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Abstract

Propagation of Regularity within Solutions to Korteweg-de Vries Type Equations

by

Derek L. Smith

For many dispersive equations, decay of the initial data leads to increased regularity

of the solution for positive times. The unidirectional dispersion of the k-generalized

Korteweg-de Vries equation

∂tu+ ∂3xu+ uk∂xu = 0, x, t ∈ R, k ∈ Z+, (0.1)

produces the following propagation of regularity phenomena [12]: if for some l ∈ Z+

‖∂lxu0‖L2(0,∞) <∞,

then for positive times the corresponding local solution u = u(x, t) satisfies

‖∂lxu(·, t)‖L2(y,∞) <∞ for every y ∈ R.

We show that similar results hold for fifth and higher order KdV equations, as well as

for quasilinear KdV type equations.
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Chapter 1

Introduction

Nonlinear dispersive equations arise as models of several physical phenomena, for instance

wave propagation in media such as liquids, gases and plasmas [33]. One of the most

famous dispersive models is the Korteweg-de Vries (KdV) equation

∂tu+ ∂3xu+ u∂xu = 0, x, t ∈ R, (1.1)

derived in 1895 to describe unidirectional long waves propagating in a shallow channel

[25]. It is the second in a sequence of completely integrable equations

∂tu+ ∂2j+1
x u+Qj(u, ∂xu, . . . , ∂

2j−1
x u) = 0, x, t ∈ R, j ∈ Z+, (1.2)

known as the KdV hierarchy. The polynomials Qj : R2j → R are chosen so that the

above equation has the Lax pair formulation

∂tu = [Bj;L]u (1.3)
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Introduction Chapter 1

for L = d2

dx2
− u(x, ·) the stationary Schrödinger operator [28]. The first and third equa-

tions in the hierarchy are

∂tu− ∂xu = 0, x, t ∈ R, (1.4)

and

∂tu− ∂5xu− 30u2∂xu+ 20∂xu∂
2
xu+ 10u∂3xu = 0, x, t ∈ R, (1.5)

respectively. Utilizing the Lax pair formulation, the initial value problem (IVP) asso-

ciated to each equation in the KdV hierarchy can be solved by the inverse scattering

method in a space of “rapidly decaying functions” [9].

The study of qualitative properties of solutions to dispersive equations has attracted

considerable attention in recent decades. Several remarkable results have been attained

concerning: local and global well-posedness of the IVP associated to the KdV equation,

for instance, under minimal regularity assumptions on the initial data, blowup profiles

and global in time behavior of solutions, the stability of special solutions, among others.

It is the aim of this work to explore the propagation of regularity within solutions to

dispersive equations of KdV-type, including those in the KdV hierarchy. As motivation,

the following discussion will review known smoothing effects found in solutions to the

IVP for the k-generalized Korteweg-de Vries (k-gKdV) equation


∂tu+ ∂3xu+ uk∂xu = 0, x, t ∈ R, k ∈ Z+,

u(x, 0) = u0(x),

(1.6)

as well as the associated IVP for the linear Airy equation


∂tv + ∂3xv = 0, x, t ∈ R,

v(x, 0) = v0(x).

(1.7)

2



Introduction Chapter 1

Consider initial data in the Sobolev space

Hs(R) :=
{
f ∈ L2(R) : (1 + ξ2)s/2f̂(ξ) ∈ L2(R)

}
(s ≥ 0) (1.8)

with the norm

‖f‖s,2 := ‖(1 + ξ2)s/2f̂‖2. (1.9)

Then the solution to the linear problem (1.7) may be written

v(x, t) = V (t)v0(x) := St ∗ v0(x) (1.10)

where

St(x) =

∫ ∞
−∞

e2πixξe8πitξ
3

dξ =
1
3
√
t
S1

(
x
3
√
t

)
. (1.11)

Applying the Plancherel identity yields

‖v(·, t)‖s,2 = ‖v0‖s,2 (t ∈ R). (1.12)

In other words, the family of operators {V (t)}∞t=−∞ forms a unitary group on Hs(R) for

every s ∈ R. Moreover, for fixed v0 ∈ Hs(R), the map v0 7→ v(·, t) traces a continuous

curve in Hs(R). This is abbreviated

v ∈ C(R;Hs(R)). (1.13)

As a consequence of (1.12) and the time reversible nature of the equation, there can

be no global smoothing effect for solutions to problem (1.7). As remarked in [41] for

solutions to the KdV equation, if v0 ∈ Hs(R)\Hs′(R) for s < s′, then for any t ∈ R,

v(·, t) ∈ Hs(R)\Hs′(R).

3



Introduction Chapter 1

Next we study a smoothing property of the group {V (t)}∞t=−∞. First note that

‖V (t)v0(x)‖∞ ≤ ‖St‖∞‖v0‖1 ≤ c|t|−1/3‖v0‖1 (t 6= 0), (1.14)

so that when v0 ∈ L2(R) ∩ L1(R), the solution to problem (1.7) is bounded for t 6= 0.

Combined with L2-conservation and Riesz-Thorin interpolation, this inequality is one

ingredient in establishing the mixed-norm estimates

(∫ ∞
−∞
‖Dαθ/2V (t)v0‖qp dt

)1/q

≤ c‖v0‖2 (1.15)

with (q, p) = (6/θ(α + 1), 2/(1− θ)) , 0 ≤ θ ≤ 1 and 0 ≤ α ≤ 1/2. Choosing, for example,

θ = 1 and α = 0, if v0 ∈ L2(R), then the solution to problem (1.7) satisfies

‖V (t)v0‖∞ <∞ for a.e. t ∈ R. (1.16)

Moreover, V (t)v0(·) is continuous a.e. for v0 ∈ L2(R). Inequalities of the form (1.15)

were first discovered by Strichartz [44] in the context of the wave equation, with the

above version proved by Kenig, Ponce and Vega [19].

Inequality (1.14) suggests a relationship between decay of the initial data and regu-

larity of the corresponding solution. Selecting v0 to be the characteristic function of an

interval, it is seen from (1.10) and the smoothness of St(·) that the solution to the linear

Airy equation is smooth for positive times. For the same initial data, Murray [36] used

the inverse scattering method to construct solutions which weakly recover the data and

are of class C∞({x, t : x ∈ R, t > 0}). Kato [15] described this quasiparabolic smooth-

ing effect as stemming from the unidirectional dispersion inherent in the equation. He
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studied solutions to the k-gKdV (1.6) in the asymmetric spaces

Hs(R) ∩ L2(e2βx dx) (s ≥ 0, β > 0), (1.17)

in which the operator ∂t + ∂3x is formally equivalent to ∂t + (∂x − β)3. The expansion

(∂x − β)3 = ∂3x − 3β∂2x + 3β2∂x − β3 (1.18)

reveals the dissipation in this operator. Kato found that solutions to the k-gKdV cor-

responding to data of class (1.17) satisfy u(·, t) ∈ C∞(R) for t > 0; the result is not

reversible in time due to the asymmetrical weight. Note that these results do not con-

tradict the failure of a global Hs(R) smoothing effect.

In the same paper, Kato demonstrated the existence of global weak solutions to the

IVP associated to the KdV equation corresponding to initial data u0 in L2(R). A key

step in the proof is the following local smoothing effect.

Theorem A. (Kato [15]) Let s > 3/2 and 0 < T < ∞. If u ∈ C([0, T ];Hs(R)) is the

solution to the IVP associated to (1.1) with data u0, then

u ∈ L2([0, T ];Hs+1(−R,R)) for any 0 < R <∞, (1.19)

with the associated norm depending only on ‖u0‖Hs, R and T .

Roughly, the proof follows by observing that a smooth solution u to the KdV satisfies

d

dt

∫
(∂lxu)2ψ dx+ 3

∫
(∂l+1
x u)2ψ′ dx

=

∫
(∂lxu)2ψ′′′ dx+

∫
(∂lxu)2∂x(ψu) dx+

∫
∂lxu[∂lx;u]∂xuψ dx (1.20)

5
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for l ∈ Z+ ∪ {0}. Selecting l = 0 and ψ ∈ C3(R) to be an appropriate nonnegative,

monotonically increasing cutoff function with ψ′ compactly supported, integration in

time yields ∫ T

0

∫ R

−R
(∂xu)2(x, t) dxdt ≤ c(R;T ; ‖u0‖2). (1.21)

Kenig, Ponce and Vega [18] used Fourier analysis to establish the sharp smoothing effect

∫ ∞
−∞

(∂xV (t)v0(x))2 dt = c‖v0‖22 for all x ∈ R, (1.22)

for solutions to the linear problem (1.7).

Kruzhkov and Faminskĭı [26] connected polynomial decay of the initial data on the

positive half-line to increased regularity of solutions to the KdV equation. Refining in

some sense Kato’s quasiparabolic smoothing effect, they showed if xnu0 ∈ L2(0,∞), then

for positive times the solution possesses 2n− 1 continuous spatial derivatives. Moreover,

the decay persists in that xnu(·, t) ∈ L2(0,∞) for t > 0. Their proof relies on decay

properties of the fundamental linear solution (1.11) and its derivatives. However, this

reliance is not essential. Craig, Kappeler and Strauss [8] reproduced the above corre-

spondence between polynomial decay and regularity for solutions to a fully nonlinear

KdV-type equation. Following Craig and Goodman [7], they incorporated a nonlinear

multiplier into Kato’s weighted energy method (1.20).

The local smoothing effect has also been established for a wide class of dispersive

equations and systems using Fourier analysis. Consider linear equations of the form

∂tu+ iP (D)u = 0, x, t ∈ R, (1.23)

6
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where D = 1
i
∂x and P (D)f is defined via the real symbol p(ξ) as

P̂ (D)f(ξ) := p(ξ)f̂(ξ). (1.24)

Constantin and Saut [6] showed that if p(ξ) behaves like |ξ|m for ξ � 1,m > 1 and

u0 ∈ Hs(R), then the corresponding solution to the IVP associated to (1.23) satisfies

u ∈ L2([0, T ];Hs+d
loc (R)) (1.25)

with d = (m − 1)/2. Vega [45] and Sjölin [43] used a similar technique to investigate

pointwise convergence issues for the linear Schrödinger equation. We note that such local

smoothing is a dispersive phenomenon; it cannot hold in hyperbolic systems.

Isaza, Linares and Ponce [12] recently discovered a propagation of regularity result

for solutions to the k-generalized KdV equation. Suppose u0 ∈ H3/4+(R) and denote

by u ∈ C([0, T ];H3/4+(R)) the corresponding local solution to (1.6). Further assume for

some l ∈ Z+ that

‖∂lxu0‖2L2(0,∞) =

∫ ∞
0

(∂lxu0)
2(x) dx <∞. (1.26)

Then for each ε > 0, ν ≥ 0, the solution satisfies

sup
0≤t≤T

∫ ∞
ε−νt

(∂lxu)2(x, t) dx <∞ (1.27)

The regularity (1.26) has propagated leftward with infinite speed; for each x0 ∈ R and

0 < t ≤ T , then u(·, t) ∈ H(x0,∞). In fact, for δ > 0 and 0 < t ≤ T ,

∫ ∞
−∞

1

〈x−〉l+δ
(∂lxu)2(x, t) dx ≤ c

t
. (1.28)

7
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If, as an alternative to (1.26), u0 ∈ H3/4+(R) and for some n ∈ Z+

‖xn/2u0‖2L2(0,∞) =

∫ ∞
0

|x|nu20(x) dx <∞, (1.29)

then

sup
0≤t≤T

∫ ∞
0

|x|nu2(x, t) dx <∞. (1.30)

That is, one-sided polynomial decay of the initial data persists in the solution to IVP (1.6)

for positive times. The proof also reproduces the trade-off between decay and regularity

as observed by Kruzhkov and Faminskĭı [26]. The proof utilizes Kato’s weighted energy

method (1.20) with the primary technical hurdle being the use of a multiplier which

is supported in (x, t) ∈ [−R,∞) × [0, T ] for some R > 0. Isaza, Linares and Ponce

subsequently obtained the propagation of regularity result for the completely integrable

Benjamin-Ono [14] and Kadomstev-Petviashvilli-II [13] equations.

The first goal of this work is to demonstrate both the propagation of regularity and

persistence of decay for equations in the KdV hierarchy (1.2). This will be accomplished

first for relatively rough solutions to the fifth order KdV equation (1.5). By increasing

slightly the regularity and decay assumptions on the solutions, the technique will be seen

to extend to a large class of fifth order equations. This class includes the following models

from mathematical physics:

∂tu+ ∂xu+ c1u∂xu+ c2∂
3
xu+ c3∂xu∂

2
xu+ c4u∂

3
xu+ c5∂

5
xu = 0 (1.31)

modelling the water wave problem for long, small amplitude waves over shallow bottom

[37], a model describing short and long wave interaction [1]

∂tu− 2∂xu∂
2
xu− u∂3xu+ ∂5xu = 0, (1.32)

8
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and Lisher’s model for motion of a lattice of anharmonic oscillators [32]

∂tu+ (u+ u2)∂xu+ (1 + u)(∂xu∂
2
xu+ u∂3xu) + ∂5xu = 0. (1.33)

For further discussion of these models see [39] and references therein.

In fact, our results will apply to all equations of the form (1.2), not only the completely

integrable members of the KdV hierarchy. We review next the existence theory for such

equations in the Sobolev scale.

Following Kato [15], an IVP is said to be to be locally well-posed in the Banach space

X if for every u0 ∈ X there exists T > 0 and a unique solution u(t) satisfying

u ∈ C([0, T ];X) ∩ YT , (1.34)

where YT is an auxillary function space. Moreover, the solution map u0 7→ u is continuous

from X into the class (1.34). If T can be taken arbitrarily large, the IVP is said to

be globally well-posed. The persistence condition (1.34) states that the solution curve

describes a dynamical system.

While studying the fifth order KdV (1.5) and equations (1.31)-(1.33), Ponce [39]

remarked that the use of dispersive estimates appears essential to attain local well-

posedness in Sobolev spaces. He proved that the IVP associated to each of these models

is locally well-posed in Hs(R), s ≥ 4, by using the weighted energy method, sharp linear

estimates and parabolic regularization.

Kenig, Ponce and Vega ([21], [22]) investigated the class

∂tu+ ∂2j+1
x u+ P (u, ∂xu, . . . , ∂

2j
x u) = 0, x, t ∈ R, (1.35)

with j ∈ Z+ and P : R2j+1 → R (or C2j+1 → C) a polynomial having no constant or

9
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linear terms. By incorporating a commuting vector field identity into the contraction

principle argument used in [20], they established that to each equation in the above class

there exists nonnegative integers m0 and s0 such that the corresponding IVP is locally

well-posed in the weighted Sobolev space

Xs,m = Hs(R) ∩ L2(|x|m dx) (1.36)

for any m ≥ m0 and s ≥ max{s0, 2jm}. As a consequence of the implicit function

theorem, the smoothness of the polynomial P yields the smoothness of the solution map

(see [29] for further comments).

Following Molinet, Saut and Tzvetkov ([34], [35]), Pilod [38] showed that for certain

equations in the class (1.35), the associated IVP is in some sense ill-posed in the Sobolev

scale. In particular, if P contains the term u∂lxu for l > j, then the solution map

Hs(R)→ C([0, T ];Hs(R)) is not C2 at the origin for any choice of s ∈ R. For equations

∂tu− ∂5xu+ c1u
2∂xu+ c2∂xu∂

2
xu+ c3u∂

3
xu = 0, x, t ∈ R, (1.37)

Kwon [27] demonstrated that the solution map is not even uniformly continuous by using

the arguments of [23] and [24]. All of these facts result from uncontrollable interactions

when both high and low frequencies are present in the initial data. Thus, in contrast to

the k-gKdV, equations of the form (1.37) cannot be solved using the contraction principle

in Hs(R) alone.

Differences between (1.6) and (1.37) also arise when applying the energy method.

10
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Note that after integrating by parts, smooth solutions u to (1.37) satisfy

d

dt

∫
(∂lxu)2ψ dx+ 2

∫
(∂l+2
x u)2ψ′ dx

. ‖∂3xu‖∞
∫

(∂lxu)2ψ dx+

∣∣∣∣∫ ∂xu(∂l+1
x u)2ψ dx

∣∣∣∣+ · · · (1.38)

for l ∈ Z+. After integrating in time, the right-hand side cannot be estimated in terms

of ‖u‖L∞
T H

l . Kwon [27] introduced a corrected energy and refined Strichartz estimate to

overcome this loss of derivatives and obtained the following result.

Theorem B. (Kwon [27]) Let s > 5/2. For any u0 ∈ Hs(R) there exists a time T &

‖u0‖−10/3s,2 and a unique real-valued solution u of the IVP associated to (1.37) satisfying

u ∈ C([0, T ];Hs(R)) and ∂3xu ∈ L1([0, T ];L∞(R)). (1.39)

Using an auxillary Bourgain space introduced in [3] and [4], the local well-posedness of

the IVP associated to (1.37) in the energy space H2(R) was established simultaneously

by Kenig and Pilod [17] and Guo, Kwak and Kwon [10]. Thus global well-posedness

follows in the Hamiltonian case, i.e., when c2 = 2c3.

Kenig and Pilod [16] adapted Kwon’s corrected energy method to all equations in

the KdV hierarchy, demonstrating local well-posedness of the j-th equation in (1.2) in

Hsj(R) for sj > 4j − 9
2
.

We now state the propagation and persistence results for solutions to the fifth order

equation (1.37), the proofs of which incorporate Kwon’s corrected energy and refined

Strichartz estimate as in Theorem B.

11
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Theorem 1. Let s > 5/2. Suppose u0 ∈ Hs(R) and for some l ∈ Z+, x0 ∈ R

‖∂lxu0‖2L2(x0,∞) =

∫ ∞
x0

(∂lxu0)
2(x) dx <∞. (1.40)

Then the solution u of IVP (1.37) provided by Theorem B satisfies

sup
0≤t≤T

∫ ∞
x0+ε−νt

(∂mx u)2(x, t) dx ≤ c (1.41)

for any ν ≥ 0, ε > 0 and each m = 0, 1, . . . , l with

c = c(l; ν; ε;T ; ‖u0‖Hs ; ‖∂lxu0‖L2(x0,∞)), (1.42)

where T is given in Theorem B.

Moreover, for any ν ≥ 0, ε > 0 and R > ε

∫ T

0

∫ x0+R−νt

x0+ε−νt
(∂l+2
x u)2(x, t) dxdt ≤ c̃ (1.43)

with

c̃ = c̃(l; ν; ε;R;T ; ‖u0‖Hs ; ‖∂lxu0‖L2(x0,∞)). (1.44)

Remark 1. Estimate (1.43) is a slight generalization of Kato’s local smoothing effect

(1.21) in that it provides a local estimate for ∂l+2
x u on compact subsets of R × [0, T ]

which are disjoint from the ray (−∞, x0)× [0, T ] without assuming u0 ∈ H l(R).

Remark 2. The constants appearing in Theorem 1 have the form of a polynomial in ν.

For l ≥ 6, the degree of this dependence is d = 8(l − 5).

For fixed l ∈ Z+, Theorem 1 is the base case for the situation where the derivatives of

the initial data possess polynomial decay when restricted to the positive half-line. Our

12
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second result states that this decay persists.

Theorem 2. Let s > 5/2 and let n, l ∈ Z+. Suppose u0 ∈ Hs(R) and for each m =

0, 1, . . . , l

‖xn/2∂mx u0‖2L2(0,∞) =

∫ ∞
0

xn(∂mx u0)
2(x) dx <∞. (1.45)

Then the solution u of IVP (1.37) provided by Theorem B satisfies

sup
0≤t≤T

∫ ∞
ε

xn(∂mx u)2(x, t) dx ≤ c (1.46)

for any ε > 0 and each m = 0, 1, . . . , l with

c = c(n; l; ε;T ; ‖u0‖Hs ; ‖xn/2∂kxu0‖L2(0,∞)) (1.47)

for k = 0, 1, . . . ,m, where T is given in Theorem B. By local well-posedness, we may take

ε = 0 for m ≤ s.

Moreover, for any ε > 0

∫ T

0

∫ ∞
0

xn−1(∂l+2
x u)2(x, t) dxdt ≤ c̃ (1.48)

with c̃ as in (1.47).

A bootstrapping argument yields regularity of the solution for positive times by im-

posing decay only on the initial data and not its derivatives.

Theorem 3. Let s > 5/2. Suppose u0 ∈ Hs(R) and for some n ∈ Z+

‖xn/2u0‖2L2(0,∞) =

∫ ∞
0

xnu20(x) dx <∞. (1.49)

13



Introduction Chapter 1

Then the solution u of IVP (1.37) provided by Theorem B satisfies

sup
δ≤t≤T

∫ ∞
ε−νt

(∂2nx u)2(x, t) dx+

∫ T

δ

∫ R−νt

ε−νt
(∂2n+2
x u)2(x, τ) dxdτ ≤ c (1.50)

for every ν ≥ 0, ε, δ > 0 and R > ε, with

c = c(n; δ; ν; ε;R;T ; ‖u0‖Hs ; ‖xn/2u0‖L2(0,∞)). (1.51)

The time reversible nature of equation (1.37) yields a number of consequences, as

noted in [12]. Combining with the contrapositive of Theorems 1 and 3, we have the

following.

Corollary 1. Assume that s > 5/2. Let u ∈ C([−T, T ];Hs(R)) be a solution of (1.37)

provided by Theorem B such that

∂mx u(·, t̂) /∈ L2(a,∞) for some t̂ ∈ [−T, T ] and a ∈ R. (1.52)

Then for any t ∈ [−T, t̂) and any β ∈ R

∂mx u(·, t) /∈ L2(β,∞) and xdm/2e/2u(·, t) /∈ L2(0,∞). (1.53)

Additional consequences along these lines may be found in [42].

The propagation and persistence results extend to the broader fifth order class

∂tu− ∂5xu+Q(u, ∂xu, ∂
2
xu, ∂

3
xu) = 0, x, t ∈ R, (1.54)

whereQ : R4 → R is a polynomial having no constant or linear terms. Recall that the IVP

associated to a particular equation in this class is locally well-posed in Xs,m for s,m large

14
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enough nonnegative integers ([21], [22]). However, some equations experience a loss of

derivatives in the weighted energy method which cannot be accounted for with Kwon’s

correction technique. By imposing decay on the solutions we arrive at the following

extension of Theorem 1.

Theorem 4. For each equation in the class (1.54) there exists nonnegative integers s,m

such that if u0 ∈ Xs,m, then there exists a time T > 0 and a unique local solution

u ∈ C([0, T ];Xs,m)∩ · · · to the associated IVP. Additionally, if for some l ∈ Z+, x0 ∈ R

‖∂lxu0‖2L2(x0,∞) =

∫ ∞
x0

(∂lxu0)
2(x) dx <∞, (1.55)

then the corresponding solution u satisfies

sup
0≤t≤T

∫ ∞
x0+ε−νt

(∂lxu)2(x, t) dx+

∫ T

0

∫ x0+R−νt

x0+ε−νt
(∂l+2
x u)2(x, τ) dxdτ <∞ (1.56)

for any ν ≥ 0, ε > 0 and R > ε.

Remark 3. It will be clear that the proof of Theorem 4 holds when the polynomial

Q contains linear terms, provided the equation is locally well-posed in some (possibly

weighted) Sobolev space. In particular, the results apply to equation (1.31).

Remark 4. The technique of Theorem 4 applies to all equations in class (1.2) with Q :

R2j → R a polynomial having no constant of linear terms. However, we won’t provide

details of the necessary cutoff function for higher order equations.

Remark 5. The work [16] suggests that Theorem 4 holds for equations in the KdV hier-

archy without imposing weight through repeated application of Kwon’s corrected energy.

As seen in Theorem 4, the propagation of regularity holds for many equations which

are not completely integrable. The second goal of this work is to demonstrate that the

15
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propagation phenomenon holds for dispersive equations for which Kato’s local smoothing

effect can be obtained by the weighted energy method.

To understand the extent of the phenomenon, first consider the quasilinear equation

∂tu+ ∂3x(u
2) + ∂x(u

2) = 0, x, t ∈ R, (1.57)

which may be written

∂tu+ 2u∂3xu+ 6∂xu∂
2
xu+ ∂x(u

2) = 0. (1.58)

Rosenau and Hyman [40] discovered the compactly supported traveling wave solution, or

compacton, u(x, t) = φ(x− ct) with c > 0 and

φ(y) =


4c
3

cos2(y/4), |y| ≤ 2π

0, |y| > 2π.

(1.59)

Notice that φ ≥ 0, φ ∈ C1(R)\C2(R) and φ ≡ 0 for |y| > 2π. In contrast, a solution to

an equation in the class (1.2) corresponding to compactly supported initial data becomes

spatially smooth for positive times according to either the propagation of regularity

phenomenon or by the quasiparabolic smoothing effect.

Motivated by [7] and [8], we treat the quasilinear IVP


∂tu+ a(u, ∂xu, ∂

2
xu)∂3xu+ b(u, ∂xu, ∂

2
xu) = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x)

(1.60)

where the functions a, b : R3 → R satisfy:

(H1) for any compact subset of R3 there exists κ > 1 so that 1/κ ≤ a(·) ≤ κ;

16
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(H2) a, b are C∞ and thus all derivatives are bounded on compact subsets of R3;

(H3) ∂zb ≤ 0, where b = b(x, y, z).

The compacton solution to (1.57) suggests that the dispersive assumption (H1) is,

in some sense, necessary to obtain results along the lines of Theorem 1 and Theorem 3.

Assumptions (H1)-(H3) guarantee local well-posedness of (1.60) in the Sobolev scale and,

as we shall see, the propagation of regularity within such solutions.

Theorem C. (Craig, Kappeler, Strauss [8]) Let m ∈ Z+, m ≥ 7. For any u0 ∈ Hm(R),

there exists a time T = T (‖u0‖7,2) > 0 and a unique solution u = u(x, t) of the IVP

(1.60) satisfying

u ∈ L∞([0, T ];Hm(R)), (1.61)

with

∂m+1
x u ∈ L2([0, T ]× [−R,R]), for all R > 0. (1.62)

This theorem does not address continuous dependence of the solution on the initial

data, which is necessary to perform a limiting argument. Instead, our result is based on

the following local well-posedness theorem.

Theorem D. (Linares, Ponce, Smith [30]) Let m ∈ Z+, m ≥ 7. For any u0 ∈ Hm(R)

there exists a time T = T (‖u0‖7,2) > 0 and a unique solution u = u(x, t) of the IVP

(1.60) satisfying

u ∈ C([0, T ];Hm−δ(R)) ∩ L∞([0, T ];Hm(R)), for all δ > 0, (1.63)

with

∂m+1
x u ∈ L2([0, T ]× [−R,R]), for all R > 0. (1.64)

17
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Moreover, the map data solution u0 7→ u(·, t) is locally continuous from Hm(R) into

C([0, T ];Hm−δ(R)) for any δ > 0.

We now state that solutions to the quasilinear problem (1.60) propagate regularity.

The proof uses the weighted energy method, however, the cutoff function depends on the

solution through the coefficient a(u, ∂xu, ∂
2
xu). This method was used in [8] to obtain a

relationship between one-sided polynomial decay of the initial data and regularity of the

corresponding solution to (1.60) at positive times.

Theorem 5. (Linares, Ponce, Smith [30]) Let s ≥ 7, s ∈ Z+. Suppose u0 ∈ Hs(R) and

for some l ∈ Z+, x0 ∈ R

‖∂lxu0‖2L2(x0,∞) =

∫ ∞
x0

(∂lxu0)
2(x) dx <∞. (1.65)

Then the solution u of IVP (1.60) provided by Theorem D satisfies

sup
0≤t≤T

∫ ∞
x0+ε−νt

(∂lxu)2(x, t) dx+

∫ T

0

∫ x0+R−νt

x0+ε−νt
(∂l+1
x u)2(x, τ) dxdτ <∞ (1.66)

for any ν ≥ 0, ε > 0 and R > ε.

Remark 6. Assumption (H2) is not strictly necessary, it merely sidesteps having to count

the number of times the equation is differentiated in the energy method.

Remark 7. Cai [5] weakened the parabolic hypothesis (H3) in extending the work [8],

though this is not pursued in the context of propagation of regularity.

The results of Isaza, Linares and Ponce ([12], [14], [13]), along with Theorems 1-5 pre-

sented here, demonstrate that the unidirectional propagation of Sobolev-scale regularity

is a phenomenon common to many dispersive systems. Finally, we point the reader to

solutions to the k-gKdV equation for which regularity in the Cm and Wm,p, p > 2, sense

does not propagate.
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Consider data φ(x) = e−2|x| ∈ H1(R)\C1(R). Due to its symmetric decay, the corre-

sponding solution to the Airy equation (1.7) is of class C∞({x, t : x ∈ R, t 6= 0}). Thus

choosing v0 = V (−1)φ ∈ H1(R) ∩ C∞(R) produces a solution v = v(x, t) to the same

linear problem which looses Cm-regularity in finite time. Somewhat surprisingly, this

linear dispersive blowup occurs in the nonlinear setting.

Theorem E. (Bona and Saut [2]) Let k ∈ Z+. There exists

u0 ∈ H1(R) ∩ C∞(R)

with ‖u0‖1,2 � 1 so that the corresponding solution u ∈ C(R;H1(R)) ∩ . . . of the IVP

(1.6) is global in time if k ≥ 4 and such that u satisfies


u(·, t) ∈ C1(R), t > 0, t /∈ Z+,

u(·, t) ∈ C1(R\{0})\C1(R), t ∈ Z+.

(1.67)

Bona and Saut [2] proved this result by analyzing the IVP for the k-gKdV in one-

sided polynomial weighted spaces similar to those found in [26], [7] and [8]. Using the

integral formulation

u(t) = V (t)u0 −
∫ t

0

V (t− t′)(uk∂xu)(t′) dt′ (k ∈ Z+) (1.68)

of IVP (1.6), they first demonstrated that for data in Hm(〈x+〉2σ dx) the nonlinear term

is of class Cm(R) in the x-variable. Second, they used the fundamental solution (1.11)

to construct explicit data lying in these spaces for which the linear part of (1.68) lies in

Cm(R) for 0 ≤ t < 1 and is not in Cm(R) for t = 1. Linares and Scialom [31] subsequently

simplified the argument, eliminating the need for weighted spaces.
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The authors in [30] offer an alternative proof of Theorem E, a modification of which

yields the following.

Theorem F. (Linares, Ponce, Smith [30])

(a) Fix k = 2, 3, . . . , let p ∈ (2,∞) and j ≥ 1, j ∈ Z+. There exists

u0 ∈ H3/4(R) ∩W j,p(R) (1.69)

such that the corresponding solution

u ∈ C([−T, T ];H3/4(R)) ∩ . . .

of (1.6) satisfies

u(·,±t) /∈ W j,p(R+) for some t ∈ [0, T ]. (1.70)

(b) For k = 1, the same result holds for j ≥ 2, j ∈ Z+.

The remainder of this work is organized as follows: Chapter 2 contains proofs of

Theorems 1-4, as well as a short discussion of propagation of regularity within solutions

to equations in the KdV hierarchy; Chapter 3 contains the proof of Theorem 5. The

material in Chapter 2 as well as portions of this introduction were previously published

as [42] and appear with permission of the publisher.
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Chapter 2

Propagation and Persistence for

Fifth Order Models

2.1 Construction of Cutoff Function

In this section we construct cutoff functions for use with the weighted energy method.

Define the polynomial

ρ(x) = 2772

∫ x

0

y5(1− y)5 dy

which satisfies

ρ(0) = 0, ρ(1) = 1,

ρ′(0) = ρ′′(0) = · · · = ρ(5)(0) = 0,

ρ′(1) = ρ′′(1) = · · · = ρ(5)(1) = 0

with 0 < ρ, ρ′ for 0 < x < 1. Much of the complexity of our construction airses when

handling the ratio which appears in (2.13), see Section 2.2 below. Thus we note that the
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expression

(ρ′′′(x))2

ρ′(x)
= −277200x(x− 1)

(
2− 9x+ 9x2

)2
(2.1)

is continuous for x ∈ [0, 1] and vanishes at the endpoints. For ε, b > 0, define χ ∈ C5(R)

by

χ(x; ε, b) =


0 x ≤ ε,

ρ((x− ε)/b) ε < x < b+ ε,

1 b+ ε ≤ x.

By construction χ is positive for x ∈ (ε,∞) and all derivatives are supported in [ε, b+ ε].

A scaling argument and (2.1) provides

sup
x∈[ε,b+ε]

∣∣∣∣(χ′′′(x; ε, b))2

χ′(x; ε, b)

∣∣∣∣ ≤ c(b) (2.2)

and for j = 1, 2, 3, 4, 5

|χ(j)(x; ε, b)| ≤ c(j; b). (2.3)

A computation produces

(χ′′′(x; ε, b))2

χ′(x; ε, b)
· 1

χ′(x; ε/3, b+ ε)
= q0(x)

(x− ε)(b+ ε− x)

(3x− ε)5(3b− 3x+ 4ε)5

and for j = 1, 2, 3, 4, 5

χ(j)(x; ε, b)

χ′(x; ε/3, b+ ε)
= qj(x)

(x− ε)(b+ ε− x)

(3x− ε)5(3b− 3x+ 4ε)5

where q0, . . . , q5 are polynomials. In each of the previous two cases, the right-hand side

is continuous on the interval x ∈ [ε, b + ε], hence bounded. These computations lead to
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the following estimates, which will be used in a later inductive argument:

sup
x∈[ε,b+ε]

∣∣∣∣(χ′′′(x; ε, b))2

χ′(x; ε, b)

∣∣∣∣ ≤ c(ε; b)χ′(x; ε/3, b+ ε) (2.4)

and for j = 1, 2, 3, 4, 5

sup
x∈[ε,b+ε]

∣∣χ(j)(x; ε, b)
∣∣ ≤ c(j; ε; b)χ′(x; ε/3, b+ ε). (2.5)

Additionally, we define χn ∈ C5(R) via the formula

χn(x; ε, b) = xnχ(x; ε, b).

It is helpful to make the auxillary definition

p(y) = 462− 1980y + 3465y2 − 3080y3 + 1386y4 − 252y5,

whose only real root occurs at y ≈ 1.29727. Note that for n ∈ Z+

χ′n(x; ε, b) = nxn−1χ(x; ε, b) + xnχ′(x; ε, b) (2.6)

which is positive for ε < x ≤ b+ ε. Hence the expression

(χ′′′n (x; ε, b))2

χ′n(x; ε, b)

is continuous in this interval. To prove that it is bounded in [ε, b + ε], we must only
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analyze the limit x→ ε+. First observe

χ′n(x; ε, b) =

(
x− ε
b

)5
(
n

b
xn−1(x− ε)p

(
x− ε
b

)
+

2772

b
xn
(

1− x− ε
b

)5
)

so that

lim
x→ε+

(χ′′′n (x; ε, b))2

χ′n(x; ε, b)
=

(
b6

2772εn

)
lim
x→ε+

(χ′′′n (x; ε, b))2

(x− ε)5
.

Each term of χ′′′n has a factor of (x− ε)3 implying the above limit vanishes. Hence

sup
x∈[ε,b+ε]

∣∣∣∣(χ′′′n (x; ε, b))2

χ′n(x; ε, b)

∣∣∣∣ ≤ c(n; b) (2.7)

and so ∣∣∣∣(χ′′′n (x; ε, b))2

χ′n(x; ε, b)

∣∣∣∣ ≤ c(n; b)(1 + χn(x; ε, b)). (2.8)

Each term of (2.6) is nonnegative and χ′ is supported in [ε, b+ ε], hence

χ′n(x; ε, b) ≤ c(n; b)(1 + χn(x; ε, b)).

Using the Leibniz rule, it similarly follows for j = 1, 2, 3, 4, 5 that

|χ(j)
n (x; ε, b)| ≤ c(n; j; b)(1 + χn(x; ε, b)). (2.9)

Assuming n ≥ 3, notice that (2.7) and

(χ′′′n (x; ε, b))2

χ′n(x; ε, b)
= (n− 1)(n− 2)xn−5 (b+ ε ≤ x)

imply ∣∣∣∣(χ′′′n (x; ε, b))2

χ′n(x; ε, b)

∣∣∣∣ ≤ c(n; ε; b)χn−1(x; ε/3, b+ ε). (2.10)
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A similar argument holds for n = 1, 2. Next we prove for j = 1, 2, 3, 4, 5

|χ(j)
n (x; ε, b)| ≤ c(n; j; ε; b)χn−1(x; ε/3, b+ ε). (2.11)

This follows by definition when b+ ε ≤ x; thus it suffices to prove

sup
x∈[ε,b+ε]

∣∣∣∣∣ χ
(j)
n (x; ε, b)

χn−1(x; ε/3, b+ ε)

∣∣∣∣∣ ≤ c(n, j, ε, b).

We demonstrate the details for j = 1, the remaining cases being similar. In this case

χ
(j)
n (x; ε, b)

χn−1(x; ε/3, b+ ε)
=

nχ(x; ε, b)

χ(x; ε/3, b+ ε)
+

xχ′(x; ε, b)

χ(x; ε/3, b+ ε)
.

Assuming ε ≤ x ≤ b+ ε,

nχ(x; ε, b)

χ(x; ε/3, b+ ε)
= n

(
b+ ε

b

)6 (x− ε)6p
(
x−ε
b

)
(x− ε

3
)6p
(
x− ε

3

b+ε

) .
Note that

x− ε
3

b+ε
< 1 so that p does not vanish in [ε, b+ ε]. Hence this above expression is

continuous and bounded on this interval. Similarly for the second term

xχ′(x; ε, b)

χ(x; ε/3, b+ ε)
=

2772(b+ ε)6(x− ε)5(b− x+ ε)5x

b11(x− ε
3
)p
(
x− ε

3

b+ε

) .

This proves (2.11) in the case j = 1.

2.2 Proof of Theorem 1

The proofs of Theorems 1, 2 and 3 require several lemmas. The first is an energy

inequality found in [11].
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Lemma 1. Let u ∈ C∞([0, T ] : H∞(R)) be a solution to the IVP


∂tu− ∂5xu = F x, t ∈ R

u(x, 0) = u0(x)

(2.12)

and let ψ ∈ C5(R2) satisfy ∂xψ ≥ 0. Then we have

d

dt

∫
u2ψ dx+

∫
(∂2xu)2∂xψ dx

≤
∫
u2
{
∂tψ +

3

2
∂5xψ +

25

16

(∂3xψ)2

∂xψ

}
dx+ 2

∫
uFψ dx. (2.13)

By interpolation we have the following lemma, which is required to apply the inductive

hypothesis.

Lemma 2. Suppose u0 ∈ L2(R) and for some l ∈ Z+, l ≥ 2, x0 ∈ R

‖∂lxu0‖2L2(x0,∞) =

∫ ∞
x0

|∂lxu0|2 dx <∞. (2.14)

For any k = 1, 2, . . . , l − 1 and δ > 0

‖∂kxu0‖2L2(x0+δ,∞) =

∫ ∞
x0+δ

|∂kxu0|2 dx <∞. (2.15)

We reproduce for convenience a lemma from [12].

Lemma 3. Let j1, j2, j3 ∈ Z+ and ε, b > 0. Suppose ψ(x; ε, b) has support in [ε,∞),
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ψ ≥ 0 and ψ(x; ε, b) ≥ 1 whenever x ≥ b+ ε. Then

∫
|∂j1x u∂j2x u∂j3x u|ψ(x) dx

.

{∫
(∂1+j1x u)2ψ(x) dx+

∫
(∂j1x u)2ψ(x) dx+

∫
(∂j1x u)2|ψ′(x)| dx

}
×
∫

(∂j2x u)2ψ(x; ε/5, 4ε/5) dx+

∫
(∂j3x u)2ψ(x) dx. (2.16)

In particular, we may choose ψ = χ, χ′, χn or χ′n.

Proof. Using Cauchy-Schwarz and Young’s inequality, followed by the Sobolev embed-

ding, we have

∫
|∂j1x u∂j2x u∂j3x u|ψ dx

≤ 1

2

∫
(∂j1x u)2(∂j2x u)2ψ dx+

1

2

∫
(∂j3x u)2ψ dx

≤ 1

2
‖(∂j1x u)2ψ‖L∞

x

∫ ∞
ε

(∂j2x u)2 dx+
1

2

∫
(∂j3x u)2ψ dx

≤ 1

2
‖∂x((∂j1x u)2ψ)‖L1

x

∫
(∂j2x u)2ψ(x; ε/5, 4ε/5) dx+

1

2

∫
(∂j3x u)2ψ dx

since ψ(x; ε, b) is nonnegative, supported on [ε,∞) and ψ(x; ε, b) ≥ 1 when x ≥ b + ε.

Furthermore, Young’s inequality yields

‖∂x((∂j1x u)2ψ)‖L1
x
≤ 2

∫
|∂j1x u∂1+j1x u|ψ dx+

∫
(∂j1x u)2|ψ′| dx

≤
∫

(∂1+j1x u)2ψ dx+

∫
(∂j1x u)2ψ dx+

∫
(∂j1x u)2|ψ′| dx.

This completes the proof of Lemma 3.

We now turn to the proof of Theorem 1. As the argument is translation invariant, we

consider only x0 = 0. Additionally, the estimates are performed for nonlinearity u∂3xu;
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a later remark explains how to control other terms. We invoke constants c0, c1, c2, . . . ,

depending only on the parameters

ck = ck(l, T, ε, b, ‖u0‖Hs ; ‖∂lxu0‖L2(x0,∞); ‖∂3xu‖L1
TL

∞
x

) (2.17)

whose value may change from line to line. We explicitly record dependence on the

parameter ν using the notation c(ν; d), which indicates a constant taking the form of a

degree-d polynomial in ν:

c(ν; d) = cdν
d + · · ·+ c1ν + c0.

We first describe the formal calculations and later provide justification using a limiting

argument. Let u be a smooth solution of IVP (1.37), differentiate the equation l-times

and apply (2.13) with φ(x, t) = χ(x+νt; ε, b). Using properties (2.4) and (2.5) to expand

the region of integration in the first term, we arrive at

d

dt

∫
(∂lxu)2χ(x+ νt) dx+

∫
(∂l+2
x u)2χ′(x+ νt) dx

≤
∫

(∂lxu)2
{
νχ′(x+ νt) +

3

2
χ(5)(x+ νt) +

25

16

(χ′′′(x+ νt))2

χ′(x+ νt)

}
dx

+ 2

∫
∂lxu∂

l
x(u∂

3
xu)χ(x+ νt) dx

≤ A+B, (2.18)

where

A = ν

∫
(∂lxu)2χ′(x+ νt) dx+ c(ε; b)

∫
(∂lxu)2χ′(x+ νt; ε/3, b+ ε) dx,

B = 2

∫
∂lxu∂

l
x(u∂

3
xu)χ(x+ νt) dx.
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We have used the convention that when ε and b are suppressed, χ(x) = χ(x; ε, b). The

argument proceeds via induction on l where, for fixed l, we integrate (2.18) in time,

integrate B by parts and apply a correction to account for the loss of derivatives.

Case l = 1 Integrating in the time interval [0, t] and applying (2.3), we obtain

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ c0(1 + ν)

∫ t

0

∫
(∂xu)2 dxdτ ≤ c0(1 + ν)T‖u‖2L∞

T H
1
x

(2.19)

where 0 ≤ t ≤ T . After integrating by parts, we find

B =

∫
∂xu(∂2xu)2χ(x+ νt) dx+ 3

∫
u(∂2xu)2χ′(x+ νt) dx

+
4

3

∫
(∂xu)3χ′′(x+ νt) dx−

∫
u(∂xu)2χ′′′(x+ νt) dx. (2.20)

The inequality (2.3) and the Sobolev embedding imply

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ c1(‖∂xu‖L∞
T L

∞
x

+ ‖u‖L∞
T L

∞
x

)

∫ t

0

∫
(∂xu)2 + (∂2xu)2 dxdτ

≤ c1T‖u‖3L∞
T H

2
x
. (2.21)

Integrating the inequality (2.18) and combining (2.19) and (2.21), we obtain

∫
(∂xu)2χ(x+ νt) dx+

∫ t

0

∫
(∂3xu)2χ′(x+ ντ) dxdτ

≤
∫

(∂xu0)
2χ(x) dx+

∣∣∣∣∫ t

0

A+B dτ

∣∣∣∣
≤ c0ν + c1.

As the right-hand side is independent of t, the result follows.
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Case l = 2 Similar to the previous case, integrating in the time interval [0, t], we find

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ c0(1 + ν)

∫ t

0

∫
(∂2xu)2 dxdτ ≤ c0(1 + ν)T‖u‖2L∞

T H
2
x

(2.22)

where 0 ≤ t ≤ T . After integrating by parts, we see

B = −
∫
∂xu(∂3xu)2χ(x+ νt) dx+ 3

∫
u(∂3xu)2χ′(x+ νt) dx

−
∫
∂xu(∂2xu)2χ′′(x+ νt) dx−

∫
u(∂2xu)2χ′′′(x+ νt) dx. (2.23)

This expression exhibits a loss of derivatives in that the term

∫
∂xu(∂3xu)2χ(x+ νt) dx (2.24)

can be controlled neither by the well-posedness theory nor by the l = 1 case (without

the technique introduced in Section 7). In [27], Kwon introduced a modified energy to

overcome a similar issue. In particular, a smooth solution u to the IVP (1.37) satisfies

the following identity:

d

dt

∫
u(∂xu)2χ dx

= −5

∫
∂xu(∂3xu)2χ dx− 5

∫
u(∂3xu)2χ′ dx+

28

3

∫
(∂2xu)3χ′ dx

+21

∫
∂xu(∂2xu)2χ′′ dx+ 5

∫
u(∂2xu)2χ′′′ dx− 10

3

∫
(∂xu)3χ(4) dx

−
∫
u(∂xu)2χ(5) dx+ 4

∫
u∂xu(∂2xu)2χ dx+ 3

∫
u2(∂2xu)2χ′ dx

−9

4

∫
(∂xu)4χ′ dx−

∫
u∂2xu(∂xu)2χ′ dx− 4

∫
u(∂xu)3χ′′ dx

−
∫
u2(∂xu)2χ′′′ dx+ ν

∫
u(∂xu)2χ′ dx (2.25)

where χ(j) denotes χ(j)(x + νt). We use this identity to eliminate (2.24) from (2.23),
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yielding

B =
1

5

d

dt

∫
u(∂xu)2χ(x+ νt) dx+ 4

∫
u(∂3xu)2χ′(x+ νt) dx

− 4

5

∫
u∂xu(∂2xu)2χ(x+ νt) dx− ν

5

∫
u(∂xu)2χ′(x+ νt) dx

+
∑

0≤j1,j2,j3≤2
1≤j4≤5

cj1,j2,j3,j4

∫
∂̃j1x u∂

j2
x u(∂j3x u)2χ(j4)(x+ νt) dx (2.26)

where the notation ∂̃j1x u indicates this factor may be omitted. That is, since 0 ≤ j1, j2 ≤ 2,

‖∂̃j1x u∂j2x u‖L∞
T L

∞
x
≤ ‖u‖L∞

T H
s
x

+ ‖u‖2L∞
T H

s
x
.

Integrating in the time interval [0, t], applying (2.3) and the Sobolev embedding, we

obtain

∣∣∣∣∫ t

0

∫
∂̃j1x u∂

j2
x u(∂j3x u)2χ(j4)(x+ ντ) dxdτ

∣∣∣∣
≤ c1‖∂̃j1x u∂j2x u‖L∞

T L
∞
x

∫ T

0

∫
(∂j3x u)2 dxdτ

≤ c1T‖u‖3L∞
T H

s
x
(1 + ‖u‖L∞

T H
s
x
) (2.27)

since max{j1, j2, j3} ≤ 2. The fundamental theorem of calculus and Sobolev embedding
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yield

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ ∣∣∣∣∫ u0(∂xu0)
2χ(x) dx

∣∣∣∣+

∣∣∣∣∫ u(∂xu)2χ(x+ νt) dx

∣∣∣∣
+ 4‖u‖L∞

T H
1
x

∫ T

0

∫
(∂3xu)2χ′(x+ ντ) dxdτ

+
4

5
‖u‖2L∞

T H
2
x

∫ T

0

∫
(∂2xu)2χ(x+ ντ) dxdτ

+
ν

5
‖u‖L∞

T H
1
x

∫ T

0

∫
(∂xu)2χ′(x+ ντ) dxdτ

+ c1T‖u‖3L∞
T H

s
x
(1 + ‖u‖L∞

T H
s
x
). (2.28)

The first term on the right-hand side is controlled by the Sobolev embedding, the hypoth-

esis on the initial data and Lemma 2. The second and third term illustrate the iterative

nature of the argument, as they can be bounded by the l = 1 result. The two remaining

integrals are finite by property (2.3). Therefore

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ c0ν + c1. (2.29)

Integrating inequality (2.18), using (2.22), (2.29) and the hypothesis on the initial data,

we have

∫
(∂2xu)2χ(x+ νt) dx+

∫ t

0

∫
(∂4xu)2χ′(x+ ντ) dxdτ

≤
∫

(∂2xu0)
2χ(x) dx+

∣∣∣∣∫ t

0

A+B dτ

∣∣∣∣
≤ c0ν + c1.

As the right-hand side is independent of t, the result follows.
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Case l = 3 Integrating in the time interval [0, t] and applying the l = 1 result, we

obtain

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ ν

∫ T

0

∫
(∂3xu)2χ′(x+ ντ) dxdτ

+ c0

∫ T

0

∫
(∂3xu)2χ′(x+ ντ ; ε/3, b+ ε) dxdτ

≤ c2ν
2 + c1ν + c0 (2.30)

where 0 ≤ t ≤ T . After integrating by parts, we find

B = −3

∫
∂xu(∂4xu)2χ(x+ νt) dx+ 3

∫
u(∂4xu)2χ′(x+ νt) dx

+

∫
(∂3xu)3χ(x+ νt) dx−

∫
u(∂3xu)2χ′′′(x+ νt) dx. (2.31)

This expression exhibits a loss of derivatives in the term

∫
∂xu(∂4xu)2χ(x+ νt) dx. (2.32)
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A smooth solution u to the IVP (1.37) satisfies the following identity:

d

dt

∫
u(∂2xu)2χ dx

= −5

∫
∂xu(∂4xu)2χ dx− 5

∫
u(∂4xu)2χ′ dx

+ 5

∫
(∂3xu)3χ dx+ 25

∫
∂2xu(∂3xu)2χ′ dx+ 15

∫
∂xu(∂3xu)2χ′′ dx

+ 5

∫
u(∂3xu)2χ′′′ dx+ 2

∫
u∂xu(∂3xu)2χ dx+ 3

∫
u2(∂3xu)2χ′ dx

− 25

3

∫
(∂2xu)3χ′′′ dx− 5

∫
∂xu(∂2xu)2χ(4) dx−

∫
u(∂2xu)2χ(5) dx

−
∫
∂xu(∂2xu)3χ dx− 3

∫
u(∂2xu)2χ′ dx− 2

∫
(∂xu)2(∂2xu)2χ′ dx

− 4

∫
u∂xu(∂2xu02χ′′ dx−

∫
u2(∂2xu)2χ′′′ dx+ ν

∫
u(∂2xu)2χ′ dx (2.33)

where χ(j) denotes χ(j)(x + νt), which we use to eliminate (2.32) from (2.31). Thus,

ignoring coefficients, we may write

B =
d

dt

∫
u(∂2xu)2χ(x+ νt) dx+

∫
u(∂4xu)2χ′(x+ νt) dx

+

∫
(1 + u∂xu+ ∂3xu)(∂3xu)2χ(x+ νt) dx+ ν

∫
u(∂2xu)2χ′ dx

+
∑

0≤j1,j2≤2
1≤j3≤3

cj1,j2,j3

∫
∂̃j1x u∂

j2
x u(∂3xu)2χ(j3)(x+ νt) dx

+
∑

0≤j1,j2≤2
1≤j3≤5

cj1,j2,j3

∫
∂̃j1x u∂

j2
x u(∂2xu)2χ(j3)(x+ νt) dx (2.34)

where the notation ∂̃j1x u indicates this factor may be omitted. Integrating in the time
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interval [0, t], applying (2.5), the Sobolev embedding and the l = 1 result yields

∣∣∣∣∫ t

0

∫
∂̃j1x u∂

j2
x u(∂3xu)2χ(j3)(x+ ντ) dxdτ

∣∣∣∣
≤ c1‖∂̃j1x u∂j2x u‖L∞

T L
∞
x

∫ T

0

∫
(∂3xu)2χ′(x+ ντ ; ε/3, b+ ε) dxdτ

≤ (‖u‖L∞
T H

s
x

+ ‖u‖2L∞
T H

s
x
)(c0ν + c1). (2.35)

Similarly, integrating in the time interval [0, t], applying (2.3) and the Sobolev embedding,

we find

∣∣∣∣∫ t

0

∫
∂̃j1x u∂

j2
x u(∂2xu)2χ(j3)(x+ ντ) dxdτ

∣∣∣∣
≤ c1‖∂̃j1x u∂j2x u‖L∞

T L
∞
x

∫ T

0

∫
(∂2xu)2 dxdτ

≤ c1T‖u‖3L∞
T H

s
x
(1 + ‖u‖L∞

T H
s
x
). (2.36)

Hence the fundamental theorem of calculus and Sobolev embedding yield

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ ∣∣∣∣∫ u0(∂
2
xu0)

2χ(x) dx

∣∣∣∣+

∣∣∣∣∫ u(∂2xu)2χ(x+ νt) dx

∣∣∣∣
+ ‖u‖L∞

T H
1
x

∫ T

0

∫
(∂4xu)2χ′(x+ ντ) dxdτ

+

∫ t

0

(1 + ‖u‖2L∞
T H

2
x

+ ‖∂3xu(τ)‖L∞
x

)

∫
(∂3xu)2χ(x+ ντ) dxdτ

+ (‖u‖L∞
T H

s
x

+ ‖u‖2L∞
T H

s
x
)(c0ν + c1)

+ c1T‖u‖3L∞
T H

s
x
(1 + ‖u‖L∞

T H
s
x
). (2.37)

Similar to the l = 2 case, the first term on the right-hand side is controlled by the

hypothesis on the initial data. The second and third terms are finite by the l = 2 case.
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Therefore

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ c(ν; 1) +

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)

∫
(∂3xu)3χ(x+ ντ) dxdτ. (2.38)

Integrating inequality (2.18), using (2.30), (2.38) and the hypothesis on the initial data,

we have

y(t) :=

∫
(∂3xu)2χ(x+ νt) dx+

∫ t

0

∫
(∂5xu)2χ′(x+ ντ) dxdτ

≤
∫

(∂3xu0)
2χ(x) dx+

∣∣∣∣∫ t

0

A+B dτ

∣∣∣∣
≤ c(ν; 2) +

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)

∫
(∂3xu)2χ(x+ ντ) dxdτ

≤ c(ν; 2) +

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)y(τ) dxdτ.

Applying Gronwall’s inequality produces

sup
0≤t≤T

∫
(∂4xu)2χ(x+ νt) dx+

∫ T

0

∫
(∂5xu)2χ′(x+ ντ) dxdτ

≤ c(ν; 2) exp
(
c0T + c1‖∂3xu‖L1

TL
∞
x

)
.

This proves the desired result with l = 3.

Cases l = 4, 5, 6 Due to the structure of the IVP, the cases l = 4, 5, 6 must be handled

individually. The analysis is omitted as it is similar to the cases l = 3 and l ≥ 7. It can

be proved that

sup
0≤t≤T

∫
(∂lxu)2χ(x+ νt) dx+

∫ T

0

∫
(∂l+2
x u)2χ′(x+ ντ) dxdτ ≤ c(ν; d)

where the values of d are summarized in the following table.
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l 1 2 3 4 5 6
d 1 1 2 2 4 8

Case l ≥ 7 In the course of this case, we will prove that for l ≥ 7, the final constant

obtained after integrating both sides of (2.18) takes the form of a polynomial in ν with

degree 8(l − 5).

Integrating in the time interval [0, t] and applying the l − 2 result (assuming l > 7)

we have

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ ν

∫ T

0

∫
(∂lxu)2χ′(x+ ντ) dxdτ

+ c0

∫ T

0

∫
(∂lxu)2χ′(x+ ντ ; ε/3, b+ ε) dxdτ

≤ c(ν; 1 + 8(l − 7)) (2.39)

where 0 ≤ t ≤ T . For l = 7, this expression has degree 5 in ν. We write

B = B1 +B2 (2.40)

where

B1 = 2

∫
∂lxu

{
u∂l+3

x u+

(
l

1

)
∂xu∂

l+2
x u+

(
l

2

)
∂2xu∂

l+1
x u

+(1 +

(
l

3

)
)∂3xu∂

l
xu

}
χ(x+ νt) dx

B2 =

dl/2e−2∑
k=1

cl,k

∫
∂3+kx u∂l−kx u∂lxuχ(x+ νt) dx

and 3 + k ≤ l − k < l for 1 ≤ k ≤ dl/2e − 2. Integrating by parts, we have

B1 = B11 +B12, (2.41)
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where

B11 = (3− 2l)

∫
∂xu(∂l+1

x u)2χ(x+ νt) dx,

B12 =

∫
u(∂l+1

x u)2χ′(x+ νt) dx+

∫
∂3xu(∂lxu)2χ(x+ νt) dx

+

∫
∂2xu(∂lxu)2χ′(x+ νt) dx+

∫
∂xu(∂lxu)2χ′′(x+ νt) dx

+

∫
u(∂lxu)2χ′′′(x+ νt) dx

and, in B12, we have omitted coefficients depending only on l using the expression (2.41).

Then integrating in the time interval [0, t], where 0 ≤ t ≤ T , we obtain

∣∣∣∣∫ t

0

B12 dτ

∣∣∣∣ ≤ ‖u‖L∞
T H

1
x

∫ T

0

∫
(∂l+1
x u)2χ′(x+ ντ) dxdτ

+

∫ t

0

‖∂3xu(τ)‖L∞
x

∫
(∂lxu)2χ(x+ ντ) dxdτ

+ c0‖u‖L∞
T H

s
x

∫ t

0

∫
(∂lxu)2χ′(x+ ντ) dxdτ

by the Sobolev embedding and (2.5). Applying the result for cases l − 1 and l − 2, we

have

∣∣∣∣∫ t

0

B12 dτ

∣∣∣∣ ≤ c(ν; 8(l − 6)) +

∫ t

0

‖∂3xu(τ)‖L∞
x

∫
(∂lxu)2χ(x+ ντ) dxdτ. (2.42)

Observe that term B2 only occurs when l ≥ 5. For l > 5, note that 4 + k < l. The
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inequality (2.16) produces

|B2| ≤
dl/2e−2∑
k=1

cl,k

∫
|∂3+kx u∂l−kx u∂lxu|χ(x+ νt) dx

≤
∫

(∂lxu)2χ(x+ νt) dx

+

dl/2e−2∑
k=1

{∫
(∂4+kx u)2χ(x+ νt) dx+

∫
(∂3+kx u)2χ(x+ νt) dx

+

∫
(∂3+kx u)2χ′(x+ νt) dx

}∫
(∂l−kx u)2χ(x+ νt; ε/5, 4ε/5) dx,

(2.43)

after suppressing constants depending on l. Integrating in the time interval [0, t], we have

∣∣∣∣∫ t

0

B2 dτ

∣∣∣∣
≤
∫ t

0

∫
(∂lxu)2χ(x+ ντ) dx

+ T

dl/2e−2∑
k=1

(
sup

0≤t≤T

∫
(∂l−kx u)2χ(x+ νt; ε/5, 4ε/5) dx

)
×
(

sup
0≤t≤T

∫
(∂4+kx u)2χ(x+ νt) dx

)

+ T

dl/2e−2∑
k=1

(
sup

0≤t≤T

∫
(∂l−kx u)2χ(x+ νt; ε/5, 4ε/5) dx

)
×
(

sup
0≤t≤T

∫
(∂3+kx u)2χ(x+ νt) dx

)

+ T

dl/2e−2∑
k=1

(
sup

0≤t≤T

∫
(∂l−kx u)2χ(x+ νt; ε/5, 4ε/5) dx

)
×
(

sup
0≤t≤T

∫
(∂3+kx u)2χ′(x+ νt) dx

)
.
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The strongest ν-dependence for B2 arises from analyzing terms of the form:

(
sup

0≤t≤T

∫
(∂l−kx u)2χ(x+ νt; ε/5, 4ε/5) dx

)(
sup

0≤t≤T

∫
(∂4+kx u)2χ(x+ νt) dx

)
. (2.44)

Each factor in (2.44) is finite by the result for cases l − k and 4 + k. The inductive

hypothesis further implies that the ν-dependence has the form of a polynomial in ν

having degree

ν8(l−k−5) · ν8(4+k−5) = ν8(l−6).

Hence ∣∣∣∣∫ t

0

B2 dτ

∣∣∣∣ ≤ c(ν; 8(l − 6)) + c0

∫ t

0

∫
(∂lxu)2χ(x+ ντ) dxdτ. (2.45)

Integrating the inequality (2.18) in the time interval [0, t], where 0 ≤ t ≤ T , we have

∫
(∂lxu)2χ(x+ νt) dx+

∫ t

0

∫
(∂l+2
x u)2χ′(x+ ντ) dxdτ

≤
∫

(∂lxu0)
2χ(x) dx+

∣∣∣∣∫ t

0

A+B11 +B12 +B2 dτ

∣∣∣∣
≤ c(ν; 8(l − 6))

+

∣∣∣∣∫ t

0

B11 dτ

∣∣∣∣+

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)

∫
(∂lxu)2χ(x+ ντ) dxdτ (2.46)

using the hypothesis on the initial data, (2.39), (2.42) and (2.45). Thus it only remains

to estimate the integral involving

B11 = (3− 2l)

∫
∂xu(∂l+1

x u)2χ(x+ νt) dx,

which exhibits a loss of derivatives. Assuming that u satisfies the IVP (1.37), we rewrite
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this term by considering the correction factor

d

dt

∫
u(∂l−1x u)2χ(x+ νt) dx

=

∫
∂5xu(∂l−1x u)2χ(x+ νt) dx+

∫
u∂3xu(∂l−1x u)2χ(x+ νt) dx

+2

∫
u∂l−1x u∂l+4

x uχ(x+ νt) dx+ 2

∫
u∂l−1x u∂l−1x (u∂3xu)χ(x+ νt) dx

+ν

∫
u(∂l−1x u)2χ′(x+ νt) dx

=: C1 + C2 + C̃3 + C4 + C5. (2.47)

Observe that integrating C̃3 by parts reveals

C̃3 =

(
5

2l − 3

)
B11 + C3, (2.48)

where

C3 = −5

∫
u(∂l+1

x u)2χ′ dx+ 5

∫
∂3xu(∂lxu)2χ dx

+ 9

∫
∂2xu(∂lxu)2χ′ dx+ 15

∫
∂xu(∂lxu)2χ′′ dx+

∫
u(∂lxu)2χ′′′ dx

− 5

∫
∂5xu(∂l−1x u)2χ dx− 5

∫
∂4xu(∂l−1x u)2χ′ dx− 9

∫
∂3xu(∂l−1x u)2χ′′ dx

− 10

∫
∂2xu(∂l−1x u)2χ′′′ dx− 5

∫
∂xu(∂l−1x u)2χ(4) dx−

∫
u(∂l−1x u)2χ(5) dx.

(2.49)

Here χ(j) denotes χ(j)(x+ νt; ε, b). The fundamental theorem of calculus leads to

(
5

2l − 3

) ∣∣∣∣∫ t

0

B11 dτ

∣∣∣∣ ≤ ∣∣∣∣∫ u0(∂
l−1
x u0)

2χ(x) dx

∣∣∣∣+

∣∣∣∣∫ u(∂l−1x u)2χ(x+ νt) dx

∣∣∣∣
+

∣∣∣∣∫ t

0

C1 + C2 + C3 + C4 + C5 dτ

∣∣∣∣ . (2.50)
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We now concern ourselves with estimating the right-hand side of this expression. By the

Sobolev embedding, hypothesis on the initial data, Lemma 2 and the result for case l−1,

we have

∣∣∣∣∫ u0(∂
l−1
x u0)

2χ(x) dx

∣∣∣∣+

∣∣∣∣∫ u(∂l−1x u)2χ(x+ νt) dx

∣∣∣∣
≤ ‖u0‖Hs‖∂l−1x u0‖2L2

x((0,∞)) + ‖u‖L∞
T H

s
x

∫
(∂l−1x u)2χ(x+ νt) dx, (2.51)

which is uniformly bounded by the inductive hypothesis. Applying (2.16), we obtain

|C1| ≤
∫
∂5xu(∂l−1x u)2χ(x+ νt) dx

≤
∫

(∂l−1x u)2χ(x+ νt) dx

+

{∫
(∂6xu)2χ(x+ νt) dx+

∫
(∂5xu)2χ(x+ νt) dx+

∫
(∂5xu)2χ′(x+ νt) dx

}
×
∫

(∂l−1x u)2χ(x+ νt; ε/5, 4ε/5) dx.

Integrating in the time interval [0, t] and following the argument applied to term B2, we

see that the highest degree ν-dependence for C1 arises from analyzing the term

(
sup

0≤t≤T

∫
(∂l−1x u)2χ(x+ νt; ε/5, 4ε/5) dx

)(
sup

0≤t≤T

∫
(∂6xu)2χ(x+ νt) dx

)
. (2.52)

Each factor in (2.52) is finite by the result for cases 6 and l− 1. Hence for the base case

l = 7, the right-hand side is bounded by c(ν; 16). For l > 7, the inductive hypothesis

further yields that the ν-dependence has the form of a polynomial in ν with degree

determined by

ν8(l−6) · ν8 = ν8(l−5).
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Thus ∣∣∣∣∫ t

0

C1 dτ

∣∣∣∣ ≤ c(ν; 8(l − 5)). (2.53)

It will be clear from the remainder of the argument that (2.52) produces the overall

highest degree ν-dependence, hence justifying this inductive calculation.

Integrating in time, using the Sobolev embedding and inductive hypothesis, we find

∣∣∣∣∫ t

0

C2 dτ

∣∣∣∣ ≤ ‖u‖L∞
T H

s
x

∫ T

0

∫
|∂3xu|(∂l−1x u)2χ(x+ ντ) dxdτ

≤ ‖u‖L∞
T H

s
x

∫ T

0

‖∂3xu(τ)‖L∞
x

(
sup

0≤t≤T

∫
(∂l−1x u)2χ(x+ νt) dx

)
dτ

≤ c(ν; 8(l − 6))‖u‖L∞
T H

s
x
‖∂3xu‖L1

TL
∞
x
. (2.54)

Integrating in time and using (2.5), (2.16), the Sobolev embedding and the inductive

hypothesis, we have

∣∣∣∣∫ t

0

C3 dτ

∣∣∣∣ ≤ c(ν, 8(l − 6)) +

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)

∫
(∂lxu)2χ(x+ ντ) dxdτ. (2.55)

Expanding but ignoring binomial coeffiecients, we write C4 = C41 + C42 with

C41 =

∫
u∂xu(∂lxu)2χ(x+ νt) dx+

∫
u2(∂lxu)2χ(x+ νt) dx

+

∫
u∂3xu(∂l−1x u)2χ(x+ νt) dx+

∫
∂xu∂

2
xu(∂l−1x u)2χ(x+ νt) dx

+

∫
u∂2xu(∂l−1x u)2χ′(x+ νt) dx+

∫
∂xu∂xu(∂l−1x u)2χ′(x+ νt) dx

+

∫
u∂xu(∂l−1x u)2χ′′(x+ νt) dx−

∫
u2(∂l−1x u)2χ′′′(x+ νt) dx (2.56)

and

C42 =

b(l−1)/2c−2∑
k=1

cl,k

∫
u∂(l−1)−kx u∂3+kx u∂l−1x uχ(x+ νt) dx. (2.57)
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Similar to C2 and C3,

∣∣∣∣∫ t

0

C41 dτ

∣∣∣∣ ≤ c(ν; 8(l − 6)) + c0

∫ t

0

∫
(∂lxu)2χ(x+ ντ) dxdτ. (2.58)

Similar to B2, ignoring constants we have

∣∣∣∣∫ t

0

C42 dτ

∣∣∣∣ ≤ b(l−1)/2c−2∑
k=1

∫ T

0

∫
|u∂(l−1)−kx u∂3+kx u∂l−1x u|χ dxdτ ≤ c(ν; 8(l − 6)) (2.59)

after applying (2.16). Finally, assuming l > 7, we obtain

∣∣∣∣∫ t

0

C5 dτ

∣∣∣∣ ≤ ν‖u‖
L∞
T H

5/2+
x

∫ T

0

∫
(∂l−1x u)2χ′(x+ ντ) dxdτ ≤ c(ν; 1 + 8(l − 7))

(or c(ν; 3) when l = 7) using the Sobolev embedding and inductive case l − 3.

Inserting the above into (2.50) and (2.46), then using nonnegativity of χ, χ′, we find

y(t) :=

∫
(∂lxu)2χ(x+ νt) dx+

∫ t

0

∫
(∂l+2
x u)2χ′(x+ ντ) dxdτ

≤ c(ν; 8(l − 5)) +

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)

∫
(∂lxu)2χ(x+ ντ) dxdτ

≤ c(ν; 8(l − 5)) +

∫ t

0

(c0 + c1‖∂3xu(τ)‖L∞
x

)y(τ) dτ. (2.60)

Hence Gronwall’s inequality yields

sup
0≤t≤T

∫
(∂lxu)2χ(x+ νt) dx+

∫ T

0

∫
(∂l+2
x u)2χ′(x+ ντ) dxdτ

≤ c(ν; 8(l − 5)) exp
(
c0T + c1‖∂3xu‖L1

TL
∞
x

)
.

This concludes the proof for the case of smooth data.

Now we use a limiting argument to justify the previous computations for arbitrary
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u0 ∈ Hs(R) with s > 5/2. Fix ρ ∈ C∞0 (R) with supp ρ ⊆ (−1, 1), ρ ≥ 0,
∫
ρ(x) dx = 1

and

ρµ(x) =
1

µ
ρ

(
x

µ

)
, µ > 0.

The the solution uµ of IVP (1.37) corresponding to smoothed data uµ0 = ρµ ∗ u0, µ ≥ 0,

satisfies

uµ ∈ C∞([0, T ] : H∞(R)).

Hence we may conclude

sup
0≤t≤T

∫
(∂lxu

µ)2χ(x+ νt) dx+

∫ T

0

∫
(∂l+2
x uµ)2χ′(x+ ντ) dxdτ ≤ c.

where

c = c(l, ν, ε, R, T ; ‖uµ0‖Hs ; ‖∂lxu
µ
0‖L2(0,∞); ‖uµ‖L∞

T H
s
x
; ‖∂3xuµ‖L1

TL
∞
x

).

To see that this bound is independent of µ > 0, first note

‖uµ0‖Hs ≤ ‖ρ̂µ‖∞‖u0‖Hs ≤ ‖u0‖Hs .

As χ ≡ 0 for x < ε, restricting 0 < µ < ε it follows

(∂lxu
µ
0)2χ(x; ε, b) = (ρµ ∗ ∂lxu01[0,∞))

2χ(x; ε, b).

Thus by Young’s inequality

∫ ∞
ε

(∂lxu
µ
0)2(x) dx =

∫ ∞
ε

(ρµ ∗ ∂lxu01[0,∞))
2(x) dx

≤ ‖ρµ‖21
∫ ∞
ε

(∂lxu0)
2(x) dx

≤ ‖∂lxu0‖2L2((0,∞)).
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From Kwon’s local well-posedness result [27] we have

‖uµ‖L∞
T H

s
x

+ ‖∂3xuµ‖L1
TL

∞
x
≤ c(‖uµ0‖Hs) ≤ c(‖u0‖Hs)

and so we may replace the bound c = c(µ) with c̃ as in (1.42).

As the solution depends continuously on the initial data,

sup
0≤t≤T

‖uµ(t)− u(t)‖H5/2+ ↓ 0 as µ ↓ 0.

Combining this fact with the µ-uniform bound c̃, weak compactness and Fatou’s lemma,

the theorem holds for all u0 ∈ Hs(R) with s > 5/2. This completes the proof of Theorem

1 for nonlinearity u∂3xu.

Including nonlinearity ∂xu∂
2
xu, term B in (2.18) will contain a term

2

∫
∂lxu∂

l
x(∂xu∂

2
xu)χ(x+ νt) dx.

As this nonlinearity has a total of three derivatives, integrating by parts produces a form

very similar to (2.40). The nonlinearity u2∂xu, containing only a single derivative, shows

no loss of derivatives (see Section 2.5 for a more thorough treatment). This completes

the proof of Theorem 1.
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2.3 Proof of Theorem 2

Let u be a smooth solution of IVP (1.37), differentiate the equation l-times and apply

(2.13) with φ(x, t) = χn(x+ νt; ε, b) to arrive at

d

dt

∫
(∂lxu)2χn(x+ νt) dx+

∫
(∂l+2
x u)2χ′n(x+ νt) dx

≤ A+B, (2.61)

where

A =

∫
(∂lxu)2

{
νχ′n(x+ νt) +

3

2
χ(5)
n (x+ νt) +

25

16

(χ′′′n (x+ νt))2

χ′n(x+ νt)

}
dx,

B = 2

∫
∂lxu∂

l
x(u∂

3
xu)χn(x+ νt) dx.

The proof proceeds by induction on l, however, for fixed l we induct on n. The base

case n = 0 coincides with the propagation of regularity result. We invoke constants

c0, c1, c2, . . . , depending only on the parameters

ck = ck(n, l; ‖u0‖Hs ; ‖∂3xu‖L1
TL

∞
x

; ν; ε; b;T ) (2.62)

as well as the decay assumptions on the initial data (1.45).

Case l = 0 Using properties (2.8) and (2.9), we see

|A| ≤ c0

∫
u2(1 + χn(x+ νt)) dx.

and so integrating in the time interval [0, t], we have

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ c0

{
T‖u‖2L∞

T L
2
x

+

∫ t

0

∫
u2χn(x+ ντ) dxdτ

}
(2.63)
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where 0 ≤ t ≤ T . Additionally,

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ 2

∫ t

0

‖∂3xu(τ)‖L∞
x

∫
u2χn(x+ ντ) dxdτ. (2.64)

Integrating (2.61) in the time interval [0, t], combining (2.63) and (2.64), we have

y(t) :=

∫
u2χn(x+ νt) dx+

∫ t

0

∫
(∂2xu)2χn(x+ ντ) dxdτ

≤
∫
u20(x)χn(x) dx+

∣∣∣∣∫ t

0

A+B dτ

∣∣∣∣
≤ c0 +

∫ t

0

(c1 + c2‖∂3xu(τ)‖L∞
x

)

∫
u2χn(x+ ντ) dxdτ

≤ c0 +

∫ t

0

(c1 + c2‖∂3xu(τ)‖L∞
x

)y(τ) dxdτ.

using the hypothesis on the initial data. Gronwall’s inequality yields

sup
0≤t≤T

∫
u2χn(x+ νt) dx+

∫ T

0

∫
(∂2xu)2χn(x+ ντ) dxdτ ≤ c0 exp

(
c1T + c2‖∂3xu‖L1

TL
∞
x

)
.

Note that induction in n was not required in this case.

Case l = 1 Using properties (2.8) and (2.9), we have

|A| ≤ c0

∫
(∂xu)2(1 + χn(x+ νt)) dx.

and so integrating in the time interval [0, t], we find

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ c0

{
T‖u‖2L∞

T H
1
x

+

∫ t

0

∫
(∂xu)2χn(x+ ντ) dxdτ

}
(2.65)
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where 0 ≤ t ≤ T . After integrating by parts, we find

B =

∫
∂xu(∂2xu)2χn(x+ νt) dx+ 3

∫
u(∂2xu)2χ′n(x+ νt) dx

+
4

3

∫
(∂xu)3χ′′n(x+ νt) dx−

∫
u(∂xu)2χ′′′n (x+ νt) dx. (2.66)

This expression exhibits a loss of derivatives requiring a correction. A smooth solution

u to the IVP (1.37) satisfies the following identity

d

dt

∫
u3χn dx

= −15

∫
∂xu(∂2xu)2χn dx− 9

∫
u(∂2xu)2χ′n dx

+ 10

∫
(∂xu)3χ′′n dx+ 12

∫
u(∂xu)2χ′′′n dx−

∫
u3χ(5)

n dx

+ 9

∫
u(∂xu)3χn dx+

27

2

∫
u2(∂xu)2χ′n dx−

3

4

∫
u4χ′′′n dx

+ ν

∫
u3χ′n dx (2.67)

after integrating by parts, where χ
(j)
n denotes χ

(j)
n (x + νt). Substituting (2.67), we can

write (2.66) as a linear combination of the following terms

B =
d

dt

∫
u3χn dx+

∫
u(∂2xu)2χ′n dx

+

∫
(∂xu)3χ′′n dx+

∫
u(∂xu)2χ′′′n dx+

∫
u3χ(5)

n dx

+

∫
u(∂xu)3χn dx+

∫
u2(∂xu)2χ′n dx+

∫
u4χ′′′n dx

+ ν

∫
u3χ′n dx

=: B1 + · · ·+B9. (2.68)
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The fundamental theorem of calculus and the Sobolev embedding yield

∣∣∣∣∫ t

0

B1 dτ

∣∣∣∣ ≤ ‖u0‖H1

∫
u20(x)χn(x) dx+ ‖u‖L∞

T H
1
x

∫
u2χn(x+ νt) dx (2.69)

where 0 ≤ t ≤ T . This term is finite by hypothesis (1.45) and the case l = 0. Next,

∣∣∣∣∫ t

0

B2 dτ

∣∣∣∣ ≤ ‖u‖L∞
T H

1
x

∫ T

0

∫
(∂2xu)2χ′n(x+ ντ) dxdτ, (2.70)

which is finite by case l = 0. Using (2.11) and the Sobolev embedding, we obtain

∣∣∣∣∫ t

0

B3 +B4 +B5 dτ

∣∣∣∣
≤ ‖u‖L∞

T H
2
x

∫ T

0

∫
(∂xu)2|χ′′n(x+ ντ)|+ (∂xu)2|χ′′′n (x+ ντ)| dxdτ

+ ‖u‖L∞
T H

1
x

∫ T

0

∫
u2|χ(5)

n (x+ ντ)| dxdτ

≤ c0‖u‖L∞
T H

2
x

∫ T

0

∫
(∂xu)2χn−1(x+ ντ ; ε/3, b+ ε) dxdτ

+ c1‖u‖L∞
T H

1
x

∫ T

0

∫
u2χn−1(x+ ντ ; ε/3, b+ ε) dxdτ. (2.71)

The first term is finite by induction on n in the current case l = 1, whereas the second

term is finite by the case l = 0. The Sobolev embedding implies

∣∣∣∣∫ t

0

B6 dτ

∣∣∣∣ ≤ ‖u‖2L∞
t H

2
x

∫ t

0

∫
(∂xu)2χn(x+ ντ) dxdτ. (2.72)

Finally the inequality (2.11) and the Sobolev embedding yield

∣∣∣∣∫ t

0

B7 +B8 +B9 dτ

∣∣∣∣ ≤ c2‖u‖2L∞
T H

2
x

∫ T

0

∫
u2χn−1(x+ ντ ; ε/3, b+ ε) dxdτ, (2.73)

which is finite by case l = 0. Integrating (2.61) in the time interval [0, t] and combining
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the above, we have

y(t) :=

∫
(∂xu)2χn(x+ νt) dx+

∫ t

0

∫
(∂3xu)2χ′n(x+ ντ) dxdτ

≤
∫

(∂xu0)
2(x)χn(x) dx+

∣∣∣∣∫ t

0

A+B dτ

∣∣∣∣
≤ c0 + c1

∫ t

0

∫
(∂xu)2χn(x+ ντ) dxdτ

≤ c0 + c1

∫ t

0

y(τ) dτ.

The result follows by Gronwall’s inequality.

Cases l = 2, 3, 4, 5 Due to the structure of the IVP, the cases l = 2, 3, 4, 5 must be han-

dled individually. The analysis is omitted, however, as it is similar to the cases presented.

Case l ≥ 6 Integrating in the time interval [0, t] and using properties (2.10) and (2.11),

we have ∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ c0

∫ t

0

∫
(∂lxu)2χn−1(x+ ντ ; ε/3, b+ ε) dxdτ, (2.74)

which is finite by induction on n. Recall (2.40) and (2.41), wherein we wrote

B = B11 +B12 +B2,

with the term B11 exhibiting a loss of derivatives. Integrating in the time interval [0, t],
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we see

∣∣∣∣∫ t

0

B12 dτ

∣∣∣∣ ≤ ‖u‖L∞
T H

1
x

∫ T

0

∫
(∂l+1
x u)2χ′n(x+ ντ) dxdτ

+

∫ t

0

‖∂3xu(τ)‖L∞
x

∫
(∂lxu)2χn(x+ ντ) dxdτ

+ c0‖u‖L∞
T H

s
x

∫ T

0

∫
(∂lxu)2χn−1(x+ ντ) dxdτ (2.75)

where we have used (2.11). The first term is finite by the case l−1 and the third is finite

by induction on n, hence

∣∣∣∣∫ t

0

B12 dτ

∣∣∣∣ ≤ c0 + c1

∫ t

0

‖∂3xu(τ)‖L∞
x

∫
(∂lxu)2χn(x+ ντ) dxdτ

Observe that term B2 only occurs when l ≥ 5. For l > 5, note that 4 + k < l. The

inequality (2.16) yields

|B2| ≤
dl/2e−2∑
k=1

cl,k

∫
|∂3+kx u∂l−kx u∂lxu|χn(x+ νt) dx

≤
∫

(∂lxu)2χn(x+ νt) dx

+

dl/2e−2∑
k=1

{∫
(∂4+kx u)2χn(x+ νt) dx+

∫
(∂3+kx u)2χn(x+ νt) dx

+

∫
(∂3+kx u)2χ′n(x+ νt) dx

}∫
(∂l−kx u)2χn(x+ νt; ε/5, 4ε/5) dx, (2.76)

where we have suppressed constants depending on l. Integrating in the time interval

[0, t], we see ∣∣∣∣∫ t

0

B2 dτ

∣∣∣∣ ≤ c0 + c1

∫ t

0

∫
(∂lxu)2χ(x+ ντ) dxdτ, (2.77)

as factors in the summation are estimated via (2.11) and the inductive hypothesis.

Assuming that u satisfies the IVP (1.37), we rewrite this term by considering the
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correction factor

d

dt

∫
u(∂l−1x u)2χn(x+ νt) dx = C̃1 + C2 + C3 + C4,

where

C̃1 =

∫
∂5xu(∂l−1x u)2χn(x+ νt) dx+ 2

∫
u∂l−1x u∂l+4

x uχn(x+ νt) dx,

C2 =

∫
u∂3xu(∂l−1x u)2χn(x+ νt) dx,

C3 = 2

∫
u∂l−1x u∂l−1x (u∂3xu)χn(x+ νt) dx,

C4 = ν

∫
u(∂l−1x u)2χ′n(x+ νt) dx.

Integrating C̃1 by parts, we have

C̃1 =

(
5

2l − 3

)
B11 + C1, (2.78)

where

C1 = −5

∫
u(∂l+1

x u)2χ′n dx+ 5

∫
∂3xu(∂lxu)2χn dx

+ 15

∫
∂2xu(∂lxu)2χ′n dx+ 15

∫
∂xu(∂lxu)2χ′′n dx

+ 5

∫
u(∂lxu)2χ′′′n dx− 5

∫
∂4xu(∂l−1x u)2χ′n dx

− 10

∫
∂3xu(∂l−1x u)2χ′′n dx− 10

∫
∂2xu(∂l−1x u)2χ′′′n dx

− 5

∫
∂xu(∂l−1x u)2χ(4)

n dx−
∫
u(∂l−1x u)2χ(5)

n dx. (2.79)
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Here χ
(j)
n denotes χ

(j)
n (x+ νt; ε, b). The fundamental theorem of calculus yields

(
5

2l − 3

) ∣∣∣∣∫ t

0

B11 dτ

∣∣∣∣
≤

∣∣∣∣∫ u0(∂
l−1
x u0)

2χn(x) dx

∣∣∣∣+

∣∣∣∣∫ u(∂l−1x u)2χn(x+ νt) dx

∣∣∣∣
+

∣∣∣∣∫ t

0

C1 + C2 + C3 + C4 dτ

∣∣∣∣ .
We now concern ourselves with estimating the right-hand side of this expression. First

note

∣∣∣∣∫ u0(∂
l−1
x u0)

2χn(x) dx

∣∣∣∣+

∣∣∣∣∫ u(∂l−1x u)2χn(x+ νt) dx

∣∣∣∣
≤ ‖u0‖H1‖xn/2∂l−1x u0‖2L2

x(ε,∞) + ‖u‖L∞
T H

1
x

∫
(∂l−1x u)2χn(x+ νt) dx, (2.80)

is bounded by the hypothesis (1.45) and the case l−1. Similarly toB2 andB12, integrating

in the time interval [0, t], using (2.16) and property (2.11), we obtain

∣∣∣∣∫ t

0

C1 dτ

∣∣∣∣ ≤ c0 +

∫ t

0

(c1 + c2‖∂3xu(τ)‖L∞
x

)

∫
(∂lxu)2χn(x+ ντ) dxdτ (2.81)

where the term containing (∂l+1
x u)2χ′n is controlled using the induction case l − 1, as in

(2.75).

Using (2.16) and the inductive hypothesis, we see

∣∣∣∣∫ t

0

C2 dτ

∣∣∣∣ ≤ c0, (2.82)

similar to B2. The same technique applies to C3 and C4.

Integrating (2.61) in the time interval [0, t] and combining the above, we find that
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there exists constants as in (2.62) such that

y(t) :=

∫
(∂lxu)2χn(x+ νt) dx+

∫ t

0

∫
(∂l+2
x u)2χ′n(x+ ντ) dxdτ

≤
∫

(∂lxu0)
2(x)χn(x) dx+

∣∣∣∣∫ t

0

A+B dτ

∣∣∣∣
≤ c0 +

∫ t

0

(c1 + c2‖∂3xu(τ)‖L∞
x

)

∫
(∂lxu)2χn(x+ ντ) dxdτ

≤ c0 +

∫ t

0

(c1 + c2‖∂3xu(τ)‖L∞
x

)y(τ) dτ.

The result follows by Gronwall’s inequality. To handle the case of arbitrary data u0 ∈

Hs(R) with s > 5/2, a limiting argument similar to the proof of Theorem 1 is used. This

completes the proof of Theorem 2.

2.4 Proof of Theorem 3

Integration by parts yields the next lemma.

Lemma 4. Suppose for some l ∈ Z+

sup
0≤t≤T

∫
(∂lxu)2χn(x+ νt) dx+

∫ T

0

∫
(∂l+2
x u)2χ′n(x+ ντ) dxdτ <∞. (2.83)

Then for every 0 < δ < T , there exists t̂ ∈ (0, δ) such that

∫
(∂l+jx u)2χn−1(x+ νt̂; ε+, b) dx <∞ (j = 0, 1, 2). (2.84)

To prove Theorem3, it suffices to consider an example; fix n = 9 in the hypothesis of

the theorem. Then we may apply Theorem 2 with (l, n) = (0, 9). Thus, after applying
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Lemma 4, there exists t0 ∈ (0, δ/2) such that

∫
(u2 + (∂xu)2 + (∂2xu)2)χ8(x+ νt0; ε

+, b) dx <∞.

Hence we may apply Theorem 2 with (l, n) = (2, 8) and find t1 ∈ (t0, δ/2) such that

∫
(u2 + · · ·+ (∂4xu)2)χ7(x+ νt1; ε

+, b) dx <∞.

Continuing in this manner, applying Theorem 2 with (l, n) = (4, 7), (6, 6), . . . , (18, 0)

provides the existence of t̂ ∈ (δ/2, δ) such that

∫
(u2 + · · ·+ (∂19x u)2)χ(x+ νt̂; ε+, b) dx <∞.

Finally, we can apply Theorem 1 with l = 19, completing the proof.

2.5 Proof of Theorem 4

Proof. Though not strictly necessary, we break the proof into cases based on the form

of the nonlinearity Q(u). We treat the case x0 = 0 as the argument is translation

invariant. Following the proof of Theorem 1, let u be a smooth solution of the IVP

(1.54). Differentiating the equation l-times, applying (2.13) and using properties of χ,

we arrive at

d

dt

∫
(∂lxu)2χ(x+ νt) dx+

∫
(∂l+2
x u)2χ′(x+ νt) dx

.
∫

(∂lxu)2χ′(x+ νt; ε/3, b+ ε) dx+

∫
∂lxu∂

l
xQ(u)χ(x+ νt) dx

=: A+B (2.85)
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The proof proceeds by induction on l ∈ Z+. For a given nonlinearity Q(u), there exists

l0 ∈ Z+ such that the cases l = 0, 1, . . . , l0 can be proved by choosing s large enough.

Thus it suffices to prove only the inductive step. We describe the formal calculations,

omitting the limiting argument.

Integrating in the time interval [0, t] and applying the l − 2 result we have

∣∣∣∣∫ t

0

A dτ

∣∣∣∣ ≤ c(ν; ε; b)

∫ T

0

∫
(∂lxu)2χ′(x+ ντ) dxdτ ≤ c0 (2.86)

where 0 ≤ t ≤ T and

c0 = c0(l; ν; ε;T ; ‖u0‖Xs,m ; ‖∂lxu0‖L2(x0,∞)). (2.87)

We now turn to term B.

Case 1 Suppose Q is independent of both ∂2xu and ∂3xu. Then there exists N ∈ Z+

such that, after integrating by parts, B is a linear combination of terms of the form

∫
uj0(∂xu)j1(∂2xu)j2(∂lxu)2χ(x+ νt) dx, j0, j1, j2 ≤ N,

and ∫
uj0(∂xu)j1(∂2xu)j2(∂kxu)2χ(j3)(x+ νt) dx, j0, j1, j2 ≤ N

where 1 ≤ j3 ≤ 5 and 3 ≤ k ≤ l + 1. Hence no loss of derivatives occurs. Integrating in

the time interval [0, t], applying the induction hypothesis and the Sobolev embedding

∣∣∣∣∫ t

0

B dτ

∣∣∣∣ ≤ c0 + c1

∫ t

0

∫
(∂lxu)2χ(x+ ντ) dxdτ

provided s0 > 7/2, with c0 and c1 as in (2.87). Combining with (2.86), after integrating

57



Propagation and Persistence for Fifth Order Models Chapter 2

(2.85) in time and using the hypothesis on the initial data we have

y(t) :=

∫
(∂lxu)2χ(x+ νt) dx+

∫ t

0

∫
(∂l+2
x u)2χ′(x+ ντ) dxdτ

≤ c0 + c1

∫ t

0

∫
(∂lxu)2χ(x+ ντ) dxdτ

≤ c0 + c1

∫ t

0

y(τ) dτ. (2.88)

The result follows by an application of Gronwall’s inequality. The value of m is deter-

mined by the LWP theory.

Case 2 Suppose Q is a linear combination of quadratic terms (with the exception of

u∂2xu). After integrating by parts B is a linear combination of terms of the form

∫
∂jxu(∂l+1

x u)2χ(x+ νt) dx, 1 ≤ j ≤ 4

as well as lower order terms. The correction technique of Theorem 1 can be modified to

account for this loss of derivatives. For example, if Q(u) = ∂2xu∂
3
xu, then integrating by

parts and supressing coefficients

B =

∫
∂2xu(∂l+1

x u)2χ(x+ νt) dx+

∫
∂4xu(∂lxu)2χ(x+ νt) dx+ B̃

where B̃ is controlled by induction. For the second term, we impose s0 > 9/2 to control

‖∂4xu‖L∞
x

. For the first term, consider the correction

d

dt

∫
∂xu(∂l−1x u)2χ(x+ νt) dx.

In general, more than one correction may be necessary. The remainder of the proof is
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similar to Theorem 1, thus the value of m is determined by the LWP theory. Note that

if Q additionally contained higher degree terms independent of ∂2xu and ∂3xu, the above

argument applies. Equations in the class (1.37) are of this form.

Case 3 The remaining nonlinearities in the class (1.54) exhibit a loss of derivatives

which, in general, cannot be controlled by the correction technique. We illustrate the

argument in this case by focusing on the example equation

∂tu− ∂5xu = u∂2xu. (2.89)

The IVP associated to this equation is locally well-posed in Hs(R), s ≥ 2, using the

contraction mapping principle. However, our modification to the proof of Theorem 1 will

require the use of weighted Sobolev spaces.

After integrating by parts and supressing coefficients

B =

∫
u(∂l+1

x u)2χ(x+ νt) dx+

∫
∂2xu(∂lxu)2χ(x+ νt) dx+ B̃ (2.90)

where B̃ is controlled by induction. Combining with (2.86), after integrating (2.85) in

time and using the hypothesis on the initial data we have

y(t) :=

∫
(∂lxu)2χ(x+ νt) dx+

∫ t

0

∫
(∂l+2
x u)2χ′(x+ ντ) dxdτ

≤ c0 +

∫ t

0

∫
∂2xu(∂lxu)2χ(x+ ντ) dxdτ +

∣∣∣∣∫ t

0

∫
u(∂l+1

x u)2χ(x+ ντ) dxdτ

∣∣∣∣
≤ c0 + c1

∫ t

0

y(τ) dτ +

∣∣∣∣∫ t

0

∫
u(∂l+1

x u)2χ(x+ ντ) dxdτ

∣∣∣∣ . (2.91)
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Focusing on the last term in the above line,

∣∣∣∣∫ t

0

∫
u(∂l+1

x u)2χ(x+ ντ) dxdτ

∣∣∣∣
≤

∑
j∈Z

sup
0≤t≤T
j≤x≤j+1

|u(x, t)|

(sup
j∈Z

∫ T

0

∫ j+1

j

(∂l+1
x u)2χ(x+ ντ) dxdτ

)
. (2.92)

We check three cases to show the inductive case l − 1 bounds the second factor. First,

the integral vanishes for j + 1 < ε − νT . For ε < j we apply the inductive hypothesis

with ν = 0. Otherwise we utilize a pointwise bound on χ

∫ T

0

∫ j+1

j

(∂l+1
x u)2χ(x+ ντ) dxdτ .

∫ T

0

∫
(∂l+1
x u)2χ′(x+ ντ ; ε/5, νT + ε) dxdτ.

The technique for bounding the first factor is described in the next theorem. In

general, there exists a nonnegative integer n depending on the form of the polynomial Q

such that the following quantities must be estimated:

∑
j∈Z

sup
0≤t≤T
j≤x≤j+1

|∂kxu(x, t)|, k = 0, 1, . . . , n,

assuming u is a Schwarz solution of IVP (1.54). With such an estimate in hand, the

result follows by an application of Gronwall’s inequality.

Theorem 6. Let k ∈ Z+∪{0} and u be a Schwartz solution of the IVP (1.54) correspond-

ing to initial data u0 ∈ S (R). Then there exists a nonnegative integer m0 (depending on

Q and k) and positive real number s0 ≥ 2m0 such that

∑
j∈Z

sup
0≤t≤T
j≤x≤j+1

|∂kxu(x, t)| ≤ c(T ; ‖u0‖Xs0,m0
).
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The idea is to apply a Sobolev type inequality in the t-variable and show that the

resulting summation converges by imposing enough spatial decay on the solution. Acheiv-

ing this goal requires the following lemma.

Lemma 5. If f ∈ C2(R2), then

sup
0≤t≤T
0≤x≤L

|f(x, t)| ≤
∫ T

0

∫ L

0

|∂xtf(y, s)| dyds+
1

TL

∫ T

0

∫ L

0

|f(y, s)| dyds

1

L

∫ T

0

∫ L

0

|∂tf(y, s)| dyds+
1

T

∫ T

0

∫ L

0

|∂xf(y, s)| dyds

for any L, T > 0.

We now turn to the proof of Theorem 6.

Proof. For concreteness, we show details for k = 0. Applying Lemma 5,

∑
j∈Z

sup
0≤t≤T
j≤x≤j+1

|u(x, t)| .T ‖∂xtu‖L1
TL

1
x

+ ‖∂xu‖L1
TL

1
x

+ ‖∂tu‖L1
TL

1
x

+ ‖u‖L1
TL

1
x
.

Focusing on the worst term ‖∂xtu‖L1
TL

1
x

and applying

‖f‖1 ≤ ‖f‖2 + ‖xf‖2

we arrive at

‖∂xtu‖L1
TL

1
x
.T ‖∂xtu‖L∞

T L
2
x

+ ‖x∂xtu‖L∞
T L

2
x
.

Looking at the second term and using the differential equation we have

‖x∂xtu‖2 ≤ ‖x∂6xu(t)‖2 + ‖x∂x(u∂2xu)‖2 =: A+B.
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Then

A2 =

∫
x2(∂6xu)2dx

=

∫
u∂6x(x

2∂6xu)dx

=

∫
x2u∂12x udx+ 12

∫
xu∂11x udx+ 30

∫
u∂10x udx

. ‖x2u‖2‖∂12x u‖2 + ‖xu‖2‖∂11x u‖2 + ‖u‖2‖∂10x u‖2.

and so we impose s0 ≥ 12,m0 ≥ 4 (compared to the H2(R) local well-posedness). The

estimates for the remaining terms are similar, completing the case k = 0.
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Chapter 3

Propagation for Quasilinear

Equations

In this chapter we treat the quasilinear IVP


∂tu+ a(u, ∂xu, ∂

2
xu)∂3xu+ b(u, ∂xu, ∂

2
xu) = 0, , x ∈ R, t ≥ 0,

u(x, 0) = u0(x)

(3.1)

where the functions a, b : R3 → R satisfy:

(H1) for any compact subset of R3 there exists κ > 1 so that 1/κ ≤ a(·) ≤ κ;

(H2) a, b are C∞ and thus all derivatives are bounded on compact subsets of R3;

(H3) ∂zb ≤ 0, where b = b(x, y, z).

For a = a(y0, y1, y2) we write ∂ja := ∂yja for j = 0, 1, 2, and similarly for b = b(y0, y1, y2).
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3.1 Energy Identity and Cutoff Function

We now state the energy identity for equation (3.1), which is similar to that in [8].

Lemma 6. Let u ∈ C([0, T ] : H∞(R)) be a solution to IVP (3.1) and let ψ ∈ C3(R2).

Then for each l ∈ Z+, l ≥ 8,

d

dt

∫
(∂lxu)2ψ dx+

∫
(∂l+1
x u)2{3∂x(aψ)− 2(l + 1)∂xaψ − ∂2b ψ} dx

= O(u, ∂xu, . . . , ∂
l
xu). (3.2)

Details of this identity will be provided in the next section. First, we construct a

cutoff function which satisfies

3∂x(a ψ)− 2(l + 1)∂xa ψ ≥ 0. (3.3)

Along with (H3), this will facilitate an inductive proof of Theorem 5.

Begin by defining the polynomial

ρ(x) = 140

∫ x

0

y3(1− y)3 dy (3.4)

which satisfies

ρ(0) = 0, ρ(1) = 1,

ρ′(0) = ρ′′(0) = ρ′′′(0) = 0,

ρ′(1) = ρ′′(1) = ρ′′′(1) = 0,
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with 0 < ρ, ρ′ for 0 < x < 1. For ε, b > 0 define χ ∈ C3(R) via

χ(x; ε, b) =


0 x ≤ ε,

ρ((x− ε)/b) ε < x < b+ ε,

1 b+ ε ≤ x.

All derivatives of χ are supported in [ε, b+ ε], thus continuity yields

sup
x∈[ε,b+ε]

|χ(j)(x; ε, b)| ≤ c(j; b) (3.5)

for j = 1, 2, 3. A direct computation provides

sup
x∈[ε,b+ε]

|χ(j)(x; ε, b)| ≤ c(j; ε; b)χ′(x+ νt; ε/3, b+ ε) (3.6)

for j = 1, 2, 3. When the parameters ε and b are suppressed, χ(x) denotes χ(x; ε, b).

Motivated by [8], we construct a “rough” version of χ by defining for ν ≥ 0

ψ(x, t) =
1

3
[a(u, ∂xu, ∂

2
xu)]−1+

2
3
(l+1)

∫ x

−∞
[a(u, ∂xu, ∂

2
xu)]−

2
3
(l+1)χ′(y + νt) dy. (3.7)

As with χ, we generally suppress the dependence of ψ on l, ε, b and ν. Note that ψ depends

on x, t through the solution u to IVP (1.60); we will often abbreviate a = a(x, t).

We next list some properties of ψ. Assumption (H1) implies

c · χ(x+ νt) ≤ ψ(x, t) ≤ c̃ · χ(x+ νt) (3.8)

for constants 0 < c, c̃ depending only on κ and l. As χ′ is supported in [ε, b + ε], we see

65



Propagation for Quasilinear Equations Chapter 3

that property (3.8) leads to

S := supp ψ(x, t) = {(x, t) : x+ νt ≤ ε}. (3.9)

Denote by 1S the characteristic function of this set. Computation shows

∂xψ(x, t) =

(
2(l + 1)− 3

3

)
∂xa(x, t)[a(x, t)]−1ψ(x, t) +

1

3
[a(x, t)]−1χ′(x+ νt) (3.10)

and, crucially,

3∂x(aψ)− 2(l + 1)∂xaψ = χ′(x+ νt). (3.11)

Using (H1), (3.8), (3.10) and the Sobolev embedding

|∂xψ(x, t)| ≤ c(l;κ; ‖u‖L∞
T H

4
x
) {χ(x+ νt) + χ′(x+ νt)} . (3.12)

Similarly,

|∂2xψ(x, t)| ≤ c(l;κ; ‖u‖L∞
T H

5
x
) {χ+ χ′ + χ′′}

∣∣
x+νt

(3.13)

and

|∂3xψ(x, t)| ≤ c(l;κ; ‖u‖L∞
T H

6
x
) {χ+ χ′ + χ′′ + χ′′′}

∣∣
x+νt

. (3.14)

Combining these inequalities with (3.6) shows for j = 1, 2, 3,

|∂(j)x ψ(x, t)| ≤ c(l;κ; ε; b; ‖u‖L∞
T H

6
x
) {χ(x+ νt) + χ′(x+ νt; ε/3, b+ ε)} (3.15)

which is the core inequality of the inductive technique.
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By using the equation (3.1), (H1) and (H2),

∂ta(u, ∂xu, ∂
2
xu) = ∂0a ∂tu+ ∂1a ∂t∂xu+ ∂2a ∂t∂

2
xu

= −∂0a [a(u, ∂xu, ∂
2
xu)∂3xu+ b(u, ∂xu, ∂

2
xu)]

− ∂1a ∂x[a(u, ∂xu, ∂
2
xu)∂3xu+ b(u, ∂xu, ∂

2
xu)]

− ∂2a ∂2x[a(u, ∂xu, ∂
2
xu)∂3xu+ b(u, ∂xu, ∂

2
xu)] (3.16)

and so applying the Sobolev embedding produces

|∂ta(u)| ≤ c(‖u‖L∞
T H

6
x
). (3.17)

Analogous to (3.15),

|∂tψ(x, t)| ≤ c(l;κ; ν; ε; b; ‖u‖L∞
T H

6
x
) {χ(x+ νt) + χ′(x+ νt; ε/3, b+ ε)} . (3.18)

3.2 Proof of Theorem 5

The proof will be carried out for the IVP


∂tu+

(
1 + (∂2xu)2

)
∂3xu = 0, x ∈ R, t > 0,

u(x, 0) = u0(x) ∈ Hm(R), m ≥ 7.

(3.19)

Proof. Without loss of generality we shall assume that m = 7 and that x0 = 0. Let u(·)

be a smooth solution of the IVP (3.19) provided by Theorem D corresponding to smooth

data u0 satisfying for some l ∈ Z+, l ≥ 8,

‖∂lxu0‖2L2(0,∞) =

∫ ∞
0

(∂lxu0)
2(x) dx <∞. (3.20)
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We have that the solution u(·) satisfies

u ∈ C([0, T ] : H7−δ(R)) ∩ L∞([0, T ] : H7(R)), for all δ > 0 (3.21)

and
T∫

0

R∫
−R

(∂8xu)2(x, t) dxdt ≤ c(T,R, ‖u0‖7,2). (3.22)

We carry out the details for a(u, ∂xu, ∂
2
xu) = 1 + (∂2xu)2 and b(u, ∂xu, ∂

2
xu) ≡ 0.

Applying 2ψ∂lxu∂
l
x to the equation and integrating in the x-variable yields

d

dt

∫
(∂lxu)2ψ dx−

∫
(∂lxu)2∂tψ dx

+
l∑

k=0

2

(
l

k

)∫
∂lxu∂

k
xa∂

l−k+3
x uψ dx = 0. (3.23)

Denote by Ak each term in the summation above. After integrating by parts,

A1 = 3

∫
(∂l+1
x u)2∂x(aψ) dx−

∫
(∂lxu)2∂3x(aψ) dx

A2 = −2l

∫
(∂l+1
x u)2∂xaψ dx+ l

∫
(∂lxu)2∂2x(∂xaψ) dx

A3 = −
(
l

2

)∫
(∂lxu)2∂x(∂

2
xaψ) dx

A4 = 2

(
l

3

)∫
(∂lxu)2∂3xaψ dx (3.24)
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and

Al = 2

∫
∂3xu∂

l
xu∂

l
x(1 + (∂2xu)2)ψ dx

= −2

∫
(∂l+1
x u)2∂xaψ dx+ 2

∫
(∂lxu)2∂2x(∂

2
xu∂

3
xuψ) dx

+ 4
l−1∑
k=1

(
l − 1

k

)∫
∂3xu∂

2+k
x u∂l+2−k

x u∂lxuψ dx. (3.25)

Therefore, ignoring combinatorial coefficients and taking into consideration the form of

a(u, ∂xu, ∂
2
xu), the energy identity (3.2) becomes

d

dt

∫
(∂lxu)2 ψ dx+

∫
(∂l+1
x u)2 χ′(x+ νt) dx

=

∫
(∂lxu)2{∂tψ + P ((∂jxu)j=2,3,4,5; (∂jxψ)j=0,1,2,3)} dx

+

bl/2c∑
k=1

∫
∂3xu∂

2+k
x u∂l+2−k

x u∂lxuψ dx

=: E1 + E2. (3.26)

with l ∈ Z+, l ≥ 8 and ψ chosen as in (3.7). Here P (·) is a polynomial in its variables,

linear in the components ψ, ∂xψ, ∂
2
xψ, ∂

3
xψ and quadratic in ∂2xu, . . . , ∂

5
xu.

Case l = 8

Using property (3.18), followed by (3.8),

∣∣∣∣∫ (∂8xu)2 ∂tψ dx

∣∣∣∣ ≤ ∫ (∂8xu)2 |∂tψ| dx

.
∫

(∂8xu)2{χ(x+ νt) + χ′(x+ νt; ε/3, b+ ε)} dx

.
∫

(∂8xu)2 ψ dx+

∫
(∂8xu)2 χ′(x+ νt; ε/3, b+ ε)} dx. (3.27)
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Using the Sobolev embedding, (3.15) and (3.8),

∣∣∣∣∫ (∂8xu)2P ((∂jxu)j=2,3,4,5; (∂jxψ)j=0,1,2,3)} dx
∣∣∣∣ (3.28)

≤ c0‖u‖2L∞
T H

7
x

∫
(∂8xu)2{χ(x+ νt) + χ′(x+ νt; ε/3, b+ ε)} dx

.
∫

(∂8xu)2 ψ dx+

∫
(∂8xu)2 χ′(x+ νt; ε/3, b+ ε)} dx. (3.29)

Combining these two estimates yields

|E1| .
∫

(∂8xu)2 ψ dx+

∫
(∂8xu)2 χ′(x+ νt; ε/3, b+ ε)} dx. (3.30)

For k = 1, 2, the terms of E2 may be estimated with similar arguments after in-

tegrating by parts. For k = 3, 4, using the Sobolev embedding and Cauchy-Schwarz

inequality

∣∣∣∣∫ ∂3xu∂
2+k
x u∂10−kx u∂8xuψ dx

∣∣∣∣ (3.31)

≤ ‖u‖2L∞
T H

7
x

{∫
(∂10−kx u)2 ψ dx+

∫
(∂8xu)2 ψ dx

}
. 1 +

∫
(∂8xu)2 ψ dx. (3.32)

Therefore

|E2| . 1 +

∫
(∂8xu)2 ψ dx+

∫
(∂8xu)2 χ′(x+ νt; ε/3, b+ ε)} dx. (3.33)
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Integrating the identity (3.26) in the time interval [0, t], for 0 ≤ t ≤ T produces

∫
(∂8xu)2 ψ dx+

∫ t

0

∫
(∂9xu)2 χ′(x+ ντ) dxdτ

≤
∫ t

0

|E1|+ |E2| dτ

≤
∫

(∂8xu0)
2 ψ(x, 0) dx

+ cT + c

∫ T

0

∫
(∂8xu)2 χ′(x+ ντ ; ε/3, b+ ε)} dxdτ

+

∫ t

0

∫
(∂8xu)2 ψ(x, τ) dxdτ. (3.34)

The integral involving the data, u0, is finite by hypothesis; the integral containing χ′ is

finite by the local smoothing property (3.22). Thus

y(t) :=

∫
(∂8xu)2 ψ dx+

∫ t

0

∫
(∂9xu)2 χ′(x+ ντ) dxdτ

≤ c0 + c1

∫ t

0

∫
(∂8xu)2 ψ(x, τ) dxdτ

≤ c0 + C1

∫ t

0

y(τ) dτ. (3.35)

Applying Gronwall’s inequality

sup
0≤t≤T

∫
(∂8xu)2 ψ(x, t) dx+

∫ T

0

∫
(∂9xu)2 χ′(x+ ντ) dxdτ <∞. (3.36)

Case l ≥ 9

The estimates for E1 are identical to the l = 8 case and yield

|E1| .
∫

(∂lxu)2 ψ dx+

∫
(∂lxu)2 χ′(x+ νt; ε/3, b+ ε)} dx. (3.37)
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After integrating by parts, the k = 1, 2 terms of E2 may be estimated as before,

∣∣∣∣∫ ∂3xu∂
2+k
x u∂l+2−k

x u∂lxuψ dx

∣∣∣∣ . 1 +

∫
(∂lxu)2 ψ dx. (3.38)

However, an inductive argument is used to control lower order terms present in E2.

Using the Sobolev embedding and (2.16), we find

∣∣∣∣∫ ∂3xu∂
2+k
x u∂l+2−k

x u∂lxuψ dx

∣∣∣∣
≤ ‖∂3xu‖L∞

x

∫
|∂2+kx u∂l+2−k

x u∂lxu|ψ dx

.

{∫
(∂3+kx u)2ψ dx+

∫
(∂2+kx u)2ψ dx+

∫
(∂2+kx u)2|∂xψ| dx

}
×
∫

(∂l+2−k
x u)2ψ(x+ νt; ε/5, 4ε/5) dx+

∫
(∂lxu)2ψ(x+ νt) dx. (3.39)

Since k = 3, 4, . . . , bl/2c, notice that 3 +k < l and l+ 2−k < l. Therefore, the induction

hypothesis shows that all terms (except for the last) in the above inequality are finite.

Collecting these estimates,

|E2| ≤
bl/2c∑
k=1

∣∣∣∣∫ ∂3xu∂
2+k
x u∂l+2−k

x u∂lxuψ dx

∣∣∣∣ . 1 +

∫
(∂lxu)2 ψ dx. (3.40)
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Integrating the identity (3.26) in the time interval [0, t], for 0 ≤ t ≤ T produces

∫
(∂lxu)2 ψ dx+

∫ t

0

∫
(∂l1x u)2 χ′(x+ ντ) dxdτ

≤
∫ t

0

|E1|+ |E2| dτ

≤
∫

(∂lxu0)
2 ψ(x, 0) dx

+ cT + c

∫ T

0

∫
(∂lxu)2 χ′(x+ ντ ; ε/3, b+ ε)} dxdτ

+

∫ t

0

∫
(∂lxu)2 ψ(x, τ) dxdτ. (3.41)

The integral involving the data, u0, is finite by hypothesis; the integral containing χ′ is

finite by the inductive hypothesis. Thus

y(t) :=

∫
(∂lxu)2 ψ dx+

∫ t

0

∫
(∂l+1
x u)2 χ′(x+ ντ) dxdτ

≤ c0 + c1

∫ t

0

∫
(∂lxu)2 ψ(x, τ) dxdτ

≤ c0 + C1

∫ t

0

y(τ) dτ. (3.42)

Applying Gronwall’s inequality

sup
0≤t≤T

∫
(∂lxu)2 ψ(x, t) dx+

∫ T

0

∫
(∂l+1
x u)2 χ′(x+ ντ) dxdτ <∞. (3.43)

Finally, to justify the previous formal computation we recall that the argument in the

proof of Theorem D shows that u in (3.21)-(3.22) is the limit in the C([0, T ] : H7−δ(R))-

norm (for any δ > 0) of smooth solutions (weak form of the continuous dependence upon

the data). In particular, we have that u is the uniform limit of smooth solutions in

R × [0, T ]. Hence, by performing the above (formal) argument in the smooth solutions

one obtains a uniform bounded sequence in the norms described in (3.21) and (3.22).
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Hence, considering the uniform boundedness, the weak convergence and passing to the

limit we obtain the desired result.
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