
University of California
Santa Barbara

Management of Data and Collaboration

for Business Processes

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yutian Sun

Committee in charge:

Professor Jianwen Su, Chair
Professor Tevfik Bultan
Professor Xifeng Yan
Doctor Richard Hull

September 2015

The Dissertation of Yutian Sun is approved.

Tevfik Bultan

Xifeng Yan

Richard Hull

Jianwen Su, Committee Chair

July 2015

Management of Data and Collaboration

for Business Processes

Copyright c© 2015

by

Yutian Sun

iii

Acknowledgements

I would like to express my deep gratitude and thanks to my advisor Prof. Jianwen Su;

you have been a tremendous mentor for me. I would like to thank you for your valuable

and constructive suggestions and for allowing me to grow as a researcher. Your advice

on both research as well as on my career have been priceless. I would also like to thank

my committee members, Prof. Tevfik Bultan, Prof. Xifeng Yan, and Dr. Richard Hull

for their helpful advice and suggestions in general.

Also, I would like to express my special appreciation to my colleagues in IBM Re-

search, Roman Vaculin, Terry Heath, David Boaz, and Lior Limonad. My completion of

the project during the internship could not have been accomplished without the support

of you.

In addition, I am particularly grateful for the assistance given by Prof. Jian Yang

and Prof. Liang Zhang, who have been supporting and collaborating with me in the area

for years.

I also want to thank to National Science Foundation (IIS-0812578), IBM, and Bosch

for their financial support. Moreover, my special thanks are extended to UCSB Graduate

Division for granting me the dissertation fellowship.

iv

Curriculum Vitæ
Yutian Sun

Education

2015 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2014 M.S. in Computer Science, University of California, Santa Barbara.

2010 B.S. in Information Security, Fudan University

Publications

• Yutian Sun and Jianwen Su: “Conformance for DecSerFlow Constraints”. In Proc.
of the 12th Intl. Conf. on Service Oriented Computing (ICSOC), Paris, France, 2014,
LNCS 8831, pp. 139-153 (full paper acceptance rate: 24/160 = 15%)

• Yutian Sun, Jianwen Su, and Jian Yang: “Separating Execution and Data Man-
agement: A Key to Business-Process-as-a-Service (BPaaS)”. In Proc. of the 12th

Intl. Conf. on Business Process Management (BPM), Haifa, Israel, 2014, LNCS
8659, pp. 375-383 (short paper) (full paper acceptance rate: 21/123 = 17%; overall:
31/123 = 25%)

• David Boaz, Terry Heath, Manmohan Gupta, Lior Limonad, Yutian Sun, Richard
Hull, and Roman Vacuĺın: “The ACSI Hub: A Data-Centric Environment for Ser-
vice Interoperation”. In Proc. of the 12th Intl. Conf. on Business Process Manage-
ment (BPM) Demo Session, Haifa, Israel, 2014, CEUR Workshop Proceedings, Vol
1295, pp. 11-15 (demo paper)

• Yutian Sun, Jianwen Su, Budan Wu, and Jian Yang: “Modeling Data for Business
Processes”. In Proc. of the 30th Intl. Conf. on Data Engineering (ICDE), Chicago,
USA, 2014, pp. 1048-1059 (acceptance rate: 89/446 = 20%)

• Rik Eshuis, Richard Hull, Yutian Sun, and Roman Vacuĺın: “Splitting GSM
Schemas: A Framework for Outsourcing of Declarative Artifact Systems”. In Infor-
mation Systems, 2014, Vol 46, pp. 157-187

• Jianwen Su and Yutian Sun: “Choreography Revisited”. In Proc. of the 10th Intl.
Workshop on Web Services and Formal Methods (WS-FM), Beijing, China, 2013,
LNCS 8379, pp. 13-25 (invited paper)

• Terry Heath, David Boaz, Manmohan Gupta, Roman Vacuĺın, Yutian Sun, Lior
Limonad, and Richard Hull: “Barcelona: A Design and Runtime Environment for
Declarative Artifact-Centric BPM”. In Proc. of the 11th Intl. Conf. on Service
Oriented Computing (ICSOC), Berlin, Germany, 2013, LNCS 8274, pp. 705-709
(demo paper)

v

• Rik Eshuis, Richard Hull, Yutian Sun, and Roman Vacuĺın: “Splitting GSM
Schemas: A Framework for Outsourcing of Declarative Artifact Systems”. In Proc.
of the 11th Intl. Conf. on Business Process Management (BPM), Beijing, China,
2013, LNCS 8094, pp. 259-274 (full paper acceptance rate: 17/118 = 14%)

• Roman Vacuĺın, Richard Hull, Maja Vuković, Terry Heath, Nathaniel Mills, and
Yutian Sun: “Supporting Collaborative Decision Processes”. In Proc. of the 10th

Intl. Conf. on Services Computing (SCC), Santa Clara, CA, USA, 2013, IEEE
Computer Society, pp. 651-658

• Yutian Sun, Wei Xu, and Jianwen Su: “Declarative Choreographies for Artifacts”.
In Proc. of the 10th Intl. Conf. on Service Oriented Computing (ICSOC), Shanghai,
China, 2012, LNCS 7636, pp. 420-434 (full paper acceptance rate: 32/185 = 17%)

• Yutian Sun, Richard Hull, and Roman Vacuĺın: “Parallel Processing for Business
Artifacts with Declarative Lifecycles”. In Proc. of the 20th Intl. Conf. on Coop-
erative Information System (CoopIS), Rome, Italy, 2012, LNCS 7565, pp. 433-443
(short paper)

• Yutian Sun, Wei Xu, Jianwen Su, and Jian Yang: “SeGA: A Mediator for Artifact-
Centric Business Processes”. In Proc. of the 20th Intl. Conf. on Cooperative
Information Systems (CoopIS), Rome, Italy, 2012, LNCS 7567, pp. 658-661 (poster
paper)

• Yutian Sun and Jianwen Su: “Computing Degree of Parallelism for BPMN Pro-
cesses”. In Proc. of the 9th Intl. Conf. on Service Oriented Computing (IC-
SOC), Paphos, Cyprus, 2011, LNCS 7084, pp. 1-15 (full paper acceptance rate:
30/184 = 16%)

vi

Abstract

Management of Data and Collaboration

for Business Processes

by

Yutian Sun

A business process (BP) is a collection of activities and services assembled together

to accomplish a business goal. Business process management (BPM) refers to the man-

agement and support for a collection of inter-related business processes, which has been

playing an essential role in all enterprises. Business practitioners today face enormous

difficulties in managing data for BPs due to the fact that the data for BP execution is

scattered across databases for enterprise, auxiliary data stores managed by the BPM sys-

tems, and even file systems (e.g., definition of BP models). Moreover, current data and

business process modeling approaches leave associations of persistent data in databases

and data in BPs to the implementation level with little abstraction. Implementing busi-

ness logic involves data access from and to database often demands high development

efforts.

In the current study, we conceptualize the data used in BPs by capturing all needed

information for a BP throughout its execution into a “universal artifact”. The concep-

tualization provides a foundation for the separation of BP execution and BP data. With

the new framework, the data analysis can be carried out without knowing the logic of

BPs and the modification of the BP logics can be directly applied without understanding

the data structure.

Even though universal artifacts provide convenient data access for processes, the data

is yet stored in the underlying database and the relationship between data in artifacts

vii

and the one in database is still undefined. In general, a way to link the data of these two

data sources is needed. we propose a data mapping language aiming to bridge BP data

and enterprise database, so that the BP designers only need to focus on business data

instead of how to manipulate data by accessing the database. We formulate syntactic

conditions upon specified mapping in order that updates upon database or BP data can

be properly propagated.

In database area, mapping database to a view has been widely studied In recently

years, data exchange method extends the notion of database views to a target database

(i.e., multiple views) by using a set of conjunctive queries called “tuple generating de-

pendency” (tgd). Tgd is a language that is easy to understand/specify, expressive, and

decidable for a wide range of properties, which is ideal as a mapping language. Naturally,

if both enterprise database and artifacts are represented as relational database, we can

take advantage of data exchange technology to bridge enterprise database and artifacts

by using tgd as well. Therefore, we re-visit the mapping and update propagation problem

under the relational setting.

In addition to the data management for a single BP, it is equivalently essential to un-

derstand how messages and data should be exchanged among multiple collaborative BPs.

With the introduction of artifacts, data is explicitly modeled that can be used in a collab-

orative setting. Unfortunately, today’s BP collaboration languages (either orchestration

or choreography) do not emphasize on how data is evolved during execution. More-

over, the existing languages always assume each participant type has a single participant

instance. Therefore, a declarative language is introduced to specify the collaboration

among BPs with data and multiple instances concerned. The language adopts a subset

of linear temporal logics (LTL) as constraints to restrict the behavior of the collaborative

BPs.

As a follow-up study, we focus on the satisfiability problem of the declarative BP

viii

collaboration language, i.e., whether a given specification as a set of constraints allows at

least one finite execution. Naturally, if a specification excludes every possible execution,

it should be considered as an undesirable design. Therefore, we consider different combi-

nation of the constraint types and for each combination, syntactic conditions are provided

to decide whether the given constraints are satisfiable. The syntactic conditions automat-

ically lead to polynomial testing methods (comparing to PSPACE-complete complexity

of general LTL satisfiability testing).

ix

Contents

Curriculum Vitae v

Abstract vii

1 Introduction 1

2 Database, Artifacts, and Business Entities 6
2.1 Database Models . 6
2.2 Artifacts and Business Entities . 10

3 Data Mapping for Artifacts 15
3.1 Need for a Mapping Language . 16
3.2 Entity-Data Mapping Rules . 22
3.3 Updatability . 42
3.4 Isolation . 47
3.5 Summary . 55

4 Data Mappings: Identifying the Source 57
4.1 Preliminaries and Problem Definition . 59
4.2 Valid Chased Targets . 63
4.3 Adding Key Constraints . 70
4.4 Missing Source Relations . 83
4.5 Missing Source Relations with Key Constraints 90
4.6 Summary . 94

5 Universal Artifacts 95
5.1 Independence of Data and Execution . 96
5.2 Universal Artifacts . 105
5.3 The SeGA Framework and Support for BPaaS 116
5.4 A Classification of Collaborative Process Models 125
5.5 Runtime Support . 128
5.6 Summary . 135

x

6 Declarative Collaboration for Artifacts 136
6.1 Instance-Level Collaboration with Data 137
6.2 A Choreography Language . 142
6.3 Realizability . 171
6.4 Summary . 178

7 Satisfiability of Collaboration 179
7.1 DecSerFlow Constraints and Problem Definition 180
7.2 Core Constraints . 185
7.3 Characterizations for Ordering & Immediate Constraints 187
7.4 Incorporating Alternating Constraints . 196
7.5 Response or Precedence Constraints . 242
7.6 Experimental Evaluations . 247
7.7 Summary . 251

8 Related Work 252
8.1 Business Processes and Artifacts . 252
8.2 Schema Mapping and Relational Database 254
8.3 Choreography and Satisfiability . 255

9 Conclusions 258

Bibliography 261

xi

Chapter 1

Introduction

A business process (BP) is a collection of activities and services assembled together to

accomplish a business goal. Business process management (BPM) refers to the manage-

ment and support for a collection of inter-related business processes. The need for BPM

is ubiquitous as BPs exist in all types of organizations including governments, healthcare,

business, and more. A BPM system (a.k.a. workflow system) is a piece of software to aid

BPM through automating many management functions.

Business practitioners today face enormous difficulties in managing data for BPs due

to the fact that the data for BP execution is scattered across databases for enterprise,

auxiliary data stores managed by the BPM systems, and even file systems (e.g., definition

of BP models). Moreover, current data and business process modeling approaches leave

associations of persistent data in databases and data in BPs to the implementation level

with little abstraction. Implementing business logic involves data access from and to

database often demands high development efforts.

In most cases, a process modeling language does not emphasize on how data is ac-

cessed. Therefore the needed data in a process is stored in database in an ad-hoc way.

Fig. 1.1 (where the upper part is a BPMN process [1] and the lower part is the database)

1

Introduction Chapter 1

X

X

Figure 1.1: Traditional way of data access

X

X

Figure 1.2: Access data through artifacts

demonstrates how in general each activity in a process access data through hard-coded

SQL statements. This design suffers several drawbacks including inconvenient to change

a process, business-level operation to be implemented deep in programming level, and

hard for auditing since data is scattered around.

Regarding the ad-hoc way of data access, if we have a piece of data model that is

recording all the needed data in a structured format, then the design would be much

cleaner as the process does not need to concern about the database but only on the data

model. Another advantage of having a data model is to shift burden of data design from

programmers to business people, who are more familiar with what and how data should

be used in business processes. Moreover, data model also provides a formal structure that

helps business people to analyze, manage, and control their business operations from day

to day. In 2003, a model called “artifacts” [2], or also known as “business entity with

lifecycle” was proposed to provide a data model for a process. Essentially, an artifact is

a marriage of processes (i.e., lifecycle) and a piece of information (i.e., business entity)

that records all needed business data so that the execution of the process only needs to

focus on this piece of data instead of the database. Fig. 1.2 presents the high-level view of

2

Introduction Chapter 1

X

X

Figure 1.3: Bridge database and artifacts

an artifact, where the lower part is an XML-like data structure, called “business entity”,

with a lifecycle (in this case, a BPMN process) associated. The business entity collects

all the data in a structured format for its corresponding lifecycle to read and write. Note

that in general, there is no restriction on what format a business entity or a lifecycle

should be. Actually through out the chapter, we do not have a specific lifecycle model

and the business entity can be both hierarchical or relational.

However, with the introduction of artifacts, several issues are raised, which are also

the main focus of this thesis. In the following, we briefly introduce each of the problems

and how we approach them.

1. (Mapping between database and artifacts) Even though artifacts provide

convenient data access for processes, the data is yet stored in the underlying database

and the relationship between data in artifacts and the one in database is still undefined.

In general, a way to link the data of these two data sources is needed (Fig. 1.3). In

Chapter 3, we propose a data mapping language aiming to bridge BP data and enterprise

database, so that the BP designers only need to focus on business data instead of how

to manipulate data by accessing the database. We formulate syntactic conditions upon

specified mapping in order that updates upon database or BP data can be properly

propagated.

3

Introduction Chapter 1

2. (Mapping between relational databases) In database area, mapping database

to a view has been widely studied ([3, 4, 5]). In recently years, data exchange ([6, 7])

method extends the notion of database views to a target database (i.e., multiple views)

by using a set of conjunctive queries called “tuple generating dependency” (tgd). Tgd

is a language that is easy to understand/specify, expressive, and decidable for a wide

range of properties, which is ideal as a mapping language. Naturally, if both enterprise

database and artifacts are represented as relational database, we can take advantage of

data exchange technology to bridge enterprise database and artifacts by using tgd as

well. In Chapter 4, we re-study the mapping and update propagation problem under the

relational setting.

3. (Universal artifacts) The previous two problems concern how business data

(the data in a business entity) is managed for processes. However, the concept of data in

a process can be much broader than business data. Data like execution status, schema

definitions, correlation information, or even BP engine data is still scattered around

within BP engine or local database. The ad-hoc way of storing these types of data

combines a process with its engine tightly that is difficult for providing services, data

analysis, or changes. In Chapter 5, we conceptualize the data used in BPs by capturing

all needed information for a BP throughout its execution into a “universal artifact”.

The conceptualization provides a foundation for the separation of BP execution and BP

data. With the new framework, the data analysis can be carried out without knowing

the logic of BPs and the modification of the BP logics can be directly applied without

understanding the data structure.

4. (Collaboration for artifacts) In addition to the data management for a single

BP, it is equivalently essential to understand how messages and data should be exchanged

among multiple collaborative BPs. With the introduction of artifacts, data is explicitly

modeled that can be used in a collaborative setting. Unfortunately, today’s BP collab-

4

Introduction Chapter 1

oration languages (either orchestration or choreography [8]) do not emphasize on how

data is evolved during execution. Moreover, the existing languages always assume each

participant type has a single participant instance. Therefore, in Chapter 6, a declarative

language is introduced to specify the collaboration among BPs with data and multiple

instances concerned. The language adopts a subset of linear temporal logics (LTL) [9] as

constraints to restrict the behavior of the collaborative BPs.

5. (Collaboration satisfiability) As a follow-up study, we focus on the sat-

isfiability problem of the declarative BP collaboration language, i.e., whether a given

specification as a set of constraints allows at least one finite execution. Naturally, if a

specification excludes every possible execution, it should be considered as an undesirable

design. Therefore, in Chapter 7, we consider different combination of the constraint types

and for each combination; syntactic conditions are provided to decide whether the given

constraints are satisfiable. The syntactic conditions automatically lead to polynomial

testing methods (comparing to PSPACE-complete complexity of general LTL satisfiabil-

ity testing).

The thesis addresses the above 5 topics in 5 different chapters (3 - 7), where Chapter 2

introduces the preliminary concepts of relational database and artifacts, Chapter 8 is the

related work, and Chapter 9 concludes the thesis. Though there is a loose linkage among

the chapters, they should be rather self-contained and can be skipped when necessary

only with an exception of the pre-requisite of Chapter 2. Fig. 1.4 presents a recommended

dependency and reading sequence of this thesis by chapter numbers.

1 5

3 4

2

6 7

8 9

Figure 1.4: Dependency of chapters

5

Chapter 2

Database, Artifacts, and Business

Entities

This section provides key notions of the relational data model [10] [11] that has been

widely used in enterprises and the information model (a.k.a. business entity) of an

artifact-centric business process [2] that elevates data as the first-class citizen for process

design (our formalism is closer to the one defined in [12]).

For the technical development, we assume a totally ordered set of names that are

used as attribute names, relation names, and names in the artifact model presented later

in the section. Every (finite) set of names is enumerated according to this total order.

Let N be the set of natural numbers and N+ = N− {0}.

2.1 Database Models

The database model introduced in this section may or may not include “keys” and “for-

eign keys’ (depeding on the context) with cardinality bounds that resemble the entity-

relationship model [13] with cardinalities. Fig. 2.1 shows a high-level view of the concepts

6

Database, Artifacts, and Business Entities Chapter 2

Concepts Meaning

relation symbol a relation “type” that only has a name and arities
relation schema a relation symbol with attribute names
database schema a set of relation symbol or schemata
relation/database schema
with keys

a relation/database schema with keys, where their in-
stances should satisfy the key constraints

relation/database schema
with keys and foreign keys

a relation/database schema with keys and foreign keys,
where their instances should satisfy the key, foreign key,
and cardinality constraints

Figure 2.1: High-level description of database models

in this section.

Relational Models

A relation symbol R is a name, which has a fixed arity in N.

Definition: A relation schema is a tuple (R,A), where R is a relation symbol, A a finite

ordered set of names for (primitive) attributes, such that R 6∈ A and |A| equals to the

arity of R.

Definition: A database schema (or a database schema with attributes) R is a finite set

of relation symbols (resp, relation schemata).

Let two disjoint countably infinite sets Const and Var be a set of constants and a set

of (labeled) nulls respectively, where a labeled null is used to denote uncertain values [7].

Let DOM be Const ∪ Var.

Definition: Given a relation symbol R or a relation schema (R,A), a tuple τ (of R) is a

sequence (i.e., ordered bag/multiset) of values in DOM, such that |τ | equals to the arity

of R.

Given a relation schema (R,A), the ith attribute a ∈ A (i ∈ [1..|A|]), and a tuple τ

of R, denote τ(a) to be the ith value in τ .

7

Database, Artifacts, and Business Entities Chapter 2

Given a relation symbol R or a relation schema (R,A) A relation (instance) (of R) is

a finite set of tuples.

Definition: Given a database schema R = {R1, R2, ..., Rn}, a database (instance) I is a

set {RI
1, R

I
2, ...R

I
n}, such that for each i ∈ [1..n], RI

i is a relation of Ri. A ground database

is a database that only contains values in Const.

Key, Foreign Key, and Cardinality Constraints

Definition: A relation schema with keys is a tuple (R,A,K), where (R,A) is a relation

schema and K ⊆ 2A a set of keys over R such that no single key is properly contained in

another. Each attribute in a key in K is called prime.

The tuple for a relation schema with keys is defined the same as the one without keys.

Given R as a relation schema with keys, the concept of “relation (instance)” is for-

mulated in the same way (as for relation schema/symbol), such that the key values are

pairwise distinct (unique).

Given a relation schema (R,A) (or a relation schema with keys (R,A,K)), we may

denote a relation schema it as R(A) (resp. R(A,K)) or simply R when it is clear from

the context, A as Att(R), and K as Keys(R). We omit types of attributes (that can be

easily added). Thus we assume the existence of a universal domain DOM.

The definition of database schema with keys, together with its (ground or non-ground)

database (instance) with keys is the similar to the ones for database schema and database.

In the remainder of this section, we incorporate foreign keys and cardinality con-

straints to database.

A database schema with keys and foreign keys consists of a set of relation schemata

with keys, and a set of “foreign keys”, each having a cardinality bound. Similar to

cardinality constraints in the ER model [13], a bound limits the number of occurrences

of a foreign key value.

8

Database, Artifacts, and Business Entities Chapter 2

Definition: A database schema with keys and foreign keys is a triple (R, F, λ), where

• R is a set of relation schemata with keys with distinct names and pairwise disjoint

attribute sets. Let Keys(R) = ∪{Keys(R) | R ∈ R} be the set of all keys in R.

• F ⊆ (
⋃
R∈R 2Att(R)) × Keys(R) is a set of foreign keys such that (1) for each pair

(S, κ) in F , |S| = |κ|, S is not a proper superset of a key in Keys(R), and if S is

a subset of attributes in a relation schema R and κ ∈ Keys(R′), then R′ 6= R, and

(2) the graph (
⋃
R∈R 2Att(R), F) is acyclic.

• λ : F → {1, ?,+, ∗} is a total mapping assigning a cardinality bound to each foreign

key, where for each foreign key f , λ(f) limits the number of occurrences of each

f -value with 1 stands for exactly once, ? for at most once, + for at least once, and

∗ for unrestricted.

Definition: Given a database schema with keys and foreign keys S = (R, F, λ), a

database (instance) with keys and foreign keys of S is a total mapping d from R to

instances of R such that for each R ∈ R, d(R) is an instance of R and d satisfies all

foreign key constraints in F and the cardinality bounds in λ. Let inst (S) be the set of

all databases of S.

The definition omits conditions for satisfaction of foreign keys and cardinality bounds:

the former can be found in, e.g. [11], and the latter means that each value for a key must

occur in the referencing relation for the specified number of times.

Example 2.1.1 Kingfore Corporation (KFC) [14] in Beijing is a company that repairs

the heating equipment in some residential area.

Fig. 2.2 shows (a part of) the database schema used by KFC, where keys are under-

lined, foreign keys italicized with references as arrows. The database includes six rela-

tion schemas: tUser (information of customer and staff including repair-persons) with key

9

Database, Artifacts, and Business Entities Chapter 2

*

tRepair

tRepairID

tCustomerLN

tCustomerFN

tReason

tDate

tUser

tLastName

tFirstName

tPhone

tAddress

tServiceInfo

tServiceID

tRepairID_SI

tTime

tReview

tReviewID

tServiceID_R

tReviewResult

?

tMaterialInfo

tMaterialID

tServiceID_MI

tMaterial*

*

. . .

. . .

. . .

. . .

. . .

tRepairperson

tServiceID_P

tRepairpersonLN

tRepairpersonFN
*
+

Figure 2.2: A Part of the Database Schema for KFC

(tLastName, tFirstName), tRepair (customer repair requests) with key tRepairID and a for-

eign key (tCustomerLN, tCustomerFN) to tUser (the requesting customer), tServiceInfo

(individual on-site repair services performed by repair-persons), tRepairperson (the as-

signed repair-persons in a single service), tReview (service reviews) with two keys tRe-

viewID and tServiceID R, and tMaterialInfo (replacement parts used in a service) whose

foreign key tServiceID MI is also in a key.

In the remainder of this thesis, for relation or database schema/instances, we may

drop the term “keys” or “foreign keys” to refer to the concept of “database (schema)

with keys” or “database (schema) with foreign keys” if the context is clear.

2.2 Artifacts and Business Entities

Artifact-centric models [2, 15, 16] specify a process with a data model (called “business

entity”) and a lifecycle. In the remainder of the section, we formulate the key concepts

of the business entities. Since most of the technical results in this thesis focus on the

business entities only, we may not introduce the lifecycle in this section. Essentially, An

artifact model can have different types of lifecycle, which will be introduced separately

when they are needed in the remainder of this thesis. Fig. 2.3 presents a high-level view

of the important concepts that will be used in this thesis.

10

Database, Artifacts, and Business Entities Chapter 2

Concepts Meaning

complex attribute a hierarchical data attribute with sets
business entity a complex attribute with key, local key, and dependency
artifact a business entity with lifecycle
business entity/artifact en-
actment

the status/assignment of a business entity/artifact case
at a time instant

business entity/artifact in-
stance

a finite execution of a business entity/artifact case, i.e.,
a sequence of enactments

Figure 2.3: High-level description of artifact models

Unlike a database that is for storing all the data in an organization, a business entity

(instance) only focuses on all the needed data for a process case or instance. Naturally,

a business entity only contains small portion of what has been stored in a database and

could be in different format, e.g., XML or relational models. This section we introduce

a business entity that is hierarchically structured.

The following formalizes hierarchical structures for business entities.

Definition: The family of (complex) attributes is recursively defined as follows.

• each primitive attribute is an attribute,

• “a: (a1, ..., an)” is a tuple attribute and “a: {(a1, ..., an)}” is a set attribute, if n > 1,

ai’s are attributes, and a is a name not occurring in any of the ai’s.

Let Att(a) denote the set of all attributes used in a (including the name for a), and

Pm(a) the set of primitive attributes in a. A value of an attribute a is defined as follows.

• Each element in DOM is a value of a primitive attribute a,

• (a1: v1, ..., an: vn) is a value of a tuple attribute a: (a1, ..., an) if each vi is a value of ai,

• Each finite (possibly empty) set {(a1: v1,1..., an: v1,n), ..., (a1: vk,1..., an: vk,n)} is a value

of a set attribute a: {(a1, ..., an)} if k ∈N and for each i ∈ [1..k] and each j ∈ [1..n], vi,j

is a value of aj.

11

Database, Artifacts, and Business Entities Chapter 2

Given a tuple attribute “a: (a1, ..., an)” or a set attribute “a: {(a1, ..., an)}”, for each

i, j ∈ [1..n], ai is a child (attribute) of a and a sibling (attribute) of aj, a is the parent

(attribute) of ai. Let a be an attribute. A set κ of attributes in Att(a) is a key (in a)

if attributes in κ are pairwise siblings of each other. In our model, key values must be

unique among all artifact “enactments” in a “snapshot”. A local key (in a) is a pair (κ, b)

where κ is a key in a, and b an attribute in a and an ancestor of every attribute in κ.

Intuitively, b provides the “context” within which a local key value is unique.

Given a set V of values for a complex attribute a, a key κ1 in a, a local key (κ2, b)

in a, V satisfies the key κ1 if there are no undefined values for attributes in κ1 and each

value of κ1 attributes occurs at most once (i.e., is unique in V), V satisfies the local key

(κ2, b) if there are no undefined values for attributes in κ2 and each value of κ2 attributes

occurs at most once within each value of b (but may occur multiple times in different

values of b in V) and the b value is defined.

In order to define the notions of business entities, we introduce “functional paths”

(for retrieving an attribute from another attribute).

Given a complex attribute a, a functional (or fun-) path p (from a1 to an) is an

expression of form “a1. a2.· · ·. an”, where n> 0, ai ∈Att(a) for each i∈ [1..n], and for

each i∈ [1..(n−1)], ai+1 is a sibling, parent of ai, or a child of ai if ai is not a set

attribute. Also, a1 and an are the head and tail of p, resp. Note that if a1.· · ·.an is a

fun-path, so is ai.· · ·.aj for all 16 i6 j6n.

Intuitively, a functional path from attribute a to b denotes that given an attribute-

value pair of a, a unique value of b can be determined. In general, not every pair of

attributes have a functional path as they may go through set attributes, where multiple

values of b can be obtained given a.

A “business entity” is a complex attribute with (local) keys and “access dependen-

cies”. The latter specifies a partial order on all primitive attributes in the complex

12

Database, Artifacts, and Business Entities Chapter 2

attribute to denote that an attribute can be read/written after other attributes have

been written. Although access dependencies could be divided into “write-write” and

“write-read” dependencies, we combine them since they do not affect the technical re-

sults.

Definition: A business entity is a tuple (Ω, a, K, L, dep), where

• Ω is a (unique) name,

• a is a (complex) attribute with name Ω and a contains the primitive attribute “ID” as

its child,

• K is a set of keys in a and L a set of local keys in a such that (1) {ID} ∈ K, (2) each

(local) key in (K ∪ L) other than {ID} has a set attribute as its parent, and (3) each

set attribute in a has exactly one element in K ∪ L as its child(ren), and

• dep ⊆ Pm(a) × Pm(a) is a set of access dependencies such that the graph induced by

dep is a directed acyclic graph rooted at ID and for each edge (u, v) in this graph, there

exists a “functional path” from v to u.

When it is clear from the context, we may conveniently denote (Ω, a, K, L, dep) as

Ω(a, K, L, dep), or simply Ω.

Example 2.2.1 Continue with Example 2.1.1; Fig. 2.4 shows the business entity of a

repair business process (i.e., a case for a repair request). Each repair has an ID (re-

named to aID to avoid confusion), repair information (aRepair Info), and several ser-

vices (aService Info). Each service may require multiple replacement parts (aReplace-

ment Parts), 0 or 1 review (aReview Info). Set attributes (e.g., aService Info and aReplace-

ment Parts) are attached with a circled-star. There are three keys, aID, {aRP Last Name,

aRP First Name} and aServiceID (indicated by UNIQUE) and a local key aPartID within

13

Database, Artifacts, and Business Entities Chapter 2

aRepair

aID

UNIQUE

aRepair_Info

aReason aDate aCust_Name

aService_Info

aServiceID

UNIQUE

aTime aReplacement_Parts

aPart

aReview_Info

aReviewID aResult

aRepairperson

aPartID

UNIQUE IN

aReplacement_Parts

aCustomer

aCust_Addr

aCust_Last_Name

aRP_Last_Name aRP_First_Name

aCust_First_Name

aRP_Info

UNIQUE aMisc

aRepair_Addr

aRP_Phone

Figure 2.4: A business entity for the repair process (artifact)

the context of aReplacement Parts (UNIQUE IN). Primitive attributes include aID, aRe-

pair Info, aCust Name, aServiceID, etc. An access dependency example could be that be-

fore writing aCust Name, aID should be written, or writing aCust Name precedes reading

aCust Addr. An example fun-path can be “aRP Last Name.aReprairperson.aService Info.aID”,

which means that given the last name of a repair person in a business entity instance,

their is only one aID we can obtain. On the other hand, given an aID, there could possibly

have multiple last names (of aReprairperson).

Definition: An enactment of a business entity Ω(a, K, L, dep) is a value of a that satisfies

all local keys in L. An instance of Ω is a finite sequence (i.e., ordered bag) of enactments

of Ω that satisfies each key in K. We denote by Ent(Ω) (or inst (Ω)) the set of all

enactments (resp. instances) of Ω.

Remark 2.2.2 In the remainder of this thesis, we use term “enactment” to refer to the

status of an artifact or business entity “case” at a single time stamp; while “instance”

to denote a finite execution of an artifact or business entity “case” (i.e., a sequence of

enactments).

14

Chapter 3

Data Mapping for Artifacts

An important omission in current development practice for business process manage-

ment systems is modeling of data & access for a business process, including relationship

of the process data and the persistent data in the underlying enterprise database(s). This

chapter develops and studies a new approach to modeling data for business processes:

representing data used by a process as a hierarchically structured business entity with

(i) keys, local keys, and update constraints, and (ii) a set of data mapping rules defining

exact correspondence between entity data values and values in the enterprise database.

This chapter makes the following technical contributions: (1) A data mapping language

is formulated based on path expressions, and shown to coincide with a subclass of the

schema mapping language Clio. (2) Two new notions are formulated: Updatability al-

lows each update on a business entity (or database) to be translated to updates on the

database (or resp. business entity), a fundamental requirement for process implementa-

tion. Isolation reflects that updates by one process execution do not alter data used by

another running process. The property provides an important clue in process design. (3)

Decision algorithms for updatability and isolation are presented, and they can be easily

adapted for data mappings expressed in the subclass of Clio.

15

Data Mapping for Artifacts Chapter 3

The remainder of the chapter is organized as follows. Section 3.1 introduces and moti-

vates the framework and technical problems using a real example. Section 3.2 introduces

the mapping language, and establishes the equivalence of the language and a subclass of

Clio. Section 3.3 formulates and studies the updatability concept. Section 3.4 focuses on

the isolation property. Summary is provided in Section 3.5.

3.1 Need for a Mapping Language

Two key components in modern enterprise systems are data management and business

process management (BPM). Data refer to the persistent data managed by DBMS. Busi-

ness processes (BPs) prescribe how business operations should be conducted. BPs con-

sume, manipulate, and generate data; their interoperation is often accomplished through

sharing data access. Current data and BP modeling approaches (e.g., ER [13], BPMN

[1]) leave associations of persistent data in databases and data in BPs to the implementa-

tion level with little abstraction. Implementing business logic involves data access from

and to database and often demands high development efforts.

Recognizing the importance of integrating data with process, the BPM community is

embracing a shift from traditional activity-centric BP models (e.g. [17]) to data-centric

modeling. Artifact models [2, 12] lead this trend by using an information model for data

in a BP and a lifecycle model to capture how the business data evolve through business

operations in the BP. In object-centric models [18, 19], process logic was modeled as

object behaviors and object coordination. However, the modeling and design of the

connection between databases and BPs is still missing. The challenge in system support

for “linking” database and BP has two aspects: 1. A formal approach that models the

business process behavior and its associated data, captures its running status relevant

to database updates, and maintains its connection with the database at all time. 2.

16

Data Mapping for Artifacts Chapter 3

Modeling and tool support is needed for automation and to ensure that every BP runs

on its own data and maintains data consistency with the database.

To address the challenges, we study an entity-database mappings to manage data

accesses and updates between database and BPs. The approach allows us to achieve:

• Model and manage BPs and database separately: a BP only accesses data in its entity,

the database is connected the BP through the entity rather than directly (without

abstraction).

• BP data and the database are conceptually separated but remain “connected” (via

mapping rules) and consistent (through the updatability property).

• Isolation property reflects the situation that data updates in one BP will not affect

another BP execution in relation to the propagated database change.

This chapter makes the following technical contributions: (1) based on formal models

for database and artifact (BP) design, a language is developed for specifying mapping

rules between database and artifacts. It is shown that the language coincides with a

subclass of Clio [6]. (2) Two new notions are formulated. “Updatability” allows each

update on a business entity (or database) to be translated to updates on the database (or

resp. business entity), a fundamental requirement for (business) process implementation.

“Isolation” requires that updates by one process execution does not alter data used by

another running process. The property provides an important clue in process design. (3)

Decision algorithms for updatability and isolation are presented, which can be adapted

for data mappings in the subclass of Clio.

In the remainder of this section, we describe an application development that demands

a framework to model data accessed by a BP and automate database accesses by the BP

through specified “mappings” between the BP data and the underlying database. Since

the database is modified by BP executions indirectly through the data mappings, two

17

Data Mapping for Artifacts Chapter 3

w(ID)
w(Customer Name)
r(Customer Address)

w(Service ID)
w(Repairperson Name)
w(Repairperson Phone)

w(Material ID)
w(Material)

Repair Application

Application Review

Repairperson Assignment On-site Repair

Post-repair VisitDocument Archive
. . .

. . .

.

.

Figure 3.1: A Business Process for RBPS

technical problems arise: (1) “updatability”, the ability to translate data modifications

by BPs to database updates, and (2) “isolation”, a property that data modifications by

one process execution do not implicitly change the data used by another.

Kingfore Corporation (KFC) [14], mentioned slightly in Chapter 2) in Beijing was

developing a repair management system (RMS) to manage their business of heating

equipment repairs. Fig. 3.1 shows the (simplified) primary process with six activities

(shown as boxes); inside each box are attributes to be read or written by the activity.

Actual values of all attributes are stored in a single database.

The process is initiated by a repair request from a customer via the RMS web front; a

KFC operator is notified and approves the application if an on-site repair is needed. The

application is then sent to the corresponding heating center manager for the customer’s

residential location. The manager reviews the request, and assigns one or more service-

persons, a.k.a. repairpersons for the case. After the repair is completed (with one or more

site visits) a representative from KFC visits the customer and closes the case. However,

if the service-persons are unable to fix the problem or the post-repair visit receives an

unsatisfactory response, the request is sent back to the manager and new service-persons

will be assigned.

RMS was developed in jBPM (www.jboss.org/jbpm) with about 18, 900 lines of hand-

written code (for backend business logic, interface, and database access). In addition

18

www.jboss.org/jbpm

Data Mapping for Artifacts Chapter 3

to error-prone development, a key weakness is that every small change on the

process requires fairly significant code rewriting. For example, when two Service

Form Generation activities were deleted from the initial process, about 800 lines (or 4%)

of the code were rewritten. A close examination shows that much of the rewriting can be

avoided: If we have a conceptual data model for each process (schema) and the mapping

between the process data schema and the database, the code lines concerning database

accesses can be automatically generated. Indeed, the RMS code base contains more than

3, 800 or 20% lines for accessing the database that could be automatically generated.

Artifact-centric process modeling approach [12] (also [2, 15]) represents process data

as a “business entity” and a process schema as a business entity with a “lifecycle”. Fig. 3.1

shows a lifecycle as a finite state machine [16]. Fig. 2.4 shows part of the business entity for

the repair process in Fig. 3.1. Each repair has an ID (renamed to aID to avoid confusion),

several services (aService Info), and a customer (aCustomer). Each service may require

multiple replacement parts (aReplacement Parts) and repairpersons (aRepairperson).

Once business entities are modeled, associations of business entities and the database

can be defined as “data mappings”. With such mappings between business entities and

the database, the process designer only needs to focus on business entities in process

modeling/design, while ignoring the database. (In general, the database may contain

much more data than what is needed by a single process.)

Consider as an example where the aID value of each instance of the business entity

(Fig. 2.4) for the repair process is mapped to the tRepairID value of some tuple in the table

tRepair (Fig. 2.2). Then, the aCust LN and aCust FN values in the business entity in-

stance with aID = 101 should correspond to tCustomerLN and tCustomerFN values (resp.)

of the tuple with matching tRepairID (i.e., = 101). This can be specified using a path

expression for aCust LN: “aCust LN.aCust-omer.aID@tRepair(tRepairID).tCustomerLN ”,

where the first half of the expression navigates in the business entity (Fig. 2.4) and the

19

Data Mapping for Artifacts Chapter 3

second half in the database (Fig. 2.2). More specifically, from the attribute-value pair

aCust LN in a business entity instance, we are able to uniquely locate the attribute-value

pair aCustomer, and consequently uniquely locate the attribute-value pair aID. With the

value of aID, we can match the value of tRepairID in table tRepair and then find the

value of tCustomerLN (in the corresponding tuple). The above expression means that the

given value of aCust LN should be identical to the value of tCustomerLN. Furthermore,

the values of aCust LN and aCust FN in the business entity instance with aID = 101 can

be fetched by an SQL query:

SELECT tCustomerLN, tCustomerFN FROM tRepair WHERE tRepairID=101

This example hints that one can generate SQL expressions for database accesses

from the data mappings. A further advantage of the mappings is that modification of a

process (or database) can be made locally on the process (resp. database) first and then

the mappings are adjusted. The current practice is to consider both at the same time, a

more complex task.

During the RMS development, a problem encountered was that some updates on a

business entity could not be translated into database updates. Consider the following

mapping expressed using Clio [6] from the database (Fig. 2.2) as the source to the business

entity (Fig. 2.4) as the target.

∀is im nl nf m t tServiceInfo(is, 101, t),

tRepairperson(is, nl, nf), tMaterialInfo(im, is,m)

→ ∃Rp aRepairperson(nl, nf , R), R(p,m) (∗)

Rule (∗) creates an aRepair instance. Each entry in aRepairperson records for each ser-

vice the replacement parts used by a service-person (using a join of tMaterialInfo and

20

Data Mapping for Artifacts Chapter 3

tRepairperson on the service ID). Suppose there are two tuples (a1, b, c1) and (a2, b, c2)

in tMaterialInfo, and two tuples (b, d1, e1) and (b, d2, e2) in tRepairperson. Then aRe-

pairperson should have four entries (d1, e1, (p1, c1)), (d1, e1, (p2, c2)), (d2, e2, (p3, c1)), and

(d2, e2, (p4, c2)), where p1, p2, p3, are p4 are some phone number values. If the process

execution is to delete the entry (d2, e2, (p3, c1)) in aRepairperson, it is not possible to up-

date the database so that the mapping rule (∗) would give the updated aRepairperson.

The reason that rule (∗) is not “updatable” is due to poor design, which makes a cross

product of tables tMaterialInfo and tRepairperson, and then stores the result in the

same tuple aRepariperson. A solution to this problem is to move the attribute aMisc

(a dashed box in Fig. 2.4) that stores the information of replacement parts to another

attribute aPart under the tuple aReplacement Parts. For the remainder of this chapter,

we consider the attribute aMisc removed.

Another situation that can lead to an inconsistent update is that two attributes in

the same business entity (instance) are mapped to the value of the same tuple in the

database.

Example 3.1.1 Consider an instance of a business entity in Fig. 2.4, where both at-

tributes aRepair Addr and aCust Addr are mapped to the attribute tAddress in the same

tuple in table tUser (Fig. 2.2). When the value of aRepair Addr is updated to the one that

is different from the value of aCust Addr, the database is unable to capture this change.

The problem lies in the redundancy of information stored in the business entity. A quick

fix is to remove a redundant attribute aRepair Addr. Similarly, for the remainder of this

chapter, we also consider attribute aRepair Addr removed.

Since the data in a process are mapped into the database, the above discussion sug-

gests a critical “updatability” property that every business entity modification by a

21

Data Mapping for Artifacts Chapter 3

process should always be translated into database updates. In this chapter, we argue

that each specified mapping should be “updatable”.

Another interesting property is independence between two process executions, called

“isolation”, i.e., the two process instances will not update the same attribute of the same

tuple in the database. Consider the entity in Fig. 2.4. Suppose there are two running

repair process instances requested by the same customer; if aCust Addr is updated by

one of the instances, the other repair process instance for the same customer will “see”

the changed address even though it makes no updates on the address. In this situation,

the artifact (in Fig. 2.4) is not “isolated” (with itself). For this example, it is desirable

to have the address change made by one process to be immediately visible by the other

running instance. However, Such implicit changes are not always helpful.

For example, an address change in the repair process of a customer will alter the

address in an ongoing “Customer Profile Update” instance by the same customer. This

failure to isolate is counter-intuitive and not desirable. To avoid this situation, one can

restrict attribute aCust Addr in Fig. 2.4 to be “read-only” for the repair process.

Isolation property is important to BP designers. Unlike updatability, we do not

require artifacts to be always “isolated”.

3.2 Entity-Data Mapping Rules

Process data are typically stored in a database (Fig. 3.2). When a process instance up-

dates its business entity, the corresponding updates on the database should be performed.

This section introduces “Entity-Data” mapping rules, or ED rules, a rule-based data map-

ping language for specifying correspondence between BP enactments and databases, and

shows that ED rules are equivalent to a subset of Clio with respect to the expressiveness

of mapping databases to enactments.

22

Data Mapping for Artifacts Chapter 3

workflow
instance �

workflow
instance 17

business
entity

data mappings

database

workflow
instance ٴ

business
entity

Figure 3.2: Process execution and database

A business entity can be naturally seen as a “view” on the database, when treating

data mapping as queries. In this case, finding database updates for a process update

resembles the view update problem studied in the relational databases [3, 4]. There are

a few important differences.

First, the view update problem often has no solutions [3], and is hard in restricted

cases when solutions exist, the presence of key and foreign key constraints further com-

plicates the problem. However, a process instance acts on one entity instance at a time;

even without data modeling as business entities, appropriate database updates are al-

ways found during process implementation. It suggests that business entities are more

restrictive than views in practice and its update problem is generally solvable.

Second, business entities are hierarchically structured but not relational. Most view

mechanisms are not suitable, with an exception of schema language languages such as

Clio [6]. In this case, the database is the source and the entity is the target. However,

the (view or) target update problem has not been studied. Our path expression based

language is restrictive as a query language but more natural for specifying data mappings

on process data. More importantly, the language facilitates solutions to the problem of

propagating process updates to the database. In §3.2.1, we identify a subclass of Clio

rules that are equivalent to ED rules.

To define the mapping language, we introduce the notions of “functional multi-paths”

(retrieving attributes from another attribute in a business entity), “reference paths” (re-

23

Data Mapping for Artifacts Chapter 3

trieving attributes from another attribute in a database), “cross-reference paths” (retriev-

ing attributes in a database from an attribute in a business entity), and “key-mapping

rules” (matching a (local) key in a business entity with (part of) a key in a database).

For each m> 0, an m-ary functional multi-(or fun-m)path is an expression of form

“p0.[p1, ..., pm]”, where (1) for each i∈ [1..m], p0.pi (concatenation p0 and pi) is a fun-

path and the tail of pi is a primitive attribute, (2) the head of p0 is primitive, and (3) for

each i∈ [1..m], there is a path from the tail of pi to the head of p0 in graph (Pm(a), dep)

(i.e., complying with the access dependencies to prevent that a referenced attribute is

undefined). When m = 1, we may drop “[” “]” for convenience.

Example 3.2.1 In Fig. 2.4, an example fun-mpath could be “aPart.[aPartID, aReplace-

ment Parts.aServiceID]”.

Similarly, in the database side, a “reference paths” traverses through a chain of

foreign key references to retrieve a single non-primary attribute. Given a database

schema (R, F, λ) and n> 0, a reference (or ref-)path is an expression of form “R1(κ′1).

κ1@R2(κ′2).κ2@...@Rn−1(κ′n−1).κn−1@Rn(κ′n).a”, where for each i ∈ [1..(n−1)], κi ⊆

Att(Ri) and (κi, κ
′
i+1) ∈ F (the value of κi should be the same as κ′i+1), and a ∈ Att(Rn).

Example 3.2.2 In Fig. 2.2, a reference path is

tMaterial-Info(tMaterialID, tServiceID MI).tServiceID MI

@tServiceInfo(tServiceID).tRepairID SI

@tRepair(tRepairID).tReason

that denotes the tReason value of the tuple in tRepair corresponding to a unique tuple

in tMaterialInfo by matching foreign keys.

A “cross-reference path” defined below concatenates a fun-mpath and a ref-path to set

24

Data Mapping for Artifacts Chapter 3

up a reference from a non-key (i.e., neither a key or a local key) business entity attribute

to a database attribute. Given Ω as a business entity and S as a database schema a cross-

reference (or cref-)path is an expression of form “p0.[p1, ..., pn]@R1(κ′1).κ1@...@Rm(κ′m).a”,

where p0.[p1, ..., pn] is a fun-mpath of Ω and R1(κ′1).κ1@...@Rm(κ′m).a is a ref-path of S,

n = |κ′1|, and the head of p0 is not a part of any (local) key.

A cref-path p0.[p1, ..., pn]@R1(κ′1).κ1@...@Rm(κ′m).a is used to establish an “equality”

between the head of p0 in a business entity and attribute a in a database schema. The

linkage is established by matching the last (ordered set of) attribute(s) in the fun-mpath

and the key of the first relation schema in the ref-path.

Example 3.2.3 For the database schema in Fig. 2.2 and the business entity in Fig. 2.4,

a cref-path can be ‘aReason.aRepair Info.aID@tRepair(tRepairID).tReason’ denoting that

the tReason attribute can be retrieved from the aReason attribute by matching the values

of aID and tRepairID. A more complicated example is

aPart.[aPartID, aReplacement Parts.aServiceID]

@tMaterial-Info(tMaterialID, tServiceID MI).tMaterial

whose linkage is matched by a pair of attributes (i.e., aPartID to tMaterialID, and aServi-

ceID to tServiceID MI).

In our framework, a cref-path establishes the relationship between a non-key attribute

in a business entity and an attribute in a database. For attributes in a key or local key,

a “key-mapping rule” is used, which establishes the relationship between a key (or local

key) in a business entity and a key (resp. part of a key) in a database.

Let S = (R, F, λ) be a database schema and Ω(a, K, L, dep) a business entity. Further

suppose that γ is a (local) key of Ω, R∈R a relation schema, and κ⊂Att(R) where

|γ| = |κ|. A key-mapping rule of γ is an expression of form “R.κ” or “R.κ WHEN ϕ”

25

Data Mapping for Artifacts Chapter 3

such that

• if γ is the ID of Ω, then κ is a key of R and the key-mapping rule must have the

form “R.κ”,

• if γ is not the ID of Ω, “R.κ WHEN ϕ” must be used; moreover, κ is a key of R if

γ is a key,

• if γ is a local key in Ω, κ is contained in a key of R and specifically κ = κ′ − {f |

∃κ′′ ∈ Keys(R), (f, κ′′) ∈ F} where κ′ is a key of R,

• ϕ is an expressions with form p0.[p1, ..., pn] = R.κ′, where p0.[p1, ..., pn] is a fun-

mpath, the head of p0 is the first element of γ to denote that the all the referenced

attributes (based on p0.[p1, ..., pn]) should start from γ, and κ′ is a foreign key of R;

the tails of p1, ..., pn (i.e., the referenced attributes from γ) form the (local) key in

the “upper level”: if γ is the (local) key for a set attribute a, and b is an ancestor

of a in the business entity and a set attribute (or the root) with no set attribute

between a and b, then the tails of p1, ..., pn form the (local) key of b, and

• for each p0.[p1, ..., pn] = R.κ′ in ϕ, if λ(κ′) is “?” or “1”, then for each i ∈ [0..n],

pi contains no set attributes; otherwise (i.e., λ(κ′) is “∗” or “+”), pi contains a set

attribute for some i ∈ [0..n].

Intuitively, a key-mapping rule defines an equality between a (local) key γ (in a

business entity) and (part of) a key κ (in a database). The “WHEN” conditions are

needed for the situations when γ equals to κ under a context (presence of a foreign key)

either not in a nested set (a key in the business entity) or within a nested set (a local

ley).

Example 3.2.4 Consider the database schema in Fig. 2.2 and the business entity in

Fig. 2.4, the key-mapping rule tRepair.tRepairID for aID denotes that there exists a tuple

26

Data Mapping for Artifacts Chapter 3

of tRepair whose value of tRepairID is equivalent to the value of aID in a business entity.

Moreover, the key-mapping rule for aServiceID could be “tServiceInfo.tServiceIDWHEN

aServiceID.aService Info.aID = tServiceInfo.tRepairID SI ” to denote that there should

exist a tuple of tServiceInfo whose tServiceID value is equal to the value of aServiceID

in a business entity only under the circumstance where in the same business entity and

the tuple, the value of aID is the same as the value of tRepairID SI.

Definition: Given a business entity Ω(a, K, L, dep), a database schema S = (R, F, λ), if

γ is a (local) key, or a primitive attribute not in a (local) key in Ω, an entity-data (ED)

mapping rule of γ is either a key-mapping rule if γ is a key or local key, otherwise an

expression “= p” where p is a cref-path whose head is γ.

An ED rule for a primitive attribute or (local) key a may have different forms. If a is

not a key or a local key, then a cref-path can uniquely match the value of a in a business

entity to the value of an attribute in a database (these two values should always be the

same). Otherwise, if a is a (local) key, then two cases can be obtained: (1) if a is the ID,

then there should exist a key κ in the corresponding relation schema R, such that the

value of a in a business entity is the same as the value of κ in some instance of R. (2)

otherwise, the value of a should be “scoped” by the “WHEN” condition.

Example 3.2.5 Fig. 3.3 shows the mapping rules for some attributes based on Figs. 2.2

and 2.4 (not including the attributes in dashed boxes). The meaning of the mapping

rules for aID and aServiceID is the same as explained in Example 3.2.4. And, comparing

with Example 3.2.3, the mapping rule for aReason means that the value of aReason is the

same as the value of tReason in a tuple of tRepair whose key (tRepairID) has the value

of aID.

27

Data Mapping for Artifacts Chapter 3

Attributes Mapping rules

aID tRepair.tRepairID

aReason
= aReason.aRepair Info.aID

@tRepair(tRepairID).tReason

aDate
= aDate.aRepair Info.aID

@tRepair(tRepairID).tDate

aCust Last Name
= aCust Last Name.aCust Name.aCustomer.aID

@tRepair(tRepairID).tCustomerLN

aCust First Name
= aCust First Name.aCust Name.aCustomer.aID

@tRepair(tRepairID).tCustomerFN

aCust Addr
= aCust Addr.[aCust Last Name,aCust First Name]

@tUser(tLastName, tFirstName).tAddress

aServiceID
tServiceInfo.tServiceID WHEN

aServiceID.aService Info.aID = tServiceInfo.tRepairID SI

aTime = aTime.aServiceID@tServiceInfo(tServiceID).tTime

(aRP Last Name,
aRP First Name)

tRepairperson.[tRepairpersonLN, tRepairpersonFN] WHEN

aRP Last Name.aRepairperson.aServiceID =

tRepairperson.tServiceID P

aRP Phone
= aRP Phone.aRP Info.[aRP Last Name, aRP First Name]

@tUser(tLastName, tFirstName).tPhone

aPartID

tMaterialInfo.tMaterialID WHEN

aPartID.aReplacement Parts.aServiceID =

tMaterialInfo.tServiceID MI

aPart
= aPart.[aPartID, aReplacement Parts.aServiceID]

@tMaterialInfo(tMaterialID, tServiceID MI).tMaterial

aReviewID
= aReviewID.aReview Info.aServiceID

@tReview(tServiceID R).tReviewID

aResult
= aResult.aReviewID

@tReview(tReviewID).tReviewResult

Figure 3.3: Entity-Data mapping rules

Given a business entity Ω and a database schema S, a mapping rule r (with respect

to Ω and S) for a (set of) attribute(s) A in Ω is satisfied by an enactment σ ∈ Ent(Ω)

and a database d ∈ inst (S), denoted as (σ, d) |= r, if one of the following conditions is

satisfied.

• r is of form “R.κ” and there exists a tuple τ of R in d, such that the value of κ in τ

28

Data Mapping for Artifacts Chapter 3

is the same as the value of A in σ. (Notice that the correspondence between the ID A

and the key κ is one-to-one.)

• r is of form “R.κ WHEN ϕ”, for each tuple τ of R in d that satisfies ϕ wrt σ, there

exists a value for A identical to the value of κ in τ , and for each value v for A in σ,

there exists a tuple τ of R in d such that the value of κ in τ is v and τ and σ satisfy ϕ.

• r is of form “= p@R1(κ′1).κ1@...@Rj(κ
′
j).a”, where p is a functional multi-path, for

each value of all tails of p in σ, there exists a value v for A in σ such that v is the value

of κ′j in a tuple of Rj that is “retrieved” according to the cref-path, and vice versa.

Definition: Given a business entity Ω and a database schema S, a set of ED rules is an

ED cover if it contains exactly one mapping rule for each (local) key or non-key primitive

attribute of Ω.

The set of mapping rules in Fig. 3.3 is an ED cover for the business entity in Fig. 2.4

(ignoring the attributes in dashed boxes). The following property confirms that an ED

cover yields a well defined data mapping.

Lemma 3.2.6 Let Ω be a business entity, S a database schema, M an ED cover. Then,

for each database d ∈ inst (S) and a value vID, there exists at most one enactment

σ ∈ Ent(Ω) holding vID as its ID value such that for each r ∈M , (σ, d) |= r.

Proof: (Sketch) Let Ω, S, M , σ, d, and vID be as stated in the Lemma. As M is a

tight cover of Ω, each primitive attribute of Ω is “covered” by exactly one mapping rule.

Suppose that if there exists a distinct enactment σ′ from σ of Ω, where σ′ holds the same

ID value vID as σ; and without loss of generality, assume that σ contains an attribute-

value pair (a : va), where a is a primitive attribute of Ω and va ∈ DOM, and σ′ does not.

Further, suppose that the only mapping rule for a is r. Then it can be shown that either

29

Data Mapping for Artifacts Chapter 3

va is not a value for the corresponding attribute of a in d (which means that (σ, d) 6|= r)

or va is a value for the corresponding attribute of a in d (which means that (σ′, d) 6|= r),

which leads to a contradiction. Notice that if the given ID does not have a corresponding

value in d according to the mapping rules in M , then σ does not exist.

3.2.1 Clio and an equivalence result

In this subsection, we view ED rules and Clio [6] as “queries” mapping database instances

to enactments, define the notion of “equivalence” of such queries, and then formulate a

syntactic subclass of Clio, called “entity maps”. The main result shows that ED covers

are equivalent to Clio entity maps.

We fix S to be a database schema, Ω a business entity, and xID an enactment ID (used

as a variable), unless otherwise specified.

Given an enactment of Ω with ID xID, an ED cover M specifies all values in the

database that correspond to values in the enactment xID. The rules can also be used

to “fetch” the values for the enactment xID using the correspondence. For an instance

d ∈ inst (S), let M(d) be the output enactment xID.

Clio is a schema mapping language using tgd-like (tuple generating dependency) rules

to transform hierarchical source data to hierarchical target data. For our purpose, we

consider only Clio rules that map relational databases to hierarchical data representing

enactments. In order to compare with ED rules that produce one enactment, we allow

the variable xID as the only free variable (holding the ID of the resulting enactment). We

focus on constant-free Clio rules of the following form with only xID occurring free:

∀x̄ ΦS → ∃Ȳ ΨΩ (†)

30

Data Mapping for Artifacts Chapter 3

where x̄ is a sequence of first-order variables, ΦS a conjunction of atomic formulas of

form “R(z̄)” with R a relation in S and z̄ variables in x̄∪ {xID}, Ȳ variables for (nested)

tuple/set constructs in Ω (i.e., Ȳ has no first-order variables), ΨΩ a conjunction of atomic

formulas with Ω or variables in Ȳ as relations each first-order variable occurs at most

once, and xID occurs in both ΦS and ΨΩ. In addition, equality (two occurrences of the

same variable) is only allowed between attributes for a foreign key constraint in S.

Example 3.2.7 Equation (∗) is a Clio mapping from the relational database in Fig. 2.2

to the nested structure in Fig. 2.4.

Given a set of Clio rules of form (i), we use the semantics similar to the one in [20]

that produces a single enactment from a database (rather than the semantics in [7].

In particular, for nested sets, this semantics produces enactments that satisfy partition

normal form (PNF) [21].

We introduce further syntactic restrictions on Clio rules. The overall goal is to have

a set of Clio rules to map a database to a single business entity instance with the ID xID.

We construct a graph Gr for each rule r of form (i) whose nodes are occurrences of

relations in ΦS and contains edges (R1, R2) if there is an equality in ΦS for a foreign key

(a) from R2 to R1, or (b) R1 to R2 with a “1-1” constraint.

Condition 1. A rule r is contributing if (1) after collapsing each strongly connected

component of Gr into a node, the resulting graph is a tree whose root is the relation

containing the variable xID, and (2) each strongly connected component in Gr contains

a node whose corresponding formula contains a variable occurring in ΨΩ of r.

Condition 1 requires that the left-hand side of a Clio rule is connected and join can

only happen between keys-foreign keys, thus avoiding arbitrary cross products.

For each business entity Ω, we construct its normalization Ωnorm by recursively apply-

31

Data Mapping for Artifacts Chapter 3

ing the following operations:

(1) Collapse two consecutive tuple constructs,

(2) If a set construct τ has a local key within a scope, we

duplicate in τ (attributes of) the key of the scope.

Clearly, each attribute in Ωnorm corresponds to one attribute in Ω and conversely, each

attribute in Ω corresponds to one attribute in Ωnorm, except for key attributes in a scope

of local key(s).

Note that Ωnorm has one tuple construct (the root) and 0 or more nested set constructs.

For each tuple/set construct τ in Ωnorm, let key(τ) be the set of attributes in the key of

τ .

Let FS be the set of functional dependencies on S obtained by turning each key, foreign

key dependency into a functional dependency and each foreign key with 1-1 constraint

into two functional dependencies (both directions). For an atomic attribute a in Ω, let

r(a) be the set of attributes in S contributing values to a, r(a)={b | b an attribute in S

and there is a variable x corresponding to attribute a in ΨΩ and b in ΦS}. For a sequence

a1...an of attributes in Ω, let r(a1...an) denote ×ni=1r(ai).

Condition 2. For each tuple/set construct τ in Ωnorm, the rule r is τ -full if (1) each

attribute in key(τ) corresponds to an attribute (variable) of Ω occurring in ΨΩ, and (2)

there is a sequence B ∈ r(key(τ)) of attributes of S such that (i) there is an occurrence

R(z̄) of a relation R in ΦS such that B is a key of R and z contains variables corresponding

to B, and (ii) there is a sequence of attributes C ∈ r(Pm(τ)) such that FS logically implies

the functional dependency B → C (recall that Pm(τ) is the set of primitive attributes in

τ).

A rule r is full if it is τ -full for each set/tuple construct τ in Ωnorm with an attribute

occurring in ΨΩ.

Condition 2 concerns nested sets: in each nested set, attribute values of each tuple

32

Data Mapping for Artifacts Chapter 3

must be uniquely identifiable with the keys in the nested set, avoiding multiple values

for a tuple (violating key constraints).

Condition 3. A rule r is consistent if for each pair of constructs τ1, τ2 in Ωnorm where τ1

is a parent of τ2, (1) if τ2 has an attribute occurring in ΨΩ, so does τ1, and (2) there exist

sequences of attributes Bi ∈ r(key(τi)) (i = 1, 2) such that (i) FS implies the functional

dependency B2 → B1, and (ii) there is an occurrence R(z̄) in ΦS where z̄ contains both

variables for B1 and variables for B2.

Condition 3 insists that each nested set should be connected to its corresponding

context (i.e., the parent tuple).

Condition 4. We define H(r) = {τ | τ is a tuple/set construct in Ωnorm with at least

one attribute occurring in ΨΩ}. We construct a tree TΩ from Ωnorm as follows: tuple/set

constructs as nodes and child relationships as edges. The rule r is closed if for each

τ ∈ H(r), every ancestor of τ in TΩ is also in H(τ).

Condition 4 concerns the right-hand side of a Clio rule: if a rule produces a value for

some nested set in a business entity, all of its ancestors should be present (to provide the

context).

Definition: A set π of Clio rules of form (i) is an entity map if (1) every rule in π is

contributing, full, consistent, and closed, (2) for each path p in TΩ from the root, there

is a rule r ∈ π such that H(r) = {τ | τ is on p}, and (3) for each pair of rules r1, r2 ∈ π,

H(r1) ⊆ H(r2) implies the existence of a 1-1 embedding of r1 into r2.

In general, Clio rules may produce enactments with undefined (or null) values. To

simplify our presentation, we focus only on databases and enactments with no undefined

values.

Definition: Let S be a database schema, Ω a business entity, π a Clio entity map, and

M a ED cover. Then, π and M are equivalent, denoted as π ≡ M , if for each database

33

Data Mapping for Artifacts Chapter 3

d ∈ inst (S), π(d) = M(d) when d, π(d),M(d) contain no undefined values.

Lemma 3.2.8 Let S be a database schema without “0-1” constrained foreign keys and Ω

a business entity. If π is a Clio entity map and M a ED cover, then for each d ∈ inst (S)

without undefined values, neither π(d) nor M(d) have undefined values.

Theorem 3.2.9 Let S be a database schema without “0-1” constrained foreign keys and

Ω a business entity. For each Clio entity map π, there is an ED cover M such that

π ≡M . And the converse also holds.

The proof for Theorem is illustrated in subsections 3.2.2 and 3.2.3.

3.2.2 ED Mapping Rules to Clio

In this and the next section, we show a forward and backward translation between a set

of updatable ED mapping rules and a set of Clio entity map rules, s.t., given a business

entity Ω, a database schema S, (1) if a set of Clio entity map rules hold for some instances

of Ω and S then the translated ED mapping rules hold for the same instances, and (2) if

the ED mapping rules hold for some instances of Ω and S then the translated Clio entity

map rules hold for the same instances.

The following “Forward Clio Translation Procedure” provides a high-level view of

how to translate ED mapping rules to Clio. Each step will be explained informally with

examples afterwards.

Forward Clio Translation Procedure

Input: a database schema S, a business entity Ω, an ED cover M of S and Ω.

Output: a set of Clio entity map rules

A. Build a “dependency graph” G based on M and Ω.

B. Group the directly connected nodes of G from the same relation; and generate a

“grouped graph”.

34

Data Mapping for Artifacts Chapter 3

C. For each tuple in Ω, compute a set of “associating predicates”.

D. For each tuple in Ω, construct a “template” of Clio rule based on its “associating

predicates”.

E. “Propagate” the equalities among variables for each “template” of Clio rule.

In Step A, a “dependency graph” is needed. A dependency graph is a graph (V, U,E),

where V and U are two node sets and E ⊆ (V ∪ U) × (V ∪ U) is an edge set, which is

constructed as follows:

1. Initially V , U , and E are empty.

2. For each (set of) attribute(s) that has mapping rules, create a node in V .

3. For each u, v ∈ V , if the mapping rule of v is of form “R.κ WHEN ϕ” and u occurs

as a tail in a fun-path in ϕ, then add edge (u, v) in E.

4. If a node v ∈ V has mapping rule of form “= p@R1(κ′1).κ1@...@Rj(κ
′
j).a”, then creates

nodes κv1, κv2, ..., κvj−1, and av in U ; and for each node u ∈ V that occurs as a tail in

p create edges (u, κv1), (κv1, κ
v
2), ..., (κvj−1, a

v), and (a, v) in E.

A dependency graph essentially provides the information that how an attribute is

“determined” by another attribute.

Example 3.2.10 Based on Fig. 3.3, a dependency graph can be created, which is shown

in Fig. 3.4 (for now, ignore the dashed boxes and the relation names in the parentheses;

further, we ignore the subscripts for some nodes as the context is clear). One thing to

notice is that as aRP Last Name and aRP First Name share the same mapping rule, they

will be group into the same node (with grey background).

In Fig. 3.4, we can have an understanding that aID can “determine” tCustomerLN (in

database) and tCustomerLN can “determine” aCust Last Name (in business entity). Also,

35

Data Mapping for Artifacts Chapter 3

aID

(tRepair)

aDate

(tRepair)

aCust_Last_Name

(tRepair)

aCust_First_Name

(tRepair)

aServiceID

(tServiceInfo)

tAddress

(tUser)

tTime

(tServiceInfo)

aRP_Last_Name

(tRepairperson)

aRP_First_Name

(tRepairperson)

aRP_Phone

(tUser)

aMaterialID

(tMaterialInfo)

tMaterial

(tMaterialInfo)

tReviewID(tReview)

tReviewResult

(tReview)

tReason

(tRepair)

tDate

(tRepair)

aReason

(tRepair)

tCustomerFN

(tRepair)

tCustomerLN

(tRepair)

aCust_Addr

(tUser)

aTime

(tServiceInfo)

tPhone

(tUser) aMaterial

(tMaterialInfo)

aReviewID(tReview)

aResult (tReview)

Figure 3.4: A dependency graph

aServiceID can “determine” a set of aMaterialIDs and each aMaterialID, together with

the corresponding aServiceID, can “determine” tMaterial, who can “determine” aMaterial.

Notice that the dependency is purely based on the ED mapping rules.

For Step B, we need to label the corresponding relation of a node in a dependency

graph in order to know what predicates in the database can “contribute to” what at-

tributes in the business entity. The labeling is stated as follows:

1. Let (V, U,E) be the dependency graph.

2. For each v ∈ V that has mapping rule of form “R.κ (WHEN ϕ)”, label v with R.

3. For each v ∈ V that has mapping rule of form “= p@R1(κ′1).κ1@...@Rj(κ
′
j).a”, label

v with Rj, a
v ∈ U with Rj, and each κvi ∈ U (where i ∈ [1..(j − 1)]) with Ri.

After the labeling, if two nodes are directly connected and labeled with the same

relation, we can group them together to denote that these two attributes are from the

same predicate. The result collapsed graph is called the “grouped graph”.

36

Data Mapping for Artifacts Chapter 3

Example 3.2.11 Continuing with Example 3.2.11, the corresponding relation of a node

is labeled within parentheses underneath each node. For example, as the mapping rule

for aID is “tRepair.tRepairID”, node ID corresponds to relation tRepair; and since the

mapping rule for aReason is “= aReason.aRepair Info.aID@tRepair(tRepairID).tReason”,

node aReason corresponds to tRepair as well. The dashed boxes denote the grouping

result.

Notice that given a dependency graph, the edges among the grouped nodes are acyclic

due to the nature of the mapping rules; and the grouped graph is rooted by a single predi-

cate (i.e., the predicate without incoming edges), called root predicate, which contains the

ID of the target business entity. For example, the root predicate in Fig. 3.4 is “tRepair”.

For Step C, we need to identify a set of “associating predicates” for each tuple in

the business entity. The intuition is that when constructing the Clio rules, each Clio rule

contributes to the information of a single tuple in the business entity (whose common

parent attribute could either be a set or not a set). Hence, in order to capture each

related predicate in a database that may “contribute to” the formation of a business

entity tuple, we need to understand what predicates to use.

The algorithm is informally described as follows:

1. For each tuple τ in the business entity, denote P(τ) to be a set of nodes in the grouped

graph, where for each P ∈ P(τ), P should contain at least one attribute in τ .

2. If a node p in the grouped graph that is on a path from the root predicate to a node

in P(τ), then union {p} to P(τ); repeat this step until P(τ) reaches a fixpoint.

Example 3.2.12 Continuing with Example 3.2.11, to specify the information in the tu-

ple of aRepairperson, we need attributes aRP Last Name, aRP First Name, and aRP Phone.

37

Data Mapping for Artifacts Chapter 3

These three attributes are contained in nodes tUser and tRepairperson in the grouped

graph in Fig. 3.4. Thus, the associating predicates for aRepairperson are tUser and

tRepairperson, together with the predicates on the path from the root to these two

nodes, i.e., tRepair and tServiceInfo.

Step D is to build a Clio mapping “template” for each tuple in a business entity. In

general, a Clio mapping is divided into two halves: to the left of “→” is the structure of

the database with universal quantifiers and to the right of “→” is the structure of the

business entity with existential quantifiers. In Step C, we have identified what predicates

to put on the left; while for the right, what we need is a nested structure representing

a “fragment” of the business entity. By “fragment” we mean that it is not necessary to

present the entire business entity by nested relations, since each Clio mapping rule is for

a single tuple only.

Example 3.2.13 If we are to construct the Clio rule for tuple aRepairperson, then on the

left, predicates tRepair, tServiceInfo, tRepairperson, and tUser are needed according

to Example 3.2.12; while on the right, only the “ancestor” tuples of aRepairperson are

needed, i.e., aRepair and aService Info. The following expression shows a Clio mapping

template for aRepairperson:

∀y1, ..., y15, tRepair(y1, y2, y3, y4, y5), tServiceInfo(y6, y7, y8),

tRepairperson(y9, y10, y11), tUser(y12, y13, y14, y15),→

∃RI, C, S, R, M, V,

aRepair(x1,RI, C, S), S(x2, x3,R,M,V),R(x4, x5, x6)

Notice that based on Example 3.2.13, all the variables are distinct and all the variables

to the right of “→” are not quantified in a “template”; as in Step E, the equalities will

be set up among the variables to fix this issue.

38

Data Mapping for Artifacts Chapter 3

The last Step E is to identify the equalities among variables for each Clio mapping

template generated in the last step. In general, there are two types of equalities to be

addressed. one is the equality between a variable in a database and a variable in a

business entity, which is determined by ED mapping rules. And the other one is between

two variables in a database (for matching foreign keys and keys), which is determined by

dependency graphs.

Example 3.2.14 Continue with Example 3.2.13. The following provides the examples

of how to establish equalities according to the two types.

Type 1 (database variables and business entity variables): As the mapping rule for

“aID” is “tRepair.tRepairID”, x1 and y1 are equal, which can be replaced by a com-

mon variable, say “idr”. Further, for attribute “aTime”, since its mapping rule is “=

aTime.aServiceID@tServiceInfo(tServiceID).tTime”, x3 (which represents aTime) and y8

(which represents tTime) are equal.

Type 2 (database variables and database variables): For predicates tRepair(y1, y2,

y3, y4, y5) and tServiceInfo(y6, y7, y8), since there is an edge from aID to aServiceID, which

is contained in predicate tServiceInfo, y1 is equal to the foreign key y7 that is referencing

aID.

After identifying all the equalities, we can obtain the final the expression based on

the one in Example 3.2.13 (where in the following, idr is a free variable; thus does not

need to be quantified):

∀lnc, fnc, r, d, ids, idr, t, lnr, fnr, pr, ar,

tRepair(idr, lnc, fnc, r, d), tServiceInfo(ids, idr, t),

tRepairperson(ids, lnr, fnr), tUser(lnr, fnr, pr, ar)→

∃RI, C, S, R, M, V,

39

Data Mapping for Artifacts Chapter 3

aRepair(idr,RI, C, S), S(ids, t,R,M,V),R(lnr, fnr, pr)

For each tuple in the given business entity, a Clio mapping like the one in Example

3.2.14 is needed.

3.2.3 Clio to ED Mapping Rules

In the following “Backward Clio Translation Procedure”, we show high-level description

of the translation from a set of Clio entity mapping rules to ED mapping rules. Each

step will be explained informally with examples afterwards.

Backward Clio Translation Procedure

Input: a database schema S, a business entity Ω,
a set of Clio entity map rules from S to Ω

Output: an set of ED mapping rules

A. Create the mapping rule of the ID of Ω.

B. Create the mapping rule for each (local) key but the ID.

C. Create the mapping rules for all other primitive attributes.

In Step A, let r be a Clio mapping rule in the given set of Clio rules, id be the free

variable for the ID attribute in the given business entity specified on the right side of r,

and R be the predicate on the left side of r that contains id as its key and has no foreign

key referencing to other predicates in r. Create an ED mapping rule “R.κ” for the ID of

the given business entity, where κ is (the name of) the key for R.

Example 3.2.15 Consider the Clio mapping rule in Example 3.2.14. idr is the free

variable holding the value for the ID of aRepair. And idr occurs in both predicates

tRepair and tServiceInfo; while only in tRepair, does idr occur as a key. Therefore,

the ED mapping rule for the ID of aRepair is “tRepair.tRepairID”.

40

Data Mapping for Artifacts Chapter 3

Notice that since each Clio mapping rule given are isomorphic in terms of the “com-

mon” part, each Clio rule should generate the same mapping rule for the same attribute.

Step B is to identify the ED mapping rules for all the (local) keys but the ID. For

each (local) key κ in the given business entity, let r be a given Clio mapping rule that

(on the right side of r) holding the nested relation R1, R2, ..., Rn, where R1 contains a

variable id1 representing κ, Rn is a set attribute or the root, for each i ∈ [2..n], Ri is the

parent attribute of Ri−1, and for each i ∈ [2..(n − 1)], Ri is not a set attribute. Let κ′

be the (local) key of Rn and represented by variable id2. Thus on the left side of r there

should exist two predicates P1 and P2, s.t., P1 contains id1, P2 contains id2, and P1 has

a foreign key κ′′ (whose variable is also id2) referencing P2. Then the ED mapping rule

for κ is P1.κ WHEN P1.κ
′′ = p, where p is a functional path from κ to κ′ in the given

business entity.

Example 3.2.16 Consider the Clio mapping rule in Example 3.2.14. ids is the variable

representing the key aServiceID of aService Info. And its parent aRepair is the root relation

holding key aID (with variable idr). Thus, correspondingly there are two predicates

tRepair and tServiceInfo on the left of the same Clio rule, s.t., they have a matching

over idr on key and foreign key. Thus the ED mapping rule for aServiceID is

tServiceInfo.tServiceID WHEN

aServiceID.aService Info.aID = tServiceInfo.tRepairID SI

The last Step C is to create mapping rules for all the non-key attributes. For each

non-key attribute a in the given business entity, let r be the Clio mapping rule holding

a variable v for a. Let id be a variable on the right of r, s.t., (1) there is a functional

path p from a to id, and (2) there exist predicates P1, P2, ..., Pn on the left of r, s.t., id

occurs as the key κ1 in P1, for each i ∈ [1..(n − 1)], Pi has a foriegn key κ′i referencing

41

Data Mapping for Artifacts Chapter 3

the key κi+1 of Pi+1 that match on the same variable, and v occurs as an attribute a′ in

Pn. Then the ED mapping rule for a is “= p@P1(κ1), κ′1@...@Pn(κn).a′”.

Example 3.2.17 Consider the Clio mapping rule in Example 3.2.14. t is the variable

representing the attribute aTime. And there exists an attribute aServiceID whose vari-

able is ids, s.t., there is a functional path from aTime to aServiceID, ids occurs as the

key tServiceID in predicate tServiceInfo, and t occurs as attribute tTime in the same

predicate. Thus, the ED rule for aTime is

= aTime.aServiceID@tServiceInfo(tServiceID).tTime

3.3 Updatability

This section studies the “updatability” of the ED mapping rules. An “updatable” map-

ping is able to capture the updates on each business entity enactment and propagate the

changes to the database, and vice versa. Consider the framework in Fig. 3.2, if an update

is applied on process instance 1, then the changes should be reflected in the database.

Similarly, if the database is updated, then the corresponding modification should be

propagated to each affected process instance. As illustrated in Section 3.1, not every

mapping is “updatable”.

Although the ED rules are used to specify corresponding data entries in a database

for primitive attributes in a business entity, it is more convenient to define and study

mappings from databases to enactments since a database may contain more data entries

while every attribute (primitive or complex) in an enactment is stored in the database.

Recall that DOM is the domain for all primitive attributes. A permutation of DOM

is a 1-1 and onto mapping from DOM to DOM. Permutations are naturally extended to

tuples, relations, databases, and complex attributes.

42

Data Mapping for Artifacts Chapter 3

Definition: Let S be a database schema and Ω a business entity. A partial mapping

µ from inst (S) ×DOM to Ent(Ω) is a database-enactment mapping (or de-mapping) if

for each permutation π of DOM, each d ∈ inst (S), and each v ∈ DOM, the following

conditions hold whenever µ(d, v) is defined: (a) µ(π(d), π(v)) = π(µ(d, v)), and (b) v is

the value for the ID attribute in the enactment µ(d, v).

Note that in the above definition, a de-mapping takes a database and a value as

inputs and produces an enactment whose ID is the input value. Condition (a) is also

referred as “genericity” in the study of database queries [22], which essentially forbids

manipulations on values (e.g., concatenations, arithmetic, etc.) and forces the mapping

to treat values as (uninterpreted) symbols.

Let S be a database schema, Ω a business entity, and M an ED cover. Define the

mapping µM from inst (S) × DOM to Ent(Ω) as µM(d, v) = σ ∈Ent(Ω) if σ has its ID

value v and (σ, d) |= r for each r ∈M ; µM(d, v) is undefined otherwise. The following is

a consequence of Lemma 3.2.6.

Lemma 3.3.1 For each database schema S, each business entity Ω, and each ED cover

M of mapping rules, µM is a de-mapping.

In this chapter, three types of database updates are considered: insertion, deletion,

and modification. Given a database d, an insertion, deletion, and modification operation

on d adds a new tuple to d, removes a tuple from d, and, resp., changes the value of a

non-prime attribute in a given tuple in d. We only consider updates whose the result

database satisfies all key and foreign key constraints. For a database schema S, let ∆S be

the set of all possible updates on inst (S). Given a database d∈ inst (S), for each δ ∈∆S,

δ(d) denotes the resulting database after applying δ on d.

Similar to database updates, three types of business entity updates are considered:

43

Data Mapping for Artifacts Chapter 3

insertion, deletion, and modification. Given an enactment σ, an insertion, deletion, and

modification operation on σ adds a new tuple to a set in σ with its (local) key defined,

removes a tuple (in which each set should be empty) from σ, and changes the value of a

non-key primitive attribute in σ. We consider only updates whose result is an enactment.

Let δ(σ) be the result of applying an update δ on an enactment σ.

Given an enactment σ of a business entity Ω(a, K, L, dep), an update on an attribute

a is eligible on σ if each attribute in the graph induced by dep having a path to a has

a non-⊥ value in σ. For an enactment σ and an instance I of a business entity Ω, the

set of all eligible updates on σ, I, is denoted as ∆σ
Ω,∆

I
Ω (resp.), and conveniently as ∆Ω

when clear.

We now define the central notion of “updatability” of this section. Roughly speaking,

a de-mapping is database-updatable if every update δd on a database d corresponds to

an update δe on an enactment σ such that the de-mapping is preserved, i.e. updating

the database d with δd and then applying the de-mapping is identical to applying the

de-mapping first followed by the update δe on σ. The converse direction is business

entity-updatability. A slight technical problem is that each update δd (or δe) often

corresponds to a sequence of updates on the enactment (resp. database). Thus the

following definition allows sequences of updates.

Definition: Let S be a database schema, Ω a business entity, ∆s ⊆ ∆S and ∆ω ⊆ ∆Ω

classes of updates on S and Ω (resp.). A de-mapping µ is said to be

• database-updatable with respect to ∆s,∆ω if for each database update δd ∈ ∆s, there

is a sequence δe of business entity updates in ∆ω such that for all d∈ inst (S) and

v ∈DOM, µ(δd(d), v) = δe(µ(d, v));

• business entity-updatable w.r.t. ∆s,∆ω if for each business entity update δe ∈ ∆ω there

is a sequence δd of database updates in ∆s such that for all d ∈ inst (S) and v ∈ DOM,

44

Data Mapping for Artifacts Chapter 3

µ(δd(d), v) = δe(µ(d, v));

• updatable w.r.t. ∆s,∆ω if it is both database-updatable and business entity-updatable

w.r.t. ∆s,∆ω.

Updatability states that it is the same effect whether to apply an update followed

by a mapping or a mapping followed by an update. With updatability, each update on

databases can be propagated to business entities, and vice versa.

The notion of de-mapping is similar to the schema mapping in [6]; however, the

schema mapping studies did not concern updates. For business entity-updatability, it

is similar to view updates [3, 4] in relational databases; however, view updates focus

on relational models and business entity-updatability focuses on hierarchical models.

Further, it is not clear if the view complement approaches [3, 5] can be adopted in this

work. Updates on XML views over relational databases were studied in [23] with a

focus on complexity and/or testing whether an XML view update can be translated. In

comparison, de-mappings corresponds to very restricted views and we focus on sufficient

conditions to ensure that updates can be translated.

Theorem 3.3.2 For each database schema S, each business entity Ω, and each ED cover

M , the de-mapping µM is database-updatable with respect to ∆S and ∆Ω.

Theorem 3.3.2 is easy to prove. Since an ED cover identifies a database attribute

(value) for each attribute (value) in a business entity, the mapping can be easily expressed

as a database query. Therefore database updatability follows immediately. However,

Theorem 3.3.2 fails for business entity-updatability, which was illustrated in Example

3.1.1.

Given r as a mapping rule for some primitive attribute or (local) key γ in a business

entity, if r is of form “R.κ (WHEN ϕ)” then each primitive attribute in γ is said to be

45

Data Mapping for Artifacts Chapter 3

associated with each attribute in κ; otherwise, if r is of form “= p0.[p1, ..., pn]@R1(κ′1).κ1

@...@Rm(κ′m).a”, then γ is associated with a.

Let M be an ED cover for a database schema S and a business entity Ω. Two

primitive attributes in Ω are overlapping if the two sets of database attributes that they

are associated with (resp.) are not disjoint.

Theorem 3.3.3 For each database schema S, each business entity Ω, and each ED cover

M , if primitive attributes in Ω are pairwise non-overlapping, then the de-mapping µM is

business entity-updatable with respect to ∆S and ∆Ω.

Proof: (Sketch) Let S, Ω, M , ∆S, and ∆Ω be as stated in the theorem. For each δ ∈ ∆Ω,

suppose a is the attribute to be updated by δ. Let M(a) be the mapping rule in M for

a, σ and d an enactment and instance of Ω and S respectively, s.t., for each r ∈ M ,

(σ, d) |= r, and σ̂ an enactment by applying δ on σ. Two cases are considered.

(1) a does not occur as a tail in each mapping rule in M . Since no two attributes are

overlapping, for each r ∈ M − {M(a)}, σ̂, d |= r. Thus, the sequence of updates on d

only need to concern with how to satisfy M(a), which will not affect the satisfiability of

other mapping rules in M . The details are given below.

• If a is mapped to a non-key and non-foreign-key database attribute a′, then modify

the value of a′ in d to the same value of a, or

• If a is mapped to an attribute in a key κ of relation schema R in S, suppose that the

mapped value is vκ; then either

– update nothing if there exists a tuple of R in d with the key value vκ, or

– insert a new tuple in d with key value vκ if such tuple did not exist, or

– if a is mapped to an attribute in a foreign key, similar to the previous cases, a new

tuple may be inserted (if needed) and the value of the foreign key may be updated.

46

Data Mapping for Artifacts Chapter 3

(2) a occurs as a tail in another mapping rule r ∈ M for an attribute a′ in Ω, then

in additional to the similar considerations in case (1), we also needs to update the value

for a′ in the corresponding (maybe newly inserted) tuple in d. Moreover, if a′ occurs as a

tail in some other mapping rules in M as well, then, the same technique can be applied

(recursively).

Corollary 3.3.4 Let S be a database schema, Ω a business entity, M an ED cover, and

∆s ⊆ ∆S and ∆ω ⊆ ∆Ω classes of updates on S and Ω (resp.). The de-mapping µM is

updatable with respect to ∆s and ∆ω if either (1) primitive attributes in Ω are pairwise

non-overlapping, or (2) ∆ω contains no updates on any overlapping attribute.

The set of mapping rules in Fig. 3.3 is updatable as all the primitive attributes in

aRepair business entity (Fig. 2.4) are pairwise non-overlapping.

Finally, we remark that since ED covers correspond to Clio entity maps, the up-

datability results on ED covers can be extended to entity maps informally. But formal

statements are problematic due to presence of undefined values. Nevertheless, entity

maps can always be converted into ED covers for implementation of BP data accesses.

3.4 Isolation

In this section, we study the notion of “isolation” that prohibits any situations when two

business entities in a system update their attributes that are mapped to the same entry

in a database. Consider the framework in Fig. 3.2, if process instances 1 and 2 apply

updates on attributes that are mapped to the same entry in the database, then these two

instances are “affecting” each other, which may not be intended for the process design.

As shown in Section 3.1, an artifact is usually associated with a concrete lifecycle.

47

Data Mapping for Artifacts Chapter 3

In order to generalize our result, in the following, we abstract different lifecycles into

“update patterns” that restrict how artifacts should progress (i.e., update its business

entity), such that as long as the lifecycles comply with the specified update patterns, our

results in this chapter hold.

Given a business entity Ω, an update class of Ω, is a set {“insert”, “delete”} × As ∪

{“modify”}×Ank, where As and Ank are the sets of all set and non-key primitive attributes

in Ω respectively. Intuitively, an update class is a “template” of possible updates for

enactments. Each element in an update class is called an update type.

An “update constraint” is a conjunction of equality or inequality conditions of prim-

itive attributes. If the conjunction is satisfied (by an enactment), all updates of the

specified update type are not allowed to apply.

Definition: Given a business entity Ω, an update constraint over Ω is of form (
∧n
i=1 ϕi) 6→

U , where (1) n ∈ N+, (2) for each i ∈ [1..n], ϕi is either a1 = a2 or a1 6= a2, where a1, a2

are primitive attributes in Ω such that there are functional paths from a1 to a2 as well as

a2 to a1, or values in DOM, and (3) U is an update type of Ω, s.t., there is a functional

path from the attribute in U to each variable in ϕi (i ∈ [1..n]).

Example 3.4.1 For business entity in Fig. 2.4, update constraint “aCust Last Name =

⊥ ∧ aCust First Name = ⊥ 6→ (modify, aReason)” indicates that if a requesting customer

has not been determined yet, then reason for the request cannot be filled in. Another

example could be “1 = 1 6→ (update, aCust Addr)”, denoting that aCust Addr cannot be

updated.

Definition: A business entity system A is a finite set of business entities whose attribute

sets are pairwise disjoint. A snapshot of A is a total mapping that assigns each business

entity Ω in A an instance in inst (Ω). Let sh(A) denote all snapshots of A.

48

Data Mapping for Artifacts Chapter 3

Definition: An artifact system Σ is a pair (A, η), where A is a business entity system,

and η is a mapping from each Ω ∈ A to a set of update constraints of Ω. A snapshot of

Σ is a snapshot of A.

Given an artifact system (A, η), an artifact is a pair (Ω, C), where Ω ∈ A and C = η(Ω)

is a set of update constraints over Ω, called update pattern.

Given an enactment σ of Ω, an update δ ∈ ∆σ
Ω is applicable to σ if δ does not violate

each update constraint in C and δ is eligible to σ. The notion of “applicable” can be

naturally extended to the artifact system snapshots. Given a snapshot Π of an artifact

system, denote ∆Π to be all the applicable updates to Π.

Section 3.3 focuses on de-mappings that result in individual enactments. In this

section, we study mappings from databases to shapshots. We fix S to be an arbitrary

database schema and A an arbitrary (business entity) system, unless otherwise indicated.

Definition: A mapping µ from inst (S) to sh(A) is a database-snapshot (or DS-)mapping

if for each permutation π of DOM, each d ∈ inst (S), µ(π(d)) = π(µ(d)).

de-mappings and ds-mappings are closely related. For each ds-mapping µ and each

business entity Ω∈A, we define a mapping µΩ derived from µ as follows. For each

database d∈ inst (S) and each v ∈DOM, µΩ(d, v) = e if e is an enactment in µ(d) with

its ID value v, undefined otherwise. Let de(µ) = {µΩ |Ω∈A} be the set of mappings

derived from µ. Conversely, for each set µA= {µΩ | Ω∈A} of de-mapping, we define the

mapping ds(µA) as: ds(µA)(d) =
⋃

Ω∈A{µΩ(d, v) | if v ∈ DOM and µΩ(d, v) is defined }.

Lemma 3.4.2 Let µA = {µΩ | Ω∈A} be a set of de-mappings and µ a ds-mapping.

Then de(µ) is a set of de-mappings and ds(µA) is a ds-mapping.

Definition: A ds-mapping µ is business entity-updatable if each de-mapping in de(µ)

is business entity-updatable.

49

Data Mapping for Artifacts Chapter 3

In the remainder of this section, we only focus on business entity-updatable ds- or de-

mappings. While the Lemma 3.4.2 states that de-mappings can be naturally extended

to ds-mappings, and vice versa, additional issues may arise due to “conflicting” updates

by two enactments. In some cases, two updates upon two separate enactments (possibly

of the same business entity) might be propagated to the same attribute in the same tuple

in a database. Under such circumstances, maintenance of business entities as well as the

databases becomes more complicated, and their semantic implications may not be clear.

In our formal analysis, we intend to identify ds-mappings that do not have such conflicts,

which may serve as a guideline for design or the execution engine to manage executions.

Let a be a complex attribute, K a set of keys and local keys in a, and A a (possibly

infinite) set of primitive attributes. Let κ be the set of all primitive attributes in (local)

keys in K. The projection of a on A, denoted as ΠA(a), is a complex attribute with

all primitive attributes not in A ∪ κ removed. The projection operation is naturally

extended to values of attribute a. We extend projection to Ω and enactments in Ent(Ω),

A and snapshots in sh(A) naturally. Given updates ∆ ⊆ ∆Ω, let W (∆) be the set of all

attributes updated by operations in ∆.

Definition: Given S as a database schema, Σ = (A, η) an artifact system, and µ a

ds-mapping from inst (S) to sh(A), µ is isolating w.r.t. η, if for each d ∈ inst (S) and

each business entity update δe ∈ ∆µ(d), there is a sequence δd of database updates in ∆S

such that ΠW (∆µ(d))(µ(δd(d))) = ΠW (∆µ(d))(δ
e(µ(d))).

An isolating ds-mapping prohibits the situation where two running business entity

enactments can both update two attributes respectively that are mapped to the same

entry in the same tuple in a database, hence, “affecting” each other in a snapshot.

Isolation is needed for the SeGA tool [24] to work properly.

50

Data Mapping for Artifacts Chapter 3

Example 3.4.3 In Fig. 2.4, if an aRepair enactment has attribute customer address

(aCust Addr) updated, it may affect some other enactment(s), e.g., of Custemer Info Re-

view, that may also be able to update the customer address. Therefore, the underlying

ds-mapping is not isolating.

Notice that it is not undesirable if a ds-mapping is not isolating. Isolation is only

to provide a guideline for the process designers to know that two business entities may

interfere each other. By understanding the interference, a designer can add update

constraint to prevent such situation when necessary.

Example 3.4.4 Continue with Example 3.4.3. A designer can add update constraint

“1 = 1 6→ (update, aCust Addr)” to prevent an aRepair enactment from updating the cus-

tomer addresses. Adding this constraint is intuitive as the repair process only serves for

the repair purpose.

Theorem 3.4.5 Let S be a database schema, (A, η) an artifact system, and M be a set

of ED mapping rules whose derived ds-mapping µ
M

(from inst (S) to sh(A)) is business

entity-updatable. Then it can be determined in exponential time, whether µ
M

is isolating

with respect to η.

To prove Theorem 3.4.5, an algorithm is provided. The main idea is that for each

pair of business entities in a system, first compute a “conflict set”, whose elements are

pairs of attributes that are mapped to the same attribute in database. Then is to run

a symbolic execution to check if two updates of two business entity enactments can be

applied to the corresponding conflict sets.

In general, a non-empty conflict set for two business entities does not imply that

corresponding mapping is not isolating. If no two updates can be applied during the

51

Data Mapping for Artifacts Chapter 3

execution upon each pair of elements (resp.) in each conflict set, the mapping is still

isolating.

Before computing the “conflict sets” (for two business entities), we first introduce the

notion of “nonconflicting” for mapping rules, such that if a database attribute is mapped

by such a mapping rule, then this attribute can only be “accessed” by its corresponding

primitive business entity attribute or (local) key.

Given a business entity Ω, a database schema S, and an updatable mapping rule set

M (with respect to Ω and S), a mapping rule r ∈ M (for a (local) key or a primitive

attribute a in Ω) is nonconflicting if one of the following conditions holds.

• a is a key,

• if r is of form “R.κ WHEN ϕ”, then there exist some tails of some functional multi-

paths in ϕ that form a key, or

• if r is of form “= p0.[p1, ..., pn]@R1(κ′1).κ1@...@Rm(κ′m).a”, then some tails of p1, ..., pn

form a key, and for each i ∈ [1..(m− 1)], either κ′i ⊆ κi, or λ(κi) is “?” or “+”.

Example 3.4.6 Based on the mapping rules shown in Fig. 3.3, the mapping rule for

attributes “aCust Addr” and “aRP Phone” are not nonconflicting; and the mapping rules

for other attributes are nonconflicting.

Definition: Given two business entities Ω1 and Ω2 a database schema S, and two up-

datable mapping rule sets M1, M2 (with respect to Ω1 and S, Ω2 and S respectively),

the conflict set of Ω1 and Ω2, denoted as cf(Ω1,Ω2), is a set of pairs of non-key primitive

attributes or (local) keys, such that for each (a1, a2) ∈ cf(Ω1,Ω2), (1) a1 and a2 have

mapping rules in M1 and M2 respectively, (2) both the mapping rules for a1 and a2 are

not nonconflicting, and (3) the two (sets of) attributes associated with a1 and a2 have

overlapping.

52

Data Mapping for Artifacts Chapter 3

Example 3.4.7 Suppose a system only contains two business entities aRepair1 and aRe-

pair2, whose structures are exactly the same and shown in Fig. 2.4. Suppose both of them

adopt the mapping rules defined in Fig. 3.3. The conflict set of aRepair1 and aRepair2

only contains two pairs (aCust Addr, aCust Addr) and (aRP Phone, aRP Phone).

Intuitively, a conflict set denotes all the possible attributes in two business entities

that can be mapped into the same attribute in the same tuple in a database during the

execution.

Given a business entity Ω(a, K, L, dep), a symbolic business entity of Ω is a complex

attribute Ω̃, where Ω̃ is obtained from a by replacing each set attribute a: {(a1, ..., an)}

by a tuple attribute a: (a1, ..., an).

Given a business entity Ω and a set of update constraints C of Ω, for each c ∈ C,

denote n(c) to be the number of distinct (primitive) attributes and values in c. Let n(C)

be the largest n(c) for each c ∈ C. Then the (symbolic) domain of Ω is {v1, v2, ..., vn(C),⊥},

where for each i ∈ [1..n(C)], vi is a distinct “defined” value.

A symbolic enactment σ̃ of a symbolic business entity is an assignment of each primi-

tive attribute in σ̃ to an element in the symbolic domain; and σ̃ should comply with the

access dependency, i.e., an attribute can have a defined value only if each attribute it

depends on has a defined value. Notice that given a symbolic enactment σ̃ with domain

{v1, v2, ..., vn(C),⊥}, it is sufficient to check if σ̃ can satisfy each constraints in C.

For reading convenience, for each attribute, set of attributes, key, or local key κ in

a business entity Ω, we denote the corresponding “attribute”, “set of attributes”, “key”,

or “local key” of κ as κ̃ in its corresponding symbolic business entity Ω̃.

Similar to the “insertion”, “deletion”, and “modification” updates for a business

53

Data Mapping for Artifacts Chapter 3

entity, a symbolic business entity can also have these three updates as well. More specif-

ically, given a business entity Ω, a symbolic business entity Ω̃ of Ω, and a set of update

constraints C of Ω, an insertion of a complex attribute ã (based on a symbolic enactment

of Ω̃) is to assign a set of child attributes K̃ of ã from ⊥’s to elements in {v1, ..., vn}, such

that a is a set attribute and K forms a (local) key for a in Ω; a deletion is to assign each

attribute in a tuple to ⊥; and a modification is to assign a non-key primitive attribute

to an element in {v1, ..., vn}.

An update is applicable with respect to a symbolic enactment and a set of update

constraints, if no constraint prohibits the applying of the update and after the update,

the result assignment still forms a symbolic enactment.

Based on a symbolic enactment, a finite set of “symbolic updates” can be computed.

Given business entity Ω, a symbolic business entity Ω̃ of Ω, an update pattern C of Ω,

and a symbolic enactment σ̃ of Ω̃, a symbolic update set ∆(σ̃, C) is a set of all applicable

insertions, deletions, and modifications based on σ̃.

Given two business entities Ω1 and Ω2 a database schema S, and two updatable

mapping rule sets M1, M2 (with respect to Ω1 and S, Ω2 and S respectively), Ω1 and

Ω2 are independent (with respect to M1 and M2) if and only if for each pair of symbolic

enactments σ̃1 and σ̃2 of Ω̃1 and Ω̃2 (resp.), each δ1 ∈ ∆(σ̃1, C), δ2 ∈ ∆(σ̃2, C), and

each pair of attributes (ã1, ã2) updated by δ1 and δ2 (resp.), there does not exists a pair

(κ1, κ2) ∈ cf(Ω1,Ω2), such that a1 occurs in κ1 and a2 occurs in κ2.

A ds-mapping is isolating if and only if each pair of (possibly the same) business

entities in the system is independent (with respect to their corresponding mapping rules).

Example 3.4.8 Continue with Example 3.4.7; the mapping from the database in Fig. 2.2

to this system is isolating with respect to constraints “1 = 1 6→ (update, aCust Addr)”

54

Data Mapping for Artifacts Chapter 3

and “1 = 1 6→ (update, aRP Phone)”.

The complexity to determine the conflict sets is polynomial with respect to the size of

the database schema, business entities, and mapping rules. While the complexity of the

symbolic execution is exponential with respect to to the size of all the business entities.

Notice that the algorithm described above is to check the “write-write” conflicts

within a system. It is straightforward to adapt this algorithm to check the “write-read”

conflicts, i.e., an update upon an attribute within an enactment will not affect the value

of each other enactment in the system.

Similar to the remark at the end of Section 3.3, the isolation results on ED covers

can be extended to entity maps.

3.5 Summary

This chapter initiates a study on data mappings between BPs and databases through

formalizing the data models and formulating a mapping language. This idea of bridging

BPs and databases has a potential to allow management issues to be dealt with separately

for BPs and for databases while making sound design decisions. For BPM, it allows many

interesting problems to be studied in the presence of data, e.g., process evolution. For

databases, it brings a new dimension, i.e. BPs, into the database design, in particular,

by including BPs’ data needs, database design could avoid problems such as missing data

or mismatched semantics.

On the technical front, there are many interesting problems to be addressed. A better

understanding is needed for specifying entity-data mappings, alternative languages and

relaxing the attribute-attribute mapping requirement are worth considering. Concerning

data mapping properties, are there general requirements other than updatability and iso-

lation? For example, general integrity constraints in databases might add more difficulties

55

Data Mapping for Artifacts Chapter 3

to updatability. The problems are more interesting to be studied along with lifecycle for

bentities, e.g., the issue of BP independence could cleanly separate the “footprints” on

data by two BP executions.

56

Chapter 4

Data Mappings: Identifying the

Source

In Chapter 3, ED mapping was proposed to be a mapping language to bridge the BP

data and the enterprise database. However, ED mapping is rather restricted in terms of

syntax, which limits the expressive power of the way of transforming one data format

into another. On the contrary, Clio mapping, which has been proved to be a superset

of ED mapping in Chapter 3 is more expressive as a mapping language. Naturally, it

is interesting to understand how updatability can be determined if the data mapping is

specified by Clio.

Essentially, Clio mapping is a variant of a mapping language called “source-to-target

tuple generating dependency”, or simply, tgds. the language of tgds is a subset of first-

order logic that has been widely studied in the data exchange community. For example,

a tgd mapping can be A(x, y)∧A(y, z)→ B(x, z) and A(x, y)∧A(y, z)→ C(y) to denote

that a source table A will be transformed into two target tables B and C based on the

mapping. In detail, a tgd mapping is a triple M = (S,T,Σ), where S and T represent the

source and target schema and Σ is a set of tgd rules to specify the mapping between S

57

Data Mappings: Identifying the Source Chapter 4

and T.

A number of data exchange studies [7, 25] focus on how to produce the instance of T

given an instance of S and M, where “chase” [7, 25] is a widely used algorithm to achieve

the goal. Also, there are cases, where target database is updated and consequently, the

source database should also be updated. This property is called “updatability” [26],

which refers to if a target database is updated, is there a sequence of updates to the

source database such that the new target can still be “chased” from the new source?

Updatability is essentially equivalent to the “Chase Validity Problem“ (CVP), i.e., given

a schema mapping M = (S,T,Σ) and an instance J of T, does there exist an instance I

of S, such that J can be chased from I through M? To address this problem, the notion

of inverted mapping is proposed [27, 28, 29], which mainly addresses the expressiveness

of the inverted mapping language instead of existence of the source database. To the

best of what we know, [30] is the first paper to show that this problem is np-complete.

Therefore, in this chapter, we study several subclasses of tgd mapping to show when

the intractable cases can be solved in ptime. Specifically, we highlight the following

three properties of a tgd mapping:

self-joined: Same source predicate appear at least twice in the same rule

A(x, y) ∧ A(y, z)→ S(x, z)

unioned: Same target predicate appear in at least two different rules

A(x, y) ∧B(y, z)→ S(x, z) and C(x, y, z)→ S(x, y)

multi-viewed: There are at least two different target predicates

A(x, y) ∧B(y, z)→ S(x, z) and C(x, y, z)→ T (x, y)

In details, we study all 8 combinations of the above 3 properties (i.e., {self-joined, not

self-joined} × {unioned, not unioned} × {multi-viewed, not multi-viewed}) under 4

different circumstances: {with key constraints, without key constraints} × {entire source

unknown, part of the source unknown} and present the following contributions:

58

Data Mappings: Identifying the Source Chapter 4

• Theorem 4.2.5: CVP is np-complete if the mapping is self-joined, unioned, or

multi-viewed; otherwise, is in ptime (Fig. 4.1).

• Propositions 4.3.1 and 4.3.2: CVP with key constraints is np-complete if the map-

ping is self-joined, unioned, or multi-viewed; otherwise, is in ptime (Fig. 4.1).

• Theorem 4.3.4: Given a “key-preserving” mapping, CVP is np-complete if the

mapping is unioned; otherwise, is in ptime (Fig. 4.2).

• Theorem 4.4.1: Given two or more source relations missing, CVP is np-complete

even when the mapping is not self-joined, not unioned, and not multi-viewed

(Fig. 4.3).

• Theorem 4.4.4: Given only one source relation missing, CVP is np-complete if the

mapping is self-joined; otherwise, is in ptime (Fig. 4.4).

• Theorem 4.5.1: Given only one source relation missing, CVP with key constraints

is np-complete even when the mapping is not self-joined, not unioned, and not

multi-viewed (Fig. 4.3).

The remainder of this chapter is organized as follows: Section 4.1 defines the notions

and the main problem. Section 4.2 investigates the cases where no additional constraints

are enforced, comparing with Section 4.3, where keys are added. Section 4.4 studies the

case, where only part of the source relation is unknown. Similarly, Section 4.5 complicates

the problem by adding key constraints. Finally, summary is discussed in Section 4.6.

4.1 Preliminaries and Problem Definition

In this section, we review some database notions that have been mentioned in Section

2.1, define the key notion of schema mapping, and state the main problem we will focus

59

Data Mappings: Identifying the Source Chapter 4

on in this chapter.

Schema and Instances A schema R is a finite set {R1, R2, ..., Rn} of relation symbols,

each of which has a fixed arity. Let two disjoint countably infinite sets Const and Var

be a set of constants and a set of labeled nulls respectively, where a labeled null is used

to denote uncertain values [7]. Let DOM be Const ∪ Var. An instance I of R is a set

{RI
1, R

I
2, ...R

I
n} of relations (or tables), where each RI

i is a finite relation of the same arity

as Ri taking the values from DOM. A ground instance is an instance that only contains

values from Const. Each row in a relation RI in I is called a tuple of RI .

Schema Mapping In the following, we assume S and T to be two fixed schemas,

indicating that data is mapped from a source S to a target T. A schema mapping (or

mapping for short) is a triple M = (S,T,Σ), where Σ is a set of constraints describing the

relationship between S and T. Mapping M essentially defines a set of pairs of instances

as follows:

{(I, J) | I and J are instances of S and T resp., 〈I, J〉 |= Σ}

We call J is a solution to I w.r.t. M if (I, J) ∈ M.

TGDs and Full Schema Mapping Given a schema S, a conjunctive formula over

S is a conjunction of atomic formulas of form “R(z̄)”, where R a relation symbol (or

predicates in general terms) in S and z̄ is a vector of (possibly duplicated) variables,

whose length agrees on the arity of R.

A source-to-target tuple generating dependency (or, in short, tgd) is a first-order logic

formula of form

∀x̄ ΦS → ∃ȳ ΨT (i)

where x̄ and ȳ are disjoint sequences of first-order variables, ΦS and ΨT are conjunctive

60

Data Mappings: Identifying the Source Chapter 4

formula over S and T, s.t., there is no free variables in (i), i.e., each variable in ΦS should

occur in x̄ and each variable in ΨT should occur in x̄ or ȳ. (Recall that a free variable in a

first-order logic formula is a variable that is neither universal nor existential quantified.)

A full tgd is a formula of form (i) without ∃ȳ. In this chapter, we focus a mapping

M = (S,T,Σ) with Σ a set of full tgds. a schema mapping with a set of full tgds is called

a full schema mapping. In the remainder of this chapter, we may drop the universal (∀)

and the existential (∃) quantifiers for convenience. For notation convenience, denote |ΦS|

to be the number of (possibly duplicated) relation symbols in ΦS and Φi
S to be the ith

atomic formula R(z̄) in ΦS, where i ∈ [1..|ΦS|].

For technical development, we introduce assignment for a first-order logic formula ϕ,

which is a total mapping from all the free variables in ϕ to DOM. Given an assignment

α, a first-order logic formula ϕ, and a vector of free variables x̄ in ϕ, we denote α(x̄) to

be the assignment of x̄ under α and ϕ[α] to be the formula of replacing each free variable

x by α(x).

Example 4.1.1 Consider a source schema S with a single binary relation E and a target

schema T with a binary relation F and a unary relation G. The following tgd specifies

a mapping from S to T:

E(x, z) ∧ E(z, y)→ F (x, y) ∧G(z) (ii)

Consider a S instance I that only contains a single relation EI = {(1, 1), (2, 2), (1, 2)}

of E. Then the T instance J with two relations F J = {(1, 1), (2, 2), (1, 2)} of F and

GJ = {(1), (2)} of G is a solution to I w.r.t. the mapping specified by (ii). However, if

we drop any tuple in F J or GJ , the new instance is no longer a solution.

Chase Given a conjunctive formula ΦS over a schema S and a S instance I, a permutation

61

Data Mappings: Identifying the Source Chapter 4

of ΦS wrt I is a vector of tuples (τ1, τ2, ..., τm), where m = |ΦS| and for each i ∈ [1..m],

τi is a tuple of RI , where R is the relation symbol of Φi
S; A permutation is valid under

assigment α, if for each i ∈ [1..m], τi = Φi
S[α].

Given a mapping M speicifed by a finite set of tgds and its source instance I, a chase

procedure that takes M and I as inputs, can produce a solution to I w.r.t. M (or more

precisely, a “universal solution”, see [7] for details). We use chaseM(I) to denote the

corresponding output.

Let I and M be as stated above; we briefly describe how chase (for tgds) works. A

chase procedure starts with the instance pair 〈I, J = ∅〉. For each tgd ΦS → ΨT in M and

each valid permutation of ΦS wrt I under assigment α, incorporate n tuples σ1, σ2, ..., σn

into J where n = |ΨT|, such that (1) for each j ∈ [1..n], σj = Ψj
T[β] under the same

assignment β, (2) α and β agree on the same variables, and (3) each existential quantified

variables (in ΨT) is mapped to a unique labeled null in β.

Example 4.1.2 Continue with Example 4.1.1. We apply the chase procedure on map-

ping (ii) and source instance EI . As the left-hand side of (ii) contains two relation sym-

bols, we consider all the permutations of EI . For permutation (E(1, 1), E(2, 2)), it is im-

possible to have an assignment α, such that E(1, 1) = E(x, z)[α] and E(2, 2) = E(z, y)[α]

as there is no assignment that can map z to both 1 and 2; therefore ignored. For per-

mutation (E(1, 1), E(1, 2)), we can have assignment x = 1, y = 2, and z = 1 to be

a “witness”; and therefore incorporate F (1, 2) and G(1) to the target instance (which

originally contains nothing). Similarly, we can apply the same approach to all other

permutations of EI ; and target instance J in Example 4.1.1 will be the output of this

chase procedure.

In this section, we address the problem of given a mapping and a target instance, check

62

Data Mappings: Identifying the Source Chapter 4

if this target instance can be chased from some source instance throught the mapping.

Chase Validity Problem (CVP) Given a full schema mapping M = (S,T,Σ) and

an instance J of T, does there exist an instance I of S, such that J = chaseM(I)?

4.2 Valid Chased Targets

The Chase Validity Problem has been proved to be np-complete in [30]. In the remainder

of this section, we focus on the same problem regarding some subcases of full tgds (i.e,

with self-join, union, or multiple target predicates). It turns out that though some

subcases are quite restrictive, they still remain np-complete.

In order to have a simpler statement and reasoning, we assume that each full tgd

contains exactly one relation symbol on the right-hand side. The following Lemma 4.2.1

and Corollary 4.2.2 show that a set of full tgds with arbitrary right-hand-side relation

symbols is equivalent to the one with single right-hand-side relation symbol in terms of

chase result.

Lemma 4.2.1 Given a source schema S, a target schema T, and a full tgd of form

ΦS → ΨT∧R(z̄) over S and T, where ΦS and ΨT are conjunctions over S and T (resp.), R

a relation symbol in T, and z̄ variables occurring in ΦS. Let M = (S,T, {ΦS → ΨT∧R(z̄)},

and M′ = (S,T, {ΦS → ΨT,ΦS → R(z̄)} be two mappings. Then for every S instance I,

chaseM(I) = chaseM′(I).

Proof: (Sketch) Let I, ΦS, ΨT, and R(z̄) be as stated in the lemma. For each valid

permutation of ΦS wrt I under some assigment α, since all variables in ΨT and R(z̄)

occur in ΦS due to full tgd, Ψi
T[α] (i ∈ [1..|ΨT|]) and R(z̄)[α] can be incorporated in to

63

Data Mappings: Identifying the Source Chapter 4

the target instance either based on one rule ΦS → ΨT ∧R(z̄) or two rules ΦS → ΨT and

ΦS → R(z̄).

Given a full schema mapping M = (S,T,Σ), denote Ms = (S,T,Σs) to be a schema

mapping, where Σs is obtained by decomposing each tgd ΦS →
∧n
i=1Ri(z̄i) in Σ to a set

of tgds
⋃n
i=1{ΦS → Ri(z̄i)}, where Ri is a relation symbol in T.

The following corollary is a direct result from Lemma 4.2.1.

Corollary 4.2.2 Given a full schema mapping M = (S,T,Σ), for each S instance I,

chaseM(I) = chaseMs(I).

Example 4.2.3 Consider the following two tgds.

E(x, z) ∧ E(z, y)→ F (x, z) (iii)

E(x, z) ∧ E(z, y)→ G(z) (iv)

The tgd (ii) in Example 4.1.1 is equivalent to (iii) and (iv) in terms of chase result.

Without loss of generality, we always assume that if the given set of tgds are full, the

right-hand side of each tgd is singleton.

Definition: Given a full schema mapping M = (S,T,Σ), M is (1) self-joined if there exists

a tgd ΦS → ΨT in Σ, where ΦS contains two identical relation symbols, (2) unioned if

there are two tgds in Σ sharing a common target relation symbol, or (3) multi-viewed if

there are more than one target relation symbols in Σ.

64

Data Mappings: Identifying the Source Chapter 4

multi-
viewed?

unioned?

self-joined?

YES

YES

YES

NO

NP-C

NP-C

NP-C

NP-C

PTIME NP-C

NP-C

NP-C

Figure 4.1: No constraints

multi-
viewed?

unioned?

self-joined?

YES

YES

YES

NO

NP-C

NP-C

NP-C

PTIME

NP-C

PTIME PTIME

PTIME

Figure 4.2: Key-preserving

Example 4.2.4 Consider the following two equations and equations (iii) and (iv) in

Example 4.2.3.

D(x) ∧ E(x, y)→ F (x, y) (v)

C(x, z) ∧ E(z, y)→ H(z) (vi)

The equation (iii) is self-joined but not unioned or multi-viewed. The (schema formed by)

equations (iv), (v), and (vi) is self-joined and multi-viewed but not unioned. Equation (v)

is not self-joined, unioned, or multi-viewed. Equations (iii) and (v) are unioned and self-

joined, but not multi-viewed. Equations (iii), (iv), (v), and (vi) are unioned, self-joined,

and multi-viewed.

Theorem 4.2.5 If the full schema mapping is self-joined, unioned, or multi-viewed cvp

is np-complete; otherwise, is in ptime.

The result of Theorem 4.2.5 is visualized in Fig. 4.1. All combinations of self-joined,

multi-viewed, and unioned are np-complete expect the one that excludes all three con-

ditions.

65

Data Mappings: Identifying the Source Chapter 4

In the following, we present four lemmas (4.2.6, 4.2.7, 4.2.8, and 4.2.9) to prove the

correctness of Theorem 4.2.5.

Lemma 4.2.6 cvp is np-complete if the given full schema mapping is self-joined, but

not unioned or multi-viewed.

Lemma 4.2.6 is a direct result from the view consistency problem in [31], where the

mapping contains only one full tgd (i.e., a conjunctive query).

Lemma 4.2.7 cvp is np-complete if the given full schema mapping is multi-viewed,

but not self-joined or unioned.

The membership of np directly follows from [30]. To prove that cvp is np-hard given

a mapping that contains multiple targets but not union or self-join, we reduce it from

the Set Basis Problem [32].

Set Basis Problem Given a finite set S, a collection C ⊆ 2S of subsets of S, and a

positive integer K 6 |C|, is there a collection B ⊆ 2S of subsets of S with |B| = K,

such that for each c ∈ C, there is a subcollection of B whose union is exactly c?

Proof: (np-hardness of Lemma 4.2.7) Let S, C, B, and K be as stated in the Set

Basis Problem. Essentially the Set Basis Problem is to find “bases” B that can form C.

Now consider (1) two binary source relation symbols B̂(s, b) to represent if s ∈ S is in

b ∈ B and R(b, c) to represent if b ∈ B is a “basis” for c ∈ C, (2) two target relation

symbols Ĉ(s, c) of arity 2 to represent if s ∈ S is in c ∈ C and D with arity 1 to indicate

the size of B should be no greater than K, and (3) the following two tgds:

B̂(s, b) ∧R(b, c)→ Ĉ(s, c) B̂(s, b) ∧R(b, c)→ D(b) (vii)

66

Data Mappings: Identifying the Source Chapter 4

The instances of Ĉ and D are defined as follows:

Ĉ = {(s, c) | s ∈ c, where s ∈ S and c ∈ C} D = {(1), (2), ..., (K)}

It can be shown that the Set Basis Problem has a solution if and only if the mapping

specified by (vii) with target instance given above has a source database. And the bases

B is actually indicated by the source database B̂. Note that (vii) is multi-viewed, but

not union or self-joined. Therefore Lemma 4.2.7 holds.

Lemma 4.2.8 cvp is np-complete if the given full schema mapping is unioned, but not

multi-viewed or self-joined.

Proof: The membership of np directly follows from [30]. To prove that cvp is np-hard

given a mapping that contains union but not multiple targets or self-join, we construct a

set of tgds that are “equivalent” to (vii); and the np-hard result naturally follows Lemma

4.2.7.

Consider the following tgds:

B̂(s, b) ∧R(b, c) ∧ F3(x3, s, b, c)→ Ĉbig(s, c, x3)

B̂(s, b) ∧R(b, c) ∧ F1(x1, s, b, c) ∧ F2(x2, s, b, c)→ Ĉbig(x1, x2, b)

(viii)

Essentially, Ĉbig is a “composed” relation symbol to represent C and D in equation (vii)

and Fi’s (i = [1..3]) are dummy relation symbols only to make (viii) full tgds.

Given a target instance J of Ĉ and D in (vii), we construct an instance J ′ of Ĉbig in

(viii):

1. J ′ starts with empty content.

67

Data Mappings: Identifying the Source Chapter 4

2. For each tuple (s, c) in the relation of C in J , we corporate a tuple (s, c, x3) in the

relation of Ĉbig in J ′, where x3 holds a unique value that is different from each value

in the active domain of J .

3. Similarly, for each tuple (s, b) in B̂, incorporate a tuple (x1, x2, b) in J , where x1

and x2 hold unique values that are different from each value in the active domain

of J .

It is trivial to show that J has a source instance w.r.t. (vii) if and only if J ′ has a source

instance w.r.t. (viii). Note that (viii) is unioned, but not multi-viewed or self-joined.

Therefore Lemma 4.2.8 holds.

Lemma 4.2.9 Given a full schema mapping M = (S,T,Σ) and a ground instance J of T,

it is in ptime to check whether there exists a source instance I of S, s.t., J = chaseM(I).

To prove Lemma 4.2.9, we need a leading Lemma 4.2.10 and the notion of “reversed

mapping”, which will be used in the proof as well as in the next section.

Lemma 4.2.10 Given a full schema mapping M = (S,T,Σ), and an instance J of T, if

there exists a source instance I of S, s.t., J = chaseM(I), then for each R-tuple τ in I,

where R ∈ T, there exists an assignment α, s.t., τ = R[α].

Lemma 4.2.10 is straightforward to prove and can serve as a filter to eliminate an

apparent “unchaseable” target instance. For example, if the given tgd is S(x)→ T (x, x)

and a target instance J is T J = {(1, 2)}, apparently there is no source target can produce

T J through chase.

68

Data Mappings: Identifying the Source Chapter 4

Definition: Given a full schema mapping M = (S,T,Σ) that is not unioned, a schema

mapping M̃ = (T,S, Σ̃) is a reversed mapping (w.r.t M), where ΦS → ΨT is a tgd in Σ if

and only if ΨT → ΦS is a tgd in Σ̃.

A reversed mapping is to flip the direction of the arrows in tgds. For example, in

Example 4.2.3, the reversed mapping of the one specified by (iii) and (iv) is F (x, z) →

E(x, z) ∧ E(z, y) and G(z)→ E(x, z) ∧ E(z, y).

The notion of “reversed mapping” is different from the one in [27, 28, 29], where by

simply flipping the arrows will lead to a wrong results in those works.

Moreover, a reversed mapping can be generalized to corporate unions if disjunction

is allowed. However, to have a cleaner presentation of this chapter, we only focus on the

mapping without union.

Proof: (Lemma 4.2.9) Note that if a given mapping M = (S,T,Σ) is not multi-

viewed, unioned, or self-joined, Σ only contains a single tgd with no repeated relation

symbols on the left-hand-side. W.l.o.g., suppose the only tgd is of form A1(x̄1, ȳ1)∧A2(x̄2,

ȳ2) ∧ ... ∧ An(x̄n, ȳn) → B(x̄1, x̄2, ..., x̄n), where each Ai (i ∈ [1..n]) is a distinct relation

symbol with variables x̄i and ȳi. Further we assume J is a given target instance of B.

Now consider the reversed mapping M̃ = (T,S, Σ̃), where Σ̃ = {B(x̄1, x̄2, ..., x̄n) →

A1(x̄1, ȳ1)∧ ...∧An(x̄n, ȳn)}. Suppose I = chaseM̃(J). Based on Lemma 4.2.10, it is easy

to see J ⊆ J ′ = chaseM(I), as it resembles the lossless-join decomposition, where one can

only obtain larger or same table by decomposing and join the original table.

Another observation is that J ′ only contains constants. This is because null values in

I = chaseM̃(J) are only introduced at position yi (i ∈ [1..n]) in each Ai during the chase

procedure with input J and M̃. Together with that Ai’s are distinct, during chase proce-

dure with input I and M null values will not occur at position xi in each Ai. Therefore,

J ′ = chaseM(I) does not contain null values.

69

Data Mappings: Identifying the Source Chapter 4

As a result, to determine if J is chased from some source instance through mapping M

is essentially to check if J = chaseM(chaseM̃(J)). The data complexity is polynomial wrt

the size of J due to the reason that the chase procedure is polynomial complexity.

Corollary 4.2.11 cvp is in ptime if the given full schema mapping is not multi-viewed,

not unioned and not self-joined.

Corollary 4.2.11 is a direct result of Lemma 4.2.9 by treating each null value in the

given target instance as constants.

Hence, according to Lemmas 4.2.6, 4.2.7, 4.2.8, and Corollary 4.2.11, and the result

from [30], Theorem 4.2.5 holds.

4.3 Adding Key Constraints

The results from the previous section indicates that the Chase Validity Problem is in-

tractable under most circumstances even when the tgds have a quite restricted form.

Consider that most relations database systems nowadays require keys in the tables, in

this section, we focus on relations with key constraints and show that the Chase Validity

Problem is in ptime if the some forms of tgds are “key-preserving”.

Given a relation symbol R with arity n, a functional dependency (or FD for short)

over R is of form X → Y , where X and Y are subsets of {1, 2, .., n} (representing columns

or “attributes” or R), if for each relation of R, a X value uniquely determines a Y value.

The notion of FD over a schema is an extension of the one over a relation symbol.

Now we briefly remind the concepts of keys that have been introduced in Chapter

2.1.

A key for a relation symbol R with arity n, is a minimum subset K of {1, 2, .., n},

70

Data Mappings: Identifying the Source Chapter 4

such that K functional determines every column of R, i.e., K → [1..n]. A super key is a

subset of {1, 2, .., n} and a superset of a key. W.l.o.g., in this section, we always assume

each relation of a (database) schema has a key.

Definition: A schema mapping with key constraints is a schema mapping, s.t., each

relation in the source and target schema has a key.

One interesting question to raise is that given a schema mapping (with key con-

straints), if the source instance satisfies the key constraints (defined by the source schema),

is it always the case that the chased target instance also satisfies key constraints (de-

fined by the target schema)? This problem can indeed be reduce to the results in [33],

which gives an algorithm to determine a complete and sound set of FDs given a relational

algebra.

Definition: Given a full schema mapping M with key constraints, M is safe if for each

source instance I that satisfies the key constraints, the target instance chaseM(I) satisfies

the key constraints.

In essence, a schema mapping that is not safe should be consider as a “bad” design.

In the remainder of this section, we only focus on safe mapping.

Chase Validity Problem with Keys (CVPk) Given a full and safe schema

mapping M = (S,T,Σ) with key constraints and an instance J of T that satisfies the

key constraints of T, is there an instance I of S that satisfies the key constraints of

S, such that J = chaseM(I)?

The following proposition states a negative results regarding the Chase Validity Prob-

lem with key constraints added.

71

Data Mappings: Identifying the Source Chapter 4

Proposition 4.3.1 Given a safe and full schema mapping M with key constraints, cvpk

is np-complete if M is self-joined, unioned, or multi-viewed; otherwise, is in ptime.

Proof: For the np-complete cases, it is straightforward to prove by reducing each (np-

complete) case (shown in Fig. 4.1) to the corresponding case with key constraints and

let each given relation symbol of some arity n to have a key [1..n] (i.e., everything in the

relation).

For the only ptime case (i.e., a single tgd with no self-join), we use the same tech-

niques in the proof of Lemma 4.2.9 to obtain the source instance. And then check if both

the target and the source instances satisfy the key costraints.

The following proposition shows a same result even when each relation symbol has a

single-column key.

Proposition 4.3.2 Given a safe and full schema mapping M with key constraints, where

each key has cardinality of 1, cvpk is np-complete if M is self-joined, unioned, or multi-

viewed; otherwise, is in ptime.

Proof: For the only ptime case (i.e., a single tgd with no self-join), the proof is similar

to the one in Proposition 4.3.1, thus omitted.

If the given schema mapping is self-joined, unioned, or multi-viewed, we construct a

new mapping by (1) adding a “dummy” key to each relation symbol, where these keys

are not “useful” in the mapping, and (2) adding a “dummy” source predicate for each

tgd to serve as a “container” for all the dummy keys. For example, consider equation

(vii); the new mapping with “dummy” keys and predicates is as follows.

KĈ(kĈ , kB̂, kR) ∧ B̂(kB̂, s, b) ∧R(kR, b, c)→ Ĉ(kĈ , s, c)

KD(kD, kB̂) ∧ B̂(kB̂, s, b)→ D(kD, b)

(ix)

72

Data Mappings: Identifying the Source Chapter 4

where the keys (lower-case k’s) are underlined and the upper-case K’s are “container”

predicates to hold all the “dummy” keys. Intuitively, each source “dummy” key does not

“contribute” in the mapping; and the “container” predicates are to enforce the safety

property of a mapping. It is trivial to have a reduction to show that the existence of a

source instance is “equivalent” w.r.t. equations (vii) and (ix).

Although enforcing key constraints will not reduce the complexity to validate the

existence of the source instances, a simple yet general requirement on the form of the

tgds provides the tractability to cvpk.

Definition: A schema mapping with key constraints is called key-preserving if for each

tgd, every variable that is on a key position in a source predicate occurs in a target

predicate (in the same tgd).

Example 4.3.3 Consider the schema in Examples 4.2.3 and 4.2.4, together with the

equations (iii), (iv), (v), and (vi). Suppose all the relations (C, D, E, F , G, and H) have

key {1}. Then the mapping that contains some of all of equations (iii), (iv), and (v) is

key-preserving; while a schema mapping that contains (vi) is not key-preserving because

the target predicate H does not contain the key x of C.

Theorem 4.3.4 Given M a key-preserving, safe, and full schema mapping, if M is unioned,

cvpk is np-complete even when M is not self-joined or multi-viewed; otherwise is in

ptime.

Similar to Fig. 4.1, the result of Theorem 4.3.4 is visualized in Fig. 4.2. The unioned

cases are np-complete; while the others are in ptime.

In the following, we provide several lemmas to prove Theorem 4.3.4.

73

Data Mappings: Identifying the Source Chapter 4

Lemma 4.3.5 Given a key-preserving full schema mapping, cvpk is in class np.

To prove Lemma 4.3.5, two notions are needed: “homomorphism” and “disjunctive

backchase”, which is similar to the “disjunctive chase” in [28].

Homomorphism Given a schema R and two instances I1, I2 of R, a homomorphism

h : I1 → I2 is a mapping from DOM to DOM, such that (1) for each constant c occurring

in I1, h(c) = c, and (2) for each tuple (a1, a2, ..., an) of I1, (h(a1), h(a2), ..., h(an)) is a

tuple of I2.

Disjunctive backchase Given a full schema mapping M = (S,T,Σ) and a relation

symbol R ∈ T, ΣR ⊆ Σ is a set of all tgds whose target relation symbols are R. Denote

P+(ΣR) to be the power set of ΣR without empty set. Denote P̃+(ΣR) to be a set of sets

of tgds obtained by flipping all the arrow directions in P+(ΣR).

Example 4.3.6 Consider the schema in Examples 4.2.3 and 4.2.4, together with the

equations (iii), (iv), (v), and (vi). We have ΣF = {(iii), (v)} and P+(ΣF) = {{(iii)},

{(v)}, {(iii), (v)}}. Similarly, P̃+(ΣF) = {{F (x, z) → E(x, z) ∧ E(z, y)}, {F (x, y) →

D(x) ∧ E(x, y)}, {F (x, z)→ E(x, z) ∧ E(z, y), F (x, y)→ D(x) ∧ E(x, y)}}.

Given a full schema mapping M = (S,T,Σ), an instance I of S, and a tuple τ of

a relation symbol R in T, a disjunctive backchase step (w.r.t I, τ , and M) is of form

I
τ, M−−→ {I1, ..., In}, where for each i ∈ [1..n], Ii = I ∪∆Ii, where ∆Ii is a chase result of a

set of tgd in the P̃+(ΣR).

Example 4.3.7 Continue with Example 4.3.6. Suppose we have a tuple τ = (1, 2) of

E and an instance I = ∅, then a disjunctive chase step w.r.t. I, τ , and the mapping M

74

Data Mappings: Identifying the Source Chapter 4

specified by equations (iii), (iv), (v), and (vi) is ∅ τ, M−−→ {(E = {(1,⊥1), (⊥1, 2)}), (E =

{(1, 2)}, D = {(1)}), (E = {(1,⊥1), (⊥1, 2), (1, 2)}, D = {(1)})}.

Given a full schema mapping M = (S,T,Σ) and an instance J of S, a disjunc-

tive backchase, denoted by chase−1
M (J), is for each tuple τ in J , to apply a disjunctive

backchase step I i
τ, M−−→ {I i+1

1 , ..., I i+1
m }, where I0 = ∅ and I i ∈ {I i−1

1 , ..., I i−1
n } for each

i > 0. The return result of chase−1
M (J) is a set of all the “backchased” source instances

(i.e., all the leaf nodes, if consider the disjunctive backchase as an execution tree, whose

height is the same as the number of tuples in J).

Lemma 4.3.8 Given a full schema mapping M = (S,T,Σ) and a ground instance J of T,

there exists an instance I of S, s.t., J = chaseM(I), if and only if there exists an instance

I ′ ∈ chase−1
M̃

(J) and a homomorphism h from chaseM(I
′) to J , s.t., J = chaseM(h(I ′)).

Proof: Let J and M be as stated in the lemma. Indeed, the disjunctive backchase

produces a set of source instances, in which, zero or more instances can be chased through

M to obtained J . The reason we need to consider such a large number of possible source

instances is because if a M is unioned, i.e., exist at least two tgds in M, s.t., the target

relation symbols are the same, then it is unknown which tgds (or both of them) are used

to obtain a target tuple. Therefore, the disjunctive chase is to exhaustively enumerate

all the possibilities.

Once all the candidate source instances are generated, we chase each of them through

M to see if the chase result is the same as J . In general, null values will be carried over

during the backchase and chase; therefore a homomorphism is needed to check if the new

chase result can “match” J .

Note that the ground instance assumption in Lemma 4.3.8 can be trivially extended to

an arbitrary instance by treating the null values in the given target instance as constants.

75

Data Mappings: Identifying the Source Chapter 4

Now we finalize the proof for Lemma 4.3.5.

Proof: (Lemma 4.3.5) To determine if a full schema mapping M = (S,T,Σ) and an

instance J of T, there exists an instance I of S, s.t., J = chaseM(I), it is to guess

an instance I ′ ∈ chase−1
M̃

(J) and a homomorphism from chaseM(I
′) to J ; then check if

J = chaseM(h(I ′)) and h(I ′) satisfies the key constraints.

In the following, we prove that cvpk is also np-hard if the given mapping is unioned.

Lemma 4.3.9 cvpk is np-hard if the given key-preserving, safe, and full schema map-

ping is unioined and multi-viewed, but not self-joined.

To prove the hardness of Lemma 4.3.5, we reduce it from the well-known Three

Satisfiability Problem [32].

3SAT Problem Given a finite set U of variables and a collection C of clauses over

U , s.t., for each c ∈ C, |c| = 3, is there a truth assignment for C?

To better illustrate the intuition of the reduction, we walk through a specific example.

Assume the variable set U = {a, b, c, d} and C = {(a, b̄, c), (ā, c, d), (b, c̄, d̄)}. (Or

equivalently, the 3SAT Problem is to check if formula (a∨ b̄∨ c)∧ (ā∨ c∨ d)∧ (b∨ c̄∨ d̄)

has a truth assignment). Now consider the following tgds, where each relation symbol

76

Data Mappings: Identifying the Source Chapter 4

has key that contains every column (thus safe and key-preserving):

T (x)→ V (x) F (x)→ V (x) T (x) ∧ F (x)→ E(x)

BL(xa, xb, xc, xd)→ BR(xa, xb, xc, xd

C1
L(y)→ C1

R(y) C2
L(y)→ C2

R(y) C3
L(y)→ C3

R(y)

T (xa) ∧BL(xa, xb, xc, xd) ∧ C1
L(y)→ S(y, xa, xb, xc, xd)

F (xb) ∧BL(xa, xb, xc, xd) ∧ C1
L(y)→ S(y, xa, xb, xc, xd)

T (xc) ∧BL(xa, xb, xc, xd) ∧ C1
L(y)→ S(y, xa, xb, xc, xd)

F (xa) ∧BL(xa, xb, xc, xd) ∧ C2
L(y)→ S(y, xa, xb, xc, xd)

T (xc) ∧BL(xa, xb, xc, xd) ∧ C2
L(y)→ S(y, xa, xb, xc, xd)

T (xd) ∧BL(xa, xb, xc, xd) ∧ C2
L(y)→ S(y, xa, xb, xc, xd)

T (xb) ∧BL(xa, xb, xc, xd) ∧ C3
L(y)→ S(y, xa, xb, xc, xd)

F (xc) ∧BL(xa, xb, xc, xd) ∧ C3
L(y)→ S(y, xa, xb, xc, xd)

F (xd) ∧BL(xa, xb, xc, xd) ∧ C3
L(y)→ S(y, xa, xb, xc, xd)

(x)

together with the following target instance:

V = {(a), (b), (c), (d)} E = ∅ BR = {(a, b, c, d)}

C1
R = {(1)} C2

R = {(2)} C3
R = {(3)}

S = {(1, a, b, c, d), (2, a, b, c, d), (3, a, b, c, d), }

The above tgds and target instance “encode” the given 3SAT input. For example,

T (x) → V (x), F (x) → V (x), and T (x) ∧ F (x) → E(x) denote that a variable should

occur in T or F (since V contains all variables) but not both (since E is empty). BL,

BR, Ci
L, and Ci

R (i = 1, 2, 3) serve as “equality witness” for variables and clauses; for

77

Data Mappings: Identifying the Source Chapter 4

example, T (xa)∧BL(xa, xb, xc, xd)∧C1
L(y)→ S(y, xa, xb, xc, xd) denotes that if xa equals

a (implied by BL(xa, xb, xc, xd), where BL and BR should all be (a, b, c, d)) and a occurs

in the first clause (a, b̄, c) (implied by C1
L(y), where C1

L and C1
R both should contain tuple

(1)) without a negation (i.e., assigned to be true, which is indicated by T (xa)), then the

first clause should be true (implied by S(y, xa, xb, xc, xd), where S contains (1, a, b, c, d)).

Proof: (Lemma 4.3.9) Given a set U of variables {v1, v2, ..., vm} and a collection C

of clauses {c1, c2, ..., cn}, we construct a full schema mapping M = (S,T,Σ) with key

constraints, such that (1) S contains n+ 2 unary relation symbols T , F , C1
L, C2

L, ..., Cn
L

and a m-ary relation symbol BL, (2) T contains n+ 2 unary relation symbols V , E, C1
R,

C2
R, ..., Rn

L, a m-ary relation symbol BR, and a (m+1)-ary relation symbol S, (3) for

each relation symbol R in S∪T with arity of k (where k is some positive integer), R has

key {1, 2, ..., k}, and (4) Σ contains the following set of tgds:

{T (x)→ V (x), F (x)→ V (x), T (x) ∧ F (x)→ E(x)} ∪

{BL(x1, x2, ..., xm)→ BR(x1, x2, ..., xm)} ∪ {Ci
L(y)→ Ci

R(y) | ci ∈ C} ∪

{T (xj) ∧BL(x1, .. , xm) ∧ Ci
L(y)→ S(y, x1, .. , xm) | xj is in ci without negation} ∪

{F (xj) ∧BL(x1, .. , xm) ∧ Ci
L(y)→ S(y, x1, .. , xm) | xj is in ci with negation}

(xi)

Consider the following instance J of T:

V = {(v1), (v2), ..., (vm)} E = ∅ BR = {(v1, ..., vm)}

Ci
R = {(i)} for each i ∈ [1..n] S =

⋃n
i=1{(i, v1, ..., vm)}

Note that the mapping specified by equation (xi) is safe and key-preserving. Now we

prove that 3SAT Problem with input U and C has a truth assignment if and only if there

78

Data Mappings: Identifying the Source Chapter 4

exists an instance I of S, s.t., J = chaseM(I).

(⇐): Suppose there exists an instance I of S, s.t., J = chaseM(I). According to

the tgds in Σ, the values in the instances of T and F should be disjoint (because E

is empty) and the union of T and F should cover all variables (in the given U of the

3SAT problem). Moreover, based on tgds BL(x1, x2, ..., xm) → BR(x1, x2, ..., xm) and

Ci
L(y)→ Ci

R(y) (i = [1..n]), the instances of BL and Ci
L in I can only be {(v1, ..., vm)} and

{(i)}. Therefore, each rule T (xj) (or F (xj)) ∧BL(x1, ..., xm) ∧ Ci
L(y) → S(y, x1, ..., xm)

is essentially to encode the truth assignment that if xj equals variables vj and xj occurs

in clause cj without (resp. with) negation, an instance of S should be “validated” as

true (i.e., having tuple (i, v1, ..., vm)). Hence, the 3SAT problem has an assignment by

assigning each variable in T to true, and those in F to false.

(⇒): This direction is similar to (⇐). Suppose there is a truth assignment to U , s.t.,

each clause in C is true. We can construct I by assigning all variables in U with true

assignment to the instance of T and all others (i.e., with false assignment) to F . For the

instances of BL and Ci
L (i = [1..n]), they should be exactly the same as BR and Ci

R. It

is easy to show that J = chaseM(I).

The following Lemma 4.3.10 considers a more restrictive case comparing with Lemma

4.3.9

Lemma 4.3.10 cvpk is np-hard if the given key-preserving, safe, and full schema map-

ping is unioined, but not self-joined or multi-viewed.

Proof: The proof technique of Lemma 4.3.10 is similar to the one of Lemma 4.2.8. The

technique in Lemma 4.2.8 is to “expand” equation (vii) into equation (viii) and show

these two equations are “equivalent”. Similarly, we can “expand” equation (xi) into

another equation with a single “big” target relation symbol and show the “equivalence”.

79

Data Mappings: Identifying the Source Chapter 4

An example “big” target relation symbol could be Rbig(xV , xE, x
B
1 , x

B
2 , ..., x

B
m, y, x

S
1 ,

xS2 , ..., x
S
m), where columns xV and xE represent V and E, xB1 , x

B
2 , ..., x

B
m represent BR,

and y, xS1 , x
S
2 , ..., x

S
m represent S.

The only problem with equation (xi) is that the given instance of E is empty; however,

if we assign a column xE in Rbig for E, it is impossible to assign values to xE to represent

emptiness. Therefore, we revise T , F , V , and E in equation (xi) to be arity of 2 with keys

on the first columns and the corresponding tgds in equation (xi) to be T (x, y)→ V (x, y),

F (x, y) → V (x, y), and T (x, y) ∧ F (x, y) → E(x, y). The given target instances are

V = {(v1, 1), ..., (vm, 1)}, where v1, ..., vm are the variables given in the 3SAT Problem

and E = {(0, 0)}. Essentially, the 0 value in E represents “emptiness” as each tuple in

the source instances of T and F will never have 0 value on the second column. (Note the

other tgds in equation (xi) that involve T and F should be revised correspondingly).

Till this point, Lemmas 4.3.5 and 4.3.10 indicate “half” of Theorem 4.3.4 is correct;

i.e., given a key-preserving schema mapping, if the mapping is unioned, cvpk is np-

complete even when the mapping is not self-joined or multi-viewed. Regarding Fig. 4.2,

this “half” result essentially is denoted by the four “np-c” cases on the “is unioned”

dimension. In the remainder of this section, we will show that the rest four cases are in

ptime.

Lemma 4.3.11 Given a key-preserving, safe, and full schema mapping, if the mapping

is not unioned, cvpk is in ptime.

To prove Lemma 4.3.11, we first go through an example to see how the case in Lemma

4.3.11 can be solved in ptime.

Example 4.3.12 Consider the following full schema mapping, where each relation sym-

80

Data Mappings: Identifying the Source Chapter 4

bol has key {1} (i.e., the first column; hightlighted with underline).

E(x, y, z) ∧ E(y, u, w)→ S(x, y, w) F (x, y) ∧ E(y, z, w)→ T (x, y, z)

It is straightforward to show that the above mapping is key-preserving and safe.

Suppose the given target instance J is SJ = {(1, 2, 3), (2, 3, 5)} and T J = {(4, 3, 6)},

which both satisfy the key constraints.

Now we obtain the original source instance I of E and F by chasing J through the

reversed mapping (i.e., S(x, y, w) → E(x, y, z) ∧ E(y, u, w) and T (x, y, z) → F (x, y) ∧

E(y, z, w)). The chased results are EI = {(1, 2,⊥1), (2,⊥2, 3), (2, 3,⊥3), (3,⊥4, 5), (3,

6,⊥5)} and F I = {(4, 3)}, where the first 4 tuples in EI are from the first tgd above and

the last tuple in EI together with the only one in F I are from the second.

With the chased source instance I, we again apply chase to obtain the new chased tar-

get instance J ′ through the original schema mapping and have SJ
′
= {(1, 2, 3), (1, 2,⊥3),

(2, 3, 5), (2, 3,⊥5)} and T J
′

= {(4, 3, 6), (4, 3,⊥4)}. Note that in order to make SJ
′

and

T J
′

coincide with SJ and T J , ⊥3 has no choice but 3 since the corresponding key in the

same tuple has a constant value 1 which functionally determines the other values in the

same tuple. Similar observation can be made for ⊥5 = 5 and ⊥4 = 6.

With the above homomorphism, the source instance I becomes EI = {(1, 2,⊥1), (2,

⊥2, 3), (2, 3, 3), (3, 6, 5)} and F I = {(4, 3)}. Similarly, to enforce EI to satisfy the key

constraints, ⊥2 = 3 and EI = {(1, 2,⊥1), (2, 3, 3), (3, 6, 5)}.

Finally, it can be shown that by replacing ⊥1 by an arbitrary value, we have J can

be chased from I through the mapping given.

In the following, several claims are given to prove Lemma 4.3.11.

81

Data Mappings: Identifying the Source Chapter 4

Claim 4.3.13 Given a key-preserving, safe, and full schema mapping M = (S,T,Σ)

that is not unioned, its reversed mapping M̃, and a ground instance J of T, instance

I = chaseM̃(J) has no null values on key columns for each relation in I.

Proof: Let I, J , M, and M̃ be as stated in the claim. As a corollary from [33], if a tgd

is key-preserving, safe, and full, then the variables occurring on the key positions on the

source relation symbols essentially form a super key for the target relation symbol; i.e.,

each key column of the target relation symbol has a variable that occurs on the source

relation symbols. Otherwise, the tgd will not be safe. Hence, each variable that occurs

on the key column in some target relation symbol in a tgd in in M̃ occurs in the source

relation symbol for the same tgd. As a result, I = chaseM̃(J), does not contain a null

value on a key column.

The following Claim 4.3.14 is self-explanatory; thus proof is omitted.

Claim 4.3.14 Given a key-preserving, safe, and full schema mapping M = (S,T,Σ) that

is not unioned, and an instance I of S, where nulll values do not occur on key columns,

instance J ′ = chaseM(I) does not have null values on key columns.

Claim 4.3.15 Given a key-preserving, safe, and full schema mapping M = (S,T,Σ) that

is not unioned, its reversed mapping M̃, and a ground instance J of T that satisfies

the key constraints of T, there is at most one homomorphism h from instance J ′ =

chaseM(chaseM̃(J))) to J , s.t., h(J ′) = J .

Proof: Let J , J ′, M, and M̃ be as stated in the claim. According to Claims 4.3.13 and

4.3.14, J ′ does not have null values on key columns. Therefore, if there is a homomor-

phism from J ′ to J , there can only be at most one since each null value can only be

mapped to a constant that is functionally determined by the key.

82

Data Mappings: Identifying the Source Chapter 4

The following Claim 4.3.16 is a special case of Lemma 4.3.8; thus the proof is omitted.

Claim 4.3.16 Given a key-preserving, safe, and full schema mapping M = (S,T,Σ) that

is not unioned, its reversed mapping M̃, and a ground instance J of T that satisfies the key

constraints of T, there exists an instance I of S that satisfies the key constraints of S, s.t.,

J = chaseM(I) if and only if for instance I ′ = chaseM̃(J), there exists a homomorphism h

from chaseM(I
′) to J , where h(I ′) satisfies the key constraints of S and chaseM(h(I ′)) = J .

Claim 4.3.16 can be easily generalized to allow arbitrary target instance by treating

null values in the given target instance as constants. Note that the if and only if condition

in Claim 4.3.16 can be check in polynomial time, therefore Lemma 4.3.11, together with

Theorem 4.3.4, is proved.

4.4 Missing Source Relations

The previous two sections assume that the entire source database is unknown. However

in practice, when a target database is updated, only a few source tables may be affected

and other tables remain unchanged. Therefore, in this section, we relax cvp by assuming

that some source tables are known and the goal is to identify the unknown source tables

given a tgd mapping and a target database.

Chase Validity Problem with k Missing Source Tables (CVPM−k) Given a

full schema mapping M = (S,T,Σ), a schema R ⊆ S with size of k > 0, a database

instance IS\R of S−R, and a database instance J of T , does there exist an instance

IR of R such that J = chaseM(IS\R ∪ IR)?

Note that cvpM−k does not require key constraints. When k equals to the size of the

source schema, cvpM−k becomes cvp.

83

Data Mappings: Identifying the Source Chapter 4

Theorem 4.4.1 cvpM−k is np-complete for k > 2, no matter whether the given full

schema mapping is self-joined or not, unioned or not, or/and multi-viewed or not.

Theorem 4.4.1 denotes that all 8 combinations of self-joined, unioned, and multi-

viewed will lead to an intractable result (shown in Fig. 4.3).

To prove Theorem 4.4.1, two lemmas (4.4.2 and 4.4.3) are needed.

Lemma 4.4.2 If a full schema mapping is not self-joined, unioned, or multi-viewed,

cvpM−2 is np-complete.

Proof: The lemma can be directly reduced from Set Basis Problem (cp. the proof for

Lemma 4.2.7) by rewriting the equation (vii) to be B̂(s, b) ∧ R(b, c) ∧ D(b) → Ĉ(s, c)

with the same given instances as the ones in the proof for Lemma 4.2.7.

Lemma 4.4.3 If a full schema mapping is self-joined only, cvpM−1 is np-complete.

Proof: The lemma can be directly reduced from Boolean Matrix Root Problem [34]:

given a n × n boolean matrix B, does there exist another n × n boolean matrix A,

s.t., A2 = AAT = B. According to this problem, we can construct a single mapping

D(y)∧A(x, y)∧A(y, z)→ B(x, z), with the instance of B representing the given matrix

B and D = {(1), (2), ..., (n)}.

Lemma 4.4.3 can also be proved by reducing from the Graph 3-Colorable Problem

[32].

Proof: (Theorem 4.4.1) (Sketch) We first prove that cvpM−k is np-hard for k > 2.

84

Data Mappings: Identifying the Source Chapter 4

multi-
viewed?

unioned?

self-joined?

YES

YES

YES

NO

NP-C

NP-C

NP-C

NP-C

NP-C

NP-C

NP-C

NP-C

Figure 4.3: > 2 tables missing

multi-
viewed?

unioned?

self-joined?

YES

YES

YES

NO

NP-C

NP-C

PTIME

NP-C

NP-C

PTIME

PTIME

PTIME

Figure 4.4: One table missing

Suppose the given full schema mapping is unioned only or multi-viewed only, it can

be shown that cvpM−2 is np-hard by applying the same reduction as the one for cvp

from the Set Basis Problem. The reduction essentially only requires two source tables

unknown.

Suppose cvpM−(k−1) is np-hard, it is trivial to show that cvpM−k is np-hard by

reducing from cvpM−(k−1). The technique is to introduce a dummy source and target

relation given the input of cvpM−(k−1). Together with Lemmas 4.4.2 and 4.4.3, the

hardness is proved.

The proof of the membership of np is similar to the one of Lemma 4.3.5 by conducting

a disjunctive backchase, guessing a homomorphism, and verify if the homomorphism is

valid.

The following Theorem 4.4.4 indicates that if there is only one relation missing, some

intractable cases in Theorem 4.4.1 can be solved in ptime.

Theorem 4.4.4 cvpM−1 is np-complete if a full mapping is self-joined; otherwise, is in

ptime.

Fig. 4.4 is a visualization of Theorem 4.4.4. Half of Theorem 4.4.4 (i.e., the np-

complete case) has already been proved in Lemma 4.4.3. In the remainder of this section,

85

Data Mappings: Identifying the Source Chapter 4

we prove the ptime case.

To prove Theorem 4.4.1, the notion “transposed mapping” is needed and will be used

in the remainder of this section.

Definition: Given a full schema mapping M = (S,T,Σ) and a schema R ⊆ S, a trans-

posed mapping of M wrt R, denoted as M̂R is a (not necessarily full) schema mapping

(T ∪ S − R,R,Σ′) where for each rule R1(x̄1) ∧ ... ∧ Rn(x̄n) → S(ȳ) in Σ, there is a

corresponding rule S(ȳ)∧R1(x̄1)∧ ...∧Rm(x̄m)→ Rm+1(x̄m+1)∧ ...∧Rn(x̄n) in Σ′ (where

m < n), s.t., R1, ..., Rm ∈ S−R and Rm+1, ..., Rn ∈ R.

The intuition of introducing the transposed mapping from T∪S−R to R is to define

a set of new rules to generate the unknown source tables R, where the new source is the

original target tables T together with the original source tables S −R that are known

and the new target is the original source tables R that are not known.

Example 4.4.5 Consider the following set of mapping:

A(a, d, c) ∧B(b, e) ∧D(d, e)→ S(c, e) A(a, b, c) ∧ E(c, e)→ T (b, c, e)

A(a, b, c) ∧ F (a, g)→ G(a, c, g) A(a, b, c) ∧ C(c, f)→ H(a, c, f)

(xii)

Suppose relation A is missing, then the transposed mapping wrt A is:

S(c, e) ∧B(b, e) ∧D(d, e)→ A(a, d, c) T (b, c, e) ∧ E(c, e)→ A(a, b, c)

G(a, c, g) ∧ F (a, g)→ A(a, b, c) H(a, c, f) ∧ C(c, f)→ A(a, b, c)

(xiii)

Essentially, equation (xiii) defines a mapping to generate the missing table A.

The following Example 4.4.6 illustrates the idea of how a ptime algorithm is designed

to check if the single missing source relation exists.

86

Data Mappings: Identifying the Source Chapter 4

Example 4.4.6 Continue with Example 4.4.5. Suppose the missing relation is A; con-

sider the schema mapping and its transposed mapping defined by equations (xii) and

(xiii), together with the following instances:

B = {(4, 2), (4, 3)} C = {(2, 8)} D = {(5, 3), (6, 3)} E = {(2, 7)} F = {(2, 8)}

S = {(2, 3)} T = (6, 2, 7) G = {(2, 9, 8)} H = {(2, 2, 8), (1, 2, 8)}

With the above instance, we are able to recover a “template” of A instance by chasing

through transposed mapping specified in equation (xiii):

A⊥ = {(⊥1, 5, 2), (⊥2, 6, 2), (⊥3, 6, 2), (2,⊥4, 9), (2,⊥5, 2), (1,⊥6, 2)}

Each tuple in A⊥ serves as a “witness” to justify each tuple in the original target instance.

For example, tuple (⊥1, 5, 2) in A⊥, together with (4, 3) in B and (5, 3) in D justifies

tuple (2, 3) in S according to the first tgd rule in equation (xii).

Then for each tuple in A⊥, together with the original known relations (i.e., B, C,

D, E, and F), we chase through the original mapping (i.e., equation (xii)) to find a

homomorphism to the original given target instance. For example, chasing tuple (⊥1, 5, 2)

for A with B, C, D, E, and F , we have a chased target instance S⊥ = {(2, 3)}, T⊥ =

{(5, 2, 7)}, G⊥ = ∅, and H⊥ = {(⊥1, 2, 3)}, where there is no homomophism from the

newly chased target to the original target, therefore tuple (⊥1, 5, 2) is not a “valid”

witness. However for tuple (⊥2, 6, 2) in A, we will end up with an instance S⊥ = {(2, 3)},

T⊥ = {(6, 2, 7)}, G⊥ = ∅, and H⊥ = {(⊥2, 2, 3)}, where by picking ⊥2 to be either 1 or

2, there is a homomorphism to the original target.

Once all the homomorphisms are found for each chased result, we need to verify if

87

Data Mappings: Identifying the Source Chapter 4

each homomorphism is “valid” by replacing the null values in the corresponding tuple by

the mapped constants. For example, if the homomorphism defines ⊥2 = 2, the A−tuple

becomes (⊥2 = 2, 6, 2); if a chase is performed based on A = {(⊥2 = 2, 6, 2)}, together

with B, C, D, E, and F through equation (xii)), we have G⊥ = {(2, 2, 8)} 6= {(2, 9, 8)},

which is not a “valid” witness. On the contrary, when ⊥2 = 1, we can have S⊥ = {(2, 3)},

T⊥ = {(6, 2, 7)}, G⊥ = ∅, and H⊥ = {(1, 2, 3)} that is a subset of the original target.

After iterate through all the tuples in A⊥ and verify all the candidate homomorphisms,

only two tuples are “valid” in this case: A⊥ = {(⊥2 = 1, 6, 2), (2,⊥4, 9)}, where ⊥4 is

allowed to map to an arbitrary constant that is not in the active domain of the given

instance. Unfortunately, tuple (2, 2, 8) in H cannot be justified by either of the tuples;

therefore, the instance of A does ont exist.

Let I1 and I2 be two database instances of the same schema, and h1 and h2 both be

the homomorphisms from I1 to I2, h1 and h2 are equivalent (wrt pair (I1, I2)) if h1(I1) =

h1(I2). A equivalent homomorphic class [h] from I1 to I2 is a set of homomorphisms s.t.,

for each h1, h2 ∈ [h], h1 and h2 are equivalent (wrt pair (I1, I2)).

Lemma 4.4.7 Let I1 and I2 be two database instances of the same schema, the number

of the equivalent homomorphic classes from I1 to I2 is polynomially many wrt the size

of I1 and I2 if the number of null values in I1 is bounded by a constant.

Lemma 4.4.7 is straightforward; thus the proof is omitted.

The detailed steps to check whether the missing source table exists is described by

Algorithm 1, where line 3 is to construct the “witness table” with null values, line 5 is

to re-construct the target from each witness tuple, and lines 7 - 10 are to check if the re-

constructed target has a “valid” homomorphism to the original target. The complexity

of Algorithm 1 is polynomial wrt to the size of the given instances. (Note that for line

88

Data Mappings: Identifying the Source Chapter 4

Algorithm 1 Deciding cvpM−1 given a non-self-joined full mapping

Input: full mapping M = (S,T,Σ), a relation symbol R ∈ S,
instance IS\{R} of S− {R}, and instance J of T

Output: true or false (i.e., if exists an instance I{R} or {R},
s.t., J = chaseM(IS\{R} ∪ I{R}))

1: Let M̂{R} be the transposed mapping of M
2: Set I{R} := ∅
3: I⊥{R} := chaseM̂{R}(IS\{R} ∪ J)

4: for each tuple τ⊥{R} ∈ I⊥{R} do

5: J⊥ := chaseM(IS\{R} ∪ {τ⊥{R}})
6: for each equivalent homomorphic class [h] from J⊥ to J do
7: J0 := chaseM(IS\{R} ∪ {h(τ⊥{R})}), where h ∈ [h]
8: if J0 ⊆ J then
9: I{R} := I{R} ∪ {h(τ⊥{R})}

10: end if
11: end for
12: end for
13: return true iff J = chaseM(IS\{R} ∪ I{R});

6, since the number of null values in a tuple is bounded, only polynomially many times

of iterations will occur according to Lemma 4.4.7).

Lemma 4.4.8 Given a full mapping M = (S,T,Σ), a relation symbol R ∈ S, instance

IS\{R} of S− {R}, and instance J of T, Algorithm 1 is sound and complete determining

whether there exists an instance I{R} of R, s.t., J = chaseM(IS\{R} ∪ I{R})

Proof: Let M, S, T, Σ, R, IS\{R}, and J be as stated in the lemma.

(Soundness) Straightforward based on line 13 of Algorithm 1.

(Completeness) Suppose there exists an instance Ic
{R} of {R} s.t., J = chaseM(IS\{R}∪

Ic
{R}); while Algorithm 1 returns false given the same input. Let I{R} be the instance of

{R} constructed at the end of Algorithm 1.

Let τ c
{R} be a tuple in Ic

{R} and Jc be chaseM(IS\{R}∪{τ c
{R}}). W.l.o.g, suppose Jc is not

empty. For each tuple τ c
J in Jc, suppose τ c

J is generated by rule R,R1, ..., Rn → T , where

89

Data Mappings: Identifying the Source Chapter 4

R1, .., Rn ∈ S and T ∈ T (note that the variables are ignored as the context is clear) with

tuples τ c
{R} of R, τ c

{R1} of R1, ...τ c
{Rn} of Rn. Therefore, two facts can be concluded: (1)

T,R1, ..., Rn → R is a rule in the transposed mapping M̂{R} of M (line 1 of Algorithm 1) and

(2) τ c
{R1}, ...τ

c
{Rn}, τ

c
J ∈ IS\{R} ∪ J . Let τ⊥{R} be the tuple in I⊥{R} := chaseM̂{R}(IS\{R} ∪ J)

(line 3 of Algorithm 1) generated based on tuples τ c
{R1}, ...τ

c
{Rn}, τ

c
J and rule T,R1, ..., Rn →

R. It is easy to show that there is a homomorphism h from τ⊥{R} to τ c
{R}, s.t., h(τ⊥{R}) =

τ c
{R}. As a result, chaseM(IS\{R}∪{h(τ⊥{R})}) = chaseM(IS\{R}∪{τ c

{R}}) = Jc ⊆ J ; therefore,

h(τ⊥{R}) ∈ I{R} (cp. lines 7 - 10).

Accordingly, for each tuple τ c
{R} in Ic

{R}, if Jc = chaseM(IS\{R} ∪ {τ c
{R}}) is not empty,

there exists a tuple τ⊥{R} in I⊥{R} and a homomorphism h from τ⊥{R} to τ c
{R}, s.t.,h(τ⊥{R}) =

τ c
{R}. Hence, J = chaseM(IS\{R} ∪ Ic

{R}) ⊆ chaseM(IS\{R} ∪ I{R}). Moreover, based on

lines 7 - 10, J ⊇ chaseM(IS\{R} ∪ I{R}). Therefore, we have J = chaseM(IS\{R} ∪ I{R}), a

contradiction.

4.5 Missing Source Relations with Key Constraints

Recall that Proposition 4.3.1 shows a trivial results that with or without key constraints,

cvp and cvpk make no difference in terms of complexity results (both can be visualized by

Fig. 4.1). However, it is not the same case for cvpM−k. Essentially with key constraints,

all the ptime cases in cvpM−1 will interestingly become np-complete.

Chase Validity Problem with k Missing Source Tables and Keys (CVPM−k
k)

Given a full and safe schema mapping M = (S,T,Σ) with key constraints, a schema

R ⊆ S with size of k > 0, a database instance IS\R of S − R that satisfies the

key constraints, and a database instance J of T that satisfies the key constraints,

does there exist an instance IR of R that satisfies the key constraints such that

90

Data Mappings: Identifying the Source Chapter 4

J = chaseM(IS\R ∪ IR)?

Theorem 4.5.1 cvpM−k
k is np-complete for k > 0, no matter whether the given full

schema mapping with key constraints is self-joined or not, unioned or not, or/and multi-

viewed or not.

Theorem 4.5.1 denotes that if key constraint is incorporated, all 8 combinations of self-

joined, unioned, and multi-viewed will lead to an intractable result (shown in Fig. 4.3),

even when there is only one source table missing.

Let k be as stated in Theorem 4.5.1. When k > 2, Theorem 4.5.1 is a corollary

of Theorem 4.4.1 and its proof resembles the one for Proposition 4.3.1; thus omitted.

Therefore, in the remainder of this section, we only consider the case when k = 1. In

details, we consider the following Lemma 4.5.2

Lemma 4.5.2 Given a full schema mapping with key constraints that is not self-joined,

unioned, or multi-viewed, cvpM−1
k is np-complete if the number of the non-prime at-

tributes (i.e., the attributes that are not part of a key) in the schema of the only missing

source relation is no less than 1.

The upper bound of Lemma 4.5.2 can be proved with the same idea of applying

“disjunctive backchase” and “chase”, together with guessing a homomorphism and verify

if the guess is correct. Therefore, we omit the proof for the upper bound and only discuss

the proof of hardness. We reduce from the Domatic Number Problem [32].

Given a graph G = (V,E), a dominating set of G is a set of vertices V ′ ⊆ V , where

for each u ∈ V − V ′, there exists v ∈ V ′, s.t., (u, v) ∈ E.

91

Data Mappings: Identifying the Source Chapter 4

Domatic Number Problem Given a graph G = (V,E) and a positive integer

K 6 |V |, is there a partition of V into K disjoint set V1, V2, ..., VK , s.t., for each

i ∈ [1..K], Vi is a dominating set?

Specifically, The Domatic Number Problem is np-complete for a fixed given integer

K > 3 and in ptime when K < 3 [32].

The following Lemma 4.5.3 is introduced for a cleaner representation of the reduction.

Lemma 4.5.3 The Domatic Number Problem has a solution (i.e., a partition) with

input (V,E) and K iff it has a solution with input (V,E ∪
⋃
v∈V {(v, v)}) and K.

Proof: Let V , E, and K be as stated in the lemma.

(⇒) Suppose there exists a partition for V = V1∪V2∪ ...∪VK given inputs (V,E) and

K. According to the definition of dominating set, for each i ∈ [1..K] and each x ∈ V −Vi,

there exists y ∈ Vi, s.t., (x, y) ∈ E ⊆ E ∪
⋃
v∈V {(v, v)}. By nature, this direction holds.

(⇐) Suppose there exists a partition for V = V1 ∪ V2 ∪ ... ∪ VK given inputs (V,E ∪⋃
v∈V {(v, v)}) and K. Then, for each i ∈ [1..K] and each x ∈ V −Vi, there exists y ∈ Vi,

s.t., (x, y) ∈ E ∪
⋃
v∈V {(v, v)}. Since (V − Vi) ∩ Vi = ∅, we have x 6= y. Therefore,

(x, y) ∈ E. This direction also holds.

Proof: (np-hardness of Lemma 4.5.2) Let V , E, and K be as stated in the Do-

matic Number Problem. The goal is to create a single tgd rule without self-join to

encode the Domatic Number Problem. Now consider (1) a binary source relation sym-

bols Ê(x, y) with key {1, 2} to denote the edge set E together with all the self loops (i.e.,

(
⋃
v∈V {(v, v)})), a unary source relation symbol D(d) with key {1} to encode the “ids”

of the K dominating sets, and a binary source relation symbol R(x, d) with key {1} to

denote that a vertex x is in which dominating set d, (2) a binary target relation symbol

92

Data Mappings: Identifying the Source Chapter 4

C(y, d) with key {1, 2} to denote that each vertex y should be “covered” by a dominating

set d, and (3) the following single tgd:

R(x, d) ∧ Ê(x, y) ∧D(d)→ C(y, d) (xiv)

Suppose V contains n vertices: v1, v2, ..., and vn. The instances of Ê, D, and C are

defined as follows:

Ê = E ∪
⋃
v∈V {(v, v)} D = {(1), (2), ..., (K)}

V = {(v1, 1), (v1, 2), ..., (v1, K), (v2, 1), (v2, 2), ..., (v2, K), ..., (vn, 1), (vn, 2), ..., (vn, K)}

It can be shown that the Domatic Number Problem has a solution if and only if the

mapping specified by equation (xiv) with the instances Ê, D, and C given above has a

source relation R. And the relation R itself forms a partition. The reason is that (1) each

tuple in D serves as an id for a unique dominating set and there are exactly K different

dominating sets, (2) due to the key constraint in R, each vertex in V can only occur in a

single dominating set (identified by d in R), and (3) for Ê(x, y), if vertex y is adjacent to

vertex x through an edge in E or a self-loop in
⋃
v∈V {(v, v)}, then y, according to Lemma

4.5.3, should be “justified” by the corresponding dominating set, which is represented by

C. Note that each vertex in V should be “justified” by each dominating set; since there

are K dominating sets and n vertices in V , the size of relation V is K × n.

Since the Domatic Number Problem is np-complete, together with that equation

(xiv) is not multi-viewed, unioned, or self-joined, Lemma 4.5.2 holds.

93

Data Mappings: Identifying the Source Chapter 4

4.6 Summary

Tuple generating dependency (tgd) is a widely used mapping language in data exchange

area. This chapter studies the problem of deciding the existence of source database given

a full tgd mapping and a target database, which is essentially equivalent to deciding the

updatability. An arbitrary mapping specification will unfortunately lead to intractable

results in most cases (Fig. 4.1), even with key constraint. However, with the property of

key-perserving, a mapping that is not unioned can then be resolved in polynomial time

(Fig. 4.2). Moreover, we also study the cases where not the entire source database (with

or without key constraints) is known. Surprisingly, if two source tables or one source

table with key constraints are missing, the problem can be intractable even the given

rule is not self-joined, unioned, or multi-viewed (Fig. 4.3). However, if there is only one

table missing and key constraint is not enforced, the problem also becomes tractable

when the mapping is not self-joined (Fig. 4.4).

94

Chapter 5

Universal Artifacts

In most BPM systems, the data for process execution is scattered across databases for

enterprise, auxiliary local data stores within the BPM systems, and even file systems

(e.g., specification of process models). The interleaving nature of data management and

BP execution and the lack of a coherent conceptual data model for all data needed for

execution make it hard for (1) providing BPaaS (2) effectively support collaboration

between business processes, due to an enormous effort required on maintaining both the

engines as well as the data for the client applications. In particular, different modeling

languages and different BPM systems make process interoperation one of the toughest

challenges. In this chapter we formulate a concept of a “universal artifact”, which extends

artifact-centric models by capturing all needed data for a process instance throughout

its execution. A framework called SeGA based on universal artifacts is developed to

support separation of data and BP execution, a key principle for BPM systems. We

demonstrate that SeGA is versatile enough to fully facilitate not only executions of

individual processes (to support BPaaS), but also all four collaboration models discussed

in the chapter. Moreover, SeGA reduces the complexity in runtime management including

runtime querying, constraints enforcement, and dynamic modification upon collaboration

95

Universal Artifacts Chapter 5

across possibly different BPM systems.

This chapter is organized as follows. Section 5.1 introduces and motivates the need for

separating data and execution in order to support BPaaS and collaboration. Section 5.2

defines universal artifacts, and the mappings to/from GSM/EZ-Flow. Section 5.3 out-

lines the SeGA framework, support for BPaaS, a new conceptual architecture for BPM

systems, and reports technical details of the SeGA prototype. Section 5.4 presents a

classification of collaboration models and illustrates SeGA support for these models.

Section 5.5 gives details on runtime queries, constraints enforcement, and dynamic mod-

ification through SeGA, and finally Section 5.6 summarizes the chapter.

5.1 Independence of Data and Execution

A typical BPM system [35] manages process definitions, BP executions, tasks and work-

lists, resources, etc. through keeping track of the data about them in one or more

databases within the BPM system (Fig. 5.4 of [35]), while the actual application data is

typically managed in enterprise databases (Fig. 5.5 of [35]). This architecture has been

used in many BPM systems such as YAWL [36], jBPM, and JTang [37]. In this chapter,

we argue that this traditional architecture must be revised to meet two new challenges

in BPM, and develop a new approach based on a technique to free BPM systems from

managing local data.

The development of BPM systems typically requires application knowledge and soft-

ware development experience. The development team does not only formulate concrete

BP models, identify data and other resources including human, but also decides on com-

puting hardware and software. During operation, in addition to routine maintenance,

every BPM system is required to change in order to adapt to the changes in the environ-

ment, regulations and policies, market competitions, etc. Changes are hard technically

96

Universal Artifacts Chapter 5

and cost wise to many organizations. For example, soon after installing its BPM sys-

tem, the Housing Management Bureau in city of Hangzhou, China decided to design

another system due to the changed policies, environment, and requirements [16]. Such

incidents prompted the State Council of China1 to urge provincial and lower governments

to use/purchase more services available in the market to streamline administration, an es-

sential aspect of this call is to shift towards the “Business-Process-as-a-Service” (BPaaS)

paradigm.

Cost effective BPaaS is challenging to achieve. Multi-tenancy for BPM systems is an

obvious option for effective BPaaS, but is technically hard to realize. A primary reason

is that the existing BP design methodologies lack coherent plans for data design. BP

execution needs at least the following five types of data: (i) BP model specification, (ii)

business data for the process logic, (iii) execution states (and histories), (iv) correlations

among BP instances, and (v) resources and their states (e.g, room reserved). Without

coherent data design, current BPM systems handle and manage data in ad hoc manners,

data for BP execution is scattered across databases, auxiliary data stores managed by

the BPM systems [35], and even in files (e.g., BP schemas). It is important to note that

artifact-centric BPM systems are similar since their BP models [12, 15, 16] only focus on

data of type (ii) but are agnostic of types (iii) to (v).

According to Gartner, BP improvement is the top business strategy of CIOs in enter-

prises nowadays [38]. Being able to query execution status, gather all traces of tasks, and

find correlations of instances is a key element for BP improvement. Consider a permit

approval process in a housing management department. During the process execution,

staff in the department may want to know: the number of applications that have been

lodged since the beginning of the year, the peak time of the application lodging, the

applications that have passed “Preliminary Decision”, and the applications that did not

1http://www.gov.cn/zwgk/2012-07/20/content_2187242.htm

97

http://www.gov.cn/zwgk/2012-07/20/content_2187242.htm

Universal Artifacts Chapter 5

follow the defined process. Such information can be used in key performance indica-

tors (KPIs) for BP improvement. Currently the data required to answer these queries

are scattered in process logs, data stores, process models, and even execution engines.

Data/process warehousing techniques can be applied to extract, transform, and load up

(ETL) the data, OLAP tools are then used for process analysis.

Process data warehousing presents some interesting challenges: (1) since the data is

tightly coupled with the process model and its execution engine, it is hard to provide

generic solutions for warehousing process data for different BPs; (2) data warehousing

approach is not efficient for runtime execution monitoring and analysis; (3) process ware-

housing gets the data but misses the process information. As a result, when process

models change, ETL mechanisms for the warehouse often need change as well.

In today’s economic market, different BPs need to engage with each other to achieve

competitiveness. Enabling collaboration between different BPs continues to pose a fun-

damental challenge, i.e., ensuring partners’ BPs to collaborate with each other under the

guidance of business rules and policies to achieve an agreed business goal under any cir-

cumstances. A BPM system is typically used for internal BP management in a business

unit. Such systems are inadequate for business collaboration that involves independently

executing processes with different BP models. Therefore, interoperation between BPM

systems is in a huge demanded, and an extremely hard problem.

BP interoperation needs to address two fundamental issues: (1) different model trans-

formation, and (2) runtime BP status and behavior analysis. The former can smooth the

communication, while the latter is critical for execution analysis, monitoring and man-

agement. Web service standards such as WSDL, BPEL, WSCDL have provided basic

interoperation support specified in terms of flow of activities, messages to be exchanged,

roles and relationships. But they do not provide a satisfactory support in runtime anal-

ysis, monitoring and process change.

98

Universal Artifacts Chapter 5

A key observation arising from these challenges is that, in spite of significant recent

progress in process modeling and enactment, there is a lack of integrated conceptual

models and support tools that can capture a sufficient semantics of BPs for runtime

execution queries, business analysis, and process improvement.

A fundamental principle needed to support BPaaS and BP collaboration is the in-

dependence of data management and execution management. The principle entails that

a BP execution engine should be free of managing any data while the manager of data

needed for BP executions should not interfere with decisions on BP execution. A tech-

nical challenge here is to develop a new generation of BPM systems that adhere to this

principle. In [39], the authors studied how data auditing can be done for BPaaS, where

data and execution management are interleaved. We observe that this data auditing

problem [39] can be easily solved if data and execution are independently managed.

To address these challenges, in this chapter we introduce a new concept of a “uni-

versal artifact” to conceptualize BP execution instances. Intuitively, a universal artifact

extends the information model and lifecycle model in a business artifact [12] with (i)

the process model specification conformed by the instance to serve as its private copy of

the “prescription” for its execution, and (ii) runtime status and dependency information

to serve as the context. A novelty here is that a universal artifact captures sufficiently

detailed semantics for a BP throughout its execution to support runtime monitoring,

analysis, and management. Universal artifacts have two folds. First, they provide a

uniform conceptual framework for describing BP schema as well as instance level in-

formation for execution. Second, they standardize execution mechanisms and facilitate

runtime execution management functions (monitoring, querying, etc.)

We believe a new architecture for BPM systems is needed to fully embrace the inde-

pendence principle. As a first step, in this chapter we develop a Self-Guided Artifacts

99

Universal Artifacts Chapter 5

(SeGA) framework to show that existing systems can be “wrapped” around and “me-

diated” to achieve execution independence. We focus on two representative artifact BP

modeling languages: GSM [15] of a declarative flavor, and EZ-Flow [16] as a procedu-

ral variant, and show how we use universal artifacts to package and elevate BPs to the

conceptual level and “strip” the two engines completely to their “bare bones” (i.e., data-

less). By “bare bone” we mean an engine and its system maintains no persistent data of

each of its running process instance concerning its model, current status, data needed,

and status. At runtime, the engine will be supplied with all necessary data when it needs

to take an action, and upon completion the engine again is stripped of all data about the

instance. We show that universal artifacts indeed make BP engines and BPM systems

free of data management.

This chapter makes the following technical contributions:

1. We formulate the notion of a universal artifact, and define mappings between universal

artifacts and GSM/EZ-Flow artifact instants (snapshots), i.e., translations between

universal artifacts and Barcelona/EZ-Flow.

2. A framework SeGA based on universal artifacts is developed. This framework supports

separation of data and BP execution for the two BPM systems for GSM/EZ-Flow.

A prototype for SeGA is designed that works with the two systems as expected. An

immediate advantage is that SeGA supports BPaaS.

3. We provide a new classification of collaborative BP models based on control and data

dimensions. We further demonstrate that the SeGA framework is capable to fully

facilitate all BP collaboration models.

4. Finally, we discuss some technical details of how SeGA aids in runtime management

including runtime querying, constraints enforcement, and dynamic modification for

100

Universal Artifacts Chapter 5

(collaborative) BP executions possibly across different BPM systems.

In the remainder of this section, we provide specific examples to unveil two important

deficiencies of current BPM systems.

Cloud computing has undoubtedly fuelled the desire to provide BP execution as

service or BPaaS. Consider real estate property management in China. There are roughly

10 to 50 Housing Management Bureaus (HMBs) in each of 30 provinces for managing

titles, permits, licenses etc. Every HMB currently runs and maintains its own BPM

system. For example, the BPM system for the HMB in a large city Hangzhou handles

about 300,000 cases annually (with about 500 BP models). BPaaS could potentially

bring huge savings to HMBs in managing and maintaining BPM systems and is a great

business opportunity in the software market in general.

Virtualization (i.e., VMs) is a key technology for cloud computing that frees clients

from owning and maintaining computing hardware and operating systems. In Fig. 5.1, a

service provider uses VMs to run BPM systems as services for many HMBs. In Hangzhou,

its HMB manages its business data in the enterprise database; the service provider can

then run and manage the BPM system, including the data store “Local 1” containing

data specific to Hangzhou HMB’s BP execution. Current BPM systems store and manage

data related to running processes locally in one or more databases as shown in Figure

5.4 of [35]. For a small city Yiwu, the situation is similar except that the provider

also manages Yiwu’s enterprise data Enterprise Data Store 2 besides its BP execution

specific data in Local 2. BPM systems are semantically rich, each BP engine only suits

in its local context, its local data store is a main part of the context. As a result, one

BP engine cannot be used to serve multiple HMBs. Thus each HMB’s BP engine needs

to be managed individually, the total effort of maintenance of all BPM systems for HMB

clients is not reduced by much but merely shifted to the service provider. For example,

101

Universal Artifacts Chapter 5

.

.

. .

.

.

Service ProviderHangzhou HMB

Enterprise
Data Store 1

Yiwu HMB

BP Engine 1

BP Engine 2

Enterprise
Data Store 2

Local 1

Local 2

Figure 5.1: Running Clients’ BP Engines

Ent. DS 1
& Local 1

.

.

.

Ent. DS 2
& Local 2

.

.

.

Service ProviderHangzhou HMB

Yiwu HMB

BP Virtual
Engine

Figure 5.2: Shared BP Virtual Engine

PAF [> +MAC: ∗RMC MAC > PAF: MR

PAF > MAC: RR

PAF [> MAC: ∗CA

Figure 5.3: Interactions between EAF and MSC

when the core execution engine is to be upgraded, each installation must be upgraded

individually in a seemingly repetitive manner.

Fig. 5.2 shows a desirable situation. In this case, only one BP virtual engine is running,

each HMB’s enterprise business data and engine-specific local data are packaged and

stored in an extended data store and maintained either by the client (e.g., in Hangzhou’s

case) or by the service provider (e.g., in Yiwu’s case). Both the data and process definition

are provided to the virtual engine when it needs to schedule tasks; upon completion, all

data is again packaged and stored accordingly for the client. This is far more efficient

and scalable as the number of clients grows.

Achieving Fig. 5.2 turns out to be technically challenging. A primary reason is that

most BPM software systems today interleave process execution and data management

[35], moreover, some data are collected, stored, and managed without a conceptual data

model. In order to understand how to separate data management from BP execution,

we present a concrete example below, which is also used to illustrate some difficulties in

runtime execution management and behavior analysis of collaborative BPs.

Example 5.1.1 Consider a BP model in Hangzhou HMB (HHMB) concerning approval

102

Universal Artifacts Chapter 5

for “Early-sell permits” submitted by developers to allow some apartments in the build-

ings under construction to be put on the market. Permit approval involves at least two

collaborating BPs carried out by different departments (may use different BP engines).

The primary BP “Early-sell Approval Flow” (EAF) accepts applications from developers,

performs reviews in several aspects, processes fee payment, and issues approval certifi-

cates. One aspect of the review concerns reserved space for building maintenance func-

tions (total area, accessibility, etc.) and is done by the other BP “Maintenance Space

Check” (MSC). An EAF instance launches a MSC instance for all apartments in the EAF

instance and located in the same building. If multiple buildings are involved in the EAF

instance, one MSC instance for each building will be launched.

Fig. 5.3 shows interactions between EAF and MSC instances. An EAF instance initiates

new MSC instances for maintenance check on apartments through sending multiple requests

for maintenance check (RMC), MSC instances may send maintenance reports (MR) back

to EAF, and EAF may seek an additional revised request (RR) or decide that it has enough

information for a decision and terminate all MSC instances with complete and archive

(CA) events to all correlated MSC instances. In Fig. 5.3, edge labels specify event details:

“>” indicates sender and receiver(s), “∗” stands for multiple events, “+” for creation of

new MSC instances, and “[” for all correlated MSC instances.

Clearly, EAF and MSC BPs must collaborate in successful execution. They may run in

difference BPM systems, and even use different modeling languages. Providing effective

runtime support for such collaboration is difficult. For example, to find all MSC instances

with at least one apartment failing the check, a naive approach is to hand-code the query

directly against the local data stores of the BPM system for MSC. Unfortunately one can’t

do much better. As another example, one may wish to find all EAF instances that are not

finished but at least one correlated MSC instances already completed. This query needs to

103

Universal Artifacts Chapter 5

develop ad hoc code at both BPM systems, run them and then join the results together.

Again, a conceptual data model could easily permit general purpose query evaluation

and avoid such ad hoc development. A similar functionality is to monitor at runtime the

executions in order to detect violations of choreography constraints (that usually reflects

policies and regulations).

During the execution of an EAF instance, there are at least five kinds of data in-

volved: (1) the specification of EAF model, (2) the business data about the applicant,

the apartments, etc., (3) the current execution status, e.g., the initial review of the ap-

plicant is completed and two MSC instances are initiated, (4) correlation information of

the EAF and two MSC instances, and (5) the building records (owned by Hangzhou’s Land

Management Bureau) have been checked out for possible update by the EAF instance (an

approved apartment will be marked on the building records). Among the above types of

data, only business data (the 2nd kind) is managed in the HHMB enterprise database,

while all others are stored within the HHMB’s BPM system. If this BPM system is also

to manage executions of BPs from other HMBs, problems will rise since these data (1st,

3rd-5th kinds) from all HMBs are mixed together in the BPM system. HHMB uses a pro-

prietary BPM software but the situation is similar for YAWL and jBPM; the conclusion

easily applies to YAWL and jBPM.

An overhaul of storage and management of data of kinds (1), (3) through (5) seems

necessary in order to support multi-tenancy and collaboration. In this chapter, we formu-

late a concept “universal artifact” to cleanly separate all types of data from the execution

management of a BPM system. Based on universal artifacts, a framework called “SeGA”

(Self-Guided Artifacts) was developed, SeGA allows a single BPM system to serve BP

executions from multiple clients and querying over execution at runtime.

104

Universal Artifacts Chapter 5

5.2 Universal Artifacts

Our goal is to develop techniques for separating data from execution in order to enable

business processes as a service and to support collaboration. To this end, we formulate

a key notion of a “universal artifact”, which is an data object that packages everything

needed for a BP engine to perform individual steps. A universal artifact provides a

uniform structure to record all necessary data needed for execution, including (i) BP

schemas, (ii) business data, and (iii) runtime status and dependencies. By elevating

and “wrapping” (i)-(iii) into universal artifacts and detaching them from the underlying

BP engines, no local data will be maintained by these BP engines, contrasting to the

traditional architecture [35]. This technique of making the engines “data-less” (and thus

stateless) is crucial to support BPaaS and collaboration.

In principle, the elevation idea can be applied to all workflow engines. Traditional

control-flow-centric BP models lack conceptual modeling for data of types (ii) and (iii),

and would require more efforts in finding out how the underlying engines store these data.

Based on the data organization, data of types (ii) and (iii) can be extracted. Artifact-

centric models [2] conceptually model data of types (i) and (ii). For these models, data

elevation can focus on type (iii).

GSM [15] and EZ-Flow [16] incorporate business data/documents and processing

“instructions” or lifecycle specification into (business) artifacts. A common feature in

them is that type (ii) data is represented as a set of data attributes. However, EZ-

Flow specifies lifecycle using graphs, while GSM uses a set of rules and conditions on

data to declaratively define the processing sequences and resolves execution ordering at

runtime. In this section we briefly review the two models based on Example 5.1.1, and

then illustrate how to wrap them into universal artifacts.

Key definitions of GSM and EZ-Flow are reviewed in Sections 5.2.1 and 5.2.2, resp.

105

Universal Artifacts Chapter 5

Result
Reported

Details
Checked

Part Info
Collected

Partial
Apts Check

Docs
Archived

All Info
Collected

All Apts
Check

Requirements Check
Agmnt ReachedDeveloper

Negotiation Terms Disagreed

Report
Written

Generate
Report

Report Result
Report
Sent

Send Report
to Office

Archive
Docs

Figure 5.4: A Guard-Stage-Milestone (GSM) Artifact Lifecycle Model of MSC

Universal artifacts and their mappings from/to artifacts in GSM and EZ-Flow are pro-

vided in Section 5.2.3.

5.2.1 GSM and Barcelona

An artifact stores all business data related to the BP using attribute-value pairs. An

event type is of form Ename(σ1, ..., σn) where Ename is the name for the type, σ1, ..., σn is

a sequence of distinct attributes, and σ1 = “id”, the special attribute to hold an artifact

identifier (that uniquely identifies each running artifact instance). An event of an event

type Ename(σ1, ..., σn) is of form Ename(σ1: c1, ..., σn: cn) where for each i ∈ [1..n], ci is a

value for attribute σi. An event can be incoming (received) or outgoing (sent).

We now briefly review GSM [40] with the following example.

Example 5.2.1 Continue with Example 5.1.1; Fig. 5.4 shows the lifecycle of a GSM

process for MSC that prescribes how the process should be executed. The lifecycle starts

from stage “Requirements Check”. It is opened once the condition in the diamond-shaped

guard is satisfied. The guard tests if a “Request Maintenance Check” event arrives. Once

the stage is activated, some sub-stages can open. For example, if HHMB decides to revise

the maintenance apartments plan, sub-stage “Partial Apts Check” can be activated.

During the execution, outgoing events can be sent out to request execution of actual

tasks outside environment (e.g., human-performed). Once the requirement is checked,

106

Universal Artifacts Chapter 5

the circle-shaped milestone “Details Checked” will automatically close the associated

stage. The instance finishes when milestone “Docs Archived” is achieved.

Definition: A GSM artifact schema is a tuple Γ = (R, Stg,Mst, Substg,Owns,Att, µ,

EType,Lcyc), where

• R is a (unique) name of Γ,

• Stg is a set of stage names (or simply stages),

• Mst is a set of milestone names (or simply milestones),

• Substg ⊆ Stg× Stg defines a forest that represents sub-stage relationships,

• Owns maps each stage in Stg to a non-empty subset of Mst such that one milestone

can be associated to only one stage,

• Att is a set of data attributes containing “id” (to store all data used in the process),

• µ is a one-to-one mapping from Stg ∪Mst to a set of special, status attributes (the

domain of status attributes is Boolean to denote if a stage is open/closed or a

milestone is achieved/invalidated),

• EType is a set of event types such that for each E(σ1, ..., σn) ∈ EType, σi ∈ Att for

all i ∈ [1..n], and

• Lcyc is the lifecycle model, which defines conditions to open/close stage and achieve/

invalidate milestones. Furthermore, it binds an outside task to an atomic stage.

In a GSM artifact schema (R, Stg,Mst, Substg,Owns,Att, µ,EType,Lcyc), sets Att, Stg

and Mst are pairwise disjoint. More details of the formal model of GSM artifact schemas

and lifecycle models can be found in [15].

Definition: Given a GSM artifact schema Γ = (R, Stg,Mst, Substg,Owns,Att, µ,EType,

Lcyc), a GSM artifact instance of Γ is a triple Σ = (id,Vd,Vs), where id is a unique

identifier (id), Vd and Vs are two sets of attributes and values pairs such that for each

107

Universal Artifacts Chapter 5

MSC ID = 101
 Corr. Info.: EAF_ID = A1
 Apt_List
 No = 1; checkPassed = T
 No = 2; checkPassed = F
 No = 3; checkPassed = T
 Milestone
 Terms Disagreed = T
 Docs Archived = F

. . .

MSC ID = 102
 Corr. Info.: EAF_ID = A3
 Apt_List
 No = 13; checkPassed = T
 No = 14; checkPassed = T
 No = 15; checkPassed = T
 Milestone
 Terms Disagreed = F
 Docs Archived = T. . .

MSC ID = 103
 Corr. Info.: EAF_ID = A2
 Apt_List
 No = 1; checkPassed = T
 No = 2; checkPassed = T
 Milestone
 Terms Disagreed = F
 Docs Archived = T

. . .

MSC ID = 104
 Corr. Info.: EAF_ID = A2
 Apt_List
 No = 7; checkPassed = T
 No = 8; checkPassed = F
 Milestone
 Terms Disagreed = F
 Docs Archived = T

. . .

Figure 5.5: GSM Artifact Instances

EAF ID = A1
 Corr. Info.: MSC_ID = {101}
 Repository
 Archived = F Final Approved = T. . .

EAF ID = A2
 Corr. Info.: MSC_ID = {103, 104}
 Repository
 Archived = F Final Approved = F. . .

EAF ID = A3
 Corr. Info.: MSC_ID = {102}
 Repository
 Archived = T Final Approved = F

. . .

Figure 5.6: EZ-Flow Artifact Instances

σ ∈ Att, there is a pair (σ, c) ∈ Vd, where c is the value for σ, and for each s ∈ Stg∪Mst,

there is a pair (µ(s), c) ∈ Vs, where c is true (T) or false (F).

Example 5.2.2 Fig. 5.5 shows four MSC artifact instances for the BP described in Ex-

ample 5.2.1. The instance with id= 101 has three maintenance apartments, where the

one labeled “No. 2” failed the maintenance check. The milestone “Term Disagreed” is

achieved to denote that the negotiation with the developer fails at the current moment.

The attribute “EAF id” in MSC holds the correlated EAF business processes mentioned in

Example 5.1.1.

An artifact instance represents a running BP instance (with all data values). Artifact

instances may depend on each other through their ids stored as attribute values among

themselves. If some attributes of an instance change during execution, other instances

referencing this instance should possibly change as well. The BP engine must keep track

of all dependency relationships.

The set of foreign ids of an artifact instance Σ, denote by FID(Σ), is the set of all ids

108

Universal Artifacts Chapter 5

 . . .

Event Queue

DB2

Interface

Outgoing
Events

Incomining
Events

Schema

Engine

Figure 5.7: Barcelona prototype

Scheduler

Process
Enactments

DB2
Relations

XMLs

 . . .

Event Queue

Task
Performer

Schemas

Artifact
Information

Models
Interface

Outgoing
Events

Incomining
Events

Internal Events

Figure 5.8: EZ-Flow Engine

appeared as attribute values in Σ except for the id of Σ itself. Σ depends on an instance

with id value id if id ∈ FID(Σ).

Definition: A GSM system G is a finite set of GSM artifact schemas. A GSM (system)

snapshot S is a finite set of GSM artifact instances of artifact schemas in G such that

for each instance Γ in S and each id ∈ FID(Σ), there is an instance in S with id id.

The semantics of GSM is defined in [41]. It is based on handling incoming events

sequentially, and for each event, a “B-step” is performed atomically. Intuitively a B-step

modifies the values of attributes in an artifact (instance) according to the schema, and

once the instance is changed, the depending instances may also need to be changed as

they may test the values in the depending instances.

Based on GSM semantics [15], an engine “Barcelona” [40] was developed. Fig. 5.7

shows the architecture. The communication between the environment and Barcelona

is accomplished through events. The incoming events (sent by a task or a user) are

handled sequentially. For each event, a B-step is performed to update the correlated

artifact instance stored in a DB2 database according to the schema. Some depending

artifacts may also change during this B-step. Once it is done, the engine proceeds to

handling of the next event.

109

Universal Artifacts Chapter 5

Receiving
AppForm

Preliminary
Review

Secondary
Review

Final
Decision

Payment
Processing

Certificate
Production

Notification
& Delivery

Figure 5.9: An EZ-Flow Model of EAF artifact

5.2.2 EZ-Flow

We briefly review the artifact-centric model EZ-Flow [16] through examples.

Example 5.2.3 Continue with Example 5.1.1; Fig. 5.9 shows a EZ-Flow process for EAF.

An EAF instance is created when a developer submits a request for a pre-sell permit; and

the instance will be stored in the repository “AppForm Received”. When task “Prelim-

inary Review” completes, the process will send multiple “Request Maintenance Check”

events to create one or more MSC instances to request checking on maintenance. The

remainder of the process is self-explanatory and ends once the instance is archived.

Fig. 5.6 shows 3 instances for the EAF process. The instance with id = A3 has one

correlated MSC instance with id=102. The repository status “Archived” is true, indicating

that this EAF instance is in the “Archived” repository and the process execution has

completed.

In EZ-Flow, artifact classes model the key artifacts associated with BPs. Each EZ

artifact class has a distinct name and a set of associated attributes. (The notions of

attributes and events are given in Section 5.2.1.) Each EZ-Flow process has a unique

core artifact class. Other involved artifacts are auxiliary.

In EZ-Flow, artifacts are manipulated by tasks in their lifecycles. A task is triggered

by an event and can produce one or more events when it completes. A lifecycle of an EZ

artifact may consists of a sequence of tasks manipulating it. In-between tasks, artifacts

110

Universal Artifacts Chapter 5

must be stored in “repositories”. A repository has a unique name and an associated

artifact class and contains a set of artifact instances of the class at runtime.

Definition: An EZ artifact schema is a tuple (A,X,E, T, F,R, L), where

• A is (the name of) the core artifact class, X a set of auxiliary artifact classes not

containing A such that the set X ∪ {A} is closed under cross references,

• E is a set of event types,

• T is a set of tasks,

• F associates each task in T to a set of triggering events, and a set of produced

events,

• R is a set of repositories, and

• L contains a set of directed edges between tasks and repositories with guards (con-

ditions) as edge labels.

Definition: Given an EZ artifact schema (A,X,E, T, F,R, L), an EZ artifact instance

is a quadruple (id, o, l, ρ) where id is a unique identifier (id), o assigns attributes values

in their domains, l ∈ R ∪ T indicates the current location (processing state), and ρ is a

set of ids of auxiliary artifacts needed in the current state.

Example 5.2.4 Fig. 5.6 shows 3 instances for the EAF process described in Example

5.2.3. The EAF instance with id = A1 has one correlated MSC artifact (instance) with id

= 101 (which is the one described in Example 5.2.3). The repository status “Archived”

is false, indicating that this EAF instance still has process execution underway.

Definition: An EZ-Flow system is a closed set of EZ artifact schemas (under references),

an EZ-Flow (system) snapshot is a closed set of EZ artifact instances.

111

Universal Artifacts Chapter 5

An operational semantics is described in [16]. A step of execution in EZ-Flow moves

from one snapshot to another by performing a “transition” on one artifact instance. A

transition is associated with execution of task and triggered by an event. When an event

arrives, the task execution is initiated. The core and auxiliary artifact instances are

fetched before the task is performed. When the task completes, all artifacts are stored

back to repositories. Note that fetch and store actions are atomic: one snapshot may

indicate that artifacts are in repositories, the next one would show the event consumed

and all relevant artifact instances moved from repositories to the task, and in the third

snapshot, all artifact instances could be in repositories again.

Fig. 5.8 shows the EZ-Flow engine [16], which consists of (1) a scheduler that responds

to events and decides to launch tasks according to the EZ-Flow artifact schemas, and (2)

many task performers, each managing one task execution.

5.2.3 Execution Independence and Universal Artifacts

In this section, a new notion of “universal artifacts” is introduced. The model ab-

stracts key ingredients of artifact BP models so that the conceptual model is independent

from the execution. By mapping heterogeneous artifacts to the same model, it is possi-

ble to monitor and query collaborative BPs (Section 5.5), even though the artifacts are

running in different engines. Moreover, a universal artifact incorporates both the notion

of artifact and the process model that this universal artifact will follow.

Current BP/workflow management systems are facing enormous difficulties arising

from the need for (more) automation, process analytics (e.g., BI analysis), run time ex-

ecution monitoring, process improvements, etc. A key cause for these difficulties is the

lack of capturing adequate semantics of running BPs at the conceptual level. Conventional

BP modeling languages allow specification of tasks/activities and their sequencing con-

112

Universal Artifacts Chapter 5

straints (BPMN, Activity Diagrams, YAWL, etc.), leaving data modeling to some later

stage at a lower conceptual level. BPEL on the other hand lacks necessary abstraction

for modeling data involved in BPs that are essential for runtime monitoring and man-

agement. Artifact-centric models [12, 15] make a big step forward by integrating logical

data models and task/activity models. However, current systems include only partial

runtime context for BPs. Barcelona [40] stores artifact dependency and the execution

state information directly in its local database and the dependency information is not

visible in the conceptual level. In EZ-Flow [42], the states of obtaining auxiliary data

and executing a task are also hidden in the conceptual level. This was recently elevated

to the conceptual level to support on-the-fly changes [16].

We believe and advocate a fundamental principle for BPM systems:

Execution independence refers to the freedom of making changes to the process exe-

cution engine while leaving conceptual BP models unchanged.

A necessary ingredient to support execution independence is the ability to capture

adequate semantics in conceptual BP models, specifically through logical modeling of all

three types of data (schemas, business data, and states and context) as discussed at the

beginning of this section.

In data management systems, “physical data independence” was a key enabler for

the development of transaction models (concurrency, crash recovery) independently from

query optimization. The independence principle could allow BP execution issues (schedul-

ing, isolation, etc.) and BP modeling issues to be dealt with separately.

Essentially, a universal artifact (instance) is a GSM/EZ artifact augmented with (a)

state and runtime dependency information, and (b) the artifact schema.

Definition: A universal (artifact) schema is a tuple (A, ID,Att, Sta) where A is a

(unique) name, ID is the ID attribute, Att is a set of data attributes, and Sta is a set of

113

Universal Artifacts Chapter 5

state attributes. Given a universal schema (A, ID,Att, Sta), a universal artifact (instance)

of A is a tuple (ν,L,M,Dep) where ν assigns values to attributes in {ID} ∪ Att ∪ Sta

such that ν(ID) is a unique ID, L is either “gsm” or ”ez” representing a modeling lan-

guage (GSM or EZ-Flow),M is an artifact schema in L, and Dep is a set of dependencies

whose representation depends on L.

A universal artifact is an abstraction of running instances of both GSM and EZ-Flow

artifacts. Each universal artifact captures data attribute values, status and dependencies,

and (its own) BP schema. The inclusion of the schema removes “sharing” of the schema

among artifact instances, and allows changes to be made at runtime without affecting

other running instances, valuable for change support (Section 5.5).

To achieve execution independence for GSM (EZ) artifacts, all data concerning exe-

cution are extracted from Barcelona (EZ-Flow) and stored as universal artifacts. When

Barcelona performs a B-step (EZ-Flow performs a step), it updates a GSM (EZ-Flow)

system snapshot. Thus, it is necessary to establish a 1-1 mapping from GSM (EZ) in-

stances to universal artifacts so that the fact of universal artifacts storing the system

snapshot is transparent to Barcelona (EZ-Flow). In this section, we discuss a few tech-

nical notions for the mappings for GSM and EZ-Flow separately.

To begin with, we say that a GSM artifact schema Γ = (R, Stg,Mst, Substg,Owns,

Att, µ,EType,Lcyc) is compatible with a universal schema (A, ID,Att′, Sta), if A is the

name R, Att ⊆ Att′ (data attributes of Γ are also that for A), and Mst ∪ Substg ⊆ Sta

(stages and milestones of Γ are used as state attributes for A).

We fix S to be some GSM snapshot.

Definition: For each GSM artifact instance Σ = (id,Vd,Vs) in S, the dependency closure

of Σ denoted as ∆gsm
Σ , is a set of IDs where (i) id is in ∆gsm

Σ ; (ii) For each id′ ∈ ∆gsm
Σ ,

FID(Σ′) ⊆ ∆gsm
Σ (all IDs referenced in id′ are in ∆gsm

Σ).

114

Universal Artifacts Chapter 5

In Barcelona, once an event comes, it will first affect one GSM instance; during the

same B-step, the effect may also ripple to the other depending instances. For each GSM

instance Σ, ∆gsm
Σ limits range of the snapshot that may be affected once Σ is changed.

The key notion relating GSM instances and universal artifacts is given below.

Definition: Let Σ = (id,Vd,Vs) be a GSM artifact instance of schema Γ with data

attributes Att in a GSM snapshot S, and Σ′ = (ν,L,M,Dep) a universal artifact of

a univesal schema compatible with Γ. Σ′ is a conceptualization of Σ in the context of S

if (i) id= ν(id) (ids are identical), (ii) Vd and ν coincide on all attributes in Att, (iii) Vs

and ν coincide on all stage and milestone attributes, (iv) L = “gsm”, (v) M = Γ, and

(vi) Dep = ∆gsm
Σ .

Given a GSM artifact schema Γ and a GSM instance Σ of Γ, it is straightforward

to create a universal artifact Σ′ by simply mapping each attribute together with its

value (if any) from Σ′ to Σ. The mapping not only keeps the original id, data and status

attributes, but also includes the execution language and the schema. For the dependency

set, though it can be derived from the data attribute values, it is necessary to raise it as

the first-class citizen in order to explicitly denote the relationship with other instances

as well as make it convenient for computing the GSM system snapshot.

We now consider the mapping for EZ-Flow. Let Γ be an EZ artifact schema with

a set T of tasks, a set R of repositories, and the core artifact class A containing a set

Att of attributes, and let Γ′ = (A′, ID,Att, Sta) be a universal schema. Γ and Γ′ are

compatible if A′, A has the name, Att ⊆ Att′ (data attributes of Γ are also that for A),

and (T ∪R) ⊆ Sta (tasks and repositories of Γ are used as state attributes for A).

Definition: Let S be an EZ-Flow snapshot. For each EZ-Flow artifact instances Σ = (id,

o, l, ρ) in S, the (EZ) dependency closure of Σ, denoted as ∆ez
Σ , is a mapping on ρ such

that for each auxiliary artifact ID id′ ∈ ρ, ∆ez
Σ (id′) = r, where r is a repository in the

115

Universal Artifacts Chapter 5

schema of the artifact with ID id′.

We also view ∆ez
Σ as a set of id-repository pairs. We now extend the notion of

conceptualization to EZ-Flow artifacts.

Definition: Let Σ = (id, o, l, ρ) be an EZ artifact instance of schema Γ with attributes Att

in an EZ snapshot S, and Σ′ = (ν,L,M,Dep) a universal artifact of a universal schema

compatible with Γ. Σ′ is a conceptualization of Σ in the context of S if (i) id = ν(id)

(ids are identical), (ii) o and ν coincide on all attributes in Att, (iii) for each x ∈ T ∪R,

ν(x) = true iff x = l (the state attributes reflect the current execution state), (iv) L =

“ez”, (v) M = Γ, and (vi) Dep = ∆ez
Σ .

Similar to GSM, it is also straightforward to map EZ-Flow artifact instances to uni-

versal artifacts. The logical description of the mapping is omitted.

5.3 The SeGA Framework and Support for BPaaS

A universal artifact clearly captures all necessary data for execution and allows for a BP

engine to process without any data outside of the universal artifact. In this section, a

framework called “SeGA” (Self-Guided Artifacts) is presented (Section 5.3.1) to show how

to wrap (existing) BP engines into “stateless” services to support BPaaS (Section 5.3.2)

and collaboration (Sections 5.4 and 5.5) and how universal artifacts can interact with the

provided services. SeGA serves as a broker between BP engine and the environment. In-

spired by the SeGA framework, we envision how a new architecture for BPM systems that

can support BPaaS and collaborations (Section 5.3.3). Finally, a SeGA prototype was

developed and briefly described in [24], the design details are discussed in Section 5.3.4.

116

Universal Artifacts Chapter 5

Schema

Snapshot

Incoming
events SeGA DispatcherBarcelona

Engine
Outgoing

events

SeGA
Mediator Univ.Artifacts

Repository

Figure 5.10: The SeGA Framework

5.3.1 The SeGA Framework

Fig. 5.10 shows the architecture of the SeGA framework (or simply SeGA), which con-

sists of a SeGA dispatcher and a SeGA mediator. When an external event arrives, the

dispatcher fetches the relevant universal artifact from a universal artifact repository,

extracts the schema from the universal artifact and maps it back to the original form

(GSM or EZ-Flow) restores the original artifact instance (GSM or EZ-Flow), and sends

the external event, schema, and the original artifact instance to the mediator. When the

mediator receives the event, schema, and the instance, it deposits the artifact schema

in the appropriate location where the Barcelona/EZ-Flow engine will access, and passes

the control over to the Barcelona/EZ-Flow engine by forwarding the event. When the

Barcelona/EZ-Flow engine receives the incoming event, it executes the next step and

updates the artifact instances according to the schema deposited by the mediator; and

outgoing events may also be sent directly from the engine if there exists task invocation

during the execution. Once it completes, the mediator fetches the updated artifact in-

stances, together with their schemas and states, and sends them back to the dispatcher.

The dispatcher then maps the instances and schemas back to universal artifacts and

stores into the corresponding repository.

SeGA requires a universal artifact repository so that the dispatcher can fetch universal

artifacts. In general, an enterprise stores the data in a enterprise persistent data store

(e.g., a relational database) rather than storing data for individual BP models. A general

approach of a data mapping to bridge the relationships between artifacts and databases

117

Universal Artifacts Chapter 5

Schema

Snapshot

Incoming
events

SeGA Dispatcher

Barcelona
Engine

. . .Outgoing
events SeGA

Mediator

BP Service Interface

. . .
. . .

Univ.Artifacts
Repository k

SeGA Dispatcher

Univ.Artifacts
Repository 1

C
lie
n
t

S
e
r
v
ic
e
 P
r
o
v
id
e
r

Figure 5.11: SeGA to Support BPaaS

was developed in [26]. As an advantage, one can design artifacts and map the artifacts

(data) into an existing database. The mapping in [26] allows to propagate updates on

artifact instances to the database and vice versa.

5.3.2 Supporting BPaaS

Based on Fig. 5.10, SeGA can be used to support BPaaS, as shown in Fig. 5.11. The

dispatcher would reside at the service consumer (or client), where a repository of universal

artifacts is maintained. The mediator is located at the service provider who runs a

BP engine (or multiple engines to balance workload). The dispatcher and mediator

communicate through service invocations such as WSDL or REST, and work in pairs so

that the service provider can use its BP engines to execute BP received from the service

consumer in the form of data.

The SeGA framework takes the advantage of the execution independence that sepa-

rate data and execution management. From the engine’s perspective, it provides business-

process-as-a-service but does not maintain any data. This allows the provider to serve a

large number of consumers. From the consumer’s view, all BP data are maintained at

its site; beyond that, there is no need to manage BP execution.

BPaaS can be achieved by separating data management from the execution engine

and let the execution engine simply provide stateless services with zero knowledge of

what data should be processed and the context. Notice that the engines in Fig. 5.11

have no data repository to store the information of BPs. This makes it easier for enter-

118

Universal Artifacts Chapter 5

Client

SeGA Layer

Modeling Layer

Execution Layer

SeGA
Dispatcher

Enterprise
DBs

Univ. Artifacts
Repository

Synchronizer

Data
Connector

Entity
Designer

Process
Optimizer

SeGA
Mediator

SeGA
Multimodel
Scheduler

Worklist
Manager

Task
Coord

Task
CoordInitiator …

Human Software

data
mapping

artifact
schema

enterprise
data

ua

ua

ua

ua
ua

artifacts

…

Add-ons

Runtime
Monitor

Anomaly
Handler

(universal
artifact)

u
a

Figure 5.12: A Conceptual Architecture of BPM Systems

prise to purchase BPaaS services to manage their business processes instead of in-house

maintenance of the BPM system. Meanwhile the enterprise has a full control over the

management of the BP data as well as enterprise data.

5.3.3 A Design Methodology to BPM Systems

Our study on SeGA leads to two specific suggestions for future BPM system development.

First, existing BPM systems can be augmented so that data in the process manager is

extracted and packaged with the business data into universal artifacts. Although we only

explored two systems, the same method is applicable to other systems including jBPM

and possibly YAWL. Section 5.3.4 provides a general methodology for this. Second, in

general it is most desirable to develop future BPM systems that support the independence

principle. In this regard, we envision that a BPM system consists of three layers, a

modeling layer to accept/analyze the data and BP design, and map to universal artifacts;

a SeGA layer to manage universal artifacts and interact with the engine at runtime; an

execution layer to manage executions with no local data. Such new style BPM systems

will provide a tremendous support for BPaaS and process collaboration.

119

Universal Artifacts Chapter 5

Fig. 5.12 presents a conceptual architecture for future BPM systems. The three key

layers: modeling, SeGA, and execution layers are explicitly shown. For modeling layer,

“entity designer” provides tools for people to design artifact/BP schemas and the designed

schemas will be optimized by the “process optimizer” and deposited into the repository

in the SeGA layer. The “data connector” is a tool that helps people to define mappings

between artifact data and enterprise data [26]. The mapping will be maintained by the

“synchronizer” at runtime in the SeGA layer. For execution layer, it contains only a SeGA

mediator and a multimodel scheduler (which may be a collection of several BP engines,

one or more for each BP language) that have been shown in Fig. 5.10 and Fig. 5.11. In

addition to the synchronizer, SeGA repository, and the SeGA dispatcher in the SeGA

layer, this layer also contains a “worklist manager” that passively receives the execution

result from the multimodel scheduler, so that the manager can decide what task is to

perform next. Each task performance is controlled by either (1) a “task coordinator”

that informs human or software to execute the task, or (2) a “initiator” whose only job

is to initialize the instance of an artifact.

In addition to the three layers in Fig. 5.12, some add-ons can be built upon this

architecture. Some example add-ons could be runtime monitor, constraint enforcement

component, or anomaly handler (to support runtime changes). In general, these add-ons

only need to connect with the repository as it is the only place that all process data is

stored. Some add-ons and their advantages will be discussed in Section 5.5.

5.3.4 A SeGA Prototype

We now describe the technical details of a prototype for SeGA. We first give the details

steps of how Barcelona and EZ-Flow are configured in SeGA and how SeGA can interact

with them. We then briefly outline how a new BP engine can be plugged into SeGA.

120

Universal Artifacts Chapter 5

Based on the SeGA framework in Fig. 5.10, the prototype consists of a dispatcher

and a mediator. Both dispatcher and mediator are written in JAVA. In addition to the

dispatcher and mediator, the prototype also implements a universal artifact repository

using MySQL. A RESTful interface is used for accepting incoming events to SeGA dis-

patcher, while SeGA dispatcher, SeGA mediator, and the Barcelona/EZ-Flow engines

interact with each other through their RESTful interfaces. In addition, SeGA mediator

also interacts with the two DBMSs used by the engines (resp.) for storing and fetching

artifacts. Finally, SeGA mediator needs to deposit schema definition files in the appropri-

ate locations of the two engines. In the current implementation, SeGA mediator and the

two engines run on the same machine and SeGA mediator simply overwrites the schema

files in the appropriate locations. Once the remote file copy ability is provided, SeGA

mediator and the engine(s) can run across a network.

We now show how in detail Barcelona and EZ-Flow is configured and executed in

SeGA. A new Barcelona or EZ-Flow BP engine is registered into SeGA through specifying

a configuration file including IP address, database address, and schema location. SeGA

will then automatically fetch, transform, and deposit the artifact instances from/into the

corresponding engine.

Interacting with Barcelona

Barcelona [40] was treated as a black box since the source code is not available to us.

Based on the mapping discussed in Section 5.2.3, ideally, the following steps can be

applied for each incoming event that arrives at SeGA.

1. Fetch a universal artifact matching the correlation id in the incoming event.

2. For each id in the dependency set of the universal artifact, generate a GSM artifact

and store it into the Barcelona engine.

3. Forward the original event to Barcelona to trigger one B-step. (After the B-step,

121

Universal Artifacts Chapter 5

Barcelona should update the GSM instances.)

4. If there are outgoing events sent from Barcelona, then capture these events and forward

them to the original receivers.

5. Fetch the updated GSM artifacts, map them back to universal artifacts and store

them in the repository.

In Step 2, when an incoming event arrives, SeGA dispatcher should map universal

artifacts to GSM instances with a schema. However, our implementation encountered a

couple of technical problems concerning interaction with Barcelona.

Barcelona uses auto-ID feature in DB2 for generation of IDs in an auto-increased

manner. Therefore, every time SeGA restores a GSM instance (from a universal artifact)

and attempts to insert it into DB2, artifact ids will change automatically. Given that

the GSM structure in DB2 cannot be changed, SeGA simply keeps a duplicate of each

instance in DB2. Thus, when an event arrives, SeGA dispatcher does not need to map

universal artifacts back to GSM instances. However, a mechanism is provided in SeGA

to make updates directly on universal artifacts in SeGA, and the changes will be reflected

in the corresponding GSM instances in DB2 via SQL updates.

Once a B-step has completed (Step 3), Barcelona should notify SeGA mediator to

fetch the updated GSM instances. However, Barcelona is passive and a change in the

source code is needed to send a completion signal. To avoid this problem, a special artifact

is deployed whose job is to consume auxiliary control events. When such an event is

consumed, this artifact will invoke a task to send an outgoing message to SeGA mediator

to inform a completion of the previous B-step. Since Barcelona consumes one external

event to perform a B-step, by alternating external events and auxiliary control events,

SeGA keeps track of B-step completions and fetches GSM artifact instances appropriately.

Step 4 allows to implement, e.g., a constraint checking function (Section 5.5). To

122

Universal Artifacts Chapter 5

capture an outgoing event, SeGA (1) replaces the addresses of all the outgoing events

specified in the schema files by its own addresses; (2) maintains a table to record the

mapping between the new addresses and the original addresses; and (3) when receive an

outgoing event, forwards it to the original receiver according to the mapping.

Interacting with EZ-Flow

SeGA interaction with EZ-Flow [16] follows 4 similar steps, here we briefly explain key

differences. Due to the availability of the source code, slight modifications to EZ-Flow

are done to simplify the interface.

SeGA stores universal artifacts in MySQL. However, EZ-Flow manages execution

state data in DB2 while keeping data attributes in XML documents. Therefore, the

instance mapping between SeGA and EZ-Flow requires XML-relation transformation.

In Step 2, SeGA is to restore the core and auxiliary artifact instances in the EZ-

Flow engine and its corresponding repositories using the dependencies in the universal

artifact. A notable difference is that when the auxiliary artifacts change their repositories

(state) in their process execution, the dependencies in universal artifacts in SeGA must

be refreshed (explained in the next paragraph).

Once a task completes in EZ-Flow, we modified the EZ-Flow engine to notify SeGA

mediator proactively. This avoids having auxiliary control events used for interaction

with Barcelona. Furthermore, the completion event to SeGA reports both core artifact

modifications and dependent artifacts (e.g., new artifact created, new location). Upon re-

ceiving the completion event, SeGA directly fetches the artifact instances and transforms

to universal artifacts. SeGA will also trace all dependencies in all universal artifacts in

its repository and update the location information corresponding to the newly fetched

EZ-Flow instances.

Upon completion, a task performer may produce event(s) to the EZ-Flow engine to

123

Universal Artifacts Chapter 5

activate the next task. Again, the engine is slightly modified to send this event to SeGA

that forwards it to the event queue of EZ-Flow.

Registering and Interacting with Other BP Engines

The SeGA prototype is able to support the installation of new BP engines. To register

a new engine, two wrappers (one each for SeGA mediator and dispatcher), are needed.

The wrappers are in form of plug-ins, where SeGA is able to invoke their interfaces. The

mediator wrappers should be responsible for interacting with the new BP engine, re-

ceiving/sending artifact instances, events, and schemas from/to the dispatcher wrapper,

who is responsible for interacting with universal artifacts in the repository. Note that

the SeGA dispatcher or mediator will not interact with the BP engine nor the reposi-

tory directly, as the format of the new artifacts or the semantics/interfaces of the new

engines are unknown to SeGA. Therefore, SeGA dispatcher or mediator needs to invoke

its corresponding wrapper to accomplish the job.

In general, the wrappers for mediator and dispatcher should be designed to meet the

following requirements.

1. The dispatcher wrapper should be aware of how to pack and unpack artifacts together

with other information into universal artifacts, and

2. Mediator wrapper, should know (1) how to compose and decompose universal artifacts,

and (2) where to store/fetch the decomposed data into the BP engine.

The specific interaction steps are similar to that given for Barcelona and EZ-Flow but

will be specific for the BP engine.

124

Universal Artifacts Chapter 5

Distributed
(Choreography)

WSCDL
Let’s Dance

Choreography
4Artifacts
SeGA4CHOR

Centralized
(Orchestration)

BPEL
BPMN
YAWL

HUB SeGA4ORCH

No logical
data model

Logical data
model,

Centralized data

Logical data
model,

Distributed data

Data

Supported by SeGAControl flow

Figure 5.13: Classification of Collaboration Models

5.4 A Classification of Collaborative Process Models

In this section we provide a new classification of collaborative BPs based on two dimen-

sions: whether control flows are centralized/distributed and availability of logical data

models in conjunction with centralized/distributed data management. We then discusses

how SeGA supports all four models that incorporate data.

Consider the collaborative BPs EAF and MSC in Example 5.1.1. To implement the

BPs, typically an orchestration or choreography approach [8] can be employed. For

orchestration, a BP engine serves as an orchestrator to coordinate all participants during

the execution. Several orchestration languages, such as BPEL, BPMN, or YAWL can be

used to specify the orchestrator process. Alternatively, the collaboration can be specified

in a choreography language such as WSCDL or Let’s Dance [43].

However, none of the above BP modeling languages support logical data modeling.

Even though variables can be used, the lack of the global view of data involved hinders

the ability to reason about collaborations, e.g., consistency with underlying databases,

or the execution logic. For example, the staff of HHMB frequently want to know for a

specific EAF instance, how many buildings have passed the maintenance apartment check,

or which correlated MSC instances are currently under negotiation with developers; these

cannot be easily answered, unless with ad hoc software modules.

125

Universal Artifacts Chapter 5

We classify collaborative BP models along data and control flow dimensions as shown

in Fig. 5.13. Clearly, orchestration means centralized control, while choreography repre-

sents distributed control. Along the data dimension, the languages discussed above lack

logical data modeling capability. Among the modeling approaches that support logical

data modeling are HUB [44] and Choreography for Artifacts [45].

In the HUB framework [44], data (such as customer name, ordered items, prices,

payment, etc. in the above example) is explicitly specified and stored in a centralized

repository. All participants interact with a hub engine (an artifact-centric process engine

with view authorization [46]) to engage in collaboration. The hub serves as a scheduler

as well as a data manager to maintain the process and the data. Note that all data

involved in the collaboration are managed centrally at the engine.

Choreography for Artifacts [45], on the other hand, models the data in collaboration

globally but requires each participant to manage its relevant global data locally. The

relevant global data is modeled as an “artifact interface”. Thus, the choreography lan-

guage is classified as distributed control and logical data model with distributed data

management in Fig. 5.13.

The SeGA framework is capable of supporting all four collaboration models that have

logical data models. In the remainder of the section, we illustrate the support for two

collaboration models, SeGA4Orch and SeGA4Chor (Fig. 5.13).

SeGA4Orch. Consider a SeGA framework that involves participants 1, 2, and 3,

and BP engine 1 shown in Fig. 5.14 (ignore the other participants and BP engines 2 and

3 for now), where participants 1 and 2 maintain their own universal artifacts storage;

while participant 3 stores its universal artifacts in a cloud storage. BP engine 1 is an

orchestrator to coordinate the collaboration among the three participants. Then, the

orchestration under SeGA framework proceeds as follows: A single universal artifact is

126

Universal Artifacts Chapter 5

Participant 4 Participant 3 Participant 1

BP engine 1

sg-artifact
repository

SeGA mediator

SeGA dispatcher

BP engine 3

cloud storage

SeGA mediator

BP engine 2

SeGA mediator

Participant 2

sg-artifact
repository

SeGA dispatcher SeGA dispatcher SeGA dispatcher
Participant 5

sg-artifact
repository

SeGA dispatcher
Participant 6

sg-artifact
repository

SeGA dispatcher

events/messages

Figure 5.14: Collaboration Models Supported by SeGA

designed to serve as the schema for the orchestration. When the orchestration starts, the

corresponding artifact instance (or equivalently, the orchestration instance) is generated

by the first task performer (one of participants 1, 2, and 3). Once the first task of the

orchestration is done, the task performer will pass the decomposed universal artifact

(i.e., the original artifact instances together with their schemas) to BP engine 1, where

the instance can be executed according to the schema. After the execution, the mediator

extracts the execution results and passes them back to the dispatcher of a participant, who

is responsible to perform the next task. The above routine repeats until the orchestration

completes.

Compared with the HUB framework, the main difference between SeGA4Orch and

HUB is that artifact instances are maintained by each participant (SeGA4Orch) or by

the orchestration hub (HUB).

SeGA4Chor. Consider a SeGA framework that involves only participants 4, 5,

and 6, and BP engines 2 and 3 shown in Fig. 5.14. Suppose that participants 4 and

5 run their own BPs by using the service provided by BP engine 2 and participant 6

uses the service from BP engine 3. When a choreography proceeds, the only means for

participants to communicate is by sending and receiving messages/events. Under the

traditional choreography setting, BP engines are responsible for message sending and

receiving. However, in SeGA4Chor as shown in Fig. 5.11, for each participant, the

messages are only received by its corresponding dispatcher, and sent by the engine that

127

Universal Artifacts Chapter 5

provides service to it. Therefore, in SeGA4Chor engines send messages to dispatchers,

and participants communicate with engines through the SeGA paradigm discussed in

Section 5.3.1.

In SeGA4Orch and SeGA4chor, data management is done by individual partici-

pants. However, SeGA can be easily adapted to the case when a centralized cloud data

storage is used to maintain all needed data for the collaboration (e.g., as particularly

illustrated in cloud storage shared by participants 3 and 4 in Fig. 5.14).

5.5 Runtime Support

In addition to SeGA’s capability to support a variety of collaboration models (discussed

in Section 5.4) additional runtime support can also be easily provided for SeGA collab-

oration including, in particular, runtime queries, constraint enforcement, and dynamic

modifications.

Querying and monitoring

Universal artifacts provide uniform structures to record the business data, schema, and

status data. Such structures facilitate querying (both current and completed) execution

of collaborative BPs, even when different participants use different BP engines.

We develop a query language “aQL” for artifacts that incorporates artifact and BP

concepts into an OQL-like syntax (Object Query Language [47]). aQL supports the

notions based on universal artifacts including “instances”, “ids”, and “states”.

In the following we present two queries to illustrate aQL. The queries are formulated

against the two BPs EAF and MSC discussed earlier. Although some of the artifact instances

are shown in Fig. 5.5 and Fig. 5.6 for GSM and EZ-Flow, aQL acts on their universal

artifact renditions (that are not shown).

128

Universal Artifacts Chapter 5

Example 5.5.1 Continuing with Example 5.2.1, consider the query to find all ids of MSC

artifacts with at least one apartment that failed the maintenance apartment check. This

query is expressed as:

select M.ID from MSC M where exists (select *
from M.Apt List A where not A.checkPassed)

In the above expression, MSC is the name of a universal artifact schema, M is a variable

representing an MSC artifact instance, M.ID and M.Apt List denote the values of attributes

“id” and “Apt List” (resp.) where Apt List is a set valued attribute consists of a set of

apartment groups, and A is a variable holding the data for a group including checkPassed

(Boolean). This query on the universal artifact version of the four MSC artifacts in Fig. 5.5

would return the answer {101, 104}.

aQL uses path expressions to access nested structural values in the same way as OQL.

Nested queries are easily incorporated. In the query from the above example, if some

apartment A fails the check, the nested query returns a nonempty set and the MSC id will

be returned for the outer query.

Example 5.5.2 Consider both BPs MSC and EAF in Fig. 5.5 and Fig. 5.6. The following

query lists all ids of EAF artifacts that have not finished but have at least one correlated

MSC artifact archived in the maintenance apartment check process.

select distinct P.ID from MSC M, EAF P
where M.ID in P.MAC ID and M.Docs Archived and not P.Archived

Similar to cross product in SQL, the above query selects combinations of MSC and EAF

instances satisfying all three conditions in the where clause. For our example, MSC

instances with id 102, 103, and 104 are archived; and EAF instances with id “A1” and

“A2” have not completed. However, only 103 and 104 are in MAC ID of “A2”; therefore

the query returns “A2”.

129

Universal Artifacts Chapter 5

t4

t1 t2

t3else *

c1 c2

else

*

Figure 5.15: Constraints for MSC

Note that the concepts of “milestone”, “stage”, “task”, and “repository” are all

mapped to states in aQL.

Enforcing choreography constraints

In collaborative BPs, choreography constraints are used to restrict how one BP should

execute in a collaboration with other BPs to prevent the process from behaving unde-

sirably. Generally, if the participant BPs use different workflow engines, then for each

engine, the constraints should be specified in a way that works for the engine. Further-

more, some engines may not have a clear model of data used by a BP, which gives rise

to the difficulty in checking data-related constraints. In order to overcome these prob-

lems, the SeGA framework provides a uniformed approach for specifying constraints and

maintain them at runtime.

SeGA uses a state machine to model constraints for a BP and monitor running in-

stances. In particular, when an instance is created, a state machine then is associated.

SeGA maintains a state table that records universal artifact ids and the current states of

the corresponding state machines. The constraints are based on ECA (event-condition-

action) rules, i.e., when an event is received (or sent) by a running instance, if the

corresponding condition is satisfied, a transition of the associated state machine is made,

and this change is recorded in the state table. If at the end of the lifecycle of the running

instance, the state machine reaches a final state, the constraints are satisfied.

An event formula ξ is of form “in E(φ1, φ2, ..., φn)” or “out E(φ1, φ2, ..., φn)”, where

each φi is an atomic condition on the event content. in E(φ1, φ2, ..., φn) (or out E(φ1,

130

Universal Artifacts Chapter 5

φ2, ..., φn)) is true if and only if an incoming (or outgoing) event arrives (or sent) and

each φi is true on the contents of the current event.

Example 5.5.3 Continue with Example 5.1.1; if a MSC instance sends out a maintenance

report (MR) whose attribute “report result” has value “approved”, the event formula

“out E(event name=‘MR’, report result=‘approved’)” is true.

With the testing of an event only, a condition is not expressive enough to capture

constraints. A query is further needed to test against the values inside a universal artifact.

A condition is a formula of form “Q when ξ” or “ξ”, where ξ is an event formula and Q

is a aQL query. Given a universal artifact σ, a constraint is satisfied based on σ if (1) an

event for σ arrives (or sent by σ), (2) ξ is evaluated to true, and if Q is present, (3) the

result set of Q queried on σ is empty.

With a condition defined, a state machine can be constructed to test if a set of

conditions can be satisfied during the execution.

Definition: A (choreography) constraint is a tuple (T, s, F, C, δ), where (1) T is a set of

states, s ∈ T is the initial state, F ⊆ T is a set of final states, (2) C is a set of conditions;

(3) δ ⊆ T × C × T is a set of transitions.

A constraint is essentially a state machine with conditions on edges. The semantics

of a constraint follows a traditional manner.

For each universal artifact σ, a constraint c should be associated. σ satisfies c if c can

reach a final state by the time when the lifecycle of σ ends.

Example 5.5.4 Continuing with Example 5.1.1, when an MSC instance is created, it will

send maintenance reports back to the correlated EAF instance. If the report states that

131

Universal Artifacts Chapter 5

the maintenance apartment check is passed, then in the future, the MSC instance is only

expecting an archive message. Fig. 5.15 shows the constraint in form of a state machine

for MSC artifact. t1 is the initial state and t4 is the only final state. Two conditions c1 (to

specify a passed report) and c2 (to specify an archive message) are specified:

• c1 is of form “Q when ξ”, where ξ is an “event formula” of form “out E(event name

= ‘MR’, report result = ‘approved’)” to denote that a MSC instance is expected to

send out a maintenance report (MR) event whose attribute “report result” has value

“approved” after its initialization; and Q is the query in Example 5.5.1. c1 is evaluated

to be true if the result set of Q queried on the current MSC instance is empty and ξ is

true. Hence, c1 denotes that an MSC instance should send an “approved” report and

all the apartments should pass the check (notice that the query Q is only applied to

the current MSC instance instead of all the MSC instances).

• c2 is of form “ξ”, where ξ is event formula “in E(event name = ‘CA’)” to denote that

an archive message is expected to be received.

An edge labeled with “else” stands for a collection of transitions other than the specified

one(s) leaving the same state. An edge labeled with “*” represents all possible transitions

leaving the state.

Constraints checking requires the knowledge of when events are received or sent. For

SeGA, the incoming events are handled by dispatchers; while the outgoing events are sent

directly by engines. Therefore, in order to enable SeGA to maintain the state machine

correctly, a modification is needed to let the engine inform SeGA when an outgoing event

is sent.

Dynamic modification

BP models change often. In current BPM systems, the specifications of a BP model is

shared by all running instances of the model. Modification of the model specification

132

Universal Artifacts Chapter 5

becomes difficult: should a running instance follow the old model or the new model,

which is called the instance migration problem. Also, during the execution of a BP,

ad hoc changes may happen to some running instances. Those changes are temporal,

more likely “one-off”, but diversiform. In the traditional approach, it is non-trivial to

implement such behavior due to the following points.

1. The lack of a conceptual model with complete semantics of workflow execution. That

means making a change in traditional workflow not only depends on the workflow

model (schema) and the instance but also on the specific execution mechanism in the

execution engine, the latter is hard to acquire and understand.

2. The difficulty of restricting a change within a scope. In other words, sometimes a

change of an instance do not intend to affect other instances.

A novel approach was presented in [16] to allow the intended changes specified using

rules while the original EZ-Flow model stay unchanged. Both rules and model specifi-

cation are shared among all running instances. At runtime, each instance will have a

chance to check if a rule requires the execution to be altered on the spot. Four types of

process changes were supported there: skip, replace, add, and retract.

The SeGA framework does not provide any methods to make changes to BPs. How-

ever, the framework naturally provides a mechanism that can facilitate runtime changes

such as the BP change operations described in [16]. By inclusion of the schema in each

universal artifact, SeGA elevates runtime process modifications to the conceptual level

and simplifies complex implementation details. SeGA can handle all four types of modi-

fications defined in [16] and more.

The following Example 5.5.5 shows how to skip execution of a task for a running

artifact instance. And the retracting of a task can be done in a similar approach.

133

Universal Artifacts Chapter 5

Example 5.5.5 Continue with Example 5.2.3; consider the EAF instance with id = A2

and the value of “AppForm Received” being “T” (the process instance is waiting for exe-

cuting the task “Preliminary Review” shown in Fig. 5.9). Suppose that this BP instance

is recognized as an urgency case. HHMB wants to skip the “Preliminary Review” and

the “Secondary Review” tasks to speed up only this instance. With the help of universal

artifacts this skip change is easy to be done. First the EAF artifact snapshot can be

mapped into a universal artifact snapshot carrying the state of process execution. Then

change the current state in the snapshot from the state right before the task execution

to the state right after the execution, i.e., set the current state of “Review Complete” to

be true. At last, when the universal artifact maps back to an EZ-Flow artifact, it will

lead to the EZ-Flow engine continue the instance from the new state, effectively skipping

“Preliminary Review” and “Secondary Review” tasks. for this running instance, and this

change does not affect other instances.

The following Example 5.5.6 shows how to add a task in a running artifact instance.

Replacing of a task for a running instance can be done in a similar way.

Example 5.5.6 Consider a new government policy that requires HHMB to check back-

ground of each developer who never had any early-sell permits. HHMB decides that this

check should be done before the final decision in EAF (see Fig 5.9). Consequently, a new

task “Background Check” is added in EAF before executing “Final Decision” effective

immediately. Since each universal artifact for EAF contains the EAF model, this change

can be done by replacing the current EAF model with a slightly modified model in which

the background check task is added (conditionally).

134

Universal Artifacts Chapter 5

5.6 Summary

The demand for BPaaS is emerging while collaborative BPs remains a challenge. We

have seen various vertical BPaaSs in for example HR and procurement. Clearly BPaaS

is not just about providing APIs and interfaces for configuration and graphical analysis.

The challenges lie in the capability to handle massive scaling, the service must be able

to support multiple languages and execution environments, as well as massive customers

and processes. We argue that the separation of the data from the execution engine is a

good way to meet this demand. We demonstrate in the chapter that the SeGA framework

provides a holistic approach in supporting this separation and result in a uniform way of

facilitating different BP collaboration frameworks and supporting runtime analysis.

135

Chapter 6

Declarative Collaboration for

Artifacts

A choreography models interoperation among multiple participants in a distributed en-

vironment. Existing choreography specification languages focus mostly on message se-

quences and are weak in modeling data shared by participants and used in sequence

constraints. They also assume a fixed number of participants and make no distinction

between participant types and participant instances. Artifact-centric business process

models give equal considerations on modeling data and on control flow of activities.

These models provide a solid foundation for choreography specification. This chapter

of the thesis makes two contributions. First, we develop a choreography language for

artifacts with four new features: (1) Each participant type is an artifact schema with

(a part of) its information model accessible by choreography specification. (2) Instance

level correlations are supported and cardinality constraints on correlation of participant

instances are explicitly defined. (3) Messages have data models, both message data and

artifact data can be used in specifying choreography constraints. (4) The language is

declarative based on a mixture of first order logic and a set of binary operators from

136

Declarative Collaboration for Artifacts Chapter 6

DecSerFlow. Second, we develop a realization mechanism and show that a subclass of

the choreography specified in our language can always be realized. The mechanism con-

sists of a coordinator running with each artifact instance and a message protocol among

participants.

The remainder of this chapter is organized as follows: Section 6.1 introduces and

motivates the need for a instance-level choreography language with data, Section 6.2

defines each component of the choreography language, a realization protocol for a subcase

of the language is proposed in Section 6.3, and Section 6.4 summarizes the chapter.

6.1 Instance-Level Collaboration with Data

Enterprises nowadays rely on business process systems to support their business, in-

formation flows, and data analytics [48]. Interoperation among business processes (in

a distributed environment) continue to be a fundamental challenge. In general, two

approaches [8, 49], namely orchestration and choreography, are used to model interopera-

tion. An orchestration requires a designated “mediator” to communicate and coordinate

with all participating business processes. One well-known orchestration language called

BPEL [50] has been widely used in practice. However, orchestration reduces the auton-

omy of participating business processes and does not scale well due to the mediator. The

choreography approach specifies desirable global behaviors among participating business

processes but otherwise leaves the business processes to operate autonomously and com-

municate in peer-to-peer fashion. One difficulty for this approach is to coordinate among

participating business processes in absence of a central control point.

A choreography models interoperations among multiple participants in a distributed

environment. A choreography may be specified as a state machine representing message

exchanges between two parties [51] or permissible messages sequences among two or more

137

Declarative Collaboration for Artifacts Chapter 6

parties with FIFO queues [52]. It may be specified in individual pieces using patterns

[43], or implicitly through participants behaviors [53].

Data has been playing a more essential role in business process modeling [2]. The in-

teroperation of business processes also needs data to precisely specify the global behavior

among participants. Existing choreography languages focus mostly on specifying message

sequences and are weak in modeling data shared by participants and used in choreog-

raphy constraints. A tightly integrated data model with message sequence constraints

would allow a choreography to accurately constrain execution. Also, these languages

assume a fixed number of participants and makes no distinction between participant

types and participant instances. For example, an Order business process instance may

communicate with many Vendor business process instances. Therefore, a choreography

language should be able to model correlations between business process instances.

Artifact-centric business process models (introduced in Section 2.2), which contain a

complete specification of business data (i.e., business entity), provide a solid foundation

for choreography specification.

This chapter focuses on choreography specification, execution semantics, and real-

ization. And makes the following TWO technical contributions. First, we develop a

choreography language with four distinct and new features: (1) Each participant type is

an artifact model with a specified part of its information model accessible by choreogra-

phy specification. (2) Correlations between participant types and instances are explicitly

specified, along with cardinality constraints on correlated instances. (3) Messages can in-

clude data; both message data and artifact data can be used in specifying choreography

constraints. (4) Our language is declarative and uses logic rules based on a mix of first-

order logic and a set of binary operators from DecSerFlow [54]. Second, we formulate a

distributed algorithm that realizes a subclass of the choreography in our language.

In the remainder of this section, we illustrate some important concepts through exam-

138

Declarative Collaboration for Artifacts Chapter 6

ples including artifact-centric business processes [2] as well as their choreographies, and

motivates the need for specification of correlations among process instances and chore-

ographies with data contents. Further, we provide the key skeleton for the proposed

language and explain the reason to make it declarative.

Consider an online store that provides various items for customers, where all the items

are available at vendors. A vendor may use several warehouses to store and manage its

inventory. Once the customer completes shopping, she initiates a payment process in

her bank that will send a check to the store on her behalf. Meanwhile, the store groups

(1) the items in her cart by warehouses and sends to each warehouse fulfillment, and (2)

the items by vendors and requests each vendor to complete the purchase. The vendors

inform warehouses upon completion of purchase. After the store receives the payment and

vendors’ completion of purchases, the store asks warehouses to proceed with shipments.

In this example, four types of participants (store, vendor, warehouses, and bank) are

involved and each type has its own business process. Although store and bank have only

one process instance each, there may be multiple instances for vendor and for warehouse.

In artifact-centric modeling, an artifact instance encapsulates a running process. For ex-

ample, the store may initiate an “Order” (artifact) instance. Fig. 6.1 shows a part of the

structured data (i.e., business entity or information model) in an Order instance. (Note

that in this chapter, we do not require a business entity to have a key or a local key).

The structure contains attributes “ID”, “(shopping) Cart”, etc. Moreover, the “Cart”

is a set-typed attribute (denoted by “∗”) that may include 0 or more tuples with four

nested attributes: “Inv(entory) ID”, “(item) Name”, “Quan(tity)”, and “Price”. Simi-

larly, other participant business processes are also artifact instances: Purchase instances

represent order processing at vendors; Fulfillment instances are packing and delivery

processes at warehouses; and a Payment instance is initiated upon a customer request to

make a payment to the online store.

139

Declarative Collaboration for Artifacts Chapter 6

Order

ID Cart . . .

Inv_ID Name Quan Price

Figure 6.1: Biz entity

Order

Purchase

1

m

Fulfillment

1

m

Payment1 1

Figure 6.2: Corr. digram

Order

Purchase Fulfillment

Payment

OR

CP

PR

CH

CF

PC

RS

SC

OC IV

Figure 6.3: Message diagram

Consider the design of a choreography for the collaborative business process in this

example, there are two major difficulties. First, existing languages do not support mul-

tiple participant instances, and thus the fact that multiple vendor/warehouse instances

cannot be easily represented and included in specifying behaviors. Some process algebra

based languages allow creation of new instances from sub-expressions in a choreography

[55, 56], but it is not clear how it is related to multiple participant instances. Second,

behaviors often depend on data contents. For example, when an order request is received

with total amount >10, the order processing should proceed as described in the above;

for orders with amount <10, the processing may be optional. Such conditions on data

cannot be easily expressed in most languages. WS-CDL [57] may express this through

copying messages to variables, but copying introduces unnecessary data manipulations.

In this chapter we develop a new choreography language which can deal with data

contents in messages and from business process, and allows multiple participant instances.

In general, a choreography language needs to specify “a sender sending a message to

a receiver at a specific time”. To model this, two aspects are essential: (1) correlation

between senders and receivers, and (2) temporal constraints upon message sending. The

first point aims to establish the “channels” for senders and receivers for communication

and the second point is to specify when to communicate.

With the above observation, in our approach, to design a choreography language,

a correlation should be defined. Fig. 6.2 shows a correlation diagram among the four

types of artifacts (shown in boxes). Exactly one primary artifact (shown in bold box) is

140

Declarative Collaboration for Artifacts Chapter 6

required in a diagram; it represents the lifespan for a collaborative process. Naturally,

the starting of a primary artifact denotes the starting of a collaborative process. The

edges (with labeled cardinality) denote the correlation relationships among artifacts. For

example, an Order instance may create (with an arrow) multiple Purchase instances, as

several vendors may be involved in one shopping cart. While the relationship between

Order and Payment (edge without arrows, denoting the correlation relationship between

them is set up by some mechanism other than creation) is one-to-one, since the online

store may receive exactly one check from the bank for one Order instance.

In addition to the correlations that are explicitly shown in a correlation diagram, two

artifacts without an edge in between could also be correlated through “derivation”. For

example, if a customer places an order with three items, say item 1, 2, and 3, which are

provided by three different vendors, then three corresponding Purchase instances will be

created, say Purchase 1, 2, and 3 respectively. Meanwhile, suppose that item 1 and 3

are stored in warehouse A and item 2 is stored in warehouse B; then two Fulfillment

instances will be created, say Fulfillment A and B. In this case, naturally, Purchase

1 and 3 will be correlated with Fulfillment A and Purchase 2 will be correlated with

Fulfillment B. This kind of correlations is implicitly “derived”. Thus the proposed

choreography language should also be able to capture the “derived” correlations.

Once the correlations are defined, a choreography is needed to specify how and when

an artifact can communicate with its correlated artifacts by sending messages. Continue

with the above example; Fig. 6.3 shows the message diagram that represents sender-

receiver relationships. Commonly, the messages cannot be sent in arbitrary orders, some

temporal constraints are needed. The remainder of this paragraph illustrates one possible

message sending sequence: The primary artifact Order instance is initiated when receiving

the “Order Request” Message (OR) from a customer. If the order is placed, an invoice (IV)

is sent to her. With the invoice, the customer may initiate a Payment instance by sending

141

Declarative Collaboration for Artifacts Chapter 6

a “Payment Request” message (PR) to the bank. Once verified, the Payment instance will

send a check (CH) to the correlated Order instance. Meanwhile, the Order instance will

create all the correlated Purchase instances by sending “Create Purchase” messages (CP)

and all the correlated Fulfillment instances by sending “Create Fulfillment” messages

(CF). A package will be delivered from a warehouse, if a Fulfillment instance receives

the “Purchase Complete” messages (PC) from the correlated Purchase instances and a

“Ready to Ship” message (RS) from the Order instance. Once a package is delivered

to the customer, a shipping confirmation (CS) will be sent to the Order instance by a

Fulfillment instance. If the Order instance receives all the correlated confirmations, it

will finalize the process by sending the customer a “Order Complete” message (OC).

Traditionally, the temporal constraints that work on the type level (i.e. only one

instance for each participant type during the execution) can be captured by graphs (e.g.

Petri-nets [43] or automata [58]). However, in practice, as some business processes may

have multiple instances involved and usually the number of instances is unknown during

the design time, graphs are unable to capture the instance-level information. Thus in

our proposed choreography language, temporal constraints are expressed by rules in a

declarative way. The rules are based on DecSerFlow [54] and first order linear temporal

logic.

6.2 A Choreography Language

This section introduces a declarative language for defining choreographies. In this lan-

guage, a choreography assumes participant business processes are modeled as artifacts

[2] and consists of correlations between artifacts and instances, messages, and a set of

choreography constraints (i.e. temporal constraints).

The language has five main components, namely, “artifact declaration”, “correlation

142

Declarative Collaboration for Artifacts Chapter 6

declaration”, “derived correlation declaration”, “message declaration”, and “choreogra-

phy constraints”. All the components will be introduced in the following subsections.

6.2.1 Artifact and correlation declaration

Artifacts represent participant business processes, the notion of an “artifact” captures

the “visible” data contents for choreography specification.

To formally define the data contents in an artifact, the concept of “data types” is

needed. For technical development, we define “primitive (data) types” as scalars that

includes boolean, numeric, and character types. Some common primitive types in most

programming languages include strings, integers, boolean values, and float numbers.

Comparing with the primitive types, some data types could be hierarchically struc-

tured. Thus we need the notion of “complex attributes” that has already been introduced

in Section 2.2, where each “leaf” attribute should be of a primitive type.

The following definition introduces “artifact interfaces”, which is a key- or local-key-

free version of “business entities” in Section 2.2. The reason we do not restrict a business

entity to have keys in this chapter is to allow a more general space of business entity

enactments.

Definition: An artifact (interface) A is a tuple (ν, π), where ν is the name of A and π is

a complex attribute called the “(visible) business entity”.

In general, an artifact (which represents a business process) needs to expose some

but not necessary all of its data content (i.e. only the “visible” data contents) for global

referencing. In some literatures [2, 15, 16], not only the business entity of an artifact

is specified but also the “lifecycle model”, which describes the “execution” schema of

an artifact. However, as the internal states are not visible to the global choreography,

it is not necessary to include a lifecycle model for an artifact in the current proposed

143

Declarative Collaboration for Artifacts Chapter 6

choreography language. Thus, the language is rather general as the participants can

choose to use different lifecycle models.

Without loss of generality, each artifact should always contain a top-level and non-

set-typed attribute “id” (in its information model) to hold a unique identifier for each

“artifact enactment” (i.e., an instance for an artifact at a specific time stamp). The

reason we use term “enactment” instead of “instance” is explained in Remark 2.2.2.

Example 6.2.1 Fig. 6.1 shows the graphic representation for the Order artifact described

in Section 6.1. The name “Order” is shown in the rectangle. Within the artifact, the top-

level attributes include “ID” and “Cart”. For “Cart”, it is of a set type, which includes

“Inv ID”, “Name”, “Quan”, and “Price”. All the four child attributes of “Cart” are of

primitive types.

Given an artifact A, an “enactment” of A is similar to the concept of a “value” to a

complex attribute in Section 2.2.

In the technical discussion, we assume that for each artifact, there is a countably

infinite set of artifact enactment ids; furthermore, these id sets are pairwise disjoint. Let

IDA be the union of all artifact instance id sets.

Definition: Given an artifact A = (ν, π), an (artifact) enactment of A is a pair (id, µ),

where id ∈ IDA and µ is a value of π with attribute id taking value id .

Given an artifact enactment I, denote id(I) to be the value of the id attribute of

I. Given a set of artifact enactment T, denote id(T) to be the set of the ids of all the

artifacts in T.

We now define an important notion of a “correlation graph”. Intuitively, such a graph

specifies whether instances of two business processes (i.e. artifacts) are correlated and

whether the correlation is one instance of a business process correlating to one or many

144

Declarative Collaboration for Artifacts Chapter 6

instances of the other business process. Similar to WS-CDL [57], only a pair of correlated

instances may exchange messages in our model.

Given a binary relation C, denote Cr as a binary relation such that (u, v) ∈ Cr if and

only if (v, u) is in C.

Definition: A correlation graph G is a tuple (V, ρ, E, C, λ), where

• V is a set of artifacts, whose cardinality is greater than 1. We may call artifacts in

V “nodes” (of the graph),

• ρ ∈ V is the primary artifact (the root),

• E ⊆ V × V is symmetric denoting correlations (undirected edges) among artifacts

that contains no cycle,

• C is asymmetric denoting creation relationships among artifacts such that

– C ∩ E = ∅,

– graph (V,E ∪ C ∪ Cr) is acyclic,

– there is no v ∈ V such that (v, ρ) ∈ C (primary instances can only be created

by external messages), and

– for each v ∈ V−{ρ}, there is a sequence of edges (v1, v2), (v2, v3), ..., (vn−1, vn) ∈

C ∪ E, such that v1 = ρ and vn = v (the graph is connected from the root),

• λ is a partial mapping from (E∪C)×V to {1,m} (cardinality of correlations) such

that

– λ((u, v), v′) ∈ {1,m} if v′ is an end node for (u, v) ∈ E,

– for each (ρ, v) ∈ C ∪ E, λ((ρ, v), ρ) = 1 (single primary instance),

– for each (u, v) ∈ C, λ((u, v), u) is 1 (no multiple creation), and

– for each (u, v) ∈ E, λ((u, v), u) = λ((v, u), u) (consistency on undirected

edges).

145

Declarative Collaboration for Artifacts Chapter 6

Intuitively, a correlation graph models correlations among artifacts and artifact enact-

ments. More precisely, if two artifacts are correlated (connected by an edge), it indicates

that some enactments of these two artifacts are correlated. Given a correlation graph

(V, ρ, E, C, λ), the mapping λ indicates the type of cardinality of enactments (1-to-1, 1-to-

many, m-to-1, m-to-m). Notice that a correlation graph is essentially a tree-like structure

rooted by the primary artifact. In the next subsection, the “derived correlation” will be

introduced to allow more correlations among artifacts.

Example 6.2.2 Fig. 6.2 shows an correlation diagram, in which there are four artifacts:

Order (the primary one, whose information model is given in Example 6.2.1), Payment,

Purchase, and Fulfillment. The correlation between Order and Payment is an undirected

edge denoting the correlation is set up externally. While the correlations between Order

and Purchase as well as Order and Fulfillment are of creation relationship to denote

that an Order can create multiple Purchase and Fulfillment enactments according to

the cardinality.

In some cases, the cardinality constraints might contradict with each other, which

needs more restrictions to pretend an undesired design in a correlation graph.

Example 6.2.3 Continue with Example 6.2.2; suppose in Fig. 6.2, there is an extra

artifact, named “A” and there is an undirected edge between Payment and A. Suppose the

cardinality of this edge is m on the Payment end and 1 on the A end. Then, this design

is allowed according to the definition of correlation graphs. However, Since there could

exist at most 1 Order and 1 Payment instances in a running collaborative process, the

cardinality on the Payment end cannot be m.

146

Declarative Collaboration for Artifacts Chapter 6

Algorithm 2 Normalization of Correlation Graph

Input: correlation graph G = (V, ρ, E, C, λ)
Output: mapping ηG

1: ηG(ρ) := 1
2: Let Q be an empty queue
3: Push ρ into Q
4: while Q is not empty do
5: Pop node v from Q
6: for each (v, u) ∈ E ∪ C, where u ∈ V do
7: if λ((v, u), v) = 1 and λ((v, u), u) = 1 and ηG(v) = 1 then
8: ηG(u) := 1
9: else

10: ηG(u) := m
11: end if
12: Push u to Q
13: end for
14: end while
15: return ηG

To prevent the inconsistency on cardinality, a breadth-first search can be applied on

a correlation graph and propagate the cardinality from the root to each other artifact.

Given a correlation graph G = (V, ρ, E, C, λ), denote ηG as a total mapping from V

to {1,m}, such that for each v ∈ V , ηG(v) is assigned according to the normalization

procedure, which is shown in Alg. 2.

In Alg. 2, the procedure initially marks the root with 1. During the bread-first search,

if the current node v is marked with 1, and its outgoing edge (v, u) is “1-to-1”, then the

other end node u should be marked with 1 as well to denote that u can have at most one

artifact enactment during the execution. Otherwise, u should be marked with m.

Definition: A normalized correlation graph is a correlation graph (V, ρ, E, C, λ) such

that for each v ∈ V if ηG(v) = 1, then for each edge e ∈ E ∪C that contains v as an end

node, λ(e, v) = 1.

A normalized correlation graph restricts the consistency on cardinality. The graph in

Fig. 6.2 is a normalized correlation graph.

147

Declarative Collaboration for Artifacts Chapter 6

Without loss of generality, in the remainder of this chapter, we assume that the given

correlation graphs are normalized.

Definition: Given a correlation graph G = (V, ρ, E, C, λ) a (non-derived) collaboration

instance (of G) is a pair (T,Corr), where T is a set of artifact enactment, whose ids are

pairwise distinct and Corr ⊂ id(T)× id(T) that satisfies

• For each I ∈ T, I is an enactment of some artifact in V ,

• There is exactly one enactment of ρ in T,

• For each v ∈ V , if ηG(v) = 1, then the number of enactments (in T) of v is at most

1,

• Given two distinct enactments Iu and Iv (in T) of artifact u and v (resp.), (id(Iu),

id(Iv)) can be in Corr only if (u, v) ∈ E ∪ C ∪ Cr,

• Corr is symmetric, and

• Graph (T,Corr) is connected.

Essentially, a collaboration instance contains all the running artifact enactments in a

collaborative business process execution and their correlations.

Given (T,Corr) as a collaboration instance and two artifact enactments I1, I2 ∈ T,

I1 has a direct correlation with I2, if (id(I1), id(I2)) ∈ Corr.

6.2.2 Derived correlation

In addition to correlations specified in a correlation graph, there may be correlations that

are “derived” from existing correlations. (One possible scenario is shown in Section 6.1).

Intuitively, two artifact enactments that have no direct correlation can have a “derived

correlation” if some rules are satisfied. For example, a rule could be that a Purchase and a

Fulfillment enactments are correlated with each other if they have one item in common.

148

Declarative Collaboration for Artifacts Chapter 6

In the proposed choreography language, rules are built upon the existing correlations

(either direct or derived). Thus, whenever a correlation is established, the following

derived correlations can use the previous existing correlations as “bridges” to define new

rules.

To specify such rules and derived correlations, some concepts upon an extended ver-

sion of correlation graphs are needed, which assume that some derived correlations have

been established, so that the new derived correlations can be built upon them.

Definition: Given a correlation graph G = (V, ρ, E, C, λ), an extended correlation graph

is a pair (G,D), where D ⊆ V × V is a symmetric relation and D ∩ (E ∪C ∪Cr) = ∅.

Given an extended correlation graph (G,D), in addition to the correlations specified

in G, an extra edge set D is introduced to capture the “derived correlations”. The

detailed definition of “derived correlations” will be introduced later in this subsection.

Definition: Given an extended correlation graph G, an extended collaboration instance

is a tuple (T,Corr,DCorr), where pair (T,Corr) forms a collaboration instance of G

and DCorr ⊆ id(T)× id(T), such that

• DCorr is symmetric, and

• For each pair of artifacts A1, A2 in G, suppose I1 and I2 are the enactments of A1

and A2 (resp.); (id(I1), id(I2)) can be in DCorr, only if (A1, A2) ∈ D.

An extended correlation graph assumes that some “derived correlations” among in-

stances have been established. The detailed semantics of how two instances can have a

“derived correlation” will be defined later in this subsection.

We now introduce the important notions of “correlation references”, “dot expres-

sions”, “path expressions”, “atomic conditions”, and “correlation rules” that are used to

define the “derived correlations”.

149

Declarative Collaboration for Artifacts Chapter 6

Definition: Given an extended correlation graph G = ((V, ρ, E, C, λ), D), a correlation

reference (with respect to G) is of form “A1
�A2

�···�An”, where n ∈ N+, for each i ∈ [1..n],

Ai ∈ V , and for each i ∈ [1..(n−1)], (Ai, Ai+1) ∈ E ∪ C ∪ Cr ∪D.

Given an extended correlation graph G = ((V, ρ, E, C, λ), D), a correlation reference

is used to access one artifact from another through a “path” of referencing. Intuitively,

this “path” should be built upon a chain of edges, where the correlations have been

established.

Given a correlation reference A1
�A2

�···�An, an extended collaboration instance I, and

an artifact enactment I of A1 in I, function CorrInst(A1
�A2

�···�An, I, I) returns all the

correlated artifact enactments of An from I through reference A1
�A2

�···�An. The formal

definition of CorrInst(A1
�A2

�···�An, I, I) is given below.

CorrInst(A1�···�An, I, I = (T,Corr,DCorr)) =
{I} (n = 1)

{I ′ | ∃I ′′ ∈ CorrInst(A1�···�An−1, I, I)
(n > 2)

∧(id(I ′′), id(I ′)) ∈ Corr ∪DCorr}

Example 6.2.4 Continuing with Example 6.2.2, suppose the current extended correla-

tion graph is Fig. 6.2 and is without a derived correlation specified. In addition, sup-

pose a collaboration instance I is with two Purchase enactments Ip
1 and Ip

2 correlated

with an Order instance Io; then CorrInst(Purchase�Order, Ip
1 , I) will return {Io} and

CorrInst(Order�Purchase, Io, I) will return {Ip
1 , I

p
2 }.

Given a correlation reference ref = A1
�A2

�···�An, where n ∈ N+, A1 is called the source

artifact (denoted as Src(ref)) and An is called the target artifact (denoted as Tar(ref)).

150

Declarative Collaboration for Artifacts Chapter 6

Example 6.2.5 Continuing with Example 6.2.4, in terms of correlation reference Order�

Purchase, the source artifact is Order and the target artifact is Purchase.

Definition: Given a complex type τ , a dot expression (of τ) is of form “a1.a2.···.an”,

where n ∈ N+, a1 is a top-level attribute of τ , and each ai+1 (i ∈ [1..(n−1)]) is a child

attribute of ai.

A dot expression is used to access the hierarchical data for a given artifact enactment

(which contains an element of a complex type). Given a complex attribute τ , a dot

expression a1.a2.···.an of τ , and a value v of τ , function DotExp(a1.a2.···.an, v) returns

the set of values of an based on v. The formal definition of DotExp(a1.a2.···.an, v) is

given below (in which, Val(a, v) denotes the value of attribute a in v).

DotExp(a1.···.an, v) =

{Val(an, v)} (n = 1 and an is not set-typed)

Val(an, v) (n = 1 and an is set-typed)

{Val(an, v) |
(n > 2 and an is not set-typed)

v ∈ DotExp(a1.···.an−1, v)}

{v | DotExp(a1.···.an−1, v)
(n > 2 and an is set-typed)

∃v′ ∈ ∧v ∈ Val(an, v
′)}

Example 6.2.6 Continuing with Example 6.2.1, suppose Io is an Order instance and

the “Cart” attribute contains three values; then DotExp(Cart.Inv ID, Io) will return all

three inventory IDs in Io.

Definition: Given an extended correlation graph G = ((V, ρ, E, C, λ), D) a path expres-

sion (with respect to G) is of form “ref.dot”, where ref is a correlation reference (with

respect to G) and dot is a dot expression of (the information model in) Tar(ref).

151

Declarative Collaboration for Artifacts Chapter 6

Essentially, path expressions are used to access the hierarchical data in a set of cor-

related artifacts. Given a path expression ref.dot, an artifact enactment I of Src(ref),

and a collaboration instance I, function PathExp(ref.dot, I, I) returns the values of an

in each correlated enactments from I through reference ref. The formal definition of

PathExp(ref.dot, I, I) is given below.

PathExp(ref.dot, I, I) =

{v | ∃id, ∃µ, (id, µ) ∈ CorrInst(ref, I, I) ∧ v ∈ DotExp(dot, µ)}

Example 6.2.7 Continuing with Example 6.2.4 and 6.2.6, let I and Ip
1 be as stated in

Example 6.2.4. PathExp(Purchase�Order.Cart.Inv ID, Ip
1 , I) will return all the inventory

IDs in all the correlated Order instances of Ip
1 in I.

In order to manipulate on the values (obtained from function “PathExp”), some

operators and quantifiers are needed (which are shown in the list below).

• Operators: “=”, “ 6=”, “>”, “<”, “>”, “6”, and “u”

• Quantifiers: “some” and “all”

For operators, “=”, “6=”, “>”, “<”, “>”, and “6” are used to compare numbers

or strings (in alphabetical order) in a natural manner; while “u” is binary operator

associated with two operands in form of sets. Given two sets A and B, A uB is “valid”

(or “true”) if A and B have at least one element in common.

For quantifiers, “some” and “all” are all associated with a single set. Given a set A,

some(A) denotes “there exists an element in A”; while all(A) means “for all elements

in A”.

152

Declarative Collaboration for Artifacts Chapter 6

Given a path expression exp = ref.a1.a2.···.an, the type of exp is the data type of

attribute an. Given a primitive type τ and a set S = {v1, v2, ..., vn}, where for each

i ∈ [1..n], vi is in the domain of τ , define the type of S to be τ .

Definition: Given an extended correlation graph G, an atomic condition (with respect

to G) is of form “t1θt2” where either

• Case 1:

– for each i ∈ {1, 2}, ti is a path expression (with respect to G) or a set of values

of the same primitive type,

– t1 and t2 agree on the same type, and

– θ is “u”; or

• Case 2:

– for each i ∈ {1, 2}, ti is a value of a some primitive type or of form “f(exp)”,

where f ranges over { some, all }

and exp is a path expression (with respect to G),

– t1 and t2 agree on the same type, and

– θ ranges over {=, 6=, >,<,>,6}.

Given an atomic condition ϕ, the source artifacts occurring in the correlation refer-

ences in ϕ are called the candidate artifacts of ϕ.

Example 6.2.8 Continue with Example 6.2.2; suppose the current extended correlation

graph is Fig. 6.2 and without a derived correlation specified. And suppose both Purchase

and Fulfillment artifacts have a top-level attribute called “Item” (which is of a set

type) and both the “Items” in Purchase and Fulfillment have a child attribute called

153

Declarative Collaboration for Artifacts Chapter 6

“Inventory ID”. Then an atomic condition to specify that Purchase and Fulfillment

should have at least one item in common could be

Purchase.Item.Inventory ID u Fulfillment.Item.Inventory ID

The candidate artifacts of this atomic condition are Purchase and Fulfillment.

Given (1) an extended correlation graph G = ((V, ρ, E, C, λ), D), (2) an extended

collaboration instance I = (T,Corr,DCorr) of G, (3) an atomic condition ϕ = t1θt2

with respect to G, (4) two artifacts A1, A2 ∈ V, such that the candidate artifacts of ϕ are

in {A1, A2}, and (5) two artifact enactments I1 and I2 (in T) of A1 and A2 respectively, ϕ

is valid with respect to I1, I2, and I if for each path expression exp, whose source artifact

is Ai (i ∈ {1, 2}), then ϕ is true after replacing each exp by PathExp(exp, Ii, I).

Example 6.2.9 Continuing with Example 6.2.8, Suppose the current collaboration in-

stance I contains two Purchase instances Ip
1 , Ip

2 and two Fulfillment instances I f
1, I f

2,

in which, Ip
1 has inventory ID 3, Ip

2 has inventory IDs 1 and 2, I f
1 has inventory ID

2, and I f
2 has inventory IDs 1 and 3. Then the atomic condition (in Example 6.2.8)

“Purchase.Item.Inventory ID u Fulfillment.Item.Inventory ID” is valid with respect to

Ip
1 , I f

2, and I, because the result of PathExp(Purchase.Item.Inventory ID, I1
p, I) is {3},

the result of PathExp(Fulfillment.Item.Inventory ID, I f
2, I) is {1, 3}, and {3} u {1, 3}

is true. However, the same atomic condition is not valid with respect to I1
p, I1

f , and I,

as PathExp(Purchase.Item.Inventory ID, I1
p, I) will return {3}, PathExp(Fulfillment.

Item.Inventory ID, F1, I) will return {2}, and {3} u {2} is false.

Definition: Given an extended correlation graph G = ((V, ρ, E, C, λ), D) and two arti-

facts A1, A2 ∈ V where (A1, A2) 6∈ E ∪C ∪Cr, a correlation rule of A1 and A2 (with respect

to G) is of form “cor(A1, A2): c”, where c is a a set (conjunction) of atomic conditions

with respect to G, such that for each ϕ ∈ c, each candidate artifact of ϕ is in {A1, A2}.
154

Declarative Collaboration for Artifacts Chapter 6

Example 6.2.10 Continuing with Example 6.2.8, a correlation rule of Fulfillment and

Purchase can be as follows.

cor(Purchase, Fulfillment):

Purchase.Item.Inventory ID u Fulfillment.Item.Inventory ID

to denote that a Purchase enactment is correlated with a Fulfillment enactment if they

share the same inventory.

Given (1) an extended correlation graph G = ((V, ρ, E, C, λ), D), (2) a collaboration

instance I = (T,Corr,DCorr) of G, (3) a correlation rule r = cor(A1, A2): c of A1 and

A2 in V with respect to G, and (4) two artifact enactments I1 and I2 (in T) of A1 and

A2 respectively, I1 has a derived correlation with I2 (with respect to I and r) if for each

atomic condition ϕ ∈ c, ϕ is valid with respect to I1, I2, and I.

Example 6.2.11 Continuing with Example 6.2.9 and 6.2.10, let I, Ip
1 , I f

1, and I f
2 be as

stated in Example 6.2.9 and r be the correlation rule stated in Example 6.2.10. Then Ip
1

has a derived correlation with I f
2 with respect to I and r; but not for Ip

1 and I f
1.

Notice that derived correlations do not have specified cardinality constraints.

Definition: Given a correlation graph G = (V, ρ, E, C, λ), the correlation rule set Γ (of

G) is a totally ordered set of correlation rules (where the order is called the “dependency

order”): (r1 = cor(A1, B1): c1), (r2 = cor(A2, B2): c2), ..., (r|Γ| = cor(A|Γ|, B|Γ|): c|Γ|), such

that

• for each i ∈ [1..|Γ|], Ai 6= Bi and Ai, Bi ∈ V ,

• for each distinct i, j ∈ [1..|Γ|], {(Ai, Bi), (Bi, Ai)} ∩ {(Aj, Bj), (Bj, Aj)} = ∅,

155

Declarative Collaboration for Artifacts Chapter 6

Algorithm 3 Build Derived Correlation

Input: correlation graph G, correlation instance (T,Corr) of G, correlation rule set Γ
of G

Output: a binary relation DCorr
1: set DCorr := ∅
2: for each r of artifacts A1 and A2 in Γ in dependency order do
3: for each I1, I2 ∈ T do
4: if I1 has a derived correlation with I2 with respect to (T,Corr,DCorr) and r

then
5: DCorr := DCorr ∪ {(id(I1), id(I2)), (id(I2), id(I1))}
6: end if
7: end for
8: end for
9: return result

• for each i ∈ [1..|Γ|], (E ∪ C ∪ Cr) ∩ {(Ai, Bi), (Bi, Ai)} = ∅, and

• for each i ∈ [1..|Γ|], ri is with respect to (G,
⋃i−1
j=1{(Aj, Bj), (Bj, Aj)}), which is an

extended correlation graph.

Essentially, the correlation rule set restricts that for each correlation rule r, the path

expressions of r can only use the artifact references that have been established.

Given a correlation graph G, a correlation instance I = (T,Corr) of G, and a corre-

lation rule set Γ of G, all the derived correlations can be built based on Alg. 3, which is

essentially to compute all the possible derived correlations in I.

Definition: Given a correlation graph G = (V, ρ, E, C, λ) and the correlation rule set Γ

of G, a collaboration instance (with derivation) (with respect to G and Γ) is an extended

correlation instance (T,Corr,DCorr), such that DCorr is built based on Alg. 3 with

inputs G, (T,Corr), and Γ.

6.2.3 Message declaration

With the correlations defined, messages can be sent between two correlation artifact

enactments. This subsection describes the message types and instances.

156

Declarative Collaboration for Artifacts Chapter 6

Without loss of generality, assume there always exists an artifact with name “ext”

with empty business entity to denote the the external environment (as the sender or

receiver); further, the “artifact enactment” of “ext” is with id “ext”.

Definition: Given a correlation graph G = (V, ρ, E, C, λ) and a correlation rule set Γ

(of G), a message type M (with respect to G and Γ) is a tuple (ν, As, Ar, π, τ,min,max),

where

• ν is the name of M,

• As, Ar ∈ V ∪ {“ext”} are distinct artifacts denoting the sender and receiver (resp.)

such that at most one of them can be “ext”, and if both are in V , they must be

correlated (via an edge in G or by a correlation rule in Γ),

• π is a complex data type, called “payload”;

• τ is “+” (creation, i.e. the sending enactment creates an enactment of the receiving

artifact upon arrival of each message instance) or “−” (no creation); τ can be “+”

only if

– (As, Ar) ∈ C, or

– As is “ext” and there does not exist A′s ∈ V , such that (A′s, Ar) ∈ C,

• min ∈ N and max ∈ N ∪ {∞} (where “∞” denotes infinity) is the minimum and

maximum number of message instances (resp.) that can be sent from an enactment

of As; max = 1 if τ is “+” and ηG(Ar) = 1.

Without loss of generality, each message type should always contain a top-level and

non-set-typed attribute “id” (in its payload) to hold a unique identifier for each message

instance, which is defined later.

Fig. 6.3 shows a message diagram, each edge represents a message type with the edge

direction indicates the message flow.

157

Declarative Collaboration for Artifacts Chapter 6

Example 6.2.12 Continuing with the example in Section 6.1, a “Create Purchase” mes-

sage (CP) can be formalized as “(CP, Order, Purchase, (OrderID, Amount,...),+, 1,∞)”,

which denotes that it is a message type from Order to Purchase. The “+” symbol indi-

cates that a new receiving instance will be created by each arriving message. The message

payload includes “OrderID”, “Amount”, etc. The minimum number of messages can be

sent from an Order instance is 1. Similarly, an “Order Complete” message (OC) from Order

to the external environment can be defined as “(OC, Order, ext, (OrderID,...),−, 1, 1)”.

In the technical discussion, we assume that for each message type, there is a countably

infinite set of message instance ids; furthermore, these id sets are pairwise disjoint. Let

IDM be the union of all message instance id sets.

Definition: A message instance of a message type M = (ν, As, Ar, π, τ,min,max) is a

tuple (id, ids, idr, µ), where ids, idr ∈ IDA are the id values of enactments of As and Ar

(resp.) such that if As (Ar) is “ext”, ids (resp. idr) is also “ext”, µ is an element of π, and

id ∈ IDM is the value for attribute id in µ.

Given an message instance I, denote id(I) to be the value of the id attribute of I.

Definition: A collaboration schema is a tuple (G,Γ,Msg), where

• G = (V, ρ, E, C, λ) is a correlation graph,

• Γ is the correlation rule set of G, and

• Msg is a set of message types with respect to G and Γ, such that

– for each distinct artifacts A1, A2 ∈ V , if (A1, A2) ∈ C, then there should have a

corresponding creation message in Msg from A1 to A2, and

– for each artifact A ∈ V , if there does not exist another artifact A′ ∈ V , such

that (A′, A) ∈ C, then there should have a corresponding creation message in

Msg from “ext” to A.

158

Declarative Collaboration for Artifacts Chapter 6

Roughly, a collaboration schema defines the correlations among artifacts (participant

types) and instances (participants), and the message types.

6.2.4 Choreography constraints

In this subsection we define the notion of “choreography constraints”, which state tempo-

ral properties on message occurrences and may also contain conditions on data in related

artifact enactments and the messages.

As the “choreography constraints” are temporal, we need to define “choreography

states” that represent snapshots at time instants.

Definition: Given a collaboration schema C = (G,Γ,Msg), a choreography (c-)state of

C is a tuple (I,m,m,MA,MM), where

• I = (T,Corr,DCorr) is a collaboration instance with respect to G and Γ,

• m = (id, ids, idr, µ) is a message instance of message type M ∈ Msg,

• m a finite set of message ids to denote the messages that have been sent so far,

• MA ⊆ m× (id(T) ∪ {idr}) is a message-artifact dependency set, and

• MM ⊆ (m)2 is an irreflexive message-message dependency set.

such that

(1) id ∈ m,

(2) if ids is not “ext”, the instance of ids is in T,

(3) if M is creation, then the instance of idr is not in T and (id, idr) is in MA,

(4) if M is not creation, then either idr is “ext” or the instance of idr is in T,

(5) if neither ids or idr is “ext”, then (ids, idr) ∈ Corr ∪DCorr, and

(6) the graphs (m∪ id(T)∪ {idr},MA) and (m,MM) encode functions (i.e. each node

has 61 outgoing edge).

159

Declarative Collaboration for Artifacts Chapter 6

The message-artifact dependency set MA holds dependencies of an arriving message

id that causes creation of an artifact id. The message dependency set MM represents

the relationships between messages, e.g., one message may depend another based on

contents, or simply request-response. For example, an invoice message may respond to

an order request.

An c-state is a snapshot of artifact enactments (together with their correlations),

past message ids, the current message sent, message-artifact and message-message de-

pendencies that have been established. Conditions (2)(4) demand that the sender and

receiver are existing artifact enactments if not external for non-creation message types.

Conditions (3)(5) concern correlations and dependencies. Finally condition (6) ensures

that each message creates at most one artifact and/or depends on at most one message.

An c-state is initial if I = (∅,∅,∅), m is from “ext” to the primary artifact, m and

MA are singleton sets, and MM = ∅.

Example 6.2.13 Continue with the example in Section 6.1; suppose the system now

only has one primary Order enactment Io and one correlated Payment enactment Ip

(from Io). If a message instance mCH of type CH (“check”) is sent from Ip to Io, then

the system state at this moment can have the 2 (correlated) artifact enactments (Io and

Ip), the message instance mCH, and all the messages (ids) that have been sent and all the

dependencies that have been established till this moment.

We now introduce, given a c-state, how it can proceed into another c-state by sending

a message instance.

Definition: Given a collaboration schema C = (G,Γ,Msg) and two c-state σ, σ′ of C,

σ′ = ((T′,Corr′,DCorr′),m′,m′,MA′,MM′) is a successor of σ = ((T,Corr,DCorr),m,

m,MA,MM) if all the following conditions hold.

160

Declarative Collaboration for Artifacts Chapter 6

• id(m) 6= id(m′)

• m′ = m ∪ {id(m′)},

• MM ⊆MM′; if MM ⊂MM′, then |MM′| = |MM|+ 1, and

• one of the two following conditions should hold:

– if m is not creation, then id(T′) = id(T), Corr′ = Corr, and MA′ = MA;

– if m is creation, then id(T′) = id(T) ∪ {idr}, MA′ = MA ∪ (id(m), idr),

and if ids ∈ id(T), then Corr′ = Corr∪{(ids, idr), (idr, ids)}; otherwise, (ids is

“ext”), there should exist I ∈ T of some artifact A in G, such that A has a direct

correlation with the artifact of idr, and Corr′ = Corr∪{id(I), idr), (idr, id(I)}.

Example 6.2.14 Continue with Example 6.2.13; suppose right after the time point

described in Example 6.2.13, Io sends a CP (“create purchase”) message instance mCP

to create a new Purchase instance Ic. Then the current system state have 3 artifact

enactments (Io, Ip, and Ic), the message instance mCP, and all the sent messages and

all the established dependencies. Moreover, the current c-state is a successor of the one

in Example 6.2.13. Comparing with the c-state in Example 6.2.13, the message-artifact

dependency set in the current c-state includes one more pair (id(mCP), id(Ic)).

Definition: Given a collaboration schema C = (G,Γ,Msg), a choreography (c-)behavior

of C is a finite sequence σ1σ2···σn of c-states of C such that

• σ1 is initial,

• for each i ∈ [1..(n− 1)], σi+1 is a successor of σi,

• messages in σi’s have distinct ids, and

• for each M = (ν, As, Ar, π, τ,min,max) ∈ Msg, one of the two following conditions

should hold:

161

Declarative Collaboration for Artifacts Chapter 6

– if As is “ext”, then the total number of message instances of message type M

sent from “ext” in all σi’s (i ∈ [1..n]) is in range [min,max], or

– otherwise, for each artifact enactment I (in σn) of As, the total number of

message instances of message type M sent from id(I) in all σi’s (i ∈ [1..n]) is

in range [min,max].

Inside each system state, artifact enactments and dependencies are persistent that

will be kept in the following states; while message instances are instantaneous that will

be consumed by their receivers and will not be kept in the following states.

Intuitively, an c-state advances by consuming the current message (instance) and pro-

ducing the next message. If the receiving id does not correspond to an artifact enactment,

a new enactment is created. The changes of data contents of artifact enactments are the

responsibility of participant processes and thus not captured in c-state transitions. Also,

message-message dependency is not required, creating such dependencies is also done by

individual participant business processes.

We now focus on “choreography constraints”. Roughly, we apply (non-temporal)

“message formulas” to c-states which examines message type and contents as well as the

contents of sending/receiving artifact enactments. Each constraint then uses a temporal

operator to connect two message formulas. Individual LTL operators are not expressive

enough, therefore we use binary operators from DecSerFlow [54], which is set of templates

built from LTL operators.

For technical development we assume there is an countably infinite set of artifact

variables VA an countably infinite set of message variables VM. Without loss of generality,

assume VA contains variable “ext”.

A (variable) assignment v is a total mapping from VA ∪VM to IDA ∪{“ext”}∪ IDM,

such that for each x ∈ VA − {“ext”}, v(x) ∈ IDA ∪ {“ext”}, v(“ext”) = “ext”, and for

162

Declarative Collaboration for Artifacts Chapter 6

each x ∈ VM, v(x) ∈ IDM.

Definition: Given a collaboration schema C = (G,Γ,Msg), a message predicate (of C)

is of form “Msg(M, z, x, y)”, where M ∈ Msg, z ∈ VM to denote the message instance of

M, and x, y ∈ VA to denote the sender and the receiver artifact enactment respectively.

Given a collaboration schema C, a c-state σ = (I,m,m,MA,MM) of C, where m =

(id, ids, idr, µ), a message predicate Φ = Msg(M, z, x, y) of C, and an assignment v, Φ

is valid with respect to σ and v (denoted as σ |=v Φ), if m is a message instance of M,

v(z) = id(m), v(x) = ids, and v(y) = idr. Otherwise, Φ is invalid with respect to σ and

v (denoted as σ 6|=v Φ).

Example 6.2.15 Continuing with Example 6.2.14, let Io, Ic, and mCP be stated as in

Example 6.2.14. Given an assignment v, the message predicate Msg(CP, z, x, y) checks if

v(x) sends message of CP with id v(z) to v(y). Msg(CP, z, x, y) is valid with respect to v

and the c-state in Example 6.2.13, if v(x) = id(Io), v(y) = id(Ic), and v(z) = id(mCP).

Msg(CP, z, x, y) is invalid with respect to the c-state in Example 6.2.13 and each possible

assignment, because the message instance sent in Example 6.2.13 is of message type CH.

Definition: Given a message predicate Φ = Msg(M, z, x, y), a responding message pred-

icate (to Φ) is of form “Msg[z](M′, z′, x′, y′)”, where “Msg(M′, z′, x′, y′)” forms a message

predicate.

Given a collaboration schema C, a c-state σ = (I,m,m,MA,MM) of C, where

m = (id, ids, idr, µ), a responding message predicate ϕ = Msg[z2](M′, z1, x, y) of C,

and an assignment v, Φ is valid with respect to σ and v (denoted as σ |=v Φ), if

σ |=v Msg(M′, z1, x, y) and (z1, z2) ∈ MM. Otherwise, Φ is invalid with respect to σ

and v (denoted as σ 6|=v Φ).

163

Declarative Collaboration for Artifacts Chapter 6

Similar to a message predicate that is to check if a specific message instance has been

sent in a c-state, a responding message predicate can perform the same check and also

test if the current message instance is responding to same previous sent message instance.

Example 6.2.16 Continue with the example in Section 6.1; consider a restriction that if

an OR (“order request”) message instance mOR is sent (from “ext” to create a new Order in-

stance Io), then in the future, there should be an OC (“order complete”) message instance

(from Io to “ext”) responding to mOR. This resection implies that, given an assignment

v that maps artifact variable x to id(Io), suppose message predicate Msg(OR, zOR, ext, x)

is valid at the current c-state, then in the future, there should have another c-state that

makes Msg[zOR](OC, zOC, x, ext)” valid.

Definition: Given a collaboration schema C = (G,Γ,Msg), a variable path expression

(of C) is of form “x.a1.a2.···.an”, where either x ∈ VA − {“ext”} and a1 is a top-level

attribute in an artifact in G, or x ∈ VM and a1 is a top-level attribute in a message type

in Msg ; in both cases, for each i ∈ [1..(n−1)], ai+1 is a child attribute of ai.

The concept of “variable path expressions” is similar to the one of “dot expressions”

defined in Section 6.2.2. Essentially, both of them are used to access the hierarchical

data structure. Thus, we may use function “DotExp” once more to define the semantics

for “variable path expressions”.

Given a collaboration schema C, a c-state σ = ((T,Corr,DCorr),m,m,MA,MM)

of C, where m = (idM, ids, idr, µM), and an assignment v, the value of a variable path

expression x.a1.a2.···.an (with respect to σ and v) is either

• DotExp(a1.a2.···.an, µM), if x ∈ VM, v(x) = id(m), and a1 is a top-level attribute

in the message type of m,

164

Declarative Collaboration for Artifacts Chapter 6

• DotExp(a1.a2.···.an, µA) (where µA is the element of the information model of some

artifact enactment I ∈ T), if x ∈ VA − {“ext”}, and a1 is a top-level attribute in

the artifact of I, or

• no value, otherwise.

Given a variable path expression exp = x.a1.a2.···.an, the type of exp is the type of

attribute an.

Definition: Given a collaboration schema C = (G,Γ,Msg), a data condition (of C) is of

form “t1θt2” where either

• Case 1:

– for each i ∈ {1, 2}, ti is a variable path expression (of C) or a set of values of

the same primitive type,

– t1 and t2 agree on the same type, and

– θ is “u”; or

• Case 2:

– for each i ∈ {1, 2}, ti is a value of a some primitive type or of form “f(exp)”,

where f ranges over {some, all} and exp is a variable path expression (of C),

– t1 and t2 agree on the same type, and

– θ ranges over {=, 6=, >,<,>,6}.

Given a collaboration schema C, a c-state σ of C, a data condition ϕ = t1θt2 of C,

and an assignment v, ϕ is valid (with respect to σ and v) (denoted as σ |=v ϕ), if (1) the

variable path expressions exp1 and exp2 of t1 and t2 have values v1 and v2 (resp.) with

respect to σ and v, and (2) for each i ∈ {1, 2}, ϕ is true after placing each expi with vi.

Otherwise, ϕ is invalid with respect to σ and v (denoted as σ 6|=v ϕ).

165

Declarative Collaboration for Artifacts Chapter 6

The concept and semantics of “data conditions” are similar to the ones of “atomic

conditions” defined in Section 6.2.2.

Example 6.2.17 Continuing with Example 6.2.14, suppose the message type CP (“create

purchase”) has a top-level and non-set-typed attribute “cart”; inside “cart”, there is a

set-typed child attribute “item” and “item” has a non-set-typed attribute “price” of a

primitive type (say “unsigned float”). Then given z as a message variable, data condition

some(z.cart.item.price) > 100 is to check if there exists an item in the shopping cart in

the current message instance that has a price greater than 100.

Definition: Given a collaboration schema C, a message formula (of C) is of form

“Φ ∧ (
∧k
i=1 ϕi)”, where Φ is a message predicate Msg(M, z, x, y) of C, where M =

(ν, As, Ar, π, τ,min,max), and for each i ∈ [1..k], ϕi is a data condition of C, such that

for each variable path expression expi = w.a1.a2.···.an occurring in ϕi, expi should satisfy

one of the following conditions.

• w = z and a1 is a top-level attribute in M,

• w = x and a1 is a top-level attribute in As, or

• w = y and a1 is a top-level attribute in Ar.

Given a collaboration schema C, a c-state σ of C, a message formula Ψ = Φ∧(
∧k
i=1 ϕi)

of C, and an assignment v, Ψ is valid (with respect to σ and v) (denoted as σ |=v Ψ), if

σ |=v Φ and for each i ∈ [1..k], σ |=v ϕi. Otherwise, Ψ is invalid with respect to σ and v

(denoted as σ 6|=v Ψ).

Example 6.2.18 Continuing with Example 6.2.15 and 6.2.17, given an assignment v

the message formula “Msg(CP, z, x, y) ∧ some(z.cart.item.price) > 100” checks if (1) the

166

Declarative Collaboration for Artifacts Chapter 6

message instance of id v(z) from Order instance v(x) to Purchase instance v(y) is sent

in the current c-state, and (2) v(z) has an item with price greater than 100.

Definition: Given Ψ = Msg(M, z, x, y) ∧ (
∧k
i=1 ψi) as a message formula, a responding

message formula (to Ψ) is of form “Msg[z](M′, z′, x′, y′) ∧ (
∧n
i=1 ϕi)”, where“Msg(M′, z′,

x′, y′) ∧ (
∧k
i=1 ϕi)” forms a message formula and Msg[z](M′, z′, x′, y′) is a responding

message predicate to Msg(M, z, x, y).

Given a collaboration schema C, a c-state σ of C, a responding message formula

Ψ = Msg[z](M, z′, x, y) ∧ (
∧k
i=1 ϕi), and an assignment v, Ψ is valid (with respect to σ

and v) (denoted as σ |=v Ψ), if σ |=v Msg(M, z′, x, y) ∧ (
∧k
i=1 ϕi) and (id(z), id(z′)) is in

the message-message dependency set of σ. Otherwise, Ψ is invalid with respect to σ and

v (denoted as σ 6|=v Ψ).

To specify the temporal constraints, some temporal operators are needed. The fol-

lowing lists all the temporal operators (adopted from DecSerFlow [54]) in the language

and an intuitive explanation is also given.

Definition: Given a collaboration schema C, a message constraint (of C) is of form

“Ψ1ΘΨ2, where Ψ1 is a message formula of C and Ψ2 is a message formula of C or a

responding message formula to Ψ1 of C, and Θ ranges over

{−(exist)−,−(co-exist)−,−(resp)→,−(prec)→,−(succ)→,
−(al-resp)→,−(al-prec)→,−(al-succ)→,−(im-resp)→,
−(im-prec)→,−(im-succ)→}.

Given a collaboration schema C, a c-behavior B = σ1σ2...σn of C, and an assignment

v, a message constraint ξ = Ψ1ΘΨ2 (where for each i ∈ {1, 2}, the (responding) message

predicate in Ψi has message type Mi, message variable zi, sender artifact variable xi, and

receiver artifact variable yi) is valid (with respect to B and v) (denoted as B |=v ξ) if

when ξ is of form

167

Declarative Collaboration for Artifacts Chapter 6

• Ψ1−(exist)−Ψ2: for each i, j ∈ [1..n], if σi |=v Ψ1, then σj |=v Ψ2 (if Ψ1 is valid

sometime, then Ψ2 is valid sometime),

• Ψ1−(co-exist)−Ψ2: Both B |=v Ψ1−(co-exist)−Ψ2 and B |=v Ψ2−(co-exist)−Ψ1,

• Ψ1−(resp)→Ψ2: for each i ∈ [1..n] and each j ∈ [i..n], σi |=v Ψ1 and σj |=v Ψ2 (if

Ψ1 is valid sometime, then sometime in the future Ψ2 is valid),

• Ψ1−(prec)→Ψ2: for each j ∈ [1..n] and each i ∈ [1..j], σi |=v Ψ1 and σj |=v Ψ2 (if

Ψ2 is valid, then sometime in the past Ψ1 is valid),

• Ψ1−(succ)→Ψ2: Both B |=v Ψ1−(resp)→Ψ2 and B |=v Ψ2−(prec)→Ψ1,

• Ψ1−(al-resp)→Ψ2: for each i ∈ [1..n] and each j ∈ [i..n], if σi |=v Ψ1 and σj |=v Ψ2,

then for each k ∈ [(i + 1)..j], there does not exist a message formula Ψ whose

message predicate is Msg(M1, z, x1, y1), where z ∈ VM, such that σk |=v Ψ (if Ψ1 is

valid, then in the future before Ψ2 is valid, Ψ1 is invalid),

• Ψ1−(al-prec)→Ψ2: for each j ∈ [1..n] and each i ∈ [1..j], if σi |=v Ψ1 and σj |=v Ψ2,

then for each k ∈ [i..(j − 1)], there does not exist a message formula Ψ whose

message predicate is Msg(M2, z, x2, y2), where z ∈ VM, such that σk |=v Ψ (if Ψ2 is

valid, then in the past before Ψ1 is valid, Ψ2 is invalid),

• Ψ1−(al-succ)→Ψ2: Both B |=v Ψ1−(al-resp)→Ψ2 and B |=v Ψ2−(al-prec)→Ψ1,

• Ψ1−(im-resp)→Ψ2: for each i ∈ [1..(n− 1)], if σi |=v Ψ1, then σi+1 |=v Ψ2 (if Ψ1 is

valid, then in the next step, Ψ2 is valid),

• Ψ1−(im-prec)→Ψ2: for each i ∈ [2..n], if σi |=v Ψ2, then σi−1 |=v Ψ1 (if Ψ2 is valid,

then in the previous step, Ψ1 is valid),

• Ψ1−(im-succ)→Ψ2: Both B |=v Ψ1−(im-prec)→Ψ2 and B |=v Ψ2−(im-succ)→Ψ1.

Example 6.2.19 Continue with Example 6.2.18; given v as an assignment , message con-

straint “Msg(CP, zCP, x, y) ∧ some(zCP.cart.item.price)>100 −(resp)→ Msg(PC, zPC, y, w)”

168

Declarative Collaboration for Artifacts Chapter 6

denotes that if the message instance v(zCP) with an item having price greater than 100

from Order enactment v(x) to Purchase enactment v(y) is sent in the current c-state,

then in the future, v(y) needs to send a PC (“purchase complete”) message instance to

Fulfillment enactment v(w).

Another restriction follows the Example 6.2.16: whenever an OR (“order request”)

message instance is sent (from “ext” to create a new Order enactment), in the future,

there should be a OC (“order complete”) message instance from the same Order enactment

to “ext”, and vice versa. This resection could be expressed with message constraint

“Msg(OR, zOR, ext, x) −(succ)→ Msg[zOR](OC, zOC, x, ext)”.

Definition: Given a collaboration schema C = (G,Γ,Msg), and an artifact in A0 in G, a

(universally quantified) artifact sequence (from A0) is of form “∀x0 ∈ A0, x1 ∈ x0
�A1, x2 ∈

x0
�A2, ..., xk ∈ x0

�Ak”, where

• k ∈ N,

• for each i ∈ [0..k], Ai is an artifact in G and xi ∈ VA,

• for each distinct i, j ∈ [0..k], xi 6= xj and Ai 6= Aj, and

• for each i ∈ [1..k], A0 and A0 are correlated (via an edge in G or by a correlation

rule in Γ)

Given a collaboration schema C = (G,Γ,Msg), an collaboration instance I = (T,

Corr,DCorr), and an artifact sequence s = ∀x0 ∈ A0, x1 ∈ x0
�A1, x2 ∈ x0

�A2, ..., xk ∈

x0
�Ak of C, the identifier space Σ of s with respect to I is a set of total mappings from

{x0, x1, ..., xk} to IDA, such that a mapping v is in Σ if

• for each i ∈ [0..k], there exists an artifact enactment I in T of Ai, such that id(I) =

v(xi), and

• for each i ∈ [1..k], (v(x0), v(xi)) ∈ Corr ∪DCorr.

169

Declarative Collaboration for Artifacts Chapter 6

Example 6.2.20 Considering the c-state described in Example 6.2.14, the artifact se-

quence “∀x0 ∈ Order, x1 ∈ x0
�Payment, x2 ∈ x0

�Purchase” has only one mapping v in its

identifier space, i.e. v(x0) = id(Io), v(x1) = id(Ip), and v(x2) = id(Ic), where Io, Ip,

and Ic are as stated in Example 6.2.14.

Given an assignment v and a total mapping v′ from a subset S of VA to IDA, “v | v′”

is an assignment such that for each x ∈ S, v | v′(x) = v′(x) and for each x ∈ IDA − S,

v | v′(x) = v(x).

Definition: Given a collaboration schema C, a choreography constraint (of C) is of form

“s, ξ”, where

• s = ∀x0 ∈ A0, x1 ∈ x0
�A1, ..., xk ∈ x0

�Ak is an artifact sequence, where k ∈ [0..2],

• ξ is a message constraint of C,

• for each artifact variable x ∈ VA − {“ext”} occurring in ξ, x ∈ {x0, ..., xk}, and

vice versa.

Given a collaboration schema C, a c-behavior B = σ1σ2...σn of C, where σn = (I,

DCorr),m,m,MA,MM) and a choreography constraint ϕ = s, ξ, ϕ is valid with respect

to B (denoted as B |= ϕ) if there exists an assignment v such that for each v′ ∈ Σ, where

Σ is the identifier space of s with respect to I, B |=v|v′ ξ.

Example 6.2.21 Continuing with Example 6.2.19, the two constraints can be expressed

as

∀y ∈ Purchase, w ∈ y�Fulfillment, x ∈ y�Order,
Msg(CP, zCP, x, y) ∧ some(zCP.cart.item.price)>100
−(resp)→ Msg(PC, zPC, y, w)

and

∀x ∈ Order,
Msg(OR, zOR, ext, x) −(succ)→ Msg[zOR](OC, zOC, x, ext)

170

Declarative Collaboration for Artifacts Chapter 6

The universal quantifier restricts that each constraint should be satisfied by all the com-

bination of artifact enactments.

Definition: A choreography (specification) is a tuple (G,Γ,Msg, κ) where (G,Γ,Msg)

forms a collaboration schema C and κ a set of choreography constraints of C.

6.3 Realizability

In this section, we show that a subclass of choreographies defined in Section 6.2 can be

realized. This is accomplished in two stages, we first translate a choreography into a

“guarded conversation protocol” that is a conversation protocol of [58] extended with

data contents and conditions. We then present a distributed algorithm that runs along

with execution of each artifact, and show that an c-behavior is a possible execution with

the algorithm iff it satisfies the choreography.

6.3.1 Guarded conversation protocols

A choreography S = (C, κ) is one-to-one (or 1-1) if the correlation graph in C only

has 1-1 correlations. The class of 1-1 choreographies contains choreographies allowed by

existing languages, with a possible exception of BPEL4Chor [53, 59]. We focus on 1-1

choreographies in this section.

Definition: A guarded (conversation) protocol is a tuple (T, s, F,M,C, δ), where (i) T

is a finite set of states, s ∈ T is the initial state, F ⊆ T is a set of final states; (ii)

M is a finite set of messages type names, (iii) C is a set of data conditions, and (iv)

δ ⊆ T ×M × C × T is a set of transitions.

A guarded protocol extends conversation protocol of [60] with data conditions on

171

Declarative Collaboration for Artifacts Chapter 6

CY : Y

elseelse* else

t4t2 t3t1
CX : X

CY : Y

CX : X

Figure 6.4: A guarded conversation protocol example

messages (and associated artifacts). The semantics of a guarded protocol is standard

except that the data condition must be satisfied when making a transition.

Example 6.3.1 Fig. 6.4 shows an example guarded protocol with four states: t2 is initial

and t2, t4 are the final states. Two message types are involved, X and Y . CX and CY are

data conditions. The transition from t2 to t3 can be made if the condition CX is true and

message X is sent. An edge labeled with “else” stands for a collection of transitions other

than the specified one(s) leaving the same state. An edge labeled with “*” represents all

possible transitions leaving the state.

Given an c-behavior B (of a correlation schema), and a guarded protocol τ , the notion

of τ accepting B is defined in the standard way.

Theorem 6.3.2 Let S be a 1-1 choreography. One can effectively construct a guarded

conversation protocol τ such that each c-behavior B satisfies S iff it is accepted by τ .

Since temporal operators in choreography constraints are operators in DecSerFlow

that is contained in LTL [54], one can use a general technique to obtain Büchi au-

tomaton [61]. Guarded protocols can then be constructed. However, we use a simpler

approach: translating each choreography constraint to a guarded protocol and then con-

struct a product state machine for all constraints. Fig. 6.4 shows a guarded protocol for

constraint “X ∧ CX−(succ)→Y ∧ CX”, where X, Y are message predicates and CX , CY

data conditions.

172

Declarative Collaboration for Artifacts Chapter 6

c1 :
CH

true:
PC

t1

t4

t6 t3

t5 t2

c2 :
CP

c2 :
CP

c1 :
CH

Figure 6.5:
Model

ε

t1

t4

t6 t3

t5 t2
?CH

c2 :
!CP?CH

c2 :
!CP

Figure 6.6:
Order

c1 :
!CH

ε

t1

t4

t6 t3

t5 t2
c1 :
!CHε

ε

Figure 6.7:
Payment

true:
!PC

t1

t4

t6 t3

t5 t2

?CP

?CP

ε

ε

Figure 6.8:
Purchase

?PC

t1

t4

t6 t3

t5 t2

ε

ε

ε

ε

Figure 6.9:
Fulfillment

Example 6.3.3 Fig. 6.5 shows a guarded protocol based on the example discussed in

Section 6.1, where c1 is “Payment.balance > CH.amount” and c2 is “CP.items 6= null”.

Since each participant can have at most one instance (1-1 choreography) type level no-

tation is used here. The initial state is t1, the final states are t4 and t6 (in the original

guarded protocol, they are not final states but we make them final to show a complete

example). Only two sequences of messages can be accepted in this example: either (1)

CP CH PC, or (2) CH CP. Note that this is not realizable in [60].

The only-if direction of Theorem 6.3.2 fails if 1-1 condition on choreography is re-

moved. This is because different instances of the same interface may progress in different

paces and a guarded protocol cannot capture such situations.

6.3.2 Guarded peers

Guarded automaton was introduced in [60] to represent a state machine for a par-

ticipant. We modify the notion to allow message predicates and data conditions. The

following defines a projection of a guarded protocol to a participant.

Definition: Given a guarded conversation protocol τ = (T, s, F,M,C, δ) and an artifact

type α, a guarded peer for α wrt τ is a tuple (T, s, F,M ′, C ′, δs, δr, δε), where (1) M ′ ⊆M

173

Declarative Collaboration for Artifacts Chapter 6

such that each message in M ′ has α as a sender or receiver, (2) C ′ ∈ C contains a

condition c if there exists t, t′ ∈ T and a message m in M ′, where m is sent by α and

(t, c,m, t′) ∈ δ, (3) δs ⊆ T×C ′×M ′×T (sending transitions) contains elements (t, c,m, t′)

if (t, c,m, t′) ∈ δ and m is sent by α, (4) δr ⊆ T×M ′×T (receiving transitions) contains

elements (t,m, t′) if there exists c ∈ C, (t, c,m, t′) ∈ δ and the receiver of m is α, and

(5) δε ⊆ T ×{ε}× T (empty transitions) contains elements (t, ε, t′) if there exists c ∈ C,

m ∈M , (t, c,m, t′) ∈ δ and α is neither the receiver or sender of m.

Example 6.3.4 Fig. 6.6 – 6.9 show four guarded peers (Order, Payment, Purchase, and

Fulfillment) projected from Fig. 6.5. The “?” mark denotes receiving a message, the

“!” mark denotes sending a message.

An artifact (enactment) sends or receives messages according to its guarded peer,

i.e., each guarded peer is autonomous. If all guarded peers start from their initial states,

make their transitions autonomously, the composition terminates when every guarded

peer reaches a final state. Our composition model is basically the same as [60], except

that FIFO queues are not used.

Example 6.3.5 Consider the sequence of messages “CH CP” that is accepted by the

guarded protocol in Fig. 6.5 (Example 6.3.3). The projected peers are shown in Fig. 6.6

– 6.9. Payment can send a CH to Order. Then Payment follows an empty transition into

its final state t6 and Payment is now in t5. Later on, Order sends a CP to Purchase and

both of them can reach their final states (t6). While for Fulfillment, it sends or receives

nothing and follows two empty transitions to t6.

Naturally, given a guarded protocol τ , if a sequence of transitions is accepted by τ ,

the sequence is also accepted by all guarded peers of τ . In general, the other direction

174

Declarative Collaboration for Artifacts Chapter 6

may not necessarily hold [52].

Example 6.3.6 Continue with Examples 6.3.3 and 6.3.4. Suppose Payment sends a CH

through edge (t1, t5) and ends at final state t6. Then Order sends a CP, receives the CH

sent by Payment, and reaches final state t4. Correspondingly, Purchase receives the CP

from Order and reaches final state t4 by sending Fulfillment a PC. Finally, Fulfillment

receives the PC and ends at t4 as well.

Clearly, the above sequence of messages “CH CP PC” allows all guarded peers to

reach their final states but cannot be accepted by the original guarded protocol.

The realizability problem is to ensure that the collective transitions for all guarded

peers are equivalent to transitions for the original guarded protocol. While this problem

has not been investigated, a closely related problem of “realizability checking problem”

[52] which tests if a conversation protocol can be restored from the product of its projected

peers has been studied extensively (see [62]).

6.3.3 A realization mechanism

Instead of checking if a guarded protocol is the product of its guarded peers, we

take a different approach. We develop a protocol (algorithm) that in addition to the

original messages, it also adds a small number of “synchronization” messages to aid

participants (peers) in their autonomous execution. We show that the synchronized

execution generates equivalent behaviors as the original guarded protocol and that in

every successful execution, the total number of synchronization messages is bounded by

the sum of the number of messages in the guarded protocol and the number of guarded

peers.

175

Declarative Collaboration for Artifacts Chapter 6

A näıve protocol simply broadcasts every message to all. However, this approach

requires as many as N∗ × (k−1) messages during the process, where N∗ is the number

of message instances (needed for the collaboration), and k is the number of peers.

To reduce synchronization messages, an improvement is developed that employs a

“token passing” method: only the participant who owns a “token” can make a transition.

Once a transition is conducted (or equivalently, a message is sent), the “token” will be

passed to the next sender and this process repeats.

Given a guarded protocol τ = (T, s, F,M,C, δ), we augment τ with a new mes-

sage type named sync without any data attributes. We also introduce two functions,

Flag and State. The function Flag maps message (including sync) instances to the set

{SND,RCV,FIN} such that if µ is an instance of sync, Flag(µ) ∈ {SND,FIN}. Intu-

itively, SND is the token, RCV means the message that is regular, FIN instructs the

receiver to terminate. The function State maps each message instance to T to indicate

the current (global) state. Each message is sent along with its Flag and State values.

To implement the framework, a coordinator is used for each peer (instance) to help

on transition decisions. Once a coordinator receives the token carried by a message,

it makes a transition for its peer by sending a message with an appropriate Flag, and

possibly passes the token to the next sender if different (via a flagged sync message).

As mentioned at the beginning of this section, once (the coordinator of) a sender

sends a message with the flag RCV, it passes the token to (the coordinator of) the next

sender through a message with the flag SND. In order to know who will be the possible

sender, a concept “sender set” is defined first.

Given a guarded protocol τ = (T, s, F,M,C, δ), the sender set of a state t ∈ T ,

denoted as sdr(t), is a set containing all artifact interfaces α that is the sender of m

where (t, c,m, t′) ∈ δ for some t′ ∈ T , c ∈ C, and m ∈M . In Fig. 6.5, the sender sets for

t1 to t6 are {Order, Payment}, {Payment}, {Purchase}, ∅, {Order}, and ∅, resp.

176

Declarative Collaboration for Artifacts Chapter 6

Algorithm 4 Coordinator for Peer p

Input: sdr, p = (T, s, F,M,C, δs, δr, δε)
1: loop
2: Wait for the next message m
3: if Flag(m) = SND then
4: if ∃c ∈ C, ∃m′ ∈M,∃t ∈ T , (State(m), c,m′, t) ∈ δs then
5: Send m′ (flag: RCV, state: t);
6: randomly select s from sdr(t);
7: Send to s a sync message (flag: SND, state: t);
8: end if
9: else if Flag = RCV then

10: if State(m) ∈ F then
11: Boardcast sync message (flag: FIN, state: State(m))
12: Terminate
13: end if
14: else
15: Terminate {“FIN” case}
16: end if
17: end loop

Sender sets are known at design time, the current sender can choose the next sender

from the corresponding sender set of the current state at runtime. The initial sender

should be delegated externally by, e.g., the environment. These steps are repeated until

a peer (with the token) reaches a final state. This peer then informs all other peers to

end the execution by sending messages of flag FIN. Alg. 4 accomplishes the coordinator

that runs on individual peers.

Example 6.3.7 The following describes a possible execution. The user chooses and

sends to Order (in the sender set for t1). Order sends a CP (flag: RCV) to Purchase

and inform Payment to be the next sender (through a sync message with flag SND) since

sdr(t2) = {Payment}. After Payment sends a CH to Order, it will pick Purchase from

sdr(t3). Finally, Purchase sends a PC to Fulfillment. Once the Fulfillment reaches its

177

Declarative Collaboration for Artifacts Chapter 6

final state t4, FIN messages will be broadcast.

Theorem 6.3.8 Given a guarded conversation protocol τ , each sequence of ground mes-

sages, is accepted by τ iff it is generated by Alg. 4 running for guarded peers of τ .

The correctness and completeness of Alg. 4 can be guaranteed as the protocol is loyally

simulating the transitions upon the global guarded conversation protocol.

Remark 6.3.9 Denote by N∗ the number of regular messages that should be sent, and

N̂ as the number of regular and synchronization messages sent according to Alg. 4. It is

easy to see that N̂ < 2N∗+ (k− 1), where k is the number of peers. Furthermore, if FIN

messages are not needed, the bound is reduced to N̂/N∗ < 2.

The result claimed in Remark 6.3.9 can be trivially proved, as the number of “SND”

messages sent in Alg. 4 is no more than the one of “RCV” messages. Thus, Alg. 4 provides

a bounded approximation against the minimum number of control messages that should

be sent.

6.4 Summary

This chapter proposes a declarative choreography language that can express correlations

and choreographies for artifact-centric BPs in both type and instance levels. It also

incorporate data contents and cardinality on participant instances into choreography

constraints. Furthermore, a subclass of the rule-based choreography is shown to be

equivalent to a state-machine-based choreography.

178

Chapter 7

Satisfiability of Collaboration

The specification of business processes can be imperative or declarative. Comparing with

imperative specification, declarative specification allows more execution and is flexible

for runtime changes. Chapter 6 takes advantage of DecSerFlow, a declarative business

process specification, to model choreography. DecSerFlow consists of a set of temporal

predicates that can be translated into LTL but limited to finite sequences. An execution

sequence is valid as long as it satisfies all given constraints. This chapter continues with

the topic on DecSerFlow and focuses on the “non-trivial finite satisfiability problem”:

Given a set of DecSerFlow constraints, is there a finite execution sequence that satisfies

all constraints in the set and meets the minimum requirement upon number of occurrences

(in a process)?

Specifically, this chapter provides syntactical characterizations for non-trivial finite

satisfiability of several classes of DecSerFlow constraints. These characterizations di-

rectly lead to polynomial time satisfiability testing. To achieve this, we first determine

the “core” constraints of DecSerFlow for the conformance problem, i.e., a reduction from

general DecSerFlow to DecSerFlow “Core” that does not contain existence constraints

nor cardinality requirements, and we show that the conformance checking on these two

179

Satisfiability of Collaboration Chapter 7

DecSerFlow specifications are equivalent (Theorem 7.2.3). For DecSerFlow Core, we

formulate syntactic characterizations (sufficient and necessary for conformance) for con-

straints involving (1) ordering and immediate constraints (Theorem 7.3.9), (2) ordering

and alternating constraints (Theorem 7.4.4), (3) alternating and immediate constraints

(Theorem 7.4.23), or (4) ordering, alternating, and immediate constraints with only

precedence (or only response) direction (Theorem 7.5.1). The general case (i.e., for all

three types of constraints in both directions) remains an open problem.

The remainder of the chapter is organized as follows. Section 7.1 defines DecSerFlow

constraints and the conformance problem. (Note that DecSerFlow studied in this chapter

is the same as the one defined in Section sec:lang, only with notation altered in order to

have a cleaner presentation). Section 7.2 shows that only “core” constraints are needed

for determining conformance. Section 7.3 focuses on ordering and immediate constraints.

The combinations of alternating constraints with other constraints are discussed in Sec-

tion 7.4. Section 7.5 discusses all constraints with only one direction. Evaluation is given

in Section 7.6 Conclusions are provided in Section 7.7.

7.1 DecSerFlow Constraints and Problem Definition

Business process models are either imperative or declarative [63]. Imperative processes

typically employ graphs (e.g., automata, Petri Nets) to depict how a process should

progress. Declarative processes usually use constraints [54]. Declarative models are more

flexible and are easy to change during design time or runtime [16]. One practical question

is whether a given specification as a set of constraints allows at least one execution. It is

fundamental in business process modeling to test satisfiability of a given set of constraints.

A process execution is a sequence of activities through time, constraints are in general

temporal. In this chapter, we focus on DecSerFlow [54], a language that uses a set of

180

Satisfiability of Collaboration Chapter 7

temporal predicates as a process specification, and study the satisfiability problem. The

temporal predicates in DecSerFlow can be translated into linear temporal logic (LTL)

[9] but limited to finite sequences. A naive approach to DecSerFlow satisfiability check-

ing is to construct automata representing individual constraints and determine if their

cross product accepts a string. However the complexity of this approach is exponential

with respect to the number of given constraints. In this chapter, we develop syntacti-

cal characterizations for DecSerFlow satisfiability that automatically lead to polynomial

time complexity. Recently, the DECLARE system was developed [64] to support design

and execution of DecSerFlow processes. Clearly efficient satisfiability testing provides an

effective and efficient help to the user of DECLARE.

In the following, we briefly introduce how DecSerFlow works. The underlying seman-

tics is the same as the one introduced Section 6.2; but working on different scenarios: the

operands in this chapter are activities only, comparing with the message instances with

data in Chapter 6.

Most DecSerFlow constraints can be categorized into two directions: “response”

(Res), which specifies that an activity should happen in the future, and “precedence”

(Pre), which specifies that an activity should happen in the past. For each direction,

there are three types of constraints: (1) Ordering constraints, denoted as Res(a, b) (or

Pre(a, b)), where a and b are activity names, specify that if a occurs, then b should occur

sometime in the future (resp. past). For example, sequence cbacaa satisfies Pre(a, b),

but cabbaca does not. A real life example might be that in a loan application for house

purchase process, if activity “loan approval” happens, then in the past a “credit check”

activity should have happened. (2) Alternating constraints, denoted as aRes(a, b) (or

aPre(a, b)), specify that the occurrence of a implies a future (resp. past) occurrence of

b but before the occurrence of b, a cannot occur again (i.e., between two occurrences of

a, there should exist an occurrence of b). For example, babcbacb satisfies aRes(a, b), but

181

Satisfiability of Collaboration Chapter 7

abbcaab does not. As an example, if a “house evaluation request” activity happens, a

“house evaluation feedback” activity should happen in the future and before receiving

the feedback, the applicant cannot submit another evaluation request, i.e., “request” and

“feedback” should be alternating. (3) Immediate constraints, denoted as iRes(a, b) (or

iPre(a, b)), restrict that if a occurs, then b should immediately follow (resp. occur before).

For example, abcab satisfies iRes(a, b), but abcacb does not. In addition to “response”

and “precedence” constraints, there is a special type of “existence” constraints that only

require occurrences in any order. An existence constraint, Exi(a, b) restricts that if a

occurs, then b should occur either earlier or later. For example, abcbc satisfies Exi(a, c),

but abbab does not. In practice, a common existence constraint can be that a guest can

either choose to pay the hotel expense online then check in, or check in first and pay the

expense later, i.e., Exi(“check in”, “payment”).

In addition to temporal constraints, there are cardinality requirements for each ac-

tivity, i.e., an activity should occur at least once or does not have to occur. Such re-

quirements are common in business processes. For example, in an online order process,

“payment” activity is always required to occur; while “shipping” is not (a customers may

pick up the ordered items in the nearest store). In order to reflect design requirements,

we study the problem if a given set of constraints can be “non-trivially finitely” satis-

fied: is there a finite execution sequence that satisfies all given constraints as well as the

cardinality requirements (in a process). We use the term “conformance” to denote this

concept of non-trivial finite satisfiability.

In the remainder of this section, we define DecSerFlow formally together with the

conformance probelm.

Let A be an infinite set of activities, N the set of natural numbers, [i..j] the set

{k ∈ N | i, j ∈ N, i 6 k 6 j}, and A ⊆ A a (finite) subset of A. A string over A (or A)

is a finite sequence of 0 or more activities in A (resp. A). Let ε denote the empty string,

182

Satisfiability of Collaboration Chapter 7

A∗ (A∗) the set of all finite strings over A (resp. A). Given a string s, the length of s is

the number of activity occurrences in s and denoted as len(s). Obviously, len(ε) = 0. If

s 6= ε, for each 1 6 i 6 len(s), let s[i] be the i-th activity occurrence in s.

A subsequence of a1a2...an is a string ak1ak2 ...akm , where (1) m ∈ N and m > 1, (2)

ki ∈ [1..n] for each i∈ [1..m], and (3) ki<ki+1 for each i ∈ [1..(m−1)]. A substring of a

string s is a subsequence ak1ak2 ...akm of s where for each i ∈ [1..(m−1)], ki = ki+1 − 1.

Let A⊆A, a, b∈A. A constraint on a, b over sequences in A∗ is one of the following,

letting s be a string over A.

• Existence constraint Exi(a, b): s satisfies Exi(a, b), s |= Exi(a, b), if either (1) s= ε, or

(2) for each i∈ [1, len(s)], s[i] = a implies s[j] = b for some j ∈ [i, len(s)].

• Ordering response constraint Res(a, b): s |= Res(a, b), if either (1) s= ε, or (2)

s[len(s)] 6=a and for each i∈ [1, len(s)−1], s[i] = a implies s[j] = b for some j ∈ [i+1, len(s)].

• Ordering precedence constraint Pre(a, b): s |= Pre(a, b) if either (1) s= ε, or (2) s[1] 6= a

and for each i ∈ [2, len(s)], s[i] = a implies s[j] = b for some j ∈ [1, i−1].

• Alternating response constraint aRes(a, b): s |= aRes(a, b), if either (1) s= ε, or

(2) s[len(s)] 6= a and for each i ∈ [1, len(s)−1], s[i] = a implies that for some j ∈

[i+1, len(s)], (i) s[j] = b, and (ii) for each k ∈ [i+1, j−1], s[k] 6= a.

• Alternating precedence constraint aPre(a, b): s |= aPre(a, b) if either (1) s= ε, or (2)

s[1] 6= a and for each i ∈ [2, len(s)], s[i] = a implies for some j ∈ [1, i−1], (i) s[j] = b,

and (ii) for each k ∈ [j+1, i−1], s[k] 6= a.

• Immediate response constraint iRes(a, b): s |= iRes(a, b), if either (1) s= ε, or (2)

s[len(s)] 6= a and for each i ∈ [1, len(s)−1], s[i] = a implies s[i+1] = b.

• Immediate precedence constraint iPre(a, b): s |= iPre(a, b) if either (1) s= ε, or (2)

s[1] 6= a and for each i ∈ [2, len(s)], s[i] = a implies s[i−1] = b.

183

Satisfiability of Collaboration Chapter 7

Response Precedence

Ordering
Res(a, b): each occur-
rence of a is followed by
an occurrence of b

Pre(a, b): each occur-
rence of a is preceded by
an occurrence of b

Alternating
aRes(a, b): in addition to
Res(a, b), a and b alter-
nate

aPre(a, b): in addition to
Pre(a, b), a and b alter-
nate

Immediate
iRes(a, b): each occur-
rence of a is immedi-
ately followed by an oc-
currence of b

iPre(a, b): each occur-
rence of a is immediately
preceded by an occur-
rence of b

Existence Exi(a, b): each occurrence of a implies an occurrence of b

Figure 7.1: Summary of Constraints

Fig. 7.1 shows a summary of the constraints. For ordering precedence constraint

Pre(a, b), if “a” occurs in a string, then before “a”, there must exist a “b”, and between

this “b” and “a”, all activities are allowed to occur. Similarly, for alternating response

constraint aRes(a, b), after an occurrence of “a”, no other a’s can occur until a “b” occurs.

For immediate precedence constraint iPre(a, b), a “b” should occur immediately before

“a”. The existence constraints have no restrictions on temporal orders.

Definition: A (DecSerFlow) schema is a pair S= (A,C, κ) where A ⊆ A is a finite set

of activities, C a finite set of constraints on activities in A, and κ is a total mapping from

A to {0, 1}, called cardinality, to denote that an activity a ∈ A should occur at least once

(if κ(a) = 1) or no occurrence requirement (if κ(a) = 0).

For notation convenience, given a DecSerFlow schema S= (A,C, κ), if for each a ∈ A,

κ(a) = 1, we simply use (A,C) to denote S.

Definition: A finite string s over A conforms to schema S= (A,C, κ) if s satisfies every

constraint in C and for each activity a ∈ A, s should contain a for at least κ(a) times. If

a string s conforms to S, s is a conforming string of S and S is conformable.

Conformance Problem: Given a schema S, is S conformable?

184

Satisfiability of Collaboration Chapter 7

Proposition 7.1.1 The conformance problem is in pspace (in the size of the input

schema).

Proposition 7.1.1 is straightforward. The idea is to construct a finite state automa-

ton A for each given constraint c (and each cardinality requirement r, i.e., an actvitiy

occurring at least 0 or 1 times), such that A can accept all strings that satisfy c (resp.

accept all strings that satisfy r) and reject all other strings. Then the conformance

problem is translated to checking if the cross product of all constructed automata (that

corresponding to the given constraints) can accept a non-empty string.

7.2 Core Constraints

In this section, we show that the conformance problem for DecSerFlow schemas is re-

ducible to that for schemas with only “core” constraints, i.e., without existence and

cardinality constraints. We thus need to focus only on the core constraints.

Let S= (A,C, κ) be a DecSerFlow schema. We can effectively construct another

schema S ′= (A′, C ′) where C ′ contains no existence constraints and each activity in A′

must occur at least once such that S is conformable iff S ′ is conformable. Specifically,

S ′= (A′, C ′) is constructed as follows:

• A′=A1 ∪A2 where A1 = { a∈A | κ(a)=1} and A2 = { a∈A | there exist a positive

n∈N, b0 ∈A1, and bi ∈A−A1 for each i∈ [1..n] such that a= bn and there is a con-

straint ξi(bi−1, bi)∈C for each i∈ [1..n] }.

• C ′ = {ξ(a, b) ∈ C | a, b∈A′ and ξ is not an existence constraint }.

Note that A′⊆A and C ′⊆C.

185

Satisfiability of Collaboration Chapter 7

Example 7.2.1 Consider a schema S with six activities, a, b, c, d, e, f , and six con-

straints, Res(c, b), iRes(f, a), aPre(f, c), aRes(b, e),Pre(b, a),Exi(a, c). S also specifies that

a, b, f are optional but c, d, e must occur at least once. Using the above construction, we

have A1 = {c, d, e} and A2 contains b due to Res(c, b) and also a due to Res(c, b),Pre(b, a).

Note that f is not in A2 (nor in A1). Therefore, the reduced schema S ′= (A′, C ′) where

A′= {a, b, c, d, e} and C ′= {Res(c, b), aRes(b, e),Pre(b, a)}. In particular, C ′ does not

contain the existence constraint Exi(a, c).

Lemma 7.2.2 Let S= (A,C, κ) be a schema and A1, A2 as constructed in the above from

S. For each conforming string s of S, every activity in A1 ∪A2 occurs in s.

Proof: Let a∈A be an activity. If a∈A1, then κ(a) = 1 and clearly a must occur in

s. Consider now a∈A2. According to the construction, there exist an n> 0, b0 ∈A1,

and bi ∈A−A1 for each i∈ [1..n] where a= bn and there is a constraint ξi(bi−1, bi)∈C

for each i∈ [1..n]. Using an inductive argument, it is easy to see that each bi (i∈ [0..n])

occurs in s. Since a= bn, the lemma follows.

Theorem 7.2.3 Let S= (A,C, κ) be a schema and S ′= (A′, C ′) as constructed in the

above from S. Then, S is conformable iff S ′ is conformable.

Proof: Let A1, A2 be constructed from S as in the above.

(“Only-if”) Since C ′⊆C, every string s conforming to S also satisfies every con-

straint in C ′. By the construction, A′=A1 ∪A2 where By Lemma 7.2.2, every activity

in A1 ∪A2 =A′ occurs in s. Thus, s conforms to S ′.

(“If”) Let s be a conforming string of S ′. Since A′⊇{ a | κ(a)=1}, s satisfies the

cardinality constraints κ. Now let ξ(a, b) be a constraint in C but not in C ′. Consider

the following two cases.

186

Satisfiability of Collaboration Chapter 7

(i) a 6∈A′. In this case a does not occur in s, therefore s satisfies ξ(a, b).

(ii) a∈A′. By an inductive argument, it is each to verify that b∈A′. It follows that

ξ(a, b) is an existential constraint Exi(a, b). s conforming to S ′ implies that s satisfies

Exi(a, b), i.e., ξ(a, b).

Theorem 7.2.3 shows that conformance of arbitrary schemas can be reduced to con-

formance of schemas where each activity occurs at least once. If every activity in a given

schema occurs at least once, the existence constraints are redundant. In the remain-

der of this chapter, we only focus on schemas with core constraints, i.e., from the set

{Res,Pre, aRes, aPre, iRes, iPre} and that each activity occurs at least once.

For the ease of presentation, we classify core constraints into three classes: order-

ing (ordering response and ordering precedence) alternating (alternating response and

alternating precedence), and immediate (immediate response and immediate precedence)

constraints. For each category, there are two directions: response (forward) and prece-

dence (backward). We define response (or precedence) constraints to be all ordering,

alternating, and immediate response (resp. precedence) constraints.

7.3 Characterizations for Ordering & Immediate Con-

straints

This section focuses on syntactical characterizations of conformable schemas that only

contain ordering and/or immediate constraints.

For each schema S= (A,C), we construct the causality graph GS of S as a labeled

graph (A,Eor
I , E

or
J , E

al
I , E

al
J , E

im
I , Eim

J) with the vertex set A and six edge sets where Ex
I

(Ex
J) corresponds to response (resp. precedence) constraints of ordering (x = ‘or’), alter-

nating (x = ‘al’), or immediate (x = ‘im’) flavor. Specifically, for all a, b ∈ A,

187

Satisfiability of Collaboration Chapter 7

• (a, b) ∈ Eor
I iff Res(a, b) is in C,

• (a, b) ∈ Eal
J iff aPre(a, b) ∈ C,

• (a, b) ∈ Eim
I iff iRes(a, b) ∈ C, and the other three cases are similar.

Example 7.3.1 Consider a schema with activities: a, b, c, d, e, and the constraints:

response precedence
ordering Res(a, b), Res(b, d) Pre(c, d)

alternating aRes(c, d), aRes(c, e) aPre(a, b), aPre(b, c)
immediate iRes(c, a), iRes(d, e) iPre(e, a)

Its causality graph has vertices {a, b, c, d, e} and edge sets Eor
I = {(a, b), (b, d)}, Eor

J =

{(c, d)}, Eal
I = {(c, d), (c, e)}, Eal

J = {(a, b), (b, c)}, Eim
I = {(c, a), (d, e)}, Eim

J = {(e, a)}.

Given a causality graph (A,Eor
I , E

or
J , E

al
I , E

al
J , E

im
I , Eim

J), if an edge set is empty, we

will conveniently omit it; for example, if Eim
I = Eim

J = ∅, we write the causality graph

simply as (A,Eor
I , E

or
J , E

al
I , E

al
J).

For the technical development, we first review some well-known graph notions. Given

a (directed) graph (V,E) with the vertex set V and the edge set E⊆V ×V , a path is

a sequence v1v2...vn where n> 1, for each i∈ [1..n], vi ∈ V , and for each i ∈ [1..(n−1)],

(vi, vi+1)∈E; n is the length of the path v1v2...vn. A path v1v2...vn is simple if vi’s are

pairwise distinct except that v1, vn may be the same node. A (simple) cycle is a (resp.

simple) path v1v2...vn where v1 = vn. A graph is cyclic if it contains a cycle, acyclic

otherwise. Given an acyclic graph (V,E), a topological order of (V,E) is an enumeration

of V such that for each (u, v)∈E, u precedes v in the enumeration. A subgraph (V ′, E ′) of

(V,E) is a graph, such that V ′⊆V and E ′⊆E ∩ (V ′×V ′). A graph is strongly connected

if there is a path from each node in the graph to every other node. Given a graph

G= (V,E) and a set V ′⊆V , the projection of G on V ′, πV ′G, is a subgraph (V ′, E ′) of G

where E ′=E ∩ (V ′×V ′). A strongly connected component (V ′, E ′) of a graph G= (V,E)

188

Satisfiability of Collaboration Chapter 7

is a strongly connected subgraph G′= (V ′, E ′) of G, such that (1) G′=πV ′G, and (2) for

each v ∈V −V ′, πV ′∪{v}G is not strongly connected.

7.3.1 Ordering constraints alone

The following states a syntactical characterization for conformance of schemas containing

only ordering constraints.

Theorem 7.3.2 For a schema S= (A,C) with only ordering constraints and its causality

graph (A,Eor
I , E

or
J), S is conformable iff both graphs (A,Eor

I) and (A,Eor
J) are acyclic.

Proof: Let S,A,C,Eor
J , and Eor

I be as stated in the theorem.

(⇒) We prove by contradiction. Without loss of generality (w.l.o.g.), suppose that

(A,Eor
I) has a cycle and there is a string s that satisfies all the constraints in C. Then

there exist an integer n> 1 and ai ∈A for each i∈ [1..n] such that Res(ai, aimodn+1)∈C

for each i∈ [1..n]. Thus, for all i∈ [1..n], each occurrence of ai in s must have a following

occurrence of aimodn+1 in s, etc. It follows that s cannot be finite and therefore is not a

string. The case when (A,Eor
J) is cyclic is similar.

(⇐) Let a1a2...an be a topological sort of A wrt (A,Eor
I), and b1b2...bn be a topological

sort of A wrt (A,Eor
J). It is easy to see that the string s = bn...b2b1a1a2...an satisfies

every constraint in C. Since a1...an is a topological sort of (A,Eor
I), for each i, j ∈ [1..n],

if Res(ai, aj)∈C, then i < j and a1...an satisfies Res(ai, aj). If for some k ∈ [1..n], bk = ai,

since bk occurs before ai and ai occurs before aj in s= bn...b1a1...an, s also satisfies

Res(ai, aj). A similar argument holds for each precedence constraint. Moreover, as each

activity occurs in s, this direction holds.

189

Satisfiability of Collaboration Chapter 7

Example 7.3.3 Consider a schema S with activitiesA= {a, b, c} and constraints Res(a, b),

Res(b, c),Pre(b, c), and Pre(b, a). Both graphs (A, {(a, b), (b, c)}) and (A, {(b, c), (b, a)})

are acyclic. Theorem 7.3.2 predicts conformance; conforming strings include bcaabc and

cabc. However if we add constraint Res(c, a) into S, it is no longer conformable since

graph (A, {(a, b), (b, c), (c, a)}) now has a cycle abca; it is clear that no finite strings can

satisfy Res(a, b) ∧ Res(b, c) ∧ Res(c, a).

7.3.2 Immediate constraints alone

Before we discuss characterizations for immediate constraints, we state the following

property observed in [54].

Lemma 7.3.4 [54] Given two activities u and v, the following logical implications (de-

noted by “→”) always hold:

iRes(u, v)→ aRes(u, v) aRes(u, v)→ Res(u, v)

iPre(u, v)→ aPre(u, v) aPre(u, v)→ Pre(u, v)

Theorem 7.3.5 below provides a necessary and sufficient condition for schemas con-

formance with only immediate constraints.

Theorem 7.3.5 Given a schema S= (A,C) containing only immediate constraints and

its causality graph (A,Eim
I , Eim

J), S is conformable iff the following all hold:

(1). (A,Eim
I) and (A,Eim

J) are both acyclic,

(2). for each (u, v)∈Eim
I (or Eim

J), there does not exist w∈A such that w 6=u and (v, w)∈

Eim
J (resp. Eim

I), and

(3). for each (u, v)∈Eim
I (or Eim

J), there does not exist w∈A such that w 6= v and (u,w)∈

Eim
I (resp. Eim

J).

190

Satisfiability of Collaboration Chapter 7

Example 7.3.6 Consider a schema S with 3 activities, a, b, c, and 2 constraints {iRes(a,

b), iPre(c, b)}. S is conformable according to Theorem 7.3.5; a conforming string is “abc”.

However, adding iPre(b, c) to S would cause S to be non-conformable due to the require-

ment that each occurrence of a should be immediately followed by an occurrence of b

(constraint iRes(a, b)), and each occurrence of b should be immediately preceded by an

occurrence of c (constraint iPre(b, c)). This is impossible since a 6= c. Similarly, addition

of iRes(a, c) into S also causes nonconformity.

To prove Theorem 7.3.5, we need the following (data) structure. This structure is also

used later in the proof of Theorem 7.3.9 and the next section.

Given a schema S= (A,C), let πim(S) = (A,C ′) be a schema obtained from S, where

C ′ is the set of all immediate constraints in C. The notation πim(S) holds the projection

of S on immediate constraints. Similarly, let πal(S) be the projection of S on alternating

constraints.

Given a schema S= (A,C), if πim(S) satisfies the conditions stated in Theorem 7.3.5,

then for each activity a∈A, denote s̄im(a) as a string constructed iteratively as follows: (i)

s̄im(a) = a initially, (ii) for the leftmost (or rightmost) activity u of s̄im(a), if there exists

v ∈A such that iPre(u, v)∈C (resp. iRes(u, v)∈C), then update s̄im(a) to be vs̄im(a)

(resp. s̄im(a)v), i.e., prepend (resp. append) s̄im(a) with v, and (iii) repeat step (ii) until

no more changes can be made. For each a∈A, s̄im(a) is unique due to Conditions (2) and

(3) of Theorem 7.3.5 and is finite due to Condition (1). Let sim(a) be the set of activities

that occur in s̄im(a).

Proof:Theorem 7.3.5 Let A,C,Eim
J , and Eim

I be as stated in the theorem.

(⇒) Condition (1) follows from Theorem 7.3.2 and Lemma 7.3.4. Suppose Condition (2)

does not hold. There exist distinct u, v, w∈A such that either (i) iRes(u, v) and iPre(v, w)

191

Satisfiability of Collaboration Chapter 7

are in C, or (ii) iPre(u, v) and iRes(v, w) are in C. Neither pair can be satisfied by a

string. Similarly, suppose Condition (3) does not hold. There exist distinct u, v, w∈A

such that either (i) iRes(u, v) and iRes(u,w) are in C, or (ii) iPre(u, v) and iPre(u,w)

are in C. Again, neither can be satisfied by a string.

(⇐) Suppose that A= {a1, a2, ..., an} where n= |A|. Notice that each activity in A

should occur at least once in a conforming string. It is straightforward to verify that the

string s̄im(a1)s̄im(a2)...s̄im(an) satisfies each constraint in C.

One remark here is that immediate constraints are expressible in the language LTL2,3krom,

whose satisfiability under infinite semantics is NP-Complete [65]. Consequently, satis-

fiability of immediate constraints under the infinite semantics (i.e., by an infinite sequence

of activities) is in class NP.

7.3.3 Ordering and immediate constraints

To obtain the syntactic conditions for deciding the conformance of ordering and immedi-

ate constraints, one possible candidate can be the condition that combines the character-

ization for both ordering and immediate constraints (i.e., the conjunction of conditions

of Theorems 7.3.2 and 7.3.5). However, such combined condition will fail in terms of the

“if” direction. Fortunately, the “if” direction does hold if a preprocessing is performed

based on the given ordering and immediate constraints. Thus in this subsection, we first

present a preprocessing upon a given schema and then show the syntactic conditions.

Lemma 7.3.7 Given a schema S= (A,C) and its causality graph (A,Eor
I , E

or
J , E

al
I , E

al
J ,

Eim
I , Eim

J), for each (u, v)∈Eim
I ∪Eim

J , if there exists w ∈ A−{u}, such that (v, w) ∈ Eor
J

(or Eor
I), then for each conforming string s of S, s satisfies aPre(u,w) (resp. aRes(u,w)).

192

Satisfiability of Collaboration Chapter 7

Lemma 7.3.7 is straightforward. Based on Lemma 7.3.7, we can have the following

preprocessing given a schema.

Definition: Given a schema S= (A,C), the immediate-plus (or im+) schema of S is a

schema (A,C ′) constructed as follows: 1. Initially C ′ = C. 2. Repeat the following steps

while C ′ is changed: for each distinct u, v, w ∈ A, if (1) iPre(u, v) or iRes(u, v) is in C ′

and (2) Pre(v, w) ∈ C ′ (or Res(v, w) ∈ C ′), then add Pre(u,w) (resp. Res(u,w) to C ′.

It is easy to see that for each given schema, its corresponding im+schema is unique.

The following is a consequence of Lemma 7.3.7.

Corollary 7.3.8 A schema is conformable iff its im+schema is conformable.

Before presenting syntactical characterization for schemas with ordering and imme-

diate constraints, we introduce the following notations for reading convenience. Let x, y,

z be one of ‘or’, ‘al’, ‘im’; we denote Ex
I∪E

y
I as Ex∪ y

I and use similar notations Ex∪ y∪ z
I ,

Ex∪ y
J , and Ex∪ y∪ z

J .

Theorem 7.3.9 Given a schema S= (A,C) where C contains only ordering and imme-

diate constraints, the im+schema S ′ of S, and the causality graph (A,Eor
I , E

or
J , E

im
I , Eim

J)

of S ′, S is conformable iff the following conditions all hold.

(1). (A,Eor∪ im
I) and (A,Eor∪ im

J) are both acyclic,

(2). for each (u, v)∈Eim
I (or Eim

J), there does not exist w∈A such that w 6=u and (v, w) ∈

Eim
J (resp. Eim

I), and

(3). for each (u, v)∈Eim
I (or Eim

J), there does not exist w∈A such that w 6= v and (u,w) ∈

Eim
I (resp. Eim

J).

193

Satisfiability of Collaboration Chapter 7

Example 7.3.10 A schema S has 3 activities, a, b, c, and 4 constraints iRes(a, c), iRes(b,

c), Pre(c, a), and Pre(c, b). Let S ′ be the im+schema of S. Due to iRes(a, c) and Pre(c, b),

S ′ contains Pre(a, b). Similarly, due to iRes(b, c) and Pre(c, a), S ′ also contains Pre(b, a).

Obviously Pre(a, b) and Pre(b, a) lead to non-conformability of S.

Note that conditions (1) – (3) will hold if they are applied on S directly instead of S ′.

Therefore, a preprocessing to obtain an im+is necessary when determining conformability.

Note that the “only if” direction of Theorem 7.3.9 is a direct result based on Theorems

7.3.2, 7.3.5, and Corollary 7.3.8. Therefore, in the remainder of this subsection, we focus

on the proof of the “if” direction.

To discuss the “if” direction of Theorem 7.3.9, we first describe an algorithm to con-

struct a string. And it will be proved in Lemma 7.3.11 that if a schema satisfies all

conditions in Theorem 7.3.9, the string constructed by this algorithm satisfies all con-

straints in the schema.

Let S be a schema, S ′ the im+schema of S, and (A,Eor
I , E

or
J , E

im
I , Eim

J) be the causality

graph of S ′ as stated in Theorem 7.3.9. Suppose further that S satisfies all conditions in

Theorem 7.3.9. We construct a string according to Alg. 5.

The main idea of Alg. 5 is similar to the construction in the proofs of Theorems 7.3.2

and 7.3.5, i.e., to rely on a topological order of both the “precedence” and “response”

directions (to satisfy the ordering constraints); then replace each activity a by s̄im(a)

(in order to satisfy the immediate constraints). A subtlety is that if Alg. 5 is directly

applied an arbitrary schema with only ordering and immediate constraints instead of its

im+schema version, then the constructed string may not be conformable as suggested in

Example 7.3.10.

194

Satisfiability of Collaboration Chapter 7

Algorithm 5

Input: A causality graph (A,Eor
I , E

or
J , E

im
I , Eim

J) of an im+schema of a schema S that
satisfies all conditions in Theorem 7.3.9

Output: A finite string that conforms to S

A. Let “a1a2...an” and “b1b2...bn” be topological sequences of (A,Eor∪ im
I) and

(A,Eor∪ im
J), resp.

B. Return the string “s̄im(bn)...s̄im(b1)s̄im(a1)...s̄im(an)”.

Lemma 7.3.11 The “if” direction of Theorem 7.3.9 holds.

Proof: Let S, S ′A,C,Eor
I , E

or
J , E

im
I , and Eim

J be as stated in Theorem 7.3.9 and S ′ satisfies

Conditions (1)–(3). The proof is to show that the output string of Alg. 5 conforms to S.

This is done by an analysis of Alg. 5 on input (A,Eor
I , E

or
J , E

im
I , Eim

J).

Based on Step B of Alg. 5, it is straightforward to prove the returned string satisfies

every immediate constraint in C. Therefore in the remainder of this proof, we focus on

ordering constraints only.

According to the similar techniques used in the proof of Theorem 7.3.2, The string

s constructed at Step A of Alg. 5 satisfies every ordering constraint in C. Suppose the

string s′ constructed at Step B does not satisfy every ordering constraint. Without loss of

generality, suppose s′ violates Res(a, b), where a, b ∈ A (the case Pre(a, b) is symmetric).

As s |= Pre(a, b) and s′ is obtained by replacing each activity d in s by s̄im(d), there

must exist c∈A such that after some occurrence ω of c in s, there is no occurrence of b,

and a∈ sim(c). However, as a∈ sim(c) and (a, b)∈Eor
I , we have (c, b)∈Eor

I according to

Lemma 7.3.7. Thus, in s, there must exist an occurrence of b after ω according to the

topological order restricted in Step A, a contradiction. Hence, s′ satisfies each ordering

constraint in C.

Since each activity occurs in s, the lemma holds.

195

Satisfiability of Collaboration Chapter 7

7.4 Incorporating Alternating Constraints

This section focuses on syntactical conditions for conformance of schemas that contain

alternating constraints (and possibly other constraints).

We begin with defining “pre-processing” for schemas such that the original schema is

conformable if and only if the schema after the pre-processing also is.

Given a set of activities A, an activity a, and a string s over A, denote by #a(s) the

number of occurrences of a in s.

Lemma 7.4.1 Given a set A of activities, a string s over A, and u, v ∈ A, if s satisfies

aRes(u, v) or aPre(u, v), then #u(s) 6 #v(s).

Proof: Suppose s satisfies aRes(u, v) (aPre(u, v) is similar). If u does not occur in s,

#u(s) = 0 and the lemma holds. Now assume that u occurs in s at least once. Let i be

the least such that s[i] =u (the first occurrence of u), and σ be the suffix of s such that

s= s[1]···s[i−1]σ. Clearly, #u(s) = #u(σ) and σ also satisfies aRes(u, v). If #u(σ)>#v(σ),

either the last occurrence of u in σ is not followed by any occurrences of v or there are two

occurrences of u in σ having no occurrences of v in-between, contradicting to σ satisfying

aRes(u, v). Thus, #u(s) = #u(σ)6#v(σ)6#v(s).

Lemma 7.4.2 Given a schema S= (A,C) and its causality graph (A,Eor
I , E

or
J , E

al
I , E

al
J ,

Eim
I , Eim

J), for each (u, v)∈Eal
I (or Eal

J), if u and v are on a common cycle in (A,Eal
I ∪Eal

J),

then for each conforming string s of S, s satisfies aPre(v, u) (resp. aRes(v, u)).

Proof: Let S= (A,C), Eal
I , E

al
J , s, u, and v be as stated in the lemma. We consider the

case when (u, v)∈Eal
I (the argument for Eal

J is similar). The proof consists of two steps:

We first show that s |= Pre(v, u), and then prove that u and v are “alternating” in s.

196

Satisfiability of Collaboration Chapter 7

s |= Pre(v, u) Due to (u, v)∈Eal
I , s |= aRes(u, v). Suppose s does not satisfy Pre(v, u).

There exists n∈ [1..len(s)] such that s[n] = v and for each i∈ [1..(n−1)], s[i] 6=u. There-

fore, by removing s[n] from s, s′= s[1]s[2]...s[n−1]s[n+1]...s[len(s)] still satisfies aRes(u, v). By

Lemma 7.4.1, #u(s
′)6#v(s

′). Since s[n] = v, #u(s)<#v(s). As u and v are on some

cycle in (A,Eal
I ∪Eal

J), by Lemma 7.4.1, #u(s) = #v(s), a contradiction.

u and v are alternating It suffices to prove that between two occurrences of v in

s, there exists an occurrence of u. Suppose that this is not the case, i.e., there ex-

ist m,n∈ [1..len(s)], such that m<n, s[m] = s[n] = v, and s[i] 6=u for each m<i<n. By

removing s[n] from s, s′= s[1]s[2]...s[n−1]s[n+1]...s[len(s)] still satisfies aRes(u, v). A contra-

diction can be derived using an analysis similar to the first step.

Definition: Given a schema S= (A,C) and its causality graph (A,Eor
I , E

or
J , E

al
I , E

al
J ,

Eim
I , Eim

J), the alternating-plus (or al+) schema of S is a schema (A,C ′) where

C ′ = C ∪ {aPre(v, u) | (u, v)∈Eal
I , u and v are on a common cycle in (A,Eal

I ∪Eal
J)}

∪ {aRes(v, u) | (u, v)∈Eal
J , u and v are on a common cycle in (A,Eal

I ∪Eal
J)}

It is easy to see that for each given schema, its corresponding al+schema is unique.

The following is a consequence of Lemma 7.4.2.

Corollary 7.4.3 A schema S is conformable iff its al+schema is conformable.

7.4.1 Ordering and alternating constraints

Theorem 7.4.4 below addresses the case when only ordering and alternating constraints

are used in schemas.

197

Satisfiability of Collaboration Chapter 7

eba cd
Res

Res PreaRes aRes

aPre

Figure 7.2: An al+schema example

Theorem 7.4.4 Given a schema S that only contains ordering and alternating con-

straints, let S ′= (A,C) be the al+schema of S and (A,Eor
I , E

or
J , E

al
I , E

al
J) the causality

graph of S ′. S is conformable iff both (A,Eor∪ al
I) and (A,Eor∪ al

J) are acyclic.

Example 7.4.5 Consider a schema with 5 activities, a, b, c, d, e, and constraints in the

form of a graph (A,Eor∪ al
I ∪ Eor∪ al

J) as shown in Fig. 7.2, where the edge labels denote

constraint types. Note that its al+schema is itself.

Note that both conditions in Theorem 7.4.4 are satisfied, thus the schema is con-

formable. A conforming string is dcebadce. If we add the constraint aPre(d, b) into the

schema, it is no longer conformable since bcd forms a cycle in (A,Eor∪ al
J), forcing the

subsequence bcd to occur infinitely many times.

The “only if” direction of Theorem 7.4.4 directly follows from Theorem 7.3.2, Lemma

7.3.4, and Corollary 7.4.3.

In the remainder of this subsection, we focus on the “if” direction, which is a bit

involved. The main idea is to construct an algorithm (Alg. 6) that produces a conforming

string of the input al+schema (Lemma 7.4.12). A key step of the algorithm is to first

create a topological order of precedence constraints and that of response constraints, then

for each violated alternating constraint, insert a string to fix the violation.

Example 7.4.6 Continue on Example 7.4.5 with the schema in Fig. 7.2. The schema

198

Satisfiability of Collaboration Chapter 7

Algorithm 6

Input: The causality graph (A,Eor
I , E

or
J , E

al
I , E

al
J) of an al+schema S satisfying conditions

of Theorem 7.4.4
Output: A string that conforms to S

A. Let sI = a1a2...an be a topological order of (A,Eor∪ al
I) and sJ = bnbn−1...b1 a re-

versed topological order of (A,Eor∪ al
J).

B. For each a∈A, define r(a) as the set of nodes inA reachable from a through edges in
Eal

I ∪Eal
J (i.e., each b∈r(a) is either a itself or reachable from a in (A,Eal

I ∪Eal
J)),

and denote r̄I(a) and r̄J(a) the two enumerations of r(a) such that r̄I(a) and
r̄J(a) are subsequences of sI and sJ, resp.

C. Let Vns⊆C be the set of alternating constraints that are not satisfied by sJsI,
and Ens⊆Vns×Vns such that an edge (X(a, b), Y (c, d)) is in Ens iff c∈r(b), where
X, Y ∈{aRes, aPre} and a, b, c, d∈A. Denote v̄ns to be a topological order of
(Vns, Ens). (It will be shown in Lemma 7.4.11 that (Vns, Ens) is acyclic.)

D. For each edge aRes(u, v) (or aPre(u, v)) in Vns in the order of v̄ns, let sJ = sJr̄J(v)
(resp. sI = r̄I(v)sI).

E. Return sJsI.

satisfies all conditions in Theorem 7.4.4. We now demonstrate a run of Alg. 6 on this

schema.

A. sI = bceda is a topological sequence of (A,Eor∪ al
I) where Eor∪ al

I = {(b, a), (b, d), (b,

e), (c, e)} and sJ = edcba is a reversed topological sequence of (A,Eor∪ al
J) where

Eor∪ al
J = {(a, b), (b, c), (c, d)}.

B. Eal
I∪Eal

J = {(a, b), (b, c), (b, a), (c, e)}, r(a) = {a, b, c, e}. Hence r̄I(a) = bcea and r̄J(a)

= ecba (subsequences of sI and sJ, resp.). Similarly, r̄I(b) = bcea, r̄J(b) = ecba,

r̄I(c) = ce, r̄J(c) = ec, r̄I(d) = r̄J(d) = d, and r̄I(e) = r̄J(e) = e.

C. Now sJsI = edcbabceda violates aRes(c, e) and aPre(b, c). Thus Vns = {aRes(c, e),

aPre(b, c)}. Since c∈r(c), Ens = {(aPre(b, c), aRes(c, e))}. Note that (Vns, Ens) is

acyclic. v̄ns = aPre(b, c) aRes(c, e).

D. According to v̄ns, aPre(b, c) is considered first. We replace sJ by sJr̄J(c) = edcbaec.

Now sJsI = edcbaecbceda and satisfies aPre(b, c), but still violates aRes(c, e). We then

replace sI by r̄I(e)sI = ebceda. Now, sJsI = edcbaecebceda and satisfies aRes(c, e).

199

Satisfiability of Collaboration Chapter 7

E. The final result for sJsI is edcbaecebceda.

It can be easily verified that the resulting string edcbaecebceda satisfies every constraint

in the input schema and contains every activity.

Lemma 7.4.7 Let S= (A,C) be an al+schema that satisfies all conditions in Theo-

rem 7.4.4 and GS = (A,Eor
I , E

or
J , E

al
I , E

al
J) its casualty graph, sJ and sI the strings con-

structed in Step A of Alg. 6 on GS. Then for each (possibly empty) string τ over A, sJτsI

satisfies each ordering constraint in C.

Proof: Let A, c, τ, Eal
I , E

or
I , sJ, and sI be as stated in the lemma. If Res(u, v)∈C, we

prove that sJτsI satisfies Res(u, v) (the Pre(u, v) case is similar).

Since sI is a topological sequence of (A,Eor∪ al
I) and Eor

I ⊆Eor∪ al
I , sI is also a topo-

logical sequence of (A,Eor
I). Thus, sI satisfies Res(u, v). And it is easy to verify that

sJτsI satisfies Res(u, v), since no u in sJτ can occur after the v in sI.

Corollary 7.4.8 Let S be an al+schema that satisfies all conditions in Theorem 7.4.4

and GS its casualty graph. The string returned by Alg. 6 on input GS satisfies every

ordering constraint in S.

Proof: Let S= (A,C) and GS be as stated in the Corollary and let sJ and sI be the

strings constructed in Step A of Alg. 6 on GS. Based on Lemma 7.4.7, for each string

τ over A, sJτsI satisfies each ordering constraint in C. Moreover, according to Step D

of Alg. 6, the returned string of Alg. 6 will be of form sJtsI, where t is a string over A;

therefore, the returned string of Alg. 6 on GS satisfies every ordering constraint in C.

We now turn to alternating constraints. Given a set A of activities, c an alternating

constraint of form aRes(u, v) (or aPre(u, v)) where u, v ∈A, and s some nonempty string

200

Satisfiability of Collaboration Chapter 7

over A that satisfies Res(u, v) (resp. Pre(u, v)) but not c. A pair of distinct integers

16 i < j6 len(s) is violating in s wrt c if s[i] = s[j] =u and for each i < k < j, s[k] 6= v (no

occurrences of v between two occurrences of u).

Lemma 7.4.9 Let A be a set of activities, c an alternating constraint of form aRes(u, v)

(or aPre(u, v)) where u, v ∈A, and s a string overA that satisfies Res(u, v) (resp. Pre(u, v))

and contains exactly one violating pair (µ1, µ2) wrt c. If s= s1s2, µ1 6 len(s1)<µ2, and

τ is a string over A containing at least one occurrence of v but no occurrences of u, then

s1τs2 |= c.

Proof: The proof is straightforward. We only consider the case when c is Res(u, v);

the case Pre(u, v) is symmetric. Since τ does not contain u, there is no occurrence of

u between µ1 and µ2+len(τ) in s1τs2. Moreover, since τ contains an occurrence of v,

(µ1, µ2 + len(τ)) is not a violating pair in s1τs2 wrt c. Due to the assumption that (µ1, µ2)

is the only violating pair in s= s1s2, s1τs2 contains no violating pair wrt c. Further, as

s= s1s2 satisfies Res(u, v) and τ contains no u, s1τs2 satisfies Res(u, v); and thus satisfies

c= aRes(u, v).

Lemma 7.4.10 Let S= (A,C) be an al+schema that satisfies conditions in Theorem 7.4.4,

GS the casualty graph of S, sJ and sI the strings constructed in Step A of Alg. 6 on GS,

and r(a) (where a∈A) the set of nodes constructed in Step B of Alg. 6 on GS. Then, for

each aRes(u, v) or aPre(u, v) in C that is not satisfied by sJsI, u /∈r(v).

Proof: Let S= (A,C),GS = (A,Eor
I , E

or
J , E

al
I , E

al
J), sJ, sI, and r(a) (where a ∈ A) be as

stated in the lemma. We argue that for each aRes(u, v)∈C that is not satisfied by sJsI,

u /∈r(v) (the aPre(u, v) case is similar).

201

Satisfiability of Collaboration Chapter 7

Suppose that u∈r(v); together with (u, v)∈Eal
I (due to aRes(u, v)), we have u and v

in a common cycle in (A,Eal
I ∪Eal

J). Thus aPre(v, u) is in C since S is an al+schema; and

therefore, u occurs before v in sJ. As u occurs before v in sI based on the topological

order, sJsI satisfies aRes(u, v), a contradiction.

Lemma 7.4.11 Let S= (A,C) be an al+schema that satisfies all conditions in Theo-

rem 7.4.4, GS the casualty graph of S, r(a) (where a∈A) the set of nodes constructed in

Step B of Alg. 6 on GS, and (Vns, Ens) the graph constructed in Step C of Alg. 6 on GS.

Then, (Vns, Ens) is acyclic.

Proof: Let S= (A,C),GS = (A,Eor
I , E

or
J , E

al
I , E

al
J), Vns, Ens, and r(a) (where a∈A) be as

stated in the lemma, sJ and sI the strings constructed in Step A of Alg. 6 on GS. Note

that each constraint in Vns is not satisfied by sJsI according to Step C Alg. 6.

Suppose that (Vns, Ens) is not acyclic. Then, there exist X(a, b), Y (c, d)∈Vns, where

X, Y ∈{aRes, aPre} and a, b, c, d∈A, such that c∈r(b) and a∈r(d). Thus, there is a

path from b to c and there is a path from d to a in (A,Eal
I ∪Eal

J). As a result, a, b, c,

and d are on a common cycle in (A,Eal
I ∪Eal

J). Therefore, a∈r(b) and c∈r(d). Since

X(a, b) and Y (c, d) are not satisfied by sJsI, according to Lemma 7.4.10, a /∈r(b) and

c /∈r(d), a contradiction.

Lemma 7.4.12 The “if” direction of Theorem 7.4.4 holds.

Proof: According to Corollary 7.4.8, all ordering constraints have been taken care of;

thus, we only need to focus on alternating constraints. The main idea is to prove by

induction upon each iteration in Step D of Alg. 6 that each iteration will “fix” a violation

202

Satisfiability of Collaboration Chapter 7

of constraint and the fix of each violated constraint will not make other satisfied or

violated constraints “become worse”.

Let S, S ′= (A,C) and GS′ = (A,Eor
I , E

or
J , E

al
I , E

al
J) be as stated in Theorem 7.4.4. Our

goal is to show that if all conditions in the theorem hold, the string s constructed by

Alg. 6 on input GS′ satisfies every constraint in C.

Corollary 7.4.8 states that s satisfies each ordering constraint in C. We now only

focus on alternating constraints in C.

Combining Corollary 7.4.8 and Lemma 7.3.4, for each alternating constraint aRes(u, v)

or aPre(u, v) (where u, v ∈ A), s satisfies Res(u, v) or Pre(u, v) (resp.). What remains to

prove is that between each two occurrences of u in s, there exists an occurrence of v.

Let r(a), r̄I(a), r̄J(a) (where a ∈ A), v̄ns sJ, and sI, be stated in Alg. 6. We show

by induction upon each iteration in Step D that each iteration will “fix” a violation of

constraint and the fix of each violated constraint will not make other satisfied or violated

constraints “become worse”.

For notation convenience, for each i > 0, denote v̄ns(i) to be the ith constraint in v̄ns

(i.e., the constraint to be processed during the ith iteration). Denote s0
J and s0

I as the

sJ and sI respectively right before the first iteration. And for each i > 0, denote siJ

and siI to be the constructed sJ and sI respectively right after the ith iteration (i > 0).

Formally, we prove by induction that the following three properties should hold wrt the

ith iteration:

(i). For each j ∈ [1..i], siJs
i
I satisfies v̄ns(j),

(ii). If s0
Js

0
I satisfies an alternating constraint c in C, then both siJ and siI satisfies c.

(iii). For each alternating constraint c ∈ C, there is at most one violating pair (µ1, µ2)

in siJs
i
I wrt c, where 1 6 µ1 6 len(siJ) < µ2 6 len(siJs

i
I).

Basis: Consider the case when i = 0.

203

Satisfiability of Collaboration Chapter 7

• Correctness of property (i): Self-explanatory (i.e., s0
Js

0
I satisfies nothing in v̄ns)

• Correctness of property (ii): This property is easy to verify for i = 0. Since each

activity in A occurs exactly once in both s0
I and s0

J, the only way for an alternating

constraint to be satisfied by s0
Js

0
I is to be satisfied by both s0

I and s0
J.

• Correctness of property (iii): Since each activity in A occurs exactly once in both

s0
I and s0

J, each alternating constraint that is not satisfied by s0
Js

0
I can have at most one

violating pair, where the two corresponding activities occur in s0
I and s0

J respectively. For

those alternating constraints that are satisfied by s0
Js

0
I, apparently there is no violating

pairs. Therefore, property (iii) holds for i = 0.

Hypothesis: Suppose that properties (i), (ii), and (iii) hold wrt the (i− 1)th itera-

tion, where i− 1 > 0.

Induction: Consider the ith iteration. Suppose that v̄ns(i) = aRes(u, v), where

u, v ∈ A (for aPre(u, v) ∈ C, the analysis is similar).

• Correctness of property (i): We separate this property into two parts: (A) siJs
i
I

satisfies v̄ns(i) = aRes(u, v), and (B) For each j ∈ [1..(i − 1)], siJs
i
I satisfies v̄ns(j); and

prove each of them in the following.

- Part (A): According to Step C in Alg. 6, s0
Js

0
I does not satisfy aRes(u, v). Therefore,

based on Lemma 7.4.10, u /∈ r(v); thus, r̄I(v) does not contain u (where apparently r̄I(v)

contains v).

Two cases should be addressed: (1) si−1
J si−1

I does not satisfy aRes(u, v) and (2)

si−1
J si−1

I satisfies aRes(u, v).

(1). Consider when si−1
J si−1

I does not satisfy aRes(u, v). Since the only violating pair

(µ1, µ2) in si−1
J si−1

I wrt aRes(u, v) satisfies 1 6 µ1 6 len(si−1
J) < µ2 6 len(si−1

J si−1
I)

according to the property (iii) in the hypothesis, based on Lemma 7.4.9, siJs
i
I =

si−1
J r̄I(v)si−1

I satisfies aRes(u, v).

204

Satisfiability of Collaboration Chapter 7

(2). Consider when si−1
J si−1

I satisfies aRes(u, v). Due to the fact that r̄I(v) does not

contain u, it is easy to verify that siJs
i
I = si−1

J r̄I(v)si−1
I satisfies aRes(u, v).

As a result, for both cases (1) and (2), Part (A) holds.

- Part (B): For each j ∈ [1..(i−1)], suppose v̄ns(j) is aRes(x, y), where x, y ∈ A. (For

aPre(x, y), the analysis is similar).

Let Vns and Ens be as stated in Step C of Alg. 6 on GS. Recall that v̄ns(i) is aRes(u, v);

it can be shown that x /∈ r(v) (otherwise there is an edge from aRes(u, v) to aRes(x, y)

in graph (Vns, Ens), which contradicts the order of v̄ns according to Step C of Alg. 6).

Therefore, x does not occur in r̄I(v). Since si−1
J si−1

I satisfies aRes(x, y) according to

the property (i) in the hypothesis, siJs
i
I = si−1

J r̄I(v)si−1
I satisfies aRes(x, y) as well.

Therefore, Part (B) holds.

In summary, property (i) holds.

• Correctness of property (ii): For each aRes(x, y) in C, where x, y ∈ C, if s0
Js

0
I

satisfies aRes(x, y). We prove that both siJ and siI satisfy aRes(x, y) as well. (For case

aPre(x, y), the proof is similar).

Since s0
Js

0
I satisfies aRes(x, y), x occur before y in both s0

J and s0
I. Thus, for each

a ∈ A, either r(a) contains (1) only y but not x, (2) neither x nor y, or (3) both x and

y, where x occurs before y in both r̄I(a) and r̄J(b) due to the fact that r̄I(a) and r̄J(b)

are subsequences of s0
J and s0

I respectively. Note that r̄I(v) cannot only contain x but

not y, since y is reachable from x in (A,Eal
I ∪ Eal

J).

Moreover, based on the property (ii) in the hypothesis, both si−1
J and si−1

I satisfies

aRes(x, y). Then siJ = si−1
J satisfies aRes(x, y). For siJ = r̄I(v)si−1

J , it can be easily

verified that in one of the following three cases, siJ = r̄I(v)si−1
J satisfies aRes(x, y): (1)

r̄I(v) contains only y but not x, (2) r̄I(v) contains neither x nor y, or r̄I(v) contains

both x and y, where x occurs before y in r̄I(v). Thus property (ii) holds.

205

Satisfiability of Collaboration Chapter 7

• Correctness of property (iii): Consider each alternating constraint c in C. If siJs
i
I

satisfies c, apparently there is violating pair in siJs
i
I wrt c (resp. aRes(x, y)); and thus

property (iii) holds. Thus, in the following we assume that siJs
i
I does not satisfies c.

Before showing the correctness of property (iii), we need to make an important claim

that will be used in the remainder of this proof. Let c be aRes(x, y) or aPre(x, y) in

C, where x, y ∈ A. Now consider r(v); recall that according to Step B in Alg. 6, r(v)

contains all the reachable nodes in (A,Eal
I ∪ Eal

J). Therefore, r̄I(v) can contain: (1) y

but not x, (2) neither x nor y, or (3) both x and y. Note that r̄I(v) cannot only contain

x but not y, since y is reachable from x in (A,Eal
I ∪ Eal

J). Consider the case (3) when x

and y both occur in r̄I(v); two cases can be obtained:

(a). s0
Js

0
I does not satisfy aRes(x, y); since the order of r̄I(v) is consistent with the order

of s0
I and x occurs before y in sI due to (x, y) ∈ Eal

I , x occurs before y in r̄I(v).

(b). s0
Js

0
I does not satisfy aPre(x, y); Since (x, y) ∈ Eal

J , y occurs before x in s0
J; therefore,

x must occur before y in s0
I in order to make s0

Js
0
I not satisfying aPre(x, y). As a

result, x occurs before y in r̄I(v).

Thus, in both cases (a) and (b), if x and y both occur in r̄I(v), x occurs before y.

Claim: r̄I(v) contains either

(1) y but not x (2) neither x nor y, or
(3) both x and y, where x occurs before y in r̄I(v)

Now we continue the proof. Two cases are to be addressed: (A) si−1
J si−1

I does not

satisfy c, and (B) si−1
J si−1

I satisfies c.

- Case (A): si−1
J si−1

I does not satisfy c. According to the property (ii) in the hypothesis,

if s0
Js

0
I does satisfies an alternating constraint c′ ∈ C, then both si−1

J and si−1
I satisfies

c′ and thus si−1
J si−1

I satisfies c′. As a result, if si−1
J si−1

I does not satisfy c, s0
Js

0
I does not

satisfy c.

206

Satisfiability of Collaboration Chapter 7

Based on the property (iii) in the hypothesis, there is exactly one violating pair (η1, η2)

in si−1
J si−1

I wrt c, where 1 6 η1 6 len(si−1
J) < η2 6 len(si−1

I). For each case (1), (2), or

(3) stated in the claim above, we have the following analysis:

(1). r̄I(v) contains y but not x; according to Lemma 7.4.9, siJs
i
I = si−1

J r̄I(v)si−1
I satisfies

aRes(x, y) or aPre(x, y).

(2). r̄I(v) contains neither x nor y; since for each integer j ranging from η1 + 1 to

η2 + len(r̄I(v)) − 1, (siJs
i
I)[j] = (si−1

J r̄I(v)si−1
I)[j] does not equal x or y, (η1, η2 +

len(r̄I(v))) is the only violating pair in siJs
i
I wrt aRes(x, y) or aPre(x, y). And Note

that 1 6 η1 6 len(siJ) < η2 + len(r̄I(v)) 6 len(siJs
i
I).

(3). r̄I(v) contains both x and y, where x occurs before y in r̄I(v); suppose (r̄I(v))[m] =

x and (r̄I(v))[n] = y, where 1 6 m < n 6 len(r̄I(v)). Then in siJs
i
I = si−1

J r̄I(v)si−1
I ,

(η1, η2 + len(r̄I(v))) and (len(siJ) + m, η2 + len(r̄I(v))) are not violating pairs wrt

aRes(x, y) or aPre(x, y), since η1 < len(siJ) + m < len(siJ) + n < η2 + len(r̄I(v))

and (siJs
i
I)[len(siJ)+n] = y. However, (η1, len(siJ) + m) is a violating pair in siJs

i
I wrt

aRes(x, y) or aPre(x, y), since for each integer j ranging from η1 to len(siJ) + m,

(siJs
i
I)[j] 6= y. Therefore (η1, len(siJ) + m) is the only violating pair in siJs

i
I wrt

aRes(x, y) or aPre(x, y). And Note that 1 6 η1 6 len(siJ) < len(siJ)+m 6 len(siJs
i
I).

In all three cases (1), (2), and (3), property (iii) for Case (A) holds.

- Case (B): si−1
J si−1

I satisfies c. For each case (1), (2), or (3) in the claim above, we

have the following analysis:

(1). r̄I(v) contains y but not x; then siJs
i
I = si−1

J r̄I(v)si−1
I satisfies aRes(x, y) or

aPre(x, y).

(2). r̄I(v) contains neither x nor y; then siJs
i
I = si−1

J r̄I(v)si−1
I satisfies aRes(x, y) or

aPre(x, y).

(3). r̄I(v) contains both x and y, where x occurs before y in r̄I(v); suppose (r̄I(v))[m]

207

Satisfiability of Collaboration Chapter 7

= x and (r̄I(v))[n] = y, where 1 6 m < n 6 len(r̄I(v)). Further, let (si−1
J)[p] = x

and (si−1
I)[q] = x, where 1 6 p 6 len(si−1

J) and 1 6 q 6 len(si−1
I), such that for

each j ranging from p to len(si−1
J), (si−1

J)[j] 6= x and each k ranging from 1 to q,

(si−1
I)[k] 6= x. Thus in siJs

i
I = si−1

J r̄I(v)si−1
I , (len(siJ) +m, len(siJ) + len(r̄I(v)) + q)

is not a violating pair wrt aRes(x, y) or aPre(x, y) since len(siJ)+m < len(siJ)+n <

len(siJ) + len(r̄I(v)) + q and (siJs
i
I)[len(siJ)+n] = y. Thus, only (p, len(siJ) + m) may

or may not be a violating pair in siJs
i
I wrt aRes(x, y) or aPre(x, y). And Note that

1 6 p 6 len(siJ) < len(siJ) +m 6 len(siJs
i
I).

In all three cases (1), (2), and (3), property (iii) for Case (B) holds. In summary,

property (iii) holds.

According the above induction, properties (i), (ii), and (iii) are valid. Let s be the

string constructed based on Alg. 6 on GS. Because of property (i), if an alternating

constraint is not satisfied by s0
Js

0
I, it is satisfied by s; and as a corollary of property

(ii), if an alternating constraint is satisfied by s0
Js

0
I, it is also satisfied by s. Therefore,

after all the iterations finish, s satisfies each alternating constraint in C. (Note that

the correctness of property (i) is based on property (iii), thus property (iii) cannot be

omitted).

As mentioned at the beginning of this proof that s satisfies each ordering constraint

in C, together with that each activity occurs in s at least once, s conforms S ′. Based on

Corollary 7.4.3, s conforms S.

7.4.2 Immediate and alternating constraints

Before discussing conformity conditions for schemas with alternating and immediate con-

straints, we introduce a “pre-processing” for the given al+schema such that the original

al+schema is conformable if and only if after the pre-processing, the schema is con-

208

Satisfiability of Collaboration Chapter 7

formable.

Lemma 7.4.13 Given an al+schema S= (A,C) that only contains alternating and im-

mediate constraints, the causality graph (A,Eal
I , E

al
J , E

im
I , Eim

J) of S, and two activities

u, v ∈ A such that there is a path from v to u in the graph (A,Eal∪ im
I ∪ Eal∪ im

J), then

(1) iRes(u, v)∈C implies if a string s satisfies iRes(u, v), then s |= iPre(v, u), and (2)

iPre(u, v)∈C implies if a string s satisfies iPre(u, v), then s |= iRes(v, u)

Proof: Let S,A,C, s, u, v, Eal
I , E

al
J , E

im
I , and Eim

J be as stated in the lemma. We give a

proof for (1) since (2) is similar. We show that if s satisfies iRes(u, v), then s satisfies

iPre(v, u). Suppose that iRes(u, v) is satisfied by s but iPre(v, u) is not.

Since s violates iPre(v, u), there exists a j ∈ [2..len(s)], such that s[j] = v and s[j−1] 6= u.

However, s satisfies iRes(u, v), for each i ∈ [1..(len(s)−1)], if s[i] =u, then s[i+1] = v.

Hence, #v(s)>#u(s). By assumption, there is a path from v to u in (A,Eal∪ im
I ∪Eal∪ im

J)

and (u, v)∈Eim
I , thus u and v are on a common cycle in (A,Eal∪ im

I ∪Eal∪ im
J), Lemmas

7.3.4 and 7.4.1 imply #u(s) = #v(s), a contradiction.

Let u and v be as stated in Lemma 7.4.13. Note that if u and v satisfy the condition

in the lemma, u and v will always “occur together” in a conforming string as if they

were one activity. With such an observation, we can then pre-process a given schema by

“collapsing” such nodes according to in Lemma 7.4.13. However, two nodes satisfying

Lemma 7.4.13 does not necessarily mean they are “safe” to be collapsed. For example, if

nodes u and v in some schema are eligible to be combined based on Lemma 7.4.13 and

there is a node w in the same schema that has constraint iRes(w, u). The collapsing of u

and v implies that iRes(w, v) is also a constraint that should be satisfied. According to

Theorem 7.3.5, the schema is not satisfiable. Thus, in the following definition, we define

when two nodes are “safe” to collapse (i.e., “collapsable”).

209

Satisfiability of Collaboration Chapter 7

u1 u2 u3

e
b

a

c

d
aPre

aRes iPre
f

Figure 7.3: A collapsed schema example

Definition: Given an al+schema S= (A,C) that contains only alternating and imme-

diate constraints, and its causality graph (A,Eal
I , E

al
J , E

im
I , Eim

J), S is collapsable if S

satisfies all of the following.

(1). (A,Eal∪ im
I) and (A,Eal∪ im

J) are acyclic,

(2). for each (u, v)∈Eim
I (or Eim

J), there does not exist w∈A such that w 6=u and (v, w) ∈

Eim
J (resp. Eim

I),

(3). for each (u, v)∈Eim
I (or Eim

J), there does not exist w∈A such that w 6= v and (u,w) ∈

Eim
I (resp. Eim

J), and

(4). for each distinct u, v, w∈A, if (u,w), (v, w)∈Eim
I or (u,w), (v, w)∈Eim

J , then there

is no path from w to either u or v in graph (A,Eal∪ im
I ∪Eal∪ im

J).

Note that Conditions (1)–(3) in the above definition are similar to the characterization

stated Theorem 7.3.9.

Example 7.4.14 Consider an al+schema with 6 activities, a, b, c, d, e, f , and the con-

straints shown in Fig. 7.3 as (A,Eal∪ im
I ∪Eal∪ im

J) where the edge labels denote types of

constraints. (Ignore the dashed boxes labeled u1,u2,u3 for now.) The schema is col-

lapsable. However, if constraint iPre(a, c) is added to the schema, Condition (4) (in the

collapsability definition) is violated and thus the new schema is not collapsable, since

(f, c), (a, c)∈Eim
J and there is a path cda from c to a in (A,Eal∪ im

I ∪ Eal∪ im
J).

210

Satisfiability of Collaboration Chapter 7

Lemma 7.4.15 Given an al+schema S that contains only alternating and immediate

constraints, S is conformable only if S is collapsable.

Proof: Let S= (A,C) be as stated in the lemma. Suppose (A,Eal
I , E

al
J , E

im
I , Eim

J) is the

causality graph of S. The goal is to show that if S is conformable, then Conditions

(1)–(4) (in the definition of collapsability) all hold wrt S.

According to Lemma 7.3.2 and Lemma 7.3.4, Condition (1) hold. According to

Lemma 7.3.5 and Lemma 7.3.4, Conditions (2) and (3) hold.

Now we focus on Condition (4). Suppose that Conditions (1)–(3) hold while Condition

(4) fails. Assume that s is a conformable string of S. Then assume that there exist

distinct u, v, w ∈ A, such that (u, v) ∈ Eim
I (or Eim

J), u and v are on the same cycle in

(A,Eal∪ im
I ∪ Eal∪ im

J), and (w, v) is in Eim
I (resp. Eim

J). To disprove the assumption, we

consider the case when (u, v) ∈ Eim
I (where case Eim

J is similar). According to Lemma

7.4.13, s also satisfies iPre(v, u). Since s satisfies iRes(w, v) according to the assumption,

this violates Condition (2); thus, a contradiction.

Definition: Given a collapsable schema S= (A,C) that contains only alternating and

immediate constraints, the collapsed schema of S is a schema (A′, C ′) constructed as

follows:

1. Initially A′ = A and C ′ = C.

2. Repeat the following steps while (A′, C ′) is changed:

i. Let (A′, Eal
I , E

al
J , E

im
I , Eim

J) be the corresponding causality graph of (A′, C ′).

ii. for each u, v ∈ A on a common cycle in (A,Eal∪ im
I ∪ Eal∪ im

J), If (u, v) ∈ Eim
I or

Eim
J , then (1) remove each X(u, v) or X(v, u) from C ′, where X ranges over aRes,

aPre, iRes, and iPre. (2) Create node wuv; let A′ := A′−{u, v} ∪ {wuv}, and (3)

replace each u and v in C ′ by wuv.

211

Satisfiability of Collaboration Chapter 7

It is easy to show that given a collapsable al+schema, the corresponding collapsed

schema is unique.

The following lemma (Lemma 7.4.16) is easy to verify.

Lemma 7.4.16 Given a collapsable al+schema S that only contains alternating and

immediate constraints, and the collapsed schema S ′ of S, S is conformable iff S ′ is

conformable.

By Corollary 7.4.3, Lemmas 7.4.15, and 7.4.16, conformance checking of a schema

that only contains alternating and immediate constraints can be reduced to conformance

checking of its collapsed schema. Thus, in the remainder of this subsection, we mainly

focus on the collapsed schemas.

In order to have a clean statement of the necessary and sufficient condition, we in-

troduce a concept of “gap-free”. Essentially, “gap-free” is to deal with a special case

of a schema that contains alternating and immediate constraints. the special case is

illustrated in the following Example 7.4.17.

Example 7.4.17 Continue with Example 7.4.14; note that the schema in Fig. 7.3 is

a collapsed schema. Consider a schema Su2 that only contains activities a, b, and f ,

together with the constraints among them shown in Fig. 7.3 (i.e., a “subschema” bounded

by the dashed box labeled as “u2”). Based on Theorem 7.4.4, Su2 is conformable and a

conforming string is baf . Now consider a schema Su1,2 that only contains activities e, a,

b, and f , together with the constraints among them shown in Fig. 7.3 (i.e., a “subschema”

bounded by the dashed boxes labeled as “u1” and “u2” together with the constraints

crossing u1 and u2). Due to constraints iRes(e, b) and iPre(e, f), if Su1,2 is conformable,

then each conforming string of Su1,2 must contain substring “feb”. This requirement

212

Satisfiability of Collaboration Chapter 7

leads to some restriction upon schema Su2 , i.e., if we take out activity “e” from Su1,2

and focus on schema Su2 again, one restriction would be: is there a conforming string of

Su2 that contains a substring fb? If the answer is negative, then apparently, Su1,2 is not

conformable, since no substring feb can be formed.

With the concern shown in Example 7.4.17, we need a checking mechanism to decide

if two activities can occur as a substring (i.e., “gap-free”) in some conforming string.

More specifically, given (A,Eal
I , E

al
J , E

im
I , Eim

J) as a causality graph of a collapsed schema

S, we are more interested in checking if two activities that in the same strongly connected

component in (A,Eal
I ∪Eal

J) can form a substring in a conforming string of S. Note that

in Example 7.4.17, activities a, b, and f are in the same strongly connected component

labeled with u2 in (A,Eal
I ∪ Eal

J).

Definition: Let S = (A,C) be a schema that only contains alternating constraints and

(A,Eal
I , E

al
J) the causality graph of S, such that (A,Eal

I ∪ Eal
J) is strongly connected.

Given two distinct activities u, v ∈ A, u, v are gap-free (wrt S) if for each w, x, y ∈ A,

the following conditions should all hold wrt graph (A,Eal
I):

(a). if there is a path p with length greater than 2 from u to v, the following all hold:

(i). if w is on p, then (u, v) /∈ Eal
I ,

(ii). if there is a path from x to u, then (x, v) /∈ Eal
I ,

(iii). if there is a path from v to y, then (u, y) /∈ Eal
I ,

(iv). if there are paths from x to u and v to y, and then (x, y) /∈ Eal
I , and

(b). if there is a path from v to u, then the following all hold:

(i). if there is a path from x to v, then (x, u) /∈ Eal
I ,

(ii). if there is a path from u to y, then (v, y) /∈ Eal
I , and

(iii). if there are paths from x to v and u to y, then (x, y) /∈ Eal
I .

213

Satisfiability of Collaboration Chapter 7

Let S be as stated in the above definition; in the following Lemma 7.4.18 we show

that two activities in S can appear in a conforming string as substrings if and only if

they are gap-free.

Lemma 7.4.18 Given a conformable al+schema S= (A,C) that only contains alternat-

ing constraints, the causality graph (A,Eal
I , E

al
J) of S, such that (A,Eal

I ∪Eal
J) is strongly

connected, and two activities u, v ∈ A, “uv” can appear as a substring in some a con-

forming string of S iff u, v are gap-free wrt S.

The proof of Lemma 7.4.18 is quite involved. The main idea of the proof is first to

show that the a conforming string of a strongly connected component (wrt to a collection

of alternating constraints) can only be of form that is a repetition of a cycle in the same

strongly connected component. Then we show that with such form, only nodes that are

gap-free can occur together as a substring.

In the following, we present the proof of Lemma 7.4.18. The proof relies on Corol-

lary 7.4.19 and Lemma 7.4.21.

Based on the definition of al+schemas, it is easy to establish the following.

Corollary 7.4.19 Given S= (A,C) as a al+schema that only contains alternating con-

straints, and the causality graph (A,Eal
I , E

al
J) of S, such that (A,Eal

I ∪ Eal
J) is strongly

connected, (u, v) ∈ Eal
I implies (v, u) ∈ Eal

J , and vice versa.

Given a string s, and a set of activities A, the projection of s on A, denoted as πA(s),

is a string obtained by removing each activity occurring in s but not in A.

Example 7.4.20 Let s = ababcddeed be a string. Then π{a,b}(s) = abab, π{a,d,e}(s) =

aaddeed, and π{d}(s) = ddd.

214

Satisfiability of Collaboration Chapter 7

H T

U

a
b

ab
*

!a,
!b

!a,
!b

Figure 7.4: Automata

Given a string s, denote (s)∗ (or simply, s∗ if the context is clear) to be a countably

infinite set {ε, s, ss, sss, ...}, where ε is the empty string.

Lemma 7.4.21 Given an al+schema S = (A,C) that only contains alternating con-

straints, the causality graph (A,Eal
I , E

al
J) of S, such that (A,Eal

I ∪ Eal
J) is strongly con-

nected, T the set of all conforming strings of S, and n activities a1, a2, ..., an ∈ A, where

n > 1, such that (a1, a2), ..., (an−1, an) ∈ Eal
I and (a1, an) ∈ Eal

I , then
⋃
s∈T{π{a1,a2,...,an}(s)}

⊆ (a1...an)∗.

Proof: Let S, A, C, Eal
I , Eal

J , and n be as stated in the lemma. As (a1, a2), (a2, a3), ...,

(an−1, an) ∈ Eal
I and (a1, an) ∈ Eal

I , according to Corollary 7.4.19, we have (a1, a2), (a2,

a3), ..., (an−1, an) ∈ Eal
J and (a1, an) ∈ Eal

J .

We consider an automaton shown in Fig. 7.4. The automaton has three states H,

T , and U . the initial and the (only) accepting state are both H. The transitions are

labeled on edges, where a and b are activities. “!a, !b” denotes the transition where an

activity other than a or b occurs; and “∗” denotes an arbitrary activity. It is easy to

verify that the automaton shown in Fig. 7.4 can accept a string that satisfies aRes(a, b)

and aPre(b, a), and reject a string that does not satisfy aRes(a, b) or aPre(b, a).

Let M1, M2, ..., Mn be n automata, where for each i ∈ [1..(n− 1)], Mi is obtained by

replacing a and b in Fig. 7.4 by ai and ai+1 respectively and Mn is obtained by replacing

a and b in Fig. 7.4 by a1 and an respectively. Then a conforming string of S should be

215

Satisfiability of Collaboration Chapter 7

accepted by the cross product of M1, M2, ..., Mn.

With the above concern, we consider automata M1, M2, ..., Mn. Denote 〈s1, s2, ...,

sn〉 to be a vector of size n to record the states of M1, M2, ..., Mn respectively, where

si (i ∈ [1..n]) ranges over H, T , and U . The initial state is 〈H,H, ..., H〉. Notice that

given a string s over A, starting from the initial state, for each i ∈ [1..n], if during the

execution, si = U , then s will not be accepted by the cross product of M1, M2, ..., Mn

(due to the fact that there is no outgoing transition from U and U is not an accepting

state), and therefore not conformable. Thus, we only consider the transitions between

states H and T for each Mi.

During the execution of M1, M2, ..., Mn upon a string s over A, if the next occurring

activity is ai, we have the following three cases:

(a). if i = 1, then the current state should be 〈H, s2, s3, ..., sn−1, H〉, where sj ∈ {H,T}

(j ∈ [2..(n−1)]); otherwise if s1 (or sn) is T , then in the next state s1 (or sn) will be

in state U . And apparently after consuming ai, the state becomes 〈T, s2, s3, ..., sn−1,

T 〉.

(b). if i = n: then the current state should be 〈s1, s2, ..., sn−2, T, T 〉, where sj ∈ {H,T}

(j ∈ [1..(n − 3)]); otherwise if sn−1 (or sn) is T , then in the next state sn−1 (or

sn) will be in state U . And apparently after consuming ai, the state becomes

〈s1, s2, ..., sn−2, H,H〉.

(c). if i ∈ [2..(n − 1)]: then the current state should be 〈s1, s2, ..., si−2, T,H, si+1...sn〉,

where sj ∈ {H,T} (j ∈ [1..(i− 2)] ∪ [(i+ 1)..n]); otherwise if si−1 (or si) is T , then

in the next state si−1 (or si) will be in state U . And apparently after consuming ai,

the state becomes 〈s1, s2, ..., si−2, H, T, si+1...sn〉.

Without loss of generality, we fix s to be a string over
⋃n
i=1{ai}, since each activity in

A−
⋃n
i=1{ai} will not make the states of M1, M2, ..., Mn change. Starting from the initial

216

Satisfiability of Collaboration Chapter 7

state 〈H,H, ..., H〉, the first activity of s can only be a1 (case (a) above); otherwise, s will

not be satisfied. And after consuming a1, the state becomes 〈T,H,H, ..., H, T 〉. Then the

next activity of s can only be a2 (case (c) above), and state becomes 〈H,T,H,H, ..., H, T 〉.

Similarly, the next activity can only be a3 (case (c) above), the new state is 〈H,H, T,H,

H, ..., H, T 〉. By induction, it is easy to show that the ith activity can only be ai (i ∈

[2..(n− 1)]). Thus, after consuming an−1, the state becomes 〈H, ..., H,H, T, T 〉. And the

next activity can only be an (case (b) above); the new state is 〈H,H, ..., H〉, which is the

initial state. Therefore, s can only be a string that is a repetition of string a1a2...an.

We now present a proof of Lemma 7.4.18 that shows the main property of “gap-free”.

Proof: (Lemma 7.4.18) Let S, A, C, Eal
I , Eal

J , u, and v be as stated in the lemma.

(⇒) Denote T to be the set of all conforming strings of S. Without loss of generality, in

the following proof, if two activities have different names, then by default we mean that

they are distinct. For example, if x and y are two activities, then x and y are two distinct

activities. The goal is to prove that if some string in T contains uv as a substring, then

u, v are gap-free wrt S.

Consider Condition (a) (in the definition of gap-free), i.e., there is a path with length

greater than 2 from u to v. Consider Condition (a)-(ii) (the analysis of (a)-(i), (a)-(iii),

and (a)-(iv) are similar), i.e., if there is a path from x ∈ A to u, then there is no edge from

x to v. Suppose this is not the case, i.e., (x, v) ∈ Eal
I . According to to Lemma 7.4.21,⋃

s∈T{π{x,u,w,v}(s)} = {(xuwv)∗}, which implies that uv cannot appear as a substring in

each conforming string of S; a contradiction.

Consider Condition (b), i.e., there is a path from v to u. Consider Condition (b)-(i)

(the analysis of (b)-(ii) and (b)-(iii) are similar), i.e., if there is a path from x ∈ A to

v, then there is no edge from x to u. Suppose this is not the case, i.e., (x, u) ∈ Eal
I .

According to to Lemma 7.4.21,
⋃
s∈T{π{x,u,v}(s)} = {(xvu)∗}, which implies that uv

217

Satisfiability of Collaboration Chapter 7

cannot appear as a substring in each conforming string of S; a contradiction.

As a summary, uv can appear as a substring in a conforming string of S only if u, v

are gap-free.

(⇐) The reasoning can be divided into three cases: (I) there is no path from u to v or

v to u in (A,Eal
I), (II) there is a path from u to v in (A,Eal

I), and (III) there is a path

from v to u in (A,Eal
I).

Suppose case (I) holds. Let A1 ⊆ A − {u, v} be a set, where an activity x ∈ A is in

A1 iff there is a path from x to u or v in (A,Eal
I); let A3 ⊆ A − {u, v} be a set, where

an activity x ∈ A is in A3 iff there is a path from u or v to x in (A,Eal
I); and let A2 be

a set that is defined as A− (A1 ∪A2 ∪ {u, v}). Apparently, A1, A2, and A3 are pairwise

disjoint. Moreover, it is easy to verify that for each x ∈ A2 and each y ∈ A1, there is

no path from x to y in (A,Eal
I); otherwise, x will be in A1. Similarly, let sets B1 = A1,

B2 = {u}, B3 = {v}, B4 = A2, and B5 = A3; it is easy to verify that for each i, j ∈ [1..5],

if i < j, then for each x ∈ Bi and each y ∈ Bj, there is no path from x to y. Let s̄1,

s̄2, and s̄3 be sequences over A1, A2, and A3 respectively, such that s̄1, s̄2, and s̄3 are

subsequences of some topological order of (A,Eal
I). We have s̄1uvs̄2s̄3 as a topological

order of (A,Eal
I). According to Corollary 7.4.19, s̄1uvs̄2s̄3 is a conforming string (which

contains uv as a substring).

Suppose case (II) holds. Let A1, A2, A3, s̄1, s̄2, and s̄3 be as stated in case (I). Let

A4 ⊆ A−{u, v} be a set, where an activity x ∈ A is in A4 iff there is a path from x to u

in (A,Eal
I); let A6 ⊆ A− {u, v} be a set, where an activity x is in A6 iff there is a path

from v to x in (A,Eal
I); and let A5 be a set that is defined as A − (A4 ∪ A6 ∪ {u, v}).

Since there is a path from u to v in (A,Eal
I), there is no path from v to u in (A,Eal

I),

which implies that A4 ∩ A6 = ∅. Thus, A4, A5, and A6 are pairwise disjoint. Let s̄4,

s̄5, and s̄6 be sequences over A4, A5, and A6 respectively, such that s̄4, s̄5, and s̄6 are

subsequences of some topological order of (A,Eal
I). It is easy to verify that s̄4us̄5vs̄6 is a

218

Satisfiability of Collaboration Chapter 7

topological order of (A,Eal
I). We argue that either string s = s̄4us̄5s̄4uvs̄6s̄5vs̄6 or string

t = s̄1uvs̄2s̄3 conforms S.

Suppose this is not the case, i.e., there exists aRes(x, y) ∈ C, such that neither s

nor t satisfies aRes(x, y) (for constraint aPre(x, y), the reasoning the similar). Let sets

B1 = A4, B2 = {u}, B3 = A5, B4 = {v}, and B5 = A6. The reasoning can be divided

into 15 cases: i.e., considering the combination of (x, y) in one of the 15 elements in set⋃
16i6j65{Bi × Bj}. Note that it is impossible to have (x, y) ∈ Bi × Bj, where i > j,

because s̄4us̄5vs̄6 is a topological order of (A,Eal
I). Moreover, we divide the 15 cases

into three main categories: (1) (including 5 cases) (x, y) ∈ Bi × Bi (i ∈ [1..5]), (2)

(including 6 cases) (x, y) ∈ C, where C ranges over {A4 × A5, A4 × {u}, {u} × A5, A5 ×

{v}, A5 × A6, {v} × A6}, and (3) (including 4 cases) (x, y) ∈ C, where C ranges over

{{u} × {v}, A4 × {v}, {u} × A6, A4 × A6}.

Category (1): It is impossible to have (x, y) ∈ {(u, u)} or {(v, v)}; otherwise (A,Eal
I)

will be cyclic, which contradicts Condition (1) in Theorem 7.4.23. Thus we consider case

where (x, y) ∈ Ai × Ai (i ∈ {4, 5, 6}). Since for each i ∈ {4, 5, 6}, s̄i complies with the

topological of (A,Eal
I), s̄i satisfies aRes(x, y). Moreover, as Bk and Bj (k, j ∈ [1..5]) are

pairwise disjoint, x or y will not occur in
⋃5
j=1 Bj −Ai. Therefore, s = s̄4us̄5s̄4uvs̄6s̄5vs̄6

satisfies aRes(x, y), a contradiction.

Category (2): Note that s̄4 and s̄5 are “alternating” in s, i.e., s contains subsequence

s̄4s̄5s̄4s̄5. Thus for each (w, z) ∈ A4 × A5, s satisfies aRes(w, z). Therefore, if (x, y) ∈

A4×A5, s satisfies aRes(x, y). Similarly, it is easy to verify that for each (w, z) ∈ A4×{u},

{u} × A5, A5 × {v}, A5 × A6, or {v} × A6, s satisfies aRes(w, z), which leads to a

contradiction.

Category (3): Suppose that (x, y) ∈ A4 × {v}. Recall that for each z ∈ A4, there is

a path from z to u in (A,Eal
I); further, according to the assumption of case (II), there

is a path from u to v in (A,Eal
I); thus, there is a path from x to y = v in (A,Eal

I).

219

Satisfiability of Collaboration Chapter 7

According to Condition (b)-(ii) in the definition of gap-free, (x, y) ∈ Eal
I , which leads

to a contradiction. Similarly, it is easy to verify that if (x, y) ∈ {u} × A6 or A4 × A6,

(x, y) /∈ Eal
I . Now consider when (x, y) = (u, v), i.e., (u, v) ∈ Eal

I . According to Condition

(b)-(i) in the definition of gap-free, for each path p from u to v, no node in A− {u, v} is

on p, i.e., edge (u, v) is the only path from u to v. Therefore, similar to case (I), it is easy

to verify that t = s̄1uvs̄2s̄3 is a topological order of (A,Eal
I), which satisfies aRes(u, v)

according to Corollary 7.4.19, a contradiction.

Suppose case (III) holds. Let A1 ⊆ A − {u, v} be a set, where an activity x ∈ A is

in A1 iff there is a path from x to v in (A,Eal
I); let A3 ⊆ A − {u, v} be a set, where an

activity x is in A3 iff there is a path from u to x in (A,Eal
I); and let A2 be a set that

is defined as A − (A1 ∪ A2 ∪ {u, v}). Let s̄1, s̄2, and s̄3 be sequences over A1, A2, and

A3 respectively, such that s̄1, s̄2, and s̄3 are subsequences of some topological order of

(A,Eal
I). Similar to the analysis of case (II), it is easy to verify that s̄1vs̄2s̄1uvs̄3s̄2us̄3 is

a conforming string of S.

The above Lemma 7.4.18 provides a sufficient and necessary condition to decide if two

activities can appear “together” in some comforming strings given a set of constraints.

Given a graph G = (V,E), for each v ∈ V , denote sv(v) to be the set of all the nodes

in the strongly connected component of G that contains v.

Let (A,C) be a collapsed schema and (A,Eal
I , E

al
J , E

im
I , Eim

J) its causality graph. Con-

sider graph (A,Eal
I ∪Eal

J ∪Eim
I ∪Eim

J); given an activity a ∈ A, denote S(a) to be a schema

defined as (sv(a), {aRes(u, v) | (u, v) ∈ Eal
I ∧ sv(a) = sv(u) = sv(v)} ∪ {aPre(u, v) |

(u, v) ∈ Eal
J ∧ sv(a) = sv(u) = sv(v)}).

Example 7.4.22 Continue with Example 7.4.14; consider the schema in Fig. 7.3. Note

that the schema is a collapsed schema. sv(a) = sv(b) = sv(f) is the strongly connected

220

Satisfiability of Collaboration Chapter 7

component of the graph in Fig. 7.3 with nodes a, b, and f . Moreover, S(a) = S(b) =S(f)

is a schema that only contains activities a, b, and f , together with the constraints among

them in Fig. 7.3.

The following Theorem 7.4.23 provides a necessary and sufficient condition for con-

formability of schema with only alternating and immediate constraints.

Theorem 7.4.23 Given a schema S that only contains alternating and immediate con-

straints, S is conformable iff the following conditions all hold.

(1). S is collapsable,

(2). πal(S̃) is conformable (recall that πal denotes the “projection” only upon alternating

constraints), where S̃ is the collapsed schema of S, and

(3). Let (A,Eal
I , E

al
J , E

im
I , Eim

J) be the causality graph of the collapsed schema S̃, for each

u, v, w ∈ A, if there is a path from u to w in (A,Eim
I), there is a path from u to v in

(A,Eim
J), and sv(w) = sv(v) wrt (A,Eal∪ im

I ∪Eal∪ im
J), then either (1) v, w are gap-

free wrt S(v) if v 6= w, or (2) v has no outgoing edge in graph (A,Eal∪ im
I ∪ Eal∪ im

J)

if v = w.

Example 7.4.24 Continue with Example 7.4.22; Consider the schema in Fig. 7.3. This

schema satisfies the conditions in Theorem 7.4.23 and is conformable. A conforming

string can be bdacfebdacf .

A proof of the “only if” direction of Theorem 7.4.23 is shown below. The detailed

proof of the “if” direction is very complicated; thus examples and a proof are shown after

the proof of the “only if” direction.

221

Satisfiability of Collaboration Chapter 7

Proof: (⇒) Let S̃, u, v, w, A, Eal
I , Eal

J , Eim
I , and Eim

J be as stated in Theorem 7.4.23.

Condition (1) follows from Lemmas 7.4.15 and 7.4.16. Condition (2) follows from Lemma

7.4.16. Let s be a conforming string of S. For Condition (3), since u occurs at least once in

s, s must contain substring va1a2...amub1b2...bnw, where (v, a1), (a1, a2), ..., (am, u) ∈ Eal
J

and (u, b1), (b1, b2), ..., (bn−1, bn), (bn, w) ∈ Eal
I . Now we consider two cases: (1) v = w and

(2) v 6= w.

(1) (v = w) Suppose v has an outgoing edge in (A,Eal∪ im
I ∪ Eal∪ im

J) to a node, say

x ∈ A. If x 6∈ {a1, ..., am, u, b1, ..., bn}, then s cannot satisfy constraint derived from edge

(v, x), as substring va1a2...amub1b2...bnv will violate it. If x ∈ {a1, ..., am, u, b1, ..., bn},

then there is a cycle from v to x and x to v, where either a1 or bn is on the cycle.

According to Lemma 7.4.13, since iPre(a1, x), iRes(bn, x) ∈ C, x can be collapsed (with

either a1 or bn). Therefore, S̃ is not a collapsed schema, a contradiction.

(2) (v 6= w) Since S̃ is a collapsed schema, for each x ∈ {a1, ..., am, u, b1, ..., bn}, x /∈

sv(v) (or sv(w)); otherwise x can be “collapsed”. Therefore, πsv(v)(s) contains substring

vw. As s is a conforming string of S, πsv(v)(s) satisfies every constraint “related” to sv(v),

i.e., every constraint in schema S(v); we have πsv(v)(s) is a conforming string of sv(v).

Based on Lemma 7.4.18, u,w are gap-free wrt S(v).

In the remainder of this subsection, we only focus on the proof of the “if” direction

of Theorem 7.4.23. The main idea of the proof of the “if” direction is done by providing

a procedure that constructs a conforming string (wrt the input schema).

Based on Lemma 7.4.16, in this subsection, we only focus on the collapsed schemas.

Given a collapsed schema S= (A,C) that satisfies all conditions stated in Theorem

7.4.23, we construct a string s with input S, such that s conforms to S. The construction

process is divided into two main steps: (1) create a “grouped graph” for S, and (2)

introduce a procedure of constructing strings, so that the produced string can satisfies

222

Satisfiability of Collaboration Chapter 7

each constraint in C.

1. Grouped graphs

Let (A,Eal
I , E

al
J , E

im
I , Eim

J) be a causality graph of a collapsed schema that satisfies

all conditions in Theorem 7.4.23. If we “group” each strongly connected component

in G= (A,Eal∪ im
I ∪ Eal∪ im

J) into a single node, the grouped graph will become acyclic

and each grouped node contains only alternating constraints. Since the conformabil-

ity checking for schemas containing only alternating constraints have been resolved in

Lemma 7.4.4, we can apply a divide-and-conquer approach by first constructing conform-

ing strings for each grouped node (i.e., each strongly connected component in G) and

then assemble them together for the entire graph.

Definition: Let S be a collapsed schema and G= (A,Eal
I , E

al
J , E

im
I , Eim

J) be the causality

graph of S. The grouped graph of G is a triple (V,E, µ), where V is a finite set of grouped

activities, E ⊂ V ×V is the edge set, and µ is a total mapping from A∪Eal∪ im
I ∪Eal∪ im

J

to V ∪ E that is constructed according to the following procedures.

1. Initially V = E = ∅ and the domain of µ is empty.

2. For each node u ∈ A, if there exists another node v ∈ A, such that v is in the domain

of µ, and u, v are in a common cycle in (A,Eal
I ∪Eal

J), then let µ(u) be µ(v); otherwise,

create a new node w in V and let µ(u) be w .

3. For each edge (u, v) ∈ Eal∪ im
I ∪Eal∪ im

J , if µ(u) = µ(v), then µ((u, v)) = µ(u); otherwise

(i.e., µ(u) 6= µ(v)), if there is no edge (µ(u), µ(v)) in E, then create a new edge

(µ(u), µ(v)) in E; let µ(u, v) be (µ(u), µ(v)).

Example 7.4.25 Continue with Example 7.4.24; Consider the schema in Fig. 7.3. Note

that the schema is a collapsed schema. There are two cycles in graph (A,Eal∪ im
I ∪Eal∪ im

J):

223

Satisfiability of Collaboration Chapter 7

abf and cd. Thus, for the corresponding grouped graph (V,E, µ) we create three nodes

u1, u2, and u3 in V and let µ(e) = u1, µ(a) = µ(b) = µ(f) = u2, and µ(c) = µ(d) = u3

(shown as the dashed boxes). Further, the mapping of the edges are µ(e, b) = µ(e, f) =

(u1,u2), µ(b, f) = µ(f, a) = µ(a, b) = u2, µ(f, c) = µ(a, d) = (u2,u3), and µ(c, d) =

µ(d, c) = u3.

We note that a grouped graph is always acyclic.

Given a causality graph (A,Eal
I , E

al
J , E

im
I , Eim

J) and its corresponding grouped graph

(V,E, µ), denote µ−1 to be a total mapping from V ∪ E to 2A∪E
al∪ im
I ∪Eal∪ im

J , such that

for each x ∈ V ∪E, y ∈ A∪Eal∪ im
I ∪Eal∪ im

J is in µ−1(x) iff µ(y) = x. Moreover, for each

x ∈ V ∪ E, denote µ−1
V (x) as µ−1(x) ∩ A and µ−1

E (x) as µ−1(x) ∩ (Eal∪ im
I ∪ Eal∪ im

J).

Example 7.4.26 Continuing with Example 7.4.25, we have µ−1(u1) = {e}, µ−1((u1,u2)) =

{(e, f), (e, b)}, and µ−1(u3) = {c, d, (c, d), (d, c)}. Moreover, µ−1
V (u3) = {c, d} and

µ−1
E (u3) = {(c, d), (d, c)}.

Given a collapsed schema S= (A,C) that satisfies every condition in Theorem 7.4.23,

the causality graph GS = (A,Eal
I , E

al
J , E

im
I , Eim

J) of S, and the grouped graph (V,E, µ) of

GS. We divide C into three different types of constraints:

1. immediate constraints (denoted as Cim): a set of all the immediate constraints in C

(e.g., iPre(f, c), iRes(e, b) in Example 7.4.14),

2. internal alternating constraints (denoted as CI
al):

{aRes(a, b) | (a, b) ∈ Eal
I ∧ µ(a) = µ(b)} ∪ {aPre(a, b) | (a, b) ∈ Eal

J ∧ µ(a) = µ(b)}

(e.g., aRes(b, f), aPre(c, d) in Example 7.4.14), and

224

Satisfiability of Collaboration Chapter 7

3. external alternating constraints (denoted as CX
al):

{aRes(a, b) | (a, b) ∈ Eal
I ∧ µ(a) 6= µ(b)} ∪ {aPre(a, b) | (a, b) ∈ Eal

J ∧ µ(a) 6= µ(b)}

(e.g., aPre(a, d) and aPre(e, b) in Example 7.4.14).

In the following, we will handle each kind of constraints.

2. Constructing Strings

The main idea to prove the “if” direction of Theorem 7.4.23 is to construct a string

for each grouped node, such that the string satisfies each internal alternating constraint,

each “related” immediate constraint, and each “related” external alternating constraint.

Then we “assemble” these strings together and prove that the assembled string conforms

the given schema.

Given a collapsed schema S= (A,C) that satisfies every condition in Theorem 7.4.23

and a set B ⊆ A, denote Cim(B), CI
al(B), and CX

al(B) to be the following sets:

Cim(B) = {iRes(a, b) | iRes(a, b) ∈ Cim ∧ a ∈ B}∪

{iPre(a, b) | iPre(a, b) ∈ Cim ∧ a ∈ B}

CI
al(B) = {aRes(a, b) | aRes(a, b) ∈ CI

al ∧ a ∈ B}∪

{aPre(a, b) | aPre(a, b) ∈ CI
al ∧ a ∈ B}

CX
al(B) = {aRes(a, b) | aRes(a, b) ∈ CX

al ∧ a ∈ B}∪

{aPre(a, b) | aPre(a, b) ∈ CX
al ∧ a ∈ B}

We call that Cim(B), CI
al(B), or CX

al(B) are immediate, internal alternating, or external

alternating constraints (resp.) that are related to B.

In the remainder of this section, we will introduce several data structures, an algo-

rithm, and several lemmas/corollaries to show how to construct a string that can satisfy

225

Satisfiability of Collaboration Chapter 7

all the (related) immediate, internal alternating, and external alternating constraints.

We first introduce two data structures to handle the internal alternating constraints.

Let S= (A,C) be a collapsed schema that satisfies the conditions in Theorem 7.4.23,

GS = (A,Eal
I , E

al
J , E

im
I , Eim

J) the causality graph of S, and (V,E, µ) grouped graph of

GS. Based on Condition (2) of Theorem 7.4.23, graph (A,Eal
I) is acyclic. Then, for each

u ∈V , we create the following two data structures:

(1) denote s̄al(u) as a topological order of graph (µ−1
V (u), µ−1

E (u) ∩ Eal
I). It is easy to

prove that s̄al(u) satisfies each constraint in CI
al;

(2) further, let Sv,wal (u) be a set of strings, where v, w ∈ µ−1
V (u), such that each string

in Sv,wal (u) (i) is a conforming string of schema S(v), (ii) only contains activities in

µ−1
V (u), and (iii) contains vw as a substring. Note that Sv,wal (u) is empty if and only

if v, w are not gap-free wrt S(v) according to Lemma 7.4.18.

Example 7.4.27 Continue with Example 7.4.26; s̄al(u1) = e, s̄al(u2) = baf , and

s̄al(u3) = dc. Sd,cal (u3) = {dc, dcdc, ...} Sf,bal (u2) = {bafbaf, bafbafbaf, ...}.

As introduced above, the two data structures are to handle the each internal alter-

nating constraints in the given (collapsed) schema. In the following, we focus on the

construction of strings that satisfy immediate and external alternating constraints while

still keeping the satisfiability of internal alternating constraints.

The following lemma serves as a basis for constructing strings (to be introduced in

Alg. 7 later in this section).

Lemma 7.4.28 Given S= (A,C) as a collapsed schema, GS = (A,Eal
I , E

al
J , E

im
I , Eim

J)

the causality graph of S, (V,E, µ) grouped graph of GS, and an activity a∈A, for each

226

Satisfiability of Collaboration Chapter 7

b ∈ sim(a), there exists at most one activity c∈ sim(a), such that b 6= c and µ(b) = µ(c);

and if b exists, then there is a path from a to b in (A,Eim
I) (or (A,Eim

J)) and there is a

path from a to c in (A,Eim
J) (resp. (A,Eim

I)).

Proof: Let S, A, C, Eim
I , Eim

J , V , E, µ, a, b, and c be as stated in the lemma.

Suppose there exists d ∈ sim(a), such that d is distinct from b and c, and µ(b) =

µ(c) = µ(d). Then there must exist two nodes x, y in {b, c, d}, such that there is a path

from x to y in (A,Eim
I) or (A,Eim

J). Since the two cases are symmetric, we only analyze

the case (A,Eim
I). As µ(x) = µ(y), x and y must be on the same cycle in (A,Eal

I ∪ Eal
J).

Thus, x and y can be collapsed, which contradicts the fact that S is a collapsed schema.

Suppose c exists and µ(c) = µ(b). Similar to the above analysis, it is easy to have

that there is a path from a to b in (A,Eim
I) (or (A,Eim

J)) and there is a path from a to c

in (A,Eim
J) (resp. (A,Eim

I)).

In the remainder of this section, we may use some “dummy activities” for simple

explanation of the algorithms. Intuitively, a dummy activity is an activity that serves as

a place holder for a chunk of activities or dummy activities.

Let S be a collapsed schema that satisfies the conditions in Theorem 7.4.23, GS = (A,

Eal
I , E

al
J , E

im
I , Eim

J) the causality graph of S, and (V,E, µ) grouped graph of GS. For each

activity a∈A, we construct a string ŝ(a) according to Alg. 7 below. Unlike Alg. 5 or 6

discussed earlier in this chapter, the returned string of Alg. 7 will not conform the input

schema. Rather, it will satisfy some useful properties; and based on these properties,

we are able to construct a conforming string, which will be discussed at the end of this

subsection.

Note that Steps B and C follow from Lemma 7.4.28.

Example 7.4.29 Continue with Example 7.4.27; we execute Algorithm 7 for node e

227

Satisfiability of Collaboration Chapter 7

Algorithm 7

Input: (1) The causality graph G = (A,Eal
I , E

al
J , E

im
I , Eim

J) of a schema satisfying condi-
tions of Theorem 7.4.23, (2) the grouped graph (V,E, µ) of G, and (3) a node a ∈ A

Output: A string

A. Denote sµim(a) ⊆ V as a set wrt a and µ, such that u ∈ V is in sµim(a) iff there
exists b ∈ sim(a)− {a} and µ(b) = u .

B. For each u ∈ sµim(a), if there exists exactly one node b ∈ sim(a), such that µ(b) = u ,
then create two strings su

J and su
I, such that su

Jbs
u
I = s̄al(u).

C. For each u ∈ sµim(a), if there exist two distinct nodes b, c ∈ sim(a), such that
µ(b) = µ(c) = u and there is a path from a to b (or c) in (A,Eim

J) (resp. (A,Eim
I)),

then arbitrarily pick a string s in Sb,cal (u) and create two strings su
J and su

I, such
that su

Jbcs
u
I = s.

D. Let n = |sµim(a)|. Suppose {u1,u2, ...,un} = sµim(a) and u1...un is a subsequence
of the topological order of (V,E).

E. Create a dummy activity â for a.
F. Let ŝ(a) be su1

J s
u2
J ...s

un
J âsun

I ...su1
I .

G. For each b ∈ A, if aRes(a, b) ∈ CX
al (or aPre(a, b) ∈ CX

al), then let ŝ(a) be
ŝ(a)s̄al(µ(b)) (resp. s̄al(µ(b))ŝ(a)).

H. Return ŝ(a).

given the causality graph and the grouped graph in Fig. 7.3.

A. sµim(e) = {u2,u3}. (Notice that sim(e) = {e, b, f, c}).

B. There is exactly one node c in sim(e), such that µ(c) = u3. Since s̄al(u3) = dc, we

have su3
J = d and su3

I is an empty string.

C. There exist two nodes b, f ∈ sim(e), such that µ(b) = µ(f) = u2. We arbitrarily pick

a string, say bafbaf , from Sf,bal (u2) and have su2
J = ba and su2

I = af .

D. Let n = |{u2,u3}| = 2; and u2u3 is a subsequence of the topological order of (V,E).

E. Create a dummy activity ê.

F. ŝ(e) = su2
J s

u3
J ês

u3
I s

u2
I = badêaf .

G. We have aPre(e, b) ∈ CX
al .

H. ŝ(e) = s̄al(µ(b))badêaf = s̄al(u2)badêaf = bafbadêaf

Similarly, ŝ(b) = b̂, ŝ(a) = dcâ, ŝ(f) = df̂ , ŝ(c) = ĉ, and ŝ(d) = d̂.

228

Satisfiability of Collaboration Chapter 7

The following Lemma 7.4.30 is straightforward to prove based on Alg. 7; thus proof

is omitted.

Lemma 7.4.30 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies the conditions in Theorem 7.4.23. For each a ∈ A and each

activity (or dummy activity) b occurring in ŝ(a), either b = â or there is a path from

µ(a) to µ(b) in graph (V,E).

Let (V,E, µ) and (A,C) be as stated in Lemma 7.4.30. Lemma 7.4.30 states that each

activity in ŝ(a), where a ∈ A, is either a dummy activity â or an activity that “orders

after” a based on the topological order of (V,E).

Let (V,E, µ) be a grouped graph of the causality graph of a collapsed schema that

satisfies the conditions in Theorem 7.4.23, for each u ∈ V , we create a corresponding

string ŝ(u) based on the following procedure:

1. Let ŝ(u) initially be s̄al(u).

2. Then (non-recursively) replace each activity a occurring in ŝ(u) by ŝ(a).

Given a string s of (dummy) activities, denote IM(s) to be a string obtained by

(non-recursively) replacing each dummy activity â in s by s̄im(a).

Example 7.4.31 Continue with Example 7.4.29; ŝ(u1) initially is s̄al(u1) = e; then re-

place e by ŝ(e); we have ŝ(u1) = ŝ(e) = bafbadêaf . Accordingly, ŝ(u2) = ŝ(b)ŝ(a)ŝ(f) =

b̂dcâdf̂ and ŝ(u3) = ŝ(d)ŝ(c) = d̂ĉ. Further, IM(ŝ(u1)) = IM(bafbadêaf) = bafbad

s̄im(e)af = bafbadcfebaf . Note that IM(ŝ(u1)) satisfies each internal alternating con-

straint in Fig. 7.3 as well as immediate and external alternating constraints that are

related to µ−1
V (u1) = {e}, i.e., aPre(e, b), iPre(e, f), and iRes(e, b).

229

Satisfiability of Collaboration Chapter 7

Up to this point, we have presented an approach to construct a string for each grouped

activity, such that the string satisfies each internal alternating constraint, each related

immediate constraint, and each related external alternating constraint (where the proofs

are presented later). In the following, we step further to show that there is a way to

construct a string that satisfies every given immediate and alternating constraint.

Let (V,E, µ) be a grouped graph of a causality graph of a collapsed schema (A,C) that

satisfies the conditions in Theorem 7.4.23. Given s as a string over (dummy) activities,

for each activity a ∈ A, denote s|a to be a string obtained by (non-recursively) replacing

each a in s by ŝ(a). Similarly, given {a1, a2, ..., an} ∈ A, we recursively define s|a1,a2,...,an

as a string obtained by (non-recursively) replacing each an in s|a1,a2,...,an−1 by ŝ(an). Let

string t = a1a2...an, we may simply write s|a1,a2,...,an as s|t if the context is clear.

Example 7.4.32 Continue with Example 7.4.31; we have ŝ(u1)|f = bafbadêaf |f =

baŝ(f)badêaŝ(f) = badf̂badêadf̂ and ŝ(u1)|f,d = badf̂badêadf̂ |d = baŝ(d)f̂ baŝ(d)êaŝ(d)f̂ =

bad̂f̂bad̂êad̂f̂ .

Let (V,E, µ) be a grouped graph of a causality graph of a collapsed schema (A,C)

that satisfies all conditions in Theorem 7.4.23, denote Āµ to be a permutation of A, such

that for each a, b ∈ A, a occurs before b in Āµ, if µ(a) occurs before µ(b) in the topological

order of (V,E).

Example 7.4.33 Continue with Example 7.4.32; As the topological order of the grouped

graph in Fig. 7.3 is u1u2u3, Āµ can be ebafcd.

Let (V,E, µ) be the grouped graph of the causality graph of a collapsed schema (A,C)

that satisfies the conditions in Theorem 7.4.23. In the remainder of this section, we prove

230

Satisfiability of Collaboration Chapter 7

that for each u ∈ V , IM(ŝ(u)|Āµ) satisfies each constraint in C. The proof of Theorem

7.4.23 is done by showing that IM(ŝ(u)|Āµ) satisfies each constraint in Cim, CX
al , and CI

al

respectively. And further extend the satisfiability to conformance to prove the correctness

of the “if” direction of Theorem 7.4.23.

Example 7.4.34 Continue with Example 7.4.33; we consider ŝ(u1)|Āµ in the following,

where the underline denotes the newly replaced strings (based on the previous result).

ŝ(u1)|e = bafbadêaf |e = bafbadêaf

ŝ(u1)|e,b = b̂af b̂adêaf

ŝ(u1)|e,b,a = b̂dcâf b̂dcâdêdcâf

ŝ(u1)|e,b,a,f = b̂dcâdf̂ b̂dcâdêdcâdf̂

ŝ(u1)|e,b,a,f,c = b̂dĉâdf̂ b̂dĉâdêdĉâdf̂

ŝ(u1)|e,b,a,f,c,d = b̂d̂ĉâd̂f̂ b̂d̂ĉâd̂êd̂ĉâd̂f̂

Notice that IM(ŝ(u1)|Āµ) = IM(b̂d̂ĉâd̂f̂ b̂d̂ĉâd̂êd̂ĉâd̂f̂) = bdcadcfbdcadcfebdcadcf sat-

isfies every constraint in the schema shown in Fig. 7.3.

3. Proof of the Conformance

Lemma 7.4.35 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies all the conditions in Theorem 7.4.23. For each u ∈ V ,

IM(ŝ(u)|Āµ) satisfies each constraint in C.

To prove Lemma 7.4.35, we treat three different types of constraints: immediate,

internal alternating, and external alternating constraints separately; and prove that all

231

Satisfiability of Collaboration Chapter 7

three types of constraints can be satisfied (in Corollary 7.4.38, Lemma 7.4.39, and Lemma

7.4.47 respectively).

Satisfiability of all immediate constraints

Lemma 7.4.36 Given a schema (A,C) and a string s over {â | a ∈ A}, IM(s) satisfies

every constraint in Cim.

Proof: According to the definition of “IM”, each activity â that occurs in s will be

replaced by s̄im(a), which satisfies every constraint in Cim. It is straightforward to show

that IM(s) satisfies every constraint in Cim.

Lemma 7.4.37 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema S that satisfies the conditions in Theorem 7.4.23. For each u ∈ V , ŝ(u)|Āµ is a

string over {â | a ∈ A}.

Proof: Let u , V , E, µ and Āµ be as stated in the lemma; suppose that Āµ = a1a2...an.

We prove by induction that given j ∈ [1..n], for each i ∈ [1..j], ai will not occur in

ŝ(u)|a1a2...aj .

Basis: For ŝ(u)|a1 , all a1’s in ŝ(u) are replaced by ŝ(a1) that contains no a1’s but

â1’s. Hence ŝ(u)|a1 does not contain a1.

Induction: Suppose that ŝ(u)|a1a2...aj−1
contains no activity in {a1, a2, ..., aj−1}. Con-

sider string ŝ(u)|a1a2...aj . Based on Lemma 7.4.30, each activity b in ŝ(aj) is either âj or

there is path from µ(a) to µ(b) in (V,E). According to the definition of Āµ = a1a2...an,

each activity in {a1, a2, ..., aj−1} will not occur in ŝ(aj); otherwise it contradicts the

topological order of (V,E). Therefore, ŝ(aj) contains no activity in {a1, a2, ..., aj}.

232

Satisfiability of Collaboration Chapter 7

Based on the above induction, ŝ(u)|a1a2...an contains no activity in {a1, a2, ..., an} but

only with activities in {â1, â2, ...ân}. Therefore, the lemma holds.

The following (Corollary 7.4.38) is a direct consequence of Lemmas 7.4.36 and 7.4.37.

Corollary 7.4.38 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies all the conditions in Theorem 7.4.23. For each u ∈ V ,

IM(ŝ(u)|Āµ) satisfies each constraint in Cim.

Satisfiability of all external alternating constraints

Lemma 7.4.39 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies all the conditions in Theorem 7.4.23. For each u ∈ V ,

IM(ŝ(u)|Āµ) satisfies each constraint in CX
al .

Proof: Let u , V , E, µ and Āµ be as stated in the lemma; suppose that Āµ = a1a2...an.

We prove by induction that for each i ∈ [1..n], IM(ŝ(u)|a1a2...ai) satisfies each constraint

in CX
al(

⋃i
j=1{aj}).

Basis: For string ŝ(u)|a1 , according to Step G of Alg. 7, if aRes(a1, b) ∈ CX
al (or

aPre(a1, b) ∈ CX
al), where b ∈ A, then b will occur (may not immediately) to the right

(left, resp.) of â1 in ŝ(u)|a1 . Thus, ŝ(u)|a1 satisfies aRes(â1, b) (aPre(â1, b), resp.), which

means that IM(ŝ(u)|a1) satisfies aRes(a1, b) (aPre(a1, b), resp.). Therefore, IM(ŝ(u)|a1)

satisfies each constraint in CX
al({a1}).

Induction: Suppose IM(ŝ(u)|a1a2...ai−1
) satisfies each constraint in CX

al(
⋃i−1
j=1{aj}).

Consider string ŝ(u)|a1a2...ai . Suppose that ŝ(u)|a1a2...ai−1
= s1ais2ais3...aism, where

for each j ∈ [1..m], sj is a substring of ŝ(u)|a1a2...ai such that sj does not contain ai. In

other word, s1, s2, ..., sm form a “partition” of ŝ(u)|a1a2...ai based on ai. Accordingly,

233

Satisfiability of Collaboration Chapter 7

ŝ(u)|a1a2...ai = s1ŝ(ai)s2ŝ(ai)s3...ŝ(ai)sm. Denote IM(ŝ(ai)) = saJais
a
I, where saJ and saI

are substrings of IM(ŝ(ai)) that does not contain ai.

According to Lemma 7.4.30, ŝ(ai) does not contain an activity in {a1, a2, ..., ai−1};

Further, s̄im(ai), does not contain an activity in {a1, a2, ..., ai−1} as well; we have IM(ŝ(ai))

does not contain an activity in {a1, a2, ..., ai−1}, which indicates that neither saJ nor

saI contains an activity in {a1, a2, ..., ai−1}. Consider string IM(ŝ(u)|a1a2...ai) = IM(s1)

IM(ŝ(ai))IM(s2)...IM(ŝ(ai))IM(sm) = IM(s1)saJais
a
IIM(s2)...saJais

a
IIM(sm). Note that

based on the hypothesis, IM(ŝ(u)|a1a2...ai−1
) = IM(s1)aiIM(s2)...aiIM(sm) satisfies each

constraint in CX
al(

⋃i−1
j=1{aj}). Since both saJ and saI do not contain a1, a2, ..., or ai−1,

IM(ŝ(u)|a1a2...ai) satisfies each constraint in CX
al(

⋃i−1
j=1{aj}).

Moreover, IM(ŝ(ai)) satisfies each constraint in CX
al({ai}) based on Step G of Alg. 7,

IM(ŝ(u)|a1a2...ai) satisfies each constraint in CX
al(

⋃i−1
j=1{aj}) ∪ CX

al({aj}) = CX
al(

⋃i
j=1{ai}).

Based on the above induction, IM(ŝ(u)|Āµ) satisfies each constraint in CX
al .

Satisfiability of all internal alternating constraints

Lemma 7.4.40 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies the conditions in Theorem 7.4.23. For each a ∈ A, IM(ŝ(a))

satisfies each constraint in CI
al − CI

al(µ
−1
V (µ(a))).

Proof: Let V , E, µ, A, and u be as stated in the lemma. Let b and c be two activities in

A, such that aRes(b, c) ∈ C (for case aPre(b, c), the analysis is similar), µ(b) = µ(c), and

µ(b) 6= µ(a). Note that if we can prove IM(ŝ(a)) satisfies aRes(b, c), the lemma holds.

If b and c do not occur in IM(ŝ(a)), then IM(ŝ(a)) satisfies aRes(b, c). Otherwise, we

need to analyze when b and c are “introduced” to IM(ŝ(a)) and why IM(ŝ(a)) satisfies

aRes(b, c). Note that in Alg. 7, there are only two steps (F and G) that are to construct

234

Satisfiability of Collaboration Chapter 7

ŝ(a), where possibly b and c are introduced into IM(ŝ(a)). Hence, in the following, we

analyze these two steps separately.

Case (1): b and c are introduced in Step F. Let string ŝ(a) = su1
J s

u2
J ...s

un
J âsun

I ...su1
I

be as stated in Step F. Based on Step D, sµim(a) = {u1,u2, ...,un} is a set; hence, for

each distinct i, j ∈ [1..n], u i 6= u j, which further indicates that there exists exactly one

i ∈ [1..n], such that µ(b) = µ(c) = u i. Note that IM(ŝ(a)) = IM(su1
J s

u2
J ...s

un
J âsun

I ...

su1
I) = su1

J s
u2
J ...s

un
J s̄im(a)sun

I ...su1
I . According to Steps B and C, we have sui

J s̄im(a)sui
I

satisfies aRes(b, c). Therefore, IM(ŝ(a)) satisfies aRes(b, c) at the end of Step F.

Case (2): b and c are introduced in Step G. Let ŝ(a) be as stated at the end of Step F.

According to Case (1), IM(ŝ(a)) satisfies aRes(b, c). Note that for this step, b and c may

have already been introduced into IM(ŝ(a)). Suppose for some d ∈ A, µ(b) = µ(c) = µ(d),

which denotes that both b and c will occur in s̄al(µ(d)). If aRes(a, d) ∈ CX
al , based on Step

G, the new ŝ(a) (rename to ŝ(a)new to avoid confusion) will become ŝ(a)s̄al(µ(d)), which

is the only way b and c are introduced into ŝ(a)new. (For case aPre(a, d), the analysis

is similar.) Now consider IM(ŝ(a)new) = IM(ŝ(a))IM(s̄al(µ(d))) = IM(ŝ(a))s̄al(µ(d)).

According to Case (1), IM(ŝ(a)) satisfies aRes(b, c); further, s̄al(µ(d)) satisfies aRes(b, c)

by definition. As a result, IM(ŝ(a)new) satisfies aRes(b, c). By induction, it is easy to

show that at the end of Step G, the newly constructed ŝ(a) preserves the property that

IM(ŝ(a)) satisfies aRes(b, c).

As a summary, the lemma holds.

Lemma 7.4.41 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies the conditions in Theorem 7.4.23. For each u ∈ V , IM(ŝ(u))

satisfies each constraint in CI
al.

235

Satisfiability of Collaboration Chapter 7

Proof: Let V , E, µ, A, and u be as stated in the lemma. Note that IM(ŝ(u)) can be

obtained by (non-recursively) replacing each activity a in s̄al(u) by IM(ŝ(a)). Accord-

ing to Lemma 7.4.40, for each a ∈ µ−1
V (u), IM(ŝ(a)) satisfies each constraint in CI

al −

CI
al(µ

−1
V (u)). It is easy to have IM(ŝ(u)) satisfying each constraint in CI

al−CI
al(µ

−1
V (u)).

Moreover, as s̄al(u) satisfies each constraint in CI
al(µ

−1
V (u)) and for each a ∈ µ−1

V (u), a

occurs exactly once in IM(ŝ(a)), IM(ŝ(u)) satisfy each constraint in CI
al.

Let (V,E, µ) be grouped graph of the causality graph of a collapsed schema (A,C)

that satisfies the conditions in Theorem 7.4.23. Similar to the techniques used in the

proofs of Lemmas 7.4.37 and 7.4.39, mathematical induction can be used to take the

result of Lemma 7.4.41 as the basis to prove that for each u ∈ V , IM(ŝ(u)|Āµ) also

satisfies each constraint in CI
al. However, the induction cannot be trivially achieved

based on the size of Āµ. To have better presentation of our proof, in the following, we

introduce a tree structure for string ŝ(a) (where a ∈ A), ŝ(u), and ŝ(u)|Āµ ; and present

the induction based on the tree.

Let V , E, µ, A, a, and u be as stated above. The tree structure is an “extension” of

strings ŝ(a), ŝ(u), and ŝ(u)|Āµ that contains more information when constructing them

(according to Alg. 7). More precisely, an extension tree for ŝ(a), denoted as t(ŝ(a)) is a

tree constructed based on the following procedures:

1. Initially t(ŝ(a)) is with a root labeled with “ŝ(a)”.

2. Let string su1
J s

u2
J ...s

un
J âsun

I ...su1
I be as stated in Step F of Alg. 7 (with the corresponding

inputs for activity a ∈ A). Assign nodes “su1
J ”, “su2

J ”, ..., “sun
J ”, “â”, “sun

I ”, ..., “su1
I ”

to be the children of root “ŝ(a)” orderly from left to right.

3. For each i ∈ [1..n], if sui
J = a1a2...am, assign “a1”, “a2”, ..., “an” to be the children of

node “sui
J ” orderly from left to right; apply the similar approach for sui

I ’s.

4. For each iteration of Step G of Alg. 7, do the following:

236

Satisfiability of Collaboration Chapter 7

S(e)

su3 su3e su2su2Sal(u2)

b a d ɛ a fb a f

S(b)

b

S(a)

aSal(u3)

d c

(a) t(ŝ(e)) (b) t(ŝ(b)) (c) t(ŝ(a))

Figure 5: Extension trees for a single activity

i. Let aRes(a, b) (or aPre(a, b)) be as stated in Step G. Assign node “s̄al(µ(b))” to

be the rightmost (resp., leftmost) child of root “ŝ(a)”.

ii. If s̄al(µ(b)) = b1b2...bk, assign “b1”, “b2”, ..., “bk” to be the children of node

“s̄al(µ(b))” orderly from left to right.

Example 7.4.42 Continue with Example 7.4.29. Fig. 5 shows the extension tress for

ŝ(e), ŝ(b), ŝ(a) respectively.

It is easy to observe that the leaf nodes under the depth-first search order 4 of such

trees above form the corresponding strings of the roots. For example, if we do a depth-

first search upon t(ŝ(e)) in Fig. 5(a) and print out the leaf nodes, the string will be

“bafbadêaf”, which is the same as ŝ(e). (Note that “ε” is an empty string).

Let V , E, µ, A, a, and u be as stated above. An extension tree for ŝ(u), denoted as

t(ŝ(u)) is a tree constructed based on the following procedures:

1. Initially t(ŝ(u)) is with a root labeled with “ŝ(u)”.

2. For each activity a in s̄al(u) from left to right, attach t(ŝ(a)) as a subtree to root

“ŝ(u)” (from left to right).

4 In the remainder of this chapter, we assume the depth-first search follows the order from left to
right.

237

Satisfiability of Collaboration Chapter 7

S(e)

su3 su3e su2su2Sal(u2)

b a d ɛ a fb a f

S(u1)

Figure 6: An extension tree for a
grouped node

S(e)

su3 su3e su2su2Sal(u2)

d ɛ ff

S(u1)

S(b)

b

S(b)

b

S(a)

aSal(u3)

d c

S(a)

aSal(u3)

d c

S(a)

aSal(u3)

d c

Figure 7: The extension tree for t(ŝ(u1)|eba)

Example 7.4.43 Continue with Examples 7.4.42 and 7.4.31. Fig. 6 shows the extension

tree ŝ(u1).

Let V , E, µ, A, a, and u be as stated above. Suppose a1, a2, ..., an are distinct

activities in A. An extension tree for ŝ(u)|a1a2...an , denoted as t(ŝ(u)|a1a2...an) is a tree

constructed based on the following procedures:

1. t(ŝ(u)|a1) is constructed by replacing each leaf node with label “a1” in t(ŝ(u)) by

tree t(ŝ(a1)).

2. For each i from 1 to n, t(ŝ(u)|a1a1...ai) is constructed by replacing each leaf node with

label “ai”. in t(ŝ(u)|a1a1...ai−1
) by tree t(ŝ(ai).

Example 7.4.44 Continue with Examples 7.4.43 and 7.4.34. Fig. 7 shows the extension

tree t(ŝ(u1)|eba).

Let (V,E, µ) be grouped graph of the causality graph of a collapsed schema (A,C)

that satisfies the conditions in Theorem 7.4.23. Let t be an extension tree with respect

to (V,E, µ) and (A,C); we extend the mapping function µ to each node of t as follows:

• If the node is of form a, where a ∈ A, then µ(a) is the same as defined before,

238

Satisfiability of Collaboration Chapter 7

• If the node is of form â, where a ∈ A, then let µ(â) be µ(a),

• If the node is of form ŝ(a), where a ∈ A, then let µ(ŝ(a)) be µ(a),

• If the node is of form s̄al(u), then let µ(s̄al(u)) be u , and

• If the node is of form su
J or su

I, then let µ(su
J) or µ(su

I) be u .

The following two Lemmas 7.4.45 and 7.4.46 are trivial to prove; thus the proof is

omitted. Specifically, the correctness of the two lemmas is directly based on the definition

of extension trees.

Lemma 7.4.45 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies the conditions in Theorem 7.4.23. Let t be an extension tree

with respect to (V,E, µ) and (A,C). For each pair of node A and B in t, if A is the

ancestor of B, then µ(A) is before or the same as µ(B) with respect to the topological

order of (V,E).

Lemma 7.4.46 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies the conditions in Theorem 7.4.23. The leaf nodes under the

depth-first search order of trees t(ŝ(a)) (where a ∈ A), t(ŝ(u)) (where u ∈ V), and

t(ŝ(u)|Āµ) are the same as the strings ŝ(a), ŝ(u), and ŝ(u)|Āµ respectively.

Lemma 7.4.47 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies all the conditions in Theorem 7.4.23. For each u ∈ V ,

IM(ŝ(u)|Āµ) satisfies each constraint in CI
al.

239

Satisfiability of Collaboration Chapter 7

Proof: Let u , V , E, µ and Āµ be as stated in the lemma; suppose that Āµ = a1a2...an.

Denote a0 to be an activity that is not in A. We prove by induction that for each i ∈ [0..n],

IM(ŝ(u)|a0a1...ai) satisfies each constraint in CI
al. Note that since a0 /∈ A, ŝ(u)|a0 = ŝ(u),

which means that if the induction holds, the lemma holds.

Basis: For string IM(ŝ(u)|a0), it is equivalent to IM(ŝ(u)). Based on Lemma 7.4.41,

IM(ŝ(u)|a0) satisfies every constraint in CI
al.

Induction: Suppose IM(ŝ(u)|a0a1a2...ai−1
) satisfies each constraint in CI

al. Consider

string ŝ(u)|a0a1a2...ai , or correspondingly, the tree t(ŝ(u)|a0a1a2...ai). Suppose there exist

b, c ∈ A, such that aRes(b, c) ∈ CI
al and IM(ŝ(u)|a0a1a2...ai) does not satisfy aRes(b, c)

(where case aPre(b, c) can be analyzed symmetrically). Suppose V = {u1,u2, ...,un} and

sequence u1,u2, ...,un follows the topological order of (V,E). Without loss of generality,

assume µ(b) = µ(c) = uk, where k ∈ [1..n].

Based on the hypothesis, IM(ŝ(u)|a0a1a2...ai−1
) satisfies aRes(b, c). Due to the fact

that t(ŝ(u)|a0a1a2...ai) is constructed by replacing each leaf node ai in t(ŝ(u)|a0a1a2...ai−1
)

by tree t(ŝ(ai)), IM(ŝ(u)|a0a1a2...ai) can violate aRes(b, c) only because of two cases: (1)

IM(ŝ(ai)) only contains b but not c, and (2) IM(ŝ(ai)) contains both b and c. Note that

if IM(ŝ(ai)) contains neither b or c, or only c but not b, IM(ŝ(u)|a0a1a2...ai) still satisfies

aRes(b, c).

Case (1): According to Steps F and G, of Alg. 7, if an activity d ∈ A is “intro-

duced” to IM(ŝ(ai)) during Step F or G, then all the activities in µ−1
V (µ(d)) will occur in

IM(ŝ(ai)). Since µ(b) = µ(c) and only b occurs in IM(ŝ(ai)), based on Lemma 7.4.30, b

can only be ai. Therefore, t(ŝ(u)|a0a1a2...ai) is constructed by replacing each leaf node b

in t(ŝ(u)|a0a1a2...ai−1
) by tree t(ŝ(b)), which indicates that IM(ŝ(u)|a0a1a2...ai−1

) does not

satisfies aRes(b, c), a contradiction.

Case (2): Similar to Case (1), based on Lemma 7.4.30, there is path from µ(ai) to

uk. According to Lemma 7.4.40, since µ(ai) 6= uk, IM(ŝ(ai)) satisfies aRes(b, c).

240

Satisfiability of Collaboration Chapter 7

Therefore the only way for IM(ŝ(u)|a0a1a2...ai) to violate aRes(b, c) is that for tree

t(ŝ(u)|a0a1a2...ai−1
), there exists a node b or b̂ and a node ai in t(ŝ(u)|a0a1a2...ai−1

), such

that there is no node c between b/b̂ and ai based on the depth-first search order. In

the following, we develop our proof by considering the parent of node b or b̂ in tree

t(ŝ(u)|a0a1a2...ai−1
). There are four cases: (i) ŝ(b), (ii) s̄al(uk), (iii) suk

I , or (iv) suk
J .

Case (i): if ŝ(b) occurs in tree t(ŝ(u)|a0a1a2...ai−1
), then b ∈ {a1, ..., ai−1}. This is

impossible as µ(b) = uk is after µ(ai) in terms of the topological order of (V,E).

Case (ii): for node s̄al(uk), according to the definition of “s̄al”, c must be a child of

s̄al(uk) and is to the (may not be directly) right of node b or b̂. Since uk is after µ(ai)

in terms of the topological order of (V,E), according to Lemma 7.4.46, ai cannot be a

child or descendant of a node that is between b/b̂ and c. Therefore, ai can only be after

c based on the depth-first search order, a contradiction.

Case (iii): based on the definition of suk
I , c is also a child of suk

I and is to the (may

not be directly) right of node b or b̂. Similar to the analysis of Case (ii), ai can only be

after c based on the depth-first search order, a contradiction.

Case (iv): If suk
J is the parent of b or b̂, we need to consider the parent of suk

J , say

ŝ(e), where e ∈ A. According to Step F of Alg. 7, suk
I is also a child of ŝ(e) and is to the

(may not be directly) right of suk
J . Based on the definition of suk

J and suk
I in Step B or

C in Alg. 7, c is a child of suk
J or suk

I . If c is a child of suk
J , then the analysis is the same

as Case (iv), we can achieve a contradiction. If c is a child of suk
I , consider a node s

uj
J

between suk
J and suk

I , where according to Step F of Alg. 7, j ∈ [(k+ 1)...n]. (For case s
uj
I ,

the analysis is the same). Suppose µ(ai) = su l
I , where l ∈ [1..n]. Since b is node in tree

t(ŝ(ai)), it is easy to have l < k, which indicates that j > l. According to Lemma 7.4.46,

it is impossible for ai to occur as child or descendant in the subtree of s
uj
I . Hence, ai can

only occur after suk
I based on the depth-first search order, which means that ai can only

occur after c based on the depth-first search order, a contradiction.

241

Satisfiability of Collaboration Chapter 7

As a summary, for each pair of node b or b̂ and ai in tree t(ŝ(u)|a0a1a2...ai−1
), there is

a node c in between based on the depth-first search order. As a result, IM(ŝ(u)|a0a1a2...ai)

satisfies each constraint in CI
al.

Based on the above induction, for each u ∈ V , IM(ŝ(u)|Āµ) satisfies each constraint

in CI
al.

The correctness of Lemma 7.4.35 directly follows from Corollary 7.4.38, Lemma 7.4.39,

and Lemma 7.4.47.

The following Corollaries 7.4.48 directly follows from Lemma 7.4.35.

Corollary 7.4.48 Let (V,E, µ) be grouped graph of the causality graph of a collapsed

schema (A,C) that satisfies all the conditions in Theorem 7.4.23. Suppose V = {u1,u2, ...,

un}. IM(ŝ(u1)|Āµ ŝ(u2)|Āµ ...ŝ(un)|Āµ) conforms S.

The “if” direction of Theorem 7.4.23 holds based on Corollary 7.4.48.

In summary, we have provided the syntactical conditions for conformance involving (1)

ordering and immediate, (2) ordering and alternating, or (3) alternating and immediate

constraints. Syntactical characterization of conformance for schemas that contain all

three types constraints remains an open problem.

7.5 Response or Precedence Constraints

In this section, we study comformity of either response constraints or precedence con-

straints but not combined. The following Theorem 7.5.1 states the syntactical condition

for conformity of schemas containing only response constraints or only precedence con-

straints.

242

Satisfiability of Collaboration Chapter 7

Algorithm 8

Input: A causality graph (A,Eor
I , E

al
I , E

im
I) of a schema S that satisfies both conditions

in Theorem 7.5.1
Output: A finite string that conforms to S

A. Let string s be a topological order of (A,Eor∪ al∪ im
I). For each a∈A, let ŝ(a) be

the substring s[k]s[k+1]...s[len(s)] of s such that s[k] = a (clearly k ∈ [1..len(s)]). Let
i= 1.

B. While i6 len(s), repeat the following step:

B1. If (s[i], v)∈Eim
I for some v ∈A and either i= len(s) or s[i+1] 6= v, then replace

s[i] in s by s[i]ŝ(v).
B2. Increment i = i+ 1.

C. Return s.

Theorem 7.5.1 Given a schema S= (A,C) where C contains only response (or only

precedence) constraints, and its causality graph (A,Eor
I , E

al
I , E

im
I) (resp. (A,Eor

J , E
al
J ,

Eim
J)), S is conformable iff the following conditions both hold:

(1). (A,Eor∪ al∪ im
I) (resp. Eor∪ al∪ im

J) is acyclic, and

(2). for each (u, v)∈Eim
I (resp. Eim

J), there does not exist any w∈A such that w 6= v and

(u,w)∈Eim
I (resp. Eim

J).

The “only if” direction follows from Lemma 7.3.4, Theorems 7.3.2 and 7.3.5. The

“if” direction is involved and is established as Lemma 7.5.5.

In the following, we only focus on the schema with only response constraints (the

case for precedence constraints is similar).

Alg. 8 is used to construct a conforming string from an input schema that satisfies

both conditions in Theorem 7.5.1. The main idea is again to build a topological order

based on the causality graph and then fix each violated immediate constraint in the

string. Note that the execution of Alg. 8 replies on Theorem 7.5.1, where Conditions

(1) is to ensure the topological order in Step A is achievable, and Condition (2) is to

guarantee Step B1 is unique.

243

Satisfiability of Collaboration Chapter 7

Example 7.5.2 Given a schema with activities a, b, c, d, and e, and the following con-

straints.

ordering Res(a, d), Res(d, b)
alternative aRes(a, c), aRes(c, e), aRes(b, c)
immediate iRes(a, b), iRes(b, e)

Alg. 8 on the above schema as the input produces the following execution details (with

each “while” iteration in Step B unfolded).

A. s= adbce, ŝ(a) = adbce, ŝ(d) = dbce, ŝ(b) = bce, ŝ(c) = ce, and ŝ(e) = e.

B. When i= 1 (len(s) = 5): s[1] = a and s[2] = d violate iRes(a, b). We replace s[1] by

aŝ(b) = abce; we have s = abcedbce.

B. When i= 2 (len(s) = 8): s[2] = b and s[3] = c violate iRes(b, e). Replacing s[2] by

bŝ(e) = be, we have s = abecedbce.

B. When i= 3 through 6 (len(s) = 9): no immediate constraint is violated; do nothing.

B. When i= 7 (len(s) = 9): s[7] = b and s[8] = c violate iRes(b, e). Replacing s[7] by

bŝ(e) = be; we have s = abecedbece.

B. When i= 8, 9 (len(s) = 10): no immediate constraint is violated; do nothing.

C. Finally, the algorithm returns abecedbece.

Note that abecedbece conforms to the schema.

Lemma 7.5.3 Let S be a schema containing only response constraints and satisfying

both conditions in Theorem 7.5.1. Alg. 8 terminates on input S.

Proof: Let S= (A,C) be the schema in the lemma statement and ŝ the topological order

of the causality graph (A,Eor∪ al∪ im
I) of S assigned to the vairable s at Step A of Alg. 8.

Wlog, let ŝ= a1...a` where `= len(ŝ).

244

Satisfiability of Collaboration Chapter 7

Note that Steps A and C of the algorithm are executed exactly once. If sout is the

output string, i.e., held by variable s at step C, then Step B is executed once for each

activity occurrence in sout in the left-to-right order (small to large indices). We argue

that len(sout) is finite.

Observe that (1) the variable s initially holds the string ŝ and (2) if Step B replaces

an occurrence of ai, the replacement string contains none of a1, ..., ai−1. Thus, the longest

string to replace ai is aiai+1...a`.

Consider the worst case that each replacement at Step B is by the longest string in

an execution of the algorithm. Let λi be the number of occurrences of ai in sout. It is

easy to establish that λ1 = 1 (a1 is never in a replacement string of other activities), and

λi = Σi−1
1 λi + 1. It can be verified that λi = 2i−1 is a solution. Thus, len(sout) 6 2`−1.

Lemma 7.5.4 Given a schema S= (A,C) with only response constraints that satisfies

both conditions in Theorem 7.5.1, the output string by Alg. 8 on input S satisfies each

immediate constraint in C.

Proof: Let s, ŝ(a), and i be as stated in Alg. 8. The lemma is easy to verify since for the

ith iteration, if pair s[i] and s[i+1] violates an immediate constraint in C, s[i] is replaced

by s[i]ŝ(v) where v ∈A and s[i]ŝ(v)[1] satisfies this constraint. Note that according to

Condition (2) of Theorem 7.5.1, v is unique. Since Alg. 8 terminates according to Lemma

7.5.3, s satisfies each immediate constraint in C.

Lemma 7.5.5 The “if” direction of Theorem 7.5.1 holds.

Proof: In this proof we only consider the case when a schema contains only response

constraints (for precedence constraints, the proof is similar). Let S, A, C, Eor
I , Eal

I , and

245

Satisfiability of Collaboration Chapter 7

Eim
I be as stated in Theorem 7.5.1. We analyze Alg. 8 step by step with S as input. Let

s, ŝ, and i be as stated in Alg. 8. We prove by induction that after the ith iteration of

Step B, s satisfies each ordering and alternating constraint in C.

For reading convenience and proof consistency, denote s0 as the string the constructed

s before Step B; and for each i > 0, denote si as the constructed s after the ith of Step

B.

Basis: Before the first iteration of Step B, similar to the proof techniques used for

Lemma 7.3.2, it is easy to show that s0 satisfies each ordering constraint in C. Moreover,

since each activity in A occurs in s0 exactly once, s0 satisfies each alternating constraint

in C.

Suppose after the (i − 1)th iteration for some i > 0, si−1 satisfies each ordering and

alternating constraint in C.

Induction: Then, during the ith iteration, we will have three cases: (1) there does not

exist u ∈ A, such that iRes(s
[i]
i−1, u) ∈ C, (2) there exists u ∈ A, such that iRes(s

[i]
i−1, u) ∈

C and s
[i+1]
i−1 = u, and (3) there exists u ∈ A, such that iRes(s

[i]
i−1, u) ∈ C and s

[i+1]
i−1 6= u.

If case (1) or (2) holds, si = si−1 satisfies each ordering and alternating constraint in C

according to the hypothesis. Now we focus on case (3).

Let u and v be as stated above. Suppose there exists an ordering constraint Res(a, b)

∈ C, such that si−1 satisfies Res(a, b) and si does not. Since si is obtained from si−1 by

replacing s
[i]
i−1 = u by uŝ(v), ŝ(v) must contain a and either (i) string s

[i+1]
i s

[i+2]
i ...s

[len(si)]
i

does not contain b, or (ii) b occurs before a in ŝ(v) and string s
[i+1]
i−1 s

[i+2]
i−1 ...s

[len(si−1)]
i−1 does

not contain b. We now argue that (i) and (ii) cannot happen simultaneously. Since

(a, b) ∈ Eor∪ al∪ im
I , b occurs after a in ŝ according to the topological order. Thus, if ŝ(v)

contains a, then ŝ(v) contains b, and b occurs after a in ŝ(v). For (i), s
[i+1]
i s

[i+2]
i ...s

[len(si)]
i

contains substring ŝ(v), thus contains b; and for (ii), b occurs after a in ŝ(v). Therefore,

si satisfies each ordering constraint in C.

246

Satisfiability of Collaboration Chapter 7

Suppose there exists an ordering constraint aRes(a, b) ∈ C, such that si−1 satisfies

aRes(a, b) and si does not. Based on Lemma 7.3.4 and the above reasoning, si satisfies

Res(a, b). Then si does not satisfy aRes(a, b) only because that (i) ŝ(v) contains a, and

(ii) in si−1 there exists j, k ∈ N+, such that j 6 i < k, s
[j]
i−1 = a, s

[k]
i−1 = b, and for each

m ∈ [j..(k− 1)], s
[m]
i−1 6= a or b. Consider node w = s

[i]
i−1; note that w occurs before a in ŝ;

otherwise a will not be contained in ŝ(v). Thus wab is a subsequence of ŝ. Since s
[i]
i−1 is w

and s
[k]
i−1 is b, there must exist n ∈ [(i+ 1)..(k− 1)], such that s

[n]
i−1 is a, which contradicts

with for each m ∈ [j..(k−1)], s
[m]
i−1 6= a. Therefore, si satisfies each alternating constraint

in C.

According to the above induction, since Alg. 8 terminates by Lemma 7.5.3, s satisfies

each ordering and alternating constraint in C. Together with Lemma 7.5.4, s satisfies

each constraint in C. As each activity occurs in s at least once, s conforms S.

7.6 Experimental Evaluations

In this section, several experiments are conducted to evaluate the performance of the

syntactic-condition-based conformance checking approaches. Three main types of algo-

rithms are implemented, including: (1) The naive algorithm to check DecSerFlow con-

formance using automata (denoted as Chk-A), (2) the syntactic-condition-based confor-

mance checking algorithms for all four combinations of predicates (denoted as Chk-Or-Im

for ordering and immediate constraints, Chk-Or-Al, Chk-Al-Im, and Chk-Sin for single

direction constraints, i.e., either response or precedence), and (3) all four conforming

string generation algorithms (denoted as Gen-Or-Im, Gen-Or-Al, Gen-Al-Im, and Gen-

Sin). All algorithms are implemented in Java and executed on a computer with 8G RAM

and dual 1.7 GHz Intel processors. The data sets (i.e., DecSerFlow schemas) used in

experiments are randomly generated. Schema generation uses two parameters: number

247

Satisfiability of Collaboration Chapter 7

of activities (#A) and number of constraints (#C), where each constraint is constructed

by selecting a DecSerFlow predicate and two activities in a uniform distribution. Each

experiment records the time needed for an algorithm to complete on an input schema. In

order to collect more accurate results, each experiment is done for 1000 times to obtain

an average time result with the same #A and same #C for schemas having #A < 200,

100 times for schemas having #A ∈ [200, 400), and 10 times for #A ∈ [400,∞). The

reason to have less times of experiments for larger #A is that it takes minutes to hours

for a single algorithm execution with large #A, which makes it impractical to run 1000

times. We now report the findings.

The automata approach is exponentially more expensive than syntactic con-

ditions

We compared the time needed for the automata and syntactic condition approaches on

checking the same set of schemas that contain only ordering and alternating constraints.

(For other three types of combinations of constraints, the results are similar). The input

schemas have n activities and either n, n
2
, or 2n

3
constraints, where n ranges from 4 to

28. Fig. 8 shows the results (x-axis denotes the number of activities and y-axis denotes

the time needed in the log scale). It can be observed that for the automata approach,

the time needed is growing exponentially wrt the number of activities/constraints. For

a schema with 28 activities and 28 constraints, it takes more than 3 hours to finish the

checking. However, the syntactic condition approaches (whose complexity is polynomial)

can finish the conformance checking almost instantly. As the times needed for either n,

n
2
, or 2n

3
constraints are all too close around 1ms, we only use one curve (instead of three)

in Fig. 8 to represent the result for the syntactic conditions approach.

The syntactic conditions approaches have at most a cubic growth rate in

the size of the input schemas

248

Satisfiability of Collaboration Chapter 7

1E-‐1	
1E+0	
1E+1	
1E+2	
1E+3	
1E+4	
1E+5	
1E+6	
1E+7	

4	 8	 12	 16	 20	 24	 28	

Ti
m
e	
(m

s)
	

#A	

Chk-‐A	 (#C	 =	 #A)	
Chk-‐A	 (#C	 =	 2/3	 #A)	
Chk-‐A	 (#C	 =	 1/2	 #A)	
Chk-‐Or-‐Al	

Figure 8: Automata vs Syn. Cond.

0	

1	

2	

3	

4	

50	 200	 350	 500	

Ti
m
e	
(m

s)
	
x	
10

00
0	

#A	

Chk-‐Or-‐Im	
Chk-‐Or-‐Al	
Chk-‐Al-‐Im	
Chk-‐Sin	

Figure 9: Scalability

1E-‐1	

1E+0	

1E+1	

1E+2	

1E+3	

1E+4	

1E+5	

50	 200	 350	 500	

Ti
m
e	
(m

s)
	

#A	

Chk-‐Or-‐Im	
Chk-‐Or-‐Al	
Chk-‐Al-‐Im	
Chk-‐Sin	

Figure 10: Scalability (log)

1E-‐2	

1E-‐1	

1E+0	

1E+1	

1E+2	

1E+3	

1E+4	

1E+5	

50	 200	 350	 500	

Ti
m
e	
(m

s)
	

#A	

Chk-‐Or-‐Im	
Chk-‐Or-‐Al	
Chk-‐Al-‐Im	
Chk-‐Sin	

Figure 11: String Generation

We compute the times needed for the syntactic condition approaches for input schemas

with n activities and n constraints, n between 50 and 500. Fig. 9 and 10 show the

same result with normal and logarithm scales (resp.) of all four combinations of the

constraints. From the result, the complexity of the syntactic condition approach for

alternating and immediate constraints appears cubic due to the checking of Condition (4)

of Definition 7.4.2 (collapsable); the complexity for ordering and immediate constraints is

quadratic due to the pre-processing to form an im+schema; the complexity for ordering

and alternating constraints is linear as the pre-processing (to form an al+schema by

detecting strongly connected components) as well as the acyclicity check of the causality

graphs are linear; finally, the complexity for the constraints of a single direction is also

linear.

249

Satisfiability of Collaboration Chapter 7

1E-‐2	
1E-‐1	
1E+0	
1E+1	
1E+2	
1E+3	
1E+4	
1E+5	

50	 200	 350	 500	

t(
St
r.	
Ge

n)
	 /	
t(
Ch

ec
k)
	

#A	

Chk-‐Or-‐Im	
Chk-‐Or-‐Al	
Chk-‐Al-‐Im	
Chk-‐Sin	

Figure 12: Str. Gen. / Checking

1	

10	

100	

50	 200	 350	 500	

Ti
m
e	
(m

s)
	

#A	

#C	 =	 #A	
#C	 =	 1/2	 #A	
#C	 =	 2	 #A	

Figure 13: Changing #Constraints

Conforming string generation requires polynomial to exponential times

With the same experiment setting as above, Fig. 11 shows the time to generate a conform-

ing string for a conformable schema. From the results, all string generating approaches

are polynomial except for the single direction case (i.e, either response or precedence).

According to Alg. 8, the length of a generated string can be as long as 2n, where n is

the number of activities in the given schema. Fig. 12 presents the ratios of the time to

generate a conforming string over the time to check conformance of the same schema

for conformable schemas. The results indicate that the complexity to generate a string

can be polynomially lower (ordering and immediate case), the same (alternating and

immediate case), polynomially higher (ordering and alternating case), and exponentially

higher (single direction case) than the corresponding complexity to check conformance

of the same schema. Note that the curves in Fig. 12 is lower or “smaller” than dividing

“Fig. 11” by “Fig. 9” due to the reason that the data shown in Fig. 11 is only for the con-

formable schemas; while the one in Fig. 9 is for general schemas, where non-conformable

schemas can be determined 5 - 15% faster than conformable ones due to the reason that

a non-comformable schema fails the checking if it does not satisfy one of the conditions

(e.g., in Theorem 7.3.9, there are three conditions to check); while a comformable schema

can pass the check only after all conditions are checked.

Increasing the number of constraints increases more time for the automata

250

Satisfiability of Collaboration Chapter 7

approach than syntactic condition approaches

We compute the time needed for the syntactic condition approaches with input schemas

containing only ordering and immediate constraints with n activities and either n, 2n,

or n
2

constraints, where n ranges from 50 to 500. (For other three types of combinations

of constraints, the results are similar). Fig. 13 shows the three curves for n, 2n, and n
2

constraints respectively. Comparing the similar settings shown in Fig. 8, there does not

exist an obvious growth in time when the number of constraints grow and the curves are

almost the same. The reason is that the algorithms we used to check conformance and

generate strings are graph-based approaches. As #C ∈ [#A
2
, 2#A], we have O(#C) =

O(#A) that can provide the same complexity. Moreover, if #C < #A
2

, there will be

activities involving in no constraint, which leads to a non-practical setting; if #C > 2#A,

almost all the randomly generated schemas will be non-confomable based on uniform

distribution.

7.7 Summary

This chapter studied syntactic characterization of conformance for “core” DecSerFlow

constraints that are reduced from general DecSerFlow constraints. We provided charac-

terizations for (1) ordering and immediate constraints, (2) ordering and alternating con-

straints, (3) alternating and immediate constraints, and (4) ordering, alternating, and

immediate constraints with precedence (or response) direction only. The general case

for ordering, immediate, and alternating constraints with both precedence and response

directions remains as an open problem; furthermore, it is unclear if the conformance

problem for DecSerFlow constraints is in ptime.

251

Chapter 8

Related Work

This chapter discusses the related works including business processes, schema mapping,

and choreography.

8.1 Business Processes and Artifacts

Business process modeling has been studied variously in the last decade ([48, 66]). Tra-

ditional business process models are control-flow-centric, i.e., focusing extensively on

activities and control flow that governs the ordering among activities. Examples of such

models include BPMN [1], BPEL [50], and YAWL [36]. A promising trend is that the

business process research and development communities are embracing a fundamental

shift from control-flow-centric to data/artifact-centric process design and specification.

The concept of business artifacts is introduced in [2]. In [67], the authors lay out the

methodology in the context of Model Driven Business Transformation and describe the

positive feedback received in real-world engagements. Nine patterns emerging in artifact-

centric process models and develops a computational model based on Petri Nets were

presented in [68]. Development of formal models was reported in [69, 12, 70]. Verifica-

252

Related Work Chapter 8

tion of temporal properties concerning the workflow logic can be found in [69, 71, 72].

Static analysis of well-formedness was done in [12]. And finally, automated construction

from non-temporal goals was shown possible for a restricted case [73].

The Guard-Stage-Milestone (GSM) paradigm is a declarative artifact-centric business

process model based on the business artifact model originally introduced in [2, 74], but

using a declarative basis [41, 15, 75].

There is a strong relationship between the GSM model and Case Management [76, 77];

both approaches focus on conceptual entities that evolve over time, and support ad

hoc styles of managing activities. The GSM framework provides a formal operational

semantics [41, 15, 75]. The core GSM constructs are being incorporated into the OMG

Case Management Modeling Notation standard [78].

There is a loose correspondence between the artifact approach and proclets [79]; both

approaches factor a BPM application into “bite-size” pieces that interact through time.

Proclets do not emphasize the data aspect, and support only message-based proclet

interaction. In addition to supporting messages, GSM permits interaction of artifact

instances through condition testing and internal event triggering.

Concerning BPaaS, [80] proposes an anonymization-based approach to preserve the

privacy of a public BP. Similarly, [81] focuses on how to hide the business logic of out-

sourced GSM processes [15] while still providing the BP services to clients. In [39], the

authors studied how auditing can be done for BPaaS, our SeGA framework can easily

solve their problem.

Various techniques and formal models are proposed for BP verification [82, 83]. They

are only performed at the model level. Their applications to runtime analysis therefore

are very limited.

A generic solution for BP execution analysis with a process data warehouse model

and ETL generation mechanism was presented in [84].

253

Related Work Chapter 8

Providing process flexibility to support foreseen and unforeseen changes is a very

active research area. [16] presented a novel and functional mechanism to handle ad hoc

and just-in-time changes at runtime.

8.2 Schema Mapping and Relational Database

Schema mapping techniques are used in schema/data integration and data exchange

between different schemas. The focus there is to reason about and query generated

target instance(s) through mapping rules and source instance(s). A classic representative

is Clio [6, 7]. In our entity-database mappings, a relational schema is associated with

a hierarchical business entity. The purpose of the mappings is to facilitate data access

in business processes, e.g., automated code generation. Updatability turns out to be

crucial for maintain data consistency and connectivity between business processes and the

enterprise database. Updatability was not studied in conjunction with schema mappings,

and updatability is not always possible for schema mapping rules. Since our mapping

rules corresponds to a special subset of Clio mappings, updatability results generalize to

these Clio mappings.

[85] addresses a similar problem with update propagation given a mapping. However,

the mapping languages used in [85] is far not expressive as tgds, considering [85] disallows

joins.

The comparison of business entity updatability and view updates on relation database

or XML ([3, 4, 5, 23]) has been addressed in Section 3.3. For database updatability,

it is related to view self-maintenance for data warehouses with materialized views. Al-

though not every data warehouse is self-maintainable in general [86], ED covers are always

database updatable.

Schema/database integration is achieved through a global schema and mappings be-

254

Related Work Chapter 8

tween the global schema and local schemas [87]. Earlier work used the relational setting

and focuses on query answering [87]. Our ED rules differ from both GAV and LAV and

focus on updates.

The techniques of recovering the source database given a schema mapping (specified

by tgds) is similar to the ones used for inverting schema mapping [27, 28, 29]. The

inverting schema mapping focuses on recovering the “most proper” source given a target,

considering that the semantics in those papers always allow an arbitrary target to be

some solution; while our target is only a solution when it is chased.

8.3 Choreography and Satisfiability

The choreography approach to modeling and analysis business processes or service inter-

actions has been studied for a decade. A survey for formal models and results is provided

in [62].

A number of standards have been proposed to address issues related to service-based

process collaboration management. BPEL [50] together with WS-C [88] and WS-T (that

includes Atomic Transaction [89] and Business Activity [90]) provides some basic support

for coordination and exception handling. However none of these specifications is capable

of or hints at querying runtime execution status and providing firsthand information for

runtime monitoring and adjustment if necessary.

WS-CDL [57] is an XML based language for choreography, its choreography con-

straints message exchanges based on conditions that may involve information types,

variables and tokens. Unfortunately, message contents need to be copied to variables

to be used for choreography conditions. There is no data model for participant interface

with a collaboration. Also, there is no direct support for multi-instances of a participant.

Recent work in [53, 59] extend BPEL to support choreographies with a bottom-

255

Related Work Chapter 8

up approach to build a choreography from specified participant behaviors. BPEL4chor

supports service interaction patterns, e.g., one-to-many send, one-from-many receive,

one-to-many send/receive patterns through aggregation. Similar work on BPMN was

in [91]. However, neither BPEL nor BPMN’s extensions directly include data in their

conceptual models and the instance level correlation support is much weaker than ours.

Let’s Dance [43] provides a set of sequencing constraint primitives to allow a chore-

ography to be specified in a graphical language. It lacks a clearly support for data or

information models. Earlier work on conversations was reported in [51]. In the conver-

sation model, BP systems collaborate with each other via generic asynchronous message

exchanging. The information model in the conversation is limited.

Artifact-centric choreography [92] extends existing artifact-centric BP models with

agents and locations. BPs can access artifacts from their locations with the help of

agents. Petri-Net is used to specify artifact internal behaviors and external interactions.

The model has no artifacts data attributes.

Process views have been used as an abstraction of BPs to support BP collaboration

in [93, 94]. Various consistency rules are developed to make sure the derived process

views are consistent with the BP models. Their approach supports design time BP

coordination, but does not tackle the hard issue of run time management. [44] proposed

a centralized artifact hub in coordinating business processes. Similarly [95] proposed a

view mechanism for partners with artifact-centric BPs which support different views for

different participants.

There have been work done on testing if a choreography is realizable. In [96, 97],

a choreography is defined wrt a set of peers forming a collaboration. The notions of

completed, partial and distributed realizability of choreography were defined and studied.

It was shows that partial realizability is undecidable whereas distributed and complete

realizability are decidable. [52, 58], focused on the realizability problem of global behavior

256

Related Work Chapter 8

of interaction services. Sufficient conditions are given for realizability.

The constraint language studied for choreography is a part of DecSerFlow [54], and

the constraints can be translated to Linear Temporal Logic (LTL) [9].

LTL employs infinite semantics, [98] first proved that LTL satisfiability checking is

pspace-complete. A well-know result in [99] shows that LTL is equivalent to Büchi

automata; and the LTL satisfiability checking can be translated to language emptiness

checking. [100] shows the LTL with past operators is no more expressive than LTL.

Several complexity results upon satisfiability are given with respect to the different

subsets of LTL. [101] shows that the restriction to Horn formulas will not decrease the

complexity of LTL satisfiability checking. [102] investigates the complexity of cases re-

stricted by the use of temporal operators, their nesting, and number of variables. [103]

and [65] provide upper and lower bounds for different combinations of both temporal and

propositional operators. [104] presents the tractability of LTL only with combination of

“XOR” clauses.

For the finite semantics, [105] studies the semantics of LTL upon truncated (i.e., finite

but not maximal) paths. [106] provides an exponential-time algorithm to check if a given

LTL formula can be satisfied by a given finite-state model, but the execution is still

infinite. Similarly, In [107], a linear-time algorithm is given to check if the given CTL

formula can be satisfied by a given finite-state model. In [108], the authors studied the

LTL over finte traces and proved that satisfiability, validity, and model checking under

such semantics are all PSPACE-complete.

257

Chapter 9

Conclusions

This thesis studies the challenges in business process management (BPM). In details, we

particularly focus on the data and collaboration management for BPM.

We initiate a study on data mappings between BPs and databases through formalizing

the data models and formulating a mapping language. This idea of bridging BPs and

databases has a potential to allow management issues to be dealt with separately for

BPs and for databases while making sound design decisions. For BPM, it allows many

interesting problems to be studied in the presence of data, e.g., process evolution. For

databases, it brings a new dimension, i.e. BPs, into the database design, in particular,

by including BPs’ data needs, database design could avoid problems such as missing data

or mismatched semantics.

On the technical front, there are several interesting problems to be addressed. A

better understanding is needed for specifying entity-data mappings, alternative languages

and relaxing the attribute-attribute mapping requirement are worth considering. As for

one of the potential problems to solve, we adapt tuple generating dependency (tgd) as a

mapping language to specify the mapping between BP data and enterprise database. tgd

has been widely used in data exchange community, which also has a rather expressive

258

Conclusions Chapter 9

power. Unfortunately, the updatability checking falls into intractable cases for most of

the tgd mappings specified, even with the present of keys and part of the source relations

to be known. To further understand of how updatability can be checked efficiently

under the tractable cases, immediate issues are to develop concrete algorithms for update

propagation. Also, another angle to investigate updatability is to check the property

incrementally, i.e., given both source and target instances, together with an update on

target, to determine if there exists an update on source, s.t., the tgd mapping still holds.

The proposal of data mapping between BP data and enterprise database serves as

a basis for separating BP data management and execution management. The separa-

tion enables business-processes-as-a-service (BPaaS). The demand for BPaaS is emerging

while collaborative BPs remains a challenge. We have seen various vertical BPaaSs in

for example HR and procurement. Clearly BPaaS is not just about providing APIs and

interfaces for configuration and graphical analysis. The challenges lie in the capability

to handle massive scaling, the service must be able to support multiple languages and

execution environments, as well as massive customers and processes. We argue that the

separation of the data from the execution engine is a good way to meet this demand.

We demonstrate in the thesis that the SeGA framework provides a holistic approach

in supporting this separation and result in a uniform way of facilitating different BP

collaboration frameworks and supporting runtime analysis.

As a future work, the implementation of the SeGA framework can be challenging.

The conceptual model of SeGA only addresses the problem of how to separate data

and execution. However, in practice, how BP data and the related status information,

schema, or correlation status can be wrapped into and unwrapped from a universal

artifact efficiently needs to be further studied.

In terms of BP collaboration, we propose a declarative choreography language that

can express correlations and choreographies for artifact-centric BPs in both type and

259

instance levels. It also incorporate data contents and cardinality on participant instances

into choreography constraints. Furthermore, a subclass of the rule-based choreography

is shown to be equivalent to a state-machine-based choreography.

As a follow-up study, we investigated syntactic characterization of conformance for

the choreography language. we consider different combination of the constraint types

and for each combination; syntactic conditions are provided to decide whether the given

constraints are satisfiable. The syntactic conditions automatically lead to polynomial

testing methods (comparing to PSPACE-complete complexity of general LTL satisfiabil-

ity testing).

260

Bibliography

[1] “Business Process Model and Notation (BPMN), Version 2.0.”
http://www.omg.org/spec/BPMN/2.0/PDF, 2011.

[2] A. Nigam and N. S. Caswell, Business Artifacts: An Approach to Operational
Specification, IBM Systems Journal 42 (2003), no. 3 428–445.

[3] F. Bancilhon and N. Spyratos, Update Semantics of Relational Views, ACM
Trans. Database Syst. 6 (1981), no. 4 557–575.

[4] U. Dayal and P. A. Bernstein, On the Correct Translation of Update Operations
on Relational Views, ACM Trans. Database Syst. 7 (1982), no. 3 381–416.

[5] J. Lechtenbörger, The Impact of the Constant Complement Approach towards
View Updating, in Proc. of the ACM Symposium on Principles of Database
Systems, 2003.

[6] R. Fagin et al, Clio: Schema Mapping Creation and Data Exchange, in
Conceptual Modeling: Foundations and Applications, pp. 198–236, 2009.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, Data exchange: Semantics and
query answering, in ICDT, pp. 207–224, 2003.

[8] C. Peltz, Web Services Orchestration and Choreography, IEEE Computer 36
(2003), no. 10 46–52.

[9] A. Pnueli, The temporal logic of programs, in FOCS, pp. 46–57, 1977.

[10] E. F. Codd, A Relational Model of Data for Large Shared Data Banks, CACM 13
(1970), no. 6 377–387.

[11] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley,
1995.

[12] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su, Towards Formal Analysis
of Artifact-Centric Business Process Models, in Proc. of the Int. Conf. on BPM,
2007.

261

http://www.omg.org/spec/BPMN/2.0/PDF

[13] P. P.-S. Chen, The Entity-Relationship Model – Toward a Unified View of Data,
ACM Trans. Database Syst. 1 (Mar., 1976) 9–36.

[14] “Kingfore Corporation.” www.kingfore.net.

[15] R. Hull et al, Business Artifacts with Guard-Stage-Milestone Lifecycles:
Managing Artifact Interactions with Conditions and Events, in Proc. ACM Int.
Conf. on DEBS, 2011.

[16] W. Xu, J. Su, Z. Yan, J. Yang, and L. Zhang, An Artifact-Centric Approach to
Dynamic Modification of Workflow Execution, in Proc. Int. Conf. on CoopIS,
2011.

[17] W. M. P. van der Aalst and A. H. M. ter Hofstede, YAWL: yet another workflow
language, Inf. Syst. 30 (2005), no. 4 245–275.

[18] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu, A Flexible,
Object-Centric Approach for Business Process Modelling, Service Oriented
Computing and Applications 4 (2010), no. 3 191–201.

[19] V. Künzle and M. Reichert, PHILharmonicFlows: Towards a Framework for
Object-Aware Process Management, Journal of Software Maintenance 23 (2011),
no. 4 205–244.

[20] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin, Translating
web data, in VLDB, pp. 598–609, 2002.

[21] S. Abiteboul and N. Bidoit, Non first normal form relations: An algebra allowing
data restructuring, J. Comput. Syst. Sci. 33 (1986), no. 3 361–393.

[22] A. K. Chandra and D. Harel, Computable Queries for Relational Data Bases,
JCSS 21 (1980), no. 2 156–78.

[23] L. Wang, E. A. Rundensteiner, and M. Mani, Updating xml views published over
relational databases: Towards the existence of a correct update mapping, Data
Knowl. Eng. 58 (2006), no. 3 263–298.

[24] Y. Sun, W. Xu, J. Su, and J. Yang, SeGA: A Mediator for Artifact-Centric
Business Processes, in CoopIS, pp. 658–661, 2012.

[25] R. Fagin, P. G. Kolaitis, and L. Popa, Data exchange: Getting to the core, in
Proceedings of the 22nd ACM Symposium on Principles of Database Systems
(PODS), pp. 90–101, 2003.

[26] Y. Sun, J. Su, B. Wu, and J. Yang, Modeling data for business processes, in IEEE
30th Intl. Conf. on Data Engineering (ICDE), pp. 1048–1059, 2014.

262

www.kingfore.net

[27] R. Fagin, Inverting schema mappings, in Proc. of the 25th ACM Symposium on
Principles of Database Systems PODS, pp. 50–59, 2006.

[28] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan, Quasi-inverses of schema
mappings, in Proc. of the 26th ACM Symposium on Principles of Database
Systems PODS, pp. 123–132, 2007.

[29] M. Arenas, J. Pérez, and C. Riveros, The recovery of a schema mapping:
Bringing exchanged data back, in Proc. of the 27th ACM Symposium on
Principles of Database Systems, PODS, pp. 13–22, 2008.

[30] G. Grahne, A. Moallemi, and A. Onet, Recovering exchanged data, in Proc. of the
34th ACM Symposium on Principles of Database Systems, PODS, 2015.

[31] S. Abiteboul and O. M. Duschka, Complexity of answering queries using
materialized views, in Proc. of the 17th ACM Symposium on Principles of
Database Systems (PODS), pp. 254–263, 1998.

[32] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[33] A. C. Klug, Calculating constraints on relational expressions, ACM Trans.
Database Syst. 5 (1980), no. 3 260–290.

[34] M. Kutz, The complexity of boolean matrix root computation, Theor. Comput. Sci.
325 (2004), no. 3 373–390.

[35] W. van der Aalst and K. van Hee, Workflow Management: Models, methods and
systems. The MIT Press, 2004.

[36] W. van der Aalst and A. ter Hofstede, YAWL: yet another workflow language,
Information Systems 30 (2005), no. 4 245–275.

[37] Z. Wu, S. Deng, and J. Wu, Service Computing and Service Technology. Zhejiang
University Press, 2009.

[38] G. Group, “Gartner Newsroom.”
http://www.gartner.com/it/page.jsp?id=1740414, 2011.

[39] R. Accorsi, Business Process as a Service: Chances for Remote Auditing, in
COMPSAC Workshops, pp. 398–403, 2011.

[40] T. Heath, D. Boaz, M. Gupta, R. Vacuĺın, Y. Sun, R. Hull, and L. Limonad,
Barcelona: A Design and Runtime Environment for Declarative Artifact-Centric
BPM, in Proc. of the 11th Int. Conf. on Service-Oriented Computing, ICSOC,
pp. 705–709, 2013.

263

http://www.gartner.com/it/page.jsp?id=1740414

[41] E. Damaggio, R. Hull, and R. Vacuĺın, On the Equivalence of Incremental and
Fixpoint Semantics for Business Artifacts with Guard-Stage-Milestone Lifecycles,
in Proc. of the 9th Int. Conf. on Business Process Management, BPM,
pp. 396–412, 2011.

[42] G. Liu, X. Liu, H. Qin, J. Su, Z. Yan, and L. Zhang, Automated Realization of
Business Workflow Specification, in Proc. of the ICSOC/ServiceWave Workshops,
pp. 96–108, 2009.

[43] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, Let’s Dance: A
Language for Service Behavior Modeling, in Proc. of the 14th Int. Conf. on
Cooperative Information Systems, CoopIS, pp. 145–162, 2006.

[44] R. Hull, N. C. Narendra, and A. Nigam, Facilitating Workflow Interoperation
Using Artifact-Centric Hubs, in Proc. of the 7th Int. Conf. on Service-Oriented
Computing, ICSOC, pp. 1–18, 2009.

[45] Y. Sun, W. Xu, and J. Su, Declarative choreographies for artifacts, in ICSOC,
pp. 420–434, 2012.

[46] L. Limonad, D. Boaz, R. Hull, R. Vacuĺın, and F. T. Heath, A Generic Business
Artifacts Based Authorization Framework for Cross-Enterprise Collaboration, in
SRII Global Conference, pp. 70–79, 2012.

[47] R. Cattell and D. Barry, The Object Data Standard: ODMG 3.0. Morgan
Kaufmann, 2000.

[48] R. Hull, J. Su, and R. Vacuĺın, Data management perspectives on business process
management: tutorial overview, in SIGMOD Conference, pp. 943–948, 2013.

[49] R. Hull and J. Su, Tools for composite web services: a short overview, SIGMOD
Record 34 (2005), no. 2 86–95.

[50] “Web Services Business Process Execution Language (BPEL), Version 2.0.”
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[51] J. Hanson, P. Nandi, and S. Kumaran, Conversation support for business process
integration, in Enterprise Distributed Object Computing Conference, 2002. EDOC
’02. Proceedings. Sixth International, pp. 65 – 74, 2002.

[52] T. Bultan, X. Fu, R. Hull, and J. Su, Conversation specification: a new approach
to design and analysis of e-service composition, in Proc. of the 12th Int. Conf on
World Wide Web, WWW, pp. 403–410, 2003.

[53] G. Decker, O. Kopp, F. Leymann, and M. Weske, BPEL4Chor: Extending BPEL
for Modeling Choreographies, in Proc. of the 5th Int. Conf. on Web Services,
ICWS, 2007.

264

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[54] W. M. P. van der Aalst and M. Pesic, DecSerFlow: Towards a Truly Declarative
Service Flow Language, in Proc. of the 3rd Int. Workshop on Web Services and
Formal Methods, WS-FM, pp. 1–23, 2006.

[55] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, Choreography and
orchestration conformance for system design, in Proc. 8th Int. Conf. on
Coordination Models and Languages (COORDINATION), vol. 4038, (Bologna,
Italy), pp. 63–81, Springer, June, 2006.

[56] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot, A
theoretical basis of communication-centred concurrent programming, 2006.

[57] “Web Services Choreography Description Language (WS-CDL), Version 1.0.”
http://www.w3.org/TR/ws-cdl-10/, 2005.

[58] X. Fu, T. Bultan, and J. Su, Conversation protocols: a formalism for specification
and verification of reactive electronic services, Theor. Comput. Sci. 328 (2004),
no. 1-2.

[59] O. Kopp, L. Engler, T. Lessen, F. Leymann, and J. Nitzsche, Interaction
choreography models in bpel: Choreographies on the enterprise service bus, in
Subject-Oriented Business Process Management (A. Fleischmann, W. Schmidt,
R. Singer, and D. Seese, eds.), vol. 138 of Communications in Computer and
Information Science, pp. 36–53. Springer Berlin Heidelberg, 2011.

[60] X. Fu, T. Bultan, and J. Su, Analysis of interacting bpel web services, in
Proceedings of the 13th international conference on World Wide Web, WWW ’04,
(New York, NY, USA), pp. 621–630, 2004.

[61] M. Vardi and P. Wolper, Reasoning About Infinite Computations, Inf. Comput.
115 (1994), no. 1.

[62] J. Su, T. Bultan, X. Fu, and X. Zhao, Towards a Theory of Web Service
Choreographies, in Proc. of the 4th Int. Workshop on Web Services and Formal
Methods, WS-FM, 2007.

[63] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A. Reijers,
Imperative versus declarative process modeling languages: An empirical
investigation, in Business Process Management Workshops (1), pp. 383–394, 2011.

[64] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, Declare: Full support for
loosely-structured processes, in EDOC, pp. 287–300, 2007.

[65] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev, The complexity
of clausal fragments of ltl, in LPAR, pp. 35–52, 2013.

265

http://www.w3.org/TR/ws-cdl-10/

[66] W. M. P. van der Aalst, Business process management demystified: A tutorial on
models, systems and standards for workflow management, in Lectures on
Concurrency and Petri Nets, pp. 1–65, 2003.

[67] K. Bhattacharya, R. Guttman, K. Lymann, F. Heath III, S. Kumaran, P. Nandi,
F. Wu, P. Athma, C. Freiberg, L. Johannsen, and A. Staudt, A model-driven
approach to industrializing discovery processes in pharmaceutical research, IBM
Systems Journal 44 (2005), no. 1 145–162.

[68] R. Liu, K. Bhattacharya, and F. Y. Wu, Modeling business contexture and
behavior using business artifacts, in CAiSE, vol. 4495 of LNCS, 2007.

[69] C. E. Gerede, K. Bhattacharya, and J. Su, Static analysis of business
artifact-centric operational models, in IEEE Int. Conf. on Service-Oriented
Computing and Applications, 2007.

[70] S. Abiteboul, L. Segoufin, and V. Vianu, Modeling and verifying active xml
artifacts, Data Engineering Bulletin 32 (15, 2009) 10.

[71] C. E. Gerede and J. Su, Specification and verification of artifact behaviors in
business process models, in Proceedings of 5th International Conference on
Service-Oriented Computing (ICSOC), (Vienna, Austria), September, 2007.

[72] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, Automatic verification of
data-centric business processes, in Proc. Int. Conf. on Database Theory (ICDT),
pp. 252–267, 2009.

[73] C. Fritz, R. Hull, and J. Su, Automatic construction of simple artifact-based
business processes, in Proc. Int. Conf. on Database Theory (ICDT), 2009.

[74] S. Kumaran, P. Nandi, F. F. T. H. III, K. Bhaskaran, and R. Das, Adoc-oriented
programming, in SAINT, pp. 334–343, 2003.

[75] Y. Sun, R. Hull, and R. Vacuĺın, Parallel processing for business artifacts with
declarative lifecycles, in On the Move to Meaningful Internet Systems: OTM 2012,
Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE 2012,
Rome, Italy, September 10-14, 2012. Proceedings, Part I, pp. 433–443, 2012.

[76] W.-D. Zhu and et al, “Advanced Case Management with IBM Case Manager.”
http://www.redbooks.ibm.com/redpieces/abstracts/sg247929.html?Open.

[77] W. M. P. van der Aalst and M. Weske, Case handling: a new paradigm for
business process support, Data Knowl. Eng. 53 (May, 2005) 129–162.

[78] “Case Management Model and Notation 1.0.”
http://www.omg.org/spec/CMMN/1.0/, 2014.

266

http://www.redbooks.ibm.com/redpieces/abstracts/sg247929.html?Open.
http://www.omg.org/spec/CMMN/1.0/

[79] W. M. P. van der Aalst et. al., Proclets: A framework for lightweight interacting
workflow processes, Int. J. Cooperative Inf. Syst. (2001) 443–481.

[80] M. Bentounsi, S. Benbernou, C. S. Deme, and M. J. Atallah, Anonyfrag: an
anonymization-based approach for privacy-preserving BPaaS, in Cloud-I, p. 9,
2012.

[81] R. Eshuis, R. Hull, Y. Sun, and R. Vacuĺın, Splitting GSM Schemas: A
Framework for Outsourcing of Declarative Artifact Systems, in BPM,
pp. 259–274, 2013.

[82] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, Analyzing interacting
ws-bpel processes using flexible model generation, Data Knowl. Eng. 64 (2008),
no. 1 38–54.

[83] S. Nakajima, Model-checking behavioral specification of bpel applications, Electr.
Notes Theor. Comput. Sci. 151 (2006), no. 2 89–105.

[84] F. Casati, M. Castellanos, U. Dayal, and N. Salazar, A generic solution for
warehousing business process data, in Proceedings of the 33rd international
conference on Very large data bases, VLDB ’07, pp. 1128–1137, 2007.

[85] S. Melnik, A. Adya, and P. A. Bernstein, Compiling mappings to bridge
applications and databases, ACM Trans. Database Syst. 33 (2008), no. 4.

[86] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, Maintaining views
incrementally, in Proc. ACM SIGMOD Management of Data, pp. 157–166, 1993.

[87] M. Lenzerini, Data integration: A theoretical perspective, in PODS, pp. 233–246,
2002.

[88] “Web services coordination 1.1 (WS-coordination).”
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-pr-01.pdf, 2006.

[89] “Web services atomic transaction (WS-atomic transaction).”
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-pr-01.pdf, 2006.

[90] “Web services business activity (WS-business activity).”
http://docs.oasis-open.org/ws-tx/wstxwsba-1.1-spec-pr-01.pdf, 2006.

[91] K. Pfitzner, G. Decker, O. Kopp, and F. Leymann, Web service choreography
configurations for bpmn, in Service-Oriented Computing - ICSOC 2007
Workshops, vol. 4907, pp. 401–412. 2009.

[92] N. Lohmann and K. Wolf, Artifact-centric choreographies, in Service-Oriented
Computing, vol. 6470, pp. 32–46. 2010.

267

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-pr-01.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-pr-01.pdf
http://docs.oasis-open.org/ws-tx/wstxwsba-1.1-spec-pr-01.pdf

[93] D.-R. Liu and M. Shen, Business-to-business workflow interoperation based on
process-views, Decision Support Systems 38 (2004), no. 3 399–419.

[94] R. Eshuis and P. Grefen, Constructing customized process views, Data Knowl.
Eng. 64 (Feb., 2008) 419–438.

[95] S. Yongchareon and C. Liu, A process view framework for artifact-centric business
processes, in Proc. of the 19th International Conference on Cooperative
Information Systems, CoopIS ’11, pp. 26–43, 2010.

[96] N. Lohmann and K. Wolf, Realizability is controllability, in Web Services and
Formal Methods, vol. 6194 of Lecture Notes in Computer Science, pp. 110–127.
2010.

[97] N. Lohmann and K. Wolf, Decidability results for choreography realization, in
Service-Oriented Computing, vol. 7084 of Lecture Notes in Computer Science,
pp. 92–107. 2011.

[98] A. P. Sistla and E. M. Clarke, The complexity of propositional linear temporal
logics, J. ACM 32 (1985), no. 3 733–749.

[99] M. Y. Vardi and P. Wolper, An automata-theoretic approach to automatic
program verification (preliminary report), in LICS, pp. 332–344, 1986.

[100] N. Markey, Past is for free: on the complexity of verifying linear temporal
properties with past, Acta Inf. 40 (2004), no. 6-7 431–458.

[101] C.-C. Chen and I.-P. Lin, The computational complexity of satisfiability of
temporal horn formulas in propositional linear-time temporal logic, Inf. Process.
Lett. 45 (1993), no. 3 131–136.

[102] S. Demri and P. Schnoebelen, The complexity of propositional linear temporal
logics in simple cases, Information and Computation 174 (1998) 61–72.

[103] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer, The
complexity of generalized satisfiability for linear temporal logic, in FoSSaCS,
pp. 48–62, 2007.

[104] C. Dixon, M. Fisher, and B. Konev, Tractable temporal reasoning, in Proc.
International Joint Conference on Artificial Intelligence (IJCAI), AAAI Press,
2007.

[105] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Campenhout,
Reasoning with temporal logic on truncated paths, in CAV, pp. 27–39, 2003.

[106] O. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs
satisfy their linear specification, in POPL, pp. 97–107, 1985.

268

[107] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of
finite-state concurrent systems using temporal logic specifications, ACM
Transactions on Programming Languages and Systems 8 (1986) 244–263.

[108] G. De Giacomo and M. Y. Vardi, Linear temporal logic and linear dynamic logic
on finite traces, in Proc. of the 23rd Intl. Joint Conf. on Artificial Intelligence
IJCAI, 2013.

269

	Curriculum Vitae
	Abstract
	Introduction
	Database, Artifacts, and Business Entities
	Database Models
	Artifacts and Business Entities

	Data Mapping for Artifacts
	Need for a Mapping Language
	Entity-Data Mapping Rules
	Updatability
	Isolation
	Summary

	Data Mappings: Identifying the Source
	Preliminaries and Problem Definition
	Valid Chased Targets
	Adding Key Constraints
	Missing Source Relations
	Missing Source Relations with Key Constraints
	Summary

	Universal Artifacts
	Independence of Data and Execution
	Universal Artifacts
	The SeGA Framework and Support for BPaaS
	A Classification of Collaborative Process Models
	Runtime Support
	Summary

	Declarative Collaboration for Artifacts
	Instance-Level Collaboration with Data
	A Choreography Language
	Realizability
	Summary

	 Satisfiability of Collaboration
	DecSerFlow Constraints and Problem Definition
	Core Constraints
	Characterizations for Ordering & Immediate Constraints
	Incorporating Alternating Constraints
	Response or Precedence Constraints
	Experimental Evaluations
	Summary

	Related Work
	Business Processes and Artifacts
	Schema Mapping and Relational Database
	Choreography and Satisfiability

	Conclusions
	Bibliography

