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Note for the reader

The author’s main objective in writing this thesis, aside from fulfilling the requirements of
the Ph.D., was to produce a document which will be useful to other graduate students.
For this reason, there are included several pedagogical appendices covering the basic
theory of superconducting qubits, relevant yet lesser known formulae in quantum theory,
and several other similar topics. If any of the discourse in these, or any other sections,
could be clarified, please notify the author via the address below.
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Abstract

Fast, Accurate State Measurement in Superconducting Qubits

by

Daniel Thomas Sank

Superconducting qubits have emerged as leading candidates as the foundation of quan-

tum information processing systems. Progress in superconducting qubit experiments

with greater numbers of qubits and advanced techniques such as feedback will require

faster and more accurate quantum state measurement. In particular, cyclic fault tol-

erance protocols such as the surface code require high accuracy measurement on time

scales significantly shorter than the coherence times of the qubits. We have designed a

multiplexed measurement system with a bandpass filter that allows fast measurement

without increasing environmental damping of the qubits. We use this to demonstrate

simultaneous measurement of four qubits on a single superconducting integrated circuit,

finding that we can measured a single qubit state to 99.8% accuracy in 140 ns. This ac-

curacy and speed is suitable for advanced multiqubit experiments including surface-code

error correction.
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Chapter 1

Introduction

This introductory chapter explains the notion of quantum information processing and

why it might be useful.

1.1 Information processing machines

Information processing pervades our civilization. Examples of information processing,

essential to our way of life include communication, data storage and retrieval, and prob-

lem solving machines. Digital information processing has become especially important

since the invention of the vacuum tube, and later, the transistor. We spend enormous

effort and resources improving our information processing hardware: in 2013 Intel spent

more than ten billion dollars on research and development [14].
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Figure 1.1: Two physical implementations of logic elements. a) A mechanical OR gate.
If either of the bottom rods is pushed, the output rod extends. If neither input rod
is pushed, springs retract the output rod. b) An electronic NAND gate. If voltage is
applied to both input wires then current flows freely through the transistors, bringing
the output node to ground.

1.1.1 Information is physical

A computer contains an array of physical elements, such as gears in a mechanical com-

puter, or transistors in an electronic one. The physical states of those elements stores

information. In the mechanical computer, the physical state is the rotational orientation

of the gears, and in the electronic computer it is the current and voltage in the transis-

tor. Physical interactions between elements, causing them to change their state, achieves

computation. In a mechanical computer, sliding rods pushing on one another lead to the

positions of a register of output rods which depend on the positions of the inputs. In

a solid state electronic computer, arrays of input voltages are transferred from memory

circuits into the central processing unit (CPU) where they interact in logic circuits such

as NAND or XOR gates to produce resulting output voltages. Figure 1.1 illustrates two

examples: a mechanical OR gate and an electronic NAND gate. These examples are

meant to emphasize the fundamentally physical nature of information processors.

2



1.1.2 Classical physics limits information processing

The above example computers, and in fact in any existing information processing device,

ignore a great deal of information associated to the physical elements in the computer. A

particular state of a transistor implicitly includes an enormous set of possible microscopic

states (“microstates”) of the individual electrons carrying the current. This is illustrated

in Fig. 1.2 where multiple microstates are shown for left flowing and right flowing macro-

scopic current states in a wire. Information processing in the computer is insensitive to

these microstates by construction. Ignorance of this information is essential for the oper-

ation of a real machine: if the logical state of a transistor depended on the precise state

of every electron, we would have to eliminate phonon scattering and operate at absolute

zero temperature in order to have a usable machine. In other words, ignorance of pre-

cise microscopic dynamics affords the computer robustness against real-world non-ideal

effects.

On the other hand, it turns out that this ignorance restricts the computer to physical

processes which obey classical physics.1 At any point in the computation, the computer’s

state is described by independently specifying the state of each information storage ele-

ment,

|computer〉 = |state of 0th element〉 . . . |state of N − 1th element〉
eg. |0〉|1〉|1〉 . . . |1〉|0〉|0〉 = |011 . . . 100〉, (1.1)

where 0 and 1 indicate the two possible states of a logic element. Note that a system

1A demonstration of why this is the case will be given subsequently.
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Figure 1.2: A wire with two different macroscopic current states.(a) and (b) show three
microscopic states corresponding respectively to rightward and leftward current. Note
that in each microscopic state some electrons may be moving in a direction against the
macroscopic current.

with N bits requires N 0’s and 1’s to specify its state. While this representation may

seem obvious and unavoidable, from a physical point of view it is somewhat limited. We

know that Nature fundamentally allows for physical states more complex than the one

in Eq. (1.1): quantum mechanics describes a physical state as a weighted superposition

of states, such as c0|0〉 + c1|1〉 where {ci} are complex numbers. These superposition

states are more complex than their classical counterparts, so use of only classical states

in information processors limits the their power.
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Suppose we want to compute properties of N quantum two level systems where each

one interacts with its nearest neighbours, a so-called “quantum spin chain”, as shown in

Figure 1.3 a. The system is described by 2N − 1 complex numbers ci,
2

|spin chain〉 = c0|00 . . . 00〉+ c1|00 . . . 01〉+ · · ·+ c2N |11 . . . 11〉. (1.2)

Note that each term in the sum corresponds to one complete classical state of the spin

chain as in (1.1). The number of parameters needed to specify one particular quantum

state is proportional to the number of all possible classical states. Suppose each of

the numbers ci is represented in a classical computer by an m bit number. Then, to

represent a single state of the quantum system we need m2N classical bits, so the size of

the classical computer needed to simulate a quantum system grows exponentially in the

size of the quantum system. This illustrates one limitation of classical computers: they

cannot efficiently store the information needed to represent quantum mechanical physics

problems.

That classical computers cannot efficiently simulate quantum mechanics is not too

surprising since we know that quantum states are more complex than classical ones. How-

ever, classical computers seem to be limited even in their ability to solve abstract math

and logic problems. A famous example of this is the problem of finding the prime factors

of an integer. Although this problem has been known since ancient times, no polynomial

time classical algorithm has ever been found.3 The best modern algorithm, the general

2Normalization and the irrelevance of the global phase reduce the parameter count by 2 real numbers,
or equivalently one complex number.

3A simple but slow algorithm for deciding whether a number is prime and finding its factors is
attributed to Eratosthenes of Cyrene (c. 276 BC - c. 195/194 BC).
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Figure 1.3: The physics of a quantum spin chain can be investigated by construction of
a controllable and measurable analogue system. a) A physical spin chain. b) An array
of two level systems engineered to match the physics of the spin chain.

number field sieve [22], factors a b bit number in time asymptotically proportional to

exp
(
(1.9 + o(1)) (b ln 2)1/3(ln(b ln 2))2/3

)
(1.3)

in the limit of large b. Note the super-polynomial (but sub-exponential) scaling.

1.1.3 Quantum Information

In the previous section, we showed that a quantum state cannot be efficiently stored on a

classical computer. This problem suggests its own solution: use an information processor

in which the logic elements themselves are quantum mechanical. A simple approach is

to build an analogous system out of elements that are amenable to experimental control

and measurement, as shown in Figure 1.3 b. By engineering the analogue system to have

the same physics (ie. same Hamiltonian) as the spin chain, we can infer properties of the

spin chain from observations of the engineered system. A realistic analogue system for

the spin chain could be a chain of ions trapped in an optical lattice. Existing technology
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allows for exquisite control and measurement of trapped ions. Note that this idea of

building an analogous system, or “model” that is amenable to precise engineering and

measurement is not restricted to quantum systems. Indeed, modeling has been used for

architectural projects for centuries and is in some sense the oldest form of information

processing.

The modeling approach works for systems in which the physics is simple enough that

a controllable analogue system can be realized, but this will not always be possible. It

is difficult to imagine building a controllable analogue system for a high energy particle

scattering problem. For problems for which we cannot build models we need a more

abstract approach. Historically, we addressed this type of problem by constructing a

mathematical model of the physics problem and solving the model with a numerical

computer. However, we already saw that a quantum state cannot be efficiently stored on

a computer which uses classical physics. Looking again at Figure 1.3 b, we can re-imagine

the array of controllable two level quantum elements, originally conceived as a proxy for

the spin chain, as a quantum bit register. This suggests the notion of a general purpose

abstract computer that uses quantum bits instead of classical ones. Information would

be processed by controlled interactions between quantum bits in the register. We could

engineer the interactions between two quantum elements such that they undergo specific

transformations, akin to the classical logic gates used in normal computers such as XOR
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and NAND gates. A quantum example is described by the following unitary matrix

|00〉
|01〉
|10〉
|11〉


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.4)

This operation is known as a “controlled NOT” or CNOT gate, because the state of the

second bit inverts if the first bit is on (ie. in the |1〉 state). This example shares with

the classical cases the general idea of using controlled interactions to produce changes

in the bits representing a logical computation. Importantly, the quantum gate works

on superposition states in addition to the usual classical states. Operations like this

could form a collection of quantum logic gates analogous to classical logic gates, and we

can imagine a generic Turing-style computer based on transformation of quantum states

through such gates. Similarly to how the NOT and AND gates form a universal set of

operations in classical computing, arbitrary single qubit controls along with the CNOT

form a universal set for a quantum computer [2].

Amazingly, this kind of generic quantum information processor might be able to solve

some types of abstract problems more efficiently than classical computers. A famous al-

gorithm for factoring prime numbers, Shor’s algorithm [49], runs on a quantum computer

in a time that goes as a polynomial in the number of input digits. This is an example

of a case where a quantum computer solves an abstract problem more efficiently than a

classical computer, and the practical application of prime factoring in cryptography is a

strong driving force behind quantum information research. It’s important to note that

the current lack of a known classical algorithm for prime factoring does not preclude the
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possibility that one will be found in the future. It has not been proven that efficient

factoring on a classical computer is impossible, and so the utility of quantum computers

for abstract problem solving is not necessarily firmly established. On the other hand,

there is one known problem that quantum computers can solve faster than is possible on

a classical computer: function inversion. Given a function f , a set of possible inputs {x}

of length N , and an output y, the quantum “Grover Search”4 algorithm can find x such

that f(x) = y in time proportional to
√
N . Classically, the search time scales as N . This

square root speed-up for the quantum algorithm is less impressive than the near expo-

nential speed-up associated to Shor’s factoring algorithm, but is a strong indicator that

quantum information processors are fundamentally more powerful than classical ones, at

least for some types of problems.

1.1.4 Summary

Quantum information processors may be able to efficiently solve some problems that clas-

sical processors cannot. Quantum algorithms are known for prime factoring and function

inversion. The former represents a significant speed-up over known classical algorithms

and seems very likely to indicate that quantum processors are significantly more powerful

than classical ones. The latter establishes that in at least one case quantum processors

can solve problems faster than is fundamentally possible on a classical processor, although

4The Grover Search is some times described as a database lookup. The connection to function
inversion comes by choosing f such that f(x) = True only when x is the desired database entry. Note
that, on a normal computer, structured databases can be searched in constant time by using hash lookup
or similar methods.
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the speed-up is modest. Quantum processors seem to be clearly superior to classical pro-

cessors for quantum physics problems as they can more efficiently store the information

needed to represent the state of the system being simulated.

Two types of quantum information processors were described. In the first type the

processor is simply a model of a physics problem and is used to directly measure properties

of the analogous system. In the second type an array of quantum elements are used as

an information storage register and computations are done through physical interactions

between them, just as in a normal computer.

1.2 Quantum Bits

To build a quantum computer, we need quantum mechanical logic elements that are

controllable and measurable. As in the classical case, these elements could have any

number of possible states, but analysis and construction is simplest in the case of two

possible states. With homage to the term “bit” for a controllable two-state information

storage element in classical computers, we refer to the quantum analogue as a “qubit”.

In this section we explain why building usable qubits is hard. With that understanding

we explain the requirements for a working quantum computer. Finally we discuss a few

possible candidate physical systems for making qubits.
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1.2.1 Qubits are hard to make because quantum states are frag-

ile

As discussed previously, classical computers are insensitive to many of the details of the

physical processes taking place inside their bits. As indicated in Figure 1.2, the logical

state of a transistor does not depend on the individual states of the electrons in the wire,

but rather only on the average of those states. The following states correspond to upward

current

{| ↑↑↑〉, | ↓↑↑〉, | ↑↓↑〉, | ↑↑↓〉} (1.5)

and the following correspond to downward current

{| ↓↓↓〉, | ↑↓↓〉, | ↓↑↓〉, | ↓↓↑〉} (1.6)

where ↑(↓) indicates a single electron carrying current upward(downward). The com-

puter’s ignorance of the individual electron states means that if the system undergoes a

transition

| ↑↑↑〉 → | ↓↑↑〉, (1.7)

then the state of the transistor, and thus the logical state of the computer, does not

change. For classical computers this is an essential feature: if the computer’s state

depended on such microscopic processes we would have to completely eliminate all scat-

tering processes in the wires, a seemingly impossible task. By remaining insensitive to

these processes the classical computer can operate at finite temperatures with imperfect

materials, etc. Now, it turns out that ignorance of these processes is also what makes the
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machine classical instead of quantum mechanical. To see why, suppose we have a pair of

transistors in an initial quantum state

|transistors〉 = | ↑↑↑〉| ↑↓↓〉+ | ↓↓↓〉| ↑↑↑〉 ≡ |1〉|0〉+ |0〉|1〉 (1.8)

where |1〉 means upward current and |0〉 means downward current. Now suppose the first

transistor suffers the transition given in (1.7). The resulting transition for the computer

is

physical: | ↑↑↑〉| ↑↓↓〉+ | ↓↓↓〉| ↑↑↑〉 → | ↓↑↑〉| ↑↓↓〉+ | ↓↓↓〉| ↑↑↑〉
logical: |1〉|0〉+ |0〉|1〉 → |1〉|0〉+ |0〉|1〉. (1.9)

The logical state does not change, so it appears that nothing important has happened.

However, the electron state change cannot happen in isolation. If the electron state

changes, it must be due to interaction with something else. Suppose the electron state

change coincides with creation of a phonon in the wire. Adding the phonon state to our

representation, we re-write the electron state change process as

|computer〉 → |computer′〉
physical: | ↑↑↑〉| ↑↓↓〉|0〉+ | ↓↓↓〉| ↑↑↑〉|0〉 → | ↓↑↑〉| ↑↓↓〉|1〉+ | ↓↓↓〉| ↑↑↑〉|0〉

logical: |1〉|0〉|0〉+ |0〉|1〉|0〉 → |1〉|0〉|1〉+ |0〉|1〉|0〉 (1.10)

where here the third ket being |0〉(|1〉) represents the absence(presence) of the phonon,

and the prime indicates the computer’s state after the transition. The information carried

by the state of the phonon is not available to the computer, so to understand what

information is still carried by the computer we must re-express the state without the

phonon . On the left hand side of Eq. (1.10) the phonon is always in state |0〉, so the
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information available to the computer is easily written by dropping the phonon part

|computer〉 = |1〉|0〉+ |0〉|1〉 (1.11)

The right hand side of Eq. (1.10) includes terms where the phonon state is not always

the same. It turns out that in this case, the state takes on a statistical nature 5

|computer′〉 =

{
|0〉|1〉 probability = 1/2
|1〉|0〉 probability = 1/2

. (1.12)

The state after the phonon scattering event, |computer′〉, is a statistical mix of either

|10〉 or |01〉 with no quantum superposition. You can think of this as a collapsed wave

function that occurs after the phonon measures the state of the first electron. With

the quantum superposition in the computer state now gone, the computer’s function is

limited to processes described in classical physics.

It only required one electron state change in a phonon scattering event to cause the

complete destruction of the computer state’s quantum superposition. In a real transis-

tor, with orders of magnitude more electrons, single scattering processes like the one

illustrated here are overwhelmingly likely to occur with extremely high frequency. This

explains why quantum coherence is so fragile and illustrates why normal computers are

classical.6 The phenomenon illustrated here, by which quantum superposition of a sub-

system is lost when it interacts with other degrees of freedom, is known as “decoherence”.

The surrounding degrees of freedom are called the “environment”, and when some of the

information of the subsystem has leaked into the environment, the subsystem and envi-

5This can be shown rigorously using the density matrix formalism.
6In fact, what we have illustrated here may be the essence of why we do not observe quantum

interference in common experience.
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ronment are said to be “entangled”. Identification of processes causing decoherence and

elimination of those processes is one of the crucial challenges of experimental quantum

information.

Decoherence in qubits is typically characterized by the rates of two types of processes.

The first process is decay from |1〉 to |0〉 accompanied by absorption of a quantum

of energy from the qubit by something in the surrounding environment. This process

frequently occurs with constant probability per unit time and can therefore be described

by an exponential time constant T1. The second process is randomization of the relative

phase between |0〉 and |1〉, caused by fluctuations in the energy difference between those

two states. This is typically characterized by a time constant T2, although in many

systems the noise responsible for this process is correlated in time, so the decoherence

does not go exponentially and must be described by a more complex function of time,

such as exp [−t/Tφ1 − (t/Tφ2)
2 − · · · ].

1.2.2 Requirements for a quantum computer

The requirements for a working quantum computer are summarized in the “DiVencenzo

criteria” for a set of usable qubits:

1. Reliable qubit state preparation

2. Low qubit decoherence

3. Accurate quantum logic operations for single qubits and between pairs of qubits
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4. Accurate measurement of the qubit states

Items 2, 3, and 4 are interrelated and warrant discussion. Low decoherence is not really a

meaningful criterion by itself. If it were required that qubits maintain coherence for the

entire duration of a quantum computation, the task would appear hopeless: in order to

have a fixed system error rate, the coherence of each qubit would have to scale exponen-

tially with the number of qubits. However it is theoretically possible to use qubits in an

algorithm lasting much longer than the their coherence times by using error correction.

With quantum error correction, the important figure of merit is the ratio of the qubit

coherence times to the time needed for an error correction cycle. Error correction typi-

cally involves several single and two qubit logic gates followed by projective measurement

of a subset of the qubits, and succeeds in preserving the logical state of the computer

if those operations and measurements are done with high enough accuracy and large

enough system size. Therefore, in order to actually run a quantum computer, we need to

be able to do only a few logic operations with high accuracy in times short compared to

the qubit coherence times. Similarly the projective measurement must be done in a time

short compared to the qubit coherence times, and must be done with high accuracy. The

precise meaning of “high accuracy” will be discussed later.

From the previous section, it is clear that there is an intrinsic tension between accurate

control for logic operations and qubit coherence. By construction, the hardware coupled

to the qubits to control their states introduces decoherence channels. The same is true

for the apparatus used to measure the qubits’ states. Navigating this tension is the main
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Figure 1.4: Qubit implementations. a) Electrons embedded in a semiconductor are used
as qubits through their spin degree of freedom. This image shows a pair of “double
quantum dot” qubits. In each one, two electrons are used to implement a single logical
qubit. Note the large number of control wires. The image was taken from the website of
Amir Yacoby at Harvard. b) Ions trapped in a linear “Paul trap”. Blue arrows indicate
axes through which laser light is brought into the trap to control the qubit states. State
measurement is done through a state dependent fluorescent technique and the outgoing
light is collected by a CCD camera. The image was taken from the website of Rainer
Blatt at Innsbruck.

challenge of experimental quantum information.

1.2.3 Candidate systems for qubits

In this section we describe two real qubit implementations and discuss the challenges

involved in using them to build a quantum computer.
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Electron spin

Single electron spins have the natural advantage that they are two level systems by nature

and can be controlled via their magnetic dipole moment. Typical experiments work with

electrons embedded in semiconductors, as shown in Fig. 1.4 a. Metal electrodes formed

lithographically on the surface of the semiconductor produce electromagnetic fields which

contain and control the qubit states. A challenge with electron spin qubits is that the

parameters of the qubit depend on microscopic properties of the semiconductor crystal in

which the electrons are embedded. In engineering parameters of the quantum computer,

we are constrained not only by the general physics of electron spins in a crystal, but

also by what materials can actually be realized. The problem of growing a material

compatible with high accuracy two qubit logic gates is a subject of ongoing research.

Another challenge comes from the weak and short range nature of the dipole inter-

action, which requires that the electrons be kept very close together in order to perform

two-qubit logic operations. This presents a challenge for bringing control wires into the

system; the area needed by the control wires in Fig. 1.4 a is large compared to the area

of the qubits, which makes scaling to a large computer system difficult.

Trapped ions

Another very successful qubit system is a single atom. For each atom, two electron

orbital states are chosen as the logic levels |0〉 and |1〉. This system has the advantage

of relatively long intrinsic coherence times, as it is possible to choose electron levels for
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which conservation rules suppress spontaneous decay, as used in atomic clocks.

The single atom qubit suffers several challenges. First, their microscopic size and

gaseous state requires that they be ionized and held in space by RF or optical laser

fields, as shown in Fig. 1.4 b [8]. Second, to remove scattering processes between the

trapped ion and atmospheric molecules which would destroy the ions’ quantum coher-

ence, experiments must be done in ultra high vacuum. Third, the use of electron levels

for which coupling to the electromagnetic field is suppressed necessitates the use of strong

lasers to induce qubit state transitions. High power stable lasers are not part of a large

consumer market, so ion trap labs must expend a great deal of time and effort to build

lasers suitable for quantum computing. Finally, the coupling between the ions’ logical

states is intrinsically weak. While the ions, being charged, interact through the monopole

Coulomb interaction, that interaction does not depend on the orbital state of the elec-

trons. When an ion’s electron changes orbital state, that ion’s electromagnetic field

changes only in higher multipole moments. With a single electron charge and subatomic

displacement scales, the direct ion-ion interactions is too weak to be useful.

This last difficulty has been overcome in practice by using laser pulses to transduce

the electron states to a vibrational motion of the ion within the trap, which then couples

to the vibrational motion of other ions via the Coulomb force [51]. This strategy has

been used to implement high accuracy two qubit logic gates [6].

The challenges found in the examples presented here can all be attributed fundamen-

tally to the fact that the qubits are based on naturally occurring microscopic objects.
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Because of this, the parameters of the qubit system come from Nature rather than from

our own design. In the next section we introduce a type of qubit that solves this problem.

1.3 Superconducting Qubits

Microscopic quantum objects like an electron spin or single atom constrain the design

of an information processor because the processor inherits restrictions imposed by the

fundamental physics of the microscopic system. Alternatively, we can start with an

engineered system, like an electronic transistor, and try to make it quantum. This

approach avoids restrictions imposed by e.g. the values of fundamental constants on

Nature.

1.3.1 Quantum modes with engineered parameters

As discussed in section 1.2.1, the current and voltage state of a normal metal wire is

not quantum because information is lost in internal scattering processes. To get rid of

scattering we could use a superconductor. In a superconductor there is an energy gap

above the ground state within which there are no available system excitations. As long as

the superconductor is not subject to stimulation by energy near or exceeding this gap, the

individual electrons remain in the superconducting condensate ground state. Therefore,

processes like the one illustrated in Eq. 1.7 cannot occur and it should be possible to find

quantum coherence in the macroscopic current.

Consider an LC circuit as shown in Fig. 1.5 a. From Kirchoff’s laws we find the
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Figure 1.5: Superconducting qubits. a) A parallel LC circuit. b) The excitation spectrum
of the system constructed with normal metal includes a dense set of electron excitations.
These excitations interact with the circuit resonance and destroy quantum coherence. c)
If the circuit is constructed with superconducting metal, the electron states vanish, leav-
ing the circuit mode isolated and able to exhibit quantum coherence. d) The quantized
mode of the LC circuit. The quadratic potential leads to equally spaced energy levels.
e) A Josephson junction is formed by a thin insulating barrier interrupting two super-
conducting electrodes. The circuit model symbol for a Josephson junction is a cross. f)
Replacing the linear inductor with a Josephson junction creates an anharmonic oscillator.
g) The anharmonicity leads to unequally spaced energy levels. The lowest two levels can
be used as a qubit.
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equations of motion for the charge Q on the capacitor and flux Φ in the inductor,

Q̇ = −Φ/L Φ̇ = Q/C. (1.13)

Solving these gives charge and flux oscillating at a frequency ω0 = 1/
√
LC. This mode

corresponds to collective motion of the individual electrons in the metal. In a normal

metal circuit there are many other degrees of freedom, such as the individual electron and

phonon states. These degrees of freedom undergo constant scattering processes which

prevent the macroscopic charge and flux oscillation mode from exhibiting quantum be-

havior, as illustrated in Fig. 1.5 b. However, if the electrons are all in the superconduct-

ing ground state, then there are no spurious microscopic processes and equations (1.13)

represent the only dynamics in the system, as illustrated in Fig. 1.5 c. The absence of

interaction with environmental degrees of freedom preserves the quantum coherence of

the resonance mode, as explained in section 1.2.1. In that case we can represent the

mode by a Hamiltonian for just the resonance degree of freedom,

Ĥ =
Q̂2

2C
+

Φ̂2

2L
, (1.14)

which, for the harmonic case, has a set of states spaced in frequency by ω0 = 1/
√
LC,

as shown in Fig. 1.5 d. This is a remarkable idea: the collective motion of electrons in

a superconducting resonant circuit should have quantum levels. This is surprising if we

are used to quantum mechanics applying only to microscopic objects.
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1.3.2 Superconducting circuits allow qubit engineering

The resonant system has many energy levels, and the bottom two levels could be used as

a qubit. As the level spacing is determined by artificially engineered components L and

C, we are at liberty to engineer our qubit’s frequency for our convenience. Furthermore,

as shown in Appendix D, it turns out that if we connect two circuits through a capacitor

Cg, the coupling energy g normalized to their frequencies is

g

~√ω1ω2

=
1

2

Cg√
C1C2

. (1.15)

Here ω1,2 are the frequencies of the two circuits, and C1,2 are their self capacitances.

The right hand side depends on no constants of Nature.7 As capacitors and inductors

are routinely built with values ranging over many orders of magnitude, superconducting

circuits provide a great deal of flexibility in designing a quantum computer. This should

be contrasted against the situation with microscopic single particle qubits where intrinsic

coupling strengths are constrained by constants of Nature.

1.3.3 Non-linearity: Josephson junction

The linear oscillator discussed above cannot easily be used as a qubit. In the harmonic

system, driving the system into states which can carry out information processing re-

quires measurement of complex quantities such as parity. One way to see this is to

realize that an arbitrary array of linearly coupled harmonic oscillators is an analytically

solvable problem. Classical computers use the nonlinear physics of the transistor to effect

7Of course, realizable capacitances are limited by the value of the electrical permittivity ε0. Still,
realizable capacitance ranges over several orders of magnitude.
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information processing. However, transistor physics is incompatible with the supercon-

ducting state. To build a quantum computer with superconductors we need a nonlinear

superconducting element. Miraculously, there exists such an element: the Josephson

tunnel junction [20]. A Josephson junction is a thin insulating barrier interrupting a su-

perconducting wire, as shown in Fig. 1.5 e. The presence of the insulating barrier allows

the superconducting condensate phases of the two electrodes to differ. We denote the

phase difference as δ. Current and voltage at the junction are related to δ through the

Josephson relations [20]

I = Ic sin(δ) V =
Φ0

2π
δ̇. (1.16)

Here Ic is the “critical current” of the junction and Φ0 = 2 × 10−15 Weber is the flux

quantum. The critical current is related to the normal state resistance of the junction

Rn and the superconducting gap ∆ by the Ambegaokar-Baratoff relation

Ic =
π∆

2eRn

. (1.17)

Introducing the flux Φ ≡
∫
V (t) dt and integrating the second Josephson relation gives

a relationship between Φ and δ,

δ = 2πΦ/Φ0. (1.18)

Using Eq. (1.18), the Josephson relations become

I = Ic sin (2πΦ/Φ0) V = Φ̇. (1.19)

To lowest order in Φ/Φ0, the first of equations (1.19) is

Φ ≈ Φ0

2πIc
I. (1.20)
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From the usual relation Φ = LI, Eq. (1.20) gives a small signal inductance for the

junction LJ0 ≡ Φ0/2πIc. For arbitrary signals we compute the differential inductance

LJ ≡ V/İ =
Φ̇

2πIcΦ̇ cos (2πΦ/Φ0) /Φ0

=
LJ0

cos(δ)
=

LJ0√
1− (I/Ic)

2
. (1.21)

This relation shows that the Josephson junction is a nonlinear inductor, with inductance

diverging to infinity as the current through the junction approaches Ic.

Integrating the work done on this nonlinear inductor gives an expression for the energy

stored,

E =

∫
IV dt =

∫
Ic sin(δ)

Φ0

2π
δ̇dt = −EJ cos(δ) = −EJ cos (2πΦ/Φ0) (1.22)

where EJ ≡ Φ0Ic/2π. Replacing the linear inductor with a Josephson junction, we

get the circuit shown in Fig. 1.5 f, where the potential energy is now a cosine as shown

in Fig. 1.5 g. In the cosine potential, the circuit oscillation frequency decreases with

increasing amplitude. This is easily understood as a decrease in the oscillation frequency

ω = 1/
√
LC as the junction inductance L increases with increasing current.

We now turn to the quantum mechanics of the nonlinear circuit. With the cosine

potential from the junction, the circuit Hamiltonian becomes

Ĥ =
Q̂2

2C
− EJ cos(δ̂) =

Q̂2

2C
− EJ cos(2πΦ̂/Φ0). (1.23)

The energy levels of this Hamiltonian are shown in Fig. 1.5 g. Note that, unlike the

case of the linear inductor with the parabolic potential, the energy levels in the junction

circuit are unequally spaced. This makes it possible, by bringing two qubits’ |0〉 → |1〉

transitions on resonance with one another, to effect useful information processing on pairs
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of circuits. Therefore, the circuit shown in Fig. 1.5 f can be used as a qubit.

1.3.4 Advantages of superconducting qubits

We already saw that superconducting circuits allow enormous flexibility in constructing

the parameters for a quantum computer because the single qubit parameters and two-

qubit couplings are determined by engineered design rather than by constants of Nature.

Here we list some other important advantages.

• In order for a superconducting circuit to be used as a qubit, the spacing between its

energy levels must be larger than the surrounding thermal energy scale. In other

words, we need ~ω0 � kbT . Conventional dilution refrigerators attain temperatures

of ten to a few tens of mK. At T = 20mK we would need a frequency of 3 GHz

to keep the thermal occupation of the qubit’s excited state below a part in one

thousand. This microwave frequency range is readily accessible with commercial

electronic hardware. High quality tunable microwave sources available for a few

tens of thousands of dollars are stable enough for use with superconducting logic

gates with errors less than a part in one thousand. The commercial support in the

frequency range needed for superconducting qubits is a major advantage.

• Due to the prevalence of CMOS technology, fabrication of electrical circuits is an

extremely well developed industry. Even the most complicated superconducting

qubit chips requiring seven layers of lithography can be made in a couple of days

in an academic clean-room facility. Construction by photo and e-beam lithography
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also directly enables scaling to larger system sizes.

• Test and measurement instrumentation for electronics is extremely well developed.

The dynamic range of standard microwave equipment such as spectrum analyzers,

sources, and even arbitrary waveform generators allows the researcher to easily

control and debug the superconducting qubit system. To give a sense of scale,

microwave frequency DAC chips with 14 bit (42 dB) resolution are commercially

available.

• The connectivity of a superconducting qubit network is subject only to the con-

straints of on-chip wiring. This allows for very complex connectivity, as illustrated

by the DWave “chimera graph” in which some qubits are connected to up to eight

other qubits [9].

1.3.5 Disadvantages - outstanding challenges

To complete the picture of superconducting qubits within the field of quantum compu-

tation, we list some of their disadvantages and outstanding challenges.

• The large size of superconducting qubits makes them susceptible to decoherence

processes. A single superconducting qubit may interact with many material defects

on the metal surfaces, and inside the tunnel junction or capacitor gaps. These

processes have limited the coherence time of the phase qubit to ∼ 1µs, and have

rendered the charge qubit essentially unusable.
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• Superconducting qubits are not true 2-level systems. The one dimensional poten-

tials admit higher quantum levels which can be inadvertently populated during

information processing. Unwanted transitions to higher levels devastate informa-

tion processing protocols, as the qubit leaves the expected space of states. In some

types of qubits, such as the flux and fluxonium qubits, the nonlinearity from the

Josephson junction can be large enough that this is not a problem in practice.

However, in the transmon qubit [21], the |1〉 → |2〉 transition frequency differs

from the |0〉 → |1〉 transition frequency by only 3 to 4%. This small nonlinearity

places restrictions on the speed of quantum gates in transmon qubits, and compli-

cates two-qubit interactions, as the unwanted |1〉 → |2〉 transition must be carefully

avoided.

• Superconducting qubits rely on the disappearance of scattering states in the super-

conducting state to maintain coherence. This requires the devices be placed in a

cryostat to keep the temperature below the critical temperature of the supercon-

ducting material. Furthermore, the temperature must be such that kbT << ~ωqubit.

With ωqubit/2π ≈ 4 GHz to 10 GHz, this requires T . 200 mK. Such low temper-

atures require Helium dilution refrigerators, limiting the available space for the

experiment and accessibility for control wiring. The Helium dilution process relies

on 3He, which is rare and expensive.

• Unlike qubits based on individual microscopic particles, the individual qubits in a

large array of superconducting qubits are not all guaranteed to be identical. Imper-
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fections in the fabrication process of superconducting qubits leads to devices with

different inductance and capacitance. In systems where the oscillation frequency

of the qubits cannot be tuned in situ, this poses a serious challenge. Qubits with

tunable frequency largely mitigate this problem.

1.4 Fault tolerance

Even in the superconducting state, the qubit oscillating mode interacts with external

degrees of freedom. Charged quasiparticle excitations of the superconducting condensate

can absorb quanta of energy from the qubit as they tunnel across the Josephson junction.

Charged material defects, in the junction or in the qubit capacitors, feel the oscillating

electric field of the qubit mode and can also absorb energy. Superconducting qubits are

macroscopically large, so we do not expect that these and other decoherence processes

can ever be completely eliminated.

Suppose we were to try to build a quantum computer which would work in the

presence of decoherence processes. As illustrated in section 1.2.1, a single interaction

even between the qubit and an external mode can destroy the coherence of the quantum

state. Therefore, we would have to reduce the rate of such events to the level that the

probability of a single event is of order 1 or less over the entire duration of the quantum

algorithm. The numbers are not favorable. The most efficient useful algorithms require

a number of qubits nqubits ≈ 100 and a number of gates Ngates ∝ N3
qubits. The probability
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that a single qubit with coherence time Tcoh does not suffer a decoherence event is 8

P = e−t/Tcoh . (1.24)

Denoting the total algorithm time as Talg, the number of gates in the algorithm Ngates,

and the time of a single gate as Tgate, we find

lnP = − Talg

Tcoh

= −Ngates
Tgate

Tcoh

. (1.25)

To get a reasonable probability of the qubit remaining coherent, say P = 1/2, the

coherence time to gate time ratio is

Tcoh

Tgate

= −Ngates

lnP
& 106 (1.26)

where in the last step we assumed Nqubits = 100 and Ngates = N3
qubits. Current state of

the art qubit systems achieve Tcoh/Tgate ≈ 300 [4]. Improving coherence by a factor of

104 is a daunting task, but even more importantly, qubit gate errors can also come from

the control pulses used to generate the gates. This means that the error per gate from

the control pulses must also be at the 10−6 level. Current state of the art for two qubit

gates is a bit worse than 10−3 [4].

So far, we have discussed the error rate for a single qubit. However, the quantum

computation is spoiled if any qubit suffers an error. This lowers the necessary error rate

by a factor of Nqubits, which is at least a few hundred for useful algorithms. This puts

the required error rate per qubit gate at 10−8, an apparently impossibly low number.

From this discussion we see that brute force improvement of qubit errors is not a viable

8The discussion here pertains only to decoherence processes which are described as an exponential
decay, ie. with a rate. Not all decoherence processes produce exponential decay, most notably the low
frequency flux noise responsible for phase decoherence in superconducting qubits. Still, the essence of
the present discussion remains intact.

29



strategy for building a quantum computer. Fortunately, there is better way.

It turns out that quantum information can be processed in way that tolerates errors.

The details of how this works are beyond the scope of this thesis, but we explain the basic

idea here. First, consider the state of a transistor in a classical computer. As discussed in

section 1.2.1, the transistor state tolerates errors simply because it averages over the states

of many electrons. In other words, the information represented by the effectively perfect

transistor state is distributed over many smaller and imperfect elements. This allows

feedback circuitry to stabilize the current in the transistor. In a similar way, quantum

information can be distributed over an array of many imperfect qubits in such a way that

faults on the individual qubits do not ruin the quantum information represented by the

whole array. Several schemes exist, but we focus on a particular one called the “surface

code”.

1.4.1 Surface code

In the surface code, a single qubit of quantum information is encoded into a two di-

mensional array of imperfect, physical qubits [17, 38]. The single qubit of information

encoded in the array is called a “logical qubit”, as distinguished from the physical qubits.

The array is stroboscopically measured in such a way that individual qubit errors are

detected, while the logical qubit is not. In this way, the quantum state of the logical

qubit can be maintained for times greatly exceeding the coherence times of the physical

qubits. Error detection and correction protocols like the surface code were a critical de-
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velopment in the field, as they render realistic quantum hardware useful for applications

in a quantum computer.

The surface code is a cyclic protocol. The physical qubits are manipulated through

unitary transformations as part of the error detection sequence, a subset of the qubits

is measured, and then the process is repeated indefinitely throughout the algorithm.

For the surface code to produce a logical qubit with coherence exceeding that of the

physical qubits, the error rate per qubit per surface code cycle must be on the order

of 1%, much more lax than the one we found for the brute force approach. Still, to

achieve the 1% error per cycle threshold, the repetition rate of the protocol must be

fast compared to the physical qubits’ coherence times. In particular, the time of the

qubit state measurement must be Tmeasure . Tcoh/100, with an accuracy of at least 99%.

Achieving these specifications is the main goal of the work in this thesis.
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Chapter 2

Measuring a Qubit’s State

In this chapter, we discuss the basic physics of state measurement in superconducting

qubits. We give a physical and historical picture of state measurement so that the reader

will more easily understand the motivation for the work done in this thesis, and the

technical details presented in following chapters.

The chapter is divided into three parts. In the first section we explain why state mea-

surement is generally a hard problem and list the requirements for state measurement

in a quantum computer. In the second section, we discuss the basic measurement mech-

anisms used in several different types of superconducting qubits. In the third section,

we explain the rationale behind the state measurement mechanism used in the latest su-

perconducting qubits and describe how the work in this thesis was intended to improve

upon prior techniques.
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2.1 Measurement is hard

Constructing an apparatus to measure the quantum state of a superconducting qubit is

inherently difficult. In order to measure the qubit state, we need to physically couple the

qubit to some kind of measurement apparatus, but this introduces unwanted decoherence

channels. A good measurement system must accurately distinguish the quantum states

of the qubit on demand, without spoiling the fragile coherence of the state during the

coherent control phase of the computation. Here we list the criteria required of a state

measurement system for superconducting qubits.

1. Accuracy: Existing theoretical protocols for quantum fault tolerance require qubit

state measurement with accuracy of at least 90% if all other parts of the computer,

such as the logic gates, operate flawlessly. However, in a real system with imperfect

gates, current protocols require accuracy of ∼ 99%. Therefore, we need to be able

to distinguish the two computational states |0〉 and |1〉 with 99% accuracy.

The computational states differ by one microwave photon of energy. Microwave

photons, being 106 times less energetic than optical photons, are too low energy to

be directly counted with high accuracy. Energy measurement is therefore not viable,

and we have to find other properties of the qubit to use for state discrimination.

Two obvious candidates are the circuit’s charge and flux. If |0〉 and |1〉 correspond

to different mean values of charge and flux, ie. 〈Q̂〉0 6= 〈Q̂〉1 or 〈Φ̂〉0 6= 〈Φ̂〉1, then

we can use a charge or flux measurement to distinguish the qubit states. The

charge difference between the qubit states is at most 2e, and the flux difference is
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at most Φ0.1 Distinguishing these weak signals with the needed accuracy requires

exquisitely sensitive and highly specialized detection hardware. In order to couple

to such weak signals the measurement hardware must be integrated onto the same

chip as the qubits, meaning that the detector fabrication steps must be compatible

with the fabrication of the superconducting qubits themselves. Despite these diffi-

culties, charge and flux measurement with high accuracy is possible, as we will see

below.

The requirement of high accuracy also means that the measurement time must be

a small fraction of the qubit lifetime so that the qubit does not change state during

the measurement.

2. Fast repetition: In order to be useful in cyclic fault tolerance protocol like the

surface code, any reset time in the measurement apparatus must be short compared

to the qubit life time. If it is not, then the qubits will lose coherence while the

computer waits to be able to use the measurement system.

3. Coherence: The measurement apparatus itself must not spoil the quantum co-

herence of the qubit states during the coherent part of the computer’s operation.

The process of measuring a quantum state destroys its coherence by construction,

so it is essential that the measurement process can be switched off. If it cannot,

then the qubit lifetime can never exceed the measurement time. Furthermore, the

1To give an intuitive idea of these scales we can consider the voltage or current sensitivity needed
to measure them. One electron charge on a capacitance of 1 pF gives a voltage of 0.16µV, and larger
capacitance, including parasitic capacitance, lower the voltage. One Φ0 of flux in a 2 pH loop induces
1mA of current, and again larger inductance lowers the current.
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measurement system must not inject noise into the qubits or load them with too

much damping.2

4. Non-demolition: For the purpose of fault tolerance, when measuring a qubit we

want to know which state it was in when the measurement was first turned on.

Once we have that information, the qubit does not actually have to be in that

same state at the end of the measurement. As long as we know which state the

qubit was in at the end of the measurement, we can put it into whatever other

state we wish with control pulses. A measurement process in which there is a one

to one correspondence between the measurement output and the final state of the

measured system is said to be “non-demolition”. A measurement system without

this property leaves the qubit in an unknown state after measurement, in which

case the qubit cannot be reliably reused.

5. Multiplexing: In order for a qubit measurement system to be usable in a quantum

computer, it must work not only for single qubits, but for large qubit systems. This

requirement means that the measurement apparatus should be comparable to or

smaller than the the qubits in size, and should not significantly increase the number

of control wires needed to operate the computer.

We will keep these criteria in mind as we consider examples of qubit state measure-

ment systems, and comment on how each example does or does not satisfy each criterion.

2Injection of noise and damping are actually fundamentally the same thing, as described by the
classical and quantum versions of the fluctuation-dissipation theorem. For now, it is useful to think of
noise and damping separately for the sake of intuitive reasoning.
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Note that the criteria presented above and the ensuing discussion are focused on

the case of strong projective measurement as appropriate for a surface-code style fault

tolerant system. Other fault tolerance strategies using continuous “weak” measurement

have been proposed and are the subject of ongoing research.

2.2 Examples

This section discusses a few existing superconducting state measurement systems. The

purpose of the section is to understand the practical difficulties in meeting the criteria

given in the previous section, and to get a historical picture of state measurement in

superconducting qubits.

2.2.1 Charge measurement

The first time resolved observation of quantum coherence in an electrical circuit was done

in 1999 in a charge qubit [34]. A charge qubit consists of a superconducting island or

“box” coupled to charge reservoir (ground) very weakly through a Josephson junction,

as shown in Fig. 2.1. The |0〉 and |1〉 states of the qubit correspond to either zero or

one extra Cooper pair having tunnelled from the reservoir to the island. Because the

coupling between the island and ground is so weak, the wave function of the qubit is

very narrow in the charge basis, and the charge can be thought of as a well-defined

classical variable. This allows the |0〉 and |1〉 states to be distinguished through charge

measurement. A probe electrode is connected weakly to the island through another
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Figure 2.1: The charge qubit used in the first time resolved superconducting qubit mea-
surements. (a) Micro-graph of the device in which can be seen the charge reservoir and
superconducting island (“box”). The probe electrode on the right is used for charge based
state detection. Note the extremely small scale of the device. This was needed so that
the self capacitance energy would be much larger than the junction tunnelling energy,
which allows charge to be a well-defined (ie. semiclassical) quantity. (b) Schematic of
the device showing the geometry of the reservoir, box, and probe electrodes. The image
was taken from Ref. [33].
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Josephson junction. This probe electrode is voltage biased such that when the circuit is

in |1〉 with an extra Cooper pair on the island, two individual electrons can sequentially

tunnel out of the island through the probe junction, changing the qubit state from |1〉 to

|0〉 in the process. The tunnelling occurs stochastically with a rate set by the parameters

of the probe junction and of the qubit. The slight change in island voltage when the

qubit is in |0〉, combined with the probe bias voltage, blocks electron tunnelling through

the probe junction via the Coulomb blockade effect [33]. In this way the qubit states were

discriminated based on the detection of charge tunneling through the probe junction.

This measurement system has two shortcomings. First, because the measurement

worked through random tunnelling of electrons out of the island, with a corresponding

transition of the qubit from |1〉 to |0〉, it was by construction a decoherence channel for

the qubit. The probe junction and its associated decoherence channel is always present,

so the the excited state of the qubit could never live longer than the rate at which

electrons tunnelled out of the island through the probe junction. This means that the

qubit coherence time could not exceed the measurement time. Second, the measurement

required detection of an extremely weak charge signal, just two electrons. In the original

experiment, the authors repeated measurements many times to integrate over many two-

electron detections, thus improving the signal to noise ratio enough to distinguish the

two qubit states.

In a later experiment, a single electron transistor (SET) was used to detect the charges

[1]. The SET is sensitive enough that the visibility of a single-shot measurements was
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increased to 87% and 93% for the |0〉 and |1〉 states respectively, bringing the accuracy

near the threshold needed for a quantum computer. The tunnelling process could be

turned on and off with voltage biases applied to the readout circuitry, thus satisfying the

decoherence criterion. The measurement circuit needed to be pulsed on for 300 ns, while

the qubit life time was observed up to 5.8 ns with the measurement off. Unfortunately, the

device had a long reset time of 2 ms, thus failing the fast repetition criterion. Furthermore,

a single SET was never shown to measure more than a single qubit, and multiplexed

readout with a SET is thought to be prohibitively difficult [56].

A more fundamental problem is that the charge qubit itself has not been shown to

permit the coherence and precise control needed for use in a quantum computer. Because

the wave function is narrow in the charge basis, small noise charges near the qubit lead

to random phase noise in the its quantum state, causing loss of coherence. The charge

qubit is so sensitive to charge noise that practical noise levels render it unusable unless

it is operated at a specific frequency at which it has a first order insensitivity to charge

noise. Not only is this single frequency operation a major constraint, but the charge

noise is so large that even operating at the insensitive point the charge qubit has not

yet been shown to permit the degree of control and coherence in a multi-qubit system

needed for a quantum computer. As such it has mostly been abandoned as a candidate

for a quantum computer.
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Figure 2.2: Potential energy curves and circuit diagram for the flux qubit. a) The flux
qubit is a superconducting loop interrupted by three Josephson junctions, one with lower
critical current than the other two. An external bias flux Φext controls the shape of the
energy potential. b) When the system is biased by an external flux of Φ0/2 the potential
is symmetric. In the absence of quantum tunnelling, there would be two degenerate
ground states localized within the potential wells, as shown in gray. Tunnelling causes
these states to hybridize into symmetric and anti-symmetric states as shown in blue and
red respectively. c) When the external flux bias is changed from Φ0/2 (increased or
decreased) the degeneracy of the left and right states is removed, and |0〉 and |1〉 localize
into the left and right wells.
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2.2.2 Flux measurement

Flux qubit

In the same year as the first time domain measurements in a charge qubit, quantum

behavior was observed in a qubit where the wave function is narrow in the flux basis [28,

52]. This qubit, named the “flux qubit” uses three junctions3 in a superconducting loop,

as shown in Fig. 2.2 a. When the circuit is biased by an external magnetic flux equal to

Φ0/2 the potential takes a symmetric double-well shape. If the energy barrier separating

the two minima were infinitely large, then the system would have two degenerate ground

states |L〉 and |R〉 as shown by the gray curves in Fig. 2.2 b. With the finite height of the

barrier and the nonzero width of the wave functions, the left and right localized states

hybridize to form one symmetric and one anti-symmetric state as illustrated by the blue

and red curves. These states are the |0〉 and |1〉 states of the qubit.

The qubit states shown in Fig. 2.2 b have the same mean flux and charge (the values

are zero). This degeneracy precludes discrimination between the states. As the degen-

eracy arises fundamentally from the reflection symmetry of the potential, changing the

external bias flux breaks the symmetry, and lifts the degeneracy, as shown in Fig. 2.2 c.

A small change in the bias flux causes one well to become lower in energy than the other.

When this happens the hybridization of the two states within the energy wells decreases

and the states become more localized. If this change is made slowly with respect to the

frequency of the |0〉 → |1〉 transition, then the system will remain in whichever energy

3The use of three junctions instead of just one has to do with design details not covered here. As the
junctions are all in series, we can just think of them as a single junction.
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state it was in initially. Therefore, if the system starts out in |0〉, the lower energy state,

then after the change in external flux it will be in the left well. On the other hand, if

the system starts out in |1〉, then after the flux change it will be found in the right well.

The horizontal axis of the plots in Fig. 2.2 is the self flux of the qubit circuit loop, so

measurement of magnetic field near the loop yields a measurement of the qubit state.

This strategy was used in Ref. [52].

This measurement technique has a major advantage. The left and right wells are

separated by a flux difference of nearly Φ0, which is a large enough flux to be detected by

a superconducting quantum interference device (SQUID) magnetometer with very high

signal to noise ratio. Therefore, the flux qubit state can be measured in a single shot.

Although single shot measurement was not achieved in the original work of Ref. [52], it

has become routine in subsequent works using SQUID based measurement.

SQUID readout has several disadvantages. Operation of a SQUID leads to generation

of electrons excited into states above the superconducting gap. These excited electrons

can interact with the qubit mode, so they impose a decoherence channel. Furthermore,

this measurement strategy requires a dedicated SQUID for each qubit, which complicates

scaling to larger systems.

Phase qubit

Another double-well qubit, the “phase qubit” was introduced in 2002 [25]. The wave

functions of the phase qubit are so narrow in the flux basis that they would not normally

feel enough of the anharmonic shape of the potential wells to behave with the non-linear
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Figure 2.3: The phase qubit. a) The phase qubit is operated such that the wave function
sits in an asymmetric shallow well of the potential energy. Tunneling out of this well is
used as a mechanism for measurement. b) The ground (blue) and excited (red) states in
the shallow well are meta-stable. By momentarily lowering the height of the potential
barrier, the excited state tunnels out of the well, while the ground state remains in the
well. c) Once the excited state has tunneled, external bias is used to bring the potential
into a symmetric shape where the states are separated by a large flux and can be measured
with a SQUID.

character needed for a qubit. To recover the non-linearity, a bias (current in the original

work, but flux in later versions) introduces asymmetry in the potential, making one of

the wells very shallow, as shown in Fig 2.3 b. In this arrangement, the wave function feels

the asymmetric potential shape enough to form unequally spaced levels. The two logical

states of the qubit are the ground and first excited states of this shallow well.

To measure the state, we selectively tunnel the the excited state into the right po-

tential well, as shown in Fig. 2.3. A short bias pulse is used to momentarily lower the

height of the barrier seen in Fig. 2.3 b. This allows the excited state to tunnel out of the

shallow left hand well and fall into the deep right hand well. The ground state remains

in the left hand well. The bias is then changed to bring the potential into the symmetric

shape shown in Fig 2.3 c where the two states can be distinguished by their now different

fluxes using a SQUID.
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The benefit of this measurement strategy is that the states can be distinguished

with > 90% accuracy using a very fast measurement pulse. However, there are several

drawbacks. First, the decay of the tunneled excited state to the bottom of the right

hand well is a dissipative process. Emission of energy during this process has been

observed to drive neighboring qubits into excited states, causing measurement cross-talk

errors. Second, the process of tunneling into the right hand well renders the phase qubit

no longer a qubit: it has undergone fundamentally dissipative evolution, destroying its

phase coherence, and it no longer resides in the shallow nonlinear well. This means that

a phase qubit measured in this way cannot be used to store and process quantum data

in a protocol requiring more than one measurement step, such as the surface code. Note,

however, that the phase qubit could still be used as a measurement device by mapping

the state of a data qubit onto the phase qubit and then measuring the phase qubit. This

idea is discussed further below. In any case, once the phase qubit tunnels, it must be

reset into the shallow well if it is to be used again. This is complicated by the fact that

we may not know whether or not the phase qubit tunneled. Practical reset times for

the phase qubit are in the tens to hundreds of microseconds, which is much too long

compared to the coherence times of currently available devices.

2.2.3 Inductance measurement

Also in 2002 a superconducting qubit called the “quantronium” was introduced [53].

This device has characteristics in between those of the charge and flux qubits. A circuit
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Figure 2.4: The quantronium qubit. The leftmost branch is essentially a charge qubit
with two junctions connecting the island to the reservoir. The extra capacitance in the
next branch reduces the quantronium’s sensitivity to change noise. The rightmost three
branches, shown in dotted line, are used for measurement. With the current source off,
the circuit mode is symmetric from top to bottom and does not couple into the amplifier
or large junction. Turning on the current bias breaks this symmetry, and when the large
junction switches to the voltage state that voltage is measured by the amplifier.

diagram of the quantronium is shown in Fig. 2.4. Focusing first on the part of the circuit

drawn with solid line, the device is essentially a charge qubit: a superconducting island

coupled to a charge reservoir through a junction, but here the single junction of the charge

qubit is replaced by a nominally symmetric pair of junctions. This branch is shunted

by a parallel capacitance. The additional capacitance causes the qubit wave function

to broaden in the charge basis while simultaneously narrowing in the flux basis, which

reduces sensitivity to charge noise.4 Note that due to the symmetry of the circuit, the

qubit mode has equal voltage on the top and bottom (points A and B in Fig. 2.4).

The quantronium uses an integrated measurement circuit, as illustrated by dotted part

of Fig. 2.4. The measurement circuit consists of a large Josephson junction, a current

source, and a voltage amplifier connected in parallel with the qubit. In normal operation

the current bias current is set to zero, and in that case, because of the symmetry of

4Reduced charge noise incurs increased flux noise, but with the parameters used at the time this
change lead to an over-all improvement in the device performance.
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the circuit, the qubit oscillation mode couples neither to the large junction nor to the

amplifier. This prevents the readout circuit from loading the qubit with a decoherence

channel.

To measure the state of the quantronium, the bias current is pulsed on. The current

pulse divides between the branch with the small junctions and the branch with the large

junction. The pulse height is nearly the critical current of the large junction. Depending

on the state of the qubit, the inductance of the small junctions will be slightly different,

and additional current may flow into the large junction, causing the total current to

exceed the large junction’s critical current. This causes the large junction to switch

out of the superconducting state and produce a voltage pulse which is detected by the

amplifier. The important feature of this system is that the readout circuitry does not

couple to the qubit mode during normal operation. Only when the current source is

turned on does the qubit mode couple to the readout circuit. This prevents the readout

system from introducing unwanted decoherence into the qubit while the measurement

system is off.

Still, this system has disadvantages. Exceeding the large junction’s critical current to

produce a voltage signal generates electron excitations above the superconducting gap,

just like the SQUID used to measure flux qubits. Additionally, this system requires a

bias current line and voltage amplifier for every qubit, which would bring a large and

difficult to engineer overhead into design of a quantum computer. However, as is the

case with the charge qubit, the most important problem is that control of the quantum
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Figure 2.5: The transmon circuit and energy potential. a) The transmon is similar to a
parallel LC oscillator, but with a nonlinear inductor. The potential energy has the shape
of a cosine, and the large C, analogous to a large mass, prevents the wave functions
from tunneling between wells. b) The single junction is replaced by a loop with a pair
of junctions. External flux is used to modulate the effective critical current of the loop,
which changes the height of the potential energy. This in turn causes the resonance
frequency to shift.

state of quantronium qubits has not been demonstrated to be accurate enough to effect

the single and multiple qubit logic gates needed for a quantum computer.

Note that this system does not directly measure charge or flux. The switching of the

large junction depends on the qubit state through the intrinsic inductance of the small

junctions, rather than on a electric or magnetic field produced by the circuit.

2.3 The transmon qubit - RF measurement

As of this writing, the only superconducting qubit which has been demonstrated to

support high accuracy control in single and two qubit logic gates is the transmon [21, 4].

The basic transmon circuit is shown in Fig. 2.5 a. It is essentially an LC oscillator, but
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with a Josephson junction in place of a normal inductor to make it non-linear. This is

precisely the simple circuit we considered in Chapter 1 with the Hamiltonian

H =
Q2

2C
− EJ cos (2πΦ/Φ0) , [Φ, Q] = i~. (2.1)

The first term is completely analogous to the kinetic energy of a mechanical system

T = p2/2m if we think of Q as the momentum and C as the mass. Similarly, we can

think of Φ as the position of the particle in a cosine shaped potential energy with height

EJ . Noting that in the mechanical case [x, p] = i~ completes the analogy. The transmon

is designed with a large C to make it insensitive to charge noise. This, being equivalent

to a large mass, prevents the wave function from tunneling between the minima of the

cosine potential. As a result, we can consider only a single minimum, as indicated by the

solid line part of the potential in Fig. 2.5 a.

In practice the single junction is replaced by a pair of junctions in a loop, as illustrated

in Fig. 2.5 b. This allows the resonance frequency of the transmon to be modulated

dynamically. The loop acts like a single junction, but with a critical current Ic which

depends on external flux threading the loop. Because the inductance of a junction is

related to the critical current by LJ = LJ0/
√

1− (I/Ic)
2, we can control the inductance,

and therefore the resonance frequency ω0 of the circuit, via the external flux. Another way

to think about this is that the external flux changes the effective EJ of the two-junction

loop, thus changing the height of the cosine potential, as illustrated in Fig. 2.5 b. This

change in the shape of the potential causes the energy difference between the states to

change, thus changing their resonance frequency.
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The transmon is particularly difficult to measure. Like the flux qubit the wave func-

tions are broad in the charge basis, so the states cannot be distinguished via charge

detection. On the other hand, because of the symmetric shape of the potential the states

all have the same mean flux. Therefore, charge-based and flux-based measurements are

both impossible.

2.3.1 Qubit as a photo-detector

One measurement strategy is to transfer the transmon state into a different kind of qubit

where charge or flux measurement is available. This idea, which is essentially using a

qubit as a microwave photon detector, is illustrated in Fig. 2.6. The measurement process

is turned on by dynamically tuning the transmon into resonance with the detector, in

this case a phase qubit. If there is a quantum of energy in the transmon, then when

the transmon comes on resonance with the phase qubit, the photon begins to oscillate

between the two qubits. Once the photon is completely swapped into the phase qubit,

the transmon is taken off resonance to stop the interaction. The phase qubit is then

measured in the normal way. If the phase qubit is measured to be in the excited state,

then there must have been a photon collected from the transmon and so the initial state

of the transmon is inferred by the measured state of the phase qubit.

This strategy does work, and in fact was used in the initial transmon experiments

at UCSB. However, it inherits all of the problems already mentioned with phase qubit

measurement, most importantly the long dead time needed to reset the phase qubit.
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Figure 2.6: Qubit measurement by swapping the excitation into an auxiliary circuit. (a)
The qubit starts in a superposition of the ground (blue) and excited (red) states. (b)
The qubit is brought on resonance with the detector. If it was in the excited state, one
quantum of energy is swapped into the detector, otherwise nothing happens. In either
case, the qubit is left in the ground state. (c) The qubit is brought off resonance with
the detector to turn the interaction off. The detector is now in one of two measurably
different states corresponding to the two possible qubit states.

2.3.2 Energy measurement with travelling waves

We consider briefly the notion of directly measuring the qubit energy, as it will shed light

on the subsequent discussion. Suppose we allow the qubit energy to leak out from the

qubit into an amplifier as a travelling wave, using a circuit as shown in Fig. 2.7 a. The

qubit state would then be determined by measuring the amplitude of the wave after the

amplifier by conventional means. Crucially, many qubits could be attached in parallel to

the same transmission line and amplifier with the various output signals discriminated via

frequency multiplexing. The problem with this solution is that the signal to noise ratio

is fundamentally limited to near unity. The theoretical limit on the input referred noise

power of a phase preserving linear amplifier is PN = (1/2)~ωB where B is the amplifier

bandwidth [11].5 For a measurement of duration T , the collected noise energy would be

EN = PNT = (1/2)~ωBT . To measure a pulse of length T the amplifier bandwidth must

satisfy B ' 1/T , so EN ' (1/2)~ω. This is already half as large as the maximum energy

5We consider linear amplifiers because we want frequency multiplexing.
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that could be collected from the qubit in a system with perfect efficiency. Therefore,

the signal to noise ratio fundamentally cannot exceed 2, which is too low. The intrinsic

suitability of this circuit for scaling to larger numbers of qubits suggests we find a way

to fix the signal to noise ratio problem.

2.3.3 Dispersive measurement

As we can measure neither the charge, flux, nor energy, we need to find another parameter

of the qubit that differs between the two states. Because the qubit is non-linear its

resonance characteristics depend on its energy state. This suggests that a spectroscopic

measurement might be possible. Think of the qubit as a simple harmonic oscillator, but

whose resonance frequency depends on whether it is in |0〉 or |1〉. As a probe signal

applied to the circuit is swept in frequency, the phase shift acquired by that signal

undergoes a sharp change across the resonance. As this resonance frequency depends on

the qubit state, we can use the position of the phase shift to measure the qubit. A circuit

diagram suitable for this measurement is shown in Fig. 2.7 b. The probe signal is injected

into the left side of the transmission line. As it travels past the qubit and drives the

qubit resonance, it picks up a phase shift which depends on the qubit state. The phase

responses for the two states are plotted in Fig. 2.7 c. By probing at a frequency between

the two possible qubit resonances, the phase shift difference is maximized and the qubit

state could be determined.

This strategy solves the signal to noise ratio problem because the energy of the in-
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Figure 2.7: Measurement based on traveling waves. a) The qubit state is determined by
the presence or absence of an outgoing wave. As the maximum measured energy is just
the single photon in the qubit, the signal to noise ratio is too low. b,c) An externally
supplied voltage is used to raise the signal to noise ratio. The wave acquires a qubit
state dependent phase shift as it scatters from the shunt line containing the qubit. The
blue and red curves indicate the phase response for the qubit in |0〉 and |1〉, respectively.
The gray curve indicates the difference in these phases. The center frequencies of the
qubit in the ground and excited states are indicated by the blue and red arrows, and
the frequency yielding the maximum phase signal is indicated by the black arrow. d,e)
A filter placed between the qubit and external resistance could raise the limit on qubit
lifetime, but this leads to a smaller detectable phase shift.
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jected wave can be arbitrarily large. However, we have a coherence problem because the

resistance in the external circuitry loads the qubit. In fact, the qubit lifetime imposed

by this external circuitry is equal to the time it takes for the qubit to respond to the

probe pulse and react with a phase shift. This means that the qubit life time during the

measurement cannot significantly exceed the measurement time.

We could try to isolate the qubit from the damping of the external circuit with a

filter, as illustrated in Fig. 2.7 d. The filter decouples the qubit circuit from the external

circuit over a frequency range including the qubit resonance, so the qubit is not damped.

However, the filter also decouples our probe signal from the qubit in that frequency band,

so we would have to probe outside the band blocked by the filter. Far from the qubit

resonance, the phase acquired by the probe signal is insensitive to the qubit state, as

shown in Fig. 2.7 e, so the states are not well discriminated.

To isolate the qubit from damping while still allowing the probe signal to acquire a

state dependent phase shift, we replace the filter in Fig 2.7 d with an auxiliary harmonic

resonator, as shown in Fig. 2.8 a. The resonator frequency ωr is detuned from the qubit

by a frequency ∆. Therefore, at the qubit frequency the resonator is a short to ground

and prevents the qubit from feeling the dissipation of the external circuitry. This blocks

radiation from the qubit, and solves the coherence problem. As the qubit has different

impedance in its two states, the loading it imparts on the resonator is state dependent,

so the resonator frequency depends on the qubit state. We characterize the resonator

frequency shift by a parameter χ, defined by 2χ = ωr,|0〉 − ωr,|1〉, as shown in Fig. 2.8 b.
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Figure 2.8: Schematic for measurement with an auxiliary resonator. a) The qubit is
protected from resistance in the external circuitry by a detuned resonator which acts as
a short at the qubit frequency. b) The qubit states cause the resonator frequency to shift,
leading to large measureable phase shift at the resonator frequency.

We infer the qubit state by probing the system in between the two resonator frequencies

and measuring the phase.

The physics of the qubit state-dependent resonator frequency shift was first demon-

strated in 2004 and 2005 at Yale with charge qubits [48, 55, 54], and the shift was first used

to measure qubit states in those experiments. This strategy has been named “dispersive

measurement” or “dispersive readout” because it depends on the qubit state dependent

dispersion of the probe signal. Using bifurcation amplifiers, dispersive measurement was

shown in 2009 to yield measurement with accuracy up to 94% [24], and later experiments

with transmon qubits using linear Josephson parametric amplifiers achieved accuracy up

to about 94% [19].

The dispersive measurement strategy does have an important limitation. We said
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above that the resonator blocks the qubit from feeling the dissipation of the external

circuitry, but this is true only up to a point. Even far off resonance, the resonator is not

a perfect short, so the qubit is still damped to some degree. This effect is quantified by a

relation between four parameters. First, we have the limit on qubit lifetime T1 imposed

by the measurement circuit. Second, we have the resonator-transmission line coupling

strength characterized by the inverse ring-up time κr. This is set by Cκ, as shown in

Fig. 2.8. Next is the the resonator-qubit coupling strength g, which is set by Cg, as

shown in Fig. 2.8. Finally, we have the qubit-resonator detuning ∆. These parameters

are related by [7]

κrT1 .

(
∆

g

)2

. (2.2)

This formula expresses a tension between fast response time of the resonator κr and long

coherence time of the qubit T1. For a given ∆ and g, speeding up the measurement with

faster κr leads to lower T1 of the qubit. As shown in Chapter 3, to get a large measurable

phase shift, there is an additional constraint

κr ≈ χ =
g2

∆
(2.3)

which comes from the fact that, because the resonator is attached in parallel with the

transmission line, the phase response measured in the circuit shown in Fig. 2.8 a is not

actually the pure arc tangent shown in Fig. 2.8 b. Combining equations (2.2) and (2.3)

yields

κ2
rT1 . ∆. (2.4)
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Suppose we have a qubit with an intrinsic energy decay time of T1. For 99% accurate

measurement we need the entire measurement procedure to be shorter than T1/100.

Taking the entire measurement sequence to require a time of 10κ−1
r , this means we need

κ−1
r ≥ T1/1000. With currently available transmons at T1 ≈ 20 − 40µs, this gives

κ−1
r ∼ 30 ns and therefore requires ∆ > κ2

rT1 = 30 GHz. This large of a qubit-resonator

detuning is completely impractical. With the qubit at ∼ 6 GHz, such a large ∆ would

put the resonator at such a high frequency that practical microwave engineering becomes

much more difficult. For example, parasitic resonances on the micro-fabricated qubit

chips become a serious problem when the signal wavelength becomes smaller than the

size of the chip. A frequency of 30 GHz corresponds to a wavelength of 1 cm in vacuum

(substantially less in a dielectric substrate) which is on the order of practical chip sizes.

Another strategy is needed.

2.3.4 Filters

In 2010, researchers at Yale introduced the idea of on-chip filters to further protect the

qubit from damping induced by environment [40]. The circuit is shown in Fig. 2.9 a. In

this system the resonator is constructed from a λ/2 piece of co-planar wave guide inserted

in series with the drive line. The qubit is connected in parallel with the resonator, and

the filter is placed on the output of the resonator. This filter forms a notch at which

energy cannot leave the resonator. By placing this notch at the qubit frequency, the

qubit is protected from emitting energy. In Ref. [40], it was shown that for a given ∆,
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Figure 2.9: A filter used to increase the κrT1 product. a) The filter is placed on the
output of the resonator to prevent radiation at the qubit frequency from leaving the
system. b) The filter was implemented as a symmetric pair of λ/4 stubs to ground. c)
Micrograph of the Yale device. The filter is seen on the right side as two meandering
co-planar wave guide resonators. d) Transmission through the system. Note the notch
just above 6 GHz, which protects the qubit. The large increase in transmission at 8 GHz
is the resonance frequency of the resonator.

57



κr, and g, the filter increased the qubit T1 above the limit from Eq. (2.2). However, that

work did not discuss the all important speed and accuracy of the measurement.

Introduction of on-chip filters was a big step forward for measurement of supercon-

ducting qubits, because it opened the door for high speed and high accuracy measurement

in transmons. However, the system used in Ref. [40] is not really suitable for experiments

with multiple qubits. Because the resonator is in series with the drive line, there is no

obvious way to include more than one resonator. This means that all qubits must be

connected to the same resonator. In fact, experiments at Yale did use multiple qubits

connected to a single resonator (although with no filter), and actually relied on this as the

means by which they coupled the qubits together. However, this complicates measure-

ment in a larger system. With N qubits connected to one resonator, unique identification

of all of the possible qubit states would require us to distinguish 2N different dispersed

phases. This is a really hard problem and has never been demonstrated to work. Fur-

thermore, the notch filter itself is not easily adapted to a multi-qubit system. The notch

protects only one qubit, and is incompatible with dynamic frequency tuning of the qubits

which is an essential ingredient for high accuracy logic gates [4].

This leaves us with two obvious next steps. First, we must find a filter architecture

which is compatible with a multi qubit system. Second, we must study the speed and

accuracy of dispersive measurement in the filtered system. Those tasks were the main

objectives of the work in this thesis.
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Chapter 3

Dispersive Measurement

3.1 Introduction

In the previous chapter we found, through historical survey and qualitative discussion,

that dispersive measurement allows multiplexed qubit measurement while partially pre-

serving the qubit coherence. In this chapter, we analyze dispersive measurement in full

quantitative detail.

In dispersive measurement, where a qubit is coupled off resonance to a linear res-

onator, the resonator’s frequency depends on the qubit’s quantum state. Photons pop-

ulating the resonator acquire a phase shift which depends on the resonator’s frequency

and therefore on the qubit state. In other words, the photons are “dispersed” in a way

which depends on the qubit state. Therefore, the qubit state is measured by probing

the resonator and measuring the phase of the outgoing photons. The analysis comes

naturally in two steps. First, we develop the Hamiltonian for a qubit coupled to a res-
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onator with large qubit-resonator detuning. From the Hamiltonian we find an equation

expressing the resonator frequency shift in terms of other parameters in the system, such

as the qubit-resonator coupling strength and detuning. Second, we analyze the classical

problem of measuring the resonator’s resonance frequency through microwave scattering.

Combined, these analyses show how the scattered microwave signal carries the informa-

tion of the qubit state. We then describe the process by which the qubit state collapses

as information is carried away by the dispersed photons. At the end, we present addi-

tional details of the dispersive measurement circuit which come into play in a practical

lab setting where amplifier saturation is an important limitation.

3.2 Dispersive Hamiltonian

In this section we analyze the Hamiltonian of a qubit coupled to a linear resonator. We

work in the limit where the difference ∆ ≡ ωq − ωr between the qubit and resonator

frequencies is large compared to the strength of the qubit-resonator coupling g, as this is

the limit in which the resonator protects the qubit T1.

A detailed derivation of the Hamiltonian for a resonant circuit, starting from first

principles, is given in Ref. [45]. There we derive the Hamiltonian Hr for a harmonic

oscillator, and Hq for a qubit, finding

Hr/~ = ωra
†a (3.1)

Hq/~ = −ωq(σz/2). (3.2)
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In these equations, ωr is the resonance frequency of the resonator and ωq is the |0〉 → |1〉

transition frequency of the qubit. The operators a† and a are the normal raising and

lowering operators for the harmonic oscillator, and σz is the Pauli matrix represented as

σz =

(
1 0
0 −1

)
(3.3)

where the qubit basis states are ordered {|0〉, |1〉}. In Ref. [45], we also derive the

interaction Hamiltonian HI which comes from the coupling between two circuits, finding

HI/~ = gσy(−i)(a− a†). (3.4)

where g is the coupling strength in dimensions of frequency. We expand σy in terms of

spin raising and lowering operators,

σ+ =

(
0 0
1 0

)
σ− =

(
0 1
0 0

)
(3.5)

finding

σy = i (σ+ − σ−) . (3.6)

Using this form, we find

HI/~ = g
(
σ+a+ σ−a

† − σ+a
† − σ−a

)
. (3.7)

The second and third terms in parentheses do not conserve excitation number and are

discarded.1 We are left with

HI/~ = g
(
σ+a+ σ−a

†) . (3.8)

Combining the three parts of the Hamiltonian, we find the Hamiltonian of the complete

1Discarding these terms is rigorously justified in the rotating frame where they acquire time evolution
which is fast compared to the other terms.
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system

H/~ = (Hr +Hq +HI) /~ = ωr a
†a− ωq

2
σz + g

(
σ+a+ σ−a

†) . (3.9)

The interaction can be simplified with a change of basis which eliminates the inter-

action to first order in g/∆. We rotate the Hamiltonian by the unitary operator

U = exp [λT ] (3.10)

where λ ≡ −g/∆ and T ≡ σ+a−σ−a†. In the dispersive measurement system, |∆| � g,

so λ is a small dimensionless parameter. As such, we use it as an expansion parameter.

Using the transformation operator U and a series expansion from Ref. [43] we can write

U †HU = e−λTHeλT (3.11)

= H − λ [T,H] +
λ2

2
[T, [T,H]] + · · · , (3.12)

which is a power series in λ. We compute the relevant commutators in Eq. (3.12) with

standard methods (see Ref. [43] for useful tricks). Some useful intermediate steps are

[T, n] = σ+a+ σ−a
† (3.13)

[T, σz] = 2
(
σ+a+ σ−a

†) (3.14)[
T, σ−a

† + σ+a
]

= 2 (σ+σ− − σzn) . (3.15)

Evaluating Eq. (3.12) to the second order in λ gives

U †HU

~
=
Hq

~
+
Hr

~
− g2

∆
σzn (3.16)

which can be interpreted as

HI/~ −→ −
g2

∆
σzn = χσzn (3.17)
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where χ ≡ −g2/∆ is the so-called “dispersive shift”. Note that if ωr > ωq, we have

∆ < 0, and therefore χ > 0. If we denote the resonator’s frequency when the qubit is in

|0〉(|1〉) as ωr,|0〉(ωr,|1〉), then, in this case, we have ωr,|1〉 < ωr,|0〉.

We interpret the dispersive shift χ in two different ways. Writing the system Hamil-

tonian as

H/~ = (ωr + χσz)n−
ωq
2
σz, (3.18)

the dispersive shift appears as a qubit state dependent shift of the resonator frequency.

The difference in resonator frequency for the two qubit states is 2χ. However, regrouping

the terms as

H/~ = ωrn−
ωq − 2χn

2
σz (3.19)

the dispersive shift appears as a resonator photon number dependent shift of the qubit

frequency. In the latter case we refer to the shift as the “ac Stark effect” [55, 48]. Note

that increasing n lowers the qubit frequency when χ > 0.

In the preceding analysis we assumed that the qubit had only two levels. In practice,

superconducting qubits have additional levels. Reference [21] finds that taking the third

level of the qubit into account modifies the expression for χ, yielding

χ = −g
2

∆

1

1 + ∆/η
(3.20)

where η ≡ ω21 − ω10 is the anharmonicity of the qubit (η < 0 for a transmon). In the

practical limit of |∆| � |η|, we find

χ = − g
2

∆2
η. (3.21)
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Note that χ→ 0 as η → 0, as expected for coupling of two harmonic oscillators.

3.3 Scattering

Now that we have shown that the qubit state induces a frequency shift on the resonator,

it remains to show how we measure that frequency shift. In this part of the calculation

we omit the qubit, taking its effect on the system into account through the resonator

frequency shift. Therefore, this calculation is classical, with the quantum effect of the

qubit encapsulated in the parameter χ calculated in the previous section.

We consider a resonator connected in parallel to a transmission line, as shown in

Fig. 3.1. A resonator with impedance Zr and frequency ωr is connected in parallel through

a capacitor Cκ to a transmission line. We model the resonator as a parallel LC circuit

with resonance frequency ωLC = 1/
√
LC, internal quality factor Qi and characteristic

impedance ZLC =
√
L/C. The shunt impedance is Zin = Zκ +Zr where Zκ = 1/iωCκ is

the impedance of the coupling capacitor, and Zr = ZLCQi/(1 + iQi(x− 1/x)) with x ≡

ω/ωLC is the impedance of the resonator. The shunt circuit interrupts the transmission

line, creating a scattering site for traveling microwave signals in the line. A voltage wave

injected into the input port with amplitude Vin scatters from the shunt circuit. Part of the

wave reflects with amplitude VinS11 and part is transmitted with amplitude Vout = VinS21.

In the following analysis, we show how, by measuring the amplitude and phase of the

scattered signal, we can infer the frequency of the resonator, and thus the state of the

qubit.
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Resonator

Figure 3.1: A transmission line shunted by a resonant circuit. In incoming voltage wave
is partially reflected and partially transmitted by the impedance mismatch at the point
where the resonator is coupled to the transmission line.

The scattering parameters Sij for a transmission line interrupted by a shunt circuit

with admittance Y = 1/Zin, as shown in Fig. 3.1, are [37]

S11 =
−Ȳ

2 + Ȳ
(3.22)

S21 =
2

2 + Ȳ
, (3.23)

where Ȳ ≡ Z0Y and Z0 is the characteristic impedance of the transmission line. From

these equations we can solve for S11 in terms of S21,

S11 = S21 − 1 . (3.24)

The qubit state measurement is based on the fact that the output voltage wave

amplitude depends on the properties, namely Q and ωr, of the resonator. To describe

this we must compute S21 in terms of probe frequency and the resonator parameters.

Using Eq. (3.23) it can be shown that
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Figure 3.2: Scattering diagram for shunt resonator

S21 =
Smin + 2iQlδy

1 + 2iQlδy
(3.25)

ReS21 =
Smin + (2Qlδy)2

1 + (2Qlδy)2
(3.26)

ImS21 =
2Qlδy(1− Smin)

1 + (2Qlδy)2
, (3.27)

where Q−1
l = Q−1

i + Q−1
c , Qc is the coupled Q of the resonator, Smin = Qc/(Qc + Qi),

and δy ≡ (ω − ωr)/ωr where ωr is the resonance frequency [26].2 A result that will be

useful later is that the imaginary part of S21 is extremal for δy = ±1/2Ql.

The inverse transmission amplitude is a very useful quantity

S−1
21 = 1 + eiφ

Qi

Qc

1

1 + 2iQiδy
(3.28)

This equation comes from inverting the usual expression for S21 and adding a phase

factor in the second term to account for possible impedance mismatches between the

2The frequency ωr is near to the resonator bare resonance but slightly detuned due to the coupling
capacitor and line impedance.
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input and output [27]. The diameter of the circle is

D = 1− Smin. (3.29)

Another useful relation is the detuning as a function of the measure transmission am-

plitude

δx =
1

2iQi

[
eiφ

Qi

Qc

(
S−1

21 − 1
)−1 − 1

]
. (3.30)

3.4 Qubit measurement

In this section, we explain the link between the quantum mechanical effect in which the

qubit state shifts the resonator frequency, and the classical scattering physics through

which we infer the resonator’s frequency. The crucial observation is that, in the dispersive

limit, the interaction between the qubit and resonator commutes with σz. This guarantees

that the interaction does not change the qubit’s projection along the z-axis of the Bloch

sphere.3 Therefore, we can assume that, for a given qubit state, we can ignore the qubit

and consider just the resonator at the frequency corresponding to that state. Because

the resonator is linear, the problem becomes classical and we are left to study how best

to distinguish the two possible resonator frequencies.

Let the two resonator frequencies corresponding to the qubit |0〉 and |1〉 states be

denoted ωr,|0〉 and ωr,|1〉. We calculated previously that these frequencies differ by ωr,|0〉−
3See the section on measurement induced dephasing for a discussion of how the measurement does

affect the qubit state.
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ωr,|1〉 = 2χ. If we probe the system at ωprobe = (ωr,|0〉 + ωr,|1〉)/2, ie. between the two

possible frequencies, the two possible values of S21 are given by Eq. (3.25) with δy = ±χ.

In order to get the maximum visibility in the dispersed probe signal, we must choose

parameters so that S21(±χ) are at diametrically opposed points on the circle in Fig. 3.2.

The top and bottom points (ie. those for which the imaginary part are extremized) are

the diametrically opposed points requiring the smallest frequency separation. As noted

previously, these points occur for δy = ±1/2Ql so the criterion for maximum visibility is

χ =
ωr
2Ql

=
κr
2
. (3.31)

3.5 Fresnel lollipops - separation error

The phase and amplitude of the scattered signal are extracted using traditional signal

processing techniques. The end result is a single value in the two dimensional IQ plane.

In the absence of noise, the two possible qubit states would correspond to two individual

IQ points as indicated by the black dots in Fig. 3.3. In this case, any nonzero separation

between the points would allow distinction between the qubit states. However, in the real

system, both technical and quantum noise add statistical fluctuations to the extracted

IQ points. The “quantum noise” is just the intrinsic width of the wave functions of the

coherent microwave pulse, which carries a noise power of ~ω/2 per unit bandwidth. A

minimum additional ~ω/2 of quantum noise is added by a phase preserving parametric

amplifier [11]. Technical noise may be added by following amplifiers, such as a HEMT.
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Figure 3.3: IQ clouds for the qubit states measured in the presence of noise. The clouds
for |0〉 (blue) and |1〉 (red) are centered on the diametrically opposite points of the S21

circle. The black dots represent the points which would be found in the absence of all noise
sources. The Gaussian curves show projections of the clouds onto the line connecting
their centers.

Signal loss prior to the dominant amplifier stages also appears as effective added noise.

The time domain noise leads to noise in the demodulated IQ points. Instead of single

points corresponding to the two qubit states, we get two-dimensional Gaussian statistical

distributions, as shown by the blue and red clouds in Fig. 3.3 [47, 46]. These clouds have

been called “Fresnel lollipops”. Projecting the lollipops onto a line separating their

centers produces a pair of one dimensional Gaussian curves. Choosing the center of the

curves as the discrimination between |0〉 and |1〉, we can see that, because of the finite

width σ of the curves, there will always be a nonzero probability of misidentifying the
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qubit state. We call this error, due to the finite separation of the curves, the “separation

error”, denoted εsep. The separation error is computed by integrating the weight of one

of the Gaussian distributions which is on the “wrong” side of the discrimination point,

εsep =
1√

2πσ2

∫ ∞
x=(x0+x1)/2

e
−(x−x1)

2

2σ2 dx

=
1

2
erfc

[
|x0 − x1|
2
√

2σ2

]
, (3.32)

where the erfc function is defined as

erfc(z) ≡ 1− 2√
π

∫ z

0

e−x
2

dx. (3.33)

Defining the signal to noise ratio (SNR) of the measurement as

SNR ≡ (x0 − x1)2

2σ2
, (3.34)

we relate εsep to the SNR,

εsep =
1

2
erfc

[√
SNR

2

]
. (3.35)

3.6 Measurement induced dephasing

As photons enter the resonator and acquire a qubit state dependent phase shift, they

carry some information on the qubit state. By transferring quantum information from

the qubit to the photons, the measurement process partially collapses the qubit state [30].

In dispersive measurement, the photon’s phase shift carries information about the qubit’s
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projection along the z-axis of the Bloch sphere. Therefore, the partial collapse induced by

the scattered photons can be understood as qubit dephasing, similar in principle to the

example of the phonon-induced decoherence of the transistor in Chapter 1. The dephasing

is only partial because the state of the qubit cannot be unambiguously determined from

a single scattered photon, as will become clear shortly.

In the following discussion, we derive a relation between the measurement visibility

and the qubit dephasing induced by the measurement process. We do this in two ways.

First, we use a general “information theory” approach. We work from mathematical

constraints on the form of the quantum density matrix with no reference to a particular

qubit system or measurement strategy. This approach is the most general, making no

connection to the actual mechanism by which the qubit dephases. Second, we work

from explicit form of the dispersive interaction. We compute the entangled qubit-photon

state and understand the qubit dephasing as a consequence of the entanglement. This

approach offers a simple interpretation in which the qubit dephasing comes from the

random ac Stark shift imposed by the uncertainty in the the number of photons in the

resonator.

3.6.1 Information theoretic approach

The phase coherence of a state of a 2-level system is described by the off-diagonal terms in

the density matrix, ρ10 and ρ01. The diagonal terms ρ00 and ρ11 are just the probabilities

P (0) and P (1) that the qubit is in |0〉 or |1〉, respectively. From the requirement that
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the density matrix must be positive-semidefinite,4 it can be shown that

|ρ10| ≤
√
ρ00ρ11 =

√
P (0)P (1). (3.36)

Suppose we measure the qubit along the z-axis with a meter which yields a single real

number with value x. Equation (3.36) yields a new inequality conditional on the measured

value x,

|ρ10| (x) ≤
√
P (0|x)P (1|x) ≡ I(x). (3.37)

To quantify the amount of information about the qubit state we have learned from the

measurement, we consider the probability, given the result x, that the qubit is in |0〉.

Using Bayes’s theorem, we can write

P (0|x) =
P (x|0)P (0)

P (x)
. (3.38)

In English, Eq. (3.38) reads “The probability that the qubit is in |0〉 given that we

measured x, is equal to the probability that we would measure x if the qubit were in |0〉,

times the probability that the qubit is in |0〉, divided by the probability that we would

measure x.” We write a similar equation for P (1|x),

P (1|x) =
P (x|1)P (1)

P (x)
. (3.39)

Suppose we are given a qubit in the state (|0〉+ |1〉) /
√

2. Then P (0) = P (1) = 1/2.

Combining these results we can rewrite right right hand side of Eq. 3.37 as

I(x) ≡

√
P (x|0)P (x|1)P (0)P (1)

P (x)2
=

√
P (x|0)P (x|1)

2P (x)
. (3.40)

4This guarantees positive eigenvalues
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The coherence of the qubit is limited by the total information contained in the scattered

photon. To recover this information, we must average over all possible detector values x,

|ρ10| ≤
∫ ∞
x=−∞

I(x)P (x) dx =

∫ ∞
x=−∞

1

2

√
P (x|0)P (x|1) dx. (3.41)

Suppose he measured voltages are Gaussian distributed, with the |0〉 and |1〉 having

different means,

P (x|0) =
1√

2πσ2
exp

[
−(x− x0)2

2σ2

]
P (x|1) =

1√
2πσ2

exp

[
−(x− x1)2

2σ2

]
. (3.42)

Plugging these expressions into Eq. (3.41) yields

|ρ10| ≤
∫ ∞
x=−∞

1

2

1√
2πσ2

exp

[
−(x− x0)2 − (x− x1)2

4σ2

]
dx

≤ 1

2
exp

[
−(x0 − x1)2

8σ2

]
(3.43)

≤ 1

2
exp

[
−SNR

4

]
. (3.44)

In the last line we used Eq. (3.34) for the definition of SNR. Equation (3.44) provides

the quantitative link between the measurement SNR and qubit phase decoherence. As

scattered photons are collected, the separation x0 − x1 increases and the upper bound

on ρ10 decreases.5 In other words, increased visibility between the qubit states decreases

phase coherence.

5Or, if the data is normalized to a constant value of x0 − x1, the widths σ of the Gaussian curves
decreases.
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3.6.2 Physical mechanism approach

In this section, we calculate the photon dephasing by explicitly accounting for the physical

interaction between the qubit and measurement photons. We start from the qubit-

resonator interaction Hamiltonian

HI/~ = −χnσz. (3.45)

Consider an initial quantum state

|Ψi〉 = |α〉(1/
√

2) (|g〉+ |e〉) . (3.46)

While the resonator is in the ground state |0〉, the interaction Hamiltonian is identically

zero. When we turn on the probe signal, the resonator photon number increases and the

resonator emits travelling waves with a phase φ determined by Eq. (3.25) and the the

qubit state. Assuming we probe at a frequency in between the two possible resonator

frequencies, the phases for the two qubit states have the same magnitude and opposite

sign. Therefore, the output state is

|Ψf〉 =
1√
2

(
|αeiφ〉|g〉+ |αe−iφ〉|e〉

)
. (3.47)
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The distance between the two dispersed photon states is

δx = 〈x〉α exp(iφ) − 〈x〉α exp(−iφ) (3.48)

=
1

2
〈a+ a†〉α exp(iφ) −

1

2
〈a+ a†〉α exp(−iφ) (3.49)

= 2|α| sin (φ) . (3.50)

The variance along any axis through the center of a coherent state is [44]

σ2 = 1/4. (3.51)

Therefore, the signal to noise ratio for the two dispersed photon states is

SNR ≡ δx2

2σ2
(3.52)

=
(2|α| sin (φ))2

1/2
(3.53)

= 8 |α|2 sin (φ)2 . (3.54)

Qubit dephasing - full calculation

Now we would like to look at the phase coherence of the qubit. To do this, we start with

the density matrix for the entangled state |Ψf〉, and then find the reduced density matrix

of the qubit with the resonator removed. The part of the density describing the qubit
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phase coherence is

ρ01 =
1

2

(
|αeiφ〉〈αe−iφ| ⊗ |g〉〈e|

)
(3.55)

=
1

2
exp

[
− |α|2

]∑
n,m

(
αeiφ

)n
√
n!

(
α∗eiφ

)m
√
m!

|n〉〈m| ⊗ |g〉〈e|. (3.56)

To find the reduced density matrix of the qubit, we trace over the resonator states

Trresρ10 =
1

2
exp

[
− |α|2

] ∑
n,m,k

(
αeiφ

)n
√
n!

(
α∗eiφ

)m
√
m!

〈k|n〉〈m|k〉 ⊗ |g〉〈e| (3.57)

=
1

2
exp

[
− |α|2

]
exp

[
|α|2 e2iφ

]
|g〉〈e| (3.58)

=
1

2
exp

[
− |α|2

]
exp

[
|α|2 (cos (2φ) + i sin (2φ))

]
|g〉〈e|. (3.59)

Note that the effect of the trace is to select only those terms for which the resonator “has

a definite photon number”. To find the qubit phase coherence, we look for the magnitude

of the off diagonal element

|Trresρ10| =
1

2
exp

[
− |α|2

]
exp

[
|α|2 cos (2φ)

]
(3.60)

=
1

2
exp

[
− |α|2 (1− cos (2φ))

]
(3.61)

=
1

2
exp

[
−SNR

4

]
(3.62)

which is exactly the same expression we found in Eq. (3.44) using the information theory

approach. Therefore, we have shown that the qubit dephasing incurred by dispersive

measurement is equivalently understood as either an effect of the information extracted
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from the system, or as an effect of the entanglement between the qubit and the photon.

Note that we have demonstrated that decoherence is really just an a result of consid-

ering a sub-part of an entangled quantum system.

Qubit dephasing - simple calculation

The trace over resonator states in the full calculation is just a mathematically rigorous

way to select components of the state with definite photon number. This suggests a

simpler approach to the problem: we could just do a weighted average of the qubit density

matrix over the resonator photon number states. From this point of view, the qubit

dephasing comes simply from the random ac Stark shift imposed by the “uncertainty”

in the resonator photon number. Here is the calculation:

ρ01 =
∑
n

ρ01(n)P (n) (3.63)

=
∑
n

1

2
ei2nφe−n̄

n̄n

n!
(3.64)

=
1

2
e−n̄

∑
n

(
ei2φn̄

)n
n!

(3.65)

=
1

2
e−n̄ exp

[
n̄ei2φ

]
(3.66)

=
1

2
e−|α|

2

exp
[
|α|2ei2φ

]
(3.67)

=
1

2
exp

[
−|α|2

(
1− ei2φ

)]
. (3.68)
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Taking the aboslute value leaves

|ρ01| =
1

2
exp

[
−|α|2 (1− cos (2φ))

]
(3.69)

=
1

2
exp

[
−SNR

4

]
(3.70)

which matches the full calculation.

3.6.3 Amplifier

In this section we study the effect of amplifying the dispersed photons. Before investi-

gating the effect of the amplifier on the photon signal to noise ratio, we explicitly show

that the amplifier does not affect the qubit state. Consider an arbitrary state |Ψ〉 for the

qubit-resonator system

|Ψ〉 =
∑
αβ

cαβ|α〉 ⊗ |β〉. (3.71)

The density matrix for this state is

ρ =
∑
αβγδ

cαβc
∗
γδ|α〉〈γ| ⊗ |β〉〈δ|. (3.72)

Applying an arbitrary transformation U to the resonator changes the density matrix to

ρ =
∑
αβγδ

cαβc
∗
γδU |α〉〈γ|U † ⊗ |β〉〈δ|. (3.73)
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Now we compute the reduced density matrix of the qubit by tracing over the resonator

states

ρqubit = Trresρ (3.74)

=
∑
n,αβγδ

cαβc
∗
γδ〈n|U |α〉〈γ|U †|n〉 ⊗ |β〉〈δ| (3.75)

=
∑
n,αβγδ

cαβc
∗
γδ〈γ|U †|n〉〈n|U |α〉 ⊗ |β〉〈δ| (3.76)

=
∑
αβγδ

cαβc
∗
γδ〈γ|U †U |α〉 ⊗ |β〉〈δ| (3.77)

=
∑
αβγδ

cαβc
∗
γδ〈γ|α〉 ⊗ |β〉〈δ| (3.78)

=
∑
αβδ

cαβc
∗
αδ|β〉〈δ|. (3.79)

The effect of U has disappeared, indicating that the reduced density matrix for the qubit

is unaffected by U . Therefore, the qubit state is unchanged by any subsequent actions

on the photon, such as the action of an amplifier.

Phase sensitive amplifier

In this subsection, we calculate the signal to noise ratio of dispersed coherent states once

they have been amplified by an ideal phase sensitive amplifier. A phase sensitive amplifier

amplifies only one of the sin and cos quadratures of a signal. Representing the action of

the amplifier by an operator S, the output for a single coherent state input is S|α〉. For
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the phase sensitive amplifier, the operator S is the squeezing operator

S(z) = exp

[
1

2

(
z∗a2 − za†2

)]
z = reiθ. (3.80)

In the case θ = 0, S transforms the annihilation operator in a simple way:

S(r)aS(r)† = µa+ νa†, µ = cosh(r) ν = sinh(r). (3.81)

Note that S(r)† = S(−r), so

S(r)†aS(r) = S(−r)aS(−r)† = µa− νa†. (3.82)

For simplicity, we assume in the following computations that φ = ±π/2, so the two

dispersed photon states are |α〉 and | − α〉. We compute the expectation value of x for

S|α〉:

〈Sα|x|Sα〉 =
1

2
〈α|S†

(
a+ a†

)
S|α〉 (3.83)

=
1

2
〈α|µa− νa† + µa† − νa|α〉 (3.84)

= α(µ− ν). (3.85)

Note that for r � 0, µ− ν is a large number, indicating that the amplifier provides gain.

The signal is the distance between the two dispersed states,

δx = 2〈x〉 = 2α(µ− ν). (3.86)
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Next, we compute the expectation value of x2:

〈Sα|x2|Sα〉 =
1

4
〈α|S†

[(
a+ a†

)2
]
S|α〉 (3.87)

=
1

4
〈α|
(
µa− νa† + µa† − νa

)2 |α〉 (3.88)

=
1

4
(µ− ν)2 + |α|2 (µ− ν)2 . (3.89)

The noise for an amplified state S|α〉 is therefore

σ2 ≡ 〈(x− 〈x〉)2〉 (3.90)

= 〈x2〉 − 〈x〉2 (3.91)

=
1

4
(µ− ν)2. (3.92)

Finally, the signal to noise ratio is

SNR =
δx2

2σ2
(3.93)

=
4α2(µ− ν)2

21
4
(µ− ν)2

(3.94)

= 8α2. (3.95)

This is the same as the SNR we found before the amplification, as given by Eq. (3.54)

in the case φ = π/2. Therefore, the ideal phase sensitive amplifier does not change the

SNR.
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Phase insensitive amplifier

Phase preserving amplifiers (also called phase-insensitive amplifiers) are amplifiers which,

like a traditional electronic amplifiers, amplify both the sin and cos quadratures of a

signal. In other words, they preserve the phase of the input signal. It turns out that

an ideal noiseless linear phase preserving amplifier which independently amplifies each

frequency cannot exist [11]. To preserve the commutation relations of the two quadratures

of the photon state, the amplifier must mix at least two frequencies. Thus, the action of

the phase preserving amplifier is represented by the two-mode squeezing operator S2

S2(z) = exp
[
z∗ab− za†b†

]
(3.96)

where the a and a† operators correspond to the main mode called the “signal”, and b

and b† operators correspond to an auxiliary mode called the “idler”. The S2 operator

transforms the creation an annihilation operators as follows:

S†2(z)aS2(z) = µa− eiθνb† (3.97)

S†2(z)bS2(z) = µb− eiθνa† (3.98)

S†2(z)a†S2(z) = µa† − e−iθνb (3.99)

S†2(z)b†S2(z) = µb† − e−iθνa (3.100)

where z ≡ reiθ, µ = cosh(r), and ν = sinh(r). For simplicity, we assume that z is real so

that θ = 0.

Now we calculate the gain and uncertainty in x for the amplified state. First, let us
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calculate the expectation value of x for an amplified state S2|α〉 on the real axis,

〈S2α|x|S2α〉 =
1

2
〈α|S†2(a+ a†)S2|α〉

=
1

2
〈α|µa− νb† + µa† − νb|α〉

=µα. (3.101)

Thus, the gain of the phase preserving amplifier is µ. Next, we calculate 〈x2〉,

〈S2α|x2|S2α〉 =〈α|S†2xS2S
†
2xS2|α〉

=
1

4
〈α|(µa− νb† + µa† − νb)2|α〉

=
1

4
〈α|µ2a2 − 2µνab†

+ µ2(2a†a+ 1)− 2µνab

+ ν2b†b† − 2µνb†a† + ν2(2b†b+ 1)

+ µ2a†a† − µνa†b

+ ν2b|α〉

=
1

4

(
µ2α2 + µ2(2α2 + 1) + µ2α2 + ν2

)
≈µ2

(
α2 +

1

2

)
. (3.102)

The approximation in the last line is for large gain where µ ≈ ν. We now compute the

variance,

σ2 ≡ 〈x2〉 − 〈x〉2 =
1

2
µ2. (3.103)
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Finally we calculate the SNR,

SNR =
δx2

2σ2
(3.104)

=
(2µα)2

µ2
(3.105)

=4α2. (3.106)

For the phase preserving amplifier, the SNR is half that of the phase sensitive amplifier.

In particular, when using a phase preserving amplifier, the upper limit on the ratio of

SNR to qubit dephasing is one half of the limit allowed by quantum mechanics.

3.7 Resonator energy to output power ratio

In this section we derive an equation relating the energy in the measurement resonator

to the power leaving the system. This is an important quantity as output power is a

limited resource due to the finite saturation power of quantum limited amplifiers.

3.7.1 Resonator internal energy

Now that we have a formula for S21 in terms of the resonator properties we would like

to relate it to the resonator’s internal energy. To do this we must compute the voltage

Vd (see Fig. 3.1 at the resonator’s driving node. This voltage can be found by voltage
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division; Vd is just V divided by the coupling capacitor and the resonator impedances,

Vd = V
Zr

Zκ + Zr
= V

Zin − Zκ
Zin

. (3.107)

The voltage V at the shunt node is given by the sum of the incoming, reflected, and

outgoing voltage amplitudes

V = Vin (1 + S11 + S21) . (3.108)

Using Eq. (3.24) this simplifies to

V = 2VinS21 , (3.109)

which finally yields

Vd = 2VinS21
Zin − Zκ
Zin

. (3.110)

The energy in the resonator is

Eres =
1

2
C|Vd|2 = 2C |VinS21|2

∣∣∣∣Zin − Zκ
Zin

∣∣∣∣2 (3.111)

3.7.2 Output power

The voltage wave amplitude travelling to the readout amplifier is by definition VinS21.

The power going into the amplifier is therefore

Pout =
1

2
|VinS21|2 /Z0 . (3.112)
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3.7.3 Ratio

The ratio of resonator energy to output power is

Eres

Pout

= 4Z0C

∣∣∣∣1− Zκ
Zin

∣∣∣∣2 . (3.113)

From Eq. (3.25) we can write Z0/Zin = 2(S−1
21 − 1). Substituting this and using

C = 1/ωrZLC we get

Eres

Pout

=
4

ωr

Z0

ZLC

∣∣∣∣1− 2Zκ
Z0

(
S−1

21 − 1
)∣∣∣∣2 . (3.114)

Equation (3.114) relates the resonator energy to the output power. However, as written

it is not directly useful as it involves the impedance of the coupling capacitor Zκ which

is not an experimentally measurable parameter. We replace it with the coupling quality

factor Qc of the resonator via [42]

1

Cκ
= ωr

√
QcReZLC , (3.115)

where Re is the resistance external to Cκ (in this case Z0/2 because the input and output

lines form parallel resistances). Substituting Eq. (3.115) into Eq. (3.114) we arrive at

Eres

Pout

=
4

rLCωr

∣∣∣1 + i2
ωr
ω

√
QcrerLC

(
S−1

21 − 1
)∣∣∣2 , (3.116)

where we have defined rLC and re by the equations ZLC ≡ rLCZ0 and Re ≡ reZ0.

In the optimal visibility where S21 ≈ 1
2

(1± i) we find

Eres

Pout

=
4

rLCωr

∣∣∣1 + i2
ωr
ω

√
QcrerLC(±i)

∣∣∣2
≈ 16

Qcre
ωr

≈ 16
re
κr

(3.117)
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where we’ve assumed ω ≈ ωr and Qc � 1. For comparison, a resonator in free ring-down

has Eres/Pout = 1/κ. In the driven circuit studied here, for a given output power, the

resonator internal energy is 16 re times larger than in the free ring-down case.
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Chapter 4

Bandpass Filter

In this chapter, we introduce and analyze a bandpass filter for dispersive qubit measure-

ment. First, we explain the rationale for the bandpass filter and compare it qualitatively

to existing systems. Next, we quantitatively analyze the bandpass filter, arriving at a

relation between the response time of the filtered measurement system and the coherence

of the qubit. The analysis is corroborated with numerics. We then use the results of the

analysis to choose circuit parameters. We then determine the physical geometry of the

hardware elements needed to achieve the desired circuit parameters. Finally, we describe

the fabrication steps used to build the device.

4.1 Rationale

As described in Chapter 2, research at Yale demonstrated that adding a filter to the

dispersive measurement system improves the qubit T1 [40]. A block diagram of the
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circuit used in that and similar experiments is shown in Fig. 4.1 a. The experiment in

Ref. [40] used a single qubit, but other experiments with similar technology used multiple

qubits all attached to a common resonator [15, 23, 39]. We have accordingly added a

second qubit and filter to the diagram to guide the discussion of how the filter system

might be extended for use in a multi-qubit system.

The filter, placed in series with the shared resonator, protected the qubit by introduc-

ing a notch at the qubit’s frequency, as shown in Fig. 4.1 b. This prevented spontaneous

emission of energy from the qubit into the environment, but the design has some im-

portant limitations. First, the notch filter protects the qubit over a narrow band of

frequency. This precludes use of high fidelity logic gates based on dynamic tuning of the

qubit frequency [4], as changing a qubits’ frequency would bring it out of the protected

notch and lower its coherence time. It may be possible in principle to use multiple notch

filters arranged in series to create a protected “bucket” as shown by the dotted line in

Fig. 4.1 b, but this would require many filters, each of which requires large on-chip area.

Second, the measurement resonator itself was connected in series with the microwave

feed line. This precludes use of multiple resonators, because two detuned resonators in

series act as an open circuit. Therefore each qubit in a multi-qubit system is connected

to a single resonator. The requires that the states of the multi-qubit system be uniquely

mapped into the phase space of a single resonator mode, as shown in Fig. 4.1 c. The

number of states to distinguish grows exponentially with the number of qubits. There-

fore, in a large system, phase space and frequency crowding would lead to measurement
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Figure 4.1: Notch filter circuit topology. a) A single resonator (blue) interrupts the
microwave feed line in series. Several qubits are coupled in parallel to the single resonator
mode. Notch filters (green and brown) on the resonator output protect the qubits against
from emission. b) The resonator mode produces a strong transmission peak, while the
notch filters produce dips. The qubit frequencies are matched to the filters. c) The qubit
states are distinguished in the amplitude-phase plane for the resonator mode.

cross-talk and/or reduced visibility.1

We addressed these issues by inverting the role of the filter. Rather than use filter

notches to suppress emission only at the qubit frequencies, we use a bandpass filter to

suppress emission everywhere except at the measurement frequency. The starting point

for our design is a set of measurement resonators connected in parallel with the microwave

1This crowding effect has actually been used to directly measure two qubit parity with a single
resonator mode [13].
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line, as shown in Fig. 4.2. This circuit topology is standard in microwave kinetic induc-

tance detector (MKID) systems used for astrophysical observation, and was demonstrated

for qubit systems in previous experiments [12, 3]. This topology addresses the issue of

measurement cross-talk and phase space crowding by using a separate measurement res-

onator for each qubit. We then essentially replace a section of the drive line with a λ/4

resonator, which acts as a filter. The resonators are connected in parallel to the filter.

The filter is of the bandpass type, with high transmission over a band encompassing all

of the measurement resonators, and low transmission elsewhere, as shown in Fig. 4.2 b.

The qubits, sitting outside the pass band of the filter are protected from the emission into

the environment. Note that, because the filter’s stop band extends indefinitely at low

frequencies, multiple qubits are protected simultaneously, and dynamic frequency tuning

of the qubits is possible while keeping the qubits protected. Frequency crowding of the

measurement resonators within the filter pass band will be an issue in larger systems,

but this can be addressed by connecting several filter circuits in parallel to a common

microwave line.

In the bandpass filter circuit, there is really no intrinsic difference between the role

of the filter and the role of the measurement resonator. Comparing Fig. 4.2 a to Fig. 2.8,

we see that filter is in a sense just another pole in the measurement resonator. This idea

is brought forth in Fig. 4.3, which will be analyzed in depth in the following analysis.
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Figure 4.2: Bandpass filter circuit topology. a) Several measurement resonators (blue)
connect in parallel to the microwave feed line, each one connected to a single qubit. The
filter (green) is embedded directly into the feed line. b) The measurement resonators,
which produce dips in the transmission spectrum, are all placed within the filter pass
band. The qubits sit out of the pass band and are protected from emission. c) Each
resonator’s amplitude and phase contains the information of only one qubit state.
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Figure 4.3: Lumped element model of the qubit and measurement circuit. a) The circuit
is a ladder of alternating coupling capacitors and shunt resonators to ground. The only
path by which energy can leave the system is through the finite internal quality factor
QF of the filter, as indicated by the red arrow. At the qubit frequency, the impedance
of the coupling capacitors is greater than the impedance of the resonators. This means
that most of the current flowing through eg. Cg goes to ground through resonator r.
b) To understand the quality factor of the resonator Qr, we neglect the qubit which is
assumed to be lossless. The damping of the resonator therefore comes entirely from the
loss of the filter. Near resonance the filter impedance is a pure resistance.

4.2 Analysis

4.2.1 Analytic treatment

In this section we derive an analytic expression for the κrT1 product in the filtered

measurement system. We start from the definition of the quality factor for the qubit

and, through standard circuit analysis, relate it to the quality factor of the filter. We

will find that the relation involves the ratio of the qubit and filter voltages, which we

compute using voltage division. An alternative method is to compute the complex ad-

mittance Ye presented to the qubit by the measurement circuit, and find the qubit T1

using T1 = Cq/ReY (ωq) [16]. The approach used here should give the reader a more
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intuitive understanding of how the filter works.

An equivalent lumped model for the circuit is shown in Fig. 4.3 a. We begin by writing

down the definition of the quality factor of the qubit:

Qq ≡
energy stored in qubit

energy lost per radian of qubit oscillation
. (4.1)

The energy lost per radian of oscillation can be re-expressed in terms of the qubit

frequency and the power loss

energy loss per radian =
dE

drad
=
dE

dt

dt

drad
=
P

ωq
(4.2)

where P is the power loss and ωq is the qubit oscillation frequency. Substituting Eq. (4.2)

into Eq. (4.1) gives

Qq =
Eqωq
P

(4.3)

where here Eq denotes the energy stored in the qubit.

If we assume that the circuit elements are lossless, then the only channel by which

energy can leave the system is through the filter’s coupling to the external measurement

circuitry. The energy lost this way is characterized by the quality factor of the filter QF

QF ≡
energy stored in filter

energy lost per radian of filter oscillation
=
EFωF
P

(4.4)

where here the second equality follows from the same reasoning that lead to Eq. (4.3).

Setting the power loss in Eq. (4.3) equal to the power loss in Eq. (4.4) gives

Qq = QF
Eqωq
EFωF

= QF
ωq
ωF

Cq
CF

∣∣∣∣ VqVF
∣∣∣∣2 (4.5)

where we have taken Eq = 1
2
Cq |Vq|2 and EF = 1

2
CF |VF |2, and Vq and VF are the voltage

amplitudes at the qubit and filter as shown in Fig. 4.3 a.
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To compute the ratio Vq/VF we use voltage division. The analysis is based on the

crucial observation that to compute the damping of the qubit we must analyse the circuit

at the qubit frequency. Because the qubit is off resonance from the measurement resonator

and the coupling between the qubit and resonator is weak, the measurement resonator’s

impedance Zr is lower than the impedance of the coupling capacitor, ie. Zr � Zg. By

similar reasoning Zr � Zκ. Therefore, with voltage Vq across the qubit, we have a current

Ig = Vq/Zg flowing through Cg (see Fig. 4.3 a) and most of that current goes to ground

through the resonator. This gives Vr = IgZr = VqZr/Zg. Using similar arguments to

work through the next stage of the circuit we arrive at

Vq
VF

=
ZgZκ
ZrZF

. (4.6)

Note the shunt impedances in the denominator and the coupling impedances in the

numerator.

Next we compute Zr and ZF in terms of their characteristic resonance impedances.

The impedance of a lossless, parallel, single pole resonance is

1

Z
= iωC +

1

iωL
=

i

Z0

2δx+ δx2

1 + δx
≈ i2δx

Z0
(4.7)

where δx ≡ (ω − ωr)/ωr, ωr is the resonance frequency, and Z0 is the characteristic

impedance of the resonance (Z0 =
√
L/C for a parallel LC resonance). Inserting Eq. (4.7)

into Eq. (4.6) we get ∣∣∣∣ VqVF
∣∣∣∣ =
|Zg| |Zκ|
Z0
rZ

0
F

(
2δx+ δx2

1 + δx

)2

(4.8)

where here δx ≡ (ωq − ωr)/ωr, ωr is the measurement resonator frequency, and we
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assume the measurement resonator is on resonance with the filter. Inserting Eq. (4.8)

into Eq. (4.5) yields

Qq = QF
ωq
ωr

Cq
CF

(
|Zg| |Zκ|
Z0
rZ

0
F

)2(
2δx+ δx2

1 + δx

)4

. (4.9)

Equation (4.9) expresses Qq in terms of the impedances of the couplers. While this

can in principle be used as a design formula, it would be more convenient to replace the

information contained in Zκ with an expression involving Qr. To do this we consider the

circuit at measurement frequency. With the measurement resonator and filter assumed to

be on resonance, the filter impedance is nearly a pure resistance RF = QFZ
0
F , as indicated

in Fig. 4.3 b. As we assume the qubit is lossless, RF sets Qr. Following reasoning similar

to what lead to Eq. (4.9) we find

Qr =
|Zκ|2

RFZ0
r

=
|Zκ|2

QFZ0
FZ

0
r

. (4.10)

Substituting Eq. (4.10) into Eq. (4.9) yields

Qq = QrQ
2
F

(
Cq
Cg

)2(Z0
q

Z0
r

)(
2δx+ δx2

1 + δx

)4

(4.11)

and using Qr = ωrκr and Qq = ωqT1 we find

κrT1 = Q2
F

(
ωr
ωq

)(
Cq
Cg

)2(Z0
q

Z0
r

)(
2δx+ δx2

1 + δx

)4

. (4.12)

Equation (4.12) is our basic result giving the κrT1 product for a filtered measurement

system. As it expresses the product in terms of hardware parameters it is most useful

when choosing values for the actual hardware and for constructing numerical simulations

in circuit modelling programs.
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In practice the resonant circuits are implemented as distributed transmission line res-

onators. In this case it is convenient to eliminate the characteristic resonance impedances

in favor of the characteristic impedance of the line. For a λ/4 transmission line resonator,

the resonance Z0 impedance is related to the line impedance Z0 by [37]

Z0 = (4/π)Z0 (4.13)

which turns Eq. (4.12) into

κrT1 =
π

4
Q2
F

(
ωr
ωq

)(
Cq
Cg

)2(Z0
q

Z0

)(
2δx+ δx2

1 + δx

)4

. (4.14)

We used Eq. (4.14) as our design formula.

Equation (4.12) expresses κrT1 in terms of circuit hardware parameters. For an equa-

tion expressed in terms of implementation-independent parameters, we need to eliminate

Cg in favor of a coupling strength. The equation which does this is [45]

ge =
1

2

Cg√
CqCr

~√ωqωr. (4.15)

The subscript e reminds us that this coupling strength has dimensions of energy. It is

convenient to work with a coupling strength which has dimensions of (angular) frequency

g ≡ ge
~

=
1

2

Cg√
CqCr

√
ωqωr. (4.16)

Using Eq. (4.16) and keeping the leading order in δx we can re-express Eq. (4.12) as

κrT1 =

(
∆

g

)2(
ωr
ωq

)(
∆

ωr/2QF

)2

(4.17)

where ∆ ≡ ωq−ωr. The first factor, (∆/g)2 is the κrT1 product for a single pole (i.e. no

filter) system. The second factor is of order one. The final factor is understood as as the

isolation provided by the filter: ωr/2QF is the half width at half max of the filter (recall
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that we assume ωr = ωF ), so ∆/ (ωr/2QF ) is the qubit-filter detuning in units of half-

widths. This factor substantially raises the κrT1 product. For ωq = 6 GHz, ωr = 7 GHz,

and QF = 30 we find (
ωr
ωq

)(
∆

ωr/2Qf

)2

= 85, (4.18)

almost two orders of magnitude improvement over the unfiltered case.

4.2.2 Numeric treatment

To verify the analysis we compared Eq. (4.14) against numerical simulation of the mea-

surement circuit using the LTSPICE 2 circuit simulation package. Figure 4.4 shows a

diagram of the model. We determine the quality factor of the qubit Qq in two steps.

First we replace the qubit with a voltage source Vs at frequency ω and probe the re-

sulting current Is. The ratio Is/Vs is the admittance Ye(ω) of the external measurement

circuitry as seen by the qubit. We then use the fact that, for the transmon qubit, the

matrix elements are nearly those of a harmonic oscillator. For a harmonic system, the

coherent states are eigenvectors of the annihilation operator a, so loss processes are al-

ways in the correspondence limit. We can therefore compute the damping of the qubit

using the classical equation [16]

Qq = ωCq/ReYe(ω). (4.19)

The LTSPICE package easily simulates a given circuit over a range of frequencies,

2www.linear.com/designtools/software
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Qubit

V_q V_r

resonator

filter

output
C_g C_kappa

C_in
V_in

Figure 4.4: Screen capture of the SPICE model. The qubit is replaced by a voltage source
which is activated with an ac signal of amplitude Vs at variable frequency ω. The current
Is through the source is probed and the admittance of the external circuit computed as
Ye(ω) = Is/Vs. Note that the filter λ/4 transmission line resonator is not drawn to scale;
the end which connects to ground is physically shorter than the other section.

but has somewhat limited capabilities for iterating over circuit element values. In order

to facilitate the design process we have written a driver for LTSPICE in python. This

driver allows the user to programmatically import an existing net list (e.g. one produced

by a graphical front-end), override parameter values, and produce a new updated net

list which is then analyzed by SPICE. Combined with a python module for parsing

the resulting simulation data, this driver allowed us to easily iterate over several design

parameters and analyze the results in a powerful programming environment.

4.2.3 Discussion

The results of the numerical simulation are compared with the analytic theory in Fig. 4.5.

The expected T1 of the qubit is plotted against the qubit-resonator detuning ∆ for a few
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values of κr and QF = 30. Good agreement between the theory and numerics appears for

|∆| ≈ 1 GHz to 0.5 GHz. For detunings below -1.5 GHz the analytic formula exceeds the

numerics by approximately a factor of 2. This is probably due to our imperfect assump-

tion that the coupling impedances greatly exceed the resonator impedances. When |∆|

is on the order of g the qubit and resonator modes hybridize. In this regime the analytic

and numerical treatments are both expected to fail because Eq. (4.1) and Eq. (4.19) both

implicitly assume that the qubit mode is well defined apart from the rest of the measure-

ment circuit. This failure is manifest in the plots near ∆ = 0 where the predicted qubit

T1 becomes smaller than κr. This is not physical, as the system cannot lose energy faster

than the bare leakage rate of the resonator κr.

The predictions shown in Fig 4.5 indicate that we should be able to preserve the qubit

coherence with very aggressive resonator ring-up times. The curve for κ−1
r = 11 ns has

a T1 limit of 100µs at |∆| = 1 GHz and 1000µ s at |∆| = 1.5 GHz. These are modest

detuning values typical of real experiments. Current best T1 values for planar transmon

qubits are near 60µs with typical values around 20–40µs. With the measurement circuit

bringing in a decoherence channel at 1000µs a qubit with internal T1 of 60µs would be

degraded by only 5%.

Because the T1 imposed by the measurement circuit varies by several orders of mag-

nitude with varying ∆, it should be possible to use the measurement circuit as a reset.

By dynamically tuning the qubit close to the measurement resonator and filter, the T1

of the would be lowered, forcing the qubit to go to |0〉 with high probability after several
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Figure 4.5: Qubit T1 imposed by the measurement circuit versus qubit-resonator detuning
for several values of the resonator decay time. The filter quality factor is QF = 30.

decay time constants. This could be particularly useful in removing “leakage” processes

in which the qubit has erroneously gone to state |2〉.

4.3 Circuit parameters

From our analysis of the qubit damping imposed by the readout circuit in the previous

section, and from our analysis of the scattering parameters in Ch. 3 we can now choose

parameters for the device. From Fig. 4.5 we find that resonators quality factors of Qr ∈
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[500, 1000, 1500, 3000] should give well preserved qubit T1 for |∆| & 1 GHz. Each Qr

corresponds to κr = ωr/Qr. For each Qr the value of χ required for a large IQ plane

separation between |0〉 and |1〉 is determined according to

χ = ωr/2Qr (4.20)

(see Eq. (3.31)). The qubit-resonator coupling strength g is then determined from

Eq. (3.20)

g =
√
−χ∆ (1 + (∆/η)) (4.21)

where η/2π ≡ (ω21 − ω10) /2π ≈ −200 MHz is the anharmonicity of the qubit. In order

to actually build a device with the specified χ, g, and κr, we need to know the values of

Cg and Cκ. From Appendix D we have

Cg = 2g

√
CrCq
ωrωq

(4.22)

where Cq = 85 fF is the qubit capacitance and Cr = π/4ωrZ0 is the effective capacitance

of the measurement resonator. The value of Cκ is determined by rearranging Eq. (4.10)

as

Cκ =

√
Cr

ωrQFQrZ0
F

(4.23)

where ZF = 4Z0/π is the effective capacitance of the filter resonator.

Using these design equations we found four sets of parameters as shown in Table 4.1.

The value of κr was varied to test the relation between measurement speed and the

measurement circuit imposed limit on qubit T1.
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4.4 Device

In this section we describe the physical implementation of the bandpass filter including

details of how the chosen circuit parameters were realized on the physical chip.

4.4.1 Layout

A micrograph of the device is shown in Fig. 4.6. The device has four qubit-resonator pairs

all coupled in parallel to a common filter. The filter is implemented as a λ/4 coplanar

waveguide resonator embedded into the feed line. The feed line is interrupted on one

side with a capacitor forming a voltage antinode, and is shorted to ground on the other

side forming a voltage node. The resulting standing wave mode is used as the filter

resonance. The measurement resonators are coupled capacitively in parallel to a single

common filter, and each measurement resonator is capacitively coupled to a qubit.

4.4.2 Filter

The filter is implemented as a λ/4 coplanar waveguide resonator. The voltage node

is formed by connecting the waveguide to ground. The voltage antinode is formed at

signal input point (port 1 in Fig. 4.6) where the filter connects to the feed line through a

capacitor.
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Figure 4.6: Micrograph of the device. The false color corresponds to the colors used in the
lumped element model, shown in the top right inset. Signals enter the system through
a feed line at port 1. The filter F is formed by a standing wave resonator embedded
into the feed line. The feed line is interrupted by a capacitance (left inset) at one end
and shorted to ground on the other, forming a λ/4 resonance. Signals injected at port
1 are mostly reflected by the weak input capacitance. The transmitted energy rings up
the filter resonance. Energy leaves the filter through a tap near the shorted end at port
2. The red arrow indicates the path by which energy leaves the filter through a wire
bond (not shown) and enters the external detection hardware, including a parametric
and HEMT amplifier. The measurement resonators r are connected to the filter via
capacitance Cκ formed by the proximity of the filter and resonator traces. The resonator
couples to the qubit q through an inter-digitated capacitor Cg. Note that the design
allows for an independent resonator for each qubit while allowing several resonators to
share a single filter. Note also the filter requires near zero additional on-chip area.
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Length

The length of the filter is related to the desired frequency by

l =
λ

4
=

πv

2ωF
=

πc

2ωF
√
εeff

(4.24)

where c is the speed of light in vacuum and εeff is the relative relative dielectric constant

of the waveguide. For a coplanar waveguide with trace and gap widths much smaller than

the thickness of the substrate, we have εeff = (1 + εs)/2 where εs is the relative dielectric

constant of the substrate. In our experiment we used sapphire substrate with εs = 10.4

giving εeff = 5.7. For a filter frequency of ωF/2π = 6.75 GHz this gives l = 4, 654µm.

Input capacitance

The value of the input capacitance Cin is determined by the amount by which we allow

the input line to load the filter. The loaded quality factor Ql of a resonant mode of

frequency ω0 and self capacitance C connected to a resistor environment Re through a

coupling capacitor Cc is

Ql =
C

ω0ReC2
c

. (4.25)

For the filter we rename the parameters ω0 → ωF , Cc → Cin, and Ql → Qin. Using the

effective capacitance of our λ/4 filter resonator C = π/4ωFZ0, assuming that Re = Z0,

and solving for Cin gives

Cin =

√
π

4ω2
FZ

2
0Qin

. (4.26)
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In our device we used ωF/2π = 6.75 GHz, Qin = 40×QF = 1200, and Z0 = 50Ω, which

gives Cin = 12 fF.

This capacitance was implemented as a parallel plate SiO2 dielectric capacitor, as

shown in Fig. 4.7 a. The dielectric thickness was t = 200 nm. With the relative permit-

tivity of SiO2 of 3.9, this required a plate area of A = Ct/3.9ε0 = 70µm2, which is a

modest and readily achievable size. Most importantly, this small size avoids the problem

of large ground plane cuts which would be needed if we were to implement Cin as an

interdigitated capacitor.

The SiO2 has a relatively large loss tangent, making it unsuitable for use in the qubit

or measurement resonator. With tan δ ≈ 3×10−4, and corresponding QSiO2 ≈ 3, 000 [36],

a resonance using SiO2 dielectric capacitors would have T1 ≈ 80 ns at 6 GHz. However,

this is not an issue for the filter. The output circuitry strongly loads the filter, in our case

giving QF ∼ 30. With QF � QSiO2 the dissipation from the dielectric is much smaller

than the photon loss rate through the output circuit. Therefore, the SiO2 in the filter’s

input capacitor contributes a negligible fraction of the total loss presented to the qubit,

and absorbs a negligible fraction of the dispersed measurement photons.

Input capacitor electrical length

Because of the finite impedance of the input capacitor, the voltage antinode point is not

actually a true λ/4 distance from the voltage node. In other words, the capacitor adds

electrical length to the waveguide. This effect must be counterbalanced by modifying

the waveguide’s geometric length. To compute the necessary adjustment we treat the

107



capacitor as an effective length of transmission line by writing

φc = 2ωFdc/v (4.27)

where dc is the effective length of the capacitor, v is the propagation speed in the

waveguide, and φc is the phase shift incurred by reflection from the capacitor. See

Fig. 4.7 b for an illustration. The phase shift is computed as [37]

φc = ∠

(
ZL − Z0

ZL + Z0

)
(4.28)

where ZL = 1/iωCin + Z0 is the series impedance of the capacitor and feed line loading

the filter resonance, and Z0 is the characteristic impedance of the line (we assume the

filter and feed line characteristic impedances are equal). Combining these results yields

dc =
c

2ωF
√
εeff

∠

(
ZL − Z0

ZL + Z0

)
(4.29)

which is the length by which the geometric length of the line must be reduced to maintain

a resonance frequency of ωF .

Using this and the previously chosen value Cin = 12 fF we compute the effective length

of the capacitor to be dc = 75µm. This length must be subtracted from the geometric

length of the filter coplanar waveguide.

Output tap point - QF

The dispersed signals exits the filter through a tap off wire connected to the filter near

its voltage node. The position of the tap determines the rate at which energy leaves the

filter, thus setting QF , as we now explain. The voltage profile of the resonant mode in

the distributed resonator has a cosine shape V ∝ sin (πx/2l) where x = 0 is the voltage
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20 um

filterfeed line

crossover

parallel plate

Figure 4.7: Input capacitor for the filter. a) Micrograph of the device. The feed line
comes in from the left and the filter coplanar waveguide resonator is on the right. A
thin film of SiO2 separates the connecting aluminum strip on the feed line side. A hole
in the feed line renders the overlap area insensitive to optical lithography misalignment.
The connecting strip contacts the filter resonator directly. b) Circuit model. A wave
reflecting from the input capacitor acquires a phase shift which effectively increases the
length of the filter.
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node at the shorted end and x = l is the voltage antinode at the open end. If the tap

were placed at x = 0 where the voltage is zero it would carry no energy away from the

filter and the coupling Q induced by the tap would be infinity. If the tap were placed at

the voltage antinode at x = l it would feel the maximum of the filter voltage and would

be accurately modeled as a shunt resistor in a lumped element equivalent circuit of the

filter. Placing the tap at a distance x from the voltage node reduces the power dissipated

by Re by a factor of the square of the relative voltage, sin (πx/2l)2, yielding

QF = QF |x=l / sin (πx/2l)2 . (4.30)

where QF |x=l is the quality factor we would compute from a lumped element model.

In the lumped element model the loaded Q is given simply by QF |x=l = Re/Z
0
F where

Re is the resistance of the circuit external to the tap, Z0
F = 4Z0/π is the character-

istic impedance of the filter mode, and Z0 is the filter transmission line characteristic

impedance. Combining this with Eq. (4.30) in the case Re = Z0 gives

QF =
π/4

sin (πx/2l)2 ≈
(l/x)2

π
. (4.31)

We designed for QF = 30 to get a filter bandwidth of ∼ 200 MHz, giving x = 0.1× l.

Bond pad inductance

Proper flow of return currents is essential to the design of the filter resonator. In Figure

4.8 we show the shorted end of the filter with the tap off through which the signal leaves

the filter and enters an amplification chain. Part of the current return path is interrupted

by the wire bond pad as shown in the figure. The large perimeter of the bond pad would
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introduce inductance into the return path and shift the frequency of the filter resonance.

To correct this we used SiO2 dielectric crossovers to tie the ground planes on either side

of the tap off path together, thus shorting the inductance presented by the bond pad.

Summary

Here we summarize the steps in the design of the filter:

1. From the desired frequency ωF compute the geometric length according to

l = πc/(2ωF
√
εeff).

2. Choose a loaded quality factor QF to get the desired filter bandwidth ∆ωF , accord-

ing to QF = ωF/∆ωF .

3. Choose an input capacitance Cin by requiring that the loading from the input Qin

is much (100×) larger than QF . The capacitance is determined by

Cin =

√
π

4ω2
FZ

2
0Qin

4. Compute the electrical length of the input capacitor according to

dc =
c

2ωF
√
εeff

∠

(
ZL − Z0

ZL + Z0

)
and adjust the geometric length by this amount.

5. Choose the output tap point x according to

QF =
π/4

cos (πx/2l)2

111



Figure 4.8: Micrograph of the filter tap off point and bond pad. Without crossovers, part
of the current return path would flow around the wire bond pad, as shown by the dotted
line. The large perimeter of the bond pad would introduce inductance into the return
path of filter current and shift the frequency of the filter. Dielectric crossovers connect
the ground planes on either side of the tap off path, thus shorting the inductance of the
bond pad.

and ensure that crossovers are used to connect the ground planes on either side of

the tap.

4.4.3 Measurement resonators

The measurement resonators, like the filter, were implemented as λ/4 coplanar waveg-

uide resonators. In this section we explain how we designed the coupling between the

measurement resonators and qubits, and between the measurement resonators and the

filter.
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Qubit-resonator coupling: claw coupler

The resonators were capacitively coupled to the qubits. Dielectric parallel plate capaci-

tors like the one used for the filter input capacitor could not be used, as the loss tangent

of SiO2 of ∼ 3 × 10−4 [36], would limit the qubit T1. Instead, we used interdigitated

capacitors as shown in Fig. 4.9, which we have nicknamed the “claw”. The claw not only

couples the resonator to the qubit, but also forms a large capacitance to ground. This

capacitance to ground changes the resonator’s effective length similarly to the filter input

capacitor, although the effect is somewhat more complex as the claw also adds significant

geometric length.

With no reliable means to analytically compute the effect, we instead used the Sonnet3

numerical electromagnetic simulation package to find the phase shift incurred by reflection

from the claw. The coupling capacitance Cg between the qubit and resonator, and the

phase incurred by reflection from the claw was found as a function of frequency and claw

length L. The results of the simulation were fit with second order polynomial curves as

given in Tables 4.2 and 4.3.

Here we summarize the design of the claw couplers:

1. From the desired coupling strength g the value of Cg is chosen from Eq. (4.22).

2. Use the data from Table 4.2 to find the appropriate length L of the claw.

3. Use the data from Table 4.3 to find the phase shift imposed by the claw. This

phase is then converted to an effective length in the same way as was done for the

3www.sonnetsoftware.com
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filter.

4. Adjust the resonator length to account for the phase shift.

Resonator-filter coupling: parallel line coupler

The capacitive coupling between the measurement resonators and filter was implemented

by allowing their center traces to run parallel over a length w to allow in-plane, as shown in

Fig. 4.10. The measurement resonator and filter traces are separated by a strip of ground

plane of width x to keep the ground plane equipotential. The parameters x and w were

adjusted to get the desired coupling capacitance Cκ. This capacitance was computed

numerically using Sonnet in a procedure entirely similar to that described above for

the resonator-qubit coupling. The results of the Sonnet simulation are summarized in

Table 4.4.

The coupling capacitance Cκ was determined by the desired ring-up rate of the res-

onator κr. From Eq. (4.10) we find

κr =

(
4

π

)2

ω3
rQFZ

2
0C

2
κ −→ Cκ =

π

4

√
κr

QFZ2
0ω

3
r

(4.32)

where we’ve used Qr = ωr/κr. For κ−1
r = 50 ns and QF = 30 we find Cκ = 1.47 fF.

4.4.4 Mode shape coupling factor

Because the voltage profile in a distributed resonator is not constant, the capacitances

coupling the measurement resonators required a position dependent adjustment. Each

capacitance was multiplied by
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Frequency [GHz] p0 p1 p2

4.8 -0.7610256 23.42786129 -30.03751643
5.0 -0.75985036 23.40431259 -30.03256152

6.705 -0.74027938 23.11730508 -29.92148358
6.735 -0.73999725 23.11213134 -29.91986705
6.765 -0.73971394 23.10693518 -29.91824295
6.805 -0.73933434 23.09997203 -29.91606597

Table 4.2: Claw length L as a function of qubit-resonator coupling capacitance Cg.
For each frequency, the claw length and capacitance are related according to L/µm =∑2

n=0 pn(Cg/fF)n.

Frequency [GHz] p0 p1 p2

4.8 1.52E-007 -1.24E-003 -8.51E-002
5.0 1.61E-007 -1.29E-003 -8.87E-002

6.705 2.47E-007 -1.74E-003 -1.19E-001
6.735 2.49E-007 -1.74E-003 -1.19E-001
6.765 2.50E-007 -1.75E-003 -1.20E-001
6.805 2.53E-007 -1.76E-003 -1.21E-001

Table 4.3: Phase shift φ as a function of claw length L. For each frequency the phase
shift and claw length are related by φ/rad =

∑2
n=0 pn(L/µm)n.

x [µm] p0 p1 p2

2 0.00367265 64.6536 -53.9095
5 0.0169587 101.302 -61.7247
8 0.0382334 143.915 -68.7105

Table 4.4: Coupling arm length w as a function of capacitance Cκ for several values of
the width x of the ground plane strip. For each value of x, w is related to Cκ according
to w/µm =

∑2
n=0 pn(Cκ/fF)n.
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Figure 4.9: The interdigitated capacitor connecting the measurement resonator and
qubit. Note the thin wire connecting the ground plane on either side of the topmost
qubit finger. This wire is an “in-plane crossover” connecting together the ground plane
on either side of the qubit finger.

Figure 4.10: Coupling between a measurement resonator and the filter.
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[cos (πxr/2lr) cos (πxF/2lF )]−1

where xr is the distance of the coupler from the measurement resonator voltage antinode,

and xF is the distance of the coupler from the filter voltage antinode.

4.4.5 Parameters

Using the results contained in Tables 4.2, 4.3, and 4.4 we converted the values of Cg and

Cκ from Table 4.1 to physical dimensions for use in the fabricated device.

4.5 Fabrication

The device was made of thin film aluminum film deposited on a sapphire substrate.

Silicon dioxide was used as a dielectric layer for the filter input capacitor and for wiring

crossovers used to connect the ground planes. The Josephson junctions were made of an

Al/AlOx/Al tri-layer. The fabrication process is summarized in the following steps:

1. Defined control lines and resonators.

(a) Approximately 100 nm of aluminum is deposited on a 3 inch sapphire wafer

via electron beam evaporation in a Plassys evaporator.

(b) A pattern defining the measurement resonators, filter, input/output lines, and

qubit control lines is etched into the film using using optical lithography and

chemical etching in an inductively coupled plasma (ICP) etcher with BCl3/Cl2.

117



2. Dielectric crossovers are formed to bridge the ground planes on either side of the

measurement input and output lines, and the qubit control lines.

(a) A 200 nm thick layer of silicon dioxide is deposited through an optically defined

photoresist mask to form the insulating layer of the crossovers in a lift-off

procedure.

(b) A photoresist mask defining the crossover wires is defined through optical

lithography. The sample is placed in the Plassys chamber and the underlying

aluminum film is ion milled in situ to remove the native oxide layer. A new

aluminum layer is deposited through a photoresist mask to form the crossover

wires via lift-off.

3. The cross shape of the transmon qubit is etched into the base aluminum layer via

the same method used to define the control lines and resonators. This step is done

apart from the control lines and resonators so that the qubit features are subjected

to a lower number of subsequent processing steps. This separation of etch steps for

the control lines and resonators from the etch step for the qubit has not definitely

been shown to improve qubit coherence. It was done as a cautionary measure.

4. An alignment mark pattern, to be used in the next step, is formed with electron

beam evaporated gold via lift-off.

5. The Josephson junctions are formed using double angle shadow mask evaporation

in the Plassys chamber. The shadow mask is formed via electron beam lithography.
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This step uses the previously defined gold alignment marks to align the electron

beam pattern with the optical patterns from previous steps. The base layer is ion

milled in situ prior to the junction deposition to remove the native oxide.
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Chapter 5

Experimental Setup and Methods

In this chapter, we present the experimental apparatus used to test dispersive measure-

ment with the bandpass filter. In the first section, we show a complete schematic of the

apparatus and describe how the measurement signal is brought into and out of the qubit

chip. In the next section, we discuss the details of generation of the measurement signals.

In the final section, we discuss details of detection of the measurement signals.

5.1 Wiring

A custom microwave processing system was used to generate and detect the measurement

pulses. A simplified diagram of the experimental setup, shown in Fig. 5.1, serves as the

main reference for our discussion.
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5.1.1 General view

The microwave probe signals were generated with a custom designed 1 Gs/s arbitrary

waveform generator (AWG) and IQ mixer at room temperature. The generated signal

contains one frequency component for each measurement resonator being probed. The

signal travels through several stages of attenuation at 4 K and 40 mK which dissipate

thermal and technical noise. When the measurement pulse arrives at the chip, most of it

is reflected from the input capacitor, and a small portion is transmitted into the bandpass

filter. Once inside the filter, each frequency component of the transmitted signal scatters

from its corresponding measurement resonator, acquiring a qubit state dependent phase

and amplitude shift. The dispersed signal leaves the chip through the filter tap-off path

(red arrow in Fig. 4.6) and enters a series of filters and switches at 40 mK before it is

amplified by a parametric amplifier (paramp). The signal is then further amplified by

a high electron mobility transistor (HEMT) amplifier at 4 K before it is brought up to

room temperature, further amplified, and detected by a custom designed GHz analog to

digital converter (ADC).

5.1.2 Noise attenuation and filtering

The microwave control lines are designed with 50Ω characteristic impedance, as this

value is well supported by off-the-shelf commercial microwave hardware, such as cables,

connectors, and attenuators. Therefore, the quantum circuitry is designed under the

assumption that the control lines can be modeled as 50Ω resistors. Resistors generate
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Figure 5.1: Schematic of the measurement system.
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temperature and resistance dependent voltage and current noise [35], so the qubits and

resonators are subjected to noise coming from their control lines at the base temperature

of the cryostat, approximately 40 mK. We designed the coupling strengths between the

control lines and the quantum circuits (qubits and resoantors) such that this 40 mK noise

would not introduce significant decoherence. However, warmer stages of the cryostat

generate thermal noise which exceeds the noise from 40 mK. This hotter noise propagates

through the lines and could interact with the quantum circuits, violating our design

assumption and introducing decoherence. Therefore, we use filters and attenuators to

reduce the noise incoming from hotter stages of the cryostat down to the level of noise

generated at 40 mK.

Review of thermal noise

The thermal noise of a resistor R, at temperature T follows the Plank distribution 1

SpV (f, T ) =
2Rhf

ehf/kbT − 1
. (5.1)

The superscript p in Sp reminds us that this is a “physicist’s” spectral density defined

for both positive and negative frequencies. For kbT � hf we expand in powers of

hf/kbT , finding SpV (f, T ) ≈ 2R (kbT − hf/2). Multiplying by a factor of 2 to convert to

a single sided “engineer’s” spectral density, and dropping the small constant −hf/2 we

find SeV ≈ 4RkbT , which is the usual Johnson noise formula [18, 35].

In the Johnson limit, the thermal noise power scales linearly with T . Therefore, in

1Note that here spectral densities are written in terms of the root mean square (RMS) of the voltage
fluctuations.
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order to reduce noise coming from a high temperature stage at Thigh to the level of a

lower temperature stage at Tlow, we attenuate the line by a factor of Thigh/Tlow.

When kbT . hf , the Johnson formula no longer applies. In this so-called “quantum

limit”, the thermal noise power scales as exp [−hf/kbT ], which is stronger than the linear

scaling in the Johnson limit. Consequently, in going from Thigh to Tlow, we must attenuate

by a factor larger than Thigh/Tlow. Consider the ratio of thermal noise power from sources

at two temperatures for a fixed frequency f = 6 GHz. Defining a reduced temperature

as x ≡ kbT/hf , we write the Planck power distribution as

SV (T ) ∝ 1

e1/x − 1
. (5.2)

The ratio of the noise power for a source at temperature αT to the noise power from a

source at temperature T is

SV (αT )

SV (T )
=

e1/x − 1

e1/αx − 1
. (5.3)

This function is plotted for the case T = 4 K (x = 13.8) and f = 6 GHz in Fig. 5.2.

Input line

The qubit, measurement resonator, and filter resonances are all in the 5 GHz to 7 GHz

range. For this frequency range, Teff ≡ hf/kb is in the range 240 mK to 335 mK. There-

fore, the parts of the apparatus at 295 K (room temperature) and 4 K are deep in the

kbT � hf limit, and we can model their noise properties using the Johnson formula.

Accordingly, we attenuate by a factor of 20 dB (×100) in between the room temperature

and 4 K stages, as shown in Fig. 5.1.
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Figure 5.2: Ratio of voltage noise spectral density SV (αT )/SV (T ) for T = 4 K and
f = 6 GHz.
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The 40 mK stage is in the quantum limit where hf & kbT . Consequently, the factor

of 100 reduction in temperature going from 4 K to 40 mK requires more than 20 dB of

attenuation in the line. In going from 4 K (α = 1) to 40 mK (α = 10−2), the thermal

noise drops by 5 orders of magnitude, as opposed to 2 orders predicted by the Johnson

formula. We accounted for this by using 30 dB line attenuation, plus another 20 dB of

isolation from the filter’s input capacitor. In order to remove noise at higher frequencies,

we added a 9.6 GHz low pass reflective filter. Additionally, an infra-red (IR) filter was

used to absorb high frequency radiation propagating down the coaxial transmission line

to prevent generation of quasiparticles in the superconductor [5].

Ground loops

An inner DC block placed just after the AWG was crucial to the setup. Without this

block, a ground loop introduced kHz frequency signals into the paramp, modulating its

gain. The block broke this ground loop and stabilized the paramp gain. We also found

that care was needed in breaking the grounds between the computer controlling the six

port switch and the rest of the apparatus. In the initial setup, the digital communication

line between the computer and the switch control box had the inner and outer conductors

broken a different points, almost two meters apart. This created a large capacitance which

allowed transmission of noise from the computer to the control box. This was fixed by

adding a low pass filter where the control box lines entered the cryostat.
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5.1.3 Output line

Immediately upon exiting the chip, the measurement signal passes through another reflec-

tive low pass filter and IR filter. No attenuator was used here because loss of measurement

photons degrades the quality of the measurement.2 The IR filter introduces ∼ 2 dB of

loss.

The output signal next went through a Radiall R573423600 six port microwave switch.

This allowed us to switch in-situ the input to the parametric amplifier. Switching to

calibrated noise sources allowed us to check the noise properties of the paramp. The

signal next passed through a Radiall R572433000 two port switch which allowed us to

select between two paramps. This was done because one of the amplifiers used a new

design which was not fully tested and we wanted to have the second amplifier as a fall-

back. The new design turned out to work extremely well and was critical to the success

of the experiment. The signal next entered a circulator which directed it to the paramp

where it was amplified and reflected. The circulator directs the reflected signal toward

the second two port switch. Because the directivity of the circulator is imperfect, some

of the reflected amplified signal and noise goes backwards toward the chip. To eliminate

this backward signal, another circulator configured as an isolator was included between

the six port switch and the first two port switch. After leaving the paramp the signal

goes through a second two port switch, another circulator configured as an isolator, and

then entered a Low Noise Factory HEMT. The purpose of the paramp was to amplify the

2This point is discussed quantitatively in section 3.6.
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measurement signal above the input referred noise of the HEMT, which in this experiment

was approximately 2.5 K. The unusually low noise of the HEMT was a major advantage

as it lowered the requirement on the paramp gain. After amplification by the HEMT the

signal travelled out of the cryostat to room temperature amplifiers which increased the

signal level enough to drive an IQ mixer. The I and Q components generated by the IQ

mixer were buffered by custom designed GHz op-amp buffer amplifiers which drove two

inputs of a custom Gs/s ADC.

5.2 Parametric amplifier

In this section, we discuss the requirements on amplifier noise and gain needed to reach

good signal to noise ratio. The signal to noise ratio is constrained by two factors. First,

for reasons which will become clear in the next chapter, we cannot operate the resonator

with above 10 to 100 photons without inducing deleterious transitions of the qubit state.

Second, we want to measure the state as quickly as possible, so we cannot integrate

signal for too long. From Eq. (3.117), we find that the output power of the dispersive

measurement is

Pout = Eres
κr

16re
= ~ωrn̄

κr
16re

. (5.4)

With re ≈ 1, κr = 1/37 ns and n̄ between 10 and 100, the output power is in the range

-131 dBm to -121 dBm. Supposing we want to measure the qubit state in ∼ 100 ns, we

need a detection bandwidth of B ≈ 100 MHz. The quietest commercially available RF

amplifiers are high electron mobility transistor (HEMT) amplifiers, with input referred
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noise temperature as low as T ≈ 3K. The noise power generated by that amplifier for our

parameters is PHEMT = kbTB = −122 dBm. This amplifier noise is just about the same as

the upper bound on the scattered signal power, meaning that the HEMT would degrade

the SNR by a factor of two. Therefore, we would like to use a low noise pre-amplifier with

large enough gain to overcome the input referred noise of the HEMT. We used a type of

Josephson parametric amplifier (paramp) [57, 29, 58, 10, 32] specially designed for large

bandwidth and saturation power [31]. The paramp gives roughly 16 dB gain, 700 MHz

bandwidth, -120 to -100 dBm saturation power, and an effective noise temperature of

about 330 mK [31]. This noise temperature and large gain is enough to put the output

noise of the paramp about five times larger than the input referred noise of the HEMT,

which means that the HEMT should degrade the SNR by only about 20%.

5.3 Signal generation

The measurement signals were produced by a custom FPGA controlled 1 Gs/s arbitrary

waveform generator (AWG). The two channels of the AWG drove the I and Q ports of a

Marki IQ mixer. With a cosine signal cos (δωt+ φ) on the I channel, and sin (δωt+ φ)

on the Q channel, the radio frequency (RF) signal leaving the RF port of the mixer is

cos ([ωc + δω] t+ φ) (5.5)

where ωc is the carrier frequency at several GHz (see Appendix C). We probe multiple

measurement resonators simultaneously by superimposing IQ sinusoids to generate a

signal with multiple frequency components. The 1 Gs/s AWG has a usable bandwidth
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of 500 MHz due to the Nyquist criterion. Combined with the IQ mixer, this allows

for a usable RF bandwidth of ∆ω/2π = 1 GHz centered around ωc. In practice, the

AWG outputs are filtered by absorptive Gaussian low pass filters to remove harmonic

created by the shape of the AWG digital samples. This limits the usable bandwidth to

∆ω/2π ≈ 600 MHz.

5.4 Signal detection

The dispersed frequency components coming from the chip and subsequent amplifiers

are, like the drive signal, of the form

s(t) = cos [(ωc + δω) t+ φ] , (5.6)

where ωc is the frequency of the carrier, δω is detuning of the measurement signal from the

carrier, and φ is the phase of the signal which includes the phase shift caused by dispersion

from the measurement resonator. As shown in Appendix C, after demodulation, the I

and Q signals are

I(t) = cos (δωt+ φ) , Q(t) = sin (δωt+ φ) . (5.7)

These low frequency signals were digitized by the ADC to

In = cos (δωtn + φ) , Qn = sin (δωtn + φ) . (5.8)
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where tn = n/fs and fs = 1/500 ns is the sampling frequency of the ADC.3 The sampled

signals In and Qn are treated as the real and imaginary parts of a complex number

zn ≡ In + iQn = exp (i [δωtn + φ]) . (5.9)

The complex signal zn is multiplied by exp (−iδωtn) to produce

z′n ≡ zn exp (−iδωtn) = exp (iφ) . (5.10)

Finally, z′n is integrated over the duration of the pulse. The integration acts as a low

pass filter, which increases the signal to noise ratio. The end result is a single point in the

two-dimensional plane, whose phase is the same (up to constant rotations coming from

digital and analog time delays) as the phase of the original analog signal. In this way, the

phase of the dispersed signal is measured and the corresponding qubit state inferred.

5.5 Parametric amplifier

In this section, we discuss the requirements on amplifier noise and gain needed to reach

good signal to noise ratio. The signal to noise ratio is constrained by two factors. First,

for reasons which will become clear in the next chapter, we cannot operate the resonator

with above 10 to 100 photons without inducing deleterious transitions of the qubit state.

Second, we want to measure the state as quickly as possible, so we cannot integrate

signal for too long. From Eq. (3.117), we find that the output power of the dispersive

3The sampling frequency is 1 GHz, but time-adjacent samples are summed together in the FPGA to
use less resources in the following processing stages.
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measurement is

Pout = Eres
κr

16re
= ~ωrn̄

κr
16re

. (5.11)

With re ≈ 1, κr = 1/37 ns and n̄ between 10 and 100, the output power is in the range

-131 dBm to -121 dBm. Supposing we want to measure the qubit state in ∼ 100 ns, we

need a detection bandwidth of B ≈ 100 MHz. The quietest commercially available RF

amplifiers are high electron mobility transistor (HEMT) amplifiers, with input referred

noise temperature as low as T ≈ 3K. The noise power generated by that amplifier for our

parameters is PHEMT = kbTB = −122 dBm. This amplifier noise is just about the same as

the upper bound on the scattered signal power, meaning that the HEMT would degrade

the SNR by a factor of two. Therefore, we would like to use a low noise pre-amplifier with

large enough gain to overcome the input referred noise of the HEMT. We used a type of

Josephson parametric amplifier (paramp) [57, 29, 58, 10, 32] specially designed for large

bandwidth and saturation power [31]. The paramp gives roughly 16 dB gain, 700 MHz

bandwidth, -120 to -100 dBm saturation power, and an effective noise temperature of

about 330 mK [31]. This noise temperature and large gain is enough to put the output

noise of the paramp about five times larger than the input referred noise of the HEMT,

which means that the HEMT should degrade the SNR by only about 20%.
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Chapter 6

Results

In this chapter we present the results of the experiment. We focus first on detailed

characterization of a single qubit measurement channel, and then present data in which

several qubits were measured simultaneously.

6.1 Characterization

6.1.1 Resonator frequencies

We first measured the frequencies of the four resonators on the chip. Using a vector

network analyzer we probed the system with a variable frequency microwave tone and

measured the transmitted amplitude and phase S21. Results are shown in Fig. 6.1. The

four dips in transmission correspond to the four resonators, and the broad peaked struc-

ture comes from the bandpass filter. In an initial run with a test chip we found the filter
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Figure 6.1: Transmission through the measurement circuit. Transmitted power is plotted
with an arbitrary vertical offset associated with all of the various attenuation and ampli-
fication factors in the system which were not calibrated. Four transmission dips appear
at the measurement resonators. Q3 was significantly far away from its target frequency.
The broadly peaked background comes from the bandpass filter.

bandwidth to be ∼ 200 MHz at 6.5 GHz, giving QF ≈ 32, very close to the target value

of 30. In the final iteration, the addition of crossovers near the output bond pad placed

the filter frequency at 6.8 GHz, much closer to the target value 6.75 GHz.

The resonator parameters are summarized in Table 6.1. Three of the resonator fre-

quencies were within 32 MHz of the target values, and the spacings were within 6 MHz

of the target values. The resonator for Q3 however was 113 MHz too high. We do not

know the reason for this error but it was likely a mistake in the computer file defining the

geometry of the photo-lithography mask for the chip, or a physical defect in the resonator

causing a short to ground, which reduced the resonator’s electrical length and raised its

frequency.
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6.1.2 Coupling strength - g

Further characterization required use of the qubit, so we had to roughly tune up the

measurement system. We placed the measurement probe frequency at ωprobe = ωr,|0〉, ie.

the frequency of the measurement resonator with the qubit in the ground state. While

this choice of probe frequency is not optimal, but it yields enough separation in the IQ

plane to calibrate control pulses on the qubit.

We next measured the qubit-resonator coupling strengths g. Because of the large

detuning between the qubit and resonator we could not directly measure g through a

time resolved rate of photon swap between the qubit and resonator. Instead, we used the

dispersive physics discussed in Chapter 3, specifically Eq. (3.20), which connects g with

the dispersive shift χ,

g =
√
−χ∆(1 + ∆/η) . (6.1)

Here ∆ ≡ ω10 − ωr is the qubit-resonator detuning, and η ≡ ω21 − ω10 is the anhar-

monicity of the qubit. We measure the qubit frequencies ω10 and ω21 and the qubit

anharmonicity via spectroscopy and then compute ∆ and η. We then measured χ by

performing spectroscopy of the resonator after the qubit was prepared in |0〉 or |1〉. In

either case we observe a dip in transmission at the resonance frequency ωr,|0〉 or ωr,|1〉, as

shown in Fig. 6.2. This provides a measure of χ through the relation 2χ = ωr,|1〉 − ωr,|0〉,

from which we compute g via Eq. (6.1). The coupling strengths measured in this way are

given in Table 6.1.
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Figure 6.2: Transmission through the measurement circuit for three qubit states. Asym-
metry in the resonance dips comes from impedance mismatch in the input and output of
the measurement circuit.

ωr/2π [GHz] g/2π [MHz] 1/κr [ns]
Q1 6.835 (6.805) 100 (146) 19 (12)
Q2 6.789 (6.765) 86 (102) 37 (23)
Q3 6.848 (6.735) 76 (84) 50 (35)
Q4 6.737 (6.705) 50 (59) 147 (71)

Table 6.1: Parameters for the four qubits. Each was designed with a different target κr
in order to test the tradeoff between damping and measurement speed. Target design
values are given in parentheses. Disparity between target and measured values probably
comes from errors in predicting in-plane capacitances between structures.
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6.1.3 Resonator transient response rate - κr

We next measured the strength of the resonator-environment coupling, characterized by

the leakage rates κr. From the qubit-resonator coupling term in the dispersive Hamilto-

nian (Eq. (3.19)) we find that the resonator photons shift the qubit frequency by

δω10 = −2χn (6.2)

where n is the number of photons in the resonator. Because the qubit frequency shift

is proportional to the photon number, a measurement of the decay time of δω10 yields a

measurement of the time decay constant for n, which is κr by definition.

We measured the time decay constant κr with a ring-down technique. The pulse

sequence is shown in Fig. 6.3 a. With the qubit in |0〉 we drive photons into the resonator

with a stimulation pulse at the measurement frequency. During this pulse, photons

accumulate in the resonator, raising n and shifting ω10 according to Eq. (6.2). The

resonator drive pulse is turned off and the resonator is allowed to freely ring down. As

the resonator photon number n(t) changes dynamically during the sequence, the ac Stark

shifted qubit frequency also changes as δω10(t) = −2χn(t). To measure ω10(t) at each

point in time, we apply a π-pulse to the qubit at variable time τ and with variable

frequency ωprobe. At each value of τ , the π-pulse only excites the qubit if ωprobe ≈ ω10(t).

At the end of the sequence, we measure the qubit state by again probing the resonator,

thus measuring the probability that the qubit was excited by the π-pulse. This yields a

measurement of ω10(t), as shown in Fig. 6.3 b. Through Eq. (6.2) and using the previously

measured value of χ, we convert the measured ω10 to n(t), generating a plot of resonator
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photon occupation versus time during the measurement pulse, as shown in Fig. 6.3 c. The

value of κr is extracted by fitting the free decay part of the data. Note that conversion

from δω10(t)→ n(t) is not necessary for the extraction of κr, as the relevant decay time

can be extracted directly from ω10(t). We present the n(t) as an accompaniment to the

δω10(t) data shown in Fig. 6.3 b, and because it will be useful later in our discussion of

qubit state transitions induced by the measurement photons.

Values of κr for each resonator are given in Table 6.1. The measured values of κr

were approximately 50% lower than the target values. This discrepancy has not been

understood for our chip. A subsequent chip using a λ/2 bandpass filter based on the

work described here had a similar error in which the values of κr were lower than the

design values. It will be important to understand this divergence in the future.

6.2 Photon number calibration

In the previous section, we showed how to measure the resonator photon number using

the ac Stark shift. We used Eq. 6.2 to convert a time resolved measurement of δω10 to

a time resolved measurement of n. We also need a calibration between resonator drive

amplitude and the steady state value of n. This can be thought of as measuring the

t = 100 ns point of Fig. 6.3 c as we vary the amplitude of the measurement resonator

drive pulse. Therefore, the pulse sequence is essentially the same as shown in Fig. 6.3 a,

with two differences.

1. The π-pulse placed at a fixed τ , in the steady state part of the resonator ring up.
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Figure 6.3: Resonator photon occupation during the measurement pulse. a) The control
sequence applied to the I port of the IQ mixer used to control the resonator and qubit.
We apply two measurement pulses (green) to the resonator. Note the emphasis at the
beginning of the pulse which acts to ring up the resonator faster than the ring-up time
1/κr. During the first pulse, we apply a π-pulse (blue) to the qubit at a variable time τ
and frequency. Only when ωprobe matches the qubit frequency is the qubit excited. The
second measurement pulse checks whether or not the qubit was excited by the π-pulse.
b) Probability (color scale) of qubit excitation versus time and frequency of π-pulse. The
curve of high qubit probability provides a measure of the qubit frequency as a function of
time during the measurement pulse. c) Qubit frequency converted to resonator photon
occupation via Eq. (6.2). The red curve is an exponential fit to the decay.
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2. We vary the resonator drive pulse amplitude.

This yields a measurement of the qubit frequency as a function of resonator drive ampli-

tude, as shown in Fig. 6.4. Assuming that the resonator internal energy is proportional

to the square of the amplitude of the drive signal, we have

δω10

2χ
= n = mA2. (6.3)

With the value of χ previously, we measure the dependence of δω10 on the drive amplitude

and extract m. In subsequent experiments we mapped drive amplitude to resonator

photon number via n = mA2.

6.3 Stimulated qubit transitions

The visibility of the qubit state measurement increases as we collect more scattered

photons. Therefore, probing the measurement circuit with a higher power pulse should

lead to better measurement visibility. However, at large numbers the resonator photons

induce qubit transitions between the |0〉 and |1〉 states [19, 50]. To determine how hard

we could drive the measurement system without disrupting the qubit, we measured the

qubit state transitions as a function of resonator drive power . We prepared the qubit

in either |0〉 or |1〉 and then applied a measurement pulse with variable power. We then

allowed the resonator to ring down, and finally probed the resonator with a measurement

pulse to determine the state of the qubit. The pulse sequence is illustrated in Fig. 6.5 a. In

this way we measured the probability of a qubit transition from initial states {|0〉, |1〉} to
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Figure 6.4: AC Stark shift measured via qubit detuning during measurement.
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final states {|0〉, |1〉, |2〉} as a function of the driving DAC amplitude. We then converted

the DAC amplitude to resonator photon number using the ac Stark shift calibration.

We observe a sharp onset of stimulated qubit state transitions at sufficiently high

photon numbers, as shown in Fig. 6.5 b. As shown in Fig 6.5 b, |1〉 → |0〉 transitions set

in abruptly at n & 100. The complementary transition, |0〉 → |1〉 sets in at n & 175.

Note also that we observed transitions to |2〉 from both initial states.

At low photon numbers, the probabilities for no transition, such as |0〉 → |0〉, are not

1. The main contributing factor to this is that when idle, the qubits are not perfectly

in the ground state. We observe between 4% and 8% idle |1〉 population, which means

that the |0〉 → |0〉 probability will be no greater than 0.92-0.96. This same effect raises

the |1〉 → |0〉 at low photon numbers: if the qubit is erroneously prepared in |1〉, then a

π-pulse intended to prepare |1〉 instead puts the qubit in |0〉. This process manifests as

a nonzero probability for |1〉 → |0〉 at low photon number.

We used these data to choose the maximum usable photon number. As a rule of

thumb, we kept the photon number at 1/2 the value of the sharp onset of qubit state

transitions. The exact value depended on the values of g for each qubit, and the operating

value of ∆. Later, in our analysis of the time dependent measurement fidelity, we will see

that the fidelity numbers themselves place a strong bound on the probability of stimulated

qubit transitions, providing further indication that our experiments were done at values

of n which preserved the qubit state.
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Figure 6.5: Qubit transitions stimulated by the measurement pulse. a) Pulse sequence.
The qubit is prepared into the |0〉 (|1〉) state with an idle (π-pulse) as shown in blue. We
then drive the measurement resonator with a variable power pulse, as shown in green.
This pulse can induce qubit state transitions. After a ring-down period, we probe the
measurement resonator with a low power pulse to measure the state of the qubit. b)
Probabilities for the final state of the qubit for initial states |0〉 or |1〉. Each curve
labelled |i〉 → |f〉 gives the probability that the qubit prepared in state |i〉 is measured
at the end of the sequence to be in state |f〉.
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6.3.1 Comparison with theory

In the dispersive Hamiltonian given in Eq. (3.17), the photon number operator n couples

only to the qubit σz. Therefore, resonator photons should not induce upward or downward

transitions of the qubit state. Our treatment of the dispersive limit assumes g/∆� 1, but

ignores the additional dimensionless factor of n itself. This suggests that at large values

of n, our lowest order expansion becomes insufficient and other terms involving qubit

transitions via σx or σy may appear. We do not give a full account of this physics, but

comment on how the critical n found in our data relates to rough theoretical predictions.

The dispersive Hamiltonian is an expansion to first order in (g/∆)2. Therefore, we might

expect qubit transitions for n > (∆/g)2. In the literature, the critical photon number is

defined as ncrit ≡ (∆/g)2/4. In the present experiment we have ncrit ≈ 30. Interestingly,

we do not observe stimulated transitions until n ≈ 3ncrit.

To our knowledge, neither the precise photon number at which qubit transitions

are induced, nor even the sharp onset with increasing n has been understood in the

theoretical literature. Characterization and theoretical understanding of this effect would

be a natural continuation of the present work.

6.4 Coherence

The bandpass filter was designed to increase the κrT1 product. In Section 6.1.3 we saw κr

values as fast as 1/19 ns. It remains to see that the qubit T1 was preserved. We measured

each qubit’s T1 over a range of frequencies, finding typical values between 10µs and 12µs
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over a range of qubit frequencies giving ∆ > 800 MHz. A full data set for qubit 2 is

shown in Fig. 6.6. Without the filter, we expect a T1 limit of (∆/g)2/κr = 3.2µs at

∆ = 800 MHz. As the measured T1 values exceed that limit, we know that the filter

successfully protected the qubit. Of course, the qubit T1 does not reach the upper limit

allowed by the filter. This was intentional, as we do not want the measurement circuit

imposing additional decoherence of the qubit. In other words, the qubit T1 was dominated

by loss channels other than the measurement circuit.

6.5 Time dependence and accuracy

In this section we present the measurement accuracy and its dependence on integration

time. The results presented here are the main results of the thesis.

6.5.1 State preparation - heralding

We found that the qubits had 5%-8% probability to be in the excited state when idling.

To remove this initialization error from characterization of the measurement process,

we use heralding [19]. Each pulse sequence begins with a measurement pulse, and only

those experimental repetitions in which this first measurement pulse yields |0〉 are kept.

In this way, we effectively force the qubit into |0〉 at the start of each pulse sequence.

This heralding process brought the |0〉 preparation probability to > 99.3%, as we will see

below.
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Figure 6.6: Energy decay time T1 versus frequency for qubit Q2. With the measurement
resonator frequency above the qubit, the lack of downward trend in T1 with increasing
qubit frequency indicates that the measurement circuit does not dominate the qubit
damping. The T1 values are distributed around 10µs, which is several times larger than
the Purcell limit predicted in the absence of the filter. The dip and wild variation in T1

5.2 GHz come from coupling to a resonator bus which was not used in this experiment.
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6.5.2 Fidelity at fixed measurement time

Preparing the qubit into either |0〉 or |1〉, we inject a measurement pulse and digitize the

scattered wave. We kept trials for which demodulation of the heralding pulse yielded |0〉.

We then demodulated the measurement signal for 140 ns, beginning at the start of the

measurement pulse when there were nearly zero photons in the resonator. This yielded

two sets of IQ points, one for |0〉 and one for |1〉 as shown in Fig. 6.7. As predicted in

Ch. 3, the demodulated IQ points form two dimensional Gaussian distributions. The finite

separation and width of the distributions means that, with a single IQ measurement, we

have a probability of erroneously identifying the qubit state. We characterize the error

in two ways: first using just the intrinsic signal to noise ratio of the dispersed photons,

and second including non-ideal behavior of the qubit.

Separation error

We first characterize errors from the intrinsic signal to noise ratio of the dispersed pho-

tons. This is captured by the separation error εsep defined in Ch. 3. Projecting the two

dimensional IQ distributions onto the line connecting their centers produces a pair of one

dimensional Gaussian distributions, as shown in the inset of Fig. 6.7. We find that the

distributions are well fit by parabolas on the log scale, indicating good Gaussian shape.

From the fits, we compute εsep using Eq. (3.32). Here, we found εsep = 0.2%.
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Figure 6.7: Measurement events for one qubit after 140 ns pulse integration. Points in the
wrong cluster are due to unwanted qubit state transitions. The appearance of more red
points in the blue cluster than blue points in the red cluster is partially an artefact of the
plot, and partially due to the fact that the qubit undergoes more downward transitions
than upward transitions. The inset shows histograms of the IQ points projected onto the
line connecting the centers of the |0〉 and |1〉 clouds. Heavy lines are Gaussian fits to the
histograms are used for computing the separation error.
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State errors

In the histogram shown in the inset of Fig. 6.7, we can see bins with counts greatly

exceeding the parabolic fit. For example, there are far more red counts at x = −1

than predicted by the red fit line. These counts come from repetitions in which the

qubit undergoes a state transition event before or during the measurement pulse. A

simple example is a qubit which undergoes a T1 decay event near the beginning of the

measurement pulse. After the T1 decay, the qubit is in |0〉, so the measured IQ point may

be deep within the |0〉 cloud, but because that qubit was prepared as |1〉, we mark it as red.

Other sources of this type of error are |0〉 → |1〉 qubit transitions, improperly prepared

states due to the finite accuracy of the heralding measurement pulse, and transitions

induced by the measurement pulse itself. We define the “state errors” ε|0〉 (ε|1〉) as the

probability that a qubit nominally prepared in |0〉 (|1〉) is incorrectly identified. We find

ε|0〉 = 0.7% and ε|1〉 = 1.3%. These state errors are just at the ∼ 1% threshold needed for

the surface code. Larger qubit T1 values, accessible through use of MBE grown aluminum

films [27] would improve ε|1〉.

6.5.3 Time dependence

While separation fidelity is improved by collecting more scattered photons, this requires

longer measurement and thus incurs more qubit errors. To fully characterize this trade-

off, we varied the upper limit of the time integration used in extracting the IQ points,

thus building a time series of |0〉 and |1〉 IQ clouds. We plot the data in three dimensions,
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with time on the z-axis and with each x-y plane representing an IQ plane at a single time.

An example with the qubit prepared in |0〉, |1〉, and |2〉 is shown in Fig. 6.8. Each thread

in the plot corresponds to a single repetition of the experiment, ie. a single measurement

event. At the beginning of the measurement pulse t = 0, the branches for the three

prepared states are indistinguishable. At the beginning of the pulse, photons begin to be

collected, but the resonator has not yet rung up, so the photons are not phase shifted.

During this time, the branches all move away from their starting position but remain

clustered. Once the resonator has rung up, the scattered photons carry information about

the qubit state, and the branches begin to separate. Integrating more signal and noise

increases the separation and the widths of the branches.

Next, we find the time dependent separation and state errors. For each time slice

during the measurement we construct IQ clouds as in Fig. 6.7. Once we recorded the

time domain traces I(t) and Q(t), we extracted the time dependent separation error

εsep(t) at each t in the same way as described above. We then used the separation

δ(t) ≡ |〈I(t)〉 − 〈Q(t)〉| as an optimal weighting window to re-integrate the data. In

other words, once we knew δ(t) we multiplied I(t) and Q(t) by δ(t) and re-integrated.

This emphasized the data where the IQ clouds for each state are better separated. From

the re-integrated data we extract εsep, ε|0〉, and ε|1〉. We wish to build a multiplexed system

capable of measuring several qubits simultaneously, so we performed the experiment on

two qubits, Q2 and Q4 at the same time, as shown in Fig. 6.9.

We focus first on the data for qubit Q2. The separation error changes slowly with time
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Figure 6.8: IQ trajectories during integration of the measurement pulse, showing ap-
proximately 150 separate measurements. The three branches correspond to the qubit
prepared in the |0〉 (blue), |1〉 (red), or |2〉 (green) states. Note the green threads which
jump to the red branch part way through the measurement, which represent |2〉 → |1〉
qubit transitions.
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Figure 6.9: Time dependence of measurement errors for qubits Q2 (circles) and qubit
Q4 (squares) measured simultaneously. Green points indicate the separation error εsep,
while the blue and red points represent ε|0〉 and ε|1〉 respectively. The data in Fig. 6.7
came from the t = 140 ns point for Q2.
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for the first 50 ns while the resonator rings up. As shown in Fig. 6.3, the resonator photon

occupation reaches the maximum value after approximately 50 ns. As the resonator

photon number increases, the slope of εsep(t) increases until attaining a constant value at

about 125 ns of approximately one decade per 25 ns. The constant slope on the semi-log

scale is consistent with Eq. (3.35).

The state errors decrease along with the separation error for the first 100 ns, and then

begin to saturate. The saturation is explained by two deleterious qubit state transition

processes. We have measured that, in equilibrium, the qubits experience upward |0〉 → |1〉

transitions with a rate of Γ↑ ≈ 1/100µs, which result in excited state populations of

5% to 8%. These transitions lead to state preparation errors; with 500 ns between the

heralding and final measurements, we expect 0.5% re-population of the excited state

before the start of the final measurement. This nearly explains the saturation of ε|0〉 at

99.3%. The second error process is the usual qubit energy relaxation; a qubit transition

before the halfway point of the measurement leads to an error. With a measurement

time of 140 ns and T1 = 10µs we expect an extra 0.7% loss in excited state population,

yielding an expected limit of 98.8%. This agrees well with the measured ε|1〉 saturation

at 98.7%.

The separation fidelity for Q4 is qualitatively similar to the data for Q2, but with

slower approach to the constant slope region. Qubit Q4 is slower because it has κ−1
r =

147 ns, which is slower for Q2 where κ−1
r = 37 ns.

These data demonstrate the viability of multiplexed, dispersive state measurement.
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In particular, the qubit with fast κr approaches 99% accuracy for the state errors in this

multiplexed measurement.

As the more aggressive κr used in qubit Q2 did not produce a measurable suppression

in T1, future designs should use even faster values of κr. The qubit with the most

aggressive κr in the present experiment, Q1, could not be carefully characterized because

of the error which placed Q3’s measurement resonator too close in frequency to Q1’s

measurement resonator.

6.5.4 Multiplexed measurement

We measured all four qubits simultaneously, as shown in Fig. 6.10. Three of the four

qubits, Q1, Q2, and Q3, reached εsep < 1% within 200 ns. The fourth device, Q4, which

had the most conservative κrT1 product, reached εsep = 1% in 266 ns. In order to prevent

saturation of the parametric amplifier while simultaneously measuring all four devices,

we reduced the drive powers relative to the two qubit case discussed previously. This

lead to lower SNR and accordingly required longer integration time, which is why the

time for eg. Q2 to reach εsep = 1% is longer here than in Fig.6.9.

For qubits Q2 and Q4 the performance is nearly as good as for the two qubit case.

The small degradation of performance comes from increased qubit transitions during

the longer measurement time. Qubits Q1 and Q3 show higher ε|1〉. As shown in the

inset of Fig. 6.1 the measurement resonators for qubits Q1 and Q3 are closely spaced in

frequency (13 MHz). This close spacing adversely affects the frequency discrimination
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step of the measurement via spectral leakage, leading to increased measurement error.

This is seen in Fig. 6.10 where the εsep(t) for Q3 does not follow a line on the semi-log

plot. More importantly, the measurement photons induce large qubit frequency shifts

(200 MHz to 300 MHz) via the ac Stark effect, as shown in Fig. 6.3. This causes the qubits

to cross through resonance with material defects and lose |1〉 population. This was the

main cause of the poor ε|1〉 on Q1. We were able to mostly work around this problem

with careful choice of operating frequency in qubits Q2, Q3, and Q4, but limited total

available frequency space led to degraded performance in Q1 which was tuned up last.

This problem would be substantially mitigated in devices constructed with epitaxial Al

films grown on plasma cleaned substrates as, this was shown to significantly reduce the

number and coupling strengths of the defects [27].

6.6 Measurement efficiency

If scattered photons are lost through absorption, or if the parametric or HEMT amplifiers

add noise to the scattered signal, the measurement performance degrades. We charac-

terized these imperfections by comparing the effect of the measurement photons on the

qubit against the resulting measurement visibility.

In Chapter 3 we found a relation between the measurement SNR, and the associated

qubit dephasing. For a given measurement pulse power, if the measurement visibility

is less than that predicted by Eq. (3.44), we would conclude that some of the scattered

photons must have been lost, or additional noise must have been injected into the pro-
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Figure 6.10: Simultaneous measurement of four qubits. Separation (green) and state
(blue and red) fidelities are shown similarly to Fig. 6.9. Ripples on qubits Q1 and Q3

were caused by spectral leakage.
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cessing chain. In one experiment, we measured the photon induced qubit dephasing via

Ramsey fringes, where we added a variable power measurement pulse between the usual

two π-pulses in the standard Ramsey sequence. This measurement pulse dephases the

qubit and lowers the visibility of the Ramsey fringes. We record the resulting fringe

visibility as a function of measurement pulse power. In a second experiment, we prepare

the qubit in either |0〉 or |1〉 and then apply a measurement pulse, recording the SNR as

a function of pulse power. We then convert SNR to an upper bound on phase coherence

via Eq. (3.44).

We extract the system efficiency by comparing the directly measured Ramsey visibility

against the quantum limit implied from the second experiment, as shown in Fig. 6.11.

We found that the Ramsey visibility curve is shifted 9 dB to the left of the quantum limit

curve, indicating that our measurement system has a quantum efficiency of η = −9 dB ≈

12%.

Quantum efficiency less than 1 comes from photon loss and/or added noise, so we

attempt to budget this -9 dB efficiency in terms of lossy hardware elements and known

noise sources in the experiment. At least 3 dB efficiency loss comes from the parametric

amplifier, as a phase insensitive parametric amplifier adds an input referred noise of

~ωr/2 noise power per unit bandwidth [11]. The photon states themselves carry ~ωr/2

quantum noise power per unit bandwidth, so the parametric amplifier degrades the signal

to noise ratio by at least a factor of 2 = 3 dB.

The remaining 6 dB must come from a combination of other noise sources and photon
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loss. Referring back to the diagram of the experimental apparatus shown in Fig. 5.1, we

find a large number of microwave elements, each of which contributes some loss. The

IR filter itself is known to have approximately 2 dB loss at our measurement frequencies

near 7 GHz. The three circulators are expected to contribute a total of ∼1 dB loss.

The dispersed signal makes roughly 20 trips through SMA connectors. With 0.03 dB

specified insertion loss per SMA connector, assuming the insertion loss really is a loss,

the connectors contribute at least another 0.5 dB loss. The HEMT amplifier adds noise.

We operated with parametric amplifier gain near 16 dB, which results in an effective

output noise temperature of T = 1016/10hν/kb ≈ 13 Kelvin. This is about 5 times higher

than the HEMT noise temperature of ∼2.5 Kelvin, resulting in another 1 dB of noise

added by the HEMT.

With these considerations we have approximately 1.5 dB loss or added noise unac-

counted for, which corresponds to 70% efficiency. This extra efficiency loss could be

carefully studied in further experiments.

Without precise measurements of the loss of each hardware element, it is difficult to

estimate the uncertainty of the numbers discussed above. However, the SMA connectors

deserve special attention. The insertion loss of an SMA connector does not necessarily

come from a dissipative processes; non-zero reflections from the input contribute to in-

sertion loss. Therefore, our assumption that the collective insertion losses of the 20 SMA

connectors add together is not necessarily well founded. Ignoring the SMA connector

insertion loss, we compute 2.0 dB loss or added noise unaccounted for.
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Figure 6.11: Quantum efficiency of the measurement system. Performing a standard
Ramsey fringe sequence, but with a measure pulse in between the π/2-pulses, we mea-
sure the relative fringe visibility as a function of measure pulse power (blue squares).
The fringe visibility data becomes noisy at visibilities < 3%. We also measure the dis-
tinguishability between the qubit states versus measure pulse power, and convert to a
quantum limit on Ramsey fringe visibility via Eq. (3.44) (green circles). The comparison
between these curves is clarified by re-plotting the quantum limit shifted by 9 dB (red
line), which goes through the Ramsey visibility points.
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Appendix A

Quantum Mechanics Reference

A.1 Commutators

A.1.1 Products

[A,BC] = ABC −BCA (A.1)

= ABC −BAC +BAC −BCA (A.2)

= [A,B]C +B[A,C]. (A.3)

This can be remembered by noting that [A, ·] is like a derivative with respect to A.

A.1.2 Translation by an operator

A very common expression involves the translation of an operator A by another operator

B. The translation can be expressed as a sum

eABe−A =
∞∑
n=0

1

n!
[A, [A, [A, . . . [A,B]]]]︸ ︷︷ ︸

n times

. (A.4)

160



We can also derive a differential equation that helps in evaluating this sort of expression.

Define

O(λ) = eλABe−λA. (A.5)

Differentiating both sides with respect to λ gives

dO
dλ

= [A,O(λ)]. (A.6)

It is sometimes useful to solve equation (A.6) and then set λ = 1 instead of evaluating

(A.4) directly.

A.1.3 Baker-Campbell-Hausdorff

The BCH formula provides a summation representation of the product of two exponen-

tiated operators,

eAeB = eA+B+ 1
2

[A,B]+ 1
12

([A,[A,B]]−[B,[A,B]])+···. (A.7)

A.1.4 Conjugate Variables

Two operators α and β are “conjugate” if they have the commutator

[α, β] = η (A.8)

where η is a complex number. If an operator A is normal ordered (all α’s to the left of

all β’s) then we have the following extremely useful formulae,

[α,A] = η
∂A

∂β
and [β,A] = −η∂A

∂α
(A.9)
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Conjugate variables also have a very simple translation property

eiα̂β̂e−iα̂ = β̂ + iη. (A.10)

A.2 Pauli operators

A.2.1 Representation

The Pauli operators can be represented as

σx =

(
0 1
1 0

)
(A.11)

σy =

(
0 −i
i 0

)
(A.12)

σz =

(
1 0
0 −1

)
(A.13)

A.2.2 Products and commutators

The Pauli operators anticommute

σiσj = −σjσi (i 6= j) (A.14)

and have a convenient product property

σiσj = iεijkσk. (A.15)
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From the product and anticommutation follows the commutation relation

[σi, σj] = 2iεijkσk. (A.16)

A.2.3 Translation

The problem of translating one Pauli operator by another arises frequently when analyz-

ing qubit systems. We wish to evaluate

S(Q) = e−iQσiσje
iQσi . (A.17)

We use the differential equation (A.6) with A = −iQσi to get

dS

dQ
= i[S(Q), σi]. (A.18)

We postulate the solution

S(Q) = α(Q)σj + β(Q)σk. (A.19)

First work out the commutator i[S(Q), σi]

i[S(Q), σi] = i[ασj + βσk, σi]

= i (−2iασk + 2iβσj)

= 2ασk − 2βσj.

Equating the right hand side with the explicit derivative of S yields

α̇(Q) = −2β(Q) β̇(Q) = 2α(Q)

with solution

α(Q) = cos (2Q) β(Q) = sin (2Q) .
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Therefore

e−iQσiσje
iQσi = cos (2Q)σj + sin (2Q)σk. (A.20)

A.3 Rotating Frame

The basic qubit Hamiltonian is

Hq/~ = −ωq
2
σz (A.21)

A quantum state under this Hamiltonian precesses around the Z axis. In the lab we are

used to thinking about a rotating frame in which this precession is absent. We now show

how do we do this mathematically.

In the Schrodinger picture the time evolution operator for a Hamiltonian H0 is

T = exp

[
− i
~
H0t

]
. (A.22)

Intuitively, we should just apply the inverse of this evolution to the Schrodinger state

vector in order to remove the precession. We can then define a state in the rotating frame

as

|Ψ′(t)〉 = R|Ψ(t)〉 (A.23)

where R = T †. Computing the time evolution of this new state we get

i~∂t|Ψ′(t)〉 = i~Ṙ|Ψ(t)〉+Ri~∂t|Ψ(t)〉 (A.24)

= i~ṘR†|Ψ′(t)〉+RH0R
†|Ψ′(t)〉 (A.25)

=
(
i~ṘR† +RH0R

†
)
|Ψ′(t)〉. (A.26)
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This can be interpreted as a Schrodinger equation for a system with Hamiltonian

H ′0 = i~ṘR† +RH0R
†. (A.27)

Note that this result is correct for any R, not necessarily inverse of the Schrodinger

evolution operator.

In the case that R = T † the resulting Hamiltonian is particularly simple, as expected

H ′0 = i~(iH0/~)RR† +H0 (A.28)

= 0. (A.29)

Here we used the fact that R, like T is unitary, and that ∂tT = −i(H0/~)T . The point is

that if we rotate the frame at the same rate as the Hamiltonian was rotating the states,

the effective Hamiltonian becomes zero.

An extremely important fact to note is that if we take the rotation operator R to be

the inverse of the time translation operator induced by the original Hamiltonian, then

the effect on any other perturbation or coupling terms V is V → RV R† = T †V T , which

is identical to the transformation found in the interaction picture.
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Appendix B

Quantum Oscillator Reference

In this appendix we list basic results of the quantum harmonic oscillator. Although

this problem is treated in many textbooks, some useful formulae, such as the zero point

fluctuations, and useful derivatives with respect to the raising and lowering operators,

are frequently neglected.

B.1 General Form

The general form of the Hamiltonian for a harmonic oscillator is

H =
1

2
αu2 +

1

2
βv2 [u, v] = iγ. (B.1)
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Using dimensionless operators

X ≡ 1√
2γ

(
α

β

)1/4

u and Y ≡ 1√
2γ

(
β

α

)1/4

v (B.2)

[X, Y ] = i/2 (B.3)

we get a new form of the Hamiltonian

H = γ
√
αβ
[
X2 + Y 2

]
. (B.4)

We also introduce raising and lowering operators a and a† defined by the following

equations

a = X + iY a† = X − iY

X =
1

2

(
a+ a†

)
Y =

−i
2

(
a− a†

)
(B.5)

[a, a†] = 1. (B.6)

167



Writing down the expression for a†a and expanding it in terms of the X and Y operators,

we find

γ
√
αβ(a†a) = γ

√
αβ(X − iY )(X + iY )

= γ
√
αβ
(
X2 + iXY − iY X + Y 2

)
= γ

√
αβ
(
X2 + Y 2 + i [X, Y ]

)
= γ

√
αβ
(
X2 + Y 2 − 1/2

)
= H − 1

2
γ
√
αβ

so H =

(
a†a+

1

2

)
γ
√
αβ.

It will be shown below from Heisenberg’s equations of motion that

~ω = γ
√
αβ (B.7)

which means that the Hamiltonian can be written as

H = ~ω
(
a†a+

1

2

)
. (B.8)

B.1.1 Zero point fluctuation

The zero point fluctuation of X is

〈0|X2|0〉 =
1

4
〈0|a2 + aa† + a†a+ a†

2 |0〉 = 1/4 (B.9)
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which we write compactly as

〈X2〉0 = 〈Y 2〉0 = 1/4. (B.10)

From this, we compute the zero point fluctuations of u and v,

〈u2〉0 =
1

2
γ
√
β/α 〈v2〉0 =

1

2
γ
√
α/β. (B.11)

Defining u2
zpf ≡ 〈u2〉0 we have

X =
1

2

u

uzpf

Y =
1

2

v

vzpf

(B.12)

B.2 Algebra

From the commutator [a, a†] = 1 it follows that [43]

[a, T ] =
∂T

∂a†
[a†, T ] = −∂T

∂a
(B.13)

as long as T is written in normal order form (all a† operators to the left of all a operators).

This is extremely useful when computing dynamics in the Heisenberg or interaction

picture, as will be shown in the next section.

B.3 Equations of Motion

The Heisenberg equation of motion for the a operator is
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i~dta = [a,H]

= γ
√
αβ[a, a†a+

1

2
]

= γ
√
αβ

∂(aa†)

∂a†

= γ
√
αβ a

giving

ȧ = −iγ
√
αβ

~
a. (B.14)

Solving this simple differential equation yields

a(t) = a(0) exp [−iωt] and a†(t) = a†(0) exp [iωt] . (B.15)

where ω ≡ γ
√
αβ/~ as claimed above. Note that the evolution of a in the phase plane is

clockwise, ie. the phasor convention we inherit from Schrodinger’s (Heisenberg’s) equation

has a −i. This is important interpreting the meaning of positive and negative energy in

a quantum calculation.
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Appendix C

IQ Mixer

C.1 Modulation

When an IQ mixer is used for modulation (up-conversion) a carrier tone is put into the

LO port, and modulating signals are put into the I and Q ports. The input tone cos(Ωt)

is multiplied by the I channel, a quarter cycle phase shifted copy of the tone − sin(Ωt)

is multiplied by the Q channel, and then both results are summed and put out the RF

port.

Consider a case where I = cos(ωt+φ) and Q = sin(ωt+φ). The output of the device

is then

s(t) = cos(Ωt) cos(ωt+ φ)− sin(Ωt) sin(ωt+ φ)

=
1

2
[cos([Ω + ω]t+ φ) + cos([Ω− ω]t− φ) · · ·

+ cos([Ω + ω]t+ φ)− cos([Ω− ω]t− φ)]

= cos([Ω + ω]t+ φ) (C.1)

171



Think of the incoming I and Q channels as coordinates in an IQ plane. In this picture the

inputs we chose form a counter-clockwise rotating circle with frequency ω and phase φ.

As we’ve computed, this counter-clockwise rotating circle produces a positively detuned

sideband at the output of the mixer. The rotation rate of the input IQ signal translates

directly to the detuning of the output signal away from the carrier, and the phase of the

input circle translates directly to the phase of the output signal. In fact this observation

leads us to a really convenient way to remember this result. If we treat the IQ plane as

a complex number plane, then the trajectory of our counter-clockwise moving point can

be written simply as

zIQ(t) = exp[i(ωt+ φ)] (C.2)

Then, to recover the output signal, we just multiply by exp[iΩt] and take the real part,

z(t) exp[iΩt] = exp[i(ωt+ φ)] exp[iΩt] (C.3)

z(t) exp[iΩt] = exp[i(Ω + ω)t+ iφ] (C.4)

Re (z(t) exp[iΩt]) = cos[(Ω + ω)t+ φ] (C.5)

From equation (C.1) you can see that if we reverse the orientation of our rotating

signal by setting Q = − sin(ωt+φ), the output would have been negatively detuned, and

would have had a negative phase shift. This is consistent with our complex representation:

the clockwise rotating signal cos[ωt+ φ]− sin[ωt+ φ] has complex representation z(t) =

exp[−i(ωt+φ)]. Multiplying by exp[iΩt] and taking the real part gives cos[(ω−ω)t−φ],

which is the correct real signal.
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In summary, if we view the inputs to the I and Q ports of an IQ mixer as real and

imaginary coordinates, then the map between the input and the output signals is

exp[i(ωt+ φ)]→ cos[(Ω + ω)t+ φ] (C.6)

C.2 Demodulation to baseband

Consider a high frequency signal s(t) = cos[(Ω + ω)t+ φ] coming into the RF port of an

IQ mixer. Into the LO port we put cos(Ωt+ δ). If we filter away the high frequency part

of the outputs, the output of the I port is

I(t) = cos[(Ω + ω)t+ φ] cos[Ωt+ δ]

=
1

2
(cos[(2Ω + ω)t+ φ+ δ] + cos[ωt+ φ− δ])

=
1

2
cos[ωt+ φ− δ] (C.7)

Similarly the Q port output is

Q(t) = cos[(Ω + ω)t+ φ](−1) sin[Ωt+ δ]

=
1

2
(sin[(2Ω + ω)t+ φ+ δ] + sin[ωt+ φ− δ])

=
1

2
sin[ωt+ φ− δ] (C.8)

These signals can be though of as the real and imaginary parts of a complex signal
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z(t) = exp [i (ωt+ φ− δ)] (C.9)

I(t) =
1

2
Rez(t) Q(t) =

1

2
Imz(t) (C.10)

Note that the phase of the complex signal is the difference between the phase of the high

frequency signal and the phase of the local oscillator. Conveniently, we we think of the

incoming high frequency signal as the real part of a complex signal

zhf = Re exp [i (Ω + ω) t+ φ] (C.11)

and the action of the demodulating IQ mixer, plus the low pass filtering, can then be

written as multiplication by exp [−i(Ωt+ δ)].

In summary, when a high frequency signal at frequency Ω + ω and phase φ is

demodulated by an IQ mixer with an LO signal of frequency Ω and phase δ, the I and

Q outputs are given by the real and imaginary parts of

z(t)demod = exp [−i (Ωt+ δ)]︸ ︷︷ ︸
effect of mixer

exp [i (Ω + ω) t+ iφ]︸ ︷︷ ︸
incoming signal

= exp [i (ωt+ φ− δ)]

C.3 Demodulation to DC

Now that we have baseband I and Q signals we want to extract the phase and amplitude

of the original high frequency signal. Symbolically what we would like to do is multiply

our complex baseband signal by exp [−iωt] and integrate. The result would be a complex
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number A exp [i (φ− δ)] with amplitude proportional amplitude of the original signal. Of

course, we can’t produce complex numbers in real life, but if we work out the real and

imaginary parts we can figure out how to emulate the complex algebra by effecting two

separate real signal processes.

First express the complex representation of the IF signal in terms of I(t) and Q(t)

z(t) = I(t) + iQ(t). (C.12)

Multiplying by the desired exponential gives

z(t) exp (−iωt) =

I(t) cos(ωt) +Q(t) sin(ωt)

+i[−I(t) sin(ωt) +Q(t) cos(ωt)] (C.13)

From this expression we can see that the final I and Q coordinates are given by

I =
∑

I(t) cos(ωt) +Q(t) sin(ωt) (C.14)

Q =
∑

Q(t) cos(ωt)− I(t) sin(ωt) (C.15)

There are thus four integrals that have to be done in the FPGA board to compute the

IQ result. Note that since each signal is multiplied and summed with either sine or cosine

the data flow can be greatly simplified in the software. In other words, there are four

integrals to do, but only two digital functions to generate 1.

1In fact we can use the same lookup table to generate the sine and cosine by offsetting one quarter
cycle in the table
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C.4 Demodulation Mixer Imbalance

What happens if the demodulating mixer has imbalance in the power coming from the I

and Q ports? In that case we would get something like

I(t) = C cos(ωt) Q(t) = S sin(ωt) (C.16)

with C 6= S. These cannot be represented as the real and imaginary parts of a single

exponential. They can be written as the real and imaginary parts of

A1 exp [ωt] + A2 exp [−ωt] (C.17)

as long as

A1 + A2 = C A1 − A2 = S (C.18)

This means that in a system with imbalanced I and Q ports we will measure false peaks

at frequencies mirrored about the carrier from the real signal.

176



Appendix D

Formal Theory of Superconducting

Qubits

D.1 Introduction - Parallel LC

Consider a parallel LC circuit as shown in Fig. D.1. From Kirchoff’s laws the equation

of motion can be found to be

Φ̈ + ω2
0Φ = 0 (D.1)

where ω0 = 1/
√
LC. This equation of motion is reproduced by the Lagrangian 1

L =
1

2
CΦ̇2 − 1

2L
Φ2 (D.2)

where Φ is the flux through the inductor. The momentum conjugate to the flux Φ is

p =
∂L

∂Φ̇
= CΦ̇. (D.3)

1Lagrange’s equation of motion is d
dt

(
∂L
∂Φ̇

)
− ∂L

∂Φ = 0.
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Figure D.1: A parallel LC circuit. The main circuit is shown in solid line, while the
driving circuit is shown in dotted line.

Since Φ̇ is just the voltage across the LC circuit, the canonical momentum p is just

the charge Q on the capacitor. Therefore, Φ and Q are so-called canonically conjugate

variables.

The Hamiltonian of the system is

H = pΦ̇− L =
Q2

2C
+

Φ2

2L
. (D.4)

If the circuit is sufficiently decoupled from noisy environmental degrees of freedom,

it behaves quantum mechanically and we should think of Φ and Q as operators. Since

they are canonically conjugate we have [Φ, Q] = i~. Equation (D.4) and the commutation

relation provide the complete starting point for the study of the LC oscillator in quantum

mechanics.

D.2 Driving

Next we understand how to represent driving signals applied to the circuit. We attach a

driving voltage source to our parallel LC through a capacitor Cd, as shown by the dotted
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elements in Fig. D.1. Before doing any formal calculation we predict should expect that

this will change the effective capacitance of the LC circuit. The main capacitor C is

now shunted by the series combination of the coupling capacitor Cd, and the resistance

of the voltage source. Assuming the impedance of the coupling capacitor ZCd = 1/ωCd

is much larger than the voltage source resistance we can treat the driving circuit as a

capacitance Cd to ground. This capacitance adds to the main circuit capacitance, leading

to an effective capacitance of C + Cd.

Denoting the time dependent driving voltage by Vd(t) and ignoring for now the re-

sistance of the source, we work out Kirchoff’s equation of motion for the driven system,

resulting in

1

1 + C/Cd
V̇d = Φ̈ +

ω2
0

1 + Cd/C
Φ. (D.5)

This is totally sensible: the drive strength increases as Cd increases, and the resonance

frequency of the LC mode has shifted due to the new capacitance. It turns out that you

get this equation of motion from the following Lagrangian

L =
1

2
CΦ̇2 − 1

2L
Φ2 +

1

2
Cd

(
Φ̇− Vd

)2

(D.6)

For the sake of identifying canonical coordinates consider the case Vd = 0. Doing this

gives canonical variables

Φ and p =
∂L

∂Φ̇
= (C + Cd) Φ̇ ≡ Q (D.7)

just as before, except that now the capacitance associated to the momentum Q is
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CΣ = C + Cd instead of just C. The Hamiltonian is

H =
Q2

2CΣ

+
Φ2

2L
(D.8)

Now we consider what happens when the drive turns on. The term added to the

Lagrangian by the drive is

Ld =
1

2
CdV

2
d − CdΦ̇Vd(t). (D.9)

The first term is of no consequence as it does not involve the dynamical variables. The

second term couples the drive to the momentum Q. This is clear if we express the driving

Lagrangian in terms of a Hamiltonian

Hd = CdΦ̇Vd(t) (D.10)

=
1

1 + C/Cd
QVd(t). (D.11)

From Ref. [44], we find that we can re-express Q as

Q = −iQzpf(a− a†) (D.12)

with Qzpf ≡
√

~/2Z0 and Z0 ≡
√
L/CΣ. Inserting this into the driving Hamiltonian,

and taking Vd(t) = V0f(t) gives

Hd =
−iQzpf

1 + C/Cd
V0f(t)(a− a†). (D.13)

In a two level approximation for a qubit (a− a†)→ iσy and the driving Hamiltonian is

Hd =
Qzpf

1 + C/Cd
V0f(t)σy (D.14)
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Figure D.2: Two circuits coupled through a capacitor Cg.

D.2.1 Summary - Simple derivation

The energy stored in the drive capacitor is Ed = 1
2
Cd (Vd − Vq)2. Keeping only the terms

involving both the qubit and drive voltages yields

Ed = −CdVdVq = −CdVd
Q

C
(D.15)

where Q is the qubit charge. This matches Eq. (D.11), up to the sign, in the practical

limit C � Cd.

D.3 Coupling

D.3.1 Capacitive coupling

The circuit shown in Fig. D.2 has the following Lagrangian

L =
1

2
C1Φ̇2

1 +
1

2
C2Φ̇2

2

+
1

2
Cg

(
Φ̇1 − Φ̇2

)2

− 1

2L1

Φ2
1 −

1

2L2

Φ2
2 (D.16)
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The kinetic term can be rewritten as

T =
1

2

(
Φ̇1 Φ̇2

)( C ′1 −Cg
−Cg C ′2

)(
Φ̇1

Φ̇2

)
(D.17)

where C ′1 ≡ C1 + Cg and similarly for C ′2. The canonical momenta are

p1 =
dL

dΦ̇1

= C ′1Φ̇1 − CgΦ̇2

p2 =
dL

dΦ̇2

= C ′2Φ̇2 − CgΦ̇1 (D.18)

which can be written as (
p1

p2

)
=

(
C ′1 −Cg
−Cg C ′2

)(
Φ̇1

Φ̇2

)
(D.19)

Note the recurrence of the matrix from equation (D.17). Naming this matrix M we can

write

T =
1

2

(
Φ̇1 Φ̇2

)
M

(
Φ̇1

Φ̇2

)
(D.20)(

Φ̇1

Φ̇2

)
= M−1

(
p1

p2

)
(D.21)

Substituting equation (D.21) into (D.20) and using the facts that matrix transposition

commutes with matrix inversion and that M is symmetric we get

T =
1

2

(
p1 p2

)
M−1

(
p1

p2

)
(D.22)

The inverse of the 2x2 matrix M is

M−1 =
1

C1C2 + Cg(C1 + C2)

(
C ′2 Cg
Cg C ′1

)
≡

(
1/C ′′1 1/C ′′g
1/C ′′g 1/C ′′2

)
(D.23)
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Finally the kinetic term of the Langrangian is

T =
p2

1

2C ′′1
+

p2
2

2C ′′2
+
p1p2

C ′′g
(D.24)

Let us now understand the quantities C ′′1 and C ′′2 in a simple way. The capacitance

to ground from the signal node of circuit 1 is

C1,total = C1||(Cg in series with C2)

= C1 +
CgC2

Cg + C2

=
C1C2 + Cg(C1 + C2)

Cg + C2

which is exactly equal to our expression for C ′′1 . Therefore we’ve found that the effective

capacitance associated with the the canonical charge is just the capacitance

to ground of the conjugate flux’s signal node.

The quantities p1 and p2 have dimensions of charge so we will rename them Q̃1 and

Q̃2. The tildes remind us that they are not the usual single qubit charges.

The coupling term in the Hamiltonian, eq. (D.24), is

Hg =
Q̃1Q̃2

C ′′g
. (D.25)

We would like to re-express it in terms of Pauli operators. If we use the (very good)

approximation that the normal modes are harmonic we can rewrite the charge operators

as

Q̃ = −iQzpf(a− a†). (D.26)
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The parameter Qzpf is the rms zero point fluctuations in charge and is given by [44]

Qzpf =

√
~

2Z
=

√
~ωC

2
(D.27)

Substitution of this expression for the Q̃ coordinates turns the coupling Hamiltonian

into

Hg =
Q1,zpfQ2,zpf

C ′′g
(−i)(a1 − a†1)(−i)(a2 − a†2)

=
~
2

√
ω1ω2C ′′1C

′′
2

Cg
C1C2 + Cg(C1 + C2)

(σy ⊗ σy)

=
1

2

Cg√
C ′1C

′
2

~
√
ω1ω2(σy ⊗ σy)

We combine the prefactors into a parameter g and write the Hamiltonian written as

Hg = g (σy ⊗ σy) (D.28)

where g, called the “coupling strength”, is defined as

g ≡ 1

2

Cg√
C ′1C

′
2

~
√
ω1ω2. (D.29)

D.3.2 Summary - Simple derivation

The energy in the coupling capacitor is Eg = 1
2
Cg (V1 − V2)2. Keeping only the term

which couples the qubits, we find

Eg = −CgV1V2 = −Cg
Q1

C1

Q2

C2

. (D.30)

This matches Eq. (D.25), up to the sign, in the practical limit C1, C2 � Cg.
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D.4 Rotating Frame

The driving and coupling Hamiltonians we have written down were expressed in the lab

frame. When doing experiments and calculations it is much easier to reason in a frame

that rotates at a frequency near or equal to the resonance frequency of the device. In this

section we show how to re-express the driving and coupling Hamiltonians in a rotating

frame.

The single qubit Hamiltonian is

Hq/~ = −ωq
2
σz (D.31)

where ωq = ω0 + δω. Think of ω0 as an idle point frequency and δω as a dynamic

detuning. The Schrodinger picture time evolution operator is T = exp [−iH/~]. In order

to remove the idle point precession of the qubit state, we take as the rotation operator

R = T † = exp
[
−iω0

2
tσz

]
, (D.32)

eg. we rotate the frame by the idle frequency of the qubit. We compute the remaining

effective Hamiltonian H ′ according to [43]

H ′/~ = iṘR† +R
Hq

~
R (D.33)

= i
(
−iω0

2

)
σzRR

† +R
Hq

~
R† (D.34)

= −δω
2
σz. (D.35)

This is precisely the Hamiltonian of a qubit with frequency δω. In other words, if we

go into a frame rotating at the idle frequency of the qubit, what remains is just the

qubit precession at the detuning frequency. In particular if the frame rotates at the same
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frequency as the qubit the Hamiltonian becomes zero.

D.4.1 Operators

Since we are going to want to work in a frame in which the qubit intrinsic Hamiltonian

is zero it will be useful to find the form of various operators in that frame. We list

here the transformation of the Pauli operators under the rotating frame given by R =

exp
[
−i1

2
ωrtσz

]
[43]

RσxR
† = cos(ωrt)σx + sin(ωrt)σy

RσyR
† = cos(ωrt)σy − sin(ωrt)σx

RσzR
† = σz

Rσ+R
† = eiωrtσ+

Rσ−R
† = e−iωrtσ−

D.4.2 Driving

We now consider the driving Hamiltonian in the rotating frame. From Eq. (D.14) we

have the driving Hamiltonian in the lab frame

Hd = hdf(t)σy (D.36)

where hd ≡ QzpfV0/(1 + C/Cd). We use the rotation operator

R = exp
[
−iωr

2
tσz

]
. (D.37)

The transformed driving Hamiltonian is
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RHdR
†/hd = e−i

ωr
2
tσzf(t)σye

iωr
2
tσz

= f(t) [cos (ωrt)σy − sin (ωrt)σx] . (D.38)

Now suppose f(t) is a sinusoid with an envelope e(t),

f(t) = e(t) sin (ωdt+ φd) (D.39)

= e(t) [cos (φd) sin (ωdt) + sin (φd) cos (ωdt)] (D.40)

= e(t) [I sin (ωdt)−Q cos (ωdt)] . (D.41)

Multiplying everything in eq (D.38) together and throwing out the high frequency terms

we get

RHdR
†/hd =

e(t)

2
[sin(δωt+ φd)σy

− cos(δωt+ φd)σx] (D.42)

= −e(t)
2

[
e−i(δωt+φd)σ+

+ei(δωt+φd)σ−
]

(D.43)

where δω ≡ ωd − ωr. In matrix form this reads

RHdH
†/hd = −e(t)

2

(
0 ei(δωt+φd)

e−i(δωt+φd) 0

)
. (D.44)

If the drive is on resonance with the frame then we are left with

RHdR
†/hd = −e(t)

2

(
0 eiφd

e−iφd 0

)
(D.45)

= −e(t)
2

[Iσx +Qσy] . (D.46)

This is a rotation about a time independent axis in the xy plane of the Bloch sphere. If

the rotating frame frequency is the same as the qubit frequency, then the qubit Hamil-
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tonian is zero and our on-resonance drive leads to a purely latitudinal rotation on the

Bloch sphere with the angle of the rotation axis in the xy plane given by φ. If the qubit

frequency does not match the rotating frame then the qubit Hamiltonian has a residual

σz component and the the rotation axis will be out of the xy plane.

pi pulse

For a resonant drive with φd = 0 we have

RHdR
† = −e(t)

2

V0Qzpf

1 + Cd/C
σx. (D.47)

The evolution of the qubit under this drive is given by the unitary operator

U(t) = exp

[
i

(
1

~
1

2

V0Qzpf

1 + Cd/C

∫
dt e(t)

)
σx

]
. (D.48)

This results in a pi pulse when U(t) = σx. Since

exp [iασx] = cos(α)I + i sin(α)σx (D.49)

we see that the pi pulse occurs when

1

2~
V0Qzpf

1 + Cd/C

∫
e(t)dt =

π

2
(D.50)

This relation is used to determine the appropriate drive capacitance Cd when designing

a device. The accessible values of V0 are determined by the dynamic range of available

pulse generators, the level of attenuation needed to remove noise from the drive lines,

and the value of Cd, which must be small enough to prevent the resistance of the drive

lines from significantly damping the qubit. The value of Qzpf is also important and is

determined by the type of qubit.
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Programming for experiment

Now that we know what the driving Hamiltonian looks like in the rotating frame we can

investigate how to program our IF inputs to the IQ mixer to acheive a rotation on the

Bloch sphere. From [41] we know that an input IQ signal e(t) exp [iωt+ φ] produces an

RF signal e(t) cos [(ωc + ω)t+ φ], where ωc is the carrier frequency. Using trig identities

we can rewrite this RF signal as

e(t) [I cos([ωc + ω] t) +Q sin([ωc + ω] t)]

where I = cos(φ) and Q = − sin(φ). If we add a phase π/2 this becomes

e(t) [I sin([ωc + ω] t)−Q cos([ωc + ω] t)] (D.51)

which exactly matches the form we assumed for f(t) in eq. (D.41) if we take ωc+ω = ωd.

Therefore if we choose ω such that ω + ωc = ωq and work in the rotating frame of the

qubit, the driving Hamiltonian is

Hd/hd = −e(t)
2

[Iσx +Qσy] . (D.52)

In practice we don’t want to have to remember to account for the carrier frequency when

programming a pulse so we define a mix function which multiplies our complex signal by

exp [i(ωq − ωc)]. That way if we program a signal exp [iφ] the driving Hamiltonian in the

frame of the qubit is produced in the following steps
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program e(t)eiφ

mix function−→ e(t)ei([ωq−ωc]t+φ)

physical mixer−→ Re
[
e(t)ei(ωqt+φ)

]
= e(t) cos (ωqt+ φ)

π/2 phase shift−→ e(t) sin (ωqt+ φ)

Hamiltonian−→ −e(t)
2

[Iσx +Qσy] .

Thus our choice of angle φ directly maps to the angle of the rotation on the Bloch

Sphere.

D.4.3 coupling

We found that the coupling Hamiltonian in the Schrodinger picture is

Hg = g (σy ⊗ σy) (D.53)

which can be expanded as

Hg = −g(σ+ − σ−)⊗ (σ+ − σ−)

= g
(
−σ+σ+ − σ−σ− + σ+σ− + σ−σ+

)
. (D.54)

Rotating the qubits’ frames at ωr1 and ωr2 respectively and throwing away high frequency

terms we get

Hg = g
(
eiδωr12tσ+σ− + e−iδωr12tσ−σ+

)
(D.55)

where δωr12 ≡ ωr1 − ωr2. If both frames rotate at the same frequency the interaction

simplifies to

Hg = g
(
σ+σ− + σ−σ+

)
. (D.56)
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The matrix form, with basis states

[|00〉, |01〉, |10〉, |11〉]

(ie the states defined by Kronecker product) is

Hg = g


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (D.57)

191



Appendix E

Discrete Fourier transform of White

Noise

In this note we show how to compute the probability distribution of the discrete Fourier

transform (DFT) of a white noise signal. For an N point sequence of white noise with

Gaussian distribution of width σ, the real and imaginary parts of the discrete Fourier

transform are both Gaussian distributed random variables with widths σ
√
N/2. If the

DFT is normalized by the number of points N , the width becomes σ/
√

2N .

When demodulating a signal with a discrete Fourier transform (DFT) one must care-

fully analyze the effect of noise. The incoming signal will in general be given by

Vn = sn + ξn (E.1)

where sn is the desired signal and ξn is the noise.
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E.1 White noise

We consider first the case of white noise. At true white noise process has the unique

property that the correlation between noise values at two different points in time is iden-

tically zero. This property is crucial to the calculation, as will be seen below. However,

in most signal processing applications, such a process does not truly exist. A noise source

with constant spectral density at all frequencies would emit an infinite power, which is

not physically possible. Johnson-Nyquist noise, which is typically considered to be white,

rolls off above a certain cutoff frequency [35]. Even the “quantum noise” attributed to

quantum measurement statistics is usually not white in practice because the transfer

functions of detection hardware shape the noise spectral density. This is particularly

true in the context of digital acquisition hardware where anti-aliasing filters restrict the

noise spectral density to frequencies below one half the sampling rate. In those systems,

the assumption that the noise samples are uncorrelated is clearly incorrect. Nevertheless,

we consider white noise here for several reasons. First, the calculation of the statistics

of the DFT of true white noise can be done analytically. This will provide formulae

against which we compare numerical results obtained for the realistic case of correlated

noise. Second, applications with true white noise do exist. For example, repeated mea-

surements of a quantum 2 level system will involve white noise from the randomness of

the quantum measurement. On each repetition of the experiment, a given superposition

state α|0〉+ β|1〉 yields a random result 0 or 1. The values measured on subsequent ex-

periments are uncorrelated in principle, with correlations arising only through correlated
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errors in state preparation and measurement.

Assuming that the noise is Gaussian distributed with a white power spectrum, the

random variables ξn are distributed according to a Gaussian curve and each value of ξn

is independent of all the others. When we say that ξn is Gaussian distributed what we

mean is that if you pick a value of n the value of ξn is random, but is distributed as

pξn(ξ) =
1√

2πσ2
exp

[
− ξ2

2σ2

]
≡ Gσ(ξ).

The DFT of this signal is

Vk =
N∑
n=1

(sn + ξn) e−i2πkn/N . (E.2)

The DFT is linear, so we may compute each term separately. The noise part is

ξk =
N∑
n=1

ξne
−i2πkn/N . (E.3)

Because each DFT coefficient ξk is given as a sum, its distribution is given as the

convolution of the terms in the sum. This gives us a clear path to work the calculation:

write down the distributions of the terms in the sum, then convert to the Fourier domain

and compute the convolution, and finally Fourier transform back to the time domain.

Consider first only the distribution of the real part,

Reξk =
N∑
n=1

ξn cos [2πnk/N ]

Reξk =
N∑
n=1

xn (E.4)

where we’ve defined xn ≡ ξn cos [2πnk/N ]. Note that the summands xn are random
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variables. What is the distribution of xn? For any random variable x with distribution

px(x) the distribution of the scaled variable Ax is simply pAx(y) = 1
A
px(y/A). Therefore

the distribution of the summand xn is

pxn(x) =
1

cn,k
pξn(x/cn,k) =

1

cn,k
Gσ(x/cn,k) (E.5)

where we’ve abbreviated cn,k ≡ cos [2πnk/N ]. Because of the form of the Gauss function

this simplifies to

pxn(x) = Gσcn,k(x). (E.6)

We want to compute the distribution of the summed quantity in (E.4). To do this

we use the fact that the probability distribution of a quantity that is a sum of random

variables is the convolution of the distributions of the summands. Using this fact on

(E.4) gives

pReξk = px1 ⊗ px2 ⊗ · · · ⊗ pxN (E.7)

where ⊗ denotes convolution. This multiple convolution is made easy by going to the

Fourier transform, because the Fourier transform of a convolution is the product of the

Fourier transforms of the things being convolved. In other words,

F [pReξk ] =
N∏
n=1

F [pxn ] . (E.8)

Inserting the form of pxn from (E.6) gives

F [pReξk ] =
N∏
n=1

F
[
Gσcn,k

]
. (E.9)

This is particularly convenient because the Fourier transform of a Gaussian function is
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just another Gaussian with the reciprocal width,

F [Gσ(x)] = G1/σ.

Therefore (E.9) becomes

F [pReξk ] =
N∏
n=1

G1/(σcn,k). (E.10)

Writing this out explicitly we get

F [pReξk ] (q) =
N∏
n=1

√
σ2c2

n,k

2π
exp

[
−q

2

2
σ2c2

n,k

]

=

(
σ2

2π

)N/2( N∏
n=1

cn,k

)
· · ·

· · · exp

[
−q

2

2
σ2

N∑
n=1

cos [2πnk/N ]2
]
.

The factors preceding the exponential are independent of q and are therefore just

a normalization constant. The exponential part is just a gaussian in q with width(
σ2
∑N

n=1 cos [2πnk/N ]2
)−1/2

. The sum can be done explicitly and is equal to N/2.

Therefore

F [pReξk ] ∝ G
(σ2N/2)−1/2 (E.11)

and performing the inverse Fourier transform gives us

pReξk = G
σ
√
N/2

. (E.12)

We have therefore computed the probability distribution of the real part of the Fourier

transform of a white noise signal. The imaginary part has exactly the same distribution.

Note that the result is independent of the demodulation frequency k which is a reflection
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of the fact that we’re considering uncorrelated white noise.

Intuition (and experience) says that more data gives better signal to noise ratio, but

we found that the distribution of the noise Fourier transform becomes wider as more

data points are collected. The reason for this discrepancy is that we didn’t normalize the

Fourier transform. When measuring a single tone signal sn, we have to normalize the

DFT in order to get a measured Fourier amplitude that is independent of the number of

measured points,

sk =
1

N

N∑
n=1

sne
−i2πnk/N . (E.13)

If we use this normalized quantity in the calculation of the noise Fourier amplitude,

ξk =
1

N

N∑
n=1

ξne
−i2πkn/N (E.14)

then the distribution of the real part winds up being

pReξk = Gσ/
√

2N (E.15)

which becomes sharper as N increases, in agreement with the idea that the noise should

go down as more data is collected.

There is a simple way to remember these results. The incoming noise signal had

a squared width given by σ2. This is proportional to the power per bandwidth of the

incoming signal. If we measure N points of this noise signal the total power should scale

with N . Then, if we only look at one of the two resulting components, ie. the real part,

we should find half the power. Therefore, the squared width of the distribution of the

real part should be σ2N/2 which agrees with (E.12).
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E.1.1 Distribution of r2

We have shown that the real and imaginary parts of the Fourier transform are Gaussian

distributed random variables with width σ/
√

2N . We now calculate the distribution of

the mod square of the Fourier transform. Define the mod square as

r2 = Reξ2
k + Imξ2

k. (E.16)

To compute the distribution of the mod square we first compute the distributions of the

squares of the real and imaginary parts. We will then use the convolution rule to find

the distribution of their sum. For the sake of compact notation let x ≡ Reξk.

To compute the distribution of the square of a random variable we use the general

formula for computing the distribution of a variable defined as an arbitrary function of

another random variable. For a variable Y defined by y = g(x) we have

pY (y) = pX
(
g−1(y)

) ∣∣Dg−1(y)
∣∣ (E.17)

In our case where g(x) = x2, we find dg−1(x)/dx ∝ 1/
√
x. This leads to

pX2(α) ∝ Gσ/
√

2N(g−1(α))
1√
α

(E.18)

∝ exp

[
− α

σ2/N

]
1√
α

(E.19)

for positive α and zero otherwise. From symmetry considerations it’s clear that the

square of the imaginary part has the same distribution. The distribution of the mod

square is therefore given by the convolution of the function found in Eq. (E.19) with
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itself; the result is

pr2(α) =
1

σ2/N
exp

[
− α

σ2/N

]
. (E.20)

Therefore the distribution of the squared modulus of the Fourier component is exponen-

tially distributed.

From this last result we can compute the mean of the square of the Fourier coefficient,

〈|ξk|2〉 =
σ2

N
. (E.21)

E.2 Correlated noise

We now turn to the case of correlated noise. Because the noise is correlated, the values

ξn are no longer statistically independent. This means that we cannot use the multiple

convolutions trick we used in the white noise case.

We begin by stepping back to the definition of the DFT. The real part of the DFT

of the noise is

Reξk =
N∑
n=1

ξn cos [2πnk/N ] . (E.22)

The Fourier coefficients Reξk are expressed as a sum of random variables. Therefore,

the central limit theorem guarantees that the distribution of Reξk can be approximated

by a Gaussian distribution as long as N is sufficiently large. In particular, N must be

large enough that the correlations time of ξn is small compared to N . Working under the

assumption that we are in this limit, Reξk are Gaussian distributed and we need only
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compute the variance. Note, however, that even if this assumption is not completely

valid, a Gaussian distribution with the calculated variance should at least approximate

the true distribution.

The variance of Reξk is

〈ReξkReξl〉 =
1

N2

N−1∑
n,m=0

〈ξnξm〉 cos (2πnk/N) cos (2πml/N) , (E.23)

where 〈·〉 indicates an ensemble average. Our crucial observation is that 〈ξnξm〉 is,

by definition, the auto-correlation function of the noise. The Wiener-Khinchin theorem

relates the auto-correlation function of a process x to its spectral density

ρx(τ) ≡ 〈x(0)x(τ)〉 (E.24)

=

∫ ∞
0

Sex(ω) cos (ωτ)
dω

2π
. (E.25)

The superscript e on Sex is a reminder that this is an “engineer’s” spectral density, defined

for only positive frequency. In other words, the total power P in the process is

P =

∫ ∞
0

Sex(ω)
dω

2π
. (E.26)

Note that ρ(τ) = ρ(−τ). Denoting the digital sampling time interval by δt and assuming

that the autocorrelation is invarient under time shift of both measurements, we can

rewrite the correlation as

〈ξnξm〉 = 〈ξ(nδt)ξ(mδt〉 = ρξ(δt |n−m|). (E.27)
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Using this expression we can finally write the variance of Reξk as

〈ReξkReξl〉 =

1

N2

N−1∑
n,m=0

ρξ(δt |n−m|) cos (2πnk/N) cos (2πml/N) . (E.28)

In practice, ρξ is calculated via Eq. (E.25), with Se determined by the transfer function

of analog filters placed before the digitizer inputs. Once ρξ is known, the double sum in

Eq. (E.28) can be done numerically (although see Ref. [47] for examples where the sum

can be done analytically).

201



Appendix F

External Loading of a Resonant

Mode

In this appendix we derive a simple formula for the loaded quality factor of a parallel

resonance circuit connected to an external lossy element.

F.1 Parallel-Series Equivalence

We consider two networks: a series resistance RS and reactance XS, and a parallel

resistance RP and reactance XP . The circuits are shown in Fig. F.1. The impedance of

the series network is

ZS = RS + iXS, (F.1)
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and the impedance of the parallel network is

ZP = RP
1

1 +Q2
P

+ iXP
Q2
P

1 +Q2
P

. (F.2)

The series circuit has quality factor QS ≡ XS/RS, and the parallel circuit has quality

factor QP ≡ RP/XP . Setting the two impedances equal yields

RS = RP
1

1 +Q2
P

XS = XP
Q2
P

1 +Q2
P

. (F.3)

Dividing these equations gives

QS =
XS

RS

=
XP

RP

Q2
P = QP . (F.4)

This is the main result of this section: the Q of equivalent parallel and series circuits

are equal.

Since both quality factors are equal we can drop the subscript. We then rewrite the

relations between the series and parallel components as

RS = RP
1

1 +Q2
XS = XP

Q2

1 +Q2
. (F.5)

These equations provide a simple way to convert a series circuit to an equivalent parallel

one, and vice versa. For a given series circuit, one computes Q and then uses Eq. (F.5)

to compute XP and RP . Note that, because the reactances XS and XP generally depend

on frequency, Q and therefore the equivalence transformation also depend on frequency.

203



Figure F.1: Series and parallel circuits. The reactances XS and XP can be capacitive or
inductive.

F.1.1 Large Q limit

In many cases, we have series or parallel circuit fragments for which Q � 1. In these

cases the transformation equations simplify to

RS = RP/Q
2 XS = XP . (F.6)

We explain this intuitively: if the series resistance is low enough that the Q is high, the

parallel resistance must be large to ensure it doesn’t absorb much energy. In this case

the reactance dominates and is therefore unchanged in the transformation.

F.2 Loaded resonant mode

Using the series/parallel equivalence we can easily understand the effect of coupling a

resonant mode to an external resistance through a coupling capacitor or inductor. We

work specifically in the Q � 1 limit. For illustration we calculate case of capacitive
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a)

b)

Figure F.2: Loaded resonant mode. a) The parallel oscillator is connected to an external
resistor Re through a coupling capacitor Cc. b) Using the series/parallel transformation
we can think of the series damping circuit as a parallel circuit. In this case the capacitance
Cc adds with the internal capacitance of the mode and the resistor is transformed up to
a higher resistance.
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coupling, and then state the result for inductive coupling. Consider the circuit shown in

Figure F.2 in which a resonator coupled to a resistor Re through a coupling capacitor Cc.

To understand the effect of the shunt circuit on the resonator, we convert the shunt to

an equivalent parallel resistance and capacitance. The Q of attached damping circuit is

Qe =
1

ωCcRe

. (F.7)

The equivalent parallel reactance is

XP = −1/ωCc, (F.8)

and the equivalent parallel resistance is

RP = ReQ
2
e. (F.9)

The series damping circuit is thus transformed to a parallel capacitor and resistor.

Note that the new parallel resistor adds in parallel with any pre-existing resistor in the

oscillator. This is why Q values usually add in parallel.

The quality factor of the resonant mode near resonance is

Q = ω0RPC
′ (F.10)

where C ′ = C + Cc ≈ C, as illustrated in Fig. F.2. Substituting in for RP we get

Q = ω0ReQ
2
eC (F.11)

=
ω0ReC

ω2R2
eC

2
c

(F.12)

=
C

Cc
Qe, (F.13)

where in the last step we’ve restricted to the case ω/ω0 ≈ 1. This is the second main

result: the total quality factor is the Qe of the external circuit scaled by the ratio of the
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coupling capacitance to the mode’s internal capacitance.

If the coupling capacitor were replaced with a coupling inductor Lc we would get

Q =
Lc
L
Qe. (F.14)

The Q which arises from the coupling of the resonator to an external load is called

the “coupling Q”. The coupling Q adds in parallel with the internal quality factor Qi of

the resonator for the reason mentioned above, to produce the full “loaded quality factor”

Ql of the resonator:

Q−1
l = Q−1

i +Q−1
c . (F.15)

In summary, when a resonant mode is connected to an external resistor Re through

a coupling capacitor Cc or inductor Lc, the coupling quality factor for the mode is given

by

Qc =
C

Cc
Qe or Qc =

Lc
L
Qe (F.16)

where Qe = X/Re and X is the reactance of either Lc or Cc near the mode’s resonance

frequency.
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