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Abstract

Abusing Hardware Race Conditions for High Throughput

Energy Efficient Computation

Advait Madhavan

We propose a novel computing approach, called Race Logic, which utilizes a

new data representation to accelerate a broad class of optimization problems, such

as those solved by dynamic programming algorithms. The core idea of Race Logic

is to deliberately engineer race conditions in a circuit to perform useful computa-

tion. In Race Logic, information, instead of being represented as logic levels (as

is done in conventional logic), is represented as a timing delay. Computations can

then be performed by observing the relative propagation times of signals injected

into a configurable circuit (i.e. the outcome of races through the circuit).

In this dissertation I will introduce race condition based computation and

talk about multiple VLSI implementations. We first begin by considering a syn-

chronous approach, which uses simple clocked delay elements. Though this syn-

chronous implementation outperforms highly optimized conventional implementa-

tions of the well-studied, DNA sequence alignment problem, its third order energy

scaling with problem size and limited dynamic range of timing delays are its major

pitfalls. Next, in the search for energy efficiency, we study asynchronous designs

viii



in order to understand the performance trade-offs and applicability of this new

architecture. Finally, I will present the results of a prototype asynchronous Race

Logic chip and demonstrate that Race-Based computations can align up to 10

million 50 symbol long DNA sequences per second, about 2-3 orders of magnitude

faster than the state of the art general purpose computing systems.
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Chapter 1

Introduction

The seemingly insatiable advancement in technology over the last half a cen-

tury has had a significant and wide ranging impact on society and has ushered

in, what is called by sociologists, the ”information age”. Named rightly so, our

ability to store and manipulate information has followed more or less a steady ex-

ponential over the last five to six decades. To get a feeling of the enormity of this

progress, a short comparison between representative examples is in order. The

ENIAC (Electronic Numerical Integrator and Computer)[6] is considered as the

first electronic general purpose computer and was designed in the 1940’s primarily

to calculate artillery firing tables for the US Army, Ballistic Research Laboratory.

It could perform 60-second trajectory calculations in 30 seconds, what would usu-

ally take a skilled person with a desk calculator about 20 hours. It consisted of
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≈ 100 000 components, primarily resistors, vacuum tubes, capacitors and relays,

and had a machine cycle of 200 microseconds, allowing it to compute 5000 addi-

tions, 357 multiplications and 38 divisions a second. It took up a total floorspace

of 167m2, weighed 30 tons, consumed 180kW of power and cost half a million

dollars. Today, the iPhone6 uses a 64bit Cortex A8 ARM chip which is composed

of ≈ 1.6 billion transistors. It operates at a frequency of 1.4GHz and can process

approximately 1.2 instructions per cycle in one of its 2 cores, which amounts to

3.36 billion instructions per second. The power consumption of this chip is around

2.3W with a footprint of 89mm2 and the entire 700 dollar phone weighs in at 129

grams. Trillions of dollars and countless man-hours of research, development and

production have allowed information storage and processing to move beyond its

initial military and aerospace applications and become ubiquitous in the world

today. From massive datacenters that host the internet to household appliances,

smart-phones, automotive applications, and with the upcoming surge of the Inter-

net of Things (IoT), the estimated number of devices that are powered by silicon

hardware is estimated to reach 50 billion by the year 2020.

In spite of this continued proliferation of silicon computing for a host of every-

day applications, silicon itself is facing some major, potentially industry changing,

challenges. For many years, consistent improvement in Complimentary Metal Ox-

ide Semiconductor (CMOS) processing technology fuelled large increases in pro-
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cessor performance and throughput. Predominantly, improvements in lithography

based techniques allowed engineers to build transistors with smaller feature sizes

each advancing process generation. Known colloquially as Moore’s Law, what

this meant was, for the same chip area, computer architects had an exponentially

larger number transistors to work with, each with exponentially higher energy

efficiency. The results of this can be seen in a modern microprocessor that is

a highly complex piece of machinery, generally consisting of multiple cores with

each core employing sophisticated mechanisms to improve performance.

However, in recent years, the law of diminishing returns seems to be catching

up. As of 2016, 10nm devices are still under commercial development with in-

dustry leaders such as Intel and TSMC announcing production and commercial

release to start in early 2017. Development of 7nm and 5nm nodes have also

been projected by the year 2021. The 5nm node was assumed to be the end of

Moore’s law as quantum effects such as tunneling would cause gate leakage to go

beyond permissible limits and hence significantly reduce yield. As the increase in

the number of transistors that can be put on a chip seems to be slowing down,

powering them efficiently is already a much more immediate concern. Leakage

currents have begun to consume a significantly larger portion of the power bud-

get than before, hence pushing CMOS scaling out of its traditional regime. As a

result, after the 130-90nm technology node, though transistor areas continue to
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shrink, their switching energy no longer declines. Moreover, practical concerns

such as thermal management (cooling) and battery life keep the power budget

fixed. Therefore, with each new technology node, the number of transistors that

can be switched simultaneously is exponentially decreasing.

This energy problem that is being faced by computing, in literature, is known

by multiple monikers. The growing divide between available transistors vs utiliz-

able transistors has caused researchers to dub this the utilization wall [46]. Other

terms such as Dark/Dim silicon refer to the underutilized transistors that have to

be turned off or under-clocked to maintain fixed power budgets [12]. Dark Silicon

and the Utilization wall that causes it have caused architects to shift their focus

from designing the highest performance circuits, as these are almost guaranteed

to exceed the power budget. Instead, as power and energy become more expensive

relative to chip area, newer architectures will have to focus on spending chip area

to buy energy efficiency, which opens the door to specialization and heterogeneity.

Researchers have predicted that future chips are going to be populated by a large

number of application specific hardware accelerators that are going to be used

only part of the time. This is already being implemented in cellphones where

multiple digital functions have been integrated on one chip, each having its own

dedicated processing hardware.
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In this dissertation we propose a novel computing approach, called Race Logic,

which utilizes a new data representation to accelerate a broad class of optimiza-

tion problems, such as those solved by dynamic programming algorithms. The

core idea of Race Logic is to deliberately engineer race conditions in a circuit to

perform useful computation. Information, instead of being represented as logic

levels as is done in conventional logic, is represented as a timing delay. Computa-

tions can then be performed by observing the relative propagation times of signals

injected into a configurable circuit (i.e. the outcome of races through the circuit).

The main advantage of this novel approach is that the set of arithmetic and logical

operations that can be most efficiently expressed changes, leading to new trade-

offs and architectures. Through the manipulation of the natural delay chaining

inherent to digital designs, the basic operations of MIN, MAX, and ADD-BY-

CONSTANT can be implemented in a way that results in superior latency and

energy efficiency for certain classes of problems.

We will begin this dissertation by exploring some general themes and ap-

proaches to energy efficiency at both architecture and circuit levels as obtained

from literature. Starting with a more detailed study of the scaling laws that give

rise to the Utilization Wall, we will discuss performance vs energy trade-offs, dig-

ital vs analog design trade-offs, as well as the role of approximations in improving

energy efficiency of computing systems. These general themes will be detailed in
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Chapter 2 and employed in the understanding of Race Logic by comparing it to

other architectures.

Chapter 3 introduces Race Logic and using a very simple example, elaborates

on various implementation methods. It also introduces an important application,

the DNA sequence alignment problem that is used as a toy problem in the rest of

this thesis.

Chapter 4 performs a case study utilizing the DNA sequence alignment algo-

rithm. It first introduces a traditional systolic array method of performing such a

computation and then presents a synchronous Race Formulation with the interest

of comparison between them. A more general and energy efficient implementation

of Race Logic is also presented.

Chapter 5 addresses some of the drawbacks of synchronous Race Logic, espe-

cially in terms of energy efficiency. It pushes for improving energy efficiency by

removing the clock which translates to using asynchronous delay elements that

are less power hungry but also more prone to variations. In this chapter we also

perform a variation analysis to look at how process variations at the delay element

level affect the functional correctness of the architecture and what the demands

of the architecture are.

6



Chapter 6 presents the architectural, circuit level and floor-planning decisions

that went into designing a Race Logic chip. We also present layout level details

with die photographs and chip results.

Chapter 7 presents a summary and discussion of this work, and future direc-

tions that can be taken.
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Chapter 2

Background and General themes

2.1 Half a century long Exponential

Among the many innovations that have enabled the technology revolution,

lithography of silicon has been a significant one. One can say that at the centre

of the steady increase of performance per watt per unit area, has been the battle

against physical laws and variations to constantly improve fabrication techniques

and enable scaling of silicon. Figure 2.1 plots CPU data over the last forty years

and shows the impact of scaling on important performance parameters [7]. At

first glance one can see that the number of transistors integrated on a single chip

has been the only metric that has seen a steady exponential rise over the last

four decades. Though yield and chip area were a concern in the early years, our

8



ability to power these transistors effectively and extract as much performance as

possible continues to be a challenge that will shape the course of the semiconductor

industry today.
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New plot and data collected for 2010-2015 by K. Rupp

Figure 2.1: Microprocessor trend data over the last 40 years

The predominant VLSI technology in the early years from 1971-81 was based

on PMOS or NMOS technology with depletion mode loads. The earliest chips

of this era include Intel’s and history’s first fully integrated microprocessor, the

Intel 4004, which ran at a clock speed of 740kHz and could perform addition of

two 8bit numbers in about 850µs. Successors of 4004 include the 8080, which
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extended the 4bit word size to 8bits and upgraded the clock speed to 2MHz, and

the famous 8086, a 16bit microprocessor which pushed clock speeds to 10MHz. To

be compatible with the then prevalent TTL technology, the supply voltage was

kept at a constant 5V while the minimum feature size scaled down from 10µm

to about 1µm. As a result, the saturation current didn’t scale effectively, causing

power dissipation to grow enormously, affected by commensurate increases in chip

area, complexity and operating frequency. This first power crisis caused a shift

from NMOS to CMOS designs which cut down large leakage transients, hence

reducing power dissipation by an order of magnitude. The power savings thus

gained from switching to CMOS was large enough to keep the supply voltage

(Vdd) constant for almost another decade.

In 1974, Robert Dennard explored different methods of scaling CMOS devices

and suggested a ”constant field” scaling method in which the voltage levels were

also scaled with lithographic dimensions [8]. He pointed out that this would al-

low power density to remain a constant, as the reduction in energy per switching

event, due to lower supply voltage, would exactly match the increase in the num-

ber of transistors, as both obeyed square law behaviour. By the mid-nineties,

as transistors began to scale into the sub-micron regime, still with a 5 volt Vdd,

internal device electric fields grew to large values and pushed Dennard scaling into

effect. V ′dds have systematically scaled down by roughly 10V/µm with each suc-
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cessive generation from 0.5µm down to 130nm. In spite of this improved Dennard

scaling, power dissipation increased by almost 50X from the early nineties to the

mid two thousands, as shown in figure 2.1. This was predominantly as a result

of various architecture and circuit design optimizations such as deeper pipelines,

better sizing of gates, out of order execution, performance driven architectures

and larger chips. During this time frame, processor speed also saw a significant

boost with clock frequency almost doubling every few generations, scaling much

faster than gate speed, a testament to circuit and architectural innovations of this

era. Representative chips of this era include the Intel’s Pentium 4, PentiumD,

AMD’s AthlonXP, Opteron and IBM’s PowerPC970, Xenon.

As clock frequency continued to increase, engineers had to face the power wall

again. As hobbyists and computer enthusiasts were liquid cooling their overclocked

8 GHz CPUs, the law of diminishing returns showed that boosting clock frequency

was not the most effective way of extracting performance per watt. Though it

continued to improve single thread performance for many applications, it was seen

that energy used to open up data and instruction level dependencies would provide

much higher overall performance gains. This slowing down of clock frequency

scaling is clearly visible in figure 2.1 and coincides with a single thread performance

slowdown and an increase in number of logical cores. This signifies the start of the

multicore era where power constraints guided the search for improved performance
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Para-

meter
Description Equation

Clas-

sical

Scal-

ing

Den-

nard

Scal-

ing

Le-

akage

lim-

ited

W,L width, length 1/S 1/S 1/S

tox oxide thickness 1/S 1/S 1/S

Vdd supply voltage 1 1/S 1

Cgate gate capacitance WL/tox 1/S 1/S 1/S

Id,sat saturation current WV 2
dd/Ltox,WVdd/tox S 1/S 1

F frequency Id,sat/CgateVdd S2 S S

P dynamic power NCgateV
2
ddF S3 1 S2

Table 2.1: Different types of scaling ranked in historical order and their effect on chip
parameters. S denotes scaling factor, > 1

by exploiting parallelism. Though out-of-order execution and deep pipelines in

single core machines already allowed for effective sharing of resources, multiple

simpler cores provide a better energy and price point compared to complex high

frequency uni-processors. Representative chips of this era include, Intel Core series

(i3,i5,i7), Xeon E7 and AMDs FX Bulldozer.

Unfortunately no exponential can last forever and now engineers have hit a

fundamental physical limit which prevents the threshold voltage, Vth from scaling.
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Since the thermal voltage (VT = kT/q) doesn’t scale, reducing the threshold

voltage causes an exponential increase in leakage current. Leakage current in

today’s designs is already large enough (approx 40% [47]) that it needs to be

accounted for in the power budget and hence, Vth is set as a result of power

optimization and not by technology scaling. During the Dennard scaling regime,

Vdd scaling was complemented by commensurate lowering of the threshold voltage,

but this cannot continue if the scaling is leakage limited as shown in Table 2.1.

The dynamic power in this leakage limited regime grows exponentially and hence,

due to a fixed power budget, leads to exponential reduction in active switching

circuitry each process generation. In a fixed amount of time, there is only a

certain amount of energy dissipation that can be tolerated by the cooling system,

and with leakage accounting for a size-able portion of that energy, edges have

become expensive.

Race Logic includes this general purpose computing research wisdom by encod-

ing information in timing delay which in a logic circuit manifests as a single rising

edge propagating through a set of spatially laid out parallel paths. Smaller and

larger magnitudes can be encoded on the same wire with only a single edge, with

the smaller delay encoding smaller magnitudes while a larger magnitude would

mean longer delays (or vice versa, based on the kind of encoding). In both cases

a single edge on a wire encodes the signal with only the arrival times determin-
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ing the magnitude which results in less wires (less area and capacitance) and less

switching activity (less toggling) compared to traditional approaches. This encod-

ing scheme results in superior energy efficiency, not only as a result of this single

edge based temporal coding, but also as a result of the simplicity in performing

some operations that this form of coding provides.

2.2 Approaches to Energy Efficiency

As the performance per watt metric begins to take a front seat in terms of

design constraints in modern systems, a wide variety of options is available. Ex-

ploring the design space of circuits or architectures, we see a certain trade-off

between energy and performance of designs that informs our choices regarding

the desired implementation. This trade-off is shown in Figure 2.2. Interestingly,

the qualitative shape of this curve always remains the same for different architec-

tures and circuits and it follows the law of diminishing returns[16].

A first glance analysis of the curve reveals that at low energy points (bottom

left region), small changes in energy can lead to large changes in performance,

while at high performance regions (top right region), a marginal increase in per-

formance costs a lot of energy. The choice of what implementation is picked

depends upon the application and in most cases lies along the pareto frontier. In

other words, the energy of the architecture is reduced at the cost of increasing
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Figure 2.2: Energy vs Performance design space for a given function. The pareto curve shows
the boundary of possible solutions in this space. The most favourable point in this space is the

extreme bottom right as that would provide high performance at very low energy cost.[16]

the latency. Similar examples to these are architectures that are partitioned such

that specific regions of the architecture are connected to different power supplies

and body biases. Timing critical paths are adjusted for performance while other

regions are optimized for energy efficiency.[16]

Another subset of techniques have no energy cost for keeping performance

fixed. This is generally implemented by reducing the energy that is being wasted

by the system. Clock and power gating strategies are good examples of such

techniques as they turn off power and clocks to regions of the architecture/system

that are not producing useful outputs. The dual of this could thought of as systems

that improves performance at no extra energy cost. Exploiting parallelism with
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multiple functional units would allow each functional unit to be running at a

slower rate, instead of just one functional unit running at the maximum rate. For

example, due to the shape of the curve shown in figure 2.2, the marginal energy

saved by running a functional unit at a half the speed could be used by other

another functional unit and would overall achieve the same performance while

still keeping the energy within acceptable bounds. This argument is in essence,

the logic behind the surge of multi-core architectures.

The best techniques though, are those that improve both energy and per-

formance, hence having negative energy cost for performance improvement[16].

These techniques generally involve problem reformulation, a new information rep-

resentation, or algorithmic changes that reduce the overall computation that needs

to be performed. Most of these methods are highly application specific and require

changes at both architectural and implementation levels. Such techniques are gen-

erally accompanied by custom hardware that allow orders of magnitudes of energy

savings and performance gains. As a simple example, performing multiplication

and division operations can be complex and require special hardware for binary

encoding schemes, but using logarithmic [45] number systems makes performing

such operations as straightforward as addition and subtraction. CORDIC [49]

algorithms extend this idea to perform vector rotations in a bit-serial manner by

using clever encodings that allow computation for arbitrary angles by using simple

16



iterative shift and add procedures. Many algorithms designed along these lines

were conceived at a time when chip area was extremely expensive and performing

parallel computation operations such as square root would be prohibitively ex-

pensive in area, but it is perhaps worth revisiting these ideas in the new context

of power efficiency.

During the course of development of the Race Logic formulation, we have uti-

lized most of the above techniques to shrink the energy-delay product of Race

based computations compared to traditional approaches. Firstly (as we will see

in chapter 3), as a result of temporal information representation, some arithmetic

operations such as MIN, MAX and ADD BY CONSTANT become trivial to im-

plement. The simplicity thus afforded allows for an ease of implementation which

results in significant performance gains as compared to standard implementations.

Also, as will be presented in more detail in chapter 4, we try to minimize energy

consumption in our synchronous Race Logic implementation by employing clock

gating strategies.

2.3 The Role of Approximations

Another means of reducing power dissipation in computation systems that

has come to the fore during recent years, is to trade off functional correctness for

energy efficiency. Some methods leverage the error tolerance of the application
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such as those in domains of image processing, machine learning and computer vi-

sion. Though this error tolerance can originate from imperfect human perception,

lack of a universal best result, or redundancy in the input, it allows the outputs

of these algorithms to be numerically approximate rather than accurate. This

relaxation on numerical exactness provides some freedom to carry out imprecise

or approximate computation[48]. The freedom for approximation can allow for

increased simplicity of designs, which can leave room for architectural and cir-

cuit level innovations to boost performance or reduce energy consumption. Some

implementations identify functionally non-critical regions of the algorithms and

use VOS (voltage overscaling) to save power[29], while other provide VOS cores

with a low precision error compensation core[41]. Other methods explicitly target

designing imprecise functional units such as adders or multipliers that are opti-

mized for energy efficiency, speed, or wiring delay. Stochastic methods analyse

the probabilistic nature of circuit types and design out low probability worst cases

which reduce performance[17]. An interesting approach dubbed Razor utilizes this

principle in a general purpose computing system by implementing real time error

checking using shadow registers and literally runs at the edge of functional cor-

rectness[11]. The system then utilizes DVS (Dynamic Voltage Scaling) to reduce

the energy dissipated by the system until the system is running on the ”razor’s

edge” of failure.
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As we will see in Chapter 5, Race Logic embraces the approximate computing

paradigm as we forgo synchronous implementations due to high power dissipation

that results from continuous clocking. Since information is encoded in timing

delays, moving away from a synchronous domain could result in a significant re-

duction in noise immunity. We move to an asynchronous approach with analog

components which is by nature more prone to process variations, power supply

switching variations, and other environmental factors. We perform an error tol-

erance study on our application space to understand how variations in the timing

delay from these aforementioned components affect the functional correctness of

the application and show that the performance of the architecture is minimally

affected.

The general themes discussed in this chapter lie at the heart of computing

and outline different methods, generally used to extract performance and energy

efficiency in modern computing systems. Race Logic is no exception. Starting

from the information representation that helps preserve edges in an attempt to

reduce dynamic power(discussed in chapter 3), to the application variation study

(performed in chapter 5), the general themes presented here will be called upon

repeatedly to push performance per watt of our designs.
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Chapter 3

Race Logic and Application

Study

Race conditions are notoriously knows for causing errors in software and hard-

ware systems. They occur as a result of the output of a certain block being de-

pendant on the sequence, or the timing of other events in the system. When the

designers of such a system are unaware of these timing intricacies, these race con-

ditions manifests as bugs. Hardware race conditions result in hazards or glitches

that cause the output of a system to flip once or multiple times but systems such

as Karnaugh Maps can be used to identify them before they happen and design

them out of the system. Software races on the other hand are trickier to repro-

duce and debug since they are as a result of relative timing difference between
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interfering threads. Problems occurring in production systems can therefore dis-

appear when running in debug mode, when additional logging is added, or when

attaching a debugger, often referred to as a ”Heisenbug”.

In this work we propose a method that makes positive use of race conditions.

How we plan to do this is by setting up a set of race conditions in a system that

are input dependant. A signal navigates these set of race conditions and the path

that is taken by this signal (unknown beforehand), solves the problem. The main

idea of Race Logic is to encode information in a timing delay. We do this by

defining a unit delay element that acts as a fundamental unit of computation as

shown in figure 3.1(a). How it functions is by delaying an input transition to its

output by 1 unit. Aside from the physical implementation of such a delay element,

a few properties remain constant.

Figure 3.1: Delay domain representation. (a) Unit delay element that delays input rising
edge by 1 ”unit” time step, (b) stacking two delay elements one after another performs

addition operation.
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One such property is addition; as shown in figure 3.1(b), the simple act of

chaining two unit delay elements result in an input transition to be delayed by a

value of two unit delays. In this representation a slower delay corresponds to a

larger value and a faster delay to a smaller one. MIN and MAX operations can

also be implemented trivially with such a delay encoding.

Figure 3.2: Delay domain computation. (a) Using an OR gate to implement MIN function by
selecting a first arriving of multiple edges , (b) Using an AND gate to implement MAX

function by selecting a last arriving of multiple edges.

In figure 3.2 we see two parallel delay paths each with a different delay. If

we trigger rising edges at the inputs of these two parallel paths simultaneously,

we see that the first arriving edge is going to be the one with MIN delay while

the one arriving later will the MAX of the two. Selecting the first arriving signal

is equivalent to logical OR operation as the output rises if any of the inputs are
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triggered. The dual of this would imply using the AND operation for the MAX

function.

3.1 Hardware Implementations

To see how this could ever useful, lets consider a directed acyclic graph (DAG)

as shown in figure 3.3(a) which is helpful for solving many practical problems in

bio-informatics, data mining, logistics, control, and information processing. Typi-

cally, a certain weight Wij(figure 3.3(b)) is associated with each edge of such graph

and is generally representative of a cost of satisfying certain criteria. Optimization

problems then, focus on finding a path in the graph that optimizes (maximizes

or minimizes) this cost function, or equivalently, navigates the shortest or longest

path on such a graph.

Because DAGs can be linearized, i.e. arranged on line so that all edges go from

left to right, dynamic or linear programming techniques are the most common way

of solving these problems. Conceptually, dynamic programming relies on solving

progressively larger sub-problems starting with the set of trivial ones, until all

of them are solved, using the results of previous calculations for each new step.

The topological ordering of nodes in groups (by the longest distance from root)

is convenient because the score for nodes with similar distances can be calculated

concurrently, since their values depend only on the scores of the lower distance

23



Figure 3.3: Toy DAG problem: (a) Directed acyclic graph with numbered nodes and edges.
The superscript denotes the linearization index of each node while the subscript denotes the
node number. (b) Equivalent scoring function that shows the edge weights (Wij , i being the

first column and j being the first row) connecting the nodes in tabular form.

nodes. The score for a given node calculated as a result of such recursive procedure

represents the maximum or minimum distance from the root on a graph defined

by weight matrix W. The actual path can be easily extracted by backtracking

the graph, i.e. traversing the graph in the reverse direction and always choosing

a particular edge which contributed to the score of the current node. The same

procedure can be used to find optimal path for any pair of nodes, provided that

such path exists.

To explain how score functions (figure 3.3(b)) are implemented with Race

Logic, consider the job of one node in the graph shown in figure 3.3(a). It needs to
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choose the MIN of multiple different inputs, where each of those inputs is penalized

by a constant value. If values are represented by a delay from a reference point

t (the start of the computation), we can add a constant c to a value by simply

delaying it by c time steps. More concretely a score of n, is represented by a

Boolean signal 1 appearing at the output of the node n unit delays after t. As

seen before, when a signal is encoded in time, the min operation on a node in the

graph receiving multiple inputs is equivalent to passing along the first arriving 1,

which can be implemented with a simple OR gate.

Why this works for each and every node in our DAG is by virtue of the principle

of optimality which is at the heart of dynamic programming. It states that the

largest problem to be solved is fundamentally identical to all its sub-problems

and hence the shortest path to a given node is going to be constructed out of

shortest paths of its topological predecessors. Similarly, the AND gate passes the

last arriving 1, since the optimal longest path is going to consist of longest path at

each previous node, causing the AND gate to perform the MAX operation. The

shortest/longest path DAG problem is therefore solved by measuring the time to

propagate the signal from the root node(s) to the output node(s) for a graph, in

which all nodes are replaced with OR/AND gates while edges are replaced with

corresponding delays. Figure 3.4 (a,b) shows an example of a particular DAG
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Figure 3.4: Race formulation: (a) Longest path AND race formulation achieved by replacing
edges with flip flops and nodes with AND gates. (b) Dual shortest path OR race formulation.

with two input nodes and one output node converted to AND-type and OR-type

Race Logic circuits.

For synchronous Race Logic, the unit delay is assumed to be equal to one clock

cycle so that D Flip Flops (DFF) gates implements delay elements. In particular,

DFFs can be shift chained for the cases where the edge weight is a small number or,

alternatively, an encoded configuration can be used to implement larger weights.

Note that for practical reasons very large weights (or more the specifically max
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weight ratio) should not be too large, unless the weight is truly infinite (which

can be implemented as a missing edge). The edit graph can be now thought of as

a very deep pipeline, with competing paths to the final node from the root node,

with all the flip flops initialized to 0. To initiate a race computation, both for the

OR and AND types Race Logic, the input nodes are given a steady value of 1.

With every new clock cycle, the 1 signal propagates down the edges of the graph

until it reaches another node, where it gets delayed until the other inputs of the

node are also 1 in the case of AND-type Race Logic, or until it just propagates

through to the next edge in the case of OR-type Race Logic. For the specific

DAG shown in Figure 3a, it takes two cycles for the 1 signal to propagate to the

output node and it can be easily verified that this corresponds to the shortest

path. Note that the shortest/longest path value can be converted back to the

traditional representation with a simple counter which simply counts the number

of clock cycles taken to reach the output.

Figures 3.3 and 3.4 describe the main idea for digital race logic. In these

figures the weights are assumed to be fixed, so that a particular implementation

finds the shortest or longest path in a fixed-weight graph. Implementing a fixed

weight graph in a hardware, such as field programmable logic arrays (FPGA), just

to find a shortest path may not practical. This is because implementation time

overhead (e.g. configuration time in case of FPGAs) is rather substantial and
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will certainly overwhelm the running time of finding a shortest path between one

pair of nodes. Instead, a more practical situation is to have a fixed weight graph

in which some edges are controlled by some external condition, e.g. matching

condition between two letters in a string (Figure 3.5). This simple modification

allows for efficient reuse of the same race logic hardware, because the external

conditions modify the structure of the DAG and result in different shortest path

between the same nodes.

Figure 3.5: Race formulation: (a) Longest path AND race formulation achieved by replacing
edges with flip flops and nodes with AND gates. (b) Dual shortest path OR race formulation.

In general, the simplest operation with race logic is to check whether the

score is larger (or greater) than a certain value, i.e. sleaf ≥ S. This is trivially

accomplished, e.g. by checking logic after S + 1 clocks (e.g. with the help of

down-counter loaded with S) if flip-flop at the output of the leaf node in question

28



has value of 1 propagated from the root node(s) in digital logic (Fig. 4a). By

feeding every input of graph node to a circuit shown on Figure 4c the actual path

corresponding to the shortest or longest path can be extracted. The idea, which

works for strictly nonzero weights, is to provide an extra flip-flop per node input to

trace which input(s) arrived first (or last) for OR (AND) type race logic. Initially,

these flip-flops are cleared. Once the signal has propagated to one of the inputs,

the particular flip-flop is toggled which disables (via EN signal) toggling of other

flip-flops associated with inputs of a given node. The toggled input flip-flops can

then be used to extract the actual path. Lastly, note that the number of flip-

flops can be greatly reduced by sharing it among different nodes output edges.

For example, Figure 3.5 shows that only one flip-flop is required to implement

connections from gate 2 to gates 3, 4, and 5 as compared to three in the original

implementation on figure 3.4.

3.2 Sequence Alignment

While the point of our work is to explore the computational potential of races,

we use the well-studied problem domain of sequence alignment to test the poten-

tial of this new logic. In this section we will touch upon the extensive body of

prior work on sequence alignment, talk about an important systolic array realiza-

tions and discuss other implementations ranging from supercomputing platforms
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to FPGA related applications. A common problem in bio-informatics is to es-

timate the similarity between DNA or protein sequences and there are 2 major

types of motivations for DNA based sequence alignment. Currently, most whole

genome projects use a shotgun sequencing strategy for genome sequencing . In

a first step, genomic DNA is sheared into small random fragments. Depending

on the technology, these are sequenced independently to a given length. Powerful

software algorithms are then utilized to piece the resulting sequence reads back

together into longer continuous stretches of sequence (contigs), a process known as

de novo assembly. This is generally done when the reference sequence is unknown

or there is no attempt being made to match to a reference sequence. In such

applications sequence alignment forms the base alignment algorithm that is used

by contig and scaffold generating software to map out the entire sequence. On the

other hand, detection of issues such as aberrant methylation, in DNA sequences

can that lead to cancer detection as well as a whole host of other genetic diseases,

that allow a patients DNA to be mapped against a known disease to check for vul-

nerabilities. Alignment of 300M short reads to the Human genome takes roughly

5 hours when running on a system with dual 12-core Intel Xeon processors and

100GB of RAM. Accelerating alignment would shorten the diagnosis time, thereby

allowing faster responses and increasing the number of patient samples that can

be analysed per day. This would facilitate bridging the gap between research and
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practice, enabling the diagnosis techniques developed to become part of routine

clinical procedures.

Moving to an engineering perspective, these input patterns can have different

alphabet sizes varying from 4 in the case of DNA (A, G, C, T representing the

neucleo-bases) to 20 for a closely related protein comparison problem, in which

strings consists of letters representing a particular amino acids [10]. A typical

string similarity metric originating in information theory is the Levenshtein dis-

tance, also known as edit distance. It can be intuitively understood as the number

of edit operations namely: Insertions, deletions, and substitutions, which are re-

quired to convert one string to another. To understand these edit operations let

us consider string P = ACTGAGA of length N = 7 and string Q = GATTCGA

of length M = 7.

Figure 3.6 shows two methods of converting P to Q. Strings that have a higher

degree of similarity between each other will require less number of edit operations

to convert from one to another. An alternate representation of such an operation

that is very insightful is shown in figure 3.7

Figures 3.6(a), (b) show two methods of converting string P to Q. Here,

columns with top row spaces represent insertions while bottom row spaces are

deletions, and when lumped are known as indels. Columns with the same char-

acters in both rows are known as matches and different ones are known as mis-
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Figure 3.6: Edit operations: Multiple different ways in which simple edit operations such as
insert delete and substitute can be used to convert toy DNA sequence P = ACTGAGA” to Q

= GATTCGA.

matches. In particular, the first method (Fig. 1a) involves deleting letters C,

G and A and inserting G, T and C, while the second method (Fig. 1c) deletes

string P completely and inserts string Q. An important point to note is that even

though the alignment shown in Figure 1c has no matches and is the worst case,

it is still an allowed alignment. Also, the number of matches plus the number of

mismatches plus the number of indels can be equal to the sum of the length of the

two strings, i.e. N+M in our case, as is shown in Figure 1c, but can never exceed
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Figure 3.7: Alternate alignment representations: panels (a) and (b) show two different
methods of aligning the sequences P and Q from figure 3.6. Panels (c) and (d) are the

respective alignment matrices.

it. Figures 3.6(c), (d) are alternate representations for two considered alignments,

where the number in any position denotes the number of symbols present in fig-

ures 3.6(a), (b) up to that particular position. Note that there is only an increase

in numerical value at a particular position when it houses a symbol and not a

space. This representation is known as the alignment matrix as each column can

be thought of as a coordinate in a two dimensional N M grid which composes the

edit graph(3.8).

The edit graph is a directed acyclic graph (DAG) that is a two-dimensional

representation of all the possible alignments between the two strings. Any partic-

ular alignment is just a path in this graph where every edge corresponds to an edit

operation. The arrows show all the possible alignments; the vertical arrows rep-

resenting insertions, horizontal arrows representing deletions and diagonal arrows

representing matches/mismatches. For example, dark blue and dark red arrows

on Figure 3.8 correspond to the two specific alignments shown on Figure 3.6(a),

(b), respectively. Analyzing the merit of any particular path in the graph is equiv-
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Figure 3.8: Edit Graph representation of sequence alignment. Dark red and dark blue paths
are representative of the alignments shown in 3.7 (a) and (b) respectively.

alent to analyzing the merit its corresponding alignment. Given any two strings

there are a large number of different paths and alignment matrices, each with its

own arrangement of matches and indels. To determine the relative merit of one

particular alignment over another the concept of a score matrix is introduced,

which effectively defines the weight for each edge in the edit graph. Determining

the goodness of the alignment is therefore finding either the longest path in the

graph in the case when matches are assigned the highest values in score matrix ,
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or, alternatively, the shortest path in the opposite case. Note that in general the

penalty for the mismatch may also depend on a particular pair of letters.

Figure 3.9: Score matrices: Panels (a) and (c) show score matrices that convert the edit
graph problem to a longest path problem by rewarding matches with higher scores and

mismatches with lower ones. The dual of this shown in panel (b) and (d).

Example max and min score functions are shown in figure 3.9(a),(b) respec-

tively, where i and j are row and column indices as shown in 3.8. Applying equation

in figure 3.9(a) and score matrix from figure 3.9(c) converts the alignment problem

to a longest path problem by rewarding matches with an increase in the score by 1,

while using equation in figure 3.9(b) and score matrix from figure 3.9(d) penalizes

indels by 1 and mismatches by 2 and is equivalent to a shortest path problem. It

is also worth mentioning that finding longest and shortest path with score ma-
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trices in figure 3.9(c),(d) are equivalent problems. The shortest path formulation

is more suitable for the considered implementation is it provides a solution in a

shorter time and hence is more conducive to circuit implementations.

Not only is the edit graph representation a handy tool for visualizing paths and

their corresponding alignments, it is also closely tied to the concept of dynamic

programming. Each node on the edit graph calculates the score corresponding

to the optimal solution of the sub-problem i.e. either shortest or longest path

(depending upon the score matrix) from the root node to itself. Adjacent nodes

utilize these optimal solutions to calculate their own score as the computation

wave proceeds along the diagonal. The edit graph itself consists of all possible

alignments represented as paths from the root node to the end node and hence

the above method guarantees searching of the entire space for the most optimal

alignment between the given strings.

The above concepts were first brought to light in seminal works by Needleman

and Wunsch [34] and Smith and Waterman [43] which in-turn spurred a consid-

erable research interest in software and hardware methods for string comparison.

Algorithms for string comparison vary from brute force dynamic programming

methods to heuristic solutions that do not search the entire space but provide

quick solutions [2]. The major obstacle for hardware implementations of DP se-

quence alignment had to do with the area complexity as the similarity metric for
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comparison i.e the score is cumulative and increases with array size. Any ASIC im-

plementation would then need processing elements(PEs) that can store this worst

case cumulative score and would hence lead to large, string length dependent sizes.

Lipton and Lopresti proposed a systolic array solution, that using maximum

score dependent modular arithmetic, limits the number of bits of data that needs

to be stored as well as shared between processing elements [24]. Hence, they

were able to make sure the area scaling issues are mitigated, at the cost of extra

circuitry outside of the systolic structure to recalculate the original score. To

reduce the interconnect overhead, the systolic architecture utilized a tight encod-

ing scheme that interleaves the alphabet and scores. Lipton and Lopresti not

only addressed the area issue but theirs was the first paper to talk about anti-

diagonal independence of elements in the edit graph and utilized this property

for fine grain parallelism. The resultant hardware was a linear systolic array

whose processing elements could differentiate between the alphabet and scores as

perform comparison and addition operations. Newer architectures [14, 15] have

built upon this Lipton and Lopresti work by adding markers in processing ele-

ments to trace back optimal similarity paths. Other platforms on which sequence

alignment has been performed, range from networked DEC Alpha workstations

[18], to GPUs [25, 19], to Supercomputers. SIMD supercomputing platforms,

such as MasParMP2 [18], that have multiple low complexity processing elements
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that perform fine grain computation on multiple data streams parallely, achiev-

ing high performance at reasonable cost. On the other hand, general purpose

MIMD supercomputer, Paragon [18] seemed to have performance on par with the

networked DEC Alpha workstations [18]. Other implementations include FPGA

based reconfigurable platforms such as Jbits [13] that utilize re-configurability to

create a custom architecture using the entire string as a parameter or by defining

custom instructions on FPGAs that can handle multiple input and flags at the

same time to speedup computation [22]. Custom ASIC implementations such as

BioSCAN utilize heuristics and a very high density implementation that results

in high performance [42]. More recently, multiple freely available software tools

for alignment have been developed , including Soap [23], BWA [21], and Bowtie

[20]. These tools utilise the latest pattern matching algorithms and hardware

technologies to perform the alignment process quickly. However, there is reliance

on extensive computing resources to deliver this performance. For example, the

1000 genome project uses a 1192-processor cluster to align reads, while the BGI

Bio-cloud computing platform has a current total of 14774 processors delivering

157T flops of performance though a shortcoming of such an approach is that sim-

ply scaling across more machines cannot keep up with the projected growth of

sequenced data which far exceeds Moores Law.
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3.3 Sequence Alignment as a Kernel

Though DNA sequence alignment is one specific application, the major con-

cept of string, sequence, time series alignment can be found in multiple places in

literature. Though the nature of the edit graph is the same in all these variations,

the meaning held behind the similarity measures is different.

Dynamic Time Warping (DTW) is one such method that was first introduced

in the data mining community in the context of mining time series [4]. Since

it is a flexible measure for time series similarity it is used extensively for ECGs

(Electrocardiograms) [5], speech processing [36], and robotics [40]. The concept

of a warp is slightly different from the levenshtien edit distance as it it measures

the amount of squishing or elongation that needs to be done to covert one signal

to another. This is generally done in speech/spoken word recognition. A figure

similar to the edit graph is shown in figure 3.10(a) which shows how the warping

function maps the squished data points from bj to bJ to elongated data-points in

ai to aI . This different interpretation is by virtue of the problem, the objective of

which is to eliminate timing differences between the two speech patterns, A and

B. Since speech recognition and DNA sequence alignment are different problems,

the constraints on the problems are also different. DNA sequences, as has been

discussed before, has some similarities between the strings by virtue of random-

ness and hence scores above a certain value can be discarded as non-alignments.
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Similarly in speech recognition applications, there are some constraints that each

warping path must follow. Outside of the simpler constraints such as monotonicity

and continuity, the work by Sakoe and Chiba3.10(b), develops a global constraint

band, called the Sakoe Chiba band, which limits the scope of warping. Important

work done in this paper, analyses symmetric and asymmetric score matrices, as

well as more complex connectivity patterns and concludes that symmetric scores

perform better than asymmetric ones.

Figure 3.10: Panel (a) taken from [38], shows how the warping function locally stretches and
squishes a to convert it to b. (b) taken from [32] shows the Sakoe-Chiba band that limits the

warping score.

These constraints allow an efficient mapping to Race Logic. Firstly, due to

the constraint band, the scaling of the problem can be reduced from 2D scaling

to 1.X D scaling based on the size of the band. Also, higher similarity already

map to lower scores in such a representation, and the weights are defined to be

non-negative.
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Another interesting application that uses dynamic programming based graph

solutions is the stereo correspondence algorithm which is the process of obtaining

depth information from a pair of binocular images. In more detail, assuming 2

cameras looking at the same 3D imagery, slightly displaced from each other, we

need to find out which points in the image from camera 1 correspond to which

points in camera 2. It is clear from inset in figure 3.11 that some points in each

image will have no corresponding points in the other image as cameras will have

slightly different fields of view and as well as occlusion from objects. Though

different approaches exist such as auto-correlation, cooperative algorithms etc, we

concern ourselves with the dynamic programming based approaches that simplify

the image to image correspondence problem with a scan-line to scan-line matching

problems. The scan-line matching problem, takes horizontal scan-lines from each

image and matches them against each other to understand regions of similarity

between them. Regions that are dissimilar are treated as occlusions (similar to

the in-dels in DNA sequencing) and are used to extract depth information, and

aggregating this data across all scan-lines in the image allows full reconstruction

on the 3D scenery.

Many of these algorithms including beat retrieval in music processing and

image seam carving utilize such regular 2D graph structures structures to convert

matching to shortest path optimisation problems. In a lot of these applications,
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the weights that are used are normalized to some maximum value and are hence

scalable. DNA Global sequence alignment is known to be score matrix scaling

invariant, while DTW also allows for weights to be scaled to within an order

of magnitude of each other. More application specific details tend to bring out

custom details such as the global constraint band in speech processing which lend

themselves very nicely to Race Formulations. We can see that Race Logic is not

just limited to the DNA sequence alignment problems but to a much wider set of

problems that are pervasive in computation today.
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Figure 3.11: Shows the process of determining occlusions and corresponding regions in a
stereo image. The left and right intensity profiles are as shown for 2 views of the same object.
Edit graph like structure used to determine regions of correspondence and that of occlusion.

Taken from [35]
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Chapter 4

Race Logic and Application

Study

Since the fundamental principle of Race Logic is encoding information in de-

lays, the choice of delay element has a central role in the performance of the Race

Logic architecture. In a synchronous implementation, the delays are constructed

out of D-flip-flops. This allows for a global clock network to be responsible for

quantization of timing intervals, whose time period is only determined by the

number of logic level between said flip-flops. In this chapter, we will use the se-

quence alignment problem as our benchmark and use it to compare previous ASIC

implementations against a synchronous race formulation with flip flops as delay

elements.
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To summarize our contributions,

• We show that our synchronous Race Logic implementation is both feasible

and practical through a synthesizable ASIC implementation for an impor-

tant instance of dynamic programming optimization.

• We demonstrate that our specific implementation is more efficient (as mea-

sured in latency, throughput/area, and energy) than best known traditional

designs by factors of 4, 3, and 200, respectively.

• We describe the design space of Race Logic for this class of applications

more broadly, and propose and model several important optimizations that

make this new class of designs even more useful.

Now we have seen that the string similarity problem is equivalent to search-

ing for a shortest/longest path in the edit graph, it is pretty clear how we can

convert this to its equivalent race formulation. The implementation that we are

comparing against is the Lipton and Lopresti systolic architecture,[24] which was

first demonstrated in the year 1985. Though this problem is not representative of

DNA sequence alignment today, as the field has evolved exponentially in the last

couple of decades, we still use it as a comparison point as it boasts a high degree

of optimization at multiple different levels:
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• It is a linear (1D) architecture, to solve a 2D problem. Newer, more advanced

architectures are 2D in nature, and have poorer area scaling behaviour.

• The score function used is very simple. This allows for elimination of a

certain set of dependencies, as score values at each node depend only on their

diagonal predecessors. This anti diagonal independence was first observed

by these authors and exploited to improve fine grained parallelism of this

architecture.

• More area optimizations preformed by interleaving input data and the score

for each node. With each clock tick, up-to N parallel operations performed

based on internal score state as well as newly shifted in data.

• Processing Element (PE) sizes are kept to a minimum by utilizing modular

arithmetic techniques, thus ensuring only the least significant bits are trans-

ferred between processing elements. This is also an advantage of the simple

score matrix as adjacent blocks cant have scores differing by a large value.

Since, modular arithmetic is being used, sizes of adders and comparators

are also relatively small and allow fast operation speed.

The lack of flexibility (limited to only one score matrix) and size of the score

matrix makes this architecture a very specific one which allows for a lot specifi-

cally tuned optimizations. This results in a low area footprint, high throughput
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architecture. Though it has been implemented in very old technology, these opti-

mizations still hold their value today.

Figure 4.1 details the functioning of the Lipton and Lopresti architecture. The

array consists of a series of processing elements arranged linearly with data moving

in two anti-parallel directions. This allows each character in the sequence to be

compared with every other. Each row in the figure shows a new time step as the

two input sequences to be compared are interleaved with the initial scores that

have been calculated before hand. When two non-null characters enter a processor

from opposite directions, a comparison is performed, indicated by the dark circles

in figure. The result from each comparison calculates a score of an equivalent

node (indicated by the circled numbers) which , which is shifted out at the next

clock cycle and is used to calculate scores from further nodes that are dependent

on it. Finally the output scores are calculated after all dependencies are satisfied

and shifted out with the strings. The red dashed lines show the edit graph within

the temporal functioning of the array and provides a pictorial insight into how

information flows through the systolic array.

On the other hand, figure 4.2 shows two equivalent race logic implementations

of the sequence alignment problem with the score matrices from figures 3.9(a),

(c). The grey dashed lines show the unit cell that, in both cases, consists of a flip

flop, that is shared between multiple parallel paths to conserve area and power,
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Figure 4.1: Original figure from the Lipton and Lopresti systolic engine.[24]
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Figure 4.2: Race logic implementation of sequence alignment. Panels (a) and (c) show the
circuit level diagrams for Race implementation (AND and OR) of score matrices from 3.9(a,c).
Panels (b),(d) show the propagation of the race wavefront at each clock cycle until it reaches

the output.

a control signal or a condition which is determined by matching of the relevant

nucleotides, and an OR/AND gate to select first or last arriving races. Shift

registers are used to input and store the nucleotide sequences, which go through

XOR based comparison(not shown in figure) to generate the Mi,j signals. Once

the data has been completely shifted into place, the array is ready to compute. In

some sense, the information is already encoded in the spatial layout of the DFFs

that depend on the input arrays and a rising edge is fired at the input and kept
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high, until an output an edge is received at the output. A counter is used to count

the number of cycles that it takes and hence computes the final score. Note that

the OR gate based implementation is used instead of the AND gate based one as

it rewards matches with lower latency and hence allows for faster operation and

higher throughput. The DFFs can then be reset, with new input sequences to be

barrel shifted in, which refreshes the array with new input data for the next race

to begin.

To make sure that the comparison is a fair one we implement the Lipton and

Lopresti systolic architecture using a recent standard cell technology and include

all of the area optimizations as well as encoding schemes that were implemented

in the original architecture. The process used is an AMIS 0.5µm process and

the studies are done using both OSU standard cells as well as AMIS standard

cells to study the tradeoffs involved in using a different standard cell set. For

the implementation of both architectures, a parametrized and scalable Verilog

code is synthesized using Synopsys Design Vision tool to get estimates of area.

Power and timing information is obtained using Synopsys Primetime tool using

a representative set of input vectors for multiple problem sizes. Since the power

consumed by the architectures is highly dependent on the input vectors, random

input vectors cannot be used. A specific set of input vectors that follow the

correct encoding is generated using a test-bench. These simulations are performed
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using the Modelsim tool, which generates toggle information of each net on the

synthesized netlist. This toggle information is then used by Primetime tool with

100% coverage (confidence metric) to estimate power values.

4.1 Analytical Estimates and Results

Among the simulated performance metrics, area and latency scaling with string

length are the easiest to understand. The area of the Race Logic scales quadrat-

ically with N (problem size) while the systolic array scales linearly, though the

systolic array requires 2N+1 processing elements due to the interleaving of data

and scores. Figure 4.3 shows this area scaling behaviour. The crossover point is

representative of the relative complexity of the systolic processing element(PE)

with respect to the Race Logic cell. The systolic PE has adders, flip flops, com-

parators and encoders(detecting data vs score) which cause the cell to be complex

compared to the race logic cell which contains a flip flop and 2 gates. At about

N = 18 (324 Race Logic cells) does the area scaling of Race Logic catch up with

the area of the systolic array.

For both architectures, the latency scales linearly with N. For the systolic

array, it takes 2(2N+1) cycles to complete the computation independent of the

data, while in the worst case scenario(4.4(a)), for Race Logic, i.e. when the strings

are completely mismatched, it takes 2N-1 cycles and only N-1 cycles in best case
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Figure 4.3: Area scaling with respect to problem size for multiple standard cell sets.

scenario(4.4(b)), i.e. when the strings are completely aligned. Also since the Race

Logic cell design has just 2 logic levels between flip flops, it can be clocked faster

than the systolic cell that has a more complex design. This allows the worst case

performance of Race Logic to outdo the systolic array, as shown in Figure 4.5

Figure 4.4: Flow of the wavefront in the worst case(panel (a)) and best case (panel(b))
alignments. Though these cases will never occur in testing real data, they are good test cases

to get bounds on performance of the architecture.

The overall throughput, shown in figure 4.6, reflects both the area and latency

tradeoff in one figure. For smaller values of N, the latency advantage of Race

52



Figure 4.5: Latency with respect to problem size for multiple standard cell sets

Logic allows higher throughput, but as N grows, it gets overwhelmed by increases

in area. Crossover points for higher throughput happens around N=60, 70 for

OSU vs AMIS standard cells respectively (figure 4.6).

Figure 4.6: Throughput with respect to problem size for multiple standard cell sets

Derivation of energy and power requires a little more detailed analysis. Lets

assume that Cclk corresponds to the capacitances of DFFs that are clocked every

cycle, and hence having an activity factor of 1, while the Cnon−clk corresponds to
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all other capacitances that have data dependent activity factors. For both the

best and the worst case scenarios all the non-clocked capacitances in the entire

architecture are charged once per comparison. This can be seen very easily in the

worst case, by following the horizontal and vertical edges on the edit graph, but

is similar in the best case as the propagating 1 uses the diagonal delay elements

to propagate to the extreme topological east and south blocks of the architecture.

Hence the dynamic power dissipated can be written as

P = CclkV
2
ddN

2f + Cnon−clkV
2
ddN

2αf (4.1)

where α is the activity factor that is data dependent, Vdd is voltage supply, and

f is a frequency of operation. Energy consumed per comparison can be calculated

by multiplying power by the time taken per operation. Therefore energy dissipated

per comparison for the best case and worst cases are

Ebest = CclkV
2
ddN

3 + (Cnon−clk − Cclk)V 2
ddN

2 (4.2)

Eworst = 2CclkV
2
ddN

3 + (Cnon−clk − 2Cclk)V 2
ddN

2 (4.3)

correspondingly. The Equations 4.2 and 4.3 define the scaling law of energy

and power with respect to N. Since Cclk and Cnon−clk are not known parameters

we estimate them from fitting. The resulting equations from fitting for both the

AMIS and OSU standard cell libraries are
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EAMIS,best = 2.65N3 + 6.41N2 (4.4)

EAMIS,worst = 5.30N3 + 3.76N2 (4.5)

EOSU,best = 1.05N3 + 5.91N2 (4.6)

EOSU,worst = 2.10N3 + 4.86N2 (4.7)

where the units of energy are in pJ.

Figure 4.7: Energy with respect to problem size for multiple standard cell sets

The cubic energy scaling of Race Logic can be seen clearly in figure 4.7 as the

red and green lines have a steeper slope that the blue of the systolic array that

has a shallower quadratic slope, as 2N processing elements are running for 2N

cycles. For the OSU standard cell set the crossover point is after 100 but for the

AMIS cell set it lies around to 50 to 60 bases mark. As a reference a clockless

estimate is also shown which shows the power spent only in the edge propagating
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down the array and not its clocking. Note both systolic and clockless estimates

have quadratic energy scaling behaviour.

4.2 Energy Optimized Architecture

One of the drawbacks of Race Logic is its third order energy scaling with string

length N. By observing Equations 4.2 and 4.3 we can see that the capacitance

associated with the clocked region of the fabric constitutes the cubic behavior.

This is due to the fact that the area scales quadratically and the time taken

per computation scales linearly, but most importantly this area is clocked every

cycle. Fortunately, using a strategy known as a clock gating, this term can be

greatly reduced. By exemplifying the worst case; i.e. the case of maximum energy

per computation, from our given score matrix, we can see that there is a time

dependent wavefront of the propagating Boolean 1 as is shown in Figure 4.4. This

wavefront represents the cells where the flip flops are changing state from Boolean

0 to 1. The key observation is that cells that are away from the wavefront, i.e.

the ones which have already changed state to 1 as well as the ones that are still

0 at this particular clock cycle are going to retain their state for the next clock

cycle and hence do not need to be clocked.

By employing a data dependent clock gating strategy we can turn off regions

of the chip that are not being utilized to save power. Due to the regular structure
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Figure 4.8: Clock gating: (a) granularity of the clock gating cell, pictorial representation of
parameter m (b) clk gating circuitry (c) htree fabric and multiple clock gating granularities

of the Race Logic fabric the clock network can be designed as an H-tree. One

of the major parameters that would determine the power savings would be the

granularity of the H-tree, in other words, the number of cells that would be gated

at once. Let us look at a 4x4 group of cells (multi-cell region) as shown enclosed

in Red in Figure 7a. This multi-cell region can be thought of as the smallest group

of cells that can be gated at once. During the operation of the circuit, if the cells

that are grey in color have the Boolean value 1 then it means that the wavefront

has crossed this multi- cell region and their values are not going to change in this

operation. Also if the cells that are in black have the Boolean value 0, it means

that the wavefront has not yet approached this multi-cell region. For both the

above cases, the multi-cell region shown in Figure 7a doesnt need to be clocked.

By activating the clock of the multi-cell region on the arrival of the Boolean 1 on

the black cells and deactivating it when all grey cells are 1 we can ensure that

this multi-cell region is clocked only for a limited period of time, hence reducing
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energy consumption. Very fine granularity of this multi-cell region would increase

energy dissipation due to a large number of multi-cell regions that require every

cycle clocking, while very coarse granularity would mean clocking one multi-cell

region for very long, also increasing energy dissipation.

To calculate the optimal granularity, we introduce a parameter m, which is

the side length of one multi-cell region as shown in figure 7a. Now the worst case

energy dissipation for the clocked part of the architecture is as follows,

Ew = CclkV
2
ddN

2(2m− 2) + CgateV
2
ddN

2/m2(2N − 2) (4.8)

where the first term represents the entire clocked capacitance being activated

only for 2m-2 cycles (i.e., the worst case number of clock cycles one multi-cell

region remains active) and the second term represents the gating capacitance

that the clock distribution network still has to clock, with Cgate is the actual

capacitance, (N/m)2 is the number of multi-cells regions and 2N - 2 factor is the

total number of cycles. Solving for minimum energy, we get

m =
3

√
2Cgate(N − 1)

Cclk

(4.9)

The energy advantage due to clock gating is significant as it reduces the order of

the equation from third order to fractional order, pushing it closer to the clockless

estimate of quadratic behaviour. This causes the crossover point to be shifted by
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more than 2 orders of magnitude, from 100 to 50,000. Figure 4.9 shows both pre

and post gating energy dissipation.

Figure 4.9: Clock gating energy savings: energy dissipation before and after clock gating for
multiple standard cell sets.

Th power density of the system is also affected by the clock gating strategies as

shown in figure 4.10. Race Logic shows a much darker operation as compared to

the systolic array. The continuous clocking of the systolic array with every cycle

is very power hungry, on the other hand, the time taken for the race to propagate

through all the flip flops is once every N cycles at best which causes a much slower

duty cycle. Essentially there is less computation to be done and it is being spread

across a larger area of silicon, causing it run more power efficiently.

Similar trends can also be seen in the pareto plot shown in figure 4.11. This

figure shows the energy vs latency for a certain problem size, N= 30. Since we

would prefer lower energy and high speed, the most desirable place to be in would

be the bottom left of the plot. The black lines show constant energy delay surfaces.
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Figure 4.10: Clock gating power density: power savings before and after clock gating for
multiple standard cell sets.

We can see that Race Logic outperforms systolic array implementations and

pushes the pareto points closer to the origin. Not that the clockless estimate is

the lower bound on energy as it assumes quadratic scaling and no power spent in

delivering timing information.

4.3 Generalized Synchronous Race Architecture

The score matrix which was considered in a previous example is simple and

easy to implement. However, score matrices for sequence alignment have evolved

considerably from the time Lipton and Lopresti systolic architecture was pub-

lished. Nowadays, important properties of the score matrix such as symbol size

(NSS) and dynamic range (NDR) change from application to application and even

the same application can have different dynamic ranges. One such example, the
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Figure 4.11: Pareto plots comparing Race Logic with systolic implementations for array size
N= 30, across different standard cell sets.

modern amino acid score matrices, which go by industrialized acronyms such as

BLOSUM62(block Substitution Matrix) and PAM250(Point Accepted Mutation),

are large, complex matrices with above 400 elements and are highly tuned as a

result of statistical behavior of amino acid sequences [9]. Therefore, it is worth

investigating generalized Race Logic which can deal with different types of score

matrices. The first step is to convert any given matrix to the form which can be

used with generalized Race Logic architecture.

Using BLOSUM62 as an example (Fig. 4.12), we prepare the score matrices

for its Race Logic realization, by keeping a few things need to be kept in mind.

Firstly, since our preferred type of Race Logic is the OR race, we must ensure

that the highest similarity corresponds to the smallest score and hence the lowest

latency. The BLOSUM62 score matrix rewards perfect matches with positive
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Figure 4.12: Block Substitution matrix or BLOSUM62.

scores, substitutions with negative scores and indels are generally of the lowest

score. It is possible to invert the score matrix from longest path to shortest path

one by understanding the value in score matrix are obtained. In particular, the

origin of these score matrices are based on log-odds score calculations as shown

below,

S(a, b) =
1

λ
log

Pab

fafb
(4.10)

where S(a,b) is the score for symbols a, b, Pab is the joint probability of align-

ment of a and b, fa and fb are the probabilities of alphabet a and b by themselves

and λ is a scaling factor to get integer values of scores. By inverting the above

equation, and changing the scaling factor we can convert all diagonal elements
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from positive to negative and non-diagonal from negative to positive. The next

step is to obtain the equivalent score matrix with all positive weights since neg-

ative or zero weights cannot be implemented in a straightforward way in Race

Logic. The solution to that problem is to add a fixed bias to values of score ma-

trix corresponding to the indels and double of that fixed bias to the remaining

ones, as the latter are one rank ahead in the edit graph (figure 3.8) [1].

Figure 4.13: Generalized race logic architecture which allows a larger symbol space and high
dynamic range compared to the implementation previously discussed

The score matrix now consists of elements ranging from 1 to NDR, with the

scores along the diagonal being the smallest and indels being the largest. As can
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be seen in Figure 2c, modern score matrices contain a lot of repeating scores.

When using one hot encoded DFFs for realization of delay, the area of a single

Race Logic cell scales linearly with dynamic range and hence may have serious

area repercussions for large values of dynamic range. Binary encoding with a

saturating up-counter allows us to save on area by reducing the number of DFFs

for the same NDR as well as making sure that the counter doesnt overflow and

restart the count. The generalized structure of complex Race Logic cell is shown

in Figure 4.13, the Boolean 1 signal can come in either from the left, diagonal or

top of the cell, which then passes through the OR gate and enables the saturating

counter that begins to count 0 to NDR clock cycles. The output of the each

colored gate, represents a specific weight, which will trigger as soon as the desired

weight is reached and the weight that is desired can be selected from the MUX

whose inputs are the encoded forms of the alphabet. To ensure that the output

signals that are generated are not pulses but fixed Boolean 1s, the set on arrival

circuit is placed which is reset at the end of each computation.

4.4 Discussion and Conclusions

As it is mentioned earlier, area scaling of the Lipton and Lopresti architecture

is linear in N, while Race Logic has quadratic area behavior. In spite of such

unfavorable area scaling laws, the constants associated with Race Logic are smaller
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than that of the systolic architecture due to the simplicity of the fundamental cells

(Figs. 4.2(a, c)), which arises due to the choice of data representation. Note that

Lipton and Lopresti architecture requires a linear systolic array of 2N + 1 element

for a string of length N.

One important observation is that worst case scenario for comparison, i.e.

complete mismatch of strings, is not representative of the typical needs of ap-

plications. More specifically, the typical requirement is to determine if string

similarity is above a certain threshold. For example, due to the large volumes of

DNA data availability, there is a need to know if sequences are genuinely aligned

(share a common ancestral sequence or function) or are aligned by chance [9, 30].

Statistically, it is known that the probability of small similarity regions in strings

is fairly high and goes down exponentially as the length of the similarity goes

up. Therefore, in such applications a similarity threshold is defined below which

strings are assumed to be similar by chance and not due to genuine alignment.

This means that in our OR-type race implementation, a smaller score can be

attributed to a higher level of similarity and a threshold score can be decided,

beyond which the architecture will not look for similarity i.e. if the count exceeds

the threshold value, the architecture will treat it as if the required match was

not found and move on to the next pattern. This feature is very useful as the

maximum possible score is known at each instant in time, and not only at the end
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of the computation. This also means that with increasing dynamic range, the best

case scenario becomes more representative of a typical situation and the latency

does not necessarily scale with dynamic range NDR. For Lipton and Lopresti

architecture, however, the entire computation has to complete, before which the

maximum score can be ascertained.

Energy consumption is where the idea of Race Logic really shines through.

Due to the fact that computation occurs only along the wavefront, the race logic

structure can be gated effectively to save on energy. The systolic array on the

other hand is linear and hence needs to be clocked every cycle. Hence, for small

value of the string comparisons, Race Logic outperforms the systolic array for

both the best and worst case scenarios (Figs. 4.9). In general, architectures that

focus on energy savings do so by reducing the latency (in other words trading off

energy for time). Such architectures are not of much use when it comes to high

performance architectures [16]. In our case it is the novel data representation

that allows this architecture to maintain a fast operating speed as well as be

energy efficient. A related result is that energy-delay product (Fig. 4.11) and

power density (Fig.4.10) are much smaller for Race Logic. The latter is also far

away from maximum value of 200 W/cm2 as defined by International Technology

Roadmap for Semiconductors [50].
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Even despite unfavorable area scaling law, the throughput per area of best

case scenario of Race Logic is considerably better than that of the systolic array

for N < 70 as can be seen in Figure 4.6. It is also worth mentioning that the Race

Logic architecture was first implemented on an FPGA due to ease of use and

re-configurability but the results were completely unexpected. The latency and

energy numbers were very large, and upon further inspection, we realized that due

to the large capacitance of the global wiring, the interconnect delay was more than

the gate delay. Similarly, the energy numbers were larger than expected due to

unnecessary charging the discharging of global capacitances. We concluded that

the Race Logic architecture was not suitable for mapping on a general purpose

FPGA and this is why we proceeded to perform a standard cell based custom

design flow. We believe that a full custom design flow with tweaks to clocked

capacitance values as well as appropriate sizing of the devices would yield further

improvements in results.

Finally, the most optimal implementation of Race Logic is asynchronous and

in the analog domain. In each of the figures 4.9, 4.10, 4.11, black curve shows the

clock-less estimate that light the goal of 2D energy scaling. It theory, the clock-less

estimate is representative of the case in which each race logic cell is responsible for

generating its own timing, and there is no need for a timing distribution centre.

We can envision such an outcome with the two following solutions. In an attempt
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to eliminate the clock, we could use asynchronous delay elements such as current

starved inverters and distribute bias voltages to keep power dissipation low. An-

other solution involving resistive switching devices [44] uses them to implement

configurable edge weights, which would provide increased advantages in area and

energy efficiency.
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Chapter 5

Asynchronous Race Logic

The answer to the question, ”Can races be used to perform computation?” is

a resounding ”Yes”. In the previous chapter we saw how clocked, synchronous

race conditions were set up in a fabric based on the 2 input patterns. The input

pattern matching problem was mapped to a shortest path in a graph problem, by

spatially laying out delays based on match/mismatch conditions and a rising edge

sets up a race that navigated this delay maze. Moreover, the race implementation

outperformed a highly optimized systolic array approach in latency and energy,

after clock gating strategies were used to reduce energy consumption. Though

certain advantages of race based computation were enumerated, the application

that was used to demonstrate these advantages, was a very specific one. With a
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more general application will come a larger score matrix and symbol set which

will have a direct impact on area, and energy scaling.

To ensure Race Logic has a wider applicability, we need to first address certain

issues that are directly related to the size of the problem.

• Area scaling: As Race Logic is a direct representation of the graph, it fol-

lows graph scaling laws. In most dynamic programming based optimization

problems, the whole search space needs to be searched causing the graph

size to become very large. Moreover, as score matrices become more com-

plex with increases in dynamic range, This requires careful cell design to

reduce area of the cell itself to ensure scaling doesn’t make the architecture

prohibitively expensive.

• Energy scaling: The energy scaling in synchronous implementation is essen-

tially third order. This is fundamentally as a result of the clock inputs of

the 2D array. Since these clock inputs trigger every cycle, they contribute

to N2 capacitive charges and discharges every cycle for ≈ N cycles, leading

to a cubic energy scaling factor. Though the problem itself is quadratic,

it is evident that the square law energy scaling cant be overcome, but as

shown before, clock gating strategies can be used to reduce this third order

energy scaling and push it closer to the second order limit. Moreover, as
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dynamic range begins to increase, the number of flip flops in a cell would go

up causing energy to become a bigger issue.

In Race Logic, we can see that solution to the problem lies within the mesh

of delays and a rising edge accesses that particular delay path which is of interest

to us. In the synchronous implementation, the timing information (delay value)

is not intrinsic to the delay element, though it depends on it (through set up

and hold time limits for combinational logic). It is generated by the clock sig-

nal and distributed to different flip flops via clock distribution network. It is the

dynamic power dissipated by this network that contributes a significant portion

to the overall power dissipation of the synchronous Race Logic structure. In this

chapter we propose an asynchronous version of the previously described Race im-

plementation, which replaces D flip-flop based delay elements with current starved

delay elements as a solution to the aforementioned issues. This will serve multiple

purposes. Firstly, currents starved inverters have a much smaller footprint than

D flip flop based delay elements. Moreover, timing distribution methods can be

developed that essentially consume very little static/dynamic power. Also, we

utilize a more modern process compared to the synchronous case and perform the

case study again for a more general range of score matrices.

One advantage of a clock network is that it provides quantization of timing

intervals. Also due to the regular structure of Race Logic, skew and jitter can
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be minimized by spending more power on the clock network. Even in the face

of process variations, we can be sure of the functional correctness of the system.

This is not as trivial in the asynchronous case. Since the delay elements are bias

dependent, process variations and other environmental noise sources will have a

larger impact on the delay value and hence may lead to inaccurate results. In this

chapter, will also perform a system level functional accuracy study to determine

the level of accuracy necessitated by the system and the energy efficiency tradeoff

that results from it.

To summarize our contributions,

• We design, for the first time, a full custom, synthesized, asynchronous Race

Logic array in 0.18 m technology that can report similarity between 5 to

50-symbol long sequences and simulate its performance against the well-

studied DNA sequence alignment problem in the interest of understanding

its scaling behaviour.

• We quantify the eect of process variations both from a device and system

level standpoint and show that at least for the considered application process

variations have minimal impact on the performance and functionality of the

asynchronous Race Logic.
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• We show that the asynchronous Race Logic architecture is up to 10X more

energy efficient, and 4X denser compared to previously reported synchronous

and state of the art systolic implementations, while also being faster.

5.1 Delay element and Current source

One of the goals of this work is to design Race Logic in which timing of delay

elements is not determined by a clock but by its own intrinsic delay. Ideally, such

a delay element should be controllable to account for an order of magnitude of

dynamic range, required for more general purpose graph traversal applications, as

well as be tolerant to supply, process and mismatch variations. Different schools

of programmable delay elements such as [51, 3, 27, 28, 37] were investigated.

Capacitive control options like the ones discussed in [51, 3] do not seem promising

due to square law scaling with respect to dynamic range of the delay, which

leads to prohibitively large area costs. [51] proposes the use of the neuron MOS

mechanism, by using capacitive coupling based charge sharing to control the gate

charge of an inverter and hence current starving it. [3] proposes multiple sized

shunt mos-capacitors to be charged by an inverter. These methods all include

large cell sizes as the values of the largest capacitor increase exponentially with

each new bit added to the dynamic range. Moreover, the digitally controlled

network shown in [3] has monotonicity issues that have been resolved with further
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area expenditure. Problems of charge sharing in complex pull-down networks as

shown in [37] are addressed in [28] but suffers from a lot of charge injection noise.

We found that a cascode current source, controlled by a variable resistor is best

suited for our application [31].

To elaborate more on the choice of delay element let us consider figure 5.1

The standard way of constructing a delay element is by charging a capacitor

with a controllable current and using a thresholding element to detect a voltage

crossing. This is generally implemented using an inverter and controlling the

current that is charging its output capacitance and is known as a current starved

inverter. Transistors MN and MP behave like digital switches while the transistor

MCS is the current control transistor that discharges the output capacitance at a

fixed rate, hence giving the required constant delay. The design decision at this

point is the placement of the current control transistor. In figure 5.1a the current

control transistor is placed in the discharge path with its drain connected to the

source of the NMOS switch, while in figure 5.1b the current control transistor

splits the output node of the inverter. Though the two topologies seem similar,

transient simulations reveal that charge sharing due to switching of MN causes

considerable differences in both timing and variability. In the former case, the

rising edge switches transistor MN into the linear region which causes charge

sharing between Cout and Cint causing the output voltage to drop instantaneously
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(not controllably) to VDDCout

Cint+Cout
. This voltage is then discharged by the current

control transistor MCS.

Figure 5.1: Delay element choices are based on the location of the current control transistor.
(a) shows the current control at the tail of the switching transistor MN whereas in panel (b)

the current control splits the output node

In the latter case, the rising edge causes Cint to be discharged through MN

quickly, while the output voltage stays at VDD. This is then followed by a con-

trolled discharge of the output node through MCS. Not only does the latter

method produce longer and more controllable timing delays for the same bias,

but is less susceptible to mismatch variations as well. This is due to the fact

that output voltage starts discharging from VDD in the latter case vs VDDCout

Cint+Cout
in

the former. The capacitances Cint and Cout are subject to mismatch variations

75



and hence add uncertainty to the delay of the element. It is worth noting that

figure 5.1 shows only a single bias node for ease of explanation. In reality, the

current control is performed by both bias and cascode nodes with optimal biasing

to ensure minimal current variation with Vout during the discharge phase. The

digitally switching transistors, MN and MP are minimum sized, while the bias

and cascode current control transistors are sized to match the current mirrors in

the current source.

The precision of the delay element, barring its own process and mismatch vari-

ation, depends upon the precision of the current that is discharging the output

capacitance. Hence the current source has a very important role to play. It should

be tolerant of process variations and should provide a constant current indepen-

dent of any power supply variations that may occur due to injection from digital

switching activity. Moreover, the current source should be a variable one, prefer-

ably controlled by an external source, such that variety of timing delays can be

implemented. For the specific case of comparison against work in [26], the dynamic

range of the delay does not need to be very large, but for implementation with real

data (e.g. DNA nucleotide sequences from NCBI [33]) the dynamic range needs

to vary by about an order of magnitude, hence requiring the current source to

produce low variability currents over such ranges. In this regard an op-amp based

current source was designed that pins a fixed voltage across an off-chip variable
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Figure 5.2: Current source design: The current source works by pinning 500mV across a
resistor that is variable and externally controllable, using a high gain op-amp. The current

that is generated is largely independent of process or supply variations. This current is then
mirrored to generate bias and cascode voltages to be distributed to the rest of the array.

resistor, hence utilizing the resistor to act as the current control element. This

makes the design largely independent of process and supply variations. The bias

voltage thus generated is then redistributed across all the required delay elements.

Depending upon the number of independent delays needed (which is three for the

considered case), replicas of the current source are made with different resistances,
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each of them variable, to tune to the required current. This design is allows area

savings compared to delay element designs in [28] where each cell consists of a

controllable elements that take up considerable area. Another important aspect

of the current source design was to size the bias node transistors relatively large,

such that they would behave as low impedance nodes and be more tolerant to

charge injection from switching activity from nearby digital nodes.

5.2 Top level Architecture

Similar to the synchronous design, in our attempt to design asynchronous

Race Logic circuit for DNA sequence alignment problem we make the most of its

repetitive nature and partition its implementation into unit cells. The unit cell

for an OR-type Race Logic is shown in figure 5.3c. There are three inputs - top,

left and diagonal, which receive a rising edge from the preceding and adjacent

cells, and the first arriving input is detected by an OR gate. The symmetric gate

design shown in Fig. 3b was used to aim for equal delay on all input to output

paths. This is as a result of the asymmetry in the design of a classical OR gate

which favours the input closest to the output. Since the asynchronous design

cant afford the luxury of a clock to swallow such errors, there is possibility for

different paths to select different OR gate inputs and cause errors to add up with

increasing problem size. The first arriving signal then passes through three delay
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elements, the top and bottom being always a constant delay for the considered

application (representative of a insertion/deletion) and the diagonal one, selected

through the multiplexer, being dependent on the match mismatch criterion. The

multiplexer is a pass-gate based analog multiplexer and such pass gates are also

added in series with the delay elements on the off diagonal to ensure similar delays

on all paths. The values of delay elements are set according to the particular score

matrix. Though having fixed delays might be acceptable in some cases , in this

paper we consider a more general case when the delay value can be programmed,

thus allowing asynchronous Race Logic to solving a broader variety of alignment

problems.

The issue of charge injection into the bias nodes is a serious one and can cause

large systematic errors in the delay of the circuit if not resolved. The Vcs node of

the delay elements (Fig. 5.3e) are shared by the entire array and are hence subject

to charge injection from the switching activity in the bottom NMOS transistor.

Though the entire array does not switch repeatedly and simultaneously (which

would cause a large simultaneous charge injection event), there is switching ac-

tivity which is staggered by the delay elements themselves. This is fundamentally

the same problem as in the synchronous case. The source of timing information

instead of being a clock is now the a current. This information (the value of the

current) has to be distributed to all delay elements throughout the array. In the
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Figure 5.3: Top Level Architecture: Panel (a) shows the Edit Graph used in the previous
chapter and (b) shows a more commonly used score matrix in DNA sequence alignment. Panel

(c) shows the unit cell of the asynchronous Race Logic architecture. It is similar to the
synchronous approach in many ways, but differs in the design of the delay elements and the

OR gate as shown in panels (e) and (d) respectively.

lowest power scheme, the bias voltages generated from the current source shown

in figure 5.2 can just be routed to the VCS nodes in figure 5.3(e). The drawback

of this is that the global bias nodes thus created are going to be susceptible to

various kinds of noise, such as switching noise, substrate coupling etc. One so-

lution to overcome this problem that minimally power hungry is to use the area

above the entire array by high-quality MIM caps (4fF/m2) and bypass the bias

nodes. The large value of the capacitance significantly reduces variation in volt-

ages from the injected charge. Another, albeit more power hungry (local) solution

is to partition the array into blocks and regenerate the bias voltages locally for
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each of these blocks while capping them with the aforementioned MIM caps. This

significantly reduces the load on the primary bias network and decouples large

sections of switching activity from each other and hence provides a more precise

delay values. It can be seen upon inspection that this is very similar to the clock

gating idea presented in chapter 4. The system is partitioned into blocks, but

instead of removing useless energy from the system, energy is being supplied to

those partitions to reduce variability and provide a better noise tolerance. The

clock in the synchronous architecture has a similar function, i.e. is improving

the noise tolerance of the system by quantizing timing intervals at the expense

of energy. As the clock contributed to cubic scaling of energy and after gating,

shifted to between quadratic and cubic, in this case, we start at quadratic with

just a single current source and all the energy being spent in switching and in our

effort to improve performance we add local biasing circuits that push the energy

scaling by increasing the quadratic constants.

5.3 Results and Discussion

We have designed asynchronous Race Logic implementation for solving DNA

sequence alignment problem for variable string lengths from N = 5 to N = 50.

Data points were fitted to analytical equations for all desired metrics shown in

Fig. 5. All the simulations were done in Cadence 6.1.0 using the Silterra 0.18 m
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process. Though the implemented delay elements are programmable with roughly

10X dynamic range, in the simulations we used specific score matrix in Fig. 2b.

5.3.1 Simulation Results

For the purpose of comparison, similar to synchronous Race Logic studies

[26], we focus on two possible alignments resulting in the best and the worst case

scores, which represent a perfect match and a complete mismatch, respectively.

(The complete mismatch case results in 2N indels for a string length of N and

rather unlikely in practical applications - see discussion in the next subsection.)

Moreover, Dennard constant-field scaling laws were applied to make sure that the

work in [26], which was performed in 0.5 micron, was scaled down to effectively

be in the same process. In addition, previously reported performance results for

the synchronous Race Logic were adjusted to account for larger dynamic ranges

of the delays in the asynchronous Race Logic. The Dynamic range for each delay

element is show in figure 5.4 as a variation of the delay vs the value of the resistor.

In particular, the following changes were made to the synchronous architecture.

For the dynamic range to be increased from a factor of two in the synchronous

design, to an order of magnitude, the number of D flip-flops has to be increased

from 1 to 4 (assuming logarithmic encoding), which in-turn adds extra gates for

score selection and latching. The latency is also affected as a result of addition of
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Figure 5.4: Variation of Delay with Resistance.

extra logic levels in the critical path between two D flip-flops, which manifests in

the slowing down of the clock.

Figure 5.5: Simulation Results: Panel (a) shows the area scaling of the Synchronous Race
Logic implementation and the Local Bias and Global Bias cases. (b) shows the latency of the

best and worst case delay for the same.

83



Another repercussion of each unit cell housing 4 DFFs is in the power and

energy, because the clocked capacitance dominates the energy scaling of the syn-

chronous architecture. The energy numbers that are reported for the synchronous

design are after clock gating strategies, that attempt to reduce the third order en-

ergy scaling that exists as a result of continuous clocking of the entire Race Logic

fabric. Nonetheless, the cubic scaling can be reduced but not completely elim-

inated. Figures 5.5,5.6,5.7 show various performance metrics for asynchronous

Race Logic and compare it with previously reported adjusted results for syn-

chronous Race Logic. In general, even with pessimistic assumptions regarding

the increase in area and energy of the synchronous design, asynchronous Race

Logic performs better in almost all metrics (and as a result significantly outper-

forms highly-optimized conventional implementation) except for power density

5.6, which is due to larger area of the synchronous architecture. The global bias-

ing implementation is much more energy efficient and area efficient compared to

local bias one. This is because in the global bias case, the distribution of timing

information happens in terms of bias voltages which are gate-connected and hence

consume negligible power, while the MIM caps supply any instantaneous charge

required.

In the local bias case, once the global bias voltages are distributed, local biases

are regenerated for 5X5 array regions, which contribute to the cubic scaling of
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Figure 5.6: Simulation Results: Panel (a) shows the energy scaling of the Synchronous Race
Logic implementation and the Local Bias and Global Bias asynchronous cases. (b) shows the

power density for the same.

energy. This behavior is visible in the figure 5.6 as the global bias case has square

law energy scaling and is considerably lower than the scaled synchronous as well

as the local bias case which have cubic behavior.

Figure 5.7: Simulation Results: Panel (a) shows the throughput of the Synchronous Race
Logic implementation and the Local Bias and Global Bias asynchronous cases. (b) shows the

power density for the same.
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One possible concern is that performance and energy efficiency advantages

may be lost when implementing circuits with more aggressive and more practical

CMOS process nodes, in particular because asynchronous Race Logic might be

more sensitive to process variations due to its inherently analog design, compared

to a purely digital one. To address this concern we first note that the relative area

of the circuitry, that is sensitive to mismatch variations in asynchronous Race

Logic, is approx. 60%, and therefore such circuitry can be aggressively scaled

without increasing variations. To further compare scaling behaviour, figure 5.7b

shows the estimated performance for scaling of the synchronous design relative

to the 180 nm asynchronous design in this work. The latency estimates assume

Dennard scaling, while the energy estimates also account for leakage power at low

technology nodes. Though latencies of scaled synchronous versions always out-

perform the asynchronous version, the energy performance of the 180 nm asyn-

chronous version is comparable to the energy performance between 90 nm and 130

nm for the best case and between 45 nm and 90 nm for the worst case. Moreover,

in the next subsection we show that for the considered application variations in

delay can be effectively tolerated at the functional level without much penalty in

performance or energy efficiency.
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5.3.2 Variation Analysis

To understand how the Race Logic implementation of the edit graph is affected

by the delay variations in each of its elements, and how it affects the functional

correctness of the overall architecture, a MatLAB model of the circuit architecture

was designed into which variations were purposefully introduced. To make sure

that our assumptions were realistic, we took real data from the chromosome 1 of

the Human Genome and simulated the process of shotgun sequencing followed by

realignment 5.8, which is a typical procedure in the de-novo sequencing [10]. In

shotgun DNA sequencing, a section of the DNA sequence is split in into thousands

of strands of equal length at random locations. Since there are so many strands

that are taken, there is a chance of some of them overlapping which is what we

are looking for. Strands with the maximum overlap (above a certain statistical

significance) can be thought of as belonging to a contig (contiguous region of DNA)

and can hence be used in reconstruction of DNA sequence. Figure 5.8c shows an

example of score histogram when comparing a particular DNA string with others

in a given section with an overall number of nucleotides being 20 times the number

of nucleotides in the section (coverage of 20). We then use Monte Carlo technique

to simulate signal propagation timing (i.e. score) in the Race Logic fabric for two

pairs of DNA strings (Fig. 5.8b). In each run of Monte Carlo simulation, delay

elements were initialized by adding normally distributed random variable with

87



specific standard deviation to the exact delay value determined from the score

matrix.

Figure 5.8: Preliminary variation study: (a) A cartoon of shotgun sequencing process, (b)
Monte Carlo simulations (10,000 runs) of the alignment scores for two particular pairs of DNA
strings for the OR-type Race Logic with variation-prone delay elements, and (c) representative
score statistics in human genome shotgun sequencing. The reference DNA strings is the same
in both panels (b) and (c). The query strings used in panel (b) were chosen such that their
alignment scores with the reference DNA string correspond to the start and very end of the

hump in the score distribution, which is highlighted with red arrows. (The simulation results
show that the distributions on both panels are rather insensitive to the particular choice of

DNA strings.

The chosen values of standard deviations are crudely representative of pes-

simistic and optimistic scenarios for process and mismatch variations in the sim-

ulated 180 nm process. An interesting detail is that, though variations for each
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delay element are symmetric around mean value, the total score is almost always

lower compared to the exact value. This is an artifact of OR-type Race Logic

which favors fast signals over the slow ones. The detailed analysis of the results of

Fig. 6 suggests practical and efficient solution for tolerating variations and noise

in asynchronous Race Logic. Indeed, it is known that the probability of small

similarity regions in DNA strings is fairly high and goes down exponentially as

the length of the similarity goes up [30]. Therefore, the similarity threshold can

be defined below which the strings would be assumed similar by chance and not

due to genuine alignment. Practically, that means that for OR-type Race Logic

we could define a certain threshold beyond which the architecture will not look

for similarity and move on to the next string. As Fig. 6c shows there are only

few strings, e.g. with scores below 100, which should be considered for align-

ment, while the vast majority of strings would be discarded. Interestingly, this

means that with an increasing dynamic range, the best-case (rather than worst

case) paths become more representative of a typical situation. When looking for

alignments with small scores in such score distribution, variations and noise can

be resolved efficiently by slightly increasing the threshold. For example, for the

10%-variation case all strings of interest with a score value below 90 can be de-

tected by setting the threshold to ≤ 92 and the penalty of such adjustment would

be identifying few false-negative strings whose score is in between 90 and 100.
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From Fig. 6, it is clear that the increase in runtime due to threshold adjustment

and additional work of finding false negative would present just a minor overhead

considering that most of the time will be spend screening the strings with high

(≤ 100) scores.

5.4 Conclusion

Our objective was to design an asynchronous Race Logic array and in particu-

lar address some issues pertinent to synchronous implementation such as third or-

der energy scaling and difficulty with handling of a more complex score matrix. To

accomplish this goal we propose an asynchronous architecture in which the delay

is controlled by current starved inverter based delay element. This design allows

for a larger dynamic range at lower area and energy costs. As a specific example,

we implemented the well-studied shotgun DNA sequence alignment problem and

compared synchronous versus asynchronous design styles. The simulation results

for the synthesized design in 0.18 m technology show that, asynchronous imple-

mentation is at best 10X more energy efficient, 4X denser and has slightly smaller

delays as compared to synchronous one, which by itself significantly outperformed

conventional highly-optimized systolic array implementation for sequence align-

ment problem. Moreover, we study the effects of process variations at both a

device and system level and show that for at least the considered application, the
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process and mismatch variations have limited impact on the asynchronous Race

Logic performance and functionality.
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Chapter 6

Chip Design and Testing

To test the potential of Race Logic, we designed a chip that would utilize the

asynchronous race conditions discussed in the previous chapter to perform DNA

sequence alignment on real DNA sequences. This chapter will go into the details

of the chip architecture and the circuit, layout and floor-planning level decisions

that went into designing it.

6.1 Objectives

Since this design is a first prototype of Race Logic, flexibility in testing of

the array was a major concern. This section details some of the constraints that

govern the design process. Our major objectives are to,
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• Design a functional prototype of the Race Logic Asynchronous architecture

and test functional accuracy and correctness for real DNA sequence data

with score matrices from real biological test data.

• Test the architecture for performance and energy numbers.

To be able to achieve the above, a few points need to be kept in mind,

• The size of the array should be representative of real world NGS sequencing

data. Common sizes are between 25 and 100 base pairs(bp), with some

ranging as high as 200bp.

• From the previous chapter, we see that the fastest delay is of the order of

a nanosecond with the slowest delay being approx one order of magnitude

larger at 15 nanoseconds. This delay is tunable with an external resistor.

Our unit delay here is going to be the smallest delay that can be achieved

by such a system. This constrains our problem in the following ways,

– We need a system that can measure such delays with relative accuracy.

– Measurement system should be on chip

– Since the value of delay itself is variable the measurement system should

also be adjustable to measure a range of delays.
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• Since power numbers also need to be measured, some specific considerations

have to be kept in mind.

– We need a system that measures power of the array itself versus the

power of surrounding circuitry

– Also measuring the switching power of the Race Logic array itself sep-

arately from the bias power will also yield interesting results.

– If smallest delay is of the order of magnitude of one nanosecond, and

the array is of size 50X50, the fastest race would be of the order of

magnitude of 50 nanoseconds. The change in current drawn by the

array will last only for that long and needs to be measured accurately.

• Characterization of current source to compare against simulation models.

The next section introduces the details of the architecture and test plans that

arise from the aforementioned constraints.

6.2 Architecture and Test Plan

This chip was designed in a 0.18 um Siletrra process with 2mm X 2mm of

available area. The process consisted of 6 metal layers and provided high density

MIM (Metal Insulator Metal) capacitors with a capacitance of 4fF/um2. Fan out
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of four (FO4) delay of a minimum size inverter is ≈ 70ps. Due to area constraints

we chose the size of the array to be 50x50.

To have a variable delay measurement system, we decided to go for a variable

delay clock generator whose delay could be divided down and measured externally

on an oscilloscope. This method can serve multiple functions; firstly, a variable

delay clock that can be characterized externally will provide a relatively accurate

measurement for internal chip events that happen at a much smaller timescale.

Moreover, since the array inputs are programmable, the fastest delay path through

the array, which is the diagonal one, can be isolated by choosing the same input

patterns P and Q. This shortest diagonal path, also known as the best case in the

previous chapters, consists of 50 delay elements in series with each other. Since

the architecture requires a counter to start with the signal entering the top left

corner of the array and stop with it coming out of the bottom right corner, we

don’t need to develop an isolated test structure to characterize the delay elements.

If the bias is adjusted on the current source controlling the diagonal path and on

the clock generator such that the value of the counted signal is exactly 50, we can

be sure that our clock has been set to the unit delay of the Race Logic Array. We

can also use other score matrix configurations to isolate other specific paths and

characterize the major delay elements, diagonal match, diagonal mismatch and

off-diagonal respectively.
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To be able to measure power, according to our constraints, we decided to

split the chip power across 3 major domains. The first domain would cover the

switching energy spent in the array. This consists of the energy spent in the

actual switching of the race array and not the power spent in bias networks. The

second domain would would be connected to all the bias circuitry throughout the

array, as well as the main bias generation for amplifiers, current sources etc. The

third domain would qualify everything else, meaning the input circuitry, clock

generation etc. Also multiple modes of operation of the chip were decided upon.

A pattern mode to check for functional correctness, and a burst mode for power

measurement. In the burst mode, a single pattern match operation would be

performed on a system repeatedly at maximum throughput to get an idea of the

worst case power dissipation of the system.

In the design of the system, we partition the architecture in to 3 major regions.

Input/Output circuitry, Clock and Control Logic and finally Array and Bias Cir-

cuitry. Fig 6.1 shows the major partitions of the architecture and the next few

sub-sections talk about these partitions in detail.

6.2.1 Input/Output Circuitry

The I/O system consists of a set of shift registers that are responsible for shift-

ing in DNA sequence data that are to be aligned with each other. To implement
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Figure 6.1: shows the micrograph of a fabricated chip with architectural block highlighted

the symbols, a simple binary encoding is used to represent the respective nucleo-

bases with A = ”00”, G = ”01”, C = ”10” and D = ”11”. The system can load

upto 4 patterns at once and run them in either in patterned mode or burst mode.

This is implemented by constructing a single 250 element long 2-bit shift register

in which the first 50 elements are the pattern to be compared against, and last 200

consist of the 4 patterns that are being compared. A 4X1 MUX is used to choose
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between the patterns, and in the patterned mode, the select inputs are marched

up to cycle between the patterns one after another and after the final pattern has

been matched the system stops. In the burst mode the cycling continues until

the user initiates a stoppage. The idea here is to allow enough time for correct

measurement of power through the external system. This shift register in total

had 3 inputs and 2 outputs as the data can also be shifted out to ensure that the

shift register behaves like a 2 bit scan chain with 250 elements.

Figure 6.2: Shift in circuit and Scan chain: Panel (a) shows the overall 50X4 shift registers
scan chained to store four patterns(P1 to P4) extending into the Q pattern. (b) shows the

details of the single Q bit element while (c) shows the details of the P bits and how different 50
long sequences are buffered into the Race Array
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The Race logic system outputs a final score, which is the similarity metric

between the input strings that have been compared. In this implementation that

would be four output scores, as 4 patterns can be matched in one operation. The

counter that is used to count the score receives its input from the clock generator

block, which has a variable delay clock. We estimate this latency to be varying

from 700 ps to 10ns. Also, this counter should be able to count atleast 50 times the

dynamic range of the score matrix used. We used a 11 bit counter. Since the 11

bit counter had to work at 700ps, we designed the counter using a prescalar, such

that it could handle such high speeds. The idea here is that a smaller size counter

is used to scale the input clock(the LSBs of the count) such that the latter MSBs

counts can get a longer propagation time for the carry chain. To operate in burst

mode, the counter has a output that was parallel loaded to shift registers which

were then shifted out with a traditional SPI interface. 2X1 MUXes are used to

change the loading from parallel load inputs to shift chaining. The counter/shifter

is also a scan chain that can be used the test the structures.

6.2.2 Array and Bias Circuitry

The array consists of repetitions of a fundamental unit cell whose structure is

shown in fig figure(a). The cell consists of 4 delay elements and 3 delay control

inputs(one for each diagonal match and mismatch and 1 shared between the off
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Figure 6.3: Counter circuit and shifter register output: Panel (a) shows the overall 11 bit
counter parallel loading in to the first shift register while (b) shows the details of how the

counter values are parallel loaded into each shift register for one MUX configuration and to a
scan chain shift register for another. (c) Shows the layout of the blocks from (a) and (b)

diagonal ones) shared between them. The delay elements are the same as in the

previous chapter with a current starved stage followed by a regular minimum size

inverter to sharpen the edge. Since only rising edges go through the structure,

the current starved inverter, only uses Nbias and Ncas control nodes. The data

values that come from the P and Q arrays on the topological north and west of

the array, also have 4 inputs into each cell (A1, A2, B1, B2) which go into XOR

based matching circuitry to decide which diagonal element is going to be chosen.

The MUX is not a digital one but a pass gate based MUX to make sure that both

paths have similar delay characteristics.
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Figure 6.4: Race Logic cell: Panel (a) shows a simplified circuit of the Race Logic cell while
(b) shows the layout of the panel (a). Panel (c) shows a detailed version of (b) to accentuate
the tiling structure. It can be seen that the corners are designed to lock into each other and
allow diagonal connections while bias nodes go across the cell while power runs from top to

bottom.

Since the off diagonal paths are not switched between, there is no multiplexer

but pass gates were added in series to ensure similar delay across all paths. The

OR gate at the input of the cell is designed with a symmetric NOR followed

by a NAND to add a Reset to the system. One point to notice is that in an
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asynchronous system, there are no flip flops that can be reset, so we added a reset

control to the OR gate that suppresses any input and drives a 0 into all the input

nodes. The timing on the reset circuitry is adjusted externally with the 3 delay

elements in parallel with an AND gate(longest path race) to ensure that all delay

elements have been Reset.

The cell in the array was designed and laid out in such a way that they could

be tiled and no further routing would be required, after correct placement of one

cell surrounded by 8 nearest neighbours. Since this kind of tiled structure is going

to be used, the entire routing of the power grid as well as all routing wires are to

be performed within the design of the cell. Another concern is that since the high

density Dual MIM caps take up metal layers 4, 5 and 6, there are only 3 available

layers to perform the rest of the routing, power and reset distribution etc.

In this first prototype, functional correctness and accuracy was of utmost im-

portance. To ensure a reduction in switching noise, the array was partitioned into

regions of 10X10 which were then connected to local bias networks that allowed

decoupling of switching activity from one part of the array to another. More

intricate partitioning can be done to further reduce coupling such as alternating

domains, or partitions where nearest neighbours are on different domains. The

local bias networks have to be designed for all 3 delay values and sized such that

the bias nodes are low impedance nodes to absorb any switching as soon as pos-
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Figure 6.5: Race Logic Array: Panel (a) shows a 10X10 Race Logic array with the relevant
local bias circuitry without metal layers 4, 5 and 6. On careful inspection, the tiles nature of
this granularity is also visible. (b) shows the same layout with MIM Caps on top of the array

in the top 3 metal layers.
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sible. As a result the Nbias and Ncas branches were sized larger while making the

Pbias and Pcas branches at minimum size. Dual MIM caps were used on metal

layers 4 5 and 6 above the array to provide decoupling capacitance for all 6 bias

nodes. At this granularity, tiling was performed again to ensure that placement of

this 10X10 cell complete with power and bias supply, next to similar surrounding

cells would automatically route the whole architecture. An important point to

notice here is that the bias circuitry and array circuitry are on different power

domains to ensure separate current measurement. The entire 50X50 array with

its 25, 10X10 partitions are shown in figure 6.6. The array has 200 data inputs

(100 on top and 100 on the left) which are used to set up the edit graph, one race

input, one race output, and one reset.

To generate all the biases that were used in this chip, the current source

explained in Chapter 5 was also designed and laid out. This current source, in

order to be tolerant to process and supply variations, uses an off chip resistor to

determine its current by using an Op-Amp to pin voltages across the resistor. The

Op-Amp is a single stage, P input, folded cascode, single output amp which has

a high gain and doesn’t need to drive any large loads. The amplifier works in uA

range and has its own current source to bias it. This current source uses an on

chip resistor for supply independence. The tunable current source inclusive of all

the branches, Op-amp and its own current source is shown in Figure 6.7
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Figure 6.6: Race Logic Array: 50 X 50 RAce logic array complete with bas circuits and MIM
capacitors.

6.2.3 Clock and Control Logic

The function of the clock generator block, as discussed before, is to generate

an output clock that is going to be used with the counter to count the time

period of the critical path in unit delay steps. This clock is also going to be

externally calibrated. To design this system, instead of using current starved

inverters as a delay line, we decided to directly vary the supply voltage of a

11 stage ring oscillator. Power supply variation allows larger dynamic range is
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Figure 6.7: Tunable current source for current biasing using off chip resistors.

delays and can hence be used to generate 700 ps to 15 ns time period clocks.

An differential amplifier based level shifter was used to scale the clock signal

generated as cross-coupled structures didn’t provide the speed required at the

fastest operating corners. This was as a result of the fact that the time taken

in the cross-coupled structure to fight the feedback loop and have the positive

feedback kick in was too high. This clock output goes through buffers to the rest

of the circuit as well as through a 12 bit counter that divides it down such that it

can be sent off chip for measurement.

The function of the control logic block is to take all the elements discussed

in this section and create a simple state machine based interface that can be

used externally for delay and power measurement. The state machine of such a
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control logic block is responsible for interfacing with the array, and counter blocks,

starting the race computation (array and counter), detecting the end of the race

resetting the array and counter etc.

6.3 Results

To test the functionality of the architecture, we ran similarity measures on real

DNA sequences from chromosome 1 of the human genome by partitioning it into

50 symbol long sequences taken at random places with a coverage of 15. These

output scores were compared against scores gotten from simulation values and

measured for error. We were able to characterize the array and program it with

regularly used score matrices such as [1, 2, 1] [1, 6, 4] [1, 4, 3] where the format

is described as [match, mismatch, indel].

The results for the score matrix [1, 4, 3] is shown in figure 6.8. The errors are

not repeated as the same measurement repeated multiple times does not result in

a different value of score. Due to an artifact in the circuit, there is some system-

atic error causing the score to be 1 or 2 values higher than it is supposed to be,

and given that , the average error between the simulated score and demonstrated

score is about 2.9%. The best case pattern matching speed is approx 100ns ap-

prox, 10 million patterns per second to 2.5 million patterns per second, while a

more representative value, would be data depedant and would lie around 5 million
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patterns per second. On the other hand state of the art algorithms such as BWA

and bowtie, bowtie2, bowtie2GP on a 3 GHz 32 GB server can map 1 million

36bp long short reads in 2140 seconds, 490seconds, 640seconds, 500seconds, re-

spectively, an approximate 3 order of magnitude increase in performance without

even considering power numbers.

Figure 6.8: Simulation vs Real data with the blue line representing simulated value and red
line representing real data. The x axis represents different sequence alignments while the y

axis represents the score.

For different score matrices the power numbers were different. For the common

[1, 4, 3] score matrix, the static leakage of the array was about 2.2mA while the
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dynamic switching current of the array for the best case was 6.1mA while for the

worst case it was 4.1mA. When the score matrices are not loaded with any values,

the static leakage across the local biases is very low at approx 0.8mA but as the

score matrices get large, for example for [1, 4, 3], the static power drawn is about

29mA, whereas for more dense score matrices such as [1, , 1] it can be as high as

37.6mA. In an attempt to be functionally accurate, the timing distribution circuit

was designed to be large and power hungry and hence the static power dissipation

of the local bias circuit takes up a much more significant portion of the power

than the dynamic switching current.
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Chapter 7

Summary and Conclusion

As we look to application specific designs for improvements in performance

and energy efficiency, we often only consider the universe of design options cleanly

broken apart into digital systems which encode values as bits on a wire, and analog

systems which encode values as continuum of levels on a wire Sharpeshkar in [39]

draws on some basic differences between digital and analog circuits by dividing

them into 4 regions comprising of combinations of continuous/discrete signals

and time. Discrete Signal and Discrete Time(DSDT) consist of our standard

Microprocessors and DSPs while Continuous Signal and Continuous Time (CSCT)

represent standard analog circuits such as Op-amps, filters etc. Other regions such

as DSCT and CSDT are not of much relevance to our work. Since in Race Logic,

the signal is encoded in time, discrete time intervals automatically mean discrete
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signals which is what has been used in both our synchronous and asynchronous

designs. We compare Race Logic implementations to standard Digital and Analog

implementations that know. Since Race Logic encodes multiple bits of information

on each wire, it shares a lot of properties of analog systems which give it a unique

place in between two classical domains.

No. ANALOG DIGITAL RACE LOGIC

1

Compute with continuous

values of physical vari-

ables in some range, typi-

cally voltages between the

lower and upper power-

supply voltages.

Compute with discrete

values of physical vari-

ables, typically the lower

and upper power supply

voltages.

Compute with discrete

values of physical vari-

ables, typically with the

delay encoded in the rising

edges between the power

supply voltages
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2

Primitives of computation

arise from the physics

of the computing devices:

physical relations of tran-

sistors, capacitors, resis-

tors, floating-gate devices,

Kirchoffs current and volt-

age laws and so forth. The

use of these primitives is

an art form and does not

lend itself easily to au-

tomation. The amount of

computation squeezed out

of a single transistor is

high.

Primitives of computation

arise from the mathemat-

ics of boolean logic: log-

ical relations like AND,

OR, NOT, NAND, and

XOR. The use of these

primitives is a science and

lends itself easily to au-

tomation. The transistor

is used as a switch, and

the amount of computa-

tion squeezed out of a sin-

gle transistor is low.

Primitives of computation

arise from the physics

of the computing devices

such as delay stacking

for addition and choos-

ing the first/last arriving

edges hence implement-

ing MIN/MAX functions

using OR/AND boolean

primitives. Each time the

output of OR/AND gate

goes high, it represents the

optimal shortest path till

that node. Computation

squeezed out from each

gate is high.

3

One wire represents many

bits of information at a

given time.

One wire represents 1 bit

of information at a given

time.

One wire represents many

bits of information at a

given time.
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4

Computation is offset

prone since it is sensitive

to mismatches in the

parameters of the physical

devices. The degradation

in performance is graceful.

Noise is due to thermal

fluctuations in physical

devices.

Computation is not offset

prone since it is insensi-

tive to mismatches in the

parameters of the physical

devices. However, a sin-

gle bit error can result in

catastrophic failure. Noise

is due to round-off error.

Computation is sensitive

to process and mismatch

variations and switching

current injection. Circuit

and architectural tech-

niques can be used to

greatly reduce their ef-

fect. Variation study

shows that performance

degradation is graceful

5

In a cascade of analog

stages, noise starts to ac-

cumulate. Thus, complex

systems with many stages

are difficult to build.

Round-off error does not

accumulate significantly

for many computations.

Thus, complex systems

with many stages are easy

to build.

Assuming Gaussian noise

distribution on delay ele-

ments, the fractional devi-

ation of the noise with re-

spect to the value of the

signal decreases, but gets

biased based on the choice

of OR/AND gates. 50

long cascade stage works

within 3% error demon-

strated.

We should be clear that we do not believe Race Logic is any sort of replace-

ment for traditional design practices in general purpose logic. Rather it is a
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new type of data encoding / representation with the opportunity to play a role

in improving the energy efficiency or speedup of specific information processing

algorithms. Though the sample problem chosen was that of DNA sequence align-

ment, we have seen that string matching, time warping, scan-line matching are

all different monikers for this dynamic programming based formula for solving

similarity based optimization problems. Just as multiplication and division oper-

ations, which traditionally require complex hardware for binary encoding schemes,

can be simplified to addition and subtraction with logarithmic number systems, a

delay encoding transforms other problems, such as MIN-MAX, into a far easier to

compute space. Of course in both examples there will be many other relationships

that are then harder to calculate.

At this point we have proof that some useful computations can be done in this

new space but many open questions remain. What other sorts of other computa-

tions can be efficiently solved with races? What are the limits to the expressiveness

of a Race Logic? Are other timing-based encoding schemes possible? What are

the best ways to efficiently implement the expressive and programmable delay

elements? While these, and many other, questions remain, we do at least know

now that compositions of the MIN, MAX, and ADDBY-CONSTANT primitives

provided by this work are sufficient (with the proper routing of values) to solve

an important class of bio-informatics similarity problems.
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As our field searches for ways to continue to turn transistors into value without

having to toggle those transistors and have them consume power, Race Logic

points in an interesting and little explored new direction with the potential to

outperform traditional designs by a significant degree.
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