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Abstract

Epidemic Detection in Two Populations

by

Katherine Shatskikh

Traditional epidemic detection algorithms make decisions using only local informa-

tion. We propose a novel approach that explicitly models spatial information fusion from

several meta-populations. Our method also takes into account cost-benefit considera-

tions regarding the announcement of epidemic. We utilize a compartmental stochastic

model within a Bayesian detection framework, which leads to a dynamic optimization

problem. The resulting adaptive, non-parametric detection strategy optimally balances

detection delay vis-a-vis probability of false alarms. Our algorithm can also be used to

optimize an existing detection strategy. Taking advantage of the underlying state-space

structure, we represent the stopping rule in terms of a detection map, which visualizes

the relationship between the multivariate system state and policy making. It also allows

us to obtain an efficient simulation-based solution algorithm that is based on the Se-

quential Regression Monte Carlo (SRMC) approach of Gramacy and Ludkovski (SIFIN,

2015). We present two models for pseudo-posterior and illustrate our results on two

synthetic examples. We also quantify the advantages of our adaptive detection relative

to conventional threshold-based strategies.
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The Detection Boundaries ∂Ŝ1, ∂Ŝ14, ∂Ŝ32 are shown with the solid curves
on the respective plots. The regions with a red shade color correspond to
the state space, where we announce the epidemic, while the regions with a
blue color shade correspond to the state space where we do not announce
an epidemic. Initial detection map we set S0 = {X : µt > 100}. Cost
difference q̂ is defined as difference between future and immediate costs. . 76

6.7 Relationship between estimated Optimal detection rules Ŝ1:60 and Thresh-
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6.8 Detection Rules Ŝ60 computing using CFA = 10 (top panel), CFA = 20
(middle panel), CFA = 30 (bottom panel). The Detection Boundaries
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Chapter 1

Introduction

Infectious disease epidemics intrinsically unfold across both space and time. As a re-

sult, biosurveillance algorithms need to integrate spatio-temporal data. This is especially

so in the context of statistical inference, whereby syndromic surveillance at neighboring

locales carries additional information that can be fused for improved decision making

in terms of initiating and organizing epidemic counter-measures. A crucial first step for

response strategies is to identify, or detect, in real-time the epidemic outset. In this the-

sis, we propose a methodology that allows for such optimal decision-making with spatial

information fusion. Specifically, we investigate a model that combines quickest detection

with a spatial metapopulation setup, integrating information received from multiple ge-

ographic domains. To reflect the inherent uncertainty in epidemic evolution (which is

amplified under partial information), we develop a stochastic compartmental (or state-

space) epidemic model, which allows us to generate adaptive, nonparametric detection

rules. Extant approaches largely propose heuristic detection strategies, concentrating

primarily on the inferential aspect of the statistical model [Chan et al., 2010, Lin and

Ludkovski, 2014, Sheinson et al., 2014, Skvortsov and Ristic, 2012]. For instance, a typi-

cal approach is to announce an epidemic as soon as the estimated number of infecteds in
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Introduction Chapter 1

the local population is above a fixed Ī. In contrast, we dynamically optimize the detec-

tion strategy, to come up with a “best” detection rule within our mechanistic outbreak

model.

Traditional compartmental epidemic models deal with a single population; the spa-

tial aspect is treated by building a series of such single-population models that are es-

timated/forecasted independently. This is also a common surveillance approach, espe-

cially for recurring infectious epidemics, such as influenza-like illness (ILI), dengue fever,

or measles. For example, in the US the existing biosurveillance systems for flu operate

primarily at the state level and are siloed across states. This limitation of existing prac-

tice was brought into sharp relief during the 2014 Ebola outbreak in West Africa. The

epidemic has been accompanied by a dearth of reliable information, leading to extreme

spread in forecasts regarding the future course of the outbreak. In addition, numerous

statistical methods [WHO, 2014, Chowell and Nishiura, 2014, Fisman et al., 2014] were

put forth attempting to infer in “real-time” the actual size and parameters of the out-

break in different locales. However, nearly all these methods were single-population, so

that when trying for example to infer the number of Ebola infecteds in Liberia, only

Liberian data was utilized, completely ignoring similar and highly relevant data from

neighboring Guinea and Sierra Leone. Similarly, at the more granular provincial level,

data from neighboring provinces was generally not used during estimation procedures.

For a less dramatic and perhaps more statistically convenient example, we discuss the

yearly influenza outbreaks in United States. Figure 1.1 illustrates the spatial dynamics

of ILI during the 2012-13 flu season. Observe that the peak of the outbreak varied sig-

nificantly (up to 6-8 weeks difference) across different parts of the country. Nevertheless,

there is a clear propagation of the outbreak, making spatial information fusion desirable.

Figure 1.1 indicates that the current, single-population based detection protocols are not

sufficient; for instance the fact that there are increased ILI levels in Arizona is ought to

2



Introduction Chapter 1

be taken into account when trying to detect or forecast the epidemic start in California.

A further important remark is that the illustrated spatial spread is year-specific, and in

other years rather different patterns may be observed.

Week 49, 2012 Week 1, 2013 Week 4, 2013

Figure 1.1: Spread of Influenza during the 2012-13 Flu season according to
FluView CDC data. The colors represent weekly ILI activity levels in terms
of percentage of doctor visits attributed to ILI relative to low-season baseline.
Green indicates at/below mean, while shades of red indicate outbreak activity
(with darkest color corresponding to eight or more standard deviations above the
mean). Weeks are numbered from January 1, and are 12/3-9/2012 (Week 49),
12/31/2012-1/6/2013 (Week 1) and 1/21-27/2013 (Week 4), respectively. Data source:
http://www.cdc.gov/flu/weekly/pastreports.htm.

1.1 Contributions

In this thesis we formulate and analyze an epidemic detection problem within a multi-

population paradigm. To do so, we develop a reduced compartmental model that extends

the classical Susceptible-Infected-Recovered (SIR) setup to two population pools. Pools

are interpreted as distinct geographic regions, e.g. states or counties. To fix ideas, we

consider the situation where the epidemic begins in Pool 1 and subsequently may be

transmitted to Pool 2 via infecteds that travel between the two pools. The aim of the

policy-maker is to detect, as soon as possible and in online fashion, the onset of epidemic

in Pool 2.

To capture the inferential aspect, we assume that full information is available about

the outbreak in Pool 1, but only partial information about Pool 2. This situation can

3
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Introduction Chapter 1

happen if Pool 1 has a better surveillance system than Pool 2. As a result, one has

to make imperfect decisions and in particular address the canonical trade-off between

making announcements too early (so called “false alarms”) and making decisions too

late (“detection delay”). Indeed, if the detection is too late, then a certain number of

infections would be missed and it would be harder to stop the epidemic from spreading. If

the detection is premature, human, financial and reputational resources would be wasted.

Therefore, a careful trade-off between those costs should be done to balance costs due

to epidemic morbidity and costs arising from policy actions. We then use the above

cost analysis to quantify decision-making quality and to define optimality of detection

strategies.

Mathematically, we cast the online detection problem as a dynamic optimization

problem, connecting to the classical dynamic programming formulation [Bertsekas, 2005]

in control theory. A major challenge with dynamic programming (which is perhaps the

prime reason for the lack in its uptake in the biosurveillance community) is computa-

tional bottlenecks due to the curse of dimensionality. Indeed, the above optimization

problem is nontrivial from several directions. First, because the underlying system is

stochastic, the optimal solution is adaptive, i.e. a function of the current system state.

Consequently, there is no simple description to the resulting detection strategy which is

instead summarized through a detection map that translates system states into optimal

detection decisions. Second, the nonlinear dynamics of the SIR model preclude analytic

solutions. Crucially, there are no analytic expressions for the future distribution of the

system state, which necessitates the use of numerical approximations to solve the op-

timization problem. Third, because the system state is multivariate and too large to

enumerate, the corresponding integrals are computationally demanding.

However, taking advantage of the detection strategy structure, which requires simply

announcing at each stage whether the epidemic has reached Pool 2 or not, we implement

4
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an efficient numerical algorithm. Specifically, we rely on the recent Sequential Regression

Monte Carlo (SRMC) method of Gramacy and Ludkovski [2015], which blends modern

statistical tools, including nonparametric regression and sequential design, with approx-

imate dynamic programming, to drastically mitigate issues of computational efficiency.

1.2 Spatial Stochastic Epidemic Models

Mathematical models of infectious disease epidemics have become an important tool

in the arsenal of public health policy. In an idealized world, detection reduces to the

mathematical problem of clustering, tracking the health status of the surveyed individ-

uals and identifying unusual aberrations in either the temporal or spatial dimensions.

In reality, there is the additional aspect of missing information which necessitates the

application of statistical inference algorithms, as well as a mathematical model for the

epidemic. In the context of online inference, a simple mechanistic approach that allows

for maximum tractability continues to be the most popular, and is also adopted here.

Specifically, we rely on the formalism of an SIR model [Andersson and Britton, 2000]

that implies proportional homogenous mixing between infecteds and susceptibles within

a population pool. Spatial heterogeneity is captured by incorporating meta-populations,

also known as patch models [Ball and Clancy, 1993, Allen et al., 2009, Neal, 2012]. The

multi-patch approach partitions the global population into distinct discrete regions or

pools, allowing for local spread of the epidemic within each pool, as well as global trans-

mission that is specified via a mobility matrix. As in Ball and Clancy [1993], Neal [2012]

we assume that susceptibles are stationary, while infecteds can move or travel between

the pools, creating cross-infections.

Alternative frameworks for epidemic spread include point process models [Neill, 2011],

and network models [Keeling and Eames, 2005] that provide more nuanced interaction

5
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between individuals to mimic existing social structures, such as households, schools, and

workplaces. At even more detail, agent-based models [Ajelli et al., 2010] generate micro-

simulations that provide a detailed synthetic view for each individual and their social

interactions. Such models can also incorporate precise travel patterns [Rvachev and

Longini, 1985]. However, the latter paradigms are geared towards realistic forecasting of

epidemic progress and are less suited for online detection due to intractable inference in

terms of observed data and the computational expenses in generating micro-scenarios.

A variety of approaches exist for constructing outbreak detection rules, see for ex-

ample the recent survey by Shmueli and Burkom [2010], and the monograph by Lawson

[2013]. Quality control methods [Cowling et al., 2006] introduced in the 1950s form

the simplest class of rules and continue to be common. Other heuristics include moving-

average tools [Zhou and Lawson, 2008], various scan statistics [Kulldorff et al., 2005, Neill,

2011], and branching-process approximations [Nishiura, 2011]. More explicit cost-benefit

analysis for the trade-off between false alarms and detection delay can be applied using

the Cumulative Sum (CUSUM) framework [Yang et al., 2017]. CUSUM also underlies

the early aberration response system (EARS) employed by the Centers for Disease Con-

trol [Hutwagner et al., 2005]. Alternatively, Bayesian methods allow to further assess the

uncertainty involved in decision-making based on partial information. Two main types

are hidden Markov models [LeStrat and Carrat, 1999, Mart́ınez-Beneito et al., 2008] and

Bayesian hierarchical models [Chan et al., 2010, Sebastiani et al., 2006]. The Bayesian

paradigm translates epidemic data into the posterior probability of an outbreak. To

convert the latter into a detection rule, one typically employs a simple threshold strat-

egy. For example, in Chan et al. [2010], the authors recommend “an alert for action if

the posterior probability is larger than 70%”. We further refine this approach by de-

riving optimal, non-parametric detection strategies based on the inputted cost-benefit

parameters.

6
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Detection can be seen as a basic form of epidemic response, and indeed our compu-

tational methodology can be extended to this more general problem. In that sense, this

thesis extends Ludkovski’s previous work on stochastic control methods for controlling

epidemics [Ludkovski and Niemi, 2011, 2010]. Similar to Ludkovski and Niemi [2011],

we design a Bayesian dynamic optimization algorithm for biosurveillance decision policy.

Other mathematically oriented studies that consider optimal control of epidemics include

Tanner et al. [2008], Wearing et al. [2005].

In the context of detection with limited information, a spatial epidemic model requires

information fusion. Fusion of information channels for the purpose of biosurveillance has

been an area of intense research in the past decade. On the one hand, novel information

sources, such as social media [Culotta, 2010] or internet data [Dukic et al., 2012] have

created new opportunities for syndromic surveillance. On the other hand, developments

in statistical fusion techniques [Shmueli and Burkom, 2010, Banks et al., 2012, Noufaily

et al., 2013] have led to new ways of integrating multivariate information streams. In par-

ticular, there has been a lot of interest in online Bayesian approaches [Lin and Ludkovski,

2014, Sheinson et al., 2014, Nishiura, 2011, Dukic et al., 2012, Yang et al., 2014] that

allow for predictive modeling and forecasting of epidemics. The above models all focus on

a single homogenous population with the different surveillance channels complementing

each other. In contrast, we consider multiple underlying population pools each with a

distinct, but co-dependent information channel. In terms of explicitly accounting for spa-

tial propagation, our work is closest to Ludkovski [2012] who considered a spatial “wave”

model for an epidemic. In the present thesis, we connect this framework to the SIR

context, modeling epidemic spread across geographically-based population pools. The

resulting decision strategy provides insights into integrating data from multiple spatial

locales for the purposes of detection, cf. Chapter 7 below.

In Chapter 2 we set up a detection problem via Quickest Detection method. In

7
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Chapter 3 we will talk about stochastic epidemic models. However since only partial

information available about the epidemic in Pool 2, we will construct two reduced models

in Chapter 4. Chapter 5 discusses the computational methods of solving our detection

problem defined in Chapter 2. In Chapter 6 we explore two case studies based on the two

reduced models we constructed. In Chapter 7 we summarize our findings and propose

potential improvements to our algorithm.

Remark 1 The parts of this thesis, which are related to the First Reduced Model defined

in Chapter 4 (Chapter 2, Sections 3.1.1 and 3.2 of Chapter 3, Chapter 4 without Sec-

tion 4.2, Chapter 5, and Section 6.1), has already appeared in the paper of Shatskikh and

Ludkovski [2015] and in the conference proceedings Shatskikh and Ludkovski [2015]. In

this thesis we add the construction of the Second Reduced Model (defined in Section 4.2)

as well as the Case Study (Section 6.2) based on the UK data (Section 3.3). The material

based on Appendix A is getting ready to appear in the paper of Shatskikh and Ludkovski

[2017].

8



Chapter 2

Quickest Detection

A state-space model Xt describes the epidemic state at times t = 0, 1, 2, . . .. A typical

length of one time period in biosurveillance is a week. The precise components of X

will be specified in Chapter 4; abstractly X is taken to be a stochastic Markov process

taking values in a state space X ⊂ Rd and summarizes information about both Pool 1

and Pool 2. In particular, X contains information about the number of infecteds I
(k)
t in

Pool k = 1, 2 at time t. The transition kernel of X is assumed to be time-stationary and

is denoted by ps(x|y) ≡ P (Xt+s = x|Xt = y), x,y ∈ X .

The aim of the policy maker is to detect the onset of epidemic in Pool 2. A de-

tection strategy is probabilistically represented as a dynamic “alarm” which announces

an outbreak in Pool 2 based on information gathered so far. Only a single announce-

ment is allowed; once announced, the detection problem is assumed to be over. The set

of such detection strategies is expressed through the set S of F -stopping times, where

Ft = σ(X0:t) is the information filtration generated by X by time t. A strategy τ ∈ S

is a random variable taking values in τ ∈ {0, 1, 2, . . .}, such that {τ = t} ∈ Ft (this

requirement captures the fact that τ must be “online” in terms of the information avail-

able so far). Thanks to the Markov property of X, the structure of τ can be summarized
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via a detection map. Indeed, at each time-step there is the binary decision to either

“announce” an outbreak (subset S), or wait for another period (subset C). Since the

evolution of X is stationary in time, the corresponding partition of the state space is also

independent of t. Dynamically, this implies that τ announces the epidemic the first time

that the state X enters the region S ⊂ X ,

τ = inf{t : Xt ∈ S}. (2.1)

Equation (2.1) gives a one-to-one correspondence between detection strategies τ and

detection maps S. In other words, the detection strategies we consider are of online

feedback type, based on the trajectory of X.

As mentioned, the dynamic optimization objective consists in optimally trading off

the concern of premature announcements against any potential delays. These conflicting

costs are measured through the immediate stopping cost d(x) and the cost of waiting. The

immediate costs are linked to the penalty for false alarms, specified by a given constant

CFA. We assume that CFA is paid if and only if the epidemic has not yet reached Pool 2,

so that

d(x) := CFA · 1{I(2)0 ≤Ī}
, (2.2)

where Ī is a fixed threshold for which it is assumed that there is no epidemic and I
(2)
0

is the number of infected individuals at time 0 . The value of Ī is usually computed

from the historical data [Farrington et al., 1996, Guintran et al., 2006]. Waiting costs

are assumed to be proportional to detection delay, i.e. the time between the outbreak

reaching Pool 2 and outbreak announcement. Define θ to be the time when the second
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population gets infected from the first population, i.e.

θ := inf{t : I
(2)
t > Ī},

where Ī is defined as in Equation 2.2 and I
(2)
t is the number of infected individuals at time

t. Then the detection delay is max(τ − θ, 0) and carries cost CDelay max(τ − θ, 0). This

is equivalent to charging waiting costs of CDelay1{I(2)t >Ī} at each step until surveillance is

terminated at the random instant τ , so that total waiting costs on [0, τ ] are

c(X0:τ ) :=
τ−1∑
s=0

CDelay1{I(2)s >Ī} + CFA1{I(2)τ ≤Ī}
. (2.3)

We will refer to the costs d(·) and c(·) as the immediate cost and the future cost, respec-

tively.

Remark 2 Note that detection costs are intrinsically defined in terms of the count of

infecteds in Pool 2, I(2), which is assumed to be unavailable to the policy-maker. Below

we will operationalize (2.2) and (2.3) by taking conditional expectation with respect to

information that is available, see (4.5)-(4.4).

The aim of outbreak detection is to pinpoint θ, i.e. ideally one takes τ = θ. However,

this is not possible if only partial information is available about X, specifically about

I
(2)
t . When τ and θ are different, CDelay penalizes the event {τ > θ}, and CFA penalizes

{τ < θ}. The cost structure in (2.3) is then a dynamic counterpart of the usual Type-I

and Type-II errors in hypothesis testing.
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2.1 Detection Problem

Our detection problem is formalized as minimizing the expected future cost over all

possible stopping times τ [Poor and Hadjiliadis, 2009], i.e. an optimal stopping problem.

Namely, we define the value function V as

V (x0) := inf
τ∈S

E [c(X0:τ )|X0 = x0] , (2.4)

where x0 is the initial state. Assuming the infimum in (2.4) is achieved, the dynamic

programming principle [Poor and Hadjiliadis, 2009] implies

V (x0) = min (d(x0), E [V (X1)|X0 = x0]) , (2.5)

where the conditional expectation operator is

E[V (X1)|X0 = x0] =

∫
V (x)p1(x|x0)dx.

The minimum operator in (2.5) corresponds to the idea that it is optimal to declare

an outbreak if the immediate cost is smaller than the future cost, i.e. the likelihood of

false alarms is dominated by the cost of waiting. The former case is equivalent to the

expectation of the value function at time 1 being greater than the immediate cost, and

therefore, we may classify the stopping region via

S := {x : E [V (X1)|X0 = x]− d(x) > 0} . (2.6)

Hence, in terms of the above detection map, our goal is to optimally partition X = S∪C

into two regions, such that S consists of all initial states x0 where it is optimal to declare
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the epidemic, and C is its complement, where it is optimal to wait.

2.2 Reduction to a Model Predictive Control Prob-

lem

The characterization in (2.5) is implicit, since it features V (·) on both sides of the

expression. Specifically, the value function V corresponds to a fixed point [Bertsekas,

2005] of the functional operator L, defined by (Lv)(x) := min (d(x), E [v(X1)|X0 = x]).

To solve for V (x), a basic strategy is then to apply Picard-type fixed-point iterations. In

other words, given some initial guess V (0)(x), we build a sequence of approximations via

V (k) := LV (k−1), or explicitly,

V (k)(x0) = min
(
d(x0), E

[
V (k−1)(X1)|X0 = x0

])
. (2.7)

However, to guarantee the convergence of V (k) does not appear tractable, and the

practical performance of (2.7) is very sensitive to the initial guess V (0). To circumvent

this challenge, we rely on the concept of model predictive control (also known as receding

horizon control). To wit, we introduce an auxiliary parameter t which can be intuitively

thought of as forward time. The value functions V (t, ·) and detection maps St are now

also indexed by t. We start with the trivial initial condition V (0,x) := d(x), which

corresponds to S0 ≡ X . Next, mimicking the classical dynamic programming on finite

horizon, we define

V (t,x0) := min (d(x0), E [V (t− 1,X1)|X0 = x0]) , t = 1, 2, . . . . (2.8)
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Define the Q-value, also known as costs-to-go and current costs by

q(t,x) := E[V (t− 1,X1)|X0 = x]− d(x). (2.9)

Then the stopping set at iteration t is

St := {x0 ∈ X : q(t,x0) > 0} , t = 1, 2, . . . . (2.10)

We may “unroll” the expectation encoded in V (t− 1,X1) to write

E [V (t− 1,X1)|X0 = x0] = E [c(X0:τ (t))|X0 = x0] , (2.11)

where τ (t) = min{s ≥ 1 : Xs ∈ St−s}. This justifies the interpretation of q(t, ·) as costs-

to-go since c(X0:τ (t)) are indeed the future costs associated with not stopping immediately.

Figure 2.1 illustrates the first step of the recursion (2.8) at t = 1. In the plot we

compare

E [V (0,X1)|X0 = x] = E[d(X1)|X0 = x]

against d(x). As discussed, the epidemic is announced when E [V (t− 1,X1)|X0 = x] >

d(x) (the right side of the plot). In the opposite case (the left side of the plot), the

optimal decision is to wait. As shown by the Figure 2.1, the structure of the decision

map is driven by the regions where these two quantities are equal to each other, which

corresponds to the detection boundary,

∂St := {x : E [V (t− 1,X1)|X0 = x] = d(x)} . (2.12)

The stopping region St is our detection rule at iteration step t, which minimizes our

future expected costs. Thus, it can be characterized as the optimal detection rule among
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Figure 2.1: Detection strategy at iteration t = 1. The example is based on the model
of Section 6.1, with parameters in Table 6.1. In the plot, the state of Pool 1 is held

fixed at S
(1)
0 = 1990, I

(1)
0 = 10.

all strategies in S(t) = {τ ∈ F : τ ≤ t} that are upper-bounded by t (by construction,

τ (t) ≤ t). As t → ∞, we have that the set of admissible rules expands S(t) ↗ S,

and hence we expect that St → S and V (t,x) → V (x) . Intuitively, for large t, the

recursively defined (2.8) converges to a stationary case that ought to be the fixed point

defining V (x) in (2.4). Such convergence is illustrated in Figure 2.2, where we trace the

boundaries ∂Ŝt for t = 1, . . . , 20. Convergence takes hold after about 15 iterations and

suggests that Ŝ20 ' S; this is what we used for Figures 6.1-6.5 where the boundary of

Ŝ20 was taken as the final output of the algorithm.

The above convergence can be improved via model predictive control [Nevistic and

Primbs, 1996] which applies the fixed detection map Ŝ(k), rather than the time-dependent

Ŝt at each step. Model predictive control simplifies this feature with a time-invariant
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rule that simply utilizes Ŝt−1 (that we relabel as Ŝ(t−1) for typographical distinction).

Indeed, as Figure 2.2 shows, the early maps Ŝ1, Ŝ2, . . ., are not as accurate as Ŝt−1 for

t large, so it makes sense to completely “forget” them and rely just on the last iteration

step. Accordingly, we implement a blend of (2.7) and (2.8) by first using (5.1) over

t = 1, 2, . . . , t∗ and then switching to a receding-horizon rule which is defined as

τMPC
t := min{s ≥ 1 : Xs ∈ Ŝt−1}, t = t∗, t∗ + 1, . . . . (2.13)

The above MPC iterations are terminated once q̂(t,x) and q̂(t + 1,x) do not change

much, namely ‖q̂(t, ·)− q̂(t+ 1, ·)‖L∞< Tol for a specified tolerance level Tol.

Figure 2.2: Convergence of the detection boundaries ∂Ŝt over t = 1 to t = 20 for the
2-D LP detection rule from Section 6.1.

Thus, we derived a sequence of detection maps given in Ŝt for t = 1, 2, . . . , defined

recursively in (2.10), which converge to the true S. In Chapter 5 we empirically estimate

each Ŝt for t = 1, 2, . . .. In the next chapter we discuss Stochastic Epidemic models,
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which leads to the definition of our state space model Xt in Chapter 4.
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Chapter 3

Stochastic Epidemic Models

Stochastic Epidemic models are used to describe the spread of viral and bacterial

infectious diseases with subject-to-subject transmissions. The examples of such diseases

are common cold, influenza, measles, chickenpox, rubella, etc. The spread of the diseases

depends strongly on how many susceptible and infectious individuals are located in the

area. Therefore we would need to talk about compartments – groups of individuals with

the same status in regards to the disease. For example, a compartment of Susceptible

individuals is a group of people who are at risk of getting a disease. Another important

compartment is Infectious – a group of individuals who can transmit the disease. Thus a

whole population of a city/state/country can be divided into compartments so that any

individual is a member of just one compartment.

Different diseases have their own compartmental models. Some diseases (infuenza,

chickenpox, measles, rubella) have full-immunity after a person has been infected and

recovered from them [Brauer, 2008]. Therefore, only three compartments will be used

for this type of the disease: Susceptible - Infected - Recovered (SIR). There are other

modifications: if an infected person does not get an immunity from the disease (such as

tuberculosis, meningitis, gonorrhea, sexually transmitted diseases) [Brauer, 2008, Allen
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et al., 2008], then after recovering from the disease, this person becomes Susceptible again,

and the epidemic spread follows a Susceptible-Infected-Susceptible (SIS) model. Or if a

person may get a temporary immunity to the disease (for example, syphilis [Grassly

et al., 2005]), then it is an Susceptible - Infected - Recovered - Susceptible (SIRS) model.

Some childhood diseases (measles, rubella, or chickenpox [Keeling and Rohani, 2011]) can

be modeled with a latent state: a person is infected with the virus, but can not infect

others for a certain period of time. Therefore, an Exposed compartment is used for these

individuals, and the compartmental model becomes Susceptible - Exposed - Infected -

Recovered (SEIR).

The basic reproduction number, which is denoted by R0, is defined as an expected

number of secondary infections caused by one infectious individual in a susceptible popu-

lation. R0 determines if an epidemic occurs. If R0 < 1, the infection likely dies out, while

if R0 > 1, we expect an epidemic. Note that we defined an epidemic as if the number of

infected individuals crosses a specified threshold of Ī.

In this thesis we focus on two-population models assuming that the epidemic begins

in Pool 1 and may subsequently spread to Pool 2, where it is to be detected. For example,

we can consider all people in state of California being Pool 1 and all people in the state

of Arizona being Pool 2, or the Los Angeles population being Pool 1 and the New York

population being Pool 2. Accordingly, we will be fusing information from Pool 1 and

Pool 2 to identify the onset of an epidemic in Pool 2. The parameters are assumed to be

known and are a function of the modeled disease family (e.g. influenza or dengue fever),

the demographics and public health characteristics of the populations, and the travel

patterns across pools.

Note that while the discussion up to this point works equally well for stochastic

and Deterministic models, in this thesis we focus our attention on stochastic models.

Stochastic models provide variability of the model outcomes, which mimic the possible
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outcomes that could occur in real life. Deterministic models with the same starting

conditions will always give the same results which is not possible in reality.

In Section 3.1.1 we will define simple models for one population such as SIR, SIR with

vital dynamics, SEIR, and SEIR with vital dynamics, respectively. Then in Section 3.2 we

will define two-population models and show how two populations can interact between

each other. In Section 3.3 we will demonstrate UK Measles dataset and discuss the

features of SEIR Model in regards to this particular dataset.

3.1 One Population Models

3.1.1 SIR/SEIR Model

A basic stochastic compartmental model is the Susceptible-Infected-Recovered (SIR)

model which consists of three eponymous compartments: Susceptible, Infectious, and

Recovered. Susceptible individuals are the ones who have not experienced the disease

yet. Interaction between an infected and a susceptible individual can lead to an infection.

Thus, this kind of interaction stochastically generates new infecteds who, in turn, can

further infect other susceptible individuals. After some time an infected individual re-

covers and becomes immune, i.e. becomes a Recovered: he/she can neither infect others

nor get infected.

A Susceptible-Exposed-Infected-Recovered (SEIR) model defined by He et al. [2010],

Brauer [2008], Hethcote [2000], Dukic et al. [2012], Smith et al. [2001] assumes the division

of population into 4 compartments: S, susceptible to infectious individuals; E, exposed

(infected, but not yet infectious); I, infectious; R, recovered. So the main difference

from the SIR model defined above is the latent compartment E in which individuals are

already infected (they might be experiencing symptoms) but cannot infect others yet. If
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the exposed period is short, it is often neglected in modeling. A longer exposed period

might lead to different model predictions, and we can think of the exposed compartment

as an estimate of infectious individuals tomorrow.

For describing outbreak dynamics it is more convenient to work with continuous-time

dynamical systems, but later, we will define its discretized version. The overall epidemic

state at epoch t ∈ R+ of pool k is denoted by X
(k)
t = {S(k)

t , E
(k)
t , I

(k)
t , R

(k)
t }, where

S
(k)
t , E

(k)
t , I

(k)
t and R

(k)
t are the counts of susceptible, exposed, infectious and recovered

individuals in the population k, respectively. If we assume that the pool size of our

population is fixed at M (k) = S
(k)
t + E

(k)
t + I

(k)
t + R

(k)
t , we can omit further mention of

R
(k)
t since R

(k)
t = M (k) − S(k)

t − E
(k)
t − I

(k)
t . Note that if we have an SIR model, we can

omit the exposed compartment E
(k)
t . The unit for time t is usually taken as a week.

The continuous evolution of the state process {S(k)
t , E

(k)
t , I

(k)
t } ∈ {(s, e, i) : s+ e+ i ≤

M (k)} is described using a Markov chain or stochastic kinetic system language. Namely,

the epidemic state is piecewise constant in time. Next, there are three possible transitions

described by the following reaction channels [He et al., 2010, Wilkinson, 2006, Allen et al.,

2008, Andersson and Britton, 2000]:


Infection S(k) + I(k) → E(k) + I(k) w/rate µ

(k)
SI (t)(I(k) + i(k))α

(k) S(k)

M(k)

Contagiousness E(k) → I(k) w/rate µ
(k)
EIE

(k)

Recovery I(k) → ∅ w/rate µ
(k)
IRI

(k)

 (3.1)

The graphical interpretation of these reaction channels is given on Figure 3.1.

The first transition represents an infection of a susceptible individual by an infectious

individual. This transition happens at rate µ
(k)
SI (t)(I

(k)
t + i(k))α

(k) S
(k)
t

M(k) , where µ
(k)
SI (t) is the

contact rate of infected and susceptible individuals within meta-population k at time t,

i is the mean number of all infectives visiting the population at any given time, and α

is the mixing parameter, with α = 1 corresponding to homogeneous mixing [Bjørnstad
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E
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µ
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(k)
t + i)α

S
(k)
t

M(k)
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µ
(k)
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t

Figure 3.1: Stochastic SEIR epidemic model

et al., 2002, Liu et al., 1986]. The derivation of this rate is provided in Brauer [2008].

The contact rate µ
(k)
SI (t) is time-dependent because the contact rates are related to

the weather/temperature parameters (in case of common cold/influenza), school terms

(in case of childhood diseases), etc. For example, papers Liu et al. [1986], Schenzle [1984],

Keeling and Grenfell [2002], Conlan and Grenfell [2007], He et al. [2010] study the spread

of measles in UK, and they found that the contact rate µ
(k)
SI (t) reflects the pattern of

British school terms and holidays. He et al. [2010] takes the contact rate to be:

µ
(k)
SI (t) =


(
1 + 2 (1− p) a(k)

)
µ̄

(k)
SI , during school term,(

1− 2pa(k)
)
µ̄

(k)
SI , during school holiday,

(3.2)

where p = 0.759 is the proportion of the year taken up by the school term, µ̄
(k)
SI the mean

contact rate, and a(k) the relative effect of school holidays on transmission in population

k.
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The second transition in Equation (3.1) corresponds to the gained ability to infect

others, i.e. become infectious/contagious. The rate of this transition is µ
(k)
EIE

(k)
t , where

1/µ
(k)
EI is the mean exposed period. So in case of SIR model, we can take µ

(k)
EI = ∞ and

therefore there an instant transition to an Infectious compartment.

The third transition in (3.1) represents recovery and subsequent immunity of an

infected individual. The rate of transition is µ
(k)
IRI

(k)
t , where µ

(k)
IR is a recovery rate. This

can be interpreted as individuals staying infected for an Exponentially distributed time

with mean 1/µ
(k)
IR . We assume that the recovery rate is constant over time.

The time until each transition is Exponential with the corresponding rate, and the

time until next transition is Exponential with rate – sum of the rates in (3.1).

For an SIR model with homogeneous mixing α = 1 the basic reproduction num-

ber [Andersson and Britton, 2000] can be found as

R0(t) =
µ

(k)
SI (t)

µ
(k)
IR

. (3.3)

Therefore for an epidemic to start, we need the infection rate µ
(k)
SI (t) to be greater than

the recovery rate µ
(k)
IR .

The discrete time SEIR model {S(k)
n , E

(k)
n , I

(k)
n }, n = 1, 2, . . . is a Markov chain with

finite state space. Suppose we have a small time interval ∆t such that only one transition

(either infection or recovery) happens in this time step. If we denote the new exposed,

infectious , and recovered individuals at time step n in population k by ∆E
(k)
n , ∆I

(k)
n

and ∆R
(k)
n , respectively, where n = 0, 1, 2, . . ., then the discrete time SIR has a joint

probability function P (S
(k)
n = s, E

(k)
n = e, I

(k)
n = i), where s, e, i = 0, 1, 2, . . . ,M (k) and
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s+ e+ i ≤M , as well as having the transition probabilities

P (S
(k)
n+1 = s− 1, E(k)

n = e+ 1, I
(k)
n+1 = i|S(k)

n = s, E(k)
n = e, I(k)n = i) = µSI(n∆t)i

s

M (k)
∆t, (3.4)

P (S
(k)
n+1 = s, E(k)

n = e− 1, I
(k)
n+1 = i+ 1|S(k)

n = s, E(k)
n = e, I(k)n = i) = µEIe∆t, (3.5)

P (S
(k)
n+1 = s, E(k)

n = e, I
(k)
n+1 = i− 1|S(k)

n = s, E(k)
n = e, I(k)n = i) = µIRi∆t, (3.6)

P (S
(k)
n+1 = s, E(k)

n = e, I
(k)
n+1 = i|S(k)

n = s, E(k)
n = e, I(k)n = i) = 1−

(
µSI(n∆t)

is

M (k)
+ µEIe+ µIRi

)
∆t.

(3.7)

We also have the conditions ∆t(µSI(n∆t) is
M(k) + µEIi+ µIRi) ≤ 1 for all

s, i = 0, 1, 2, . . . ,M (k) and s+e+i ≤M (k) [Allen and Burgin, 2000] to guarantee that the

transitions probabilities are valid probabilities and the compartment sizes stay greater

than zero.

The above transition probabilities approximate the transition probabilities of a

continuous-time Markov jump process, where the changes in the compartments follow

a Poisson process, and the time between jumps is given by an exponential distribution

with mean 1/(µSI(n∆t)i s
M(k) + µEIi+ µIRi) [Allen and Burgin, 2000].

If we denote the new exposed, infectious individuals and recovered individuals at time

step n, where n = 0, 1, 2, . . ., in population k by ∆E
(k)
n , ∆I

(k)
n and ∆R

(k)
n , respectively,

then for a time change of 1 week:

∆E(k)
n ∼ Poisson

(
µ

(k)
SI (n)(I(k)

n + i(k))α
(k) S

(k)
n

M
(k)
n

)
, (3.8)

∆I(k)
n ∼ Poisson

(
µ

(k)
EIE

(k)
n

)
(3.9)

∆R(k)
n ∼ Poisson

(
µ

(k)
IRI

(k)
n

)
(3.10)

where “∼ Poisson (·)” means ‘distributed as a poisson random variable with the rate’

inside the parenthesis. All Poisson random variables are assumed to be independent of
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the infectious periods as well as independent of each other because the number of new

recovered individuals is independent of the number of people who got sick. Then using

equations (3.8), (3.9), and (3.10) we can construct the state process {S(k)
n , E

(k)
n , I

(k)
n } to

be:

S
(k)
n+1 = S(k)

n −∆E(k)
n , (3.11)

E
(k)
n+1 = E(k)

n + ∆E(k)
n −∆I(k)

n , (3.12)

I
(k)
n+1 = I(k)

n + ∆I(k)
n −∆R(k)

n , (3.13)

with S
(k)
0 ≥ 0 , E

(k)
0 ≥ 0, I

(k)
0 ≥ 0, and S

(k)
n + E

(k)
n + I

(k)
n ≤ M (k) for all n = 0, 1, 2, . . ..

It is possible to encounter different problems: compartments becoming too big and/or

negative. To resolve this we overwrite the negative values with zeros.

Since our biosurveillance depends on the number of people who actually reported their

disease (i.e. came to clinic to be officially diagnosed) we define Cobs(k) as the number of

observed (i.e. reported) infected cases.If the non-reporting probability of new infecteds

∆I
(k)
n is ρ, then the distribution of Cobs(k) given ∆I

(k)
n is a binomial distribution with

parameters ∆I
(k)
n and 1− ρ and therefore it can be shown that

∆Cobs(k)
n ∼ Poisson((1− ρ)∆I(k)

n ). (3.14)

3.1.2 SEIR Model with Vital Dynamics

The definition of the SEIR model given in Subsection 3.1.1 assumed a constant popu-

lation size. This model is good if the epidemic happens quickly and therefore there are no

significant changes in the population size. However if the epidemic takes years to develop

then it is critical to observe the changes in the population size. Thus we define an SEIR

25



Stochastic Epidemic Models Chapter 3

model with vital dynamics, i.e. with births and deaths [Brauer, 2008, Bjørnstad et al.,

2002, Allen et al., 2008, Andersson and Britton, 2000]. Suppose that the individuals

are born at rate µ
(k)
B ·M

(k)
t , and each of them has an exponentially distributed lifetime

with intensity µ
(k)
D [Andersson and Britton, 2000]. If µ

(k)
B = µ

(k)
D , the population size will

oscillate around the quantity M
(k)
0 [Andersson and Britton, 2000].

Suppose an individual can be born immune or become immune shortly after birth to

the disease with probability pimmune. For example, a newborn can be vaccinated against

some diseases, while for some diseases like Whooping Cough, a newborn is protected at

birth due to mandatory vaccination of pregnant women. Then if a born individual is

immune, then she/he would be placed in a “Recovered” compartment, else she/he would

be placed in a “Susceptible” compartment. An individual may die as a Susceptible,

Exposed, Infected, or Recovered.

The continuous evolution of the state process {S(k)
t , E

(k)
t , I

(k)
t , R

(k)
t } ∈ {(s, i, r) : s +

i+ r = M
(k)
t } is described with a Markov chain with nine possible transitions described

by the following reaction channels:



Birth of Susceptible ∅ → S(k) w/rate (1− pimmune)µ(k)
B M (k)

Birth of Recovered ∅ → R(k) w/rate pimmune µ
(k)
B M (k)

Infection S(k) + I(k) → E(k) + I(k) w/rate µ
(k)
SI (t)(I(k) + i)α S(k)

M(k)

Contagiousness E(k) → I(k) w/rate µ
(k)
EIE

(k)

Recovery I(k) → R(k) w/rate µ
(k)
IRI

(k)

Death of Susceptible S(k) → ∅ w/rate µ
(k)
D S(k)

Death of Exposed E(k) → ∅ w/rate µ
(k)
D E(k)

Death of Infected I(k) → ∅ w/rate µ
(k)
D I(k)

Death of Recovered R(k) → ∅ w/rate µ
(k)
D R(k)


(3.15)
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Figure 3.2: Stochastic SEIR epidemic model with vital dynamics in population k.

The graphical interpretation of these reaction channels is given on Figure 3.2.

For the discretized version we denote the newborn individuals with and without immu-

nity as ∆(BS)
(k)
n and ∆(BR)

(k)
n , respectively, and new deceased individuals from com-

partments “Susceptible”, “Exposed”, “Infectious”, “Recovered” at time step n, where

n = 0, 1, 2, . . ., in population k by ∆(DS)
(k)
n , ∆(DI)

(k)
n and ∆(DR)

(k)
n ,respectively. We

then have

∆(BS)(k)
n ∼ Poisson

(
(1− pimmune)µ(k)

B M (k)
n

)
, (3.16)

∆(BR)(k)
n ∼ Poisson

(
pimmune µ

(k)
B M (k)

n

)
, (3.17)

∆(DS)(k)
n ∼ Poisson

(
µ

(k)
D S(k)

n

)
, (3.18)

∆(DE)(k)
n ∼ Poisson

(
µ

(k)
D E(k)

n

)
, (3.19)

∆(DI)(k)
n ∼ Poisson

(
µ

(k)
D I(k)

n

)
, (3.20)

∆(DR)(k)
n ∼ Poisson

(
µ

(k)
D R(k)

n

)
. (3.21)
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Using equations (3.16), (3.17), (3.18), (3.9), (3.20), and (3.21) as well as previously defined

equations (3.8), (3.9), and (3.10), by construction, the state process {S(k)
n ,

(k)
n , I

(k)
n , R

(k)
n }

evolves the following way:

S
(k)
n+1 = S(k)

n −∆E(k)
n + ∆(BS)(k)

n −∆(DS)(k)
n (3.22)

E
(k)
n+1 = E(k)

n + ∆E(k)
n −∆I(k)

n −∆(DE)(k)
n , (3.23)

I
(k)
n+1 = I(k)

n + ∆I(k)
n −∆R(k)

n −∆(DI)(k)
n , (3.24)

R
(k)
n+1 = R(k)

n + ∆R(k)
n + ∆(BR)(k)

n −∆(DR)(k)
n (3.25)

with S
(k)
0 ≥ 0, I

(k)
0 ≥ 0, and R

(k)
0 ≥ 0 for all n = 0, 1, 2, . . ..

For an SEIR model with vital dynamics the basic reproduction number [Smith et al.,

2001, Hethcote, 2000] can be found as

R0(t) =
µ

(k)
SI (t)µ

(k)
EI

(µ
(k)
EI + µ

(k)
D )(µ

(k)
D + µ

(k)
IR)

, (3.26)

assuming homogeneous mixing.

3.2 Two Population Models

As in Chapter 6 of Andersson and Britton [2000], we first recall the multi-type stochas-

tic SIR model in continuous time. The overall epidemic state at epoch t is denoted by

Xt = {X(1)
t ,X

(2)
t }, where each X

(k)
t denotes the epidemic state governed by a specific

compartmental model in population k = 1, 2. The choice of compartmental model for

each population is determined by the specifics of the disease as well as the specifics of

the meta-population itself.

A meta-population in this case is two (or more) spatially separated populations which
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interact between each other (as we discussed in the beginning of this Chapter 3, it could

be two different states in USA or two different cities). The amount of interaction depends

on the population sizes as well as the amount of trade and other commercial activities,

immigration, number of tourists, etc. Each of these interactions can spread the infection

from one population to another.

The ‘transmission’ transition is added to the dynamics of the model: the infection of

a susceptible individual from pool k by an infected individual from a different pool k′.

The frequency of such infections is µ
(k,k′)
SI (t)I

(k′)
t

S
(k)
t

M(k) , where 1 ≤ k, k′ ≤ K and µ
(k′,k)
SI (t) is

the contact rate of infected individuals from population k′ with a susceptible individual

from population k. Since contacts between individuals from different populations are

less frequent, µ
(k,k′)
SI (t)� µ

(k′)
SI (t) for any t. To reduce the number of parameters, we thus

assume that cross-population interactions occur at rate µ
(k,k′)
SI (t) ≡ γ(k,k′)µ

(k′)
SI (t), where

γ(k,k′) is the proportion of “travelers” in each pool adjusted to the population size:

γ(k,k′) =


γ, if M

(k)
t ≥M

(k′)
t ,

γ · M
(k)
t

M
(k′)
t

, if M
(k)
t < M

(k′)
t .

(3.27)

Thus, cross-contacts happen at the fraction γ of the contact rate within one population;

a typical range for γ is [0.01, 0.2].

The intuition behind adjusting for population sizes is that a higher proportion of

“travelers” from a small city will visit a megapolis rather than the other way around.

The travelers from a megapolis will have a bigger variety of cities to visit: they can travel

to many cities visiting a particular small city, while most travelers from a small city will

have to travel to the megapolis first and then travel to their destination or just stay there.

Suppose we have two cities: Metropolis and Smallville, and their populations are 1 million

and 10,000 individuals, respectively. Furthermore, suppose travelers comprise 10% of the
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population in each city (γ = 0.1): 100,000 in Metropolis and 1000 in Smallville. The

travelers from Smallville will more likely to go to Metropolis, while the travelers from

Metropolis will travel to different cities, and only a portion of them will go to Smallville.

If we assume that only 10% of Metropolis’ travelers land in Smallville, then these 10% or

0.1 is just the ratio of the population of the Smallville to the population of Metropolis.

Figure 3.3 represents the interaction between two populations, where the epidemic

spread in the first and second populations is governed by an SEIR model with vital

dynamics and an SIR model with vital dynamics, respectively, i.e.

X
(1)
t = {S(1)

t , E
(1)
t , I

(1)
t , R

(1)
t } and X

(2)
t = {S(2)

t , I
(2)
t , R

(2)
t }. The reaction channels for the

first and second populations are provided in (3.15) with an additional “Contagiousness”

transition for the second population with its form given in Equation (3.1). The cross-

population transmission of the disease occurs using these reaction channels:

 From Pool 1 to Pool 2 I(1) + S(2) → I(1) + E(2) w/rate µ
(1,2)
SI (t)I(1) S(2)

M(2)

From Pool 2 to Pool 1 S(1) + I(2) → E(1) + I(2) w/rate µ
(2,1)
SI (t)I(2) S(1)

M(1)


(3.28)

We also define a Two Population Asymmetrical epidemic model with µ
(1,2)
SI = 0. This

model allows only one-way transmissions of epidemic from Pool 1 to Pool 2, so Pool 2

can not infect Pool 1. So there is only one cross-population transition with the rate

µ
(2,1)
SI (t)I

(1)
t

S
(2)
t

M
(2)
t

.

Our main goal is to make a decision about the announcement of epidemic in Pool

2 using the information from Pool 1. In this situation, if the population size of Pool

1 is much larger than Pool 2 (for example, M
(1)
t ≈ 100M

(2)
t ), and hence the number

of infected individuals in Pool 2, I
(2)
t , is small compared to the the number of infected

individuals in Pool 1, I
(1)
t , then the impact of epidemic transmission from Pool 2 to Pool
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Figure 3.3: Stochastic SEIR-SIR epidemic model with vital dynamics in two popu-
lations. The rates of transitions inside each population are given in Equation (3.15)
with an additional “Contagiousness” transition for the second population with its
form given in Equation (3.1).

1 is negligible and would not have a big effect on I
(1)
t .

The two population model will work with both continuous-time and discrete-time

models inserted in each population’s model.

3.3 UK Study Description and SEIR Model

We will illustrate our detection method using a case study of measles transmission

dynamics in England and Wales. This study contains weekly case reports from 6 major

cities (London, Birmingham, Manchester, Liverpool, Sheffield, Bristol) over the period

1948–1987. See Figure 3.4 for associated time-series plots. The national immunization

program began in 1968, therefore the weekly number of cases significantly decreased after

1968.

The coloring of the lines on Figure 3.4 correspond to the school status: whether it

is a holiday or regular term. It can be easily seen that the increase in the number of
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reported cases happens during the school term and therefore the infection rate at those

times is much higher as seen in the definition of the contact rate in Equation (3.2).

The biennial trend of epidemic, which can be seen on Figure 3.4, depends on the

number of Susceptibles individuals. The bigger the proportion of Susceptibles in the

population, the sooner the epidemic happens. Therefore some cities have an epidemic

every year (Liverpool, for example), while others (for example, London) have an epidemic

every other year.

We observe moderate-to-strong strength of correlation between the London data and

the data from other cities (see Figure 3.5), meaning that the measles outbreak is not

local and spread around the country.

He et al. [2010] estimated the parameters of this dataset, and the results are provided

in Table 3.1. Note that the contact rate µ̄SI can be found using Equations (3.2) and

(3.26). The rates provided in Table 3.1 are weekly rates, therefore the simulations are

weekly. The paper by He et al. [2010] was using the birth rate data, which we were unable

to obtain, so we assume that the birth rate is equal to mortality rate µD(t) = 3.836 ·10−4

per week and the instantaneous birth rate is equal to

µB(t) = µ̄B(t) (1− c+ 52cδ(t− t0 mod 52)) , (3.29)

where µ̄B(t) = µD(t) = 3.836∗·10−4 is the birth rate, the term δ(t−t0 mod 52) contributes

a Dirac delta impulse to the birth rate when t falls on the same calendar week as t0, and

we take t0 = 37 (which corresponds to the first week of September) as a school admission

week in England and Wales. Therefore we get an influx of Susceptible individuals every

year during the first week of September.

To initialize our simulations we need to provide starting conditions. However since

these values are unknown, we provide a guess and then remove a burnout period. So
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Figure 3.4: Time Series of the Measles Epidemic in UK cities in 1948–1968.

Birmingham Sheffield Manchester Bristol Liverpool
Correlation 0.71 0.54 0.52 0.47 0.3

Distance 164 228 262 171 287

Figure 3.5: Correlation of London cases with other cities’s cases and distance between
London and other cities (in km)
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M α R0 µEI µIR a i c 1− ρ
London 3 390 0.98 57 0.554 0.583 0.55 2.90 0.56 0.49
Birmingham 1 118 1.02 35 0.653 0.947 0.31 1.09 0.61 0.56
Liverpool 802 0.98 48 0.947 0.753 0.30 0.26 0.19 0.49
Manchester 704 0.97 33 0.660 1.089 0.29 0.59 0.36 0.55
Sheffield 515 1.02 33 1.042 1.193 0.31 0.85 0.23 0.65
Bristol 443 1.01 27 1.233 1.583 0.20 0.44 0.34 0.63

Table 3.1: Parameter Estimates for UK cities of population size in thousands M ,
mixing exponent α, reproduction ratio R0, weekly rates of transition from exposed
compartment E to infectious compartment I µEI , weekly recovery rate µIR, ampli-
tude of seasonality a, mean number of visiting infectives i, fraction of ‘susceptible’
individuals enter on the school admission day c, reporting probability 1− ρ.

as a starting point for our epidemic, we assume that 0.5% of the whole population

is in the Susceptible compartment and 0.002% of whole population is in the Exposed

and Infectious compartments. We simulated 1000 epidemics for five years in London,

removed the first four years from our analysis, and then compared our simulated data to

the London data for the 1956-1957 school year (see Figure 3.6). We observe that original

London data falls inside our 95% quantile interval of simulated data with exception of

short period around July. Therefore, our model is adequate for this data.

We also generate 1000 joint epidemics in London and Bristol for 15 years using Two

Population Asymmetric SEIR model with γ = i(k
′)

i(k)
µ̄

(k)
SI ≈ 0.02µ̄

(k)
SI , then remove the first

5 years from our analysis, and compare them to the London-Bristol data for the school

years 1954-1958. Figure 3.6 illustrates this comparison and we can observe that 53.8% of

the time the London counts are within the 95% quantile regions and 91.8% of the time

the Bristol counts are within the 95% quantile regions.

If we look closely at the shapes of the epidemics in Figure 3.6 we see that the epidemics

during school years 1954-1955 and 1956-1957 are significantly larger than epidemics dur-

ing school years 1955-1956 and 1957-1958. The significance of epidemic depends on the

number of susceptibles. Figure 3.7 shows that there were significant epidemics during
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the 1st, 2nd, and 4th years with no significant epidemic during the 3rd year due to an

insufficient number of Susceptible individuals in the 3rd year.

Both plots on the Figure 3.6 show a possible peak of epidemic in late Winter/Early

Spring, however only a bivariate model (bottom plot on the Figure 3.6) depicts a possible

peak of epidemic also during late Spring. Therefore nearby cities do affect the epidemics,

and therefore they should be included in the model.

Thus, we defined Two-Population models in Section and showed that the simulations

from our models can mimic the real behavior of epidemics. However this models only

work when we observe all information about both populations. In the following chapter

we discuss models, where we only observe partial information or no information about

the second population.
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Figure 3.6: Top: A 95% quantile interval of simulated Weekly Reported cases (shaded
region) vs. original Weekly Reported Cases (black line) in London in the school year
1956-1957. Bottom: A 95% quantile interval of simulated Weekly Reported cases
(shaded regions) vs. original Weekly Reported Cases (lines) in London (red) and
Bristol (blue) in the school years 1954 – 1958 .
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Figure 3.7: Simulated counts of Susceptible, Exposed, Infectious and Recovered indi-
viduals over 4 years. Week 0 is the start of the School year. The dashed lines represent
the beginning of 2nd, 3rd, and 4th years.
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Chapter 4

Reduced Models

Under full observations the detection problem (2.4) would be trivial, since one can

directly track I
(2)
t and declare an outbreak as soon as there any infecteds in the second

pool. Realistically, however, I(2) is not observed. Some of the reasons include mis-

diagnoses among infecteds, patients not seeking care, false positives, mis-reporting or

lack of reporting of epidemiological data, etc. Consequently, we assume that the true

size of the S-I-R compartments in Pool 2 is not known. To simplify the presentation, we

assume that I
(1)
t is observed in Pool 1, perhaps due to better epidemiological surveillance

in that pool.

In our detection problem, the main event of interest is the presence of infecteds above

the threshold level in Pool 2, {I(2)
t > Ī}. Accordingly, we consider P̃t = P (I

(2)
t > Ī|Gt),

the posterior probability that the epidemic started in Pool 2 at time t given the limited

knowledge about it available by time t, here summarized by some information set Gt.

Depending on assumptions about the observations structure, P̃t may be available in closed

form (e.g. through Bayesian conjugate updating [Ludkovski and Niemi, 2010, Lin and

Ludkovski, 2014]) or may have to be only approximately computed through e.g. particle

filtering methods (see Appendix A) [Sheinson et al., 2014, Skvortsov and Ristic, 2012].
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The latter method, which computes the whole posterior distribution πt ∼ I
(2)
t |Gt, is

computationally expensive, while conjugate updating requires carrying several sufficient

statistics about the posterior of I
(2)
t . In either case, P̃t on its own is not Markovian, and

hence does not possess simple dynamics. Therefore we propose a model that works with

a simplified, Markovian version of P̃t, which we denote as Pt, as well as a model based

on Bayesian conjugate updating of the posterior distribution of I
(2)
t .
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Figure 4.1: Posterior probability that the epidemic started in the second Pool P̃t
vs. time t, where the dashed line represents the actual start time θ of outbreak in
Pool 2. The plot was constructed using particle filtering using the following model
parameter values: β = 0.75, α = 0.01, γ = 0.5, M (1) = M (2) = 2000.

Figure 4.1 shows a sample scenario of the evolution of P̃t in a partially observed

framework. The plot was generated using particle filtering (see Appendix A) and used the

two-pool SIR model (that is a combination of reaction channels (3.1) with µEI =∞ and

reaction channels (3.28)) with noisy Poisson-type observations in each pool [Shatskikh

and Ludkovski, 2017]. We observe that P̃t tends to drift up (i.e. the posterior probability

of outbreak increases over time) and eventually hits 1.
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4.1 First Pseudo-Posterior Reduced Model

Our first reduced model consists of the state of epidemic in the first Pool
{
S

(1)
t , I

(1)
t

}
and a process Pt that is interpreted as the probability that the epidemic reached Pool 2

conditional on the information Gt = σ(S
(1)
0:t , I

(1)
0:t ) from Pool 1. The first two components

S
(1)
t and I

(1)
t come from a one-population SIR model (see the definition of the SIR model

in Section 3.1.1). To prescribe the dynamics of the pseudo-posterior Pt, we decompose

the event {I(2)
t > Ī} ≡ {θ ≤ t} into two cases: the event that the epidemic already

started at time t− 1 (i.e. θ ≤ t− 1), and the event that it starts at t = θ. Note, for this

particular section we will assume that our epidemic threshold Ī = 0, i.e. the epidemic is

defined if the number of infected greater than 0. We also add some stochastic noise to

denote exogenous fluctuations in our posterior estimates regarding the second pool. In

total, we thus assume that

Pt = Pt−1 + P (I
(2)
t−1 = 0 and I

(2)
t > 0|Gt−1) + δt, (4.1)

where δt are i.i.d. noise terms. Intuitively, the probability of outbreak has a positive drift

over time, and the drift is precisely the posterior probability of the outbreak beginning

during the current period, {θ ∈ [t− 1, t]}.

From the SIR dynamics, the probability that {θ ∈ [t − 1, t]} conditional on Pool 1

observations up to previous stage t − 1 is equal to the product of the probability that

an infected from Pool 1 interacts with a susceptible from Pool 2 and the conditional

probability that {θ > t−1}. The former happens with rate µ
(1,2)
SI (t)I

(1)
s

S
(2)
s

M(2) , s ∈ [t−1, t],

while the latter event is the complement of {θ ≤ t−1} and hence has probability 1−Pt−1.

Using the fact that conditional on {θ ≥ t}, M (2) = S
(2)
t−1, and making the transition rate
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constant on [t− 1, t] we obtain

P (θ ∈ [t− 1, t]|Gt−1) ' µ
(1,2)
SI (t)I

(1)
t−1(1− Pt−1). (4.2)

To guarantee Pt ∈ [0, 1] is interpretable as a probability we confine it to [0, 1], yielding

Pt :=


0 ∨ (Pt−1 + µ

(1,2)
SI (t)I

(1)
t−1(1− Pt−1) + δt) ∧ 1, if Pt−1 6= 1,

1, if Pt−1 = 1.

(4.3)

In our simulations we use centered Gaussian noise δt
i.i.d∼ N (0, σ2

δ ) with variance σ2
δ ,

however it can take any distribution. The algorithm of generating Pt is given in Algo-

rithm B.1.

Note that Pt = 1 is an absorbing state, representing certainty that the outbreak

reached Pool 2, while Pt = 0 is a boundary case since even if it is certain that the

outbreak is currently not in Pool 2, it can still get cross-infected in the future. Similar

features hold for the true posterior probability P̃t, cf. Figure 4.1. An alternative model

for the probability of outbreak Pt is discussed in Section 4.2.

Remark 3 Note that (4.3) is in discrete-time; to connect to the continuous-time dy-

namics of SIR one could take the limit as the time increment goes to zero, obtaining a

diffusive model dPt = µ
(1,2)
SI (t)I

(1)
t (1 − Pt) dt + δdWt where (Wt) is a Brownian motion.

However, since detection is assumed to take place only at instances t = 1, 2, . . ., we prefer

to work with (4.3) as is.
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4.1.1 Detection Within the First Reduced Model

To sum up, the developed reduced 2-pool model has a 3-dimensional state {XI}t =(
S

(1)
t , I

(1)
t , Pt

)
with state space

X := {(s, i, p) : s, i ∈ N, s+ i < M (1), p ∈ [0, 1]}.

Figure 4.2 shows a few sample trajectories of XI to illustrate the resulting dynamics.
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Figure 4.2: Three sample trajectories of XI with the initial condition S
(1)
0 = 1995,

I
(1)
0 = 5, P0 = 0 and outbreak parameters from Table 6.1. The left panel is the plot of

{I(1)
t }, the number of infecteds in the first population, and the right panel is the plot

of {Pt}, the posterior probability that the epidemic started in the second population.
The vertical dotted lines represent times when Pt hits 1 and outbreak becomes certain.

Our detection problem (2.10) relies on the computation of the immediate and future

expected costs E
[
c(XI

0:τ )|XI
0

]
and d(XI

0). Re-writing the definitions of immediate and

future costs (2.2) and (2.3) in terms of the event {I(2)
t > 0}, and taking conditional
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expectation we obtain:

d(XI
0) := CFA(1− P0), (4.4)

c(XI
0:τ ) :=

τ−1∑
s=0

CDelayPs + CFA(1− Pτ ), (4.5)

where τ ∈ S. Rather than in terms of the unobserved I(2), the above expressions are now

given in terms of the component Pt, allowing us to measure detection costs within the

XI-model. Notice that d(XI
0) is a function of P0 and c(XI

0:τ ) is a function of the future

trajectory {Ps : s = 0, . . . , τ}.

4.2 Second Pseudo-Posterior Reduced Model

We assume that we observe the state of epidemic in Pool 1

X
(1)
0:t :=

{
S

(1)
0:t , E

(1)
0:t , I

(1)
0:t , R

(1)
0:t

}
,

the number of observed cases in Pool 2 C
obs(2)
0:t as well as all parameters of Two Population

Asymmetrical SEIR model. The number of Infectious individuals in Pool 2 is computed

via:

I
(2)
t = I

(2)
t−1 + ∆I

(2)
t −∆R

(2)
t −∆(DI)

(2)
t , (4.6)

where ∆I
(2)
t are the new infections, ∆R

(2)
t are the new recovereds, and ∆(DI)

(2)
t are the

deceased individuals at discrete time t = 1, 2, . . .. As it was discussed in Chapter 3.1.1,

the distribution of ∆R
(2)
t and ∆(DI)

(2)
t is Poisson with respective means µIRI

(2)
t and

µDI
(2)
t , where µIR is the recovery rate.

If we assume that all infections in the second populattion are self-infections (i.e. the

susceptibles were infected by the infected in the same Pool), then the new infecteds in the
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second Pool at time t consist of cross-infections from the first Pool ∆I
(1→2)
t , observable

self-infections in the second Pool C
obs(2)
t , and non-observable self-infections in the second

Pool C
non−obs(2)
t

∆I
(2)
t = ∆I

(1→2)
t + C

obs(2)
t + C

non−obs(2)
t , (4.7)

where cross-infections and self-infections are respectively distributed as

∆I
(1→2)
t ∼ Poisson(µ

(1,2)
SI (t)η

(2)
t I

(1)
t ),

C
obs(2)
t ∼ Poisson((1− ρ)µ

(2)
SI (t)η

(2)
t I

(2)
t ), (4.8)

which was also defined in (3.14), and

C
non−obs(2)
t ∼ Poisson(ρµ

(2)
SI (t)η

(2)
t I

(2)
t ), (4.9)

where we defined

η
(2)
t =

S
(2)
t

M
(2)
t

.

Remark 4 An alternative decomposition of ∆I
(2)
t is given in the Appendix A, where we

propose that the change in the Infected individuals consists of observed cases and noisy

observations (false positive cases).

Thus, combining equations (4.6) and (4.7) we get:

I
(2)
t = I

(2)
t−1 + ∆I

(1→2)
t + C

non−obs(2)
t + C

obs(2)
t −∆R

(2)
t , (4.10)

Therefore, we can compute expected number of infected individuals in Pool 2 at time

t given the number of infecteds individuals in Pool 1 at time t and in Pool 2 at time t−1
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assuming independence of η
(2)
t and I

(1)
t as well as independence of η

(2)
t and I

(2)
t :

E(I
(2)
t |I

(1)
t , I

(2)
t−1) = I

(2)
t−1 +µ

(1,2)
SI (t)η

(2)
t I

(1)
t + ρµ

(2)
SI (t)η

(2)
t I

(2)
t + (1− ρ)µ

(2)
SI (t)η

(2)
t I

(2)
t −µIRI

(2)
t

(4.11)

Note that the independence of η
(2)
t and I

(2)
t is satisfied when the number of Susceptible

individuals is approximately equal to the size of population individuals, or η
(2)
t ≈ 1.

However in our calculations we treat η
(2)
t as known.

Theorem 1 If the likelihood

C
obs(2)
t+1 |X

(1)
0:t , I

(2)
t , C

obs(2)
0:t ∼ Poisson

(
(1− ρ)µ

(2)
SI (t)η

(2)
t I

(2)
t

)

and the prior

I
(2)
t |X

(1)
0:t , C

obs(2)
0:t ∼ Gamma(αt, βt),

then

I
(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1 ∼ Gamma

(
αt + C

obs(2)
t+1 , βt + (1− ρ)µ

(2)
SI (t)η

(2)
t

)
.

Proof: The pdf of C
obs(2)
t+1 |X

(1)
0:t , I

(2)
t , C

obs(2)
0:t is defined as

p
C
obs(2)
t+1 |X(1)

0:t+1,I
(2)
t ,C

obs(2)
0:t

(
ct+1|x(1)

0:t+1, it, c0:t

)

and it is equal to

(
(1− ρ)µ

(2)
SI (t)η

(2)
t it

)ct+1

ct+1!
e−(1−ρ)µ

(2)
SI (t)η

(2)
t it , ct ∈ N . (4.12)

The pdf of I
(2)
t |X

(1)
0:t+1, C

obs(2)
0:t is equal to the pdf of I

(2)
t |X

(1)
0:t , C

obs(2)
0:t and it is equal to

π
I
(2)
t |X

(1)
0:t+1,C

obs(2)
0:t

(
it|x(1)

0:t+1, c0:t

)
=

βαtt
Γ(αt)

iαt−1
t e−βtit , it ∈ R+. (4.13)
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We can compute the posterior distribution of I
(2)
t using Bayes rule:

p
I
(2)
t |X

(1)
0:t+1,C

obs(2)
0:t+1

(
it|x(1)

0:t+1, c
(2)
0:t+1

)
=

p
C
obs(2)
t+1 |X(1)

0:t+1,I
(2)
t ,C

obs(2)
0:t

(
ct+1|x(1)

0:t+1, it, c0:t

)
π
I
(2)
t |X

(1)
0:t+1,C

obs(2)
0:t

(
it|x(1)

0:t+1, c0:t

)
∫
p
C
obs(2)
t+1 |X(1)

0:t+1,I
(2)
t ,C

obs(2)
0:t

(
ct+1|x(1)

0:t+1, it, c0:t

)
π
I
(2)
t |X

(1)
0:t+1,C

obs(2)
0:t

(
it|x(1)

0:t+1, c0:t

)
dit

. (4.14)

First, the numerator of equation (4.14) is just a product of densities (4.12) and (4.13):

βαtt

(
(1− ρ)µ

(2)
SI (t)η

(2)
t

)ct+1

Γ(αt)ct+1!
i
ct+1+αt−1
t e

−
(
βt+(1−ρ)µ

(2)
SI (t)η

(2)
t

)
it ct ∈ N , it ∈ R+. (4.15)

Second, the denominator of equation (4.14) is just an integral of Equation (4.15) with

respect to I
(2)
t :

∫ ∞
0

βαtt

(
(1− ρ)µ

(2)
SI (t)η

(2)
t

)ct+1

Γ(αt)ct+1!
i
ct+1+αt−1
t e

−
(
βt+(1−ρ)µ

(2)
SI (t)η

(2)
t

)
itdit

=
βαtt

(
(1− ρ)µ

(2)
SI (t)η

(2)
t

)ct+1

Γ(αt)ct+1!

∫ ∞
0

i
ct+1+αt−1
t e

−
(
βt+(1−ρ)µ

(2)
SI (t)η

(2)
t

)
itdit

=
βαtt

(
(1− ρ)µ

(2)
SI (t)η

(2)
t

)ct+1

Γ(αt)ct+1!

Γ(ct+1 + αt)(
βt + (1− ρ)µ

(2)
SI (t)η

(2)
t

)ct+1+αt
, ct ∈ N , (4.16)

where to go from the second to last line using the fact that pdf of Gamma distributed

random variable is equal to 1.

We computed the numerator in the Equation (4.15) and the denominator in the

Equation (4.16), thus we finally get the posterior density of I
(2)
t to be

(
βt + (1− ρ)µ

(2)
SI (t)η

(2)
t

)ct+1+αt

Γ(ct+1 + αt)
i
ct+1+αt−1
t exp

{
−
(
βt + (1− ρ)µ

(2)
SI (t)η

(2)
t

)
it

}
, (4.17)
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which is the density of Gamma distributed random variable with parameters αt + ct+1

and βt + (1− ρ)µ
(2)
SI (t)η

(2)
t .

Theorem 2 If we define

µt+1 := E(I
(2)
t+1 |X

(1)
0:t+1, C

obs(2)
0:t+1 )

and

σ2
t+1 = V ar

(
I

(2)
t+1|X

(1)
0:t+1, C

obs(2)
0:t+1

)
and using the assumptions of Theorem 1, we can compute these quantities as:

µt+1 = (1 + ρµ
(2)
SI (t)η

(2)
t − γ − µD)

αt + C
obs(2)
t+1

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

+ µ
(1,2)
SI (t)η

(2)
t I

(1)
t + C

obs(2)
t+1 ,

σ2
t+1 =

(αt + C
obs(2)
t+1 )(1 + γ2 + µ2

D + ρ2(µ
(2)
SI (t))2(η

(2)
t )2)(

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

)2

+
(αt + C

obs(2)
t+1 )(γ + µD + ρµ

(2)
SI (t)η

(2)
t )

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

+ µ
(1,2)
SI (t)η

(2)
t I

(1)
t .

Proof: We start by computing the posterior mean µt+1. First, by definition of I
(2)
t

(see Equation (4.10)) we get:

µt+1 = E
(
I

(2)
t −∆R

(2)
t −∆(DI)

(2)
t + ∆I

(1→2)
t+1 + C

non−obs(2)
t+1 + C

obs(2)
t+1 | X(1)

0:t+1, C
obs(2)
0:t+1

)
.

Then using the linearity property of expectation we get:

µt+1 = E
(
I

(2)
t | X

(1)
0:t+1, C

obs(2)
0:t+1

)
− E

(
∆R

(2)
t + ∆(DI)

(2)
t | X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ E

(
∆I

(1→2)
t+1 + C

non−obs(2)
t+1 + C

obs(2)
t+1 | X(1)

0:t+1, C
obs(2)
0:t+1

)
.
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Using the tower property we get

µt+1 = E
(
I

(2)
t | X

(1)
0:t+1, C

obs(2)
0:t+1

)
− (γ + µD)E

(
I

(2)
t | X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ µ

(1,2)
SI (t)η

(2)
t I

(1)
t + ρµ

(2)
SI (t)η

(2)
t E

(
I

(2)
t | X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ C

obs(2)
t+1 .

Thus, we can rewrite it as:

µt+1 = (1+ρµ
(2)
SI (t)η

(2)
t −γ−µD)E

(
I

(2)
t | X

(1)
0:t+1, C

obs(2)
0:t+1

)
+µ

(1,2)
SI (t)η

(2)
t I

(1)
t +C

obs(2)
t+1 . (4.18)

While computing the posterior variance one needs to be more careful because the

variance of the sum is equal to sum of variance only if uncorrelated random variables are

to be summed up. However it might be observed that all our random variables in our

computation are uncorrelated and therefore we don’t have correlation terms.

First, we use the definition of I
(2)
t (see Equation (4.10)) to get:

σ2
t+1 = V ar

(
I

(2)
t −∆R

(2)
t + ∆I

(1→2)
t + C

non−obs(2)
t + C

obs(2)
t −∆(DI)

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
.

Second, we get:

σ2
t+1 = V ar

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ V ar

(
∆R

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ V ar

(
∆I

(1→2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
+ V ar

(
C
non−obs(2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
+ V ar

(
C
obs(2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
+ V ar

(
∆(DI)

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
, (4.19)
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where

V ar
(

∆I
(1→2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
= µ

(1,2)
SI (t)η

(2)
t I

(1)
t , (4.20)

V ar
(
C
obs(2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
= 0. (4.21)

To compute the other three variances V ar
(
C
non−obs(2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
,

V ar
(

∆(DI)
(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
, and V ar

(
∆R

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
we need to use the law

of total variance as well as other basic properties of expectation and variance:

V ar
(
C
non−obs(2)
t |X(1)

0:t+1, C
obs(2)
0:t+1

)
= E

(
V ar

(
C
non−obs(2)
t |I(2)

t ,X
(1)
0:t+1, C

obs(2)
0:t+1

)
|X(1)

0:t+1, C
obs(2)
0:t+1

)
+ V ar

(
E
(
C
non−obs(2)
t |I(2)

t ,X
(1)
0:t+1, C

obs(2)
0:t+1

)
|X(1)

0:t+1, C
obs(2)
0:t+1

)
= E

(
ρµ

(2)
SI (t)η

(2)
t I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ V ar

(
ρµ

(2)
SI (t)η

(2)
t I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
= ρµ

(2)
SI (t)η

(2)
t E

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ ρ2µ

(2)
SI (t)2(η

(2)
t )2V ar

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
,

(4.22)

V ar
(

∆(DI)
(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
= E

(
V ar

(
∆(DI)

(2)
t |I

(2)
t ,X

(1)
0:t+1, C

obs(2)
0:t+1

)
|X(1)

0:t+1, C
obs(2)
0:t+1

)
+ V ar

(
E
(

∆(DI)
(2)
t |I

(2)
t ,X

(1)
0:t+1, C

obs(2)
0:t+1

)
|X(1)

0:t+1, C
obs(2)
0:t+1

)
= E

(
µDI

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ V ar

(
µDI

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
= µDE

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ µ2

DV ar
(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
, (4.23)
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and

V ar
(

∆R
(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
= E

(
V ar

(
∆R

(2)
t |I

(2)
t ,X

(1)
0:t+1, C

obs(2)
0:t+1

)
|X(1)

0:t+1, C
obs(2)
0:t+1

)
+ V ar

(
E
(

∆R
(2)
t |I

(2)
t ,X

(1)
0:t+1, C

obs(2)
0:t+1

)
|X(1)

0:t+1, C
obs(2)
0:t+1

)
= E

(
γI

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ V ar

(
γI

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
= γE

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ γ2V ar

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
. (4.24)

Therefore, inserting the results from Equations (4.20), (4.21), (4.22), (4.23),

and (4.24) into Equation (4.19) we get

σ2
t+1 = V ar

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ (γ + µD)E

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ (γ2 + µ2

D)V ar
(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ µ

(1,2)
SI (t)η

(2)
t I

(1)
t

+ ρµ
(2)
SI (t)η

(2)
t E

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ ρ2µ

(2)
SI (t)2(η

(2)
t )2V ar

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
= (1 + γ2 + µ2

D + ρ2µ
(2)
SI (t)2(η

(2)
t )2)V ar

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ (γ + µD + ρµ

(2)
SI (t)η

(2)
t )E

(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
+ µ

(1,2)
SI (t)η

(2)
t I

(1)
t . (4.25)

By Theorem 1 I
(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1 ∼ Gamma(αt + ct+1, βt + (1− ρ)µ

(2)
SI (t)η

(2)
t ) and the

mean and variance of Gamma random variable we get:

E
(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
=

αt + C
obs(2)
t+1

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

, (4.26)

V ar
(
I

(2)
t |X

(1)
0:t+1, C

obs(2)
0:t+1

)
=

αt + C
obs(2)
t+1(

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

)2 . (4.27)
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Substituting the results (4.26) and (4.27) into equations (4.18) and (4.25) we get

µt+1 = (1 + ρµ
(2)
SI (t)η

(2)
t − γ − µD)

αt + C
obs(2)
t+1

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

+ µ
(1,2)
SI (t)η

(2)
t I

(1)
t + C

obs(2)
t+1

(4.28)

σ2
t+1 =

(αt + C
obs(2)
t+1 )(1 + γ2 + µ2

D + ρ2(µ
(2)
SI (t))2(η

(2)
t )2)(

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

)2

+
(αt + C

obs(2)
t+1 )(γ + µD + ρµ

(2)
SI (t)η

(2)
t )

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

+ µ
(1,2)
SI (t)η

(2)
t I

(1)
t . (4.29)

Theorem 2 gives us the updates of µt+1 and σ2
t+1. We can solve for αt and βt from µt

and σ2
t :

αt =
µ2
t

σ2
t

, βt =
µt
σ2
t

. (4.30)

Therefore with some initial conditions µ0, σ2
0, X

(1)
0:T , C

obs(2)
0:T , where T is the end time,

we can generate the process {µt, σ2
t }, t = 0, . . . , T using Algorithm B.2, which we denote

as ‘Original’ procedure.

Figure 4.3 shows the Infected Individuals in Bristol, which is the original observed

data of weekly cases in Bristol from Section 3.3 multiplied by 1/ρ to get the approximated

number of Infected individuals, and 95% quantile region of the Infected Individuals I
(2)
t ,

which was generated using the starting conditions µ0 = 200 and σ2
0 = 100 via Algo-

rithm B.2 . We assumed that the Bristol city is isolated from others and therefore there

are no cross-infections (µ
(1,2)
SI (t) = 0), and therefore we didn’t use X

(1)
0:T . We observe

that only 60% of points are within the 95% Quantile Intervals, however both points and

quantile intervals roughly follow the same curve.
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Figure 4.3: Time Series of Extrapolated Measles Epidemic in Bristol in 1950-1951
(solid line) in comparison to the 95% predicted quantile region (shaded region) of the

Infected Individuals I
(2)
t using the Second Reduced Model with µ

(1,2)
SI (t) = 0

The values of Cobs(2) might not be available. So we propose a procedure of generating

{µt, σ2
t }, t = 0, 1, 2 . . . , T without using the observed cases in the second population

C
obs(2)
0:T . Instead we generate the value of I

(2)
t from a posterior Gamma distribution with

parameters given in Equation (4.30) and sample C
obs(2)
t from a Poisson distribution with

rate (4.8). The algorithm of this procedure is given in Algorithm (B.3), and we refer to

this Algorithm as ‘Gamma-Poisson’ algorithm.

Theorem 3 If

I
(2)
t |X

(1)
0:t , C

obs(2)
0:t ∼ Gamma(αt, βt)

and

C
obs(2)
t ∼ Poisson((1− ρ)µ

(2)
SI (t)η

(2)
t I

(2)
t ),

then C
obs(2)
t |X(1)

0:t−1, I
(2)
t , C

obs(2)
0:t−1 has a Negative Binomial distribution with parameters αt

and βt

(1−ρ)µ
(2)
SI (t)η

(2)
t +βt

.
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Proof: The density of

f
C
obs(2)
t |X(1)

0:t ,C
obs(2)
0:t−1

(c) =

∫ ∞
0

f
C
obs(2)
t ,I

(2)
t |X

(1)
0:t ,C

obs(2)
0:t−1

(c, i)di

=

∫ ∞
0

f
C
obs(2)
t |X(1)

0:t−1,I
(2)
t ,C

obs(2)
0:t−1

(c)f
I
(2)
t |X

(1)
0:t ,C

obs(2)
0:t−1

(i)di. (4.31)

The probability mass function of C
obs(2)
t |X(1)

0:t−1, I
(2)
t , C

obs(2)
0:t−1 is given in Equation (4.12).

Substituting this density and the density of Gamma(αt, βt) into Equation (4.31) we get

f
C
obs(2)
t |X(1)

0:t ,C
obs(2)
0:t−1

(c)

∫ ∞
0

e−(1−ρ)µ
(2)
SI (t)η

(2)
t i)

(
(1− ρ)µ

(2)
SI (t)η

(2)
t i
)c

c!

βαtt
Γ(αt)

iαt−1
t e−βtitdi

=
(

(1− ρ)µ
(2)
SI (t)η

(2)
t

)c βαtt
(αt − 1)! c!

∫ ∞
0

ic+αt−1e−(βt+(1−ρ)µ
(2)
SI (t)η

(2)
t )idi.

Using the fact that

∫ ∞
0

(βt + (1− ρ)µ
(2)
SI (t)η

(2)
t )c+αt

Γ(c+ αt)
ic+αt−1e−(βt+(1−ρ)µ

(2)
SI (t)η

(2)
t )idi = 1

we get the density f
C
obs(2)
t |X(1)

0:t ,C
obs(2)
0:t−1

(c) equal to

Γ(c+ αt)

(αt − 1)! c!

(
(1− ρ)µ

(2)
SI (t)η

(2)
t

)c
βαtt (βt + (1− ρ)µ

(2)
SI (t)η

(2)
t )−c−αt . (4.32)

Rearranging the terms in Equation (4.32) we get:

(c+ αt − 1)!

(αt − 1)! c!

(
βt

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

)αt (
1− βt

βt + (1− ρ)µ
(2)
SI (t)η

(2)
t

)c

, (4.33)

which is a probaility mass function of a Negative Binomial distribution with parameters

αt and βt

(1−ρ)µ
(2)
SI (t)η

(2)
t +βt

.

Theorem 3 helps us to avoid a generation of two values I
(2)
t and C

(2)
t . We only sample
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Figure 4.4: Comparison of the true I
(2)
t |X

(1)
t to approximated I

(2)
t |X

(1)
t computed

using the ‘Gamma-Poisson’, and ‘Negative Binomial’ algorithms. The quantile in-

tervals were computed based on 1000 trajectories from the true I
(2)
t |X

(1)
t as well as

approximations of I
(2)
t |X

(1)
t .

C
(2)
t from a Negative Binomial distribution. Our procedure simplifies to Algorithm (B.4),

and we refer to this Algorithm as ‘Negative Binomial’. So both Algorithms ‘Gamma-

Poisson’ and ‘Negative Binomial’ should give the same results, and we give a preferenace

to ‘Negative Binomial’ from a theoretical point of view.

We generate a path {X(1)
t ,X

(2)
t } for a year (52 weeks) from a Two Population Asym-

metrical SIR model (see Section 3.2). Given the path of X
(1)
t as well as the starting

points µ0 = 50 and σ0 = 100 we generate the paths {µt, σt} from the ‘Gamma-Poisson’,

and ‘Negative Binomial’ algorithms, then solve for {αt, βt} and use these parameters to

sample I
(2)
t from a Gamma distribution. We also compute the possible trajectories of I2

t

given X
(1)
t , where as a starting position of the epidemic in the second population we use

a sample from Gamma posterior with µ0 = 50 and σ2
0 = 100.

Figure 4.4 compares the 95% quantile intervals of true I
(2)
t |X

(1)
t to the 95% quantile

intervals of I
(2)
t |X

(1)
t approximations computed using the ‘Gamma-Poisson’ and ‘Negative
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Binomial’ algorithms. First, notice that the path I
(1)
t has two peaks: the first one is a

larger one reaching level of 1500 infecteds and the second is a smaller one reaching level of

300. Second, 95% Quantile Regions computed using the ‘Gamma-Poisson’ and ‘Negative

Binomial’ algorithms are almost the same. That is expected by the construction of the

Algorithms. Third, the 95% quantile intervals of the true I
(2)
t |X

(1)
t from week 0 to week

22 are fully inside both 95% quantile intervals of approximations, however neither the

‘Gamma-Poisson’ nor the ‘Negative Binomial’ algorithms depicted the second smaller

peak of infecteds because they only “see” the values of I
(1)
t , which didn’t rise at that

time. Thus, we continue with the Negative Binomial’ algorithm for generating a path of

{µt, σt}.

Finally we define our Second Reduced Model, which consists of the state of epidemic

in the first Pool {S(1)
t , E

(1)
t , I

(1)
t , R

(1)
t } and a bivariate process {µt, σ2

t }, that are parameters

of gamma posterior distribution of I
(2)
t , the number of infecteds in the second Pool.

4.2.1 Detection Within the Second Reduced Model

The Second Reduced Model has a 6-dimensional state

{XII}t =
(
S

(1)
t , E

(1)
t , I

(1)
t , R

(1)
t , µt, σ

2
t

)
with state space

X := {(s, e, i, r,m, v) : s, e, i, r,∈ N,m, v ∈ R}.

Our detection problem (2.10) relies on the computation of the immediate and future

expected costs E
[
c(XII

0:τ )|XII
0

]
and d(XII

0 ). Re-writing the definitions of immediate and

future costs (2.2) and (2.3) in terms of the event {I(2)
t > Ī}, and taking conditional
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expectation we obtain:

d(XII
0 ) := CFAΨ(µ0, σ

2
0, Ī), (4.34)

c(XII
0:τ ) :=

τ−1∑
s=0

CDelay(1−Ψ(µs, σ
2
s , Ī)) + CFAΨ(µτ , σ

2
τ , Ī), (4.35)

where τ ∈ S and Ψ(µt, σ
2
t , Ī) is the cdf of Gamma distribution with the parameters

{αt, βt} given in Equation (4.30) evaluated at the point Ī. Rather than in terms of the

unobserved I(2), the above expressions are now given in terms of the component {µt, σ2
t },

allowing to measure detection costs within the XII-model. Notice that as with the First

Reduced Model, d(XII
0 ) is a function of {µ0, σ

2
0} and c(XII

0:τ ) is a function of the future

trajectory {µs, σ2
s}, s = 0, . . . , τ .
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Chapter 5

Sequential Regression Monte Carlo

Our goal is to find the detection maps Ŝt for t = 1, 2, . . . , defined recursively in

(2.10). To do so, at each step, we need to evaluate E [V (t− 1,X1)|X0 = x] and d(x).

The immediate cost d(x) can be computed exactly via (4.4). However, the expectation

E [V (t− 1,X1)|X0 = x] can not be computed analytically since there are no closed-form

expressions for the distribution of X0:τ . In this Chapter we present the sequential Regres-

sion Monte Carlo approach [Egloff, 2005, Gramacy and Ludkovski, 2015] which offers an

efficient way to empirically estimate Ŝt based on synthetically generated epidemic scenar-

ios. We then use Model Predictive Control to estimate the stationary detection map S.

5.1 Regression Monte Carlo

For the remainder of this section the auxiliary “time” variable t is fixed and the goal is

to approximate the conditional expectation q(t,x) := E[c(X0:τ (t)|X0 = x]−d(x) in (2.11).

Recall that at step t, detection rules are restricted to satisfy τ (t) ≤ t. The Regression

Monte Carlo technique approximates q(t, ·) by a predicted surrogate value q̂(t, ·) which

is based on a statistical regression framework.
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The surrogate prediction is built using data simulated from the specified model. To

do so, a design Z := {xn0 , n = 1, . . . , N} of N locations is first generated. Next, we

generate the corresponding scenarios {Xn
0:t} with the initial value Xn

0 = xn0 , one scenario

for each initial location. Define

τnt := min{s ≥ 1 : Xn
s ∈ St−s}, (5.1)

which leads to the difference of path-wise waiting costs and immediate costs qn :=

c(Xn
0:τnt

) − d(Xn
0 ) using formula (2.3) and (2.2) on the n-th scenario. The aggregate

dataset is

Z = {(xn0 , qn) , n = 1, . . . , N} . (5.2)

The construction of q̂(t, ·) then involves response surface modeling, i.e. determining

the relationship between the initial condition x and the mean of the sampled Q|x ≡

c(X0:τt)− d(X0). Statistically, we start with

Q|x = q(t,x) + ε, (5.3)

where q(t, ·) is the true response surface, Q = c(X0:τ (t)) − d(X0) are random scenario-

based difference of costs, and ε are mean-zero residuals with variance σ2 arising from

Monte Carlo simulations. Empirically, (5.3) translates into regressing {qn} on {xn0},

n = 1, . . . , N ; this step is discussed in section 5.2. After determining q̂, and using (2.10)

the estimated detection rule Ŝt is

Ŝt := {x : q̂(t,x) > 0} . (5.4)

The above provides a recipe to obtain an (approximate) Ŝt using the collection of
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detection rules Ŝ1:t−1. Iterating over t yields the sequence of detection maps Ŝt for

t = 1, 2, . . .. Next, as discussed in Section 2.2 we employ Model Predictive Control

(MPC) to achieve the convergence St → S.

5.2 Regression Model

Because we have limited a priori knowledge about the structure of the detection rule,

it is preferable to work with a nonparametric regression architecture for q(t,x). (For

example a linear regression model for q would imply that S in (5.4) is defined through

linear constraints, i.e. it forms a simplex in X .) In addition, nonparametric regression

is typically more robust for dealing with the non-Gaussian residuals ε that arise in our

model.

There are numerous nonparametric regression frameworks that can be used, including

splines, Gaussian processes, or generalized additive models; see e.g. the classic monograph

by Hastie et al. [2009]. Note that even though x 7→ V (x) is continuous, some discontin-

uous response surfaces might also be helpful, such as random forests or dynamic trees

[Gramacy and Ludkovski, 2015]. In the present thesis we take up a simple variant of

splines, known as piecewise linear regression, as well as a variant of local linear regres-

sion, known as Loess.

Piecewise linear regression[Hastie et al., 2009, James et al., 2013] divides the data

into regions and fits a polynomial regression in each region separately. While piecewise

linear regression is not a nonparametric regression, it provides an easy and convenient

basis for prediction and interpretation.

The piecewise linear response model with regions Rj = {x : x ∈ Rj}, j = 1, . . . ,M ,
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is of the form:

q̂PL(t,x) =
r∑
i=1

M∑
j=1

β̂ij(x)Bi(x)1{Rj}(x), (5.5)

where Bi(·) is the set of r pre-specified basis functions and β̂ij are estimated least squares

regression coefficients at x for region Rj, and 1{Rj}(x) is defined as

1{Rj}(x) =


1, if x ∈ Rj,

0, if x 6∈ Rj.

(5.6)

Loess fits weighted linear regression models to localized subsets of data, determined

using a kernel function, specifically a k-nearest-neighbor algorithm [Cleveland and De-

vlin, 1988]. Compared to classical linear models, Loess better handles outliers and

heteroscedasticity, and also does not make assumptions about the global shape of the

response surface.

The Loess response model is of the form

q̂Loess(t,x) =
r∑
i=1

β̂i(x)Bi(x), (5.7)

where Bi(·) is the set of r pre-specified basis functions and β̂i are the estimated regression

coefficients at x. Given input matrix ~X and matching response vector Q, β̂ is fitted using

local least-squares minimization

β̂(x) := arg min
~β∈Rr

Kλ(x, ~X)(Q−B( ~X)T ~β)2, (5.8)

where Kλ(x, ~X) is the weighting kernel. The idea behind the kernel is to base the

predicted q̂(t,x) on the samples in the neighborhood of x, weighted by their distance
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from x [Hastie et al., 2009, Sec. 2.8.2]. The size of the neighborhood is controlled by the

smoothing parameter λ. If λ < 1, only a proportion λ of the samples will be used in

fitting. The smaller λ, the more “wiggly” the fit q̂(t, ·) is going to be since fewer samples

are used in computing β̂(x). Loess can be viewed as a special kernel regression method,

with the prediction being a weighted average of the responses qn: q̂(t,x) =
∑

n ln(x)qn

for the equivalent kernel l(·). In our numerical examples, we use the implementation of

Loess provided in the R by the built-in package stats R Core Team [2017], which uses a

tri-cubic kernel and linear, first-order basis functions; the smoothing parameter used is

λ = 0.4.

5.3 Experimental Design

The aim of the response surface is to maximize the accuracy of Ŝt. This is equivalent

to maximizing model fidelity along the boundary of the detection map. Statistically,

for a localized response surface, accuracy is primarily driven by the local density of the

input data that is specified by the experimental design Z. Hence, to maximize our

confidence regarding the boundary of St in (5.4), we generate appropriate, adaptively

chosen experimental designs Z. This is achieved using the Sequential RMC (SRMC)

framework introduced by Gramacy and Ludkovski [2015]. SRMC uses tools from active

learning/Bayesian optimization to gradually grow the design Z so as to zoom-in to the

boundary of Ŝt. This is done by first quantifying the accuracy of the existing response

surface and then adding new design sites so as to maximize information gain. See Gra-

macy and Ludkovski [2015], Hu and Ludkovski [2017] for details. The SRMC approach

is illustrated in Figure 6.1 where the adaptively generated experimental design Z (of

size 2000 in the figure) is highly concentrated around the detection boundary ∂S. This

targeted sampling of outbreak scenarios allows for more efficient estimation, in particular
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lowering the local standard errors v̂(x) along ∂Ŝt, cf. the right panel of Figure 6.1.

In (5.4) the boundary of Ŝt corresponds to the regions of X where the cost difference

between immediate detection and waiting is zero. Hence, we aim to have more design

points in regions where {q̂(t,x) ' 0}. To this end, we define the “posterior” measure of

response surface accuracy via

p(x) := Φ

(
−|q̂(t,x)|√

v̂(x)

)
, (5.9)

where Φ is the standard normal cdf and the predictive variance v̂ measures the standard

error of the surrogate prediction

v̂(x) = σ̂2(x)‖l(x)‖2, (5.10)

with σ̂2(x) the estimated variance of ε around x in (5.3) and l(·) is the kernel defined in

Section 5.2, see [Hastie et al., 2009, Sec 6.1.2].

The motivation for (5.9) is that p(x) mimics the Bayesian posterior probability of

estimating the wrong sign (conditional on the samples in Z) of q(t,x), assuming that

the posterior distribution is Gaussian with the empirical mean q̂(t,x) and variance v̂(x).

The defined metric p(·) serves as a guide to augment new design locations. Namely,

it defines an acquisition function w(x) for greedily growing Z, similar to active learning

methods MacKay [1992]. The acquisition function is highest in the regions where p(x) is

close to 0.5, which correspond to ∂Ŝt. Our main choice is

wmin(x) = min [p(x), 1− p(x)] . (5.11)

Alternatives include the Gini weights wgini(x) = p(x) (1− p(x)) and Entropic weights

wEnt(x) = −p(x) log p(x)− (1− p(x)) log(1− p(x)).
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To speed up the response surface modeling, which requires refitting of q̂(t, ·) mul-

tiple times, we used batch steps, incrementally working with designs Z(N) of size N =

N0, N0 +N ′, . . . , N end. At each sequential design iteration, an additional N ′ design points

{xn0}N+N ′

n=N+1 are added to existing Z(N). Those are sampled multinomially in proportion

to the acquisition function w(·) from a candidate set Xfinite. Both the initial design

Z(N0) and the candidate sets Xfinite are generated using Latin hypercube sampling (LHS)

of size D from X . The overall procedure, summarized in Algorithm B.6, finally refits

at each iteration the Loess model for q̂ (and hence St), grows the experimental design

Z(N+N ′) = Z(N) ∪ {xn0}N+N ′

n=N+1, and recomputes the acquisition function (5.11). As the

design size gets larger, we expect that the implied empirical estimate ∂Ŝ
(N)
t gets closer

to the true ∂St.

Remark 5 One can apply standard, non-sequential RMC by skipping the inner while

loop (steps 7-15) in Algorithm B.6. This reduces to building a response model on a

pre-specified (possibly randomized) design Z := {xn0}
N0
n=1, keeping all other steps as is.
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Case Studies

To illustrate the dynamic detection strategy within our 2-pool model, we present two

case studies in this Chapter. In Section 6.1 we will start with the simple case, where we

assume that some disease follows a two-population SIR model (discussed in Chapter 3)

and therefore we could use the First Reduced Model (discussed in Section 4.1.1) for this

detection strategy. In Section 6.2 we will recreate the measles epidemic in the UK using

the data we discussed in Section 3.3 and use the Second Reduced Model (discussed in

Section 4.2.1) for the detection strategy.

6.1 Case Study Using the First Reduced Model

Table 6.1 summarizes the parameters used for this case study. Epidemic parameters

are taken to be µSI(t) = 0.75 and µIR(t) = 0.5 ∀t. Thus, the initial reproduction ratio

is R0 = µSI(t)/µIR(t) = 1.5, which is a moderately infectious epidemic. We assume

that the pool mixing parameter is γ = 0.01, which is reasonable for pools representing

well-separated cities or counties. The inference noise in (4.3) is taken to be Gaussian

with variance δt ∼ N (0, σ2
δ = 0.012). For the detection costs in (4.4)-(4.5), we take,
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without loss of generality CDelay = 1 and fix CFA = 20. As we will see, this corresponds

to a moderate penalty for false alarms.

For the detection map in Figure 6.1 in Section 6.1 we used an initial design of N0 =

200, which was grown over 10 iterations with N ′ = 200 to a final design of N end =

2000. The acquisition function was wmin and the candidate sets Xfinite of size D = 2500

were generated with LHS. Since detection happens while I(1) is still relatively small,

we restricted the response surface regression domain to I(1) ∈ {0, 1, . . . , 400}, S(1) ∈

{1000, . . . , 2000}. Lastly we note that the method is still computationally intensive, with

the bulk of the effort spent on generating T · N end scenarios of X; running times (on a

8-core 2.27GHz machine with 12GB of RAM) were about 20 minutes.

So far the case study features a three-dimensional state {S(1), I(1), P}, so that the

resulting detection maps are in 3-D. To aid visualization, we consider a variant with

a reduced dimension. Namely, we drop the component S(1) measuring the number of

infecteds in Pool 1. Indeed, at the early stages of the outbreak the ratio S
(1)
t /M (1) is

approximately one. As a result, one may assume that the rate of infections in Pool 1

is simply βI
(1)
t , which corresponds to the classical branching process epidemic model

[Andersson and Britton, 2000, Ch. 6]. It is known [Ball and Donnelly, 1995] that this

approximation remains valid up to t = O(log(M (1)) by which time, I
(1)
t = O(

√
M (1));

therefore it works especially well in large populations, and hence is termed the large-

population (LP) approximation. The LP model only has two dimensions, X′ := {I(1), P}

allowing us to plot the corresponding 2-D stopping set SLP .

Epidemic: M (1) = 2000 S
(1)
0 = M (1) − I(1)

0 σδ = 1/100
µSI(t) = 0.75 γ = 0.01 µIR(t) = 0.5

Costs/Penalties: CFA = 20 CDelay = 1

Table 6.1: Outbreak and costs parameters for the case study described in Section 6.1.
The parameter σδ refers to the noise in P , cf. (4.3).
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Figure 6.1: The left panel: detection rule SLP
20 in terms of I(1) and P . The detection

boundary ∂SLP
20 is shown with the solid curve. We also show the experimental design

Z that was used, illustrated with the scatterplot. The size of the pixel corresponds
to the number of times that neighborhood was sampled. The right panel: standard
errors v̂(x) from (5.10). Observe lower standard errors in regions where the design Z
is more dense.

Figure 6.1 shows SLP generated under the conditions of Table 6.1 along with the

above large population assumption. As expected, epidemic detection is triggered once

the posterior probability Pt of {I(2)
t > 0} is high enough. However, we observe that

detection is also highly sensitive to values of I
(1)
t ; for instance detection is progressively

delayed as I
(1)
t gets bigger. This dependence between the two pools in terms of decision

making illustrates the underlying cross-pool information fusion. Intuitively, detection

should take place once Pt is high enough. However, conditional on a fixed Pt, the larger

number of Pool 1 infecteds makes an impending outbreak in Pool 2 more likely, lowering

waiting costs. Mathematically, recall that in (4.3), the growth rate of P increases in I(1).
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As a result, for large values of I
(1)
t , one may expect that the next-stage Pt+1 will also be

large, i.e. move into the “Announce” region quicker. This again lowers the waiting costs

and, therefore, delays announcement.

6.1.1 Evaluating Detection Rules

Figure 6.2 shows dynamic decision-making in the LP model through a collection of

generated trajectories of X′ = {I(1)
t , Pt} and their corresponding detection times τLP ,

the first time the state process X′ enters the stopping set SLP . We observe that the

trajectories generally move north-east, as both P and I(1) tend to increase. However, the

rate at which they grow and the precise direction are uncertain and vary across scenarios.

Consequently, at detection, both PτLP and I
(1)

τLP
have a nontrivial distribution.
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Figure 6.2: Fifty sampled epidemic trajectories {I(1)
t , Pt}, t = 1, . . . , τ emanating

from the initial state I
(1)
0 = 10 and P0 = 0.1. We show the LP detection boundary

(namely ∂SLP
20 ), as well as a threshold strategy that announces the epidemic as soon

as Pt ≥ P̄ = 0.8. Lastly, the red crosses denote the locations of the trajectories at
t = 8, which is the basis of the alternate Threshold-t strategy.

To better understand the detection map SLP , we analyze the resulting detection
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strategy given by τLP and compare it to alternatives. Two classes of simpler detection

rules are Threshold-P and Threshold-t. The Threshold-P strategy announces an outbreak

as soon as Pt ≥ P̄ for a given threshold P̄ . Hence, it acts solely based on local (posterior)

information about Pool 2. This mimics the CDC policy [Hutwagner et al., 2005] of

announcing an epidemic when the number of infecteds in Population 2 crosses some

pre-specified level. In contrast to the fused detection strategy with a curved detection

boundary which jointly takes into account both Pt and I
(1)
t , Threshold-P rule only uses

Pt for detection decisions, yielding a flat, horizontal detection boundary in Figure 6.2.

The threshold-t strategy is a simple non-adaptive strategy that announces at the fixed

stage t̄. It is illustrated in Figure 6.2 where we record the joint distribution of I
(1)
t̄ , Pt̄ at

t̄ = 8.

Detection time τ Cost c(X0:τ (t)) PFA E[1− Pτ ]Mean StDev. Mean StDev.

Optimal 8.86 2.59 6.53 1.70 8.2%
LP 9.32 2.95 6.57 1.81 6.4%

Threshold-P 7.88 2.85 7.03 1.58 15.3%
Threshold-t 8.00 N/A 7.18 2.21 14.4%

Table 6.2: Comparison of Optimal, Large Population(LP), Threshold-P with P̄ = 0.8
and Threshold-t with t̄ = 8 strategies. Statistics are based on 1000 synthetic trajec-
tories of {S(1), I(1), P} with the starting value {1990, 10, 0.1}.

Returning to the full 3-D model with state X, we evaluate the resulting optimal

detection strategy τ ∗ and proceed to compare its performance against the other potential

detection rules discussed above. Specifically, the first two alternatives are a Threshold-P

rule with P̄ = 0.8 (declare an epidemic if its probability is above 80%) and a Threshold-t

strategy with t̄ = 8. The latter was found to be the best strategy among those that

declare outbreak at a fixed stage. The last alternative is the LP strategy τLP from last

section. Recall that τLP makes decisions while ignoring S(1). In that sense, when applied

to the full 3-D model, it gives a simplified, but still adaptive, detection rule. To recap,
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Figure 6.3: Summary statistics of different detection strategies constructed from 1000
sample epidemic trajectories. The LP detection strategy is from Figure 6.1. Right:
Distribution of detection times τ ; Left: Distribution of posterior probability of out-
break in Pool 2 at detection time, Pτ .

the Threshold-t strategy is completely non-adaptive; Threshold-P only relies on Pt; LP

relies on {I(1)
t , Pt}; the Optimal strategy uses all of {S(1)

t , I
(1)
t , Pt}.

To compare the performance of the above competing strategies, we fix the initial

condition at S
(1)
0 = 1990, I

(1)
0 = 10, and P0 = 0.1, so that there are 10 infecteds in Pool

1 and 10% prior probability of the epidemic already in Pool 2. Then we simulate 1000

epidemic trajectories {xn0:τ}, n = 1, . . . , 1000, emanating from this fixed initial condition

up to the detection time τ (which depends in turn on the strategy used). Table 6.2

then presents the resulting summary statistics based on these frozen 1000 trajectories

(note that there are no analytic formulas to obtain these metrics, so we must resort to

simulation).

The comparison is done in terms of several different metrics, including detection costs

c(X0:τ (t)), distribution of detection times τ , and frequency of false alarms, represented

by d(Xτ ) = 1 − Pτ in our setup. As expected, the Optimal strategy with detection
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time τ ∗ that directly optimizes the cost-benefit in the full model performs best. The

corresponding expected costs are V (x0) ' 6.53, with average detection time E[τ ∗] ' 8.86.

It outperforms the Threshold-P strategy by about 7% in terms of reducing detection

costs, and the Threshold-t strategy by about 9%. These are nontrivial cost savings

which highlight the benefit of information fusion. Table 6.2 also shows that the 2-D

LP approximation performs well in this example, generating very similar expected costs.

At least for this case study, detection happens early enough that the branching process

approximation of the outbreak works fine.

Recall that our model is stochastic and generates adaptive detection strategy. Hence

the detection time τ ∗ is a random variable. As shown in Table 6.2, the corresponding

standard deviation StDev(τ ∗) ' 2.6 is substantial. This illustrates the sub-optimality of

the Threshold-t strategy that stops at a fixed t̄ with StDev(t̄) = 0 trivially. Not surpris-

ingly, the ability to delay or speed up outbreak announcements based on latest data are

crucial for optimizing policy making. We also note that compared to the Threshold-P

strategy, the Optimal strategy tends to announce later, E[τ ∗] ' 8.86 > 7.88 ' E[τThr−P ].

This is also confirmed by the respective histograms of τ ∗ and τThr−P as shown in Fig-

ure 6.3. However, we emphasize that the detection rules do not have a clear ordering. In

other words, the random variables τ ∗, τThr−P , etc., cannot be directly compared.

A complementary metric of detection quality is provided by the probability of false

alarms, PFA := E[1 − Pτ ]. For the optimal strategy we find that PFA∗ = 8.2%. In

contrast, for Threshold-P strategy, we have PFAThr−P = 15.3%. Note that because we

use a discrete-time model, time of detection Pτ will strictly exceed the threshold P̄ = 0.8,

hence PFAThr−P < 1 − P̄ . The histograms of Pτ are shown in Figure 6.3 and confirm

the qualitative difference among the detection strategies. The Threshold-P strategy only

stops once Pt > P̄ so that Pτ has support on roughly [0.8, 0.9]. In contrast, the adaptive

Optimal (and LP) strategies, have a much wider range for Pτ . In particular, sometimes
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epidemics are announced even before Pt hits the level 0.8.

Figure 6.4: Relative detection costs across different strategies. The histogram shows
the distribution of the difference in costs along the 1000 simulated trajectories, namely
c(x0:τ∗)− c(x0:τThr−P ), and c(x0:τ∗)− c(x0:τThr−t).

To further quantify the improvement provided by the Optimal detection rule, Figure

6.4 gives a scenario-by-scenario comparison of realized detection costs. Note that in

hindsight, τ ∗ may sometimes perform worse that τThr−P or even τThr−t. Figure 6.3 plots

the histogram of the difference in costs for each trajectory xn0:t, n = 1, . . . , 1000, namely

c(x0:τ∗), c(x0:τThr−P ), and c(x0:τThr−t). We find that the costs computed with Optimal/LP

strategies are smaller than costs computed with Threshold strategies for more than 80%

of the trajectories.

To sum up, we observe material improvement when using the Optimal detection rule

in this case study. Moreover, the obtained detection rule is substantially different from

the thresholding protocol. On the one hand, the adaptive detection time τ ∗ exhibits

a wide spread and is highly non-constant across trajectories. On the other hand, the

posterior probability of false alarms Pτ∗ is also strongly variable. As a result, the average
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frequency of false alarms is drastically lowered relative to Threshold-P strategy, reducing

overall expected costs.

6.1.2 Effect of Detection Cost Parameters

Figure 6.5: Boundaries of detection maps ∂SLP
20 constructed based on different penal-

ties for false alarm, CFA.

CFA
τ ∗ Cost

PFA = E[1− Pτ∗ ]Mean StDev. Mean StDev.

10 6.84 1.62 5.32 0.99 21.4%
20 8.87 2.60 6.54 1.71 8.3%
30 9.61 2.79 7.21 2.22 5.3%

Table 6.3: Summary statistics of the Optimal detection strategy τ∗ for different
false alarm penalties CFA. Statistics are based on 1000 synthetic trajectories of
{S(1), I(1), P} with the starting value {1990, 10, 0.01}.

The main parameter in our quickest detection setup is the ratio of the cost of false

alarms and the cost of detection delay, CFA/CDelay. A high ratio penalizes premature
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announcements and requires more care in the assessment of the potential outbreak in

Pool 2. A low ratio invites more aggressive actions. To better understand the role of

this ratio, we refer to Figure 6.5, where we show several detection boundaries ∂SLP

corresponding to varying CFA, while CDelay = 1 is kept fixed. As expected, a lower

CFA enlarges the Announce set S. In particular, the boundary ∂S shifts down and

to the right. As a result, starting from a fixed location (I
(1)
0 , P0), the stopping set S

will be reached sooner, so that τ decreases (in the sense of stochastic dominance for the

corresponding random variables). This is confirmed in Table 6.3 that reports statistics for

τ ∗ and various CFA. We find that E[τ ∗] = 8.86 when CFA = 20, but is only E[τ ∗] = 6.84

for CFA = 10. Simultaneously, the frequency of premature announcements PFA will

increase. The precise relationship is however nonlinear. Lowering CFA from 20 to 10,

the PFA rises dramatically to about 21% from 8%. Conversely, raising CFA to 30 only

reduces PFA to 5.3%.

6.2 UK Case Study Using the Second Reduced Model

We set up a detection strategy for announcing a measles epidemic in Bristol using

the information about the epidemic in London. The parameters of epidemic for these

two cities are presented in Table 3.1. We assume that mortality rate µ
(1)
B (t) = µ

(2)
B (t) =

µ
(1)
D (t) = µ

(1)
D (t) = 3.836 · 10−4 per week, the mean contact rate µ̄

(1)
SI = µ̄

(2)
SI = 4.75 per

week, and the pool mixing parameter γ = 0.02. We use Two Population Asymmetrical

epidemic model (see Section 3.2) for modeling this epidemic.

We start by creating a database of 10000 possible epidemic trajectories simulated with

Two Population Asymmetrical epidemic model as well as the trajectories of {µt, σ2
t } from

a ‘Poisson’ algorithm for 20 years. We remove the burn-in period of 5 years. There are two

reasons for creating this database. First, we can compute η(2), the average proportion
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of susceptible individuals in the second population for each week of the year w = t

mod 52, which is used in Algorithm B.4. Second, the database has 150000 locations

of
(
w, S

(1)
0 , E

(1)
0 , I

(1)
0 , R

(1)
0 , µ0, σ

2
0

)
(we drop the information about the second epidemic

X
(2)
t ) that will be used for sampling an initial design {xn}N0

n=1 for Algorithm B.6.

Based on the initial design we can propagate the trajectories and compute the cost

difference via Algorithm B.5 (step 4 of Algorithm B.6). To generate N0 trajectories

of {S(1)
t , E

(1)
t , I

(1)
t , R

(1)
t , S

(2)
t , I

(2)
t , R

(2)
t }

min(τ,52)
t=0 using the Two Population Asymmetrical

SEIR-SIR epidemic model (see Section 3.2), we also need the starting points of the sec-

ond population. We sample an approximation of I
(2)
0 from Gamma posterior distribution

with parameters (α0, β0), which can be found via Equation (4.30) and (µ0, σ
2
0). We ap-

proximate S
(2)
0 by multiplying the population size by η(2) and get R

(2)
0 by subtraction.

Then we generate the trajectories of (µt, σ
2
t ) using the Second Reduced Model (see Sec-

tion 4.2.1). Therefore, for our design {xn0}
N0
n=1 we get the corresponding path-wise cost

difference {qn}N0
n=1, where we take CDelay = 1 and fix CFA = 10 for the detection costs in

(4.34)-(4.35).

Therefore we have an 7-dimensional design {xn0}
N0
n=1 to regress against the path-wise

cost differences {qn}N0
n=1 in Equation (5.3). We simplify our design to 2 dimensions (w, µ)

and use the piecewise linear model. We break weeks w into the two types of regions: W1 =

{w : w = 51, 52, 1, 14, 15, 16, 28, 29, 30, 31, 32, 33, 34, 35, 36, 42, 43, 44} – the weeks that

correspond to the school status ‘On a Break’ and W2 := W c
1 – the weeks that correspond

to the school status ‘In Session’ . For the breakpoints of µ we compute the values of the

three quartiles (25th, 50th, 75th percentiles respectively) of the current design as well as

Ī, the inital threshold level for epidemic. Thus, for µ we get 4 ordered breakpoints mi,

i = 1, 2, 3, 4, giving us 5 regions for µ: M1 = {µ : µ ≤ m1}, M2 = {µ : m1 < µ ≤ m2},

M3 = {µ : m2 < µ ≤ m3}, M4 = {µ : m3 < µ ≤ m4}, M5 = {µ : µ > m4}. Therefore we

have a total of 10 regions: Rkl = {(µ,w) : µ ∈ Mk, w ∈ Wl} , k = 1, 2, . . . , 5, l = 1, 2.
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Piecewise linear model (in comparison to loess) allows us to add trigonometric terms

sin(2πw/52) + cos(2πw/52) to handle the weeks of the year term, therefore making sure

that the regression fit at week 0 matches the one of week 52 [Montgomery et al., 2015].

We also add a quadratic term in µ as well as the interaction terms, and therefore our

final regression model has 23 coefficients:

q̂PL = β̂0 + β̂1 sin

(
2πw

52

)
+ β̂2 cos

(
2πw

52

)
+

2∑
i=1

5∑
k=1

2∑
l=1

β̂ijBi(µ)1{Rkl}((µ,w)), (6.1)

where the polynomial basis functions are Bi(µ) = µi, i = 1, 2 and the indicator function

1{Rkl}((µ,w)) was defined in Equation (5.6).

Unfortunately the decrease in dimensions means we can not straightforwardly simu-

late the behavior of
(
S

(1)
t , E

(1)
t , I

(1)
t , R

(1)
t

)
. SRMC approach adds additional observations

to the boundary ∂Ŝt. To get these observations, we need to simulate the trajectory from(
w, S(1), E(1), I(1), R(1), µ, σ2

)
. The coordinates of our boundary are just (w, µt) with un-

known position of epidemic in the first Pool. Thus, we will use Regression Monte Carlo

approach to get the detection map (see Algorithm B.6 with N0 = N end) and we leave an

implementation of SRMC in this problem as future work.

Figure 6.6 presents the series of detection rules that we got using Regression Monte

Carlo (see Section 5.1) without implementing Model Predictive Control (MPC). As it

was shown in Section 5.1, to get the detection rule Ŝt, we use detection rules Ŝt−1:0

at times 0, 1, . . . , t − 1 and S0 at iterations t + 1, t + 2, . . .. So we can observe rather

flat boundary ∂Ŝ1 (first panel of Figure 6.6) because we only used our initial detection

rule Ŝ0 at time t = 0. Then with each iteration our boundary changes: at iteration 14
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Figure 6.6: Detection Rules Ŝ1(first panel), Ŝ14 (second panel), Ŝ32 (third panel).
The Detection Boundaries ∂Ŝ1, ∂Ŝ14, ∂Ŝ32 are shown with the solid curves on the
respective plots. The regions with a red shade color correspond to the state space,
where we announce the epidemic, while the regions with a blue color shade correspond
to the state space where we do not announce an epidemic. Initial detection map we
set S0 = {X : µt > 100}. Cost difference q̂ is defined as difference between future and
immediate costs.
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we still observe rather flat boundary Ŝ14, however the small bumps around the school

breaks appear, which means the epidemic’s announcement happens for a bigger value of

µ compared to the time when school is in session. Detection boundary Ŝ32 is even more

prominent than the boundary Ŝ14: we do not announce epidemic during breaks.

6.2.1 Evaluating Detection Rules

For this section we assume that there is an epidemic if the number of infecteds crosses

Ī = 50. Our initial detection rule is a Threshold detection rule - to announce an epidemic

if µ > Ī. We generate maps Ŝ1:10, and then employ Model Predictive Control (MPC)

for 50 more iterations (MPC was discussed at the end of Section 5.1) to get Ŝ(11:60). To

evaluate those, we generate 1000 epidemic trajectories in two populations starting from

Week 34, where the starting conditions were sampled from our database of 150000 loca-

tions with w = 34 defined in the beginning of Section 6.2, and lasting for one year. Based

on those trajectories we can compute the Costs using Equation (2.3) and Probability of

False Alarm (PFA) for each Ŝt, t = 1, . . . , 60, where

PFA = E(ΨI2τ
(Ī)). (6.2)

Figure 6.7 shows how the costs and the probability of false alarm change with respect

to the different time t (the Figure 6.7 also reflects how the Costs and the Probability of

False Alarm are affected by the change of Cost of False Alarm CFA, but we will discuss

in Section 6.2.2). We see a steady decrease in both the Costs and the Probability of False

Alarm, PFA. Therefore, the detection rule is an optimal one .

For example, if we fix the Cost of False Alarm CFA at 30 , we see that the Cost

decreased from 6.62 to 2.51 units, which is about a 62% decrease from the initial Thresh-

old detection rule (if µ > 50); and Probability of False Alarm decreased from 36.25% to
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Figure 6.7: Relationship between estimated Optimal detection rules Ŝ1:60 and Thresh-
old detection rules (initial detection map), shown via computation of Costs (top plot)
and Probability of False Alarm (PFA) (bottom plot). The initial detection map -
S0 = {X : µt > 50}
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8.68%, which is a 76.1% decrease from the initial detection rule.

The mean of detection time τ of the 1000 trajectories increased slightly from 26.132

to 27.422 with standard deviations decreasing from 11.733 to 10.345. Detection time

26 correspond to week 11 of the year, which means that most of detection happens

on average before the Spring Break. However the mean value of µ at detection time τ

increased significantly from 68.94 (with standard deviation 19.3) to 103.56 (with standard

deviation 15.5).

Thus, we observed the significant improvement in our Detection Rules compared to

the initial one. These detection rules not only decreased the costs, but also reduced the

probability of false alarm.

The final estimated detection map Ŝ60 for each of CFA = 10, 20, 30 is given in Fig-

ure 6.8. As it was discussed before we do not announce an epidemic during the school

breaks or do announce an epidemic for a higher level of µ during the school breaks.

6.2.2 Effect of Detection Cost Parameters

As it was seen in the previous case study in Section 6.1.2, the main parameter in our

quickest detection setup is the ratio of the cost of false alarms and the cost of detection

delay, CFA/CDelay. A high ratio penalizes premature announcements, while a low ratio

invites more aggressive actions. As expected, a decrease in the cost of false alarm CFA,

when keeping the fixed cost of detection delay CDelay = 1, caused the probability of

false alarms (PFA) to drop. This is confirmed by observing the lines on Figure 6.7 or

from Table 6.4 (while for the Threshold strategy this increase in the cost of false alarms

didn’t affect PFA). Notice that in Figure 6.8 the area, where we announce an epidemic,

decreases as the Cost of False Alarm increases.

Table 6.4 also provides the Detection times τ , where detection time 26 corresponds
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Figure 6.8: Detection Rules Ŝ60 computing using CFA = 10 (top panel), CFA = 20
(middle panel), CFA = 30 (bottom panel). The Detection Boundaries ∂Ŝ60 are shown
with the solid curves on the respective plots. The regions with a red shade color
correspond to the state space, where we announce the epidemic, while the regions
with a blue color shade correspond to the state space where we do not announce an
epidemic.
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to the 11th week of the year. The detection rule with CFA = 30 announced an epidemic

a little sooner than the detection rules with CFA = 10 and CFA = 20.

CFA
Detection time τ Cost

PFA
Mean StDev. Mean StDev.

Optimal 10 26.637 11.216 2.174 2.227 30.5%
Threshold 10 26.132 11.733 2.389 2.306 36.3%

Optimal 20 26.884 10.204 2.170 2.347 8.8%
Threshold 20 26.132 11.733 4.503 4.450 36.3%

Optimal 30 26.518 10.133 2.520 2.888 8.6%
Threshold 30 26.132 11.733 6.616 6.601 36.3%

Table 6.4: Comparison of Optimal strategy Ŝ60 with the initial detection rule
S0 = {X : µ > 50} and Threshold-I strategy with Ī = 50. Statistics are based
on 1000 synthetic trajectories of {µ,w}.

Therefore, in both case studies we showed a decrease of Probability of False Alarm,

which lowered the Costs, in comparison to Threshold strategies. We also varied a cost

of false alarm CFA in both case studies: the lower the CFA enlarges the Announce set

S and therefore increases the Probability of False alarm. A common approach in the

decision literature is to select a priori a desired level of PFA (say PFA = 10%) and then

numerically solve the inverse problem to obtain the corresponding CFA and hence the

corresponding detection rule S.
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Chapter 7

Conclusion and Future Work

We have presented a framework for optimal detection of epidemics in a coupled meta-

population model. Taking into account data about the second population is important

because the epidemic in the original population can be detected more accurately. This is

especially relevant when the original population is small and there is an epidemic in the

nearby bigger population. In this scenario even a small number of Infected individuals

in the original population is likely to produce an epidemic. Even if the populations are

of the same size, if there is a big epidemic in the second population, the epidemic in the

original population becomes more likely.

Our approach explicitly takes into account cost-benefit considerations regarding an-

nouncement of an epidemic, as well as spatial dependence across susceptible pools. Given

the information about two populations and characteristics of the infection, our algorithm

produces the full detection map which can then be used repeatedly for an announce-

ment of epidemic. We demonstrate that information about the epidemic in one pool

can be used to lower the detection costs in another pool, realizing savings compared to

traditional threshold-type detection methods.

The presented SIR/SEIR framework gives a basic mechanistic description of disease
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progression. More sophisticated versions might allow for age stratification, and hetero-

geneity among the meta-populations. One could also include further transitions beyond

(3.1), such as immunity lapses R(k) → S(k) or vaccination S(k) → R(k).

Alternatively, one can also imagine more sophisticated models for the outbreak

pseudo-posterior – recall that the proposed one was largely for convenience than any

realism. For example, the Gaussian noise δt in the dynamics of Pt that was used in the case

study may be better modeled via a Beta distribution (which arises naturally as conjugate

to the Poisson increments of the fully-observed stochastic SIR model Lin and Ludkovski

[2014]). Overall, the key requirement is the Markov structure which makes it possible to

use regression against X to describe the detection rule. The Markovianity requirement

can be partly relaxed if one is willing to accept approximately-optimal solutions. Indeed,

one can always project the optimal detection rule into the smaller space of rules that only

depend on some subset X′; in other words restricting the detection map to only take into

account some of the state-space dimensions. This idea was already discussed in Section

6.1 where we described the sub-optimal LP strategy.

Second, one may modify the cost structures (2.2)-(2.3) to better capture the desired

detection goals. The presented costs were motivated by their classical analogues in se-

quential change-point detection, but might not be the most appropriate for public health

contexts. The waiting cost in (2.3) was constant; it may be more realistic to make it

proportional to I
(2)
t , which would correspond to fixed costs per infected.

For such more general formulations, the costs d(X) and c(X) would no longer be

functions of pseudo-posterior distribution, and one would need to work with the full

posterior distribution πt of I
(2)
t |Gt. The RMC framework could still be usable, namely

we may use particle filtering (see Appendix A) [Ludkovski, 2009, Sheinson et al., 2014,

Lin and Ludkovski, 2014], to obtain πt along a simulated trajectory of the underlying

epidemic model. Certainly, particle filtering can become computationally expensive,
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making efficient inference essential. The integrated sequential inference plus optimization

model would then allow to treat a partially observed version of aK-pool SIR model, where

K > 2, and ultimately a larger-scale setup such as influenza surveillance across all 50

states, cf. Figure 1.1.
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Appendix A

Particle Filtering

In this chapter we develop an alternative observation model based on observable

infections in both populations and then present a Particle Filtering approach to solving

our inference problem based on this model. Note that the notation of this section is

slightly different from the rest of the thesis.

A.1 Observed Process and Noise

Suppose the observations are collected with fixed period τ . While collecting the

observations (for example, observed cases C(obs(2) as in Section 4.2) we get into two

problems. First, not all individuals might be diagnosed with the infection due to personal

reasons. Second, false positive observations might be collected due to wrong diagnosis.

The solution to the first problem is the binomial sampling. Suppose we observe

each infection with probability p := 1 − ρ in a time period of length τ . Define Ojτ =

{O(1)
jτ , . . . , O

(K)
jτ }, j = 0, 1, 2, 3, . . ., to be a K-dimensional discrete time increasing jump

process, which represents the cumulative number of new infections observed in each

population by time jτ . Thus, the increments of Ojτ are defined as ∆O
jτ = O(j+1)τ −Ojτ .
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If we denote the new infecteds S(j+1)τ−Sjτ as ∆I
jτ , then, by construction, the conditional

density

∆O
jτ |∆I

jτ ∼ Bin(∆I
jτ , p) (A.1)

for any j = 0, 1, 2, 3, . . ..

The problem of false positives is solved by introducing an independent K-dimensional

continuous time process Njτ = {N (1)
jτ , . . . , N

(K)
jτ }, where

∆N
jτ = N(j+1)τ −Njτ ∼ Poisson(λ0τ) (A.2)

for any j = 0, 1, 2, 3, . . .. Thus, Njτ represent the cumulative number of noisy observa-

tions in each population.

Define Yjτ = Ojτ + Njτ , which is a K-dimensional discrete time process for any j =

0, 1, 2, 3, . . .. Thus, Yjτ correspond to the cumulative number of individuals diagnosed

with this infection and we can define increments of Yjτ to be

∆Y
jτ = Y(j+1)τ −Yjτ = ∆O

jτ + ∆N
jτ . (A.3)

Remark 6 In the main text of this thesis the number of individuals diagnosed with this

infection is referred as the number of observed cases and denoted as C
obs(2)
t .

There is no epidemic at first, just some noisy observations. Then the epidemic starts

in the first population at random time

τinf
4
= inf{t : I

(1)
t > Ī},

where Ī is the epidemic threshold. After time τinf the first population infects the second
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population and the epidemic starts in the second population at time

τ startlag

4
= inf{t : I

(2)
t > Ī}.

Thus, the infection goes through most of the populations in the model.

Suppose we start observing the number of infecteds in two populations at time 0. We

assume that the epidemic has some probability 1/µstart to start in the first population in

a time period (jτ, (j + 1)τ), j = 0, 1, 2, 3, . . .. Thus, the start of the epidemic in the first

population follows the geometric distribution with mean µstart/τ .

See Figure A.1 for a sample behavior of Xt and Yt simulated using a 2 population SIR

model with parameters: µ
(1)
SI (t) = µ

(2)
SI (t) = 0.75, γ(1,2) = γ(2,1) = 1

20
, µ

(1)
IR(t) = µ

(2)
IR(t) =

0.5, τ = 0.1, τinf = 5, I
(1)
τinf = 5, I

(2)
τinf = 0, M1 = M2 = 2000, λ0 = 1, p = 0.2.

The first plot in the Figure A.1 shows the behavior of It = {I(1)
t , I

(2)
t }. We can

clearly see that there were only 20 infected individuals in the first population, when the

infections started in the second population.

The second plot in the Figure A.1 shows the cumulative number of new infecteds by

time t, i.e.
∑t

s=0 ∆I
s. We can see that approximately 60 people has been infected by the

time the epidemic started in the second population.

The last plot shows the behavior of Yjτ , j = 0, 1, 2, 3, . . .. Thus, we observe that

before time τinf the number of infecteds is close to the expected value of the noise E(Njτ ).

However after time τinf and tstartlag the number of infected individuals in the respected

populations fluctuates away from E(Njτ ). Since process Y includes the noisy observations

the cumulative numbers of infected individuals in the first and second populations by time

τinf and tstartlag , respectively, is greater than the ones on the second plot. We also see that

the rate at which the cumulative number of infected individuals grows slower on the third

plot than on the second plot since the number of noisy observations is smaller than the
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Figure A.1: First plot: Actual number of Infecteds in two populations at a given
time. Second plot: cumulated number of Infecteds in two populations. Third plot:
Observed number of Infecteds in two populations.

number of unobserved infections.
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A.2 Inference of X[0,J ] Given Y[0,J ]

We assume that we observe Y[0,J ] = {Yjτ , j = 0, 1, 2, . . . , J} as well as all parameters

of SIR model, µstart, λ0 and p. Let Θ to be the set of all known parameters, i.e. Θ =

{µ(1)
SI (t), µ

(2)
SI (t), µ

(1)
IR(t), µ

(2)
IR(t),M, λ0, p, µstart}.

By Bayes rule we can compute the posterior distribution of X[0,J ] = {Xjτ , j =

0, 1, 2, . . . , J} as

pXJ |Y[0,J]

(
xJ |y[0,J ]

)
=

pYJ |XJ ,Y[0,J−1]

(
yJ |xJ ,y[0,J−1]

)
πXJ |Y[0,J−1]

(
xJ |y[0,J−1]

)∫
pYJ |XJ ,Y[0,J−1]

(
yJ |xJ ,y[0,J−1]

)
πXJ |Y[0,J−1]

(
xJ |y[0,J−1]

)
dxJ

,

(A.4)

where Xj has initial density function πX0 and transition probabilities πXj |X(j−1)
(x′|x) such

that

πX[0,J]
= πX0

n∏
j=1

πXj |Xj−1
(xj|xj−1).

However since the denominator in (A.4) is just a normalizing constant, we get

pXJ |Y[0,J]

(
xJ |y[0,J ]

)
∝ pYJ |XJ ,Y[0,J−1]

(
yJ |xJ ,y[0,J−1]

)
πXJ |Y[0,J−1]

(
xJ |y[0,J−1]

)
. (A.5)

Then if we condition on the path X(J−1,J), we see (A.5) is proportional to

∫
pYJ |X(J−1,J],Y[0,J−1]

(
yJ |x(J−1,J ],y[0,J−1]

)
πX(J−1,J]|Y[0,J−1]

(
x(J−1,J ]|y[0,J−1]

)
dx(J−1,J).

(A.6)

First, let’s look at the first term of the right hand side of the equation (A.6). By
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construction,

pYJ |X(J−1,J],Y[0,J−1]

(
yJ |x(J−1,J ],y[0,J−1]

)
=

K∏
k=1

p
Y

(k)
J |X

(k)
(J−1,J]

,Y
(k)
[0,J−1]

(
y

(k)
J |x

(k)
(J−1,J ],y

(k)
[0,J−1]

)
.

(A.7)

Observe that if we know the paths of Y
(k)
[0,J ] and X

(k)
(J−1,J ], then we know ∆Y

(k)
J and ∆I

(k)
J .

Thus, we observe that

p
Y

(k)
J |X

(k)
(J−1,J]

,Y
(k)
[0,J−1]

(
y

(k)
J |x

(k)
(J−1,J ],y

(k)
[0,J−1]

)
= p

∆Y
(k)
J |∆I

(k)
J

(
∆y(k)|∆i(k)

)
, (A.8)

where ∆y(k) and ∆i(k) are vector of values, which processes ∆Y
(k)
J and ∆I

(k)
J take, re-

spectively. Then condition on ∆N
(k)
J we get

p
∆Y

(k)
J |∆I

(k)
J

(
∆y(k)|∆i(k)

)
=
∞∑
l=1

p
∆Y

(k)
J |∆I

(k)
J ,∆N

(k)
J

(
∆y(k)|∆i(k), l

)
P (∆N

(k)
J = l), (A.9)

where we substitute the corresponding density functions from distributions (A.1) and

(A.2).

Thus, substituting (A.8), (A.9) into (A.7), we get

pYJ |X(J−1,J],Y[0,J−1]

(
yJ |x(J−1,J ],y[0,J−1]

)
=

K∏
k=1

[
∞∑
l=1

p
∆Y

(k)
J |∆I

(k)
J ,∆N

(k)
J

(
∆y(k)|∆i(k), l

)
P (∆N

(k)
J = l)

]
. (A.10)

The second term of the right hand side of (A.6)

πX(J−1,J]|Y[0,J−1]

(
x(J−1,J ]|y[0,J−1]

)
can be rewritten conditioning on the state Xj−1 as well as applying Markov property of
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Xj as

∫
πX[J−1,J]

(
x[J−1,J ]

)
πX[J−1,J]|Y[0,J−1]

(
x[J−1,J ]|y[0,J−1]

)
dxJ−1. (A.11)

As the size of populations Mj increases, πX[J−1,J]

(
x(J−1,J ]

)
is deterministic. Therefore,

we get that the posterior likelihood of XJ |Y[0,J ] is proportional to

∫∫
[
∞∑
l=1

p
∆Y

(k)
J |∆I

(k)
J ,∆N

(k)
J

(
∆y(k)|∆i(k), l

)
P (∆N

(k)
J = l)]

πX[J−1,J]|Y[0,J−1]

(
x[J−1,J ]|y[0,J−1]

)
dxJ−1dx(J−1,J). (A.12)

We use sequential methods since the integral in (A.12) depends on the previous step,

i.e. calculation of

πX[J−1,J]|Y[0,J−1]

(
x[J−1,J ]|y[0,J−1]

)
.

Thus, the integral in (A.12) is not possible to compute analytically. Therefore we imple-

ment the Sequential Monte Carlo method (SMC), or particle filtering.

A.3 Particle Filtering

SMC methods is a combination of Sequential Importance Sampling (SIS) and Re-

sampling steps. Suppose we have n particles i = 1, . . . , n. Each particle behaves

independently and its behavior is defined by Xi
t = {Sit, Iit} for i = 1, . . . , n, where

Sit = {S(1)i

t , . . . , S
(K)i

t } and Iit = {I(1)i

t , . . . , I
(K)i

t }. Then there are three cases of par-

ticle behavior:

• If an ith particle’s epidemic starts at time jτ , then the particle gets positioned at

Xi
jτ = X0, which was sampled from the distribution π(X0).

91



Particle Filtering Chapter A

• If an ith particle’s epidemic started before time jτ , then we simulate the behavior

of SIR model from its previous position Xi
(j−1)τ using the tau-leaping algorithm in

time interval ((j−1)τ, jτ) with the reactions channels along with the rate functions

for each population defined in (3.1) and the reaction channels along with the rate

functions for transmission defined in (3.28).

• If an ith particle’s epidemic didn’t start before time jτ , then it gets positioned at

Xi
jτ = {M,0}.

Then for all particles we define the number of new infections for particle i in a time

interval ((j − 1)τ, jτ) to be

∆Ii

jτ = Si(j−1)τ − Sijτ (A.13)

for i = 1, 2, . . . , n and j = 1, 2, . . .. Note that ∆Iijτ = {∆I
(1)i

jτ , . . . ,∆I
(K)i

jτ } , where ∆I
(k)i

jτ

is the number of new infections for particle i in the population k = 1, . . . , K.

First, at time j = 1 we sample Xi
jτ from the SIR model for each particle i given the

starting values Xj−1. Then we compute its weight wi(jτ) as

wi(jτ) = wi((j − 1)τ)× p∆YJτ |∆IJτ (∆y|∆i) , (A.14)

where wi(0) = 1 ∀i. We can rewrite formula (A.14) using formulas (A.1), (A.2) (A.9),

and (A.13) as:

wi(jτ) = wi((j−1)τ)×
K∏
k=1

[
∞∑
l=0

(
∆Yjτ

∆I
(k)i

jτ − l

)
p∆I

(k)i

jτ (1− p)∆I
(k)i

jτ −l · e−λ0τ (λ0τ)l

l!

]
, (A.15)

j = 1, 2, . . . , J , where wi(0) = 1 ∀i = 1, . . . , n.

Second, we use a resampling step to remove the particles with low weights and increase

the number of particles with high weights. We use the Effective Sample Size (ESS)
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criterion to evaluate if a residual resampling is needed Doucet and Johansen [2009]. If

ESS criterion is satisfied, we resample using weights wi(jτ) to obtain n equally weighted

particles X̄i
t.

Thus, we repeat the steps above and we get that the posterior probability measure

of X[0,Jτ ]|Y[0,Jτ ] is equal to

LXJτ |Y[0,Jτ ]
(x|y) ≈ 1

n

n∑
i=1

wi(jτ)δXi
jτ

(x) , j = 1, 2, . . . , J,

where δx0 (x) denotes the Dirac delta mass located at x0.

The algorithm of the above estimation is given in Algorithm B.7. Figure A.2 provides

95% confidence region of Xt for a two population model simulated under parameters:

n = 1000, µstart = 30, p = 0.2, λ0 = 1, τ = 0.1, µ
(1)
SI (t) = µ

(2)
SI (t) = 0.75, µ

(1,2)
SI (t) = 0.0375,

µ
(1)
IR(t) = 0.5, M1 = M2 = 2000. Before time τinf , I

i
jτ has stationary distribution: some
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Figure A.2: Estimated 95% quantile interval of Xt from Yt
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particles think that there is some infection going on in the first population, however it is

not crucial enough. After time τinf number of infected in the first population increases,

which causes the a start of epidemic in the second population. We see that the 95%

quantile regions cover almost the whole Xt.

As we increase λ0 or decrease p, the quantile regions become wider since there is more

uncertainty in the model. A decrease in µstart below 20 in our case, i.e. an increase in

the probability of epidemic to start, destroys the stationarity before time τinf since more

particles think that epidemic started.

We denote the estimate posterior probability that the epidemic started as

P (Iijτ > 0 ∀i = 1, . . . , n|Y[0,Jτ ])

for j = 0, 1, . . . , J , and we compute it as the sum of the weights of particles for which

an epidemic started. The true value of the probability that epidemic started is either 0

(“no epidemic”) or 1(“epidemic”). However the estimate of this probability can take any

value between 0 and 1.

The graph of the posterior probability is given on Figure A.3. Note that this plot cor-

responds to the simulation given on Figure A.2. We see that there is a significant increase

in the likelihood that epidemic started in the first population right after the actual start

of epidemic. The start of the first epidemic causes an increase of the probability of the

second epidemic started. As discussed before we might choose a level of the probability

for which we will treat the epidemic as started. If in this example we choose it to be

0.5, then we see that we would consider the epidemic started in the second population

as “started” too early. Thus, there is a false-alarm. If we choose the benchmark to be

0.8, then we detected the epidemic late.
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Figure A.3: P (Iijτ > 0 ∀i|Gjτ ) vs. time, where the dashed lines represent the actual
start time of epidemic
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Appendix B

Algorithms

Algorithm B.1 Path Generation of First Pseudo-Posterior

Require: σ2
δ , µ

(1,2)
SI (t), X

(1)
0:T , T

1: for t = 0, ..., T do
2: Compute Pt+1 via Equation 4.3
3: end for
4: return (Pt) , t = 0, 1, 2, . . . , T

Algorithm B.2 Path Generation of Second Pseudo-Posterior via ‘Original’ procedure

Require: σ2
0, X

(1)
0:T , C

obs(2)
0:T , T , η

(2)
0:T

1: for t = 0, ..., T do
2: Compute µt+1 and σt+1 via Theorem (2)
3: end for
4: return

(
X

(1)
t , µt, σ

2
t

)
, t = 0, 1, 2, . . . , T
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Algorithm B.3 Path Generation of Second Pseudo-Posterior via ‘Gamma-Poisson’ pro-
cedure

Require: µ0, σ2
0, X

(1)
0:T , T , η

(2)
0:T

1: Compute α0 and β0 via Equations (4.30)
2: for t = 0, ..., T do
3: Sample I

(2)
t from Gamma(αt, βt)

4: Simulate C
obs(2)
t+1 ∼ Poisson

(
(1− ρ)β1η

(2)
t I

(2)
t

)
5: Compute µt+1 and σt+1 via Theorem (2)
6: Compute αt+1 and βt+1 via Equations (4.30)
7: end for
8: return

(
X

(1)
t , µt, σ

2
t

)
, t = 0, 1, 2, . . . , T

Algorithm B.4 Path Generation of Second Pseudo-Posterior via ‘Negative Binomial’
procedure

Require: µ0, σ2
0, X

(1)
0:T , T , η

(2)
0:T

1: Compute α0 and β0 via Equations (4.30)
2: for t = 0, ..., T do

3: Simulate C
obs(2)
t+1 ∼ NegBin

(
αt, βt/((1− ρ)β1η

(2)
t + βt)

)
4: Compute µt+1 and σt+1 via Theorem (2)
5: Compute αt+1 and βt+1 via Equations (4.30)
6: end for
7: return

(
X

(1)
t , µt, σ

2
t

)
, t = 0, 1, 2, . . . , T

Algorithm B.5 Path and Cost Generation

Require: {xn0}Nn=1, S0:t−1

1: for n = 1, . . . , N do
2: s← 1
3: while s ≤ t do
4: Simulate the next state xns ∼ p1(·|xns−1)
5: if xns ∈ St−s then Break
6: end if
7: s← s+ 1
8: end while
9: τnt ← s

10: Compute qn ≡ c(xn0:τnt
)− d(xn0 ) using formula (2.2) and (2.3)

11: end for
12: return {(xn0 , qn)}Nn=1
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Algorithm B.6 Sequential Regression Monte Carlo

Require: CFA, CDelay, N0, N ′, N end, D, Regression Model

1: Ŝ0 ← X
2: for t = 1, 2, . . . do
3: Generate experimental design {xn0 , n = 1, . . . , N0}
4: Compute the difference of scenario future costs and immediate costs qn =
c(xn0:τnt

)− d(xn0 ) for n = 1, . . . , N0 using Algorithm B.5 and Ŝ0:t−1

5: Z ← {(xn0 , qn)}N0

n=1

6: Regress {qn} on {xn0}, n = 1, . . . , N0 using Loess (5.7)
7: Initialize N ← N0

8: while N < N end do
9: Generate Xfinite of size D using Latin Hypercube Sampling on X

10: Compute the acquisition weights w(x) ∀x ∈ Xfinite via (5.11) and (5.9)
11: Sample {xn0}N+N ′

n=N+1 from Xfinite using weights w(x)
12: Simulate the costs qn, n = N + 1, . . . , N +N ′ using Algorithm B.5
13: Z ← Z ∪ {(xn0 , qn)}N+N ′

n=N+1

14: Update the Regression model (5.7) using the latest Z
15: N ← N +N ′

16: end while
17: Ŝt ← {x ∈ X : q̂(t,x) > 0}, cf. (5.4)
18: end for
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Algorithm B.7 Estimation of Xt from Yt in a multiple populations case

1: Sample X0

2: for j ← 1,J do
3: Observe ∆Y

jτ

4: for i← 1, n do
5: if epidemic of particle i started at step j then
6: Particle position is at Xi

jτ = X0

7: else if epidemic of particle i started before step j then
8: Simulate a particle behavior Xi

jτ from Xi
(j−1)τ

9: else
10: Particle position is at Xi

jτ = {M,0}
11: end if
12: Calculate ∆Ii

jτ using formula (A.13)
13: Calculate wi(jτ) using formula (A.15)
14: end for
15: if resampling criterion is satisfied then
16: Resample {wi(jτ),Xi

jτ} to obtain n equally weighted particles X̄i
jτ

17: Set {wi(jτ),Xi
jτ} ← { 1

n
, X̄i

jτ}
18: end if
19: end for
20: return LXJτ |Y[0,Jτ ]

(x|y)
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