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Abstract

The Structure of Fundamental Groups of Smooth Metric

Measure Spaces

Maree Trisha Afaga Jaramillo

In this dissertation, we investigate the structure of fundamental groups of

smooth metric measure spaces with Bakry-Émery Ricci tensor bounded from be-

low. In particular, we generalize a result of Gabjin Yun to show that if a smooth

metric measure space has almost nonnegative Bakry-Émery Ricci tensor and a

lower bound on volume, then its fundamental group is almost abelian. We also

generalize a result of Vitali Kapovitch and Burkhard Wilking to show that there is

a uniform bound on the number of generators of the fundamental groups of smooth

metric measure spaces with Bakry-Émery Ricci tensor bounded from below. In or-

der to utilize the proof techniques of Yun and Kapovitch-Wilking, we extend many

valuable tools for studying Riemannian manifolds with Ricci curvature bounded

from below to the smooth metric measure space setting. In particular, we extend

Jeff Cheeger and Tobias Colding’s Splitting Theorem, which plays a key role in

the proofs of our results on fundamental groups.
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Chapter 1

Introduction

Geometry and topology are two areas in mathematics that are intricately

linked. It is then unsurprising that there exist many theorems which relate the

geometry of a manifold to its topology. For example, Myers’ Theorem (see The-

orem 2.1) states that if the Ricci curvature of a complete Riemannian manifold

is bounded below by a positive constant, then M is compact. As another exam-

ple, John Milnor proved that any finitely generated subgroup of the fundamental

group of a complete n-dimensional Riemannian manifold with nonnegative Ricci

curvature has polynomial growth of degree ≤ n (see Theorem 2.5). These classic

theorems, especially that of Milnor, suggest the broad theme which we wish to

explore in this dissertation. We wish to investigate the topology, in particular,

the fundamental group, of a space whose curvature is bounded from below.
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The classic theorems mentioned above deal with curvature on a Riemannian

manifold. A Riemannian manifold M is one which is endowed with a Riemannian

metric g. This metric is used to derive and study different types of curvature

on M , such as Ricci curvature. This metric also induces a natural volume form

dvolg which allows us to compute volumes of subsets of M . The Bishop-Gromov

volume comparison, below, is a classic theorem which relates Ricci curvature and

volume. It gives control over the volume of a ball in a Riemannian manifold in

terms of the volume of a ball in the model space Mn
H , that is, the simply connected

Riemannian manifold of dimension n with constant sectional curvature H.

Theorem 1.1 (Bishop-Gromov Volume Comparison). If Mn has Ric(M) ≥ (n−

1)H, then

Vol(B(p,R))

VolnH(B(R))

is nonincreasing in R.

Here, B(R) is a ball of radius R in Mn
H and VolnH(B(R)) denotes the volume

of that ball. The proof of the Bishop-Gromov volume comparison is contained in

many texts, see for example [Pet98, Lemma 9.1.6]. This volume comparison proves

to be an indispensable tool in much of the work that motivates this dissertation.

In fact, Milnor utilized this tool in proving his theorem regarding the growth of

finitely generated subgroups of the fundamental group.
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In this dissertation we explore the fundamental groups of Riemannian mani-

folds with a weighted volume element, which are called smooth metric measure

spaces. In particular, we have the following definition.

Definition 1.2. A smooth metric measure space is a triple (Mn, g, e−fdvolg), where

Mn is a complete n-dimensional Riemannian manifold equipped with metric g,

volume density dvolg, and f : Mn → R is smooth.

Smooth metric measure spaces occur naturally as collapsed measured Gromov-

Hausdorff limits of sequences of warped products. Specifically, (Mn×Fm, gε, d̃volgε)

→ (Mn, g, e−fdvolgM ) as ε→ 0, where d̃volgε is the renormalized Riemannian mea-

sure and gε = gM + (εe
−f
m )2gF is the warped product metric with gM and gF the

metrics on M and F , respectively. The Ricci curvature of the warped product

metric gε in the M direction is given by Ric + Hessf − 1
m
df ⊗ df. This leads to

the definition of the m-Bakry-Émery Ricci tensor on the smooth metric measure

space (Mn, g, e−fdvolg).

Definition 1.3. The m-Bakry-Émery Ricci tensor is given by

Ricmf = Ric + Hessf − 1

m
df ⊗ df, 0 < m ≤ ∞.

When m =∞, we have the Bakry-Émery Ricci tensor, given by

Ricf = Ric + Hessf.

In this sense, the Bakry-Émery Ricci curvature is a natural analogue to Ricci

curvature on (Mn, g, e−fdvolg). This tensor has appeared in the work on diffusion
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processes by Dominique Bakry and Michel Émery [BE85]. It also appears in

the study of Ricci flow. When Ricf = λg for some λ ∈ R, one recognizes this

equation as the gradient Ricci soliton equation. Because of this, the function f is

sometimes referred to as the potential function. Note that when f is constant, the

usual Ricci curvature tensor is recovered. As we have seen, much can be said about

the topology of a Riemannian manifold when it has Ricci curvature bounded from

below. Thus it is natural to ask if the same information holds true for smooth

metric measure spaces with Bakry-Émery Ricci curvature bounded from below.

This has been a field of active study. See, for example, [Lic70], [Qia97], [WW09],

[FLZ09].

In this dissertation we will show that we can extend theorems regarding fun-

damental groups of Riemannian manifolds with Ricci curvature bounded from be-

low to smooth metric measure spaces with Bakry-Émery Ricci curvature bounded

from below. In particular, we show that the fundamental group of manifolds in

the class of compact smooth metric measure spaces which have volume bounded

from below, diameter bounded from above, and almost nonnegative Bakry-Émery

Ricci curvature contains an abelian subgroup of finite index.

Theorem 1.4. For any constants D, k, v > 0, there exists ε = ε(D, k, n, v) > 0

such that if a smooth metric measure space (Mn, g, e−fdvolg) with |f |≤ k admits

a metric under which it satisfies the conditions

Ricf ≥ −ε, (1.1)
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diam (M) ≤ D, (1.2)

Volf (M) ≥ v, (1.3)

then π1(M) is almost abelian, i.e. π1(M) contains an abelian subgroup of finite

index.

This result may be viewed as an extension of a result of Jeff Cheeger and Detlef

Gromoll (see Theorem 2.6) to a class of manifolds in smooth metric measure space

setting. We also prove the following regarding generation of the fundamental group

of compact smooth metric measure spaces.

Theorem 1.5. Given n, k, and D there is a constant C = C(n, k,D) such that

the following holds. Suppose (Mn, g, e−fdvolg) is a smooth metric measure space

with |f |≤ k, diam (M) ≤ D, and Ricf ≥ −(n− 1). Then π1(M) can be generated

by at most C elements.

This theorem is an extension of Vitali Kapovitch and Burkhard Wilking’s result

(see Theorem 2.10) to the smooth metric measure space setting. The result of

Kapovitch-Wilking stems from the larger question of finding a uniform bound

on the index of a nilpotent subgroup contained in the fundamental group of a

compact manifold of Ricci curvature bounded from below.

Note that when f is constant, Theorems 1.4 and 1.5 recover the original result

in the case that Ricci curvature is bounded from below. In order to obtain these

theorems in the smooth metric measure space setting, we use tools developed for
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smooth metric measure spaces as in [WW09] and follow the proof techniques used

in [Yun97] and [KW11]. Both proofs utilize, in part, the Splitting Theorem of

Jeff Cheeger and Tobias Colding (see Theorem 2.12). Before proving Theorems

1.4 and 1.5, we show that the following holds for smooth metric measure spaces.

Theorem 1.6. Let (Mn
i , gi, e

−fidvolgi) be a sequence satisfying the following: Mi

has Ricfi(Mi) ≥ −(n− 1)δi, where δi → 0, |fi|≤ k, and Mn
i → Y in the Gromov-

Hausdorff sense. If Y contains a line, then Y splits as an isometric product,

Y = R×X for some length space X.

The proof of the Cheeger-Colding Splitting Theorem in the case for Ricci

curvature bounded from below is quite involved. As will be discussed in Chapter

3, the Cheeger-Colding Splitting Theorem hinges upon several invaluable, well-

established tools for Riemannian manifolds with Ricci curvature bounded from

below, among which is the Cheng-Yau gradient estimate. Though we were able

to obtain a gradient estimate appropriate for our purposes (see Proposition 3.2),

there were difficulties to the full generalization of this estimate to the smooth

metric measure space setting.

We note here that Feng Wang and Xiaohua Zhu [WZ13] also have an almost

splitting theorem for limits of sequences of spaces with Bakry-Émery Ricci tensor

bounded from below. As we see in Theorem 1.6, our splitting theorem requires a

uniform bound on |fi|, whereas the hypotheses of Wang-Zhu’s splitting theorem
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require uniform bounds on both |fi| and |∇fi|. The additional hypothesis of Wang

and Zhu is due in part to the gradient estimate used.

The structure of the remaining parts of this dissertation are as follows. In

Chapter 2, we discuss some of the work which motivates this thesis and pro-

vide some background to the main theorems that we are interested in proving.

In Chapter 3, we extend the Cheeger-Colding Splitting Theorem to the smooth

metric measure space setting. In Chapter 4, we give a new absolute volume com-

parison (Proposition 4.1) and use this to prove Theorem 1.4. In Chapter 5, we

conclude with proof of Theorem 1.5.
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Chapter 2

Background

In this chapter, we first review results regarding fundamental groups of mani-

folds with Ricci curvature bounded from below, including those results which we

extend in this dissertation. We also state some of the key definitions and results

on smooth metric measure spaces which will be used in later discussions. Finally,

we review the notion of Gromov-Hausdorff and equivariant Gromov-Hausdorff

convergence of sequences of manifolds.
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2.1 Fundamental Groups of Manifolds with Ricci

Curvature Bounded from Below

The question of how curvature affects the topology of manifolds has long been

studied. A classical result which shows how a lower bound on Ricci curvature

affects topology of a manifold is Myers’ Theorem:

Theorem 2.1. [Mye41] Let Mn be a complete n-dimensional Riemannian mani-

fold. Suppose Ric(M) ≥ (n− 1)H > 0. Then diam (M) ≤ π√
H

. In particular, M

is compact and π1(M) is finite.

The rigidity result given by Shiu Yuen Cheng [Che75] states if M satisfies the

conditions of Myers’ Theorem and if, in addition, diam(M) = π√
H

, then M is

isometric to the sphere with constant curvature H and radius 1√
H

. These re-

sults demonstrate how a lower Ricci curvature bound can have strong topological

implications.

Of these topological implications, the work in this dissertation concerns how

curvature affects the fundamental group. A lower Ricci curvature bound has been

shown to give control over the fundamental group of a manifold. When the Ricci

curvature condition on a manifold M is relaxed to Ric(M) ≥ 0, then M may no

longer be compact. We note here that it is a conjecture of John Milnor [Mil68] that

if Ric(M) ≥ 0, then π1(M) is finitely generated. Though this conjecture remains

open, the curvature condition has been used to give other characteristics of the
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fundamental group of M . In particular, we have results regarding the growth of

finitely generated subgroups of π1(M). Recall that for a finitely generated group

Γ = 〈g1, . . . , gk〉, any g ∈ Γ can be written as a word

g = Πig
ni
ki
,

where ki ∈ {1, . . . , k}. Define the length of this word with this representation

to be
∑

i|ni|. Let |g| be the minimum of the lengths of all word representations

of g using the specified set of generators. Note that |·| depends on the choice of

generators.

Definition 2.2. Fix a set of generators for a finitely generated group Γ. Then

the growth function of Γ is given by

Γ(s) = #{g ∈ Γ : |g|≤ s}.

With this definition for the growth function of the group, we can now state

what it means for a group to have polynomial growth.

Definition 2.3. A finitely generated group Γ is said to have polynomial growth if

for each set of generators the growth function Γ(s) ≤ asn for some a > 0.

Though the definition of a finitely generated group having polynomial growth

requires that the condition on the growth function holds for each set of generators,

we have the following lemma.
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Lemma 2.4. If there exists a set of generators for Γ such that Γ(s) ≤ asn for

some a > 0, then Γ has polynomial growth of degree ≤ n.

Thus, in order to show that a finitely generated group has polynomial growth, one

only needs to show that the condition holds for a set of generators. With these

definitions we now recall the following theorem of John Milnor.

Theorem 2.5. [Mil68] Let Mn be a complete n-dimensional Riemannian mani-

fold. Suppose Ric(M) ≥ 0. Then any finitely generated subgroup of π1(M) is of

polynomial growth of degree ≤ n.

Note that Mikhael Gromov [Gro81] proved that a finitely generated group has

polynomial growth if and only if it is almost nilpotent, that is, it contains a nilpo-

tent subgroup of finite index. Gromov’s result combined with Theorem 2.5 then

tells us that any finitely generated subgroup of the fundamental group is almost

nilpotent. It is natural then to ask if such groups can always be realized as fun-

damental groups of manifolds with nonnegative Ricci curvature. In this direction,

Guofang Wei [Wei88] showed that every finitely generated torsion-free nilpotent

group can be realized as the fundamental group of a complete Riemannian mani-

fold with strictly positive Ricci curvature. Burkhard Wilking [Wil00] then showed

that the same holds true for any finitely generated almost nilpotent group.

If Mn is compact, then π1(M) is finitely generated. Thus, if M is compact

and has nonnegative Ricci curvature, one can say that π1(M) itself has polynomial

growth of index ≤ n and is therefore almost nilpotent. This result for compact

11



manifolds can be strengthened further. In particular, we have the following theo-

rem of Jeff Cheeger and Detlef Gromoll.

Theorem 2.6. [CG71] If M is a complete compact manifold with nonnegative

Ricci curvature, then π1(M) is almost abelian, that is, it contains an abelian

subgroup of finite index.

One may then ask what happens if we relax the curvature condition further and

allow the lower Ricci curvature bound to be negative. Michael Anderson proved

the following finiteness result for a class of n-dimensional compact manifolds with

Ricci curvature bounded from below.

Theorem 2.7. [And90, Theorem 2.2] In the class of manifolds Mn with Ric(M) ≥

(n−1)H, VolM ≥ V and diam (M) ≤ D, there are only finitely many isomorphsim

types of π1(M).

Utilizing Anderson’s finiteness result, Wei was able to generalize Theorem 2.5

to a class of compact manifolds with almost nonnegative Ricci curvature in the

following way.

Theorem 2.8. [Wei90] For any constant v > 0, there exists ε = ε(n, v) > 0

such that if a complete manifold Mn admits a metric satisfying the conditions

Ric(M) ≥ −ε, diam (M) = 1, and Vol(M) ≥ v, then π1(M) is of polynomial

growth with degree ≤ n.
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In light of Theorem 2.6, it is natural to ask if Theorem 2.8 can be strengthened

to show that the fundamental group is almost abelian. This question was answered

in the positive by Gabjin Yun.

Theorem 2.9. [Yun97] For any constant v > 0, there exists ε = ε(n, v) > 0

such that if a complete manifold Mn admits a metric satisfying the conditions

Ric(M) ≥ −ε, diam (M) = 1, and Vol(M) ≥ v, then π1(M) is almost abelian.

In a slightly different but related direction, one may ask about the index of the

nilpotent subgroup contained in the fundamental group of a compact manifold

with appropriate bounds on Ricci curvature. Vitali Kapovitch and Burkhard

Wilking show that there exist ε(n) > 0 and C(n) > 0 such that forM in the class of

compact n-dimensional manifolds with Ric(M) > −(n− 1) and diam(M) ≤ ε(n),

π1(M) contains a nilpotent subgroup of index of ≤ C(n) [KW11, Corollary 2]. In

order to prove this result, Kapovitch and Wilking show the existence of a uniform

bound on the number of generators of π1(M).

Theorem 2.10. [KW11, Theorem 3] Given n and D there exists C = C(n,D)

such that for any n-dimensional manifold M with Ric(M) ≥ −(n − 1) and

diam (M) ≤ D, the fundamental group π1(M) can be generated by at most C

elements.

We note here that a uniform bound had been given previously in the case when

the conjugate radius is bounded from below in [Wei97].

13



In this dissertation we study the fundamental group of smooth metric measure

spaces with Bakry-Émery Ricci curvature bounded from below. As we will see in

Section 2.3, some of these results regarding fundamental groups have already been

extended to this setting. It is our aim to extend more of the results mentioned

here to this setting.

2.2 Structure Results: The Splitting Theorems

As mentioned earlier, the Bishop-Gromov volume comparison, Theorem 1.1,

is a key tool that is used in proving many of the results on fundamental group. It

is utilized, for example, in the proof of Theorems 2.5, 2.7, and 2.8. An important

idea in the proof of these theorems is to view elements of the fundamental group

as deck transformations of the universal cover and to use estimates on lengths and

Theorem 1.1 to obtain appropriate bounds.

In addition to Theorem 1.1, structure results for the manifold itself were used

to give information on the fundamental group. Recall that Theorem 2.6 tells

us that the fundamental group of a compact manifold with nonnegative Ricci

curvature is almost abelian. This theorem for the fundamental group follows from

the Cheeger-Gromoll Splitting Theorem:

Theorem 2.11. [CG71, Theorem 2] Let M be a complete manifold of nonnegative

Ricci curvature. If M contains a line, then M splits isometrically as X × R.

14



We note here that versions of the Cheeger-Gromoll Splitting Theorem already

exist for smooth metric measure spaces. Andre Lichnerowicz [Lic70] showed that

if Ricf ≥ 0 on M for bounded f , and M contains a line, then M = Nn−1 × R

and f is constant along the line. See also Wei-Wylie [WW09]. In fact, Fuquan

Fang, Xiang-Dong Li, and Zhenlei Zhang [FLZ09] have shown that the splitting

theorem holds when f is only bounded from above.

In order to extend Theorem 2.6 to the class of compact manifolds as in Theorem

2.9, Yun [Yun97] utilizes another type of splitting theorem, the Cheeger-Colding

Splitting Theorem, which gives a structure result on the Gromov-Hausdorff limit

of a sequence of manifolds.

Theorem 2.12. [CC96, Theorem 6.64] Let Mn
i → Y in the Gromov-Hausdorff

sense. Suppose further that Ric(Mn
i ) ≥ −(n− 1)δi, where δi → 0 as i→∞. If Y

contains a line, then Y is isometric to X × R for some length space X.

The notion of Gromov-Hausdorff convergence will be discussed in more detail in

last section of this chapter.

Theorem 2.12 settles Conjecture 1.7 of [FY92]. The proof of this theorem is

quite complicated. The idea of the proof is to construct a harmonic function, b̄+,

which is related to a distance function, b. In particular, Cheeger and Colding

show that the function b̄ is pointwise close to b. Then, they show that ∇b̄ is close

to ∇b in an L2-sense, and finally that Hess b̄ is small in an L2-sense. It is with the

Hessian estimate that Cheeger and Colding develop a Quantitative Pythagorean

15



Theorem, with which they are able to show that a ball in the manifold is Gromov-

Hausdorff close to a ball in the product space X×R. Their arguments hinge upon

the use of some well-established tools, as well as the formulation new tools. The

key tools and arguments used to prove the Cheeger-Colding Splitting Theorem

will be discussed in more detail in Chapter 3.

2.3 Primer on Smooth Metric Measure Spaces

As mentioned previously, one of the aims of this dissertation is to extend

theorems regarding the structure of fundamental groups to smooth metric measure

spaces with Bakry-Émery Ricci curvature bounded from below. As part of our

motivation, we see that William Wylie [Wyl08, Theorem 1.1] has proven that

smooth metric measure spaces with Bakry-Émery Ricci curvature bounded from

below by λ > 0 has finite fundamental group. This extends part of Theorem 2.1

directly to its analogous smooth metric measure spaces setting.

For comparison, let us consider the following example. Let Rn be endowed

with Euclidean metric g0 and let the potential function f : Rn → R be given by

f(x) = λ
2
|x|2, for some λ > 0. Then we see Ricf = λg0. Since Rn is not compact,

this simple example shows that the compactness conclusion of Theorem 2.1 does

not extend directly.

Although results for manifolds with Ricci curvature bounded from below do not

necessarily extend directly to smooth metric measure spaces with Bakry-Émery

16



Ricci curvature bounded from below, we do know that results do extend when

additional assumptions are placed on the potential function f . We have seen, for

example, that Theorem 2.11 extends when f is bounded from above.

In order to extend theorems regarding fundamental groups to the smooth met-

ric measure space setting, we wish to have analogues of the tools used for studying

manifolds with Ricci curvature bounded from below. As we noted earlier, the

Bishop-Gromov volume comparison, Theorem 1.1, is a key tool in studying man-

ifolds with Ricci curvature bounded from below. Fortunately, Guofang Wei and

William Wylie [WW09] have shown that a Bishop-Gromov type volume compari-

son holds for smooth metric measure spaces, assuming additional assumptions on

f . Before stating their result, we first note that in a smooth metric measure space,

the volume of a ball will be computed with respect to the weighted measure on

the space, as follows.

Definition 2.13. The weighted volume (or f -volume) of a ball B(p,R) in a

smooth metric measure space (Mn, g, e−fdvolg) is given by

Volf (B(p,R)) =

∫
B(p,R)

e−fdvolg.

The volume comparison is then given by the following.

Theorem 2.14. (Volume Comparison)[WW09, Theorem 1.2] Let (Mn, g, e−fdvolg)

be a complete smooth metric measure space with Ricf ≥ (n− 1)H. Fix p ∈Mn.

17



a. If ∂rf ≥ −a along all minimal geodesic segments from p, then for R ≥ r > 0

(assume R ≤ π/2
√
H if H > 0),

Volf (B(p,R)

Volf (B(p, r))
≤ eaR

VolnH(R)

VolnH(r)
. (2.1)

Moreover, equality holds if and only if the radial sectional curvatures are equal

to H and ∂rf ≡ −a. In particular if ∂rf ≥ 0 and Ricf ≥ 0 then M has

f -volume growth of degree at most n.

b. If |f(x)|≤ k then for R ≥ r > 0 (assume R ≤ π/4
√
H if H > 0),

Volf (B(p,R))

Volf (B(p, r))
≤ Voln+4k

H (R)

Voln+4k
H (r)

. (2.2)

In particular, if f is bounded and Ricf ≥ 0 then M has polynomial f -volume

growth.

This volume comparison can be used to extend Milnor’s theorem, Theorem 2.5,

to the smooth metric measure space setting [WW09, Theorem 4.4]. Notice that

when the potential function is bounded, |f |≤ k, use of the volume comparison

Theorem 2.14(b.) will show that finitely generated subgroups have polynomial

growth of degree ≤ n + 4k. Ning Yang [Yan09] later improved this degree of

growth to n. In this dissertation, we will briefly discuss how one may apply

Theorem 2.14 to extend Wei’s result, Theorem 2.8, to the smooth metric measure

space setting to obtain polynomial growth of degree n+4k. We will also develop an
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absolute volume comparison (see Proposition 4.1) to improve this growth degree

to n.

As mentioned in the introduction, we wish to extend the Cheeger-Colding

Splitting Theorem to smooth metric measure spaces in order to utilize the ar-

guments of Yun and Kapovitch-Wilking. One of the major tools which we will

need to show that this result indeed extends to the desired setting is a Laplacian

comparison.

Due to the weighted measure in a smooth metric measure space, one replaces

the usual Laplace-Beltrami operator on Riemannian manifolds with an analogous

version.

Definition 2.15. Let (Mn, g, e−fdvolg) be a smooth metric measure space and

u ∈ C2(M). The f -Laplacian of u is given by

∆f (u) = ∆(u)− 〈∇u,∇f〉. (2.3)

This operator is a natural analogue to the Laplace-Beltrami operator on Rieman-

nian manifolds in the sense that it is self-adjoint with respect to the weighted

measure e−fdvolg.

From the Mean Curvature Comparison of Wei and Wylie [WW09, Theorem

1.1] and the definition of the f -Laplacian, equation (2.3), one immediately obtains

the following f -Laplacian comparison.
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Proposition 2.16. (f-Laplacian Comparison) Suppose Ricf ≥ (n−1)H with

|f |≤ k. Let ∆n+4k
H denote the Laplacian of the simply connected model space of

dimension n+ 4k with constant sectional curvature H. For radial functions u,

1. ∆f (u) ≤ ∆n+4k
H u if u′ ≥ 0.

2. ∆f (u) ≥ ∆n+4k
H u if u′ ≤ 0.

Recall that the classical Bochner formula, another important tool for studying

Riemannian manifolds with Ricci curvature bounded from below, is given by

1

2
∆(|∇u|2) = |Hessu|2+〈∇u,∇∆u〉+ Ric(∇u,∇u).

Combining this Bochner formula with the definition of the f -Laplacian, equation

2.3, one obtains a smooth metric measure space version of the Bochner formula:

1

2
∆f (|∇u|2) = |Hessu|2+〈∇u,∇∆fu〉+ Ricf (∇u,∇u), (2.4)

for any u ∈ C3(M).

As we will see, these tools of a volume comparison and Laplacian comparison

on smooth metric measure spaces will become invaluable in our work to extend

the desired theorems to this setting.

2.4 Gromov-Hausdorff Convergence

In order to prove Theorems 1.4 and 1.5, we closely follow the arguments of

Yun [Yun97] and Kapovitch-Wilking [KW11] for the case in which Ricci curvature

20



is bounded from below. Common to both arguments is the utilization of “contra-

dicting sequences,” that is, a sequence of manifolds for which the conclusion of

the theorem does not hold. Studying sequences of manifolds, in particular those

which converge in the Gromov-Hausdorff sense, has indeed become a useful tech-

nique in analyzing spaces with Ricci curvature bounded from below. As alluded

to previously, Cheeger-Colding’s Splitting (Theorem 2.12) is an important tool

in analyzing the limit spaces of these sequences. Before we discuss the extension

of this splitting theorem, we take a moment to recall some of the basic concepts

regarding sequences of manifolds.

To begin discussing convergence of a sequence of manifolds, one must first

establish the notion of distance between two arbitrary manifolds. Certainly, one

has the notion of a distance between two subsets of the same metric space.

Definition 2.17. Let (Z, d) be a metric space and X, Y ⊂ Z. Let

B(X, ε) = {z ∈ Z : inf
x∈X

d(z, x) < ε}.

The Hausdorff distance between X and Y is given by

dZH(X, Y ) = inf{ε > 0 : X ⊆ B(Y, ε), Y ⊆ B(X, ε)}.

In [Gro81, Section 6], Gromov introduces a definition of distance between two

arbitrary compact metric spaces. In order to do so, he first defines when a metric

on the disjoint union is admissible.
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Definition 2.18. Let (X, dX) and (Y, dY ) be metric spaces. A metric d on the

disjoint union X t Y is said to be admissible if d|X = dX and d|Y = dY .

Using admissible metrics, Gromov then defines the distance between two ar-

bitrary compact metric spaces as follows.

Definition 2.19. Let (X, dX) and (Y, dY ) be compact metric spaces. The Gromov-

Hausdorff distance between X and Y is given by

dGH(X, Y ) = inf{dXtYH (X, Y ) : admissible metrics d on X t Y }.

Using this Gromov-Hausdorff distance, one can show that if dGH(X, Y ) = 0,

then X and Y are in fact isometric, see for example [Pet98, Lemma 10.1.3].

If two spaces are close in the Gromov-Hausdorff sense, one may find a map

between the two spaces which is almost an isometry and almost surjective.

Definition 2.20. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y ,

not necessarily continuous, is called an ε-Gromov-Hausdorff approximation if for

all x1, x2 ∈ X,

|dX(x1, x2)− dY (f(x1), f(x2))|< ε and Y ⊆ B(f(X), ε).

The Gromov-Hausdorff distance between (X, dX) and (Y, dY ) may alterna-

tively be defined as the infimum among all ε > 0 such that there are ε-Gromov-

Hausdorff approximations from X → Y and Y → X.

Now, let (M, dGH) denote the collection of isometry classes of all compact

metric spaces. This collection forms a separable and complete metric space, see
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for example [Pet98, Proposition 10.1.7]. A sequence of metric spaces Xi converges

in the Gromov-Hausdorff sense to a limit space X if

lim
i→∞

dGH(Xi, X) = 0.

If we measure the distance between two noncompact metric spaces in the

same manner, the distance will likely be infinite. It is then difficult to speak of

Gromov-Hausdorff convergence of sequences of noncompact metric spaces. For

noncompact metric spaces, one instead uses the notion of pointed convergence. In

order to discuss pointed convergence, we first give the definition for the pointed

Gromov-Hausdorff distance. Here, (X, x, dX) and (Y, y, dY ) denote metric spaces

(X, dX) with specified base point x ∈ X and (Y, dY ) with specified base point

y ∈ Y , respectively. When computing the distance between these two pointed

metric spaces, one takes into account the distance between these specified points.

Definition 2.21. Let (X, x, dX) and (Y, y, dY ) be pointed metric spaces. Then the

pointed Gromov-Hausdorff distance between these two spaces is given by

dGH((X, x,dX), (Y, y, dY )) =

inf{dXtYH (X, Y ) + d(x, y) : admissible metrics d on X t Y }.

Again, the equivalence classes of isometric proper pointed metric spaces form

a metric space in its own right. Following the notation in [Pet98], we denote this

collection by M∗.
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Definition 2.22. Let (Xi, xi, di) be a sequence of pointed metric spaces in M∗.

We say (Xi, xi, di) converges in the pointed Gromov-Hausdorff topology if for all

R > 0 the closed metric balls (B(xi, R), xi, di) converge to (B(x,R), x, d) with

respect to the pointed Gromov-Hausdorff metric.

We note that Gromov’s Precompactness Theorem implies that the following

classes of Riemannian manifolds are precompact under the Gromov-Hausdorff

topology and pointed Gromov-Hausdorff topology respectively; for statement see,

for example [Pet98, Lemma 10.1.9].

Theorem 2.23 (Gromov (1980)). For any integer n ≥ 2, k ∈ R, and D > 0, we

have that the following classes are precompact:

1. The collection of closed Riemannian n-manifolds with Ric ≥ (n− 1)k

and diam ≤ D.

2. The collection of pointed complete Riemannian n-manifolds with

Ric ≥ (n− 1)k.

Recall that a main goal of this dissertation is to discuss the fundamental group

of smooth metric measure spaces with Bakry-Émery Ricci curvature bounded from

below. As in [Yun97] and [KW11] we will not only be considering sequences of

manifolds, but also group actions on each manifold in the sequence. Specifically,

for a sequence of pointed smooth metric measure spaces (Mi, gi, e
−fidvolgi , pi) we

look at the action of the fundamental group π1(Mi) on the universal cover M̃i,
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and consider the sequence (M̃i, π1(Mi), p̃i). We would like then to discuss not

only a convergent sequence of manifolds, but also the limit of a group action on

a manifold. To this end, we look to the notion of equivariant pointed Gromov-

Hausdorff convergence as discussed by Kenji Fukaya and Takao Yamaguchi in

their work on Riemannian manifolds with sectional curvature bounded from below

[FY92, Section I.3].

Let Meq denote the set of all triples (X,Γ, x) so that (X, x) ∈M∗ and Γ is a

closed subgroup of isometries of X. Set

Γ(D) = {γ ∈ Γ : d(γp, p) < D}.

Definition 2.24. [FY92, Definition 3.3] Let (X,Γ, x), (Y,Λ, y) ∈Meq. An

ε-equivariant Hausdorff approximation is a triple of maps f : B(x, 1/ε) → Y ,

φ : Γ(1/ε)→ Λ(1/ε) and ψ : Λ(1/ε)→ Γ(1/ε) such that

1. f(x) = y;

2. B(y, 1/ε) ⊆ Y is contained in the ε-neighborhood B(ε, f(B(x, 1/ε))) ⊆ Y .

3. p, q ∈ B(x, 1/ε) ⇒ |d(f(p), f(q))− d(p, q)|< ε;

4. γ ∈ Γ(1/ε), p ∈ B(x, 1/ε), γp ∈ B(x, 1/ε) ⇒

d(f(γp), (φ(γ))(f(p))) < ε;

5. µ ∈ Λ(1/ε), p ∈ B(x, 1/ε), (ψ(µ))(p) ∈ B(x, 1/ε) ⇒
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d(f((ψ(µ))(p)), µ(f(p))) < ε.

One says that a sequence (Xi,Γi, xi) in Meq converges to (X,Γ, x) in the

equivariant Gromov-Hausdorff sense if there exists εi-equivariant Hausdorff ap-

proximations between (Xi,Γi, xi) and (X,Γ, x) where εi → 0 as i→∞.

Of particular use will be two results of Fukaya and Fukaya-Yamaguchi which

we include below. The first result relates a sequence and its equivariant pointed

Gromov-Hausdorff limit to a sequence of the the orbit space.

Theorem 2.25. [Fuk86, Theorem 2.1] If (Xi,Γi, xi) converges to (Y,Λ, y) in

the equivariant pointed Gromov-Hausdorff sense, then (Xi/Γi, x̄i) converges to

(Y/Λ, y) in the pointed Gromov-Hausdorff sense.

The next theorem guarantees the existence of a subsequence which converges

pointed in the equivariant Gromov-Hausdorff sense.

Theorem 2.26. [FY92, Proposition 3.6] Let (Xi,Γi, xi) ∈Meq, and (Y, y) ∈M∗.

Suppose that (Xi, xi) converges to (Y, y) in the pointed Gromov-Hausdorff sense.

Then there exists a group G and subsequence ki such that for (Y,G, y) ∈Meq we

have that (Xki ,Γki , xki) converges to (Y,G, y) in the equivariant pointed Gromov-

Hausdorff sense.
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Chapter 3

The Splitting Theorem

Recall that the Cheeger-Gromoll Splitting Theorem (see Theorem 2.11) implies

that a compact Riemannian manifold with nonnegative Ricci curvature has an

almost abelian fundamental group. It may not be surprising then that in order to

extend this result regarding fundamental groups to spaces in the class of compact

Riemannian manifolds with almost nonnegative Ricci curvature, one utilizes the

Cheeger-Colding Splitting Theorem (see Theorem 2.12), which may be viewed as

a extension of Theorem 2.11 to limit spaces with nonnegative Ricci curvature in

a generalized sense.

In the proof of Theorem 2.11, one constructs a function b such that |∇b|= 1

and Hessb ≡ 0 [CG71]. In the proof of Theorem 2.12, one constructs a harmonic

function b whose Hessian is small in the L2-sense [CC96, Proposition 6.60]. In

order to extend Theorem 2.12 to smooth metric measure spaces, following the
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proof of Cheeger-Colding, we construct f -harmonic functions b± and obtain L2-

Hessian estimates for such functions with respect to the conformally changed

volume density e−fdvolg. This desired Hessian estimate is given in Theorem 3.8.

We begin this chapter by discussing and extending some of the key tools

used by Cheeger-Colding to develop their Hessian estimate. Once we have these

tools, we will prove Theorem 3.8. We then use this Hessian estimate to give a

smooth metric measure space version of the Quantitative Pythagorean Theorem

(see [Che07, Lemma 9.16 ] for original statement). We conclude this chapter with

the proof of Theorem 1.6.

3.1 Preliminary Estimates

In order to obtain their Hessian estimate and splitting theorem, Cheeger and

Colding utilized a number of indispensable tools. For example, the Abresch-

Gromoll Inequality [AG90] gives an upper bound on the excess function defined

in equation 3.9 and is used to establish the fact that Cheeger-Colding’s harmonic

function b̄ is pointwise-close to a distance-like function. This proof of closeness is

the first step toward their Hessian estimate. The Cheng-Yau Gradient Estimate

[CY75] is used to show the existence of an appropriate cutoff function which is

central in the proof of the Hessian estimate. Cheeger and Colding also developed

key tools, such as the Segment Inequality, [CC96, Theorem 2.11] to aid in their

proof. We wish to extend such tools to the smooth metric measure space setting.
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With these tools we can then generalize the arguments of Cheeger and Colding

[CC96], see also [Che07], to obtain Theorems 3.8 and 1.6.

In order to obtain a gradient estimate appropriate for our use, we draw upon

the work of Kevin Brighton [Bri11] in which he obtains a gradient estimate for an

f -harmonic function, that is, a function u such that ∆fu ≡ 0. We can generalize

Brighton’s methods to obtain a gradient estimate for positive functions u ∈ C3(M)

with ∆fu ≡ c where c is a nonnegative constant. The difficulty in extending this

proof method to the case for which c is negative is addressed after the proof of

Proposition 3.2.

Before giving the statement of the gradient estimate which is utilized in our

arguments, we note that Brighton’s gradient estimate for f -harmonic functions

requires no additional assumption on f . Generalizing his arguments to functions

u ∈ C3(M) with ∆fu ≡ c indeed gives a gradient estimate which also does not

require additional assumptions on f . We include this gradient estimate below.

Proposition 3.1. (Gradient Estimate) Let (Mn, g, e−fdvolg) be a complete

smooth metric measure space with Ricf ≥ −(n − 1)H2 where H ≥ 0. If u is a

positive function defined on B(q, 2R) with ∆fu = c, c ≥ 0, then for any q0 ∈

B(q, R), we have

|∇u|≤
√
c1(α, n,H,R) sup

p∈B(q,2R)

u(p)2 + c2(c, n) sup
p∈B(q,2R)

u(p)

where α = maxp∈p:d(p,q)=r0 ∆fr(p) for any r0 ≤ R and r(p) = d(p, q).
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The constant c1 then depends on the f -Laplacian of r(p), which will then affect

the subsequent estimates which depend on this gradient estimate. Since for our

purposes the potential function f is bounded, we will use the following gradient

estimate instead.

Proposition 3.2. Let (Mn, g, e−fdvolg) be a complete smooth metric measure

space with |f |≤ k and Ricf ≥ −(n − 1)H2 where H ≥ 0. If u is a positive

function defined on B(q, 2R) with ∆fu = c, for a constant c ≥ 0, then for any

q0 ∈ B(q, R), we have

|∇u|≤
√
c1(n, k,H,R) sup

p∈B(q,2R)

u(p)2 + c2(c, n) sup
p∈B(q,2R)

u(p).

Proof. Let h = uε where ε ∈ (0, 1). Applying the Bochner formula for smooth

metric measure spaces, equation (2.4), to h gives

1

2
∆f |∇h|2= |Hessh|2+〈∇h,∇(∆fh)〉+ Ricf (∇h,∇h).

Using the Schwartz inequality, we have

|Hessh|2 ≥ |∆h|
2

n

=
1

n
(∆fh+ 〈∇f,∇h〉)2

=
1

n

(
εuε−1∆fu+

(ε− 1)|∇h|2

εh
+ 〈∇f,∇h〉

)2

=
1

n

(
εuε−1c+

(ε− 1)|∇h|2

εh
+ 〈∇f,∇h〉

)2
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where in the last equality we used the fact that ∆fu = c. This, together with the

lower bound on Bakry-Émery Ricci curvature, gives

1

2
∆f |∇h|2≥

(ε− 1)2

ε2h2n
|∇h|4+

2c(ε− 1)

h1/εn
|∇h|2+

2(ε− 1)

εhn
|∇h|2〈∇f,∇h〉+

ε2c2

n
(h2−2/ε)

+
2cε

n
(h1−1/ε)〈∇f,∇h〉+

1

n
〈∇f,∇h〉2 +

(ε− 1)

εh
〈∇h,∇|∇h|2〉

− (ε− 1)

εh2
|∇h|4+

c(ε− 1)

h1/ε
|∇h|2−(n− 1)H2|∇h|2

(3.1)

As in [Bri11], in order to control the mixed term 2 (ε−1)
εhn
|∇h|2〈∇f,∇h〉 in (3.1),

we consider two cases according to whether |∇h|2 dominates over 〈∇h,∇f〉, or vice

versa. In the first case, suppose that p ∈ B(q, 2R) such that 〈∇h,∇f〉 ≤ a |∇h|
2

h

for some a > 0 to be determined. At this point we have

1

2
∆f |∇h|2a ≥

[
(ε− 1)2 + 2ε(ε− 1)a− ε(ε− 1)n

ε2n

]
|∇h|4

h2
+

[
c(ε− 1)(2 + n)

n

]
|∇h|2

h1/ε

+
1

n
(εch1−1/ε + 〈∇f,∇h〉)2 +

ε− 1

εh
〈∇h,∇|∇h|2〉 − (n− 1)H2|∇h|2

≥
[

(ε− 1)2 + 2ε(ε− 1)a− ε(ε− 1)n

ε2n

]
|∇h|4

h2
+

[
c(ε− 1)(2 + n)

n

]
|∇h|2

h1/ε

+
ε− 1

εh
〈∇h,∇|∇h|2〉 − (n− 1)H2|∇h|2.

(3.2)
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In the case that p ∈ B(q, 2R) such that 〈∇h,∇f〉 ≥ a |∇h|
2

h
, we have

1

2
∆f |∇h|2 ≥

[
(ε− 1)2 − ε(ε− 1)n

ε2n

]
|∇h|4

h2
+

[
c(ε− 1)(2 + n)

n

]
|∇h|2

h1/ε

+

[
2(ε− 1) + εa

εna

]
〈∇f,∇h〉2 +

ε2c2

n
(h2−2/ε) +

2cεa

nh1/ε
|∇h|2

+
ε− 1

εh
〈∇h,∇|∇h|2〉 − (n− 1)H2|∇h|2

≥
[

(ε− 1)2 − ε(ε− 1)n

ε2n

]
|∇h|4

h2
+

[
c(ε− 1)(2 + n)

n

]
|∇h|2

h1/ε

+

[
2(ε− 1) + εa

εna

]
〈∇f,∇h〉2 +

ε− 1

εh
〈∇h,∇|∇h|2〉 − (n− 1)H2|∇h|2

(3.3)

Note that in (3.3) the assumption that c ≥ 0 is necessary to have 2cεa
nh1/ε
|∇h|2≥ 0

which allows us to obtain the second inequality.

As in Brighton’s proof [Bri11], we see that choosing ε = 7
8

and a = 1
2

will make

the coefficient of the |∇h|
4

h2
term positive in both cases. This choice also gives a

positive coefficient of the 〈∇f,∇h〉2 term in the second case. With this choice of

ε and a, we see that for every p ∈ B(q, 2R), we have

1

2
∆f |∇h|2≥

7n− 6

49n

|∇h|4

h2
− c(2 + n)

8n

|∇h|2

h8/7
− 1

7h
〈∇h,∇|∇h|2〉 − (n− 1)H2|∇h|2.

(3.4)

Let g : [0, 2R]→ [0, 1] have the properties

• g|[0,R]= 1

• supp(g) ⊆ [0, 2R)
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• −K
R

√
g ≤ g′ ≤ 0

• |g′′|≤ K
R2

where the last two properties hold for some K > 0. Define φ : B(q, 2R) → [0, 1]

by φ(x) = g(d(x, q)). Set G = φ|∇h|2. Then (3.4) can be written as

1

φ
∆fG ≥

G

φ2
∆fφ+ 2〈∇φ

φ
,
∇G
φ
− ∇φ

φ2
G〉+

14n− 12

49nh2

G2

φ2

− c(2 + n)

4nh8/7

G

φ
− 2

7h
〈∇h, ∇G

φ
− ∇φ

φ2
G〉 − 2(n− 1)H2G

φ
.

(3.5)

Next, we consider the point q0 ∈ B(q, 2R) at which G achieves its maximum.

At such a point, (3.5) can be rewritten as

14n− 12

49nh2
G ≤ −∆fφ+2〈∇φ

φ
,∇φ〉+ c(2 + n)

4nh8/7
φ− 2

7h
〈∇h,∇φ〉+2(n−1)H2φ. (3.6)

If q0 ∈ B(q, R), then (3.6) can be rewritten as

|∇u|2≤ 8c(2 + n)

7n− 6
u+

64n(n− 1)

7n− 6
H2u2 (3.7)

when evaluated at q0.

If q0 ∈ B(q, 2R) \B(q, R), one uses Proposition 2.16 to see that

∆fr(q0) ≤ (n+ 4k − 1)H coth(Hr(q0)) ≤ (n+ 4k − 1)H coth(HR)

since R ≤ r(q0) ≤ 2R. Set α = (n + 4k − 1)H coth(HR). This, along with the

properties of φ, and (3.6) we see
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|∇u|2≤
[

64[K(Rα + 1 + 3K) + 2(n− 1)R2H2]

(13n− 12)R2

]
u2 +

16c(2 + n)

n(13n− 12)
u. (3.8)

Restricting now to B(q, R) and taking the supremum of u and u2 over B(q, 2R)

in (3.7) and (3.8) yields the desired form of the gradient estimate.

Note that Proposition 3.2 only holds for nonnegative c. If we consider the case

c < 0, the term 2cε
n

(h1−1/ε)〈∇f,∇h〉 in (3.1) becomes problematic. In particular,

when p ∈ B(q, 2R) is such that 〈∇h,∇f〉 dominates over |∇h|2, we replace the

term 2(ε−1)
εhn
|∇h|2〈∇f,∇h〉 by 2(ε−1)

εhna
〈∇f,∇h〉2. In order to control this term, we

group it with 1
n
〈∇f,∇h〉2. Then we can no longer group the 〈∇f,∇h〉 term with

other terms to create a perfect square, as in (3.2). Moreover, since its coefficient

is negative, we must keep this term in the estimate. Thus, without any additional

assumptions, such as a bound on |∇f |, there is no way to control this term. As

noted in the introduction, the assumption of a bound on |f | rather than a bound

on |∇f | in this gradient estimate is one of the reasons that our Theorem 1.6 only

requires a bound on |fi| whereas the splitting theorem of Wang and Zhu [WZ13,

Theorem 3.1] requires bounds on both |fi| and |∇fi|.

In order to convert estimates of integrals of functions over a ball to estimates

of integrals of functions along a geodesic segment, we need a Segment Inequality

similar to that developed by Cheeger and Colding in [CC96, Theorem 2.11].
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Proposition 3.3. (Segment Inequality) Let (Mn, g, e−fdvolg) be a complete

smooth metric measure space with Ricf ≥ (n− 1)H and |f(x)|≤ k. Let A1, A2 ∈

Mn be open sets and assume for all y1 ∈ A1, y2 ∈ A2, there is a minimal geodesic,

γy1,y2 from y1 to y2, such that for some open set, W ,

⋃
y1,y2

γy1,y2 ⊂ W.

If vi is a tangent vector at yi, i = 1, 2, and |vi|= 1, set

I(yi, vi) = {t|γ(t) ∈ Ai+1, γ|[0, t] is minimal, γ′(0) = vi}.

Let |I(yi, vi)| denote the measure of I(yi, vi) and put

D(Ai, Ai+1) = sup
yi,vi

|I(yi, vi)|.

Here A2+1 := A1. Let h be a nonnegative integrable function on M . Let D =

max d(y1, y2). Then

∫
A1×A2

∫ d(y1,y2)

0

h(γy1,y2(s))ds(e
−fdvolg)

2 ≤

c(n+ 4k,H,D)[D(A1, A2)V olf (A1) +D(A2, A1)V olf (A2)]×
∫
W

he−fdvolg.

where c(n+4k,H,D) = sup0<s/2≤u≤sAn+4k
H (s)/An+4k

H (u), where An+4k
H (r) denotes

the area element on ∂B(r) in the model space with constant curvature H and

dimension n+ 4k.

To obtain this result for smooth metric measure spaces one may follow the

arguments of the proof in the original setting as given by Cheeger and Colding
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in [CC96, Theorem 2.11], where integrals are computed with respect to the con-

formally changed volume element, e−fdvolg, and use Wei-Wylie’s volume element

comparison which follows from [WW09, Theorem 1.1].

Finally, the Abresch-Gromoll Quantitative Maximal Principle was necessary in

the proof of the Abresch-Gromoll Inequality in the case when Ric(M) ≥ (n−1)H

and also in obtaining an appropriate cutoff function needed to prove the Hessian

estimate. Since this proof varies slightly from the exposition contained in Abresch-

Gromoll’s [AG90] or Cheeger’s [Che07] works, we retain the proof here.

Proposition 3.4. (Quantitative Maximal Principle) If Ricf ≥ (n − 1)H,

(H ≤ 0), |f |≤ k and U : B(y,R) ⊂Mn → R is a Lipschitz function with

1. Lip(U) ≤ a, U(y0) = 0 for some y0 ∈ B(y,R),

2. ∆fU ≤ b in the barrier sense, U |∂B(y,R)≥ 0.

Then U(y) ≤ ac + bGR(c) for all 0 < c < R, where GR(r(x)) is the smallest

function on the model space Mn+4k
H such that:

1. GR(r) > 0, G′R(r) < 0 for 0 < r < R

2. ∆HGR ≡ 1 and GR(R) = 0.

Proof. Let GR(r) be the comparison function in the model space Mn+4k
H as given

in the statement of the theorem. By the f -Laplacian Comparison, one has

∆fGR ≥ ∆n+4k
H GR = 1.
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Consider the function V = bGR − U . Then

∆fV = b∆fGR −∆fU ≥ b∆n+4k
H GR −∆fU = b−∆fU ≥ 0.

Then the maximal principle on V : A(y, c, R)→ R gives

V (x) ≤ max{V |∂B(y,R), V |∂B(y,c)}

for all x ∈ A(y, c, R). By assumption, we have

V |∂B(y,R)= bGR|∂B(y,R)−U |∂B(y,R)≤ 0

and

V (y0) = bGR(y0)− U(y0) = bGR(y0) > 0.

Then there are two cases.

If y0 ∈ A(y, c, R), then maxV |∂B(y,c)> 0 so V (y′) > 0 for some y′ ∈ ∂B(y, c).

Since

U(y)− U(y′) ≤ a · d(y, y′) = ac

and

bGR(c)− U(y′) = V (y′) > 0,

it follows that

U(y) ≤ ac+ U(y′) ≤ ac+ bGR(c).

On the other hand, if d(y, y0) ≤ c, we may use the Lipschitz condition directly:

U(y) = U(y)− U(y0) ≤ a · d(y, y0) ≤ ac ≤ ac+ bGR(c).

In either case, we have U(y) ≤ ac+ bGR(c) for all 0 < c < R, as desired.
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For any point x ∈M , the excess function at x is given by

e(x) = d(x, q+) + d(x, q−)− d(q+, q−), (3.9)

where q+, q− ∈ M are fixed. For the excess function, we have the following

Abresch-Gromoll Inequality, which gives an upper bound on the excess function

in terms of a function

Ψ = Ψ(ε1, . . . , εk|c1, . . . , cN) (3.10)

such that Ψ ≥ 0 and for any fixed c1, . . . , cN ,

lim
ε1,...,εk→0

Ψ = 0.

Such εi, ci will be given explicitly below.

Proposition 3.5. (Abresch-Gromoll Inequality) Let (Mn, g, e−fdvolg) be a

smooth metric measure space and p, q+, q− ∈ Mn. Given R > 0, L > 2R + 1 and

ε > 0, if

|f |≤ k, (3.11)

Ricf ≥ −(n− 1)H (H ≥ 0), (3.12)

min{d(p, q+), d(p, q−)} ≥ L, (3.13)

e(p) = d(p, q+) + d(p, q−)− d(q+, q−) ≤ ε, (3.14)

then
e(x) ≤ Ψ(H,L−1, ε|n, k,R)
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on B(p,R).

Proof. The proof of the Abresch-Gromoll Inequality for smooth metric measure

spaces runs parallel to the proof one finds in Cheeger [Che07, Theorem 9.1], with

the modification that one uses the Quantitative Maximal Principal 3.4 together

with the f -Laplacian comparison, Proposition 2.16 in place of their Riemannian

counterparts.

We note that an excess estimate for smooth metric measure spaces with Ricf ≥

0 and |f |≤ k is given by Wei-Wylie [WW09, Theorem 6.1].

3.2 The Hessian Estimate

For fixed p, q+, q− ∈M , define the function b± : M → R by

b±(x) = d(x, q±)− d(p, q±).

Let b± : M → R be the function such that

∆fb± = 0 and b±|∂B(p,R) = b±|∂B(p,R). (3.15)

Lemma 3.6. Let (Mn, g, e−fdvolg) be a smooth metric measure space and

p, q+, q− ∈Mn. Given R > 0, L > 2R+ 1 and ε > 0, if (3.11) - (3.14) hold then

|b± − b±|≤ Ψ(H,L−1, ε|n, k,R) (3.16)

on B(p,R).
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Proof. The Abresch-Gromoll Inequality 3.5 along with the f -Laplacian Compar-

ison 2.16 and the Maximal Principle 3.4, allow one to follow the proof of [CC96,

Lemma 6.15] to obtain the above.

For the notation used below, we have −
∫
U
he−fdvolg = 1

Volf (U)

∫
he−fdvolg.

Lemma 3.7. Let (Mn, g, e−fdvolg) be a smooth metric measure space and

p, q+, q− ∈ Mn. Given R > 0, L > 2R + 1 and ε > 0, for any p, q+, q− ∈ Mn, if

(3.11) - (3.14) hold, then

−
∫
B(p,R)

|∇b± −∇b±|2e−fdvol ≤ Ψ(H,L−1, ε|n, k,R). (3.17)

Proof. Use the above pointwise estimate on b±, Lemma 3.6, along with the Gra-

dient Estimate, Theorem 3.2, and integration by parts to obtain (3.17).

Lemmas 3.6 and 3.7 now allow one to obtain the key estimate for Hessb±. We

will now prove Theorem 3.8.

Theorem 3.8. Given R > 0, L > 2R + 1 and ε > 0, let p, q+, q− ∈ Mn. If

(Mn, g, e−fdvolg) satisfies (3.11) - (3.14)

−
∫
B(p,R

2
)

|Hessb±|2e−fdvolg ≤ Ψ(H,L−1, ε|k, n,R). (3.18)

Proof. Applying the Bochner formula (2.4) to the f -harmonic function b̄± yields

1

2
∆f |∇b±|2= |Hess b̄±|2+Ricf (∇b̄±,∇b̄±).
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Multiply by a cutoff function φ that has the following properties:

• φ|B(p,R
2

) ≡ 1,

• supp(φ) ⊂ B(p,R),

• |∇φ|≤ C(n,H,R, k),

• |∆fφ|≤ C(n,H,R, k).

To construct such a cutoff function, one begins with a function h : A(p, R
2
, R)→ R

such that ∆fh ≡ 1, h|∂B(p,R
2

)= GR(R/2), h|∂B(p,R)= 0, where GR is as specified in

Proposition 3.4. Then let ψ : [0, GR(R/2)]→ [0, 1] such that ψ is 1 near GR(R/2)

and ψ is 0 near 0. The function φ = ψ(h) extended to all of M by setting φ = 1

inside B(p,R/2) and φ = 0 outside of B(p,R), is the cutoff function desired. The

gradient estimate of Proposition 3.2 guarantees that |∇φ| and |∆fφ| are bounded

away from the boundary of the annulus on which h was originally defined.

Then the above equation may be rewritten as

φ|Hess b̄±|2=
1

2
φ∆f |∇b±|2−φRicf (∇b̄±,∇b̄±)

Integrating both sides of this equality over B(p,R) gives

∫
B(p,R)

φ|Hess b̄±|2e−fdvolg =

∫
B(p,R)

(
1

2
φ∆f |∇b±|2−φRicf (∇b̄±,∇b̄±)

)
e−fdvolg

≤
∫
B(p,R)

(
1

2
φ∆f |∇b±|2+(n− 1)H|∇b̄±|2

)
e−fdvolg

=
1

2

∫
B(p,R)

φ∆f |∇b±|2e−fdvolg
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+

∫
B(p,R)

(n− 1)H|∇b̄±|2e−fdvolg

For the first integrand, we have

∫
B(p,R)

φ∆f |∇b±|2e−fdvolg =

∫
B(p,R)

φ∆f (|∇b±|2−1)e−fdvolg

=

∫
B(p,R)

∆fφ(|∇b̄±|2−1)e−fdvolg

Thus

∫
B(p,R)

φ|Hess b̄±|2e−fdvolg ≤
∫
B(p,R)

[
1

2
∆fφ(|∇b̄±|2−1) + (n− 1)H|∇b̄±|2

]
e−fdvolg

≤
∫
B(p,R)

[
1

2
|∆fφ|||∇b̄±|2−1|+(n− 1)H|∇b̄±|2

]
e−fdvolg

Since |∇b±|= 1,

||∇b̄±|2−1|= ||∇b̄±|−|∇b±||(|∇b̄±|+1) ≤ |∇b̄± −∇b±|(|∇b̄±|+1),

we have

−
∫
B(p,R)

φ|Hess b̄±|2e−fdvolg ≤ Ψ.

3.3 Proof of the Almost Splitting Theorem

The Hessian estimate, Theorem 3.8, is important because it, together with

the Segment Inequality, Proposition 3.3, allow us to extend the Quantitative

Pythagorean Theorem [Che07, Lemma 9.16] to the smooth metric measure space
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setting. It is with this Quantitative Pythagorean Theorem that a quantitative

version of the splitting theorem follows [CC96, Theorem 6.62]. Once we obtain a

quantitative version of the splitting theorem for smooth metric measure spaces,

the extension of the Cheeger-Colding Splitting Theorem follows.

Proposition 3.9. (Quantitative Pythagorean Theorem) Given R > 0, L >

2R + 1 and ε > 0, with p, q+, q− ∈ Mn, such that (3.11) - (3.14) hold. Let

x, z, w ∈ B(p, R
8

), with x ∈ b
−1

+ (a), and z a point on b
−1

+ (a) closest to w. Then

|d(x, z)2 + d(z, w)2 − d(x,w)2|≤ Ψ.

Proof. We begin by applying Proposition 3.3 to find points x∗, z∗, w∗ such that

d(x∗, x) ≤ Ψ, d(z∗, z) ≤ Ψ, d(w∗, w) ≤ Ψ.

Moreover, the segment inequality gives

∫
B(p,R

8
)×B(p,R

8
)

inf
γ

∫ `(s)

0

|Hess b̄+(γ(s))|ds ≤

c(n+ 4k,H,R)
R

2

(
V olfB(p,

R

8
)

)∫
B(p,R

8
)

|Hess b̄+|e−fdvolg

where the infimum runs along segments, γ : [0, `(s)] → Mn connecting points in

B(p, R
8

) to other points in B(p, R
8

). Note that by the Hölder inequality, we have

∫
B(p,R

8
)

|Hess b̄+|e−fdvolg ≤

(∫
B(p,R

8
)

|Hess b̄+|2e−fdvolg

) 1
2 (

V olf (B(p,
R

8
))

) 1
2

.
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This, along with Theorem 3.8, gives

∫
B(p,R

8
)×B(p,R

8
)

inf
γ

∫ `(s)

0

|Hess b̄+(γ(s))|ds ≤ Ψ.

Thus along almost every segment γ(s) connecting pairs of points in B(p, R
8

), we

may conclude ∫
γ(s)

|Hess b̄+(γ(s))|ds ≤ Ψ.

In particular, consider a minimal geodesic σ : [0, e] → Mn from z∗ to w∗. Let

A = {σ(s)|s ∈ [0, e]}. Then again by the segment inequality we may deduce

that along almost all geodesics τs : [0, `(s)] → M (except possibly along a set of

measure zero) connecting x∗ to σ(s) ∈ A, we must have

∫ `(s)

0

|Hess b̄+(τs(t))|ds ≤ Ψ.

Thus there exists a set U ⊂ [0, e] of full measure such that for all s ∈ U

∫
U

∫ `(s)

0

|Hess b̄+(τs(t))|dt ds ≤ Ψ. (3.19)

Similarly, by Lemma 3.7, the segment inequality also gives

∫ e

0

||∇b̄+(σ(s))|−1|ds ≤ Ψ.
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Then we have

1

2
d2(z, w) =

∫ e

0

sds± ψ

=

∫ e

0

(b̄+(σ(s))− b̄+(σ(0)))ds± ψ

=

∫ e

0

(b̄+(τs(`(s)))− b̄+(τs(0)))ds± ψ

=

∫
U

∫ `(s)

0

〈∇b̄+(τs(t)), τ
′
s(t)〉dtds± ψ

Now, for all t ∈ [0, `(s)], we have

|〈∇b̄+(τs(`(s))), τ
′
s(`(s))〉 − 〈∇b̄+(τs(t)), τ

′
s(t)〉 =

∣∣∣∣∣
∫ `(s)

t

Hess b̄+(τ ′s(u), τ ′s(u))du

∣∣∣∣∣
≤
∫ `(s)

t

∣∣Hess b̄+(τ ′s(u), τ ′s(u))
∣∣ du

≤
∫ `(s)

0

∣∣Hess b̄+(τ ′s(u), τ ′s(u))
∣∣ du

≤ ψ

where the last inequality follows from inequality 3.19. This implies

∫
U

∫ `(s)

0

〈∇b̄+(τs(t)), τ
′
s(t)〉dtds± ψ =

∫
U

∫ `(s)

0

〈∇b̄+(τs(`(s))), τ
′
s(`(s))〉dtds± ψ

=

∫
U

〈∇b̄+(τs(`(s))), τ
′
s(`(s))〉`(s)ds± ψ

=

∫
U

〈∇b̄+(τs(σ(s))), τ ′s(`(s))〉`(s)ds± ψ

=

∫
U

〈∇σ′(s), τ ′s(`(s))〉`(s)ds± ψ
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By the first variation formula, we have `′(s) = 〈σ′(s), τ ′s(`(s))〉. Then, since U ⊂

[0, e] has full measure, we have

∫
U

〈∇σ′(s), τ ′s(`(s))〉`(s)ds± ψ =

∫
U

`′(s)`(s)ds± ψ

=
1

2

[
`2(s)

]e
0
± ψ

=
1

2
d2(x, z)− 1

2
d2(x,w)± ψ

Thus

1

2
d2(z, w) =

1

2
d2(x, z)− 1

2
d2(x,w)± ψ

as desired.

From this Quantitative Pythagorean Theorem for smooth metric measure

spaces, one may establish the following Almost Splitting Theorem.

Theorem 3.10. (Almost Splitting Theorem) Let R > 0, L > 2R + 1 and

ε > 0 be given. If (Mn, g, e−fdvolg) and p, q+, q− ∈ Mn satisfy (3.11) - (3.14),

then there is a length space X such that for some ball B((0, x), R
4

) ⊂ R×X with

the product metric, we have

dGH

(
B

(
p,
R

4

)
, B

(
(0, x),

R

4

))
≤ Ψ(H,L−1, ε|k, n,R).
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Proof. Let q ∈ B(p,R/4) \ b̄−1
+ (0). Let Ω denote the side of b̄−1

+ (0) containing q.

For x ∈ B(p,R/4), z ∈ b̄−1
+ (0), define

d̂(x, z) =


d(x, z), x ∈ Ω

−d(x, z), x ∈ ΩC

0, x ∈ b̄−1
+ (0).

Let θ : B(p,R/4)→ R× b̄−1
+ (0) be the map taking x ∈ B(p,R/4) to (d̂(x, z), z) ∈

R × b̄−1
+ (0) where z is a point on b̄−1

+ (0) closest to x. We will show that θ is

a Ψ-Gromov-Hausdorff approximation. Note, if σ : [0, s] → Mn is a geodesic,

connecting a point x ∈ M to a point z on a level set of b̄+ which is closest to x,

then

|b̄+(σ(s))− b̄+(σ(0))− d(x, z)|≤ ψ. (3.20)

Let x1, x2 ∈ B(p,R/4) with θ(x1) = (d(x1, z1), z1) and θ(x2) = (d(x2, z2), z2).

If x1, x2 ∈ b̄−1
+ (0), then θ preserves distance. Without loss of generality, suppose

that d(x1, z1) ≤ d(x2, z2). If x1 ∈ b̄−1
+ (0), then direct application of Proposition

3.9 shows that |d(x1, x2) − d(θ(x1), θ(x2))|≤ Ψ. Suppose then that x1 ∈ b̄−1
+ (a)

and x2 ∈ b̄−1
+ (b), with a, b 6= 0.

Case 1. The points x1 and x2 lie on the same side of b̄−1
+ (0), and the minimal

geodesic connecting x2 to z2 intersects b̄−1
+ (a).

47



Without loss of generality, suppose x1, x2 ∈ Ω. Let x′2 be the point at which

the geodesic connecting x2 to z2 intersects b̄−1
+ (a), and x2 be the point on b̄−1

+ (a)

closest to x2. By equation (3.20), we have

d(x1, z1) = d(x̄2, z2)±Ψ. (3.21)

Let y2 be the point on b̄−1
+ (a) closest to z2. Proposition 3.9 and equation (3.20)

together give d(x̄2, y2) ≤ Ψ. Applying Proposition 3.9 to the triples of points x1,

z1, z2 and x1, y2, z2 gives

d(x1, z1)2 + d(z1, z2)2 = d(x1, z2)2 ±Ψ, (3.22)

d(z2, y2)2 + d(y2, x1)2 = d(x1, z2)2 ±Ψ. (3.23)

But by equation (3.20), we see d(x1, z1) and d(y2, z2) are ψ-close. This fact,

together with equations (3.22) and (3.23) gives

d(z1, z2)2 = d(x1, x2)2 ±Ψ. (3.24)

Now, let x′2 be the point on b̄−1
+ (a) closest to x2. Applying Proposition 3.9 to the

triples x2, x̄2, x′2 and x2, x′2, x1 give

d(x2, x
′
2)2 + d(x′2, x̄2)2 = d(x2, x̄2)2 ±Ψ, (3.25)

d(x′2, x1)2 + d(x2, x
′
2)2 = d(x1, x2)2 ±Ψ. (3.26)

Let x2 ∈ b̄−1
+ (b). Then, by equation (3.20) we see

48



d(x2, x
′
2) = b− a±Ψ. (3.27)

Moreover, since x̄2 lies on the minimal geodesic connecting x2 and z2, we see

d(x2, z2) = d(x2, x̄2) + d(x̄2, z2). By equation (3.20) and we can rewrite this as

d(x2, x̄2) = d(x2, z2)− d(x̄2, z2) = b− a±Ψ. (3.28)

Then, by equations (3.25), (3.27), (3.28), we have

d(x2, x
′
2) = d(x2, x̄2)±Ψ, (3.29)

d(x′2, x̄2)2 ≤ Ψ. (3.30)

By equations (3.29), (3.21), and the fact that x̄2 lies on the minimal geodesic

connecting x2 to z2, we have

d(x2, x
′
2) = d(x2, z2)− d(x1, z1)±Ψ. (3.31)

Moreover, by equation (3.30) and (3.24) we see

d(x′2, x1) = d(z1, z2)± ψ. (3.32)

Substituting equations (3.30) and (3.32) into (3.26), we see

d(x1, x2)2 = (d(x2, z2)− d(x1, z1))2 + d(z1, z2)2 ±Ψ.

Case 2. The points x1 and x2 on lie on opposite sides of the level set b̄−1
+ (0), and

the minimal geodesic connecting x1 to x2 intersects b̄−1
+ (0).
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Let ẑ1 be the point on b̄−1
+ (b) which is closest to x1 and let σ be the minimal

geodesic connecting x1 to ẑ1, with x′1 a point on σ which intersects b̄−1
+ (0). Let z′1

be the point on b̄−1
+ (b) closest to z1. Then by equation (3.20), we have

d(z1, z
′
1) = d(x′1, ẑ1)± ψ = d(z2, x2)±Ψ. (3.33)

Moreover, by Proposition 3.9, we have

d(z1, z2)2 + d(z2, x2)2 = d(z1, x2)2 ±Ψ, (3.34)

d(z1, z
′
1)2 + d(z′1, x2)2 = d(z1, x2)2 ±Ψ. (3.35)

Then, by equations (3.33), (3.34), (3.35), we have

d(z1, z2) = d(x2, z
′
1)±Ψ. (3.36)

Claim. d(ẑ1, z
′
1) ≤ Ψ.

Let y′ and ŷ be the point on b̄−1
+ (0) closest to z′1 and ẑ1 respectively. Applying

Proposition 3.9 and equation (3.20) to the triples z1, y′, z′1, and x′1, ŷ, ẑ1 give

d(z1, y
′) ≤ Ψ and d(x′1, ŷ) ≤ Ψ. Applying Proposition 3.9 to the triples ŷ, y′, ẑ1

and ẑ1, z′1, y′ and combining these results will show that

d(ẑ1, z
′
1) = d(x′1, z1)±Ψ. (3.37)

To see that d(x′1, z1) ≤ ψ, let z′′1 be the point on b̄−1
+ (a) closest to z1. Applying

Proposition 3.9 to the triples x1, z′′1 , z1, and x1, z1, x′1, then show that d(x1, z
′′
1 ) =

d(x′1, z1) ± Ψ. Moreover, by equation (3.20), we see d(x1, z
′′
1 ) ≤ Ψ. These facts,
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combined with equation (3.37) give

d(ẑ1, z
′
1) ≤ Ψ,

as desired.

With this claim and equation (3.36) we see that

d(z1, z2) = d(x2, ẑ1)±Ψ. (3.38)

By the proof of the claim, we also see that d(x1, x
′
1) = d(x1, z1)±Ψ. This, together

with equation (3.33) give

d(x1, ẑ1) = d(x1, x
′
1) + d(x′1, ẑ1). (3.39)

Proposition 3.9 applied to the triple x1, ẑ1, x2 combined with equations (3.38)

and (3.39) give

d(x1, x2)2 = d(x1, ẑ1)2 + d(ẑ1, x2)2 ±Ψ

= d(z1, z2)2 + (d(x1, z1) + d(x2, z2))2 ±Ψ.

Thus θ is a Ψ-almost isometry.

To see that θ is Ψ-almost onto, let (l, y) ∈ B((0, x), R/4) ⊂ R × b̄−1
+ (0). Let

γ be the geodesic such that γ(0) = y and γ̇(0) = ∇b̄+(y). Set x = γ(l). If y

is the point on the level set b̄−1
+ (0) closest to x, then we are done. So, suppose

z 6= y is the point on b̄−1
+ (0) closest to x. Then θ(x) = (d(z, x), x). Applying

Proposition 3.9 to z,x, and y, we see that d(y, z)2 + d(z, x)2 = d(y, x)2 ± Ψ. But
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since d(z, x) = d(x, y)±Ψ = l±Ψ by equation (3.20), it follows that d(z, y) ≤ Ψ.

Thus

d(θ(x), (l, y))2 = d((d(x, z), z), (l, y))2

= |d(x, z)− l|2+d(z, y)2

≤ Ψ

Thus θ is a Gromov-Hausdorff approximation.

From this Almost Splitting Theorem for smooth metric measure spaces, it

follows that the splitting theorem extends to the limit of a sequence of smooth

metric measure spaces in the following manner.

Proof of Theorem 1.6. Let ε > 0 and R > 0 be given. Let ` : (−∞,∞) →

Y denote the line contained in Y . Choose points p, q−, q+ which lie on ` and

satisfy min{d(p, q−), d(p, q+)} ≥ L, and e(p) = 0. Since Mi → Y in the Gromov-

Hausdorff sense, we have dGH(Mi, Y ) = εi → 0 as i → ∞. Thus for each i ∈

N there exist εi-Gromov-Hausdorff approximations from fi : Mi → Y and gi :

Y → Mi. In particular, |dY (p, q±) − dMi
(gi(p), gi(q±)|≤ εi and |dY (q+, q−) −

dMi
(gi(q+), gi(q−))|≤ εi. Then for each i, we have

dMi
(gi(p), gi(q±)) ≥ 2R + 1− εi = L and e(gi(p)) ≤ 3εi + ε.
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Then for R̄ = (2R− εi)/2, L ≥ 2R̄+ 1, and 3εi + ε = ε̄i the Quantitative Splitting

Theorem 3.10 gives

dGH

(
B

(
gi(p),

R̄

4

)
, B

(
(0, x),

R̄

4

))
≤ Ψi(δi, L

−1, ε̄i|k, n, R̄).

B
(
gi(p),

R̄
4

)
and B

(
(0, x), R̄

4

)
. In particular, we have a Ψ-Gromov-Hausdorff

approximation hi : B
(

(0, x), R̄
4

)
→ B

(
gi(p),

R̄
4

)
. The composition fihi is then a

Ψi + εi approximation between B((0, x), R̄/4) and a subset of Y . Letting i→∞

and L−1 → 0 gives that the Gromov-Hausdorff distance between these two sets

tends to 0. Since this holds for all R > 0, we have that Y splits isometrically as

a product X × R for some length space X.

Again, we note that a splitting theorem for limit spaces of sequences of smooth

metric measure spaces has also been proven by Wang-Zhu, see [WZ13, Theorem

3.1]. The gradient estimate, Proposition 3.2, used for the proof of our Theorem

1.6 allows us to relax the conditions on the potential functions in the sequence,

requiring only that |fi| for each i is bounded, rather than both |fi| and |∇fi| as

in Theorem 3.1 of Wang-Zhu.
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Chapter 4

Almost Abelian Fundamental

Groups

In this chapter, we develop a new absolute volume comparison (Proposition

4.1). With this absolute volume comparison, we extend the Anderson’s finiteness

theorem to the smooth metric measure space setting (Proposition 4.3). We then

show that a manifold in a certain class of smooth metric measure spaces has a

fundamental group with polynomial growth (Theorem 4.4). We conclude with the

proof of 1.4.

4.1 An Absolute Volume Comparison

In order to show that the fundamental group of a certain class of compact

smooth metric measure spaces with almost nonnegative Bakry-Émery Ricci cur-
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vature is almost abelian, i.e. that it contains an abelian subgroup of finite index,

we first show that under the same conditions, the fundamental group is of poly-

nomial growth. Let us recall that this result is an extension Theorem 2.8 to the

smooth metric measure space setting.

As noted previously, the Bishop-Gromov volume comparison, Theorem 1.1 is

one of the key tools used in the proof of the above. A key feature of this volume

comparison is that it yields an absolute volume comparison. In particular, since

Vol(B(p,R))

VolnH(B(R))
≤ Vol(B(p, r))

VolnH(B(r))

for 0 < r ≤ R, and the right-hand side of the inequality tends to 1 as r tends to

0, we have Vol(B(p,R)) ≤ VolnH(B(R)) for R > 0.

The relative volume comparison on smooth metric measure spaces formulated

in Theorem 2.14 only yields a volume growth estimate for R > 1 since, as noted

by Wei and Wylie [WW09], the right hand side of

Volf (B(p,R))

Voln+4k
H (R)

≤ Volf (B(p, r))

Voln+4k
H (r)

blows up as r → 0. Using this type of estimate to extend Wei’s proof methods to

the smooth metric measure space setting is indeed possible. If one assumes that

for the potential function f we have |f |≤ k and |∇f |≤ k, then we can apply Wei’s

proof techniques to show that the fundamental group of a smooth metric measure

space in the class we are considering will have polynomial growth of degree at most
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n+ 4k. In order to improve the degree to n with only the additional assumption

that |f |≤ k, we formulate the following volume estimate.

Proposition 4.1. Let (Mn, g, e−fdvolg) be a smooth metric measure space with

Ricf ≥ (n− 1)H, H < 0, and |f |≤ k. Let p ∈M . Then

V olf (B(p,R)) ≤ k

∫ R

0

AH(r)e2k[cosh(2
√
−Hr)+1]dr, (4.1)

where AH(r)dr denotes the volume element on the model space with constant cur-

vature H.

Proof. Let snH(r) be the solution to sn′′H +HsnH = 0 such that snH(0) = 0 and

sn′H(0) = 1. When H < 0, this solution is given by

1√
−H

sinh
√
−Hr. (4.2)

From the proof [WW09, Theorem 1.1, inequality (2.17)], we have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r)− f(r)(sn2
H(r))′ +

∫ r

0

f(t)(sn2
H)′′(t)dt. (4.3)

Then integrating both sides of (4.3) from r = r1 to r2 gives

∫ r2

r1

mf (r)dr ≤
∫ r2

r1

mH(r)dr −
∫ r2

r1

f(r)
(sn2

H(r))′

sn2
H(r)

dr

+

∫ r2

r1

1

sn2
H(r)

{∫ r

0

f(t)(sn2
H)′′(t)dt

}
dr

=

∫ r2

r1

mH(r)dr − 2
√
−H

∫ r2

r1

f(r) coth
√
−Hrdr

+ 2(−H)

∫ r2

r1

csch2
√
−Hr

{∫ r

0

f(t)[sinh2
√
−Ht+ cosh2

√
−Ht]dt

}
dr
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=

∫ r2

r1

mH(r)dr − 2
√
−H

∫ r2

r1

f(r) coth
√
−Hrdr

+ 2(−H)

∫ r2

r1

csch2
√
−Hr

{∫ r

0

f(t) cosh 2
√
−Htdt

}
dr

=

∫ r2

r1

mH(r)dr − 2
√
−H

∫ r2

r1

f(r) coth
√
−Hrdr

+ 2(−H)

[
−coth

√
−Hr√
−H

∫ r

0

f(t) cosh 2
√
−Htdt

]r2
r1

+ 4(−H)

∫ r2

r1

coth
√
−Hr√
−H

f(r) sinh2
√
−Hrdr

+ 2(−H)

∫ r2

r1

coth
√
−Hr√
−H

f(r)dr

≤
∫ r2

r1

mH(r)dr + k coth
√
−Hr2 sinh 2

√
−Hr2

+ k coth
√
−Hr1 sinh 2

√
−Hr1 + 2k[sinh2

√
−Hr2 − sinh2

√
−Hr1]

=

∫ r2

r1

mH(r)dr + 2k[cosh(2
√
−Hr2) + 1],

where the first equality is obtained by substituting (4.2) for snH , and the third

equality is obtained through integration by parts.

Using exponential polar coordinates around p, we may write the volume ele-

ment of M as A(r, θ) ∧ dθn−1 where dθn−1 is the standard volume element of the

unit sphere Sn−1. Let Af (r, θ) = e−fA(r, θ) and AH(r) denotes the volume ele-

ment for the model space with constant curvature H. The mean curvatures on the

smooth metric measure space and on the model space can be written, respectively,

as

mf (r) = (ln(Af (r, θ))′ and mH(r) = (ln(AH(r))′.

57



Then we may rewrite the above inequality as

ln

(
Af (r2, θ)

Af (r1, θ)

)
≤ ln

(
AH(r2)

AH(r1)

)
+ 2k[cosh(2

√
−Hr2) + 1].

Hence

Af (r2, θ)

Af (r1, θ)
≤ AH(r2)

AH(r1)
e2k[cosh(2

√
−Hr2)+1].

Then

Af (r2, θ)AH(r1) ≤ AH(r2)Af (r1, θ)e
2k[cosh(2

√
−Hr2)+1].

Integrating both sides of the inequality over Sn−1 with respect to θ yields

AH(r1)

∫
Sn−1

Af (r2, θ)dθ ≤ AH(r2)e2k[cosh(2
√
−Hr2)+1]

∫
Sn−1

Af (r1, θ)dθ.

Then we integrate both sides of the inequality with respect to r1 from r1 = 0 to

r1 = R1:

V olH(B(R1))

∫
Sn−1

Af (r2, θ)dθ ≤ V olf (B(p,R1))AH(r2)e2k[cosh(2
√
−Hr2)+1].

Finally, we integrate both sides of the inequality with respect to r2 from r2 = 0

to r2 = R2:

V olH(B(R1))V olf (B(p,R2)) ≤ V olf (B(p,R1))

∫ R2

0

AH(r2)e2k[cosh(2
√
−Hr2)+1]dr2,

thus yielding a new volume inequality:

V olH(B(R1))

V olf (B(p,R1)
≤
∫ R2

0
AH(r2)e2k[cosh(2

√
−Hr2)+1]dr

V olf (B(p,R2))
.

Note that the left hand side of the inequality tends to 1
f(p)

as R1 → 0. Then
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V olf (B(p,R2)) ≤ f(p)

∫ R2

0

AH(r2)e2k[cosh(2
√
−Hr2)+1]dr2.

4.2 The Finiteness Theorem

Recall that Anderson’s finiteness result, Theorem 2.7, gives that for the class of

n-dimensional Riemannian manifolds satisfying Ric(M) ≥ (n−1)H, Vol(M) ≥ v,

and diam(M) ≤ D, there are only finitely many isomorphism classes of π1(M).

This finiteness result is essential in the proof of Theorem 2.8. Since we seek to

extend Theorem 2.8 to the smooth metric measure space setting, it would be

useful to have a smooth metric measure space version of Theorem 2.7. We note

that such a result is stated in Wei-Wylie [WW09, Theorem 4.7] without proof.

For completeness, we include the statement with proof at the end of this section.

The proof we include utilizes the absolute volume comparison, Proposition 4.1.

Related to this result, and used explicitly in the proof showing that the funda-

mental group is almost abelian, is the fact that for M in the same class as above,

the length of noncontractible curves in M can be controlled [And90, Theorem

2.1].

Below, we show that we can use the volume comparison, Proposition 4.1 to

control the length of noncontractible curves in smooth metric measure spaces in

the following manner.
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Proposition 4.2. Let (Mn, g, e−fdvolg) be a smooth metric measure space with

|f |≤ k satisfying the bounds Ricf ≥ (n − 1)H where H < 0, diamM ≤ D

and Volf (M) ≥ v. If γ is a loop in M such that [γ]p 6= 0 for p ≤ N =

k
v

∫ 2D

0
AHe2k[cosh(2

√
−Hr)+1]dr, then

l(γ) ≥ D

N
.

The proof of Proposition 4.2 follows Anderson’s proof of [And90, Theorem

2.1], where in place of the absolute volume comparison of Bishop and Gromov,

we use Proposition 4.1. A sketch of the proof is provided below.

Proof. Consider the subgroup Γ = 〈γ〉 of π1(M) = π1(M,x0) where elements act

as deck transformations on the universal cover M̃ of M . Choose x̃0 ∈ M̃ such

that x̃0 → x0 under the covering map. Then, choose F ⊆ M̃ be a fundamental

domain of π1(M) containing x̃0.

Let U(r) = {g ∈ Γ : g = γi, |i|≤ r}. Since [γ]p 6= 0 in π1(M) for p ≤ N , we

have |Γ|≥ N and we may choose the smallest r = r0 such #U(r0) > N . Note now

that ⋃
g∈U(r0)

g(B(x̃0, D) ∩ F ) ⊆ B(x̃0, Nl(γ) +D).

Then, by (4.1), we have

N · VolfM ≤ Volf (B(x̃0, Nl(γ) +D)) ≤ k

∫ Nl(γ)+D

0

AH(r)e2k[cosh(2
√
−Hr)+1]dr.

(4.4)
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Seeking contradiction, suppose that l(γ) ≤ D
N

. Then by equation (4.4), we

have

N <
k

v

∫ 2D

0

AH(r)e2k[cosh(2
√
−Hr)+1]dr,

contradicting the definition of N .

As indicated in the proof of [And90, Theorem 2.2], this control on the length

of the loops can be used to show that the fundamental group has finitely many

isomorphism types. In particular, Anderson uses this lower bound on length of

noncontractible loops and the Bishop-Gromov volume comparison to argue that

there is a bound on the number of generators. Essential in Anderson’s proof is the

theorem of Gromov [Gro01, Proposition 5.28] which guarantees a set of generators

g1, . . . , gl of π1(M) such that d(gi(x̃0), x̃0) ≤ 2D and every relation is of the form

gigj = gk. Finding a bound on the number of generators is then sufficient, as the

group will then be determined by the relations on those generators.

Below, we extend Anderson’s finiteness theorem to smooth metric measure

spaces, using our absolute volume comparison, Proposition 4.1.

Proposition 4.3. For the class of manifolds Mn with Ricf ≥ (n−1)H, Volf ≥ v,

diam (M) ≤ D and |f |≤ k, there are only finitely many isomorphism types of

π1(M).

Proof. Choose generators g1, . . . , gl of π1(M,x0) as guaranteed by Gromov’s theo-

rem. Again, it will be sufficient to show that the number of generators of π1(M,x0)
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is bounded. Choose x̃0 ∈ M̃ such that x̃0 → x0 under the covering map. Let F

be a fundamental domain in M̃ containing x̃0. Then

l⋃
i=1

gi(F ) ⊂ B(x̃0, 3D).

This implies

l ≤ Volf (B(x̃0, 3D))

VolM
≤ k

v

∫ 3D

0

AH(r)e2k[cosh(2
√
−Hr)+1]dr.

4.3 Polynomial Growth of the Fundamental Group

Now, with Proposition 4.1 and Proposition 4.3, we may extend Wei’s theorem

about polynomial growth of the fundamental group [Wei90] to smooth metric

measure spaces.

Theorem 4.4. For any constant v ≥ 0, there exists ε = ε(n, v, k,H,D) > 0 such

that if a smooth metric measure space (Mn, g, e−fdvolg) with |f |≤ k satisfies the

conditions (1.1) - (1.3), then the fundamental group of M is of polynomial growth

of degree ≤ n.

Proof. Let Γ(s) denote the growth function of π1(M), as in definition 2.2. Let us

assume by means of contradiction that π1(M) is not of polynomial growth with

degree ≤ n. It follows that for any set of generators of π1(M), we can find real

numbers si for all i, such that

Γ(si) > isni . (4.5)
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Choose a base point x̃0 in the universal covering p : M̃ → M , and let

x0 = p(x̃0). By Proposition 4.3, there are only finitely many isomorphism types

of π1(M). For each isomorphism type, choose a set of generators g1, . . . , gN of

π1(M) such that d(gi(x̃0), x̃0) ≤ 3D and every relation is of the form gigj = gk.

Again, such a set of generators is guaranteed by a theorem of Gromov [Gro01,

Proposition 5.28]. By the proof of Proposition 4.3, we know that N is uniformly

bounded. Having chosen generators in this manner, we are guaranteed that (4.5)

is independent of ε. View this set of generators of the fundamental group π1(M)

as deck transformations in the isometry group of M̃ .

Now, choose a fundamental domain F of π1(M) containing x̃0. Then

⋃
g∈Γ(s)

g(F ) ⊆ B(x̃0, D(3s+ 1))),

which implies

Γ(s) ≤ 1

v
Volf (B(x̃0, D(3s+ 1))).

Then, by Proposition 4.1, it follows that

Γ(s) ≤ k

v

∫ D(3s+1)

0

sinh
√
εr

ε
e2k[cosh(2

√
εr)+1]dr.

For any fixed, sufficiently large s0, there exists ε0 = ε(s0) such that for all ε ≤ ε0,

we have

Γ(s) ≤ 23ne4k

nv
sn. (4.6)
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Let i0 >
23ne4k
nv

. Then ε < ε(si0) together with (4.5) and (4.6) yields a contradic-

tion.

4.4 Proof of Theorem 1.4

With Theorems 1.6, 4.4, and Proposition 4.2, we may now generalize the

arguments in [Yun97] to the smooth metric measure space setting.

Proof of Theorem 1.4. By Theorem 4.4, there exists ε0 = ε0(n, v, k,H,D) > 0

such that if a smooth metric measure space (M, g, e−fdvolg) with |f |< k, satisfies

(1.1) - (1.3), then π1(M) is a finitely generated group of polynomial growth of

order ≤ n.

Assume Theorem 1.4 is not true. Then there exists a contradicting sequence

of smooth metric measure spaces (Mi, gi, e
−fidvolgi) with |fi|≤ k and

Ricfi(Mi) ≥ −εi → 0, εi ≤ ε0, Volfi(Mi) ≥ v, diam(Mi) ≤ D,

such that π1(Mi) is not almost abelian for each i. Note, however, π1(Mi) is of

polynomial growth for each i.

Since π1(Mi) is of polynomial growth, [Yun97, Lemma 1.3] implies it contains

a torsion free nilpotent subgroup Γi of finite index. Since Γi has finite index in

π1(M), it must be nontrivial. Furthermore Γi cannot be almost abelian.
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Consider the action Γi on the universal cover M̃i. For pi ∈ M̃i consider the

sequence (M̃i,Γi, pi). By Theorem 2.26 there exists a length space (Y, q) and

a closed subgroup G of Isom(Y ) such that (M̃i,Γi, pi) subconverges to a triple

(Y,G, q) with respect to the pointed equivariant Gromov-Hausdorff distance.

Using the Almost Splitting Theorem 1.6, we know Y splits as an isometric

product Y = Rk × Y0 for some k and length space Y0 which contains no lines. By

Proposition 4.3 it follows that [π1(Mi) : Γi] is uniformly bounded, say [π1(Mi) :

Γi] ≤ m. Hence diam(M̃i/Γi) ≤ Dm. Then by Theorem 2.25, (M̃i,Γi, pi) →

(Rk×Y0, G, q) implies that (M̃i/Γi, pi)→ ((Rk×Y0)/G, q) in the pointed Gromov-

Hausdorff sense. Then it follows that diam(Rk × Y0/G) ≤ Dm. Then Y0 must be

compact. Otherwise, it would contain a line. Thus we may consider the projection

φ : G→ Isom(Rk).

By [FY92, Theorem 6.1], for every δ > 0 there exists a normal subgroup Gδ of G

such that G/Gδ contains a finite index, free abelian group of rank not greater than

dim(Rk/φ(G)). Since Γi is torsion free, Proposition 4.2 gives that for all nontrivial

γ ∈ Γi, we have l(γ) ≥ D
N

where N = k
v

∫ 2D

0
Aε0e2k[cosh(2

√
ε0r)+1]dr. Choose δ = D

N

and set δ0 = δ/2.

Define

Γi(δ) = {γ ∈ Γi : d(pi, γ(pi)) < δ}.
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Similarly, define

G(δ) = {γ ∈ G : d(q, γ(q)) < δ}.

Then

Γi(δ) = {1}.

Since (M̃i, γi, pi)→ (Rk × Y0, G, q), it follows that

G(δ0) = {1}.

Let K denote the kernel of φ. Since δ0 > 0 was chosen so that G(δ0) = {1}, it

follows that

{γ ∈ K|d(γ(x), x) < δ0 for all x ∈ Y } = {1}.

Thus the subgroup generated by this set is trivial. That is,

Kδ0 = 〈{γ ∈ K|d(γ(x), x) < δ for all x ∈ Y }〉 = {1}.

Then, the quotient map

π : G→ G/Kδ0

is simply the identity map. The subgroup Gδ0 of G which has the properties we

seek is defined by

Gδ0 = π−1([1]),

where [1] denotes the coset containing the identity element of G/Kδ0 . But since

Kδ0 is trivial and π is the identity map, it follows that Gδ0 = {1}. Thus by [FY92,
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Lemma 6.1], G/Gδ0 = G contains a finite index free abelian subgroup of rank ≤ k;

that is, G is almost abelian. Moreover, [FY92, Theorem 3.10] we have that Γi is

isomorphic to G for i sufficiently large. But this contradicts the fact that Γi is

not almost abelian for each i.
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Chapter 5

Bound on Number of Generators

of the Fundamental Group

The question of how curvature affects generating sets of fundamental groups

can be an interesting one. Under the stronger assumption of a complete man-

ifold with nonnegative sectional curvature, Gromov has given an upper bound

on the number of generators of the fundamental group [Gro78, Theorem 1.5].

As previously mentioned, the analogous statement for complete manifolds with

nonnegative Ricci curvature is a conjecture of Milnor which still remains open.

Though we know that compact manifolds have finitely generated fundamental

groups, one may still ask about bounds for the number of generators. In partic-

ular, one can ask if there exists a uniform bound on the number of generators of

the fundamental group of compact manifolds for a certain class. Wei gave a such
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a bound for the class of compact manifolds with Ricci curvature and conjugate

radius bounded from below and diameter bounded from above [Wei97, Theorem

1.3]. Kapovitch and Wilking show that a uniform bound exists without the lower

bound on conjugate radius (see Theorem 2.10). In this chapter, we show that

Theorem 2.10 extends to the smooth metric measure space setting.

We begin this chapter with discussion of two results related to the splitting

theorem, which we will utilize in generalizing Theorem 2.10. We also review some

of the essential lemmas from [KW11]. We conclude the chapter with the proof of

a more general version of Theorem 1.5 (see Theorem 5.9).

5.1 Results Related to the Splitting Theorem

In order to obtain a uniform bound on the number of generators of the fun-

damental group, Kapovitch and Wilking require two results closely related to the

Cheeger-Colding Splitting Theorem. The first of these results is due to Cheeger

and Colding [CC00, see Section 1], see also [Che07, Theorem 9.29].

Theorem 5.1. Given R > 0 and L > 2R + 1, let Ric(Mn) ≥ −(n − 1)δ and

dGH(B(p, L), B(0, L)) ≤ δ, where B(0, L) ⊂ Rn. Then there exist harmonic func-

tions b1, . . . , bn on B(p,R) such that in the Gromov-Hausdorff sense d(ei, bi) ≤ Ψ,
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where {ei} denote the standard coordinate functions on Rn and

−
∫
B(p,R)

∑
i

|∇bi − 1|2+
∑
i 6=j

|〈∇bi,∇bj〉|+
∑
i

|Hessbi|2≤ Ψ. (5.1)

Here, Ψ is a nonnegative function as defined in equation (3.10). In the smooth

metric measure space setting, a similar statement may be made:

Theorem 5.2. Given R > 0 and L > 2R + 1, let Ricf ≥ −(n − 1)δ, with

|f |≤ k and dGH(B(p, L), B(0, L)) ≤ δ, where B(0, L) ⊂ Rn. Then there exist

f -harmonic functions b1, . . . , bn on B(p,R) such that in the Gromov-Hausdorff

sense d(ei, bi) ≤ Ψ, where {ei} denote the standard coordinate functions on Rn

and

−
∫
B(p,R)

(∑
i

|∇bi − 1|2+
∑
i 6=j

|〈∇bi,∇bj〉|+
∑
i

|Hessbi|2
)
e−fdvolg ≤ Ψ. (5.2)

Proof. The manner in which the harmonic functions bi are constructed for Theo-

rems 5.1 and 5.2 is similar to the manner in which the harmonic functions b± are

constructed in the proof of the Almost Splitting Theorem in both the Riemannian

and smooth metric measure space settings. Since the two L-balls are δ-close in

the Gromov-Hausdorff sense, there exists a δ-Gromov-Hausdorff approximation

F : B(0, L)→ B(p, L).
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For each i = 1, . . . , n, set

qi = F (Lei)

and define bi : M → R by

bi(x) = d(x, qi)− d(p, qi).

For the smooth metric measure space version, let bi be the f -harmonic function

such that bi|∂B(p,R) = bi|∂B(p,R). Integrating each term of equation (5.2) separately,

we see that the first term can be controlled by (3.17) and the third term by (3.18).

One can show a Ψ-upper bound for the middle term of the integrand (5.2) by

noting that

〈∇bi,∇bj〉 = 〈∇bi −∇bi +∇bi,∇bj −∇bj +∇bj〉

= 〈∇bi −∇bi,∇bj〉+ 〈∇bj −∇bj,∇bi〉+ 〈∇bi,∇bj〉

Using integration by parts and (3.16), one can show that the average value of each

of the first two terms of the summand is bounded from above by Ψ. Moreover,

〈∇bi,∇bj〉 → 0 as L→∞.

The Product Lemma of Kapovitch and Wilking, stated below, can be viewed

as another type of splitting result.
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Theorem 5.3. [KW11, Lemma 2.1] Let Mi be a sequence of manifolds with

RicMi
> −εi → 0 satisfying

• Bri(pi) is compact for all i with ri →∞, pi ∈Mi,

• for all i and j = 1, . . . , k there exist harmonic functions b
i

j : B(pi, ri) → R

which are L-Lipschitz and fulfill

−
∫
B(pi,R)

(
k∑

j,l=1

|〈∇bij,∇b
i

l〉 − δjl|+
k∑
j=1

|Hessb
i

j|2
)
dµi → 0 for all R > 0,

then (B(pi, ri), pi) subconverges in the pointed Gromov-Hausdorff topology to a

metric product (Rk ×X, p∞) for some metric space X.

Let (Y, p∞) be the subsequential limit of (B(pi, ri), pi). Without the assump-

tion that a line exists in the limit space, Kapovitch and Wilking instead show that

each of the functions b
i

j, as in the hypothesis of Theorem 5.3, limit to a submetry

b
∞
j from Y to R as i → ∞. Then one uses the fact that submetries lift lines to

lines in order to apply the Cheeger-Colding Splitting Theorem to show that Y in-

deed splits. Their argument may be modified to the smooth metric measure space

setting by using the volume comparison, Theorem 2.14, the Segment Inequality,

Proposition 3.3, the Splitting Theorem 1.6, and the fact that gradient flow of

an f -harmonic function is measure preserving with respect to the weighted mea-

sure e−fdvolg. Augmenting their arguments in this manner yields the following

extension.
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Theorem 5.4. Let (Mi, gi, e
−fidvolgi) be a sequence of smooth metric measure

spaces with |fi|≤ k and Ricfi > −εi → 0. Suppose that ri → ∞ and for every

i and j = 1, . . . ,m, there are harmonic functions b
i

j : B(pi, ri) → R which are

L-Lipschitz and fulfill

−
∫
B(pi,R)

(
m∑

j,l=1

|〈∇bij,∇b
i

l〉 − δjl|+
m∑
j=1

|Hessb
i

j|2
)
e−fidvolgi → 0 for all R > 0.

Then (B(pi, ri), pi) subconverges in the pointed Gromov-Hausdorff topology to a

metric product (Rm ×X, p∞) for some metric space X.

5.2 Essential Lemmas

In order to prove Theorem 5.9 in the final section of this chapter we review

and extend, when necessary, lemmas used by Kapovitch-Wilking to prove Theorem

2.10. The following lemma of Kapovitch and Wilking requires only an inner metric

space structure and hence may be applied to smooth metric measure spaces.

Lemma 5.5. [KW11, Lemma 2.2] Let (Yi, p̃i) be an inner metric space endowed

with an action of a closed subgroup Gi of its isometry group, i ∈ N∪{∞}. Suppose

(Yi, Gi, p̃i) → (Y∞, G∞, p̃∞) in the equivariant Gromov-Hausdorff topology. Let

Gi(r) denote the subgroup generated by those elements that displace p̃i by at most

r, i ∈ N ∪ {∞}. Suppose there are 0 ≤ a < b with G∞(r) = G∞(a+b
2

) for all
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r ∈ (a, b). Then there is some sequence εi → 0 such that Gi(r) = Gi(
a+b

2
) for all

r ∈ (a+ εi, b− εi).

Lemma 5.5 and the Almost Splitting Theorem 1.6 allow us to modify argu-

ments of the proof of [KW11, Lemma 2.3] to show that the following holds for

smooth metric measure spaces.

Lemma 5.6. Suppose (Mn
i , qi) is a pointed sequence of smooth metric measure

spaces where (Mn
i , gi, e

−fidvolgi) has |fi|≤ k and Ricfi(Mi) ≥ −1/i. Moreover,

assume (Mn
i , qi) → (Rm ×K, q∞) where K is compact, and the action of π1(Mi)

on the universal cover (M̃i, q̃i) converges to a limit action of a group G on some

limit space (Y, q̃∞). Then G(r) = G(r′) for all r, r′ > 2diam (K).

We will also need the following result on the dimension of the limit space.

Lemma 5.7. Let (Mn
i , gi, e

−fidvolg) be a sequence of smooth metric measure

spaces such that |fi|≤ k, diam (Mn
i ) ≤ D, and Ricf ≥ −(n − 1)H, H > 0. If

Mn
i converges to the length space Y m in the Gromov-Hausdorff sense, then for the

Hausdorff dimension we have m ≤ n+ 4k.

Proof. Begin by noting that for any (Mn, g, e−fdvolg) with Ricf ≥ −(n − 1)H,

H > 0, and fixed x ∈ M and R > 0, the f -volume comparison, Theorem

2.14, gives a bound on the number of disjoint ε-balls contained in B(x,R): Let

B(x1, ε), . . . , B(xl, ε) ⊂ B(x,R) be disjoint. Let B(xi, ε) denote the ball with the
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smallest f -volume. Then

l ≤ VolfB(x,R)

VolfB(xi, ε)
≤ VolfB(xi, 2R)

VolfB(xi, ε)
≤ Voln+4k

H B(2R)

Voln+4k
H B(ε)

= C(n+ 4k,H,R, ε).

Thus CapMi
(ε), the maximum number of disjoint ε/2-balls which can be con-

tained in Mn
i , is bounded above by C = C(n + 4k,H,D, ε

2
) for each i. More-

over CovMi
(ε), the minimum number of ε-balls covering Mn

i less than or equal to

CapMi
(ε), so CovMi

≤ C.

Since Mn
i → Y in the Gromov-Hausdorff sense, there exists a sequence δi > 0

such that dGH(Mi, Y ) < δi → 0 as i→∞. Then CovY (ε) ≤ CovMi
(ε− 2δi) ≤ C.

As i→∞, we have CovY (ε) ≤ C.

To see that the Hausdorff dimension is bounded above by n + 4k, recall that

the d-dimension Hausdorff measure of Y is defined by

Hd(Y ) = lim
ε→0

Hd
ε (Y ),

where

Hd
ε (Y ) = inf

{
∞∑
i=1

(diamUi)
d

∣∣∣∣ ∞⋃
i=1

Ui ⊃ Y, diamUi ≤ ε

}
.

Since CovY (ε) ≤ C, it follows that Hd
ε (Y ) ≤

∑C
i=1(2ε)d. Notice

C =
Voln+4k

H B(D)

Voln+4k
H B(ε/2)

∼ (ε/2)−(n+4k)
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as ε→ 0. Thus as ε→ 0
C∑
i=1

(2ε)d = C(2ε)d → 0

for all d > n + 4k. Thus the Hausdorff dimension of Y , defined by dimH(Y ) =

inf{d ≥ 0|Hd(Y ) = 0} is at most n+ 4k.

The final tool we will use to extend [KW11, Theorem 2.5] to smooth metric

measure spaces is a type of Hardy-Littlewood maximal inequality for smooth

metric measure spaces.

Proposition 5.8 (Weak 1-1 Inequality). Suppose (Mn, g, e−fdvolg) with |f |< k

has Ricf ≥ −(n − 1)H and h : M → R is a nonnegative function. Define

Mxρh(p) = supr≤ρ −
∫
B(p,r)

he−fdvolg for ρ ∈ (0, 1]. Then if h ∈ L1(M), we have

Volf{x|Mxρh(x) > c} ≤ C(n+ 4k,H)

c

∫
M

he−fdvolg

for any c > 0.

As in the proof of the Hardy-Littlewood maximal inequality for Euclidean

spaces, one utilizes the Vitali Covering Lemma which states that for an arbitrary

collection of balls {B(xj, rj) : j ∈ J} in a metric space, there exists a subcollection

of balls {B(xj, rj) : j ∈ J ′} with J ′ ⊆ J from the original collection which are

disjoint and satisfy ⋃
j∈J

B(xj, rj) ⊆
⋃
j∈J ′

B(xj, 5rj).
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We also note that the f -Volume Comparison [WW09, Theorem 1.2] gives a type

of doubling estimate. In particular, for all r ≤ 1, we have

Volf (B(x, 5r)) ≤ C(n+ 4k,H)Volf (B(x, r)).

Proof. Let J = {x|Mxρh(x) > c}. For all x ∈ J there exists a ball B(x, rx)

centered at x with radius rx ≤ 1 such that

∫
B(x,rx)

he−fdvolg ≥ cVolfB(x, rx). (5.3)

Then by the Vitali Covering Lemma, we have

J ⊆
⋃
x∈J

B(x, rx) ⊆
⋃
x∈J ′

B(x, 5rx)

where J ′ ⊆ J . Then

Volf{x|Mxρh(x) > c} ≤ Volf

(⋃
x∈J ′

B(x, 5rx)

)
≤ C(n+ 4k,H)

∑
x∈J ′

VolfB(x, rx).

(5.4)

Combining (5.3) and (5.4) yields the desired result.

5.3 Proof of Theorem 5.9

Before continuing to the proof of the theorem, we take a moment to recall

Gromov’s short generator system and the notion of a regular point. As in Gromov
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[Gro78, 2.1], to construct Gromov short generators of the fundamental group

π1(p,M), we represent each element of π1(p,M) by a shortest geodesic loop γ in

that homotopy class. A minimal γ1 is chosen so that it represents a nontrivial

homotopy class of π1(M). If 〈γ1〉 = π1(M), then {γ1} is a Gromov short generator

system of π1(M). If not, consider π1(M) \ 〈γ1〉. Choose γ2 ∈ π1(M) \ 〈γ1〉 to be

of minimal length. If 〈γ1, γ2〉 = π1(M), then {γ1, γ2} is a Gromov short generator

system of π1(M). If not, choose γ3 ∈ π1(M) \ 〈γ1, γ2〉 such that γ3 is of minimal

length. Continue in this manner until π1(M) is generated. By this construction,

we obtain a sequence of generators {γ1, γ2, . . . } such that |γi|≤ |γi+1| for all i. The

short generators have the property |γi|≤ |γ−1
j γi| for i > j. Although this sequence

of generators is not unique, the sequence of lengths of generators {|γ1|, |γ2|, . . . }

is unique.

To review the notion of a regular point, we first recall that for a Riemannian

manifold (Mn, g) a tangent cone CpM at p ∈ M is a pointed Gromov-Hausdorff

limit of rescaled spaces (M, p, rig) for ri → ∞. Note that tangent cones may

depend on the choice of convergent subsequence and hence may not be unique.

As defined in Cheeger-Colding [CC97, Definition 0.1], a point p ∈M is regular if

for some k, every tangent cone at p is isometric to Rk. We note that in the case of

Ricci curvature bounded from below, Cheeger and Colding have shown that the

set of regular points has full measure [CC97, Theorem 2.1].
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Now we have the necessary tools and concepts which will allow us to modify

the argument of Kapovitch and Wilking to obtain a bound for the number of

generators of π1(M) in the smooth metric measure space setting. As in [KW11],

we prove a more general statement from which Theorem 1.5 is a consequence.

This general statement, as well as its proof, is parallel to the statement and proof

of [KW11, Theorem 2.5]. The argument is included in its entirety below for

completeness.

Theorem 5.9. Given n, k, and R, there is a constant C such that the following

holds. Suppose (Mn, g, e−fdvolg) is a smooth metric measure space with |f |≤ k,

p ∈M and Ricf ≥ −(n− 1) on B(p, 2R). Suppose also that π1(M, p) is generated

by loops of length ≤ R. Then π1(M, p) can be generated by C loops of length ≤ R.

Proof of Theorem 5.9. In order to prove Theorem 5.9 we begin, as in Kapovitch

and Wilking’s argument, by showing that there is a point q ∈ B(p, R
4

) such that

any Gromov short generator system of π1(M, q) has at most C elements.

For q ∈ B(p, R
4

) consider a Gromov short generator system {γ1, γ2, . . . } of

π1(M, q). By assumption, π1(M, p) is generated by loops of length ≤ R. In

choosing generators for any Gromov short generator system of π1(M, q), loops

of the form σ ◦ g ◦ σ−1, where σ is a minimal geodesic from q to p and g is

a generator of length ≤ R of π1(M, p), are contained in each of the homotopy

classes of π1(M, q). Such a loop has length ≤ 3R
2

and hence the minimal length

representative of that class, γi must have the property that |γi|≤ 3R
2

. Moreover,
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there are a priori bounds on the number of short generators of length ≥ r. To see

this, let us only consider the short generators such that |γi|≥ r. In the universal

cover M̃ of M , if q̃ ∈ π−1
1 (q), we have

r ≤ d(γiq̃, q̃) ≤ d(γ−1
j γiq̃, q̃) = d(γiq̃, γj q̃)

for i > j. Thus the balls B(γiq̃, r/2) are pairwise disjoint for all γi such that

|γi|≥ r. Then, ⋃
{γi:|γi|≥r}

B(γiq̃,
r

2
) ⊂ B(q̃, 2R +

r

2
)

implies that

#{γi : |γi|≥ r}VolfB(q,
r

2
) ≤ VolfB(q, 2R +

r

2
).

And hence by the volume comparison [WW09, Theorem 1.2(a)], it follows that

#{γi : |γi|≥ r} ≤ C(n, k, r, R). Since one can control the number of short genera-

tors of length between r and 3R
2

for r < R, one needs only show that the number of

short generators of π1(M, q) with length < r can also be controlled. This argument

proceeds by contradiction. We assume the existence of a contradicting pointed

sequence of smooth metric measure spaces (Mi, pi) such that (Mi, gi, e
−fidvolg)

has the property that

• |fi|≤ k
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• Ricfi ≥ −(n− 1) on B(pi, 3)

• for all qi ∈ B(pi, 1) the number of short generators of π1(Mi, qi) of length

≤ 4 is larger than 2i.

By Gromov precompactness, Theorem 2.23, we may assume that (B(pi, 3), pi)

converges to a limit space (X, p∞). Set

dim(X) = max{k : there is a regular x ∈ B(p∞, 1/4) with CxX ' Rk}

where CxX denotes a tangent cone of X at x.

We prove that there is no such contradicting sequence by reverse induction on

dim(X). For the base case, let m > n+4k+1. By Lemma 5.7, dim(X) ≤ n+4k+1,

so there is nothing to prove here. Suppose then that there is no contradicting

sequence with dim(X) = j where j ∈ {m+ 1, . . . , n+ 4k} but that there exists a

contradicting sequence with dim(X) = m. The induction step is divided into two

substeps.

Step 1 For any contradicting sequence (Mi, pi) converging to (X, p∞) there is a

new contradicting sequence converging to (RdimX , 0).

Suppose (Mi, pi) is a contradicting sequence converging to (X, p∞). By def-

inition of dim(X), there exists q∞ ∈ B(p∞,
1
4
) such that Cq∞X ' Rm. Let

qi ∈ B(pi,
1
2
) such that qi → q∞ as i → ∞. Since this is a contradicting se-

quence, it follows that the Gromov short generator systems of π1(Mi, xi) for all

xi ∈ B(qi,
1
4
) contain at least 2i generators of length ≤ 4. As noted earlier, for
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each fixed ε < 4, the number of short generators of π1(Mi, x) of length ∈ [ε, 4]

is bounded by a constant C(n, k, ε, 4). Then we can find a rescaling λi → ∞

such that for every xi ∈ B(qi,
1
λi

), the number of generators of π1(Mi, x) of length

≤ 4/λi is at least 2i. Moreover, (λiMi, qi) → (Rm, 0), where λiMi denotes the

smooth metric measure space (Mi, λigi, e
−fidvolλigi). Thus the sequence (λiMi, qi)

is the new contradicting sequence desired.

Step 2 If there is a contradicting sequence converging to (Rm, 0), then we can find

a contradicting sequence converging to a space whose dimension is larger than m.

Let (Mi, qi) denote the contradicting sequence converging to (Rm, 0) as ob-

tained in Step 1 above. Without loss of generality, assume that for some ri →∞

and εi → 0, Ricf ≥ −εi on B(pi, ri). By Theorem 5.2 there exist f -harmonic

functions (b
i

1, · · · , b
i

m) : B(qi, 1)→ Rm such that

−
∫
B(qi,1)

(
m∑

j,l=1

|〈∇bil,∇b
i

j〉 − δlj|+||Hess(b
i

l)||2
)
e−fdvolg < δi → 0.

Claim There exists zi ∈ B(qi,
1
2
), c > 0 such that for any r ≤ 1

4
,

−
∫
B(zi,r)

(
m∑

j,l=1

|〈∇bil,∇b
i

j〉 − δlj|+||Hess(b
i

l)||2
)
e−fdvolg ≤ cδi → 0.
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Let h(x) denote
∑m

j,l=1|〈∇b
i

l,∇b
i

j〉 − δlj|+||Hess(b
i

l)||2 evaluated at x. Seeking

contradiction, suppose that for all c > 0, r ≤ 1/2, and z ∈ B(qi,
1
2
)

−
∫
B(z,r)

he−fdvolg > cδi,

then it follows that Mx1/2h(z) = supr≤1/2 −
∫
B(z,r)

he−fdvolg ≥ cδi. Hence

Volf{x|Mx1/2h(x) ≥ cδi} ≥ Volf (B(qi,
1

2
)). (5.5)

By Proposition 5.8, we also have that for all c ≥ 0,

Volf{x|Mx1/2h(x) ≥ cδi} ≤
C(n+ 4k,−1)

c
. (5.6)

Combining (5.5) and (5.6), we have

1 ≤
Volf{x|Mx1/2h(x) ≥ cδi}

Volf (B(qi,
1
2
))

≤ C(n+ 4k,−1)

c · Volf (B(qi,
1
2
))
.

Choosing c > C(n + 4k,−1)/Volf (B(qi,
1
2
)) yields a contradiction and hence the

claim is proven.

By Lemmas 5.5 and 5.6, there exists a sequence δi → 0 such that for all

zi ∈ B(pi, 2) the Gromov short generator system of π1(Mi, zi) does not contain

any elements of length in [δi, 4]. Choose ri ≤ 1 maximal with the property that

there is yi ∈ B(zi, ri) such that the short generators of π1(Mi, yi) contains a

generator of length ri. Then ri < δi → 0.
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Rescaling by 1
ri

gives that π1( 1
ri
Mi, yi) has at least 2i short generators of

length ≤ 1 for all yi ∈ B(zi, 1). By the choice of rescaling, there is at least one

yi ∈ B(zi, ri) such that the Gromov short generator system at that yi contains

a generator of length 1. Moreover, the above claim together with the Product

Lemma 5.4 give ( 1
ri
Mi, zi) → (Rk × Z, z∞). Moreover, by Lemmas 5.5 and 5.6,

Z is nontrivial and thus dim(Rm × Z) ≥ m + 1, a contradiction. So, we have

completed the induction step.

Thus there exists q ∈ B(p, R
4

) such that number of generators of π1(M, q)

has at most C elements. Thus the subgroup of π1(M, p) generated by loops

of length < 3R/5 can be generated by C elements. Moreover, the number of

short generators of π1(M, p) with length in [3R/5, R] is bounded by some a priori

constant.
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