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ABSTRACT

Topics in Modeling and Control of Spatially Distributed Systems

by

Jonathan Peter Epperlein

This dissertation consists of three parts centered around the topic of spatially distributed sys-

tems.

The first part treats a specific spatially distributed system, the so-called Rijke tube, an exper-

iment illustrating the unstable interplay of heat exchange and gas dynamics. The experiment

is described in detail and it is demonstrated how closed-loop system identification tools can be

applied to obtain a transfer function model, before a spatially distributed model is developed

and analyzed. The model in its most idealized form can be described in the frequency domain

by a matrix of non-rational transfer functions, which facilitates analysis with classical methods

such as the root locus.

The second part considers the following problem: for a given plant and cost function, could

there be a finite-length periodic trajectory that achieves better performance than the optimal

steady state? Termed optimal periodic control (OPC), this problem has received attention over

several decades, however most available methods employ state-space based methods and hence

scale very badly with plant dimension. Here, the problem is approached from a frequency-

domain perspective, and methods whose complexity is independent of system dimension are

developed by recasting the OPC problem for linear plants with certain memoryless polynomial

nonlinearities as the problem of minimizing a polynomial.

Finally, the third part extends results for a special class within spatially distributed systems, that

viii



of spatially invariant systems, from systems defined onL2 (square-integrable) spaces to systems

whose state space is an inner-product Sobolev space as they arise when considering systems of

higher temporal order. It is shown how standard results on exponential stability, stabilizability

and LQ control can be generalized by carefully keeping track of spatial frequency weighting

functions related to the Sobolev inner products, and simple recipes for doing so are given.
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Introduction

This dissertation consists of three seemingly disjointed parts, but a common thread is the mod-

eling and treatment of distributed-parameter systems; further connections between the parts are

pointed out as they come up. Still, each part is presented as a chapter with its own introduction,

summary and appendices, and each can be read without making any reference to the others.

The first and longest chapter concerns thermoacoustic instability and its simplest incarnation,

the Rijke tube. Thermoacoustic instabilities can be encountered if heat is released, typically in

the form of combustion, into an acoustic resonator such as a pipe; practical examples include

ramjets, where the entire engine serves as a resonator, certain kinds of rockets, where the

combustion chamber is the resonator, industrial furnaces, and so on. They manifest themselves

as resonating sound waves, typically very powerful and audible.

In these examples, the instability is unwanted, and efforts are directed at stabilization, i.e.

suppression of the resonant pressure wave. Another interpretation of the process – and the

one that inspired the investigations in this dissertation – is that of energy conversion: The

thermoacoustic instability receives energy in the form of heat and converts it to a different

form of energy, namely acoustic energy.

The Rijke tube as the canonical example of a thermoacoustic instability is deceptively simple

to build: a slender tube is set upright, with both ends open, and a heating element, such as

a hot wire, is place in its lower third. If enough heat is supplied, a hum will start to swell
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until it reaches saturation. Despite this simplicity, derivation of a model and explanation of the

observed effect are far from simple; Rijke’s own explanation was not sufficient.

The chapter opens with a description of the entire experiment and then proceeds to present re-

sults of a closed-loop system identification, before getting to the main contribution, the deriva-

tion of a distributed-parameter model of the Rijke tube.

Much effort went into making the exposition self-contained, and it starts from the conservation

equations of fluid dynamics, which are then adapted to the Rijke tube, linearized and rewritten

in dimensionless parameters. The normalization allows statements about the relative impor-

tance of modeled effects to be made, namely it can be seen that a buoyancy-driven upwards

flow and wall friction play minor roles only, while diffusive effects have even less impact.

Neglecting all three leads to a very simple transcendental transfer function model which, to the

best of my knowledge, has not appeared in the literature before. The model is then shown to

predict the hum and its frequency by using a root-locus argument.

In the last few sections, several possible refinements of the model by including previously

neglected effects are investigated numerically.

In Chapter 2, the subject of optimal periodic control (OPC) is treated, with an eye on the

application of optimizing the periodic energy conversion process that is the Rijke tube; however

the developed methods are not yet general enough. OPC, or the calculation of optimal periodic

trajectories for a given control system, has been the subject of much research in the past, but

available methods typically suffer from the “curse of dimensionality” in that the computational

effort grows with the dimension of the system under investigation.

Frequency-domain methods circumnavigate this dependence on system dimension, but they

also limit application to problems for which frequency-domain descriptions can be found. The

methods developed in this dissertation allow for problem structures with linear, but possibly

infinite-dimensional dynamics, certain memoryless polynomial nonlinearities and polynomial

2



cost.2

Two different approaches are taken. The first is to employ variational calculus to derive first-

order optimality conditions in the form of a Hamiltonian system. It turns out that all periodic

solutions of the Hamiltonian system satisfy the first-order optimality conditions. Harmonic bal-

ance, a generalization of the describing function method, is a frequency-domain-based method

of identifying periodic trajectories, and due to the structure of plant and cost, the harmonic

balance can be rewritten as a system of (multivariate) polynomial equations, the roots of which

correspond to the Fourier coefficients of trajectories satisfying the first-order optimality condi-

tions.

The second approach does away with variational calculus but instead uses the Fourier series

representation of all involved signals and Parseval’s identity to rewrite the cost function as a

polynomial in the Fourier coefficients. While it is neat that the system of polynomial equa-

tions obtained using the first approach can be derived from this second approach by setting the

gradient of the cost to zero, the more important observations are that: (a) minimizing a poly-

nomial can be done in more efficient ways than by finding its extrema by setting the gradient

to zero, and it is demonstrated how Sum-of-Squares programming can be applied; (b) avoiding

variational calculus allows us to treat more general structures than the first approach does, in

particular the structure shown in Figure 2.13 is quite similar to the Rijke tube model shown

in Figure 1.15, but the method is not yet general enough to apply. Extension to more general

problems is the subject of future research.

The last chapter presents an extension of results on frequency-domain treatment of spatially-

invariant systems shown in [BPD02] from systems whose state space consists of square-in-

tegrable, or L2, functions to systems on slightly more general state spaces, namely Sobolev

spaces which require functions and some of their spatial derivatives to be square-integrable.

This requires to consider weighted spaces in the frequency domain, and these additional fre-

2Technically, the running cost is meant: if the cost is J =
∫
L(x ,u)dt , it is required that L be polynomial.
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quency weights need to be carefully accounted for. Doing so enables the solution of stability,

stabilizability, and LQR problems for spatially-invariant systems on Sobolev spaces by solving

a family of standard Lyapunov or Riccati equations.

Commonly, such Sobolev state spaces are encountered when temporal derivatives of order 2 or

higher are involved; typical examples are the wave and beam equation. A particular realization

of the wave equation, but interestingly one that does not call for Sobolev spaces, is encountered

in Rijke tube modeling process as (1.27), which sparked the interest in this subject.
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Chapter 1

Thermoacoustics and the Rijke Tube

The term thermoacoustics refers to the interplay of heat exchange and the dynamics of the

thermodynamic state (in particular the pressure) and velocity of the fluid(s) that the heat is

exchanged with. These interconnections can be unstable, leading to large pressure oscillations,

and the Rijke tube experiment is the probably simplest illustration of this phenomenon.

In this chapter, contributions to the modeling and interpretation from a control-systems per-

spective of thermoacoustic systems, in particular the Rijke tube, are made. A very brief in-

troduction to the phenomenon of thermoacoustic instabilities and a rudimentary overview over

the vast literature on them is given in Section 1.1; the Rijke tube experiment is described next

in some detail to gain familiarity with the system (Section 1.2). Section 1.3 describes how a

model for the system can be obtained by using simple closed-loop system identification tools,

and, finally, in Section 1.4 a spatially distributed model of the Rijke tube is developed from

first principles.

Some of the material of this chapter is the subject of the

Related Publications:

[EBÅar] Jonathan P. Epperlein, Bassam Bamieh, and Karl J. Åström. ThermoAcoustics and
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the Rijke tube: Experiments, identification and modeling. Control Systems Magazine, to

appear.

[EBÅ14] Jonathan P. Epperlein, Bassam Bamieh, and Karl J. Åström. Control laboratory

experiments in ThermoAcoustics using the Rijke tube. In 2014 American Control Con-

ference, 2014, pp. 2550–2556.

1.1 Thermoacoustic Instabilities

When heat is released into gas in underdamped acoustic cavities, sometimes a powerful sound

is generated. This is a manifestation of the heat transferred to the gas generating and sustaining

a standing pressure wave, in other words an unstable coupling between heat release rate and

the thermodynamic state of the gas; hence, such phenomena are known as thermoacoustic, or

– when the heat transfer is through a flame – combustion instabilities.

Thermoacoustic instabilities occur e.g. in ramjets, furnaces and solid-fuel rockets [RBFB93].

In such applications, they are undesirable due to the additional mechanical strain that the pres-

sure waves cause on the components, and much of the research in the controls community has

been focussed on avoiding the instabilities by stabilizing the interaction between heat exchange

and acoustic gas dynamics; model-based approaches are described in e.g. [HAFG98, BAKJ04,

AFR+00, TD92, ZN97, Can02, DM05, Hec88].

A different interpretation of the thermoacoustic instability is that it constitutes an energy con-

version process: energy supplied as heat is converted into acoustic energy in the form of pres-

sure waves. Hence, the process can be considered a thermoacoustic engine. This application

has received less attention in the literature, important exceptions being e.g. [BS00] and the

review article [Swi88]. There is also the very accessible American Scientist article [GB00].

In practical applications, thermoacoustic instabilities are commonly encountered as combus-

6



tion instabilities, and are notoriously difficult to model due to the additional complexity of

combustion dynamics [McI86, McI90]. The Rijke tube experiment [Rij59] on the other hand

generates thermoacoustic instabilities without needing a combustion process: a slender tube is

set upright and a heating element, which may be a resistive heater or a flame heating a metal

mesh as in Rijke’s original experiments, is placed in the lower half. After a short transient, a

loud and steady hum can be heard.

The Rijke tube is thus the simplest experiment conceivable that exhibits thermoacoustic insta-

bility, yet it still illustrates a very complex phenomenon, the explanation of which is not quite

that simple. Rijke’s own explanation [Rij59] for instance was insufficient. Today it is known

[Ray78] that the phasing between the fluctuating heat release and the pressure oscillations is

such that Rayleigh’s criterion [Ray96] is satisfied: more heat is added while the gas is com-

pressed, and less while it expands. The physical model developed in Section 1.4 will show that

this behavior corresponds to a linearly unstable feedback interconnection of gas velocity and

heat transfer.

1.2 The Rijke Tube Experiment

To observe the thermoacoustic instability Rijke observed in 1859 [Rij59], nothing more is

needed than a slender tube and a heating element. The exact dimensions of the tube are not

important, as long as it is much longer than wide (Rijke himself used tubes with diameter of

about 34 mm and lengths between 0.2 and 0.8 m). This tube is set upright, so that both ends

are open ends, and the heating element (nowadays typically a resistive heater) is placed in

the lower half of the tube; the effect is strongest if the heater is placed at one quarter of the

length. A photograph and a schematic diagram of the setup used for all experiments in this

dissertation are shown in Figure 1.1, and details on the materials and components used are

given in Section 1.A.

7



Power Supply

Audio Amplifier

PC

with

DAQ Board

Microphone

Coil

Speaker

Base air flow

Figure 1.1 – Photograph and diagram of the Rijke tube experimental apparatus. Only the coil
and the power supply are necessary to induce the thermoacoustic instability. Micro-
phone, speaker and PC interface are used to realize control and system identification.
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Figure 1.2 – A diagram of the fundamental acoustic mode of the Rijke tube. In the top three
rows, the spatial waveforms are shown. Acoustic pressure is shown in color and the
acoustic velocity at the ends is illustrated as arrows. The bottom row depicts one period
of the temporal waveform of the velocity at the bottom of the tube. In phase a, the
pressure just started increasing in the center of the tube due to the air rushing in, which
in b has led to the pressure achieving a maximum at the center, while simultaneously
the velocity has been decreased by the resulting pressure gradient. In c, the pressure
gradient has inverted the velocity, so that air now starts rushing out of the tube with d
increasing velocity, until e the pressure reaches a minimum in the center and the gra-
dient leads to f air being sucked in again, until a pressure moves towards its maximum
again and the cycle repeats.
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The power to the heater is then slowly increased until the critical value is reached after which

a loud and steady hum appears. The wire will be glowing red at this point. The frequency f0

of the hum is

f0 ≈ c

2L
, (1.1)

where c is the velocity of sound and L is the tube length. In the specific setup used here,

measurement yields f = 143 Hz. The wavelength of the sound is λ = 2L, so it corresponds to

a half-wavelength standing wave in the tube, which is the fundamental mode of a tube open at

both ends.1 This mode is illustrated in Figure 1.2, and time series of the pressure are shown in

Figure 1.3(a)-(c).

Covering either end of the tube will make the hum disappear instantly; the phenomenon will

also not occur if the tube is horizontal. This indicates that the buoyancy-driven upwards flow

that sets in as soon as the heater is turned on is vital for the effect to occur. We will return to this

observation during the modeling process in Section 1.4.2. Decreasing the power to the heater

below the critical value will also cause the hum to die out, but a slight hysteresis might be

observed. Increasing the power further once the hum has appeared will lead to a slight increase

in sound intensity, but the frequency is unaffected.

As a next step, actuation and measurement are added and a controller is applied. A speaker

placed underneath the tube (but not flush with it!) serves as an actuator, while a microphone

dangling into the top half of the tube provides a measurement, see Figure 1.1. The microphone

measurement is amplified and fed to the speaker, in other words a simple proportional controller

is employed.

As the control gain is increased, there is a critical gain value Kmin above which the hum will die

1 While it is common to assume that every mode has a pressure node exactly at the open end, in reality the
nodes are located slightly outside the tube, and so the wavelength is slightly more than 2L. One can account for
this by using a tube length L + 2∆L in the computations; the so-called end correction ∆L generally depends on the
radius R of the tube and the wavelength λ of the considered mode, but for λ � R it is approximately independent
of λ: ∆L ≈ 0.61 · R [LS48]. For the tube described in Section 1.A, this yields a discrepancy of roughly 4.6 cm or
8 Hz.
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Figure 1.3 – Time trace of the pressure (measured with a microphone) (a) at the onset of
instability showing growth, and then saturation of the limit cycle. Linear growth on
a semilog plot (b) of the signal’s envelope confirms initial exponential growth of its
amplitude. A zoomed-in picture (c) shows the periodic, but non-symmetric limit cycle
behavior. With appropriate proportional feedback, the limit cycle is stabilized as this
trace of the speaker’s input signal (d) shows.

out quickly. However, there is a critical higher gain value Kmax above which a new instability

is triggered. When that gain is reached, the tube will begin to “screech” loudly. The screech

frequency reveals it to be a harmonic of the initial fundamental hum frequency. Exactly which

harmonic it is will depend on the details of the experimental set up (in the setup described in

Section 1.A it is typically the 3rd or 5th harmonic). This phenomenon is however repeatable

if the experimental setup — microphone, speaker and heater locations — is unchanged. This

higher gain instability and its frequency can be used to validate the model identified in the

next section. The exact location of the microphone does not influence this qualitative behavior,

but Kmin and Kmax are different for different microphone positions. Figure 1.4 sums up these

observations.
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0 K
fundamental mode unstable stable higher harmonic is unstable

Kmin Kmax

Hum Silence Screech

Figure 1.4 – A depiction of the effects of proportional feedback on the Rijke tube. A minimum
feedback gain Kmin is necessary to stabilize the unstable fundamental mode. There
is then a critical higher gain Kmax beyond which a higher harmonic mode of the tube
becomes unstable yielding a high-pitched screech. The upper part shows typical mi-
crophone traces of the transient phase: exponential decay for Kmin < K < Kmax and
exponential growth else.

1.3 Rijke Tube System Identification

In this section, there is no physical modeling done; instead, a (linear) model of the Rijke

tube is obtained purely by system identification based on measurements collected from the

microphone inside the tube, and actuation provided through the speaker below.

1.3.1 Closed-Loop System Identification

As demonstrated in the preceding section, the Rijke tube is an unstable system, therefore it

must be identified while operating in a stabilizing closed loop. Identifying systems in closed

loops comes with some ramifications that have to be addressed in the identification scheme;

simply recording the plant input and output and applying open-loop identification techniques,

ignoring the fact that the input is the result of feedback, is definitely not a good idea.
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The underlying reason is that most identification techniques start from a system model of the

form y(t) = F (q)u(t) + ν (t), where y, u and ν represent plant output, input and measurement

noise, respectively, and F is the transfer function (in the shift operator q) of the plant to be

identified. Under the assumption that noise and input are uncorrelated one can show, among

other things, “consistency,” i.e. that if the true plant Fo(q) lies in the parametrized set of models

and an infinite amount of data is collected, the identified model will converge to the true plant.

However, if the system operates in closed loop the input u(t) is determined from the measured

output, hence it is correlated with the measurement noise, and consistency is lost.

To illustrate this fact, some quantitative detail for the case of predicition-error methods [Lju99]

is provided: For the open-loop case with uncorrelated noise and input, one can show [Lju99,

Ch. 8.5] that for an infinite amount of collected data, the identified frequency response F̂ (e jω)

minimizes ∫ π

−π
���Fo(e jω) − F̂ (e jω)���2 Φu(ω) dω,

where Φs denotes the frequency spectrum of the signal s. If Fo is among the models that the

algorithm can choose from, this minimum is 0, which happens exactly when F̂ ≡ Fo, hence we

have consistency.

On the other hand in a feedback loop, i.e. u(t) = C(q)y(t) + w(t), where C is the controller,

and w is an exogenous signal (sometimes referred to as “test” or “interrogation” signal), the

identification process minimizes [Gev93]

∫ π

−π

������
Fo(e jω) − F̂ (e jω)
1 + Fo(e jω)C(e jω)

������
2

Φw(ω) +

������
1 +C(e jω)F̂ (e jω)
1 + Fo(e jω)C(e jω)

������
2

Φν (ω) dω; (1.2)

the important feature is the new term that is multiplied by the noise spectrum, the presence

of which moves the global optimum away from F̂ = Fo. In the extreme case of no test signal

Φw ≡ 0, the estimate will instead converge to −C−1(e jω).

Since the idealized conditions that yield consistency typically are not satisfied anyway, one can
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minimize the closed-loop effect by choosing a test signal w that has rich frequency content and

hence should satisfy Φw(ω) � Φν (ω) at all frequencies ω. By (1.2) the estimate F̂ then “pretty

much” minimizes the error ���Fo(e jω) − F̂ (e jω)���, weighted by the sensitivity of the closed loop.

For example [IMR11] and [MD07] choose this path and successfully identify a model of their

Rijke tube.

Another simple workaround, and the one chosen here, is the so-called indirect method. Like

before, an exogenous test signal w is added into the loop, however now the closed-loop re-

sponse is identified. The structure of the model then is y(t) = T (q)w(t) + ν (t), where T is the

closed-loop transfer function, and w and ν are indeed uncorrelated. The frequency response

T (e jω) can be identified with any open-loop technique, and the open-loop response F (e jω) can

be recovered by simple algebra. Of course, there are many more sophisticated methods, see

e.g. the surveys [FL99, GLS77].

1.3.2 Identification Procedure and Results

K Tube
Test Signal

w

Measurement
y

Identified Frequency Response F (ejω)

Audio Amp Speaker Mic Pre-AmpControl Gain

Figure 1.5 – Equivalent block diagram of the Rijke tube with acoustic feedback. The speaker,
microphone and pre-amp transfer functions are lumped together with that of the Rijke
tube.

As seen earlier, stabilization can be achieved by a proportional controller implemented by a

speaker, a microphone, and amplifiers. These components are designed to pick up and transmit

sounds audible to humans (20-20,000 Hz), hence their response should be reasonably flat in

the frequency range of interest and it is justified to assume purely proportional control. By

doing so, we implicitly lump these dynamics with the Rijke tube dynamics, as illustrated in
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the conceptual block diagram in Figure 1.5, where the controller is written simply as a gain

K . The closed-loop transfer function from the test signal w (added into the input of the power

amplifier) to the microphone output y is

T (q) =
KF (q)

1 − KF (q) ,

and once T is identified, F is obtained by inverting the above relation

F (q) =
1
K

T (q)
1 +T (q) . (1.3)

It would be very difficult to obtain a value for K , which for instance includes the unknown

conversion factor from pressure to voltage output by the microphone, but as the above equation

shows, the chosen structure ensures that the poles and zeros of F can be identified from those

of T without knowing K ; F is identified up to an unknown gain factor 1
K .

Open-Loop Identification Method The dynamics underlying the Rijke tube are a combina-

tion of acoustics and heat transfer, and are thus of relatively high order (in fact, they are infinite-

dimensional). Nonparametric frequency-domain identification schemes are better suited to

those types of systems than time-domain based ones, since one is not forced to select a model

order a priori. Instead, the frequency response T (e jω) is identified directly, and then a least-

squares based method is used to fit a model of appropriate order over the identified frequency

range. So-called spectral methods (see e.g. [Lju99, Ch. 6]) estimate the frequency response

as the ratio of the cross spectrum Φyw(ω) of output and test signal, and the spectrum Φw(ω)

of the test signal. The Matlab System Identification Toolbox [Lju07] offers two implementa-
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tions of these methods, spa and spafdr, of which the latter is the function of choice.2 The

least-squares fit is then performed using the function clsfits from the FREQID Toolbox for

Matlab [DCVdH96].

Test Signal A test signal should have rich frequency content, while, due to actuator and

sensor limitations in physical systems, amplitudes should be kept reasonably small. Popular

choices include white noise, Schroeder-phased sinusoids [Bay93] and sine sweeps (also known

as chirp signals). After experiments with all three types of signals, sine sweeps, which have

been found to be beneficial in the identification of acoustic systems before [Bur92], emerged as

the most effective choice; all shown data was collected using a sweep over the shown frequency

range.

Data Collection For the identification experiment, the tube is first brought to a hum. Then,

the feedback with a stabilizing gain is turned on, and the test signal is added to the feedback

signal, as shown in Figure 1.5. The microphone signal is recorded for the duration of the

experiment (the data used here was collected over 120 s), and together with the applied test

signal forms an input-output pair, which is all the data needed to obtain a spectral estimate.

To minimize the effects of random noise, this is done several times, and an average of the

estimated frequency responses is formed.

Figure 1.6 shows an averaged closed-loop frequency response along with the individual

experiments. This response with several very lightly damped modes at integer multiples of a

2 While both estimate the cross spectrum and input spectrum by applying a smoothing window to what roughly
amounts to the discrete Fourier transforms of input and output data, spa performs the windowing in the time
domain, whereas spafdr applies the window in the frequency domain. The expected sharp peaks in the frequency
response require fine resolution in frequency; since a narrow frequency-domain window, which is what is required,
corresponds to a wide time-domain window, using spafdr allows one to specify a small (frequency-domain)
window, resulting in a drastic decrease in computation time compared to the large (time-domain) window that
would have to be specified to achieve the same resolution using spa. Another important distinction between spa
and spafdr is that the latter allows for frequency dependent resolution (hence the name), but this feature was not
used here.
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Figure 1.6 – Closed-loop frequency response obtained with a sine sweep over the range of
0-2.5 kHz (top) and 0-900 Hz (bottom). The response below 20 Hz, which is outside
the audible range, and above 1 kHz is likely dominated by microphone and speaker
distortions. The range 0-1 kHz however exhibits typical wave-like dynamics with res-
onances occurring at multiples of the fundamental frequency. Note that here and in all
Bode plots that follow, a linear frequency axis is used to emphasize the pattern of a
fundamental frequency with harmonics.
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Figure 1.7 – Closed-loop frequency response obtained by a nonparametric spectral estimation,
and a 12th order least-squares fit. Note that due to the log-scale, the seemingly large
deviations in the ranges between the peaks are actually very small.

fundamental frequency has the signature of wave-like dynamics. The fundamental frequency

corresponds very closely to the frequency of the hum observed in the non-stabilized Rijke tube.

In order to perform the least-squares fit of a finite dimensional transfer function model for

T (s), where s is the Laplace variable (we are fitting a continuous time model), to the estimated

frequency response, a value for the model order needs to be selected. Figure 1.7 shows a

12th order transfer function fit, which nicely captures the first 6 harmonics in the frequency

response.

To obtain the transfer function F (s), a parametric model of the open loop, the fitted model T is

then plugged into (1.3). Of course it is also possible to apply (1.3) to the nonparametric esti-

mated frequency response at each frequency, thereby obtaining a nonparametric model of the

open loop. Both of those possibilities are compared in Figure 1.8, they are in close agreement,

which is encouraging. It is notable that, while the phase at the first peak of the closed loop T
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Figure 1.8 – Open-loop frequency responses, obtained by applying (1.3) to the identified
closed-loop response at every frequency (green) or to the fitted closed-loop response
(black).

drops by 180o indicating a stable pole slightly to the left of the imaginary axis, it increases by

180o in the open-loop response, indicating a pole slightly in the right-half plane (RHP).

1.3.3 Model Validation: Root Locus Analysis

The model F (s) of the open loop obtained in the last section can be validated against the exper-

imental observations. In particular, its root locus explains, why proportional feedback initially

stabilizes the thermoacoustic instability and why a higher frequency mode becomes unstable

at high gains. It also gives a quantitative prediction of that higher frequency.

Figures 1.9 and 1.10 show the root locus of the identified open-loop dynamics. The pole

pattern resembles that of a damped wave equation, with imaginary parts of the poles being

integer multiples of a fundamental frequency, and the real parts showing successively higher

damping as the mode frequency increases. As expected, the fundamental mode is unstable,
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Figure 1.9 – A full view of the root locus of the identified open-loop model with variable pro-
portional feedback control gain. The open-loop poles show the (unstable) fundamental
mode at 144 Hz and its (stable) harmonics very close to the imaginary axis. Several
RHP open-loop zeros attract closed-loop poles into the RHP at high feedback control
gains.
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Figure 1.10 – Close-ups of the root locus of the identified open-loop model F showing closed-
loop pole locations (F· ) at gains that (a) just stabilize the unstable fundamental mode
and that (b) make the fifth mode unstable.
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having positive real part. The imaginary part of the fundamental mode corresponds to the hum

frequency heard when the tube is initially powered on.

This system also has multiple RHP zeros which ultimately attract a subset of the initially stable

open-loop poles into the RHP, thus causing instability to reoccur at high gains. Figure 1.10(a)

shows the locus and the pole locations at the value of the gain sufficient to initially stabilize the

fundamental mode (denoted Kmin in Figure 1.4), all poles are in the left half plane. However,

due to the presence of RHP zeros, some poles will eventually cross into the RHP as the gain is

increased. Figure 1.10(b) indicates that for this particular identified model, it is the fifth har-

monic mode that becomes unstable at higher gain (denoted Kmax in Figure 1.4). The frequency

of this mode should correspond to the frequency of the screech heard in the experiment as the

system becomes unstable again at high feedback gains, which is indeed what was observed

on the setup used to collect the identification data. This serves as a useful method of model

validation.

1.3.4 Common Problems in the Identification Process

Often, the phase of the open-loop frequency response will also drop, instead of increase, by

180o at the first peak, i.e. the open loop is identified as stable, while it is known from the initial

experiment that the open loop must be unstable. The stability of the open loop is very sensitive

to the amplitude and phase ofT at the first peak. This is most easily explained with an argument

based on the Nyquist criterion: From (1.3), it is seen that F has the same poles asT in negative

unity feedback, so stability of F can be assessed through the Nyquist criterion. In order for T

to encircle the critical point (−1,0j), one needs |T | > 1 and ∠T = −180o at the same frequency.

Inspecting Figure 1.6 again, we see that for the presented data, the first peak reaches only about

2 dB, and the range for which it exceeds 0 dB is only about 1 Hz wide. Hence, if the peak is

“cut off,” the identification will result in a stable open loop. Likely culprits are insufficient
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Figure 1.11 – By comparing two frequency responses obtained from the same data with differ-
ent amounts of smoothing (γ is passed to spafdr and corresponds roughly to the size
of the smallest detail [Lju07]), the difficulty in identifying an unstable open loop can
be illustrated. The cyan and magenta frequency responses shown on the left appear to
be qualitatively the same, thus one might tend to choose the magenta one as it looks
smoother while still capturing the resonant peak. However, the most important feature
– the corresponding unstable open loop – is not captured by this smoother response;
this is immediately clear when considering the Nyquist plots, shown on the right: the
magenta curve cannot loop around the critical point because it never leaves the unit
circle. Note that even γ = 15 still corresponds to relatively little smoothing.
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frequency resolution and too much smoothing during the spectral estimation. This situation is

detailed in Figure 1.11. If increasing the resolution and decreasing the smoothing do not help,

a different speaker might be the solution; speakers were found to have quite different frequency

responses, some added considerable phase lag.

More practically, if experiments are run for a long time, the tube walls, especially around the

heater, absorb a lot of heat. If the identification is stopped and restarted for a new run, there

might be no initial humming, due to the tube walls heating the air around the heater to the point

where the heat transfer between air and heater is insufficient to support the humming. In that

case, one can only wait for the tube to cool off, or, if the setup admits, increase the power to

the heater to increase the coil temperature.

1.3.5 Microphone Position

The microphone position generically influences only the location of the zeros, not the poles,

which is why its exact position was never stated. However, there are special locations that

do yield interesting results. Figure 1.12 shows the identified open loops if the microphone is

placed at three quarters, and at half the length of the tube. Doing so appears to “remove peaks,”

in the former case it would be every fourth, and in the latter case every even-numbered one.

This will be easily explained with the physical transfer function model (1.31) developed in the

modeling section — it can in fact serve as validation for the model — but there is also a very

intuitive explanation: each peak corresponds to a mode, a standing pressure wave, in the tube;

the standing wave corresponding to the first peak is a half-wave, for the second peak a full

wave, and so on. Placing the microphone at e.g. the center means placing it where all the even

numbered modes have a pressure node, and hence their contribution is not registered by the

microphone, a pressure sensor.
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Figure 1.12 – Bode plots for identified and fitted open-loop responses with different micro-
phone positions. Placing the microphone in the middle of the tube (ξm = 1/2) seems to
remove every other peak, while placing it at a quarter length from the tube attenuates
the fourth peak only. The very ugly identification data at the removed peaks, and espe-
cially at the peak around 560 Hz, can be explained by the fact that perfect cancellation
of a pole by a zero is virtually impossible; instead, one gets a pole and a zero very close
together – notoriously difficult to identify.
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Figure 1.13 – A sketch of the model to be developed

1.4 A Spatially Distributed Rijke Tube Model

After the black-box approach of the previous section, we now set out to develop a model

describing the interactions of the gas, the hot wire, the speaker and the microphone in the

Rijke tube from physical considerations. It is natural to think of the model as consisting of

two interconnected parts: the first one describing the dynamics of the gas, and the second one

describing the heat exchange process between the wire and the gas.

A sketch of the model structure is shown in Figure 1.13; we will update this diagram as we go

and develop models of different complexity. The structure already reveals that the heat release

constitutes a feedback from the state of the gas to the released heat. It is very important to

distinguish this feedback from the stabilizing proportional feedback of Section 1.3: On the

one hand, the heat release process can be interpreted as an internal feedback loop, it connects

signals not accessible to measurement or direct manipulation; on the other hand, the stabilizing

feedback is an external controller connecting microphone measurement and speaker actuation.

In other words: the open loop identified in the previous section corresponds to the transfer

function from speaker signal to microphone measurement, which includes the closed feedback

loop of the heat transfer process. This hints that the key to quantitative understanding of the

thermoacoustic instability is analyzing this internal feedback loop.

It will prove convenient to introduce dimensionless parameters and variables, as is very com-
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mon in fluid mechanics and thermodynamics. While that might require some “getting used

to,” there are several advantages if the nondimensionalization is done carefully: the number of

parameters is reduced (the exact number could be quantified using the famous Buckingham Π

theorem), expressions are simplified, and most importantly it allows to compare relative sizes

and thus can be used to argue for or against neglecting certain terms. The transition from phys-

ical variables to dimensionless ones is done in Section 1.4.3, and the remainder of the section

is written in terms of the dimensionless quantities summarized in Table 1.1.

The dynamics of the velocity and thermodynamic state3 of the gas are derived from the con-

servation of mass, linear momentum and energy in Section 1.4.1. Proceeding by linearization

of the nonlinear PDEs in Section 1.4.2, and nondimensionalization of the linearized equations

in Section 1.4.3, we are in a position to make well-founded statements about the importance

of effects such as friction and diffusion. Section 1.4.5 shows that the end result of the most

idealized case is the 2 × 2 matrix Gs of transcendental transfer functions (1.31), describing

the response of pressure and velocity fluctuation to heater and speaker inputs. The last two

sections investigate how this transfer function changes as first friction, and then diffusion are

considered.

Paralleling these derivations, a model for the heat release is developed. For the heat release

from the wire into the gas, two aspects need to be considered. For stationary flow, i.e. in the

static case, it is well known that faster fluid flow leads to improved heat transfer, and this

improvement needs to be quantified. If the flow velocity is fluctuating, the question arises as to

how fast this improvement is realized, which constitutes the dynamic aspect. Fortunately, both

have been considered in great detail by King [Kin14] and Lighthill [Lig54], and their results

simply need to be adapted to the Rijke tube. That leads to a nonlinear model at first (1.17) and

after linearization (1.22), nondimensionalization (1.26) and simplification, we obtain a simple

first-order lag (1.29) describing the modulation of the heat release rate by the local velocity.

3 Two of density, pressure and temperature
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Combining both parts – heat release and gas dynamics – the linearized overall model can be

compactly written as a linear fractional transformation (LFT), see Figure 1.18, and root-locus

analysis in Section 1.4.5 reveals that the instability results from the unstable feedback coupling

between heat released into the gas, and local flow velocity around the heater. The root locus

also predicts the correct frequency for the resulting limit cycle oscillations, see Figure 1.19.

While in the literature, the Rijke tube is typically modeled as consisting of two or three com-

partments — a cold zone below the heater, a hot zone above it, and sometimes a small zone

in which the heat exchange takes place — and the heater is introduced as causing a disconti-

nuity in the velocity field [RBFB93], in the derivations here, the tube is modeled in one piece.

This approach avoids explicit introduction of time delays to account for sound waves traveling

through cold and hot zones as is done e.g. in [MD07, Dow97, OCGZK13]; one can interpret

the hyperbolic functions in (1.31) to contain delays, but they result naturally from the spatially

distributed modeling process.

1.4.1 Nonlinear Rijke Tube Dynamics

Since the tube is much longer than wide, transverse dynamics can be neglected and the gas is

modeled as a one-dimensional medium. The conservation equations yield a system of nonlinear

partial differential equations (PDEs) that will be simplified by omission of terms with small

influence and linearization around a steady state in the following sections.

Similarly, the initial model for the heat release contains a nonlinearity, but is decidedly simpler

than the gas dynamics.
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Gas Dynamics

As a first step, a nonlinear model describing the dynamics of the gas inside the tube is derived

by using the conservation laws in their differential form as they can be found in virtually every

textbook on fluid mechanics. Here we use the very general forms stated in [SG00, Ch. 3].

The state of the gas will be expressed in terms of its velocity v, the density ρ, pressure p

and temperature T , all of which are functions of both the spatial coordinate x and the time t .

Considering only a single spatial variable is justified by the assumption that the tube is much

longer than wide, and hence “width-wise” phenomena have much smaller wavelengths and

much higher frequencies than the lengthwise resonant modes.

Conservation of Mass The continuity equation is the simplest and probably most familiar of

the three laws. It states
∂ρ

∂t
+
∂(ρv)
∂x

= 0, (1.4)

relating the density field ρ(t ,x) and the velocity field v(t ,x).

Conservation of Linear Momentum The Navier-Stokes equations are derived from the con-

servation of momentum, and incorporate also the pressure field p(t ,x):

ρ
∂v

∂t
= −ρv ∂v

∂x
− ∂p
∂x

+
4
3
µ
∂2v

∂x2
− ρд−βv, (1.5)

where µ is the dynamic viscosity, which we assume to be constant, д = 9.81 m/s2 is the

gravitational acceleration, and β is a wall-friction factor that is included to replace the no-slip
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condition at the walls.4 Compared to [SG00, (3.42)], this equation is reduced to one spatial

dimension, the body force is set to gravity, and the substantial derivative is expanded:

Dϕ
Dt

:=
∂ϕ

∂t
+ v

∂ϕ

∂x
.

Conservation of Energy The energy equation, which is derived from the first law of ther-

modynamics, adds the temperature T into the mix and reads

∂T

∂t
= −v∂T

∂x
+
γκ

ρcp

∂2T

∂x2
− γ̄T ∂v

∂x
+

4γ µ
3ρcp

(
∂v

∂x

)2
+

γ

ρcp
q+βγ v2/(ρcp), (1.7)

where κ is the thermal conductivity, the adiabatic ratio γ = cp/cv is the ratio of the isobaric

and isochoric specific heat capacities, and γ̄ = γ − 1 = R/cv, where R is the ideal gas constant;

q(t ,x) is exogenous added heat power per unit volume, with unit [q] = 1 W/m3. Finally, the

last term in the equation is not due to dissipation being accounted for in the energy balance,

but appears when (1.5) is used to eliminate kinetic and potential energy. This suggests that

all energy dissipated through friction is converted into internal energy of the gas, and none is

absorbed by the walls; one could consider multiplying β in (1.7) by a factor kβ ∈ [0, 1] to

account for heat absorbed by the walls, however friction effects do not play a major role in

what follows and this additional complication is avoided.

In deriving (1.7) from [SG00, (3.71)], we again reduced to a single spatial dimension and

assumed air to be an ideal gas, from which it follows that the pressure can be eliminated via

4In one-dimensional, laminar pipe flow, also called Poiseuille flow, the developed flow profile is parabolic in
shape, i.e. v(r ) = ∆p/∆x (r2 −D2/4)/(4µ), where r the radial coordinate and D the pipe diameter, see e.g. [PW02,
Sec. 7.3]. For a Newtonian fluid (air is one), the shear stress at the wall is τ0 = µ

dp
dr

���r=D/2
. Rewriting in terms of

the average velocityV , that yields τ0 = 8µV /D, and the friction force per unit volume exerted on a cross-sectional
element of length dx is then dF0 = 8πµVdx/(Adx), A the cross section. That yields

β = 32µ/D2. (1.6)

This is of course only good for a very rough idea of the size of β , since no dynamic effects are included, and we
most likely will not encounter purely laminar flow. The unit of β is [β] = 1 kg/(m3s).
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p = ρRT , that the thermal expansion coefficient (β in [SG00]) equals 1/T , and that cv + R = cp .

Choice of Thermodynamic State Variables Now (1.4), (1.5) and (1.7) are three equations

to describe the dynamics of seemingly four states – velocity v, pressure p, density ρ and tem-

perature T – so we need to add one more equation, a so-called equation of state, relating the

three thermodynamic states, e.g. as p = p(ρ,T ). Assuming air to be an ideal gas, this equation

is p = ρRT , with R the ideal gas constant, which we have used already to derive (1.7). This

yields a total of three possible sets of equations of motion in velocity v and two of pressure p,

density ρ and temperature T .

(ρ , v,p)-System Using p = ρRT to eliminateT from (1.7) in favor of the pressure p we obtain

∂ρ

∂t
= −∂(ρv)

∂x
(1.8a)

∂v

∂t
= −v ∂v

∂x
− 1
ρ

∂p

∂x
+
4µ
3ρ
∂2v

∂x2
− д − β/ρ v (1.8b)

∂p

∂t
= −v ∂p

∂x
− γp ∂v
∂x

+
γκp

ρcp

[
∂2p

∂x2
/p − ∂

2ρ

∂x2
/ρ − 2

∂ρ

∂x
/ρ

(
∂p

∂x
/p − ∂ρ

∂x
/ρ

)]
+
4γ̄ µ
3

(
∂v

∂x

)2
+ γ̄q + γ̄ βv2.

(1.8c)

Most of the mess in this pressure form of the energy equation is due to the ∂
2T
∂x2

term, since

∂2T

∂x2
=

p

ρR

[
1
p

∂2p

∂x2
− 1
ρ

∂2ρ

∂x2
− 2
ρ

∂ρ

∂x

(
1
p

∂p

∂x
− 1
ρ

∂ρ

∂x

)]
. (1.9)
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(p, v,T )-System Eliminating ρ takes a little more effort and yields

∂p

∂t
= −γp ∂v

∂x
− v

∂p

∂x
+ γ̄κ

∂2T

∂x2
+
4
3
γ̄ µ

(
∂v

∂x

)2
+ γ̄q + γ̄ βv2 (1.10a)

∂v

∂t
= −v ∂v

∂x
− RT

p

∂p

∂x
+
4µ RT
3p

∂2v

∂x2
− д − βRT

p
v (1.10b)

∂T

∂t
= −v∂T

∂x
− γ̄T ∂v

∂x
+ γ̄κ

T

p

∂2T

∂x2
+
4γ̄ µT
3p

(
∂v

∂x

)2
+ γ̄

T

p
q + γ̄

T

p
βv2 (1.10c)

(ρ , v,T )-System Lastly, removing p from (1.5) we get

∂ρ

∂t
= −∂(ρv)

∂x
∂v

∂t
= −v ∂v

∂x
− R ∂T
∂x
− RT

ρ

∂ρ

∂x
+
4µ
3ρ
∂2v

∂x2
− д − β/ρ v

∂T

∂t
= −v∂T

∂x
+
γκ

ρcp

∂2T

∂x2
− γ̄T ∂v

∂x
+

4γ µ
3ρcp

(
∂v

∂x

)2
+

γ

ρcp
q + γ βv2/(ρcp)

Each of the forms has their advantages; (ρ, v,T ) might be the cleanest, but it will not be used

in the sequel: measurement and actuation are both expressed in terms of the pressure p thus it

makes sense to keep it as one of the states. We will see later that using ρ instead of T yields,

together with several simplifying assumptions, a decoupled system, whereas using T prevents

the issue of (1.9) and hence is a better choice when diffusive effects are to be kept.

Boundary Conditions, Sensing and Actuation

For a complete model, an adequate number of boundary conditions is needed. What is ade-

quate depends on the number of states and the order of the remaining spatial derivatives once

simplifications are made, hence only a subset of the following boundary conditions are used in

specific cases; for convenience, they are all stated here together once:
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Dirichlet pressure boundary conditions The Rijke tube has both ends open, which is typi-

cally modeled by having pressure boundary conditions held at the ambient atmospheric

pressure. The bottom end however is very close to the actuating speaker, and while a true

model of the influence of the speaker involves accounting for inward radiating waves, a

simple and reasonable approximation is to assume the speaker signal as pressure fluctu-

ations at the bottom end. Thus the boundary conditions on the pressure are

p(t ,0) = p0 + us(t)

p(t ,L) = p0,

(1.11)

where p0 is the ambient pressure, and us(t) is the speaker signal.5

Neumann velocity boundary conditions At open ends, standing sound waves have pressure

nodes, as (1.11) suggests, and velocity antinodes. This corresponds to vanishing spatial

derivatives:
∂v

∂x
(t ,0) =

∂v

∂x
(t ,L) = 0. (1.12)

Neumann temperature boundary conditions Assuming the temperature gradient to be zero

at the ends corresponds to assuming no conductive heat flux through the open ends,

since by Fourier’s law of heat conduction, the heat flux qoe through the open ends is

proportional to the temperature gradient: qoe = −κ ∂T∂x . Hence

∂T

∂x
(t ,0) =

∂T

∂x
(t ,L) = 0 (1.13)

is justified by noting that air is a poor conductor of heat.

For example, κair = 0.024 W/(m K)� κglass ≈ 1 W/(m K)� κiron ≈ 80 W/(m K).

5 We note again that a correction term could be introduced into the boundary conditions to account for the
fact that in reality, the nodes lie slightly outside the tube [LS48]. Since the effect of the end correction is small,
additional complication is avoided by neglecting this. See also the footnote on Page 10.
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Figure 1.14 – Illustration of the effect of the boundary layer around the hot wire.

Note that us(t) acts as an input to the gas dynamics through the boundary condition (1.11),

but it is not distributed. The same holds for the measurement through a microphone, which

is a pressure sensor whose output is (proportional to) the pressure p(t ,xm) at the microphone

location xm. The controller used to stabilize the tube connects those two scalar signals via a

proportional control feedback loop.

Heat Release

The model equations (1.8) and (1.10) have an external heat input q(t ,x) as a source term,

courtesy of the energy equation (1.7). Possible sources of external heat are (a) the walls of

the tube, (b) the ambient air at both ends of the tube, and of course (c) the hot wire. We

assume that the temperature difference between walls and gas is comparatively small, so that

contribution (a) can be neglected. Furthermore, air is a good insulator, which means that its

thermal conductivity is small, and so we may neglect contribution (b), as we have already done

in deriving the temperature boundary condition (1.13).

It remains (c), the heat transfer from the hot wire. If the coil is assumed to be located in a very

narrow section, then a reasonable approximation is to say that the heat input is concentrated at

a point, or that

q(t ,x) =
1
A
δm(x − xo)Q(t), (1.14)
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where xo denotes the position of the wire, δm(·) is the Dirac distribution with units 1/m, Q(t) is

the heat power released from the coil, and A is the tube cross section.

The next step is to quantify the dependence of released heat Q(t) on the thermodynamic state

(ρ,p,T ) of the gas and the flow velocity v near the wire. Heat is transferred from a solid to

a gas due to both conduction and convection. Convection depends on the velocity of the gas,

whereas conduction does not; both depend on the temperature difference. A commonly used

approximation incorporating both mechanisms is King’s law [Kin14], which states that the heat

QK released from a hot circular wire of length `w in a colder fluid flow is

QK = `w
(
κ + κv

√
|v|

)
(Twire −Tgas) C h(v)(Twire −Tgas), (1.15)

where κ is the fluid’s thermal conductivity, and κv is a constant that is largely empirically de-

termined. The first term is Fourier’s law of heat conduction, while the second term expresses

that convective heat transfer occurs at a rate proportional to
√
|v|; h(v) collects these contribu-

tions as a velocity-dependent heat transfer coefficient. The formula suggests that heat transfer

is enhanced by flow velocity, regardless of direction, but the “rate of enhancement” tapers off

as velocity increases.

King’s law does not include any temporal dynamics, yet if the gas velocity fluctuates suffi-

ciently fast, there are dynamic effects to be considered; Lighthill [Lig54] analyzed these in

great detail.6 Whenever flowing fluid comes into contact with a solid, a boundary layer is

formed. An intuitive picture of its effect on the heat transfer is to imagine this boundary layer

as a blob of stagnant air, as shown in Figure 1.14, where the boundary layer is depicted as an

orange ellipse. Heat transfer from the boundary layer into the free stream, denoted by Qb→f ,

reacts instantly to changes in the free stream velocity v according to King’s law (1.15), but heat

Qs→b transferred from the wire needs to propagate through the boundary layer before reaching

6Incidentally, Lighthill was inspired to this investigation by efforts to model the Rijke tube.
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(1.8) or (1.10) &
(1.11), (1.12), (1.13)

(1.17)


ρ
p
T
v


(t ,xo) Q(t)

p(t ,xm) us(t)

Figure 1.15 – The conceptual diagram of Figure 1.13, now filled with some concrete equations.

the free stream. Lighthill found that the thermal inertia of the boundary layer can be modeled

by a simple first order lag, i.e. a transfer function of the form 1/(thrs + 1). An estimate for the

corresponding time constant is also given as

thr = 0.2
dwire

v

=
diameter of the wire

5 · steady free stream velocity
. (1.16)

As observed in [Lig54], this lag, even if it is very small, is crucial for the model to be valid.

We confirm this observation later, see Figure 1.20.

Cascading the static and dynamic dependence of the heat transfer on the velocity, we get

thrQ̇(t) = −Q(t) +QK (t) (1.17a)

QK (t) = `w
(
Twire −T (t ,xo)

) (
κ + κv

√
|v(t ,x0)|

)
, (1.17b)

which constitutes the lower block in Figure 1.13.
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1.4.2 Linearized Dynamics in Physical Variables

In order to linearize the nonlinear equations of the section, all states are considered as steady

state plus (small) fluctuation. We will always denote steady-state, or nominal, values by • and

the small deviations by •̃, hence we have e.g. p(t ,x) = p + p̃(t ,x). Since what the ear registers

as “sound” are exactly those deviations, p̃ and ṽ are also called acoustic pressure and acoustic

velocity, respectively. We remark that the steady states are only required to be steady in time,

in general they could be steady spatial profiles; however, we consider only steady states that

are constant in space, hence the discussion is reduced to this case.

As an illustration of the size of deviation we may expect, consider that a Vuvuzela blown in

a distance of 1 m has a sound intensity of 120 dB, which corresponds to a (RMS) pressure

deviation of approximately 20 Pa [SHIK10].7 Compared to the atmospheric pressure of p0 =

100 kPa, this indeed constitutes a small fluctuation, and since the Rijke tube experiment can

be conducted without damage to one’s hearing, we may assume small pressure deviations in

the Rijke tube. Since sound waves of moderate frequencies can be assumed to be isentropic,8

it also follows that the deviations in ρ and T are of similar order. The case is different for the

velocity, which should be compared to the speed of sound; we will return to this point later in

Section 1.4.3.

Formally, the linearization can be obtained by regarding the right-hand sides as functions of the

states and their derivatives and truncating their Taylor series after the linear term, for instance

7Sound pressure levels are given as the root mean square of the pressure fluctuation relative to a reference
level: SPL = 20 log10(p̃rms/p̃ref). This reference level is typically p̃ref = 20 µPa, the lower threshold of human
hearing.

8Assuming isothermal sound waves instead led Newton to a calculation that was off by about 20%. Laplace
later corrected this error, see [Fin64] for some of the history.
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for (1.4) we get

∂ρ

∂t
=

=0︷︸︸︷
∂ρ

∂t
+
∂ρ̃

∂t
= f

(
ρ,
∂ρ

∂x
, v,
∂v

∂x

)
=

f

(
ρ,
∂ρ

∂x
, v,
∂v

∂x

)
︸              ︷︷              ︸
=0, since steady state

+

[
∂ f
∂ρ

∂ f

∂
(
∂ρ
∂x

) ∂ f
∂v

∂ f

∂( ∂v
∂x )

] �����(ρ,∂ρ∂x ,v, ∂v∂x )=(ρ,∂ρ∂x ,v, ∂v∂x )︸                                                     ︷︷                                                     ︸
CJ f



ρ̃
∂ρ̃
∂x

ṽ

∂ṽ
∂x


+ O(2),

where O(2) denotes terms of order 2 or higher in the deviations; after neglecting the higher

order terms we get

∂ρ̃

∂t
≈ J f



ρ̃
∂ρ̃
∂x

ṽ

∂ṽ
∂x


= −v∂ρ̃

∂x
− ρ ∂ṽ
∂x
.

One would obtain the same result by inserting p = p + p̃ and so on and neglecting all terms of

order 2 or higher in the deviation variables.

Of course, linearization requires knowing the steady state conditions. An accurate calculation

of the steady state requires incorporating buoyancy effects (to model steady upward flow due

to steady heat release from the coil) as well as the steady temperature and density variations

along the tube length (e.g. gas in the upper section is hotter than that in lower section). How-

ever since the important parameter in acoustic dynamics is the speed of sound, and the above

variations have relatively minor effect on the speed of sound, an alternative and much simpler

equilibrium can be used for the linearization: Spatially constant density, velocity, and pressure

fields trivially satisfy the nonlinear PDEs (1.8) and (1.10) if there is no heat input (q ≡ 0),

and friction and gravity are neglected. From the boundary condition (1.11) it then follows that

p = p0 (there must be no speaker actuation, i.e. u ≡ 0); choosing T to be the temperature of

the surroundings satisfies the temperature boundary condition (1.13) and the ideal gas law then
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specifies ρ.

Once the steady states are determined, the linearization process is a mere exercise in calculus

and can be done using a computer algebra system such as Mathematica; the following expres-

sions were found in this manner.

Linearized (ρ , v,p)-System

∂

∂t



ρ̃

ṽ

p̃


= β



0 0 0

v/ρ2 −1/ρ2 0

0 2γ̄ v 0





ρ̃

ṽ

p̃


−



v ρ 0

0 v 1/ρ

0 γp v


∂

∂x



ρ̃

ṽ

p̃


+
µ

ρ



0 0 0

0 4/3 0

−c2/Pr 0 γ/Pr


∂2

∂x2



ρ̃

ṽ

p̃


+ γ̄



0

0

1


q, (1.18)

where for convenience, we introduced the first dimensionless number, the Prandtl number Pr B

cpµ/κ and used the relation c2 = γp/ρ = γRT for the nominal speed of sound c.

Linearized (p, v,T )-System

∂

∂t



p̃

ṽ

T̃


= β



0 2γ̄ v 0

RT v/p2 −RT /p −Rv/p
−γ̄T v2/p2 2γ̄T v/p γ̄ v2/p





p̃

ṽ

T̃


−



v γp 0

RT /p v 0

0 γ̄T v


∂

∂x



p̃

ṽ

T̃


+ γ̄κ



0 0 1

0 4PrT
3γp 0

0 0 T /p


∂2

∂x2



p̃

ṽ

T̃


+ γ̄



1

0

T /p


q, (1.19)
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The pressure boundary conditions (1.11) become

p̃(t ,0) = us(t)

p̃(t ,L) = 0,
(1.20)

while the other two stay the same, with each state replaced by its deviation.

The above equations are here for completeness’ sake, and to drive home the point that diligently

defined dimensionless quantities can make life a lot easier. In the next section we will do

exactly that: non-dimensionalize (1.18) and (1.19). But before we can embark on that, the heat

transfer model (1.17) needs to be linearized, too.

Fortunately, the dynamic part (1.17a) is linear already, hence we only need to linearize what

amounts to King’s law. Following the same recipe as above, we obtain

Q̃K (t) =
[
h′(v)(Tw −T ) −h(v)

] 
ṽ

T̃

 , (1.21)

where h(v) = `w
(
κ + κv

√
|v|

)
is the velocity dependent heat transfer coefficient, as in (1.15),

and h′(·) is its first derivative.

It should be stressed here that the significance of the steady buoyancy-induced upward velocity

v is very different for the heat release than for the gas dynamics. While we will see that v only

contributes to the gas dynamics in form of the steady-state Mach number Ma = v/c and can be

neglected in deriving the wave-like equation (1.27), for the heat transfer assuming no steady

upward component in the velocity would result in an invalid linearization, since the derivative

of
√
| · | is discontinuous at 0. The importance of the offset in velocity lies in moving to the

“linearizable part” of the square root function, see Figure 1.16 for an illustration.

If we would like to use ρ and p as the thermodynamic state variables – and we will – then the
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ṽ

v

QKQ̃K

Figure 1.16 – An illustration of the meaning of the small steady upward velocity v for the
heat release process: without it, the linearization is not valid because King’s law is not
differentiable at 0. Also note how the square root flattens as the velocity increases.

temperature fluctuation T̃ has to be removed using the ideal gas law. That yields

Q̃K (t) =

[
h(v)Tρ h′(v)

(
Twire −T

)
−h(v)T

p

] 

ρ̃

ṽ

p̃


, (1.22)

where T can be interpreted as simply a parameter.

Thus, by pairing either (1.21) or (1.22) with the first-order lag (1.17a), the linearized heat

release dynamics are either a two-input single-output, or a three-input single-output system. In

anticipation of Section 1.4.5 we mention that the contributions of the thermodynamic states can

be neglected compared to the influence of the velocity fluctuations ṽ, so that the heat transfer

model becomes a single-input single-output system.

1.4.3 Dimensionless Linearized Gas Dynamics

Making variables dimensionless can also be interpreted as a normalization, and so the objective

of introducing dimensionless variables and parameters is threefold: to reduce the number of

parameters, to make equations look more appealing, and to yield normalized variables of sim-

ilar sizes to enable comparisons and arguments like the ones we will make to neglect certain
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Quantity Quantity Quantity

Density r = ρ̃/ρ Pressure ψ = p̃/p Temperature θ = T̃ /T

Velocity m = ṽ/c Time τ = ct/L Space ξ = x/L

Heat release ϕ =
γ̄qL

ρc3
Heat release Φ =

QL/c

ρc vVtubeT

Steady velocity Ma = v/c Friction f = βL/(ρc) Diffusion Pe =
ρcpLc

κ

Diffusion Pr = cpµ/κ

Table 1.1 – Dimensionless quantities and parameters introduced in Section 1.4.3.

contributions to the gas dynamics in Section 1.4.5. We begin by introducing

ψ := p/(γp), θ := T /(γ̄T ), and r := ρ/ρ

and arguing that, since sound waves are isentropic (see also Footnote 8 on Page 37), and we

are looking at mainly sound waves, all three of them can be expected to be of similar size.

For an ideal isentropic process it holds that p/ργ = const., which is known as Poisson’s law.

Let this constant be K . Then we have:

p + p̃

(ρ + ρ̃)γ =
1 + p̃/p

(1 + ρ̃/ρ)γ
p

ργ
= K

⇐⇒ 1 + p̃/p

(1 + ρ̃/ρ)γ = 1 ⇐⇒ 1 + p̃/p = (1 + ρ̃/ρ)γ = 1 + γ ρ̃/ρ + O(2)

=⇒ p̃/(γp) ≈ ρ̃/ρ

An analogous computation can be done for θ .

Next, we introduce the dimensionless velocity as

m B ṽ/c,

where c is the nominal speed of sound, and the letter m is chosen because of the similarity
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of this definition with the Mach number Ma = v/c. It is known that m and ψ as defined here

are of the same order in acoustic waves, e.g. [Dow97], but it can also be shown quickly, see

Appendix 1.C.

Apart from the four dependent variables ρ, T , p, and v, we have the two independent variables

x and t . We choose the tube length L as the characteristic length to scale x by, and the passage

time L/c of a sound wave through the tube as the time scale, i.e.

ξ B x/L,
∂

∂ξ
= L
∂

∂x
, τ B ct/L,

∂

∂τ
=
L

c

∂

∂t
.

Lastly, the (for now) exogenous input q needs to be scaled. Defining

ϕ B
q L/c

ρcvT
=
γ̄q L/c

γp
=
γ̄qL

ρc3

makes for the prettiest equations, and ϕ can be interpreted as the ratio of heat transferred during

the characteristic time span and specific internal energy at steady state.

Without further ado, rewriting (1.18) yields

∂

∂τ



r

m

ψ


= f



0 0 0

Ma −1 0

0 2γ̄Ma 0





r

m

ψ


−



Ma 1 0

0 Ma 1

0 1 Ma


∂

∂ξ



r

m

ψ


+

1
Pe



0 0 0

0 4Pr
3 0

−1 0 γ


∂2

∂ξ 2



r

m

ψ


+



0

0

1


ϕ, (1.23)
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and doing the same to (1.19) we obtain

∂

∂τ



ψ

m

θ


= f



0 2γ̄Ma 0

γMa −1 −γ̄Ma

−(γMa)2 −2γMa γγ̄Ma2





ψ

m

θ


−



Ma 1 0

1 Ma 0

0 1 Ma


∂

∂ξ



ψ

m

θ


+

1
Pe



0 0 γ̄

0 4Pr
3 0

0 0 γ


∂2

∂ξ 2



ψ

m

θ


+



1

0

γ/γ̄


ϕ, (1.24)

where

• Ma B
v

c

is the famous Mach number, relating the velocity of matter to the velocity of sound.

• f B
Lβ

ρc
=
Lβc

γ̄p

is a dimensionless friction factor. It can be interpreted as the ratio of mechanical impe-

dance βL to characteristic acoustic impedance ρc of the tube.

• Pr B
µ/ρ

κ/(ρcp)
=
cpµ

κ

is the Prandtl number, the ratio of diffusion of momentum to diffusion of heat.

• Pe B
Lc

κ/(ρcp)
has the form of the Peclet number, which relates advective to diffusive transport rates.

However, the nominator in our definition does not correspond to the actual transport of

matter, so the interpretation as a Peclet number is purely formal. We also have Pe =

Re Pr, with Re B (ρcL)/µ the famed Reynolds number which has to be interpreted with

the same caveat as the Peclet number.

Now we shift attention to the heat release model. Using the definition of ϕ and (1.14), we

44



obtain

ϕ(τ ,ξ ) =
γ̄ L

ρc3
q(Lτ/c,Lξ ) =

γ̄ L

ρc3
1
A
δm

�
L(ξ − xo/L)

�
Q(Lτ/c) = Lδm

�
L(ξ − xo/L)

�γ̄ Q(Lτ/c)
ρAc3

.

From the scaling property of the Dirac distribution it follows that Lδm
�
L(ξ −xo/L)

�
= δ (ξ − ξo),

where ξo B xo/L. We define the dimensionless total heat power

Φ(τ ) B γ̄Q(Lτ )
ρAc3

=
Q(Lτ/c)L/c
ρcvVtubeT

;

according to the last expression, Φ could be interpreted as the ratio of heat added during the

characteristic time L/c to the internal energy in the tube at steady state. We obtain:

ϕ(τ ,ξ ) = δ (ξ − ξo)Φ(τ ). (1.25)

The entire dimensionless linearized version of (1.17) is then

τhrΦ(τ ) = −Φ(τ ) + ΦK (τ ) (1.26a)

ΦK (τ ) =
[
ht hv −γht

] 

r

m

ψ


(τ ,ξo) = hv

[
h̄tMa 1 −γh̄tMa

] 

r

m

ψ


(τ ,ξo), or (1.26b)

ΦK (τ ) =
[
0 hv γ̄ht

] 

ψ

m

θ


(τ ,ξo) = hv

[
0 1 γ̄ h̄tMa

] 

ψ

m

θ


(τ ,ξo), (1.26c)

where

hv B
h′(v)
ρcvA

Twire −T
T

, ht B
h(v)/c
ρcvA

, and h̄t B 2
T

Twire −T

(
κ

κv
√
v

+ 1
)
.

The second forms in (1.26b) and (1.26c) would be very informative if h̄t can be expected to be
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(1.23)

(1.26a)&(1.26b)


r
m
ψ

 (τ ,ξo) Φ(τ )

ψ (τ ,ξm) u(τ )
(1.24)

(1.26a)&(1.26c)

[
m
θ

]
(τ ,ξo) Φ(τ )

ψ (τ ,ξm) u(τ )

Figure 1.17 – The diagram in Figure 1.13 populated with the linearized dimensionless models
derived in Sections 1.4.2 and 1.4.3.

of order 1 or less, because then the contributions of density, pressure and temperature fluctua-

tions to the heat release are of order Ma compared to the contribution of velocity fluctuations.

The first term is the (inverse) dimensionless temperature difference T
Twire−T , which, using the es-

timate (1.38) from Appendix 1.B, can be asserted to be around 1 or even less. The other term in

question is κ/(κv
√
v), the ratio between conductive and convective heat transfer; these are typ-

ically comparable — see [Kin14, Tables V & VI] and note that velocities are measured in cm/s

— and hence this term is of order unity, too, and we conclude that velocity fluctuations have

by a factor of approximately Ma greater influence on the heat transfer than the thermodynamic

state of the gas.

Figure 1.17 puts the work of this section together into a complete model, which now has the

form of a lower linear fractional transformation (LLFT).

A great advantage of the dimensionless equations, apart from the reduction of clutter and num-

ber of parameters, is that all effects are encoded in a single parameter each: Ma quantifies

buoyancy, or the steady-state upstream velocity, f quantifies the friction effect on the walls,

and 1/Pe quantifies the importance of diffusive effects. That means we can now obtain models

of the gas dynamics at different levels of complexity by neglecting one effect or the other, sim-

ply by setting the corresponding parameter to 0. This is the subject of the following sections.
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Quantity Symbol Value used Comment
Temperature T 293 K
Density ρ 1.2 kg/m3

Pressure p 101 kPa
Adiabatic Ratio γ 1.4 γ = cp/cv

Speed of Sound c 343 m/s c2 = γp/ρ

Specific Heat Capacities cp , cv 1008, 718 J/(kg K)
Ideal Gas Constant R 290 J/(K kg) R = cp − cv
Dynamic Viscosity µ 2 · 10−5 Pa s
Thermal Conductivity κ 0.024 W/(m K)
Wire Temperature Twire 933 K see (1.38)
Tube Length L 1.219 m
Tube Diameter D 0.076 m
Mach Number Ma 10−3

Prandtl Number Pr 0.84
Peclet Number Pe 2.1 · 107
Friction Coefficient f 3.2 · 10−4 see (1.6)
Heat Release Time Constant τhr 0.94 see (1.16)

Table 1.2 – Parameters and values
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1.4.4 Rough Parameter Estimates

In this section, we provide some rough estimates of the various parameters that have appeared

in the equations so far. For mechanical and thermal properties of the gas, e.g. µ and κ, we

assume air at room temperature and that they do not vary appreciably with temperature or

pressure. The values are summarized in the first two parts of Table 1.2.

Certainly a lot harder to quantify is the steady-state velocity v: One could try to measure it,

however measuring very small air velocities is tricky and requires extra equipment; instead,

we approximate v by the characteristic velocity of the free convection that is driven by the hot

wire. In [SC67], we find

uc =

√
д
∆T

T
Lc ,

where д = 9.81 m/s2 is the gravitational acceleration, we assumed an ideal gas, hence is the

thermal expansion coefficient β equals 1/T , and Lc is a characteristic length, for which we

choose the coil diameter Lc ≈ 6 mm, because the outer surface of the coil windings approxi-

mately constitutes a horizontal cylinder as considered in [SC67]. Using the estimate (1.38) for

the wire temperature, and standard conditions T = 293 K for the gas temperature, this gives an

estimate of

v ≈
√

9.81m/s2
933K − 293K

293K
6 · 10−3m = 0.36m/s.

That yields Ma ≈ 10−3, which is the same order of magnitude as the Mach numbers assumed

in the literature, e.g. [Mat03, Hec88].

Using (1.16) to obtain an estimate of the heat release time constant, we get

τhr ≈ c/L · 0.2dwire/v ≈ 0.94.

It is again unclear what wire diameter should be used here. Since [Lig54] treats the case

of a straight horizontal wire, whereas we have a coil in which only portions of the wire are
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horizontal, it does not make sense to use the diameter of the used NiCr wire. Since the windings

of the coil are closer together than twice the boundary layer thickness,9 it is reasonable to

assume that the coil develops a boundary similar to a cylinder with the same radius. However,

the exact value of τhr will not influence our analysis much, see e.g. Figure 1.19.

To get an idea of the size of the friction coefficient f , we return to the explanations in Footnote 4

on Page 30 and estimate

β ≈ 32µ
D2 ≈ 0.11 kg/(m3 s)

⇒ f ≈ 3 · 10−4.

All estimates presented here and in Table 1.2 should be taken with a tablespoon of salt; the

hope is that they capture the real quantity to within an order of magnitude.

1.4.5 Analytic Solution of the Most Simplified Dynamics

In this section, we neglect as much as defendable, and by doing so obtain a compact explicit

expression for the transfer functions of the gas dynamics and the heat release. Despite its

simplicity, the model allows to predict the instability and the correct frequency of the limit

cycle oscillations causing the hum. However, there is a trade-off between simplicity and how

well the model describes the physical reality: since all damping effects are neglected, the poles

of the gas dynamics move onto the imaginary axis, which presents a clinical case that makes

analysis and comparison to the identification results difficult.

It should be obvious that in this experiment we have Ma � 1. Friction and diffusive ef-

fects are typically also very small in gas dynamics, hence the first approximation we make is

9 An approximate (laminar) boundary layer thickness at 90o from the stagnation point is given by
δ90 = 2.33

√
µπdwire/v ≈ 0.6 mm, see e.g. [PW02, Sec. 8.6.3]. This is of a similar order as the distance between

the windings in our coil.
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Ma, 1/Pe, f ≈ 0. Application to (1.23) yields

∂

∂τ



r

m

ψ


= −



0 1 0

0 0 1

0 1 0


∂

∂ξ



r

m

ψ


+



0

0

1


ϕ.

We see that the density r does not couple into the dynamics of velocity and pressure, and thus

can be dropped from consideration.

Incorporating also the separated form (1.25) for the heat input ϕ, we are left with

∂

∂τ


m

ψ

 = −

0 1

1 0


∂

∂ξ


m

ψ

 +


0

1

 δ (ξ − ξo)Φ(τ ) (1.27)

with the boundary conditions

ψ (τ ,0) = u(τ ) ψ (τ ,1) = 0, (1.28)

which are derived from (1.11) by setting u(t) = us(t)/(γp).

Equations (1.27) and (1.28) can be identified as a realization of an undamped wave equation,

driven by the scalar terms for the exogenous input Φ and boundary control u. Sound waves are

commonly assumed to obey a wave equation, that we find one as a special case of our model is

thus reassuring.

Applying Ma ≈ 0 also to the heat release dynamics (1.26) reduces them to a single input

system, namely

τhrΦ(τ ) = −Φ(τ ) + ΦK (τ ) (1.29a)

ΦK (τ ) = hvm(τ ,ξo), (1.29b)

and the model presents itself as the feedback interconnection of the gas dynamics and a single-
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(1.27)

(1.29)

m (τ ,ξo) Φ(τ )

ψ (τ ,ξm) u(τ )
Gs(s)

B(s)

M (s,ξo) R(s)

Ψ(s,ξm) U (s)

Figure 1.18 – The diagram in Figure 1.13, updated with the simplest form of the linearized
dimensionless models as derived in Section 1.4.5.

input single-output system as shown in Figure 1.18 on the left.

It should be stressed again that the linearized heat release models (1.26c) and (1.26b) have been

derived under the assumption of a small, but positive steady velocity v. For v = Ma = 0, the

linearization would not be valid. This underlines the different importance the buoyancy-driven

steady component of the gas velocity has for the gas dynamics and the heat release.

To make further progress, we will now derive transfer functions for the blocks in Figure 1.18.

As can be seen there, the gas dynamics have two inputs and two outputs: the heat input Φ(τ )

and the speaker actuation u(τ ) drive the pressure at ξm as the measurement, and the velocity

at ξo which modulates the heat release. Applying the Laplace transform (in time) and rearrang-

ing (1.27) yields


M′

Ψ′

 (s,ξ ) = −

0 s

s 0



M

Ψ

 (s,ξ ) +


1

0

 δ (ξ − ξo)R(s) (1.30a)


1

0

 U (s) =


0 1

0 0



M

Ψ

 (s,0) +


0 0

0 1



M

Ψ

 (s,1), (1.30b)

where M , Ψ, R andU are the Laplace transforms ofm,ψ , Φ andu, respectively, and the prime •′

denotes differentiation with respect to the spatial variable ξ .

In Appendix 1.D it is shown, how transfer functions for two-point boundary value problems in
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the form (1.30) can be computed. Following the recipe there, we obtain the following transfer

function:

Gs :

u(·)
Φ(·)

 7→

ψ (·,ξm)
m(·,ξo)

 Gs(s) =


sinh

�
(1−ξm)s

�
sinh(s)

sinh
�
(1−ξm)s

�
sinh

�
ξos

�
sinh(s)

cosh
�
(1−ξo )s

�
sinh(s) − sinh

�
(1−2ξo )s

�
2 sinh(s)


, (1.31)

where we choose

m(τ ,ξo) =
1
2

(
lim
ξ↘ξo

m(τ ,ξ ) + lim
ξ↗ξo

m(τ ,ξ )
)
,

i.e. the value of m at the jump discontinuity caused by the assumption of a concentrated heat

release is taken to be the average of the left- and right-sided limit. This choice is made mainly

because it yields more appealing expressions, the difference between the right- and left-sided

limits is constant, so choosing either limit instead of their average would yield the same analysis

results.

If ξo = 1/4, i.e. the coil is at a quarter length from the bottom of the tube, Gs(s) takes a

particularly simple form:

Gs(s) =


sinh

�
(1−ξm)s

�
sinh(s)

sinh
�
(1−ξm)s

�
sinh(s/4)

sinh(s)
cosh(3s/4)
sinh(s) − 1

4 cosh(s/2)


. (1.32)

The boundary layer’s transfer function is, according to (1.29),

B :m(·,ξo) 7→ Φ(·) B(s) B hv
τhrs + 1

, (1.33)

and we can represent the entire model as a linear fractional transformation of explicitly known

transfer functions, as shown in Figure 1.18 on the right.
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Figure 1.19 – Root loci for the feedback interconnection of Gs,22(s) and the linearized heat
release dynamics B(s) for different values of the boundary layer time constant τhr. The
plot should be interpreted as if it were shifted slightly to the left, as would be the case
if realistic damping effects were included. (Regarding this argument, see also Sec-
tions 1.4.6 and 1.4.7.) The branches shown in red correspond to the thermoacoustic
instability. See Table 1.2 for the parameter values used.

Root Locus Analysis

Since B(s) is stable, and all transfer functions of Gs(s) are at least marginally stable, the only

possible mechanism of instability is the feedback loop involving Gs,22 and B. Since open-

loop poles and zeros are known, but several involved gains are only known to be positive,

considering the root locus is a natural choice.

The open-loop transfer function of the feedback loop is

Gs,22(s)B(s) = − 1
4 cosh(s/2)

hv
τhrs + 1

=
−hv
4

=:L(s)︷                   ︸︸                   ︷
1

cosh(s/2) (τhrs + 1) , (1.34)

and since the feedback is positive, the negative DC gain means that we have to consider the

standard negative-gain (“180o”) root locus with open loop L(s).
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The transfer function L has infinitely many poles on the imaginary axis at

ωn = π + n 2π , n ∈ Z,

and one at s = −1/τhr. Hence a little care is needed in generating the root locus, since not all of

the classical rules for drawing a root locus apply to systems with infinitely many poles. A sim-

ple criterion to compute the departure angles from open-loop poles is derived in Appendix 1.E,

as the departure angles turn out to be the most important feature.

The root loci shown in Figure 1.19 are generated numerically by continuation over the gain

k: the (nonlinear) equation 1 + ki+1L(s) = 0 is solved with a Newton method, using the poles

computed in iteration i as initial values. At k0 = 0, the initial poles are the open-loop poles.

This method has the disadvantage that effects of inserting poles and zeros into the open loop

cannot be predicted easily anymore, however for our purposes of predicting the frequency of

the instabilities, it is suitable.

Considering the root loci in Figure 1.19, we see that, starting from the origin, every other pole

moves to the right-half plane right away, indicating that, no matter how small hv/4 might be,

the heat release feedback renders the Rijke tube an unstable system. The root locus is “robust”

with respect to the actual value of τhr in the sense that larger values of τhr rotate the branches

closer to horizontal, i.e. the departure angles get closer to 0 and π , respectively. If damping

and/or radiative effects were to be included, the imaginary axis poles would be shifted to the

left in a similar manner to those in Figure 1.9.10 Therefore the open-loop dynamics are stable,

but have an array of very lightly damped poles. With the positive feedback from coil heat

release, half of the acoustic poles eventually move into the right-half plane (RHP). The first

pole (pair) to cross into the RHP corresponds to the fundamental frequency and is depicted

by the red branches in Figure 1.19; this is a reasonable assumption, since lower frequencies

10This issue is further elaborated on in Section 1.4.7, where the spectrum of the model including diffusion and
friction is treated.
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are typically damped less and hence those branches originate closer to the imaginary axis. Its

dimensionless imaginary axis crossing frequency ω0 ≈ π corresponds to a physical (angular)

frequency of ωph
0 = ω0c/L, or f ph

0 = c/(2L), exactly as observed in the experiment, see (1.1).

Once the instability is triggered, the system exhibits growing oscillations and leaves the linear

regime (since the •̃ variables need to be small for the linear analysis to apply). Intuitively, the

square root term in the heat release model (1.15) then offers diminishing returns, i.e. at higher

acoustic velocities, it almost saturates, and even larger oscillations in velocity are not supported

by the enhanced heat transfer anymore. The system is brought into a limit cycle, the shape of

which can be seen in Figure 1.3(c).

The observations that odd-numbered (even-numbered) branches depart towards the left (to-

wards the right) and that the angles of departure are closer to horizontal, the larger τhr is, can

be confirmed applying the root locus rule derived in Appendix 1.E. Applying (1.51) to L(s), we

get:

φdep(s) = −∠�
sinh(s/2)τhrs + 1

2
+ τhr cosh(s/2)

�
+��

�*0
∠(1) − π (1.35)

⇒ φdep,n = φdep
�
j(π + n 2π )� = −∠

(
(−1)n(τhrπ

2n + 1
2
− j/2)

)
− π =

π − arctan2
�(−1)n, (−1)n+1τπ (2n + 1)� =


π − arctan

(
1

τπ (2n+1)
)

if n is odd

arctan
(

1
τπ (2n+1)

)
if n is even,

where arctan2 is the two-argument (also “four-quadrant”) inverse tangent. In Table 1.3, a few

numerical values are given, and we see that (a) the branches go left for even and right for

odd indices, (b) the larger τhr, the closer to horizontal are the angles, and (c) the higher order

the pole, the closer to horizontal the angles. All three observations can also be made in the

numerically obtained root loci in Figure 1.19.
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τhr

n
0 1 2 3

0.01 88.20o -95.38o 81.07o -102.40o

0.1 72.56o -133.30o 32.48o -155.55o

0.4 38.51o -165.14o 9.04o -173.51o

1 17.66o -173.94o 3.64o -177.40o

5 3.64o -178.78o 0.73o -179.48o

Table 1.3 – Departure angles for the first 4 open-loop acoustic poles and several values of τhr,
computed using (1.51).
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Figure 1.20 – What the root loci in Figure 1.19 would look like if the wire’s thermal boundary
layer effect was ignored, which amounts to setting τhr = 0. The fundamental frequency
branch moving into the right-half plane is now predicted to correspond to twice the
observed frequency, illustrating that inclusion of the first-order delay is crucial. The
parameters used are the same as in Figure 1.19.
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Significance of the Heat Release Time Constant τhr Figure 1.20 shows what has been

observed in [Lig54] already, namely that the slight delay introduced by the boundary layer is

crucial for the model to be valid. The observation can also be confirmed using formula (1.35)

in the limit where τhr → 0, in which case φdep(jπ (1 + 2n)) = (−1)nπ/2.

Comparison to Identified Model

With all the simplifications made, how closely does the model of Figure 1.18 correspond to

reality – or rather the identified model as a proxy for reality – beyond explaining the thermo-

acoustic oscillations? It is important to understand first the relationship between the modeled

and identified transfer functions. The open-loop Bode plot of Figure 1.8 corresponds to the

identified response F (s) of pressure fluctuations as measured by the microphone to pressure

fluctuations induced by the speaker; the model depicted in Figure 1.18 describes the transfer

function from normalized boundary pressure fluctuations u(τ ) = ψ (τ ,0) to normalized pres-

sure fluctuations ψ (τ ,ξm) at the microphone position, including the (linearized) heat release

feedback loop:

F̌ : u(·) 7→ ψ (·,ξm)

F̌ (s) = F̀ (Gs ;B) B Gs,11(s) +
Gs,12(s)B(s)Gs,21(s)
1 −Gs,22(s)B(s)

=

sinh
�(1 − ξm)s�
sinh(s) +

cosh
�
3s/4

�
sinh

�(1 − ξm)s�
sinh

�
s/4

�
B(s)

sinh2(s)
1

1 +
B(s)

4 cosh
�
s/2

� =

sinh
�(1 − ξm)s�
sinh(s)

(
1 +

(2 cosh(s/2) − 1)B(s)
B(s) + 4 cosh(s/2)

)
,

where F̀ (P ;K) denotes the lower linear fractional transformation of P with parameter K , see

e.g. [SP07]. In contrast, the identified closed-loop transfer function T (s) in Figure 1.7 corre-
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[
Gs,11(s) Gs,12

Gs,21(s) Gs,22

]

B(s)

K

F̌ (s)
Ť (s)

U (s)Ψ(s,ξm)

Φ(s)M(s,ξo)

Figure 1.21 – The modeled transfer function between speaker input and microphone output
signals can be represented – with linearized heat release – as a lower linear fractional
transformation F̌ = F̀ (Gs ;B). In a stabilizing loop, these signals are connected through
Ť (s) =

F̌ (s)
1−KF̌ (s) .

sponds to

Ť (s) =
F̌ (s)

1 − KF̌ (s) .

For clarity, these different transfer functions are illustrated in Figure 1.21.

There remain however several unknown parameters if comparisons between F (s) and F̌ (s) are

to be made: an overall gain due to the unknown conversion factors of speaker and microphone,

the microphone position xm or ξm, and linear gain hv and time constant thr or τhr of the heat

release feedback B(s). Additionally, the assumptions about friction, diffusive effects, and the

steady upward flow that were made in this section — and had the advantage that the very simple

model (1.27) and transfer function (1.31) could be obtained — also led to system poles moving

onto the imaginary axis; in the root locus analysis, we argued that with damping, the poles

will be moved slightly to the left, with higher damping at higher frequencies, and Figure 1.24

suggests that they lie on a parabola-shape.
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Figure 1.22 – Bode plots of open-loop (K = 0) and closed-loop (with a stabilizing K , 0)
frequency responses derived from the physical model of Figure 1.21. Note the oppo-
site signs of the 180o phase increase near the fundamental mode indicating open-loop
instability and closed-loop stability of that mode. The specific parameters used are
τhr = 0.94, hv = 0.034, K = −0.1, ε0 = 5 · 10−3, ε1 = 2 · 10−5.
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If the damping effect is imitated by considering jω + ε0 + ε1ω
2 instead of jω, and choices of the

unknown heat release time constant, heat release gain and feedback gain are made judiciously,

one obtains the responses shown in Figure 1.22; remarkably, despite employing very simple

devices to treat the aforementioned difficulties, these responses qualitatively capture the most

important features of Figures 1.7 and 1.8: resonant peaks, a phase increase of 180o at the first

peak for the unstabilized open loop F̌ , and phase drops of the same amount at the higher-order

peaks for F̌ and at all peaks for the stabilized closed loop Ť = F̌/(1 + KF̌ ). That it is easy to

find a wide range of parameter values that generate responses with these features after only

a few manual iterations can be seen as evidence that the physical model indeed captures the

important structures of the underlying physics. It should be emphasized however, that the real

power of the model lies in explaining the thermoacoustic instability as a linearly destabilizing

feedback of acoustic velocity and heat release, and the current section should be seen as more

of a sanity check.

1.4.6 Neglecting Diffusive Effects Only

Inspecting Table 1.2, it appears the next effects to be included should be friction and non-zero

Mach number, since Ma and f are of similar orders of magnitude, but 1/Pe � Ma. It turns

out to be necessary to use the (ψ ,m,θ ) form (1.24) of the gas dynamics, since the Neumann

boundary condition (1.12) on velocity leads to an ill-posed problem – see also the remark

after (1.47). By keeping all terms of first order in Ma and f , but still neglecting 1/Pe, (1.24)

becomes

∂

∂τ



ψ

m

θ


=



0 0 0

0 −f 0

0 0 0





ψ

m

θ


−



Ma 1 0

1 Ma 0

0 1 Ma


∂

∂ξ



ψ

m

θ


+



1

0

γ/γ̄


ϕ,
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together with the boundary conditions (1.28) and

∂θ

∂x
(τ ,1) = 0,

which is derived from (1.13). We could have used the boundary condition on the bottom end

ξ = 0 as well, the results are the same.

Putting this together in the form treated in Appendix 1.D, we obtain



Ψ′

M′

Θ′


(s,ξ ) =



Mas
1−Ma2

f +s

Ma2−1 0

s
Ma2−1 −Ma(f +s)

Ma2−1 0

s
Ma−Ma3

f +s

Ma2−1 − s
Ma





Ψ

M

Θ


(s,ξ ) +



Ma
Ma2−1

1
1−Ma2
γ
γ̄ + 1

Ma2−1
Ma


δ (ξ − ξo)R(s)



1

0

0


U (s) =



1 0 0

0 0 0

0 0 0





Ψ

M

Θ


(s,0) +



0 0 0

1 0 0
s

Ma(1−Ma2)
f +s

Ma2−1 − s
Ma





Ψ

M

Θ


(s,1),

where Ψ, M , Θ, R,U are the Laplace transforms ofψ ,m, θ , Φ, u. It is still possible to obtain an

analytic transfer function

G f :

u(·)
Φ(·)

 7→
[
ψ (·,ξm)

]
,

but it takes Mathematica hours to compute it, and the result is much too complex to display

here. However, neglecting all terms of order two or higher in Ma and f , the resulting transfer

function is less ugly. In particular the transfer function from heat input to velocity takes the

forms

G f ,22(s) =
Ma s cosh

( 3p(s)
4

)
+ p(s) sinh

(
p(s)
4

)
2p(s)

(
sinh (p(s)/4) − sinh (3p(s)/4)

) =

− *.,1 +
Mas cosh

( 3p(s)
4

)
p(s) sinh (p(s)/4)

+/-
1

4 cosh (p(s)/2) =
*.,1 +

Mas cosh
( 3p(s)

4

)
p(s) sinh (p(s)/4)

+/-Gs,22
�
p(s)�, (1.37)
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where

p(s) =

√
s(f + s).

This is interesting, because p−1(jω) = −f /2± √
f 2/4 − ω2, i.e. the poles ofGs,22(s) are mapped

from the imaginary axis onto a line in the left-half plane with real part −f /2. The second form

also shows that for f ,Ma→ 0, the transfer function reduces to the right bottom corner of (1.32)

again. More generally, even the transfer function matrix obtained without neglecting the terms

of second or higher order in f and Ma limits to (1.32) as f ,Ma→ 0, a good sanity check.

The first form of G f ,22 can be used to numerically compute its pole-zero pattern, which is

interesting in regards to the comments made while interpreting Figure 1.19. Figure 1.23 shows

the results of such computations and suggests that the intuition that friction would push the

poles into the left-half plane was correct. There appear to be several additional poles – recall

that Gs,22 had only poles at odd multiples of jπ – however each of those additional poles has a

nearby zero making the effect on the root locus very small.

1.4.7 Full Linearized Model

In this section a numerical look is taken at the poles of the full model (1.23) or (1.24) and

whether our intuition that the poles should lie on a parabola can be confirmed.

For reference, the full model (1.24) in pressureψ , velocitym and temperature θ is

∂

∂τ



ψ

m

θ


= f
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0 2γ̄Ma 0

γMa −1 −γ̄Ma

−(γMa)2 −2γMa γγ̄Ma2
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m

θ


−



Ma 1 0

1 Ma 0

0 1 Ma


∂

∂ξ



ψ

m

θ


+

1
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0 0 γ̄

0 4Pr
3 0

0 0 γ
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∂ξ 2


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
+
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0
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Figure 1.23 – Numerically computed pole-zero pattern of the gas dynamics transfer function
matrix G f ,22 for several orders of magnitude of the friction coefficient f . Poles are
shown as solid blue symbols, zeros as hollow red ones. The Mach number Ma has
barely any influence, hence a similar plot with varying Mach numbers is not shown
here. Note that all the even-numbered poles have a zero nearby, negating their effect on
the root locus.

The complexity of this model is significantly increased compared to the model (1.27): while

the latter is of first spatial order in two states, the former is of second order in three. We remark

that we could as well use (1.23) with density and pressure as states and obtain very similar

results (as done in [EBÅar, Sidebar 6]); however, using the temperature θ has the advantage

that the zero heat flux boundary condition (1.13) can be incorporated seamlessly.11

Either way, the first-order form will have at least five states, hence the procedure of Ap-

pendix 1.D cannot be applied anymore. However, the poles of any derived transfer function

will be a subset of the spectrum of the right-hand side operator, analogously to the situation

11On the other hand to derive an additional boundary condition on (1.23), the ideal gas law has to be applied to
express ∂T̃

∂x to first order in terms of density in pressure:

∂T̃

∂x
=

(
∂p̃

∂x
− p ∂ρ̃
∂x
/ρ

)
/ (ρR).

That yields an additional boundary condition for the (r ,m,ψ ) form (1.23).
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in finite-dimensional LTI systems ẋ = Ax + Bu, where the eigenvalues of the A-matrix are a

superset of the poles of the transfer function from u to x . Hence, instead of transfer function

computations, we will compute the spectrum of the right-hand-side operator numerically using

Chebyshev spectral methods.

Such methods basically amount to (spatial) discretization, however instead of equispaced dis-

cretization points, the Chebyshev points ξk = cos(kπ/N ), k = 0, . . . ,N are used.12 A differen-

tiation matrix D then approximates the first spatial derivative on the Chebyshev grid, and the

right-hand side operator can be rewritten in terms of the matrix. Its eigenvalues then approxi-

mate the spectrum of the right-hand side operator. For details on and more applications of such

methods, see the book [Tre00].

Boundary conditions are treated slightly differently than in [Tre00]; the procedure is outlined

in Appendix 1.F. The eigenvalues of the resulting (3N − 3) × (3N − 3) matrix are then com-

puted using Arnoldi iterations (as implemented in Matlab’s eigs function) initialized at integer

multiples of jπ .

Figure 1.24 shows a part of the spectrum obtained using N = 200 grid points, along with

the first 5 pressure modes for a specific set of the parameters Ma, Pr, f , and Pe as given in

Table 1.2. As expected, the spectrum is located very close to, but left of the imaginary axis, and

has an approximate parabola shape. The modes depicted on the left correspond to a standing

half-wave and its harmonics; poles corresponding to higher frequencies are damped more.

The parameters Pe and f , which are known only to within maybe an order of magnitude,

appear to have very well-defined effects. Increasing the amount of diffusion 1/Pe will “bend”

the spectrum, i.e. the parabola shape will become narrower, while increasing the amount of

friction f will shift the entire spectrum towards the left. These numerical computations again

validate the claim made during the analysis of the root locus in Figure 1.19, namely that the

12The ξk are for the interval [0 1], simply shift and stretch the interval to obtain the Chebyshev points on an
arbitrary interval.
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Figure 1.24 – Numerical computation of the spectrum of the spatial differential operator
in (1.24). The left plot shows the five pressure modes corresponding to the funda-
mental and the first four harmonics; they are indistinguishable from the pressure modes
of the undamped model (1.32), corresponding to the resonances of a tube with two open
ends. The right plot shows part of the numerically computed spectrum: poles located
on the imaginary axis in the case without damping are now damped, i.e. shifted to the
left; higher frequencies are damped more, yet still lightly (note the axis scales).
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poles located on the imaginary axis in the friction- and diffusion-less case would be shifted

towards the left if diffusion and/or friction effects were retained.

It should also be mentioned that many of the 3N − 3 eigenvalues of the discretization are in

unexpected locations, including the right-half plane; however, it can be checked that the Cheby-

shev grid resolves the corresponding modes to less than a wave-length. In the terminology of

e.g. [Tre00, Ch. 7], the points per wavelength (in the center of the interval – Chebyshev grids

are denser near the boundaries and sparser in the center than equispaced grids) are less than 2,

hence those poles and modes are numerical artifacts.

1.4.8 Future Directions

The strength of our model lies mainly in its simplicity and intuitive explanation of the thermo-

acoustic instability, but due to its singular nature (poles on the imaginary axis) it is of limited

utility for control and optimization. In Section 1.4.5 on page 58 we touched on this issue briefly

and described a heuristic approach to address this issue, and in Sections 1.4.6 and 1.4.7 we have

shown that a more complex model captures reality (as seen through the lens of system iden-

tification in Section 1.3) better, however those models suffer from increased complexity and

reliance on poorly known parameters. Improving on the model and gaining better information

on the involved parameters, by inclusion of new physical insights, by application of a more

sophisticated identification procedure, or by using more advanced measurement devices than

a microphone (e.g. a hotwire anemometer to measure the offset velocity v and fluctuation ṽ)

would increase the usefulness of the model and hopefully ultimately allow for the formulation

of an optimization problem for the energy conversion process.

The modeling approach taken here can also be applied to similar thermoacoustic systems. A

natural candidate is the Sondhauss tube [Son70], also known more dramatically as the “acoustic

laser” [GB00], which has one open and one closed end. An important new challenge arises
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from the observation that a concentrated heat source, such as the hot wire in the Rijke tube,

is not sufficient to generate the sound wave in a Sondhauss tube, but instead a so-called stack

induces a temperature gradient over a finite length.

Finally, the recent Master’s thesis [Min14] considers numerical implementation of the fully

nonlinear thermoacoustic model equations, including also more general boundary conditions

than simple pressure nodes. Analysis of the Rijke tube or similar thermoacoustic systems

would benefit greatly from of a numerical testbed for control algorithms and optimized trajec-

tories.

Appendix 1.A Detailed Experimental Setup

All experiments were performed here at UCSB in a setup that shall be described next.

• The tube is a Pyrex glass tube with length = 4 ft ≈ 2.2 m, and internal diameter = 3 in

≈ 7.6 cm. Glass offers good heat resistance while having low electrical and thermal

conductivity.

• The heater configuration changed, as we experimented with different ways of coiling the

wire and mounting the coil. The wire is always Nickel-Chromium wire with diameters

between 0.5 and 1 mm (corresponding to 24 to 19 gauge), and the length was chosen to

obtain a coil resistance of roughly 10 Ω to match the impedance of the power supply.

• The microphone (RadioShack 33-3013) is a simple clip-on with built-in preamplifier.

• The speaker is a 20 W Auvio ceiling speaker (SKU 4000334).

• The audio amplifier for the speaker signal is a Techron 5515.

• The DC power supply is a Topward 6306D power supply with maximum power output

of 360 W. The output power necessary to observe the humming was typically close to
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maximum.

• Signal generation and collection, as well as the control algorithm are realized with

Simulink Real-Time Windows Target.

• The Data Acquisition (DAQ) card to interface experiment and Simulink is a National

Instruments 6053E card.

• The sampling period used isTs = 0.1 ms (so fs = 10 kHz), which is the highest the setup

could sustain in real-time operation.

• To remove some of the high frequency content introduced by the sample-and-hold oper-

ation, the output of the DAQ card is filtered using an analog (passive) lowpass filter with

bandwidth 1.9 kHz.

Refer also to Figure 1.1 for a photograph and schematic drawing of the setup.

Appendix 1.B Estimating the Wire Temperature

Having an estimate of the temperature of the heating coil is useful regarding the choice of ma-

terials to be used and in the physical modeling process, see Section 1.4.4. It is straightforward

to obtain a rough estimate from measurements of just voltage supplied to and current drawn by

the heating coil by using the temperature dependence of the electrical resistance of the wire.

The resistance R of a wire is commonly assumed to depend on its temperature T affinely:

R(T ) = R0
�
1 + α(T −T0)

�
,

where R0 is the resistance at T0, a known point of reference, and α denotes the (linear) temper-

ature coefficient, which is tabulated for different materials. Typically, α > 0, i.e. the resistance

increases as the material heats up; for the Nichrome wire used here, α ≈ 1.76 10−4 1/K. The
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Figure 1.25 – Smoothed time traces of voltage and current across the heating coil as the power
is first set to a small value, and then increased until the humming sets in. The lower plot
shows estimated resistance and temperature of the wire.

relationship can be inverted to

T = T0 +
R − R0
αR0

.

For the reference point (R0,T0), room temperature T0 = 293 K is assumed. The resistance R0

at room temperature is estimated by setting the power supply to a small voltage and recording

current and voltage across the coil; then the supplied power is increased until the instability

sets in and current and voltage are again recorded. Since current measurements are very noisy,

in particular at low voltages, where the signal-to-noise ratio is smaller, averages over relatively

long times are taken. An example time trace is shown in Figure 1.25, and one arrives at an
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estimate of

Twire ≈ 660oC = 933 K. (1.38)

Appendix 1.C Relationship of Acoustic Pressure and

Velocity

Acoustic waves satisfy the linearized wave equation

∂ṽ

∂t
= −1

ρ

∂p̃

∂x

∂p̃

∂t
= −γp ∂ṽ

∂x
,

and, formally, replacing ∂
∂x by jk and ∂

∂t by s, or applying temporal Laplace, spatial Fourier

transforms, yields

s ṽ = − jk
ρ
p̃

sp̃ = −γpjk ṽ,

=⇒ s2 ṽ = γp/ρ (−jk)2 ṽ

using c2 = γp/ρ =⇒ s2/(jk)2 = c2 (1.39)

=⇒ p̃/p = −jγk/s ṽ =⇒ ṽ/c = −jp̃/(γp), (1.40)

where (1.39) is sometimes called a “dispersion relation,” and it follows with (1.40), that in

acoustic waves, the percentage change in pressure p is of the same order as the percentage

change in Mach number (if v is very small).
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Appendix 1.D Transfer Function Computation for Two-

Point Boundary Value Problems (TPBVPs)

Along similar lines as in [BD03, JB06], an exact formula for the frequency response of the

class of spatially distributed systems that can be represented as linear TPBVPs is derived here.

Inputs are restricted to be point-wise, either inducing a discontinuity, as r in (1.41), or as an

inhomogeneous boundary condition like u in (1.42).

A unified way to treat linear TPBVPs with concentrated and boundary inputs can be described

by using the state space realization

d
dx

Ψ(x) = F Ψ(x) +G δ (x − xo) r , x ∈ [xi ,x f ] (1.41)

Nu u = Ni Ψ(xi) + N f Ψ(x f ). (1.42)

The first equation is the differential equation, while the second is a general form to express

linear two-point boundary conditions.

The matrices F ,G, Nu , Ni and N f can depend on parameters; if (1.41) was obtained via Laplace

transform of a PDE, this parameter will be the Laplace variable s. Similarly, r andu might have

depended on time, and hence now depend on s, but they do not depend on x . The objective is

to obtain a formula for the solution Ψ(x) as a function of r and u; if the matrices depend on

s, then so will the solution, and it can be interpreted as the transfer function of the original,

spatio-temporal system.

The presence of δ (x − xo) in the r input term implies that the solution Ψ(x) could have a

discontinuity at xo, but is continuous everywhere else. The upper and lower limits at the jump

point xo

Ψ(x−o ) B lim
x↗xo

Ψ(x), Ψ(x+
o ) B lim

x↘xo
Ψ(x),
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xi x fxo

x+
ox−o

satisfy the following relation:

Ψ(x+
o ) = Ψ(x−o ) +G r . (1.43)

To see that:

Ψ(x+
o ) =

∫ x+
o

xi

d
dx

Ψ(x)dx =

∫ x+
o

xi

FΨ(x) +Gδ (x − xo)rdx =

∫ x+
o

xi

FΨ(x)dx +G

Ψ(x−o ) =

∫ x−o

xi

d
dx

Ψ(x)dx =

∫ x−o

xi

FΨ(x) +Gδ (x − xo)rdx =

∫ x−o

xi

FΨ(x)dx

Ψ(x+
o ) − Ψ(x−o ) = G,

since the Dirac impulse has no effect if the interval of integration does not contain x+
o .

The solution over each of the intervals [xi ,xo] and [xo,x f ] can be propagated from each end

Ψ(x) =

{
Φ(x ,xi) Ψ(xi) x ∈ [xi ,xo]
Φ(x ,x f ) Ψ(x f ) x ∈ [xo,x f ] , (1.44)

where Φ(x1,x2) is the state transition matrix for the ODE (1.41). If the coefficients are constant

in x as we have assumed here, then Φ(x1,x2) = eF (x1−x2). However, if (1.41) has space-varying

coefficients, the analysis here remains unchanged, it is just not as simple anymore to find the

state transition matrix.

The jump relation (1.43) can now be rewritten by first observing that (1.44) gives

Ψ(x−o ) = Φ(xo,xi) Ψ(xi)

Ψ(x f ) = Φ(x f ,xo) Ψ(x+
o ),

72



which combined with (1.43) yields a relation between Ψ(xi) and Ψ(x f ) as a function of the

input r :

Ψ(x f ) = Φ(x f ,xo)
(
Φ(xo,xi)Ψ(xi) +Gr

)
. (1.45)

The given boundary conditions (1.42) can now be combined together with (1.45) in the follow-

ing matrix-vector form


−Φ(x f ,xi) I

Ni N f



Ψ(xi)
Ψ(x f )

 =


Φ(x f ,xo)G 0

0 Nu



r

u

 ,

where I , respectively 0, always denote the identity, respectively zero, matrix of appropriate

dimensions.

Finally, this permits rewriting the solution (1.44) in terms of the inputs r and u as

Ψ(x) =



[
Φ(x ,xi) 0

]
Γ


r

u

 x ∈ [xi ,xo]

[
0 Φ(x ,x f )

]
Γ


r

u

 x ∈ [xo,x f ],
(1.46)

where

Γ =


−Φ(x f ,xi) I

Ni N f


−1 

Φ(x f ,xo)G 0

0 Nu

 . (1.47)

Remark. Γ exists if and only if Ni + N f Φ(x f ,xi) is invertible. That follows easily from the

formula for the determinant of a block matrix

det *.,

−Φ(x f ,xi) I

Ni N f


+/- = − det �

Φ(x f ,xi)
�
det

�
N f + NiΦ

−1(x f ,xi)
�

and the fact that transition matrices are always invertible, with Φ−1(x1,x2) = Φ(x2,x1), or from
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the matrix inversion formula


−Φ(x f ,xi) I

Ni N f


−1

=


−Φ(xi ,x f ) + Φ(xi ,x f )SNiΦ(xi ,x f ) Φ(xi ,x f )S

SNiΦ(xi ,x f ) S

 ,

where S B (N f +NiΦ(xi ,x f ))−1 is the Schur complement of the block −Φ(x f ,xi) in above block

matrix. That also yields a form of Γ that requires only one inversion of a (n × n) matrix:

Γ =


−Φ(xi ,x f ) + Φ(xi ,x f )SNiΦ(xi ,x f ) Φ(xi ,x f )S

SNiΦ(xi ,x f ) S



Φ(x f ,xo)G 0

0 Nu

 =


−I + Φ(xi ,x f )SNi Φ(xi ,x f )

SNi I



Φ(xi ,xo)G 0

0 SNu

 .

“Ni + N f Φ(x f ,xi) is invertible” should be interpreted as a well-posedness condition on the

system (1.41) and (1.42), since else solutions are not unique:

Assume, it is violated. Then there exists a nonzero Z such that
(
Ni +N f Φ(x f ,xi)

)
Z = 0, and if

we have a solution Ψ0(x), then

ΨZ (x) B Ψ0(x) + Φ(x ,xi)Z

is another, since

d
dt

(Ψ0 + Φ(·,xi)Z ) = FΨ0 +Gr + FΦ(·,xi)Z = F (Ψ0 + Φ(·,xi)Z ) +Gr

Ni

(
Ψ0(xi)+Φ(xi ,xi)�                  �

=I

Z
)

+ N f

(
Ψ0 + Φ(x f ,xi)Z

)
= NiΨ0(xi)+N f Ψ0(x f )�                                                    �

=Nuu

+
(
Ni+N f Φ(x f ,xi)

)
Z�                                                   �

=0

.

Unless G ≡ 0, the value of Ψ at xo is discontinuous. One can choose to take either of the
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one-sided limits, or the average value at the point xo

Ψav(xo) =
1
2

[
Φ(xo,xi) Φ(xo,x f )

]
Γ


r

u

 . (1.48)

In the case where any of the matrices F ,G, Nu , Ni and N f and inputs r , u depend on the Laplace

transform variable s, we can use (1.46) to define a transfer function matrixT (s). Say the output

we are interested in is some combination Y = C · Ψ of the states at the location xm > xo; then

from

Ψ(xm) =
[
0 Φ(xm,x f )

]
Γ(s)


r (s)
u(s)


we have

Y (s) = C
[
0 Φ(xm,x f )

]
Γ(s)︸                     ︷︷                     ︸

CT (s)


r (s)
u(s)

 .

Note that the important computation is that of Φ(·, ·). It is possible in general to compute

Φ analytically (with computer algebra routines) for systems of dimension 4 or less, which

corresponds to PDEs in which the spatial derivative order is at most 4. The transfer function T

can be given analytically even for spatially varying systems and systems of order higher than

4, as long as Φ can be determined analytically. However, expressions quickly get so unwieldy

that one is better off computing the frequency response numerically on a frequency grid.
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Appendix 1.E Departure Angles for Infinite-Dimensional

Root Loci

The classical rule to compute the angle of departure φ0 from an open-loop pole s0 ∈ C states

that

n0φ0 = −
∑

si∈{all poles,s0}
∠(s0 − si) +

∑
zi∈{all zeros}

∠(s0 − zi) − (2r − 1)π , (1.49)

where ∠(s) represents the phase of the complex number s, r = 1,2, . . . ,n0, and n0 is the mul-

tiplicity of the pole s0 [FPEN02]. This rule is difficult to apply to a system with infinitely

many poles (or zeros), so it is shown here, how a simple application of Taylor series yields an

alternative expression that does not involve sums over the sets of all poles and zeros.

Single pole

Let f (s) =
h(s)
д(s) be a meromorphic function, i.e. д(·) and h(·) are both analytic. (It is sufficient

for f to be meromorphic in an open set around the pole s0 we are interested in.) The roots of д

are then the open-loop poles (unless there are cancellations with h). Let us consider one point

on the (positive) root locus, i.e. there is a k0 ≥ 0 such that д(s0)+k0h(s0) = 0, but for simplicity,

assume also that д′(s0) + k0h
′(s0) , 0 (if s0 is a pole, that reduces to requiring it to be a single

pole). To obtain the departure angle from s0, let k0 be perturbed by a small positive value δk and

compute the perturbation δs needed to render s0+δs a solution toд(s0+δs)+(k0+δk)h(s0+δs) =
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0 to first order:

д(s0 + δs) + (k0 + δk)h(s0 + δs) =

д(s0) + д′(s0)δs + (k0 + δk)(h(s0) + h′(s0)δs) + O
�
δs2

�
=

д(s0) + k0h(s0) + (д′0(s0) + k0h
′(s0))δs + h(s0)δk + O

�
δs2

� ≈
(д′0(s0) + k0h

′(s0))δs + h(s0)δk = 0

⇐⇒ δs = − δk h(s0)
д′0(s0) + k0h′(s0)

,

where again O (δsν ) denotes terms of order ν or higher in δs.

For the phase of the departing branch that means

∠(δs) = −π + ∠(h(s0)) − ∠(д′(s0) − k0h′(s0)) (1.50)

(since δk > 0, ∠(δk) = 0), and if s0 is an open-loop pole, then k0 = 0 and

∠(δs) = −∠(д′(s0)) + ∠(h(s0)) − π , (1.51)

which for a finite dimensional system reduces to (1.49) (with n0 = 1).

Multiple poles

Now we consider a point on the (positive) root locus such that

dνд
dsν

(s0) + k0
dνh
dsν

(s0) = 0

for ν = 0, . . . ,µ − 1, i.e. s0 is pole with multiplicity µ. To obtain the departure angle from s0 we

again let k0 be perturbed by a small positive value δk and compute the perturbation δs needed
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to render s0 + δs a solution to д(s0 + δs) + (k0 + δk)h(s0 + δs) = 0 , however this time to µth

order:

д(s0 + δs) + (k0 + δk)h(s0 + δs) =

µ∑
ν=0

dνд
dsν

(s0)δsν + (k0 + δk)
µ∑

ν=0

dνh
dsν

(s0)δsν + O
�
δsµ+1�

=

µ−1∑
ν=0

(
dνд
dsν

(s0) + k0
dνh
dsν

(s0)
)

︸                       ︷︷                       ︸
=0

δsν +

(
dνд
dsµ

(s0) + k0
dµh
dsν

(s0)
)
δsµ + δk h(s0) + O

�
δsµ+1� ≈ 0

⇐⇒ δs = µ

√
− δk h(s0)

dµд
dsµ (s0) + k0

dµh
dsµ (s0)

,

and hence

µ · ∠ (δs) = ∠(h(s0)) − ∠
(
dµд
dsµ

(s0) + k0
dµh
dsµ

(s0)
)
− π + 2rπ , r = 0, . . . µ − 1 (1.52)

and for k0 = 0, i.e. s0 a µth order open-loop pole

µ · ∠ (δs) = ∠(h(s0)) − ∠
(
dµд
dsµ

(s0)
)

+ (2r − 1)π , r = 0, . . . µ − 1, (1.53)

which, for µ = n0, reduces again to (1.49).

Appendix 1.F Boundary Conditions and Discretization of

Linear Operators

Assume we discretized a linear operator, for instance on a Chebyshev grid, and obtained a

(n × n) matrix M approximating the operator, and a (b × n) (typically very fat) matrix B such

that the boundary conditions are given by Bx = 0. Note that ker(B) needs to be M-invariant,
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i.e. Bx = 0⇒ BMx = 0, for the problem to be well-posed.

In summary, we can state: The eigenvalues of the operator M restricted by Bx = 0 are the eigen-

values ofV ∗
k
MVk , whereVk are the last n −b columns ofV in the singular value decomposition

(SVD) of B because they form an orthonormal basis for ker(B).

To derive this result, we choose a basis adapted to ker(B), because that is where we want to

restrict M to. A convenient choice is coming from the SVD of B:

B = U Σ̄V ∗ =

b


basis for basis for
ran(B) ker(B∗) b

(likely ∅)

b n − b


Σ 0 b

0 0 likely ∅

·

*...........,

b n − b



basis for basis for
ran(B∗) ker(B) n

+///////////-

*

Let Vk be the matrix containing the last n − b columns of V , i.e. the ones spanning the ker-

nel ker(B), and Vr the other b rows (spanning the range of B∗, or equivalently, ker(B)⊥) and

decompose the representation of M on the basis V as

MV = V ∗MV =

[
V ∗r MVr V ∗r MVk
V ∗
k
MVr V ∗

k
MVk

]
.

Now the restriction of MV to ker(B) is easily obtained:

MV
���ker(B) = V ∗k MVk ,

which is a (n − b) × (n − b) matrix, operating on vectors zk that are the coordinates of a vector
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in the Vk basis.

A representation of this operator in the original coordinates can be obtained as follows:

x(original coords) = Vz = Vkzk(since zr = 0) =

Vk (V ∗k MVk)︸    ︷︷    ︸
op. on ker(B) in V -coords.

Projection of y onto ker(B) in V -coords.︷              ︸︸              ︷
V ∗k y(original coords) =

�
VkV

∗
k MVkV

∗
k

�
y(original coords)

Note that x is only the correct outcome of My if y ∈ ker(B). Due to the assumption that ker(B)

is M-invariant, x will then be in ker(B), too.

Another interpretation: P = VkV
∗
k

is the orthogonal projection onto ker(B), and V ∗
k
VkV

∗
k

=

V ∗
k

is the projection but expressed in Vk-coordinates (coordinates corresponding to Vr are 0).

So VkV
∗
k
MVkV

∗
k

really just projects onto ker(B), applies M and then projects again – since

ker(B) is M-invariant, that second projection should be spurious, and VkV
∗
k
MVkV

∗
k

= MVkV
∗
k

.

VkV
∗
k
MVkV

∗
k

has the same nonzero eigenvalues as V ∗
k
MVk .

Appendix 1.G Transfer Functions in Dimensionless and

Physical Variables

Since the identification results are necessarily in physical variables, whereas in the theoreti-

cal analysis we prefer dimensionless representations, how do the former relate to the latter?

Consider two physical quantities, f (x ,t) and д(x ,t), and their normalized versions ϕ(ξ ,τ ) :=

f (ξL,τT )/ f̄ and γ (ξ ,τ ) := д(ξL,τT )/д̄ (hence, x is scaled by L to get ξ = x/L, similarly for τ ).

Let s be the physical, and σ be the dimensionless Laplace transform variable, so that we can
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define Laplace transforms

F (x ,s) =

∫ ∞

0
e−st f (x ,t)dt G(x ,s) =

∫ ∞

0
e−stд(x ,t)dt

Γ(ξ ,σ ) =

∫ ∞

0
e−στγ (ξ ,τ )dτ Φ(ξ ,σ ) =

∫ ∞

0
e−στϕ(ξ ,τ )dτ .

Then we can express the physical quantity in terms of the dimensionless quantity:

F (x ,s) =

∫ ∞

0
e−st f (x ,t)dt =

∫ ∞

0
e−st f̄ ϕ(x/L,t/T )dt =

T f̄

∫ ∞

0
e−sτTϕ(x/L,τ )dτ = T f̄ Φ(x/L,sT )

Now let’s say we identified a transfer function P(s) = F (x1,s)/G(x2,s) and derived a transfer

function Ψ(σ ) = Φ(x1/L,σ )/Γ(x2/L,σ ) (for some fixed xi). Then, ideally,

P(s) = F (x1,s)/G(x2,s) =
T f̄ Φ(x1/L,sT )
Tд̄Γ(x2/L,sT )

=
f̄

д̄
Ψ(sT ). (1.54)
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Chapter 2

Frequency-Domain Methods for Optimal

Periodic Control (OPC)

Optimal steady-state operation of industrial plants is a well-researched and well-understood

way to choose control parameters; the next easiest operation condition is cycling, i.e. having the

process follow an optimal finite-length trajectory over and over again. This problem of Optimal

Periodic Control (OPC) has received attention in different decades and different communities.

What is commonly regarded the first mention of this idea by Horn and Lin [HL67] is inspired

by maximization of product concentration in chemical reactions, and for a simple example an

improvement over the optimal steady state is obtained by periodically adjusting the reactant

feed concentration. Later contributions include applications to vehicle cruise, e.g. [Gil76],

where it is shown that for a simple model of a vehicle, fuel economy can be improved by

periodically adjusting the thrust, and to production planning [MBF98].

Different approaches to the solution of the OPC problem have been made, mostly based on

variational calculus. For example, in [HL67], it is shown that the first order necessary optimal-

ity conditions include that the co-state λ be periodic, too. Extensions by use of the maximum
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principle were made soon after, as has been the application of relaxed steady-state analysis

(which means, roughly speaking, infinitely fast switching between admissible values of the

input). A comparison can be found in [BH71]. Second-variation methods [SE84] to derive

sufficient conditions for optimality appeared later. A recent paper [VGD04] uses a flat output

to parametrize all periodic solutions of a given system to transform the OPC to a Nonlinear

Program. Early contributions of mainly Guardabassi et al. and Horn et al. are summarized in

the Survey Paper [GLR74], a newer summary including also relaxed steady-state and quasi

steady-state analysis is [Gil77].

A central question that is common in much of the above cited literature is whether steady-

state operation could be improved by cycling. The Π-Test [BFG73] is a relatively effective

method to answer this question. However, calculating the optimal periodic input and trajectory

is in general a nontrivial problem. Apart from flatness, shooting methods [SE84] and Newton-

Raphson techniques [HL67] have been employed to solve the Euler-Lagrange equations arising

from variational calculus. A common disadvantage of those methods is the “curse of dimen-

sionality:” the complexity of the problem increases with the state dimension of the plant, and

infinite-dimensional plants can be handled only by discretization. A method that would be

equally applicable to finite-dimensional and distributed-parameter systems is desirable.

The first part of this chapter, Section 2.2, expands on ideas formulated in [BGR72] by making

use of harmonic balancing to find periodic orbits of the Hamiltonian system. Following this

approach we obtain a system of polynomial equations in terms of the Fourier coefficients of the

trajectories, the zeros of which coincide with trajectories satisfying the necessary conditions

for optimality. The plant itself appears only with its frequency response as coefficients in the

equations, thus making the complexity of the method independent of system order. This was

the subject of [EB12].

In Section 2.3, the problem is approached by making use of the Fourier series representation
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of periodic signals to rewrite the cost function as a polynomial in the Fourier coefficients of

a particular signal. In doing so, the polynomial equations of the previous section result as a

byproduct by setting the gradient of the cost with respect to the Fourier coefficients to zero.

Yet a much more valuable outcome is that the polynomial form of the cost function allows

for direct application of very efficient methods of polynomial minimization, namely Sum-of-

Squares (SOS) methods, and treatment of more general system structures.

The organization is as follows. In Section 2.1, the form of the OPC problem considered here is

defined before it is shown in Section 2.2 how the associated Hamiltonian system can be treated

with harmonic balance techniques, resulting in the polynomial equations of Section 2.2.4. The

results are demonstrated on two examples, one finite- and one infinite-dimensional. Section 2.3

then outlines the approach of formulating the cost as a polynomial and minimizing it using SOS

programming.

In the Appendix it is shown how the Fourier coefficients of yp(t) are related to the Fourier

coefficients of y(t), and two technical results needed in developing the approach of Section 2.3

are given.

Related Publication:

[EB12] Jonathan P. Epperlein and Bassam Bamieh. A frequency domain method for optimal

periodic control. In American Control Conference (ACC), 2012, pp. 5501–5506. IEEE,

2012.

2.1 Problem Setting

We are given a linear time-invariant (LTI) plant

ẋ = Ax + Bu, y = Cx , y ∈ R, x ∈ Rn, u ∈ Rm (2.1)
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and a cost function

J =
1
T

∫ T

0

1
2
xTQx +

1
2
uTRu + ϕ(y)dt , (2.2)

where R > 0, Q symmetric, but not necessarily definite and ϕ : R → R a polynomial ϕ(y) =∑p
q=1 γqy

q of even degree q. The task is to find a period T and a T -periodic solution (x ,u) that

minimize J :

minimize
x(0),u(·),T

J (x(0),u,T ) (2.3a)

subject to
ẋ = Ax + Bu

x(0) = x(T ).
(2.3b)

Note that in contrast to a common optimal control problem initial and final state are neither

given nor free, but have to be equal. Thus, in addition to the period T and the control signal u,

x(0) is a variable with respect to which the minimization is performed.

Also note that ϕ would typically include only even powers, reflecting a cost that is symmetric.

If ϕ(·) ≥ 0, then it is crucial thatQ is not positive semidefinite, sinceQ ≥ 0 would imply J ≥ 0,

rendering the zero solution x(0) = 0, x ≡ 0, and u ≡ 0 a global optimum. Nonconvexity of J

should thus be assumed.

2.2 The Variational/Harmonic Balance Approach to OPC

In this section, the OPC problem formulated in Section 2.1 is approached with variational

calculus and its Hamiltonian system (2.5) is derived. The tools for treating it – harmonic

balance and homotopy continuation – are introduced in Sections 2.2.2 and 2.2.3, respectively,

setting the stage for the method proposed in Section 2.2.4.
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G(s) C

∂φ
∂y(·)

CT

QR−1

−GT (−s) Qx+ CT v

x y

v−BTλ

x

H(s)

Figure 2.1 – Signal flow of the Hamiltonian system (2.5) associated with the optimization
problem (2.3). G(s) := (sI −A)−1B is the transfer function from input u to state x .

2.2.1 The Hamiltonian System

It can be shown via variational calculus [HL67] that with the definition of the Hamiltonian as

H(x ,u,λ) =
1
2
(xTQx + uTRu) + ϕ(Cx) + λT (Ax + Bu)

the first order conditions for optimality in addition to the constraints (2.3b) are

λ̇ = −ATλ −Qx −CT ∂ϕ

∂y
(Cx) = −∂H

∂x
(2.4a)

0 = Ru + BTλ =
∂H

∂u
(2.4b)

λ(0) = λ(T ) (2.4c)

0 = J (u,x ,T ) −H(x(T ),u(T ),λ(T )). (2.4d)

The transversality condition (2.4d) originates from setting the coefficient of the variation δT to

zero, thus it is dropped if the period is fixed. The boundary condition (2.4c) on λ indicates that

any trajectory optimal for (2.3) necessarily is (when extended over R+) a periodic solution of
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H(s) ∂φ
∂y (·)

y

v

Figure 2.2 – Lur’e structure

the Hamiltonian system

ẋ = Ax + Bu (2.5a)

y = Cx (2.5b)

λ̇ = −ATλ −Qx −CT ∂ϕ

∂y
(y) (2.5c)

0 = Ru + BTλ. (2.5d)

The signal flow of the Hamiltonian system is shown in Figure 2.1, from where it is apparent

that the transfer function from v to y is linear and single-input single-output, which allows us

to recast the system as the classical Lur’e structure of Figure 2.2.

2.2.2 Harmonic Balance

Harmonic balance is a tool for finding oscillatory solutions of linear systems with a memoryless

feedback nonlinearity such as in Figure 2.2 with

y = Cx , ẋ = Ax + Bv, v = ψ (y), (2.6)

whereψ plays the role of ∂ϕ∂y and H (s) is the transfer function from v to y. Since every periodic

signal can be represented by its Fourier series, any periodic solution of system (2.6) can be
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written as

y(t) =

+∞∑
k=−∞

αke
jkωt (2.7)

and, since the static nonlinearityψ (y) does not change the periodicity or period of y,

v(t) =

+∞∑
k=−∞

βke
jkωt . (2.8)

The coefficients βk are going to depend on the coefficients α , and not on the chosen fundamental

frequency ω so for now we just write them as βk(α).1 For the signal to constitute a periodic

solution of (2.6) it has to satisfy a self-excitation condition, i.e. if the loop is cut at the y-signal,

then the signal has to be unaltered after passing through the now open loop:

+∞∑
k=−∞

αke
jkωt =

+∞∑
k=−∞

H (jkωt)βk(α)e jkωt , (2.9)

and since the functions e jkωt are mutually orthogonal, this equation can be interpreted component-

wise to get

αk − H (jkωt)βk(α) = 0 ∀k ∈ Z. (2.10)

Any solution of (2.10), consisting of ω and α = (. . . ,α−1,α0,α1, . . .), then corresponds to a

periodic solution. However, to make the problem tractable, restriction to a finite number N of

harmonics is necessary; this is not unreasonable, since H will typically have lowpass character,

and thus the component equations tend to αk + 0 = 0 for large enough k , which justifies

considering only a finite number of harmonics. Still, as we are dealing with an approximation,

one has to be careful in interpreting the results. Once a solution to (2.10) is found, there are

lengthy but checkable conditions under which existence of a nearby oscillatory solution of

1To see that βk indeed does not depend on ω, scale the time in the equation for βk and note that ω disappears:

βk =
ω

2π

∫ 2π /ω

0
ψ *,

∞∑
`=−∞

α`e
j`ωt +- e

jkωtdt τ=ωt
=

1
2π

∫ 2π

0
ψ *,

∞∑
`=−∞

α`e
j`τ +- e

jkτ dτ
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(2.5) is guaranteed [Mee81]. It has also been shown [Mee72] that, under conditions involving

a Lipschitz condition on βk(α), for every oscillatory solution, there exists a finite N , for which

the harmonic balance (2.10) with N components will predict it. It is not possible though to

obtain N a priori, and a converse result [Fit66] states that for a given ψ and N < ∞, a H can

be given for which a periodic solution does exist, but Equations (2.10) have no solution. For

N = 1 one obtains the classical describing function method covered in virtually every basic

controls textbook, e.g. [GL00].

A technicality that needs to be addressed is the non-uniqueness of solutions to (2.10) due to the

time-invariance of H and ψ . If a periodic function ξ (t) is an oscillatory solution of (2.6), then

so is ξ (t + τ ) for any τ ∈ R, in other words the phase of the solution is undefined. In terms of

the Fourier expansions that means that the relative phase of the αk is defined uniquely, but the

absolute phase is not, and thus one of the αk can be picked to be real and positive, customarily

that is α1 = α−1. Of course, αk = α−k is required, too, to make the resulting signals real.

2.2.3 Homotopy Continuation

Homotopy continuation methods solve systems of polynomial equations by embedding them

into a system with an additional parameter t , the so-called homtopy. The homotopy is chosen

so that for t = 0, the zeros of the resulting system are very easy to find, and for t = 1, one

obtains the original system.

Concretely: Let F (x) = 0 be a square polynomial system, i.e. there are n indeterminates xi and
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n polynomial equations:

F (x) = 0 ⇔

f1(x1, . . . ,xn) = 0

f2(x1, . . . ,xn) = 0

...
...

fn(x1, . . . ,xn) = 0.

Then,

Φ(x ,t) = tF (x) + (1 − t)F0(x), t ∈ [0,1] (2.11)

is such a homotopy. The solutions of F (x) = 0 are obtained by solving the starting system

F0(x) = 0 and continuing all isolated solutions from t = 0 to t = 1, where they correspond

to solutions of the original systems F (x) = Φ(x ,1) = 0. The ingenuity goes into two different

parts. The first is root counting, i.e. choosing the starting system such that it has at least as

many roots as the original system (and of course such that those roots are easy to compute).

The second is the continuation from t = 0 to t = 1, avoiding or dealing with discontinuities

such as branches splitting, merging, or escaping to infinity. Homotopy continuation methods

are not restricted to quadratic systems, positive exponents or the particular form of (2.11); for

details on root counting, the choice of homotopy and other issues, see e.g. [Ver99b] and the

references therein. Of note is that the complexity of such methods depends mainly on the

number of branches that have to be tracked, in other words, on how many solutions there are

and how tightly their number can be bounded.

2.2.4 The Polynomial Equations of Harmonic Balance

To the best of our knowledge, the only application of harmonic balance to optimal periodic

control is in [BGR72], where describing function analysis is used to find periodic solutions
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of (2.5). We build on ideas described there. The transfer function H in Figure 2.2 has the

state-space representation

d
dt


x

λ

 =


A −BR−1BT
−Q −AT



x

λ

 +


0

−C
 v

y =
[
CT 0

] 
x

λ


(2.12)

and the transfer function

H (s) = −CG(s)R−1 (I +GT (−s)QG(s)R−1)−1GT (−s)CT , (2.13)

where

G(s) = (sI −A)−1B.

This transfer behavior retains a Hamiltonian structure, in particular it holds that

H (s) = HT (−s),

i.e. the poles and zeros are symmetric with respect to the imaginary axis. Since H (s) has

only real coefficients, H (−jω) = H (jω) is true, too, and so for every diagonal element hkk :

hkk(jω) = hkk(jω), which means they are real for all frequencies ω. For single-output plants:

H (jω) ∈ R. Note also, that for infinite-dimensional systems with transcendental transfer

functions the above statements about H (s) still hold, whereas the state-space representation is

restricted to the finite-dimensional case.

For sake of readability, we will restrict ourselves to scalar signals y and v. Then let αk and

βk be their Fourier coefficients like in (2.7) and (2.8), and for ease of notation define also real
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numbers Hk := H (jωk). Equations (2.10) then become

αk − Hkβk(α) = 0 ∀k ∈ Z. (2.14)

What will allow us to write this as a system of polynomial equations amenable to numerical

solution is that the explicit form of the functions βk(α) can be generated automatically:

βk(α) =

p−1∑
q=0

(q + 1)γq+1Ψk,q(α),

where the functions Ψk,q are derived in Appendix 2.A, important here is only that they are of

the form

Ψk,q(α) =
∑

M · α`1α`2 · · ·α`q ,

i.e. a sum of monomials of total degree q. The harmonic balance equations become

αk − Hk

p−1∑
q=0

(q + 1)γq+1Ψk,q(α) = 0, (2.15)

that is they now take the form of a polynomial system of equations with degree p − 1, for the

numerical solution of which we turn to homotopy methods as outlined in Section 2.2.2; the

solver we are employing is the homotopy continuation tool PHCpack [Ver99a] and its Matlab

interface PHClab [GV08].

As for the complexity of the resulting numerical computations: For a given N and p, system

(2.15) will consist of 2N equations in 2N variables. This is because it is not possible (to

our knowledge) to express the constraint x = y as polynomials involving only x and y (no

conjugates). Thus, αk and α−k have to be treated as different variables and solutions with

α−k , αk to be elminated afterwards. Since we picked α1 to be real, α−1 can be eliminated

from the equations altogether by replacing it with α1, and of course α0 has to be real.
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While this possibly introduces a lot of overhead by tracking spurious branches corresponding

to solutions for which α−k , αk , it is worth repeating that the complexity of Equations (2.15)

does not increase with the order n of the plant but only with the degree p of ϕ(·) and the number

of considered harmonics N .

2.2.5 Examples

2.2.5.1 Double Integrator

This example is taken from [SE84], where a shooting method is employed, and also treated in

[VGD04] with help of the flatness-based approach. The plant is a double integrator

ẋ =


0 1

0 0

 x +


0

1

 u, y =
[
0 1

]
x . (2.16)

and the cost function is

J (x(0),u,T ) =
1
T

∫ T

0

x21 − x22
2

+
y4

4
+
u2

10
dt , (2.17)

so in accordance with Equations (2.2) and (2.13)

Q =


1 0

0 −1
 , R = 0.2, p = 4, γ4 = 0.25,

H (s) =
10s2

s4 + 10s2 + 10
.

Since H (0) = 0, the optimal y cannot have a DC-Term, as the harmonic balance for α0 reduces

to α0 − 0 = 0.
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The describing function of ∂ϕ∂y (y) = y3 is

N(α1) =
1

2α1π

∫ π

−π

�
α1 cos(τ )

�3 cos(τ )dτ =
3α21
4

and so the case of N = 1 can be solved explicitly:

α1 − H (jω)
3α31
4

= 0

⇔ 3α21
4

−10ω2

ω4 − 10ω2 + 10
= 1

⇔ α1(ω) =

√
2
15

√
−ω4 + 10ω2 − 10

ω
.

For N = 3, the harmonic balance equations are already a lot more complicated (see also Ap-

pendix 2.A), and explicit solution is not feasible anymore.

Figure 2.3 shows the achieved cost functions over a range of ω for N ∈ {1,3,5}, and Figure 2.4

shows the corresponding optimal trajectories of y. Finally Figure 2.5 shows the values of

optimal Fourier coefficients αk over ω for N = 3. Noteworthy are the following points:

1. Our results, in particular the optimal cost and frequency, J ∗ ≈ −0.0233 and ω∗ ≈ 1.782,

are in agreement with the results from [SE84] and [VGD04].

2. The describing function analysis yields a very good estimate already, which is to be

expected since H has low-pass character.

3. For N = 1, real solutions α1 only exist where H (jω) > 0, which is the case between

the poles at ωl =

√
5 − √15 and ωh =

√
5 +
√
15. For N = 3,5, no solutions could

be found outside this range, either. This phase criterion for feasibility of first order

conditions seems intuitive; however, this idea is not justified rigorously as of yet.

4. For higher N , there can be multiple solutions at some frequencies beyond the ambiguity

through time-invariance. In Figure 2.5, only the solutions corresponding to the minimum
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cost function are shown.
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J

 

 

N = 1

N = 3

N = 5

Figure 2.3 – Solving the harmonic balance equations of Example 2.2.5.1 for N = 1,3,5 and
computing the cost function yields decreasing costs at every frequency. The improve-
ment from 3 to 5 harmonics however is negligible, due to the lowpass character of H
the high harmonics have almost no effect.

2.2.5.2 Vibrating String

This example demonstrates our method on an infinite-dimensional example, namely a damped

wave equation with boundary control

∂2h

∂t2
=
∂2h

∂z2
− D ∂h
∂t

h(L,t) ≡ 0
∂h

∂t
(0,t) = u(t),

(2.18)

which could be interpreted as a string with one loose and one fixed end where the control

input is the vertical velocity of the loose end. Then, h denotes the vertical displacement of the

string, z is the spatial coordinate, D is the damping coefficient, L is the length of the string; see
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Figure 2.6. As first state and output we define the velocity at L/2

y(t) = x1(t) :=
∂h

∂t
(L/2,t). (2.19)

The transfer function from input u to output y can be obtained by standard techniques, see also

Appendix 1.D, and is

G1(s) =
1

2 cosh
(
L
√
s2 + Ds/2

) . (2.20)

As the second state we pick the vertical displacement at the same location, thusG2(s) = G1(s)/s.

For the cost function we assume that we want the string to have high average velocity in the

middle, while keeping the displacement at bay and minimizing control effort. The cost function

J (x(0),u,T ) =
1
T

∫ T

0

x22 − x21
2

+
x41
4

+
u2

2
dt (2.21)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

t/T

y

 

 

N = 1

N = 3

N = 5

Figure 2.4 – The optimal output trajectories y(t) for Example 2.2.5.1. The fundamental fre-
quency isω∗ ≈ 1.782. As is the case for the cost function, there is virtually no difference
between N = 3 and N = 5.
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Figure 2.5 – The solution of the harmonic balance equations for Example 2.2.5.1 yields the
Fourier coefficients of the optimal output trajectory y(t) at every frequency ω.

z=0 z=L

h

h(z0,t0)
u(t)

Figure 2.6 – Interpretation of the damped wave equation (2.18) as an actuated string attached
to a wall.
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log(ω)

-20
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20

dB

G1

G2

H

Figure 2.7 – Bode magnitude plot of the transfer functions G1, G2 and H for Example 2.2.5.2.
As can be seen clearly, G1 and in particular H do not roll off.
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−0.16

−0.14

−0.12

−0.1

−0.08

−0.06
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−0.02

0

ω

J

Figure 2.8 – Solving the harmonic balance equations of Example 2.2.5.2 for N = 3 and com-
puting the cost function yields above picture. Note the multiple solutions at some fre-
quencies around the optimal frequency; they correspond to other local minima. Saddle
points are also present, but they correspond to complex Fourier coefficients and are not
included here.

reflects those requirements. Again, in accordance with Equations (2.2) and (2.13)

Q =


−1 0

0 1

 , R = 1, p = 4, γ4 = 0.25,

H (s) =
−s2(

4 cosh
(
L
√
s2+Ds
2

)
cosh

(
L
√
s2−Ds
2

)
− 1

)
s2 − 1

.

Two major differences to the first example need to be pointed out. The first is, that H has

infinitely many imaginary poles, and also infinitely many intervals with H (jω) > 0.

The second difference is that the example unfortunately is not a well-constructed one, because

G1(s) does not have the lowpass character that would be desired to justify the harmonic balance,

and consequently, neither does H (s), as is illustrated by the Bode magnitude plots in Figure 2.7.

The results on the first of the intervals with H (jω) > 0 (ω ∈ [ω1, ω2], where ω1 ≈ 2.24 and
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Figure 2.9 – The solution of the harmonic balance equations for Example 2.2.5.2 with N = 3
yields the Fourier coefficients of the optimal output trajectory y(t) at every frequency
ω. Note again the multiple solutions and that there are no even harmonics present.
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J = −0.10813

J = −0.067091

Figure 2.10 – The output trajectories corresponding to solutions of the harmonic balance equa-
tion y(t) for Example 2.2.5.2 with N = 3. The fundamental frequency is ω∗ ≈ 3.1466.
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ω2 ≈ 4.12) are shown in Figures 2.8, 2.9 and 2.10 for the values L = 1 and D = 0.5. As can be

seen, the higher harmonics have a more significant effect in this example, which is likely due

to the absence of roll-off in H .

To elaborate on this, Figure 2.11 shows how the cost function develops as we consider the

intervals of higher frequency. The optimal cost decreases as ω increases, and this can be

explained intuitively: G2 rolls off, hence there is a “discount” on the position penalty x22/2 as

we increase the frequency, whereas G1 does not decrease as ω → ∞, and so even at higher

frequencies, the ratio of velocity to input, i.e. |G1|, stays the same. Hence, the optimal periodic

solution will have an infinite frequency, which minimizes the penalty on x2.

2.3 A Different View: Polynomial Minimization

In this section, the OPC problem (2.3) is approached in a slightly different way: instead of

obtaining polynomial equations representing the first-order necessary conditions (2.4) from

variational calculus, the Fourier-series representation is used to directly transform the cost

function J (2.2) into a polynomial. From the condition for an extremum, namely grad J = 0, we

then recover the same polynomial equations (2.14) as in the prior section; the more important

contribution however is that it is much more efficient to minimize the polynomial form of

the cost function directly using for instance the Sum-of-Squares (SOS) method [PS03], which

allows reformulation as a semidefinite program.

2.3.1 Polynomial Form of Cost J

For ease of notation, we consider a single-input single-output system

ẋ = Ax + Bu y = Cx x ∈ Rn
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Figure 2.11 – Optimal Fourier coefficients and cost function for Example 2.2.5.2 at increasing
frequencies. As the frequency increases, the achievable cost function decreases. Only
intervals with H (jω) > 0 are shown.
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G(s) C (·)pαkXkυk (α p∗ α)k
yxu yp

Figure 2.12 – Relationship between input, state and output, and their Fourier coefficients.

with

G(s) B (sI −A)−1B G(s) ∈ Cn×1

the transfer function from input u to state x , and the cost function

J =
1
T

∫ T

0

[
xT u

] 
Q S

0 R



x

u

 + yp dt , (2.22)

where p = 2p̄ is an even number. This J is slightly more general than (2.2) by allowing cross-

terms, but less so by restricting the non-quadratic part to a single power. We note that it should

not require much work to extend the results to allow for polynomials in y and multi-input

multi-output systems.

Assume a fixed T and ω B 2π/T . Then we denote by αk , υk and Xk the Fourier coefficients of

y, u and x , respectively, and an application of Parseval’s identity yields

1
T

∫ T

0
xTQx dt =

∞∑
k=−∞

X ∗kQXk

and so on. From the system structure 2.12 we can read off

υk =
αk
CGk

and Xk =
Gkαk
CGk

,
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where Gk B G(jkω), and so we can rewrite the quadratic part of J as

JQ =
1
T

∫ T

0

[
xT u

] 
Q S

0 R



x

u

 dt =

∞∑
k=−∞

X ∗kQXk + X ∗kSυk + Rυkυk =

∞∑
k=−∞

(
αk
CGk

)∗ �
G∗kQGk +G∗kSυk + R

� αk
CGk
. (2.23)

The last expression looks slightly familiar, and indeed, defining

Hk B CGk

�
I + R−1G∗k(S +QGk)

�−1
R−1(CGk)∗, (2.24)

we see that, for S = 0, Hk is equal to the frequency response (2.13) encountered in the previous

section. Using Hk , we can rewrite

JQ =

∞∑
k=−∞

α∗k
1
Hk

αk = α∗ diag{Hk}−1α , (2.25)

where α = (. . . ,α−1,α0,α1, . . .) and

diag{Hk} B



. . .
. . .

. . . H−1 0

0 H0 0

0 H1
. . .

. . .
. . .


are a doubly infinite vector and matrix.

The non-quadratic part requires slightly more work. It is well-known that convolution in the

time-domain corresponds to simple multiplication in the frequency domain, and vice-versa.

Define α
q∗α to be the q-fold convolution of α with itself (see also (2.29) and Appendix 2.A for
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further nomenclature), and observe that we can equivalently write

α
q∗ α = M

q−1
α α ,

where

Mα B



. . .
. . .

. . .

. . . α0 α−1 · · ·
· · · α1 α0 α−1 · · ·

· · · α1 α0
. . .

. . .
. . .



(2.26)

is a doubly infinite Toeplitz matrix. If the Fourier coefficients αk correspond to real signals,

then α−k = αk and we also have M∗α = Mα . Using these definitions and Parseval’s identity, we

can write the non-quadratic part of J as

Jp B
1
T

∫ T

0
ypdt =

1
T

∫ T

0
yp̄ · yp̄dt =

∑∞
k=−∞(α

p̄∗ α)∗k · (α
p̄∗ α)k =

(Mp̄−1
α α)∗Mp̄−1

α α = α∗M∗ p̄−1α M
p̄−1
α α = α∗Mp−2

α α ,

and

J (α) = JQ (α) + JP (α) = α∗
(
diag

{
1
Hk

}
+ M

p−2
α

)
α . (2.27)

While it might not be obvious, (2.27) is a compactly written polynomial in the coefficients αk ,

k ∈ Z: Hk depends on the problem parameters (system and cost) and the chosen frequency

ω only, and α∗Mp−2
α α yields a pth-degree polynomial. Using results from Appendix 2.B, we

recover the polynomial equations of harmonic balance (2.15) as

dJ
dα−k

(α) =
2αk
Hk

+ p (α p−1∗ α)k = 0.
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2.3.2 Sum-of-Squares Programming (SOS)

Sum Of Squares (SOS) Programming [PS03] is a very efficient way of minimizing a multivari-

ate polynomial f ∈ R[x1, . . . ,xn] over Rn.

A polynomial f (x1, . . . ,xn) is an SOS polynomial if there are polynomials fi(x1, . . . ,xn) such

that f (x1, . . . ,xn) =
∑

i f
2
i (x1, . . . ,xn). Obviously, if f is a SOS polynomial, then f (x) ≥ 0 for

all x ∈ Rn. It is appealing but wrong to conclude that the converse holds, too, namely that f

being a SOS polynomial follows from f ≥ 0. Since that is not the case2, going from “Is f (x)

positive ∀x?” to “Is f an SOS polynomial?” is a relaxation.

It follows that “minRn f (x)” can be relaxed to “maxR λ such that f (x) − λ is an SOS polyno-

mial.” In [PS03] it is claimed that this relaxation is often tight; in the examples considered

here, this is found to be mostly true.

The value of the relaxation lies in the fact that the relaxed problem can be recast as a semi-

definite program (SDP) and thus solved in polynomial time; more precisely, computation time

is polynomial in the number of variables n if the degree d is fixed and in d if n is fixed. The

optimal point p? ∈ Rn : f (p?) = λmax can be simultaneously obtained through SDP duality.

Conveniently, the Matlab toolbox SOStools [PAV+13] provides a function findbound that

can be called with a polynomial as input and optional inequality and equality constraints, and

provides a lower bound along with a point at which it is reached (if an additional duality

condition is satisfied). Internally, the SOS program is recast as an SDP and solved with an SDP

solver (e.g. SDPT3 [TTT03] or SeDuMi [SRPT09]). For us that means that once our problem

is formulated as a minimization of a polynomial (possibly with polynomial constraints) it can

be solved numerically without further work on our end.

2The converse does hold for n = 1, for quadratic polynomials with any n, and for at most quartic polynomials
with n = 2 [PAV+13]. That the converse does not hold in general is shown by the counterexample of Motzkin’s
polynomialm(x ,y) = −1 + x4y2 + x2y4 − 3x2y2, for whichm(x ,y) ≥ 0, but it cannot be written as a SOS.
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2.3.3 Minimizing OPC Cost with SOS

We are already close to applying SOS: (2.27) is a very compact way of writing the cost J as a

polynomial, but it is not yet useful for implementation, since it involves infinite matrices and

vectors and will lead to a polynomial of degree p with infinitely many terms in infinitely many

variables. Truncation is straightforward for the quadratic part JQ , but care needs to be taken

with the non-quadractic part. The reason is that nonlinear operations add higher harmonics to

a band-limited signal — e.g. 2 cos2(ω0t) = 1+ cos(2ω0t), so while the original signal consisted

only of the fundamental, its square now contains the second harmonic.

It should be clear that

[
· · · 0 α−N α−N+1 · · · αN 0 · · ·

]
M



...

0

α−N
α−N+1
...

αN

0
...



=
[
α−N α−N+1 · · · αN

]
M[−N :N ,−N :N ]



α−N
α−N+1
...

αN


,

where M[−N :N ,−N :N ] denotes the block of the doubly infinite matrix M with row and column

indices ranging from −N to N . However,

�
Mp�

[−N :N ,−N :N ] ,
�
M[−N :N ,−N :N ]

�p
,
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but instead, sufficiently many elements of M must be kept when computing the pth power. For

a general doubly infinite matrix, “sufficiently many” means “all,” but in the case of Mα with

αk = α−k = 0 for all k > N , there is a finite answer:

�
M

p
α

�
[−N :N ,−N :N ] =

(�
Mα , [−pN :pN ,−pN :pN ]

�p)
[−N :N ,−N :N ] ,

which is derived as (2.39) in Appendix 2.C. Mα , [−pN :pN ,−pN :pN ] is the finite Toeplitz matrix

uniquely defined (for given N ) by its first row rTα and first column cα :

rTα = [α0 α−1 · · · α−N
(2p−1)N elements�                                                                �

0 · · · · · · 0]
cTα = [α0 α1 · · · αN 0 · · · · · · 0�                                                                �

(2p−1)N elements
]

and so the cost function J for a finite vector of Fourier coefficients α = [α−N · · · αN ] can be

generated as

JN = α∗

*...........,



1
H−N 0 · · · · · · 0

0 1
H−N+1

0 · · · 0

0 . . .
...

...
. . . 0

0 · · · · · · 1
HN



+
��
Mα , [−qN :qN ,−qN :qN ]

�q�
[−N :N ,−N :N ]

+///////////-

α ,

where q B p − 2; see also (2.39).

Two small implementation issues have to be addressed: First, since SOS methods minimize

over R, we write α±k = xk ± jyk and obtain a multivariate polynomial in the 2N variables

x0, x1, ..., xN and y0, y1, ... yN . Secondly, to enforce a real signal, we set y0 = 0 and to fix

the phase of the optimal trajectory (see also the end of Section 2.2.2), we also set y1 = 0 and

require x1 ≥ 0.

Application to Examples 2.2.5.1 and 2.2.5.2 yields virtually identical results, hence we refer to
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Figures 2.3 through 2.10 and instead discuss the important differences between the methods to

obtain them:

Computational effort The formulation as an SDP allows for very efficient algorithms to be

applied, and furthermore explicitly enforcing the constraint αk = α−k (which was not

possible in Section 2.2.4) means that no spurious solutions have to be computed and

then discarded. This leads to a large advantage in complexity for the SOS approach,

and computation times from Example 2.2.5.1 illustrate the vastly superior efficiency of

SOS: Solution on a grid of 100 frequencies for N = 3 harmonics takes about 88 s using

SOStools,3 and about 210 s using PHCpack to solve the first-order conditions as in Sec-

tion 2.2.4. For N = 5 harmonics, SOS takes about 200 s, but PHCpack will not finish for

hours.

Relaxation As mentioned in Section 2.3.2, the SOS approach involves relaxations, and so

it finds upper bounds (on the optimal cost) and returns a point at which this bound is

achieved only if a duality condition holds (see [PAV+13, Sec. 4.3]). In Example 2.2.5.1,

this leads to no solutions being found for frequencies between ωl =

√
5 − √15 and

ωSOS ≈ 1.25. In the example, that does not influence the global optimum, however it

generally cannot be determined a priori nor a posteriori whether the global optimum lies

in the range where SOStools fails to return a solution.

Other extrema Of course, SOS has no way of finding extrema beside the global minimum. In

order to obtain those, the first-order conditions have to be solved, hence if (for whatever

reason) local extrema and saddle points are of interest, one would have to resort to the

method of Section 2.2.

3using SDPT3 and a degree for the relaxation (see [PAV+13, Sec. 4.3]) of 5
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2.4 Conclusions and Future Directions

We have first shown how the OPC problem (2.3) for a linear plant with finite or infinite state

dimension can be treated by means of variational calculus and harmonic balance, resulting

in a system of multinomial equations whose zeros are the Fourier coefficients of trajectories

satisfying first-order necessary conditions for optimality. The approach is demonstrated on

two examples, the first of which has been treated in the OPC literature previously, whereas the

second involves an infinite-dimensional system.

In the second part we have shown that by using the Fourier series representation of the output

signal y to parametrize all involved signals and rewriting the cost function J in terms of the

Fourier coefficients of y, we obtain J as a single polynomial in the – infinitely many – Fourier

coefficients. The same polynomial equations as in the first part can be derived by setting the

gradient of J with respect to the Fourier coefficients to zero. More importantly, there are much

more computationally effective methods to minimize a polynomial than finding the zeros of

its gradient, and we outlined how Sum-of-Squares (SOS) programming can be used to obtain

the same results for the treated examples. Some technical issues encountered when going from

infinitely many to finitely many Fourier coefficients are addressed along the way and in the

appendix.

Since this approach of rewriting the cost function as a polynomial does not hinge on a compact

form for the Hamiltonian system anymore – in fact, no variational calculus is required at all

– it lends itself to more general structures. The approach made use of two properties of the

particular OPC problem treated here: there is a signal on whose Fourier coefficients all other

signals’ Fourier coefficients depend polynomially, and the cost function can be rewritten as a

polynomial in the Fourier coefficients of the signals it depends on.

As for the second requirement, the cost function J can be rewritten using Parseval’s identity,

whenever it is quadratic in a polynomial function of the involved signals. To formalize the first,
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w uy

z r

Figure 2.13 – LLFT-like structure for which OPC problems can be approached similarly as in
Section 2.3

let us call a signal “parametrizing” if its Fourier coefficients determine all other signals’ Fourier

coefficients through polynomial dependencies. This definition of a parametrizing signal bears

resemblance to the so-called flat output, yet they are not equivalent: For ẋ = u, u is clearly

a parametrizing signal, but not a flat output. On the other hand, for ẋ = |x | + u, x is a flat

output (since u = f (x , ẋ) = ẋ − |x |), yet there is no polynomial relationship between the Fourier

coefficients of u and x .

From what we have derived in the previous sections, we see that it is sufficient for a signal

a =
∑

k αke
jkωt to be parametrizing, if every other signal can be reached by:

• going through a linear system G(s) in either direction. If b = G(s)a (or a = G(s)b) Then,

βk = G(jkω)αk (or βk = αk/G(jkω)).

• going forward through a polynomial. If b =
∑
` c`a

`, then βk =
∑
` c`Ψk ,̀ (α), where

Ψk ,̀ (·) is defined in (2.30).

• going backward through an odd inverse power. If a = b1/q, then b = aq and we can apply

the polynomial case.

Combining those findings, we see that we can treat the fairly general structure shown in Fig-

ure 2.13, since the signal w is parametrizing. This structure is promisingly close to that of the

nonlinear Rijke tube model shown in Figure 1.15, but we are not quite there yet, since the non-

linearity
√
|v + ·| does not allow straightforward parametrization. Expansion of the concept to

110



even more general systems, and a constructive method to find a parametrizing signal are thus

very interesting questions for future work in this direction.

Appendix 2.A The Fourier Coefficients of yq.

We derive the functions Ψk,q(α) so that

*,
N∑

k=−N
αke

jkωt+-
q

=

N∑
k=−N

Ψk ,q(α)e jkωt , (2.28)

where α = (α−N , . . . ,α0,α1, . . . ,αN ). Note that raising a signal with N harmonics to the qth

power yields a signal with Nq harmonics, but in view of the harmonic balance equation (2.15)

the additional harmonics will have to be ignored. Convolution of time signals corresponds

to multiplication of their Fourier coefficients, and, by symmetry, multiplication in the time-

domain corresponds to a convolution of the Fourier coefficients. Let us denote the sequence

obtained by convolutions of sequences x and α by x ∗ α , and define the m-fold convolution of

α with itself as

α
m∗ α B α ∗ α ∗ · · · ∗ α�                                   �

m terms
, (2.29)

then we can identify

Ψk,q(α) = (α q∗ α)k ,
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where (· · · )k denotes the kth element of a sequence. Writing down α
m∗ α for somem

(α ∗ α)k =

N∑
i=−N

αk−jαj

(α ∗ α ∗ α)k =
∑
i

αk−i
∑
j

αi−jαj =
∑
i,j

αk−iαi−jαj

...
...

(α m∗ α)k =
∑

i1,i1,...,im−1

αk−i1αi1−i2 · · ·αim−1

we note that the sum of the coefficients on the right hand is always k and there are always

m of them, thus the summation could be run over all length-m integer partitions of k instead

of i1,i2, . . .. However, some monomials appear more often than others, i.e. a factor has to be

added to every summand. For illustratory purposes, let m = 3, N = 2, k = 0. The element

(α 3∗ α)0 is then

α30 + 6(α−2α0α2 + α−1α0α1) + 3(α−2α21 + α2−1α2),

so where there is only one index as in α30 , the coefficient is 1, where there are 2 as in α−2α21 and

α2−1α2 it is 3, and for 3 different indices it is 6.

Combinatorics help to find those coefficients generally: the coefficient for each monomial

should be the number of ways of rearranging the monomial α`1α`2 · · ·α`q , which in turn de-

pends only on how many of the `j are equal. For the limiting case where all of them are equal,

there is only one way, and if they all are distinct, then there are q! ways. For the in-between

cases, let ci = card{j | `j = i}, i.e. the number of factors with index i. Then, there are

(
q

c−N ,c−N+1, · · · ,cN

)
B

q!
c−N ! c−N+1! · · · cN !

ways of rearranging. This so-called multinomial coefficient counts the ways of putting q dis-

tinct objects (“Factor in ith position”) into r boxes (“Factors with index j”), where cj objects
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go into the jth container. Note also that 0! = 1. The above findings can be combined to

Ψk,q(α) =
∑

`1+`2+...+`q=k
`i∈[−N ,N ] ∀i=1,...,q

(
q

c−N , · · · ,cN

)
α`1α`2 · · ·α`q , (2.30)

where ci denotes the frequency of index i in the current partition, e.g. if a partition of 1 is

`1 = −1, `2 = −1, `3 = 3, then c−1 = 2, c3 = 1, c−N ···−2,0,1,2,4,...N = 0. As an example, consider

Ψk ,3 with N = 3 (Note that α1 = α−1 > 0 has been included already):

Ψ−3,3(α) = α31 + 6α0α1α−2 + 3α20α−3 + 3α1α2−2 + 6α21α−3 + 6α2α−2α−3 + 3α3α2−3

Ψ0,3(α) = α30 + 6α21α0 + 3α21α−2 + 3α2α21 + 6α2α0α−2 + 6α2α1α−3 + 6α3α1α−2 + 6α3α0α−3

Ψ1,3(α) = 3α1α20 + 3α31 + 6α2α0α1 + 6α2α1α−2 + 3α22α−3 + 3α3α21 + 6α3α0α−2 + 6α3α1α−3

Ψ2,3(α) = 3α21α0 + 3α2α20 + 6α2α21 + 3α22α−2 + 6α3α0α1 + 6α3α1α−2 + 6α3α2α−3.

Appendix 2.B The Gradient of α∗Mp
αα

Let αT = (. . . ,α−1,α0,α1, . . .) be a doubly infinite vector of Fourier coefficients such that

α−k = αk , Mα be defined as in (2.26), and Λ be a doubly infinite diagonal matrix with diagonal

entries λk , k ∈ Z.

Also, let ek be the kth elementary vector with elements equal to 1 at the kth position and equal

to zero everywhere else. Then we have Ek B Mek as a doubly infinite matrix with elements on

the kth subdiagonal equal to 1, and all others equal to 0, i.e. [Ek]i,j = δk,(i−j).4 Alternatively, we

can identify Ek to be the symbol of the right-shift operator.

4Here, [·]i,j denotes the element in the ith row, jth column, and δi,j =

1 if i = j

0 else
is the Kronecker symbol.
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Then, checking the following properties is rather straightforward:

dα∗

dαk
= eT−k (2.31)

dMα

dαk
= Ek (2.32)

d(α∗Λα)
dαk

= α−k(λk + λ−k) (2.33)

ETk = E∗k = E−k (2.34)

Mαek = Ekα (2.35)

eT−kMα =
�
M∗αe−k

�∗
= α∗Ek (2.36)

MαEk = EkMα . (2.37)

It follows by the product rule that

d
�
α∗Mp

αα
�

dαk
= eT−kM

p
αα + α∗

(
pM

p−1
α Ek

)
α + α∗Mp

αek =

α∗EkM
p−1
α α + pα∗Mp−1

α Ekα + α∗Mp−1
α Ekα =

(p + 2)α∗Mp−1
α Ekα = (p + 2)α∗Mp

αek = (p + 2) �
M

p
αα

�∗
ek

and finally, since Mp
αα = α

p+1∗ α :

d
�
α∗Mp

αα
�

dαk
= (p + 2)

(
eTk (α

p+1∗ α)
)∗

= (p + 2)
(
(α p+1∗ α)k

)
= (p + 2)(α p+1∗ α)−k . (2.38)

Appendix 2.C Computing
�
M

p
α

�
[−N :N ,−N :N ]

Let α = (. . . ,0,α−N , . . . ,αN ,0, . . .) and β = (. . . ,0,β−M , . . . ,βM ,0, . . .) be infinite vectors with

2N +1 (respectively 2M+1) nonzero elements, and consider the product of the infinite Toeplitz
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matrices Mα and Mβ . For the element in the ith row, jth column, we have

[MαMβ ]i,j =
∑
`∈Z[Mα ]i ,̀ [Mβ ]`,j =

∑
`∈Z αi−`β`−j =

∑
k∈Z αkβ(i−j)−k .

The range for which αk is nonzero is −N < k < N , and the range for which β(i−j)−k is nonzero

is (i − j) − M < k < (i − j) + M , and both overlap only if |i − j | < M + N . Hence, the

product of matrices with zeros outside the ±N th and ±Mth diagonal will have zeros outside the

±(M +N )th diagonal, but generally will have nonzero elements up to the ±(M +N )th diagonal.

Combined with the observation that all nonzero elements of α and β go into the computation

of every diagonal element of MαMβ , it follows that in order to obtain the correct truncation

of Mp
α to the inner N bands, we have to consider that per multiplication, the matrix Mα with

2N + 1 nonzero bands adds N bands on either side, and so the matrix to truncate from needs to

be of size (2pN + 1) × (2pN + 1). In other words, the initial matrix that will be taken to the pth

power can be constructed as the finite (2pN + 1) × (2pN + 1) Toeplitz matrix generated from

the nonzero part of α , padded with (p − 1)N zeros on either end:

�
M

p
α

�
[−N :N ,−N :N ] =

�
M̊

p
α̊

�
[−N :N ,−N :N ] =

(�
Mα , [−pN :pN ,−pN :pN ]

�p)
[−N :N ,−N :N ] , (2.39)
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where

α̊ = [o−pN · · · o−N−1 α−N · · · αN oN+1 · · · opN ]

M̊α̊ =



α0 α1 · · · opN 0 · · · · · · 0

α−1 α0
. . .

. . .
...

...
. . .

. . .

. . .

. . .
...

o−pN+1
. . .

. . .
. . .

. . . 0

o−pN o−pN+1 · · · o−N−1 α−N · · · α0 · · · αN oN+1 · · · opN

0 . . .
. . . opN−1

...
. . .

...
. . .

. . .
. . . α1

0 o−pN · · · α−1 α0


are a finite vector and a finite matrix, with the zero-padding elements ok ≡ 0 added to illustrate

their generation.
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Chapter 3

Stability, Stabilizability and

Linear-Quadratic Control of Spatially

Invariant Systems over Hk Spaces

The control of infinite-dimensional, spatially distributed and large-scale systems has been the

subject of much work and research for many decades now. Classical references include [LM71,

Ban83, BDPDM07] and many others. In the past decade or so, more detailed research questions

have emerged related to distributed and cooperative control that involve questions of distributed

control architecture, communication requirements and multi-agent systems. Amongst these,

the results of this chapter are closely related to [BPD02, DD03].

The setting in [BPD02] is for systems and signals defined over a spatial domain that forms a

group. This setting provides an idealization where many system-theoretic properties can be

easily and intuitively investigated. The group structure allows for considering systems whose

action is translation-invariant, so-called spatially invariant systems. These are idealizations in

an analogous manner that time-invariant systems are commonly used as useful idealizations of
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systems that might in reality be slowly time-varying or operate over finite time horizons.

The spatially invariant setting allows for simple “pointwise” methods for testing stability, stabi-

lizability and solving optimal linear-quadratic control problems, and more importantly, optimal

linear-quadratic controllers (even centralized ones) inherit the spatial invariance of the plant as

well as some degree of locality. While the proof of the former property, namely that the optimal

spatially invariant controller achieves the same performance as any optimal spatially varying

one, is valid regardless of the underlying (Hilbert) state space [BPD02, Thm. 9], the “local-

ized” property of quadratically optimal controller kernels is shown only for the special case

of L2 state spaces, and the question arises as to whether these results are valid for more gen-

eral Hilbert space settings such as Sobolev spaces. Sobolev spaces commonly arise as the state

space for systems that have wave-like dynamics, or more generally partial differential equations

(PDEs) with higher order temporal derivatives.

It should be remarked that the recent paper [Cur12] treats the situation of second-order tempo-

ral derivatives in great detail, and in this setting even provides conditions for well-posedness of

solutions to the underlying PDE problem. The results of [Cur12, Lemma A.1] are essentially

equivalent to most of what follows, and the author of that work should be thanked for pointing

this out. However, the exposition here differs considerably. We show how the spatially invari-

ant systems theory from [BPD02], in particular the “pointwise” analysis, can be generalized

directly from the setting of L2-space. Our generalization is based on a version of Plancherel’s

theorem (Theorem 3.6) and a careful definition of the symbols of adjoints (Lemma 3.5) with

the necessary accounting of the spatial frequency weights related to the Sobolev norms; we

think that this approach is more intuitive and transparent.

Tests for stability, stabilizability and constructions of optimal solutions to linear-quadratic con-

trol problems can then be done in the spatial frequency domain, and we show how in Sec-

tions 3.1 and 3.2. Section 3.3 uses these results to treat wave and beam equation examples
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in detail, and investigates properties of the optimal LQR feedback gains. We will see that the

optimal controllers satisfy a localization property, which is an important contribution in light

of [Cur11, Sec. IV] claiming the opposite.

This chapter is an extended version of the

Related Publication

[EB14] Jonathan P. Epperlein and Bassam Bamieh. Distributed control of spatially invariant

systems over Sobolev spaces. In European Control Conference (ECC), 2014, pp. 2133–

2138. IEEE, 2014.

3.1 Preliminaries

This section introduces some definitions and nomenclature and provides the results necessary

to generalize the treatment of the L2 setting to Hk state spaces which are defined in Defini-

tion 3.2. Theorem 3.6 presents the correct frequency weighting to retain certain properties of

the spatial Fourier transformation F that enable us to rewrite operator-valued Riccati and Lya-

punov equations in terms of families of matrix-valued ones in Section 3.2; special care needs

to be taken with adjoint operators in such equations, and Lemma 3.5 quantifies what “care”

means.

3.1.1 Translations and Invariance

The results in [BPD02] generally apply if the the state space is a function space whose spatial

domain is a locally compact Abelian group. In what follows, G will denote such a group. The

commonly encountered instances are

• the real line G = R,
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• the unit circle G = ∂D,

• the integers G = Z, and

• the integers modulo N ∈ Z: G = ZN .

and Cartesian products of these, e.g. the infinite cylinder R × ∂D or d-dimensional Euclidean

space Rd .

The issues addressed here arise, roughly, from the fact that the spatial derivative operator ∂∂x

is unbounded, and the necessity to restrict the domain of such right-hand side operators to

ensure well-posedness; since there is no spatial derivative on Z and ZN (or – if we consider

the difference operator ∆f (x) = f (x) − f (x − 1) as the analogue – since ∆ is bounded), in the

sequel G is either the real line R, or the unit circle ∂D. If the spatial domain is a Cartesian

product it is useful to keep in mind though that the analysis also applies to Z and ZN .

The group operation on G is denoted by + and corresponds to simple addition for G = R

and G = Z, and addition modulo 2π (respectively N ) for G = ∂D (respectively G = ZN ).

For Cartesian products, it is applied elementwise. The group operation induces a translation

operator Tξ on functions on G:

[Tξ f ](x) B f (x − ξ ).

Definition 3.1. An operator K is translation invariant (or shift invariant), if its action commutes

with Tξ :

KTξ = TξK ∀ξ ∈ G.

and its domain D(K) is invariant under Tξ , too: TξD(K) = D(K)..

Some classes of spatially invariant operators of particular interest are

• shift operators themselves,

• the differential operator ∂∂x ,
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• spatial convolutions, which we will write as

K f = k ∗ f =

∫
G
k(x − ξ )f (ξ ) dξ ,

where dx is the Lebesgue measure on G, and we have

∫
G
f (x)dx =



∫ ∞
−∞ f (x)dx if G = R

∫ 2π
0 f (x)dx if G = ∂D,

• compositions and linear combinations of spatially invariant operators.

3.1.2 Hilbert Spaces L2(G), Hk(G), LW (G)

A Hilbert space H is a Banach space equipped with an inner product, which we shall denote

by 〈x ,y〉H , and a corresponding norm ‖x‖2H B 〈x ,x〉H ; the subscript is optional if we need to

be explicit about the space. The Hilbert spaces of interest here are

Definition 3.2.

• The space of square-integrable functions

L
n
2(G) B

{
f : G→ Cn | ‖f ‖Ln2 < ∞

}
〈f ,д〉Ln2 B

∫
G
д∗(x)f (x) dx

• The weighted space with weight W : G → Cn×n, which is positive definite on G and
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grows no more than polynomially in its argument

LW (G) B
{
f : G→ Cn | ‖f ‖LW < ∞

}
〈f ,д〉LW B

∫
G
д∗(λ)W (λ)f (λ) dλ

• The Sobolev space

Hn
k (G) B

{
f : G→ Cn | ‖f ‖Hn

k
< ∞

}
〈f ,д〉Hn

k
B

∑k

`=0

〈
∂` f

∂x`
,
∂`д

∂x`

〉
Ln2

Equivalently, this space consists of all functions whose derivatives up to kth order are in

the respective L2-space.

Hence, weighted spaces and Sobolev spaces are different generalizations of Ln2, for example

we have

L
2
2(G) = H2

0(G) = L2[ 1 0
0 1

] (G).

It will turn out (Theorem 3.6), that Hk spaces are the adequate generalization in the physical

domain, while weighted spaces are introduced in the frequency domain.

Remark. In many cases it is overly restrictive to require all derivatives up to order k of the

elements of the state space to live in Ln2. Requiring this of only some derivatives (and in

particular not the function itself) yields so-called homogenous Sobolev spaces. To introduce a

concrete example, we have

H̊2(G) B
 f : G→ C ����







∂2 f

∂x2






L2 < ∞


〈f ,д〉H̊2
B

〈
∂2 f

∂x2
,
∂2д

∂x2

〉
L2

.
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The corresponding relaxation for the weighted spaces is to require the weightW (λ) to be posi-

tive semidefinite only. Ramifications include the non-invertibility of W (λ) at some λ and that

with respect to ‖·‖H̊2
, all functions whose difference is linear in x are equal. Even though the

results should apply with at most minor modifications, we avoid any such complications by

restricting ourselves to the spaces defined in Definition 3.2.

Operators can not necessarily be defined on the whole space, and we denote the domain of an

operator K : H1 → H2 by D(K) ⊆ H1. An operator K is densely defined, if D(K) is dense in

H1. With every operator we associate its adjoint:

Definition 3.3. For an operator K : H1 ⊃ D(K)→ H2, the adjoint K† : H2 → H1 is defined by

the identity

〈u,K v〉H2 =
〈
K†u, v

〉
H1

∀v ∈ D(K) (3.1)

and for all u for which 〈u,K ·〉H2 defines a bounded (or, equivalently, continuous) linear func-

tional on D(K). D(K†) is defined as the set of such u.

Note that we are using the somewhat nonstandard dagger ·† to avoid confusion with the complex

conjugate transpose M∗ of a matrix M ∈ Cn×n.

If we consider one of the spaces outlined in Definition 3.2, a very important class of linear

operators can be defined:

Definition 3.4. A multiplication operator is a linear operator K withD(K) ⊆ LW (G) for which

there exists a measurable function K : G→ Cm×n such that

�
K f

�(λ) = K(λ) · f (λ) ∀f ∈ D(K).

The function K(·) is the symbol of K . We take the liberty to denote operator and symbol with

the same letter and always write the symbol with an argument, either as K(λ) or, for the sake

of readability, as Kλ.
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Many operations on a multiplication operator can then be done “pointwise,” e.g. the symbol of

the inverse of K is (Kλ)−1; however care has to be taken with the adjoint.

Lemma 3.5 (Symbols of adjoints). Let K be a multiplication operator with dense domain

D(K) ⊆ LV and range in LW . Then the symbol of the adjoint K† is given by

K†(λ) = V −1(λ)K∗(λ)W (λ) (3.2)

Proof. Since the weights are positive definite, we haveWλ =W ∗
λ
∀λ. Then:

〈K f ,д〉LW =

∫
G
д∗(λ)WλK(λ)V −1λ Vλ f (λ) dλ =

∫
G

�
V −1λ K∗λWλд(λ)

�∗
Vλ f (λ) dλ

C
〈
f ,K†д

〉
LV
.

�

3.1.3 Fourier Analysis on Groups

The generalized Fourier transform F maps functions on G to functions on the dual group Ĝ

via

[Ff ](λ) = f̂ (λ) B
∫
G
f (x) λ(−x) dx ∀λ ∈ Ĝ, (3.3)

where, in full generality, λ is a character of G, i.e. a homomorphism from G to ∂D, and Ĝ is

the set of all characters of G. The dual group of R is R itself, whereas the dual group of ∂D is

Z, the set of all integers, see also Table 3.1. For a full exposition of Fourier analysis on groups,

see [Rud62].

Hence, when we consider G = R, then F is the common Fourier transform, and when we

consider G = ∂D, then F denotes Fourier series expansion. When considering functions

on dual groups we will talk about the transform or frequency domain, and the entity in the

124



Table 3.1 – Common groups G and their dual groups Ĝ

G R ∂D Z ZN G1 × G2
Ĝ R Z ∂D ZN Ĝ1 × Ĝ2

transform domain corresponding to • will be denoted •̂ .

The generalized Fourier transform as an operator from Hn
k
(G) into LW (Ĝ) (for appropriate

choice ofW , see Theorem 3.6) has appealing properties, in particular

1. F is linear;

2. F transforms many translation invariant operators – including the ones mentioned in

3.1.1 – into multiplication operators;1 and

3. with appropriate normalization of measures dx and dλ, F is an isometric isomorphism,

i.e. the norm is preserved: ‖f ‖ = ‖ f̂ ‖.

The last point above follows from what is known as Plancherel’s theorem, an extension of

which to the case of Sobolev and weighted spaces we state next:

Theorem 3.6 (Plancherel’s Theorem). Let H = H`1 ×H`2 × · · · ×H`n be a Cartesian product

of Sobolev spaces and associate with it a weight matrixW

W B diag{w`1 , . . . ,w`n},

where the individual weights are

wm(λ) B
∑m

ν=0
λ2ν .

(Note that jλ is the symbol of ∂̂∂x , the Fourier transform of the differential operator.) Now define

1This generally holds for all translation invariant bounded operators, see e.g. [BC49, Thm.74] and [CZ95,
Thm. A.6.28], for the case of unbounded operators, however, we know of no general result.
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Ĥ B LW (Ĝ) and we have

〈f ,д〉H =
〈
f̂ ,д̂

〉
Ĥ

(3.4)

Proof. The case for L2 spaces is well-known, see e.g. [Rud62, 1.6.1 & 1.6.2], so it is enough

to reduce the present case to L2. First, we note that the Cartesian product of Hilbert spaces is

again a Hilbert space, if the inner product is defined as the sum of the inner products of each

individual space. For us that means that

〈f ,д〉H =
∑n

ν=1
〈fν ,дν 〉H`ν

, (3.5)

if we write elements of H as f = (f1, . . . , fn). Thus, proving the statement for n = 1 generalizes

easily to the general result. By Definition 3.2 and Plancherel’s theorem for L2 spaces:

〈f ,д〉H`
=

∑`

ν=0

〈
∂ν f

∂xν
,
∂νд

∂xν

〉
L2

=
∑`

ν=0

〈
∂̂ν f

∂xν
,
∂̂νд

∂xν

〉
L2

=
∑`

ν=0

〈
(jλ)ν f̂ , (jλ)νд̂

〉
L2

=
∑`

ν=0

∫
G
д̂ ∗λ(−jλ)ν (jλ)ν f̂ λ dλ

=

∫
G
д̂ ∗λ

(∑`

ν=0
λ2ν

)
f̂ λ dλ =

〈
f̂ ,д̂

〉
Lw`

.

�

To obtain an interpretation of this theorem, consider that Plancherel’s theorem in its classical

form (in this context also know as Parseval’s identity) ensures that f ∈ L2 implies f̂ ∈ L2 and

that ‖f ‖L2 =



 f̂ 


L2 . If f more generally lives in a Sobolev space, then the space in which its

Fourier transform f̂ lives needs to be chosen properly to preserve this isometry property of the

Fourier transform; Theorem 3.6 establishes this choice.
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f (x) K−−−−−−−−−−−→ [K f ](x)
F ↓ ↓ F

f̂ (λ) K̂−−−−−−−−−−−→
[
K̂ f̂

]
(λ) = K̂ f (λ)

Figure 3.1 – The definition of the operator K̂ B FKF−1 implies that the Fourier transform of
K f can be found by either applying K and then the Fourier transform, or applying the
Fourier transform first, followed by K̂ .

We can then associate with every operator K on a Sobolev space H an operator K̂ on the trans-

form space Ĥ by K̂ B FKF−1, see Figure 3.1 for an illustration. The isometry property gained

by choosing Ĥ according to Theorem 3.6 then ensures the induced norms of both operators are

equal, i.e.

‖K‖H→H = sup
‖f ‖H=1

‖K f ‖H = sup
‖ f̂ ‖Ĥ =1




K̂ f̂ 


Ĥ =



K̂ 


Ĥ→Ĥ

.

For translation invariant operators that correspond to multiplication operators in the transform

domain we can say even more, and the following corollary provides a characterization of the

induced operator norm in terms of its symbol’s spectral norm:

Corollary 3.7. Let H and W be defined as in Theorem 3.6 and let K : H → H be a linear,

spatially invariant operator from H into itself so that K̂ = FKF−1 is a multiplication operator.

Then

‖K‖H→H = sup
λ∈Ĝ

√
σmax

(
W 1/2
λ

K̂ (λ)W −1/2
λ

)
. (3.6)

Here, σmax(·) denotes the maximal singular value, andW 1/2 corresponds to the upper triangu-

lar matrix that satisfiesW = (W 1/2)∗W 1/2. This Cholesky decomposition exists for all positive

definite matricesW .
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Proof. We write the Cholesky decomposition asWλ = R∗
λ
Rλ. Then

‖K‖2H→H = sup
‖f ‖=1

〈K f ,K f 〉H = sup
‖ f̂ ‖=1

〈
K̂ f̂ ,K̂ f̂

〉
Ĥ

= sup
∫
Ĝ
f̂
∗
λR
∗
λR
−∗
λ K̂

∗
λWλK̂ λR

−1
λ Rλ f̂ λ dλ

= sup
∫
Ĝ
f̂
∗
λR
∗
λ

(
RλK̂ λR

−1
λ

)∗ (
RλK̂ λR

−1
λ

)
Rλ f̂ λ dλ

≤ supσmax
(
RλK̂ λR

−1
λ

)
‖ f̂ ‖2

Ĥ
.

It then is a standard argument to show that for any ε > 0, there is a function д̂ε with ‖дε‖H = 1

which achieves above bound to within ε. �

3.1.4 Spatial Invariance, State-Space Description

The class of problems considered here is that of linear spatio-temporal systems, which will be

represented in their state-space or evolution form

d
dt

Ψ(x ,t) = [AΨ](x ,t) + [Bu](x ,t)

Ψ(·,0) = Ψ0,

(3.7)

where Ψ(·,t), u(·,t) live on the Sobolev spaces H and U, respectively; W and V will be the

spatial weights on their transform spaces Ĥ and Û according to Theorem 3.6. Time is denoted

by t , while the variable x ∈ G collects all the spatial coordinates; hence, “translation invariance

with respect to G” and spatial invariance can be (and are) used synonymously.

Since we are dealing with infinite-dimensional state and input spaces, linear operators are not

necessarily bounded, and so the notion of “solution” to (3.7) requires some care. It shall suffice

here to say that a common notion of “well-posedness” is to require that A generate a so-called

C0 semigroup T (t). To contrast that with the finite-dimensional case: matrices A,B ∈ R•×•
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are always bounded linear operators, whose domain is the entire space, and the generated

semigroup is T (t) = eAt . To collect all assumptions on involved operators, spaces and the like

in one place, we state

Assumption 3.8.

1. All operators are spatially invariant;

2. all spatially invariant operators correspond to multiplication operators in the transform

domain;

3. all corresponding multiplication operators have continuous symbols;

4. in systems of the form (3.7), A generates a C0 semigroup on the chosen state-space;

5. additionally, in (3.7), B is a bounded operator; and

6. all function spaces are (Cartesian products of) Sobolev spaces in the spatial domain

and consequently are weighted spaces in the transform domain, chosen according to

Theorem 3.6.

3.2 Stability, Stabilizability and Linear-Quadratic Regula-

tion (LQR)

Restricting our treatment to problems as laid out in Section 3.1.4 enables us to make sev-

eral statements about linear systems on infinite-dimensional Sobolev spaces that parallel well-

known results for finite-dimensional systems; it will turn out, however, that instead of dealing

with a single matrix equation like in the finite-dimensional case, we will have to consider a

whole family of such equations, indexed by the dual group Ĝ of the spatial coordinate system.
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3.2.1 Exponential Stability

Stability is a property of the autonomous system

d
dt

Ψ(x ,t) = AΨ(x ,t), Ψ(·,0) = Ψ0. (3.8)

While for systems on a finite-dimensional state space most notions of stability are equivalent,

the case is different for the infinite-dimensional case, and one has to pick a certain definition of

stability. The following notion of stability is one of the most useful ones, and the one we will

be considering here:

Definition 3.9 (Exponential stability). The autonomous system (3.8) is exponentially stable, if

there exist constants M ,α > 0 such that

‖T (t)‖ ≤ Me−αt ∀t ≥ 0,

where T (t) is the semigroup generated by A.

In the present case of spatially invariant operators, exponential stability can be checked by

considering a family of Lyapunov equations:

Theorem 3.10 (Lyapunov test for stability). Assume that A in (3.8) generates a C0 semigroup

T (t) on the Sobolev Space H . Then, T (t) is exponentially stable, if and only if for all λ ∈ Ĝ,

Â(λ) is stable and for the positive definite solution P̂ λ of the Lyapunov equation

P̂ λÂλ + Â
∗
λP̂ λ +Wλ = 0, (3.9)

we have

sup
λ∈Ĝ σmax

(
W −1/2(λ)P̂ λW

−1/2(λ)
)
< ∞, (3.10)

whereW (λ) is as in Theorem 3.6.
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Proof. It is well established, see e.g. [Ban83, Lemma 4.3.3] or [PZ81, Thm. 3.4], that expo-

nential stability of T (t) is equivalent to existence of a bounded positive definite linear operator

Π solving the Lyapunov equation

〈AΨ,ΠΨ〉H + 〈ΠΨ,AΨ〉H = − 〈Ψ,Ψ〉H ∀Ψ ∈ D(A). (3.11)

It should also be clear that such a Π has to be spatially invariant itself.2 Then, (3.11) can be

rewritten as

0 =
〈
ÂΨ̂ , Π̂ Ψ̂

〉
Ĥ

+
〈
Π̂ Ψ̂ ,ÂΨ̂

〉
Ĥ

+
〈
Ψ̂ , Ψ̂

〉
Ĥ

=

∫
Ĝ
Ψ̂
∗
λ

(
Â
∗
λWλΠ̂λ + Π̂

∗
λWλÂλ +Wλ

)
Ψ̂λ dλ,

which, since D(A) is dense, is equivalent to

Â
∗
λWλΠ̂λ + Π̂

∗
λWλÂλ +Wλ = 0 ∀λ ∈ Ĝ.

Now define P̂ λ BWλΠ̂λ and note that Π† = Π iff Π̂
†

= Π̂ , hence by Lemma 3.5 it follows that

P̂
∗
λ = P̂ λ iff Π† = Π and we obtain (3.9). From Corollary 3.7 we see that (3.10) is equivalent to

boundedness of Π. �

3.2.2 Exponential Stabilizability

A closely related question to that answered above is whether a system with input (3.7) can be

made into an exponentially stable autonomous one by a spatially invariant feedback law of the

form u(x ,t) = −FΨ(x ,t).
Definition 3.11 (Exponential stabilizability). The system (3.7) is exponentially stabilizable, if

there exists a bounded operator F : H → U such that A−BF generates an exponentially stable

C0 semigroup on H .

2It can be shown that, if it exists, Π has the form ΠΨ =
∫ ∞
0 T †(t)T (t)Ψdt .
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Analogous to Theorem 3.10, a family of equations can be checked to ascertain exponential

stabilizability:

Theorem 3.12 (Stabilizability). Assume that in a system (3.7), A is the generator of a C0

semigroupT (t) on some Sobolev space H . Then, the system is exponentially stabilizable, if and

only if for all λ ∈ Ĝ, the pair (Âλ, B̂ λ) is stabilizable and the positive definite solution P̂ λ of the

Riccati equation

P̂ λÂλ + Â
∗
λP̂ λ +Wλ − P̂ λB̂ λV

−1
λ B̂

∗
λP̂ λ = 0, (3.12)

whereW andV are the weights on the spaces Ĥ and Û and defined as in Theorem 3.6, respec-

tively, satisfies (3.10).

Proof. Sufficiency: Assume, a P̂ λ as required exists. Then let F̂ λ B V −1
λ

B̂
∗
λP̂ λ/2 and do some

algebra to obtain

(Âλ − B̂ λF̂ λ)∗P̂ λ + P̂ λ(Âλ − B̂ λF̂ λ) +Wλ = 0,

i.e. by Theorem 3.10, A − BF generates an exponentially stable C0 semigroup.

Necessity: This follows e.g. from [Zab75, Thm. 20], or as a corollary to Theorem 3.13 below,

with Q and R the identity and the observation that (A†, I ) is always exponentially stabilizable.

�

3.2.3 LQR Control

Lastly, if we find that a system is indeed stabilizable, which particular feedback operator F

should we pick? A possible answer to that is: the operator F that minimizes a quadratic cost

functional

J (Ψ0,u) =

∫ ∞

0
〈QΨ,Ψ〉H + 〈Ru,u〉U dt , (3.13)

where R is a positive definite operator, i.e. 〈Ru,u〉U > 0 for all nonzero u, and Q is a posi-

tive semi-definite operator, i.e. 〈QΨ,Ψ〉H ≥ 0. Analogous to finite dimensions, the optimal F
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corresponds to a solution of a certain Riccati equation, only now it depends on the parameter

λ ∈ Ĝ.

Theorem 3.13 (LQR). Consider system (3.7), where A is the generator of aC0 semigroupT (t)

on a Sobolev space H , and the cost functional (3.13). Then we have:

If (A,B) is exponentially stabilizable, then the Riccati equation

P̂ λÂλ + Â
∗
λP̂ λ +WλQ̂ λ − P̂ λB̂ λR̂

−1
λ V −1λ B̂

∗
λP̂ λ = 0 (3.14)

has a unique solution P̂ λ = P̂
∗
λ. P̂ λ satisfies (3.10), i.e. it defines a bounded operator Π with

Fourier symbol Π̂λ =W −1
λ

P̂ λ which is such that the feedback law u = −R−1B†Π Ψ minimizes J

for every Ψ0.

If additionally (A†,Q1/2) is exponentially stabilizable, then A − BR−1B†Π generates an expo-

nentially stable C0 semigroup, i.e. the minimizing feedback law is also stabilizing.

Proof. The first part follows from e.g. [Gib79, Thm. 4.11], where the operator Π is obtained as

the solution of the operator Riccati equation

A†Π + ΠA − ΠBR−1B†Π +Q = 0.

Associating every operator with its Fourier transform yields

F−1
(
Â
†
Π̂ + Π̂Â − Π̂ B̂ R̂−1 B̂

†
Π̂ + Q̂

)
F = 0,

and after setting P̂ λ =WλΠ̂λ this is equivalent to (3.14). See also the proof of Theorem 3.10.

The second part is essentially in [CP78, Cor. 4.17], but it should be intuitively clear that any ob-

servable3 unstable modes will lead to J diverging to infinity, whereas unstable but unobservable

modes will allow for finite cost, even if the state diverges. �

3Stabilizability of (A†,Q1/2) is equivalent to detectability of (A,Q1/2).
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Remark. Once the symbol F̂ (λ) of the optimal feedback operator is computed, the question of

implementing the optimal controller F in the spatial domain arises. The answer lies in the fact

that all multiplication operators we encounter here correspond to spatial convolutions,4 and

the spatial convolution kernel k of an operator K = F−1K̂F with K̂ a multiplication operator

corresponds to the inverse Fourier transform of the symbol K̂ (λ): k(x) = [F−1K̂ (·)](x).
To see that, consider for simplicity operators K and K̂ with spatial and transform domain both

just L2(R). Then, for any д ∈ L2(R):

[Kд](x) = [F−1K̂Fд](x) =

∫
R
eλx K̂ (λ)

∫
R
e−λξд(ξ ) dξ dλ =

∫∫
eλ(x−ξ )K̂ (λ) dλ д(ξ ) dξ =

∫ =k(x−ξ )︷                ︸︸                ︷
[F−1K̂ (λ)](x − ξ )д(ξ ) dξ = [k(·) ∗ д(·)](x),

thus K is a convolution operator with convolution kernel k(·) equal to the inverse Fourier trans-

form of K̂ (·).

3.3 Examples

In this final section, two examples of wave and beam equations are presented and analyzed

using the framework developed in the prequel. For these examples we find that optimal LQR

feedback gains are indeed spatially localized in the sense that their convolution kernels decay

exponentially, contradicting claims made in the literature [Cur11, Sec. IV] about these exam-

ples. This indicates that the results on the locality of quadratically optimal controllers stated

in [BPD02] for systems over L2 may indeed be valid for the more general setting of Sobolev

spaces. These generalizations will be reported elsewhere.

4We have to allow for distributions in the convolution kernel, e.g. [Tξ f ](x) =
∫
G δ (x − ξ − y)f (y) dy, hence

Tξ f = δ (· − ξ ) ∗ f .
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3.3.1 Wave Equation

This example is taken from [Cur11]. Consider the following damped wave equation on the real

line, i.e. G = R, with fully distributed input:

∂2ϕ

∂t2
+ α
∂ϕ

∂t
− ∂

2ϕ

∂x2
= u(x ,t). (3.15)

We write it in a state-space form like (3.7) by defining ΨT B [ϕ ∂ϕ
∂t ], which leads to

d
dt

Ψ =


0 1
∂2

∂x2
−α

 Ψ +


0

1

 u C AΨ + Bu . (3.16)

It is well-known (see e.g. [Cur11]) that, if one chooses this realization, A generates a C0 semi-

group not on L22(R) but on H B H1(R) × L2(R).5 The input space U is L2(G). Since ∂
∂x is

a spatially invariant operator with symbol jλ, after taking Fourier transforms the system takes

the form of an infinite family of decoupled ordinary differential equations

d
dt

Ψ̂ =


0 1

−λ2 −α
 Ψ̂ +


0

1

 û C ÂΨ̂ + B̂û . (3.17)

From Theorem 3.6 we know that the proper choice of state-space for (3.17) is Ĥ B L1+λ2(R)×
L2(R) = L2W (R), whereW (λ) = diag{1 + λ2,1}.

It is easy to see that Â does not generate an exponentially stableC0 semigroup, since Â(0) is not

stable, so it makes sense to solve an LQR problem. Like in [Cur11], we choose the matrices

Q and R in (3.13) to be the identity on the respective space. Then, applying Theorem 3.13, we

need to solve the Riccati equation

P̂ λÂλ + Â
∗
λP̂ λ +Wλ − P̂ λB̂ B̂

∗
P̂ λ = 0, (3.18)

5Instead of H1, the slightly less restrictive H̊1 can be chosen, see the remark made below Definition 3.2.
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which has the solution

P̂ λ =


f (λ)д(λ) − αλ2 f (λ) − λ2

f (λ) − λ2 д(λ) − α
 , (3.19)

where

f (λ) B
√
1 + λ2 + λ4

д(λ) B
√
α2 − 2λ2 + 2f (λ) + 1.

In order to check that Π with Π̂λ = W −1
λ

P̂ λ defines a bounded operator on H , according to

Corollary 3.7 we have to make sure the supremum over Ĝ = R of the largest singular value of

the matrix

W 1/2
λ

Π̂λW
−1/2
λ

=W −1/2
λ

P̂ λW
−1/2
λ

=


−αλ2+f (λ)д(λ)

λ2+1
f (λ)−λ2√
λ2+1

f (λ)−λ2√
λ2+1

−α + д(λ)


is finite. With a little algebra it can be seen that the elements are all bounded – e.g. the off-

diagonal elements are equal to
λ2 + 1

(λ2 + f (λ))/
√
λ2 + 1

,

which is clearly bounded. Since from boundedness of the elements, it follows that e.g. the

Frobenius norm is bounded, and since all matrix norms are equivalent, we can conclude that

‖Π‖ =



Π̂


 =< ∞.

We can now compute the symbol of the optimal feedback operator F = R−1B†Π:

F̂ λ = B̂
∗
λP̂ λ =

[
−λ2 + f (λ) −α + д(λ)

]
=

[
λ2+1

λ2+f (λ)
1

α+д(λ)

(
1 + 2 λ2+1

λ2+f (λ)

)]
.

Lastly, we can confirm that Theorem 3.10 is valid here, too. By construction, and since (A†, I )

is always exponentially stabilizable, we know that the closed loop operator Acl = A − BF must
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generate an exponentially stable semigroup. Its symbol is

Âcl (λ) =


0 1

−f (λ) −д(λ)


and we seek a positive definite solution Q̂ (λ) of

Q̂ λÂcl (λ) + Â
∗
cl (λ)Q̂ λ +Wλ = 0,

which corresponds to (3.9). The solution is

Q̂ (λ) =


q1(λ) p(λ)
p(λ) q2(λ)


p(λ) =

λ2 + 1
2f (λ)

q2(λ) =
1 + 2p(λ)
2д(λ)

q1(λ) = f (λ)q2(λ) + д(λ)p(λ).

Since for all λ ∈ R we have p(λ) > 0 and

det
(
Q̂ (λ)

)
= f (λ)q22(λ) +

p(λ)
2
> 0,

all leading principal minors of Q̂ are positive, which implies positive definiteness. With sim-

ilar algebra as above, it can also be seen that the largest singular value of W −1/2
λ

Q̂ λW
−1/2
λ

is

bounded, and so Theorem 3.10 is confirmed.

In order to see whether the statements about locality from [BPD02] hold in this case, too, we

will need to obtain the convolution kernel F (·) to represent F in the form

[FΨ](x) =

∫
R
F (x − ξ )Ψ(ξ ) dξ .

137



-4 -2 0 2 4 x
0.2

0.4

0.6

0.8

1.0

1.2

1.4

f1

f2

-4 -2 2 4 x

0.1

1
f1

f2

Figure 3.2 – The elements of the convolution kernel F (x) for the wave equation example in
linear and logarithmic plots. In the linear plot, the arrows represent Dirac δ functions;
note the exponential decay, seen clearly in the logarithmic plot.
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Following the remark below Theorem 3.13, F (x) is given by the inverse Fourier transform of

F̂ λ

F (x) =

∫
Ĝ
F̂ λe

jλx dλ. (3.20)

For the example at hand, (3.20) needs to be evaluated numerically for every x . Doing so

yields what is shown in Figure 3.2, where it is clearly seen that the absolute value of both

components of the convolution kernel decay rapidly with the size of the argument x . The

interpretation of this is that to compute the control input at a location xo, information from

other locations becomes exponentially less important as the distance to xo increases; it then

would make sense to truncate the kernel to a function with finite support, which amounts to

discarding the information from locations farther than a distance ∆ from xo.

3.3.2 Beam Equation

In [CR10], the following beam equation is considered:

∂2ϕ

∂t2
− γ ∂

3ϕ

∂2x∂t
+
∂4ϕ

∂x4
=

∫
R
b(x − ξ )u(ξ ,t) dξ , (3.21)

where we have to require that
∫
R |b(x)| dx < ∞. For this system, an appropriate state space is

H = H2(R) × L2(R), see e.g. [CR10], and the input space is chosen to be U = L2(R). This

again is easily rewritten as a state-space system

dΨ
dt

=


0 1

− ∂4
∂x4

γ ∂
2

∂x2

 Ψ + Bu,

where

[Bu](x) B


0

[b(·) ∗ u(·)](x)
 ,
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and Fourier transformed to a system on Ĥ = LW (R) withW = diag{1 + λ2 + λ4,1}:

dΨ̂
dt

=


0 1

−λ4 −γλ2
 Ψ̂ +


0

b̂ (λ)

 û C ÂΨ̂ + B̂û . (3.22)

As in the prior example, Â is not stable for λ = 0; in addition it is obvious in the transform

domain description, that
(
Â(0), B̂ (0)

)
also is not stabilizable, unless b̂ (0) , 0. This requirement

corresponds to the convolution kernel b(·) having nonzero mean, which is not at all obvious if

one considers only (3.21).

Under this constraint, we can attempt an LQR controller design. For simplicity, Q and R are

chosen to be the identities on H and U. Then, solving (3.14) yields

P̂ (λ) =
1

b̂
2(λ)

[
h(λ)e(λ) − γλ6 h(λ) − λ4

h(λ) − λ4 e(λ) − γλ2
]
, (3.23)

where

h(λ) B
√�

λ4 + λ2 + 1
�
b̂
2(λ) + λ8

e(λ) B
√�
γ 2 − 2

�
λ4 + b̂

2(λ) + 2h(λ).

By Theorem 3.13, this defines a stabilizing feedback if the system is stabilizable. To establish

stabilizability, on the other hand, we have to return to Theorem 3.12. Due to our choice of

weights Q and R, the Riccati equations from Theorems 3.12 and 3.13, (3.12) and (3.14), are

equal, so applying Theorem 3.12 means checking boundedness of

sup
λ∈Ĝ

σmax
(
W −1/2(λ)P̂ (λ)W −1/2(λ)

)
< ∞,

which is more challenging than in the previous example, and the algebra has been moved to

Appendix 3.A. There, we show that above supremum is indeed finite, and thus the system
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Figure 3.3 – Linear plot of convolution kernel F (x) for the beam equation example; b(x) is a
simple rectangular window, i.e. b̂ (λ) = sinc(λ). As before, the arrows denote Dirac δ
functions. Note the discontinuity at x = ±1, the edges of the window.
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Figure 3.4 – Logarithmic plot of the convolution kernel F (x) for the beam equation example.
Note again the exponential decay.
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is stabilizable, and thus the operator with the symbol Π̂λ = W −1
λ

P̂ λ yields an exponentially

stabilizing feedback. The optimal feedback operator has the symbol

F̂ λ = B̂
∗
λP̂ λ =

1

b̂ (λ)
[
λ4 − h(λ) γλ2 − e(λ)

]
,

and as before, we would like to check the locality of its kernel. In order to do so, we pick the

convolution kernel b to be a rectangular window, i.e. b(x) = 1 if x ∈ [−1,1], and b(x) = 0

else. Two things stand out: In Fig. 3.3, it appears that the convolution kernel of the feedback

operator “inherits” the discontinuities of the convolution kernel of the input operator B; in

Fig. 3.4, it can be seen that the kernel can be bounded from above by a straight line, which

indicates exponential or even more rapid decay. These observations are qualitatively the same

if other windows are considered; we have looked at e.g. b(x) = δ (x), which corresponds to

B = [0 1]T , at cosine, and at Tukey windows.

3.4 Summary and Future Directions

This chapter has shown how spatially invariant systems theory can be readily generalized to sit-

uations where the distributed systems realizations are chosen over a Sobolev space. The proper

statements of conditions for stability, stabilizability, and solvability of LQR problems are made

in terms of standard conditions on parametrized families of finite-dimensional systems along

with a boundedness condition, analogously to [BPD02].

The distinction between the case of the standard L2 state space treated there and the present

Sobolev case is that additional proper accounting of the spatial frequency weights needs to be

done. The main contribution here is the derivation of simple procedures for doing so.

Analysis of wave and beam equation examples using the developed framework shows that their

optimal LQR feedback gains are indeed spatially localized in the sense that their convolution
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kernels decay exponentially, contradicting claims made in [Cur11, Sec. IV] about these exam-

ples.

The examples indicate that the results on the locality of optimal quadratic controllers stated

in [BPD02] for systems over L2 may indeed be valid for the more general setting of Sobolev

spaces, and proving a general statement about localization of controller kernels is the subject

of ongoing research.

The requirement for the spatial domain to be spatially invariant restricts the approach to sys-

tems on either infinite (R or Z) or periodic (∂D or ZN ) domains and hence severely limits the

number of practical applications. Efforts have been made to overcome such restrictions e.g. by

embedding a system on a finite spatial domain into a spatially invariant domain [DD03], and

more research in this direction is certainly warranted.

Appendix 3.A Algebra Pertinent to Section 3.3.2

We will prove here, thatW −1/2
λ

P̂ λW
−1/2
λ

has bounded entries. For convenience, we let f (λ) :=

1 + λ2 + λ4 and omit the argument λ on b̂ ,h,e, and f . Then we get

W −1/2
λ

P̂ λW
−1/2
λ

=



eh−γλ6
f b̂

2
h−λ4√
f b̂

2

h−λ4√
f b̂

2
e−γλ2
b̂
2


.

If we denote the elements by
�
a b
b d

�
, we can rewrite them as

a =
1

f (eh + γλ6)

(
(γ 2 − 2)λ4 f + 2hf + e2 +

2f λ8

λ4 + h

)
b =

√
f /(h + λ4)

d =

(
1 + 2

f

h + λ4

)
/(e + γλ2).
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We note that for λ , 0, the denominators are all positive, hence there are no poles except for

possibly at zero. At λ = 0, all denominators are b̂ (0), but we have required b̂ (0) , 0, see the

remark after (3.22). To assess the behavior as λ → ±∞, we collect the highest powers of λ in

each term and obtain

a −→ γ 2 + 1
2γλ2

b −→ 1
2λ2

c −→ 1
γλ2
.

Thus, all elements are bounded, from which it follows easily that e.g. the Frobenius norm of

the matrix is bounded. Since all matrix norms are equivalent, it follows that Π̂λ =W −1
λ

P̂ λ does

indeed define a bounded operator.
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