regarding feasibility of synchroniza-

tion, Peskin made the following conjectures 1) for arbitrary initial conditions, the

system approaches a state in which all of the oscillators fire synchronously, and 2)

this remains true, even when the oscillators are not quite identical. Peskin him-

self addressed the first conjecture for the case of 2 oscillators and left the question
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open for the other cases, starting an avalanche of works focusing on synchronization

properties of pulse-coupled oscillators.

2.2 Existing Models and Synchronization Results

Peskin’s model of the leaky integrate and fire oscillator (2.1) can be regarded

as an special case of the more general class of monotone integrate and fire oscilla-

tors. Mirollo and Strogatz [62] formulated the general monotone integrate and fire

oscillator model as a one dimensional system with a state variable z ∈ [0, 1] that

when coupled gives rise to the classical formulation of a network of PCOs.

The network is formed by N integrate and fire oscillators, where each oscillator

i ∈ {1, 2, . . . , N} follows

zi = f(xi) (2.2)

where f : [0, 1] → [0, 1] is smooth, monotonic increasing, and concave down, i.e.,

f ′(xi) > 0, f ′′(xi) < 0; and xi ∈ [0, 1] is a phase-like variable such that:

∂xi
∂t

=
1

T
= w (2.3)

and xi = 1 (xi = 0) when the oscillator is at the end (start) of the cycle, i.e.,

when zi = 1 (zi = 0). Therefore, f(0) = 0 and f(1) = 1 holds. The oscillators are

20



Chapter 2. Pulse-Coupled Oscillators

assumed to interact by a simple form of pulse coupling: when an oscillator fires it

increases the state of all the other oscillators by an amount ε, or force them to fire,

whichever is less. That is,

zi(t) = 1⇒ zi(t
+) = 0, zk(t

+) = min(1, zk(t) + ε), ∀k 6= i (2.4)

In [62], Mirollo and Strogatz proved that a network of all-to-all connected monotone

integrate and fire oscillators synchronizes from every initial condition except from

a set of zero measure. And, as a corollary, that Peskin’s first conjecture holds for

all N and for all ε, γ > 0.

Exploiting the fact that there is a trivial change of variables from the one-

dimensional state z of the integrate and fire model to the phase variable x, several

studies have been conducted focusing on the phase space formulation of the inte-

grate and fire model:

ẋi = wi +Q(xi)u(t) (2.5)

where wi corresponds to the natural frequency of the oscillator, and Q is the PRC

[14].

Remark 2.1 In the existing PCOs literature, most of the studies use a phase

variable defined between 0 and 1. For consistency with the traditional concept of
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phase in an oscillating system, throughout this dissertation the phase x is defined

in the interval [0, 2π] with the firing occurring whenever x = 2π.

Remark 2.2 Note that for an integrate and fire oscillator, if the function f is

constant and equal to w, then the phase and state dynamics match. Although not

considered in the formulation by Mirollo and Strogatz, linear integrate and fire

oscillators have caught the attention lately due to its simple implementation in a

digital processor [3]. Figure 2.1 shows the state dynamics of a linear integrate and

fire oscillator as well as the effect of the impulsive coupling of the form (2.4).

The explicit appearance of the PRC in (2.5), and the fact that any integrate

and fire model can be transformed to the form (2.5) by a change of variables and,

moreover, any higher order state-space model can be reduced to the form (2.5) via

phase reductions methods [44, 47, 106, 14], gives researchers the opportunity to

analyze networks of phase oscillators of the form (2.5) by focusing on the properties

of the PRC Q.

The work by Mauroy [57] looks to elucidate the influence of the PRC on the

synchronization properties of a network of PCOs. In [57], the author studies a

class of integrate and fire oscillators more general than the purely concave-down

monotonic oscillators analyzed in [62], including concave-up monotonic oscillators,

quadratic integrate and fire, and quadratic-like integrate and fire oscillators. The

most important finding in [57] is that networks of all-to-all coupled PCOs present
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a dichotomic behavior, i.e., they synchronize or converge to a phase-locked state,

depending on the characteristics of the vector field f , i.e., depending on the char-

acteristics of the PRC.

The importance of the PRC as a synchronization enabler, motivates to consider

the PRC a design element and shape it accordingly to achieve a desired behavior

in a network of PCOs (e.g., global synchronization, fast convergence, phase-locked-

configuration, etc).

Remark 2.3 Note that the PRC Q is an intrinsic characteristic of the multidi-

mensional oscillator. By considering the PRC a design variable, the biological links

are broken and the system becomes purely a mathematical object.

z(
t)
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0.4
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0.8

1

t
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ε

Figure 2.1: Linear integrate and fire oscillator and effect of the impulsive coupling.
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2.3 A New Hybrid Model of PCOs

In the following, we will develop a phase space model for networks of PCOs.

The aim is to obtain a model able to incorporate the PRC as a general mapping,

and to handle the, possibly strong, impulsive coupling in a natural way. Moreover,

we introduce the underlying communication graph as part of the formulation since

we will focus on networks with general coupling structures.

The network of PCOs consists of N oscillators interacting on a given graphR =

{V , ER,AR}. The phase of each oscillator evolves continuously following its natural

frequency, and jumps impulsively upon receiving a pulse. Pulses are generated

following an integrate-and-fire process, i.e., when its phase reaches the limit (2π

in this case), the oscillator fires, i.e., emits a pulse, and resets its phase to 0.

When an oscillator receives a pulse, it updates its phase according to the coupling

strength l ∈ (0, 1] and the PRC, which is formally defined in the framework of

hybrid systems as follows:

Definition 2.1 (Phase Response Curve) A phase response curve (PRC), or

phase resetting curve [18, 22, 105, 106, 88], describes the change in the phase

of an oscillator due to a pulse stimulus, as a function of the phase at which the

pulse is received. A phase response curve Q : [0, 2π] ⇒ Q ⊆ R≥0 is called an

advance-only PRC. Similarly, a phase response curve Q : [0, 2π] ⇒ Q ⊆ R<0 is
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called a delay-only PRC. A phase response curve Q : [0, 2π] ⇒ Q ⊆ R is called an

advance-delay PRC if there exists q̄1 ∈ Q(q1) and q̄2 ∈ Q(q2) satisfying q̄1 > 0 and

q̄2 < 0.

Remark 2.4 In the mathematical neuroscience literature, advance-only PRCs are

referrer to as Type I PRCs. Similarly, advance-delays PRCs are referred to as Type

II PRCs. To deal with a delay-only PRC the system is modeled as an inhibitory

system, i.e., a system where the coupling strength is negative, coupled using a Type

I PRC [44, 14].

2.3.1 Data

In this dissertation we consider a constant and identical coupling strength l,

and then the weighted adjacency matrix AR is such that aij ∈ {0, l}. The network

of N oscillators is modeled as the hybrid system H with state x given by:

x := [x1, . . . , xN ]T (2.6)

where xi ∈ [0, 2π] denotes the phase of the ith oscillator. The data of H is given

by:
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If x ∈ C := {x ∈ RN : xi ∈ [0, 2π], ∀i ∈ V} := [0, 2π]N then:

ẋi = wi (2.7)

similarly, if x ∈ Di := {x ∈ C : xi = 2π} then:

x+
i = 0

x+
k ∈ {x̃k : x̃k = sat2π

0 (xk + aikq), q ∈ Q(xk)}

 =: Gi(x) (2.8)

where wi ∈ R>0 denotes the natural frequency, aik ∈ {0, l} is the corresponding

entry from AR, Q : [0, 2π] ⇒ R is the PRC, and sat2π
0 is the linear function with

slope one that saturates at 2π from above and 0 from below. It should be noted

that the ∈ in (2.8) implies that the PRC might be a set-valued mapping. The

jump map when x ∈ Di can be rewritten as:

x+
i = 0

x+
k ∈ sat2π

0 (xk + aikQ(xk))

 =: Gi(x), x ∈ Di (2.9)

Moreover, the effect of the saturation function can be eliminated by imposing a

range condition on the PRC as graph(lQ) ⊆ Ω := {(x, y) : x ∈ [0, 2π],−x ≤ y ≤

2π−x} (see Figure 2.2). This condition is not restrictive since if part of the graph

lies outside Ω, we can replace the PRC with a saturated version of it, without
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affecting the resulting dynamics. To continue the analysis we utilize the following

assumption.

Assumption 1 The PRC Q is such that: Q(0) = Q(2π) = {0}. Moreover, Q is

an outer semi-continuous set-valued mapping and bounded on [0, 2π].

Finally, the jump set is defined as the union over the node set of the individual

jump sets previously defined:

D :=
⋃
i∈V

Di (2.10)

and, similarly, the jump map is defined as:

G(x) :=
⋃

i∈V:x∈Di

Gi(x) (2.11)

Assumption 1 guarantees that the hybrid system H as defined above is well-posed

[36, 37]. Moreover, the condition Q(0) = Q(2π) = {0} restricts any undesired

avalanche-type behavior. It should be noted that, although not treated in detail

in this dissertation, the proposed well-posed hybrid system enjoys several robust-

ness properties [36, 37] that make the stability (synchronization) results proven

in the following sections still hold in a practical sense in the presence of small

perturbations.
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Figure 2.2: Allowable region for the graph of the PRCs.

Remark 2.5 An important concept used in the analysis of PCOs is absorption

[59, 62], which leads to synchronization in finite time. It should be noted that in

our model (2.7)-(2.11) absorption is modeled by the saturation function and, if

graph(Q) ⊆ Ω, it can take place only when l = 1 and otherwise synchronization

will be asymptotic.

Remark 2.6 Note that the use of the saturation at 2π from above is consistent

with the use of the min function in the Mirollo and Strogatz’s model (2.4). In the

same line, the use of the saturation at 0 from below is a natural extension when

an advance-delay PRC is used.

Remark 2.7 It should be noted that the Mirollo and Strogatz’s model considers

a constant ε, in contrast with the ε
N

used by Peskin. Although ε is required to be

small, for a large network the Mirollo and Strogatz’s model is susceptible to firing
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avalanches since multiple incoming pulses add up [62]. Our model handles this

undesired behavior by requiring Q(0) = Q(2π) = {0}.

2.3.2 Solutions to the Hybrid Model

The behavior of the solutions to the hybrid system H on a graph R, is charac-

terized as follows.

Proposition 2.1 For every initial condition φ0 ∈ C ∪D, there exists a nontrivial

solution starting at φ0. Furthermore, let φ be a maximal solution to the hybrid

system H on R with initial condition φ(0, 0) = φ0 ∈ C ∪ D. Then the following

statements are true:

(a) φ is complete.

(b) φ has at most N consecutive jumps with no flow in between.

(c) The amount of ordinary time between jumps is at most 2π
max (wi)

.

To prove Proposition 2.1 we need the following result.

Lemma 2.1 (Theorem S3 in [36]) Suppose H̃ is a well posed hybrid system

and, for every ξ ∈ C ∪ D, there exists a nontrivial solution to H̃ starting from ξ.

Let x be a maximal solution to H̃. Then exactly one of the following three cases

holds:
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(a) x is complete

(b) x blows up in finite hybrid time

(c) x eventually jumps out of C ∪ D.

The proof of Proposition 2.1 follows.

Proof. To analyze existence, note that for every ξ ∈ C\D there exists σ > 0 and an

absolutely continuous function z : [0, σ] → Rn such that z(0) = ξ, ż(t) = F (z(t))

for almost all t ∈ [0, σ] and z(t) ∈ C for all t ∈ (0, σ]. Note also that G(D) ⊂ C∪D.

Then there exists a nontrivial solution from every initial condition in [0, 2π]N .

Since G(D) ⊂ C ∪ D, condition (c) of Lemma 2.1 is not satisfied. Now it is

convenient to point out that since F (x) = [w, . . . , w]T is constant, it is globally

Lipschitz, and there are no finite escape times. So, no maximal solution can satisfy

condition (b) and therefore, all maximal solutions satisfy condition (a) of Lemma

2.1, i.e., are complete.

Note that ∩Dk 6= ∅, i.e., a point φ̃(t, j) ∈ [0, 2π]N might belong to more than one

Dk. By construction, the jump map is such that if φ̃(t, j) belongs to exactly m sets

from the collectionDk, withm ≤ N , then there will be at leastm consecutive jumps

with no flow in between; moreover, after m jumps it is possible that φ̃(t, j + m)

belongs to others Dk due to the coupling effect, and more jumps are required. In
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any case, there will be at most N consecutive jumps with no flow in between since

Assumption 1 gives Q(0) = {0}.

It follows that the amount of ordinary time between jumps is upper bounded

by the fastest natural period of the network, 2π
max (wi)

. To see this, suppose that an

oscillator has just fired and the fastest oscillator has phase equal to xf . The next

firing of the fastest oscillator will occur after an amount of time less or equal to

2π
max (wi)

, with equality if xf = 0, unless it receives a pulse in the delay part of the

PRC; however, this imply that a pulse was fired before an amount of time equal

to 2π
max (wi)

has elapsed from the previous jump. Then, the upper bound between

jumps is 2π
max (wi)

.

Remark 2.8 Proposition 2.1 tells us that solutions behave as observed in biological

systems and fulfill reasonable engineering expectations: they are complete and jump

periodically. Statement (b) rules out the existence of Zeno or avalanche-firing-type

solutions and statement (c) guarantees that jumps are persistent, i.e., it rules out

the existence of solutions that only flow. It should also be noted that, in general,

solutions to H are not unique, even if the PRC is a single-valued mapping. For

example, consider a point φ̃ ∈ [0, 2π]N that belongs to more than one Dk. The

jumping rule is the union of the rules for each Dk and hence is set-valued and

trajectories are not unique.
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2.3.3 Examples

In the following, we provide several examples of networks of PCOs that can

be regarded as particular instances of our model. These examples include the

SNIPER PRC, the Hodgkin-Huxley’s model, as well as a system coupled through

a phase response distribution (PRD), a relatively new concept that allows including

uncertainty in the value of the PRC [2].

PCOs coupled via SNIPER PRC

The SNIPER PRC arises for neurons near a SNIPER bifurcation, i.e., a saddle-

node bifurcation on a periodic orbit [29, 14] and is defined as Zd(1−cos(x)), where

Zd is a positive constant. Note that Assumption 1 holds for the SNIPER PRC.

The phase space model of a neuron with natural firing frequency wi and SNIPER

PRC is given by (cf. Equation (2.5))

ẋi = wi + Zd(1− cos(xi))u(t) (2.12)

We can write a network of firing neurons coupled using the SNIPER PRC as a

hybrid system H of the form (2.7)-(2.11) as follows:

ẋi = wi, x ∈ C := [0, 2π]N (2.13)
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x+
i = 0

x+
k = xk + aik(1− cos(xk))

 =: Gi(x), x ∈ Di (2.14)

where aik ∈ {0, Zd}, i.e., we consider the constant Zd as the coupling strength and

Q(x) = 1− cos(x) as the PRC.

To show the behavior of a SNIPER-coupled network we conducted simulations,

using a general purpose hybrid systems simulator [82, 83], of a 6-node all-to-all

coupled network and a 6-node bidirectional cycle network from random initial

conditions. We consider identical natural frequencies wi = w = 2π and coupling

strength Zd = 1. Figure 2.3(a) shows the phases of the oscillators for the 6-node

all-to-all network. It can be seen that the network synchronizes asymptotically

as time goes to infinity. Figure 2.3(b) shows the phases of the oscillators for the

6-node bidirectional cycle. It can be seen that the network converges to a phase

locked state, i.e., the time between firings is constant. This behavior is well-known

to exist in networks of PCOs. In fact, pulse-coupled time-division-multiple-access

(TDMA) has been shown to emerge even in all-to-all coupled networks when the

coupling is repulsive [23]. Note that the results presented are from a particular

initial condition and no global behavior should be inferred.
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(a) (b)

Figure 2.3: Simulations of the SNIPER PRC-coupled network. (a): Results for
the all-to-all 6-node network; (b) Results for the 6-node bidirectional cycle.

PCOs coupled via Hodgkin-Huxley’s PRC

The Hodgkin-Huxley’s model is a four-dimensional conductance-based model

for the membrane voltage dynamics of the squid giant axon [41]. The dynamics

are given by:

CV̇ = −gNa(V − VNa)m3h− gK(V − VK)n4 − gL(V − VL) + Ib (2.15a)

ṁ =
0.1V + 4

1− exp(−4− 0.1V )
(1−m)− 4 exp(−V − 65

18
)m (2.15b)

ḣ = 0.07 exp(−V − 65

20
)(1− h)− 1

1 + exp(−0.1V − 3.5)
h (2.15c)

ṅ =
0.01(V + 55)

1− exp(−5.5− 0.1V )
(1− n)− 0.125 exp(−V + 65

80
) (2.15d)

where gNa = 120, VNA = 50, gK = 36, VK = −77, gL = 0.3, VL = −54.4,

and Ib = 10. With the given parameter set, the system presents a periodic firing
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behavior with a natural frequency of w = 0.43 rad
ms

, where the voltage variable V

shows an impulsive-like reset from V ≈ 30mV to V ≈ −70mV .

The four-dimensional state-space model of the form (1.1) can be reduced to

a phase model of the form (2.5) via phase reduction; however, the PRC must

be obtained numerically. Figure 2.4(a) shows the Hodgkin-Huxley’s PRC for the

parameter set given above, which was obtained numerically in Matlab. Using the

PRC, we can write a network of firing neurons coupled using the Hodgkin-Huxley’s

PRC as a hybrid system H of the form (2.7)-(2.11) as follows:

ẋi = wi, x ∈ C := [0, 2π]N (2.16)

x+
i = 0

x+
k = xj + aikQ(xk)

 =: Gi(x), x ∈ Di (2.17)

where aik ∈ {0, l}, and Q(x) is given by the PRC in Figure 2.4(a). Note that

Assumption 1 holds and that the graph of the Hodgkin-Huxley’s PRC is contained

in the set Ω, hence the saturation function can be removed from the formulation

of the model.

To show the behavior of a network of pulse-coupled oscillators coupled using

the Hodgkin-Huxley’s PRC, we conducted simulations of a 6-node all-to-all coupled

network and a 6-node bidirectional cycle network from random initial conditions.
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(a) (b)

Figure 2.4: (a): Hodgkin-Huxley’s PRC obtained numerically using Matlab; (b)
Phase response distribution (PRD) used in the simulations.

We consider identical natural frequencies wi = w = 0.43 rad
ms

and coupling strength

l = 1. Figure 2.5(a) shows the phases of the oscillators for the 6-node all-to-all

network. It can be seen that the network synchronizes. Figure 2.5(b) shows the

phases of the oscillators for the 6-node bidirectional cycle. It can be seen that

the network converges to a phase locked state, i.e., the time between firings is

constant. As in the previous example, the results presented are from a particular

initial condition and no global behavior should be inferred.

PCOs coupled via a phase response distribution

In some systems, it is impossible to obtain the PRC with absolute certainty due

to the existence of process or measurement noise. For these systems, it is useful

to allow the PRC to be multi-valued in order to capture the complete possible

dynamics. Such multi-valued PRC is known as the phase response distribution
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(a) (b)

Figure 2.5: Simulations of the Hodgkin-Huxley’s PRC-coupled network. (a):
Results for the all-to-all 6-node network; (b) Results for the 6-node bidirectional
cycle.

(PRD) of the system [2]. We illustrate the use of a PRD and how our modeling

framework can handle the PRD with an example. In the following, we consider

that the PRC is given by the set-valued mapping shown in Figure 2.4(b). For

simulation purposes, at each phase point xi the phase shift is chosen randomly from

the corresponding set Q(xi) following a uniform distribution. Hence, a simulation

corresponds to a realization of the system. However, our modeling framework

allows writing the whole dynamics and the analysis can be done for all solutions

instead of for a particular realization. We can write a network of PCOs coupled

using the PRD as a hybrid system H of the form (2.7)-(2.11) as follows:

ẋi = wi, x ∈ C := [0, 2π]N (2.18)
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x+
i = 0

x+
k ∈ sat2π

0 (xk + aikQ(xk))

 =: Gi(x), x ∈ Di (2.19)

where aik ∈ {0, l}, and Q(xi) is given by the PRD in Figure 2.4(b). Note that the

graph of the PRD is not contained entirely inside the set Ω, hence the saturation

function must be kept in the model formulation and it will play an active role for

some realizations of the system. As in the previous examples, Assumption 1 holds.

To show the behavior of a network of pulse-coupled oscillators coupled using

the PRD in Figure 2.4(b), we conducted simulations of a 6-node all-to-all coupled

network and a 6-node bidirectional cycle network from random initial conditions.

We consider identical natural frequencies wi = w = 2π and coupling strength l = 1.

As previously mentioned, at each phase point xi the phase shift is chosen randomly

from the corresponding set Q(xi) following a uniform distribution. Figure 2.6(a)

shows the phases of the oscillators for the 6-node all-to-all network. It can be seen

that the network synchronizes. Figure 2.6(b) shows the phases of the oscillators

for the 6-node bidirectional cycle. It can be seen that the network does not syn-

chronize, in fact it shows a chaotic behavior. Note that the results presented are

from a particular initial condition and for a particular realization, hence no global

behavior should be inferred.

38



Chapter 2. Pulse-Coupled Oscillators

(a) (b)

Figure 2.6: Simulations of the PRD-coupled network. (a): Results for the all-to-
all 6-node network; (b) Results for the 6-node bidirectional cycle.

The previous examples illustrate the flexibility of our model (2.7)-(2.11) to

handle a variety of pulse-coupled networks. In the next chapter, we use the model

(2.7)-(2.11) to derive conditions that ensure synchronization in networks of PCOs.
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Chapter 3

Synchronization of Pulse-Coupled
Oscillators

In this chapter we present synchronization conditions for networks of PCOs

interacting on a variety of coupling topologies and network structures. The follow-

ing definitions of phase and frequency synchronization will be used throughout the

chapter.

Definition 3.1 (Phase Synchronization) Consider a PCO network. We say

that the network synchronizes in phase if, for j sufficiently large, at every Ij with

nonempty interior and for all t ∈ Ij we have xi(t, j) = xk(t, j) for every pair of

oscillators i, k ∈ V.

Definition 3.2 (Frequency Synchronization) Consider a PCO network, let

(tik , jik) and
(
tik+1

, jik+1

)
denote time instants of consecutive visits of the oscil-

lator i to the set Di. We say that the network synchronizes in frequency if there

Portions of this Chapter have been published in [71] and submitted for publication to Auto-
matica [70], and Systems and Control Letters [72].
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exists a positive T , the collective period, and J ≥ 0 such that tik+1
− tik = T holds

for every oscillator when jik > J .

It is clear from the definitions that phase synchronization implies frequency syn-

chronization. In the sequel, we will use the terms synchronization and phase syn-

chronization interchangeably.

3.1 Synchronization of PCOs to a Global Cue

A particular network structure that is of great interest is the one when an

omnipresent leader is part of the network, which we will denote as the global cue

or master node. In this setup, the network under analysis consists of a global

cue and N slave oscillators aiming to synchronize their phases to the phase of the

global cue. We assume that the slave oscillators interact following a given graph R,

not necessarily connected. Each oscillator modifies its phase following its natural

frequency and using entrainment information received in the form of pulses from

the global cue and neighbor oscillators. The global cue is not affected by pulses,

thus, its phase evolution is determined only by its natural frequency. We can

rewrite the model (2.7)-(2.11) after the addition of a global cue as follows:

ẋg = wg

ẋi = wi

 =: F (x), x ∈ C (3.1)
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x+
g = 0

x+
i ∈ sat2π

0 (xi + giQg(xi))

 =: Gg(x), x ∈ Dg (3.2)

x+
g = xg

x+
i = 0

x+
k ∈ sat2π

0 (xk + aikQl(xk))


=: Gi(x), x ∈ Di (3.3)

where C := {x ∈ [0, 2π]N+1}, Dg := {x ∈ C : xg = 2π}, Di := {x ∈ C : xi = 2π},

wg ∈ R>0 is the natural frequency of the global cue, gi ∈ [0, 1) is the global coupling

strength, and Qg : [0, 2π] ⇒ R, Ql : [0, 2π] ⇒ R are the global and local PRC.

Then, we define the jump set as:

D := Dg ∪
⋃
i∈V

Di (3.4)

and the corresponding jump map as:

G(x) :=
⋃

i∈V∪{g}:x∈Di

Gi(x) (3.5)

In the following we will refer to the model (3.1)-(3.5) as the hybrid system Hg.
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3.1.1 The Identical Natural Frequencies Case

In this section we analyze the synchronization properties of the hybrid system

Hg in the ideal case when there is no frequency drift between the oscillators and

the global cue. In the following, we refer to an arc as a connected subset of [0, 2π]

where 0 and 2π are associated with each other. To conduct the analysis, we use

the following:

Assumption 2 The global cue and the slave oscillators have identical natural fre-

quencies, i.e., wg = wi = w, ∀i ∈ V.

Assumption 3 We assume identical and strictly positive global coupling, i.e., gi =

g > 0, ∀i ∈ V.

Remark 3.1 Note that in [102] it is stated that the condition gi = g > 0, ∀i ∈ V

is necessary to ensure synchronization when the oscillators are distributed in the

whole interval [0, 2π]. Moreover, the condition wg = wi = w is required to ensure

perfect synchronization in phase.

To analyze synchronization, define the difference between the global cue and

the ith slave oscillator as ξi(t, j) := xg(t, j)− xi(t, j) and the vector of differences

as ξ = [ξ1, . . . , ξN ]. We consider synchronization achieved whenever |ξi| = 0 or
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|ξi| = 2π ∀i. Hence the synchronization set can be written as:

A := {x ∈ C : ξi = 0 or ξi = ±2π ∀i ∈ V} (3.6)

The synchronization condition is as follows.

Theorem 3.1 Consider the network of PCOs given by Hg. If:

1. Assumptions 1, 2, and 3 hold

2. Qg and Ql are such that if xi ∈ (π, 2π), then ∀q̄ ∈ Qq(xi), q ∈ {g, l}, q̄ > 0;

and if xi ∈ (0, π), then ∀q ∈ Qq(xi), q ∈ {g, l}, q < 0,

3. the influence of the global cue is strong enough compared with the local cou-

pling

and moreover, the PRCs satisfy 0 /∈ Qq(π), q ∈ {g, l}, then the network synchro-

nizes from every initial condition x(0, 0) ∈ C.

Proof. Consider the following family of functions representing the distance to the

synchronization set A:

Vi(ξ(t, j)) = min (|ξi(t, j)|, 2π − |ξi(t, j)|) . (3.7)

Note that the Vi are continuous functions and positive definite with respect to A.

It is clear due to Assumption 2 that the Vi functions are unchanged during flows.
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Hence, we will focus on the underlying discrete-time system to study synchroniza-

tion.

We will prove synchronization in two steps. First, we will show that there exists

a forward invariant neighborhood of A, denoted as B, such that if the state belongs

to B, then the network synchronizes irrespective of the strength of the couplings.

Secondly, we will show that the network eventually reaches B from every initial

condition, if the global coupling is strong enough.

In the following, we make use of the concept of containing arc. Given an arc

α, i.e., a connected subset of [0, 2π] with 0 and 2π mapped to each other, with

associated length d, the oscillators are contained in α if and only if xi ∈ α, ∀i ∈ V .

To prove synchronization, we will show that if the smallest containing arc α

has length d < π the network synchronizes to the global cue for all gQg and

lQl. To this end, whenever x(t, j) ∈ D, define i∗ := arg mini∈V xi, xi ∈ (π, 2π] and

i∗ := arg maxi∈V xi, xi ∈ [0, π) or i∗ := arg maxi∈V xi, xi ∈ (π, 2π] if {i : xi ∈ [0, π)}

is empty (note that they can be a set, or the global cue, yet the following arguments

still hold in that case). A key observation is that when the oscillators are contained

in an arc of length d < π, at any time instant (t, j) such that x(t, j) ∈ D, the length

of the arc is given by d(ξ) = Vi∗(ξ)+Vi∗(ξ). In the following, consider the Lyapunov

candidate W (ξ) = d(ξ) = Vi∗(ξ) + Vi∗(ξ), and for every µ ∈ R≥0 define the set

Lv(µ) := {x ∈ C : d(ξ) = µ}. We focus on the initial conditions contained in
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B := {x ∈ C : d(ξ) < π}. Suppose x ∈ (D ∩ B) \ A, then if x ∈ Dg we have

W+ − W < 0 since both i∗ and i∗ will be attracted by the global cue. When

x ∈ Di, since xi∗ ∈ (π, 2π] it will be advanced, if affected, and similarly, since

xi∗ ∈ [0, π) it will be advanced, if affected. Therefore, we have that W+ −W < 0

when either i ∈ N i∗− or i ∈ N i∗−, or we have W+ −W = 0 when both i /∈ N i∗−

and i /∈ N i∗− hold. Then, W+ −W ≤ 0 for all x ∈ (D ∩ B) \ A. However, since

every solution is complete and the global cue jumps periodically, for every µ > 0

no complete solution to Hg remains in B ∩ Lv(µ). Since the hybrid system Hg is

well-posed, we can rely on the invariance principle to establish synchronization. In

particular, directly applying Theorem 23 in [36] gives asymptotic stability of the

set A with basin of attraction B.

Now consider x(0, 0) ∈ C \ B and define W (t, j) :=
∑

i∈V Vi(t, j) as the total

distance of the system to the global cue. A sufficient condition for d < π is W < π.

Hence, if there exist a time instant (T, J) such that W (T, J) < π, then the network

synchronizes.

Suppose x ∈ D. We analyze the change in Vi when xg jumps. We have that

xg = 2π and xi ∈ [0, 2π], then:

Vi = min {2π − xi, xi}

V +
i ∈ min {xi + gQg(xi), 2π − (xi + gQg(xi))} (3.8)
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Since the phase is advanced if xi ∈ (π, 2π), and the phase is delayed if xi ∈ (0, π),

then, Vi > V +
i holds for all x /∈ A independent of the value of xi before xg jumps.

Hence the distance to the set A is reduced. It is easy to see that when xi jumps

we have Vi = V +
i since no update on xg occurs. Now let us analyze the change in

Vi when an oscillator m, m 6= i with m ∈ N i−, jumps. In this case we have:

Vi = min {|xg − xi|, 2π − |xg − xi|}

V +
i ∈ min {|xg − (xi + lQl(xi))|, 2π − |xg − (xi + lQl(xi))|} (3.9)

Whether Vi increases or decreases after jumps is unknown. In fact, it depends on

the phase difference between the oscillator i and the global cue. However, we can

bound the possible increase of Vi. To this end first note that each oscillator fires at

most 2 times per cycle of the global cue, i.e., each oscillator fires at most 2 times

in an interval of ordinary time of length 2π
w

. This is true since from Assumption

2 the natural frequencies are equal and for an oscillator that has just fired to fire

again as quickly as possible, it must receive a pulse after its phase reaches π (since

the phase is delayed if xi ∈ (0, π)), then it cannot fire more than 2 times per cycle

of the global cue.

Now we can bound the possible increase of Vi, between the jumps k and k+1 of

the global cue, by using information regarding the neighbors of the ith oscillator as
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2l|N i−|maxq∈Ql(y),y∈[0,2π] |q|. To prove convergence to B, let (tk, jk), k = 1, 2, . . . ,

be the time instants of the kth jump of the global cue and note that if φ is a

solution to the system, then (tk, jk) and (tk, jk + 1) ∈ dom φ and φ(tk, jk) ∈ Dg.

If the influence of the global cue gQg is strong enough compared with the local

coupling lQl so that

W (tk+1, jk+1) ≤
∑
i∈V

{
Vi(tk, jk + 1) + 2l|N i−| max

q∈Ql(y),y∈[0,2π]
|q|
}
< W (tk, jk)(3.10)

holds, then, the total distance to the global cue is reduced in one global cue cycle.

Then, we can restrict gQg and lQl to ensure that the influence of the global cue

is strong enough compared with the local coupling, so that the previous inequality

holds whenever W ≥ π, hence ensuring convergence to the set B. Therefore, the

network eventually enters B and hence it synchronizes from every initial condition

x(0, 0) ∈ C.

Remark 3.2 Note that Theorem 3.1 does not impose any connectivity requirement

on the communication graph R or uses any assumption on the monotonicity of the

PRCs Qg and Ql. This suggests that Theorem 3.1 is valid for a class of oscillators

larger than monotone oscillators, for which the PRC is monotone [57].
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Theorem 3.1 emphasizes the role of the global coupling, which should be strong

enough compared with the local coupling. A practical bound can be stated as

follows.

Corollary 3.1 Consider the network of PCOs given by Hg and suppose conditions

1 and 2 in Theorem 3.1 hold. If the global coupling gQg is such that:

1. for all x ∈ [π
2
, π), if q ∈ Qg(x) then gq < π

2
− x

2. for all x ∈ (π, 3π
2

], if q̄ ∈ Qg(x) then gq̄ > 3π
2
− x

3. if q ∈ Qg(π) then gq ∈ [−π,−π
2
) ∪ (3π

2
, 2π]

then the network synchronizes for all x(0, 0) ∈ C irrespective of the strength of the

local coupling lQl.

Proof. Conditions 1, 2, and 3 ensure that after the first jump of the global cue

the oscillators will be contained in an arc α of length d < π. Hence the network

synchronizes from every initial condition.

The previous Corollary gives a practical bound since the global coupling does

not need to be stronger than the coupling characterized in Corollary 3.1.
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In the rest of this chapter, we will consider that the feedback strategy is given

by the optimal advance-delay PRC:

Q(x) =



2π − x, if x > π

{π,−π}, if x = π

−x, if x < π

(3.11)

which corresponds to the set-valued regularization of the discontinuous function

Q(x) = 2π − x, x ∈ [π, 2π]; Q(x) = −x, x ∈ [0, π). Note that (3.11) is an outer

semi-continuous set-valued mapping and bounded; hence Assumption 1 holds.

Moreover, the graph of (3.11) lies entirely inside the set Ω (cf. Figure 2.2). The

PRC (3.11) has been proven to be optimal in terms of synchronization rate in [100]

and thus, it will be used in the rest of this dissertation. Figure 3.1 shows the graph

of the PRC (3.11).

3.1.2 The Non-identical Natural Frequencies Case

In this section, we analyze synchronization of PCO networks when the natu-

ral frequencies are non-identical. To conduct the analysis, we use the following

assumption:
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Figure 3.1: Graph of PRC used in this work, which is optimal in terms of syn-
chronization rate.

Assumption 4 The frequency drift between a pair of oscillators is small, i.e.,

∆wik := wi − wk � 1 for every i, k ∈ {g} ∪ V.

The synchronization condition is as follows

Theorem 3.2 Consider the network of non-identical PCOs given by Hg and sup-

pose that Assumptions 3 and 4 hold. Moreover, consider wi = (1 + εi)wg with

εi ∈ [−ε̄, ε̄], define the frequency drift with respect to the global cue as: ∆wgi :=

wg−wi = −εiwg, and assume that the coupling is such that g > 1+ε̄
2

, 2|εi|+l|N i−| ≤

g, 2|εi| ≥ l|N i−|, and (1 − g)l(1 + |N i+|) < g holds for every oscillator. Then,

when the PRC is given by (3.11) the network synchronizes in frequency, with col-

lective period equal to the period of the global cue, 2π
wg

, from every initial condition

x(0, 0) ∈ C.
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Proof. First, note that if an oscillator fires with a given period T , it satisfies the

following necessary equilibrium condition δxi = 2π − wiT , where δxi is the total

phase change due to pulses in an interval of length T . In particular, for an oscillator

to fire with the period of the global cue this reduces to: δxi = 2π
(

1− wi
wg

)
=

−2πεi. Since g > 2ε̄, we have that max(δxi) ≥ gπ > 2πε̄, and min(δxi) ≤ −gπ <

−2πε̄, and hence the period of the global cue is inside the bounds. Therefore,

synchronization in frequency is feasible, i.e., there exists an equilibrium point x∗ ∈

[0, 2π]N such that if x = x∗ then the network is synchronized in frequency with

collective period equal to the period of the global cue. In the following, we will

prove that the network converges to x∗.

To this end, we need to prove that the network reaches a state in which every

oscillator fires one time per cycle of the global cue. Consider that the global cue

has just fired, and then, the phase of each oscillator xi belongs to [0, (1 − g)π] ∪

[(1 + g)π, 2π]. Consider the case wi ≥ wg and xi ∈ [(1 + g)π, 2π]. We focus on the

distance from i to the global cue, defined as min (|xg − xi|, 2π − |xg − xi|), which

at this instant is given by 2π−xi ≤ (1−g)π. In this case, the distance will decrease

during flows (and also if a pulse is received since xi ∈ [(1 + g)π, 2π]) until xi jumps

and then, while xi < xg, it will keep decreasing during flows. The worst situation

is when xi = 2π (the distance is 0) since xi will jump immediately and next, during

flows, the distance will always increase. However, in an interval of length 2π
wg

, the
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distance will increase at most 2|εi|π plus the increase due to neighbor pulses, which

can be at most (1−(1−l)|N i−|)π, since 2|εi|+(1−(1−l)|N i−|) ≤ 2|εi|+l|N i−| ≤ g < 1

(by applying Bernoulli’s inequality to (1 − l)|N i−|), then just after a future jump

of the global cue, the phase of the oscillator i will be in the interval [0, (1 − g)π].

Consider now the case when xi ∈ [0, (1 − g)π]. During flows, in an interval of

length 2π
wg

, the distance will increase at most 2|εi|π. Regarding changes due to

neighbor pulses, the worst case is when the oscillator receives |N i−| pulses at

phase π, and then the maximum increase is bounded by (1− (1− l)|N i−|)π. Since

2|εi|π + (1 − (1 − l)|N i−|)π ≤ gπ, the increase is not enough to have xi = π just

before the jump of the global cue. Similarly, if we have xi = 0, during flows in an

interval of length 2π
wg

, the distance will increase at most 2|εi|π and the phase can

be delayed at most by l|N i−|π. Since 2|εi| − l|N i−| ≥ 0, after the next global cue

jump, and after all the following, we will have xi ∈ [0, (1 − g)π]. Using a similar

argument, under these conditions the case [(1 + g)π, 2π] has the same properties

for every oscillator slower than the global cue. Hence, there exists J such that for

j > J every oscillator fires one time per cycle of the global cue.

Now, for j > J , consider time instants when xg = 0, i.e., the global cue has

just jumped. We drop the time index t of the hybrid time domain and with abuse

of notation, we denote as x(j) the state after the j jump of the global cue. We will

show that x(j) converges to the equilibrium x∗ as j goes to infinity. We have that

53



Chapter 3. Synchronization of Pulse-Coupled Oscillators

at time instants when the global cue jumps the system can be seen as the following

discrete-time non-linear system:

x(j + 1) ∈ x(j) + G(x(j), ε,∆(x(j))) (3.12)

where x(j) ∈ [0, 2π]N denote the entire state of the system after the jump j of the

global cue, ε is a vector whose components are the individual εi, and ∆(x(j)) is

a vector whose component i corresponds to the phase update for the oscillator i

due to pulses received between jumps j and j + 1 of the global cue, denote this as

∆i(x(j)).

It follows that at the equilibrium, every oscillator i updates its phase by 2π

during a time interval of length 2π
wg

. Therefore, the network is synchronized in

frequency. We need to prove that the point x∗ ∈ [0, 2π]N is globally attractive. To

do so, we analyze the system component-wise. Component-wise the system is:

xi(j + 1) ∈ xi(j) + Gi(xi(j), εi,∆i(x(j))) (3.13)

where Gi(xi, εi,∆i(x)) = 2πεi+∆i(x)+gQ(xi+2πεi+∆i(xi)) with Gi(xi, εi,∆i(x)) =

0 if x = x∗.
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From the previous analysis, we know that for εi > 0, and j > J , we have

xi(j) ∈ [0, (1− g)π], xi(j + 1) ∈ [0, (1− g)π] and therefore x∗i ∈ [0, (1− g)π]. The

system reduces to:

xi(j + 1) ∈ (1− g)xi(j) + (1− g)2πεi + (1− g)∆i(x(j)) (3.14)

At the equilibrium we have:

(1− g)2πεi + (1− g)∆i(x
∗)− gx∗i = 0 (3.15)

Define Dxi(j) := xi(j)−x∗i and D∆i(x(j)) := ∆i(x)−∆i(x
∗). Combining the two

previous equations yields:

xi(j + 1) ∈ xi(j)− gDxi(j) + (1− g)D∆i(x(j)) (3.16)

Subtracting x∗i at both sides gives:

Dxi(j + 1) ∈ (1− g)Dxi(j) + (1− g)D∆i(x(j)) (3.17)
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Similarly, for εi < 0 we know that xi(j) ∈ [(1 + g)π, 2π], xi(j + 1) ∈ [(1 + g)π, 2π]

and therefore x∗i ∈ [(1 + g)π, 2π]. The system reduces to:

xi(j + 1) ∈ (1− g)xi(j) + (1− g)2πεi + (1− g)∆i(x(j)) + g2π (3.18)

At the equilibrium we have:

(1− g)2πεi + (1− g)∆i(x
∗)− gx∗i + g2π = 0 (3.19)

Combining the two previous equations yields:

xi(j + 1) ∈ xi(j)− gDxi(j) + (1− g)D∆i(x(j)) (3.20)

Subtracting x∗i at both sides gives:

Dxi(j + 1) ∈ (1− g)Dxi(j) + (1− g)D∆i(x(j)) (3.21)

Then, the dynamics of the deviation with respect to the equilibrium reduces to:

Dxi(j + 1) ∈ (1− g)Dxi(j) + (1− g)D∆i(x(j)) (3.22)
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We need to characterize the term D∆i(x(j)). To this end, recall that if εi > 0, then

for all j > J , xi belongs to [0, (1− g)π] and if εi < 0, xi belongs to [(1 + g)π, 2π].

Consider x1 = (1− g)π (recall x1 is the faster oscillator) and xN = (1 + g)π (recall

xN is the slowest). Since g > 1+ε̄
2

, xN must have fired before x1 = π. Then, when

j > J every oscillator for which εi > 0 receives pulses from neighbors only in the

interval [0, π), and every oscillator for which εi < 0 receives pulses from neighbors

only in the interval (π, 2π]. Now, consider that an oscillator for which εi > 0 should

have received a pulse at phase xi = xi,1 but instead, it received the pulse at phase

xi = xi,2. The nominal phase shift is given by −lxi,1 and the actual phase shift

is given by −lxi,2. The difference between the nominal phase shift and the actual

phase shift is given by: −l(xi,2 − xi,1). Similarly, for an oscillator with εi < 0 the

nominal phase shift is given by l(2π − xi,1) and the actual phase shift is given by

l(2π − xi,2). The difference between the nominal phase shift and the actual phase

shift is also given by −l(xi,2 − xi,1). With this in mind, we can write:

|D∆i(x(j))| ≤
∑

k∈N i−∪{i}

l|Dxk(j)| (3.23)

Now, consider the following Lyapunov function:

V (Dx) =
N∑
i=1

|Dxi| (3.24)

57



Chapter 3. Synchronization of Pulse-Coupled Oscillators

We have that:

V (Dx(j+1)) =
N∑
i=1

|Dxi(j+1)| ≤ (1−g)
N∑
i=1

|Dxi(j)|+(1−g)l
N∑
i=1

∑
k∈N i−∪{i}

|Dxk(j)|

(3.25)

Which gives:

V (Dx(j + 1))− V (Dx(j)) ≤
N∑
i=1

(−g + (1− g)l(1 + |N i+|))|Dxi(j)| (3.26)

which is negative since (1 − g)l(1 + |N i+|) < g. Then Dx → 0 as j → ∞, hence

the network synchronizes in frequency from every initial condition.

3.2 Decentralized Synchronization of PCOs

In this section we analyze the synchronization properties of decentralized PCO

networks with identical natural frequencies. To this end, define the synchronization

set as S := {x ∈ C : |xi − xi+1| = 0 or |xi − xi+1| = 2π, ∀i ∈ V}, with the

understanding that node N + 1 is mapped to node 1 (and node 0 to node N in

the following). We say that the network synchronizes if the state x converges to

the set S (note that this is consistent with the definition of phase synchronization

given at the beginning of the chapter).
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Consider the following family of functions:

vi,k(x) = min (|xi − xk|, 2π − |xi − xk|) (3.27)

Note that vi,k(x) represents the length of the shortest segment joining oscillators i

and k, i.e., the smallest arc containing i and k.

To appreciate the usefulness of the vi,k functions, consider the following exam-

ple.

Example 1: Consider the 2-oscillator network depicted in Figure 3.2(a). Let

x1(0, 0), x2(0, 0) ∈ [0, 2π], and note that the length of the containing arc is v1,2;

since the oscillators have identical natural frequencies, v1,2 is not changed dur-

ing flows. We analyze the change in v1,2 after firing events starting w.l.o.g. with

oscillator 1. We have that x1 = 2π and x2 ∈ [0, 2π], then:

v1,2(x) = min {2π − x2, x2} (3.28)

v+
1,2(x) =


x2(1− l), if x2 ∈ [0, π]

(2π − x2)(1− l), if x2 ∈ [π, 2π]

(3.29)

therefore, v1,2(x) > v+
1,2(x) = (1− l)v1,2(x) always holds. Similarly, when oscillator

2 fires v1,2(x) > v+
1,2(x) = (1 − l)v1,2(x) holds. Then, after every firing event we
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(a) (b) (c)

Figure 3.2: Networks used in the examples. (a): Network of N=2 PCOs; (b):
Star network, N=5; (c): Unidirectional cycle with N=5.

have that v1,2(x)− v+
1,2(x) = −lv1,2(x). Hence, the 2-oscillator network asymptot-

ically synchronizes from every initial condition x(0, 0) ∈ C, for every l ∈ (0, 1); or

synchronizes after 1 jump if l = 1

3.2.1 The All-to-All Case

In this section, we focus on complete (all-to-all) graphs, i.e., aij = l, ∀i, j ∈ V .

Theorem 3.3 Consider a network of PCOs interacting on a complete (all-to-all)

graph. If at a time instant (T, J), the phases are contained in an arc of length

d < π, l ∈ (0, 1], and the PRC is given by (3.11), then the network (asymptotically)

converges to the set S.

Proof. Label the oscillators based on their phases at (T, J) in increasing order,

i.e., x1 being the oscillator with the smallest phase. Define a vector of distance

functions as:

V := [v1,2, v2,3, . . . , vN−1,N , vN,1]T ∈ [0, π]N (3.30)
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and note that V = 0 if and only if x ∈ S. We will refer to the component q ∈

{1, 2, . . . , N} of V as Vq. These components are continuous functions and positive

definite with respect to S. It is clear, since the oscillators have identical natural

frequencies, that Vq remains unchanged during flows. Hence, the discrete-time

dynamics entirely determine the synchronization properties. Since the oscillators

are contained in an arc of length d < π, we have that d = max
q
Vq (cf. Figure 3.3),

and x ∈ S ⇔ max
q
Vq = 0. Define I := arg max

q
Vq(x(T, J)) and note that if I is

not unique, the oscillators must be clustered at 2 points and I is a set containing

2 elements. In the following we assume that I is unique; however, the arguments

still hold when I is not unique.

Consider x ∈ D. We analyze the change in vi,k when oscillator i jumps. Suppose

that i is going to fire, denote the time as (t, j) and the state as x(t, j). We drop

the time indices t and j to facilitate the notation; however, the reader should be

aware that the time domain is a hybrid one and that V +(x) means V (x(t, j + 1)).

We have that xi = 2π and xk ∈ [0, 2π], then:

vi,k(x) = min {2π − xk, xk} (3.31)

v+
i,k(x) =


xk(1− l), if xk ∈ [0, π]

(2π − xk)(1− l), if xk ∈ [π, 2π]

(3.32)
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Figure 3.3: Labeling in increasing order and distance functions. When the oscil-
lators are contained in an arc of length d < π (on the right), d = maxVq. When the
oscillators are contained in an arc of length d ≥ π (on the left), d = 2π −maxVq.

therefore, vi,k(x) > v+
i,k(x) = (1 − l)vi,k(x) holds no matter the value of xk before

xi jumps. Since the oscillators are contained in an arc of length d < π, we have

that for every oscillator i at any time instant, VI = vi,I + vi,I+1 (cf. Figure 3.3).

Then, after i jumps we have V +
I = v+

i,I +v+
i,I+1 = (1− l)(vi,I +vi,I+1) < VI , then the

length of the arc is reduced after every jump. Since, from Proposition 2.1, jumps

are persistent, the network asymptotically synchronizes.

Remark 3.3 Lyapunov functions in the spirit of (3.27) have been used in consen-

sus theory [19] and Kuramoto oscillators [25].

Theorem 3.3 guarantees that the network synchronizes whenever the oscillators

are contained in an arc of length less than π. When the oscillators are distributed

in the whole set C, the network can still synchronize if the coupling strength is

strong enough.
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Corollary 3.2 If l > 0.5, the network synchronizes from every initial condition

x(0, 0) ∈ C.

Proof. Consider xi(0, 0) ∈ [0, 2π] and suppose an oscillator i has just fired the first

pulse. Since l > 0.5, the phase of every oscillator k is such that xk ∈ [0, 0.5π) ∪

(1.5π, 2π]. Hence, the oscillators are contained in an arc of length d < π. Invoking

Theorem 3.3 completes the proof.

Remark 3.4 The sufficient condition for global synchronization l > 0.5 can be

conservative.

Remark 3.5 Corollary 3.2 implies that the PRC (3.11) improves the PRC in [62],

in the sense that (3.11) allows global synchronization in the all-to-all case.

3.2.2 The (strongly) Connected Graph Case

In this section we relax the assumption on the graph stated previously by

only requiring the graph to be strongly connected in the unidirectional case, or

connected in the bidirectional case.

Theorem 3.4 Consider a network of PCOs interacting on a strongly connected

graph R. If at a time instant (T, J), the phases are contained in an arc of length

d < π, l ∈ (0, 1], and the PRC is given by (3.11), then the network (asymptotically)

converges to the set S.

63



Chapter 3. Synchronization of Pulse-Coupled Oscillators

Proof. The proof follows the same lines as the proof of Theorem 3.3. Label

the oscillators based on the phases at (T, J) in increasing order. Define a vector

of distance functions as V := [v1,2, v2,3, . . . , vN−1,N , vN,1]T ∈ [0, π]N , and define

I := arg max
q
Vq(x(T, J)). Consider a complete firing round. Note that oscillator

N will fire first (cf. Figure 3.3), yet we do not know the next oscillator to fire since

the phase ordering is not invariant to jumps in the non all-to-all case. Since the

oscillators are contained in an arc of length d < π, we have that for every oscillator i

at any time instant, VI = vi,I+vi,I+1. Following the proof of Theorem 3.3, we know

that when i fires, if I ∈ N i+ then V +
I = v+

i,I +v+
i,I+1 ≤ (1− l)(vi,I)+vi,I+1 < VI , and

similarly if I + 1 ∈ N i+ then V +
I = v+

i,I + v+
i,I+1 ≤ vi,I + (1− l)(vi,I+1) < VI . Since

the graph is strongly connected we have that I ∈ ∪i∈VN i+ and I + 1 ∈ ∪i∈VN i+

hold. Therefore, after a complete round of firings V +N
I < VI ; where, with abuse of

notation, V +N
I refers to the value of VI after N firings. Since from Proposition 2.1

jumps are persistent, the network synchronizes asymptotically.

Remark 3.6 A similar result to Theorem 3.4 was proven in [101] when there is

a dead zone r in the PRC, if max
i,j∈V
|xi(0, 0)− xj(0, 0)| < Λ ∈ (0, π] and r ≤ 2π − Λ

hold.

Remark 3.7 The proof of Theorem 3.4 assumes that every oscillator fires once

after some ordinary time interval. This is always true if the initial phases are

contained in an arc of length d < π.
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Remark 3.8 The case of a network of PCOs interacting on a connected bidirec-

tional graph R̄ is included in the cases covered by Theorem 3.4.

Theorem 3.4 is the analog of Theorem 3.3 for strongly connected graphs. Un-

fortunately, it is not possible to obtain an analog of Corollary 3.2 to claim global

synchronization. We illustrate this fact with an example.

Example 2: Consider the star-like PCO network depicted in Fig. 3.2(b), note that

the interaction graph is strongly rooted. Let x1 be the phase of the root oscillator

(in the middle) and xi, i ∈ {2, . . . , N} the phase of the peripheral oscillators. We

will show that for any l ∈ (0, 1] we can find a star-like network (with l-dependent

number of oscillators N) and a set of initial conditions such that the network

does not synchronize. To this end, first note that it is possible for the root to

never fire, which requires x1(t, j) < π, ∀(t, j) ∈ dom x (since if x1 > π, we cannot

prevent x1 reaching 2π and firing). Suppose xi(0, 0) = 2π
N−1

(i − 2) for i 6= 1 and

x1(0, 0) ∈ [0, π − 2π
N−1

). Then the phase x1, ignoring the ordinary time index,

satisfies:

x1(j + 1) =

(
x1(j) +

2π

N − 1

)
(1− l) (3.33)

it is clear that the (exponentially stable) equilibrium point is given by x1 = 2π(1−l)
(N−1)l

.

Imposing 2π(1−l)
(N−1)l

+ 2π
N−1

< π, gives N >
[
l+2
l

]
. Then, for any l ∈ (0, 1] we can find

an N such that we can construct the no-synchronization example with N → ∞
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as l → 0. For example, for the network in Fig. 3.2(b) if l > 0.5 and xi(0, 0) =

2π
N−1

(i− 2) for i 6= 1, the network never synchronizes.

Example 2 provides a no-global-synchronization example, where the problem is

that the root oscillator never fires. However, if we restrict the family of graphs, a

global synchronization result can be stated.

Corollary 3.3 Consider a network of PCOs interacting on a strongly connected

graph R. If the communication graph R is such that:

1. it is strongly rooted, i.e., there exists i∗ ∈ V such that |N i∗+| = N − 1

2. given l > 0.5, for every solution x there exists a positive Tx < ∞ such that

at (Tx, j) ∈ dom x, for some j, xi∗ = 2π

then the network synchronizes from every initial condition x(0, 0) ∈ C.

Proof. Consider the state of the network, x, at (Tx, j) ∈ dom x. xi∗ will fire and

since l > 0.5, at (Tx, j + 1) ∈ dom x we have xi ∈ [0, 0.5π) ∪ (1.5π, 2π], i.e., the

oscillators are contained in an arc of length d < π. Invoking Theorem 3.4 yields

synchronization. Hence, the network synchronizes from every initial condition

x(0, 0) ∈ C, since from Proposition 2.1 there exist at least one solution from every

initial condition.
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Corollary 3.3 gives a global synchronization result for strongly rooted graphs

when the root oscillator always fires. Unfortunately, condition 2) is not straight-

forward to check from the graph topology. A less restrictive result can be given, if

in turn, the graph is bidirectional.

Theorem 3.5 Consider a network of PCOs interacting on a connected graph R̄.

If the communication graph R̄ is such that:

1. for every solution x there exists a positive Tx < ∞ such that for all t ≥ 0

every oscillator fires at least once in an ordinary time interval [t, t+ Tx]

and l = 1, then the network synchronizes from every initial condition x(0, 0) ∈ C.

Proof. First note that from Proposition 2.1 every solution is complete, hence

condition 1) can hold for all t ≥ 0. In particular for t = 0. The main idea of the

proof is to construct and monitor the set of unfired oscillators to show that this

set being empty implies synchronization. Label the oscillators in firing order and

suppose for simplicity and w.l.o.g. that x1(0, 0) = 2π. Now let χ[0,π](0) := {i ∈

V : xi(0, 0) ∈ [0, π]} and χ(π,2π](0) := {i ∈ V : xi(0, 0) ∈ (π, 2π]}. After 1 fires,

since l = 1, it will create a firing storm as follows. Every i ∈ N 1+ ∩ χ(π,2π] will

get a pulse, fire, and it will trigger firings on its child paths (neighbors, neighbors

of neighbors, etc.). If the firing storm involves every oscillator, synchronization is

achieved. If the firing storm involves a subset of the oscillators, then it must be the
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case that the storm finished due to oscillators from the set χ[0,π] getting pulses but

not firing. Suppose that firing storms involve a subset of the oscillators and the

system has evolved to the time instant (t1, j1), where x1(t1, j1) = π, hence, several

oscillators might have fired. Consider now the following sets: χF := {i ∈ V : fired},

χ1 := {i ∈ V : got pulse, unfired}, and χU := {i ∈ V : no pulse, unfired}, and note

that χ(π,2π](0) ⊆ χF , χU ⊆ χ[0,π](0), and χ1 ⊆ χ[0,π](0), and also that xi(t1, j1) ∈

[0, π], ∀i ∈ χF ∪ χ1, and xi(t1, j1) ∈ (π, 2π], ∀i ∈ χU , i.e., χ[0,π](t1) = χF ∪ χ1 and

χ(π,2π](t1) = χU ; hence, every oscillator in χU will fire. Note that, by construction,

N i+∩χF = ∅ for all i ∈ χU , but since R̄ is connected N i+∩χ1 6= ∅ hold for at least

one i ∈ χU . Now, let the system evolve to a time instant (t2, j2) such that the last

oscillator in χU has just fired. If firing storms are not complete, then oscillators

in χ1 got pulses while in [0, π]. We can update the set of unfired oscillators at

(t2, j2) as χ2 ⊆ χ1, the set of oscillators in [0, π] as χ[0,π](t2) ⊇ χU ∪ χ2 (might

also include elements from χF and χ1 \ χ2), and the set of oscillators in (π, 2π]

as χ(π,2π](t2) ⊆ χF ∪ (χ1 \ χ2). If χ(π,2π](t2) is empty, then the system will evolve

towards 2π and a complete firing storm will occur. For the moment, assume that

χ(π,2π](t2) is nonempty and note that, N i+ ∩χ[0,π](t2) \χ2 = ∅ for all i ∈ χ(π,2π](t2)

and due to R̄ being connected N i+ ∩ χ2 6= ∅ hold for at least one i ∈ χ(π,2π](t2).

Letting the system evolve to a time instant (t3, j3) such that the last oscillator

in χ(π,2π](t2) has just fired, we see that the only option for firing storms not to
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be complete is that oscillators in χ2 got pulses while in [0, π], and hence some of

them have not fired. We can update the set of unfired oscillators at (t3, j3) as

χ3 ⊆ χ2 ⊆ χ1. Iterating this argument, as the system evolves, the only option for

having incomplete firing storms is to have a set of oscillators that never fire. Since,

condition 1) requires every oscillator to have fired at (Tx, J), there exist a tn < Tx

such that at (tn, jn) the set χ(π,2π](tn) is empty and every oscillator i in the set χn

from the collection χ1, χ2, . . . , χn will fire and hence, after a complete firing storm,

the network synchronizes.

Remark 3.9 Note that when the network synchronizes at ts > 0, every oscillator

fires exactly once in an ordinary time interval [t, t+ 2π] for every t ≥ ts.

Condition 1) in Theorem 3.5 suggests that suppression of firing is the main

obstacle for synchronization. Theorem 3.5 imposes a condition of periodic firing

that is not straightforward to translate into conditions on the edges of R̄. To give

a feeling of the types of networks included in Theorem 3.5, Fig. 3.4 shows two

examples. Fig. 3.4(a) shows a connected network that do not fulfill conditions in

Theorem 3.5. To see this, note that if the oscillators in the top row are uniformly

distributed in the interval [0, π), the oscillators in the middle row are initialized

at 0, and the oscillators in the bottom row are initialized uniformly distributed in

the interval [π, 2π], the middle row never fires and the network never synchronizes.

On the other hand, Fig. 3.4(b) shows a connected network that fulfills conditions
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(a) (b)

Figure 3.4: Connected bidirectional networks. (a): A network for which condi-
tions in Theorem 3.5 do not hold since initial conditions can be chosen such that
the middle row never fires; (b) A network for which conditions in Theorem 3.5
hold.

in Theorem 3.5 since every oscillator will fire periodically no matter the initial

condition. It is worth noting that, as shown by the networks in Fig. 3.4, a higher

number of edges does not imply higher likelihood of global synchronization.

Unfortunately, an analog result to Theorem 3.5 cannot be formulated for uni-

directional graphs. We illustrate this fact with an example.

Example 3: Consider the 5-oscillator unidirectional cycle depicted in Fig. 3.2(c).

Assume l = 1, xi(0, 0) = 2π
N
i, and ER = {(1, 5), (2, 1), (3, 2), (4, 3), (5, 4)}. Oscilla-

tor 5 fires first and the state after the firing is x = [0, 4π
5
, 6π

5
, 8π

5
, 0]. Oscillator 4 fires

next and the state after the firing is x = [2π
5
, 6π

5
, 8π

5
, 0, 0]; next, oscillator 3 fires,

and the state after the firing is x = [4π
5
, 8π

5
, 0, 0, 2π

5
]. Oscillator 2 fires next and the

state after the firing is x = [6π
5
, 0, 0, 2π

5
, 4π

5
]. Iterating, it is clear that the network

never synchronizes, despite that every oscillator fires periodically and l = 1.
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3.2.3 Synchronization on Cycle Graphs

In this section we analyze the synchronization properties of PCO networks

interacting on cycle graphs, which are a subset of the more general class of strongly

connected graphs. We consider as a cycle graph the graph R = {V , ER,AR}, for

which w.l.o.g. the edge set is given by ER = (1, N) ∪
⋃N−1
i=1 (i + 1, i), i.e., node

i+ 1 can sense the firing of node i. Similarly, we define ĒR as the bidirectional, or

undirected, version of ER , i.e., if (i, j) ∈ ER then (i, j) and (j, i) ∈ ĒR.

Although the conditions derived in the previous section still hold for cycle

graphs, in this section we exploit the particular structure of the graph to obtain

the exact value of the critical coupling strength l∗ that enables global synchroniza-

tion. Note that even though “easy” initial conditions can synchronize under weaker

conditions, the following results give the weakest conditions for global synchroniza-

tion.

Consider the following family of functions representing the distance to the syn-

chronization set S:

vi,i+1(x) = min (|xi − xi+1|, 2π − |xi − xi+1|) (3.34)
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note that vi,i+1(x) represents the length of the shortest segment joining oscillators

i and i+ 1. Define the vector of distance functions as:

V := [v1,2, v2,3, . . . , vN−1,N , vN,1]T ∈ [0, π]N (3.35)

and the length of the cycle as 1TV , where 1 is the N -dimensional column vector

of all ones. We will refer to the component q ∈ {1, 2, . . . , N} of V as Vq. These

components are continuous functions with respect to x, and positive definite with

respect to S. It is clear, since the oscillators have identical natural frequencies, that

Vq remains unchanged during flows. Hence, the discrete-time dynamics (jumps)

entirely determine the synchronization properties of the system. As in the previous

sections, we will analyze the convergence properties of the underlying discrete-time

system to prove synchronization.

Before stating the synchronization results, we need to introduce the concept of

refractory period and a technical lemma that can be easily derived from Theorem

1 in [101] and Theorem 3.4.

Definition 3.3 (Refractory period) A refractory period is an interval [0, r] ⊆

[0, 2π], where r is the length of the refractory period, such that if the phase of

an oscillator is inside the interval, it does not react to an incoming pulse, i.e., a

refractory period of length r corresponds to a dead zone in the PRC in the interval
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[0, r] [22]. When a refractory period is introduced, the PRC Q is modified as

Q(x) = {0} for x ∈ [0, r) and as Q(x) = {0}∪ limx→r+ Q(x) for x = r. (cf. Figure

3.5).

Lemma 3.1 Consider a network of PCOs interacting on a cycle graph, either R

or R̄ . If the initial phases are such that

max
i,k∈V
|xi(0, 0)− xk(0, 0)| < π,

l ∈ (0, 1], and the PRC is given by (3.11), then the network converges asymptot-

ically to the set S even if there exists a refractory period in the PRC of length

r ≤ π.

The following Theorems are the main results of this section and provide nec-

essary and sufficient conditions for global synchronization of PCOs interacting on

cycle graphs.

Theorem 3.6 Consider the network of PCOs with dynamics H interacting on the

bidirectional cycle graph R̄, and with PRC given by (3.11). The network synchro-

nizes from every initial condition if and only if the coupling strength l is larger

than the critical coupling l∗, which is given by:

l∗ =
N

2
−
√
N2 − 4(N − 2)

2
(3.36)
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A similar condition can be derived for the unidirectional graph R.

Theorem 3.7 Consider the network of PCOs with dynamics H interacting on the

unidirectional cycle graph R, and with PRC given by (3.11). Moreover, consider

that there exists a refractory period of length r = π in the PRC of 1 oscillator.

The network synchronizes from every initial condition if and only if the coupling

strength l is larger than the critical coupling l∗, which is given by:

l∗ =
N − 2

N − 1
(3.37)

To prove Theorems 3.6 and 3.7 we rely on the following Lemma.

Lemma 3.2 Consider the distance vector V defined in (3.30), the length of the

cycle defined as 1TV , and the PRC (3.11). At any time instant (t̄, j̄), let i∗ ∈ V

be the index of the oscillator with the largest phase and i∗ ∈ V the index of the

oscillator with the smallest phase. Define U1 := {x ∈ C : xi ≥ xi+1∀i ∈ V \ {i∗}} ∩

{x ∈ C : 1TV = 2π}, U2 := {x ∈ C : xi ≤ xi+1∀i ∈ V \{i∗}}∩{x ∈ C : 1TV = 2π},

and U := U1 ∪ U2. The following claims hold:

(a) If 1TV < 2π, then ∃ i ∈ V \ min{i∗, i∗} such that |xi − xi+1| > π, or

|xi∗ − xi∗ | < π
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(b) If 1TV > 2π, then ∃ i ∈ V such that when xi = 2π we have that xi+2 ∈

[0, xi+1) and xi+1 ≤ π, or xi+2 ∈ (xi+1, 2π] and xi+1 ≥ π, or |xi+2−xi+1| > π;

hence 1TV decreases after i jumps.

(c) If 1TV = 2π and x /∈ U , then there exists i ∈ V such that 1TV decreases

after i jumps.

(d) If x ∈ U , then |xi∗ − xi∗| ≥ π and |xi − xi+1| ≤ π, ∀i ∈ V \ {i∗, i∗}.

Proof. Define ī := min{i∗, i∗}. To prove statement (a) note that |xi−xi+1| ≤ π ⇒

Vi = |xi−xi+1|. If we sum over the Vis, the minimum value is reached when the seg-

ments are disjoint, i.e., phases are ordered either clock-wise, or counter clock-wise,

and in this case
∑

i∈V\{̄i} Vi = |xi∗ − xi∗|. Now we proceed to prove by contraposi-

tion. Suppose |xi − xi+1| ≤ π ∀i ∈ V \ {i∗, i∗} and |xi∗ − xi∗| ≥ π. Then, the mini-

mum length of the cycle is equal to
∑

i∈V\{̄i} Vi + min (|xi∗ − xi∗|, 2π − |xi∗ − xi∗|),

which corresponds to the component measuring the length between xi∗ and xi∗

(note that for the length to be minimal, i∗ and i∗ must be neighbors). Then we

have 1TV ≥
∑

i∈V\{̄i} Vi + 2π − |xi∗ − xi∗ | = 2π. Hence, (a) holds.

Regarding (b), note that for the length to be larger than 2π segments cannot

be disjoint since from the proof of (a) we know that disjoint segments can add

up to 2π, the length of the domain. Then, there must be the case that at least

2 segments, described by the components of V , intersect. Considering xi = 2π,
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the conditions xi+2 ∈ [0, xi+1) and xi+1 ≤ π, or xi+2 ∈ (xi+1, 2π] and xi+1 ≥ π, or

|xi+2−xi+1| > π ensure that at least 2 segments affected by i intersect. Moreover,

these conditions imply that the length of the cycle, 1TV , will decrease after i

jumps.

In the same line, when 1TV = 2π and x /∈ U segments are not disjoint and

then there exists i such that when xi = 2π, we have xi+2 ∈ [0, xi+1) and xi+1 ≤ π,

or xi+2 ∈ (xi+1, 2π] and xi+1 ≥ π, or |xi+2 − xi+1| > π holds, implying that the

length of the cycle, 1TV , will decrease after i jumps. Hence, (c) holds.

Statement (d) follows by noting that the phase ordering implies that i∗ and

i∗ are neighbors. Moreover, from 1TV = 2π we have
∑

i∈V\{̄i} Vi = |xi∗ − xi∗ | or∑
i∈V\{̄i} Vi = 2π−|xi∗−xi∗| depending on whether |xi∗−xi∗| ≥ π or |xi∗−xi∗ | < π

holds. We will proceed by contradiction. Suppose the latter is true and then |xi−

xi+1| < π holds for every oscillator i ∈ V ; furthermore, the phase ordering implies

that segments are disjoint and then
∑

i∈V\{̄i} Vi = |xi∗ − xi∗|, which contradicts

1TV = 2π. Hence |xi∗ − xi∗| ≥ π must hold. Now if |xi∗ − xi∗| ≥ π holds,

either |xi − xi+1| ≤ π holds for every oscillator i ∈ V \ {̄i} or |xi − xi+1| > π

holds for only one oscillator i (due to the phase ordering). Suppose the latter is

true (note that for this to be feasible |xi∗ − xi∗| > π must hold), then we have∑
i∈V\{̄i} Vi = 2π + |xi∗ − xi∗ | − 2|xi − xi+1| < |xi∗ − xi∗|, which again contradicts
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Figure 3.5: Effect of the addition of a refractory period on the PRC. The PRC Q
is modified as Q(x) = {0} for all x ∈ [0, r], where r is the length of the refractory
period.

1TV = 2π. Hence, |xi − xi+1| ≤ π must hold for every oscillator i ∈ V \ {i∗, i∗}

and the Lemma is proven.

Remark 3.10 Note that Lemma 3.2(a) implies that if 1TV < 2π, then conditions

of Lemma 3.1 hold up to a rigid rotation of the oscillators. Hence, when 1TV < 2π

the network always synchronizes. Moreover, conditions in Lemma 3.1 and Lemma

3.2(a) imply that the oscillators are contained in a semicircle, a problem equivalent

to a consensus problem in RN [60].

Remark 3.11 Statement (b) of Lemma 3.2 means that when 1TV > 2π, the length

will eventually decrease. Regarding global synchronization, initial conditions for

which 1TV > 2π do not represent a problem since in these cases the length will

decrease. In fact, we will show that the only problematic situation is when x(0, 0) ∈

U .
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Now we proceed to prove Theorem 3.6.

Proof. To prove sufficiency, the strategy is to show that every solution is such that

eventually 1TV < 2π and hence Lemma 3.1 yields synchronization of the network.

Consider an arbitrary initial condition x(0, 0) ∈ C, we have four possible scenarios:

i) x(0, 0) ∈ C : 1TV < 2π

In this case, directly applying Lemma 3.1 guarantees synchronization.

ii) x(0, 0) ∈ C : 1TV > 2π

Lemma 3.2(b) guarantees that 1TV will decrease while 1TV > 2π, then there

exists a time instant (tii, jii) such that either 1TV = 2π, x(tii, jii) /∈ U or x(tii, jii) ∈

U . At this point we can reinitialize the system in case iii) or iv).

iii) x(0, 0) ∈ C : 1TV = 2π, x(0, 0) /∈ U

Lemma 3.2(c) ensures that the length will decrease and then there exists a time

instant (tiii, jiii) at which 1TV < 2π. At this point we can reinitialize the system

in case i) and invoking Lemma 3.1 gives synchronization.

iv) x(0, 0) ∈ U

In this case, the situation is more complicated. To show that the system jumps

outside U , we analyze the change in V when an oscillator i jumps. Consider x ∈ D,

which is the union of the jump conditions for all xi, suppose w.l.o.g. that node

i is about to fire, denote the time as (t, j) and the state as x(t, j). We drop

the time indices t and j to facilitate the notation; however, the reader should be
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aware that the time domain is a hybrid one, that V +(x) means V (x(t, j+ 1)), and

V0 = V (x(0, 0)). We have that xi = 2π and xi+1 ∈ [0, 2π], then:

Vi(x) = min {2π − xi+1, xi+1} (3.38)

V +
i (x) = xi+1(1− l) or (2π − xi+1)(1− l) (3.39)

depending on whether xi+1 ∈ [0, π] or xi+1 ∈ [π, 2π]. Then, Vi(x) > V +
i (x) =

(1 − l)Vi(x) holds for any value of xi+1 before xi jumps. Note that since the

previous analysis is valid for all i we have Vi−1(x) > V +
i−1(x) = (1− l)Vi−1(x). Next

we analyze the change in Vi+1. In this case we have:

Vi+1(x) = min {|xi+1 − xi+2|, 2π − |xi+1 − xi+2|} (3.40)

V +
i+1(x) = min {|xi+1 − xi+2 + lQ(xi+1)|, 2π − |xi+1 − xi+2 + lQ(xi+1)|} (3.41)

Since x(t, j) ∈ U , the phase ordering (either xi ≥ xi+1 or xi ≤ xi+1) and |xi −

xi+1| ≤ π from Lemma 3.2(d) ensure that V +
i+1(x) = Vi+1(x)+ lVi(x) and V +

i−2(x) =

Vi−2(x) + lVi−1(x) hold, provided Vi+1(x) + lVi(x) < π and Vi−2(x) + lVi−1(x) <

π (note that if the previous conditions do not hold, the length decreases and

since 1TV < 2π, the network synchronizes). The other components of V remain

unchanged when i jumps. We can then write the change of V after i jumps in
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matrix form by using the following transition matrices

C̄i =



ith

1 0 · · · 0 0 0 0 · · · 0

0 1 · · · ...
...

...
... · · · 0

0 0
. . . l

...
...

... · · · 0

0 0 · · · (1− l) 0 · · · ... · · · 0

ith
...

... · · · 0 (1− l) 0
... · · · 0

...
... · · · ... l 1

... · · · 0

...
... · · · 0

... 0
. . . · · · 0

...
... · · · ...

...
...

...
. . .

...

0 0 · · · 0 0 0 0 · · · 1



(3.42)

Then, when Vi+1(x) + lVi(x) < π and Vi−2(x) + lVi−1(x) < π hold, the value of V

after i jumps is given by V + = C̄iV . Note that C̄i are column stochastic matrices

and then when V + = C̄iV , 1TV + = 1TV holds, i.e., the length remains constant

and the state remains in U . In the following, we will use an auxiliary system

Ṽ + = C̄iṼ with Ṽi ∈ R and Ṽ0 = V0 (note that the elements of Ṽ are not restricted

to [0, π] as the elements of V ) to show that if l > l∗, the state will jump out of U

and the network will synchronize. It is a well known fact from consensus theory

[19] that an infinite product of column stochastic matrices with positive diagonal
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entries, as C̄i, converges exponentially to a matrix of the form γ1T , where γ is a

column vector such that 1Tγ = 1 [19]. By exploiting the particular structure of the

C̄i matrices, we can determine exactly the value of the vector γ as follows. Assume

the system Ṽ + = C̄iṼ is at the equilibrium Ṽ ∗ = γ1T Ṽ0 = 2πγ and w.l.o.g. x ∈ U1

and oscillator 1 is about to fire (note that in the bidirectional case, x ∈ U1 and

x ∈ U2 are equivalent in terms of Ṽ ). The phase ordering ensures that the firing

sequence will be 1, 2, . . . , N and since the system is at equilibrium, the C̄i matrices

induce a hard rotation on the elements of γ (since the length cannot decrease).

Hence, assuming l ∈ (0, 1), the vector γ must contain N − 2 identical elements δ,

one element equal to (1 − l)δ and one element equal to δ
(1−l) . Moreover, we have

that

(N − 2)δ + (1− l)δ +
δ

(1− l)
= 1 (3.43)

holds. Since l > l∗ = N
2
−
√
N2−4(N−2)

2
, solving for δ

(1−l) gives δ
(1−l) >

1
2
. Hence, if

l > l∗ we have that, at the equilibrium, max Ṽi = δ
(1−l)2π > π. Then, a component

of Ṽ will converge exponentially fast [19] to a value larger than π, which in the

original system, where Vi ∈ [0, π], has to be interpreted as |xI−xI+1| > π for some

I ∈ V and hence we have 1TV < 2π. At this point, we can take this as initial

condition for Lemma 3.1. It should be noted that if l = 1, γ contains only one non

zero entry δ = 1, which ensures synchronization. Hence, the network synchronizes

from every initial condition x(0, 0) ∈ C. The ‘only if’ part follows easily by contra-
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diction. First suppose that the network synchronizes from every initial condition

and that l ≤ l∗. Define the set Ū∗ :=
{
x ∈ U : Vi∗−1 = δ

(1−l) , Vi∗ = (1− l)δ, Vi = δ

∀i ∈ V \ {i∗ − 1, i∗}} as the “worst case” set (note that this set contains the equi-

librium of the system Ṽ + = C̄iṼ ) the result follows by using x(0, 0) ∈ Ū∗ as a

counterexample.

The proof of Theorem 3.7 is as follows.

Proof. The proof uses the same arguments as the proof of Theorem 3.6. Cases

i), ii), and iii) follows the same arguments, yet case iv) is different. To show that

the system jumps outside U , first consider x(0, 0) ∈ U1. In this case we have that

when i fires, the phase ordering and Lemma 3.2(d) ensure that xi+1 ∈ [π, 2π] and

then the refractory period has no effect. Following the same reasoning as the one
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for the proof of Theorem 3.6, the transition matrices are given by

Ci =



ith

1 0 · · · 0 0 0 0 · · · 0

0 1 · · · ...
...

...
... · · · 0

0 0
. . . 0

...
...

... · · · 0

0 0 · · · 1 0 · · · ... · · · 0

ith
...

... · · · 0 (1− l) 0
... · · · 0

...
... · · · ... l 1

... · · · 0

...
... · · · 0

... 0
. . . · · · 0

...
... · · · ...

...
...

...
. . .

...

0 0 · · · 0 0 0 0 · · · 1



(3.44)

Note that the transition matrices are different from the bidirectional case due to

the unidirectional nature of the graph. However, Ci are also column stochastic

matrices and hence their infinite product converges exponentially to a matrix of

the form γ1T . We will again consider an auxiliary system Ṽ = CiṼ to prove

that the system jumps outside U1. Since x ∈ U1, the phase ordering ensures that

the firing sequence will be 1, 2, . . . , N and for the matrices Ci to induce a hard

rotation on Ṽ at the equilibrium, assuming l ∈ (0, 1), the vector γ must contain
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N − 1 identical elements δ and one element equal to δ
(1−l) . Moreover, we have that

(N − 1)δ +
δ

(1− l)
= 1 (3.45)

holds. Since l > l∗ = N−2
N−1

, solving for δ
(1−l) gives δ

(1−l) >
1
2
. Hence, if l > l∗ we

have that, at the equilibrium, max Ṽi = δ
(1−l)2π > π, Then, a component of Ṽ will

converge exponentially fast to a value larger than π, which in the original system,

where Vi ∈ [0, π], has to be interpreted as |xI − xI+1| > π for some I ∈ V and

hence we have 1TV < 2π. At this point, we can take this as initial condition for

Lemma 3.1. It should be noted that if l = 1, γ contains only one non zero entry

δ = 1, which ensures synchronization. Hence, the network synchronizes from every

initial condition x(0, 0) ∈ U1.

Now consider x(0, 0) ∈ U2, and w.l.o.g. that N will fire first. Suppose further

that there is no refractory period. Note that in this case, the phase ordering ensures

that the firing sequence will be N,N − 1, . . . , 1. Hence, to ensure a hard rotation

at the equilibrium, the vector γ must contain N − 1 identical elements δ and one

element equal to (1− l)δ. Moreover, we have that

(N − 1)δ + (1− l)δ = 1 (3.46)
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holds. Then, the maximum feasible value for δ is 1
N−l and the network cannot

synchronize, even if l = 1. However, when there is a refractory period in one node

the network can synchronize. Recall that, due to the phase ordering, nodes get

pulses when their phases are in [0, π). Then, if the refractory period is in node i,

when node i− 1 jumps Vi−1 is not affected; yet when node i− 2 jumps, node i− 1

is affected and Vi−1 is increased by lVi−2. Therefore after one round of firings Vi−1

will have been increased by lVi−2. Iterating this argument, |xi−1−xi| > π will hold

after a finite number of firing rounds, node i will react to node’s i− 1 firing event,

and xi ∈ [0, π) ∀i ∈ V . Invoking again Lemma 3.1 completes the proof.

The ‘only if’ part follows by contradiction supposing that the network syn-

chronizes from every initial condition and that l ≤ l∗. Using the “worst case”

initial condition x(0, 0) ∈ U∗1 as counterexample yields a contradiction, where

U∗1 :=
{
x ∈ U1 : Vi∗ = δ

(1−l) , Vi = δ ∀i ∈ V \ {i∗}
}

.

Remark 3.12 The beneficial effects of a refractory period on the stability of PCO

networks have been mentioned before [43, 101]. In the same sense, Theorem 3.7

states that the introduction of a refractory period enables global synchronization in

the unidirectional case. It should be noted, however, that if more than one oscilla-

tor is affected by a refractory period, global synchronization cannot be guaranteed.

To see this fact, consider the following example. Suppose we have a 3-node uni-

directional cycle with interaction given by 1 → 2 → 3 → 1 Consider the initial
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condition x = [π
3
, 2π

3
, 2π] and suppose further that every oscillator is affected by a

refractory period of length π. After oscillator 3 jumps, 1 is not affected since it

is in the refractory period and the state is given by x = [π
3
, 2π

3
, 0]. Let the system

evolve until oscillator 2 reaches 2π. Then, when 2 jumps, 3 is not affected since it

is in the refractory period and the state is given by: x = [2π
3
, 0, π

3
]. Let the system

evolve until oscillator 1 reaches 2π and note that oscillator 2 will not be affected

by the firing since it is in the refractory period. The state after the jump is given

by: x = [0, π
3
, 2π

3
]. Iterating, it can be seen that the network never synchronizes.

Alternatively, suppose we have a N-node bidirectional cycle, where 2 nodes have a

refractory period of length π. Consider an initial condition given by 2 clusters, one

at π and the other at 2π and suppose l = 1. It can be derived that the oscillators

containing the refractory period will remain π apart while the other oscillators will

jump back and forth.

Remark 3.13 Note that when l < l∗ the system stays in either Ū∗ or U∗1 , depend-

ing on the structure of the graph. Both Ū∗ and U∗1 correspond to a phase-locked

solution that leads to a constant inter-firing time. A similar strategy for com-

munication scheduling, where the firing period can be divided into N “slots”, one

per node, is known as time-division-multiple-access (TDMA). PCO-based TDMA

schemes are known to exist when the coupling is repulsive [23].
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3.2.4 The (strongly) Connected Graph Case Revisited

Based on the results obtained for cycle graphs, we can reformulate Theorem

3.5 to stress the necessity of the strongest coupling l = 1 to ensure global synchro-

nization in connected graphs.

Theorem 3.8 Consider a network of PCOs interacting on a connected graph R̄.

If the communication graph R̄ is such that:

1. for every initial condition x(0, 0) ∈ C there exists a positive T <∞ such that

for all t ≥ 0 every oscillator fires at least once in an ordinary time interval

[t, t+ T ]

then the network synchronizes from every initial condition x(0, 0) ∈ C if and only

if l = 1.

Proof. The sufficiency part, is given in the proof of Theorem 3.5. For the ne-

cessity part, we proceed by contradiction using a counter-example. Suppose R̄

is connected, every oscillator fires periodically, the network synchronizes globally,

and l < 1. From the results in Theorem 3.6, we know that if R̄ is a bidirectional

cycle, the network synchronizes globally if and only if l > N
2
−
√
N2−4(N−2)

2
. Then,

since l < 1 we can construct a bidirectional cycle, with l-dependent number of

oscillators, such that the network cannot synchronize globally, which contradicts

the global synchronization assumption. Hence, the Theorem is proven.
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Figure 3.6: Networks with a global cue used in the numerical simulations. (a):
Bidirectional 5-nodes cycle network plus an omnipresent global cue (red node in
the middle); (b): All-to-all 5-nodes network plus an omnipresent global cue (red
node in the middle).

3.3 Numerical Experiments

3.3.1 Centralized Networks

To illustrate the applicability and conservativeness of the analytical results

previously derived for networks in the presence of a global cue, we use the hybrid

systems simulator [82] to simulate the networks shown in Figure 3.6 when the PRC

is given by (3.11).

We will examine the identical natural frequencies case in the first place. To

this end, natural frequencies were set as wi = w = 2π. As first example consider

the network in Figure 3.6(a), which consists of a 5-slave-nodes bidirectional cycle

plus an omnipresent global cue (in red). We simulate the network from a random

initial condition and coupling given by g = 0.1 and l = 0.4. Figure 3.7(a) shows the

simulation results. It can be seen that the network does not synchronize. In fact,
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if we recall our previous result for bidirectional cycles in Theorem 3.6, the local

coupling l = 0.4 is not strong enough to synchronize the cycle network globally.

Moreover, the global coupling g = 0.1 is not strong enough to synchronize the

slave oscillators to the global cue. Hence, the global coupling can be regarded as a

periodic perturbation to the slave system that precludes convergence to a phase-

locked state. Figure 3.7(b) shows the simulation results, from the same initial

condition, when the coupling is given by g = 0.5 and l = 0.4. In this case the slave

network synchronizes to the global cue. Although the local coupling is not strong

enough to synchronize the cycle network locally, the global coupling is sufficiently

attractive to preclude the slave system to converge to a phase-locked state and

forces the slave system to follow the global cue.

As a second example, consider the the network in Figure 3.6(b), which consists

of a 5-slave-nodes all-to-all network plus an omnipresent global cue (in red). We

simulate the network from a random initial condition and coupling given by g =

0.05 and l = 0.05. The simulation results are shown in Figure 3.8(a). It can

be seen that the network does not synchronize. As for the previous example, in

this case the global coupling is too weak and it can be regarded as a perturbation

precluding convergence to a phase-locked state. Figure 3.8b shows the simulation

results when the coupling is given by g = 0.1 and l = 0.05. In this case, the global

coupling is strong enough to force the slave system to follow the global cue.
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(a) (b)

Figure 3.7: Simulation results for the network in Figure 3.6(a) for the identical
natural frequencies case. (a): Results when the coupling is given by g = 0.1
and l = 0.4, since the global coupling is not strong enough the network do not
synchronize; (b): Results when the coupling given by g = 0.5 and l = 0.4, the
global cue is attractive enough and the network synchronizes.

(a) (b)

Figure 3.8: Simulation results for the network in Figure 3.6(b) for the identical
natural frequencies case. (a): Results when the coupling is given by g = 0.05
and l = 0.05, since the global coupling is not strong enough the network do not
synchronize; (b): Results when the coupling is given by g = 0.1 and l = 0.05, the
global cue is attractive enough and the network synchronizes.
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To examine the heterogeneous case, we set the non-identical natural frequencies

as [π, 1.1π, 1.05π, π, 0.95π, 0.9π]. Figure 3.9(a) shows the simulation results for the

network in Figure 3.6(a) when the coupling is given by g = 0.1 and l = 0.1. Hence,

conditions in Theorem 3.2 do not hold. It can be seen that the network does

not synchronize in frequency, i.e., each oscillator fires with a different frequency.

Figure 3.9(b) shows the simulation results when the coupling is given by g = 0.6

and l = 0.1, i.e., conditions in Theorem 3.2 do hold. It can be seen that the

network synchronizes in frequency and that every slave oscillator fires following

the frequency of the global cue wg = π.

As second example for the non-identical case, we simulate the network in Figure

3.6(b). The simulation results when the coupling is given by g = 0.05 and l = 0.01

(conditions in Theorem 3.2 do not hold) are shown in Figure 3.10a. It can be

seen that the network does not synchronize in frequency. Figure 3.10(b) shows the

simulation results when the coupling is given by g = 0.6 and l = 0.05. In this case,

the global coupling is strong enough to force the slave oscillators to fire following

the frequency of the global cue wg = π.
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(a) (b)

Figure 3.9: Simulation results for the network in Figure 3.6(a) for the non-
identical natural frequencies case. (a): Results when the coupling is given by
g = 0.1 and l = 0.1, conditions in Theorem 3.2 do not hold and the network do
not synchronize in frequency; (b): Results when the coupling is given by g = 0.6
and l = 0.1, since conditions in Theorem 3.2 hold the network synchronizes in
frequency.

(a) (b)

Figure 3.10: Simulation results for the network in Figure 3.6(b) for the non-
identical natural frequencies case. (a): Results when the coupling is given by
g = 0.05 and l = 0.01, conditions in Theorem 3.2 do not hold and the network do
not synchronize in frequency; (b): Results when the coupling is given by g = 0.6
and l = 0.05, since conditions in Theorem 3.2 hold the network synchronizes in
frequency.
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Figure 3.11: Networks used in the numerical examples. (a): Star network with 9
peripheral oscillators (N = 10); (b): All-to-all network with N = 5; (c): Bidirec-
tional connection of an all-to-all network and a cycle network, N = 10.

3.3.2 Decentralized Networks

To illustrate the applicability and conservativeness of the analytical results

previously derived for decentralized networks, we use the hybrid systems simulator

[82] to simulate the networks shown in Figure 3.11.

As a first example, consider the strongly rooted network depicted in Figure

3.11(a). We simulate the network using the initial condition x(0, 0) = [2π, 1, 2, 3, π−

ε, π + ε, 2π − 3, 2π − 2, 2π − 1, 2π − ε], with ε � 1; hence, the root oscillator will

fire first (for any l). The left plot in Figure 3.12(a) shows the results when l = 0.4;

it can be seen that even though the root oscillator (black curve in Figure 3.12(a))

fires, the network cannot synchronize. In fact, an example with N approaching

infinity as l approaches 0.5 can be found. This stresses the necessity of the condi-

tion l > 0.5 in Corollary 3.3 to guarantee global synchronization. The right plot

in Figure 3.12(a) shows the results when l = 0.51; it can be seen that since l > 0.5

the network synchronizes.
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Now consider the all-to-all network in Figure 3.11(b). We ran simulations

using the following initial condition xi(0, 0) = 2π
5
i. The left plot in Figure 3.12(b)

presents the results when l = 0.12; it can be seen that the network does not

synchronize since the coupling is too weak. On the other hand, the right plot

in Figure 3.12(b) shows the results when l = 0.51. Since conditions in Corollary

3.2 are satisfied, the network synchronizes. It should be mentioned that we have

found experimentally that the all-to-all network in Figure 3.12(b) synchronizes for

l > 0.13, confirming the statement in Remark 4 claiming that Corollary 3.2 is

conservative in some cases.

Finally, consider the network shown in Figure 3.11(c), which corresponds to

the connection of an all-to-all and a cycle network. We use as initial condition

xi(0, 0) = 2π
5
i mod 2π. Note that, given the network topology, every oscillator

fires periodically for every value of l. The left plot in Figure 3.12(c) presents the

results when l = 0.52; it can be seen that the network does not synchronize. This

stresses the fact that a strong coupling, l = 1, is required to guarantee global

synchronization in general bidirectional PCO networks. On the other hand, the

right plot in Figure 3.12(b) shows the results when l = 1. As predicted by Theorem

3.5, the network synchronizes.

To illustrate our analytical findings regarding cycle graphs, several numerical

experiments were conducted using the hybrid systems simulator. Figure 3.13 shows

94



Chapter 3. Synchronization of Pulse-Coupled Oscillators

(a)

(b)

(c)

Figure 3.12: Simulation results for the networks of Figure 3.11. (a): Results for
the star network in Fig. 3.11(a) when l = 0.4 (left) and l = 0.51 (right). The
solid black curve denotes the root oscillator. As predicted by Corollary 3.3, the
network in the right synchronizes. (b): Results for the all-to-all network in Fig.
3.11(b) when l = 0.12 (left) and l = 0.51 (right). As predicted by Theorem 3.3,
the network in the right synchronizes. (c): Results for the network in Fig. 3.11(c)
when l = 0.52 (left) and l = 1 (right). As predicted by Theorem 3.8, the network
in the right synchronizes.
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Figure 3.13: Network topologies used in the numerical experiments. Left: uni-
directional ring of 8 nodes. Right: the bidirectional, or undirected, version of the
ring of 8 nodes. Natural frequencies were set to w = 2π for all the experiments.

the PCO networks used in the simulations consisting of 8 oscillators interacting

on a bidirectional and a unidirectional graph. For all the experiments, natural

frequencies were set to wi = w = 2π.

Figure 3.14 shows the results for the bidirectional graph with initial condition

x(0, 0) ∈ Ū∗. Solving the condition in Theorem 3.6 gives a critical coupling strength

of l∗ = 0.83772. In the top plot the coupling strength is set below the critical value

as l = 0.8377; hence, the network cannot synchronize and the oscillators distribute

in the interval [0, 2π]. It can also be seen in the Figure, that Ū∗ is in fact a TDMA-

like equilibrium for the system. On the other hand, when the coupling strength is

increased to l = 0.8378, i.e., above the critical value, the network asymptotically

synchronizes, as shown in the bottom plot of Figure 3.14

Figure 3.15 shows the results for the unidirectional graph with initial condition

x(0, 0) ∈ U∗1 when there is a refractory period of length r = π in the PRC of
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Figure 3.14: Simulation results for the bidirectional ring of Figure 3.13 and
initial condition x(0, 0) ∈ Ū∗. Red lines denote jump instants and blue lines
denote phase values. On the top plot l = 0.8377; since from Theorem 3.6 we have
l∗ = 0.83772 the network cannot synchronize. On the bottom plot l = 0.8378;
since in this case l > l∗ the network synchronizes.

oscillator 1. Solving the condition in Theorem 3.7 gives a critical coupling strength

of l∗ = 0.8571. It can be seen in the top plot that when l = 0.857 < l∗ the network

cannot synchronize and the oscillators distribute in the interval [0, 2π]. Note that

U∗1 is a TDMA-like equilibrium for the system when l < l∗. Increasing the coupling

strength such that l = 0.86 > l∗ asymptotically synchronizes the network, as shown

in the bottom plot. Figure 3.16 shows the results for the unidirectional graph when

the initial condition x(0, 0) ∈ U2 and there no oscillator is affected by a refractory

period. In this case, the network cannot synchronize even when the coupling

strength is l = 1 (the maximum possible value), which is shown in the top plot

of Figure 3.16. The bottom plot shows the results when a refractory period of
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Figure 3.15: Simulation results for the unidirectional ring of Figure 3.13, initial
condition x(0, 0) ∈ U∗1 and there is a refractory period of length r = π in node 1.
Red lines denote jump instants and blue lines denote phase values. On the top
plot l = 0.857 < l∗ hence the network cannot synchronize. On the bottom plot
l = 0.86; since in this case l > l∗ the network synchronizes.

length r = π is introduced in the PRC of oscillator 1. The network recovers the

synchronization properties and synchronizes. It should be noted that since l = 1,

an absorption phenomenon occurs yielding synchronization in finite time.

Figure 3.17 shows the critical strength l∗ as a function of the number of os-

cillators N for both the unidirectional (blue curve) and bidirectional (red curve)

cases. It can be seen (also deduced from the condition in the theorems) that l∗

is always larger for unidirectional graphs and that, as the number of oscillators

grows, the coupling strength goes to the maximal value 1. In fact, for N = 250 we

have l∗ = 0.99598 for the unidirectional case, and l∗ = 0.99597 for the bidirectional

case.

98



Chapter 3. Synchronization of Pulse-Coupled Oscillators

Figure 3.16: Simulation results for the unidirectional ring of Figure 3.13 and
initial condition x(0, 0) ∈ U2. Red lines denote jump instants and blue lines denote
phase values. On the top plot l = 1 and there is no refractory period in any node;
as was predicted the network cannot synchronize. On the bottom plot l = 1 and
there is a refractory period of length r = π in node 1. The network recovers the
synchronization properties and synchronizes.

Figure 3.17: Critical coupling strength l∗ as a function of N for the unidirectional
(blue) and bidirectional (red) cases.

The analytical results obtained in this Chapter provide conditions to ensure

synchronization in a variety of networks of PCOs. Inspired by these findings,

in the next Chapter we will develop a PCO-based time synchronization protocol
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for wireless sensor networks that enjoys all the convergence properties derived for

PCOs. Moreover, as a consequence of the simple synchronization mechanism of

PCOs, the protocol is simple and naturally scalable.
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Chapter 4

PCO-Based Synchronization
Protocol for Wireless Sensor
Networks

The theoretical results obtained in the previous Chapter suggest that the PCO

paradigm is an appealing synchronization method for networks of agents. This

Chapter presents the design and evaluation of a new PCO-based synchronization

protocol for wireless sensor networks.

The following concepts will be used throughout this chapter.

Definition 4.1 (Clock Drift) Given a pair of clocks Ck1 and Ck2 running with

natural frequencies fCk1 and fCk2 respectively. The clock drift is defined as the

absolute difference of the natural frequencies (cf. Assumption 4 in Chapter 3),

i.e., |fCk1 − fCk2|

Portions of this Chapter have been previously published in [101], [102], and [103].
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Definition 4.2 (Clock Cycle Jitter) Given a clock Ck with nominal natural

frequency fCk and observed frequency over a cycle given by f̄Ck, the clock cycle

jitter is defined as the deviation of the observed frequency from the nominal natural

frequency, i.e., f̄Ck − fCk.

Definition 4.3 (Clock Skew) Given a pair of clocks with values Ck1(t) and

Ck2(t) at a given time instant t, the skew at time t is given by their absolute dif-

ference. Similarly, given a network of N clocks with values Cki(t), i ∈ {1, . . . , N},

the network, or global, skew at time t is given by the maximum absolute difference

over the set of clocks, i.e., maxi,j∈{1,...,N} |Cki(t)− Ckj(t)|.

4.1 Motivation

Providing a common notion of time is one of the most basic services in any

distributed system. Several applications in wireless sensor networks rely on the

existence of a precisely synchronized time [87], first because of energy efficiency.

In order to increase the energy efficiency in the network, nodes minimize their

duty cycle by alternating between sleep/awake cycles. Nodes must wake up at

the precise instant in order to communicate with their neighbors. Secondly, time

synchronization is critical for distributed monitoring and information fusion where
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a precise ordering of events is needed. Without a precise time synchronization

protocol, a wireless sensor network loses great part of its potential.

The time synchronization problem has been a subject of intense research since

the massification of wireless sensor networks. The first approach to the problem

was to design protocols mimicking those used in standard wired computer networks.

As the understanding of the time synchronization problem in wireless sensor net-

works improved, new ad-hoc protocols have been proposed with variable success.

In order to solve the time synchronization problem in a large scale network, it

is important to count with distributed synchronization protocols that are simple

and scalable [87]. Despite many centralized synchronization protocols have been

proposed and currently conform the state-of-the-art, these strategies rely heavily

on a leader reference node, and thus, they are not robust to many existing phe-

nomena in wireless networks such as network reconfiguration and limited energy

resources. Moreover, the use of a reference node makes the accuracy susceptible to

an accumulative error that grows with the network dimension. These centralized

protocols are inherently incompatible with the natural structure of wireless sensor

networks that is ad hoc, time varying, and distributed. In the following sections,

we will give a brief review of existing synchronization protocols and present a new

PCO-based synchronization protocol, which enjoys the theoretical synchronization
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properties of our PCO model and, furthermore, is simple, fully distributed, and

naturally scalable.

4.2 Review of Existing Synchronization Proto-

cols

Several synchronization protocols are currently available for wireless sensor net-

works. In the following we make a distinction based on the strategy to communicate

information between nodes in the network. First, we consider packet-based proto-

cols, which use the information inside the synchronization message to synchronize

the network, i.e., the content of the synchronization packet is important for the

protocol. We denote as pulse-based protocols those algorithms that do not rely on

the content of the synchronization message to synchronize the network. Note that

although the message is not necessarily a pulse (many physical layers are not able

to handle pulses) but a short control packet, in pulse-based protocols the content of

the message is not important, only the time instant at which the packet is received

is used to synchronize the network, i.e., the interruption pulse coming from the

physical layer.
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4.2.1 Packet-Based Synchronization Protocols

Reference Broadcast Synchronization

The Reference Broadcast Synchronization (RBS) protocol [28] is a scheme in

which nodes send reference beacons to their neighbors using physical layer broad-

casts. RBS exploits the broadcast nature of the wireless physical channel used in

wireless sensor networks to synchronize a set of receivers with one another. A ref-

erence node is elected to synchronize all other nodes using a sequence of broadcast

messages. Since differences in the propagation times can generally be neglected in

sensor networks, a reference message arrives at the same instant at all receivers.

Each receiving node records a timestamp at the reception of a broadcast mes-

sage, which is exchanged with neighboring nodes to calculate relative clock offsets.

Although RBS is designed for single-hop time synchronization only, or within a

single broadcast domain, nodes that participate in more than one broadcast do-

main can be employed to convert the timestamps between local clock values of

different subnetworks. External clock references attached to one node, for example

a GPS receiver, can be treated like reference broadcasts to transform the local

timestamps into Coordinated Universal Time (UTC). The main disadvantage of

the approach is that additional message exchange is necessary to communicate
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the local time-stamps between the nodes, which creates a large communication

overhead.

Timing-sync Protocol for Sensor Networks

The Timing-sync Protocol for Sensor Networks (TPSN) [32] aims to provide

network-wide time synchronization by using a classical sender-receiver approach.

The TPSN protocol works with a hierarchical structure created by first electing

a root node and building a spanning tree of the network during the initial level

discovery phase. In the synchronization phase of the algorithm, nodes synchronize

to their parent in the tree by a two-way message exchange. Using the timestamps

embedded in the synchronization messages, the child node is able to calculate the

transmission delay and the relative clock offset. MAC layer time-stamping is used

to reduce possible sources of uncertainty in the message delay; however, TPSN

does not compensate for clock drifts making frequent resynchronization mandatory

in order to keep the network properly synchronized. In addition, TPSN causes

a high communication overhead since a two-way message exchange is required

for each child node. It should be noted that, although unidirectional links are

allowed to exists in the network, TPSN uses only bi-directional links to do pairwise

synchronization between a set of nodes.
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Flooding Time Synchronization Protocol

The shortcomings present in both RBS and TPSN are tackled by the Flooding-

Time Synchronization Protocol (FTSP) [56]. In FTSP, a root node is elected which

periodically floods its current time into the network forming an ad-hoc tree struc-

ture. MAC layer time-stamping is used to reduce possible sources of uncertainty

in the message delay. Each node uses a linear regression table to convert between

the local hardware clock and the clock of the reference node, which is dynamically

elected by the network based on the smallest node identifier. After initialization,

a node waits for a few rounds and listens for synchronization beacons from other

nodes. Each node sufficiently synchronized to the root node starts broadcasting its

estimation of the global clock. If a node does not receive synchronization messages

during a certain period, it will declare itself the new root node and initiates a flood-

ing of its local time. Although FTSP provides good global synchronization at low

communication cost on small networks, it potentially incurs large skews between

neighboring nodes due to the tree structure employed. Moreover, FTSP requires a

larger amount of processing than RBS and TPSN and the maintaining of a table

for performing linear regression that grows with the number of neighbors.
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Gradient Time Synchronization Protocol

Gradient Time Synchronization Protocol (GTSP) [89] is a completely dis-

tributed time synchronization protocol, i.e., GTSP does not require neither a tree

topology nor a reference node. GTSP focuses mainly on the synchronization error

between neighbors. Existing time synchronization algorithms provide on aver-

age good synchronization between arbitrary nodes, however, neighbor nodes in a

network may be poorly synchronized depending on the tree used to perform syn-

chronization. In GTSP nodes periodically broadcast synchronization beacons to

their neighbors trying to agree on a common logical clock by using a simple up-

date algorithm based on consensus-like iterations for drift compensation and MAC

layer time-stamping for reducing uncertainty in the message delays. It was shown

analytically that by employing the GTSP algorithm, the logical clock of every par-

ticipating node converges to a common virtual logical clock. GTSP relies on local

information only, making it robust to node failures and changes in the network

topology, which is a known drawback of tree-based protocols. Moreover, GTSP

can improve the synchronization error between neighboring sensor nodes compared

to tree-based time synchronization protocols, while maintaining a similar network-

wide synchronization error.
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PulseSync

The basic idea of PulseSync [53] is to distribute information regarding clock

values as fast as possible, while minimizing the number of messages required to

flood the network. In particular, nodes send messages only once in a given interval

of time. Since a node cannot forward any information before getting a message,

an intermediate node in a line topology has to wait for at least one message from

a neighbor, and after its reception it must send a message as quickly as possible

in order to not slow the flooding down. Thus, PulseSync develops a flooding of a

pulse-like message through the network, implicitly building a breadthfirst search

tree. This technique further implies that the pulse is originated at a given node,

which becomes the root of the tree. The root node is the only node from which

all nodes in the network obtain information, making its clock the reference for

synchronization. To keep clock skews small at all times, nodes employ a drift

compensation, also relative to the root node. Moreover, to reduce the effects of

the random jitter, the drift estimates are based on a linear regression, similarly as

the regression performed in FTSP. PulseSync is inherently a tree-based protocol

and hence it suffers from the same drawbacks as the other tree-based algorithms

although its convergence time is lower.
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Glossy

Glossy [30] exploits constructive interference of IEEE 802.15.4 symbols for fast

network flooding and implicit time synchronization. A timing requirement to make

concurrent transmissions of the same packet interfere constructively is derived, al-

lowing a receiver to decode the packet even in the absence of capture effects. To

satisfy this requirement, Glossy temporally decouples flooding from other network

activities. Unlike existing flooding schemes, Glossy’s performance exhibits no no-

ticeable dependency on node density, which facilitates its application in diverse

real-world settings. However, although Glossy is an intriguing method, its use of

the physical layer makes it harder to apply it in standard sensor networks where

the user has no access below the MAC layer. Moreover, its formulation is based

on the IEEE 802.15.4 physical layer and is not clear how Glossy can be adapted

for networks operating using different physical layers.

4.2.2 Pulse-Based Synchronization Protocols

Reachback Firefly Algorithm

The Reachback Firefly Algorithm (RFA) [104] is inspired by the way neurons

and fireflies spontaneously synchronize in nature. Initially based on the PCO model

by Mirollo and Strogatz [62], the RFA protocol modifies the classical PCO model
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to deal with non-deterministic delays and clock drifts. The authors recommend the

use of a CSMA-like strategy at the MAC layer to avoid collisions that naturally

occur when all the nodes aim to transmit at the same time. The flow of the

protocol is as follows: each node periodically generates a pulse (simple empty

message) and observes pulses from other nodes to adjust its own firing phase. It is

proven analytically in [104] that every node converges to the common virtual time

reference. RFA only provides local synchronization, i.e., nodes agree on the firing

phases but do not have an absolute common notion of time. Another drawback of

RFA is the fact that it has a high communication overhead. The RFA protocol has

shown a slightly worse performance than FTSP in initial pilot implementations

[104].

Scalable Sync

The Scalable Sync protocol [43] is also based in the PCO model. Specifically, it

uses directly the leaky integrate and fire model by Peskin at each node inheriting

the theoretical synchronization properties proven by Mirollo and Strogatz in [62].

As a key application mechanism, the authors propose a simple circuit for pulse

detection at the physical layer, and as a minor, yet very important, modification

to the PCO dynamics, the authors propose the use of a refractory period to ensure

stability of the synchronized state and prevent firing storms. The main advantages
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of the Scalable Sync protocol are its natural scalability, shown in numerous large

scale simulations, and its simplicity, which comes from the identical treatment

given to every received pulse irrespective of the origin. The main drawback of the

protocol is that its convergence speed decreases dramatically when the network is

sparse and large scale.

4.3 A New Pulse-Coupled Synchronization Pro-

tocol

Inspired by the biological principles behind synchronization of PCOs and sup-

ported by our theoretical findings, we designed a PCO-based time synchronization

protocol for networks of agents interacting through wireless channels. Although

our protocol shares the inspiration source with others pulse-based protocols such

as RFA and Scalable Sync, our protocol outperforms previous PCO-based efforts

since it uses the optimized PCO model presented in the previous chapters instead

of the classical biological PCO model. In particular, the use of an optimal PRC

gives faster synchronization and the use of a refractory period reduces the energy

consumption.
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4.3.1 Algorithmic Formulation

The algorithm behind the protocol is as follows. Every node in the network

counts with a unique identifier, which can be assigned upon joining the network in

a similar way to how IP addresses are assigned or can be an identifier assigned in

the construction of the device, e.g., MAC address. Although the unique identifier

is not used by the synchronization protocol, it might be needed for upper layer data

processing or for conducting an initial flooding. For every node in the network,

the internal phase variable is implemented using a counter that is initialized at

0 on startup and is continuously incremented at a constant frequency given by

the processor’s oscillating crystal or a fraction of it until it reaches the limit value

CL. Once the counter overflows, it fires a counter event that makes the counter

to reset and a synchronization message is broadcasted. When a message arrives

from a neighbor oscillator, it triggers a message event that makes the counter to

be updated based on the PRC and the coupling strength.

The protocol has several configuration parameters that need to be pre-set before

initiating the protocol. This process can be done using a configuration file that is

loaded at startup. The following parameters define the operation of the protocol:

• Upper limit of the phase counter: CL

• Role of the oscillator in the network (global cue or slave)
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• Local and global coupling strengths: g, l

• PRC family (advance-only or advance-delay)

• Shape parameters for the different PRCs

The protocol that every node in the network implements can be summarized

as follows.

Protocol 4.1 (PCO-Protocol) Upon joining the network, each sensor i records

its unique identifier, loads its configuration parameters, initializes its phase counter

as xi = 0 and starts increasing the counter at constant rate w.

1. At each phase event xi = CL node i broadcasts a pulse-like message and

resets the counter to xi = 0.

2. Upon receiving a pulse, node i updates its phase following the PRC Q and

the coupling strength l.

In its current form, the PCO-Protocol can be implemented at any layer of the

networking protocol stack. However, ideally the protocol should be implemented

as low as possible to improve its accuracy. We propose to implement the protocol

at the MAC layer to take advantage of the simple implementation requirements at

the MAC layer (pure software) and the closeness to the physical layer that reduces

non-deterministic delays from the packet processing at higher layers. Moreover, the
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short control packets usually exchanged at the MAC layer in several MAC protocols

(CDMA, ALOHA, etc.) represent an appealing alternative to emulate pulses. Note

that implementing the impulsive updates at the MAC layer is equivalent to the

classical MAC layer time-stamping used in many packet-based synchronization

protocols. Figure 4.1(a) shows the flow diagram of the synchronization protocol

and Figure 4.1(b) shows a version of the networking protocol stack suitable for

wireless sensor networks that is an hybrid between the classical OSI model and the

TCP-IP model. Our PCO-Protocol is implemented inside the Data-Link layer, at

the MAC layer, as shown in Figure 4.1(b).
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Figure 4.1: (a): Flow diagram of the PCO synchronization protocol (b): hybrid
layered architecture; the protocol is located inside the data link layer, at the MAC
layer.
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4.3.2 Synchronization Properties of the Protocol

The synchronization protocol inherits all the synchronization properties derived

for networks of PCOs in the previous chapters. The following results are a direct

consequence of the synchronization results available for networks of PCOs. The

proofs and a rigorous formulation of the problems can be found in [100, 103].

Theorem 4.1 Consider a network of PCOs with a refractory period of length r

in the PRC, if the initial phases are such that

max
i,k∈V
|xi(0, 0)− xk(0, 0)| < Λ ∈ (0, π],

l ∈ (0, 1] and the interaction topology is strongly connected, then the oscillators

can be perfectly synchronized for any r ≤ Λ.

The previous Theorem state that a network of PCOs can synchronize if the

initial conditions are contained in a semicircle even if there exists a refractory period

in the PRC of all the oscillators. The following Theorem relaxes the semicircle

condition and it also covers synchronization over unreliable networks. In this case,

however, synchronization is achieved with a given probability.

Theorem 4.2 Consider a network of PCOs with a refractory period of length r

in the PRC, interacting on a strongly connected graph R. If the initial phases are
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independent and uniformly distributed in the interval [0, 2π], and every pulse trans-

mission is associated with a successful delivery probability p, then the probability of

synchronization is no less than

P =
∏
i∈V

{
1− 1

2

(
π + r

2π
+ (1− p)π − r

2π

)|N i−|
+

1

2

[(
π + r

2π

)|N i−|
−
(

1

2
+ (1− p) r

2π

)|N i−|]
(4.1)

×

[
1−

(
π + r

2π
+ (1− p)π − r

2π

)mini∈V |N i−|
]}

Remark 4.1 It should be noted that Theorem 4.1 requires the phases to be con-

tained in an interval of length Λ. However, in real deployments this constraint is

unlikely to hold. One way to ensure the phases are contained in a small interval,

and hence to exploit the largest possible refractory period to save energy, is to use

an initial flooding as follows. Any sensor that wants to run the synchronization

strategy broadcasts a reset packet (with its unique ID specified in the packet) and

resets its phase to 0 to initiate a synchronization process. Every sensor receives

the packet resets its phase to 0 and immediately passes the packet to its neighbors.

A sensor having received the reset packet once will ignore all subsequently arriving

identical reset packets to prevent broadcast storms. Note that although the reset

packet cannot synchronize the network due to the existence of a non-deterministic

processing time, it can reduce the phase difference.
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Remark 4.2 Theorem 4.2 focuses mainly on large scale networks. The approxi-

mations needed in the proof of Theorem 4.2 ensure that if the network is large then

the lower bound on the synchronization probability is close to the actual synchro-

nization probability. On the other hand, if the network consists of a few nodes,

then the lower bound could be to loose to be meaningful.

4.4 Evaluation by Simulation

To test the strategy in a realistic environment, we selected QualnetTM [85] as

our simulation platform. Qualnet is a network simulation tool that can be used

to simulate wireless and wired communication networks. It was first released in

2000 by Scalable Networks and has been widely used since to simulate MANETs,

satellite networks, and sensor networks, among others. Figure 4.2 shows Qualnet’s

main interfaces.

The protocol was implemented as a standard wireless MAC layer protocol in

Qualnet. Its operating philosophy is based on the CSMA and IEEE 802.11 proto-

cols, combining carrier sense for collision avoidance and control packets to emulate

the pulses used to communicate entrainment information. The current version

works using IEEE 802.11b protocol at the physical layer and it includes data send-

ing capabilities, as well as an adaptive sleep mode to save energy by reducing idle

listening.
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Figure 4.2: Qualnet’s user interface. The scenarios for the simulations are first
designed in the scenario designer interface and then simulated in the simulation
interface. The PCO-based protocol is included as a standard MAC layer protocol in
the protocol selection menu where all the configuration parameters can be modified
by the user.
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The algorithm can be selected as MAC layer protocol by the user in Qualnet’s

graphical interface, which allows the user to configure the following parameters of

the algorithm:

• Natural period of the oscillator (counter limit)

• Role of the oscillator in the network (global cue or slave)

• Local and global coupling strengths

• Advance-only phase response curve family

• Advance-delay phase response curve family

• Shape parameters for the different PRCs

Simulations are realistic, in the sense that they include all phenomena found in

real wireless networks: fading, transmission delays, collisions, limited transmission

radius, among others. Moreover, they include the effects of quantization in both

phase and PRCs. The complete algorithm consists of 3 operating modes: synchro-

nization, data sending, and sleep (energy saving mode), as shown in Figure 4.3.

The source code for implementing the protocol in Qualnet as a wireless MAC layer

protocol is given in Appendix A.

In the following, we present simulations of our synchronization protocol for a

variety of networks, some of them fulfill the assumptions in Theorems 4.1 and 4.2
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Figure 4.3: Flow diagram of the complete PCO-based wireless synchronization
protocol. The protocol consists of three operating modes: synchronization, data
sending, and sleep. When the nodes in the network are exchanging pulses to
perform synchronization, the protocol works in synchronization mode. When nodes
turn off the wireless antenna to save energy, the protocol switches to sleep mode.
When nodes exchange information in the form of data packets to, for example,
share sensor measurements, the protocol switches to data sending mode.
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but we also study networks that are out of the scope of Theorems 4.1 and 4.2. We

explore the effect of the protocol’s parameters (PRC shape and coupling strength)

on the synchronization properties of the algorithm focusing mainly on the time it

takes and the amount of energy required to achieve synchronization.

4.4.1 Synchronization to a Global Cue

Simulations were conducted to study the time to synchronization in a wireless

network formed by 18 slave oscillators and 1 omnipresent global cue. Natural fre-

quencies were set as w = 2π, i.e., every node fires with a natural period of 1s. The

agents interact following a static communication topology where each slave oscilla-

tor has between 8 and 10 neighbors. Figure 4.4(a) shows the network implemented

in Qualnet.

The feedback strategy was implemented using a hyperbolic-like PRC, for both

Qg and Ql, given by:

Qq(x) =
tanh

(
x−π
εq

)
tanh

(
π
εq

) − x− π
π

, q ∈ {g, l} (4.2)

where εq is a tuning parameter controlling the shape of the PRC. Figure 4.4(b)

shows graphs of the PRC (4.2) for different values of ε. Note that the graph of
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Figure 4.4: (a): Network consisting of 18 slave oscillators (blue) and 1 om-
nipresent global cue (red) used in the time to synchronization experiments. (b):
PRC used in the time to synchronization experiments for different values of ε.

(4.2) is inside the set Ω for all the values of ε used. Moreover, Qg and Ql are such

that Qq(xi) > 0, q ∈ {g, l} if xi ∈ (π, 2π) and Qq(xi) < 0, q ∈ {g, l} if xi ∈ (0, π).

Therefore, condition 2) in Theorem 3.1 holds.

To analyze the influence of the tuning parameter ε on the time to synchroniza-

tion, we conducted simulations in Qualnet for different values of εg and εl. Initial

conditions were randomly chosen following a uniform distribution on the interval

[0, 2π] for each agent. Coupling strengths were selected as g = l = 0.01. Table 4.1

presents results of the simulations where each scenario was simulated 100 times

and results were averaged. Results show that with a decrease in εg, the time to

synchronization is reduced; while variations on εl can either reduce or increase the

time to synchronization. A theoretical analysis regarding the effect of the tuning

parameter on the time to synchronization is available in [102].
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Table 4.1: Time to synchronization [s] for the network in Figure 4.4(a) using
the PRC (4.2) for different values of the parameter ε, and coupling given by:
g = l = 0.01.

εg \ εl 0.05 0.1 0.2 0.4 0.8 1.6

0.4 22.93 23.17 23.14 22.58 21.53 22.44
0.8 24.95 25.21 25.36 24.23 23.63 24.34
1.6 30.14 31.92 31.75 30.35 28.15 29.09

Table 4.2: Time to synchronization [s] for the network in Figure 4.4(a) under the
PRC (4.2) for different values of the couplings g and l, and εg = 0.4, εl = 0.05.

g \ l 0.01 0.02 0.03 0.04 0.05 0.06

0.01 22.93 23.21 26.37 27.26 no sync no sync
0.02 17.49 18.90 22.03 24.60 24.38 21.39
0.03 14.18 14.99 18.03 19.93 20.35 19.91

To analyze the influence of the coupling strengths on the time to synchroniza-

tion, we conducted simulations in Qualnet for different values of g and l. Initial

conditions were randomly chosen following a uniform distribution on the interval

[0, 2π] for each agent. The shape parameters of the PRCs were set as εg = 0.4

and εl = 0.05. Table 4.2 presents results of the study where each case was sim-

ulated and averaged over 100 runs. Results show that a larger g leads to faster

synchronization, while a larger l does not necessarily imply faster synchronization.

A larger l may inhibit synchronization when g is small, as suggested by Theorem

3.1.
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Figure 4.5: Networks used in the numerical simulations. (a): Unidirectional
8-node network; (b) bidirectional 8-node network; (c): all-to-all 8-node network.

4.4.2 Decentralized Synchronization

Simulations were conducted to study the time to synchronization in a variety of

simple networks when using the synchronization-rate-optimal PRC (3.11). Natural

frequencies were set as w = 2π for all the simulated scenarios. Figure 4.5 shows

the networks used in the first set of simulations. Figure 4.5(a) shows an 8-nodes

unidirectional network where each node has only 1 in-neighbor. Table 4.3 presents

the time to synchronization for the network in Figure 4.5(a) when the length of

the refractory period and the coupling strength are varied and each scenario was

simulated and averaged over 100 runs. Initial conditions were randomly chosen

from a uniform distribution. It can be seen that the length of the refractory period

has no effect on the time to synchronization, while an increase in the coupling

strength reduces the time the network takes to reach synchronization.
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Table 4.3: Influence of the refractory period r and coupling strength l on the time
to synchronization [s] for the network in Figure 4.5(a).

r \ l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2π 177.75 95.56 58.87 44.49 32.35 25.51 19.97 14.79 10.71
0.4π 175.50 93.96 61.84 44.47 33.74 25.11 19.41 14.81 10.48
0.6π 178.97 94.17 61.70 44.50 33.63 24.97 19.32 14.60 10.41
0.8π 178.97 94.17 61.70 44.50 33.63 24.97 19.32 14.60 10.41
1.0π 178.97 94.17 61.70 44.50 33.63 24.97 19.32 14.60 10.41
1.2π 178.97 94.17 61.70 44.50 33.63 24.97 19.32 14.60 10.41

Table 4.4: Influence of the refractory period r and coupling strength l on the time
to synchronization [s] for the network in Figure 4.5(b).

r \ l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2π 81.80 46.60 34.05 27.43 22.39 18.65 16.88 10.36 8.34
0.4π 83.46 48.11 32.80 27.94 21.68 18.84 15.94 10.35 8.36
0.6π 85.83 47.47 32.80 27.81 21.74 18.59 15.76 10.35 8.39
0.8π 85.98 47.90 32.89 27.86 21.70 18.45 15.93 10.35 8.39
1.0π 85.98 47.90 32.89 27.86 21.70 18.45 15.93 10.35 8.39
1.2π 85.98 47.90 32.89 27.86 21.70 18.45 15.93 10.35 8.39

Figure 4.5(b) shows the bidirectional version of the network in Figure 4.5(a).

Table 4.4 presents the time to synchronization for the network in Figure 4.5(b)

when the length of the refractory period and the coupling strength are varied

and each case was simulated and averaged over 100 runs. Initial conditions were

randomly chosen from a uniform distribution. It can be seen that the length of the

refractory period has no effect on the time to synchronization, while an increase in

the coupling strength reduces the time the network takes to reach synchronization.
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Table 4.5: Influence of the refractory period r and coupling strength l on the time
to synchronization [s] for the network in Figure 4.5(c).

r \ l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2π 25.47 15.15 10.57 8.32 6.53 5.06 4.02 2.98 2.04
0.4π 27.16 16.03 11.15 8.40 6.53 5.06 4.02 2.98 2.04
0.6π 28.17 16.03 11.15 8.40 6.53 5.06 4.02 2.98 2.04
0.8π 28.17 16.03 11.15 8.40 6.53 5.06 4.02 2.98 2.04
1.0π 28.17 16.03 11.15 8.40 6.53 5.06 4.02 2.98 2.04
1.2π 28.17 16.03 11.15 8.40 6.53 5.06 4.02 2.98 2.04

Finally, Figure 4.5(c) shows an all-to-all connected 8-nodes network. Table 4.5

presents the time to synchronization for the network in Figure 4.5(c) when the

length of the refractory period and the coupling strength are varied and each sce-

nario was simulated and averaged over 100 runs. Initial conditions were randomly

chosen from a uniform distribution. It can be seen that the length of the refrac-

tory period has no effect on the time to synchronization, while an increase in the

coupling strength reduces the time the network takes to reach synchronization.

Results presented in Tables 4.3, 4.4 and 4.5 suggest that using a higher cou-

pling strength is the best choice to obtain the lowest time to synchronization as

possible. Similarly, the largest possible refractory period should be used since it

does not affect the time to synchronization and it can reduce the energy consumed

in the synchronization process. An important fact to note is that highly con-

nected networks, all-to-all networks as the extreme case, present a lower time to

synchronization.
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Table 4.6: Influence of the refractory period r and coupling strength l on the time
to synchronization [s] for the faulty network in Figure 4.6(a).

r \ l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2π 148.29 73.26 48.33 35.99 28.19 23.12 19.72 16.59 13.42
0.4π 149.27 74.23 48.23 36.01 28.78 23.06 19.77 16.87 13.10
0.6π 149.29 74.19 48.20 36.03 28.66 23.01 19.79 16.63 13.97
0.8π 148.41 73.44 48.20 36.03 28.06 23.01 19.79 16.45 13.92
1.0π 149.25 74.33 48.20 36.03 28.81 23.01 19.79 16.45 13.92
1.2π 149.31 74.19 48.20 36.03 28.66 23.01 19.79 16.45 13.92

To complement the simulations previously conducted, we consider a second

set of networks that are shown in Figure 4.6. Figure 4.6(a) shows the 8-node

bidirectional network in Figure 4.5(b) with a permanent link failure that makes

node 2 to have only one in-neighbor. Table 4.6 presents the time to synchronization

for the faulty network in Figure 4.6(a) when the length of the refractory period and

the coupling strength are varied and each scenario is simulated and averaged over

100 runs. Initial conditions were randomly chosen from a uniform distribution.

Once again, it can be seen that the length of the refractory period has no effect

on the time to synchronization, while an increase in the coupling strength reduces

the time the network takes to reach synchronization. However, the results are

comparable to the ones shown in Table 4.3, i.e., for the unidirectional network in

Figure 4.5(a). This fact suggests that the time to synchronization is related to

the indegree of the network. An analytical argument for this fact can be found in

[101].
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Figure 4.6: Networks used in the numerical simulations. (a): Bidirectional 8-node
network with a permanent fault in one link; (b)-(c): unconnected complementary
networks, switching between the two gives a connected network .

Figures 4.6(b) and 4.6(c) show an 8-nodes bidirectional network with discon-

nected communication topology. However, if the network switches continuously

between the communication topologies shown, the union is connected. An analyt-

ical argument that ensures synchronization for switching networks with connected

union graph can be found in [101]. To show that this is indeed the case, we con-

ducted simulations of the switching network in Figures 4.6(b)-4.6(c). Table 4.7

presents the time to synchronization when the length of the refractory period and

the coupling strength are varied and each setup is simulated and averaged over

100 runs. Initial conditions were randomly chosen from a uniform distribution.

Results show that the length of the refractory period has no effect on the time to

synchronization, while an increase in the coupling strength reduces the time the

network takes to reach synchronization. It should be noted that the results are
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Table 4.7: Influence of the refractory period r and coupling strength l on the
time to synchronization [s] for the switching network shown in Figures 4.6(b) and
4.6(c).

r \ l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2π 172.46 94.58 65.38 50.60 42.65 33.95 31.51 23.86 19.17
0.4π 176.42 91.87 67.55 51.74 39.00 34.68 31.35 23.07 18.35
0.6π 178.14 94.03 67.79 50.86 39.00 34.09 30.75 22.20 18.09
0.8π 178.23 94.43 67.91 51.05 39.13 34.21 30.79 22.06 18.37
1.0π 178.23 94.43 67.91 51.05 39.13 34.21 30.79 22.06 18.37
1.2π 178.23 94.43 67.91 51.05 39.13 34.21 30.79 22.06 18.37

comparable to the ones shown in Table 4.3, i.e., for the unidirectional network

in Figure 4.5(a). This is reasonable since at each time instant every node in the

network has only one in-neighbor.

To show the potential of our protocol, we conducted simulations using the state-

of-the-art protocol FTSP and compared the results against our protocol. Table 4.8

shows the results in terms of the network skew and the energy consumed during the

synchronization process. We fixed the coupling strength as l = 0.9, the refractory

period as r = 1.2π, and conduct 100 runs for each network. Initial conditions were

randomly chosen from a uniform distribution. The results show that our protocol

outperforms FTSP in all the simulated scenarios for both synchronization error and

energy consumption. Taking into account that FTSP presents a synchronization

error that grows exponentially with the size of the network [53], and that in the

other hand, our protocol is naturally scalable and hence the error is independent
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Table 4.8: Comparison of network skew and energy consumption between the
PCO-protocol and FTSP for different network topologies.

Topology Figure 4.5(a) Figure 4.5(b) Figure 4.5(c) Figure 4.6(a) Figure 4.6(b) & 4.6(c)
Protocol PCO FTSP PCO FTSP PCO FTSP PCO FTSP PCO FTSP

Network skew [µs] 20.23 21.20 11.94 13.60 1.09 3.00 9.47 20.19 11.70 13.78
Energy consumption [mJ] 4.16 11.33 3.35 7.19 0.81 2.08 5.56 10.56 7.34 15.71

of the size of the network, results in Table 4.8 indicate that our protocol is suitable

for modern large-scale wireless sensor networks.

To show the applicability of the synchronization protocol in more general mobile

networks, we tested our algorithm on a mobile network using the random waypoint

mobility model [9, 10, 84], which is the most used mobility model in the networking

community. Figure 4.7 illustrates the operating principle of the random waypoint

mobility model. At startup, each mobile node selects a new destination position at

random and moves at constant speed following a straight line. Once a node reaches

the target position, it remains there for a predetermined pause time. When the

pause time has elapsed, the node selects a new position and repeats the process.

The network under study is formed by 9 nodes, whose initial distribution and

interaction topology is shown in Figure 4.8. All the nodes were given the same

transmission range of 250m. For the first set of simulations we fix nodes 5, 6,

and 7; while the others are free to move following the random waypoint mobility

model. Table 4.9 presents the time to synchronization averaged over 100 runs when
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Figure 4.7: Illustration of the random waypoint mobility model for a 9-node mo-
bile network. At a given time instant (left), mobile nodes (in red) pick a destination
at random (middle) and then move to the destination at constant speed following a
straight line (right). The process is repeated after a predetermined pause interval.

the length of the refractory period varies. It can be seen that the length of the

refractory period has no effect on the time to synchronization.

For the second set of simulations, we start with the positions given in Fig-

ure 4.8 and consider each sensor static. We then enable mobility to each sensor

one by one until all 9 sensors are able to move following the random waypoint

mobility model. Table 4.10 shows the time to synchronization averaged over 100

runs for each case. It can be seen that as the number of mobile nodes increases,

the time to synchronization decreases, which suggests that mobility facilitates the

synchronization process. It should be noted, however, that the nodes distribution

resulting from the random waypoint mobility model is biased towards the center

of the deployment region [10, 84], which implies that mobile nodes tend to group

in the center and create a highly connected network.
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Figure 4.8: Mobile network used in the numerical simulations and the initial
communication topology.

Table 4.9: Influence of the refractory period on the time to synchronization [s]
for the mobile network in Figure 4.8.

Refractory period l 0.2π 0.4π 0.6π 0.8π 1.0π 1.2π
Time to synchronization [s] 142.27 142.25 142.25 142.25 142.25 142.25

Table 4.10: Influence of mobility on the time to synchronization [s] for the mobile
network in Figure 4.8.

Number of mobile nodes 1 2 3 4 5 6 7 8 9
Time to synchronization [s] 290.91 279.73 260.30 244.18 175.46 174.52 174.52 153.56 136.10
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4.4.3 Decentralized Synchronization over an Unreliable Net-

work

The assumption of reliable communication at all times is somewhat difficult to

achieve in a real deployment of a sensor network. To test our protocol in a more

realistic scenario, we conducted simulations over an unreliable wireless network

where each transmission has an associated probability of successful delivery p. For

these simulations, we also choose initial conditions from a uniform distribution in

the interval [0, 2π]. No initial flooding was carried out; therefore, conditions in

Theorem 4.2 hold and we will be looking at the probability of synchronization in

a variety of scenarios depending on the number of in-neighbors |N i−|, the value of

p, and the length of the refractory period r.

For all the following simulations, we used the static grid network of 121 nodes

shown in Figure 4.9. Additionally, we consider 79 mobile nodes whose initial

positions are randomly chosen from a uniform distribution. Considering that each

node is equipped with an omnidirectional antenna with a transmission range of

40m, the probability of synchronization is larger than 0.999.

For the first set of simulations, we consider a wireless network with p = 1, i.e.,

reliable communication. Table 4.11 presents the simulation results averaged over

10000 runs when the length of the refractory period is varied from 0.1π to 0.5π.
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Figure 4.9: Grid static network used in the simulations over an unreliable net-
work. Nodes are evenly placed keeping a distance of 10m with their closest neighbor
in both horizontal and vertical directions.

Table 4.11: Influence of the refractory period on the probability of
synchronization.

Refractory period r 0.1π 0.2π 0.3π 0.4π 0.5π
Fraction of synchronized runs 1.00 1.00 1.00 1.00 1.00

Results show that the length of the refractory period mildly affects the probability

of synchronization, as predicted by Theorem 4.2.

For the second set of simulations, we consider an unreliable network with p =

0.9. Table 4.12 presents the simulation results averaged over 10000 runs when the

length of the refractory period varies from 0.1π to 0.5π. Results show that the
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Table 4.12: Influence of the refractory period on the probability of synchroniza-
tion for an unreliable network with p = 0.9.

Refractory period r 0.1π 0.15π 0.2π 0.25π 0.3π
Fraction of synchronized runs 0.9987 0.9987 0.9981 0.9982 0.9985

Table 4.13: Probability and time to synchronization for different link reliabilities.

Probability p 0.9 0.85 0.8 0.75 0.7
Fraction of synchronized runs 1.0 1.0 1.0 1.0 1.0
Time to synchronization [s] 7.75 12.96 18.57 23.97 44.74

length of the refractory period mildly affects the probability of synchronization

despite the network being unreliable.

For the following simulations, we removed the 79 mobile nodes and then the

network under analysis is the 121-node grid network in Figure 4.9. We first study

the influence of link reliability on the probability and time to synchronization.

Table 4.13 presents the simulation results averaged over 1000 runs. It can be

seen that the network synchronizes in all cases, yet the time it takes to reach

synchronization increases with a decrease in the link reliabilities.

To illustrate the effect of the number of neighbors on the probability and time to

synchronization, we vary the transmission range of the nodes. Table 4.14 shows the

simulations results averaged over 10000 runs when the transmission range varies

from 36.1m to 72.2m. The results show that as the transmission range is increased,

the network synchronizes faster.
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Table 4.14: Time to synchronization for different transmission ranges and network
indegrees.

Transmission range [m] 36.1 45.1 54.1 63.1 72.2
Indegree 13 22 30 30 49

Fraction of synchronized runs 1.0 1.0 1.0 1.0 1.0
Time to synchronization [s] 3.27 3.08 2.34 2.15 1.82

Table 4.15: Time to synchronization for different network sizes.

Network size 11 × 11 10 × 10 9 × 9 8 × 8 7 × 7 6 × 6
Fraction of synchronized runs 1.0 1.0 1.0 1.0 1.0 1.0
Time to synchronization [s] 3.27 2.48 1.67 1.21 1.06 0.96

Finally, we explore the effect of the network size on the probability and time

to synchronization. Table 4.15 presents the simulation results averaged over 10000

runs when the network size is varied from 121 to 36 nodes. It can be seen that the

network synchronizes faster as the size of the network is reduced.

The simulations presented indicate that the protocol behaves consistently with

the available theoretical results. Moreover, for cases when the assumptions do

not hold, the PCO-based protocol still synchronizes the network. Motivated by

the simulation results, we implemented the protocol in real hardware to test the

performance in sensors.
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4.5 Pilot Implementation in Gumstix Overo De-

velopment Boards

To test the performance of the protocol in a real environment, we implemented

the protocol in a testbed consisting of 3 Gumstix development boards [39]. The

Gumstix Overo AirSTORM computer-on-module board is based on the Texas In-

struments Sitara AM3703 Processor 800MHz ARM Cortex-A8 microprocessor. It

is able to run several Linux distributions and it has an integrated 2×2 wireless

802.11-Bluetooth chipset. It is 17mm x 58mm x 4.2mm in size and its power con-

sumption is typically less than 1W at full operation. Figure 4.10 shows the boards

used in the evaluation.

The protocol was coded in user space at the application layer using a phase

counter that is incremented at constant frequency. Pulses are simulated using

UDP datagrams that are broadcasted after a counter overflow event. The source

code used in the implementation of the protocol in the Gumstix boards is given in

Appendix B.

Our objective is to use the pulse-coupled protocol to synchronize a 3-board net-

work, while achieving a collective period of 1s. Since in a real implementation there

are processing and transmission delays, the natural period needs to be reduced to
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Figure 4.10: Gumstix Airstorm Overo development boards used in the pilot
evaluation.

compensate them. We found experimentally that a natural period of 0.998s yields

a collective period of 1s when the boards are coupled to form a network.

The stability of the natural period is an issue in a real hardware implementation

since jitter is always present. In order to characterize the jitter present in the

natural period, we run the boards uncoupled for approximately 1 hour and record

the firing times to calculate the natural period. Results are given in Figure 4.11(a)

where it can be seen that over 80% of the samples are within ±0.125ms of the

targeted natural period T = 0.998s.
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(a) (b)

Figure 4.11: Results of the implementation in Gumstix boards. (a): Jitter
present in the free running period; (b): Synchronization error for a 3-board all-to-
all network.

Table 4.16 details the natural period experiments for the 3 boards. Results show

an identical average natural period for the three boards up to the microsecond level

and a standard deviation of less than 0.135 ms.

To evaluate the synchronization accuracy achieved in a 3-board all-to-all net-

work, we run the coupled system for approximately 1 hour and record the firing

times of each board. Comparing the firing times gives the actual skew in the net-

work. Figure 4.11(b) presents the histogram of the recorded network skew. It can

be seen that over 70% or the recorded samples are below 1.75ms with an average

global skew of 1.72ms. It is important to note that, although we consider the

global skew acceptable, the results are significantly larger than the simulation re-

sults obtained in the previous section (cf. Table 4.8). We believe that the reason is
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Table 4.16: Analysis of the natural period for the three Gumstix boards used in
the implementation.

Average Period [s] Standard Deviation [ms] Total Samples
Node A 0.99789 0.1317 3600
Node B 0.99789 0.1345 3592
Node C 0.99789 0.1322 3614

the (non-deterministic) processing time taken from reception to the actual update

of the counter.

Table 4.17 details the collective period results for the 3-board all-to-all network.

Results show an identical average collective period for the three boards up to the

hundreds of microseconds level and a standard deviation of less than 1.3 ms. It

should be noted that, although the average collective period is close to the target

T = 1s, the standard deviation is significantly larger than the one obtained in the

uncoupled case. A possible cause is the inevitable drop of some pulses. In fact, it

can be seen in the fourth column in Table 4.17 that the number of received pulses

for a given board is not equal to the sum of packets sent by the other two boards.

This implies that some pulses were lost during the synchronization process thus

affecting the collective period since in practice packet losses mean no coupling.

With our available testbed of 3 boards, besides the simplest all-to-all network

we can also obtain a line network. We placed the boards to obtain a line commu-

nication topology (board A-board B-board C) and run the algorithm for approxi-
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Table 4.17: Analysis of the collective period for a 3-board all-to-all network.

Average Period [s] Standard Deviation [ms] Pulses sent / received
Node A 1.000313 1.2392 3509 / 6369
Node B 1.000311 1.2302 3501 / 6402
Node C 1.000305 1.2872 3488 / 6278

Figure 4.12: Synchronization error for a 3-board line network.

mately 1.5 hours and record the firing times of each board. Comparing the firing

times gives the actual skew in the network. Figure 4.12 presents the histogram of

the recorded network skew. It can be seen that over 70% or the recorded samples

are below 1.75ms with an average global skew of 1.89ms. It should be noted that

the line topology is affected by the hidden terminal problem [93], which affects the

stability of the collective period, as well as the network skew.

Table 4.18 details the collective period results for the 3-board line network.

Results show an identical average collective period for the three boards up to the
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Table 4.18: Analysis of the collective period for a 3-board line network.

Average Period [s] Standard Deviation [ms] Pulses sent / received
Node A 0.999356 1.1078 5330 / 4790
Node B 0.999353 1.5704 5257 / 4353
Node C 0.999361 1.0539 5325 / 5164

hundreds of microseconds level and a standard deviation of less than 1.11 ms for

the outside boards and less than 1.6 ms for the board in the middle. It should be

noted that, although the average collective period is close to the target T = 1s, the

standard deviation is significantly larger than the one obtained in the uncoupled

case. The hidden terminal problem is responsible for the higher standard deviation

in the middle board and the larger difference from the target period with respect

to the all-to-all case. In fact, it can be seen in the fourth column in Table 4.18 that

the number of received pulses for the middle board is much lower than the sum of

packets sent by the other two boards, which is a direct effect of the hidden terminal

problem [93]. The results obtained for the line topology show that in practice the

communication topology impacts the performance of the algorithm, hence care

should be taken when designing the network to avoid complicated topologies such

as those susceptible to the hidden terminal problem.

To improve the performance of the algorithm, the implementation should be

done at a level lower than the user space. For future implementations, we propose
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to develop a kernel time synchronization module to embed the synchronization

protocol in the operating system to have access to more precise time management

functions and to reduce the processing delay present at the user space.

4.6 Pilot Implementation in BMS Acoustic Sen-

sors

To test the performance of our algorithm in a real sensor network, we imple-

mented the algorithm in a network of acoustic sensors provided by BioMimetic

Systems, Inc. [11]. The BioMimetic Systems team has developed a range of ad-

vanced, biologically-inspired acoustic sensor systems for small arms fire detection,

identification, and localization. The core of the Smart Neural Acoustic Processor

(SNAP) technology has been developed over more than a decade of cooperative

research between BMS, Boston University Hearing Research Center, U.S. Army

ARDEC and ARL, DARPA, Office of Naval Research (ONR), and Joint Ground

Robotics Enterprise (JGRE). The SNAP family of sensors is small, lightweight,

low power devices easily configured for various array geometries, platforms, and

acoustic targets. Figure 4.13 shows an schematic of the BMS sensors used in the

evaluation of the algorithm.
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Figure 4.13: Schematic of the BMS acoustic sensors used in the pilot evaluation.

The objective of the tests is to study the performance of the PCO-protocol

under real operating conditions where the acoustic sensors are acquiring and pro-

cessing acoustic signals, orientation information, and run the synchronization al-

gorithm concurrently. To this end, the BMS team performed tests in a firing range

in two different scenarios. In the first setup, a single shooter fires single shots

periodically and hence the sensors are subject to an average processing load. In

the second setup, multiple shooters fire single and multiple shots and hence the

sensors are subject to a severe processing load.

In the first test, we run the sensors uncoupled to study the free running period in

both scenarios: average and severe processing load. Figure 4.15 shows the observed

jitter present in the free running period. It can be seen that under an average

processing load (Figure 4.14(a)) approximately 70% of the samples are within
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(a) (b)

Figure 4.14: Results of the implementation in BMS sensors. (a): Jitter present
in the free running period under average processing load; (b): Jitter present in the
free running period under severe processing load.

±8ms of the target period, which is acceptable yet much higher than the results

obtained in the Gumstix boards (cf. Figure 4.11(a)). When the sensors are faced

with a severe processing load (Figure 4.14(b)), we also obtained approximately

70% of the samples within ±8ms of the target period; however, the proportion

of samples in the higher end (100ms) greatly increases with an increase in the

processing load. Increasing the processing load increases the jitter since the PCO-

algorithm is not given the proper amount of resources for correct operation.

In the second test, we study the synchronization error of a 4-sensors all-to-all

network in both scenarios: average and severe processing load. Figure 4.15 shows

the results. Under an average processing load (Figure 4.15(a)) approximately 50%

of the samples are below 6.75ms while less than 10% are above 10ms. Note that the

network skew is much higher than the results obtained in the Gumstix boards (cf.
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(a) (b)

Figure 4.15: Synchronization results of the implementation in BMS sensors. (a):
Synchronization error for a 4-sensors all-to-all network under average processing
load; (b): Synchronization error for a 4-sensors all-to-all network under severe
processing load.

Figure 4.11(b)). When the processing load is severe (Figure 4.15(b)), the samples

below 6.75ms reduce to less than 40% while the samples above 10ms increase to

more than 20%. As it was expected, based on the jitter results, a higher processing

load increases the network skew.

The fact that a high processing load in the sensors damages the performance of

the synchronization algorithm supports our plan to develop a kernel time synchro-

nization module, to embed the synchronization protocol in the operating system

thus ensuring the proper amount of resources.

The favorable results obtained motivates us to implement the PCO-protocol

on a real practical system. As an example, in the next Chapter we implement the

PCO-protocol on an acoustic event detection system.
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Chapter 5

Pulse-Coupled Time
Synchronization of Acoustic Event
Detection Systems based on
Mobile Wireless Sensor Networks

In this Chapter we provide an application example of our PCO-based syn-

chronization protocol to acoustic event detection systems based on wireless sensor

networks, whose localization accuracy dramatically deteriorates if the synchroniza-

tion error is high.

5.1 Motivation

Localization systems based on fusing information from a collection of sensors

have captured the attention of researchers due to their simple yet powerful operat-

ing principles. In sensor fusion localization algorithms, the first element is the data

Portions of this Chapter have been submitted for publication to IEEE Access [73].
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association, where precise timestamps are required to ensure accurate localization.

This poses the challenge of having an accurate common time notion among sensors.

The concept of precision, however, is application-dependent and can vary from less

than a microsecond up to seconds. Recently, several synchronization algorithms

for sensor networks have been designed to provide a general framework for synchro-

nization. The packet-based synchronization strategies (cf. Chapter 4) such as RBS

[28], TPSN [32], FTSP [56], GTSP [89], PulseSync [53], and Glossy [30], have been

recognized as powerful alternatives for performing periodic time synchronization in

sensor networks and currently comprise the state-of-the-art standards, despite the

existence of well known drawbacks (cf. Chapter 4). An appealing alternative ap-

proach to periodic time synchronization is post facto synchronization [80], in which

the network synchronizes after a significant event has occurred thus reducing the

network traffic needed in traditional periodic synchronization strategies. However,

post facto synchronization requires either the existence of a third party leader

node, or the existence and maintaining of a skew table and a routing protocol [80].

These extra requirements on both the network and the processing capabilities of

the sensor nodes make the scalability of post facto synchronization difficult in an

unreliable network of low capability nodes. For these reasons, pulse-coupled syn-

chronization appears to be the natural option for performing time synchronization

in an unreliable wireless sensor network.
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Although pulse-coupled synchronization was first introduced concurrently with

packet-based strategies, only recently has its applicability been explored in detail,

since the packet-exchanging nature of communication networks facilitates the ap-

plication of packet-based synchronization protocols. Nonetheless, the progress in

radio technology and network standards has made pulse-coupled synchronization

feasible to implement using ultra-wide bandwidth pulses, or preambles in a IEEE

802.11 network [101]. Moreover, by transmitting simple identical pulses instead of

full length packet messages, the pulse-based synchronization strategy eliminates

the imprecision due to high stack layer delays, protocol processing, or software

implementation arising in traditional packet-based synchronization strategies. In

addition, pulse-coupled synchronization considers each received pulse identically,

since exchanged pulses are independent of their origin [43, 76], and is inherently a

distributed strategy that does not require the selection of a root, or leader, node

to flood the network with its local time. In contrast, in pulse-coupled synchroniza-

tion, the common time of the network is agreed by all the participating nodes via

simple local interactions, which makes synchronization robust to disconnections of

any node. Despite the recent re-emergence of pulse-coupled synchronization, which

has motivated both analytical- [100, 102, 74, 69, 70, 71] and general testbed-based

[43, 76, 94] studies, an application of this technique to a practical functional system

has not been reported yet.
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In this Chapter, we present the application of pulse-coupled synchronization

to an acoustic event detection system designed to locate the source of an acous-

tic event in a two-dimensional space, by using an acoustic-capable wireless sensor

network. The particular acoustic event detection system of interest is inspired by

military applications on locating sources of gunfire or explosions by soldier worn

acoustic sensors [97, 17, 33, 81]. Initially, solutions were based on local measure-

ments taken by an array of microphones, which allowed the system to locate the

source based on angle-of-arrival (AoA) measurements. The appearance of sen-

sor networks enabled a networked solution where localization is carried out using

sensor fusion techniques. However, this poses the extra requirement of having a

common time reference. A variety of approaches to tackle both sensor fusion and

time synchronization have been investigated. The system in [97] is formed by a net-

work of multi-channel sensors able to gather time-of-arrival (ToA) as well as AoA

measurements. Fusion is conducted by a central node and time synchronization is

achieved by using the post facto strategy given in [80]. A key assumption is that

acoustic events are sporadic, and thus post facto synchronization allows resource

savings by synchronizing the network only after an event has occurred, rather than

keeping the network in sync all the time. Alternatively, the system presented in

[81] uses single channel sensors that gather ToA measurements and fuses them in

a central unit. It is assumed that each sensor is equipped with a GPS receiver and
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then precise time synchronization is available; the main drawback of this approach

is that the GPS signal needs to be accessible at all times. In this Chapter, local-

ization is performed using ToA measurements from single channel sensors, while

the time synchronization problem is solved using pulse-coupled synchronization.

The particular acoustic event detection system under consideration is a pa-

trolling squadron, meaning that sensors are free to move yet they try to maintain

a given geometric formation at all times. The system is able to implement a vari-

ety of formations and it performs localization using sensor fusion algorithms based

on ToA measurements. Two approaches are proposed to solve the localization

problem, a standard centralized estimator that fuses ToA measurements from all

sensors at a central node, and a novel distributed approach where each sensor in

the network solves a reduced localization problem using only a subset of the ToA

measurements, and then the estimations are fused by means of distributed average

consensus algorithms. The novel distributed approach presented is in line with our

general aim to construct a fully distributed system where both synchronization

and localization are achieved by means of simple interactions between neighboring

sensors. To enable communication in the network, for both synchronization and

measurement sharing, we propose a pure-broadcasting infrastructure-free ah-hoc

network, for which pulse-coupled time synchronization is the natural choice.
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5.2 Sensor Network based Acoustic Event De-

tection Systems

5.2.1 Sensor Network and Formations

The acoustic event detection system is comprised of N identical independent

agents, distributed according to a given configuration, equipped with an acoustic

sensor (microphone), a central processing unit, and a wireless transceiver in charge

of establishing communication between sensors. For simplicity, we consider that

the agents live in a two-dimensional Euclidean space, i.e., R2. The agents act as a

patrolling squadron, meaning that they are free to move yet they try to maintain

a geometric formation at all times, for security, tactical, operational or technical

reasons. Formation maintaining control algorithms are under active study and are

out of the scope of this work; we will assume that the agents are able to maintain

their formation at all times up to a bounded error.

Throughout this Chapter, a graph theoretical formulation of the sensor network

is used to characterize both the geometrical deployment (or formation) and the

communication topology. To this end, we define the set of nodes (or agents) as

V = {1, . . . , N}. The formation is modeled as a weighted undirected graph F =

{V , EF ,AF}, where the edge set is defined as (i, j), (j, i) ∈ EF ⊆ V × V if and

only if there is a distance constraint between nodes i and j. And the weighted
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adjacency matrix AF = [aij] ∈ RN×N
≥0 is such that aij > 0 if and only if (i, j) ∈ EF

and 0 elsewhere. In fact, if aij > 0, it is equal to the value of the distance between

nodes i and j. Similarly, since we will consider identical transmission range, hence

bidirectional communication, the communication topology is also modeled as an

undirected graph R̄ = {V , ĒR, ĀR}, whose adjacency matrix ĀR = [aij] is such

that aij = 1 if and only if (i, j) ∈ ĒR, aii = 1 (self-loops), and 0 elsewhere. The

reader is referred to [35] and [4] for an extensive treatment of the graph theoretical

formulation used.

Note that the localization capabilities (considering perfect synchronization) are

closely related to the geometrical deployment or formation graph, as will be clear

in the following section, yet synchronization properties depend on the underlying

communication graph induced by the formation and a given transmission range.

We will analyze the interplay between these two graphs when estimating the loca-

tion of the acoustic source.

In the following, let pi ∈ Θ ⊂ R2 be the position of sensor i ∈ V , where Θ is

the region of the space we wish to monitor. Consequently, let P := [p1 . . . pN ]T be

the position vector of the sensor network. We will say that the sensor network is

in formation F if P satisfies all the distance constraints given in AF , and we write

P ∼ F . The characteristics of F and the number of sensors N play a key role

in obtaining an accurate estimation of the location of the acoustic source. It has
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been proven in [108] that ToA based localization systems can locate a source in

R2 if and only if the sensors do not lie on a hyperbola. Moreover, the number of

sensors required to perform single event localization is between 4 and 6. The work

[95] extended the analysis for localization of simultaneous events finding analyti-

cally that a number of 9 sensors is sufficient for correct localization; nonetheless,

it is experimentally conjectured that 8 sensors are enough to solve the problem.

Regarding formations, [12] has identified conditions for optimal sensors’ deploy-

ment when the position of the source is known, while [46] extended the optimal

placement strategy when the source’s position is unknown but a probability dis-

tribution for the position is available. However, when the sensors are placed in

an optimal deployment the source lies in the convex hull of the sensor network,

which is not realistic in the case we are interested since patrolling squads aim to

locate events occurring outside its convex hull. This justifies our decision to not

employ known optimal deployment strategies. The following standing assumption

describes the characteristics of the formations used in this work, which ensures

that the patrolling squad is able to locate the source uniquely at all times.

Assumption 5 The formation graph F is such that if P ∼ F , then the position

vector P defines an identifying sensor set (ISS) [108], i.e., no hyperbola in R2

passes through all components of P . Moreover, F is a globally rigid graph [4], i.e.,

155



Chapter 5. Pulse-Coupled Time Synchronization of Acoustic Event Detection
Systems based on Mobile Wireless Sensor Networks

(a) (b) (c)

Figure 5.1: Illustration of the concept of a globally rigid graph (links represent
the existence of a distance constraint); (a): a 4-node graph that is not rigid since
it can be deformed smoothly to obtain the structure shown in (b); (c): a 4-node
rigid graph that cannot be deformed.

if two generic position vectors are such that P1 ∼ F and P2 ∼ F , then P1 and P2

differ only by a combination of translation, rotation, and reflection in R2.

Figure 5.1 illustrates the concept of a globally rigid graph. Links represent the

existence of a distance constraint. The graph in Figure 5.1(a) is not rigid since it

can be deformed without violating any distance constraint to obtain the structure

shown in Figure 5.1(b). On the other hand, Figure 5.1(c) shows a globally rigid

graph that cannot be deformed without violating a distance constraint. Hence, if

two generic position vectors satisfy the distance constraints for Figure 5.1(c), they

differ only by a combination of translation, rotation, and reflection in R2.

5.2.2 Centralized Localization

We focus on the localization of the source of acoustic events using as the primary

information variable the time-of-arrival (ToA) of the blast wave, emitted by an

acoustic source located at S ∈ R2, to the sensor network. The strategy is to utilize
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the arrival of the blast to estimate the relative position of the acoustic source

with respect to the sensor network by combining measurements from the different

sensors. Figure 5.2 shows a schematic of the situation, where an acoustic source

emits a blast wave that propagates spherically at the speed of sound. The measured

ToA of the blast, originated at S at a given time t0, at a sensor i, located at pi

with radial distance r to the acoustic source, is given by:

ToAi = t0 +
r

c
+ ηi = t0 +

d(S, pi)

c
+ ηi (5.1)

where c is the speed of sound, ηi is the measurement noise (accounting for the

synchronization error between sensors and assumed to be a zero-mean white noise

with variance σ2), and d(x, y) := ||x−y||2 is the Euclidean distance in R2. In order

to accurately determine the position of the acoustic source S, the measurement of

a single sensor is insufficient, thus localization has to be performed by combining

the measurements of the whole sensor network. Since the time at which the blast

originated, t0, is irrelevant, and furthermore it represents an additional unknown

variable, localization can be performed by considering the time-difference-of-arrival

(TDoA) between sensor i and a chosen reference sensor rf ∈ V defined as:

TDoAi = ToAi − ToArf =
d(S, pi)− d(S, prf )

c
+ ηirf (5.2)
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where ηirf is the zero-mean difference measurement noise with variance 2σ2. Choos-

ing, w.l.o.g., sensor 1 as reference, the maximum likelihood estimator (MLE) for

the position of the acoustic source is given by [77]:

Ŝ = arg min
z∈Θ

N∑
i=2

(
TDoAi −

(
d(z, pi)

c
− d(z, p1)

c

))2

(5.3)

which corresponds to the least squares minimization of ηirf . The optimization

problem (5.3) is nonlinear and nonconvex, which makes it difficult to find the

optimal solution. Several approaches for efficiently solving the MLE problem (5.3)

have been developed with variable potential. An example is the second-order cone

programming (SOCP) relaxation [109], which by introducing auxiliary variables

and relaxing equality constrains is able to transform (5.3) into a quadratic convex

problem. However, this approach suffers from a restrictive convex hull problem,

i.e., the optimal solution lies within the convex hull of the sensors, which is not a

problem when the sensors are deployed following an optimal configuration in the

sense of [12, 46]; yet it is a limitation in the general case. An efficient approach that

can avoid the convex hull problem is semidefinite program (SDP) relaxation, which

has been proven to be effective in solving (5.3), even when there is uncertainty in

the sensors’ positions [109]. Recently, a two-step least squares algorithm, also

based on semidefinite relaxation, was proposed to solve the localization problem
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Figure 5.2: Propagation of the blast wave from the acoustic source to the sensor
network. The blast is assumed to be propagating at the speed of sound c.

using directly the ToA measurements [107] to avoid the correlated noise terms that

appear after subtracting the ToA measurements to obtain the TDoAs [95].

In practice, however, there is an unavoidable uncertainty associated with the

position pi, due to the intrinsic difficulty of maintaining a tight formation given

that measurement/localization systems are inaccurate. Therefore, position un-

certainties should be included in the formulation of (5.3) and then the estimator

becomes:

Ŝ = arg min
z∈Θ

N∑
i=2

(
TDoAi −

(
d(z, p̂i)

c
− d(z, p̂1)

c

))2

(5.4)

where p̂i := pi + εi is the estimated position of node i with εi ∈ [−p̄, p̄] being the

bounded position error.

New centralized sensor fusion techniques for solving the acoustic source local-

ization problem using extra measurements are currently under active development

[17, 33, 81, 38], however, they are out of the scope of this study.
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5.2.3 Distributed Localization

In the previous section, the solution of the full information localization problem

was stated. It should be noted that in the full information problem, the underlying

communication network has no apparent effect since every sensor node needs to

know all the ToA measurements, which implies some sort of flooding or all-to-all

communication. However, in a fully distributed system a given sensor node only

counts with the subset of ToA measurements gathered by its neighbor nodes Ni

and flooding the network should be avoided. Hence, the communication network

will play a crucial role in the distributed problem. In the rest of this section,

we present the distributed localization problem where every sensor solves a local

information problem and then local solutions are combined by means of averaging

to obtain the global solution.

Based on the derivations made in the previous section, we can write the esti-

mator for node i as:

S̄i = arg min
z∈Θ

∑
j∈Ni

(
TDoAj −

(
d(z, p̂j)

c
− d(z, p̂i)

c

))2

(5.5)

Note that (5.5) only uses information from neighbor nodes to estimate the loca-

tion of the source. To ensure feasibility of the solution, we make the following

assumption on the communication network.
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Assumption 6 For every node i ∈ V such that P ∼ F , the position vector cor-

responding to the sub-formation with nodes {i} ∪ Ni defines an identifying sensor

set. Consequently, |Ni| ≥ 3 holds for all i in V [108].

Remark 5.1 Note that if F is such that when P ∼ F , P defines an identifying

sensor set, then for all i there always exists a set Ni ⊂ V, such that the sub-

formation with nodes {i}∪Ni defines an identifying sensor set. Clearly, this holds

trivially when Ni = V \ {i}.

Moreover, to ensure that the distributed averaging algorithm presented in the

following converges properly, we make the following assumptions.

Assumption 7 The communication delay is small enough to ensure that data

transmitted by a node is received by all its destination nodes before any other node

starts a new transmission. Moreover, there exists a positive finite T such that in

a time interval of length T , every node broadcasts exactly once.

Remark 5.2 Note that the radio coverage of a sensor is usually short, hence As-

sumption 7 is not restrictive. Moreover, collision avoidance mechanisms will ensure

that Assumption 7 holds.

Assumption 8 Every sensor i ∈ V knows its neighbor set Ni and, consequently,

the number of neighbors it has |Ni|.
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Remark 5.3 Note that since the formation is known before deployment and, more-

over, it plays a critical role in localization, it is reasonable to assume that, given a

transmission range, every node knows how many nodes it can reach.

In order to achieve a common estimate, nodes need to share and combine their

local measurements. To this end, we consider a pure-broadcasting infrastructure-

free ad-hoc network to establish communication. Using this network, each node

will broadcast its local information every time a local timer xi reaches a threshold

value. Note that collision-avoidance mechanisms will ensure that only one node

broadcasts at a given time. To average the local estimates S̄i, we propose an

averaging consensus algorithm inspired by asynchronous double linear iterations

[54] that combines local estimates as follows.

Each node has two localization variables Si and zi, which initializes as Si = S̄i

and zi = 1, and a timer variable xi that is initialized as xi = 0 and increased at a

fixed rate. When the local timer reaches a threshold value xi = xth, node i updates

its localization variables and broadcasts them. Upon reception, every node j ∈ Ni

uses the received information to update its own localization variables. The update

of the localization variables of the whole network, after an event xi = xth, is given
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by the following updating law:

S+
i =

Si
1 + |Ni|

(5.6a)

S+
j = Sj + aij

Si
1 + |Ni|

(5.6b)

z+
i =

zi
1 + |Ni|

(5.6c)

z+
j = zj + aij

zi
1 + |Ni|

(5.6d)

where aij is the corresponding entry of AG. The local estimation of node i is given

at any time instant by Ŝi = Si
zi

. If every node updates its local estimate following

the previous rule, the local estimations Ŝi will converge to the average of the initial

estimates S̄i. To see this fact, we can model the system as a hybrid system and

study its asymptotic behavior as follows.

Define three state variables per node Si, zi and xi and stack them in a vector

to obtain the vectors S, z and x, which contain the states of every node. Define

the flow set as C := RN ×RN ×RN
≥0. The continuous time dynamics are given by:

Ṡ = 0 (5.7a)

ż = 0 (S, z, x) ∈ C (5.7b)

ẋ = w (5.7c)
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where w > 0 is the frequency of the timer xi. Similarly, we define the jump set

as Di := {(S, z, x) ∈ C : xi ≥ xth}, D := ∪i∈VDi and the jump map is given by

x+
i = 0 and (5.6), which can be written in matrix form as:

S+ = AiS (5.8a)

z+ = Aiz (S, z, x) ∈ Di (5.8b)

x+ = (IN − diag(ei))x (5.8c)

where ei is the ith canonical vector and Ai is the N ×N identity matrix with the

ith column replaced by the ith column of the adjacency matrix AG scaled by 1
1+|Ni| .

In the resulting system, the localization variables remain constant and the timer

variables are incremented at a constant rate during flows, and once a timer variable

reaches the limit, the system jumps, i.e., the localization variables are updated.

To show that the local estimates converge to the average, we only need to focus

on the asymptotic behavior of the underlying discrete time dynamics, i.e., Equation

(5.8), since during flows the localization variables remain unchanged.

At this point it is important to note that the Ai matrices are column stochastic,

i.e., Ai has non-negative entries and column sum equal to 1, with positive diagonal

entries. Moreover, from Assumption 7 we know that every node broadcasts once in

a finite interval of time, in particular we can take T = xth, and then we can analyze
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the system after a complete round of broadcasts has taken place. In the following,

let PN be the set of permutations of the product of the N matrices Ai. Since both

column stochastic and positive diagonal matrices are closed under multiplication,

the elements of PN are column stochastic matrices with positive diagonal entries.

We can then write the update of the localization variables after N broadcasts, or

equivalently, after T units of ordinary time as:

S+N = PiS (5.9a)

z+N = Piz (5.9b)

where Pi ∈ PN and the +N superscript refers to N updates (or after N jumps

of the hybrid system). Since Pi corresponds to the product of N matrices Ai in

arbitrary order, its underlying graph is the composition of the N graphs induced

by the Ai matrices [19]. Since the composition graph contains the union of the

edges of the individual Ai [19], then for every P ∈ PN its underlying graph is

connected. It is a well known fact from consensus theory that an infinite product

of column stochastic matrices with positive diagonal and connected underlying

graph converges exponentially fast to a matrix of the form γ1T [19], irrespective of

the order, although the value of γ might depend on the order. Then we have that
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as time goes to infinity:

S → γ1T S̄ =

(∑
i∈V

S̄i

)
γ (5.10a)

z → γ1T1 = Nγ (5.10b)

and hence for each sensor:

Si
zi

=
γi
∑

i∈V S̄i

γiN
=

1

N

∑
i∈V

S̄i (5.11)

Since the convergence is asymptotic, in practice we need to define a tolerance

ε to determine when the localization variables have reached their final value.

Remark 5.4 It should be noted that solutions to hybrid systems, i.e., hybrid arcs,

live in a hybrid time domain. Even though the time domain has not appeared

explicitly in the previous analysis, its hybrid nature is important for the results.

Hybrid time domains are a natural tool to deal with asynchronous systems that

experience jumps at non-constant time intervals, as the one under study, since

they keep track of both ordinary time and number of jumps independently.

We can summarize the previous strategy in the form of a protocol that every

node in the network implements upon detecting an acoustic event.
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Protocol 5.1 Upon detecting an acoustic event, each sensor i broadcasts its ToA

and gathers ToA measurements from its neighbors, obtains S̄i by solving its local

localization problem (5.5), initializes its localization variables as: Si = S̄i and

zi = 1, and starts monitoring a timer variable xi.

1. At each local timer event xi = xth, sensor i updates its localization variables

using the rule:

S+
i =

Si
1 + |Ni|

(5.12a)

z+
i =

zi
1 + |Ni|

(5.12b)

then, it broadcasts its updated values S+
i and z+

i , and restarts the timer xi

2. Upon reception of a set of localization variables
Sj

1+|Nj | and
zj

1+|Nj | from a

neighboring node j, node i updates its localization variables using the rule:

S+
i = Si +

Sj
1 + |Nj|

(5.13a)

z+
i = zi +

zj
1 + |Nj|

(5.13b)

3. When the tolerance is satisfied, i.e.,
S+
i

z+
i

− Si
zi
< ε, i declares the problem solved

and selects Ŝi = Si
zi

as the location of the acoustic source.

Based on the previous analysis, the following Theorem is introduced.
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Theorem 5.1 Consider a sensor network based acoustic event detection system

deployed in a given formation F . Let Ŝi be the local estimates and S̄i the initial

local estimates obtained by solving (5.5). If Assumptions 6-8 hold and the nodes

implement Protocol 5.1 upon detecting an acoustic event, then

Ŝi → S̄avg :=
1

N

∑
i∈V

S̄i, ∀i ∈ V (5.14)

exponentially fast.

5.2.4 Performance Example

In this work, we consider a particular application of acoustic event detection

systems to gunfire detection, taken from [17]. The acoustic localization of small

arms’ fire relies entirely on the sounds produced by the muzzle blast of the weapon

[8]; hence, a TDoA-based approach is suitable. Figure 5.3 shows the four different

formations that will be analyzed, each of them consisting of 8 sensors. F1 corre-

sponds to a classical wedge formation [17]; F2 corresponds to a quad formation;

F3 corresponds to a symmetric wedge formation; and F4 to a circle formation that

is optimal in the sense of [12, 46] for sources inside the circle. It should be noted

that for a fair comparison, all formations have approximately the same horizontal

length (92m). The objective of this example is to analyze, using simulation, the
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Figure 5.3: Formations used in the evaluation of the acoustic event detection
system consisting of N = 8 sensors each. (a): F1; (b): F2; (c): F3; (d): F4.
Note that distance constraints given are enough to determine a weighted adjacency
matrix AFi such that the formation graph is globally rigid.

localization error induced by the position uncertainty and the ToA error. Simula-

tions were repeated 1000 times per formation, for different (random) position and

ToA error values. The estimated location of the source was determined by solving

(5.4) and (5.5) using the SDP technique described in [109], and using Protocol 5.1

for fusing local estimates in the distributed case.

Error modeling

To model both position and ToA errors, we use a truncated zero mean sym-

metric normal distribution TN(z̄, σ2) with probability density function (pdf) given
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by [50]:

f(z) =


1
σ
φ( zσ )

2Φ( z̄σ )−1
, z ∈ [−z̄, z̄]

0 , z /∈ [−z̄, z̄]

(5.15)

where φ and Φ are the standard normal pdf and cumulative density function (cdf),

respectively. In the following, we will assume that the ToA error ηi follows a

truncated distribution TN(η̄, 1) for all i, j ∈ V . Similarly, we will assume that

both the horizontal position error εix, and the vertical position error εiy follow a

truncated distribution TN(p̄, 1) for all i ∈ V . Note that if εix and εiy are i.i.d

random variables with distribution TN(p̄, 1), then the Euclidean norm, i.e., the

radial position error, follows a truncated Rayleigh distribution, which is consistent

with the position error measured during field tests performed by the US ARMY

RDECOM-ARDEC.

Impact on localization of position uncertainties

To test the impact of position uncertainties on the estimated location of the

acoustic source, simulations were conducted in the absence of synchronization error.

The position error components εix and εiy are modeled as i.i.d random variables

with distribution TN(0.7m, 1m), i.e., a maximum error of 0.7m per component is

assumed, which gives a radial position error of approximately 1m that is consistent

with the order of accuracy of positioning sensors. Figure 5.4 shows centralized
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detection simulations for the four formations in Figure 5.3 when there is a source

of acoustic events (shooter) located at S = (0,−200), it can be seen that despite the

position uncertainties all the four formations are able to locate the source position

accurately. In fact, in all cases the Root-Mean-Square-Error (RMSE) defined as:√
1

1000

∑
d(S, Ŝ)2 presents a value lower than 20m (see Table 5.1, p̄ = 0.7 case for

details), i.e., below 10% of the distance from the shooter to the formation center.

Similarly, Figure 5.5 shows distributed detection simulations for the four formations

of Figure 5.3 and the same shooter location. We used the minimum transmission

range such that Assumption 6 holds, hence each node performs localization using

a subset of the ToA measurements. It can be seen in the figure, that despite the

position uncertainties the system is able to localize the source accurately, with

a RMSE below 17m and, moreover, outperforming the centralized results for all

the formations tested. These localization results, both centralized and distributed,

are considered acceptable for the particular system under analysis and represent a

performance limit for the system with synchronization error.

Impact on localization of synchronization error

To test the impact of the synchronization error on the estimated location of

the acoustic source, for a formation subject to a given level of position uncertainty,

simulations were conducted considering: 1) that the position error components εix
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and εiy are i.i.d random variables with distribution TN(0.7m, 1m); 2) the synchro-

nization errors ηi are i.i.d random variables with distribution TN(0.0025s, 1s) for

the first set of simulations, and TN(0.001s, 1s) for the second set of simulations.

Note that a η̄ = 0.0025s implies that the maximum skew of the network is 0.005s.

Figures 5.6 and 5.7 show centralized and distributed results for the case when

η̄ = 0.0025s; it can be seen that the addition of a synchronization error greatly

deteriorates the performance for all the four formations. Specifically, the RMSE

increases by approximately 50% for the centralized case and by approximately 10%

for the distributed case (see Table 5.1 for details). An interesting fact is that these

results suggest that the consensus based distributed approach is more robust to

synchronization errors than the classical centralized approach. However, the re-

sults obtained when η̄ = 0.0025s are unacceptable in both cases, since the RMSE

is larger than 10% of the distance from source to formation center. The fact that

a network skew bounded by 0.005s produces a level of deterioration in localization

performance that makes the system unusable, stresses the necessity of counting

with a precise synchronization algorithm able to achieve a level of accuracy be-

low this bound. Figures 5.8 and 5.9 show localization results when η̄ = 0.001s

for the centralized and distributed cases. In this case, detection results are very

similar to the case when there is no synchronization error for both centralized and

distributed localization (see Table 5.1 for details). These results suggest that a
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(a) (b) (c) (d)

Figure 5.4: Results of the centralized acoustic source location estimation when p̄
is 0.7m and the true position is S = (0m,−200m) for 1000 simulated events. Blue
markers denote estimated locations while the red dot denote the actual source
position; (a): F1; (b): F2; (c): F3; (d): F4.

synchronization error bounded near or below 0.001s should be sufficient for this

particular application, i.e., a network skew below 0.002s.

Table 5.1 summarizes centralized and distributed localization results obtained

in the 3 cases analyzed in this section (p̄ = 0.7m, η̄ = 0.001s, and η̄ = 0.0025s)

in terms of mean and standard deviation of the component errors defined as x :=

Sx−Ŝx and y := Sy−Ŝy, as well as in terms of the RMSE. As previously mentioned,

performance deteriorates as errors increase for all formations. F1, F3, and F4 show

comparable performance, while the quad formation F2 presents the poorest result

in all cases.
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(a) (b) (c) (d)

Figure 5.5: Results of the distributed acoustic source location estimation when
p̄ is 0.7m and the true position is S = (0m,−200m) for 1000 simulated events.
Blue markers denote estimated locations while the red dot denote the actual source
position; (a): F1; (b): F2; (c): F3; (d): F4.

(a) (b) (c) (d)

Figure 5.6: Results of the centralized acoustic source location estimation when
p̄ = 0.7m, η̄ = 0.0025s and the true position is S = (0m,−200m) for 1000 sim-
ulated events. Blue markers denote estimated locations while the red dot denote
the actual source position; (a): F1; (b): F2; (c): F3; (d): F4.
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(a) (b) (c) (d)

Figure 5.7: Results of the distributed acoustic source location estimation when
p̄ = 0.7m, η̄ = 0.0025s and the true position is S = (0m,−200m) for 1000 sim-
ulated events. Blue markers denote estimated locations while the red dot denote
the actual source position; (a): F1; (b): F2; (c): F3; (d): F4.

(a) (b) (c) (d)

Figure 5.8: Results of the centralized acoustic source location estimation when
p̄ = 0.7m, η̄ = 0.001s and the true position is S = (0m,−200m) for 1000 simulated
events. Blue markers denote estimated locations while the red dot denote the actual
source position; (a): F1; (b): F2; (c): F3; (d): F4.

175



Chapter 5. Pulse-Coupled Time Synchronization of Acoustic Event Detection
Systems based on Mobile Wireless Sensor Networks

(a) (b) (c) (d)

Figure 5.9: Results of the distributed acoustic source location estimation when
p̄ = 0.7m, η̄ = 0.001s and the true position is S = (0m,−200m) for 1000 simulated
events. Blue markers denote estimated locations while the red dot denote the actual
source position; (a): F1; (b): F2; (c): F3; (d): F4.

Table 5.1: Summary of the localization results for the formations of Figure 5.3
for 1000 simulated events and different values of the error bounds p̄[m] and η̄[s].
All the values are given in meters.

Setup
Centralized Distributed

Mean x Std x Mean y Std y RMSE Mean x Std x Mean y Std y RMSE

F1

p̄ = 0.7 −0.03 0.75 1.04 16.51 16.55 −0.02 0.73 0.92 11.77 11.83
η̄ = 0.001 0.12 0.79 7.09 18.21 19.55 0.14 0.74 3.84 12.22 12.83
η̄ = 0.0025 0.26 0.83 15.96 20.50 25.99 −0.07 0.77 −5.29 11.67 12.97

F2

p̄ = 0.7 −0.07 0.82 0.98 19.49 19.52 0.05 1.66 3.12 16.22 16.60
η̄ = 0.001 −0.14 0.90 8.25 20.99 22.57 −0.01 1.66 4.55 16.83 17.51
η̄ = 0.0025 −0.97 0.98 19.92 25.69 32.53 −1.91 1.76 −4.89 17.44 18.29

F3

p̄ = 0.7 −0.05 0.77 0.93 16.98 17.02 −0.41 0.69 0.83 11.99 12.03
η̄ = 0.001 0.01 0.80 7.06 18.32 19.64 −0.01 0.70 3.68 12.52 13.06
η̄ = 0.0025 −0.16 0.85 18.72 21.98 28.88 0.04 0.71 −4.82 12.23 13.16

F4

p̄ = 0.7 −0.06 0.82 0.97 17.84 17.87 −0.03 1.16 2.33 13.71 13.95
η̄ = 0.001 −0.05 0.84 6.94 18.70 19.95 0.29 1.16 2.89 13.74 14.09
η̄ = 0.0025 −0.21 0.91 16.53 21.23 26.92 0.16 1.19 −10.28 13.12 16.71
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5.3 Evaluation of the Acoustic Event Detection

System

In this section, we evaluate the acoustic event detection system using our PCO-

protocol for time synchronization.

5.3.1 Transmission Range Assignment

In wireless sensor network-based systems, energy consumption is a critical issue,

hence, it is necessary to choose carefully the transmission range given to each sensor

in order to save energy. From Theorem 4.1 we know that the communication graph

has to be connected for the synchronization protocol to work properly. Then, the

transmission range r ∈ (0, r̄] must be such that if a formation graph F is given, it

induces a connected communication graph G. To find G, first define the complete

adjacency matrix of the formation graph as ĀF , which is obtained by finding the

distances between every pair of nodes (note that since F is assumed to be globally

rigid, its adjacency matrix AF contains all the information needed to obtain ĀF).

Now consider a matrix-valued function G : R>0 × RN×N → RN×N such that:

[G(α,M)]ij =


1, if [M ]ij ≤ α

0, if [M ]ij > α

(5.16)
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and note that given F and r, the corresponding adjacency matrix of the commu-

nication graph is given by AG = G(r, ĀF). From algebraic graph theory [35] it is

well known that G being connected (when G includes all self-loops) is equivalent

to AGN−1 > 0, i.e., AGN−1 is a positive matrix. Moreover, we need to ensure that

for every node i, {i} ∪ Ni defines an identifying sensor set. Then, the problem

of finding the smallest, considered optimal, r can be formulated as the following

optimization problem:

min r (5.17)

subject to:

G(r, ĀF)N−1 > 0 (5.18a)

r ∈ (0, r̄] (5.18b)

{i} ∪ Ni is ISS (5.18c)

which always has a solution if r̄ is large enough, in particular if r̄ is larger than

the largest element of AF . Let r∗ be the optimal transmission range, then AG =

G(r∗, ĀF). Solving for the particular formations used in this work (see Figure 5.3),

and considering r̄ = 100m, we have: r∗1 = 81.18m, r∗2 = 61.99m, r∗3 = 86.76m, and

r∗4 = 65.05m for F1, F2, F3, and F4 respectively.
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5.3.2 Implementation of the PCO-Based Protocol

To implement the pulse-coupled synchronization strategy presented in Chapter

4, each sensor constructs an embedded clock based on a counter, which increases

at a given rate determined by the natural frequency (or a fraction of it) of the pro-

cessor oscillating crystal from 0 to xth = CL. The wireless transceiver of the sensor

monitors the channel for incoming pulses. After initialization, an initial flooding

is conducted; to this end, a sensor broadcasts a reset packet (with its unique ID

specified in the packet) and resets its phase to 0 to begin the initial flooding pro-

cess. Every sensor that receives the packet resets its phase to 0 and immediately

passes the packet to its neighbors. A sensor having received the reset packet once

will ignore all subsequently arriving identical reset packets to prevent broadcast

storms. After the initial flooding, the pulse-based synchronization begins. During

the refractory period, each sensor switches to sleep mode and turns off the wireless

antenna to save energy. Once active, a node senses the channel for incoming pulses

and it updates its internal phase according to the PRC and the coupling strength

upon receptions. When the internal clock reaches the upper limit, a pulse is sent

to the neighbors.
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5.3.3 Integration of Time Synchronization and Localiza-

tion

It was mentioned that pulse-coupled synchronization and the proposed dis-

tributed localization strategy integrate in harmony. The critical step is to switch

the parameter xth from the time synchronization constant CL to the localization

constant xth = CL
R

, where R is the desired number of broadcasts per cycle for the

localization algorithm. This is done using the following protocol that every node

implements on startup.

Protocol 5.2 On startup, nodes conduct a flooding process to ensure their phases

are contained in half a circle. When this process is finished, nodes pick xth = CL,

initialize their phases as xi = 0 and increase them at constant rate w.

1. At each phase event xi = xth node i broadcasts a pulse. Upon receiving a

pulse, node i updates its phase following the PRC and the coupling strength

l.

2. Upon detecting an acoustic event, node i picks xth = CL
R

, switches to data

sending mode and implements Protocol 5.1. Then, node i reports Ŝ as solu-

tion, picks xth = CL, switches to synchronization mode, and goes to 1).
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Remark 5.5 It should be noted that while Protocol 5.1 is operating, time synchro-

nization is not performed. This will lead to a drift produced by the non-identical

natural frequencies. However, after restarting the synchronization algorithm, nodes

will immediately go back in sync.

5.3.4 Evaluation for Nominal Formations

To evaluate the system as a whole, simulations of the acoustic event detection

system using pulse-coupled synchronization were conducted for each formation.

Simulations include position uncertainties bounded by p̄ = 0.7m for both the

horizontal and vertical components, and a source of acoustic events located at

S = (0,−200) that generates events following a Poisson process with rate λ =

24 events
min

. To account for the drift found in real applications, natural periods of

the internal sensors’ clock were set as (1 + δi)s with δi ∈ [−0.001s, 0.001s] (note

that common quartz crystals drift apart around 0.0001s/s [96], thus the considered

error is reasonable for clocks built on top of an oscillating quartz crystal). The

transmission range was set as r∗i + 1m to ensure connectivity, for every node in

the formation Fi. The system was tested in two different scenarios based on the

value of the coupling strength used in the synchronization algorithm: l = 0.8 and

l = 1.0. The drift and the initial synchronization error, which can be as large
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as half natural period, i.e., 0.5s, have to be compensated by the synchronization

algorithm in order to enable accurate localization.

Figures 5.10 and 5.11 show centralized and distributed results obtained when

l = 0.8. In this case, for all four formations in both the centralized and distributed

cases, the RMSE values are below the values of the example when η̄ = 0.001s, the

best result being achieved by F1 with a RMSE of 17.29m in the centralized case

and of 12.10m in the distributed case, hence the results are considered acceptable

(see Table 5.2 for details). Figures 5.12 and 5.13 show the results obtained for

l = 1.0. In this case, all the formations present an acceptable RMSE below 10%

of the distance from source to formation center (see Table 5.2 for details), the

best being achieved by F1 with a RMSE of 16.97m in the centralized case and of

11.84m in the distributed case, which represent an improvement of approximately

0.3m with respect to the case with l = 0.8 for F1. The synchronization protocol is

able to synchronize the network and compensate the drift present due to natural

frequencies mismatch, thus enabling accurate localization.

Table 5.2 summarizes the results obtained in the experiments in terms of mean

and standard deviation of the component errors and in terms of the RMSE. It can

be seen that a stronger coupling strength results in a lower RMSE, suggesting that

a strong coupling should be used. It should be noted that the distributed approach

outperforms the centralized strategy in all cases. Considering that the distributed
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(a) (b) (c) (d)

Figure 5.10: Results of the centralized acoustic source location estimation for
1000 events generated following a Poisson process with rate λ = 24 events

min
and pulse-

coupled synchronization with coupling strength l = 0.8, natural frequency w = 2π,
position uncertainty bound p̄ = 0.7m, and true source position S = (0m,−200m).
Blue markers denote estimated locations while the red dot denote the actual source
position; (a): F1; (b): F2; (c): F3; (d): F4.

approach reduces the processing load at a single node, which is a drawback of cen-

tralized localization, and moreover, that distributed algorithms are scalable and

robust to disconnections, distributed localization with pulse-coupled synchroniza-

tion over a pure-broadcasting infrastructure-free ad-hoc network seems to be the

ideal configuration to solve the acoustic source localization problem using a wireless

sensor network.

5.3.5 Evaluation for Broken formations

Although the transmission range was selected to obtain a connected commu-

nication topology, in practical applications there are disturbances in the wireless

channel that can disconnect the network. To evaluate the performance of the sys-
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(a) (b) (c) (d)

Figure 5.11: Results of the distributed acoustic source location estimation for
1000 events generated following a Poisson process with rate λ = 24 events

min
and pulse-

coupled synchronization with coupling strength l = 0.8, natural frequency w = 2π,
position uncertainty bound p̄ = 0.7m, and true source position S = (0m,−200m).
Blue markers denote estimated locations while the red dot denote the actual source
position; (a): F1; (b): F2; (c): F3; (d): F4.

(a) (b) (c) (d)

Figure 5.12: Results of the centralized acoustic source location estimation for
1000 events generated following a Poisson process with rate λ = 24 events

min
and pulse-

coupled synchronization with coupling strength l = 1.0, natural frequency w = 2π,
position uncertainty bound p̄ = 0.7m, and true source position S = (0m,−200m).
Blue markers denote estimated locations while the red dot denote the actual source
position; (a): F1; (b): F2; (c): F3; (d): F4.
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(a) (b) (c) (d)

Figure 5.13: Results of the distributed acoustic source location estimation for
1000 events generated following a Poisson process with rate λ = 24 events

min
and pulse-

coupled synchronization with coupling strength l = 1.0, natural frequency w = 2π,
position uncertainty bound p̄ = 0.7m, and true source position S = (0m,−200m).
Blue markers denote estimated locations while the red dot denote the actual source
position; (a): F1; (b): F2; (c): F3; (d): F4.

Table 5.2: Summary of the localization results for the formations of Figure 5.3 for
1000 events generated from a Poisson process and different values of the coupling
strength l when p̄ = 0.7m. All the values are given in meters.

Setup
Centralized Distributed

Mean x Std x Mean y Std y RMSE Mean x Std x Mean y Std y RMSE

F1
l = 0.8 −0.18 0.76 2.66 17.07 17.29 −0.25 0.75 1.30 12.01 12.10
l = 1 −0.14 0.76 1.91 16.85 16.97 −0.20 0.73 1.10 11.74 11.84

F2
l = 0.8 −0.27 0.83 2.66 20.33 20.51 −0.10 1.71 5.16 17.36 18.19
l = 1 −0.23 0.85 1.60 19.49 19.56 −0.07 1.72 4.68 17.04 17.74

F3
l = 0.8 −0.27 0.78 2.98 17.07 17.34 −0.24 0.70 2.20 12.38 12.59
l = 1 −0.21 0.78 2.39 17.16 17.33 −0.20 0.70 1.67 12.10 12.23

F4
l = 0.8 −0.31 0.83 3.30 18.30 18.61 −0.14 1.24 2.02 14.38 14.56
l = 1 −0.24 0.81 2.47 17.88 18.06 −0.12 1.13 1.57 13.91 14.04
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tem in this case, we consider a scenario where each formation is broken, from a

communication point of view, into 2 sub-formations and perform distributed lo-

calization on each sub-formation. We broke the weakest communication links in

each formation to obtain the following sub-formations: For the original formation

F1, F11 is formed by nodes 3, 4, 5, 6, 7 and F12 is formed by nodes 1, 2, 8. For the

original formation F2, F21 is formed by nodes 1, 2, 3, 8 and F22 is formed by nodes

4, 5, 6, 7. For the original formation F3, F31 is formed by nodes 3, 4, 5, 6, 7 and F22

is formed by nodes 1, 2, 8. Finally, for the original formation F4, F41 is formed by

nodes 3, 4, 5, 6, 7 and F42 is formed by nodes 1, 2, 8. The sub-formations resulting

from breaking the weakest link are illustrated in Figure 5.14, where blue circles

denote Fi1 sub-formations and green circles denote Fi2 sub-formations. Figure 5.15

presents results obtained in the broken formation case for l = 1.0. It can be seen

that performance deteriorates, yet each sub-formation is still able to locate the

acoustic source with some level of coherence, specially sub-formations F11, F31,

and F41 that present a RMSE below 30m. Note that sub-formations F12, F32,

and F42 do not define an identifying sensor set; hence, in some cases, they cannot

uniquely identify the location of the acoustic source, and moreover, they are very

sensitive to small synchronization and position errors as can be seen in Figure 5.15.

Sub-formation F41 presents the best performance with a RMSE of 22.15m.
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Figure 5.14: Formations used in the broken formation case. Blue circles denote
Fi1 sub-formations and green circles denote Fi2 sub-formations. (a): F1; (b): F2;
(c): F3; (d): F4.

Table 5.3 summarizes the results obtained in the broken formation case in terms

of mean and standard deviation of the component errors and in terms of the RMSE.

The results obtained in this Chapter suggest that distributed localization with

pulse-coupled synchronization over a pure-broadcasting infrastructure-free ad-hoc

network, seems to be the ideal configuration to solve the acoustic source local-

ization problem when using a wireless sensor network. The time synchronization

protocol designed using the PCO synchronization mechanism has shown to be

mature enough to be applied to a real practical problem.
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(a) (b) (c) (d)

Figure 5.15: Results of the acoustic source location estimation in the broken
formation case for 1000 events generated following a Poisson process with rate
λ = 24 events

min
and pulse-coupled synchronization with coupling strength l = 1.0,

natural frequency w = 2π, and true source position S = (0m,−200m). Blue +
markers denote Fi1 estimations and green ? markers denote Fi2 estimations, for
i = 1, . . . , 4. (a): F1; (b): F2; (c): F3; (d): F4.

Table 5.3: Summary of the localization results for the formations of Figure 5.3
for 1000 events generated from a Poisson process when the formation is broken
into two sub-formations. All the values are given in meters.

Setup Mean x Std x Mean y Std y RMSE

F11 −0.23 2.96 −1.27 22.45 22.67

F12 −10.23 27.24 59.39 157.31 170.57

F21 1.17 5.31 10.08 35.43 37.21

F22 −2.09 7.37 13.27 50.69 52.93

F31 0.66 3.53 6.87 28.96 29.97

F32 −8.15 25.51 41.73 133.35 142.20

F41 0.26 2.28 3.70 21.72 22.15

F42 −5.60 14.46 28.63 79.57 85.94
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Chapter 6

Conclusions and Future Work

In this dissertation we studied synchronization of networks of PCOs and its

application to the time synchronization problem in wireless sensor networks. The

contributions of this work range from conditions to ensure synchronization for a

variety of networks, on the theoretical side, to the design and implementation of

a PCO-based time synchronization protocol for wireless sensor networks, on the

application side. A complete summary of the topics treated and the contributions

of this dissertation is given in the next section, followed by a set of related topics

envisioned as future related work.

6.1 Summary

In Chapter 2 we presented the new model (2.7)-(2.11) for networks of PCOs

that is able to handle naturally the impulsive nature of the coupling and the

continuous time nature of the limit cycle oscillator. Moreover, the model includes

189



Chapter 6. Conclusions and Future Work

explicitly the structure of the underlying communication topology as part of the

model and allows using discontinuous or multi-valued PRCs. Furthermore, our

hybrid model allows using well established tools for the analysis of hybrid systems

to study properties of networks without needing restrictive assumptions such as

the existence of an invariant firing sequence or weak coupling.

In chapter 3 we presented the main theoretical contributions of this dissertation.

We started by showing in Theorem 3.1 that networks of identical PCOs can syn-

chronize to a global cue, or leader node, under mild conditions on the strength of

the global coupling. A similar set of conditions was derived for non-identical PCOs

in Theorem 3.2 when the feedback is given by the rate optimal PRC (3.11), stating

that a network of non identical PCOs can synchronize in frequency to a global cue

under mild conditions on the coupling strength. We continued our analysis de-

riving conditions to ensure global synchronization in the purely decentralized case

for all-to-all (cf. Theorem 3.3 and Corollary 3.2), strongly rooted (cf. Corollary

3.3), and strongly connected networks (cf. Theorems 3.4 and 3.8). Finally, given

the importance of cycle networks in both biological and engineering systems, we

explored cycle networks in detail and found the exact value of the critical coupling

that enables global synchronization for both bidirectional (cf. Theorem 3.6) and

unidirectional cycles (cf. Theorem 3.7).
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In Chapter 4 we presented the translation of the PCO paradigm into a func-

tional time synchronization protocol for wireless sensor networks. The protocol

(cf. Protocol 4.1) is given in general algorithmic form, enabling its implementa-

tion at any level of the networking protocol stack, although it is recommended to

implement it as low as possible to improve the accuracy. An extensive evaluation

by simulation in Qualnet is given to explore the synchronization properties of the

algorithm in a variety of network structures and communication topologies. A

comparison with FTSP, the state-of-the-art synchronization protocol, is also given

showing that our protocol outperforms FTSP in terms of both accuracy and energy

consumption (cf. Table 4.8). The pilot implementation in Gumstix development

boards and in commercial acoustic wireless sensors given at the end of the Chapter

illustrates the feasibility of implementing the protocol in real hardware platforms.

In Chapter 5 we presented the first implementation of pulse-coupled synchro-

nization to an actual experimental system. As a side contribution, we proposed

a new method for performing distributed localization in a network of acoustic

sensors, which uses only local time-of-arrival measurements and then fuses indi-

vidual estimates using consensus algorithms (cf. Theorem 5.1 and Protocol 5.1).

Although pilot implementations of pulse-coupled synchronization are available in

the literature, the restrictive assumption of having a dedicated network for time

synchronization hinders the evaluation of the actual performance in a real shared
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network. In contrast, we were able to combine pulse-coupled time synchronization

with distributed localization over an infrastructure free wireless network is an har-

monious way (cf. Protocol 5.2). Moreover, we showed that the use of pulse-coupled

synchronization greatly improves the localization results (cf. Table 5.2) without

imposing extra computational requirements on the sensors due to the simplicity

and natural scalability of our PCO-based synchronization protocol.

6.2 Future Work

The results presented in this dissertation answer numerous questions regarding

synchronization of networks of PCOs, but they also open new venues for research,

many of them as natural extensions of our new results. Among many possible

directions, the following are important topics that should be addressed.

Decentralized synchronization of heterogeneous networks of PCOs:

A natural extension of the results given for decentralized networks is to consider

heterogeneous PCOs. In Chapter 3 we stated conditions for synchronization in

frequency for non-identical PCOs when there is a global cue. In the decentral-

ized case we have observed in simulations that synchronization in frequency also

emerges although the collective period is an extra unknown and, possibly, depends

on the initial conditions. Finding conditions for synchronization in frequency for

decentralized networks of non-identical PCOs is of great importance since in prac-

192



Chapter 6. Conclusions and Future Work

tical applications identical oscillators are highly unlikely to exist. Existing efforts

in this direction have found conditions ensuring synchronization in frequency, yet

results are very restrictive or for a particular network size. For example, the work

in [92] presents an appealing method to predict synchronization in pairs of PCOs.

However, the strategy cannot be applied to analyze synchronization in large net-

works. The work in [3] presents a strategy to ensure almost global synchronization

in frequency in large networks of linear PCOs. However, the strategy is based

on applying a strong coupling that forces the system to oscillate with a collective

frequency equal to the largest frequency in the network, i.e., following the fastest

oscillator in the network. A similar setup is analyzed in [13, 20] for the classical

PCO model under all-to-all coupling, confirming that synchronization in frequency

to the fastest oscillator is feasible under mild assumptions. However, such a result

presents several drawbacks, among them are the non-robustness of the collective

frequency, since any perturbation to the frequency of the fastest oscillator implies

convergence of the network to a new collective frequency, and the huge damage

that a Byzantine agent can cause to the network. Advantage should be taken of the

consensus-like behavior observed in PCOs to obtain a robust collective frequency,

yet extra research is needed to find the conditions that guarantee convergence and

stability.
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Effects of delays: From a practical point of view, transmissions in a wireless

network are not instantaneous. Therefore, the presence of (possibly non-identical)

delays must be included in the formulation in order to explore its effect. Existing

works on this topic have given initial insights into the feasibility of synchronization

when delays in the communication are present. In [65], a PRC similar to (3.11) is

used to analyze local synchronization of PCO networks on aperiodic graphs with

delays. The authors consider an allowable region for the range of the PRC that is

similar to the set Ω; however, they do not allow discontinuities in the PRC, which

is the key point to establish global convergence. In fact, the stability results in

[65] are local and the authors use a probabilistic measure to evaluate the synchro-

nization of the system. The work in [66] aims to generalize the results in [65] in a

probabilistic setting by calculating the probability of synchronization of a network

with arbitrary initial conditions. In [55] it is shown that heterogeneous delays lead

to synchronization in a weakly coupled network of PCOs; however, no insights are

given regarding the general coupling case. Although strong (global) results, such

as our Theorem 3.8, exist for the delay-free case, global synchronization conditions

for the delayed PCOs case are still to be obtained.

Mobility and topology control: The increasing trend to use mobile WSNs

poses new difficulties to synchronization algorithms that need to deal with the ef-

fects of mobility on the resulting communication topology of the sensor network.
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Partial or long-term disconnections are likely to happen in a mobile network, mak-

ing network-wide synchronization impossible to achieve. In this setting, topology

control algorithms [84] are needed to ensure that the network will maintain a

proper level of connectivity throughout its operation. Topology control strategies

for mobile networks are at an early development stage, yet an increasing number

of strategies are being currently studied with promising results [84]. In the par-

ticular case of our PCO-based protocol, a topology control strategy will greatly

benefit its performance. For example, condition 1) in Theorem 3.8 can be ensured

by properly controlling the communication topology, thus guaranteeing global syn-

chronization. Moreover, in our numerical experiments presented in Chapter 4, we

have found that dense networks present lower network skew and time to synchro-

nization. Furthermore, in our tests using Gumstix boards, we have found that the

hidden terminal problem affects the stability of the collective period. A proper

topology control strategy that can be incorporated into the PCO-based protocol

will increase the applicability and improve performance; yet, such a strategy is still

to be proposed.

Kernel level implementation of the synchronization protocol: As it was

mentioned at the end of Chapter 4, an appealing option to reduce both the network

skew and the jitter in the free running period is to implement the synchronization

protocol as part of the operating system’s kernel. The idea is to create a kernel
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module that implements the protocol by directly writing pulse messages in the

output queue of the MAC layer and capturing incoming messages just before they

are processed by the MAC layer. Following this strategy, the sensors will benefit of

the highest possible accuracy. Moreover, the operating system will perform time

synchronization automatically since it will be part of the basic kernel-controlled

processes. Hence, time synchronization will be transparent to the user and it will

enjoy kernel-level priority. It should be noted that this strategy is not new; in fact,

the network time protocol (NTP) is implemented in Linux systems in a similar

way, as a kernel-controlled task.
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Appendix A

Source Code for Implementation
in Qualnet

A.1 Header file: mac coupled.h

// Coupled MAC protocol based on control packages.

// Version 4.10 1-19-2014

// Multi PRC - dead zone

#ifndef MAC_COUPLED_H

#define MAC_COUPLED_H

enum

{

COUPLED_STATUS_PASSIVE,

COUPLED_STATUS_CARRIER_SENSE,

COUPLED_STATUS_BACKOFF,

COUPLED_STATUS_XMIT,

COUPLED_STATUS_IN_XMITING,

COUPLED_STATUS_YIELD

};

#define COUPLED_TX_DATA_YIELD_TIME (20 * MICRO_SECOND)

/* Used to experiment with COUPLED timers only. */

#define COUPLED_LOCAL_DATA_YIELD_TIME (0)

#define COUPLED_REMOTE_DATA_YIELD_TIME (0)

#define COUPLED_BO_MIN (20 * MICRO_SECOND)

#define COUPLED_BO_MAX (16 * COUPLED_BO_MIN)

#define COUPLED_COUPLING_PERIOD (1 * NANO_SECOND)

#define COUPLED_WRITING_PERIOD (100 * MICRO_SECOND)
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#define COUPLED_TIMER_SWITCH 0x1 /* bit 0000 0001 is used for ON/OFF*/

#define COUPLED_TIMER_ON 0x1

#define COUPLED_TIMER_OFF 0x0

#define COUPLED_TIMER_TYPE 0xE /* bit 0000 1110 is used for Timer type */

#define COUPLED_TIMER_BACKOFF 0x0

#define COUPLED_TIMER_YIELD 0x2

#define COUPLED_TIMER_COUPLING 0x4

#define COUPLED_TIMER_UNDEFINED 0xE

#define SYNCH_PACKET 0x1

#define SYNCH_PACKET_GLOBAL 0x2

#define DATA_PACKET 0x0

#define TANH_PRC 0x1

#define OPTIMAL_PRC_ID 0xA

#define OPTIMAL_PRC_NID 0xB

#define PESKIN_PRC 0xC

#define MS_PRC 0xD

typedef struct COUPLED_timer

{

Int32 seq;

unsigned char flag;

} COUPLEDTimer;

typedef struct COUPLED_header_str {

Mac802Address sourceAddr;

Mac802Address destAddr;

int priority;

int pktype;

} COUPLEDHeader;

typedef struct struct_mac_COUPLED_str

{

MacData* myMacData;

Int32 status; /* status of layer COUPLED_STATUS_* */

Int32 BOmin; /* minimum backoff */

Int32 BOmax; /* maximum backoff */

Int32 BOtimes; /* how many times has it backoff ? */

Int32 pktsToSend;

Int32 pktsLostOverflow;

Int32 pktsSentUnicast;

Int32 pktsSentBroadcast;
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Int32 pktsSentSynch;

int counter;

Int32 pktsGotUnicast;

Int32 pktsGotBroadcast;

Mac802Address bcadd;

MacHWAddress dest;

MacHWAddress dest1;

MacHWAddress dest2;

double epsilong;

double epsilonl;

double globalst;

double localst;

double epsiloni;

int signum;

int isglobal;

int CounterLimit;

int Prc;

int deadz;

int deadzinit;

int top;

int second;

COUPLEDTimer timer;

COUPLEDTimer timercoup;

RandomSeed seed; /* for setting backoff timer */

} MacDataCOUPLED;

/*

* FUNCTION MacCOUPLEDInit

* PURPOSE Initialization function for COUPLED protocol of MAC layer.

*

* Parameters:

* node: node being initialized.

* nodeInput: structure containing contents of input file

*/

void MacCOUPLEDInit(

Node *node, int interfaceIndex, const NodeInput *nodeInput);

/*

* FUNCTION MacCOUPLEDLayer

* PURPOSE Models the behaviour of the MAC layer with the COUPLED protocol

* on receiving the message enclosed in msgHdr.

*

* Parameters:

* node: node which received the message

* msgHdr: message received by the layer
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*/

void MacCOUPLEDLayer(

Node *node, int interfaceIndex, Message *msg);

/*

* FUNCTION MacCOUPLEDFinalize

* PURPOSE Called at the end of simulation to collect the results of

* the simulation of COUPLED protocol of the MAC Layer.

*

* Parameter:

* node: node for which results are to be collected.

*/

void MacCOUPLEDFinalize(Node *node, int interfaceIndex);

/*

* FUNCTION MacCOUPLEDNetworkLayerHasPacketToSend

* PURPOSE To tell COUPLED that the network layer has a packet to send.

*/

void MacCOUPLEDNetworkLayerHasPacketToSend(Node *node, MacDataCOUPLED *COUPLED);

void MacCOUPLEDReceivePacketFromPhy(

Node* node, MacDataCOUPLED* COUPLED, Message* msg);

void MacCOUPLEDReceivePhyStatusChangeNotification(

Node* node,

MacDataCOUPLED* COUPLED,

PhyStatusType oldPhyStatus,

PhyStatusType newPhyStatus);

#endif
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A.2 Source file: mac coupled.cpp

// Coupled MAC protocol based on control packages.

// Version 4.10 1-19-2014

// Multi PRC - dead zone

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <algorithm>

#include <cmath>

#include "api.h"

#include "mac_coupled.h"

#include "network_ip.h"

#include "partition.h"

#include "phy_802_11.h"

using namespace std;

static /*inline*/

PhyStatusType PhyStatus(Node* node, MacDataCOUPLED* COUPLED)

{

return PHY_GetStatus(node, COUPLED->myMacData->phyNumber);

}

/*

* NAME: MacCOUPLEDHandlePromiscuousMode.

*

* PURPOSE: Supports promiscuous mode sending remote packets to

* upper layers.

*

* PARAMETERS: node, node using promiscuous mode.

* frame, packet to send to upper layers.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDHandlePromiscuousMode(Node *node,

MacDataCOUPLED* COUPLED,

Message *frame,

Mac802Address prevHop,

Mac802Address destAddr)

{

MacHWAddress prevHopHWAddr;
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MacHWAddress destHWAddr;

MESSAGE_RemoveHeader(node, frame, sizeof(COUPLEDHeader), TRACE_COUPLED);

Convert802AddressToVariableHWAddress(node, &prevHopHWAddr, &prevHop);

Convert802AddressToVariableHWAddress(node, &destHWAddr, &destAddr);

MAC_SneakPeekAtMacPacket(node,

COUPLED->myMacData->interfaceIndex,

frame,

prevHopHWAddr,

destHWAddr);

MESSAGE_AddHeader(node, frame, sizeof(COUPLEDHeader), TRACE_COUPLED);

}

/*

* NAME: MacCOUPLEDDataXmit.

*

* PURPOSE: Sending data frames to destination.

*

* PARAMETERS: node, node sending the data frame.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDXmit(Node *node, MacDataCOUPLED *COUPLED)

{

Message *msg;

MacHWAddress destHWAddr;

int networkType;

TosType priority;

COUPLEDHeader *hdr;

assert(COUPLED->status == COUPLED_STATUS_XMIT);

/*

* Dequeue packet which was received from the

* network layer.

*/

MAC_OutputQueueDequeuePacket(

node, COUPLED->myMacData->interfaceIndex,
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&msg, &destHWAddr, &networkType, &priority);

if (msg == NULL)

{

#ifdef QDEBUG

printf("COUPLED: Queue should not be empty...\n");

#endif

// The Queue can be empty if the packet was dropped forcefully by

// routing protocol. Set the correct COUPLED state in this case

if(COUPLED->BOtimes >0)

{

COUPLED->status = COUPLED_STATUS_BACKOFF;

}

else

{

COUPLED->status = COUPLED_STATUS_PASSIVE;

}

return;

}

COUPLED->status = COUPLED_STATUS_IN_XMITING;

COUPLED->timer.flag = COUPLED_TIMER_OFF | COUPLED_TIMER_UNDEFINED;

/*

* Assign other fields to packet to be sent

* to phy layer.

*/

MESSAGE_AddHeader(node, msg, sizeof(COUPLEDHeader), TRACE_COUPLED);

hdr = (COUPLEDHeader *) msg->packet;

ConvertVariableHWAddressTo802Address(node, &destHWAddr, &hdr->destAddr);

ConvertVariableHWAddressTo802Address(

node,

&node->macData[COUPLED->myMacData->interfaceIndex]->macHWAddr,

&hdr->sourceAddr);

hdr->priority = priority;
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hdr->pktype = DATA_PACKET;

PHY_StartTransmittingSignal(

node, COUPLED->myMacData->phyNumber,

msg, FALSE, 0);

if (MAC_IsBroadcastMac802Address(&hdr->destAddr)) {

COUPLED->pktsSentBroadcast++;

}

else {

COUPLED->pktsSentUnicast++;

}

}

/*

* NAME: MacCOUPLEDSetTimer.

*

* PURPOSE: Set a timer for node to expire at time timerValue.

*

* PARAMETERS: node, node setting the timer.

* timerType, what type of timer is being set.

* delay, when timer is to expire.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDSetTimer(

Node *node, MacDataCOUPLED* COUPLED, int timerType, clocktype delay)

{

Message *newMsg;

int *timerSeq;

COUPLED->timer.flag = (unsigned char)(COUPLED_TIMER_ON | timerType);

COUPLED->timer.seq++;

assert((timerType == COUPLED_TIMER_BACKOFF) ||

(timerType == COUPLED_TIMER_YIELD));

newMsg = MESSAGE_Alloc(node, MAC_LAYER, 0,

MSG_MAC_TimerExpired);

MESSAGE_SetInstanceId(newMsg, (short)COUPLED->myMacData->interfaceIndex);

MESSAGE_InfoAlloc(node, newMsg, sizeof(COUPLED->timer.seq));

timerSeq = (int *) MESSAGE_ReturnInfo(newMsg);

*timerSeq = COUPLED->timer.seq;

214



Appendix A. Source Code for Implementation in Qualnet

MESSAGE_Send(node, newMsg, delay);

}

/*

* NAME: MacCOUPLEDSetTimerCoupling.

*

* PURPOSE: Set a timer for node to expire at time timerValue.

*

* PARAMETERS: node, node setting the timer.

* timerType, what type of timer is being set.

* delay, when timer is to expire.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDSetTimerCoupling(

Node *node, MacDataCOUPLED* COUPLED)

{

Message *newMsg;

int *timerSeq;

COUPLED->timercoup.seq++;

newMsg = MESSAGE_Alloc(node, MAC_LAYER, 0,

MSG_MAC_FrameStartOrEnd);

MESSAGE_SetInstanceId(newMsg, (short)COUPLED->myMacData->interfaceIndex);

MESSAGE_InfoAlloc(node, newMsg, sizeof(COUPLED->timer.seq));

timerSeq = (int *) MESSAGE_ReturnInfo(newMsg);

*timerSeq = COUPLED->timer.seq;

MESSAGE_Send(node, newMsg,10000*COUPLED_COUPLING_PERIOD);

}

static

void MacCOUPLEDSetTimerWriting(

Node *node, MacDataCOUPLED* COUPLED)

{

Message *newMsg;

int *timerSeq;

COUPLED->timercoup.seq++;

newMsg = MESSAGE_Alloc(node, MAC_LAYER, 0,

MSG_SPECIAL_Timer);

MESSAGE_SetInstanceId(newMsg, (short)COUPLED->myMacData->interfaceIndex);
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MESSAGE_InfoAlloc(node, newMsg, sizeof(COUPLED->timer.seq));

timerSeq = (int *) MESSAGE_ReturnInfo(newMsg);

*timerSeq = COUPLED->timer.seq;

MESSAGE_Send(node, newMsg, COUPLED_WRITING_PERIOD);

}

/*

* NAME: MacCOUPLEDYield.

*

* PURPOSE: Yield so neighboring nodes can transmit or receive.

*

* PARAMETERS: node, node that is yielding.

* holding, how int to yield for.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDYield(Node *node, MacDataCOUPLED *COUPLED, clocktype holding)

{

assert(COUPLED->status == COUPLED_STATUS_YIELD);

MacCOUPLEDSetTimer(node, COUPLED, COUPLED_TIMER_YIELD, holding);

}

/*

* NAME: MacCOUPLEDBackoff.

*

* PURPOSE: Backing off sending data at a later time.

*

* PARAMETERS: node, node that is backing off.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDBackoff(Node *node, MacDataCOUPLED *COUPLED)

{

clocktype randTime;

assert(COUPLED->status == COUPLED_STATUS_BACKOFF);

randTime = (RANDOM_nrand(COUPLED->seed) % COUPLED->BOmin) + 1;
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COUPLED->BOmin = COUPLED->BOmin * 2;

if (COUPLED->BOmin > COUPLED->BOmax) {

COUPLED->BOmin = COUPLED->BOmax;

}

COUPLED->BOtimes++;

MacCOUPLEDSetTimer(node, COUPLED, COUPLED_TIMER_BACKOFF, randTime);

}

/*

* NAME: UpdateCounter.

*

* PURPOSE: Set timer for next coupling message at init.

*

* PARAMETERS: node, node.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void UpdateCounterOpId(Node *node, MacDataCOUPLED *COUPLED, double epsilon,

double strenght)

{

int deltacounter;

int currentcounter;

int mid=0;

currentcounter = COUPLED->counter;

if (currentcounter < COUPLED->CounterLimit/2) {

mid=1;

}

deltacounter = int(strenght*floor(COUPLED->CounterLimit-currentcounter-

COUPLED->CounterLimit*mid));

COUPLED->counter = currentcounter + deltacounter;

}

/*

* NAME: MacCOUPLEDSetSynchPk.

*

* PURPOSE: Set a Synch Pk for node to Send at delay.

*

* PARAMETERS: node, node setting the timer.

* timerType, what type of timer is being set.

* delay, when timer is to expire.

*
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* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDSetSynchPk(

Node *node, MacDataCOUPLED* COUPLED)

{

Message *newMsg;

COUPLEDHeader *hdr;

COUPLED->pktsSentSynch++;

COUPLED->counter = 0;

COUPLED->status = COUPLED_STATUS_IN_XMITING;

newMsg = MESSAGE_Alloc(node, 0, 0, 0);

MESSAGE_PacketAlloc(node,

newMsg,

sizeof(COUPLEDHeader),

TRACE_COUPLED);

hdr = (COUPLEDHeader *) MESSAGE_ReturnPacket(newMsg);

ConvertVariableHWAddressTo802Address(node,

&node->macData[COUPLED->myMacData->interfaceIndex]->macHWAddr, &hdr->sourceAddr);

hdr->destAddr = COUPLED->bcadd;

hdr->priority = 0;

if (COUPLED->isglobal == 1){

hdr->pktype = SYNCH_PACKET_GLOBAL;

}

else {

hdr->pktype = SYNCH_PACKET;

}

PHY_StartTransmittingSignal(node, COUPLED->myMacData->phyNumber, newMsg,

FALSE, 0);

COUPLED->second++;

clocktype curTime;

char buf[80];

curTime = getSimTime(node);

ctoa(curTime,buf);

char buf1[MAX_STRING_LENGTH];

sprintf(buf1, "%uSEED%d",

node->nodeId, node->globalSeed);

FILE * pFile;

pFile = fopen (buf1,"a");

fprintf (pFile, "%s, ",buf);

fclose (pFile);

}
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static //inline//

void CheckPhyStatusAndSendOrBackoff(Node* node, MacDataCOUPLED* COUPLED) {

/* Carrier sense response from phy. */

if ((PhyStatus(node, COUPLED) == PHY_IDLE) &&

(COUPLED->status != COUPLED_STATUS_IN_XMITING))

{

COUPLED->status = COUPLED_STATUS_XMIT;

MacCOUPLEDXmit(node, COUPLED);

}

else {

if (!MAC_OutputQueueIsEmpty(

node, COUPLED->myMacData->interfaceIndex))

{

COUPLED->status = COUPLED_STATUS_BACKOFF;

MacCOUPLEDBackoff(node, COUPLED);

}

}

}

/*

* NAME: MacCOUPLEDNetworkLayerHasPacketToSend.

*

* PURPOSE: In passive mode, start process to send data; else return;

*

* RETURN: None.

*

*/

void MacCOUPLEDNetworkLayerHasPacketToSend(Node *node, MacDataCOUPLED *COUPLED)

{

if (COUPLED->status == COUPLED_STATUS_PASSIVE) {

CheckPhyStatusAndSendOrBackoff(node, COUPLED);

}//if//

}

/*

* NAME: MacCOUPLEDPassive.

*

* PURPOSE: In passive mode, check whether there is a local packet.

* If YES, send data; else return;

*

* PARAMETERS: node, node that is in passive state.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/
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static

void MacCOUPLEDPassive(Node *node, MacDataCOUPLED *COUPLED)

{

if ((COUPLED->status == COUPLED_STATUS_PASSIVE) &&

(!MAC_OutputQueueIsEmpty(node, COUPLED->myMacData->interfaceIndex)))

{

MacCOUPLEDNetworkLayerHasPacketToSend(node, COUPLED);

}

}

/*

* NAME: MacCOUPLEDPrintStats

*

* PURPOSE: Print MAC layer statistics.

*

* PARAMETERS: node.

*

* RETURN: None.

*

* ASSUMPTION: node != NULL.

*/

static

void MacCOUPLEDPrintStats(Node *node, MacDataCOUPLED* COUPLED, int interfaceIndex)

{

char buf[MAX_STRING_LENGTH];

sprintf(buf, "Packets from network = %d",

COUPLED->pktsToSend);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "Packets lost due to buffer overflow = %d",

COUPLED->pktsLostOverflow);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "UNICAST packets sent to channel = %d",

COUPLED->pktsSentUnicast);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "BROADCAST packets sent to channel = %d",

COUPLED->pktsSentBroadcast);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "UNICAST packets received = %d",

COUPLED->pktsGotUnicast);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "BROADCAST packets received = %d",
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COUPLED->pktsGotBroadcast);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "CURRENT counter = %d",

COUPLED->counter);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

sprintf(buf, "SYNCH packets sent = %d",

COUPLED->pktsSentSynch);

IO_PrintStat(node, "Mac", "COUPLED", ANY_DEST, interfaceIndex, buf);

}

/*

* FUNCTION MacCOUPLEDInit

* PURPOSE Initialization function for COUPLED protocol of MAC layer.

* Parameters:

* node: node being initialized.

* nodeInput: structure containing contents of input file

*/

void MacCOUPLEDInit(

Node *node, int interfaceIndex, const NodeInput *nodeInput)

{

MacDataCOUPLED *COUPLED = (MacDataCOUPLED *) MEM_malloc(sizeof(MacDataCOUPLED));

assert(COUPLED != NULL);

memset(COUPLED, 0, sizeof(MacDataCOUPLED));

COUPLED->myMacData = node->macData[interfaceIndex];

COUPLED->myMacData->macVar = (void *)COUPLED;

COUPLED->timer.flag = COUPLED_TIMER_ON | COUPLED_TIMER_UNDEFINED;

COUPLED->timer.seq = 0;

COUPLED->timercoup.flag = COUPLED_TIMER_ON;

COUPLED->timercoup.seq = 0;

COUPLED->status = COUPLED_STATUS_PASSIVE;

COUPLED->BOmin = COUPLED_BO_MIN;

COUPLED->BOmax = COUPLED_BO_MAX;

COUPLED->BOtimes = 0;

COUPLED->pktsToSend = 0;

COUPLED->pktsLostOverflow = 0;

COUPLED->pktsSentUnicast = 0;

COUPLED->pktsSentBroadcast = 0;

COUPLED->pktsSentSynch = 0;
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COUPLED->pktsGotUnicast = 0;

COUPLED->pktsGotBroadcast = 0;

COUPLED->second = 0;

COUPLED->bcadd = ANY_MAC802;

COUPLED->top = 0;

BOOL temp;

Address address;

NetworkGetInterfaceInfo(node, interfaceIndex, &address, NETWORK_IPV4);

IO_ReadDouble(node->nodeId, &address, nodeInput,

"EPSILON_G", &temp, &COUPLED->epsilong);

IO_ReadDouble(node->nodeId, &address, nodeInput,

"EPSILON_L", &temp, &COUPLED->epsilonl);

IO_ReadDouble(node->nodeId, &address, nodeInput,

"COUPLED_GLOBAL_STRENGHT", &temp, &COUPLED->globalst);

IO_ReadDouble(node->nodeId, &address, nodeInput,

"COUPLED_LOCAL_STRENGHT", &temp, &COUPLED->localst);

IO_ReadDouble(node->nodeId, &address, nodeInput,

"EPSILON_I", &temp, &COUPLED->epsiloni);

IO_ReadInt(node->nodeId, &address, nodeInput,

"SIGNUM", &temp, &COUPLED->signum);

IO_ReadInt(node->nodeId, &address, nodeInput,

"COUPLED_IS_GLOBAL", &temp, &COUPLED->isglobal);

IO_ReadInt(node->nodeId, &address, nodeInput,

"COUPLED_COUNTER_LIMIT", &temp, &COUPLED->CounterLimit);

IO_ReadInt(node->nodeId, &address, nodeInput,

"COUPLED_PRC", &temp, &COUPLED->Prc);

IO_ReadInt(node->nodeId, &address, nodeInput,

"DEAD_ZONE", &temp, &COUPLED->deadz);

COUPLED->deadzinit = COUPLED->deadz;

printf("Node %u, %u", node->nodeId, COUPLED->Prc);

printf("Node %u, %u ", node->nodeId, address);

MAC_PrintHWAddr(&destiny);

RANDOM_SetSeed(COUPLED->seed,

node->globalSeed,

node->nodeId,

MAC_PROTOCOL_COUPLED,

interfaceIndex);

int randTime;

randTime = int(RANDOM_nrand(COUPLED->seed)%int(COUPLED->CounterLimit));

COUPLED->counter = randTime;

MacCOUPLEDSetTimerCoupling(node, COUPLED);

MacCOUPLEDSetTimerWriting(node, COUPLED);

char buf1[MAX_STRING_LENGTH];

sprintf(buf1, "%uSEED%d",
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node->nodeId, node->globalSeed);

char buf3[MAX_STRING_LENGTH];

sprintf(buf3, "%uSEEDTIMES%d",

node->nodeId, node->globalSeed);

char buf2[MAX_STRING_LENGTH];

sprintf(buf2, "%uSEED%dRECEPTIONS",

node->nodeId, node->globalSeed);

FILE * pFile;

pFile = fopen (buf1,"a");

fprintf(pFile, "%lf, %lf, %d, %lf, %d, %d\n", COUPLED->epsilong,

COUPLED->epsilonl, COUPLED->deadz, COUPLED->localst, COUPLED->isglobal,

COUPLED->counter);

fclose (pFile);

FILE * pFile1;

pFile1 = fopen (buf2,"a");

fprintf(pFile1, "%lf, %lf, %lf, %lf, %d, %d\n", COUPLED->epsilong,

COUPLED->epsilonl, COUPLED->globalst, COUPLED->localst, COUPLED->isglobal,

COUPLED->CounterLimit);

fclose (pFile1);

FILE * pFile2;

pFile2 = fopen (buf3,"a");

fprintf(pFile2, "%lf, %lf, %lf, %lf, %d, %d\n", COUPLED->epsilong,

COUPLED->epsilonl, COUPLED->globalst, COUPLED->localst, COUPLED->isglobal,

COUPLED->CounterLimit);

fclose (pFile2);

#ifdef PARALLEL //Parallel

PARALLEL_SetProtocolIsNotEOTCapable(node);

PARALLEL_SetMinimumLookaheadForInterface(node, 0);

#endif //endParallel

}

void MacCOUPLEDReceivePacketFromPhy(

Node* node, MacDataCOUPLED* COUPLED, Message* msg)

{

if (COUPLED->status == COUPLED_STATUS_IN_XMITING) {

MESSAGE_Free(node, msg);

return;

}//if//

switch (COUPLED->status) {

case COUPLED_STATUS_PASSIVE:

case COUPLED_STATUS_CARRIER_SENSE:

case COUPLED_STATUS_BACKOFF:

case COUPLED_STATUS_YIELD: {

int interfaceIndex = COUPLED->myMacData->interfaceIndex;
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COUPLEDHeader *hdr = (COUPLEDHeader *) msg->packet;

MacHWAddress destHWAddress;

Convert802AddressToVariableHWAddress(node, &destHWAddress,

&hdr->destAddr);

if (MAC_IsMyAddress(node, &destHWAddress)) {

COUPLED->pktsGotUnicast++;

if ((hdr->pktype == SYNCH_PACKET) && (COUPLED->isglobal == 0)) {

if (COUPLED->counter > COUPLED->deadz) {

UpdateCounterOpId(node, COUPLED, COUPLED->epsilonl, COUPLED->localst);

}//deadzone

}//if noglobal

}

else if (MAC_IsBroadcastMac802Address(&hdr->destAddr))

{

COUPLED->pktsGotBroadcast++;

if ((hdr->pktype == SYNCH_PACKET) && (COUPLED->isglobal == 0)) {

if (COUPLED->counter > COUPLED->deadz) {

clocktype curTime;

char buf[80];

curTime = getSimTime(node);

ctoa(curTime,buf);

char buf2[MAX_STRING_LENGTH];

sprintf(buf2, "%u",

&hdr->sourceAddr);

char buf1[MAX_STRING_LENGTH];

sprintf(buf1, "%uSEED%dRECEPTIONS",

node->nodeId, node->globalSeed);

FILE * pFile;

pFile = fopen (buf1,"a");

fprintf (pFile, "%s, %u, %s, 0\n",buf2,&hdr->destAddr,buf);

fclose (pFile);

UpdateCounterOpId(node, COUPLED, COUPLED->epsilonl, COUPLED->localst);

//printf("Node %u, Counter Updated global\n", node->nodeId);

}//deadzone

}//if noglobal

}
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if (MAC_IsMyAddress(node, &destHWAddress) ||

MAC_IsBroadcastHWAddress(&destHWAddress))

{

MacHWAddress srcHWAddress;

Convert802AddressToVariableHWAddress(node, &srcHWAddress,

&hdr->sourceAddr);

MESSAGE_RemoveHeader(node, msg, sizeof(COUPLEDHeader), TRACE_COUPLED);

MAC_HandOffSuccessfullyReceivedPacket(node,

COUPLED->myMacData->interfaceIndex, msg, &srcHWAddress);

}

else {

if (node->macData[interfaceIndex]->promiscuousMode) {

MacCOUPLEDHandlePromiscuousMode(node,

COUPLED,

msg,

hdr->sourceAddr,

hdr->destAddr);

}

MESSAGE_Free(node, msg);

}

break;

}

default:

MESSAGE_Free(node, msg);

printf("MAC_COUPLED: Error with node %u, status %d.\n",

node->nodeId, COUPLED->status);

assert(FALSE); abort();

}//switch//

}

void MacCOUPLEDReceivePhyStatusChangeNotification(

Node* node,

MacDataCOUPLED* COUPLED,

PhyStatusType oldPhyStatus,

PhyStatusType newPhyStatus)

{

if (oldPhyStatus == PHY_TRANSMITTING) {

assert(newPhyStatus != PHY_TRANSMITTING);

assert(COUPLED->status == COUPLED_STATUS_IN_XMITING);

COUPLED->BOmin = COUPLED_BO_MIN;

COUPLED->BOmax = COUPLED_BO_MAX;

COUPLED->BOtimes = 0;

COUPLED->status = COUPLED_STATUS_YIELD;
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MacCOUPLEDYield(node, COUPLED, (clocktype)COUPLED_TX_DATA_YIELD_TIME);

}//if//

}

/*

* FUNCTION MacCOUPLEDLayer

* PURPOSE Models the behaviour of the MAC layer with the COUPLED protocol

* on receiving the message enclosed in msg.

*

* Parameters:

* node: node which received the message

* msg: message received by the layer

*/

void MacCOUPLEDLayer(Node *node, int interfaceIndex, Message *msg)

{

/*

* Retrieve the pointer to the data portion which relates

* to the COUPLED protocol.

*/

MacDataCOUPLED *COUPLED = (MacDataCOUPLED *)node->macData[interfaceIndex]->macVar;

int seq_num;

if (msg->eventType == MSG_MAC_FrameStartOrEnd) {

MESSAGE_Free(node, msg);

COUPLED->counter++;

MacCOUPLEDSetTimerCoupling(node, COUPLED);

if (COUPLED->counter > COUPLED->CounterLimit) {

MacCOUPLEDSetSynchPk(node, COUPLED);

}

}

else if (msg->eventType == MSG_SPECIAL_Timer) {

clocktype curTime;

char buf[80];

curTime = getSimTime(node);

ctoa(curTime,buf);

char buf1[MAX_STRING_LENGTH];

sprintf(buf1, "%uSEEDTIMES%d",

node->nodeId, node->globalSeed);

FILE * pFile;

pFile = fopen (buf1,"a");

fprintf (pFile, "%s, ",buf);

fprintf(pFile, "%d, ", COUPLED->second);

fprintf(pFile, "%d\n", COUPLED->counter);

fclose (pFile);

seq_num = *((int *) MESSAGE_ReturnInfo(msg));

MESSAGE_Free(node, msg);
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MacCOUPLEDSetTimerWriting(node, COUPLED);

}

else {

assert(msg->eventType == MSG_MAC_TimerExpired);

seq_num = *((int *) MESSAGE_ReturnInfo(msg));

MESSAGE_Free(node, msg);

if ((seq_num < COUPLED->timer.seq) ||

((COUPLED->timer.flag & COUPLED_TIMER_SWITCH) == COUPLED_TIMER_OFF)) {

return;

}

if (seq_num > COUPLED->timer.seq) {

assert(FALSE);

}

assert(((COUPLED->timer.flag & COUPLED_TIMER_TYPE) == COUPLED_TIMER_BACKOFF) ||

((COUPLED->timer.flag & COUPLED_TIMER_TYPE) == COUPLED_TIMER_YIELD));

switch(COUPLED->timer.flag & COUPLED_TIMER_TYPE) {

case COUPLED_TIMER_BACKOFF:

{

COUPLED->timer.flag = COUPLED_TIMER_OFF | COUPLED_TIMER_UNDEFINED;

CheckPhyStatusAndSendOrBackoff(node, COUPLED);

break;

}

case COUPLED_TIMER_YIELD:

COUPLED->timer.flag = COUPLED_TIMER_OFF | COUPLED_TIMER_UNDEFINED;

COUPLED->status = COUPLED_STATUS_PASSIVE;

MacCOUPLEDPassive(node, COUPLED);

break;

default:

assert(FALSE); abort();

break;

}/*switch*/

}

}

/*

* FUNCTION MAC_Finalize

* PURPOSE Called at the end of simulation to collect the results of
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* the simulation of the COUPLED protocol of MAC Layer.

*

* Parameter:

* node: node for which results are to be collected.

*/

void MacCOUPLEDFinalize(Node *node, int interfaceIndex)

{

MacDataCOUPLED* COUPLED = (MacDataCOUPLED *)node->macData[interfaceIndex]->macVar;

if (node->macData[interfaceIndex]->macStats == TRUE) {

MacCOUPLEDPrintStats(node, COUPLED, interfaceIndex);

}

char buf1[MAX_STRING_LENGTH];

sprintf(buf1, "%uSEED%d",

node->nodeId, node->globalSeed);

FILE * pFile;

pFile = fopen (buf1,"a");

fprintf(pFile, "\n%d\n", COUPLED->counter);

fclose (pFile);

}
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Source Code for Implementation
in Gumstix Boards and BMS
Sensors

B.1 Header file: sync.h

extern pthread_mutex_t count_mutex;

extern pthread_cond_t c_var;

void *UDP_send(void *ptr);

void *UDP_rec(void *ptr);

int spawn_thread(int argc, char *argv[]);

long double get_time();

void *counter(void *args);
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B.2 Source file: udp.cpp

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdlib.h>

#include <string.h>

#include <string>

#include <unistd.h>

#include <sys/time.h>

#include <pthread.h>

#include <time.h>

#include "sync.h"

#define MAXCOUNT 10000

#define lambda 0.8

#define delta 2

#define half MAXCOUNT/2

bool x;

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER, count_mutex2 =

PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t c_var = PTHREAD_COND_INITIALIZER, c_var2 =

PTHREAD_COND_INITIALIZER;

struct info{

std::string IP;

int port;

};

struct timespec tim = {0, 1*100*1000};

long int seconds = 0;

int i = 0;

int spawn_thread(int argc, char *argv[]){

//Argument checker; requires a port to broadcast to.

if (argc !=2) {

printf("syntax: <port_number> \n");

exit(-1);

}

info* a = new info;

a->port = (atoi(argv[1]));

info* b = new info;
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b->port = (atoi(argv[1]));

pthread_t t1, t2, t3;

long* t;

pthread_cond_init (&c_var, NULL);

pthread_mutex_init(&count_mutex, NULL);

pthread_create(&t1, NULL, UDP_send, a);

pthread_create(&t2, NULL, UDP_rec, b);

pthread_create(&t3, NULL, counter, t);

return 0;

}

void *counter(void *args){

struct tm *current;

struct timeval detail_time;

time_t now;

bool overflow = false;

sleep(1);

while(1){

while((x == false) && (overflow == false)){

//THIS FOR LOOP CONTROLS STEP SIZE

for(int x=0;x<10227;x++)

;

i++;

if(i >= MAXCOUNT)

overflow = true;

}

if(x == true){

printf("counter: %i\n", i);

if(i <delta)

;

else if(i < half){

i = (i - (i*lambda));

}

else{

i = i+(lambda*(MAXCOUNT-i));

}

x = false;

}

if(overflow == true){

pthread_cond_signal(&c_var);

seconds++;

i = 0;

overflow = false;

//THIS IF STATEMENT CONTROLS TIMER.
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if(seconds > 3600){

pthread_cond_signal(&c_var2);

}

}

}

}

void *UDP_rec(void *ptr){

struct info *c = (struct info *) ptr;

sockaddr_in si_me, si_other;

int s;

s=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

int broadcast=1;

char buf[40];

memset(&si_me, 0, sizeof(si_me));

si_me.sin_family = AF_INET;

si_me.sin_port = htons(c->port);

si_me.sin_addr.s_addr = INADDR_ANY;

bind(s, (sockaddr *)&si_me, sizeof(sockaddr));

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof broadcast);

int sel = 0;

fd_set readfds;

struct timeval tv;

unsigned int slen = sizeof(struct sockaddr_in);

FD_ZERO(&readfds);

FD_SET(s, &readfds);

while(1){

tv.tv_sec = 3;

sel = select(s+1, &readfds, NULL, NULL, &tv);

if (sel == 1){

recvfrom(s, buf, sizeof(buf)-1, 0, (sockaddr *)&si_other, &slen);

x = true;

}

}

}

void *UDP_send(void *ptr){

struct info *c = (struct info *) ptr;

std::string str = "r";

int datalen = 1;

const char *databuf;

databuf = str.c_str();

time_t now;

struct tm *current;

struct timeval detail_time;

int sock;
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struct sockaddr_in broadcastAddr;

char *broadcastIP;

unsigned short broadcastPort;

char *sendString;

int broadcastPermission;

int sendStringLen;

if ((sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0){

fprintf(stderr, "socket error");

exit(1);

}

char loopch=0;

if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP,

(char *)&loopch, sizeof(loopch)) < 0) {

perror("setting IP_MULTICAST_LOOP:");

close(sock);

exit(1);

}

broadcastPermission = 1;

if (setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (void *) &

broadcastPermission,sizeof(broadcastPermission)) < 0){

fprintf(stderr, "setsockopt error");

exit(1);

}

memset(&broadcastAddr, 0, sizeof(broadcastAddr));

broadcastAddr.sin_family = AF_INET;

broadcastAddr.sin_addr.s_addr = inet_addr("10.42.43.255");

broadcastAddr.sin_port = htons(c->port);

while(1){

pthread_cond_wait(&c_var, &count_mutex);

sendto(sock, databuf, 1, 0, (struct sockaddr *)&

broadcastAddr, sizeof(broadcastAddr));

now = time(0);

current = localtime(&now);

gettimeofday(&detail_time,NULL);

printf("sent packet at %i.%06lu seconds\n",current->tm_sec,

detail_time.tv_usec);

}

}

long double get_time(){

float decimal = i;

long double time = seconds;

decimal = decimal / 10000;

time = time + decimal;

return time;

}
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B.3 Usage Example file: test.cpp

include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdlib.h>

#include <string.h>

#include <string>

#include <unistd.h>

#include <sys/time.h>

#include <pthread.h>

#include <time.h>

#include "sync.h"

int main(int argc, char *argv[]){

long double time;

spawn_thread(argc, argv); //starts the wireless synchronization algorithm

while(1){

sleep(3) //sleep for three seconds

time = get_time(); //variable time now has local time

}

return 0;

}
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