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ABSTRACT 

 

Coastal Ocean pH Variability in the Context of Global Change Biology 

 

by 

 

Lydia Kapsenberg 

 

Anthropogenic carbon emissions are predicted to alter marine ecosystems. One such 

change is the decline in ocean pH, known as ocean acidification. Model predictions of ocean 

acidification have guided biological experiments for more than a decade. Many studies 

predict negative consequences of future ocean pH on marine species. To understand how 

species will respond to future conditions, however, knowledge of present-day pH exposures 

is necessary and often limited. In this dissertation, I described present-day pH variability in 

three coastal regions and used the data to design laboratory experiments assessing the 

physiological response of two organisms, sea urchins and mussels, to changing ocean 

conditions. As recorded by autonomous pH sensors, I found three unique patterns of coastal 

pH variability. Near-shore Antarctica was characterized by a steep seasonal increase in pH 

and pH variability during summer phytoplankton blooms. The northern Channel Islands, 

California, exhibited event-scale and diurnal pH variability due to primary production of 

phytoplankton and fixed vegetation. Only mild effects from upwelling were detected at the 

islands, suggesting that this region may become a spatial refuge from extreme low pH in the 

future. Finally, Oregon was characterized by event-scale decreases in pH due to periodic 

upwelling events. The results from this research show that many coastal species experience 
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short-term changes in pH that are within the same magnitude of change predicted for ocean 

acidification by the end of the century. While such present-day exposures to pH variability 

may promote tolerance of future pH change, these near-shore regions are also characterized 

by unique patterns of thermal stress. I conducted two studies to investigate the interactive 

effects of pH and temperature on organismal physiology. First, Antarctic sea urchin, 

Sterechinus neumayeri, early developmental stages (EDSs) currently experience < 2 °C 

seasonal warming and may only experience a few degrees of ocean warming over the next 

100 years. Despite development under pH and temperatures outside of current exposures, S. 

neumayeri EDSs exhibited high tolerance of a one-hour heat stress test, suggesting this 

species may be more resilient to ocean change than previously thought. Second, unlike 

Antarctic species, intertidal species at mid-latitudes experience daily temperature 

fluctuations that can exceed four times end-century predictions of ocean warming, due to 

tidal cycles. In Oregon, upwelling events enhance this temperature range by periodically 

delivering cold, low pH water to the intertidal zone. Depending on sea water conditions 

simulating an upwelling event (cold, low pH) or wind relaxation (warm, high pH), the 

intertidal mussel Mytilus californianus generated different transcriptomic signatures of the 

cellular heat shock response, following exposure to aerial heat stress. This suggests that 

future changes in seawater conditions may alter the heat stress tolerance of M. californianus 

during low tides. The results from this dissertation highlight the importance of designing 

experiments that reflect species’ present-day and future multi-stressor environment, in order 

to generate ecologically relevant conclusions. As anthropogenic stressors continue to take 

hold of coastal seas, understanding the biological consequences is critical for management 

and conservation efforts. 
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I. Introduction: linking oceanography with physiology 

A. Introduction to ocean change 

Anthropogenic carbon dioxide (CO2) emissions are causing two major changes to the 

Earth’s oceans: (1) warming and (2) acidification. Average global ocean temperature has 

increased by 0.67 ± 0.15 °C over the past century with an increased rate over the last 30 

years of 0.133 ± 0.047 °C per decade (IPCC 2007b). Global sea surface temperature is 

predicted to increase by up to 2.6 °C by 2100 (IPCC 2007a). Ocean acidification, the 

addition of anthropogenic CO2 to the ocean, alters the carbonate chemistry of seawater, 

which influences physiological processes of marine organisms. Thus far, global surface 

ocean pH has declined by 0.1 from 8.2 to 8.1 since 1750 and is predicted to further decrease 

up to 0.42 by 2100 and as much as 0.7 by 2300 (Caldeira and Wickett 2003; Pörtner et al. 

2014). As the ocean has undergone periods of lower pH conditions previously, the critical 

component of ocean change in the 21
st
 century is not necessarily the magnitude of CO2 

increase but the rate at which species will have to keep up with changing conditions; CO2 in 

the ocean is increasing faster than any time in the last 300 million years (Hönisch et al. 

2012). However, due to complexity of near-shore environments, predictions of global mean 

ocean pH may not capture the realized pH range experienced by many shallow, near-shore 

marine species. There is still a limited understanding of natural pH dynamics in the ocean, 

especially in near-shore systems, and how exposure to natural variability in abiotic 

parameters influences species physiological tolerances. 

Detrimental environmental stressors, such as those associated with ocean change, can 

lead to four general species’ responses: (1) acclimatization, (2) adaptation, (3) migration, or 

(4) extinction. For example, global surface warming corresponds with poleward shifts of 
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species ranges that are in line with known physiological tolerances (Berke et al. 2010; 

Parmesan and Yohe 2003; Root et al. 2003; Sunday et al. 2012; Walther et al. 2002; Wethey 

and Woodin 2008). In these cases, either warm adapted low latitude populations migrate to 

high latitudes or suffer extinction, and/or higher latitude populations are able to adapt to 

warmer temperatures or migrate poleward. The Earth maintains a strong thermal gradient 

between the poles. Sea-surface temperature ranges from ~30 to -2 °C allowing for poleward 

shift of species ranges to a certain extent. However, pH is relatively uniform. Due to the lack 

of a strong pH gradient in the marine biome and limited knowledge on current pH 

variability, species response to ocean acidification is less well characterized than to 

warming. Ocean acidification occurs across a globally homogenous abiotic parameter of pH 

and so migration and range shifts may not be an option for population persistence like it is 

for warming. The diversity in marine organisms (e.g. life histories, habitat, locomotion, 

feeding mode, etc.) and, in turn, their diverse sensitivities to pH and temperature, 

complicates our ability to predict marine ecosystem change that will be necessary to 

implement management strategies for ocean warming or acidification to maintain healthy 

marine ecosystems. 

B. Overview of ocean carbonate chemistry 

Since the preindustrial era, global mean atmospheric CO2 levels have increased from 280 

ppm (Caldeira and Wickett 2003) to over 400 ppm in the past 200 years (NOAA 2015, 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html). From 1800 to 1994, roughly 50 % 

of anthropogenic CO2 emissions remained in the atmosphere, 20 % was absorbed by the 

terrestrial biosphere, and the remaining 30% has been absorbed by the ocean (Sabine et al. 

2004). At the air-seawater interface, CO2 dissolves into the ocean and enters the carbon 
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cycle. So far, the majority of ocean-absorbed anthropogenic CO2 remains in the first 1000 m 

of the ocean, with 50% residing in the first 400 m and 30% in the first 200 m (Sabine et al. 

2004). Oceanic CO2 absorption varies in water masses across the globe based on currents, 

winds, temperature, alkalinity, locations of landmasses, and buffer capacities (Sabine et al. 

2004). Different regions will thus experience different carbonate changes, which is 

complicated further by local near-shore oceanographic and biological processes.    

Atmospheric pCO2 equilibrates with the sea surface such that ocean pCO2 is increasing 

at a similar rate as the pCO2 of the atmosphere (Henry’s Law; Doney et al. 2009). When 

CO2 dissolves into the ocean, it mixes and reacts with surface seawater to produce carbonic 

acid (H2CO3) that readily dissociates to bicarbonate (HCO3
-
), a natural buffering ion in the 

ocean, and a hydrogen ion (H
+
) via this reversible reaction: 

CO2 + H2O  H2CO3  HCO3
-
 + H

+
  (1) 

The increased H
+
 concentration causes a decline in pH, ergo the phrase ‘ocean 

acidification’. Thus, as ocean pCO2 increases, pH decreases. In addition, hydrogen ions (H
+
) 

react with carbonate ions (CO3
-
) to produce more HCO3

-
.  

With slow addition of CO2 to the atmosphere, carbonate minerals (as a CO3
2-

 source) in 

the ocean have time to enter the ocean carbon cycle and buffer the oceanic pH decline 

(Caldeira and Wickett 2003). Dissolution of calcium carbonate (CaCO3) minerals balances 

the ocean’s acidity via the following chemical reaction when calcifying organisms die and 

their skeletons sink, adding more CO3
2-

 and absorbing H
+
 (Feely et al. 2004):  

CO2 + CaCO3 + H2O  2HCO3
-
 + Ca

2+
  (2) 

The ocean’s buffering capacity against ocean acidification declines as it sequesters more 

CO2 (Egleston et al. 2010; Sabine et al. 2004). The rate of CO2 change today, however, is 
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fast compared to events in the geological record such that ocean pH becomes more sensitive 

to CO2 additions and may decline by 0.77 units by 2300 (Caldeira and Wickett 2003).  

Solubility of CaCO3 depends on its crystalline structure: aragonite or calcite (with 

varying concentrations of magnesium). The degree to which aragonite and calcite are 

soluble depends on the ‘saturation state’ (Ω) of the water with respect to those minerals. 

Saturation state depends on Ca
2+

 and CO3
2-

 concentrations and the stoichiometric solubility 

product of the mineral form (K
*
) (Feely et al. 2004): 

Ωarag = [Ca
2+

][CO3
2-

]/K
*
arag  (3) 

Ωcal = [Ca
2+

][CO3
2-

]/K
*
cal  (4) 

Since [Ca
2+

] does not vary more than 1.5 % globally, saturation state depends primarily 

on [CO3
2-

] (Feely et al. 2004). As CO2 enters the carbon system, Ω declines with [CO3
2-

]. 

When seawater is saturated with respect to CO3
2-

 and Ω > 1 calcification of that mineral is 

favored, and when Ω < 1 dissolution of biologically-unprotected CaCO3 occurs (Fabry et al. 

2008).  

CO2 solubility is greater at cold temperatures. As such, Ω decreases as temperature 

declines with depth from the surface layer. The ‘carbonate saturation horizon’ is the depth 

above which calcification is favored and below it is not. Aragonite dissolves at a higher pH 

threshold than calcite and therefore has a shallower saturation horizon compared to calcite 

(Feely et al. 2004). Calcite may additionally contain varying levels of magnesium. The 

higher the level of Mg
2+

 to Ca
2+

, the more soluble the mineral is such that calcite with a 

Mg:Ca ratio of > 0.14 is more soluble than aragonite at the same pCO2 level (Ries 2011). 

CaCO3 dissolution has been documented in the Atlantic, Pacific and Indian Oceans, which 

corresponded with aragonite and calcite saturation horizons (Feely et al. 2004). As a direct 
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result of anthropogenic ocean acidification, areas of carbonate undersaturation have 

expanded and consequently, aragonite and calcite saturation horizons have shoaled, in some 

cases by up to 200 m, in large portions of these three oceans (Feely et al. 2004).  

Due to different water properties, marine ecosystems differ in their sensitivity to ocean 

acidification. High latitude seas and deep cold seawater bought to the surface by upwelling 

events are known to have higher pCO2 levels compared to the atmosphere (Feely et al. 2008; 

Orr et al. 2005). Ocean-carbon cycle modeling shows that the Southern Ocean will be 

particularly vulnerable to ocean acidification and is expected to become undersaturated with 

respect to aragonite as early as 2050 (Orr et al. 2005). Experimental exposure of such 

undersaturation resulted in shell dissolution by the subarctic-Pacific aragonite-forming 

pteropod Clio pyramidata after only 48 h of exposure (Orr et al. 2005). In contrast, tropical 

and subtropical waters will likely never become undersaturated with respect to calcite but 

biogenic calcifying rates will likely decline before saturation states are < 1 (Feely et al. 

2004), and so ocean acidification still poses a risk in tropical regions. Additionally, 

temperate upwelling systems may be particularly sensitive to ocean acidification as they 

already experience drastic variations in pH on daily and seasonal time scales (Feely et al. 

2008; Hauri et al. 2013). Feely et al. (2008) recorded seawater with pH < 7.75 in an 

upwelling zone off the northern California coast, and according to a model by Hauri et al. 

(2009), the California Current Large Marine Ecosystem already experiences pH levels that 

were not predicted to occur until several decades from now.  

 Carbonate undersaturation as a result of ocean acidification poses a significant 

challenge for marine calcifying organisms such as sea urchins, corals, mollusks, and 

coccolithophores (Kroeker et al. 2013), as they at least partially rely on ocean chemistry to 
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build calcium carbonate skeletons. For example, when reared at varying levels of Ωarag (3.71 

- 0.22), new coral recruits of Favia fragum had delayed, reduced, and altered crystal growth 

at lower Ωarag compared to ambient conditions (Cohen et al. 2009). Cohen et al. (2009) 

suggested that polyp’s internal Ωarag must be elevated in order to continue, albeit slowly, 

calcification in undersaturated conditions and that reduced calcification results from a 

systematic decline in internal Ωarag with decreasing external Ωarag. Such observed negative 

effects of ocean acidification chemistry on calcification were the grounds to ring the alarm 

on ocean acidification over this past decade. 

C. Current pH-seascape 

1. A brief history of ocean acidification research 

The past decade of ocean change research was a period of exponential growth and 

rapidly evolving research techniques and approaches. In 2007, development of standardized 

analytical carbonate chemistry methods and certified reference materials for measuring 

seawater pH in the field or laboratory has allowed the research community to converge on 

best practices (Dickson et al. 2007). As such, research methods have moved from using 

hydrochloric acid, to experimentally alter seawater pH in laboratory experiments to study 

the growth of calcifying marine invertebrates, to using CO2-acidification of semi-enclosed 

aquaria in the field aimed to address ecosystem level effects of ocean change (Gattuso et al. 

2014).  

Traditional ocean acidification experiments exposure organisms to stable pH conditions 

for short periods of time. However, increased pH observations in near-shore regions reveal 

high temporal and spatial pH variability and indicate that IPCC (2007a) projections of ocean 

pH lack the resolution required to predict acidification of coastlines (Feely et al. 2008; 
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Hofmann et al. 2011; McElhany and Busch 2013). For example, experimental pH between 

8.1 and 7.8 may not be relevant if species already experience such values on a daily basis 

(Figure I-1, black dots and gray line). High performance of a species under non-field-

parameterized experimental conditions may lead to a false prediction of ocean acidification 

tolerance (Figure I-1). For example, a sensitive species (blue line) may tolerate temporary 

low pH exposure but appear robust in a laboratory experiment that does not include 

experimental treatments outside of its current pH envelope. Furthermore, lacking knowledge 

of a species’ performance curve may lead to inaccurate predictions of ‘winners and losers’ 

(Figure I-1, red and blue lines). With ocean acidification, low pH conditions will occur more 

frequently and time spent in the envelope of present-day pH exposure will decline (Hauri et 

al. 2013; Shaw et al. 2013). Physiological performance may suffer with increased exposure 

time to low pH, even if the total pH range remains unchanged. Unless all components of a 

performance curve are known, experimental results of single point pH exposures will be 

difficult, if not impossible, to interpret in a way that is ecologically informative. Although 

some ecosystem-specific predictions of ocean acidification have been made to guide the 

design of biological experiments (e.g. Hauri et al. 2013; McNeil et al. 2010; Shaw et al. 

2013), understanding local pH dynamics is imperative to the design and interpretation of 

physiological experiments. Connecting field pH exposures to laboratory performance is 

critical and can provide significant insight to species performance (Pansch et al. 2012; 

Thomsen et al. 2010; Yu et al. 2011). 

2. Dawn of the pH sensors 

To address the knowledge gap on local pH dynamics, one of the greatest contributions to 

the field of ocean acidification research has been the development of autonomous pH  
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Figure I-1. Schematic of physiological performance of two species (red and blue) across 

a range of pH. The grey boxes represent pH conditions experienced by species (light grey 

box is present day, dark grey line is pH observations at Santa Cruz Island, CA, in May 2012) 

and hypothetical future ocean acidification conditions (‘OA’, dark grey box). Black dots 

represent two experimental pH levels chosen for laboratory experiments. 
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sensors (e.g. Martz et al. 2010). The goal of ocean acidification research is to ultimately 

understand how ecosystem function and services may change. However, not all ecosystems 

share the same carbon chemistry characteristics and pH can vary largely in space and time. 

Extensive surveys with discrete water sampling have captured ocean acidification trends 

and, indirectly, some degree of temporal pH variability (Bates and Peters 2007; Dore et al. 

2009; González-Dávila et al. 2010). However, hourly to weekly pH variability was largely 

undocumented, until the development of the SeaFET pH sensor by Dr. Todd Martz and his 

colleagues (Martz et al. 2010). This instrument uses existing ion-sensitive field effect 

transistor (ISFET) technology that is adapted for autonomous sampling and deployment in 

the ocean environment. Early and short-term deployments of this instrument revealed 

previously unidentifiable spatial and temporal variability across an array of marine 

environments (Hofmann et al. 2011). For example, over the course of a one-month 

observation period, open ocean pH varied by 0.02 whereas natural CO2 seep communities 

exhibited pH fluctuations on the order of 1.4 (Hofmann et al. 2011). Due to global ocean 

circulation, regional and seasonal weather patterns, and local geography and biological 

activity, different ecosystems (and even locations within them) possess unique ‘pH-

seascapes’. It is this pH-seascape, defined by the magnitude and temporal pH variability, 

which will ultimately impose selective pressures and drive the response of individual 

organisms. 

With the development of ocean pH sensors, there has been an emerging opportunity to 

document pH-seascapes and use the data to link exposure to natural pH variability with 

physiological performance to pH. There is still a paucity of knowledge regarding the long-

term natural pH dynamics of short-term pH variability in marine ecosystems. Use of 
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autonomous pH sensors allows us to document pH-seascapes in different ecosystems by 

providing high-resolution and stable pH measurements. Data of temporal and spatial pH 

variability can then be used to parameterize biological experiments and improve climate 

models. Understanding different pH-seascapes among and within ecosystems will allow us 

to determine to what extent organisms are able to deal with their current and local pH 

variability with the hopes of inferring how organisms will respond to future levels of ocean 

acidification. 

3. Drawing pH-seascapes into experimental design 

In addition to cultivating our understanding of natural pH dynamics, knowledge of an 

organism’s pH history is necessary for the interpretation of experimental results. Laboratory 

studies have shown that organisms can acclimate to pH conditions and influence 

physiological responses to simulated ocean acidification and performance of subsequent 

generations (e.g. Dupont et al. 2013; Form and Riebesell 2012; Parker et al. 2012). For 

example, exposure to high CO2 conditions during oyster reproductive conditioning lead to 

larger and faster growing larvae in high CO2 conditions compared to larvae from adults 

conditioned in control CO2 (Parker et al. 2012). Similarly, different lengths of adult sea 

urchin exposure time to high CO2 led to differences in successful larval development 

(Dupont et al. 2013).  

In reality, wild organisms will have more time to acclimatize to ocean acidification than 

organisms in any laboratory experiment, as the rate of ocean acidification in the field will 

always be slower than that simulated in laboratory experiments. Parker et al. (2012) found 

that oyster larvae from selected oyster lines were overall more resilient to ocean 

acidification than larvae from wild adults. With no knowledge of environmental conditions 
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of the selected lines of oysters compared to the wild oysters, it is difficult to hypothesize 

why oysters may have the ability to acclimatize and potentially adapt to ocean acidification. 

Perhaps selected oysters were maintained at higher densities than wild oysters, and so 

increased respiration lead to lower pH of the microenvironment surrounding the captive 

adults compared to the wild populations. If so, the selected lines may have acclimatized to 

reduced pH over multiple generations.  

Knowledge of the pH-seascape supports the research strategy of substituting space for 

time (Hofmann et al. 2014). Inferred differential pH-seascapes (e.g. upwelling vs. non-

upwelling dominated sites) have been linked to local adaptation of heritable ocean 

acidification tolerance traits in a temperate sea urchin species (Kelly et al. 2013). Such 

studies demonstrate a powerful research avenue for utilizing pH-seascapes as natural 

treatment conditions. 

Given that (1) pH exposure can influence species’ tolerance of low pH and (2) pH varies 

in the field, the environment from which the organism was collected deserves careful 

consideration in experimental design and interpretation, as the field exposure may impart a 

‘treatment’ in and of itself. Therefore, quantifying the pH-history of the organisms prior to 

experimentation is as crucial as quantifying seawater chemistry during the experiment.  

Studies that parameterize experiments with field pH observations are emerging, but even 

so the reported environmental data are often on the order of weeks to months, likely due to 

the lack of access to pH sensors in prior years. Generating multi-year datasets of pH 

variability will thus provide the necessary oceanographic context for biological studies. 
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D. Biology of ocean change 

1. Ocean acidification biology 

Under simulation ocean acidification (low pH), shells from dead marine organisms 

dissolve, yet live organisms will continue to successfully calcify at that same low pH 

(Findlay et al. 2011). While the dissolution of the dead shell can be attributed to reduced Ω, 

understanding the response of the live organisms is essential for predicting species 

trajectories in a changing ocean. Shell dissolution in the absence of biological control 

suggests an energetic cost of biogenic calcification. Changes in such energetic costs within 

the range of a species’ natural and predicted pH exposures, may interfere with other 

physiological processes and lead to energetic trade-offs. One of the earlier ocean 

acidification studies, for example, Wood et al. (2008) found that sea stars maintained 

calcification under low pH but at a cost of muscle tissue loss.  

Phenotypic responses to ocean acidification, such as changes in behavior and altered 

rates of development, growth and calcification, are all controlled by physiological processes 

at a cellular level. The past decade of ocean acidification research has shown that phenotypic 

responses vary widely across taxonomic groups and species and sometimes exhibit neutral 

or even positive effects (Kroeker et al. 2013; Kroeker et al. 2010). Identifying a common 

root driver of these phenotypic effects will improve our understanding of the limits of 

tolerance and adaptation potential to future ocean acidification. In temperature studies, a 

field much older than that of ocean acidification, the heat shock response system (HSRS) 

has been identified as a universal key physiological process involved in the response of 

organisms to environmental stressors (Lindquist 1986). Discovery of the HSRS has become 

the foundation for field and laboratory experiments assessing thermal adaptation (Feder and 
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Hofmann 1999) and provides insight to biogeographic limits and evolution (e.g. Hofmann et 

al. 2005). Identification of a similar unifying physiological mechanism that controls the 

diversity of responses to ocean acidification among marine species and lends insight the 

potential for pH adaptation could similarly propel ocean acidification research forward. 

There are two main routes by which ocean acidification impacts marine biota. First, 

reduced seawater pH reduces calcium carbonate saturation states facilitating the dissolution 

of exposed biogenic CaCO3, as described above. Second, CO2 molecules can enter cells 

through passive diffusion and alter the chemical environment of the cell (i.e. reducing pH). 

Cell membranes are permeable to small neutral molecules including CO2. Once diffused, 

CO2 is hydrolyzed to produce charged molecules: HCO3
-
 and H

+
, causing acidosis in extra- 

and intracellular spaces. Ion concentrations, especially H
+
, are tightly controlled through 

energetically costly transmembrane ion transport and exchange proteins in order to maintain 

functional physiological homeostasis (Dubyak 2004; Pörtner 2005; Reipschlager and Pörtner 

1996). Changes in cellular pH influence acid-base regulation, metabolism, and overall 

cellular energy allocations and expenditure (Pörtner 2005; Reipschlager and Pörtner 1996). 

At low pH, increasing energy allocation to restore chemical homeostasis might divert energy 

away from growth or reproduction. For example, larval clown fish exhibit detrimental 

olfactory preferences under high pCO2 exposure (Munday et al. 2009). Nilsson et al. (2012) 

found that high pCO2 indirectly causes a reversal of neurotransmitter function in these larvae 

due to increased HCO3
-

 concentrations as a product of acid-base compensation, thereby 

affecting olfactory responses. As such, the regulatory mechanism of acid-base balance is a 

proposed unifying principle by which ocean acidification affects marine organisms (Fabry et 
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al. 2008; Melzner et al. 2009; Pörtner 2005; Pörtner 2008; Seibel and Walsh 2003; 

Widdicombe and Spicer 2008). 

Modes of acid-base balance and compensation can vary from tissue type to taxonomic 

level. Previous studies on acidosis show that organisms are largely successful at maintaining 

intracellular pH (pHi) but that maintenance of extracellular pH (pHe) is variable among 

organisms (Gutowska et al. 2010; Michaelidis et al. 2005; Miles et al. 2007; Spicer et al. 

2011; Thomsen et al. 2010). For example, cephalopods are able to compensate pHe 

(Gutowska et al. 2010) while mussels (Michaelidis et al. 2005) and sea urchins (Miles et al. 

2007; Spicer et al. 2011) are less competent. Along with different modes of calcification 

(e.g. aragonite vs. calcite), species-specific strategies of maintaining acid-base equilibrium 

may in part explain the wide range of phenotypic responses to ocean acidification among 

marine organisms.  

2. A note on multiple stressors 

In addition to ocean acidification, the global ocean is warming (Rhein et al. 2013). 

Ocean warming and acidification affect the physiology of marine species differently and 

such effects can also be highly species-specific. In general, biological reactions and 

processes speed up with increasing temperature up to a thermal threshold (Hochachka and 

Somero 1984). For example, sea urchin larvae will develop at a faster rate at 18°C compared 

to 14°C. Multi-stressors scenarios, where both temperature and CO2 are considered in 

synergy, often exacerbate the effects of a single stressor, whether positive or negative 

(Harvey et al. 2013). In some cases, positive effects of warming (e.g. increased growth) can 

actually offset some negative effects of CO2 (e.g. decrease growth of sea urchin larvae, 

(Byrne 2011). Just as it is necessary to incorporate environmental pH levels into 
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experimental biology, temperature should also be considered. Therefore, in the biological 

portions of this dissertation, temperature and pH combinations are considered synergistically 

and outlined in the chapter introductions.  

E. Dissertation initiation 

The overarching theme of this dissertation is the importance of environmental realism, 

such as considering ocean pH variability, in the context of global change biology. Given that 

IPCC projections of ocean pH are based on open ocean data and models, these thresholds for 

ocean acidification may not be relevant for coastal species. Previous studies have shown that 

the magnitude of pH change predicted for the coming century influence animal physiology. 

These studies, however, often utilize stable pH exposures without the context of the 

organism’s pH history. The goal of my dissertation is to characterize pH-seascapes from 

vulnerable ecosystems (i.e. high-latitude, upwelling ecosystems) in order to generate 

baseline datasets necessary to improve experimental design. My multidisciplinary endeavor 

requires characterization of the (1) marine environment (i.e. oceanography) and (2) response 

of marine species to varying ocean conditions (i.e. physiology). Past and current 

environmental conditions influence the present-day assemblage of tolerances and adaptive 

potential of functional traits. Thus, throughout this dissertation, measures of ambient 

conditions are emphasized in corroboration with biological experiments addressing animal 

physiology (e.g. thermotolerance and gene expression) under present day and future 

conditions (Figure I-2). This body of work has been conducted in the two most sensitive 

coastal marine ecosystems to ocean acidification (Gruber et al. 2012) and represents case 

studies for this multidisciplinary research approach.  
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Figure I-2. Schematic of research framework. The past environment has shaped the 

physiological plasticity of organisms today. It is this current plasticity that will determine 

whether or not species will be able to acclimate to rapid environmental change in order to 

tolerate future conditions.  Current plasticity can be assessed it the context of current 

environmental conditions and future conditions with experimental manipulations.  
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II. Near-shore Antarctic pH variability has implications for the design of 

ocean acidification experiments2 

A. Abstract 

Understanding how declining seawater pH caused by anthropogenic carbon emissions, 

or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-

series. Here, we present the first high-frequency in-situ pH time-series in near-shore 

Antarctica from spring to winter under annual sea ice. Observations from autonomous pH 

sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an 

increase in temporal pH variability relative to spring and early winter, matching coastal pH 

variability observed at lower latitudes. Using our data, simulations of ocean acidification 

show a future period of deleterious wintertime pH levels potentially expanding to 7 - 11 

months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctic 

marine species have an existing physiological tolerance of temporal pH change that may 

influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain 

difficult to characterize in the absence of sufficient physiological data on present-day 

tolerances. It is therefore essential to incorporate natural and projected temporal pH 

variability in the design of experiments intended to study ocean acidification biology. 

                                                 
2
 Published in Scientific Reports: Kapsenberg, L, AL Kelley, EC Shaw, TR Martz, and 

GE Hofmann. Near-shore Antarctic pH variability has implications for the design of ocean 

acidification experiments. Sci. Rep. 5, 9638; DOI:10.1038/srep09638 (2015). Copyright: re-

use permitted under License to Publish – Open Access Agreement for SREP-14-10902A. 
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B. Introduction 

The extensive effects of ocean acidification, the systematic reduction of ocean pH due to 

the absorption of anthropogenic carbon dioxide (CO2) by surface oceans (Doney et al. 

2009), are predicted to be first observed in high-latitude seas (Orr et al. 2005). Cold waters 

of the Southern Ocean are naturally rich with CO2, which results in low carbonate (aragonite 

and calcite) saturation states (Orr et al. 2005). As ocean acidification progresses, pH and 

aragonite saturation state (Ωarag) will decrease and facilitate the dissolution of marine 

calcium carbonate. From a biological perspective, evolution in the absence of shell-crushing 

predators in the near-shore Antarctic has left many benthic biogenic calcifiers with relatively 

brittle shells (Aronson et al. 2007) that may be vulnerable to ocean acidification. Shell 

dissolution in live Southern Ocean pteropods, Limacina helicina antarctica, has already 

been observed in CO2-rich upwelled waters (Ωarag ≈ 1, Bednaršek et al. 2012). Antarctic 

marine biota is hypothesized to be highly sensitive to ocean acidification (Fabry et al. 2009), 

and predicting the impact of this anthropogenic process and the potential for future 

organismal adaptation is a research priority (Kennicutt et al. 2014). 

To predict how future ocean acidification will affect any marine ecosystem, it is first 

necessary to understand present-day pH variability. In the Southern Ocean, there are strong 

seasonal cycles in carbonate chemistry (Gibson and Trull 1999; Roden et al. 2013; 

Takahashi et al. 2002) due to the temporal partitioning of summertime primary production 

and wintertime heterotrophy (Rivkin 1991). Summertime phytoplankton blooms regularly 

drive the partial pressure of CO2 in seawater (pCO2) well below atmospheric equilibrium 

and are the primary source for pCO2 variability in the Southern Ocean (Takahashi et al. 

2002). This seasonal carbonate chemistry cycle corresponds to a summertime pH increase of 
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0.06 units on a regional scale in the Southern Ocean (McNeil and Matear 2008) and as much 

as 0.6 units locally in Prydz Bay (Gibson and Trull 1999) and the Ross Sea (McNeil et al. 

2010). The summertime pH increase (e.g. 0.6) can thus exceed the 0.4 pH unit magnitude of 

ocean acidification predicted for 2100 (IPCC 2013).  

Future ocean carbonate chemistry remains challenging to predict due to other 

environmental processes and biological feedbacks (Riebesell et al. 2009).  Southern Ocean 

aragonite undersaturation (approx. pH ≤ 7.9) is predicted to occur first during the winter 

season in the next 20 years (McNeil and Matear 2008). However, seasonal ice cover may 

delay the onset of ocean acidification thresholds by a few decades due to reduced air-sea gas 

exchange (McNeil et al. 2010). Likewise, decreasing seasonal ice cover, due to changes in 

wind and air temperature, are estimated to yield at least a 14% increase in primary 

production in the Ross Sea by 2100 (Smith et al. 2014). This could potentially increase pH 

and Ωarag in summer. Furthermore, increased stratification in the future may result in 

phytoplankton community shifts (Smith et al. 2014). As an example, diatom communities 

dominate periods of highly stratified waters in the Ross Sea but drawdown less CO2 

compared to the dominant bloom algae Phaeocystis antarctica that proliferate in deeply 

mixed waters (Arrigo et al. 1999). Thus, seasonal changes in carbonate chemistry (for 

example, from primary production) may yield alternative scenarios for ocean acidification 

outcomes (Shaw et al. 2013). Currently, projections of ocean acidification for near-shore 

Antarctica are largely based on discrete sampling (McNeil and Matear 2008), which may not 

have detected sub-seasonal (e.g. daily, weekly) pH variability that could be important for 

biological processes. 
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Although ocean acidification is generally predicted to be deleterious to marine life, not 

all taxa and species respond similarly to future conditions (Kroeker et al. 2010). There is 

emerging evidence that an organism’s pH-exposure history can influence its tolerance of 

ocean acidification. For example, Lewis et al. (2013) showed that an Arctic copepod species 

that experienced varied depth-dependent pH exposure was more tolerant of CO2-acidified 

seawater treatments compared to another Arctic copepod species that experiences a smaller 

range in pH. Comprehensive characterization of the ‘pH-seascape’ is thus necessary to link 

CO2-perturbation experiments with present-day and future organismal performance in the 

field. Such field time-series are sparse in near-shore Antarctica and are either extremely 

short (Kapsenberg and Hofmann 2014; Matson et al. 2011) or low in sampling frequency 

(Gibson and Trull 1999; McNeil et al. 2010; Roden et al. 2013).   

In this study, our main goal was to describe pH variability experienced by organisms in 

near-shore Antarctica across seasonal transitions in an area with annual sea ice cover. In 

addition, we use the data to explore how pH variability and changes in seasonal CO2 

drawdown (as a proxy for changes in primary production) may impact future trajectories of 

ocean acidification in our study region. 

C. Methods 

1. Study sites and deployment. 

Autonomous SeaFET pH sensors containing Honeywell DuraFET
®
 electrodes (Martz et 

al. 2010) were deployed in the austral spring at two sites in separate years on subtidal 

moorings in near-shore east McMurdo Sound (Figure II-1). Two SeaFETs were deployed 

side-by-side in December 2011 at a site near McMurdo Station (the Jetty, -77.85115,  

166.66425), and one SeaFET was deployed during November 2012 at Cape Evans (-  
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Figure II-1. Map of pH sensor deployments in McMurdo Sound, Antarctica. Sensors 

were deployed at the Jetty (J) in 2011 and at Cape Evans (CE) in 2012. Annual sea ice 

contour (marble color) approximates November conditions for 2011 (RISCO RapidIce 

Viewer). Mapping data are courtesy of the Scientific Committee on Antarctic Research, 

Antarctic Digital Database. Map was constructed in QGIS (Version 2.0.1) and sea ice 

contour was added using GIMP (Version 2.6.11). 
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77.634617, 166.4159). Cape Evans is located 25 km north of the Jetty and is a highly 

productive site with an abundance of fish, macrophytes and marine invertebrates, including 

the sea urchin S. neumayeri. This site has previously been important for ocean acidification 

biology (Kapsenberg and Hofmann 2014; Yu et al. 2013). Subtidal moorings were anchored 

at approximately 27 m with sensor depth of 18 m. SeaFETs sampled on a two-hour 

frequency. 

2. Calibration  

All reported pH is on a total hydrogen ion scale and listed as ‘pH’. Raw voltage recorded 

by the SeaFETs was converted to pH using one discrete seawater sample per sensor 

deployment following methods from Bresnahan et al. (2014). Calibration samples were 

collected via SCUBA following sensor conditioning to seawater within the first two weeks 

of each deployment, using a 5 L GO-FLO sampling bottle. Ideally, additional validation 

samples are collected throughout a sensor deployment. However, the remoteness of our sites 

restricted this work to one discrete sample per sensor deployment. 

Calibration samples were preserved with saturated mercuric chloride according to 

Standard Operating Procedure (SOP) 1 (Dickson et al. 2007). Spectrophotometric pH was 

determined at 25 °C following SOP 6b (Dickson et al. 2007) using m-cresol purple from 

Sigma-Aldrich®. Total alkalinity (AT) was measured via open-cell titration with a Mettler-

Toledo T50 (SOP 3b, Dickson et al. 2007). Salinity was measured using a calibrated YSI 

3100 Conductivity Instrument. Certified Reference Materials of seawater (CRMs) and acid 

titrant were supplied by Dr. Andrew G. Dickson (University of California San Diego, 

Scripps Institution of Oceanography). pH at in situ temperature was calculated from 

spectrophotometric measurements of pH25 °C and AT and salinity on the bottle sample using 
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the program CO2Calc (Robbins et al. 2010) with CO2 constants from Mehrbach et al. (1973) 

refit by Dickson and Millero (1987). All reported carbonate system calculation we 

conducted according to these constants. 

3. Data processing and analysis 

Raw data from the SeaFETs were cropped based on battery exhaustion, which occurred 

before sensor recovery. One of the two sensors deployed at the Jetty failed quality control 

analyses, and data from this instrument is not reported. Inspections of raw voltages recorded 

by the functional SeaFETs confirmed that the calibration samples were collected after the 

period of sensor conditioning to seawater. In the absence of biofouling (as was the case for 

our sensors), sensor stability has been demonstrated over similar deployment times 

(Bresnahan et al. 2014) thereby generating high-quality pH datasets. A comparison of pH 

from each site was conducted using a Mann-Whitney Wilcoxon test, as pH values were not 

normally distributed (Minitab® 16, Kolmogorov-Smirnov test, p < 0.10, for each site). All 

time is reported as UTC.   

Time-series carbonate parameters were calculated from pH measurements using 

CO2calc for a depth of 18 m. Monthly mean salinity data was used from prior measurements 

in McMurdo Sound (Littlepage 1965, Table II-1). AT was calculated from the empirical 

relationship between sea surface salinity (SSS) and sea surface temperature (SST, as 

measured by SeaFETs) for the Southern Ocean as reported by Lee et al. (2006): 

 

AT  = 2305 + 52.48 x (SSS - 35) + 2.85 x (SSS - 35)
2
 - 0.49 x (SST - 20) 

+ 0.086 x (SST – 20)
2
    (1) 
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Table II-1. Model inputs for seasonally variable parameters. See Methods for details. 

Month pH 
Temp. 

(°C) 

Salinity 

(Littlepage 

1965) 

Total 

Alkalinity 

(µmol 

kgSW
-1

) ∞ 

Total PO4 

(µmol kgSW
-1

) 

Total Si 

(µmol 

kgSW
-1

) 

Nov* 8.01 -1.9 34.82 2348 1.9 
(Barry 1988; 

Gordon et al. 2000; 
Noble et al. 2013; 

Rivkin 1991) 

65.1 
(Gordon et al. 

2000; Rivkin 
1991) 

Dec 8.09 -1.6 34.76 2343 1.3 
(Gordon et al. 2000; 

Rivkin 1991; Smith 

et al. 2003) 

62.1 
(Gordon et al. 

2000; Rivkin 

1991; Smith et 
al. 2003) 

Jan 8.21 -1.0 34.65 2335 0.9 
(Gordon et al. 2000; 

Rivkin 1991; Smith 
et al. 2003) 

50.7 
(Gordon et al. 

2000; Rivkin 
1991; Smith et 

al. 2003) 

Feb 8.17 -1.1 34.37 2322 1.3 
(Smith et al. 2003) 

54.5 
(Smith et al. 

2003) 

Mar 8.13 -1.6 34.44 2327 1.5 
(Gordon et al. 2000) 

70.5 
(Gordon et al. 

2000) 

Apr 8.08 -1.8 34.50 2331 2.1 
(McNeil et al. 2010) 

78.9 
(McNeil et al. 

2010) 

May 7.99 -1.9 34.62 2337 2.1 
(McNeil et al. 2010) 

78.9 
(McNeil et al. 

2010) 

Jun* 7.93 -1.9 34.69 2341 2.1 
(McNeil et al. 2010) 

78.9 
(McNeil et al. 

2010) 

mean* 8.05 -1.6 34.65 2335 1.6 67.5 

min* 7.90 -1.9 34.62 2337 2.1 78.9 

max
§
 8.40 -0.4 34.61 2336 0.9 50.7 

* pH and temperature data from Cape Evans only, based on data collected in this study and in Hofmann et al. 

(2011), Kapsenberg and Hofmann (2014), Matson et al. (2014) 
§ 
pH and temperature data from the Jetty only  

∞ 
Calculated from salinity and temperature (Lee et al. 2006) 
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AT measurements on SeaFET calibration samples matched the calculated AT within the 

accuracy of titrator (AT and salinity were 2342 µmol kgSW
-1 

and 34.3 for the Jetty; 2351 

µmol kgSW
-1

 and 34.6 for Cape Evans, respectively). Monthly mean nutrient concentrations 

were estimated from the literature for McMurdo Sound and various Ross Sea stations in 

close proximity following the directions of ocean currents (max measurements month
-1

 = 4).  

Due to the lack of published phosphate measurements for this region, the Redfield ratio was 

applied to estimate phosphate from nitrate and silicic acid concentrations, in some cases (W. 

O. Smith, Jr. pers. comm.). 

Summertime decrease in DIC was calculated for both sites from stable fall mean DIC 

conditions to minimum DIC observed in summer. Temperature and pH data were analyzed 

for event-scale to seasonal (10-day low-pass filter) and short-term (10-day high-pass filter) 

trends. Standard deviation of a 10-day moving average window on high-pass filtered data 

was calculated to describe seasonal changes in short-term pH and temperature variability. 

Unfiltered and 10-day high-pass filtered pH and temperature data from the duration of the 

entire deployment was investigated for each site using a linear correlation analysis (Matlab 

R2012b, Minitab
®
 16).  

4. Error estimates 

SeaFET thermistors were not individually calibrated resulting in a maximum estimated 

temperature error of ~0.3 °C. The estimate of the combined standard uncertainty associated 

with the pH measurement of the calibration samples is ± 0.026 pH units (quadratic sum of 

partial uncertainties). The quantified sources in pH error are: use of unpurified m-cresol dye 

(0.02, Liu et al. 2011), spatio-temporal mismatch of the calibration sample (± 0.015, 

Bresnahan et al. 2014), user differences (± 0.006), and use of an uncalibrated SeaFET 
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thermistor with ± 0.03 °C error (± 0.005 pH). Measurements of spectrophotometric pH on 

CRMs, although not specified by the SOP, suggest that our bench top methods may 

underestimate pH25°C by 0.032 (± 0.006, n = 18, across different users and days) relative to 

theoretical CRM pH calculated from DIC, AT, and salinity. It is hoped that, in the future, 

purified indicator dye will become widely available to the oceanography community in 

order to improve accuracy of pH measurements. The estimated uncertainty for the pH of 

calibration samples does not impact the relative changes in pH recorded by the SeaFET on 

hourly to monthly time scales, which in the absence of biofouling can be resolved to better 

than 0.001. Thermistors provide a stable temperature reading with resolution of better than 

0.01 °C. Based on replicate analyses of CRMs, the precision of the titration system used for 

calibration samples is ± ≤10 µmol kgSW
-1

 and did not impact the pH calculation of our 

calibration samples at in situ temperatures. Errors in salinity were not quantified. Instead, 

calculations of DIC, pCO2, and Ωarag from the pH time-series were conducted using monthly 

estimates of AT and salinity (Table II-1). For reference, a +0.026 pH error corresponds to 

errors under November (January) conditions of -9 (-11) µmol kgSW
-1

 DIC, -27 (-17) µatm 

pCO2, and +0.07 (+0.10) Ωarag. 

5. Ocean acidification scenarios 

Representative Concentration Pathway 8.5 (RCP8.5), which predicts atmospheric CO2 to 

reach 935.87 ppm by 2100 (Riahi et al. 2007), was used to generate four ocean acidification 

scenarios. The equilibrium scenario assumes an increase in DIC at the same rate as would be 

expected if seawater pCO2 tracks the atmospheric value (~100 µmol kgSW
-1

 increase in DIC 

by 2100) and (2) the disequilibrium scenario assumes a DIC increase at a 65% slower rate 

due to seasonal ice cover (McNeil et al. 2010). Secondary simulations of a ± 20% change in 
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the observed seasonal amplitude of DIC are included along with the CO2 forcing scenarios. 

The disequilibrium model likely overestimates pH and Ωarag, as horizontal advection of 

northern ice-free water masses with longer surface residence times was not accounted for 

(McNeil et al. 2010). 

First, November was used as a baseline for CO2 forcing scenarios because it is a period 

of stable pH and has been measured for three consecutive years at Cape Evans (Hofmann et 

al. 2011; Kapsenberg and Hofmann 2014; Matson et al. 2014). Based on these prior studies 

and data collected in November 2012 during this study, mean November pH from 2010-

2012 was pH 8.01. Calculated mean November seawater pCO2 was then forced with pCO2 

from the RCP8.5 emission scenario assuming air-sea equilibrium, and annual changes in 

pCO2 were used to calculate annual changes in November DIC up to 2100.  

Second, monthly mean pH and temperature observations from the Jetty and Cape Evans 

from 2011-2013 were averaged to calculate a partial (8-month), present-day, regional DIC 

climatology. Calculations were performed in CO2calc following methods listed above, with 

the exception that monthly mean temperature in June at Cape Evans was corrected from -2.0 

°C up to -1.9 °C to match previous long-term observations (Cziko et al. 2014). Input 

variables are listed in Table II-1. Starting from the November baseline, present-day changes 

in DIC where calculated by month (December – June) and for the maximum and minimum 

observed DIC and overall mean. Monthly changes in DIC were assumed constant for future 

projections and were applied to end-century November DIC to generate a DIC climatology 

for 2100. Annual DIC trajectories were modeled for observed minimum and maximum DIC, 

November, January, June, and overall mean. For simulations of ± 20% change in seasonal 

DIC amplitude, monthly changes in DIC were increased or decreased by 20%. Owing to the 
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lack of projections of future warming for coastal Antarctica, the effects of future 

temperature change were not included in our simulation. 

D. Results 

1. pH data 

To collect high-resolution pH data, we deployed autonomous SeaFET pH sensors (Martz 

et al. 2010) in the austral spring at two sites in near-shore McMurdo Sound, Jetty and Cape 

Evans, on subtidal moorings in separate years (Figure II-1). Both the Jetty and Cape Evans 

showed four general sequences of pH variation during the observed period (Figure II-2a, II-

2b; Table II-1). First, pH (reported on the total hydrogen ion scale for all measurements) 

rapidly increased from approximately 8.0 to 8.3 units in the early austral summer from 

December to January. Second, monthly pH variability from December through April (s.d. ± 

0.03 to 0.08 units) was higher than that observed in November (s.d. ± 0.01 units). The 

increase in short-term pH variability remained after removing low-frequency pH variability 

that was inherently included in the monthly standard deviations listed in Table II-2. Standard 

deviation of the 10-day moving average of high-pass filtered pH data was greater during the 

summer months relative to November, May, and June and peaked in January at both sites 

(<0.05 pH units, Figure II-3a, II-3b). Third, following peak pH in January, pH and short-

term pH variability generally declined to the end of April, but remained higher than 

November and early-December conditions. Fourth, around the onset of 24 h darkness at the 

end of April and during stabilized temperature pH declined and was followed by lower mean 

monthly pH and variability in May (s.d. ± 0.02 units) and in June (s.d. ± 0.01 units) relative 

to summer months. The initial pH increase from fall to peak January conditions  
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Figure II-2. pH and temperature cycles in McMurdo Sound, Antarctica. Time-series pH 

(a, b) and temperature (c, d) at the Jetty and Cape Evans as recorded by SeaFET pH sensors 

(grey line). A 10-day low-pass filter (10-d LPF) was applied to the pH and temperature 

observations (blue line). Daylight is noted by colored x-axis bars where ‘sunsets’ indicates 

decreasing day length. Arrows indicate anecdotal events of phytoplankton blooms as 

observed by United States Antarctic Program SCUBA divers. Calibration samples are noted 

(circle). Ticks on x-axes denote the first day of the month. 
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Table II-2. Carbonate parameters at two sites in McMurdo Sound, Antarctica.  

Site,  

year   pH T (°C) 

DIC  

(µmol kgSW-1)* 

pCO2 

(µatm)* Ωarag* 

Jetty mean 8.15 ± 0.08 -1.45 ± 0.31 2179 ± 37 302 ± 62 1.68 ± 0.29 

2011-2012 median 8.16 -1.50 2177 292 1.66 

 

min 8.01 -1.80 2058 152 1.22 

 

max 8.40 0.00 2238 428 2.81 

 

range 0.40 1.80 181 276 1.60 

       

 

Dec 8.08 ± 0.04 -1.54 ± 0.14 2216 ± 17 355 ± 36 1.45 ± 0.14 

 

Jan 8.24 ± 0.05 -1.08 ± 0.36 2142 ± 26 236 ± 31 2.03 ± 0.23 

 

Feb 8.23 ± 0.04 -1.28 ± 0.25 2138 ± 17 241 ± 23 1.95 ± 0.16 

 

Mar 8.17 ± 0.03 -1.42 ± 0.19 2170 ± 10 286 ± 19 1.70 ± 0.09 

 

Apr 8.12 ± 0.04 -1.67 ± 0.05 2191 ± 14 319 ± 31 1.55 ± 0.11 

 

May 8.05 ± 0.02 -1.73 ± 0.01 2224 ± 7 387 ± 20 1.33 ± 0.06 

       
Cape Evans mean 8.05 ± 0.10 -1.63 ± 0.47 2218 ± 39 391 ± 92 1.37 ± 0.30 

2012-2013 median 8.06 -1.90 2216 372 1.36 

 

min 7.90 -2.04 2107 192 0.96 

 

max 8.32 -0.27 2276 559 2.34 

 

range 0.42 1.77 168 367 1.39 

       
 Nov 7.99 ± 0.01 -1.96 ± 0.0 2256 ± 2 450 ± 6 1.17 ± 0.01 

 

Dec 8.09 ± 0.08 -1.73 ± 0.2 2212 ± 30 349 ± 67 1.49 ± 0.25 

 

Jan 8.17 ± 0.07 -0.90 ± 0.3 2170 ± 29 285 ± 53 1.79 ± 0.25 

 

Feb 8.11 ± 0.04 -0.96 ± 0.3 2183 ± 15 327 ± 31 1.56 ± 0.12 

 

Mar 8.1 ± 0.05 -1.75 ± 0.1 2198 ± 18 342 ± 42 1.46 ± 0.15 

 

Apr 8.03 ± 0.04 -1.95 ± 0.0 2225 ± 14 403 ± 44 1.27 ± 0.10 

 

May 7.94 ± 0.02 -1.99 ± 0.0 2262 ± 7 508 ± 29 1.04 ± 0.05 

  Jun 7.93 ± 0.01 -2.00 ± 0.0 2268 ± 3 518 ± 18 1.03 ± 0.02 

Error is ± s.d.  

*Calculated parameter  
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Figure II-3. Seasonal increase in short-term pH and temperature variability. High-pass 

filtered  pH (a, b) and temperature (c, d) at the Jetty and Cape Evans (10-day, 10-d HPF). 

Blue lines are the s.d. of a 10-day moving average on the high frequency data (grey line). 

Daylight is noted by colored x-axis bars. 
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corresponded to a decline in the calculated dissolved inorganic carbon (DIC) of 167 and 137 

µmol kgSW
-1

 at the Jetty (54 days) and Cape Evans (31 days), respectively. 

The seasonal pH range was 0.30 and 0.33 pH units for the Jetty and Cape Evans, 

respectively (Figure II-1a, II-1b), based on a 10-day low-pass filter. Short-term pH 

variability contributed to a total range of observed pH from summer to winter conditions of 

0.40 and 0.42 units, at the Jetty and Cape Evans, respectively. Maximum pH was observed 

in January and minimum pH was observed in May at both sites. Mean pH differed between 

the Jetty and Cape Evans when comparing pH observations of the same date range (8.15 ± 

0.08 at the Jetty ; 8.08 ± 0.09 at Cape Evans; Mann-Whitney Wilcoxon test, p < 0.001, W = 

3481992, n = 2103). In general, summertime sub-seasonal (Figure II-2a, II-2b) and short-

term pH variability (Figure II-3a, II-3b) was greater at Cape Evans in 2013 compared to the 

Jetty in 2012. Changes in pH of ± 0.13 units occurred various times over the course of hours 

to a day at Cape Evans. The largest pH change over a relatively short period was -0.27 units 

over 5.5 days in March at Cape Evans.  

Within the same site, temperature data showed similar patterns in variability as pH: 

temperature increased from the start of the recording period, peaked in January, after which 

it declined and stabilized in early April to similar temperatures observed in November and 

early December (Figure II-2c, 2d). Low-pass filtered data show a seasonal warming of 1.33 

°C and 1.55 °C at the Jetty and Cape Evans, respectively. Like pH, high-pass filtered 

temperature data showed a seasonal increase in short-term variability from January through 

April (Figure II-3d, 3d). Absolute seasonal temperature change was 1.8 °C and 1.7 °C at the 

Jetty and Cape Evans, respectively.  
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At both the Jetty and Cape Evans, temperature was significantly and positively 

correlated with pH over the deployment period (p < 0.001; Table II-3), opposing the 

thermodynamic relationship. High-pass filtered temperature was significantly correlated 

with pH at both sites (Table II-3), but the direction of this relationship was different at both 

sites and explains little of the overall pH variation (< 5 %, Table II-3). 

When used for carbonate calculations (DIC, pCO2, Ωarag), pH data indicate that 

McMurdo Sound is currently supersaturated with respect to aragonite (Table II-2). Monthly 

mean Ωarag in late fall and early winter approached 1. Conditions may have actually reached 

undersaturation (Ωarag <1) for brief periods at Cape Evans in May and June (minimum of 

Ωarag 0.96), depending on the error in pH measurements (see Methods). 

2. Ocean acidification scenarios 

McMurdo Sound regional ocean acidification trajectories were made using averaged pH 

observations from 2011-2013 and forced with the Representative Concentration Pathway 8.5 

(RCP8.5) CO2 emission scenario (Riahi et al. 2007). Due to the potential offset in pH 

measurements associated with use of unpurified m-cresol dye (~0.03 pH units, see 

Methods), our results may slightly overestimate acidification trends. The equilibrium 

scenario, which represents an increase in seawater pCO2 that tracks atmospheric levels, 

predicted more extreme acidification than the disequilibrium scenario, which represents a 

65% reduced CO2 uptake due to seasonal ice cover (Figure II-4, II-5).  

In both scenarios, CO2 forcing increased the seasonal pH amplitude and reflects the 

process of reduced ocean buffer capacity as CO2 is absorbed (Egleston et al. 2010). For 

example, present-day range of observed monthly mean pH from January to June was 0.28 

units and increased to 0.31 and 0.35 units under the disequilibrium and equilibrium scenario,   
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Table II-3. Linear regression analysis of pH and temperature.  

Site  Predictor Coef  SE Coef T p R
2
 

Jetty 

Temperature 0.20526 0.00358 57.27 <0.001* 0.61 

Temperature 10-d HPF 
-0.04749 0.00453 

-

10.49 <0.001* 0.05 

Cape Evans 
Temperature 0.14985 0.00275 54.51 <0.001* 0.53 

Temperature 10-d HPF 0.02912 0.0058 5.02 <0.001* 0.01 

*Statistically significant 

10-d HPF, 10-day high-pass filtered data 
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respectively. For all scenarios, wintertime pH of ~7.9 (approximate aragonite 

undersaturation) occurred by the end of the century (Figure II-4, II-5). Assuming that pH < 

7.9 persists for the period that we lack data for (July through October), the disequilibrium 

and equilibrium models suggest a 7- and 11-month annual duration of pH conditions < 7.9 

units and undersaturation by 2100, respectively. 

As a proxy for simulating changes in net community production, DIC amplitude was 

perturbed by ± 20% (Figure II-4). A 20 % increase in seasonal DIC amplitude raised pH and 

Ωarag during the summer and fall but failed to raise pH and Ωarag to present-day levels. For 

example, under the equilibrium model, a 20 % increase in seasonal DIC amplitude 

marginally extended end-century duration of summertime pH > 7.9 from January (pH 7.93, 

Ωarag 1.07) to January (pH 7.99, Ωarag 1.21) and February (pH 7.93, Ωarag 1.05).  

Any reduction in the amplitude of seasonal DIC will exacerbate the effects of ocean 

acidification. For example, during the month of peak pH, mean January pH remained above 

7.9 units in all scenarios, except under the equilibrium scenario with a simulated 20% 

reduction in seasonal DIC amplitude (January pH 7.87, Figure II-4). This latter  

scenario was the only scenario that exhibited permanent aragonite undersaturation in 

McMurdo Sound by 2100. 

Due to the increase in pH variability observed during summer months (Figure II-3), 

organisms at our study sites will likely still periodically experience pH > 7.9 and Ωarag > 1 

by 2100 (Figure II-5). For instance, under the equilibrium scenario, maximum pH was pH 

8.19, and 0.47 units above mean January conditions (pH 7.72). Acidification thresholds (pH 

~7.9 and Ωarag < 1) were crossed earlier under the equilibrium model compared to the 

disequilibrium model (Figure II-5). Here, onset of June (i.e. winter) undersaturation was  
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Figure II-4. Present-day and end-century pH and aragonite saturation state. Present–

day (circle) and end-century monthly mean pH (a) and aragonite saturation state, Ωarag (b), in 

McMurdo Sound, Antarctica, using a disequilibrium and equilibrium scenario (solid line). 

Within each scenario, a simulated 20% increase (upper dashed lines) and decrease (lower 

dashed lines) in seasonal DIC amplitude is used to simulated changes in net community 

production. Dotted lines reference pH 7.9 and Ωarag of 1. 
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Figure II-5. Annual changes in pH and aragonite saturation state ranges. Projections of 

yearly changes in pH and aragonite saturation state, Ωarag, in McMurdo Sound, Antarctica, 

using a disequilibrium (a, c) and equilibrium (b, d) scenario. Annual range in pH increases 

and Ωarag decreases with future acidification. End-century maximum pH and Ωarag remain 

above acidification thresholds of pH 7.9 and Ωarag of 1. Projections are based on field data 

collected in 2011-2013 (circle). January and June monthly means represent mid-summer and 

winter conditions, respectively. The overall mean represent mean values from spring into 

winter conditions. Onset of aragonite undersaturation (triangles) is marked for each 

parameter and additionally for November monthly mean conditions. 
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projected to occur by 2018, a decade earlier than under the disequilibrium scenario. 

November (i.e. spring) aragonite undersaturation was predicted to first occur by 2045 in the 

equilibrium model, 46 years earlier than predicted by the disequilibrium model. Timing of 

the threshold crossings may be delayed given the potential offset in Ωarag associated with the 

pH measurement error. 

E. Discussion 

The observed pH regime in McMurdo Sound can be grouped into two seasonal patterns: 

(1) stable pH with low variability during the winter and spring, and (2) elevated pH with 

high variability during the summer and fall. While our pH sensors did not record data from 

July through October, previous studies of pH (in October, Matson et al. 2011) and 

temperature (Cziko et al. 2014) in this region support our hypothesis of low environmental 

variability during the winter. Note, observations from Prydz Bay (Roden et al. 2013) (68 °S) 

suggest that pH may decline slightly (<0.1 units) from June to September.  

The amplitude of summertime pH elevation (0.3-0.4 units) observed in McMurdo Sound 

is among one of the greatest observed in the ocean and matches pH cycles at a northern 

coastal site in Prydz Bay, Antarctica (Gibson and Trull 1999; Roden et al. 2013). In 

McMurdo Sound, the intense summertime DIC drawdown started in December and matched 

the timing of the annually recurring Phaeocystis sp. phytoplankton blooms, which are well-

described and typically centered on 10 December (R. Robbins pers. comm., Putt et al. 1994). 

The initial pH increase at Cape Evans (pH 8.01 to 8.12) occurred within 24 h on 9 December 

2012 during which SCUBA divers noted sudden increase in phytoplankton presence in 

McMurdo Sound (R. Robbins pers. comm.).  
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Given that (1) the sudden increase in pH at our study sites followed a period of 

extremely stable pH conditions (Kapsenberg and Hofmann 2014; Matson et al. 2011), (2) 

maximum observed pH corresponded to pCO2 ~200 μatm below atmospheric equilibrium, 

and (3) productive waters from the Ross Sea are advected south into east McMurdo Sound 

(Rivkin 1991), the initial rapid pH increase in December is likely the signature of 

phytoplankton blooms that originated in the Ross Sea and reached our coastal sites. 

Calculated DIC drawdown from fall to summer at the Jetty and Cape Evans (167 and 137 

µmol kgSW
-1

 DIC) matches the timing and magnitude of CO2 cycles observed at similar 

depths in the Ross Sea (Sweeney 2003) and Prydz Bay (~135-200 μatm kgSW
-1

 DIC, 

Gibson and Trull 1999; Roden et al. 2013).  

Following the peak pH in January, pH steadily declined to pre-summer conditions by the 

end of April. A recent study of autonomous pCO2 measurements on incoming seawater at 

Palmer Station from Arthur Harbor (64 °S) observed a summertime increase in primary 

production, starting in November (Tortell et al. 2014). Here, a phytoplankton bloom was 

captured with peak production corresponding to an observation of 50 μatm pCO2. Contrary 

to the slow return of carbonate chemistry to pre-summer conditions observed in McMurdo 

Sound over 4-5 months, pCO2 at Arthur Harbor rapidly returned to atmospheric equilibrium 

in December and persisted to the end of the study in March. The authors attributed the crash 

of the bloom to physical mixing and zooplankton grazing, which would control 

phytoplankton density and contribute respiratory CO2. Depending on the year-to-year pH 

variability on the Antarctic Peninsula, the season of high pH in Arthur Harbor may 

potentially be much shorter compared to that in McMurdo Sound. For example, interannual 

carbonate chemistry variability in the Weddell Sea is linked to the timing of sea-ice melt and 
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phytoplankton productivity in the mixed layer (Weeber et al. 2015). The decline in pH 

observed at McMurdo is likely a combination of reduced primary production, increased 

heterotrophy and deepening of the mixed layer, as has been suggested to occur in Prydz Bay 

(Gibson and Trull 1999) and observed in other notable bloom regions such as the North 

Atlantic (Körtzinger et al. 2008).  

Calculated pCO2 at Cape Evans in April (403 ± 44 μatm) nears observations from the 

Ross Sea made in April 1997 (320-400 μatm, Takahashi et al. 2002). A stabilization of pH in 

May and June at Cape Evans corresponded to ~500 μatm pCO2. We were unable to collect 

validation samples during this period, however, biofouling was not an issue at our sites and 

SeaFET pH sensors have been shown to maintain stability over >9 months (Bresnahan et al. 

2014). Similar observations have been made elsewhere in near-shore Antarctica. For 

example, high pCO2 (~490 μatm) was observed near the Dotson Ice Shelf in the Amundsen 

Sea Polynya in summer and was correlated with the deepening of the mixed layer relative to 

the surrounding area (Mu et al. 2014). In addition, the range of Ωarag from mean summer 

(January) to winter (May) conditions was 0.70 and 0.75 at the Jetty and Cape Evans, 

respectively, matching the latest observations from Prydz Bay (0.73, Roden et al. 2013) and 

the Weddell Sea (0.77, Weeber et al. 2015). The low pCO2 recorded in May and June at 

Cape Evans may thus be a combination of water column mixing and heterotrophy, as well as 

a potential 37 μatm pCO2 overestimation associated with the offset of our pH measurement.    

The observed ~0.3 unit summertime increase in pH in McMurdo Sound is much larger 

than of northern high-latitudes (Shadwick et al. 2013). While primary productivity in 

Antarctic waters is comparable to that of the high-latitude North Atlantic and Pacific 

(Takahashi et al. 2002), the observed < 2 °C annual temperature variation is typical of 
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McMurdo Sound (Cziko et al. 2014) and plays almost no role in the seasonal amplitude of 

pH (1.8 °C warming corresponds to a pH decrease of 0.03 units). In contrast, at locations 

such as the North Pacific the temperature cycle can be ~5 times greater than the observed 

range of temperatures in this study (Takahashi et al. 2002). At our sites, the seasonal 

temperature forcing on pH counteracts seasonal forcing by primary production. As a result, 

the absence of a significant temperature forcing in near-shore Antarctica leads to a more 

pronounced seasonal pH cycle with greater amplitude compared to other bloom regions in 

the world (Shadwick et al. 2013).  

As captured in our dataset, the summer season in McMurdo Sound is marked by an 

increase in sub-seasonal and short-term pH variability from December through April. In 

terms of s.d. of unfiltered (monthly s.d.) and high-pass filtered (10-day s.d.) pH, pH 

variability in McMurdo Sound is of similar magnitude to that observed in temperate kelp 

forests (e.g. ± 0.043 - 0.111) and tropical coral reefs (e.g. ± 0.022) over 30 days (Hofmann et 

al. 2011). This is surprising due to absence of large temperature forcing and structural 

macrophytes and holobionts, which induce diurnal pH cycles at lower latitudes. On a 

Hawaiian reef, variability in pH was correlated with environmental parameters such as wave 

and height, wind speed, and solar radiation (Lantz et al. 2014), suggesting a combination of 

influential abiotic and biotic drivers on coastal seawater pH variability.  

We did not directly measure abiotic and biotic factors that influence carbonate chemistry 

in our study region and more measurements would be needed to quantify the sources of 

variability over different frequencies. For instance, air-sea gas exchange contributes to pH 

on a seasonal timeframe, where summertime CO2 uptake by the ocean during ice-free 

periods masks the total contribution of net community production to DIC drawdown 
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(Gibson and Trull 1999). Likewise, summer meltwater dilutes DIC and AT (Gibson and 

Trull 1999; Roden et al. 2013) and may contribute to short-term pH variability in summer. 

The timing of sea ice melt onset may impact the duration and magnitude of carbonate 

chemistry seasonality where early melting enhances phytoplankton production under 

optimal mixed layer depths, as has been observed in the Weddell Sea (Weeber et al. 2015). 

Small pH variability (8.009 ± 0.015) observed from late October through November  in 

McMurdo Sound may be explained by algal photosynthesis, although tides may play a small 

role as well (Matson et al. 2014). Tidal exchanges of shallow and deeper water masses could 

play a larger role in summer pH variability, compared to spring (Matson et al. 2014), when 

the water column is highly stratified (Barry 1988). Low pH variability observed in winter 

and spring could also stem from a decrease in respiratory CO2 contributions to DIC due to 

metabolic depression during periods of low food availablity, as has been observed to occur 

in pteropods (Seibel et al. 2012). In contrast, increased pH variability during the summer and 

fall is potentially influenced by the dominant biological forcing on the carbonate system in 

the Ross Sea at that time (Takahashi et al. 2002). Such phytoplankton blooms create large 

spatial difference in pCO2 (Mu et al. 2014) that could lead to sub-seasonal and short-term pH 

variability through bloom patchiness across water mass movement. Quantification of abiotic 

and biotic parameters described above would improve estimations for future ocean 

acidification when incorporated into sensitivity models (Shaw et al. 2013).  

We explored how seasonal and pH variability may influence future ocean acidification 

in our study region in order to provide guidelines for biological experiments assessing future 

species’ and ecosystem responses. The equilibrium and disequilibrium models provide 

boundaries for potential worst- and best-case acidification under a CO2 emission scenario 
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that does not account for climate mitigation efforts (Riahi et al. 2007). Within all model 

parameters we employed, marine biota at our study sites are anticipated to experience 

changes beyond the envelope of current conditions, as has been predicted for lower latitude 

marine ecosystems as well (Shaw et al. 2013). As atmospheric CO2 continues to increase, 

(1) pH and duration of summertime high pH (> 7.9) will decrease and (2) the magnitude of 

seasonal and short-term pH variability may increase. 

Previous studies of ocean acidification in the Southern Ocean and the Ross Sea identify 

the importance of seasonality and predict onset of wintertime aragonite undersaturation 

(Ωarag < 1) between 2030 and 2050 under Intergovernmental Panel on Climate Change 

emissions scenario IS92a (McNeil and Matear 2008; McNeil et al. 2010; Orr et al. 2005). 

Our calculations of Ωarag show wintertime undersaturation in McMurdo Sound occurring 

within this same timeframe, despite the higher CO2 emission scenario and high-resolution 

data used in our study, and potential over estimation of acidification trends associated with 

the offset in pH measurements. Given that pH and Ωarag may decrease slightly from June 

through September (Roden et al. 2013) and the lack of pH observations during these months, 

it is possible that periodic aragonite undersaturation may occur sooner than our predictions 

based on June observations. For context, the consequences of such periodic undersaturation 

could lead to calcium carbonate dissolution of live animals, as was observed for L. helicina 

antarctica at Ωarag ≈ 1 (Bednaršek et al. 2012). Likewise, studies on Antarctic sea urchin, 

Sterechinus neumayeri, early development conducted during the period of stable spring pH 

and urchin spawning in McMurdo Sound, suggest that persisting conditions of pH < 7.9 

(approximate aragonite undersaturation) may to impair larval growth (Yu et al. 2013) and 

calcification (G. E. Hofmann and P. C. Yu, unpubl.). Such conditions could occur in the 
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latter half of this century during the sea urchin spawning season. Future carbonate chemistry 

conditions will ultimately depend on the rate at which anthropogenic CO2 is released to the 

atmosphere and any future changes in local physical and biological processes that our model 

does not account for (e.g. changes in temperature, meltwater, wind, mixing and 

stratification, upwelling, gas-exchange, and phytoplankton blooms). 

Despite the dominant biological footprint in pH seasonality in the Southern Ocean, a 

20% increase in seasonal DIC amplitude (simulating an increase in net community 

production) failed to raise pH to present-day levels at our study site. This suggests that 

relatively large changes in seasonal primary productivity may have small effect on the pH 

exposure of coastal organisms relative to the changes induced by ocean acidification. 

Phytoplankton blooms, as a food source however, may impact species responses to ocean 

acidification. For example, a study of L. helicina antarctica collected in McMurdo Sound 

found that (1) feeding history (e.g. weeks, months, seasons) impacted oxygen consumption 

rates and (2) metabolic suppression due to low pH exposure was a masked during periods of 

food limitation (Seibel et al. 2012). This study highlights the importance of incorporating 

environmental history when interpreting experimental results. As the feeding history is 

likely correlated with pH exposure in the bloom, parsing out the effects of pH history and 

food availability will present a challenge for Antarctic physiology. 

In Antarctic ocean acidification biology, ‘control’ conditions used in experiments are 

often ~pH 8.0 (e.g. Cummings et al. 2011; Yu et al. 2013) and represent current spring 

conditions in McMurdo Sound. Based on our future projections, this ‘control’ treatment will 

only occur during summer months if at all. Regardless of the exact rate of ocean 

acidification, the seasonal window of pH > 7.9 and Ωarag > 1 will likely shorten in the future. 
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This shrinking and seasonally shifting window of high pH may lead to unpredictable 

ecological consequences through changes in physiological and seasonally dependent 

biological processes (e.g. sea urchin larval development). It remains largely unknown how 

summertime pH levels currently contribute to animal physiology and whether or not a 

reduction in future peak pH and duration of high pH exposure influences physiological 

recovery following 7-11 months unprecedented low pH conditions. As an example, oxygen 

consumption and gene expression of heat shock protein 70 in the Antarctic bivalve 

Laternula elliptica increased when adults were exposed to experimental conditions near the 

habitat maxima (pH 8.32, categorized as ‘glacial levels’ by the authors) and below their 

current pH exposure (pH 7.77), relative to performance at ~pH 8.0 (Cummings et al. 2011). 

These results suggest that summer exposures may induce stress similar to conditions 

predicted with ocean acidification. Understanding how organisms are adapted to their 

present-day exposures will help elucidate how they will respond to future conditions.  

As the exposure period of pH > 7.9 shrinks under simulated ocean acidification, the 

magnitude of annual pH variability increases. These changes suggest that calcifying marine 

biota of Antarctic coastal regions will experience larger seasonal pH cycles in addition to 

exposure to lower environmental pH. Due to the reduced buffer capacity of the ocean under 

high CO2, it is likely that the short-term pH variability in McMurdo Sound will be amplified 

in the future as well (Egleston et al. 2010). This has been predicted for coral reefs under 

ocean acidification scenarios (Shaw et al. 2013) and shown experimentally in pelagic field 

mesocosms (Schulz and Riebesell 2013) where primary production drives diurnal pH cycles.  

Our results provide guidance for the design of biological experiments aimed to address 

the potential for Antarctic species to adapt to a seasonally shrinking window of future high 



 

 54 

pH conditions. Although ocean acidification is likely to create an unprecedented marine 

environment, the existing presence of high pH variability in near-shore Antarctica may have 

beneficial implications for biological tolerance of ocean acidification. The distinct 

summertime increase in pH and pH variability in near-shore McMurdo Sound suggests that 

marine biota here have some capacity to deal with large fluctuations in the carbonate system, 

as has also been suggested by McNeil et al. (2011) in relation to the seasonal pH cycle. 

Unlike temperate upwelling regions where pH variability frequently drops below pH 8.0 

(Hofmann et al. 2014), elevation of summer pH in McMurdo Sound opposes the direction of 

future ocean acidification. Future studies are necessary to describe how this pH-seascape 

may select for physiological tolerances of ocean acidification. For example, are natural 

positive (e.g. near-shore Antarctica) or negative deviations (e.g. temperate upwelling 

systems, Hofmann et al. 2014) from pH 8.0 important to tolerance of future acidification? 

Will high summertime pH prepare organisms for low pH conditions in the winter? What 

frequency of pH variability promotes acidification tolerance?  

A few recent studies have tackled such questions in temperate regions with mixed 

results. For example, Frieder et al. (2014) found that larval growth of mussel Mytilus 

galloprovincialis veligers was reduced under low static pH but recovered under similar 

conditions of low mean pH when semi-diurnal pH variability was introduced. However, 

congener M. californianus did not exhibit this ‘rescued’ response with diurnal cycles 

(Frieder et al. 2014). Although the Southern Ocean does not experience year-round diurnal 

photoperiods, a similar experimental approach can be used to guide studies on the impact of 

pH seasonality on ocean acidification tolerance (Murray et al. 2014), and ultimately, 

adaptation.  
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We highlight a coupled oceanography and biology research strategy for studying ocean 

acidification biology in the Southern Ocean. Studying physiological tolerance and local 

adaptation to variable seawater chemistry ideally requires large differences in spatial and 

temporal pH variability (Hofmann et al. 2014; Hofmann et al. 2011). If patterns of pH 

variability differ spatially around the Antarctic continent (e.g. McMurdo Sound vs. Arthur 

Harbor, Tortell et al. 2014), we can begin to investigate possible levels of adaptation to local 

pH regimes as a proxy for evolutionary adaptions to future conditions (Sanford and Kelly 

2011). In other words, evidence of adaptation in space suggests that animals may be able to 

adapt in time, as the capacity to do so is linked directly to standing genetic diversity in 

populations (Sunday et al. 2014). As illustrated in the Southern Ocean, population level 

differences (e.g. Ross Sea vs. Western Antarctic Peninsula biota) and local adaptation in 

tolerance of future anthropogenic stressors may be possible due to different rates in regional 

warming (Steig et al. 2009). Some studies have shown genetic structure across the 

biogeographic boundary of the Drake Passage (reviewed by Kaiser et al. 2013). Studies 

regarding population differences in pH tolerances and exposures in circum-Antarctic species 

can be accomplished with strategic placement of oceanographic sensors and design of 

biological experiments with environmentally relevant pH treatments (Hofmann et al. 2014; 

McElhany and Busch 2013). In addition, use of autonomous pH sensors would address the 

need for pH observations at high-latitudes (Fabry et al. 2009; Seibel et al. 2012). 
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III. Signals of resilience to ocean change: thermal tolerance of early stage 

Antarctic sea urchins (Sterechinus neumayeri) reared under present day 

and future pCO2 and temperature3 

A. Abstract 

We tested the hypothesis that development of the Antarctic urchin Sterechinus 

neumayeri under future ocean conditions of warming and acidification would incur 

physiological costs reducing the tolerance of a secondary stressor. The aim of this study is 

two-fold: (1) describe austral spring temperature and pH near sea urchin habitat at Cape 

Evans in McMurdo Sound, Antarctica in order to quantify current environmental conditions, 

and (2) spawn S. neumayeri in the laboratory and raise early developmental stages (EDSs) 

under ambient (-0.7°C; 400 µatm pCO2) and future (+2.6°C; 650 and 1000 µatm pCO2) 

ocean conditions and expose four EDSs (blastula, gastrula, prism, 4-arm echinopluteus) to a 

one hour acute heat stress and assess survivorship. Results of field data from 2011 and 2012 

show extremely stable inter-annual pH conditions ranging from 7.99-8.08, suggesting that 

future ocean acidification will drastically alter the pH-seascape for S. neumayeri. In the 

laboratory, S. neumayeri EDSs appear to be tolerant of temperatures and pCO2 levels above 

their current habitat conditions. EDSs survived acute heat exposures >20°C above habitat 

temperatures of -1.9°C. No pCO2 effect was observed for EDSs reared at -0.7°C. When 

reared at +2.6°C, small but significant pCO2 effects were observed at the blastula and prism 

                                                 
3
 Published in Polar Biology: Kapsenberg, L, and GE Hofmann. Signals of resilience to 

ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus 

neumayeri) reared under present-day and future pCO2 and temperature. Polar Biol. 37, 967–

980, DOI:10.1007/s00300-014-1494-x (2014). Copyright: re-use permitted with kind 

permission from Springer Science+Business Media granted on 18 August 2015. 
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stage suggesting that multiple stressors are more detrimental than single stressors. While 

surprisingly tolerant overall, blastulae were the most sensitive stage to ocean warming and 

acidification. We conclude that S. neumayeri may be unexpectedly physiologically tolerant 

of future ocean conditions. 

B. Introduction 

Due to properties of persistently cold seawater, high-latitude marine ecosystems are 

ranked to be among the most sensitive regions to global change (Fabry et al. 2009; 

McClintock et al. 2008; Orr et al. 2005; Peck 2005; Turley et al. 2010). The Southern Ocean 

is expected to significantly change with respect to multiple factors within decades due to 

anthropogenic release of carbon dioxide (CO2) to the atmosphere (McNeil and Matear 2008; 

Orr et al. 2005). Specifically, unprecedented rates of ocean warming and acidification are 

predicted (Hönisch et al. 2012; IPCC 2007; Marcott et al. 2013; Stammerjohn et al. 2008) 

and the fingerprints of this change are already being documented in Antarctic marine 

ecosystems (Bednaršek et al. 2012; McClintock et al. 2008; Montes-Hugo et al. 2009; 

Naveen et al. 2012; Steinberg et al. 2012). Due to the rate of environmental change and 

narrow adaptive capacity of Antarctic marine organisms, future shifts in the structure and 

function of Antarctic ecosystems are expected to be significant  (Fabry et al. 2009; Peck 

2005). A critical research priority is to assess the adaptive capacity of Antarctic organisms to 

future complex changes, which are often not considered together (Boyd 2011). In this light, 

the aim of this study was to assess the physiological cost of development of a circum-

Antarctic marine invertebrate, the sea urchin Sterechinus neumayeri, under future multi-

stressor scenarios. 
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Assessing the adaptive capacity (sensu Dawson et al. 2011) of Antarctic organisms is a 

critical research priority as the rate of change of waters surrounding Antarctica is expected 

to be rapid. As atmospheric CO2 dissolves into the surface layers of the ocean due to 

differential partial pressures in the atmosphere and seawater, ocean pCO2 increases and pH 

decreases. Atmospheric pCO2 exceeded 400 ppm in May 2013 

(http://www.esrl.noaa.gov/gmd/ccgg/trends/), an increase from 280 ppm pre-industrial time 

(Feely 2004). The Southern Ocean is the fastest acidifying ocean on the planet with an 

annual pCO2 increase of 2.13 ± 0.64 µatm y
-1

 since the 1980s (Takahashi et al. 2009). 

Atmospheric CO2 is predicted to reach 1000 ppm by 2100 resulting in a decrease of 0.4 

ocean pH (IPCC 2007). However, biological ramifications may become apparent earlier 

with seasonal aragonite undersaturation predicted to occur when atmospheric CO2 levels 

reach 450 ppm, as early as 2030 (McNeil and Matear 2008). Additionally, the Southern 

Ocean has warmed at twice the rate of global warming: 0.17
o
C since the 1950s (Fyfe 2006; 

Gille 2002). Sea surface temperature is predicted to rise by an additional 2.6°C in the next 

90 years (IPCC 2007). 

The ‘double whammy’ of ocean acidification and ocean warming will create 

unprecedented marine environments and is expected to severely impact functional traits and 

physiological processes of polar species (Fabry et al. 2009; Sewell and Hofmann 2011). In 

general, species and populations may exhibit three types of responses to environmental 

change: (1) migrate with the changing climate envelope (Parmesan and Yohe 2003), (2) 

genetically adapt (Hoffmann and Sgrò 2011), and (3) acclimatize using current 

physiological plasticity (Gienapp et al. 2008; Hoffmann and Sgrò 2011; Visser 2008). 

Migration to colder water, the poleward shifts observed at lower latitudes, is not an option 
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for polar organisms. Here, changes in bathymetric distribution are also not viable as there is 

no thermocline that might preserve colder water at depth. Genetic adaptation may also be 

limited. Due to cold adaptation and thermal stability of the Southern Ocean over 

evolutionary timescales, some Antarctic species have lost the genetic capacity to deal with 

environmental change (Pörtner et al. 2012; Somero 2012). For example, the Antarctic 

notothenioid fish Trematomus bernacchii has lost an inducible heat shock response as a 

result of evolutionary adaptation to cold temperatures whereas temperate notothenioids have 

retained this trait (Clark and Peck 2009; Hofmann et al. 2000; Hofmann et al. 2005; Place et 

al. 2004). Such evolutionary adaptations may result in reduced capacities to withstand multi-

stressor environments (Enzor et al. 2013). Among Antarctic invertebrate species, slow 

growth and long generation times reduce the potential for rapid genetic adaptation that may 

be required to flourish in a future ocean (Peck 2005; Pörtner et al. 2007). Finally, studies on 

marine invertebrates in general suggest that they are already operating at the limits of their 

thermal tolerance (Sunday et al. 2012), suggesting that further acclimatization to warming 

will be limited especially in polar species (Peck et al. 2009). Thus, success of Antarctic 

marine species likely depends on their current physiological plasticity and acclimatization 

capacity of functional traits. The importance of present-day tolerances and functional traits 

has been emphasized in other ecosystems when predicting climate change responses 

(Buckley and Kingsolver 2012; Chown 2012). 

To investigate the breadth of current plasticity in a polar marine invertebrate with respect 

to seawater temperature and pH, we studied the early developmental stages (EDSs) of the 

Antarctic sea urchin S. neumayeri. S. neumayeri is an ideal study organism for ocean change 

experimental biology. With an extensive biogeographic range, it is the most abundant 
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echinoid on the shallow Antarctic benthos and a critical member of the circum-Antarctic 

near-shore marine ecosystem (Bosch et al. 1987). Adults can easily be spawned in the 

laboratory and larvae can readily be cultured (Bosch et al. 1987). In general, EDSs are 

predicted to be among the most sensitive stages to environmental change (Byrne 2011; 

Dupont and Thorndyke 2009; Kurihara 2008) especially with respect to synergistic stressors 

(Harvey et al. 2013). Due to a long pelagic larval duration of up to 115 days (Bosch et al. 

1987), S. neumayeri spend a significant amount of time under direct influence of seawater 

conditions during its potentially most sensitive life history stage. Additionally, the slow 

development of S. neumayeri provides a unique opportunity to assess the physiological 

plasticity in response to multi-stressors at different EDSs. Previous studies of S. neumayeri 

EDSs have shown reduced growth (Byrne et al. 2013; Clark et al. 2009; Yu et al. 2013) and 

enhanced larval asymmetry (Byrne et al. 2013) under elevated pCO2 conditions suggesting 

that there is in fact a physiological cost of development under these conditions. 

The goal of this study was to assess, in general, the sensitivity of S. neumayeri EDSs 

(from present-day spawning) to future abiotic conditions expected for the Southern Ocean. 

In order to assess its current physiological plasticity, we asked whether development of sea 

urchin EDSs under elevated temperature and pCO2 came at a cost of other physiological 

tolerances, in this case the tolerance of an acute heat stress. As an example, temperate sea 

urchin and abalone larvae reared under elevated pCO2 showed reduced heat stress response 

following a one hour (1 h) acute heat exposure (O’Donnell et al. 2008; Zippay and Hofmann 

2010a). This suggests that there are trade-offs associated with development at high pCO2 

where energy is diverted away from the cellular stress response potentially leaving the 

organism ill-equipped to deal with secondary stressors. Use of acute heat stress tests and 
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laboratory determined thermal tolerance limits can provide valuable insight into species’ 

physiological trade-offs and energy allocations, current physiological plasticity and 

acclimation capacities (Terblanche et al. 2011; Tomanek 2010) and ultimately resilience in 

the face of climate change (Barnes et al. 2010; Buckley and Kingsolver 2012; Chown 2012; 

Chown and Gaston 2008). 

During austral spring when natural spawning occurs, we raised larvae in the laboratory 

at McMurdo Station, Antarctica under multi-stressor scenarios (two temperatures and three 

pCO2 levels) and exposed four developmental stages to a 1 h heat stress test and assessed 

survivorship. In order to place the laboratory findings in an environmentally relevant 

context, we also measured field pH and temperature in the water column above a sea urchin 

population for the duration of the larval culturing. We hypothesized that elevated pCO2 and 

high temperature incur a physiological cost to S. neumayeri EDSs and predicted that 

embryos and larvae will have reduced survivorship following a 1 h temperature challenge 

compared to larvae reared under ambient conditions. Here we hope to address two 

questions: (1) what is the natural variability in the local seawater with respect to pH, and (2) 

does development under future conditions of ocean acidification and warming alter the acute 

heat tolerance of S. neumayeri EDSs?  

C. Materials and Methods 

1. Field pH measurements  

In order to parameterize the CO2 manipulation experiments of larval cultures, we 

measured pH near a S. neumayeri population using a SeaFET sensor with a Honeywell 

Durafet
®
 pH electrode (Martz et al. 2010). SeaFET pH sensors were deployed above the 

benthos at 18 m depth on a 27 m benthic mooring at Cape Evans, Ross Island, Antarctica at 
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the sea urchin collection site (S 77
o 
38.060’, E 166

o 
24.918’), from late October through 

November both years during 24 h daylight. In 2011, a temperature sensor was also deployed 

(Sea Bird Electronics SBE-37 SM, Matson 2012).  

Raw voltage (mV) recorded by the SeaFET was converted to pHtotal using one discrete 

seawater sample per sensor deployment. Single discrete calibration samples were collected 

via SCUBA following Standard operating procedures (SOP) 1 and processed for 

spectrophotometric pH analysis (total hydrogen ion concentration pH scale) at 25
o
C 

following SOP 6b (Dickson et al. 2007). Salinity was measured using a YSI 3100 

Conductivity Instrument. Total alkalinity was determined according to SOP 3b using an 

open-cell titrator (Mettler-Toledo T50) after measuring Certified reference materials 

(CRMs) seawater standards from Dr. Andrew M. Dickson at Scripps Institution of 

Oceanography to within 10 µmol kg
-1

 accuracy (Dickson et al. 2007). In situ pHtotal of the 

calibration sample was calculated using the in situ temperature recorded by the SeaFET at 

the time of sample collection and calculated in CO2Calc (Robbins et al. 2010) using CO2 

constants from Mehrbach et al. (1973) refit by Dickson and Millero (1987). 

Accuracy of SeaFET data depends on the quality of the calibration sample and is 

estimated to be ~0.01 pH as compared to SOP 6b processing of CRMs (data not shown, 

Matson et al. 2011). pH was recorded every hour (2011) or 30 min (2012) and reported as 

hourly data after applying a 1 h low-pass filter. 

2. Animal collection and larval cultures 

In order to raise sea urchin EDSs under multi-stressor scenarios of temperatures and 

pCO2 conditions, cultures were reared at -0.7
o
C in 2011 and +2.6

o
C in 2012 (hereinafter 

referred to ‘cold’ and ‘warm’ cultures) at three pCO2 levels (400, 650 and 1000 µatm) as 
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described in Yu et al. (2013). The warm culture temperature was chosen to be an extreme 

future scenario. Adult S. neumayeri were collected from the benthos by SCUBA at Cape 

Evans, Ross Island, Antarctica (S 77
o 
38.060’, E 166

o 
24.918’), in October 2011 and 2012, 

during the spawning season (Brey et al. 1995; Pearse and Giese 1966; Stanwell-Smith and 

Peck 1998). Depth of the collection site was approximately 20 m. Adults were transported in 

coolers to McMurdo Station and maintained in ~ -1
o
C flow-through seawater tables for 

approximately two weeks until spawning. 

Adult S. neumayeri were induced to spawn by injection of ~1 ml of ice-cold 0.55 M 

KCl. Females were inverted over a beaker containing filtered seawater (FSW) on ice to 

collect eggs, and sperm was collected dry directly from the gonopores. Sperm and eggs were 

kept on wet ice until use. After successful test fertilization assays, eggs from 20 (15) females 

were pooled and fertilized using diluted sperm from one male to >90 percent fertilization 

success for the cold (warm) culture. Embryos were split between culture buckets prefilled 

with control and two CO2-acidified seawater treatments as described in Yu et al. (2013). 

Culture vessels were stocked at ~160,000 embryos/12 L. 

3. Experimental seawater acidification 

For experimental sea urchin cultures, seawater was acidified with CO2 gas. Control and 

CO2-acidification of 0.32 µm FSW followed methods modified from Fangue et al. (2010) 

and as described in Yu et al. (2013), with the exception that seawater tubing was not 

insulated. Briefly, pure CO2 gas was mixed with dry air to desired levels and was 

subsequently dissolved into FSW in three reservoir buckets by a venturi injector. We aimed 

for control pCO2 level of 400 µatm and treatment pCO2 levels of 650 and 1000 µatm in five 

replicate culture vessels for a total of 15 culture vessels. Reservoir and culture vessels were 
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thermally controlled in flow-through seawater tables with ambient seawater (cold culture) 

and temperature-control immersion heaters (Process Technology) (warm culture). 

Reservoir buckets were sampled daily for temperature, salinity, total alkalinity, and pH 

according to methods listed under ‘Field pH measurements’ for discrete seawater samples, 

with the exception that temperature was measured using a wire probe (Fluke 52 K/J 

Thermometer). Culture vessels were sampled daily for temperature and pH. In situ pHtotal 

and carbonate parameters were calculated in CO2Calc (Robbins et al. 2010) using batch 

processing with CO2 constants from Mehrbach et al. (1973) refit by Dickson and Millero 

(1987).  

4. Survivorship assays 

Acute thermal tolerance of S. neumayeri was tested at four stages of sea urchin early 

development - hatched blastula, mid-gastrula, prism, and 4-arm echinopluteus (hereinafter 

‘pluteus’) - using a survivorship assay modified from Hammond and Hofmann (2010). A 

thermal gradient was established by cooling and warming two ends of an aluminum block 

containing 60 holes fabricated to fit 20 ml scintillation vials. Here thermal tolerance was 

tested at nine temperatures, with two technical replicates per acute heat stress temperature 

and pCO2 group for each stage (Table III-3). Unlike ecologically relevant culture 

temperatures of -0.7 and +2.6°C, acute heat stress temperatures (up to 25°C) were chosen to 

study the physiology of EDSs and do not represent temperatures likely to be encountered in 

the field. For optimum temperature range, two assays were required for each development 

stage, and as a matter of protocol for all CO2 treatments, the cooler assay was always run 

before the warmer assay. All assays were conducted in walk-in environmental rooms in the 

Crary Laboratories maintained at -1 and +4
o
C for the cold and warm culture, respectively.  
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Prior to each assay, 20 ml scintillation vials were filled with 5 ml control seawater, 

capped, and allowed to equilibrate to temperatures within the aluminum block for two hours. 

Embryos and larvae were collected from all five replicate culture vessels, concentrated 

through 64 µm Nitex mesh and pooled. Concentrated larvae were kept on ice in 

environmental rooms until used for the survivorship assay, at ~-1
o
C and 0

o
C for the cold and 

warm culture, respectively. Approximately 220-300 larvae were transferred to each 

temperature-equilibrated vial in no more than 250 μL, location was randomized by CO2 

treatment within the aluminum block, and time of embryos/larvae addition was noted. 

Temperatures in the vials were measured immediately prior to embryos/larvae addition and 

upon removal of vials from the aluminum block after 1 h. The mean of these two 

temperatures is reported (Table III-3). The brief temperature change induced by the addition 

of embryos/larvae was negligible. Embryos/larvae were allotted a 20 h recovery period at 

control temperatures (cold culture: on ice in a -1
o
C environmental room; warm  

culture: +2 
o
C water bath). For the first blastula stage assay of the cold culture, addition of 

larvae to the vials was staggered by 30 min for each temperature (cold to warm) and scored 

in order. For all remaining assays, larvae were added consecutively by temperature and 

scored randomly.  

After a 20 h recovery period, larvae were concentrated by reverse filtration using a 

transfer pipette with 64 µm Nitex mesh, and the first 100 embryos/larvae viewed under a 

microscope on a Sedgewick Rafter counting cell slide were scored for survival in the 

environmental room. Abnormal embryos/larvae (due to abnormal development or evidence 

of cellular egression or regression) that still exhibited ciliary activity were considered dead. 

Tipping-point temperatures (TTs) were determined in order to compare thermal tolerance  
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Table III-1. Acute temperature exposure (1 h) of early developmental stages of S. 

neumayeri raised in two thermal environments: cold (-0.7 
o
C) and warm (+2.6 

o
C). 

Maximum observed change in vial temperature during the 1 h incubation was 1.1 
o
C and 1.5 

o
C in cold and warm culture assays, respectively. 

Culture Stage Temperature (°C) of 1 h exposure     

Absolute 

change in 

vial 

temperature 

(°C)
a 

Cold Blastula -0.5 2.2 4.7 7.4 10.2 13.2 15.5 17.9 20.6 0.2 ± 0.1 

 

Gastrula -0.4 2.3 5.0 7.5 10.2 13.0 15.3 17.8 20.3 0.2 ± 0.2 

 

Prism -0.8 4.9 10.3 13.8 16.0 17.8 20.1 22.6 25.4 0.3 ± 0.3 

 

Pluteus -0.6 5.3 10.9 14.4 16.4 18.4 20.6 22.8 25.2 0.1 ± 0.1 

Warm Blastula 2.6 7.1 10.0 13.0 14.8 17.7 19.6 22.7 25.5 0.4 ± 0.3 

 

Gastrula 2.8 7.3 10.2 13.1 15.0 17.9 20.2 22.5 24.7 0.2 ± 0.2 

 

Prism 2.8 7.3 10.2 13.2 15.2 18.1 20.0 22.0 24.2 0.5 ± 0.4 

  Pluteus 3.0 7.3 10.2 13.2 14.9 17.8 19.9 22.0 24.4 0.2 ± 0.2 
a
Values are given as mean ± SD, sample size is 54 
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across the cold and warm cultures and are defined as the highest temperature at which both 

replicates of EDSs reared under control pCO2 levels have greater than 80 percent 

survivorship. 

5.Statistical analysis 

Survivorship data of the 1 h temperature exposure were analyzed by developmental 

stage and separately for cold and warm larval cultures, using a 2
nd

 order logistic model with 

a beta-binomial distribution (JMP 9) where pCO2, temperature (T) and T
2
 were considered 

main effects. There were no interactions between pCO2 and temperature effects at any stage, 

and the interaction was removed from the final model.  

D. Results 

1. Field pH measurements  

In general, pH was remarkably stable over the period of the SeaFET deployment in 

austral spring. Continuous pH data were recorded during two separate field seasons: 33 days 

in 2011 (29 October – 30 November 2011, see Matson 2012) and 14 days in 2012 (31 

October – 13 November 2012, this study). pH was consistent over both field seasons (Figure 

III-1, Table III-2). During these recording intervals, pH varied from 7.99-8.08 (2011) and 

8.01-8.08 (2012) with median values of 8.01 during both seasons. Mean pH in 2011 and 

2012 was 8.01 ± 0.02 and 8.02 ± 0.01, respectively. Temperature in 2011 ranged from -

1.90°C to -1.78°C with a mean of -1.88 ± 0.03°C (see Matson 2012). Due to the SeaFET 

location under fast sea ice and stable SeaFET temperature data (not shown) and previously 

documented temperatures (Hunt et al. 2003), we assumed a constant temperature of -1.9°C 
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to calculate pCO2 and carbonate ion saturation states (Ω) for the 2012 deployment (Table 

III-2). 

2. Conditions of the laboratory sea urchin cultures 

During the laboratory portion of the experiment, pH (as controlled by CO2-mixing) and 

temperature in the sea urchin cultures were stable. The three CO2 treatments resulted in 

similar pH conditions in both the cold (2011) and warm (2012) culture (Figure III-1). 

Average cold and warm culture temperatures were -0.7 ± 0.3 and +2.6 ± 0.1
o
C respectively 

with little variation between culture vessels. pH and pCO2 levels of the cold culture 

remained stable throughout the experiment (Table III-3). Control pH of the cold culture was 

8.038 ± 0.015 (402 ± 16 µatm pCO2) and slightly higher than observed field pH in 2011 and 

2012, whereas control pH of the warm culture matched field pH at 8.009 ± 0.027 (437 ± 16 

µatm pCO2). Failure of mass-flow control valves on day 12 of the warm culture resulted in a 

1 day increase of pCO2 to 2651 ± 353 µatm in control culture vessels and decrease to 216 ± 

18 µatm in the high CO2 treatment. Subsequently on day 14, medium CO2 treatment levels 

declined to 216 ± 18 µatm pCO2 and failed to recover for the remainder of the experiment. 

The warm culture pluteus stage was the only larval stage affected by the valve failures in 

this study and this stage was still included in the heat stress experiment.  

3. Developmental progression of sea urchins in the experimental cultures 

Overall, development of S. neumayeri larvae occurred synchronously across all CO2 

treatments with development progressing faster in the culture maintained at +2.6
o
C as 

compared to the culture maintained at -0.7
o
C (Figure III-2). As measured by prevalence of 

>90%, at -0.7
o
C, embryos reached hatched blastula at 104 hours, gastrula by day 11, prism  
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Figure III-1. Comparison of field pHtotal and laboratory pHtotal conditions of early 

developmental sea urchin cultures in 2011 (a) and 2012 (b). Field pH (black line) was 

measured by a SeaFET sensor at 20 m depth just above the Sterechinus neumayeri 

population at Cape Evans, McMurdo Sound, Antarctica. pH of CO2-acidified experimental 

cultures (control pCO2 = light gray line with dot symbols; medium pCO2 =  dark gray 

circles; high pCO2 = white triangles) was measured via spectrophotometric analysis and 

reported as daily averages (error bars are SD). Culture temperature in 2011 was -0.7 
o
C and 

+2.6 
o
C in 2012. Culture pH in (b) is reported up to the prism stage (see text for details). 

Time is in Coordinated Universal Time. 
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Table III-2. Field conditions at Cape Evans, McMurdo Sound, Antarctica in austral 

spring of 2011 (29 October – 30 November) and 2012 (31 October – 13 November) 

using a SeaFET pH sensor. Saturation state (Ω) and pCO2 for 2012 were calculated in 

CO2calc assuming -1.9 °C and 34.7 salinity and 2346 µmol kgSW
-1

 total alkalinity as 

measured in a discreet calibration sample. *Data are from Matson (2012). 

 Field parameter 2011* 2012 

   T (°C) -1.88 ± 0.03 - 

   pHtotal 8.01 ± 0.02 8.02 ± 0.01 

   pCO2 (μatm) 426 ± 16 419 ± 10 

   Ωaragonite 1.22 ± 0.04 1.25 ± 0.03 

   Ωcalcite 1.95 ± 0.06 1.99 ± 0.04 

 Sample size 768 335 
Values are given as mean ± SD 
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Table III-3. Sterechinus neumayeri culture conditions in 2011 and 2012. TA is total 

alkalinity. 

Parameter S. neumayeri culture 

CO2 treatment cold (2011) warm (2012)
a
 

T (°C) 

  
Control -0.7 ± 0.3 (98) 2.6 ± 0.1 (75) 

Medium -0.7 ± 0.3 (98) 2.6 ± 0.1 (70) 

High -0.7 ± 0.3 (88) 2.6 ± 0.1 (85) 

pHtotal 

  
Control 8.038 ± 0.015 (98) 8.009 ± 0.0268 (72) 

Medium 7.858 ± 0.011 (98) 7.846 ± 0.020 (64) 

High 7.652 ± 0.014 (88) 7.657 ± 0.021 (80) 

pCO2 (μatm) 

  
Control 402 ± 16 (98) 437 ± 31 (72) 

Medium 626 ± 17 (98) 658 ± 33 (64) 

High 1032 ± 37 (88) 1044 ± 55 (80) 

Ωaragonite 

  
Control 1.36 ± 0.04 (98) 1.46 ± 0.07 (72) 

Medium 0.92 ± 0.02 (98) 1.04 ± 0.05 (64) 

High 0.59 ± 0.02 (88) 0.69 ± 0.03 (80) 

TA (μmol kgSW
-1

) 

 
Control 2348 ± 9 (22) 2348 ± 8 (17) 

Medium 2341 ± 9 (22) 2349 ± 6 (17) 

High 2339 ± 10 (22) 2347 ± 5 (17) 

Salinity 

  
Control 34.2 ± 0.1 (22) 34.8 ± 0.1 (17) 

Medium 34.2 ± 0.1 (22) 34.8 ± 0.1 (17) 

High 34.2 ± 0.1 (22) 34.8 ± 0.1 (17) 

Values are given as mean ± SD with sample size between parentheses 
a
excludes pH, pCO2, Ωarag, data on days of gas valve failures (see text for details) 

  



 

 80 

Figure III-2. Sampling schedule comparison of Sterechinus neumayeri early 

developmental stages (blastula, gastrula, prism, and 4-arm pluteus) reared at -0.7 
o
C 

(white dots) and +2.6 
o
C (black dots) for acute heat stress survivorship assays. 

Sampling was conducted once >90% of embryos or larvae reached the stage of interest. Split 

dot represents sampling of both cultures. Representative developmental stage photos are of 

S. neumayeri reared at +2.6 
o
C and assorted pCO2 levels. Scale bar is 100 µm. 
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by day 15, and pluteus by day 21. In contrast at +2.6
o
C, S. neumayeri reached these same 

stages at 84 hours, by day 6, 11, and 16, respectively. Sampling of developmental stages of 

the warm culture was timed as to best match developmental stages of the cold culture in the 

previous year as determined from daily observation. Due to the rapid development of 

embryos in the warm culture, there may have been a mismatch at the gastrula stage where 

slightly developmentally younger stage gastrulae, with smaller archenterons, were sampled 

in the warm culture compared to the cold culture. Some mortality was observed across all 

treatments at the prism and pluteus stages during the experiment but was not quantified as 

the requirement for experiments and sampling other than the one reported here dictated the 

need for large numbers of larvae. 

4. Survivorship assays 

Survivorship assays were used to assess whether development at elevated temperature 

and pCO2 would alter the tolerance of acute heat stress in EDSs of S. neumayeri. All EDSs 

survived temperatures that greatly exceed their average habitat temperature of -1.9°C. In 

general survivorship curves look similar across all temperature and CO2 treatments: 

survivorship following acute temperature exposure was high up to a tipping-point 

temperature (TT) beyond which it declined rapidly (Figure III-3). 

S. neumayeri EDSs reared at -0.7°C were extremely robust to pCO2 and no pCO2 effect 

was observed in the survivorship assays (Figure III-3a-d, Table III-4). In contrast, negative 

pCO2 effects were observed for two warm culture EDSs suggesting that multiple stressors 

are more detrimental than single stressors (Figure III-3e-h, Table III-4). First, high pCO2 

(>1000 µatm) reduced thermal tolerance of warm culture blastulae at temperatures beyond 

the TT of 15°C (p = 0.0005, Figure III-3e). This trend was also observed for blastulae reared  
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Figure III-3. Percent survivorship, following a 1 h acute heat stress and ~20 h recovery 

at culture temperatures, of four early developmental stages (a, e blastula; b, f gastrula; 

c, g prism; d, h 4-arm pluteus) of Sterechinus neumayeri reared at -0.7
 o

C (a-d) and 

+2.6 
o
C (e-h) under control (~400 µatm, black) and elevated pCO2 (~650 µatm, gray; 

~1000 µatm, perforated line). N = 100, *denotes significant pCO2 effect. 
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Table III-4. Logistic regression model output. 

Culture Source df L-R ChiSquare Prob>ChiSq 

Cold Blastula 

   

 

pCO2 
2 3.1213056 0.21 

 

T 1 198.20761 <.0001* 

 

T*T 1 108.22541 <.0001* 

 

Prism 

   

 

pCO2 
2 0.0216827 0.9892 

 

T 1 331.1169 <.0001* 

 

T*T 1 54.107351 <.0001* 

 

Pluteus 

   

 

pCO2 
2 1.7438573 0.4181 

 

T 1 168.85749 <.0001* 

 

T*T 1 65.283207 <.0001* 

     Warm Blastula 

   

 

pCO2 
2 15.29441 0.0005* 

 

T 1 3487.2801 <.0001* 

 

T*T 1 83.696576 <.0001* 

 

Gastrula 

   

 

pCO2 
2 0.1561852 0.9249 

 

T 1 657.08303 <.0001* 

 

T*T 1 38.055269 <.0001* 

 

Prism 

   

 

pCO2 
2 6.0902789 0.0476* 

 

T 1 155.09928 <.0001* 

 

T*T 1 38.090102 <.0001* 

 

Pluteus 

   

 

pCO2 
2 0.2318825 0.8905 

 

T 1 199.23477 <.0001* 

 

T*T 1 61.083177 <.0001* 

*significant 
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at -0.7°C but was not significant (p = 0.21). Second, medium pCO2 (650 µatm) reduced 

thermal tolerance of prism larvae reared at +2.6°C (p = 0.0476, Figure III-3g). 

Finally, due to genotypic and potential sampling differences between the cultures, direct 

comparisons based on culture temperature should be interpreted with caution. However, 

based on TTs there appears to be no strong effect of culture temperature on the thermal 

tolerance of S. neumayeri EDSs. In both the cold and warm culture, blastulae were less 

thermotolerant than post-blastula stages by ~5°C. Blastulae exhibit a TT of 15°C whereas 

post-blastula stages in both the cold and warm culture survived acute exposure up to 20°C, 

with the exception of warm culture gastrulae which exhibit a TT of 18°C (Figure III-4).  

E. Discussion 

The aim of this study was to assess the current physiological plasticity of the Antarctic 

sea urchin S. neumayeri in light of ocean warming and acidification and in the context of 

current ocean conditions. Here we report two salient findings. First, as measured by 

autonomous pH sensors, we found that S. neumayeri EDSs currently experience extremely 

stable abiotic conditions in McMurdo Sound during the austral spring. Second, we found a 

remarkably high acute temperature tolerance of S. neumayeri EDSs reared at elevated pCO2 

and temperature. Although in general, Antarctic organisms are predicted to be sensitive to 

environmental changes (Peck 2005; Somero 2012), here we show that S. neumayeri EDSs 

may be more physiologically tolerant of future ocean change than previously thought (Byrne 

et al. 2013). 
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Figure III-4. Summary of salient finding for the physiological toll of exposure to future 

ocean scenarios during Sterechinus neumayeri early development as assessed by a 1 h 

heat stress survivorship assay at four developmental stages. S. neumayeri embryos and 

larvae exhibit high tipping point temperatures independent of development at -0.7 
o
C and 

+2.6 
o
C. Elevated pCO2 had an overall slight negative impact on blastulae and prisms reared 

at +2.6 
o
C. Scale bar is 100 µm. 
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1. Field pH measurements 

Measurements of ocean temperature and pH at Cape Evans, McMurdo Sound, 

Antarctica, during two seasons (austral spring 2011, 2012) were extremely stable and match 

previously documented environmental stability in this region (Littlepage 1965; Matson et al. 

2011). For example, in 2010 pH ranged from 8.002 to 8.050 from 26 October to 15 

November (Matson et al. 2011). Collectively, median pH at Cape Evans over three 

consecutive austral spring seasons was 8.019 (2010, Matson et al. 2011), 8.005 (2011, 

Matson 2012), and 8.016 (2012, this study). Relative to other ecosystems, pH data from 

Cape Evans show extremely stable inter-annual pH conditions. By contrast, pH in temperate 

and tropical reefs can vary as much as 0.544 and 0.253 pH units over only 30 days 

(Hofmann et al. 2011). The period of stable pH at Cape Evans coincides with the spawning 

season of S. neumayeri (Brey et al. 1995; Pearse and Giese 1966), and previous plankton 

tows throughout McMurdo Sound show the presence of blastulae and gastrulae from 

November to December (Bosch et al. 1987). Thus, depending on local retention time post-

fertilization, it is likely that EDSs from the Cape Evans S. neumayeri spawning population 

consistently develop at seawater pH of 8.0-8.1 and temperature of approximately -1.9°C. 

Future ocean acidification and carbonate ion undersaturation such as the conditions used in 

the experimental portion of this study will be unprecedented for S. neumayeri in the coming 

decade  

2. Survivorship assays of S. neumayeri EDSs 

Here we report the changes in survivorship following a 1 h acute heat stress of S. 

neumayeri EDSs reared at elevated temperature and pCO2 that mimic predicted 

anthropogenic changes in the Southern Ocean. We hypothesized that development of S. 
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neumayeri EDSs under seawater conditions outside their current ambient range would incur 

a physiological cost such that tolerance of a secondary stressor would be reduced. We 

measured this cost by assessing tolerance of acute heat stress (Terblanche et al. 2011). We 

found negative pCO2 effects on acute thermal tolerance only when S. neumayeri were reared 

under elevated temperature of +2.6°C (Figure III-4). While these results suggest a trade-off 

of development under a multi-stressor scenario and ability to cope with a secondary stress, 

the effect is relatively small from an ecological perspective. We therefore conclude that the 

effect of the multi-stressor scenario (ocean acidification and ocean warming together) on 

acute thermal tolerance is minor. S. neumayeri may be one of the more tolerant Antarctic 

marine invertebrates, exhibiting high physiological plasticity despite living under extremely 

stable conditions. 

Future multi-stressor scenarios, however, may impact other physiological processes and 

long-term tolerances. For example, in recent research, S. neumayeri fertilization and early 

cleavage was negatively impacted by temperature (+1.5 and +3°C) at a CO2 concentration of 

1370 ppm (pH 7.5, Ericson et al. 2012). However, inter-individual variation observed in S. 

neumayeri fertilization success under elevated pCO2 may ameliorate such effects in the wild 

(Sewell et al. 2014).  Previous studies show compromised growth of S. neumayeri larvae 

reared at elevated pCO2  (Byrne et al. 2013; Yu et al. 2013).  However, warming may 

increase larval growth (Byrne 2011). Byrne et al. (2013) showed that the combined effects 

of warming and CO2-acidification resulted in highly altered S. neumayeri larval body 

morphology and asymmetry, suggesting that there is a significant physiological effect of 

multi-stressor scenarios on the development of this polar echinoderm. Byrne et al. (2013) 

also found that under a multi-stressor scenario of temperature (+1°C) and pCO2 (1355 µatm, 
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pH 7.6) development up to the gastrula stage was not affected but was negatively affected at 

the prism and pluteus stages with up to 83 percent of plutei showing abnormal development. 

Our findings show that these negative effects do not translate to secondary physiological 

trade-offs such that other functional traits, namely acute thermal tolerance, are 

compromised. Negative effects of warming and acidification on metamorphosis, juvenile 

growth and reproduction may swamp the small benefit of high physiological plasticity at 

EDSs presented here, although these have not yet been quantified for S. neumayeri. 

While normal development was not quantified in this study, the higher temperature of 

+2.6°C, a temperature 1.6 °C higher than that used by Byrne et al. (2013), may have resulted 

in higher mortality of abnormal larvae such that the EDSs sampled in this study were 

selectively more thermotolerant than those observed by Byrne et al. which were reared at 

+1°C. This type of outcome was observed for temperate purple sea urchin larvae, 

Strongylocentrotus purpuratus, where different genotypes were selected during culturing in 

various experimental future ocean acidification conditions (Pespeni et al. 2013). Ultimately 

we assessed the embryos and larvae that survived culture conditions long enough to be 

sampled.  For example, the pCO2 effect observed at the prism stage is largely due to the 

presence of abnormal larvae in the medium CO2 treatment (analysis not shown) and such 

larvae may not have survived to the pluteus stage. It should be noted that this treatment 

group was exposed to low pCO2 due to valve failures following sampling of the prism stage 

and higher survivorship of the pluteus stage could thus still be a factor of low pCO2 

exposure. Other studies on sea urchin species show impaired development at only a few 

degrees above ambient conditions (Byrne et al. 2009; Delorme and Sewell 2013; Sewell and 
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Young 1999; Sheppard Brennand et al. 2010) and it is likely that a culture temperature of 

+2.6°C is near the upper temperature limit of S. neumayeri early development.  

Within species, developmental stages respond differently to abiotic stressors. While all 

S. neumayeri EDSs survived temperatures that greatly exceed their average habitat 

temperature of -1.9°C, blastulae appear to be the most sensitive stage to abiotic stressors as 

has been observed for other sea urchin species (Giudice et al. 1999; Roccheri et al. 1986; 

Sconzo et al. 1995). In this study, blastulae reared at -0.7°C exhibit a pattern of reduced 

acute thermal tolerance with increasing pCO2. This pattern was statistically significant when 

blastulae were reared at +2.6°C suggesting that high pCO2 affects the performance of 

blastulae. This has been observed previously where developmental progression of S. 

neumayeri between -0.8 and 0°C was only affected by high pCO2 at the blastula stage (Yu et 

al. 2013). Additionally, in both the cold and warm culture, thermal tolerance increased as 

much as 5°C from 15°C to 20°C from blastula stage to gastrula, prism, and pluteus stages, 

respectively. In general, blastulae are one of the more sensitive developmental stages in 

echinoderms especially with respect to temperature (Giudice et al. 1999; Roccheri et al. 

1986; Sconzo et al. 1995), and the same physiological mechanisms may affect pCO2 

tolerance. Large increases in gene expression are associated with the transition from hatched 

blastula to gastrula and later stages (Giudice et al. 1968; Howard-Ashby et al. 2006). Such 

genes include, for example, genes coding for heat shock proteins, which can increase 

thermal tolerance of post-blastula stages (Giudice et al. 1999; Roccheri et al. 1986; Sconzo 

et al. 1995). It is interesting that increased thermal tolerance coincides with increased pCO2 

tolerance. The greater tolerance of S. neumayeri post-blastula stages to pCO2 and acute 

temperature stress may be related to alterations in the larval transcriptome. Such changes in 
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gene expression may allow the organism to overcome the negative effects of pCO2 

demonstrating a link between gene expression and physiological plasticity that leads to 

tolerance of CO2-acidification (Evans et al. 2013). Thus, S. neumayeri may already harbor 

some genetic plasticity that allows EDSs to tolerate future ocean change, at least to some 

degree. Temperate sea urchin gastrulae of S. purpuratus exhibit large changes in gene 

expression relative to control conditions (pH 8.1/435 μatm pCO2) when reared at natural 

levels of low pH (pH 7.77/813 μatm pCO2) but not at pH levels lower than natural exposures 

(pH 7.59/1255 μatm pCO2) suggesting that gastrulae can compensate for pCO2 stress within 

the limits of natural exposure (Evans et al. 2013). Given that S. neumayeri EDSs experience 

a more stable pH environment than its temperate cousins, it is therefore unexpected that this 

species shows such high trait-based tolerance to elevated temperature and pCO2. In 

association with this study, the transcriptomic response of S. neumayeri EDSs to pCO2 and 

temperature stress is underway (Drs. G. Dilly and G.E. Hofmann unpublished results) and 

will be useful in elucidating the mechanisms that underlie the tolerance of this polar species 

in elevated conditions of pCO2. 

3. Comparisons to other species 

EDSs among marine invertebrates are inconsistently sensitive to multi-stressor scenarios 

(Byrne 2011; Pörtner and Farrell 2008). For example, our results contrast with the response 

of invertebrate larvae of both abalone Haliotis rufescens (Zippay and Hofmann 2010a) and 

red sea urchin Strongylocentrotus franciscanus (O’Donnell et al. 2008) which exhibit 

reduced thermal tolerance following development in CO2-acidified seawater. Many studies 

report much more obvious deleterious impacts of CO2 and temperature on EDSs stages of 

benthic marine invertebrates (Anlauf et al. 2011; Byrne et al. 2011; Findlay et al. 2009, 



 

 91 

2010; Parker et al. 2009, 2010; Sheppard Brennand et al. 2010). For example, Anlauf et al. 

(2011) found that the combined effect of elevated pCO2 and temperature had a greater 

negative effect on growth of the coral Porites panamensis primary polyps than pCO2 alone. 

Findlay et al. (2010) also found that the post-larval growth rate of the barnacle, Semibalanus 

balanoides was negatively impacted by reduced pH with a non-significant trend of further 

reduction in growth rate with increasing temperature of +4°C. Parker et al. (2009) found 

reduced successful development of D-veliger larvae of oyster Saccostrea glomerata at high 

temperature and low pH treatments compared to optimal temperature treatments. These 

studies highlight the importance of species-specific effects when attempting to predict 

biological changes to future multi-stressor scenarios using measures of current physiological 

plasticity. 

4. S. neumayeri temperature tolerance in context 

Successful development of S. neumayeri non-feeding EDSs at +2.6°C and survival of 

acute exposure >20°C above habitat temperatures is surprising. Firstly, Antarctic organisms 

are categorized as stenothermal due to evolutionary adaptation to the thermal stability of the 

Southern Ocean over evolutionary time scales (Peck 2005; Somero 2012). Secondly, gamete 

maturation in S. neumayeri occurs over the course of 12 to up to 24 months (Brockington et 

al. 2007) during which temperatures vary on an annual cycle of approximately -1.9°C to -

0.5°C (Hunt et al. 2003). 

Although longer temperature exposures will likely reduce upper temperature limits 

(Peck et al. 2009), the high acute temperature tolerance of S. neumayeri matches that of 

EDSs of eurythermal temperate species (Hammond and Hofmann 2010; Zippay and 

Hofmann 2010a; Zippay and Hofmann 2010b). For example, gastrulae and 4-arm 
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echinoplutei of temperate sea urchin S. purpuratus exhibit 50 percent survivorship following 

1 h heat stress between 30-31°C, a value up to 20°C above average habitat temperatures 

(Hammond and Hofmann 2010). S. neumayeri are unlikely to ever experience temperatures 

up to 20°C, however, assessing biological response to rapid warming can provide valuable 

insight to a species’ overall physiological tolerance and impacts on ecology (Terblanche et 

al. 2011). High thermal tolerance of S. neumayeri pelagic EDSs may be an ancestral trait 

stemming prior to speciation (Díaz et al. 2011) following the opening of the Drake Passage 

and establishment of the Antarctic Circumpolar Current (Lee et al. 2004). Such trait 

conservation may contribute to S. neumayeri’s extensive biogeographic range including 

colonization of warmer Antarctic archipelagos (Barnes et al. 2010). Our findings support the 

hypothesis that may be one of the least stenothermal Antarctic marine ectotherms (Barnes et 

al. 2010). 

While S. neumayeri may be highly tolerant of acute temperature stress, this tolerance 

does not appear to be physiologically adaptive. Temperature of the rearing environment did 

not change TTs of EDSs suggesting that while EDSs can tolerate development at +2.6°C 

this tolerance is not physiologically adaptive. In other words, development at +3°C above -

0.7°C did not shift TTs by the same magnitude. This has been shown for adult S. neumayeri 

as well. For example, a 60 day exposure of adult sea urchins to +3°C did not affect acute 

upper temperature limits which were approximately 15°C (Peck et al. 2010). The lethal 

temperatures reported here and in Peck et al. (2010) are much higher than current habitat 

temperatures and ecologically irrelevant for predictions of warming in the Southern Ocean. 

However, these data support the hypothesis that while S. neumayeri is less stenothermal than 
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previously thought (Barnes et al. 2010) its physiological adaptive capacity is limited (Peck 

2005; Somero 2012). 

5. Conclusion 

Here we show that present day S. neumayeri embryos and larvae are resilient to 

relatively large short-term multi-stressor scenarios. Other studies show variable sensitivities 

of physiological measures in S. neumayeri EDSs (i.e. thermal tolerance, normal 

development, growth, and asymmetry) and it remains unclear how ocean acidification and 

warming will ultimately affect the life cycle of this species. These experimental results also 

point in the direction of a need to better understand adaptation and genetics in response to 

ocean acidification (Evans and Hofmann 2012; Kelly and Hofmann 2012). As the ocean 

changes, new selection forces will act on the existing genetic structure and individuals will 

be exposed to slowly changing environments which could enhance benefits of existing 

physiological plasticity, such as those described here, through maternal effects. It is 

significant that some studies show that traits of resilience are heritable (Kelly et al. 2013; 

Sunday et al. 2011), and other studies have shown that local adaptation likely plays a strong 

role as well (Pespeni et al. 2013; Schaum et al. 2013). A high degree of current 

physiological plasticity and genetic variability may facilitate adaptation and long-term 

tolerance of future conditions. Given the predictions of rapid changes in oceans (IPCC 

2007), identifying resilient and vulnerable species and variably tolerant populations is 

crucial in order to understand future impacts of ocean change. 
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IV. Ocean pH time-series and drivers of variability along the northern 

Channel Islands, California, USA 

A. Abstract 

Eastern boundary current systems (EBCSs) experience dynamic fluctuations in seawater 

pH due to coastal upwelling and primary production. The lack of high-resolution pH 

observations in EBCSs limits the ability to relate field pH exposures to performance of 

coastal marine species under future ocean change (acidification, warming). This three-year 

study describes spatio-temporal pH variability across the northern Channel Islands, along a 

persistent temperature gradient (1 - 4 °C) within the eastern boundary California Current 

System. pH and CTD-oxygen sensors were deployed on island piers in eelgrass and kelp 

habitat and on a subtidal mooring. Due to event-scale primary production, the temperature 

gradient across the islands did not manifest in a pH gradient. We resolved spatial pH 

variability on diel (0.05 - 0.2, photosynthesis), event-scale (< 0.1 - 0.2, upwelling, 

phytoplankton blooms, wind relaxation), and seasonal (0.06, warming) time frames. From 

2012 to 2014 in the kelp forest, summer mean pHT (8.01 - 8.02) and magnitude of diel pHT 

cycles (0.12 – 0.10) were comparable year-to-year, despite 2.1 °C warming. Compared to 

nearby mainland sites, the northern Channel Islands experience limited exposures to low pH 

with 99% of all pHT observations > 7.8. The lowest pH observations (< 1 SD below mean 

pH) occurred under either warm (respiration during warm nights) or cold (advection of 

upwelled water) temperatures. We emphasize the importance of incorporating site-specific 

environmental variability in studies of ocean change biology, particularly in the design of 

multi-stressor experiments. 
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B. Introduction 

Coastal marine ecosystems are complex environments with spatio-temporal variability in 

productivity and bulk water mass movement. Physical and biological processes give rise to 

spatially unique pH-seascapes and are predicted to change with climate change (Hauri et al. 

2013; Hoegh-Guldberg et al. 2014; Hofmann et al. 2011; Takeshita et al. 2015). Particularly, 

eastern boundary current systems (EBCSs) are predicted to be one of the first coastal 

ecosystems to cross thresholds of ocean acidification due to coastal upwelling (Gruber et al. 

2012). While upwelling is a natural phenomenon, the associated on-shore delivery of low 

pH water is exacerbated by ocean acidification (Feely et al. 2008). The heightened 

sensitivity of EBCSs to ocean change has already been realized in economic losses of 

shellfish production (Barton et al. 2012). The intensity of upwelling favorable winds have 

increased in EBCSs (Sydeman et al. 2014) and upwelling events are predicted to increase in 

duration and strength with future climate change (Wang et al. 2015). As upwelling 

replenishes surface waters with nutrients yielding phytoplankton blooms that draw pCO2 

down to below atmospheric equilibrium (Hales et al. 2005), changes in upwelling may also 

alter coastal pH variability through influences on primary production in the future. Our 

understanding of present-day patterns in coastal carbon chemistry is often under-described 

making it challenging to predict which coastal zones will be resistant or vulnerable to the 

effects of ocean change. In an effort to increase the knowledge base on coastal pH 

variability in an EBCS, we examined pH heterogeneity across a small geographic scale and 

link patterns to local and regional processes that are relevant for marine species and coastal 

management.  
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As an EBCS with seasonally strong upwelling, the California Current System (CCS), 

extending from south of British Columbia to Baja California, is extremely vulnerable to the 

effects of ocean acidification (Feely et al. 2008; Gruber et al. 2012; Hauri et al. 2013). 

Summertime upwelling contributes to seasonal and spatial pH variability in the CCS (Hauri 

et al. 2013). Individual upwelling events have increased in duration and intensity from 1967 

to 2010 (Iles et al. 2012). Both field data and model simulations of future conditions show 

that near-shore pH is lower than offshore surface waters (Feely et al. 2008; Gruber et al. 

2012). The vulnerability to ocean acidification thus lies in coastal habitats. Near-shore (50 

km) CCS waters already exhibit pH levels outside of pre-industrial conditions, and a 

complete departure of present-day pH variability envelope is predicted to occur as early as 

2040 (Hauri et al. 2013). While incorporating seasonal pH changes helps refine predictive 

models, extensive documentation of event-scale to short-term pH variability are lacking, 

making model predictions uncertain in relation to species’ future exposures. 

The lack of time-series pH data to inform experiments hampers the understanding of 

organismal pH tolerance and adaptation. Observations from autonomous pH sensors 

document patterns of natural pH variability in coastal ecosystems that often meet or exceed 

the magnitude of predicted global ocean acidification (Hofmann et al. 2011). Use of high-

resolution, autonomously-collected environmental data provides a major advantage over 

manual sampling through the ability to identify short-term cycles and onset of events (e.g. 

Frieder et al. 2012). Such data are necessary to link habitat seawater chemistry to organismal 

pH tolerance (e.g. Frieder et al. 2014; Kapsenberg and Hofmann 2014; Price et al. 2012; Yu 

et al. 2011) and extend our understanding of future coastal ocean pH variability (Takeshita 

et al. 2015) and ocean acidification trends (Keller et al. 2014). Specifically for biological 
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experiments conducted on species in the CCS, treatments designed to mimic future pH 

conditions often do not actually extended outside the range of the species’ estimated present-

day pH (pCO2) exposure (Reum et al. 2015). Moreover, a handful of such experiments 

revealed negative effects of present-day conditions (Reum et al. 2015), which have also been 

observed in the wild and in aquaculture production (Barton et al. 2012; Bednaršek et al. 

2014). Although there is evidence that some species have the potential to adapt to changing 

pH (e.g. Kelly et al. 2013; Malvezzi et al. 2015; Pespeni et al. 2013), these efforts are in 

their infancy and require detailed knowledge of environmental pH exposures. Therefore, we 

provide such environmental data and document pH variability in a sub-region of the CCS. 

One distinctive geographic feature in the CCS is the Santa Barbara Channel (SBC), 

located in the Southern California Bight (Figure IV-1). The SBC is formed by a ~ 90° turn 

in the coastline at Pt. Conception and bound by the four northern Channel Islands (San 

Miguel, Santa Rosa, Santa Cruz, and Anacapa Island). The SBC is ~100 km long and 40 km 

wide with a central basin depth of 500 m, a sill at both the eastern (220 m) and western (430 

m) entrance, and shallow connections between the islands (~40m depth) (Harms and Winant 

1998). In the Bight, equatorward flow is influenced by the California Current (cold, near-

surface, 200-300 km offshore) and coastal poleward flow is facilitated by the Southern 

California Countercurrent (warm, high salinity, flow over the continental shelf that is 

strongest in the fall and winter) and the California Undercurrent (deep flow along the 

continental slope) (Dong et al. 2009; Lynn and Simpson 1987). In the SBC, these dynamics 

result in flow that is generally east-west along the mainland and west-east along the islands 

and generate a nearly persistent cyclonic flow within the SBC (Dong et al. 2009; Harms and 

Winant 1998).  
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Figure IV-1. Three-year (2012 - 2014) temperature composite of the Santa Barbara 

Channel region. Study sites are noted: San Miguel Island north mooring (SMN, red circle), 

Prisoner’s Harbor pier on Santa Cruz Island (PRZ, green circle), and Anacapa Island 

Landing Cove pier (ALC, blue circle). Diamond indicates National Data Buoy Center 

station 46054.  
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Due to the opposing flows and unique bathymetry and orientation of the SBC within the 

Bight, multiple abiotic gradients are established along the islands (Harms and Winant 1998), 

suggesting that there may be a gradient in pH as well. A persistent temperature difference of 

1-4°C is maintained between San Miguel Island and Anacapa Island (Harms and Winant 

1998), with a front that oscillates along the center coastline of Santa Cruz Island (Selkoe et 

al. 2006). Coastal upwelling north of Pt. Conception yields cool temperatures in the west 

and poleward flow brings in warm water in from the east (Harms and Winant 1998; 

Lagerloef and Bernstein 1988; Otero and Siegel 2004). In addition, Pt. Conception creates a 

wind shadow such that both wind and current strength decrease from west to east along the 

islands (Dorman and Winant 2000; Harms and Winant 1998). During upwelling-favorable 

wind stress, equatorward flow north of Pt. Conception extends along the islands (Harms and 

Winant 1998). Given the stronger winds, currents, and cooler temperatures at San Miguel 

Island, the pH signatures of upwelled waters may manifest as well. As part of this study, we 

test the hypothesis that pH decreases from west to east along the coastline of the Channel 

Islands. Identification of persistent pH gradients across a species’ biogeographic range could 

aid studies of local pH adaptation and acclimatization (Hofmann et al. 2014). In this effort, 

we quantify pH variability along the northern Channel Islands and link observations to local 

and regional scale physical and biological drivers. 

C. Methods 

1. Sites and sensor deployments 

To test the hypothesis that abiotic environmental gradients also lead to a pH gradient, we 

quantified pH variability on different temporal and spatial scales. SeaFET pH sensors (Martz 

et al. 2010) and Conductivity, Temperature, Depth, and Oxygen sensors (CTDO sensors, 
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Sea-Bird Electronics 37-SMP-ODO MicroCAT C-T-ODO (P) Recorder) were deployed at 

three sites along the northern Channel Islands: (1) Anacapa Island Landing Cove pier (ALC, 

34°00.985’N, 119°21.724’W) in a marine reserve with kelp forest habitat, (2) Santa Cruz 

Island Prisoner’s Harbor pier (PRZ, 34°01.225’N, 119°41.057’W) surrounded by a large 

shallow eelgrass bed (Zostera pacifica), and (3) San Miguel Island northern subtidal 

mooring (SMN, 34°03.417’N, 120°20.731’W) at 6 m in open water over a sandy bottom at 

18 m depth (Figure IV-1). Sensors at ALC and PRZ were deployed at 3 - 4 m depth and < 1 

m from the benthos on a pier piling. For reference, ALC and PRZ represent environmental 

conditions relevant to benthic marine invertebrates whereas SMN reflects environmental 

conditions relevant to pelagic life stages such as free-swimming invertebrate larvae. The 

islands are part of the Channel Islands National Park and National Marine Sanctuary. 

 pH sensors were first deployed in 2012 at ALC and PRZ and recorded pH and 

temperature every 30 min for 10 sec reading periods. pH sensors were not pumped. In May 

2013, CTDO sensors were deployed in addition to pH sensors at ALC and PRZ. CTDO 

sensors were actively pumped through an anti-fouling passage and temperature, salinity, 

pressure, and dissolved oxygen were recorded every 15 min. In August 2013, the sensor 

array from PRZ was moved to SMN for a one-year overlapping period of data collection 

with ALC. During this time, a pH sensor was intermittently deployed at PRZ. At each site, 

sensors were swapped every 2 - 3 months. SeaFET sensor surfaces did not exhibit biofouling 

upon recoveries. Following the last CTDO sensor deployments in September 2014, sampling 

frequency on pH sensors was increased to 20 min. Following linear interpolation when 

necessary, all data are reported on a 30 min frequency. 
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2. Data processing 

Calibration samples for SeaFET sensors were collected 1 – 8 times during each 2 - 3 

month deployment via SCUBA, free diving, or a GO-FLOW (General Oceanics) bottle drop 

from the pier following Standard Operating Procedures (SOP) 1 (Dickson et al. 2007). 

Samples were fixed immediately with saturated mercuric chloride. Water samples were 

analyzed for pH25 °C (SOP 6b, using m-cresol purple from Sigma-Aldrich®), total alkalinity 

(SOP 3b, using open-cell titrator Mettler-Toledo T50) (Dickson et al. 2007),  and salinity 

(YSI 3100 Conductivity Instrument) when no corresponding salinity measurements was 

available from a CTDO sensor. In situ pHT (total hydrogen ion scale) was calculated using 

either temperature recorded by the SeaFET or CTDO sensor when available and using CO2 

constants from Mehrbach et al. (1973) refit by Dickson and Millero (1987) (CO2Calc, 

Robbins et al. 2010). All pH data are reported as pHT. 

SeaFET data processing followed methods from Bresnahan et al. (2014) for single and 

multiple calibration samples using Matlab (R2012b). When SeaFET deployments were 

paired with CTDO sensors (May 2013 – September 2014), temperature data from the CTDO 

sensors was used to correct for the offset associated with the uncalibrated SeaFET 

thermistor. CTDO sensors underwent factory calibration at the start and end of the project. 

Sensors were rinsed with DI water and dilute Triton-X, between deployments. CTDO data 

was interpolated onto the SeaFET sampling period and all data are reported in Coordinated 

Universal Time, unless specified otherwise. One 24-hour gap of CTDO data was 

interpolated to match the deployment length of the pH sensor at ALC when necessary for 

computations. Rare instances where pH declined to below pH 7.7, within two observations 

and independent of changes in temperature, were removed for quality control. Oxygen 
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saturation recorded by the CTDO sensor was converted to dissolved oxygen (DO) μmol kg
-1

 

using the oxygen solubility combined fit conversion equation from (García and Gordon 

1992). 

3. Data analysis 

Data were analyzed in raw form, as monthly means, and following a 48-h high-pass 

filter (to remove seasonal and event-scale signals) or low-pass filter (to remove diel cycles). 

The maximum daily range of pH observations within a 24 h period was calculated using 48-

h high-pass filtered data and reported as ‘diel pH cycles’ (i.e. twice the amplitude). To 

investigate pH variability independent of temperature effects on pH, pHT was normalized to 

16 °C (pHT N16°C). Comparisons between SMN and ALC were made using data from exactly 

one year: 20 August 2013 to 20 August 2014. This same date range was used to calculate 

anomalies where the annual site-specific mean was subtracted from the time-series (pH, 

oxygen, temperature, salinity). Ranges in pHT are reported from 0.5
th

 and 99.5
th

 percentiles. 

In the interest of improving the design of ocean acidification research (Reum et al. 2015), 

low pH events were investigated in relation to temperature. Due to the lack of salinity and 

total alkalinity data throughout the three-year study period, we did not calculate other 

carbonate parameters (e.g. pCO2, aragonite saturation state). 

To investigate potential regional drivers of the observed pH variability along the 

northern Channel Islands, observations of regional sea surface temperature (SST, °C), 

Chlorophyll-a concentrations (Chl-a, mg m
-3

), and wind stress were investigated. Satellite-

derived daily SST and Chl-a images for the SBC region were downloaded from the Scripps 

Photobiology Group (http://spg.ucsd.edu/Satellite_Data/California_Current/, Kahru et al. 

2012) and processed for composite SST and Chl-a maps during periods of positive and 
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negative pH anomalies. For a given time interval, all cloud-free pixels were averaged across 

daily images. As a guideline, Chl-a threshold indicating presence of phytoplankton blooms 

was considered ≥ 2 mg m
-3

 (Otero and Siegel 2004). We divided time-series pH data into 

phases with corresponding SST and Chl-a maps and CTDO observations to highlight drivers 

of pH variability. Wind data were downloaded from the National Data Buoy Center 

(http://www.ndbc.noaa.gov/) buoy 46054, located at the western end of the SBC, and rotated 

onto its principle axes. Positive wind stress denotes alongshore equatorward winds. All 

analyses were performed in Matlab (R2012b). 

4. Error estimates 

Errors in pHT measurements of field samples are largely due to the use of unpurified m-

cresol dye (0.02, Liu et al. 2011), user error (± 0.006, Kapsenberg et al. 2015), and spatio-

temporal mismatch of the calibration sample as determined from multiple calibration 

samples in one deployment (± 0.010 for SMN, ± 0.026 for PRZ, ± 0.005 for ALC). The 

resultant estimated standard uncertainty of pH data differed by site and is ± 0.023 (SMN), ± 

0.033 (PRZ), and ± 0.022 (ALC). The error in pH due to use of uncalibrated SeaFET 

thermistor (deployments February 2012 – May 2013, September 2014 - May 2015) was ± 

0.005 and did not impact the estimated standard uncertainty. The accuracy of field samples 

is less than the resolution of SeaFET pH sensors (0.001) and pH is reported 0.01.  

Post-calibration of CTDO sensors revealed negligible drifts in oxygen, salinity, and 

temperature. A total of six in situ water samples were collected for Winkler determination 

for dissolved oxygen (Wetzel and Likens 1991) and showed a mean 0.9 ± 0.9 % positive 

offset from sensor observations (maximum offset was 2.4 %). Post-calibration indicated 

oxygen sensor drift of < 1-2 % across the three instruments. The data were not corrected for 
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drift of the oxygen sensor and accuracy for this data is ± 2 %. A small drift in conductivity 

resulted in a salinity accuracy of ± 0.02. Temperature drift was < 0.001 °C for all sensors 

with a reported accuracy of ± 0.002 °C. Data were not corrected for sensor drift. 

D. Results 

1. Spatial range of pH observations 

The data collected across the islands varied on temporal and spatial scales (Figure IV-2). 

Patterns in pH variability were detected on diel, event, seasonal time scales, with limited 

inter-annual variability. For all data collected, mean pHT (± SD) at each site was: SMN 8.05 

± 0.05, PRZ 8.00 ± 0.06, and ALC 8.01 ± 0.04. At each site, 99% of pHT observations fell 

between 7.92 - 8.16, 7.81 - 8.16, and 7.88 - 8.12, at SMN, PRZ and ALC, respectively. PRZ 

exhibited the widest range in pHT observations 0.36 and SMN and ALC had a pHT range of 

0.24. For periods < 48 h, the range in pHT observations was reduced to 0.27 at PRZ and 0.21 

to SMN and ALC, respectively (Figure IV-3). 

During the overlapping deployment period at ALC and SMN (20 August 2013 to 20 

August 2014), SMN exhibited a greater range in pHT (0.24) and higher mean pHT (8.05 ± 

0.05) compared to ALC (8.02 ± 0.03), which exhibited a pHT range of 0.18. These 

differences were due to distinct positive and negative event-scale (days to weeks) pH 

anomalies observed at SMN and do not support the hypothesis of a persistent pH gradient 

across the northern Channel Islands.  
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Figure IV-2. Complete pH and temperature time-series (a, b) and paired CTDO sensor 

data and wind stress time-series for a subset of the three-year study (c-g). Positive wind 

stress values are equatorward. Deployment period of CTDO sensors is marked by solid 

vertical lines in (a) and (b). 
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Figure IV-3. Time-series of 48 h low-pass filtered pH (a-c) and temperature (d-f) by 

site. Colors represent different years. Site codes are same as in Figure IV-1. 
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2. Diel pH cycles 

Significant 24-h periodicities in pH were observed at all sites (Figure IV-4). The 

magnitude of diel pH cycles (twice the amplitude) was investigated following 48-h high-

pass filtering to remove event-scale and seasonal signatures (Figure IV-5). In general, diel 

pH cycles at PRZ were larger and more variable than the other two sites, despite the fact that 

ALC and PRZ experienced similar thermal regimes (Figure IV-2). Peaks in the daily 

magnitude of pH change occurred at different times in the year at each site suggesting biotic, 

and not abiotic, processes govern this time-scale variability. Magnitude of diel pH cycles 

peaked in in spring, summer, or spring and fall, for PRZ (eelgrass), ALC (kelp forest), and 

SMN (open water), respectively. High-pass filtered oxygen and pH observations were 

positively correlated at all sites, with a stronger correlation at vegetated sites, ALC (R
2
 = 

0.91, F = 234156, p < 0.001, n = 23660) and PRZ (R
2
 = 0.86, F = 2.3378, p < 0.001, n = 

3637), compared to SMN (R
2
 = 0.79, F = 64182, p < 0.001, n = 17437).  

PRZ exhibited the largest seasonal change in diel pHT cycles where cycles in April 

(0.20) were approximately tripled from November and December observations (0.07, 0.06). 

The largest diel pH cycles at PRZ occurred during months of lowest temperature and lowest 

mean pH (March, April). When comparing the vegetated sites, monthly mean diel pH cycles 

were always larger at PRZ compared to ALC. ALC exhibited a seasonal increase magnitude 

of diel pHT cycles from, on average, 0.05 in winter to 0.10 in summer. At SMN, the 

magnitude of diel pHT cycles peaked once in October (0.09) and again in May (0.11), which 

reflected an approximate doubling of diel pH cycles observed in winter and early spring 

despite being outside of vegetated habitat.  

  



 

 122 

Figure IV-4. Power spectra for pH, temperature, oxygen, salinity, and pressure for all 

paired pH and CTDO sensor deployments. Site codes are same as in Figure IV-1. 
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Figure IV-5. Seasonal evolution of diel pH cycles in open water (a, SMN), and in 

eelgrass (b, PRZ) and kelp forest (c, ALC) habitat. Tripling and doubling of diel pH 

cycles are shown on the right y-axis. Diel cycles were calculated following 48 h high-pass 

filtering. Dots represent daily observations colored by year. Squares denote combined-year 

monthly means ± SD. Site codes are same as in Figure IV-1. 
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3. Event-scale variability 

Event-scale pH anomalies were investigated and compared for SMN and ALC for the 

overlapping period of paired pH and CTDO sensor deployments. Three event-scale effects 

were discovered and were most apparent at SMN: (1) phytoplankton blooms (0.1 - 0.2 pHT 

increase), (2) advection of upwelled water (0.1 pHT decrease), and (3) wind relaxation 

(increased high-frequency, < 1 day, pHT variability). To describe event-scale variability, we 

divided pH time-series data into district phases and investigated corresponding SST and 

Chl-a maps. 

The first example describes a regionally restricted phytoplankton bloom that occurred 

during disparate pH anomalies at SMN and ALC. Here, a near-persistent positive pH and 

oxygen anomaly at SMN occurred from August to mid-October in 2013, but not at ALC 

(Figure IV-6, Phase I). During this anomaly, pH and oxygen oscillated above their annual 

mean and exhibited similar patters in variability. This event coincided with persistent 

observations of Chl-a concentrations indicative of phytoplankton blooms (Figure IV-6c). 

The bloom was restricted to the western end of the SBC and surrounded San Miguel Island 

but not Anacapa Island. The bloom subsided in the latter half of October into December at 

the same time that pH and oxygen turned non-anomalous at SMN (Figure IV-6, Phase II). 

Throughout phase I and II, pH remained slightly negatively anomalous at ALC. As (1) diel 

pH cycles at SMN were larger in September and October compared to November and 

December and (2) SMN is outside of vegetated habitat, the different patterns in pH 

anomalies at SMN compared to ALC are likely due to the phytoplankton blooms localized 

around San Miguel Island.  
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Figure IV-6. pH and oxygen anomalies (a, b) at SMN and ALC from August to 

December and corresponding surface Chl-a composites during two time periods: Phase 

I and II. Positive pH and oxygen anomalies (Phase I) were observed at SMN (red) but not at 

ALC (blue) during a phytoplankton bloom in the western end of the channel (c). Following 

disappearance of Chl-a in the channel (Phase II), pH and oxygen returned to non-anomalous 

conditions at SMN, matching observations at ALC. Bold time-series lines are 48 h low-pass 

filtered data. Time-series tick marks denote the 1
st
 of the month. Dashed line indicates start 

of Phase II. Map coordinates are the same as in Figure IV-1. Chl-a composites represent 

means for cloud-free pixels using daily images. Site codes are same as in Figure IV-1. 
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A second example of event-scale variability is described during the upwelling season. 

The largest variability in event-scale pH was observed during April and May at SMN. 

During these months, pH exhibited a mostly-negative anomaly, due to advection of upwelled 

water with high salinity and low oxygen and temperature, that was interrupted by pH 

increases due to phytoplankton blooms (Figure IV-7). For Figure IV-7, we focused on 

describing pH variability at SMN and compared with patterns observed at ALC.  

At the start of the upwelling season in April, an initial pHT increase of ~0.15 at SMN 

occurred on 2 April 2014 at the same time as an increase in regional Chl-a (Figure IV-7, 

Phase I). These conditions persisted for ten days and corresponded to a positive oxygen 

anomaly during which temperature declined and salinity increased (i.e. presence of an 

upwelled water mass). Next, pHT declined (~0.12) over the following 26 days (Figure IV-7, 

Phase II). This phase marked the lowest pH and temperature and highest salinity 

observations at SMN. SST composites during Phase II suggest that these water masses were 

advected to SMN from upwelling events north of Pt. Conception. During the presence of 

these upwelled waters, a one-day pHT increase (0.15) occurred with the over-night 

appearance of high levels of regional Chl-a (Figure IV-7, Phase III). With strengthening 

equatorward winds, pHT decreased by 0.15 and remained low for two days, despite a 

continued increase in regional Chl-a. This marked the end of the low pH conditions in spring 

at SMN. Next, pH recovered to a small positive anomaly during wind relaxation (details 

discussed below) and intrusion of warm low salinity water from the south (Figure IV-7, 

Phase IV). Warm water intrusion was observable at both SMN and ALC in the time-series 

data and SST plots.  
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Figure IV-7. Shifts to negative pH anomalies and recoveries at SMN (red), compared to 

positive pH anomalies at ALC (blue). Transitional events, or phases, are numbered with 

Latin numerals. Corresponding SST and Chl-a composites were computed over the time 

intervals in gray and represent means for cloud-free pixels using daily images. Dark lines in 

time-series represent 48 h low-pass filtered data. Site codes are same as in Figure IV-1. 

 

 



 

 128 

Overall, during the period of the largest pH variability at SMN, April and May, ALC 

generally exhibited a positive pH and oxygen anomaly following the first channel-wide Chl-

a increase on 2 April 2014 (Figure IV-7, Phase I). pH and oxygen anomalies roughly 

returned to a non-anomalous state at ALC at the same time as (1) seasonal warming (which 

could partially account for a decrease in pH) and (2) the near-disappearance of Chl-a in the 

SBC (Figure IV-7, Phase V). Along with the disparate pH and oxygen anomalies observed 

between SMN and ALC in the fall (Figure IV-6), these results highlight Anacapa Island’s 

isolation from regional processes that operate at the western end of the SBC leading to 

reduced pH variability at ALC compared to SMN.  

The third event-scale variability we discovered related to wind stress. Due to the 

gradient of wind stress at the SBC (Harms and Winant 1998), wind effects were most 

apparent at SMN. Throughout the study period, wind relaxation events corresponded with 

periods of increased high-frequency pH variability, or alternatively, high wind stress 

diminished high-frequency pH variability. This effect was observable in January, a period of 

relatively low pH variability (Figure IV-8a-e). Here, high wind stress corresponded with 

decreasing pH, oxygen, and temperature and increasing salinity, signifying intrusion of 

upwelled water. During spring and a period of relatively high pH variability (Figure IV-8f-

j), wind relaxation in May occurred with increasing pH, oxygen, temperature and decreasing 

salinity. In both examples, wind relaxation corresponded with an increase in high-frequency 

pH, oxygen, temperature, and salinity variability. As wind stress increased, these high 

frequencies diminished with a 1-day delayed effect. This suggests that periods of high wind 

stress mask the effect of processes that induce high-frequency pH variability.  



 

 129 

Figure IV-8. Event-scale changes in variability at San Miguel Island north mooring 

(SMN) during wind stress in winter (a-e, shaded) and relaxation in spring during a 

phytoplankton bloom (f-j, shaded), in 2014. Dashed lines mark the 1-day delay in wind 

stress effects on variability. Note, y-axis scales are approximately double during the 

phytoplankton bloom (f-j), except for wind stress. Site codes are same as in Figure IV-1. 
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It is noteworthy that event-scale pH variability was observed at all island sites, for 

example at PRZ and ALC in March and April 2012 (Figure IV-3). While we lack CTDO 

data for that deployment period, the 0.15 - 0.20 pHT increase over 10 days occurred with the 

appearance of Chl-a near the island coastlines (Chl-a composite not shown). Following a 

decline in pH at the same time as a reduction in Chl-a, pHT increased again by 0.1 at both 

sites with a second and larger increase in regional Chl-a that was accompanied by ~ 4 °C 

temperature increase.  

4. Seasonal trends 

Evidence for a seasonal pH cycle was found across the islands (Table IV-1). ALC and 

PRZ appeared to share a similar trend in seasonal pHT change of 0.06 - 0.08. At ALC, peak 

pHT occurred in May (8.04 ± 0.03) and declined to October (7.98 ± 0.02). At PRZ, peak pHT 

occurred in June (8.06 ± 0.02) and declined to October (7.98 ± 0.02). As a caveat, data 

collection was not continuous at PRZ and low monthly mean pH in March and April was 

biased by two low pH events in 2012, which were also observed at ALC (Figure IV-3a-c). 

The seasonal cycle at SMN was described over one year only and exhibited a different trend 

from ALC and PRZ. At SMN, pHT generally declined from August (8.08 ± 0.04) through 

April and peaked in summer immediately following months of low pHT (8.00 in April, 

May). 

5. Interannual comparisons 

Interannual comparisons of pH are only made using data from ALC as this is the most 

complete data record over the three-year study period. At ALC, mean pHT (± SD) for data 

collected from 2012 – 2014 was 7.98 ± 0.05, 8.02 ± 0.04, and 8.01 ± 0.04, respectively.  
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Table IV-1. Monthly mean (± SD) temperature and pH observed during this study at 

San Miguel Island (SMN), Santa Cruz Island (PRZ), and Anacapa Island (ALC). 

Month Temperature (°C) 
 

pH 

 
SMN PRZ ALC 

 
SMN PRZ ALC 

1 14.1 ± 0.1 14.2 ± 0.2 14.6 ± 1.3 

 

8.03 ± 0.02 8.00 ± 0.02 8.01 ± 0.04 

2 13.3 ± 0.1 14.1 ± 0.2 14.4 ± 1.3 

 

8.05 ± 0.04 7.99 ± 0.04 8.02 ± 0.02 

3 13.8 ± 0.0 12.6 ± 0.1 14.1 ± 1.4 

 

8.02 ± 0.01 7.94 ± 0.07 8.01 ± 0.05 

4 12.8 ± 0.1 12.7 ± 0.1 14.1 ± 1.1 

 

8.00 ± 0.05 7.94 ± 0.05 8.02 ± 0.04 

5 12.9 ± 0.1 14.9 ± 0.2 15.4 ± 0.9 

 

8.00 ± 0.04 8.04 ± 0.06 8.04 ± 0.03 

6 14.1 ± 0.1 16.9 ± 0.1 17.4 ± 1.0 

 

8.08 ± 0.04 8.06 ± 0.02 8.02 ± 0.02 

7 17.4 ± 0.2 18.6 ± 0.2 18.3 ± 1.4 

 

8.07 ± 0.02 8.03 ± 0.02 8.01 ± 0.02 

8 16.1 ± 0.2 16.9 ± 0.1 18.6 ± 1.1 

 

8.08 ± 0.04 8.04 ± 0.03 8.01 ± 0.01 

9 14.9 ± 0.1 19.5 ± 0.1 19.7 ± 1.3 

 

8.1 ± 0.02 7.99 ± 0.03 7.99 ± 0.02 

10 15.4 ± 0.2 19.2 ± 0.1 19.3 ± 1.2 

 

8.07 ± 0.03 7.98 ± 0.02 7.98 ± 0.02 

11 15.5 ± 0.1 17.7 ± 0.1 17.5 ± 1.2 

 

8.07 ± 0.02 8.01 ± 0.02 8.00 ± 0.02 

12 14.0 ± 0.1 15.9 ± 0.2 15.8 ± 1.6   8.06 ± 0.02 7.99 ± 0.02 8.00 ± 0.04 
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Event-scale variability observed in winter and spring (e.g. 2012, 2013), contrasts the 

stability of summer pH year to year (Figure IV-3c). In the summer, for the period from 1 

June to 31 July, mean pHT was 8.01 ± 0.04, 8.02 ± 0.03, and 8.02 ± 0.03, in 2012, 2013, and 

2014 respectively. Likewise, mean diel pHT cycles changed little year to year: 0.12 ± 0.08, 

0.10 ± 0.03, and 0.10 ± 0.03, for 2012, 2013, and 2014, respectively. These similar summer 

conditions are notable as mean temperature increased each year in summer: 16.9 ± 0.4 °C, 

17.6 ± 1.0 °C, and 19.0 ± 1.5 °C, in 2012, 2013, and 2014, respectively. Summer diel pH 

cycles were consistently larger than the previous or following winter, from 2012 to 2014, 

suggesting that the seasonal change in diel pH cycles is consistent inter-annually and not 

driven by the changing mean temperature conditions. 

6. Temperature and pH 

Throughout the study period, waters warmed seasonally (Figure IV-3d-f). SMN was 

always colder than ALC by ~ 1 (winter) – 4 (summer) °C. PRZ and ALC exhibited similar 

thermal regimes where temperature peaked in September and troughed in March and April 

(Table IV-1). As annual warming was evident (e.g. ALC, Figure IV-3f), pH and temperature 

relationships were investigated by month and year. 

None of the sites exhibited a significant linear relationship between mean monthly pH 

and temperature (SMN: R
2
 = 0.28, F = 4.1963, p = 0.065, n = 13; PRZ: R

2
 = 0.16, F = 

3.7085, p = 0.069, n = 22; ALC: R
2
 = 0.002, F = 0.0689, p = 0.794, n = 39). Monthly mean 

pH reached a midpoint maximum over temperature at each site (Figure IV-9a). When 

controlling for variability in pH due to thermal effects, pHT N16°C did not exhibit a midpoint 

maximum over temperature (Figure IV-9b). Instead, pHT N16°C remained low during cool 

months and increased during warm months relative to pHT. This suggests that low monthly  
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Figure IV-9. Scatter plot of monthly mean temperature and pH at in situ temperatures 

(a) and temperature normalized pH (pHT (N 16 °C)) (b). pH 8.05 is marked with a dotted 

line for reference. Site codes are same as in Figure IV-1. 
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mean pH during warm months may be driven by thermal effects (i.e. 0.015 pHT decrease per 

1 °C increase) and not increased ecosystem respiration at higher temperatures. At cooler 

temperatures, low pHT N16°C suggests that pH was not driven by thermal effects and, instead, 

may be due to a higher dissolved inorganic carbon content of the water mass, for example, 

from upwelled water. 

When comparing SMN and ALC, low pH events (pH < 1 SD below mean) spanned 

different temperatures and time frames (Figure IV-10). At SMN, low pHT events ranged 

from 7.83 to 8.01 and were largely concentrated between 11.5 and 14 °C and occurred at all 

hours of the day (Figure IV-10a, b). At ALC, low pHT events ranged from 7.82 to 7.99 

under a bimodal distribution of temperatures with a division at 16.5 °C (Figure IV-10c). At 

temperatures ≥ 16.5 °C, lowest pH observations occurred during night hours (Figure 

IV-10d). These patterns suggest two different drivers of low pH events: (1) low pH events at 

cold temperatures (< 16.5 °C, SMN and ALC) were a function of abiotic processes (e.g. pH 

of upwelled water) and (2) low pH observations under warm temperatures (≥ 16.5 °C, ALC) 

were a function of biotic processes operating on a diel cycle (e.g. nighttime ecosystem 

respiration in warm summer months). 

E. Discussion 

1. Spatial temporal pH variability  

In this study, we observed spatial and temporal pH heterogeneity across three sites in a 

temperate coastal region with persistent abiotic gradients, within an EBCS. Each study site 

was different in terms of habitat and biota with ALC and PRZ representing fixed vegetation 

(kelp and eelgrass, respectively) and the warmer portion of the SBC, and SMN a more open 

water site and cooler portion of the SBC. We hypothesized that the persistent temperature,  
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Figure IV-10. Low pH events (1 SD below mean pH) at SMN (red) and ALC (blue) as a 

function of temperature (a, c) and time of day (b, d). At ALC, boxplots of low pH events 

by time of day were divided between < or ≥ 16.5 °C, due to the bimodal distribution of low 

pH events across temperature. Data were collected on a 30 min sampling frequency from 20 

Aug 2013 to 20 Aug 2014. Site codes are same as in Figure IV-1. 
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wind, and current gradients across these sites would yield a pH gradient where SMN 

experiences lower pH than ALC. This hypothesis was not supported due to event-scale pH 

variability observed across all island sites. For example, while springtime upwelling in 2014 

led to a negative pH anomaly at SMN and not at ALC as hypothesized, low pHT (7.9) events 

were observed at PRZ and ALC in other years. These events occurred during the coldest 

temperatures suggesting that seasonal upwelling may, on occasion, influence pH conditions 

throughout the SBC. All sites experienced event-scale pH increases that correlated with 

timing of local phytoplankton blooms. Variability in timing and spatial extent of advected 

upwelled water and phytoplankton blooms thus prevented a persistent pH gradient in this 

region, despite the presence of wind, current, and temperature gradients. The pH 

heterogeneity described here reflects a fusion of local and regional drivers and addresses a 

knowledge gap of how pH dynamics vary over multiple spatial and time scales in a coastal 

region of an EBCS. 

We detected various drivers and temporal scales of pH variability (Table IV-2). One 

source was diel pH cycles, which differed by (1) site and (2) season. First, the diel pH cycles 

at PRZ, the eelgrass dominated site, were nearly double in magnitude compared to ALC, the 

kelp forest site. Previous studies show diel pH cycles of 0.06 to 0.35 in seagrass beds 

(Challener et al. 2015; Hendriks et al. 2014) and ~0.1 in kelp forests (Frieder et al. 2012; 

Krause-Jensen et al. 2015). Second, seasonal doubling or tripling of diel pH cycles was 

observed in the kelp forest and eelgrass bed, respectively, and was consistent between years 

(Figure IV-5). Such seasonality in diel pH cycles was also documented in a temperate salt 

marsh, where diel pH ranges increased more than threefold from winter to summer (Flax  
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Table IV-2. Summary of pH change associated with different time-scale processes. 

Ocean acidification is referenced for comparison. Bold indicates a biotic effect. + hf stands 

for increased high-frequency variability. 

Time-scale Variable Effect on pH ΔpH 

Centennial Ocean acidification - 0.42
* 

    Seasonal Warming (4 °C) - 0.06 

    

Event 

Advection of upwelled water - 0.1 

Phytoplankton blooms + 0.1 - 0.2 

Wind relaxation + hf < 0.1 

    Daily  Photosynthesis/respiration ± 0.05 - 0.2 

*End century prediction, RCP8.5 climate scenario (Pörtner et al. 2014) 
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Pond, North Atlantic coast, USA, Baumann et al. 2015). In the Southern California Bight, 

Frieder et al. (2012) found that equatorward currents enhanced diel pH cycles in the La Jolla 

Kelp Forest, suggesting that some variability in diel pH cycles may be controlled by water 

mass movement. Peak diel pH cycles at SMN matched those of ALC. As SMN is located 

outside vegetated habitat, changes in diel pH cycles there likely reflect photosynthesis of 

phytoplankton blooms. If so, diel pH cycles of 0.1 from blooms could contribute to the 

observed diel pH cycles at ALC and PRZ. 

Moving up in scale from diel cycles, we observed event-scale (days to weeks) changes 

in pH. During the overlapping period of sensor deployments at SMN and ALC, such events 

were more prominent at SMN as this site is influenced by equatorward wind stress and 

currents more so than the other sites (Harms and Winant 1998). SMN exhibited a wider 

range in pH observations than ALC. We discuss the three observed event-scale pH effects 

due to (1) upwelling, (2) phytoplankton blooms, and (3) periods of wind relaxation.  

First, upwelling in the CCS brings low pH (< 7.75) seawater onshore (Feely et al. 2008). 

Outside the SBC and north of Pt. Conception on the mainland, these upwelling events 

decrease pHT by 0.3 - 0.4 (Santa Barbara Coastal LTER unpublished data, Hofmann et al. 

2011). As upwelling favorable winds in the CCS would result in downwelling at SMN (a 

north-facing coastline), the upwelling effects observed at SMN (0.1 pHT decrease) are likely 

a signature of low pH, upwelled, water masses advected from north of Pt. Conception. The 

smaller change in pHT associated with upwelled water at SMN (0.1) compared to north of 

Pt. Conception (0.3-0.4) suggest a decline in dissolved inorganic carbon as the water is 

advected to SMN. This could be due to CO2 off-gassing or uptake of dissolved inorganic 

carbon through primary production during transport. The lack of strong upwelling at the 
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islands compared to north of Pt. Conception suggest that the northern Channel Islands may 

serve as a spatial refuge from extreme low pH and upwelling events in the future.   

Second, phytoplankton blooms appeared to increase pHT by 0.1 - 0.2 at all island sites. 

Blooms occur more frequently in the eastern portion of the SBC compared to the western 

end (Otero and Siegel 2004), which led to a positive pH anomaly observed at SMN in the 

fall but not at ALC (Figure IV-6). Channel-wide blooms typically occur in April and May 

during cold temperatures (Otero and Siegel 2004) and corresponded with positive pH and 

oxygen anomalies across all sites. Smaller near-shore phytoplankton blooms can occur 

throughout the year due to storm runoff (Otero and Siegel 2004) and likely contribute to the 

spatial variability of event-scale pH anomalies. These event-scale increases in pH may be a 

feature of pH variability found throughout the Southern California Bight. For example, a 0.1 

increase in pHT was observed in the La Jolla Kelp Forest during transitions from 

equatorward to poleward alongshore currents and were attributed to increase ecosystem 

production following high-density water intrusion (Frieder et al. 2012). 

Third, periods of wind relaxation corresponded with an increase in high-frequency (< 1 

day) pH, oxygen, temperature and salinity variability. This could stem from physical 

processes that are masked during periods of high wind stress. Wind relaxation results in 

restratification such that larger vertical property gradients form. Propagated internal waves 

and tides could deliver different water masses across the sensor surface on frequencies < 1 

day (Booth et al. 2012). Tidal effects on pH have been shown for coastal ecosystems 

(Baumann et al. 2015; Frieder et al. 2012). Although the pH power spectra in our study 

showed peaks at 1 and 2 cycles per day (cpd, Figure IV-4), the peak for 1 cpd was larger 

than the peak for 2 cpd suggesting that tidal effects were smaller than the effect of biological 
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forcing on pH at our sites. During high wind stress, mixing of the water column 

homogenizes vertical gradients, which could thus also homogenize vertical gradients in pH. 

Small seasonal trends in pH were observed: pHT declined from May to October by 0.06 

at both ALC and PRZ. During this time, waters warmed 4.3 and 3.9 °C, respectively. 

Assuming a pHT decreases 0.015 for every degree warming, expected pH decline due to 

warming alone would be 0.06 and matches the observed seasonal change in pH. The ocean 

is not a closed system and CO2 off gassing, primary production, and increased ecosystem 

respiration under warming may also contribute to seasonal changes in pH. As poleward 

advection of southern waters increases in fall and contributes to seasonal warming in the 

SBC (Lynn and Simpson 1987; Otero and Siegel 2004), the observed seasonal pH cycle at 

PRZ and ALC may represent a pattern present throughout the Southern California Bight. For 

example, a similar seasonal decrease in pHT (< 0.1) was also observed in Santa Monica Bay, 

~60 km east of the Channel Islands (Leinweber and Gruber 2013), and predicted in model 

simulations (0.04) of nearshore seasonal pH variability in the southern portion of the CCS 

(Hauri et al. 2013). In the southern region of the CCS, the timing of seasonal primary 

production (pH increase) counteracts seasonal warming (pH decrease), resulting in an 

overall small seasonal pH cycle compared to northern regions of the CCS (Hauri et al. 

2013). Larger seasonal pH change has been documented in other coastal regions. For 

example, pHNBS declined by 0.6 from early spring to late summer in Flax Pond, a temperate 

salt marsh (Baumann et al. 2015). In Flax Pond, lowest pH was observed in August and 

correlated with maximum diel pH cycles. As such, the 0.6 seasonal change in pH was 

attributed to seasonal changes in community production and respiration, which were 

influenced by seasonal warming and increases in day length (Baumann et al. 2015). This 
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was not the case at our sites because diel pH cycles at ALC and PRZ peaked during different 

seasons (Figure IV-5), supporting the conclusion that the small summertime decline in pH in 

our study region is likely due to seasonal warming (Hauri et al. 2013). 

While our dataset has gaps, we were able to gain some inferences on pH over an 

interannual time frame. Stable pH conditions were observed each year in summer at ALC 

despite increasing temperatures. Late winter and spring appear to be the most variable, in 

terms of pH events, making predictions of future pH challenging for this portion of the year. 

Using the approach from (Keller et al. 2014), we can estimate how long the pH time-series 

needs to be in the Channel Islands before detecting an ocean acidification trend. This time of 

emergence (ToE) is defined as “the point in time when the trend signal (S ×ToE) exceeds 

two times the background variability (N)” (Keller et al. 2014): 

ToE = (2 x N)/S (1) 

For our estimate of ToE, we used data from ALC, which exhibited an overall pH SD of 

0.04 (=N), despite occasional low pH events. Assuming a constant -0.002 yr
-1

 change in pHT 

(=S) for the North Pacific (Dore et al. 2009; Ishii et al. 2011), ToE for detecting the 

anthropogenic signal at Anacapa Island would be 40 years and more than triple the length of 

time estimated to detect ocean acidification trends in the open ocean (Keller et al. 2014). 

Coastal acidification rates, however, may be much faster (e.g. -0.058 yr
-1

 at Tatoosh Island, 

Washington, USA, Wootton and Pfister 2012) and so trends may be detectable sooner. 

2. Application to future research strategies 

Incorporating environmental realism into laboratory experiments remains a vital research 

goal and challenge within ocean change biology (McElhany and Busch 2013; Reum et al. 

2015; Takeshita et al. 2015). Here, the scarcity of time-series data from coastal marine 
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ecosystems can be a major resource gap for the research community. Such data provide 

present-day exposures of resident biota necessary to study pH tolerance and adaptive 

capacity. Here we show that the northern Channel Islands is a location within an EBCS that 

experiences relatively mild effects of coastal upwelling and strong biological influences 

within vegetated habitats. These findings have two implications for the sensitivity of local 

biota to ocean acidification in this region: (1) the northern Channel Islands may provide a 

spatial refuge from extreme low pH (< 7.7, sensu Feely et al. 2008) associated with 

upwelling and (2) pH increase due to primary production may provide a temporal refuge 

from ocean acidification, in the future. Identifying the effects of spatio-temporal pH 

variability on organisms and ecosystems remains an underexplored area of research. 

Evidence is emerging that such patterns can result in selection for tolerant genotypes (e.g. 

Kelly et al. 2013) and may also drive transgenerational effects (Murray et al. 2014; Parker et 

al. 2015; Thor and Dupont 2015). We also emphasize the importance of addressing multi-

stressor scenarios in such endeavors. It is known that pH, temperature and oxygen stress co-

occurs or changes seasonally in coastal habitats (Baumann et al. 2015; Reum et al. 2015). In 

this study, comparison of low pH events (driven by abiotic and biotic process) across sites 

revealed unique combinations of pH and temperature stress that may be relevant on an 

organismal scale (Figure IV-10). A similar perspective was gleaned from a coral reef 

ecosystem in Australia where anomalous pH and thermal stress were found to be 

asynchronous in time (Kline et al. 2015). Understanding the biological and physiological 

importance of environmental exposures over different timescales and various combinations 

is therefore critical. Simple warming and acidification treatments in laboratory experiments 

may not be relevant if those conditions are not reflective of realistic future exposures across 
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a species range (Reum et al. 2015). We recommend designing experiments that are (1) fine-

tuned to local habitat conditions to which the experimental organisms are inherently 

acclimatized and (2) carefully designed to address biological responses on specific temporal 

scales (e.g. diel, seasonal, etc.). Reum et al. (2015) provide suggestions for experimental 

design based on habitat conditions of CO2 and temperature for upwelling systems, and 

Bockmon et al. (2013) have developed a laboratory infrastructure to conduct multi-stressor 

experiments. pH exposures for coastal organisms cannot be assumed and studies of biology 

should ideally be coupled with environmental data such as those presented here. 
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V. The interaction of low tide heat stress experienced by mussels and 

wind-driven upwelling and relaxation events 

A. Introduction 

As described in Chapter 4, the California Current System (CCS) undergoes large 

temporal and spatial pH fluctuations that are driven by episodic upwelling and primary 

productivity. Due to natural low pH events associated with coastal upwelling, the CCS is 

considered one of the most sensitive ecosystems to ocean acidification (Feely et al. 2008; 

Gruber et al. 2012; Hauri et al. 2013; Hofmann et al. 2014). In the northern regions off the 

coast of Oregon, upwelling is seasonal and strong and contributes to high productivity in 

summer (Huyer 1983). In the southern portion of the CCS in south-central California, 

upwelling occurs year round but is generally weaker than in the north (Bograd et al. 2009). 

Due to this latitudinal mosaic in upwelling strength, Oregon experiences more frequent low 

pH events than its southern counterpart (Hofmann et al. 2014). Upwelling events can last for 

three weeks (Menge et al. 1997; Sanford 1999), but over the last 40 years in Oregon, 

duration of upwelling events has increased by 26 - 86 % (Iles et al. 2012). This increase in 

the frequency of upwelling events is also matched with increases in magnitude (Iles et al. 

2012). These strong upwelling events bring water masses of pH 7.7 on-shore near the 

Oregon-California border (Feely et al. 2008). Increased upwelling intensity is related to 

increasing wind stress (Bakun 1990), and at the same time, ocean acidification has resulted 

in the shoaling of low (aragonite) saturated water in the CCS (Feely et al. 2008).  

Together, these observations indicate that benthic marine organisms in the near-shore 

CCS are spending up to multiple weeks in seawater of low pH, sometimes lower than what 

is predicted for the open ocean by 2100 (Hofmann et al. 2014; Pörtner et al. 2014). For 
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example, during an upwelling event in Oregon, pH decreased from 8.2 to 7.6 and 

temperature decreased from 13 to 8 °C (Figure V-1). Predictions are that this exposure to 

episodic low pH events will increase in the future and that this change in abiotic conditions 

will interact with other physical features, such as aerial exposure during low tides. The 

larger goal of this chapter was to examine the interaction of these increasing bouts of low 

pH seawater and the stress induced by aerial exposure in the intertidal zone, a period of 

thermal stress for many of the resident organisms. 

Specifically, the intertidal zone is one of the harshest habitats on earth. Tidal emersion 

rapidly changes habitat conditions from wet to dry with large changes in temperature over a 

period of hours while exerting considerable physical force through wave action (Menge and 

Branch 2001). The rocky shores of central Oregon may perhaps be one of the harshest 

intertidal regions in the CCS. Intertidal organisms in Oregon are exposed to multiple 

stressors that are separated in time: heat stress during emersion and low pH stress at cool 

temperatures during submersion. For example, summertime seasonal upwelling coincides 

with hot mid-day low tides (Helmuth et al. 2006; Helmuth et al. 2002). Within one tidal 

cycle, mussel body temperature can increase from 7 °C to 33 °C during a 6 h tidal emersion 

(Hofmann, 2005). Then, upon emersion during an upwelling event, organisms are exposed 

to cold, low pH conditions (Hofmann et al. 2014). Currently, bouts of heat stress during low 

tides are known to induce a cellular stress response (CSR) in the mussel Mytilus 

californianus (Gracey et al. 2008; Hofmann 2005), which indicates that organisms in the 

intertidal habitat live near the limits of their physiological tolerances. With future changes to 

this already harsh marine environment, it remains unclear whether or not intertidal species 

are at their physiological limit of tolerance or possess sufficient physiological plasticity to  
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Figure V-1. pH and temperature time-series at Lincoln Beach (44.86°N), Oregon, 

inner-shelf mooring (sensor depth = 4 m, mooring depth = 15 m) before and during an 

upwelling event in 2013. Temperature is in °C. Preliminary data courtesy of OMEGAS, PIs 

Bruce A. Menge and Gretchen E. Hofmann. 
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withstand future stress. In order to describe the sensitivities of species to future changes in 

this habitat, we must understand their present-day range of tolerance. 

One evolutionarily conserved physiological mechanism to deal with environmental 

stress is the CSR. The CSR is composed in part of conserved genes that respond to cellular 

damage induced by harsh environmental conditions and temporarily extends the tolerance of 

individuals to harmful conditions (Kültz 2005). One particular and highly conserved suite of 

genes within the CSR are heat shock proteins (Hsps). Hsps are molecular chaperones that 

facilitate protein folding and protect the cell from stress-induced protein damage (Feder and 

Hofmann 1999; Somero 1995). Synthesis of Hsps following environmental stress, and 

particularly for temperature stress, occurs within minutes of exposure and is referred to as 

the Heat Shock Response (HSR, Lindquist 1986). Rapid response of the HSR to thermal 

stress makes this suite of genes an ideal target in studies of stress tolerance, especially at the 

gene expression level. Out of the Hsps, Hsp70 is the most highly conserved Hsp (Kültz 

2005; Lindquist 1986) and one of the most widely used biomarkers for investigations of 

environmental stress (Feder and Hofmann 1999). Studies of M. californianus reveal that 

patterns of Hsp70 expression can vary in induction temperature, with seasonal 

acclimatization, and across populations (Buckley et al. 2001; Halpin et al. 2004; Roberts et 

al. 1997). As M. californianus already experiences temperatures high enough to induce the 

HSR in the field (Gracey et al. 2008; Roberts et al. 1997), it is critical to understand whether 

ocean acidification will compromise the HSR and alter the thermal tolerance of a species 

already living at the brink of its physiological limit. For instance, one study found that larvae 

of the red sea urchin Mesocentrotus franciscanus induced a suppressed expression of Hsp70 

following a 1 h heat stress at pH 7.87 relative to pH 8.04 (O’Donnell et al. 2008). 
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Assessment of the HSR has rarely been applied ocean acidification scenarios, and design 

and execution of multi-stressor scenarios is currently an active area of research (Breitburg et 

al. 2015; Reum et al. 2015). 

 An ideal study organism to investigate tolerance of intertidal heat and pH stress is M. 

californianus due to its (1) ecological importance and dominance as a foundation species in 

the rocky intertidal zone and (2) sensitivity to low pH compared to other marine 

invertebrates (Gaylord et al. 2011; Kroeker et al. 2013). M. californianus create expansive 

mussel beds in the mid-intertidal zone that function as both food and habitat for other marine 

invertebrates. These ecosystem engineers are an integral component of intertidal community 

structure, food webs, and species interactions. While this foundation species thrives in the 

harsh intertidal environment, exposure to low pH due to ocean acidification is predicted to 

weaken their shell strength (Gaylord et al. 2011; Kurihara 2008) and strength of byssal 

thread attachments (O'Donnell et al. 2013) making M. californianus a target for ocean 

acidification research. 

In general, mollusks have been found to be much more sensitive to pH than other marine 

organisms (Harvey et al. 2013; Kroeker et al. 2013). For early life history stages of Mytilus 

species, larvae exhibit abnormal development and juveniles exhibit reduced growth under 

future ocean acidification scenarios (M. galloprovincialis, Kurihara 2008; Michaelidis et al. 

2005). Similarly, M. californianus larvae grow smaller, but also weaker with respect to 

crushing resistance when reared at low pH (Gaylord et al. 2011). While shell size is 

compromised under pH levels predicted for the future, response of other physiological 

processes vary. An eight-day incubation of adult and juvenile M. galloprovincialis in CO2-

acidified seawater (pH 7.3) resulted in reduced extracellular pH (Michaelidis et al. 2005). 
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Intracellular pH, which is biologically more tightly controlled than extracellular pH, was 

restored by day 2 after an initial decline. These changes were also accompanied by 

metabolic depression suggesting potential trade-offs in energy allocation, growth and 

cellular homeostasis. In contrast, M. edulis was found to elevate rates of oxygen 

consumption under low pH exposure (Thomsen and Melzner 2010). These studies suggest 

that cellular processes are affected by pH exposure alone and in the absence of secondary 

stressors, such as temperature. Given that the intertidal zone experiences a multitude of 

abiotic stressors from wave action and emersion desiccation and heat stress (Menge and 

Branch 2001), it is important to consider environmentally relevant conditions for laboratory 

studies of stress tolerance, such as dry heat stress during low tide emersion.  

 While pH can have a significant impact on growth and physiology, combined effects of 

warming and acidification in general result in a stronger negative biological response than 

either pH or temperature alone (Harvey et al. 2013). This may be particularly important for 

M. californianus as this species experiences multiple stressors in the field. As described 

above, in Oregon during upwelling events, M. californianus is exposed to low pH when 

underwater followed by aerial heat during day-time low tides. Recovery from heat stress 

following low pH exposure may thus be informative, as well as ecologically relevant, when 

addressing the impact of ocean acidification on the intertidal community. For example, 

when exposed to low pH seawater following emersion heat stress, the velvet swimming crab 

Necora puber exhibited slower recovery (e.g. removal of extracellular pCO2 due to acidosis 

during emersion) compared to those exposed to high pH seawater (Rastrick et al. 2014).  

Similar results were found for the porcelain crab Petrolisthes cinctipes. Here, P. cinctipes 

exhibited metabolic suppression and enhanced thermotolerance under extreme low pH 
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(7.15) and temperature (30 °C), suggesting that the CSR was initiated at emersion 

temperatures of 30 °C during extreme low pH exposures, but not under more moderate, but 

low pH (7.6) exposures (Paganini et al. 2014). Changes in future seawater pH and emersion 

temperature may thus have negative consequences on intertidal species with the potential to 

influence intertidal community structure. 

 In addition to measurements of physiological processes, such as metabolic rate, another 

technique to assess organismal response to acute environmental stress is gene expression. 

Use of gene expression analysis gained popularity as a research technique over the past few 

years (Stillman and Armstrong 2015). In particular, next-generation sequencing (NGS) has 

revealed organismal responses to temperature and pH that support local adaptation and 

phenotypic plasticity of marine species to such stressors and advanced our understanding of 

species responses to future climate change (Stillman and Armstrong 2015). Since 

physiological responses can be diverse across pH and temperature stress, investigating 

multiple physiological pathways simultaneously can elucidate which pathways are critical 

for responding to environmental stress. As such, NGS provides an excellent method to 

investigate acute responses through high-through-put sequencing of the entire transcriptome. 

In addition, gene expression tends to change on the order of minutes to hours and thus NGS 

is ideal for capturing this level of response. Transcriptomic approaches can serve as 

exploratory studies but also as a technique to answer targeted hypothesis-driven questions. 

Specifically for Mytilus spp., the transcriptomic approaches have revealed how mussels are 

attuned to local conditions, such as tidal cycles, by the ability to capture a ‘snapshot of 

[their] physiological state’ (Lockwood et al. 2015). 
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For the purposes of this chapter, I explored oxygen consumption and gene expression 

among M. californianus individuals during their recovery in different water conditions 

(upwelling vs. relaxation) from heat stress experienced during aerial exposure during low 

tide. The experiment was conducted in the laboratory using a system that simulated aerial 

exposure during low tide and water conditions observed during natural upwelling and wind 

relaxation events. As gene expression can vary greatly across microhabitats in the field 

(Place et al. 2012), this investigation was conducted in a laboratory setting under tightly 

controlled pH and aerial temperature exposures. The focal physiological response that was 

investigated was the HSR, in order to test the hypothesis that low pH during upwelling, 

compared to periods of wind relaxation, alters the HSR initiated during emersion heat stress. 

B. Materials and Methods 

1. Field collections 

This study was conducted on a mussel population at Fogarty Creek, Oregon (44°50.200 

N, 124°03.517 W) that is known to experience hot emersion temperatures during low tides 

and strong summertime upwelling events. To best capture the first physiological response to 

summer conditions of emersion heat stress and upwelling, winter-acclimatized adult mussels 

were collected during a low tide on April 1, 2014 at Fogarty Creek, from a flat mussel bed in 

the mid to low intertidal zone. Approximately 300 mussels, 4 - 5 cm in length, were 

transported in a cooler to Hatfield Marine Science Center, Newport, Oregon. Mussels were 

cleaned of epibionts and placed in an outdoor flow-through seawater table overnight (~11 

°C). The following morning, mussels were wrapped in seawater soaked paper towels, placed 

in open plastic bags and transported on newspaper and ice directly to the lab at University of 

California Santa Barbara. 
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In order to estimate the thermal history of experimental animals in the field, mussel 

mimics, made of real mussel shells (4 - 5 cm in length) filled with clear silicone and fitted 

with small temperature loggers (Maxim Integrated™ iButton
®
) (Jost and Helmuth 2007), 

were deployed in the mussel bed before mussel collections. Mussel mimics recorded 

temperature every 30 min for six weeks up until mussel collections. A second deployment of 

mussel mimics was conducted during the summer to document summer temperature 

exposures.  

2. Experimental design 

To investigate the impact of low tide heat stress on mussels during simulated upwelling 

(low pH, cold temperatures) and wind relaxation conditions (high pH, warm temperatures), 

the experimental design consisted of 4 treatments: two ‘seawater treatments’ x two ‘low tide 

treatments’ (Figure V-2). First, two seawater treatments were set up and represented 

summertime upwelling (‘upwelling’ from here onward) and wind relaxation (‘relaxation’ 

from here onward). The seawater treatments were based on pH and temperature time-series 

collected near Fogarty Creek, Oregon (Figure V-1) and were (1) pH 7.6 at 8 °C for 

upwelling and (2) pH 8.1 at 14 °C for relaxation. Second, following acclimation to seawater 

treatments and non-warming low tides in the lab (tidal simulator and experiment timeline are 

described below), two warm low tide treatments were simulated using a manual heat ramp in 

an incubator. Low tide treatments were (1) 20 °C maximum exposure temperature 

representing a non-HSR inducing temperature (‘20 °C emersion stress’ from here onward) 

and (2) 30 °C maximum exposure temperature representing a HSR inducing temperature  
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Figure V-2. Estimated mussel body temperature during the laboratory experiment, 

recorded by mimics. Mussels were held in simulated seawater conditions of wind 

relaxation (a, b) or upwelling events (c, d). Mussels were exposed to 2 or 3 non-warming 

low tides before exposure to one warm low tide of either 30 or 20 °C, respectively. 
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(‘30 °C emersion stress’ from here onward). The response of mussels to warm low tides was 

measured by respiration rate and gene expression following a 1 h recovery in their 

respective seawater treatments (upwelling vs. relaxation).  

Each seawater treatment consisted of two pseudo-replicate aquaria (receiving treatment 

water from the same header buckets). Low tide treatments were conducted in one incubator 

on separate days for the 20 and 30 °C emersion stress. Following the low tide treatment, 

mussels were allotted a 1 h recovery period in their respective seawater treatments before 

being sampled for respiration trials or gene expression. Respiration trials and dissections for 

gene expression were conducted at the time. For the respiration trials, either 2 or 3 mussels 

were sampled from each aquarium for a total of 5 mussels per treatment. For gene 

expression, gill tissue from 3 mussels per aquaria was collected (with the exception that for 

30 °C emersion stress, 2 and 4 mussels were taken from each replicate upwelling treatment 

aquarium) for a total of 6 mussels per treatment. 

3. Experimental system 1: seawater treatments and chemistry 

Experimental aquaria with seawater treatments were set up in two separate and thermally 

controlled seawater tables (chillers, Aqua Logic, Inc. NEMA 4X). CO2-acidification of 0.32 

µm-filtered seawater generally followed Fangue et al. (2010) with a few modifications. A 

compressor, particle filters and CO2-adsorber (Twin Engineering) were used to create dry-

CO2 free air. Pure CO2 was mixed with CO2-free air using mass flow control valves (Smart-

Trak™ Sierra Instruments, Inc.) to create desired pH. Treatment air was bubbled into an 18 

L header buckets via a venturi injector and a recirculating pump. Treatment water was then 

pumped into a second header bucket that received the same treatment air. This increased gas 

equilibration time of the treatment water was necessary to achieve target pH levels. From the 
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second header bucket, treatment water was delivered to two pseudo-replicate aquaria (72 L 

total volume) at a rate of 24 L per hour and to two smaller buckets at a rate of 2 L per hour, 

using irrigation drippers. The smaller buckets were used to isolate treatment water for 

respiration trials. All plumbing was flow-through.  

Treatment water in aquaria was measured once a day for pHT (spectrophotometric 

method, total hydrogen ion scale), temperature (OMEGA® HH81A wire probe), salinity 

(YSI 3100), and total alkalinity (AT, Mettler-Toledo T50). Measurements of pHT and AT 

follow methods from Standard Operating Procedures 3b and 6b (Dickson et al. 2007). AT 

measurements were calibrated by verifying Certified Reference Materials (CRMs) seawater 

standards, from Dr. Andrew M. Dickson at Scripps Institution of Oceanography, to within 

10 µmol kgSW
-1

 accuracy. In situ pHtotal and other carbonate parameters were calculated in 

CO2calc (Robbins et al. 2010) using CO2 constants from Mehrbach et al. (1973) refit by 

Dickson and Millero (1987).  

4. Experimental system 2: tidal simulator 

In an effort to synchronize tidal-driven gene expression across all individuals in the 

experiment (Gracey et al. 2008), mussels were simultaneously exposed to non-warming low 

tides using a custom tidal simulator, prior to warm low tide treatments (timeline described 

below, Figure V-3). The tidal simulator included a control panel, connecting each low tide 

simulator, which each used a timer-activated two-way pump with float valve control and 

timer-activated heat lamps with dimmers (not used in this experiment). Each aquarium (54 L 

seawater volume) was fitted with a PVC and Vexar
®
 mesh frame at 10 cm depth to provide a 

platform for mussels above the low tide level. Briefly, timer-controlled pumps pumped 

water out of the aquaria during non-warming low tides. As incoming flow into the  
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Figure V-3. Schematic of fluid flow (a) and electrical set up (b) of the tidal simulator 

(a). The tidal system presented has more features than were used for the experiment (e.g. 

heat lamps, additional reservoir tank for fast refill of aquaria following a simulated low tide) 

and are presented here as a resource for the research community. 
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experiment aquaria was maintained by header buckets, a float valve was used to maintain 

pump activation and low water levels during the simulated low tide. The consistent 

incoming flow was necessary to ensure stable pH levels at high tide. While this simulator 

can have heat lamps and an additional reservoir for fast aquarium refill following the low 

tide, these features were not used in this experiment.  

To provide a resource for the research community, the following section describes the 

full design of the tidal simulator (use for up to five aquaria with heat lamp warming, Figure 

V-3). Fluid flow (Figure V-3a): To start, flow-through aquaria receive incoming water flow 

from an upstream header tank. For each aquarium, a two-way pump (12V 3A DC Gear 

Pump, McMaster-Carr) serves to pump water between the experimental aquarium with 

animals and a reservoir tank. During low tide, the pump drains the primary aquarium to 

below the level of the animals and pumps the water into the reservoir tank. During high tide, 

the pump moves water from the reservoir tank back into the primary tank to submerge 

animals, if fast refill is necessary. The constant incoming flow of treatment water from the 

header tank can also refill the aquarium at high tide, after which high tide level is maintained 

by an overflow hole. The latter method was used for this experiment, as incoming water 

flow from header buckets was sufficient to refill the aquaria. Electrical schematic (Figure 

V-3b): The control panel for the tidal simulator was made from an existing desktop 

computer tower due to its ability to enclose the system safely, and the ease at which the 

sheet metal frame could be modified to mount all the required systems. All components 

were chosen to work on 12V, allowing the use of the computer's ATX power supply to 

power the system. The ATX power supply was mounted to the computer tower using the 

existing clips intended for this purpose. A screwed down terminal block served to distribute 
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the power and signals to each of the five subsystems. The timer relay and five 4PDT relays 

were mounted on a single DIN rail. The specific timer was chosen due to its ability to mount 

to a DIN rail, and the relays were inserted into DIN rail-mountable sockets. The dimmer 

switches for heat lamps and heat lamp power receptacles were mounted in custom cutouts to 

allow access from the outside of the computer tower. 

Function: A 12V rail powers a timed relay that can be set by the user (THC15 12VDC 

Digital Programmable Switch, NITBUY). This relay switches a secondary 12V line (Figure 

V-3b, shown as red) to control a 4-pole-double-throw relay (4PDT Relay, McMaster-Carr). 

The four channels of the 4PDT relay have the following functions: (1) switch to turn on the 

heat lamps (one switch pole), drawing no more than 10A total, (2) pump H-bridge to control 

pumping direction (two switch poles), (3) switch to route the pump's power through snap-

acting switches (Subminiature Snap-Acting Switch, McMaster-Carr, mounted above the 

water and attached to a float on an extended rod). Heat lamps can be mounted on a wooden 

frame suspended over open aquaria and were not used in this experiments as tight control of 

temperature was necessary for the gene expression experiment. When the timer relay is 

closed (e.g. low tide): (1) heat lamps are turned on, (2) snap-acting switch is set as the active 

switch (current runs through blue wire), (3) pump direction is set to pump water out of the 

aquarium until the water level drops below the float, and (4) steady inflow of fresh water 

from the header tank periodically pushes the float upward and trips the switch to allow the 

pump to move the excess water into the reservoir tank and maintain the desired low tide 

level. 

When the timer relay is opened (e.g. high tide): (1) heat lamps turn off, (2) the other 

snap-acting switch is now active (current runs through yellow wire), and is closed. Because 
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the switch is closed, the pump begins pumping water from the reservoir tank into the 

primary aquarium thanks to the H-bridge having reversed the direction of current through 

the pump. Once the water level rises above the float, flipping the switch, the pump shuts off. 

Excess water introduced by the header tank is drained naturally via an overflow. All 

connections were made using either screwed down ring terminals, solder, or connectors. 

5. Experiment timeline 

To simulate the duration of an upwelling and wind relaxation event, the laboratory 

acclimation of mussels to seawater treatments (prior to low tide treatments) lasted 8 – 9 days 

and included 3 – 4 non-warming low tide exposures. Upon arrival in the lab, mussels were 

sorted for size (approximately 45 mm in length), and 54 mussels were immediately placed 

on the mesh frame in treatment aquaria (two seawater treatments each with two pseudo-

replicate aquaria). One iButton
®
 was placed among the mussels in each tank to track water 

and non-warming low tide temperatures throughout the experiment. Mussels were not fed 

during the experiment. 

To acclimate mussels to a summertime temperature of 14 °C following wintertime field 

acclimatization, mussels in the relaxation treatment were exposed initially to 12 °C for one 

day. Seawater was warmed by 1 °C d
-1

 for two days while maintaining a pH of 8.1 until the 

desired relaxation treatment was reached (pH 8.1 at 14 °C). Mussels in the upwelling 

treatment did not undergo any thermal acclimation and were held at 8 °C for the duration of 

the experiment. On day 5, 10 mussels per tank were moved off the frame and placed below 

the low tide level as a non-tidal control treatment and were not used in this study.  

Non-heated low tides were simulated starting on day 6 of the experiment to condition 

mussels to a simulated low tide series and increased in duration. The tidal cycle was based 
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on typical emersion time recorded by mussel mimics in the mussel bed at Fogarty Creek, 

Oregon during a low tide series. Laboratory emersion time started at 6 am and lasted for 3.5 

h on day 6 and 4 h on day 7, 8, and 9 (20 °C emersion stress only). Warm low tide 

treatments were simulated using an incubator on day 9 (30 °C emersion stress) and 10 (20 

°C emersion stress) and lasted for 4.5 h (Figure V-2). Due to labor and equipment 

restrictions, the 20 and 30 °C low tides could not be conducted on the same day. Thus, 

mussels exposed to a hot low tide of 20 °C experienced an additional day of seawater 

treatment acclimation and an additional non-warming low tide.  

For the low tide treatments, immediately at the start of emersion at 6:00 am, 22 - 23 

mussels per aquarium were moved to the incubator set at 10 °C. After 15 minutes, incubator 

temperature was incrementally increased every 10 min for a final temperature exposure of 

20 °C or 30 °C that lasted 15 min, for a total emersion time of 4.5 h. Following the heat 

ramp, mussels were immediately returned to their respective aquarium and allowed a 1 h 

recovery period. Following the recovery, five mussels per treatment were prepped for 

respiration trials (described below). At the same time, gill tissue was dissected and preserved 

for gene expression analysis from the remaining mussels. Briefly, 80 mg of gill tissue was 

flash frozen in liquid nitrogen and promptly homogenized in 900 uL TRIzol
®
, re-frozen in 

liquid nitrogen, and stored at -80 °C, prior to analysis. A 1 h recovery was chosen as gene 

expression can first be detected 1 h following heat stress and provides the earliest snapshot 

of the HSR (Hofmann 2005).  

6. Respiration trials 

To connect cellular stress response (e.g. gene expression) to a physiological response, I 

measured mussel respiration rate as a proxy for metabolic rate. Mussel respiration was 
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measured in treatment seawater three times during the experiment: once one day before the 

first simulated non-warming low tide (control), and once following each low tide treatment. 

Respiration was measured in custom respiration vials (screw top plexiglass vials, 300 

mL) fitted with an oxygen sensing patch (RedEye
®
 Ocean Optics), perforated second floor 

and a stir bar (~290 mL liquid volume with a live mussel). A NeoFox
®
 LED optical sensor 

(Ocean Optics) was used to measure partial pressure of oxygen in the water via fluorescent 

excitation of ruthenium in the patch, every 12 min. Oxygen levels were calculated in 

associated software following manufacturer’s calibration (Ocean Optics).  

Immediately following the low tide treatment in the incubator, mussels were individually 

transferred to respiration vials situated in a bucket with their respective treatment water. The 

respiration vials were sealed underwater to avoid trapping air bubbles and placed in one of 

two large temperature controlled aluminum blocks. Aluminum blocks were maintained at 

seawater treatment temperatures (8 °C and 14°C). Oxygen measurements were taken over 

the course of 2.5 h, every 12 min, on mussel vials and two control vials filled with treatment 

seawater. After the 2.5 h, mussels were immediately dissected and all soft tissue was dried 

for 24 h at 65 °C and weighed. For each vials, the slope (µmol O2 L
-1

 consumed per minute) 

was calculated and corrected for drift by subtracting the slope of a blank vial. Slope per g 

tissue was calculated for each individual mussel, respectively. Respiration rates are reported 

as oxygen consumption (µmol O2 g
-1

 h
-1

). 

7. RNA extraction and sequencing 

Total RNA was extracted using TRIzol
®
, following manufacture protocol. RNA was 

extracted from 3 mussels per pseudo-replicate aquarium (with the exception that for 30 °C 

emersion stress, 2 and 4 mussels were taken from each pseudo-replicate of the upwelling 
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treatment, respectively) for a total of 6 mussels per treatment (seawater x low tide, n = 24). 

Using NEBNext
®
 Ultra™ Directional RNA Library Prep Kit for Illumina

®
, cDNA libraries 

(n = 24) were prepared from 1 μg total RNA. The libraries were sequenced in two lanes (n = 

12 per lane) for 100 bp paired-end reads, at the University of California Berkeley on a 

HighSeq2000. Sequence data were trimmed using Trim Galore! (v0.4.0) with a Phred 

quality score threshold of 20 and for NEBNext
®
 index adapters. FastQC (v0.11.3) was used 

to verify read quality and identify overrepresented sequences using Standard Nucleotide 

BLAST (http://www.ncbi.nlm.nih.gov/). Overrepresented sequences in all samples aligned 

to mitochondrial rRNA and were not removed prior to transcriptome assembly.  

For the purposes of this dissertation chapter, only the most extreme treatments were 

analyzed for gene expression. Two libraries from mussels exposed to 30 °C emersion stress 

for both relaxation and upwelling seawater treatments were used for de novo assembly of the 

transcriptome, using Trinity (v2.0.6, Haas et al. 2013). Gene expression was analyzed using 

libraries from all 6 replicate mussels sampled from the two seawater treatments following 

the 30 °C emersion stress treatment. Read alignments to the de novo transcriptome assembly 

and abundance estimates for each sample was performed using Trinity and RSEM. 

Differential expression analysis of isoforms was conducted via Trinity using EdgeR. 

Differentially expressed isoforms were annotated using BLAST (National Center for 

Biotechnology Information) and gene ontologies were mapped to annotations using 

Blast2Go.  

8. Emersion temperature stress in context 

To put the low tide treatments used in this experiment in context with M. californianus 

thermal tolerance, respiration trials were also conducted on adult mussels in a second 
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experiment. The goal of this experiment was to generate a physiological response curve of 

oxygen consumption following a range of emersion stress temperatures using a larger 

sample size (N = 12 vs. 5). For this experiment, adult M. californianus were collected from 

Lompoc Landing, California (34°43’11.2” N, 120°36’31.8” W) in summer 2014. Mussels 

were held at 15 °C in the laboratory and exposed to 3 sequential low tides in the laboratory 

tidal simulator before being exposed to a manual warming or cooling ramp in an incubator, 

as described above. Seawater pH was not altered and all mussels were exposed to 14 - 15 °C 

seawater temperatures. Mussels were not fed during the experiment. Emersion temperatures 

in the incubator ranged from 3 – 43 °C following methods used above with a few changes 

described below.  

Mussels were held in a seawater table. Batches of 12 mussels were placed in aquaria 

with a tidal simulator for 3 days before exposure to the low tide treatment in the incubator. 

On day 4, 12 mussels were moved to an incubator at control temperature (14.5 ± 0.2 °C). 

Mussels were held for 15 min at constant temperature after which the temperature was 

incrementally changed by 0.5 °C over the course of 3 h to achieve the final emersion 

temperature. Mussels were held at the endpoint temperature, ranging from 3 – 43 °C, for 15 

minutes for a the total emersion time to 3.5 h. Immediately following the low tide in the 

incubator, respiration rate was measured at control temperature (14 - 15 °C) following 

methods described in Respiration trials above. Only one warming or cooling ramp was 

conducted per day and the order of end point temperatures was randomized by day. This 

experiment was conducted twice, once for low tide temperature exposures of 3 – 36 °C in 

increments of 3 °C using mussels collect from Lompoc Landing on 16 July 2014, and later 

on for mussels exposed to 10, 20, 30, 39, 41, and 43 °C collected in August 2014. Note that 
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low tide warming up to 45 °C led to 100 % mortality and was not included in the respiration 

trials. This experiment was part of a National Science Foundation Research Experience for 

Undergraduates and was conducted by University of California Santa Barbara 

undergraduate, Evan Barba.  

C. Results and Discussion 

1. Field and treatment conditions 

Typical seawater pH and temperature exposures during the upwelling season at Fogarty 

Creek, Oregon, matched seawater treatments, with high agreement across aquarium 

replicates (Table V-1, Figure V-1). Mean (± SD) relaxation treatment conditions during the 

experiment were pHT 8.09 ± 0.03 for both aquaria, at 13.4 ± 1.1 and 1.0 °C. The 1 °C SD 

was due to the acclimation warming from 12 to 14 °C at the start of the experiment. Mean 

upwelling treatment conditions were pHT 7.58 and 7.59 ± 0.03 at 8.1 ± 0.1 °C, for both 

aquaria.  

Mussel body temperatures in the field were estimated by 6 mussel mimics in winter 

(Figure V-4). From mid-February to the end of March during low tides, emersion 

temperatures generally deviated from seawater temperatures by 0.5 – 5 °C either positively 

or negatively. One mimic documented warmer emersion temperatures than the other mimics, 

with one maximum emersion temperature of 27.5 °C and second maxima of 20 °C two days 

later. This disparity across mussel mimics reflects the microscale variability in mussel body 

temperatures across mussel aggregates and patches within the mussel bed (Helmuth 1998). 

During transport from the field to the University of California Santa Barbara, temperature 

cooled from 11 °C to 7 °C over 8 hours and never reached temperatures above 12.5 °C. 

These results suggest that the mussels used in this experiment were generally cold  
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Table V-1. Treatment conditions of mussels held at upwelling or relaxation treatments 

over the course of the 10-day experiment. 

Treatment Tank pHT pCO2 Ωarag T (°C) sal AT N 

Relaxation 
1 8.09 ± 0.03 347 ± 27 2.36 ± 0.21 13.4 ± 1.1 33.1 ± 0.1 2228 ± 6 12 

2 8.09 ± 0.03 344 ± 28 2.38 ± 0.22 13.4 ± 1.0 33.1 ± 0.1 2227 ± 6 12 

Upwelling 
1 7.58 ± 0.03 1243 ± 85 0.67 ± 0.04 8.1 ± 0.1 33.1 ± 0.1 2227 ± 4 13 

2 7.59 ± 0.03 1227 ± 84 0.68 ± 0.04 8.1 ± 0.1 33.1 ± 0.1 2228 ± 5 13 
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Figure V-4. Estimated mussel body temperature in the field and during the laboratory 

experiment, recorded by mussel mimics. Field temperatures were recorded in the mussel 

bed at Fogarty Creek, Oregon in winter (a) and summer (b). Two of the four treatments are 

shown (a) for comparison of laboratory thermal exposure to field conditions.  
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acclimatized, but some may have experienced one day of heat stress (> 20 °C) in the field 

depending on their exact exposure to solar radiation, wind, and ground and air temperatures 

(Helmuth 1998). 

2. Respiration 

Two respiration studies were conducted. To put the low tide treatments (20, 30 °C 

emersion stress) in context of M. californianus thermal tolerance, the second respiration 

experiment is reported first. Mussels collected from Lompoc Landing, California, exhibited 

highly variable oxygen consumption rates at different emersion temperatures (Figure V-5). 

Lowest mean respiration rates were detected at emersion temperatures above 36 °C. In other 

studies, this same temperature (36 °C) induced post-emersion stress mortality, as early as 1 

day post-stress, in M. californianus individuals collected from populations along the CCS 

coastline (Logan et al. 2012). Interestingly, respiration rates first declined at 30 °C and 

increased twice at temperatures above 30 °C before consistently declining. This could reflect 

a response by mussels where metabolic depression is first induced, and then upregulated in 

response to increasing stress. Metabolic response to high temperatures decreased closer to 

the first immediate lethal temperature (45 °C) and delayed lethal temperature (36 °C, Logan 

et al. 2012). Heart rates of M. californianus have been shown to reach cardiac failure at 

maximum emersions temperatures of 34.7 ± 0.7 °C (mean ± SE) to 38.5 ± 0.6 °C during a 

heat ramp (Logan et al. 2012).  

Respiration of mussels (5 individuals) was measured in treatment seawater simulating 

wind relaxation or upwelling, three times: no emersion, and following 20 and 30 °C 

emersion stress simulating hot low tides (Figure V-6, Table V-2). Lower respiration rates  
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Figure V-5. Mass-specific oxygen consumption rates of mussels following exposure to 

different emersion temperatures. Mussels were collected at Lompoc Landing, California, 

twice for two experiments. Mean ± SD, n = 12 per temperature. 
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Figure V-6. Mass-specific oxygen consumption rates of mussels in seawater treatments 

simulating wind relaxation or upwelling events following either no emersion or 

maximum emersion heat stress of 20 or 30 °C. There were no significant differences in 

oxygen consumption across treatments (n = 5).  
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Table V-2. Starting conditions of seawater treatments used for respiration trials. 

Salinity and total alkalinity represent samples taken from treatment tanks that day. pH was 

measured in triplicate. 

Treatment Tide pHT pCO2 Ωarag T (°C) sal AT 

Relaxation 

none 8.07 ± 0.0 364 ± 4 2.33 ± 0.02 14 33 2232 

20°C 8.11 ± 0.0 329 ± 3 2.51 ± 0.02 14.1 33 2230 

30°C 8.10 ± 0.0 339 ± 4 2.46 ± 0.02 14.2 33 2230 

Upwelling 

none 7.62 ± 0.02 1141 ± 56 0.72 ± 0.03 8.1 33 2231 

20°C 7.60 ± 0.0 1212 ± 14 0.68 ± 0.01 8.2 33 2229 

30°C 7.61 ± 0.01 1150 ± 39 0.72 ± 0.02 8.2 33 2229 
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were expected in the upwelling treatment compared to the relaxation treatment due to cooler 

seawater temperatures (8 vs. 13 °C). However, no significant differences were detected 

based on seawater treatment and emersion heat stress (One-way ANOVA, F-value = 0.62, p-

value = 0.683, df = 5, Anderson Darling test of normality passed, p-value = 0.522). 

Assuming that negative oxygen consumption means that the mussel did not respire, 

respiration rates ranged between 0 to > 40 µmol O2 g
-1

 h
-1

 and fell within the observed range 

of M. californianus respiration rates from mussel collected at Lompoc Landing, California, 

following a range of emersion heat stress. These results show that mussel respiration is 

highly variable. It is possible that the high-plasticity and inter-individual variability of M. 

californianus metabolic response to environmental exposures facilitates its successful and 

extensive colonization across the intertidal.  

Collectively, results from the respiration trials show that emersion temperatures can 

influence respiration rates during recovery from emersion heat stress (especially at 

temperatures nearing lethal exposures), suggesting a metabolic cost incurred by extreme 

emersion heat stress. This is reflected in gene expression research showing that mussels 

induce transcription of Hsps following low tide heat stress > 30 °C (Gracey et al. 2008). The 

results from the respiration trials suggest that the low tide treatments of 20 and 30 °C 

emersion stress fall within the physiological tolerance of M. californianus. In other words, 

exposure to 30 °C emersion stress does not compromise physiological processes beyond the 

ability of what M. californianus can tolerate. However, 30 °C emersion stress potentially 

nears levels of sub-lethal stress (e.g. temperatures that induce metabolic depression but do 

not result in mortality) and so may manifest in energy trade-offs that are detectable at the 

level of the transcriptome.  
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3. Gene expression 

Although mussel gill tissue was collected from individuals exposed to all four treatments 

(seawater treatments simulating upwelling and wind relaxation, and two low tide 

treatments), this preliminary work investigates gene expression differences between 

individuals exposed to the two seawater treatments and only the 30 °C emersion stress. 

Following maximum emersion temperature of 30 °C during a simulated low tide, differential 

expression was found between 52 isoforms (FDR < 0.05) in mussels form the seawater 

treatment simulating wind relaxation as compared to that simulating upwelling (Figure V-7). 

Of these isoforms, 31 were up regulated and 30 were down regulated when mussels were 

exposed to the upwelling seawater treatment relative to simulated wind relaxation. Isoform 

sequences primarily mapped to the annotated transcriptome of Crassostrea gigas (Zhang et 

al. 2012) and second to M. galloprovincialis. Isoforms with sequence descriptions are 

described in Table V-3 and Table V-4. Overall, the presence of differential expression 

suggests that water mass qualities (e.g. temperature and pH combinations present in near-

shore Oregon) influence cellular processes in M. californianus gill tissue following emersion 

heat stress. These preliminary results warrant future investigation of the effect of 20 vs. 30 

°C emersion stress.  

The primary goal of this experiment was to assess whether or not the HSR initiated 

during hot low tides differed between mussels under simulated wind relaxation or upwelling 

conditions. Changes in gene expression of Hsp70 were not detected in this analysis of 

comparing mussels exposed to simulated wind relaxation or upwelling seawater treatments 

following 30 °C emersion heat stress. In M. californianus, Hsp70 is inducible across a range 

of temperatures and initiation of expression changes with seasonal acclimatization to  
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Figure V-7. Volcano plot of log fold change in gene expression in mussel gill tissue of 

adult mussels exposed to 30 °C emersion stress under relaxed vs. upwelled treatment 

seawater. Red dots indicate genes with significant differential expression. 
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Table V-3. List of up regulated genes under simulated upwelling conditions relative to 

simulated wind relaxation for isoforms with sequence descriptions. 

  

Sequence Name Sequence Description Gene Ontology 

TR107520|c1_g1_i1 
wsc domain-containing 

protein 2 
  

TR94779|c0_g1_i1 
upf0764 protein c16orf89 

homolog 
  

TR105881|c2_g1_i7 
ubiquitin-conjugating 

enzyme e2 l3 
ligase activity;metabolic process 

TR124258|c0_g1_i2 
stimulator of interferon 

genes partial 

cytoplasmic part;binding;activation of innate 

immune response;positive regulation of type I 

interferon production 

TR99463|c0_g1_i4 sal-like protein 1 isoform x2 

intracellular organelle;nucleic acid binding;metal 

ion binding;kidney development;regulation of 

transcription, DNA-templated;nervous system 

development;anatomical structure 

morphogenesis;embryo development;tube 

development;positive regulation of cellular 

process;limb development;epithelium development 

TR105212|c1_g2_i1 
protein polybromo-1 

isoform x1 
chromatin binding;protein binding 

TR105212|c1_g2_i4 
protein polybromo-1 

isoform x1 
chromatin binding;protein binding 

TR105212|c1_g2_i4|

protein 

protein polybromo-1 

isoform x1 
  

TR138166|c1_g1_i2 protein mab-21-like 2 system development 

TR98242|c0_g1_i1 perlucin-like protein   

TR144795|c5_g1_i1 

mam and ldl-receptor class a 

domain-containing protein 

1-like 

membrane;scavenger receptor activity;protein 

binding 

TR89398|c0_g1_i2 
innexin unc-9-like isoform 

x1 

plasma membrane;gap junction;integral 

component of membrane;ion transport 

TR97740|c4_g3_i3 
fibroblast growth factor 

receptor 2 
protein binding 

TR141391|c0_g1_i1 
cell wall protein dan4-like 

isoform x2 

extracellular region;protein binding;chitin 

binding;chitin metabolic process 

TR96807|c2_g2_i1|-

--NA--- 

barrier-to-autointegration 

factor 
  

TR245|c0_g1_i1 
astacin-like 

metalloendopeptidase 
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Table V-4. List of down regulated genes under simulated upwelling conditions relative 

to simulated wind relaxation for isoforms with sequence descriptions. 

Sequence Name Sequence Description Gene Ontology 

TR101971|c0_g2_i2 

vacuolar protein sorting-

associated protein 13b 

isoform x1 

  

TR144820|c6_g1_i6 
tubulin polyglutamylase 

ttll7-like isoform x1 
cellular protein modification process 

TR124864|c2_g1_i1 stress-induced protein 1   

TR124864|c3_g1_i1 small heat shock protein   

TR32157|c0_g1_i3 

rna-binding protein 

musashi homolog rbp6 

isoform x1 

cytoplasm;polysome;nucleotide binding;mRNA 

binding;poly(U) RNA binding;stem cell 

development 

TR6838|c0_g1_i1 

reticulocyte-binding 

protein 2 homolog a-like 

isoform x1 

cytoplasm;ubiquitin-protein transferase 

activity;ligase activity;protein ubiquitination 

involved in ubiquitin-dependent protein catabolic 

process 

TR51609|c0_g1_i1 

protein transport protein 

sec61 subunit alpha 

isoform 2 

integral component of membrane;protein transport 

TR134733|c0_g1_i13 protein fam46a-like   

TR82900|c3_g1_i1 
protein deltex-3-like 

protein 
metal ion binding 

TR43825|c0_g1_i1 
lysosomal-associated 

transmembrane protein 4a 
integral component of membrane 

TR136344|c1_g1_i3 
hypothetical protein 

BRAFLDRAFT_76566 
  

TR16983|c0_g1_i1 elongation factor-1 gamma 
translation elongation factor activity;protein 

binding;translational elongation 

TR78156|c0_g2_i1 elongation factor 1 alpha 

cytoplasm;translation elongation factor 

activity;GTPase activity;GTP binding;translational 

elongation 

TR80768|c1_g1_i3 
cytosolic carboxypeptidase 

2 
  

TR138877|c3_g2_i2 
cell wall protein dan4-like 

isoform x2 

extracellular region;chitin binding;chitin metabolic 

process 
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changing temperatures (Roberts et al. 1997). M. californianus is known to reduce Hsp70 

protein synthesis during the seasons with the highest temperature exposures (Roberts et al. 

1997). As this experiment utilized winter-acclimatized individuals, the 30 °C emersion stress 

was potentially the first extreme heat exposure of the season. It is therefore possible that the 

influence of emersion heat stress was so great that it flooded any potential effect of the 

seawater treatments and induced high hsp70 expression in mussels equally regardless pH 

and temperature of the seawater. Future comparisons from this experiment using individuals 

exposed to 20 °C emersion stress will reveal the relative magnitude of heat stress induced in 

this experiment, as 20 °C is known to be one the warmest temperatures that does not induce 

a HSR in M. californianus (Roberts et al. 1997). 

While differential expression was not detected for Hsp70, other Hsps did exhibit 

different patterns of expression. For example, small heat shock protein (hsp24.1) and stress-

induced protein 1, also in the hsp20 family, were down regulated under upwelling conditions 

relative to simulated wind relaxation conditions. sHsps are molecular chaperones that bind 

proteins in non-native conformations, prevent protein aggregations, and are induced by 

increased temperature (Haslbeck et al. 2005). Mechanistically, sHsps bind to denatured 

proteins to build a reservoir of protected proteins that can be refolded with the assistance of 

ATP-dependent chaperones, such as Hsp70, and enhance the efficiency of such protein 

restoration (Haslbeck et al. 2005). The increased gene expression of sHsps under simulated 

wind relaxation suggests an increased need for protein repair processes, potentially due to 

the higher water temperatures compared to simulated upwelling conditions. As sHsps bind 

proteins that can later be refolded, sHsps may act as a first line of defense in extreme 

cellular stress. Potentially, cooler water temperatures following emersion heat stress may 
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reduce overall heat-induced protein damage. If so, upwelling of cold water may lessen the 

extent of cellular damage due emersion heat stress in M. californianus. 

Another stress related gene that exhibited differential gene expression across simulated 

wind relaxation and upwelling was ubiquitin-conjugating enzyme e2 l3, a protein in the 

ubiquitin-proteasome cellular pathway. This E2 enzyme exhibited higher expression in 

mussels exposed to simulated upwelling compared to those held under simulated wind 

relaxation, following 30 °C emersion heat stress. E2 enzymes are involved in ubiquitin-

tagging of damaged or short-lived proteins (Hershko and Ciechanover 1992). Ubiquitin tags 

signal proteins for cellular degradation by proteasomes. In contrast to the sHsp expression 

patterns, enhanced expression of E2 enzymes suggest that protein damage still occurred in 

mussels in the upwelling treatment. At the same time, down regulation of reticulocyte-

binding protein 2 homolog a-like isoform x1 was detected under upwelling conditions. This 

reticulocyte-binding protein 2 homolog functions in ubiquitin-dependent protein catabolism. 

While down regulation might oppose the pattern observed for the E2 enzyme, it is 

challenging to interpret the meaning of, overall, few differentially expressed genes. 

Future analyses using an annotated de novo transcriptome assembly using all samples 

sequenced in this study will allow for full pathway analyses and potentially provide a more 

complete picture of the changes in cellular processes induced by exposure to different water 

mass conditions and emersion heat stress. Such analyses may reveal how the other 

significantly differentially expressed genes contribute to the response of M. californianus to 

tidal emersion. The results presented here suggest that water mass conditions may change 

how M. californianus responds to emersion heat stress and deal with protein damage, and 
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this preliminary result warrants a more in-depth analysis using the full experimental design 

and dataset.  
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