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Abstract

Improved surface temperature estimates with MASTER /

AVIRIS sensor fusion

Erik Shane Philbert Grigsby

Land surface temperature (LST) is an important parameter in many ecologi-

cal studies, where processes such as evapotranspiration have impacts at temper-

ature gradients less than 1 K. The current Root Mean Square Errors (RMSE)

in standard MODIS and ASTER LST products are greater than 1 K, and for

ASTER can be as large as 4 K for graybody pixels such as vegetation. Errors

of 3 to 8 K have been observed for ASTER in humid conditions, making knowl-

edge of atmospheric water vapor content critical in retrieving accurate LST. For

this reason improved accuracy in LST measurements through the synthesis of

visible-to-shortwave-infrared (VSWIR) derived water vapor maps and Thermal-

Infrared (TIR) data is one goal of the Hyperspectral Infrared Imager, or HyspIRI,

mission. The 2011 ER-2 Delano/Lost Hills flights acquired data with both the

MODIS/ASTER Simulator (MASTER) and Airborne Visible InfraRed Imaging

Spectrometer (AVIRIS) instruments flown concurrently. This study compares

LST retrieval accuracies from the standard JPL MASTER temperature prod-

ucts produced using the Temperature Emissivity Separation (TES) algorithm,
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and the Water Vapor Scaling (WVS) atmospheric correction method proposed

for HyspIRI. The two retrieval methods are run both with and without high spa-

tial resolution AVIRIS-derived water vapor maps to assess the improvement from

VSWIR synthesis. We find improvement using VSWIR derived water vapor maps

in both cases, with the WVS method being most accurate overall. For closed

canopy agricultural vegetation we observed canopy temperature retrieval RMSEs

of 0.49 K and 0.70 K using the WVS method on MASTER data with and without

AVIRIS derived water vapor, respectively.
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Chapter 1

Introduction

Kinetic temperature exerts a measurable effect on most physical processes, and

is explicitly used as an input to model both plant water stress (Jackson et al. 1981)

and evapotranspiration (Monteith et al. 1965, Allen et al. 1998). Water stress and

evapotranspiration are of particular interest to farmers and water managers in arid

drought prone regions such as California, where agricultural production was valued

at $44.7 billon in 2012 (CDFA 2013). A 32.5% water delivery reduction has been

predicted in the California Central Valley as a result of 2014 drought—a loss which

will have an estimated total economic impact of $1.67 billon, including, direct,

indirect and induced effects (Howitt et al. 2014). The socioeconomic effects of the

current drought are predicted to be 50% more severe than those resulting from

2009 drought, and water reductions force difficult decisions for farmers: inefficient

watering may bring a particular crop to harvest, at the cost of available water to

other fields; water a crop too little and it will undergo cavitation and wilt, ruining
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Chapter 1. Introduction

the harvest. Water stress affects the reproductive cycle of woody perennials—a

group that includes the two largest irrigated crops in California, vineyards ($4.45

billion, 2012) and almond orchards ($4.35 billon, 2012) (CDFA 2013)—and can

cause loss of crop productivity stretching over years that often requires redrafting

or replanting. Accurate modeling of temperature and evapotranspiration provide

farmers with robust estimates of water demand, enabling more conservative and

efficient agricultural water use that reduces the human impact of drought.

While discrete in situ measurements are valuable tools for farmers, the size

and scope of agriculture—10.28 million hectares and 80,500 farms in 2012 for Cal-

ifornia alone (CDFA 2013)—underscore the necessity for regional scale remotely

sensed temperature estimates that are accurate. The accuracy of temperature

estimates are particularly important for physical processes like evapotranspira-

tion, which is mainly driven by the temperature gradient between the air and

leaves, a gradient that can be less than 1 K for vegetation in semiarid ecosystems

(Jarvis & McNaughton 1986). Current remotely sensed Land Surface Temper-

ature (LST) estimates typically have errors on the order of 1 K when averaged

over all surface types (Hulley et al. 2012); however, errors up to 4 K are typ-

ical for spectral graybodies such as vegetation (Gustafson et al. 2006), due to

both uncertainty in emissivity and moister atmospheric profiles present over large

contiguous vegetation patches. Even for targets with well known emissivity such
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Chapter 1. Introduction

as water surfaces, errors as large as 3-8 K can occur due to humid conditions

(Tonooka 2005), and robust atmospheric correction of thermal data is still essen-

tial in less humid mediterranean climates in order to provide operational data to

farmers and resource managers.

1.1 Theoretical Background

Atmospheric correction of thermal data can be accomplished by a number of

methods, however all methods focus on solving the same physical equation:

Lλ = [ελBλ(Ts) + (1 − ελ) ∗ L↓λ] ∗ τλ + L↑λ (1.1)

Where Lλ is the at sensor thermal radiance; ελ is an unknown emissivity; Bλ(Ts)

is the blackbody radiance at the surface temperature Ts; L
↓
λ and L↑λ are the down-

welling and upwelling long wave radiance from the atmosphere; and τλ is the

transmittance from the ground to the sensor. The surface temperature Ts is the

only term that does not vary spectrally; the at sensor radiance Lλ is the only term

that is empirically acquired as part of data collection. The L↑λ and L↓λ terms are

atmospheric emittance terms that vary per pixel, and are determined by atmo-

spheric composition and state (column water vapor, pressure, etc.), as is per pixel

transmittance to the sensor.
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Chapter 1. Introduction

Estimating LST from remotely sensed data is challenging in part because the

emissivity of a surface, which varies spectrally, is required to invert the Planck

function and retrieve LST (Zhengming & Dozier 1989). Solving for emissivity

and LST simultaneously is an underdetermined problem, with N observations be-

ing used to solve for both a single temperature, and N emissivities (Realmuto

1990). Errors in emissivity estimation directly affects temperature retrieval accu-

racy during the Planck inversion, and add additional errors when correcting for

downwelling atmospheric radiance that is reflected off of the surface. Current tech-

niques such as the Temperature Emissivity Separation (TES) algorithm (Gillespie

et al. 1998), have sought to constrain the emissivity solution space through the use

of empirically established relationships related to the Min-Max Difference (MMD)

in emissivity (Matsunaga 1994), or other related measures of spectral contrast.

Unfortunately, these techniques are not effective over graybody pixels with low

spectral contrast, such as vegetation, in part due to residual effects of incomplete

atmospheric correction.

While well mixed atmospheric gasses such as CO2 and O3 can be estimated

and corrected using regional estimates or model data from the National Center

for Environmental Prediction (NCEP), significant challenges remain in correcting

thermal imagery to account for column water vapor, an atmospheric constituent

that varies temporally and is not well mixed across spatial scales (Gao & Goetz
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1990). One solution to account for this variability is to directly invert and solve

for physical water vapor within the atmosphere using radiative transfer code such

as MODTRAN (Berk et al. 1987, 1998, 2005) to fit water absorption features

within the individual spectra pixel-by-pixel (Green et al. 1993). Direct physical

inversion for water vapor in the Thermal-InfraRed (TIR) portion of the spec-

trum is complicated both by the multisource nature of TIR emissions, and by

low signal to noise ratios within the TIR; hence broadband sensors that include

TIR channels such as the MODerate Resolution Imaging Spectrometer (MODIS)

typically utilize the higher signal to noise ratios and single source nature of the

Visible Short Wave InfraRed (VSWIR) channels to solve for total column water

vapor. Since water absorption features within spectra are defined by their depth,

width, and shape (Carrère & Conel 1993), high spectral resolution sensors such as

the hyperspectral Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) are

better able to retrieve total column water vapor relative to broadband sensors such

as the MODIS ASTER Simulator (MASTER), which appears to underestimate

total column water vapor (Roberts et al. 2012, Scheele et al. 2013). Given that

uncertainty of column water vapor dominates as a source of atmospheric error

when retrieving temperature from remotely sensed imagery (Hook et al. 2001),

the fusion of broadband thermal imagery with shortwave hyperspectral imagery
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Chapter 1. Introduction

opens exciting opportunities for improving temperature retrievals (Roberts et al.

2012).

1.2 Science Objectives and Relevance to HyspIRI

The National Research Council recommended HyspIRI mission, which com-

bines a 213-channel VSWIR imaging spectrometer with an 8-channel TIR ra-

diometer, would enable global simultaneous acquisition and synergy of hyperspec-

tral VSWIR and TIR data at spatial resolutions comparable to Landsat (Roberts

et al. 2012). In this paper, we assess the capabilities of HyspIRI like instrumenta-

tion in retrieving vegetation canopy temperature by comparing in situ leaf temper-

ature measurements with temperatures retrieved using only TIR MASTER data,

and temperatures retrieved using a synthesis of MASTER and AVIRIS remote

sensing data. Specifically, we compare temperature estimates from the following

five methods of temperature retrieval with in situ field data:

1. Single Band inversion using AVIRIS derived water vapor to estimate per

pixel L↓λ, L
↑
λ and τλ.

2. TES with L↓λ, L
↑
λ and τλ terms derived from user supplied atmospheric terms,

including a scene estimate of water vapor.
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3. TES with per pixel L↓λ, L
↑
λ and τλ terms supplied from AVIRIS derived water

vapor, as in the single band case.

4. Water Vapor Scaling (WVS) method applied with NCEP estimates of water

vapor used to scale L↓λ, L
↑
λ and τλ terms derived from NCEP atmospheric

profiles.

5. WVS applied using AVIRIS derived per pixel water vapor to scale L↓λ, L
↑
λ

and τλ terms generated from NCEP atmospheric profiles.

The WVS method was selected due to the increased accuracy that it offers in

humid conditions where large uncertainties usually exist from remote sensing or

model derived water vapor profiles (Tonooka 2005, Hulley et al. 2014), and also

because it is the candidate algorithm for temperature retrievals for both MASTER

and the upcoming HyspIRI mission. TES was selected since it is the current tem-

perature retrieval algorithm in use for ASTER and MODIS; the MASTER-TES

algorithm runs as a submodule to the WVS method, and comparison between the

two showcases expected improvements between the two methods. Single Band in-

version is the closest approximation to an unmodified application of Equation 1.1,

and is used as a control between improvements in emissivity retrieval versus im-

provements in atmospheric correction. The differences in the Fields Of View

(FOVs) in the broadband TIR radiometer and SWIR spectrometer on HyspIRI
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will result in significant portions of the larger TIR swath that are not imaged

by the VSWIR spectrometer; comparison of methods using NCEP and per pixel

water vapor allow quantification of gains in temperature retrieval accuracy that

can be expected within the overlapping scan area. These comparisons allow us

to quantify the improvement that hyperspectral data bring to TIR temperature

retrievals. They also provide insight into the magnitude and potential sources of

remaining uncertainty in temperature retrievals. Validation of LST with in situ

measurements showcases the potential benefits of a HyspIRI mission, both for LST

accuracy in general and under challenging atmospheric conditions over vegetated

surfaces. Accuracy assessment of temperature retrievals are important to know

what physical processes we are able to model, as well as what new phenomena we

will be able to explore using HyspIRI like sensors.
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Chapter 2

Data and Methods

2.1 Study area

Our study focuses in a 15 ha Crimson seedless vineyard, a production table

grape agriculture site in the San Joaquin Valley owned by Delano Vineyards. As

part of an ongoing research study focused in remote sensing detection of vine water

status (Alsina et al. 2013), the vineyard was split into two 7.5 ha blocks (North

and South) and submitted to different watering regimes. Starting on April 8th

2011, and continuing throughout the growing season, the North block was irrigated

to fully cover vine water demand while the South block was supplied with half

the irrigation of the North control block, presenting a range of physiologic plant

water status and canopy temperatures. The range of vegetation conditions, overall

canopy closure, and presence of both in situ instrumentation and sampling were

the primary factors that led us to select Delano Vineyards. The 2011 May 20th
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afternoon flight included simultaneous data acquisition with both the AVIRIS and

MASTER instruments that was temporally close to in situ field sampling of air

and leaf temperature.

Figure 2.1: Field site at Delano Vineyards. Yellow triangles show locations of
towers; numbered glyphs indicate data vines that were sampled. Vine 26 (’F’) was
sampled only during predawn; vine 8 (’�’) was sampled only during the afternoon;
all other data vines were sampled at both times. Vine glyphs are colored green
for north block samples and orange for south block samples. The highway at the
right of the image is California State Route 99 (SR 99).

2.2 Field Data

Leaf water potential and gas exchange were measured on the flight day both

predawn and throughout the data acquisition flight windows, in 6 georeferenced

vines per block (see Figure 2.1) using a Scholander chamber (Soilmoisture 3005,
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Soilmoisture equipment corp. Santa Barbara, CA) and a a LiCor 6400 (LiCor

Inc. Lincoln Nebraska, USA) respectively. The Licor instrument calculates the

temperature gradient between the ambient air and a sampled leaf as part of its gas

exchange analysis routine, using a fine wire thermocouple installed in the chamber

to measure and record leaf temperature while taking a simultaneous measurement

of the ambient air temperature. Two instrumented towers, one per block, were

installed in the site to estimate surface energy fluxes using surface renewal. These

towers recorded a number of variables, including air temperature by fine wire

thermocouple, continuously for the week preceding and following the data flight

at half hour intervals.

Figure 2.2: Leaf temperature (red crosses) and air temperature (green dots)
as measured by the LiCor instrument during afternoon sampling on May 20th,
2011. Circled air temperature samples indicate sampling at a single data vine
(text labels match Figure 2.1).
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The in situ measurements of leaf temperature from the LiCor instrument (Fig-

ure 2.2) provide a close empirical estimate of canopy temperature, however a mis-

match of 1 to 1.5 hours between the sampled measurements and the closest flight

line prevented using the raw measures as validation data. The hour offset present

between the end of the LiCor measurements and the data flight is because stom-

atal conductance measurements were taken coincident with the data flight and

it was not feasible to take LiCor measurements simultaneously; the half hour of

additional temporal variability is due to the time required to traverse and sam-

ple both the North and South data blocks. The differences in watering regimes

between the North and South blocks introduces a spatial temperature gradient

(Figure 2.3) imposed on top of the diurnal temperature trend present over the half

hour sampling window. In order to separate the temporal and spatial temperature

tends present in the LiCor leaf temperature measurements, and ultimately adjust

leaf temperatures measurements forward in time to match the acquisition time of

the remote sensing data, we modeled an aspatial diurnal temperature trend using

tower data measurements (see Figure 2.4a).

12
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Figure 2.3: Spatial temperature gradient present at Delano field site, units are
kelvin. The increasing trend of temperature from North to South is aligned with
the North to South sampling order described in Figures 2.1 & 2.2, and is clearly
present in the remote sensing data from both morning (right) and afternoon
(left) MASTER data acquisitions. Temperatures shown retrieved using TES with
AVIRIS water vapor as described in section 2.3.4

2.2.1 Diurnal temperature modeling

To model the aspatial diurnal temperature trend, we used the following equa-

tion:

K(t) = A ∗ cos((W ∗ t) + S) +M + (D ∗ (t− 140)) (2.1)

Where A is the amplitude of the diurnal cycle (i.e., the range of the min/max

temperature values); W is a shape parameters that corresponds to the width of

the period; t is time in decimal julian day of the year; S is a offset shift that deter-

mines the alignment and timing of the daily min/max temperature trough/peak;

13
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M is the mean daily temperature (centered on julian day 140); D is a linear term

for the daily temperature trend; and K(t) is the modeled temperature in Kelvin

at time t. This function was fit to data from the North tower, which is positioned

between the North and South data blocks (Figure 2.1), using a non-linear-least-

squares-function (NLLSF) (Nelder & Mead 1965) to estimate parameters. The

NLLSF function was seeded with initial parameter guesses of the mean temper-

ature, amplitude, and daily temperature trend by taking the mean of the data

set, the average difference between the min and max temperatures, and the best

fit slope of the data set respectively. The window time selected for data input to

the fitting function was three days (72-hours) prior and one day (24 hours) after

the data flight; this range was chosen because it included four contiguous days

about the data that shared similar atmospheric conditions—clear, low wind, and

no clouds. The input data and result of the fit can be seen in Figure 2.4a.

Since the North Tower was positioned at the edge of the vineyard, with an

ambient air temperature sensor fixed 1 meter above the vegetation canopy, the

diurnal tower air temperature cycle was localized to a within canopy diurnal air

temperature cycle using the LiCor measurements. The daily temperature trend

D, and the timing of the daily minimum and maximum temperature as controlled

by parameters S and W were assumed to be the same both within the canopy and

at the North tower; the mean daily temperature M and daily temperature range

14
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Figure 2.4: (a.) Diurnal model (red line) fit to North Tower data (crosses);
model parameters as fit by NLLSF (χ2

red = 1.76) are as follows: A = 6.565,
W = 6.264, S = −1.570, M = 290.736, D = 3.125. Yellow box is the time window
for in situ LiCor measurements. (b.) Diurnal aspatial temperature model (blue
line) for canopy air temperature; model parameters W = 6.264, S = −1.570, and
D = 3.125 are fixed and taken from Figure 2.4a; model parameters A = 9.62,
and M = 297.605 were determined by NLLSF fit to LiCor data. The modeled
blue line represents the temporal trend only– LiCor data observations (crosses)
encapsulate both a temporal trend and the spatial trend shown in Figure 2.3.

A were known to not be same from inspection of the LiCor predawn and afternoon

measurements. Fixing D, S and W to the values calculated in Figure 2.4a, we

reran the NLLSF on the predawn and afternoon LiCor air temperature measure-

ments to estimate values of M and A appropriate to within the vegetation canopy.

The resulting parameter estimates of Equation 2.1 can be seen in Figure 2.4b, and

were used to estimate the aspatial (i.e., temporal) temperature trend within the

canopy.
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Figure 2.5: Regression of leaf and air LiCor temperature measurements.

2.2.2 Linking leaf and air temperature

While tower data measurements only include air temperature, and not leaf

temperature, we found that the two temperature measurements were highly cor-

related throughout the sampling window and that air temperature can be used

to predict canopy temperature using a simple linear regression (R2 = 0.81, see

Figure 2.5). We established this linear regression using the air and leaf tempera-

tures from the LiCor instrument; since each pair of measurements are collocated

in both time and space, we believe the relationship is robust across the spatial and

temporal gradients. Using this regression to estimate leaf (and canopy) tempera-

tures at the time of the data flight explicitly assumes that the leaf temperature to
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air temperature relationship calculated using data collected from 1:30pm to 2pm

is still valid at 3pm. Since there is no major shift in the heating regime over this

time as measured by the towers (rnet), and since the time offset is never more

than 90 minutes, we believe this to be a sound assumption.

Figure 2.6: Black symbols are observations 1 to 1.5 hours prior to data flight.
Red symbols are temperatures time adjusted to 15:01 PDT using Equation 2.1
with the coefficients listed in Figure 2.4b.

2.2.3 Adjusted field validation data

To capture the spatial variability in temperature within the data blocks shown

in Figure 2.3, we calculated residuals between the in situ measurements of air tem-

perature recorded by the LiCor instrument, and the modeled air temperatures

shown in Figure 2.4b. These residuals were added back to the modeled air tem-

17
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perature at the time of the data flight to yield spatially explicit air temperature

estimates at 3:01pm PDT. The regression in Figure 2.5 was used to convert air

temperature within the canopy to leaf temperature; these adjusted measures of

leaf temperature shown in Figure 2.6 represent our best estimate of canopy tem-

perature at the time of the data flights, and were used as independent verification

data in assessing our remote sensing temperature retrievals.

2.3 Remote Sensing Data

The NASA ER2 passed over the Delano Vineyard field at 15:01 local time

(PDT; 22:01UTC) on May 20th 2011 at an altitude of 8.3km carrying both the

AVIRIS and MASTER instruments. The orthorectified and overlaid images in

Figure 2.7 show the result of both the different sensor swath widths (FOVs) and

spatial resolutions (IFOVs). The flight speed resulted in an oversampled area of

interest, leading to higher effective spatial resolutions compared to the instrument

IFOVs—6.9 meters for AVIRIS and 13.1 meters for MASTER. We found the

MASTER georeferenced product to be highly spatially accurate over our field

site, with the corners of the north and south data blocks in the MASTER imagery

aligned to ground sampled GPS points with sub pixel accuracy and not in need

of further spatial correction or georegistration.

18



Chapter 2. Data and Methods

Figure 2.7: MASTER and AVIRIS flightlines; yellow box is the field site shown
in Figure 1. MASTER bands: Red = 9, Green = 5, Blue = 3 ; AVIRIS bands:
Red = 29, Green = 20, Blue = 11

2.3.1 AVIRIS water vapor retrieval

We retrieved precipitable column water vapor for the AVIRIS flight line using

the ACORN atmospheric correction software run in mode 1.5 with a tropical
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atmosphere profile. The tropical atmosphere profile was used in ACORN because

the starting surface temperature of this profile more closely matched the surface

temperature of the in situ data, and the atmospheric conditions of the heavily

irrigated central valley in May are better approximated by the tropical profile

in MODTRAN than by the mid-latitude summer profile. Additionally, the mid-

latitude summer profile was prone to saturate water vapor estimates over moist

pixels due to the lower saturation vapor pressure that this cooler temperature

profile provides. Liquid water within the canopy was also simultaneously retrieved

in ACORN to avoid overestimation of water vapor from mixing of the adjacent

liquid and vapor water absorption features (Gao & Goetz 1990). Both the 940nm

and 1140nm water absorption features were used for the inversion, with aerosol

path scattered radiance included within the fit. ACORN optimized visibility, the

parameter that accounts for aerosols within ACORN, to a value of 20km from an

initial estimate of 16km provided from the nearest airport in Bakersfield, CA.

Despite the higher spatial resolution of AVIRIS, higher accuracy georegistra-

tion within the MASTER data product led us to use MASTER as the authoritative

basemap when coregistering the MASTER and AVIRIS datasets. To register the

datasets we first resized the 6.9 meter pixels of the AVIRIS imagery and AVIRIS

derived water vapor map to match the larger 13.1 meter MASTER pixels using

pixel aggregate resampling. The resampled visible bands of AVIRIS were reg-

20



Chapter 2. Data and Methods

istered to the visible bands of MASTER applying pixel offsets to translate the

AVIRIS image and align linear features present in the imagery. Specifically, the

resampled AVIRIS data were shifted 2 pixels east and one pixel north in order

to match the corners of the data blocks and align the roads. These same pixel

offsets found in the visible AVIRIS imagery were used to translate and register

the AVIRIS derived water vapor map.

Figure 2.8: (left): AVIRIS derived water vapor; units are in grams of precip-
itable water. (right top): Subset of resampled AVIRIS water vapor over validation
site; colors match left image. (right bottom): Matching subset of radiance im-
age for band 44 of MASTER. Roads are noticeably hotter than the fields; pixel
incremented grid overlaid over right images to allow comparison of registration
between MASTER and AVIRIS.
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2.3.2 Thermal Infrared data preprocessing

We selected five MASTER bands from the TIR for thermal temperature re-

trieval processing: bands 43 (8.62 µm), 44 (9.09 µm), 47 (10.64 µm), 48 (11.33

µm), and 49 (12.12 µm). These bands were selected to best approximate the

HyspIRI proposed bands centered at 8.63 µm, 9.07 µm, 10.53 µm, 11.33 µm, and

12.05 µm. We excluded MASTER band 41 (7.81 µm) since it does not fall within

an atmospheric window region; MASTER band 42 (8.18 µm) approximates the

proposed 8.28 µm HyspIRI band but was excluded to reduce atmospheric error

due to combined water vapor and methane absorption within the band. We used

radiometrically corrected MASTER L1B data for determining at sensor radiance,

and convolved atmospheric radiance terms using monochromator derived empir-

ical Spectral Response Functions (SRFs) measured prior to the data flights at

NASA Ames on May 11th, 2011.

2.3.3 Single band inversion

Temperature retrieval from thermal data consists of three broad steps: atmo-

spheric correction of at sensor radiance to at ground emitted radiance, estimation

of target emissivity, and inversion to physical temperature using estimated target

emission and emissivity. The single band inversion method follows an initial cor-

rection routine similar to TES and WVS, but separates atmospheric correction
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error from TES emissivity estimation error by bypassing the TES module and

prescribing an a priori fixed value of the maximum spectral surface emissivity for

one band. The maximum spectral graybody emissivity of vegetation ranges from

0.97 to 0.99, and since our pixels are smaller and less heterogeneous then either

MODIS or ASTER, we set a value of 0.99 for maximum spectral emissivity in the

initial atmospheric correction.

To correct sensor radiance to at ground radiance, we ran MODTRAN to gen-

erate 42 different atmospheric models, varying precipitable water vapor from 1.00

to 1.82 grams/cm2 in 0.02 gram/cm2 increments. The input parameters for MOD-

TRAN runs were taken from the AVIRIS atmospheric correction detailed in sec-

tion 2.3.1, with additional atmospheric constituents estimated from NCEP as

appropriate. Each MODTRAN run yielded water vapor dependent values of L↑λ,

L↓λ, and τλ from 8 µm to 14 µm at a spectral resolution of 1nm. After the MOD-

TRAN models were convolved to the MASTER bands using the May 11th SRFs,

we fit univariate splines between the different water vapor models, an approach

that is a modification of the Green et al. (1991) method to generate reverse Look

Up Table’s (LUTs) for atmospheric correction; here we use the method to create

forward LUT’s in the thermal region.
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We processed the MASTER TIR data using the following equation:

[(Lλ − L↑λ)/τλ] − (0.01) ∗ L↓λ = 0.99 ∗Bλ(Ts) (2.2)

Where Equation 2.2 is identical to Equation 1.1, but assumes an initial value of

ελ = 0.99 for all bands. The L↑λ, L
↓
λ, and τλ values per pixel were estimated

by looking up column water vapor from the corresponding AVIRIS water vapor

pixel described in section 2.3.1, and retrieving the corresponding L↑λ, L
↓
λ, and τλ

values from the thermal LUT’s. Taking the per pixel hottest band as the closest

to true surface temperature, we calculated the relative emissivity for the other

bands assuming a physical temperature equal to the hottest band. The final per

band temperatures were estimated by using the same L↑λ, L
↓
λ, and τλ values per

pixel applied to Equation 1.1 with the calculated relative emissivities applied to

reduce error in the reflected L↓λ component; the average of the Planck inversion

temperatures for all 5 bands yielded the retrieved temperature.

2.3.4 Temperature and Emissivity Separation (TES)

The TES algorithm (Gillespie et al. 1998, Gustafson et al. 2006) uses the same

initial procedure described in section 2.3.3, but solves for emissivity through the

use of an empirical relationship that correlates spectral contrast between a specific

set of bands and the minimum emissivity, εmin, of laboratory measured surface
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types as described in Baldridge et al. (2009) and Hulley & Hook (2009). The

regression for MASTER bands 43, 44, 47, 48, and 49 is shown Figure 2.9, as well

as in Equation 2.3 below:

εmin = 0.9921–0.74329 ∗MMD0.78522 (2.3)

Where MMD = Max(εstandλ ) −Min(εstandλ )

Following an initial atmospheric correction with Equation 2.2, we calculated

the standardized emissivity (εstandλ ) by dividing the per pixel relative emissivities

from section 2.3.3 by the pixel mean of those relative emissivities. We calculated

the MMD and εmin per pixel using Equation 2.3, and then used Equation 2.4 to

solve for calibrated emissivity (εcalλ ):

εcalλ = εstandλ ∗ [εmin/min(εstandλ )] (2.4)

Where min(εstandλ ) is the minimum standardized emissivity for a pixel among

all of the bands used for the correction. The εcalλ were then used with Equation 1.1,

and as in section 2.3.3, the average temperature from MASTER bands 43, 44, 47,

48, and 49 was considered the retrieved temperature. In addition to using the

per pixel estimates of L↑λ, L
↓
λ, and τλ provided from the AVIRIS water vapor

map, this procedure was applied to generate the JPL standard product. The

JPL standard product is available for all MASTER flight lines and uses scene
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estimated L↑λ, L
↓
λ, and τλ derived from MODTRAN with user supplied atmospheric

parameters; we supplied matching parameters to the JPL standard product to

facilitate comparison.

Figure 2.9: MMD empirical regression for MASTER bands 43, 44, 47, 48, and
49

2.3.5 Water Vapor Scaling (WVS)

To apply WVS to the Delano scenes, we modified the base L↑λ, L
↓
λ, and τλ

terms of Equation 1.1 using Equations 2.5, 2.6, and 2.7 respectively:

L′↑λ (γ) = L↑λ(γ1) ∗
1 − τ ′λ(γ)

1 − τλ(γ1)
(2.5)
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L′↓λ (γ) = aλ + bλ ∗ L′↑λ (γ) + cλ ∗ L′↑λ (γ)2 (2.6)

τ ′λ(γ) = τλ(γ1)

(γaλ−γ
aλ
2 )

(γ
aλ
1 −γ

aλ
2 ) ∗ τλ(γ2)

(γ
aλ
1 −γ

aλ )

(γ
aλ
1 −γ

aλ
2 ) (2.7)

Where ’γ1’ and ’γ2’ are constants set to 0.7 and 1, and a, b, and c are regression

coefficients; an atmospheric term (L↑λ, L
↓
λ, or τλ) as a function of a subscripted γ1

or γ2 indicates the atmospheric term calculated using an amount of precipitable

water vapor scaled by the corresponding constant. The band model parameter

’αλ’ and apparent surface brightness temperature ’Tαλ ’ were determined using

the Enhanced MultiChannel Water Vapor Dependent (EMC/WVD) split-window

algorithm (Equations 2.8 and 2.9) as described in Tonooka (2005) and Hulley &

Hook (2011):

αλ = pλ + qλW + rλW
2 (2.8)

Taλ = αλ,0 +
n∑
k=1

αλ,kTk (2.9)

Where W is precipitable water vapor in grams/cm2; n is the number of bands used

in TES (n = 5); k is an assigned band number 1 through 5 for the correspond-

ing band centered at wavelength λ; and p, q, and r are regression coefficients as
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determined by from a global simulation model using NCEP model data (Tonooka

2001).

The WVS method takes per-band brightness temperatures at a given pixel

calculated from Equation 2.9, and an estimate of water vapor over that pixel to

generate band-dependent scaling factors to modify and scale the L↑λ, L
↓
λ, and τλ

terms of Equation 1.1 to the L′↑λ (γ), L′↓λ (γ), and τ ′λ(γ) terms of Equations 2.5, 2.6,

and 2.7. The per band and pixel WVS scaling factor ’γ’ is calculated from the

band model parameter ’αλ’ (Equation 2.8) and apparent surface brightness tem-

peratures ’Tαλ ’ using Equation 2.10:

γ =

ln

 τλ(γ2)
γ1
αλ

τλ(γ1)
γ2
αλ ∗

(
Bλ(Taλ

)−L↑
λ
(γ1)

1−τλ(γ1)

Lλ−L
↑
λ
(γ1)

1−τλ(γ1)

)γ1
αλ−γ2αλ


ln
(
τλ(γ2)
τλ(γ1)

) (2.10)

The ’γ’ WVS scaling factors were only computed over graybody targets to

minimize emissivity effects, and were then interpolated over any bare pixels on

the scene using an inverse distance weighting interpolation. In contrast to the L↑λ,

L↓λ, and τλ values retrieved from interpolated LUT’s as described in sections 2.3.4

and 2.3.3, and since the estimates of L↑λ, L
↓
λ, and τλ are scaled by water vapor sep-

arately, we used the same base L↑λ, L
↓
λ, and τλ estimates derived from MODTRAN

run with NCEP inputs when deploying WVS.
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Figure 2.10: WVS scaling factor for MASTER band 44 using AVIRIS derived
water vapor estimate; purple rectangle marks field validation site. The x-axis
and y-axis coordinates are across track and along tract pixel coordinates for the
MASTER sensor.

These scaling factors were applied to both 1 degree water vapor estimates

provide by NCEP, and also to the 13.1 meter resolution water vapor maps that

AVIRIS provided; the calculated ’γ’ factor inputs provided by AVIRIS are shown

in Figure 2.10 for MASTER band 44. Values less than 1 indicate that water

vapor over the scene was overestimated by the NCEP data. Using an estimate

of high resolution AVIRIS water vapor in the EMC/WVD equation improved the

accuracy of these scaling factors. Following the application of scaling factors using

Equations 2.5 through 2.10, temperature and emissivity was retrieved using the

TES method as described in the HyspIRI TES ATBD (Hulley 2011).
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Results

The results of temperature retrievals from single-band inversion, TES, and

WVS—with and without AVIRIS derived water vapor—are shown in Table 3.1

on page 31. We selected the JPL standard product as our baseline in comparing

temperature retrieval improvements since it is available for all MASTER scenes,

although the TES+WVS method will eventually replace stand-alone TES as the

new JPL standard product. Our results show that there is a strong tendency for

TES to overestimate surface canopy temperature as a result of underestimation

of emissivity, and that current TES retrievals have RMSE values within the range

of literature values for vegetated surfaces. The addition of AVIRIS derived water

vapor improved retrieval accuracy as expected, although still not to within a kelvin

of true canopy temperature.

The WVS method showed significant improvement over TES, both with and

without the addition of per pixel water vapor. In contrast to TES retrievals, the
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Chapter 3. Results

small errors that are present for the WVS method are distributed both above

and below the reference temperatures, further strengthening our confidence that

these retrievals are not biased. Coarse scale NCEP water vapor data (1 degree)

still yielded well under a kelvin RMSE, an over 70% reduction in error from the

current JPL product that WVS will replace. The addition of AVIRIS water vapor

to the WVS method saw still further gains in accuracy, reducing retrieval RMSE

to under a half kelvin. The WVS temperature retrievals are shown in Figure 3.1,

with the spatial north-south temperature gradient from the different watering

regimes clearly visible, and additional spatial detail present in the retrieval that

incorporated the AVIRIS derived water vapor.

3.1 Separation of Atmospheric and ελ Errors

Some insight into the major source of errors when applying the TES method

can be inferred from the high accuracy that the single band inversion method offers

in cases where the prescribed ε is close to the true emissivity. Since the emissivity

for one band is prescribed a priori in single band inversion, for surfaces that have

emissivities close to this prescribed value such as vegetation, we can expect that

the major source of error will be from the atmospheric L↑λ, L
↓
λ, and τλ terms. Both

single band inversion and one of the TES retrievals share identical per pixel values
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of L↑λ, L
↓
λ, and τλ—with the TES retrieval actually decreasing in accuracy after

calibrating emissivities. We see here small errors in atmospheric error propagating

to larger errors in emissivity (usually ελ underestimation), ultimately resulting in

higher temperature error due to emissivity estimation opposed to atmospheric

path radiance residuals in the Planck inversion.

Figure 3.1: Temperature retrieval (units kelvin) over Delano Vineyards from the
WVS method with AVIRIS water vapor (right) and without (left)
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Discussion

The results of this study highlights our ability to correct for atmospheric

sources of error in the TIR when retrieving canopy temperature. Canopy tem-

perature is a crucial physiologic state variable that governs gas exchange with the

atmosphere, and controls gross photosynthesis by limiting or enhancing carbon up-

take, transpiration, and respiration. Retrieving canopy temperature at sub-kelvin

accuracy allows farmers and scientists to assess when vegetation respiration is in-

creasing faster than photosynthesis, quantify the total hydrologic exchange with

the atmosphere, and pinpoint heat stress that directly reduces photosynthesis

rates due to enzyme inactivation. At the field scale, accurate canopy temperature

measurements are crucial to efficient water use in agriculture where transpiration

rates are used to assess water loss to the atmosphere; at regional spatial scales,

canopy temperature maps heat damage and forecasts yield reduction or failure in
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crops, and also provides insight into the respiration rates of heterogenous natural

biomes.

4.1 Spatial Patterns

The dominate pattern of observed canopy temperatures in Figure 3.1 shows

the effects of different watering regimes in the North and South blocks. Additional

fine scale spatial variability of temperature within the field are likely the result of

pressure drops in the irrigation line, differences in soil composition and hydrologic

capacity, and/or other plant physiologic stresses such as pest infestation, disease

or nutrient stress. The observed canopy temperature range at the vineyard—up

to 8 kelvin between the North and South blocks, and over 5 kelvin within a single

block—has substantial implications for productivity. Previous studies of woody

vegetation have found that a difference of 7 to 8 kelvin in canopy temperature

corresponds to the difference between peak photosynthesis and photosynthesis at

75% of peak (Larcher 1969). Since plants reduce fruit production when stressed,

the reduction of gross photosynthesis has an outsized impact on harvest yield; for

the Delano field site the reduction in yield in the 2011 experiment required that

experiments the following year use a less aggressive water reduction.

35



Chapter 4. Discussion

4.2 Implications for the HyspIRI mission

We show a definitive and substantial improvement in temperature retrievals

when synthesizing TIR and SWIR instruments, and offer a preview of the accuracy

HyspIRI will provide over vegetated surfaces using the WVS method proposed by

JPL. Comparison of WVS applied both with and without hyperspectral derived

water vapor quantifies the improvement we can expect from the portion of the

TIR and SWIR instruments that will overlap, and hints at potential along the

edges where they do not.

Vegetated surfaces are typically challenging targets for temperature inversion,

and accurate temperature retrieval of these surfaces bodes well for our ability to

invert less challenging surfaces that have greater spectral contrast. Regardless

of surface type, the degree of temperature retrieval improvement with the WVS

method can be expected to scale, with greater improvements in areas more humid

than the central valley. Given that the majority of water vapor occurs below the

altitude of our flight lines, and the similarity of the MASTER instrument to the

proposed HyspIRI instrument, it is reasonable to expect similar canopy temper-

ature accuracy from HyspIRI over closed canopies in areas such as the central

valley, with increasing surface temperature retrieval accuracy for heterogenous

non-greybody pixels such as playas and water.
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While the synthesis of hyperspectral derived water vapor and TIR data will

only be possible for the 150km swath of the HyspIRI VSWIR instrument (as op-

posed to the 600km TIR radiometer swath), the technique remains a powerful

option to use over complex terrains with a high degree of spatial variability in col-

umn water vapor. Since total precipitable water vapor is strongly correlated with

elevation, the relative improvements that we observed when using hyperspectral

derived water vapor in place of NCEP provided water vapor are likely conservative

for what we can expect in areas of greater topographic variability than the central

valley.

The improved temperature retrievals we demonstrate using WVS over gray-

body pixels is dominated by a reduction in propagated error in estimating surface

emissivity—a result that portends a future for the HyspIRI mission focused on

other, non-atmospheric challenges. Chief among these challenges will likely be

the scaling issues inherent in estimating canopy scale physical phenomena using

a 60 meter HyspIRI pixel. Orchard cash crops such as almonds and pistachios

present a multisource emission target, as do pixels that cover multiple adjacent

plots—and all of which will require multimember definitions of surface tempera-

ture to be meaningful. Ultimately, further refinement of temperature estimates

will require modeling endmember fractions and thermal unmixing of the fractional

surface cover that accounts for varying endmember emissivity and temperature.
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The HyspIRI mission will be well equipped to accomplish the former using estab-

lished mixture analysis methods in the VSWIR, however the latter will necessitate

dealing with substantial nonlinearities present in TIR mixing.

One possible approach for future studies that aim to tackle this unmixing

challenge is to modify the split-window approach. The split-window approach pi-

oneered by Dozier (1981) solves for endmember fractions and temperature simulta-

neously, given known endmember emissivities. Since hyperspectral measurements

can provide accurate fractional cover estimates, direct inversion of emissivity from

WVS corrected radiant emission and endmember fractions may be possible within

an error minimization framework that uses total at sensor radiance as way to con-

strain the solution space.
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