
University of California
Santa Barbara

Regularization and Look-Ahead Procedures for

Selection of Basis Functions from Multiple Libraries

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Statistics

by

Ling Zhu

Committee in charge:

Professor Yuedong Wang, Chair
Professor Wendy Meiring
Professor John Hsu

March 2017

The Dissertation of Ling Zhu is approved.

Professor Wendy Meiring

Professor John Hsu

Professor Yuedong Wang, Committee Chair

March 2017

Regularization and Look-Ahead Procedures for Selection of Basis Functions from

Multiple Libraries

Copyright c© 2017

by

Ling Zhu

iii

I want to dedicate this work to my parents,

for their unwavering love and encouragement.

iv

Acknowledgements

First and foremost, I would like to express my most sincere gratitude to my advisor,

Professor Yuedong Wang. His dedication to teaching and statistical research has con-

stantly inspired me during my graduate study. I am very grateful for all the knowledge

I gained from attending the excellent classes he has offered. His patient guidance and

valuable insight have helped me conquer numerous obstacles in my research and made

the work presented in dissertation possible. I would also like to thank my committee

members, Professor Wendy Meiring and Professor John Hsu, who gave me great encour-

agement and advice. I am indebted to Professor Meiring for her tremendous help in

improving the accuracy of my writing, as well as her expert opinions regarding the real

application of my methodology.

My deep appreciation also goes to all other faculty members, staff, and colleagues in

the Statistics department. Together you have created a nourishing and friendly academic

environment that helped me grow. I will cherish every moment I spent in the research

seminars and every conversation I had with my colleagues regarding research and life.

We always had support for each other and thanks to you my time at UC Santa Barbara

was absolutely wonderful.

Finally, I want to thank my parents, Jianxun Zhu and Hongmei Cai, for their un-

conditional love and support. Their unwavering encouragement gave me strength and

confidence. I owe everything to them.

v

Curriculum Vitæ
Ling Zhu

Education

2016 Doctor of Philosophy in Statistics and Applied Probability, Depart-
ment of Statistics and Applied Probability, University of California,
Santa Barbara.

2010 Master of Arts in Economics, Department of Economics, University
of California, Santa Barbara.

2009 Bachelor of Arts in Economics, Zhejiang Gongshang University,
Hangzhou, China.

Education

2012-2016 Teaching Assistant, Department of Statistics and Applied Prob-
ability, University of California, Santa Barbara.

2013 Research Intern, EdLab, Teachers College, Columbia University,
New York, New York.

2011 Readership Assistant, Department of Statistics and Applied Prob-
ability, University of California, Santa Barbara.

vi

Abstract

Regularization and Look-Ahead Procedures for Selection of Basis Functions from

Multiple Libraries

by

Ling Zhu

Basis Selection from Multiple Libraries (BSML) procedure was proposed by Sklar

et al. (2013) to estimate spatially inhomogeneous functions with linear combinations of

basis functions that are adaptively selected from multiple libraries. This methodology

proves to be successful but suffers from certain drawbacks. First, the BSML procedures

utilize the generalized degrees of freedom (GDF) to measure the complexity of a modeling

procedure. This approach can be computationally demanding, since the GDF needs to be

estimated at every step of the forward selection process. Another drawback of the BSML

procedures is its greedy nature when searching for basis functions. At each forward

selection step, the BSML procedures search for only one basis function to add to the

current model.

We first propose two procedures called Adaptive LASSO Basis Selection (ALBS) and

its modified version ALBS-2 to address the first drawback. The idea is to penalize the

bases differently based on their induced reductions of RSS and the libraries they are from.

This regularization approach shows no clear advantages over the BSML procedures in

terms of performance according to our simulations.

We then propose the look-ahead procedure (LAP) to address both drawbacks of the

BSML procedures. LAP avoids the estimation of GDF by treating the inflated degrees

of freedom (IDF) of each library as tuning parameters, and then estimate them using

cross validation. Moreover, LAP adopts less greedy search rules in the forward selection

vii

so that either one or a pair of basis functions can be added to the current model after

each iteration. Extensive simulations show that the LAP can outperform the BSML pro-

cedures and other widely-used modeling procedures both in terms of computation speed

and mean squared error. Interesting real data applications in geology and meteorology

using the look-ahead procedure are also provided.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Nonparametric Regression with Splines 1
1.2 Smoothing Spline ANOVA . 7
1.3 COmponent Selection and Smoothing Operator 9
1.4 LASSO and Adaptive LASSO . 11
1.5 Hybrid Adaptive Spline . 14
1.6 Multivariate Adaptive Regression Splines 16
1.7 Generalized Degrees of Freedom and Covariance Penalty 20
1.8 The BSML Procedure . 25

2 Basis Selection from Multiple Libraries Using Adaptive LASSO 33
2.1 Adaptive LASSO Basis Selection . 33
2.2 Simulations to Compare ALBS, BSML, and HAS 36
2.3 Adaptive LASSO Basis Selection with Estimated IDF 41
2.4 Simulations to Compare ALBS-2, BSML, and HAS 42

3 Look-Ahead Procedure 46
3.1 Problems With Greedy Search . 46
3.2 Forward Selection In the Look-Ahead Procedure with Fixed IDFs 48
3.3 Forward Selection Via Householder Transformation 52
3.4 Forward Selection In the Look-Ahead Procedure with IDFs as Tuning

Parameters . 70
3.5 Selection of IDFs . 82
3.6 The Whole Look-Ahead Procedure . 84
3.7 Bootstrap Confidence Intervals . 87
3.8 R Functions for the Look-Ahead Procedure 91

ix

4 Simulations 98
4.1 Estimation of Univariate Functions . 98
4.2 Bootstrap Confidence Intervals . 112
4.3 Estimation of Multivariate Functions . 118
4.4 Three Other Examples . 131

5 Applications 140
5.1 Well Log . 140
5.2 Ozone Pressure . 146

x

Chapter 1

Introduction

1.1 Nonparametric Regression with Splines

Consider the following univariate nonparametric regression problem:

yi = f(xi) + εi, i = 1, . . . , n, (1.1)

where yi and xi are the ith observation of the response variable Y and independent

variable X respectively, εi’s are random errors with mean zero and variance σ2, and f

is the regression function to be estimated on the domain X = [0, 1]. We do not assume

f to have a predetermined form. Instead, we only require f to have certain qualitative

properties, such as smoothness, and let data decide the form of f . Thus, the model

considered in (1.1) is nonparametric. There are two basic spline methods that can be

used to estimate f : regression spline and smoothing spline.

1

Introduction Chapter 1

1.1.1 Regression Spline

The regression spline model assumes that f can by well-approximated by either poly-

nomial spline, or natural polynomial spline. Let πr = {f : f(x) = β0 +β1x+β2x
2 + · · ·+

βr−1x
r−1} be the collection of polynomials of order r, and Cr be the set of functions such

that their r-th derivatives are continuous at each x. Then a polynomial spline f of order

r with interior knots t = (t1, . . . , tk), where 0 = t0 < t1 < · · · < tk < tk+1 = 1, satisfies:

(i) f(x) ∈ πr, for x ∈ [ti, ti+1], i = 0, . . . , k.

(ii) f ∈ Cr−2, and its (r − 1)-st derivative is a step function with jumps at the knots.

We denote the collection of all such polynomial splines of order r with interior knots t as

Sr(t). For f to be a natural polynomial spline, it has to satisfy an additional condition:

(iii) When r = 2m, f(x) ∈ πm for x ∈ [0, t1] and x ∈ [tk, 1].

This translates to the boundary conditions on the natural splines: f (j)(0) = f (j)(1) = 0,

for j = m, . . . , 2m− 1, where f (j) is the jth derivative of f . We denote the collection of

all such natural splines of order 2m with interior knots t as NS2m(t).

The space Sr(t) is spanned by r+k basis functions: {1, x, · · · , xr−1, (x−t1)r−1
+ , · · · , (x−

tk)
r−1
+ }, so for any f ∈ Sr(t), it can be uniquely represented by

f(x) =
r−1∑
j=0

θjx
j +

k∑
j=1

δj(x− tj)r−1
+ . (1.2)

Let Xt be the n× (r+ k) design matrix with the basis functions of Sr(t) as its columns,

where the ith row corresponds to the r + k basis functions evaluated at observation

location xi for i = 1, . . . , n. Then (1.1) can be written as:

y = Xt βt + ε, (1.3)

2

Introduction Chapter 1

where y = (y1, . . . , yn)′, ε = (ε1, . . . , εn)′, and βt = (θ0, . . . , θr−1, δ1, . . . , δk)
′. The esti-

mate of βt that minimizes the residual sum of squares RSS(t) = (y−Xt βt)
′(y−Xt βt)

is:

β̂t = (X ′tXt)
−1X ′t y. (1.4)

The solution in (1.4) is for fixed knots t = (t1, . . . , tk). However, both the number and

the locations of the knots in t should be treated as tuning parameters. Some ad hoc

rules are available for selecting t adaptively (See Eubank (1999)). The generalized cross

validation (GCV) criterion can also be used to select both the knot locations and number

of interior knots (k):

GCV(t) =
RSS(t)(

n− (r + k)
)2 , (1.5)

where r+ k is the total number of basis functions. The tuning parameter t̂ is selected to

minimize the GCV in (1.5).

The scenario is similar when we assume f ∈ NS2m(t). It is obvious that NS2m(t) ⊂

S2m(t) since a natural spline has to satisfy the boundary condition (iii) as well. Because

there are a total of 2m such boundary constraints, the dimension of NS2m(t) is r + k −

2m = k, i.e., NS2m(t) is spanned by only k basis functions. Any f ∈ NS2m(t) can be

represented by

f(x) =
m−1∑
j=0

θjx
j +

k∑
j=1

δj(x− tj)2m−1
+ . (1.6)

1.1.2 Smoothing Spline

The smoothing spline model assumes f to be in certain functional space, such as the

Sobolev space Wm
2 [0, 1]:

Wm
2 [0, 1] =

{
f : f, f (1), · · · , f (m−1) are absolutely continuous ,

∫ 1

0

(
f (m)(x)

)2
dx <∞

}
.

(1.7)

3

Introduction Chapter 1

Then f is estimated by solving the following penalized least square (PLS) problem:

f̂λ = argmin
f∈Wm

2 [0,1]

1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

(
f (m)(x)

)2
dx, (1.8)

where λ is the tuning parameter that balances the trade-off between the goodness of fit

and the smoothness of f̂λ. Assuming the design points are distinct, then for a fixed λ,

the solution f̂λ belongs to NS2m(x1, . . . , xn) (See Eubank (1999)). When λ = 0, f̂λ is a

natural spline that interpolates the data, since there is no penalty on the roughness of f̂λ.

On the other hand, when λ = ∞, f̂λ becomes an m-th order polynomial. A commonly

used criterion for selecting the smoothing parameter λ is the GCV (See Craven and

Wahba (1978)). Let f̂λ =
(
f̂λ(x1), . . . , f̂λ(xn)

)′
, and P λ be the hat matrix that satisfies

f̂λ = P λ y, then the GCV criterion is defined as

GCV(λ) =
1
n

∑n
i=1

(
yi − f̂λ(xi)

)2[
1
n
tr
(
I − P λ

)]2 , (1.9)

where I is the n× n identity matrix, and tr(·) returns the trace of a matrix. The GCV

estimate of λ is the minimizer of GCV(λ). Other criteria such as the unbiased risk (UBR)

criterion and generalized maximum likelihood (GML) criterion can also be used to select

λ (see Wahba (1990)).

The Sobolev space Wm
2 [0, 1] is an example of a reproducing kernel Hilbert space

(RKHS), where a reproducing kernel (RK) R(x, ·) is defined. More generally, let H be

a RKHS with the domain X , where X is an arbitrary set, then R(x, ·) is in H with the

reproducing property:

〈R(x, ·), f〉 = f(x) (1.10)

for any x ∈ X and f ∈ H, where 〈·, ·〉 is the inner product on H. R(x, ·) is symmetric

and non-negative definite. Meanwhile, it has other nice properties. For example, given

4

Introduction Chapter 1

the tensor sum deposition H = H0 ⊕H1, we have R = R0 +R1 where R,R0, and R1 are

the RK’s of H,H0, and H1 respectively.

We take the Sobolev space Wm
2 [0, 1] as an example (Wang (2011)). Define the repro-

ducing kernel as Rm(x, z) =
∑m

ν=0 kν(x)kν(z) + (−1)m−1k2m(|x − z|) for x, z ∈ [0, 1],

where kr(x) = Br(x)/r! are the scaled rth Bernoulli polynomials, with B0(x) = 1,

B′r(x) = rBr−1(x), and
∫ 1

0
Br(x)dx = 0 for r = 0, 1, 2, The first five scaled Bernoulli

polynomials are given below.

k0(x) = 1,

k1(x) = x− 0.5,

k2(x) =
1

2

[
k2

1(x)− 1

12

]
,

k3(x) =
1

6

[
k3

1(x)− 1

4
k1(x)

]
,

k4(x) =
1

24

[
k4

1(x)− 1

2
k2

1(x) +
7

240

]
.

(1.11)

Then for the tensor sum decomposition Wm
2 [0, 1] = H0 ⊕H1, where

H0 = span
{
k0(x), k1(x), . . . , km−1(x)

}
, (1.12)

H1 =

{
f :

∫ 1

0

f (ν)(x)dx = 0, ν = 0, . . . ,m− 1,

∫ 1

0

(
f (m)(x)

)2
dx <∞

}
, (1.13)

their corresponding RKs are:

R0(x, z) =
m−1∑
ν=0

kν(x)kν(z), (1.14)

R1(x, z) = km(x)km(z) + (−1)m−1k2m(|x− z|), (1.15)

5

Introduction Chapter 1

under the corresponding inner products:

〈f, g〉0 =
m−1∑
ν=0

∫ 1

0

f (ν)(x)dx

∫ 1

0

g(ν)(x)dx, (1.16)

〈f, g〉1 =

∫ 1

0

f (m)(x)g(m)(x)dx. (1.17)

Thus, the penalty term
∫ 1

0

(
f (m)(x)

)2
dx in the objective function (1.8) is the same as

‖P1f‖2, where P1 is the projection of Wm
2 [0, 1] onto H1. Let {φ1(x), . . . , φm(x)} be the

basis of H0, where φν(x) = kν−1(x), for ν = 1, . . . ,m. Also, define the representers as

ξi(x) = R1(x, xi) for i = 1, . . . , n. Then the Kimeldorf–Wahba representer theorem states

that the minimizer f̂λ in (1.8) has the representation

f̂λ(x) =
m∑
ν=1

dνφν(x) +
n∑
i=1

ciξi(x). (1.18)

Based on (1.18), the solution in (1.8) can be written as

f̂λ = Td+ Σc, (1.19)

where T =
{
φν(xi)

}n
i=1

m

ν=1
, Σ =

{
R1(xi, xj)

}n
i,j=1

, d = (d1, . . . , dm)′, c = (c1, . . . , cn)′,

f̂λ =
(
f̂λ(x1), . . . , f̂λ(xn)

)′
. Thus, the minimization problem in (1.8) is equivalent to:

argmin
c,d

1

n
‖y − (Td+ Σc)‖2 + λc′Σc. (1.20)

The coefficient vectors d and c in (1.20) can be determined by solving the following

6

Introduction Chapter 1

equations:

(Σ + nλI)c+ Td = y,

T ′c = 0.

(1.21)

1.2 Smoothing Spline ANOVA

Now consider the multivariate nonparametric regression problem:

yi = f(xi) + εi, i = 1, . . . , n, (1.22)

where xi = (xi1, . . . , xid) is the vector of values of d explanatory variables for observation

yi with x1 ∈ X1, . . . , xd ∈ Xd, the independent random errors ε = (ε1, . . . , εn) have mean

0 and constant variance σ2, and f is defined on the product domain X = X1×X2×· · ·×Xd.

The domains X1, . . . ,Xd are arbitrary sets. Let H(k) be the RKHS on Xk with the RK

R(k), then there exists a RHKS H on X , whose RK equals

R(x, z) = R(1)(x1, z1)R(2)(x2, z2) · · ·R(d)(xd, zd), (1.23)

where x = (x1, . . . , xd) ∈ X and z = (z1, . . . , zd) ∈ X . This H is called the tensor

product RKHS, and is denoted as H = H(1) ⊗H(2) ⊗ · · · ⊗ H(d). Then, given the tensor

sum decomposition of each marginal space H(k) = H(k)
0 ⊕H

(k)
1 with H(k)

0 = span{1}, we

have

H =
d⊗

k=1

H(k)

7

Introduction Chapter 1

=
d⊗

k=1

(
H(k)

0 ⊕H
(k)
1

)
=

⊕
B⊆{1,...,d}

{(⊗
k∈B

H(k)
1

)
⊗
(⊗
k∈Bc

H(k)
0

)}

=
⊕

B⊆{1,...,d}

HB

= H∅ ⊕
d∑

k=1

H{k} ⊕
∑
k<`

H{k,`} ⊕ · · · ⊕ H{1,...,d}, (1.24)

where H∅ =
⊗d

k=1H
(k)
0 . Therefore, for f ∈ H, it can be decomposed accordingly:

f = µ+
d∑

k=1

fk(xk) +
∑
k<`

fk,`(xk, x`) + · · ·+ f1,...,d(x1, . . . , xd), (1.25)

where µ ∈ H∅ is the overall mean, fk(xk) ∈ H{k} is the main effect of xk, fk,`(xk, x`) ∈

H{k,`} is the two-way interaction between xk and x`, and so on. Because the similarity

to the classical ANOVA model, (1.25) is called the SS-ANOVA decomposition.

In practice, spaces containing high-order interactions are usually omitted to overcome

the curse of dimensionality problem. For example, if we assume f ∈ H∅⊕
∑d

k=1H{k}, i.e.,

no interactions are considered, then we have the additive model (Hastie and Tibshirani

(1990)). An SS-ANOVA model is referred to a model that contains any subset of the

components in the SS-ANOVA decomposition. After regrouping terms, the model space

of an SS-ANOVA model can be written as

Q = H0 ⊕H1 ⊕ · · · ⊕ Hq, (1.26)

where H0 contains all functional components that are not penalized, and H1, . . . ,Hq are

orthogonal RKHS’s with RK Rj for j = 1, . . . , q. Then for each λ = (λ1, . . . , λq)
′, the

8

Introduction Chapter 1

estimate f̂λ in the SS-ANOVA model is

f̂λ = argmin
f∈Q

(
1

n

n∑
i=1

(
yi − f(xi)

)2
+

q∑
j=1

λj‖Pjf‖2

)
, (1.27)

where each Hj has its own smoothing parameter λj, and Pj is the orthogonal projector

in Q onto Hj. Let H∗1 = H1 ⊕ · · · ⊕ Hq, then for f ∈ H∗1, we have f(x) =
∑q

j=1 fj(x)

where fj ∈ Hj for j = 1, . . . , q. After the reparameterization λj , λ/θj, the minimization

problem in (1.27) is equivalent to

f̂λ,θ = argmin
f∈Q

(
1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ‖P ∗1 f‖2

∗

)
, (1.28)

where θ = (θ1, . . . , θq)
′, P ∗1 =

∑q
j=1 Pj is the orthogonal projector in Q onto H∗1, and H∗1

is the RKHS with the RK R∗1 =
∑q

j=1 θjR
j and inner product 〈f, g〉∗ =

∑q
j=1 θ

−1
j 〈fj, gj〉.

Because (1.28) has the same form as (1.8), the same technique can be used to solve

f̂λ,θ for fixed λ and θ. The solution f̂λ,θ has a similar representation to (1.18), by the

Kimeldorf–Wahba representer theorem:

f̂λ,θ(x) =

p∑
ν=1

dνφν(x) +
n∑
i=1

ci

q∑
j=1

θjR
j(x,xi), (1.29)

where {φ1, . . . , φp} is the basis of H0. Again, criteria like GCV can be used to select the

tuning parameters λ and θ. See Gu (2013b) and Wang (2011).

1.3 COmponent Selection and Smoothing Operator

For the SS ANOVA model, we can see that the representation in (1.29) contains the

representers from each Hj for j = 1, . . . , q. Often it is necessary to perform variable selec-

tion and leave out some SS-ANOVA components because the corresponding variables are

9

Introduction Chapter 1

not important. This is the motivation behind the COmponent Selection and Smoothing

Operator (COSSO) method proposed in Lin and Zhang (2006).

Consider the same tensor product decomposition in (1.24), where each marginal space

H(k) is decomposed into {1}⊕H(k)
1 . Then for the model space Q in (1.26), the null space

is H0 = span{1}. The COSSO procedure estimates f ∈ Q using

f̂τ = argmin
f∈Q

1

n

n∑
i=1

(
yi − f(xi)

)2
+ τ 2

q∑
j=1

‖Pjf‖, (1.30)

where τ is the tuning parameter. The constant is the only term not penalized. Paramet-

ric components such as low order polynomials are also adaptively selected in COSSO.

Comparing (1.30) with the SS-ANOVA estimate in (1.27), we can see there are two d-

ifferences. First, there is only one tuning parameter in (1.30), whereas in (1.27) there

are q of them, one for each Hj. Second, the penalty term in (1.30) is the sum of RKHS

norms, but in (1.27) the sum of squared RKHS norms is used instead. The reason that

the penalty ‖Pjf‖ is employed in COSSO is to induce sparsity of the SS-ANOVA com-

ponents, similar to the L1 penalty used in the LASSO model (see next section). Indeed,

the LASSO is a special case of COSSO when the linear models are considered.

Instead of solving (1.30) directly, the COSSO procedure uses the following equivalent

formulation:

f̂λ = argmin
f∈Q

1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ0

q∑
j=1

θ−1
j ‖Pjf‖2 + λ

q∑
j=1

θj, (1.31)

where θj ≥ 0 for j = 1, . . . , q, λ0 is a constant, and λ is now the tuning parameter.

The advantage of using (1.31) is that it is very similar to the SS-ANOVA formulation

in (1.27), except there is an extra penalty on the θj’s to induce the sparsity of the

components fj’s. When θj’s are fixed, (1.31) is exactly the same minimization problem

10

Introduction Chapter 1

as in the SS-ANOVA model. Thus, the COSSO algorithm first initializes θj = 1 for

j = 1, . . . , q, and obtains the SS-ANOVA estimate of f with λ0 tuned by using either CV

or GCV criterion. Denoting this estimate as f̂SS, then it has similar representation as in

(1.29):

f̂SS = d̂1n + Σθĉ, (1.32)

where 1n is the column vector consisting of n 1’s, ĉ = (ĉ1, . . . , ĉn)′, Σθ =
∑q

k=1 θkΣk with

Σk =
{
Rk(xi, xj)

}n
i,j=1

, f̂SS =
(
f̂SS(x1), . . . , f̂SS(xn)

)′
. At the next step, the COSSO

algorithm solves the following non-negative garrote problem to obtain the estimates of

θ = (θ1, . . . , θq)
′ with fixed d̂ and ĉ.

min
θ

(z −Gθ)′(z −Gθ) subject to θj ≥ 0, j = 1, . . . , q;

q∑
j=1

θj ≤M, (1.33)

where z = y − 1
2
nλ0ĉ − d̂1n, G = (Σ1ĉ, . . . ,Σqĉ) is an n × q matrix, and the tuning

parameter M is selected by CV or GCV criterion. Denote the the estimate of θ as

θ̂. Then at the final step, the COSSO algorithm solves (1.31) again with fixed θ = θ̂,

to obtain the final estimate f̂ θ̂. Lin and Zhang (2006) implemented the COSSO using

H(k) = W 2
2 [0, 1] for k = 1, . . . , d.

1.4 LASSO and Adaptive LASSO

1.4.1 Least Absolute Shrinkage and Selection Operator (LASSO)

Consider the same regression problem as in (1.22) with f(xi) =
∑d

j=1 xijβj and

X = Rd. Also assume xij are standardized so that
∑n

i=1 xij/n = 0 and
∑n

i=1 x
2
ij = 1.

Let β = (β1, . . . , βd)
′ be the coefficients vector. Then the LASSO estimate of β is the

11

Introduction Chapter 1

solution to the following L1-penalized regression problem:

β̂
lasso
λ = argmin

β

(
1

2

n∑
i=1

(
yi −

d∑
j=1

xijβj

)2

+ λ

d∑
j=1

|βj|

)
, (1.34)

where λ is the tuning parameter that controls the shrinkage of all the coefficients. As λ

increases, LASSO continuously shrinks the coefficients towards zero, and some coefficients

are shrunk to exact zero when λ is sufficiently large. The solution in (1.34) has closed

form only for some special cases. For example, when there is a single predictor, i.e.,

d = 1, the LASSO solution is a soft-thresholded version of the least square estimate β̂ols:

β̂lasso
λ = S(β̂ols, λ) , sign(β̂ols)(|β̂ols| − λ)+

=


β̂ols − λ, if β̂ols > 0 and λ < |β̂ols|,

β̂ols + λ, if β̂ols < 0 and λ < |β̂ols|,

0, if λ ≥ |β̂ols|,

(1.35)

where the least square estimate is β̂ols =
∑n

i=1 xiyi. With multiple predictors, if they

are uncorrelated, or equivalently when the design matrix is orthonormal, i.e., X ′X = I,

then once again the LASSO estimate of each βj is the soft-thresholded version of the least

square estimate β̂ols
j . For the special case in (1.35), we can see the continuous shrinkage

nature of the LASSO estimator, which helps to improve the prediction accuracy due to

the bias-variance trade-off. This trade-off is controlled by λ. By allowing small increase

in the bias in exchange of substantial decrease in the variance when estimating β, the

prediction error can be reduced substantially.

The pathwise coordinate descent algorithm proposed in Friedman et al. (2007) can

be used to efficiently solve (1.34). The idea is to repeatedly apply soft-thresholding with

a “partial residual” as a response variable. We can rewrite the right hand side of (1.34)

12

Introduction Chapter 1

as:

g(β̃) =
1

2

n∑
i=1

(
yi −

∑
k 6=j

xikβ̃k − xijβj
)2

+ λ
∑
k 6=j

|β̃k|+ λ|βj|, (1.36)

where all the values of βk for k 6= j are fixed at prior iterations’ values β̃k(λ), and we

update the estimate of a single coefficient βj by minimizing (1.36). Based on the solution

in (1.35), it is clear that we get

β̃j(λ)← S

(
n∑
i=1

xij
(
yi − ỹ(j)

i

)
, λ

)
, (1.37)

where ỹ
(j)
i =

∑
k 6=j xikβ̃k. The update (1.37) is repeated for j = 1, 2, . . . , d, 1, 2, . . . until

convergence. The pathwise coordinate descent algorithm returns the LASSO solution for

any fixed λ. To tune λ, a criterion such as GCV can be used.

1.4.2 Adaptive LASSO

To evaluate the performance of a variable selection procedure, Fan and Li (2001)

proposed the oracle properties. The properties have two parts: one is the consistency of

variable selection, i.e., a procedure can correctly identify the true nonzero coefficients;

the other is the optimal root-n estimation rate of these true nonzero coefficients. Zou

(2006) has shown that the LASSO does not always satisfy the oracle properties, and thus

proposed a new procedure called the adaptive LASSO to achieve oracle properties.

The idea of the adaptive LASSO is to penalize the coefficients differently by assigning

different weights to them. The adaptive LASSO estimator, β̂
AL

, can be obtained by

solving the following L1-penalized regression problem:

β̂
AL
λ = argmin

β

1

2

n∑
i=1

(
yi −

d∑
j=1

xijβj

)2

+ λ

d∑
j=1

ŵj|βj|

 , (1.38)

13

Introduction Chapter 1

where ŵ = (ŵ1, . . . , ŵd)
′ is a data-dependent weights vector defined as ŵ = 1/|β̂|γ, for a

root-n-consistent estimator β̂ to β, and a positive γ. Usually we use ŵ = 1/|β̂ols|γ.

The algorithm for obtaining adaptive LASSO estimates in (1.38) is simply based on

the LASSO algorithm:

The Adaptive LASSO Algorithm

1. Let x∗ij = xij/ŵj, for i = 1, . . . , n, j = 1, . . . , d, where ŵj = 1/|β̂ols
j |γ for fixed

γ.

2. Solve the LASSO problem for fixed λ:

β̂
∗

= argmin
β

1

2

n∑
i=1

(
yi −

d∑
j=1

x∗ijβj

)2

+ λ
d∑
j=1

|βj|. (1.39)

3. The adaptive LASSO estimates for fixed λ and γ are:

β̂AL
j = β̂∗j /ŵj, j = 1, . . . , d. (1.40)

The adaptive LASSO has two tuning parameters: λ and γ. To find an optimal pair of

(λ, γ), a method such as cross-validation can be used.

1.5 Hybrid Adaptive Spline

The smoothing spline, smoothing spline ANOVA, and COSSO are regularization ap-

proaches. They assume f is in certain model space, and then each solve a regularized

least square problem by penalizing the model complexity. In contrast, the regression

spline is a basis approximation approach. It starts with representing f in terms of basis

functions, such as in (1.2), and then selects the optimal number and types of basis accord-

14

Introduction Chapter 1

ing to certain model selection criterion. The hybrid adaptive spline (HAS) is proposed in

Luo and Wahba (1997), and it can also be classified as a basis approximation (pursuit)

approach. It is called “hybrid” because it is similar to the regression spline, but with

smoothing spline representers as basis functions.

When f ∈ Wm
2 [0, 1], the smoothing spline estimator of f has the representation in

(1.18), which is a linear combination of the basis in H0 and the representers in H1.

The HAS idea is to select only k representers adaptively among R1 = {ξ1(x), . . . , ξn(x)}

to approximate f . This is useful especially when the underlying function is spatially

inhomogeneous. The tuning parameter k controls the model complexity, and can be

selected using the GCV criterion. Luo and Wahba (1997) presented the HAS procedure

only for the m = 2 case, but the procedure is similar for general m, which is presented

as follows.

The HAS procedure

1. Initialization: Set Bm = {φ1(x), . . . , φm(x)} and let M be an upper bound on

the number of basis functions to be selected (including those in Bm).

2. Forward Selection: For k = m + 1, . . . ,M , select ξjk among the representers

that have not yet been selected, to maximize the reduction of RSS:

ξjk = argmax
ξ ∈ R1 ∩ Bck−1

{
RSS

(
Bk−1

)
− RSS

(
Bk−1 ∪ {ξ}

)}
, (1.41)

where Bk−1 is the set that contains all the basis functions in Bm and the (k −

1−m) representers that have been selected in prior steps, RSS(B) is the RSS

of the ordinary least squares fit of the model with all the basis functions in B

as covariates. Update Bk = Bk−1 ∪ {ξjk}.

15

Introduction Chapter 1

3. Elimination: Select k∗, m ≤ k∗ ≤M , to minimize the GCV criterion:

GCV(k) =
RSS(Bk)[

n− (m+ (k −m)× IDF)
]2 , (1.42)

where IDF is the inflated degrees of freedom.

4. Final Model: Fit an model with ordinary least squares or ridge regression

method using the basis functions contained in Bk∗ .

In the calculation of GCV in (1.42), the degrees of freedom of each adaptively selected

representers are inflated by a factor of IDF (hence the name inflated degrees of freedom)

to account for the adaptive model selection process. Based on simulations, the authors

suggested that 1.2 is a good choice for the IDF in HAS, when m = 2. A larger IDF may

cause fewer basis functions to be selected in the final model. One potential drawback of

the HAS procedure is due to this ad hoc choice of IDF. We will delay the discussions of

the IDF until Section 1.7. Another drawback of HAS comes from the fact that it uses

only one type of basis functions — the smoothing spline representers — in the forward

selection. These two drawbacks are the main motivations for the BSML procedure, which

we will discuss in Section 1.8. In addition, the search procedure in HAS is greedy which

may be trapped to a local optima. We will propose a look-ahead search procedure in

Chapter 3 to alleviate this drawback.

1.6 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is another basis approximation

approach that was proposed in Friedman (1991). It assumes that f is a linear combination

of tensor products of univariate linear spline basis functions.

Consider the same regression problem as in (1.22) with X = Rd, and a point X ∈ X
16

Introduction Chapter 1

is written as X = (X1, . . . , Xd). Let T1 be the collection of pairs of truncated linear

functions:

T1 =
{

(Xj − t)+, (t−Xj)+

}
t∈{x1j ,x2j ,...,xnj}
j=1,2,...,d.

, (1.43)

where the knot t is one of the observed values of the jth explanatory variable Xj, and

Xj ranges over (−∞,∞). If all the observed values of the jth explanatory variable are

distinct for each j ∈ {1, . . . , d}, then there are 2dn basis functions in T1. Note that

each basis h(X) = (Xj − t)+ is considered as a function in the entire input space Rd,

although it only depends on a single variable Xj. MARS assumes f has the following

representation:

f(X) = β0 +
M∑
m=1

βmhm(X), (1.44)

where hm(X) is either a function in T1 or a product of two or more such functions,

and M controls the complexity of f and is user-specified. The advantage of using linear

splines in T1 as building blocks is that now hm is nonzero only over the small part of the

input space, where all its components are nonzero. This allows the hm basis functions to

operate locally and build up a parsimonious regression surface.

Given the basis functions, the coefficients βm’s are estimated using ordinary least

squares. To construct the set hm’s, MARS first performs forward selection. Starting with

the constant h0(X) = 1, suppose at the kth step the model set is Mk which contains

all the bases selected in the prior steps, then MARS computes the reduction of RSS by

adding toMk the products of each basis inMk with every pair
{

(Xj− t)+, (t−Xj)+

}
in

T1 that has not yet been selected, and then selects the pair that minimizes the reduction

of RSS. The forward selection stops when adding new terms will make the total number

of terms in the model exceed M + 1. A backward deletion procedure is then applied,

deleting the term one by one whose removal causes the smallest increase in RSS, to

produce a sequence of candidate models f̂λ of each size λ. Denote d as the total number

17

Introduction Chapter 1

of terms in the model when the forward selection is completed, where d ≤ M + 1, then

the size λ ∈ {d, d− 1, . . . , 2}. The final model is f̂λ∗ where λ∗ is chosen to minimize the

GCV criterion. Here are the details of the MARS algorithm.

The MARS procedure

1. Initialization: Set B1 = M1 = {1} and k = 1. We use B to denote the set of

basis functions selected in the forward selection, and M to denote the set of

model terms hm’s induced by these basis functions. Let M be the user-specified

maximum number of model terms (does not include the constant term) as in

(1.44).

2. Forward Selection:

while |Mk| < M + 1 do

{
(Xj∗ − t∗)+, (t∗ −Xj∗)+

}
= argmax

(Xj−t)+∈(T1∩Bck)
(t−Xj)+∈(T1∩Bck)

{
RSS(Mk)− RSS

(
Mk ∪

⋃
h`∈Mk

{
(Xj − t)+ · h`(X),

(t−Xj)+ · h`(X)
})}

Update:

Bk+1 = Bk ∪
{

(Xj∗ − t∗)+, (t∗ −Xj∗)+

}
,

Mk+1 =Mk ∪
⋃

h`∈Mk

{
(Xj∗ − t∗)+ · h`(X), (t∗ −Xj∗)+ · h`(X)

}
,

k = k + 1.

end while

3. Backward Elimination: Let Mf be the model set returned from the forward

18

Introduction Chapter 1

selection. Let d = |Mf |. Set M(d) =Mf .

for λ = d, d− 1, . . . , 2 do

ξλ = argmin
ξ ∈M(λ)

{
RSS

(
M(λ) \ {ξ}

)
− RSS(M(λ))

}
.

Set M(λ−1) =M(λ) \ {ξλ}.

end for

Select λ∗, 1 ≤ λ∗ ≤ d, to minimize the GCV criterion:

GCV(λ) =

∑n
i=1(yi − f̂λ(xi))2[

n− (rλ +Kλ × IDF)
]2 , (1.45)

where f̂λ is the ordinary least square fit using the basis functions in M(λ),

rλ is the number of terms in M(λ), Kλ is the number of knots in M(λ), and

IDF is the inflated degrees of freedom. For MARS, Friedman suggested to use

IDF = 3.

4. Final Model: f̂λ∗ .

The advantage of MARS is that it can be easily applied to high-dimensional data.

Also, it allows high-order interactions among the predictor variables, and is very useful

when the true model has a hierarchical structure. However, MARS shares the same

disadvantages as HAS. They both use fixed IDF, single class of basis (linear splines in

MARS), and have a greedy search procedure.

19

Introduction Chapter 1

1.7 Generalized Degrees of Freedom and Covariance

Penalty

1.7.1 Ideas Behind the IDF and GDF

We have seen in Sections 1.5 and 1.6 that the IDF plays an important role in con-

structing the model selection criterion in each of HAS and MARS. The concepts of IDF

and generalized degrees of freedom (GDF) are also crucial in understanding other adap-

tive basis selection procedures such as the BSML procedure (Sklar et al. (2013)) and the

look-ahead procedure discussed later. For example, during the forward selection stage of

the look-ahead procedure, basis functions are selected by taking into account the IDFs

of different libraries. The basis functions are grouped into libraries according to certain

properties, such as the form of the basis function or smoothness of this function. Previous

literature has suggested that it is advantageous to use different IDFs for basis functions

that possess different properties. As mentioned earlier, in the HAS procedure (where

the bases are smoothing spline representers), Luo and Wahba (1997) suggested IDF=1.2;

while for the MARS procedure (which has the truncated linear functions as its basis

functions), Friedman (1991) suggested IDF=3. The potential problem with fixing the

IDF is that even if only one library of basis functions is used, the IDF should change as

more and more bases are selected, because the IDF should depend on both the number of

bases already in the current model, and how well this model fits the data. Therefore, it is

restrictive to fix the IDF for each library throughout the searching process. In addition,

the choices of IDF in HAS and MARS are ad hoc. The IDF should be chosen adaptively

based on the data. For a particular data set, the degrees of freedom of certain basis

functions should be inflated less (making them easier to select) compared to the others,

when they possess key properties that lead to better approximation of the true function.

20

Introduction Chapter 1

However, the situation may change completely for another data set with a different true

function. Therefore, the estimation of the IDFs should be data-driven and adaptive.

This is also the idea behind the BSML procedure which estimates IDF values based on

an estimate of generalized degrees of freedom.

Generalized degrees of freedom (GDF) was proposed in Ye (1998) for Gaussian data,

where it was defined as the the sum of the sensitivities of the fitted values to perturbations

in the response. Here we summarize Ye’s approach. Let y = (y1, . . . , yn)′ be the observed

values of a response variable Y , f =
(
f(x1), . . . , f(xn)

)′
be the values of the true function

at the design points x1, . . . ,xn. The response vector y is assumed to follow a Gaussian

distribution:

y ∼ N(f , σ2I). (1.46)

Also, let f̂ be the estimate of the true function f, and f̂ =
(
f̂(x1), . . . , f̂(xn)

)′
. A

modeling procedure M is defined as the mapping from y to f̂ :

M : y → f̂ . (1.47)

Then the GDF of M is defined as

D(M) ,
n∑
i=1

∂Ef (f̂(xi))

∂f(xi)

=
1

σ2

n∑
i=1

Cov
(
f̂(xi), yi − f(xi)

)
=

1

σ2

n∑
i=1

Cov
(
f̂(xi), yi

)
. (1.48)

GDF provides a good measure of the model complexity and reduces to the regular

degrees of freedom in Gaussian linear regression with given covariates, but its estimation

can be computationally expensive in more complicated models. Ye (1998) proposed the

21

Introduction Chapter 1

Monte Carlo algorithm to estimate the GDF when it does not have a known analytical

value. First, T replicates of Gaussian noises δt (called the perturbations) are simulated,

i.e.,

δt = (δt1, . . . , δtn) ∼ N(0, τ 2In), for t = 1, . . . , T, (1.49)

where τ ∈ [0.5σ̂, σ̂] and σ̂ is an estimate of σ. Then the modeling procedureM is applied

using each perturbed response y + δt to obtain the estimate f̂y+δt , for t = 1, . . . , T .

Finally, for fixed xi, for each of i = 1, . . . , n, the sensitivity ĥi is calculated as the

least-squares estimate of slope in the following model

f̂y+δt(xi) = α̂ + ĥiδti, t = 1, . . . , T, (1.50)

and the estimate of GDF is D̂(M) =
∑n

i=1 ĥi. Therefore one needs to fit the model M

T times to compute this estimate of the GDF.

The BSML procedure estimates the GDF of the models at each step while performing

the forward selection. Let D̂(Mk) be the estimated GDF of the modelMk which contains

k basis functions, then the IDF of this model is estimated by

ÎDF(Mk) =
D̂(Mk)−m

k −m
, (1.51)

where the IDFs of the first m bases are fixed at 1.

In the next section, we will explain the relationship between GDF, RSS, and MSE.

22

Introduction Chapter 1

1.7.2 The Relationship Between GDF, RSS, and MSE

Consider model (1.22). Let M be the modeling procedure that leads to an estimate

f̂ . Define the covariance penalty C(M) as

C(M) , E
[
(y − f)′(f̂ − f)

]
=

n∑
i=1

Cov
(
f̂(xi), yi

)
.

Let’s take a closer look at the covariance penalty C(M). In the standard linear regression

setting, conditional on including all of a fixed set of p covariates (analogous to p basis

functions evaluated at n discrete points), the n× p design matrix X is fixed. Hence the

modeling procedure M will only include the model estimation part, since no selection

of the covariates is needed. Let H be the corresponding hat matrix, i.e., ŷ = f̂ = Hy.

Then C(M) has the following explicit form:

C(M) , E
[
(y − f)′(f̂ − f)

]
= E

{
(y − f)′f̂

}
−
(
E(y)− f︸ ︷︷ ︸

=0

)′
f

= E
{

(y − f)′f̂
}

= E
(
ε′Hy

)
= E

(
ε′Hε

)
+ E

(
ε′Hf

)
= tr(H)σ2

= pσ2, (1.52)

where the second-to-last equality is a result of Theorem 1.5 in Seber and Lee (2003).

Hence, the GDF D(M) in this linear regression case can be calculated analytically as:

D(M) =
C(M)

σ2
= p.

23

Introduction Chapter 1

Because D(M) is a function of the number of parameters p in the model, it measures

the model complexity. The IDF for each basis is D(M)/p = 1 here. If, however, the

modeling procedure M also includes the variable (basis) selection part, then the “cost”

of selecting a basis function will typically be greater than 1 1. The actual GDF and IDF

depend on many factors such as the specific modeling procedure M, the true function,

the nature of variables (basis functions), and which variables (basis functions) have been

selected in prior steps. It does not have an explicit form in general.

As shown in Sklar et al. (2013), the expected value of the RSS of an model B can be

decomposed into:

E(RSS) = E
(∥∥f̂ − y∥∥2

)
= E

(∥∥f̂ − f + f − y
∥∥2
)

= E
(∥∥f̂ − f∥∥2

)
+ E

(∥∥f − y∥∥2
)
− 2E

[
(y − f)′(f̂ − f)

]
= MSE + E(ε′ε)− 2C(M)

= MSE + nσ2 − 2C(M).

That is,

MSE = E(RSS) + 2C(M)− nσ2. (1.53)

On the other hand, there is a well-known bias-variance decomposition for the MSE:

MSE = E
(∥∥f − f̂∥∥2

)
= E

(∥∥f − E(f̂) + E(f̂)− f̂
∥∥2
)

=
∥∥f − E(f̂)

∥∥2
+ E

(∥∥f̂ − E(f̂)
∥∥2
)

1For the basis functions that are always included in the model, e.g., the first m basis functions in the
HAS procedure, the IDF will be 1.

24

Introduction Chapter 1

=
∥∥Bias(f̂)

∥∥2
+ tr

(
Var(f̂)

)
, (1.54)

where Bias(f̂) = f−E(f̂), and Var(f̂) is the covariance matrix of f̂ . For the second term

in (1.54), if f̂ is estimated by a modeling procedure M that does not include selection,

then

tr
(
Var(f̂)

)
= E

(∥∥f̂ − E(f̂)
∥∥2
)

= E
(∥∥Hy − E(Hy)

∥∥2
)

= E
(∥∥Hy −HE(y)

∥∥2
)

= E
(∥∥Hy −Hf∥∥2

)
= E

(∥∥Hε∥∥2
)

= E (ε′H ′Hε)

= E (ε′Hε) , since H is idempotent,

= pσ2. (1.55)

We can see that the C(M) in (1.52) is the same as tr
(
Var(f̂)

)
in (1.55) under the

fixed covariates linear regression case. Therefore, (1.53) provides another view of the

bias-variance trade-off. If additional basis functions are included in a model, the RSS

will be smaller, but on the other hand the model’s GDF will increase. An ideal linear

regression model should achieve the balance between the two.

1.8 The BSML Procedure

The BSML procedure was proposed in Sklar et al. (2013). It selects basis functions

adaptively from multiple libraries, where each library consists of basis functions with

25

Introduction Chapter 1

similar forms and properties. Compared to using a single library, the advantage of us-

ing multiple libraries is that only relatively few basis functions need to be selected from

each library to approximate the target function, particularly if the target function is

spatially inhomogeneous and if the basis functions in different libraries capture different

inhomogeneous features found in the true function. There are infinitely many choices of

the libraries. Libraries may be selected from different families including Fourier, spline,

radial, wavelet bases and so on. They may also be selected from different types within a

family. We can have B-splines, truncated polynomials and reproducing kernel represen-

ters for the spline family. Within each type, we can specify different orders of basis, e.g.,

linear or cubic for polynomial splines.

Table 1.1 lists some commonly used libraries of basis functions (Sklar et al. (2013)).

Here Tm are truncated polynomials, and the step functions T0 is a special case with m = 0.

R(1,m) are the polynomial spline representers defined as R(1,m) =
{
{Rm(xi, z1)}ni=1, . . . ,

{Rm(xi, zq)}ni=1

}
where z1, . . . , zq are knots. Rm(xi, zj) is the reproducing kernel defined

in (1.15). For the family P2, the periodic spline reproducing kernel of order-2 is defined

as Rper,2(s, t) =
∑∞

v=1
2

(2πv)4
cos 2πv(s− t) for s, t ∈ [0, 1].

Table 1.1: Notations for libraries of basis functions that will be used in Section 2.2.

Notation Family of Basis Functions

U0 {1}, constant functions

Um {1, x, x2, . . . , xm}, polynomial functions of orders 0, 1, 2, . . . ,m

Cm R(1,m), polynomial spline representers

P2 {Rper,2(zj, x)}, periodic smoothing spline representers of order-2

Tm {(x− z1)m+ , (x− z2)m+ , . . . , (x− zd)m+}, truncated ploynomials

Ff,m {sin(2πfkx), cos(2πfkx) : k = 1, . . . ,m}, Fourier basis functions

The BSML procedure starts with the null library L0, which contains all the basis

functions that will be included in the model automatically. Let m = |L0| and M be the

26

Introduction Chapter 1

pre-specified maximum number of basis functions we want to select (including those in

L0). Basis functions are selected from L additional libraries O = ∪Ll=1Ll one at a time. At

each step k, denote the sequentially selected basis functions as φk for k = m+ 1, . . . ,M.

Let Bk = {φ1, . . . , φk} for k = m, . . . ,M , where Bm = L0. Write “model Bk” for “a linear

combination of the basis functions in Bk”, and alsoMk for the modeling procedure that

includes both basis functions selection and estimation steps.

There are two variations of the BSML procedures in Sklar et al. (2013): BSML-C and

BSML-S. The basic idea of the BSML-S procedure is as follows: at each step k, it first

selects the best basis function from each library Ll for l = 1, . . . , L to form a candidate

set; it then selects the best basis φk among these candidates according to a criterion such

as the DPC in (1.58); finally, it uses either the CIC or GCV criterion defined in (1.60)

and (1.61) respectively, to select the best model Bk∗ , for m ≤ k∗ ≤M .

The BSML-C procdure is a simplified version of BSML-S. At each step k, it selects the

best basis function from the combined non-null libraries O. The final model Bk∗ is chosen

to minimize either the CIC or GCV criterion defined in (1.60) and (1.61) respectively, for

m ≤ k∗ ≤ M . The difference between BSML-C and BSML-S is that BSML-C does not

distinguish between the selection costs of basis functions from different non-null libraries

in the forward selection, so in general it is outperformed by BSML-S.

The crucial quantity used in computing various selection criteria is the GDF (1.48).

In the BSML procedures, the GDF is estimated using the same Monte Carlo method

discussed in Section 1.7.1. As mentioned earlier, GDF is a good measure of model

complexity, but is computationally costly to estimate when an analytical formula is not

known. The BSML-C procedure combines the non-null libraries together, therefore the

GDF estimates that need to be computed are {D̂(Mm+1), . . . , D̂(MM)}, where Mk is

the modeling procedure at the kth step of forward selection. Hence, the Monte Carlo

algorithm is called M −m times in the BSML-C procedure. For the BSML-S procedure,

27

Introduction Chapter 1

however, because it treats different libraries separately, things become more complicated.

Two different types of GDFs are computed. One is the basis selection cost within each

library, denoted as D̂(Mk,l), for l = 1, . . . , L, where Mk,l is the modeling procedure

that selects the basis function ψ
(k)
l,jl

in the lth non-null library given the model Bk−1 and

performs the estimation based on Bk−1∪{ψ(k)
l,jl
}. The other is the average selection cost for

each library, denoted as D̂(M(l)
k), whereM(l)

k is the modeling procedure that selects k−m

additional basis functions {ϕl,jl , j = 1, . . . , k−m} one at a time from library Ll given the

model Bm and performs the estimation based on Bm ∪
(⋃k−m

j=1 {ϕl,jl}
)
. Hence, with the

same upper bound M on the total number of basis functions to be selected, the BSML-S

procedure calls the Monte Carlo algorithm 2L · (M −m) times. If L is large, the BSML-

S procedure becomes very computationally demanding. For this reason, application of

the BSML procedure mainly focuses on the univariate case only, with small number of

libraries.

Here we give the details of the BSML-S procedure. At step k, where k ∈ {m +

1, . . . ,M}, the procedure first selects a basis function ψ
(k)
l,jl

for each l ∈ {1, . . . , L} among

the remaining basis functions that have not yet been selected in library Ll, to maximize

the reduction in the RSS:

ψ
(k)
l,jl

= argmax
ψ ∈ Ll ∩ Bck−1

{
RSS(Bk−1)− RSS(Bk−1 ∪ {ψ})

}
. (1.56)

Then among these candidate basis functions Ψk =
{
ψ

(k)
1,j1
, . . . , ψ

(k)
L,jL

}
, the BSML-S pro-

cedure selects the one φk ∈ Ψk to minimize the doubly penalized criterion, i.e.,

φk = argmin

ψ
(k)
l,jl
∈ Ψk

DPC(ψ
(k)
l,jl

), (1.57)

28

Introduction Chapter 1

and

DPC(ψ
(k)
l,jl

) = RSS
(
Bk−1 ∪

{
ψ

(k)
l,jl

})
+ c1σ

2D̂(Mk,l) + c2σ
2Âk(Ll), (1.58)

where D̂(Mk,l) is the selection cost for ψ
(k)
l,jl

in the lth library at step k, Âk(Ll) is the

estimated IDF for the lth library up to step k, and c1, c2 are constants. The BSML-S

procedure computes Âk(Ll) using

Âk(Ll) =
D̂(M(l)

k)−m
k −m

, (1.59)

where D̂(M(l)
k) is the average selection cost for the lth library up to step k, as introduced

previously. Sklar et al. (2013) suggested c1 = ln 2 and c2 = 2. See the supplement

materials of Sklar et al. (2013) for the estimation of σ2.

In the elimination step, the covariance inflation criterion (CIC) or the generalized

cross-validation (GCV) criterion can be used to select the final model. As shown in (1.53),

MSE(Bk) = E(RSS(Bk))+2C(Mk)−nσ2. Hence, the covariance inflation criterion (CIC)

can be defined as follows:

CIC(k) ,
1

n
RSS(Bk) +

2

n
C(Mk)

=
1

n
RSS(Bk) +

2

n
σ2D(Mk), (1.60)

which is an unbiased estimate of MSE(Bk) +σ2. In practice, σ2 and D(Mk) are replaced

by their estimates. The GCV criterion is defined as

GCV(k) =

∑n
i=1(yi − f̂(xi))

2

(n−D(Mk))2
=

RSS(Bk)
(n−D(Mk))2

. (1.61)

To estimate the GDF D(Mk) in each of (1.60) and (1.61), the following approximation

29

Introduction Chapter 1

is used:

D̂(Mk) ≈ m+
k∑

h=m+1

D̂(ψ
(h)
lh,jlh
|Bh−1) , m+

k∑
h=m+1

max
{
D̂(Mh,lh)− (h− 1), 1

}
. (1.62)

Putting all things together, the algorithm of the BSML-S procedure is as follows:

The BSML-S procedure

1. Initialization: Set Bm = L0 and let M be an upper bound on the number of

basis functions to be selected (including those in L0).

2. Forward selection: for k = m+ 1, . . . ,M, do

(a) Select within each library: for l = 1, . . . , L, do

i Select ψ
(k)
l,jl
∈ Ll according to (1.56).

ii Estimate GDFs as needed: compute D̂(Mk,l) and D̂(ψ
(k)
l,jl
|Bk−1).

(b) Select between libraries: select φk ∈ Ψk to minimize (1.58).

(c) Update: Bk = Bk−1 ∪ {φk}.

3. Elimination: choose k∗,m ≤ k∗ ≤M , as the minimizer of the CIC in (1.60) or

the GCV criterion in (1.61).

In comparison, here is the BSML-C procedure:

The BSML-C procedure

1. Initialization: Set Bm = L0 and let M be an upper bound on the number of

basis functions to be selected (including those in L0).

2. Forward selection: for k = m+ 1, . . . ,M, do

30

Introduction Chapter 1

(a) Select φk among the basis functions not yet been selected in O to maximize

the reduction in RSS:

φk = argmax
ψ ∈ O ∩ Bck−1

{
RSS(Bk−1)− RSS(Bk−1 ∪ {ψ})

}
. (1.63)

(b) Update Bk = Bk−1 ∪ {φk}.

(c) Estimate D̂(Mk) and Ĉ(Mk).

3. Elimination: choose k∗,m ≤ k∗ ≤M , as the minimizer of the CIC in (1.60) or

the GCV criterion in (1.61).

Therefore, we can see that in BSML-C all non-null libraries are combined together, so

there is no need to select bases and estimate the GDFs separately for each library. This

will reduce computation burden, but can sometimes be a disadvantage, especially when

the libraries used are very different in nature and need to be treated separately. The

performance comparison of BSML-S and BSML-C based on simulations will be presented

later in Section 2.1.

Compared to other methods such as HAS and MARS, the better performance of the

BSML procedure in terms of the estimation of the true function f , when the true function

is spatially inhomogeneous, comes from using the GDF to estimate the costs of selecting

additional basis functions, and including multiple libraries so that better basis functions

can be selected. However, it still has two drawbacks. First, the search of candidate

basis functions at each forward selection step (as given in (1.56) and (1.63)) is greedy.

The procedure only allows one candidate basis to be selected after each step. Second,

the computation burden of estimating the GDFs is heavy, especially for the BSML-S

procedure. In Chapters 3, we develop a new procedure that is less greedy in the forward

selection, and at the same time more computationally feasible while still treating bases

31

Introduction Chapter 1

from different libraries separately.

32

Chapter 2

Basis Selection from Multiple

Libraries Using Adaptive LASSO

2.1 Adaptive LASSO Basis Selection

As we mentioned in Section 1.4.2, the adaptive LASSO method can be used for

variable selection because the L1 penalty shrinks small coefficients to exact zero. Unlike

the regular LASSO method, adaptive LASSO allows different penalties for the coefficients

by assigning different weights to their L1 norms. Consider the same nonparametric

regression problem as in (1.22) where f(xi) is approximated by a linear combination of

basis functions, i.e.,

f(xi) =
k∗∑
j=1

βjξj(xi), for ξj ∈
L⋃
l=0

Ll, (2.1)

where {ξ1, . . . , ξm} are the null bases from L0, and {ξm+1, . . . , ξk∗} are selected from

{L1, . . . ,LL}. Then we may apply the adaptive LASSO method in this basis selection

setting, because each basis function needs to be penalized differently.

For the simplicity of discussion, assume that there are 3 libraries: L0, L1, and L2,

33

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

where L0 is the null library and all the basis functions in it are automatically included

in every model considered. Here is how we apply the adaptive LASSO method to select

basis functions. First, a total of M basis functions are preselected in O = ∪2
l=1Ll to

maximize the reduction of RSS at each step:

ψ(k) = argmax
ψ ∈ O ∩ Bck−1

{
RSS(Bk−1)− RSS(Bk−1 ∪ {ψ})

}
, (2.2)

for k = m+1, . . . ,M , where Bm = L0, and Bk = Bk−1∪{ψ(k)}. Let E = {ψ(m+1), . . . , ψ(M)}

be the set of preselected non-null basis functions. Also, let dk be the reduction of RSS

after ψ(k) is added to the model Bk−1, i.e.,

dk = RSS(Bk−1)− RSS(Bk−1 ∪ {ψ(k)}), k = m+ 1, . . . ,M. (2.3)

Then consider the following objective function:

n∑
i=1

(
yi −

M∑
k=1

βk ψ
(k)(xi)

)2

+
∑

{j : ψ(j) ∈ E ∩ L1}

λ1d
−γ
j |βj| +

∑
{` : ψ(`) ∈ E ∩ L2}

λ2d
−γ
` |β`|,

(2.4)

where {ψ(1), . . . , ψ(m)} = L0, and λ1, λ2, γ > 0. Based on (2.4), we can see that the bases

in L0 are not penalized, and the penalties of other preselected bases are inversely related

to the reduction of RSS caused by adding each basis. Compare to the objective function

in (1.38), here we use the weights ŵk = d−γk , instead of ŵk = |β̂ols
k |−γ as proposed in Zou

(2006), because the former works better in our simulations. Note that, in contrary to

the linear models, the goal here is to estimate the nonparametric function f rather than

the parameters βk’s. We also tried the SEA-LASSO proposed in Qian and Yang (2013),

where the weights in the adaptive LASSO are adjusted by the standard error sk of β̂ols
k ,

i.e., ŵk = (sk/|β̂ols
k |)−γ, since the basis functions from the same libraries can be highly

34

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

correlated. However, the performance is still not as good as that using the reduction of

RSS in (2.3) and (2.4). The logic behind assigning weights proportional to the reduction

of RSS is analogous to selecting candidate basis functions according to the reduction of

RSS. Bases that are important should cause a big decrease in RSS when they are added

to the model, so they should be penalized less. On the other hand, the coefficients of

bases that make little contribution in reducing the overall RSS will be shrunk to zero.

We also penalize non-null libraries differently by assigning tuning parameters to each of

them, e.g., λ1 and λ2 in (2.4). This controls the selection of basis functions from different

libraries when they achieve similar reductions of RSS. The parameters λ1 and λ2 are

tuned by using the criterion in (2.5).

The upper bound on the total number of candidate models is 2M−m when we consider

all the combinations of non-null preselected bases. Let (λ1, λ2, γ) be the vector of tuning

parameters. Let M = {M1, . . . ,Mq} be the set of all candidate models from minimiz-

ing (2.4) for λ1, λ2, γ ∈ R+. Then the final model is chosen to minimize the Bayesian

Information Criterion (Schwarz (1978)):

BIC(Mj) = n log RSS(Mj) + log(n)|Mj|, (2.5)

where RSS(Mj) is the RSS of the ordinary least squares fit of the model using the basis

functions in Mj, and |Mj| is the number of basis functions contained in Mj. We used

the BIC for model selection as suggested in Qian and Yang (2013). In practice, we

only consider a finite grid of points for the three tuning parameters. The BIC is then

minimized over all the combinations of tuning parameter values.

The whole procedure is summarized below.

35

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

The Adaptive LASSO Basis Selection (ALBS) Procedure

1. Initialization: Set Bm = L0 and let M be an upper bound on the number of

basis functions to be preselected (including those in L0).

2. Preselection: for k = m+ 1, . . . ,M, do

(a) Select ψ(k) according to (2.2). Set Bk = Bk−1 ∪ {ψ(k)}.

(b) Compute the reduction of RSS dk defined in (2.3).

3. Elimination: For each combination of tuning parameter values (λ1, λ2, γ) in a

discrete grid, obtain the candidate model by minimizing the adaptive LASSO

objective function in (2.4), and add it to the candidate model set M . Choose

Mj∗ ∈M to minimize the BIC in (2.5).

2.2 Simulations to Compare ALBS, BSML, and HAS

We use similar simulation studies as in Sklar et al. (2013) to compare the performances

of the ALBS and the BSML procedures. We use the same six univariate test functions

and libraries of basis functions, which are given in Table 2.1 and 2.2. We use the same

notations as in Table 1.1 to represent the libraries. The test functions are plotted in

Figure 2.1.

We can see that all of the test functions are spatially inhomogeneous. It is therefore

difficult to estimate them using only one class of basis functions. In particular, the Sine-

Jumps, Heavisine, and Blocks-Curves are discontinuous at certain locations. The design

points used for all simulations are the grid points {xi = i/n : i = 1, . . . , n}, where the

sample size is n = 512. The knots used in the libraries P2, C2, T0, T2 are grid points

36

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

Table 2.1: Test functions used in simulations.

Function Name True Function f(x) SD(f)

Sine-Jumps sin(2πx)− 1(0.5,1](x) + 1(0.25,1](x) 1.003

Heavisine 2.2[4 sin(4πx)− sign(x− 0.3)− sign(0.72− x)] 6.294

Blocks-Curves 1[0.2,0.4)(x) + exp[(x+ 0.5)2]1[0.4,0.7)(x)− x101[0.7,1](x) 1.461

LW6 sin[2(4x− 2)] + 2 exp[−256(x− 0.5)2] 0.839

LW7 (4x− 2) + 2 exp[−256(x− 0.5)2] 1.265

Poly-Sine sin(16πx)− 8(x− 0.5)2 + 8(x− 0.5)31(0.5,1](x) 0.840

Table 2.2: Libraries of basis functions used in simulations. Notations of basis libraries
can be found in Table 1.1.

Function Name Basis Libraries

L0 L1 L2

Sine-Jumps U0 P2 T0

Heavisine U0 P2 T0

Blocks-Curves U1 C2 T0

LW6 U1 C2 T2

LW7 U1 C2 T2

Poly-Sine U1 F8,25 T2

{j/n, j = 4, . . . , n− 3}. The response variable is generated according to:

yi = f(xi) + εi, i = 1, . . . , n, εi, . . . , εn
iid∼ N

(
0, σ2

)
, (2.6)

where σ is chosen such that the signal to noise ratio (SNR) defined as SD(f)/σ is fixed

at 4 for all six test examples, and SD(f) is defined as

SD(f) =

√√√√ 1

n− 1

n∑
i=1

[
f(xi)−

1

n

n∑
i=1

f(xi)
]2

. (2.7)

37

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Sine−Jumps

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

Heavisine

x
0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4

Blocks−Curves

x

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

LW6

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

LW7

x
0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Poly−Sine

x

Figure 2.1: Six test functions used in simulations.

We used 100 test sets to compare the performances of four procedures: BSML-S,

BSML-C, HAS, and ALBS. Both the HAS and the BSML-C procedures use the combined

library L1∪L2 in the forward selection, the difference is that BSML-C estimates the GDF

by the perturbation method at each step, while HAS fixes the IDF of each selected basis

function at 1.2. Although ALBS also carries out the preselection with the combined

library, at the following elimination stage it treats the bases from L1 and L2 differently

by imposing different penalties on them. To make a fair comparison between HAS and

ALBS, we used the BIC criterion for the model elimination in the HAS procedure. The

performance of all procedures is measured by the mean squared error (MSE):

MSE(f̂) =
1

n

n∑
i=1

[
f̂(xi)− f(xi)

]2

. (2.8)

38

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

We used the R package glmnet (Friedman et al. (2010)) to obtain the adaptive LASSO

estimators in the ALBS procedure. We specified the values each tuning parameter can

take as follows:

γ ∈ {ei : i = −5,−4.5,−4, . . . , 2, 2.5, 3}, (2.9)

λ2

λ1

∈ {0.1, 0.2, . . . , 0.8, 0.9, 1, 1.5, 2, . . . , 4, 4.5, 5}, (2.10)

and λ1 values are grid points decided automatically inside the R function glmnet, with

the default nlambda = 100. In the default setting of glmnet, the tuning parameter

sequence lambda is linear on the log scale from lambda.max down to lambda.min, where

lambda.max is the smallest value for lambda such that all the coefficients are zero, and

by default lambda.min = 0.0001× lambda.max. See the glmnet vignette (Hastie and

Qian (2014)) for more details. Therefore, the λ1 values determined inside the glmnet

function are different for the six test functions, because for each example the lambda.max

is different.

For each combination of γ, λ1, and λ2, function glmnet returns a candidate model,

which is then added into the candidate model set M . For the other three procedures

HAS, BSML-C, and BSML-S, the R package bsml (Wu et al. (2012)) was used. For

all procedures, the maximal number of bases M was fixed at 30. Figure 2.2 shows the

boxplots of the MSEs of 100 test sets using each procedure.

We can see from Figure 2.2 that ALBS had similar performance as HAS for the

Blocks-Curves, Heavisine, LW7, and Poly-Sine examples. Although ALBS and HAS

preselects exactly the same M basis functions, the set of candidate models considered

in ALBS is usually larger than that in HAS. This is because ALBS also penalizes bases

differently based on the libraries they are from, so the candidate models returned from the

adaptive LASSO algorithm include additional models besides Bm, . . . ,BM . However, this

39

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

0.
00

5
0.

01
5

0.
02

5
0.

03
5

Blocks−Curves

M
S

E

BSML−S BSML−C ALBS HAS

●

●

●

●●

●

●
●
●
●●

0.
2

0.
4

0.
6

0.
8

Heavisine

BSML−S BSML−C ALBS HAS

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Sine−Jumps

BSML−S BSML−C ALBS HAS

●

●

●

●

0.
00

1
0.

00
2

0.
00

3
0.

00
4

LW6

M
S

E

BSML−S BSML−C ALBS HAS

●

●

●

●

●

●

0.
00

0
0.

00
5

0.
01

0
0.

01
5

LW7

BSML−S BSML−C ALBS HAS

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Poly−Sine

BSML−S BSML−C ALBS HAS

Figure 2.2: Boxplots of the MSEs of 100 test sets using BSML-S, BSML-C, ALBS, and HAS.

did not help the overall performance of the ALBS procedure according to our simulations.

ALBS performed worse than the BSML-C procedure (in most cases), especially for the

Block-Curves and Heavisine examples. This makes sense because ALBS does not use

IDF in the model selection, so in general it tends to select more basis functions than

necessary. For example, for the Block-Curves and Heavisine examples, on average BSML-

C selected 7 and 12 bases respectively, while ALBS selected 9 and 16 bases respectively.

Not surprisingly, the BSML-S procedure had the best overall performance, because it

treats the bases from L1 and L2 differently, both in the forward selection and in the

model elimination with adaptively estimated GDFs.

40

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

2.3 Adaptive LASSO Basis Selection with Estimated

IDF

As we found in the last section, the ALBS procedure did not perform as well as

the BSML procedure. One of the reasons is that ALBS does not use IDF in the model

selection, so that it can overfit the data by selecting too many basis functions. To

overcome this drawback, we propose a slightly different version of the ALBS procedure

by incorporating the adaptively estimated IDF for each library.

Now in the preselection, the same perturbation method mentioned in Section 1.7.1

is used to estimate the IDF of each preselected basis. Let D̂(Mk) be the estimate of

GDF for model Bk. We fixed the IDF of the null bases to be 1, so that D̂(Mk) = k for

k = 1, . . . ,m. Let Ψl = E ∩ Ll for l = 1, 2. Then the IDF of library Ll is estimated

using:

ÎDF(Ll) = max

 1

|Ψl|
∑

{j : ψ(j) ∈ Ψl}

(
D̂(Mj)− D̂(Mj−1)

)
, 1

 . (2.11)

In the model elimination stage, it uses the following modified BIC to select the final

model:

BIC(Mj) = n log RSS(Mj) + log(n)
(
m+ |Mj ∩ L1| ÎDF(L1) + |Mj ∩ L2| ÎDF(L2)

)
.

(2.12)

The new procedure is referred as the ALBS-2, which is summarized below.

The ALBS-2 Procedure

1. Initialization: Set Bm = L0 and let M be an upper bound on the number of

basis functions to be preselected (including those in L0). Set D̂(Mk) = k for

k = 1, . . . ,m.

41

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

2. Preselection: for k = m+ 1, . . . ,M, do

(a) Select ψ(k) according to (2.2).

(b) Compute the reduction of RSS dk defined in (2.3).

(c) Estimate D̂(Mk) using the perturbation method.

3. Elimination: For each combination of tuning parameter values (λ1, λ2, γ) in a

discrete grid, obtain the candidate model by minimizing the adaptive LASSO

objective function in (2.4), add it to the candidate model set M . Estimate the

IDF of each non-null library using (2.11). Choose Mj∗ ∈M to minimize the

BIC in (2.12).

2.4 Simulations to Compare ALBS-2, BSML, and

HAS

We did a similar simulation study as in Section 2.2 to see if ALBS-2 performed better

than ALBS. Same 100 test sets were used. The number of perturbations T in the Monte

Carlo algorithm was fixed at 50, and the perturbation standard deviation was set at

τ = 0.5σ̂, where σ̂ was the Rice estimator of σ (Rice (1984)):

σ̂Rice =

√√√√ 1

2(n− 1)

n∑
i=2

(yi − yi−1)2. (2.13)

The boxplots of the MSEs are shown in Figure 2.3. With the adaptively estimated IDFs

for each library, ALBS-2 performed better than ALBS in the Blocks-Curves, Sine-Jumps,

and Poly-Sine examples. Recall that for the Blocks-Curves and Sine-Jumps examples,

42

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

L1 and L2 contain spline representers and step functions respectively. Thus, for these

two examples a bigger IDF for L2 relatively to L1 helps ALBS-2 to select fewer step

functions when choosing the final model. In the Blocks-Curves example, the average

IDFs of L1 and L2 were 2.54 and 3.96 respectively. In the Sine-Jumps example, they

were 1.88 and 3.98 respectively. Based on the 100 test sets, on average ALBS selected 4.55

bases from L2 for the Sine-Jumps example, and 6.73 bases from L2 for the Blocks-Curves

example. When ALBS-2 was used, however, these two numbers reduced to 2.03 and

3.08 respectively. The BSML-S procedure was still the best in all examples, but for the

Blocks-Curves, Sine-Jumps, and Poly-Sine examples the ALBS-2 procedure performed

almost as well. The biggest difference performance-wise between ALBS-2 and BSML-S

is with the Heavisine example. The main reason is that for this example, both ALBS-2

and BSML-C combine L1 (periodic spline representers) and L2 (step functions) in the

preselection process, while the BSML-S compares the cost of selecting bases from L1

and from L2 at every step to decide which library to choose from. For the Heavisine

example, when BSML-C, ALBS, and ALBS-2 were used, not enough bases from L1 were

preselected, and hence fewer were chosen in the final model. This can be seen from Figure

2.4.

The average CPU time of fitting one test set for each procedure and example used is

shown in Table 2.3. Overall, the ALBS-2 procedure does not have clear advantages in

terms of both performance and speed when compared to the BSML-C procedure. The

reason is that they share the same forward selection process, and only differ in how the

elimination is carried out.

Although the ALBS and ALBS-2 procedures we proposed so far are only for the

special case when there are two non-null libraries, they can be easily extended to general

case of L non-null libraries. However, the potential problem with our procedures is

that as the number of libraries grows, so does the number of tuning parameters. It

43

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

can be easily seen that the number of combinations of gridded parameter values grows

exponentially in the number of libraries. Thus, the computation for the ALBS and

ALBS-2 procedures is prohibitive when there are too many libraries, for example in the

multivariate nonparametric regression case. Another drawback of the ALBS-2 procedure

is the way it estimates the IDFs. It is computationally expensive to have to estimate

the IDFs at each preselection step, with repeated perturbations. The BSML procedures

share the same drawback, especially BSML-S because it needs to estimate the selection

cost for each library as well.

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

0.
00

5
0.

01
5

0.
02

5
0.

03
5

Blocks−Curves

M
S

E

BSML−S BSML−C ALBS ALBS−2

●

●

●

●●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Heavisine

BSML−S BSML−C ALBS ALBS−2

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Sine−Jumps

BSML−S BSML−C ALBS ALBS−2

●

●
●

●

●

●

0.
00

2
0.

00
4

0.
00

6
0.

00
8

LW6

M
S

E

BSML−S BSML−C ALBS ALBS−2

●

●

●

●

●

●

●

●

●●

●

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

LW7

BSML−S BSML−C ALBS ALBS−2

●
●
●

●

●
●
●

●

●

●

●

●

●

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Poly−Sine

BSML−S BSML−C ALBS ALBS−2

Figure 2.3: Boxplots of the MSEs of 100 test sets using BSML-S, BSML-C, ALBS,
and ALBS-2.

44

Basis Selection from Multiple Libraries Using Adaptive LASSO Chapter 2

●

●●●

●

●●●

●

●●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●●

●

● ●●●●●●●●●●●●●●●●●●●

2
4

6
8

10
12

N
um

be
r

of
 S

el
ec

te
d

B
as

es

BSML−S BSML−C ALBS ALBS−2

●●●●

●

●●

0
5

10
15

20
25

N
um

be
r

of
 S

el
ec

te
d

B
as

es

BSML−S BSML−C ALBS ALBS−2

Figure 2.4: Number of selected bases in L1 (left) and L2 (right) for the Heavisine
example with 100 test sets using BSML-S, BSML-C, ALBS, and ALBS-2.

Table 2.3: Average CPU time (in seconds) based on simulations in Sections 2.2 and 2.4.

Blocks-
Curves

Heavisine LW6 LW7 Poly-
Sine

Sine-
Jumps

HAS 3.01 2.92 2.94 2.92 0.77 2.93

ALBS 4.13 7.47 7.63 7.78 4.17 4.35

ALBS-2 7.08 9.62 9.31 9.29 5.59 6.70

BSML-C 8.93 9.29 9.26 9.23 4.30 9.22

BSML-S 51.85 51.33 51.70 51.37 28.81 51.20

Based on the simulations results, there are a few things we have learned so far. First

of all, each library needs to be assigned with a unique IDF that depends on the data.

Also, in the forward selection process, bases from different libraries need to be considered

separately. These findings are the main motivations for the look-ahead procedure we will

discuss in the next chapter. Because it is costly to estimate the IDFs, the look-ahead

procedure instead treats the IDFs as tuning parameters. Meanwhile, the look-ahead

procedure evaluates the candidate bases from each individual library in forward selection,

and is less greedy in the searching process.

45

Chapter 3

Look-Ahead Procedure

3.1 Problems With Greedy Search

As mentioned in Section 1.7.1, one of the disadvantages of the BSML procedure is

that the GDFs need to be estimated at each step in the forward selection, which can be

computationally expensive. Another disadvantage of the BSML procedure comes from

its greediness in adding basis functions. At each forward selection step it performs a

greedy search for a single basis function that maximizes the reduction in the residual

sum of squares, i.e., it only looks one step ahead. This greedy (short-sighted) nature

may lead to the selection of a basis function that is not optimal in the long run.

We propose the look-ahead strategy to help alleviate the greediness in the searching

for basis functions. The idea of look-ahead is that when choosing the next moves, instead

of only evaluating the outcome obtained in a single step, we look further steps ahead and

inspect the performance of some extra potential moves. This approach has been widely

studied in the context of tree-search and constructive heuristics. See Frost and Dechter

(1995), Bertsekas et al. (1997), and Voss et al. (2005). The look-ahead idea has also been

applied in sequential Monte Carlo method (e.g., Zhang and Liu (2002)), and in variable

46

Look-Ahead Procedure Chapter 3

selection, e.g., Zhang et al. (2007), where multiple look-ahead steps are implemented in

the best subset selection.

Our look-ahead procedure is less greedy compared to the BSML procedure because it

considers more candidate basis functions when performing forward selection. Assuming

that there are L non-null libraries, then each time the procedure updates a current model,

it considers not only the best single basis function from each library, but also a second

basis function among all the bases that have not yet been selected, to form a pair with

the best single basis, yielding a total of at most 2L candidate bases. Hence, the search

space is much bigger than that of the BSML procedure at each update. This look-ahead

idea is important particularly in the multiple libraries setting because now it is possible

for two basis functions from different libraries to be selected together as a pair. The

optimal pair of basis functions may be different if we choose to select them one step at

a time, since in that case the selection of the second basis function is conditioning on

the previously selected basis function already in the model. Our look-ahead procedure

is a compromise between the most greedy one-step ahead procedure (e.g. BSML) and

exhaustive search which is computationally prohibitive.

Although one can also modify the forward selection in the BSML procedure to make

it look ahead, the increased search space will make the estimation of the GDFs even more

computationally expensive. We will develop a computationally feasible procedure that

does not require estimating the IDFs.

The look-ahead procedure mainly consists of two parts. The first is the forward

selection part and the second is the elimination part. Let’s focus on the forward selection

part first.

47

Look-Ahead Procedure Chapter 3

3.2 Forward Selection In the Look-Ahead Procedure

with Fixed IDFs

In the forward selection stage of the look-ahead procedure, the procedure takes in

some IDF tuning vectors as input and uses them in the calculation of a criterion for

building the candidate models. For now, let us focus on the scenario of building a

candidate model given a specific IDF tuning vector.

The BSML procedure selects one basis function at each step in the forward selec-

tion. In comparison, the look-ahead procedure can select either one or a pair of basis

functions to enter the model each time. Suppose that there are in total L + 1 libraries,

{L0,L1, . . . ,LL}, where L0 is the null library with m basis functions that will be included

automatically. Let Bm be the model that includes all the basis functions from the null

library, i.e., Bm = L0. As the forward selection continues, more and more basis functions

are added to Bm, so we obtain a sequence of nested models. The maximum number of

basis functions a model can contain is set to be M 1. Denote |S| as the cardinality of

a set S. Denote B− as the model that will be updated next during the iterations, and

define index k as k = |B−| + 1. If there is at least one new basis function being added

to B− after the update, then the number of basis functions in B− will either increase

by one if one basis is selected, or increase by two if a pair of basis functions is selected.

Correspondingly |B−| will increase by either one or two at the next iteration.

We start with B− = L0 and k = m + 1. As long as k < M , the look-ahead pro-

cedure performs the forward selection as follows. Suppose there are L− libraries a-

mong {L1, . . . ,LL} that contain at least one unselected basis function, denote them as

L(1), . . . ,L(L−), and O− = ∪L−l=1L(l). The procedure first selects an ordered pair of basis

1This upper bound is the user-specified variable MAXBAS in the code.

48

Look-Ahead Procedure Chapter 3

functions

ψ−l = argmax
ψ ∈ L(l) ∩ Bc−

{
RSS(B−)− RSS(B− ∪ {ψ})

}
, (3.1)

and

ψ−·|l = argmax
ψ ∈ O− ∩

[
B− ∪ {ψ−l }

]c
{

RSS
(
B− ∪

{
ψ−l
})
− RSS

(
B− ∪

{
ψ−l , ψ

})}
, (3.2)

for each l ∈ {1, 2, . . . , L−} to form candidates. Let Ψ− be the collection of all candidate

singleton and pairs

Ψ− =
{{
ψ−1
}
, . . . ,

{
ψ−L−

}
,
{
ψ−1 , ψ

−
·|1
}
, . . . ,

{
ψ−L− , ψ

−
·|L−
}}
, (3.3)

where the first L− candidates in (3.3) are single basis functions from (3.1) and the rest

are ordered pairs of basis functions. Here some pairs in Ψ− could be the same except for

order, and these redundant pairs are removed from Ψ−. Then |Ψ−| satisfies L− + 1 ≤

|Ψ−| ≤ 2L−. Also, note that for the second basis function in these pairs, i.e., ψ−·|l, it is

selected given ψ−l in the model, and it can be any non-null basis function that has not

yet been selected besides ψ−l . This selection scheme is different from the one that selects

the second basis functions from each of the L− libraries, i.e., the scheme that finds in

total 1
2
L−(L− + 1) pairs to maximize the reduction of RSS,

{
ψ−` , ψ

−
κ

}
=

ψa, ψb : argmax
ψa ∈ L(`) ∩ Bc−
ψb ∈ L(κ) ∩ Bc−

{
RSS(B−) − RSS

(
B− ∪

{
ψa, ψb

})}
 , (3.4)

for 1 ≤ `, κ ≤ L−. Then because |B−| = k − 1,
∣∣∣O− ∩ {B− ∪ {ψ−l }}c∣∣∣ = |O−| − k + m,

so for the scheme in (3.2), it searches through |O−| − k+m basis functions L− times, or

(|O−| − k + m)L− in total. In comparison, for the scheme in (3.4), it searches through

49

Look-Ahead Procedure Chapter 3

(|O−|−k+m+1
2

)
= 1

2

(
|O−| − k + m + 1

)(
|O−| − k + m

)
basis functions. Usually, we have

L− � 1
2

(
|O−| − k + m + 1

)
, so that the first scheme requires much less computational

time. Of course, the trade-off of using (3.2) is that the pairs of basis functions selected

may not be the optimal compared to these selected using (3.4). However, based on our

simulation experience, the improvement in terms of MSE is too small to justify the extra

computations required by the all pairwise search scheme.

After the look-ahead procedure obtains the candidate set Ψ− in (3.3), we then select

Ψ−j∗ ∈ Ψ− to maximize the reduction of the BIC. Alternatively, other selection criteria

such as the AIC (Akaike (1974)) could also be used. Let B−j = B− ∪ Ψ−j be the jth

candidate model for j = 1, 2, . . . , |Ψ−|, where Ψ−j is the jth element of Ψ−:

Ψ−j =


{
ψ−j
}
, if 1 ≤ j ≤ L−,{

ψ−j−L− , ψ
−
·|j−L−

}
, if L− + 1 ≤ j ≤ |Ψ−|.

(3.5)

The BIC is defined as:

BIC
(
B−j
)

= n log
(

RSS
(
B−j
))

+ log(n)DF
(
B−j
)
, (3.6)

where DF
(
B−j
)

is the degrees of freedom for model B−j defined as follows:

DF
(
B−j
)

= DF(B−) + IDF
(
L(ψ−j)

)
I(1 ≤ j ≤ L−)

+
[
IDF

(
L(ψ−j−L−)

)
+ IDF

(
L(ψ−·|j−L−)

)]
I(L− + 1 ≤ j ≤ |Ψ−|),

(3.7)

where DF(B−) is the degrees of freedom of model B−, I(·) is the indicator function,

L
(
ψ−·|j−L−

)
represents the library that the basis function ψ−·|j−L− is in. DF(B−) can be

50

Look-Ahead Procedure Chapter 3

computed using

DF(B−) = DF(Bm) +
k−1∑

i=m+1

IDF
(
L(ξi)

)
= m+

k−1∑
i=m+1

IDF
(
L(ξi)

)
, (3.8)

where ξm+1, · · · , ξk−1 are the non-null bases contained in B−. Note that DF(Bm) = m

because the IDFs of all the basis functions in the null library L0 are fixed at 1.

Let Ψ−j∗ be the set in Ψ− such that the model B− ∪Ψ−j∗ has the lowest BIC, i.e., the

index j∗ is chosen such that

j∗ = argmin
1≤j≤|Ψ−|

BIC
(
B−j
)
. (3.9)

Alternatively, if AIC is used, (3.6) and (3.9) change into

AIC
(
B−j
)

= n log
(

RSS
(
B−j
))

+ 2DF
(
B−j
)

(3.10)

j∗ = argmin
1≤j≤|Ψ−|

AIC
(
B−j
)
. (3.11)

Note that if BIC(B−j∗) is greater or equal to BIC(B−), then this means adding the

basis set Ψ−j∗ to the current model B− will likely cause overfitting, so nothing should be

added to B− instead, and the forward selection for the current model should be stopped.

Otherwise the procedure generates either one or two new candidate models depending

on how many bases are selected (corresponding to Ψ−j∗). If j∗ ≤ L−, then the current

model is replaced with B− ∪
{
ψ−j∗
}

. If j∗ > L−, then the current model is replaced

with B− ∪
{
ψ−j∗−L− , ψ

−
·|j∗−L−

}
. To start the next iteration, B− is set to be the updated

model, and k = |B−| + 1. As long as k < M , the same forward selection routine in

(3.1), (3.2), (3.5), (3.6), (3.7), and (3.9) is repeated with the new B− and k. We can see

that different from the BSML procedure, the look-ahead procedure is able to stop the

51

Look-Ahead Procedure Chapter 3

forward selection before the Mth step if the BIC starts to increase. This will help to

avoid the overfitting problem when building each model in the forward selection stage

and to reduce computation. Another difference of the look-ahead procedure is that it

can select two basis functions simultaneously when performing the forward selection, as

we have mentioned earlier.

If k = M , which means there are already M − 1 basis functions in the current model

B−, the look-ahead procedure will select at most one more basis function so that after

this step the number of basis functions in the model will not exceed M . The selection

criterion at this step is:

ψ−l = argmax
ψ ∈ L(l) ∩ Bc−

{
RSS(B−)− RSS(B− ∪ {ψ})

}
, for 1 ≤ l ≤ L−, (3.12)

l∗ = argmin
1≤l≤L−

BIC
(
B− ∪

{
ψ−l
})
. (3.13)

If BIC
(
B− ∪

{
ψ−l∗
})

< BIC(B−), then the procedure replaces the current model with

B− ∪
{
ψ−l∗
}

.

If k > M , the forward selection for the current model will stop.

3.3 Forward Selection Via Householder Transforma-

tion

To find the basis function in (3.1), (3.2), and (3.12), we need a fast algorithm to

compute the reduction of RSS when one or two new basis functions are added to a

model. We are going to use the Householder transformation as in BSML and HAS for

selection of a single basis function, and we will extend the computational methods to the

case of adding a pair of new basis functions.

52

Look-Ahead Procedure Chapter 3

Seber and Lee (2003) provides a good discussion of how to use the Householder

QR decomposition to calculate the regression coefficients and RSS efficiently. We will

summarize some results here.

Consider the linear regression model:

y = Xβ + ε, (3.14)

where y = (y1, . . . , yn)′ is the n× 1 response vector, X is an n× k design matrix of full

column rank 2, β = (β1, . . . , βk)
′ is the k × 1 coefficients vector, and ε = (ε1, . . . , εn)′

is the n × 1 vector of random errors with zero mean and constant variance. The least

squares estimate β̂ can be obtained by solving the normal equation:

X ′Xβ̂ = X ′y. (3.15)

After β̂ is obtained, the RSS can be calculated as:

RSS = e′e, (3.16)

where e = y−Xβ̂ are the residuals. It is usually computationally expensive to compute

(X ′X)−1 directly when k is large. The idea is to transform X into an upper triangular

matrix, so that β̂ in (3.15) can be solved by back substitution.

3.3.1 The Householder QR Decomposition

The Householder transformation can be used to transform the columns of X so that

the elements in the lower triangular will be all zeros. We now describe the Householder

transformation. Suppose we have an n × 1 vector x = (x1, x2, . . . , xn)′, and we want to

2In our setting, the columns of X represent basis functions evaluated at design points.

53

Look-Ahead Procedure Chapter 3

rotate it so that the 2nd through nth elements become zero in the rotated space without

changing the Euclidean norm of x. Hence, in the rotated space x̃ = (‖x‖, 0, . . . , 0)′ =

‖x‖e1, where x̃ denotes the vector after the rotation, ‖ · ‖ is the Euclidean norm, and

e1 = (1, 0, . . . , 0)′ is the n-dimensional vector with only the first element nonzero. Define

a Householder vector

u = x− ‖x‖e1 =
(
x1 − ‖x‖, x2, . . . , xn

)′
, (3.17)

then x−u will be the vector after the rotation. As mentioned in Seber and Lee (2003),

when calculating the first element, x1 − ‖x‖, of u, severe cancellation would occur if x1

is positive and large compared with the other elements of x. Thus, we use a slightly

different version of the Householder vector:

u∗ = x+ sign(x1)‖x‖e1

=


(
x1 + ‖x‖, x2, . . . , xn

)′
, if x1 ≥ 0,(

x1 − ‖x‖, x2, . . . , xn
)′
, if x1 < 0,

where sign(x) is 1 if x ≥ 0, and −1 if x < 0. Then the transformed vector becomes:

x̃ = x− u∗

= −sign(x1)‖x‖e1

=


(
− ‖x‖, 0, . . . , 0

)′
, if x1 ≥ 0,(

‖x‖, 0, . . . , 0
)′
, if x1 < 0.

(3.18)

To make the Householder matrix defined later to have a simpler form, we scale u∗ so

54

Look-Ahead Procedure Chapter 3

that it has Euclidean norm 1:

w =
u∗

‖u∗‖

=
x+ sign(x1)‖x‖e1√

2‖x‖
(
‖x‖+ |x1|

) (3.19)

=


(√‖x‖+ x1

2‖x‖
,

x2√
2‖x‖(‖x‖+ x1)

, . . . ,
xn√

2‖x‖(‖x‖+ x1)

)′
, if x1 ≥ 0,

(
−

√
‖x‖ − x1

2‖x‖
,

x2√
2‖x‖(‖x‖ − x1)

, . . . ,
xn√

2‖x‖(‖x‖ − x1)

)′
, if x1 < 0.

(3.20)

Using x− ‖u∗‖w to obtain the vector x̃ is equivalent to define the following House-

holder transformation matrix H , and then applying to x:

H = I − 2ww′. (3.21)

It is easy to see that Hx = x̃ by using the facts ‖w‖ = 1, x̃ = x − ‖u∗‖w, and

‖x‖ = ‖x̃‖:

2w′x =
2

‖u∗‖
(
x′ − x̃′

)
x

=
2

‖u∗‖
(
x′x− x̃′x

)
=

1

‖u∗‖
(
2‖x‖2 − 2x̃′x

)
=

1

‖u∗‖
(
‖x‖2 − 2x̃′x+ ‖x̃‖2

)
=

1

‖u∗‖
‖x− x̃‖2

=
1

‖u∗‖

∥∥∥‖u∗‖w∥∥∥2

= ‖u∗‖‖w‖2

55

Look-Ahead Procedure Chapter 3

= ‖u∗‖.

Consequently, Hx = x− 2ww′x

= x−w‖u∗‖

= x̃.

The Householder matrix H has some nice properties. It is obvious the H is symmetric

and orthogonal:

H ′H = H2

= (I − 2ww′)(I − 2ww′)

= I − 4ww′ + 4w(w′w)w′

= I − 4ww′ + 4‖w‖2ww′

= I.

We can utilize the Householder transformation to perform QR factorization. A rect-

angular matrix A ∈ Rn×k with n ≥ k can be factored into a product of an orthogonal

matrix Q ∈ Rn×n and an upper triangular matrix U ∈ Rn×k :

A = QU . (3.22)

This factorization is referred to as the QR factorization. Note that if A has full column

rank, then by Theorem 5.2.2 in Golub and Loan (2013) the “diagonal” elements of U

are nonzero, i.e., U(j, j) 6= 0 for j = 1, . . . , k. We assume A to have full column rank

from here on. To transform A into U , the Householder transformation can be applied

to “zero-out” certain elements for the columns in A. Here is how it works. Denote the

56

Look-Ahead Procedure Chapter 3

columns of the rank-k n × k matrix A as: A(:, 1),A(:, 2), . . . ,A(:, k). First, choose H1

to zero out all but the first element of A(:, 1). Following (3.19) and (3.21), let

H1 = In − 2w1w
′
1, with w1 =

A(:, 1) + sign(A(1, 1))‖A(:, 1)‖e1√
2‖A(:, 1)‖

(
‖A(:, 1)‖+ |A(1, 1)|

) , (3.23)

where A(1, 1) is the element in the first row and first column of A. Premultiplying A by

H1 gives

H1A =


r11 r12 · · · r1k

0
... A1

0

 ,

with r11 = −sign(A(1, 1))‖A(:, 1)‖, and r1j = H1(1, :)A(:, j) for 2 ≤ j ≤ k. Next

consider a matrix H2 of the form

H2 =


1 0 · · · 0

0
... K2

0

 ,

where K2 is an (n− 1)× (n− 1) Householder matrix chosen to zero out all but the first

element of the first column of the submatrix A1, i.e.,

K2 = In−1 − 2w2w
′
2, with w2 =

A1(:, 1) + sign(A1(1, 1))‖A1(:, 1)‖e1√
2‖A1(:, 1)‖

(
‖A1(:, 1)‖+ |A1(1, 1)|

) , (3.24)

57

Look-Ahead Procedure Chapter 3

We get

H2H1A =



r11 r12 r13 · · · r1k

0 r22 r23 · · · r2k

0 0
...

... A2

0 0


,

with r22 = −sign(A1(1, 1))‖A1(:, 1)‖, and r2j = K2(1, :)A1(:, j − 1) for 3 ≤ j ≤ k. If we

continue analogous steps, the last premultiplication matrix is:

Hk =


1 0 · · · 0

0
.

...
...

. . . 1 0

0 · · · 0 Kk

 ,

where Kk is an (n − k + 1) × (n − k + 1) Householder matrix chosen so that the last

n− k elements in the kth column of Hk · · ·H1A are all zeros. Therefore, we have:

HkHk−1 · · ·H1A =

(
R

0

)
=



r11 r12 r13 · · · r1k

0 r22 r23 · · · r2k

... 0 r33 · · · r3k

...
... 0

. . .
...

...
...

...
. . . rkk

...
...

...
... 0

...
...

...
...

...

0 0 0 0 0


.

58

Look-Ahead Procedure Chapter 3

Here R is an upper-triangular matrix. We define Hj as

Hj =


H1, if j = 1,Ij−1 0

0 Kj

 , if 2 ≤ j ≤ k.
(3.25)

Note that H2
j = H ′jHj = In for j = 1, . . . , k, because of the symmetric and orthog-

onal properties of the Householder matrices. If we define Q = (HkHk−1 · · ·H1)′ =

H1H2 · · ·Hk, then we have the Householder QR decomposition:

A = Q

(
R

0

)
, (3.26)

since

A = InA

= H2
1A

= H1InH1A

= H1H2H2H1A

= H1H2InH2H1A

= H1H2H3H3H2H1A

= · · ·

= (H1 · · ·Hk)(Hk · · ·H1A)

= Q

(
R

0

)
.

Note that Q is orthogonal, because it is a product of orthogonal matrices Hj’s. Further-

59

Look-Ahead Procedure Chapter 3

more, Q can be written as Q =
(
Qk,Qn−k

)
, where Qk is n× k and Qn−k is n× (n− k),

so that

A =
(
Qk,Qn−k

)(R
0

)
= QkR.

For the linear regression setting as in (3.14), let A be the n×k design matrix X with

full column rank, i.e., A = X, then by (3.26) for the augmented matrix
(
X,y

)
we have:

(
X,y

)
=
(
Qk,Qn−k

)(R r1

0 r2

)
, (3.27)

where R is a k × k upper triangular matrix, r1 is a k × 1 vector, and r2 is a (n− k)× 1

vector, with (
r1

r2

)
= Q′y = HkHk−1 · · ·H1y,

i.e., (r′1, r
′
2)′ is obtained by premultiplying the transformation matrices H1, . . . ,Hk to

y. Multiplying out and equating both sides of (3.27) gives

X = QkR, (3.28)

y = Qkr1 +Qn−kr2. (3.29)

Thus, the solution β̂ to the normal equation (3.15) is

β̂ = (X ′X)−1X ′y

= (R′Q′kQkR)−1R′Qk(Qkr1 +Qn−kr2)

= (R′R)−1R′r1

= R−1r1, (3.30)

where we used the facts that Q′kQk = Ik and Q′kQn−k = 0 because Q =
(
Qk,Qn−k

)
is

60

Look-Ahead Procedure Chapter 3

an orthogonal matrix. Equation (3.30) means β̂ is the solution of Rβ̂ = r1. Because R

is upper triangular, β̂ can be solved by back-substitution fairly easily:


β̂k = r1(k)/R(k, k),

β̂j =
[
r1(j)−

∑k
j′=j+1R(j, j′)β̂j′

]
/R(j, j), for j = k − 1, . . . , 2, 1.

(3.31)

In addition, the residuals e and the RSS in (3.16) can be written as:

e = y −Xβ̂

= Qkr1 +Qn−kr2 −QkRR
−1r1

= Qn−kr2

=
(
Qk,Qn−k

)(0

r2

)

= Q

(
0

r2

)
,

so that

RSS = ‖e‖2

= (0′, r′2)Q′Q(0′, r′2)′

= (0′, r′2)(0′, r′2)′

= r′2r2. (3.32)

61

Look-Ahead Procedure Chapter 3

3.3.2 Adding A Single Basis Function Using Householder QR

Decomposition

Using the Householder QR decomposition, we can easily compute the reduction of

RSS as in (3.1) and select a single candidate basis function from each library. Sup-

pose for the current model B−, the basis functions (including the m bases in L0) are

B− = {φ1, . . . , φk−1} where k > m. Let Xk−1 = (x1, . . . ,xk−1) be the design matrix

corresponding to the basis functions in B−, where the column vector xj is the basis

function φj evaluated at the design points for each j ∈ {1, . . . , k − 1}. Let Hj be the

transformation matrix as defined in (3.25), and

Q = H1H2 · · ·Hk−1, (3.33)

then similar to (3.27) we have

(
Xk−1,y

)
= Q


R r1

0 r2

0 r3

 , (3.34)

where (r′1, r2, r
′
3)′ = Q′y. Note that here r1 and r3 are vectors with length k − 1 and

n − k respectively, while r2 is a scalar. Now we want to add a new basis function ψ to

B−, which corresponds to adding a new column x to Xk−1. Let q = Q′x = (q′1, q2, q
′
3)′

where q′1, q2, and q′3 have the same dimensions as r′1, r2, and r′3 respectively. Then we

have

(
Xk−1,x,y

)
= Q


R q1 r1

0 q2 r2

0 q3 r3

 . (3.35)

62

Look-Ahead Procedure Chapter 3

To compute the reduction of RSS caused by adding this new basis function, we can

apply a Householder transformation to zero out q3. Let K be the Householder matrix

for c = (q2, q
′
3)′, and let c∗ = Kc = (q∗2,0

′)′. Let d = (r2, r
′
3)′ and d∗ = Kd = (r∗2, r

∗
3
′)′.

Then by the result in (3.32), we have

RSS(B−) = d′d =
(
K ′d∗

)′(
K ′d∗

)
= (d∗)′KK ′d∗ = (d∗)′d∗

= (r∗2)2 + (r∗3)′(r∗3)

= (r∗2)2 + RSS
(
B− ∪ {ψ}

)
. (3.36)

Therefore, the reduction of RSS in (3.1) is:

∆RSS = RSS(B−)− RSS
(
B− ∪ {ψ}

)
= (r∗2)2. (3.37)

However, it is not computationally efficient to use (3.37) directly to compute the reduction

of RSS when ψ is added to B−. The reason is that in order to find ψ−l in (3.1), we

need to compute ∆RSS for each of the individual basis functions ψ ∈ L(l) ∩ Bc
−, but

the Householder matrix for each of them is different, so if we use (3.37) directly we

need to construct the Householder transformation
∣∣L(l) ∩ Bc

−
∣∣ number of times, for each

l ∈ {1, 2, . . . , L−}.

There is a more convenient way to compute ∆RSS without applying the Householder

transformation for ψ explicitly. Denote K(:, 1) as k, and K(:, 2 : (n − k + 1)) as Kr,

then we have:

(c,d) =
(
k,Kr

)(q∗2 r∗2

0 r∗3

)
. (3.38)

Multiplying out and equating both sides of (3.38) gives

c = q∗2k,

63

Look-Ahead Procedure Chapter 3

d = r∗2k + Krr
∗
3.

Therefore,

c′d = q∗2k
′(r∗2k + Krr

∗
3

)
= q∗2r

∗
2 + q∗2k

′Krr
∗
3

= q∗2r
∗
2,

c′c =
(
q∗2k

′)(q∗2k)
= (q∗2)2,

where we used the fact that the Householder matrix K =
(
k,Kr

)
is orthogonal. Hence,

according to (3.37) we have

∆RSS = (r∗2)2 =
(c′d)2

c′c
=

(q2r2 + q′3r3)2

q2
2 + q′3q3

. (3.39)

If we use (3.39) to compute ∆RSS, then there is no need to apply any Householder

transformation for the basis functions that have not yet been selected, i.e., ψ ∈ L(l)∩Bc
−,

in finding ψ−l for each l ∈ {1, 2, . . . , L−}. Therefore, for each l ∈ {1, 2, . . . , L−}, to find ψ−l

in L(l) ∩ Bc
− that maximizes the reduction of RSS, first the Householder transformation

based on the basis functions already in B−, namely {φ1, . . . , φk−1}, is used to obtain

the quantities q2, q3, r2, and r3. Then ∆RSS in (3.39) is computed for all unselected

basis functions in L(l) ∩ Bc
−, and the one with the largest reduction of RSS is chosen

to be candidate basis function ψ−l . Suppose φk is the basis function selected among all

the candidates at this iteration. At the next iteration, the Householder transformation

for φk is applied to obtain the transformation matrix Hk. The design matrix becomes

64

Look-Ahead Procedure Chapter 3

Xk = (Xk−1,xk), where xk is φk evaluated at the design points. The matrix Q at this

iteration becomes Q = H1H2 · · ·Hk. ∆RSS in (3.39) can then be computed similarly

with the updated quantities q2, q3, r2, and r3, and used to select
{
ψ−1 , . . . , ψ

−
L−

}
at this

iteration.

3.3.3 Adding A Pair of Basis Functions Using Householder QR

Decomposition

We use the same idea as in the previous section to compute the reduction of RSS

when a pair of basis functions are added to the model B−. Let {ψ1, ψ2} be any pair

of new basis functions, and let x and z be ψ1 and ψ2 evaluated at the design points

respectively. Using the same definition of Q in (3.33), then similar to (3.34), we have

(
Xk−1,y

)
= Q


R r1

0 r2

0 r3

0 r4

 , (3.40)

where (r′1, r2, r3, r
′
4)′ = Q′y, the column vectors r1 and r4 have length k−1 and n−k−1

respectively, and both r2 and r3 are scalars. Let p = Q′x = (p′1, p2, p3,p
′
4)′ and q =

Q′z = (q′1, q2, q3, q
′
4)′ where p1 and q1 are column vectors with length k− 1, and p4 and

q4 are column vectors with length n− k − 1, then similar to (3.35) we have

(
Xk−1,x, z,y

)
= Q


R p1 q1 r1

0 p2 q2 r2

0 p3 q3 r3

0 p4 q4 r4

 . (3.41)

65

Look-Ahead Procedure Chapter 3

Denote b = (p2, p3,p
′
4)′, c = (q2, q3, q

′
4)′, and d = (r2, r3, r

′
4)′. Let K be the Householder

matrix for b, then we have

K(b, c,d) = (Kb,Kc,Kd) =


p∗2 q∗2 r∗2

0 q∗3 r∗3

0 q∗4 r∗4

 . (3.42)

Denote c∗ =
(
q∗3, (q

∗
4)′
)′

, and d∗ =
(
r∗3, (r

∗
4)′
)′

. Let K∗ be the Householder matrix for c∗,

then we have

K∗(c∗,d∗) = (K∗c∗,K∗d∗) =

(
q∗∗3 r∗∗3

0 r∗∗4

)
. (3.43)

From (3.42), we have

Kd =

(
r∗2

d∗

)
, or d = K ′

(
r∗2

d∗

)
.

From (3.43), we have

K∗d∗ =

(
r∗∗3

r∗∗4

)
, or d∗ = (K∗)′

(
r∗∗3

r∗∗4

)
.

Thus, using the result in (3.32) and also the facts that KK ′ = I and K∗(K∗)′ = I, we

have

RSS
(
B−
)

= d′d

=
(
r∗2, (d

∗)′
)
KK ′

(
r∗2

d∗

)

= (r∗2)2 + (d∗)′d∗

= (r∗2)2 +
(
r∗∗3 , (r

∗∗
4)′
)
K∗(K∗)′

(
r∗∗3

r∗∗4

)

= (r∗2)2 + (r∗∗3)2 + (r∗∗4)′r∗∗4

66

Look-Ahead Procedure Chapter 3

= (r∗2)2 + (r∗∗3)2 + RSS
(
B− ∪ {ψ1, ψ2}

)
Therefore, the reduction of RSS by adding {ψ1, ψ2} to model B− is:

∆RSS = RSS
(
B−
)
− RSS

(
B− ∪ {ψ1, ψ2}

)
= (r∗2)2 + (r∗∗3)2. (3.44)

Same as before, we want to avoid applying the Householder transformations for ψ1

and ψ2 explicitly. Denote K(:, 1) as k1, K(:, 2) as k2, and K(:, 3 : (n − k + 1)) as Kr,

then we have

(b, c,d) = (k1,k2,Kr)


p∗2 q∗2 r∗2

0 q∗3 r∗3

0 q∗4 r∗4

 , (3.45)

Multiplying out and equating both sides of (3.45) gives


b = p∗2k1, (3.46)

c = q∗2k1 + q∗3k2 + Krq
∗
4, (3.47)

d = r∗2k1 + r∗3k2 + Krr
∗
4. (3.48)

Therefore,



b′b = (p∗2)2, (3.49)

b′c = p∗2q
∗
2, (3.50)

b′d = p∗2r
∗
2, (3.51)

c′c = (q∗2)2 + (q∗3)2 + (q∗4)′q∗4 = (q∗2)2 + (c∗)′c∗, (3.52)

c′d = q∗2r
∗
2 + q∗3r

∗
3 + (q∗4)′r∗4 = q∗2r

∗
2 + (c∗)′d∗, (3.53)

where we have used the facts that (k1)′k1 = (k2)′k2 = 1, (Kr)
′Kr = I, (k1)′k2 = 0, and

(k1)′Kr = (k2)′Kr = 0 because the Householder matrix K = (k1,k2,Kr) is orthogonal.

67

Look-Ahead Procedure Chapter 3

Similarly, denote K∗(:, 1) as k∗, and K∗(:, 2 : (n− k)) as K∗r, then we have

(c∗,d∗) = (k∗,K∗r)

(
q∗∗3 r∗∗3

0 r∗∗4

)
. (3.54)

Multiplying out and equating both sides of (3.54) gives

{
c∗ = q∗∗3 k∗, (3.55)

d∗ = r∗∗3 k∗ + K∗rr
∗∗
4 . (3.56)

Therefore,

(c∗)′c∗ = (q∗∗3)2, (3.57)

(c∗)′d∗ = q∗∗3 r
∗∗
3 , (3.58)

where (k∗)′k∗ = 1, (K∗r)
′K∗r = I, and (k∗)′K∗r = 0 because of the orthogonality of the

Householder matrix K∗ = (k∗,K∗r). By (3.49) and (3.51), we have:

(r∗2)2 =
(b′d)2

b′b
. (3.59)

By (3.49) - (3.51),

(q∗2)2 =
(b′c)2

b′b
, q∗2r

∗
2 =

(b′c)(b′d)

b′b
. (3.60)

Thus, using (3.52), (3.53), and (3.60), we have


(c∗)′c∗ = c′c− (q∗2)2 = c′c− (b′c)2

b′b
, (3.61)

(c∗)′d∗ = c′d− q∗2r∗2 = c′d− (b′c)(b′d)

b′b
. (3.62)

68

Look-Ahead Procedure Chapter 3

Hence, by (3.57), (3.58), and also the results in (3.61) and (3.62), we have

r∗∗3 =

(
(c∗)′d∗

)2

(c∗)′c∗

=

(
c′d− (b′c)(b′d)

b′b

)2

c′c− (b′c)2

b′b

=

[
(b′b)(c′d)− (b′c)(b′d)

]2

(b′b)
[
(b′b)(c′c)− (b′c)2

] . (3.63)

Therefore, by (3.44), (3.59), and (3.63), we have

∆RSS = (r∗2)2 + (r∗∗3)2

=
(b′d)2

b′b
+

[
(b′b)(c′d)− (b′c)(b′d)

]2

(b′b)
[
(b′b)(c′c)− (b′c)2

]
=

(b′d)2(c′c) + (b′b)(c′d)2 − 2(c′d)(b′c)(b′d)

(b′b)(c′c)− (b′c)2
, (3.64)

where b = (p2, p3,p
′
4)′, c = (q2, q3, q

′
4)′, and d = (r2, r3, r

′
4)′ as defined earlier.

Similar to the situation in Section 3.3.2, to add a pair of basis functions to B−,

first the Householder transformation based on the basis functions already in B−, namely

{φ1, . . . , φk−1}, is used to obtain the quantities b, c, and d for each pair of basis functions

that are considered. Then ∆RSS in (3.64) is computed for each pair of basis functions,

and the pair leading to the largest reduction of RSS is selected to be candidate pair. In the

look-ahead procedure, a candidate pair has the form
{
ψ−l , ψ

−
·|l
}

, for l ∈ 1, 2, . . . , L−, where

ψ−l ∈ L(l) ∩ Bc
−. Suppose the pair {φk, φk+1} is selected among all the candidate basis

functions at this iteration. At the next iteration, the Householder transformations for φk

and φk+1 are applied to obtain the transformation matrices Hk and Hk+1 respectively.

69

Look-Ahead Procedure Chapter 3

The design matrix becomes Xk+1 = (Xk−1,xk,xk+1), where xk and xk+1 are φk and

φk+1 evaluated at the design points respectively. The matrix Q at this iteration becomes

Q = H1H2 · · ·HkHk+1. ∆RSS in (3.64) can then be computed similarly with the

updated quantities b, c, and d, and used to select the candidate pairs at this iteration.

3.4 Forward Selection In the Look-Ahead Procedure

with IDFs as Tuning Parameters

We have discussed how the look-ahead procedure performs the forward selection with

fixed IDFs in Section 3.2. However, as mentioned in Section 1.7.1, the IDFs should be

chosen adaptively based on the data. We now treat the IDFs as tuning parameters and

discuss how this will change the forward selection procedure.

Suppose there are L+1 libraries {L0,L1, . . . ,LL} where L0 is the null library and the

rest are non-null libraries. The IDF of L0 is fixed at 1. The IDFs of the non-null libraries

are treated as tuning parameters, which can take any positive values, with IDF = 1

meaning the degrees of freedom is not inflated. Let sl be the IDF of the l-th library. We

consider a user-specified finite number of possible values for sl and denote the collection

of these values as Sl, for l = 1, . . . , L. Define the IDF tuning vector as s = (s1, . . . , sL).

Then s is in the IDF space S = S1 × · · · × SL, which contains all possible combinations

of the user-specified IDF values. Obviously, the size of S,
∏L

l=1 |Sl|, grows exponentially

in L.

The difference when multiple IDF tuning vectors (several s ∈ S) are used is that now

when BIC(B−j) is computed using (3.6), it can attain different minimums depending on

the involved IDFs. Hence, there can be multiple choices of Ψ−j∗ according to (3.9), each

minimizing BIC(B−j) given a specific combination of IDFs (i.e., given a specific s ∈ S).

70

Look-Ahead Procedure Chapter 3

As a result, at each step the forward selection process can generate multiple new models

B− ∪Ψ−j∗(s) for s ∈ S, given the current model B−.

During the forward selection process, we need to keep the records of both the basis

functions contained in each model and the IDF tuning vectors that lead to the selection

of these basis functions. Let D be the collection of all models generated at the current

stage in the forward selection. Here we refer to a unique collection of basis functions as

a model. Denote the hth model in D as Ah, and let Sh be the set of IDF tuning vectors

that leads to the selection of the basis functions in Ah. We will call Sh the IDF set of

Ah from now on. Let V− be the set of models in D that the procedure is updating at the

current round 3. At this round, the procedure updates one model in V− at each iteration.

Note that V− stays the same at each round of iterations. Let V+ be the set of models will

be updated at the next round. Before the current round of iterations begins, V− = V+.

Then after each model in V− is updated, V+ is adjusted accordingly. If the procedure

decides to stop adding more bases to a set in V−, that model is removed from V+. If

there are new models generated, they are added to V+ and D. Once all models in V−

have been updated, the procedure sets V− = V+ for the next round of iterations. We

start with a single model D = V− = V+ = {A1}, where A1 contains the m bases from

L0, and we initialize S1 = S. Denote the current model being updated by the forward

selection process as B−, and its IDF set as S−. They are initialized with B− = A1 and

S− = S1.

Suppose D, V− contain sets of selected basis functions A1, . . . ,Ad, where d is the

total number of models generated so far. At the first iteration, d = 1. Suppose now the

procedure is updating Ah in V−, where Ah contains k− 1 basis functions. Thus, we have

B− = Ah, with the IDF set S− = Sh. Our procedure then follows the similar forward

selection routine in (3.1), (3.2), (3.5), (3.7), and (3.9) for each s ∈ S−. Recall that after

3See the example at the end of this section for more details about each “round” of iterations.

71

Look-Ahead Procedure Chapter 3

each update, the procedure can add zero, one, or two basis functions to B−. For any

s ∈ S−, if BICs(B−) is smaller or equal to the BICs of all the candidate models, then no

basis will be added to B−. Define

Sh,0 =
{
s ∈ S− : BICs(B−) ≤ min

1≤j≤|Ψ−|
BICs(B−j)

}
, (3.65)

where B−j = B− ∪Ψ−j with Ψ−j defined in (3.5). Then there are three possibilities of how

Ah is going to be updated:

(i). If Sh,0 = S−, then the forward selection of Ah will stop and Ah is removed from

V+. For Ah, its IDF set is Sh = Sh,0.

(ii). If Sh,0 (S− and Sh,0 6= ∅, then for any given s ∈ Sh,0 none of the BICs of

the candidate models is lower than the BIC of B−, the forward selection of Ah

will stop and Ah is removed from V+. Sh is updated by setting Sh = Sh,0. For

each s ∈ S− \ Sh,0, the procedure finds the set Ψ−j∗(s) in Ψ− such that the model

B−j∗(s) = B− ∪Ψ−j∗(s) has the smallest BIC. The index j∗(s) is obtained using

j∗(s) = argmin
1≤j≤|Ψ−|

BICs(B−j). (3.66)

Note that for s1 6= s2 where s1, s2 ∈ S− \ Sh,0, j∗(s1) and j∗(s2) could be the

same. Denote the unique elements of
{
j∗(s) : s ∈ S− \ Sh,0

}
as j∗1 , . . . , j

∗
q , then

Ψ−j∗1 , . . . ,Ψ
−
j∗q

are the unique sets of basis functions selected at the current iteration.

For each Ψ−j∗i a new model Ah,i is generated:

Ah,i =


B− ∪

{
ψ−j∗i

}
, if j∗i ≤ L−,

B− ∪
{
ψ−j∗i −L− , ψ

−
·|j∗i −L−

}
, if j∗i > L−,

(3.67)

72

Look-Ahead Procedure Chapter 3

for i = 1, . . . , q. The IDF set Sh,i for Ah,i is defined as

Sh,i =
{
s : s ∈ S− \ Sh,0,BICs

(
B− ∪Ψ−j∗i

)
= min

1≤j≤|Ψ−|
BICs

(
B−j
)}
, (3.68)

for i = 1, . . . , q. To add these new sets to D and V+, the procedure generates

Ad+i = Ah,i together with Sd+i = Sh,i, for i = 1, . . . , q, since there are d sets

already in D. Ad+1, . . . ,Ad+q are then added to both D and V+.

(iii). If Sh,0 = ∅, then the same new sets Ah,1, . . . ,Ah,q as in (ii) are generated. Ah ∈ D

and Ah ∈ V+ are then updated by setting Ah = Ah,1, and its IDF set is updated

by setting Sh = Sh,1. To add the rest of the new models to D and V+ if q > 1, the

procedure generates Ad+i−1 = Ah,i together with Sd+i−1 = Sh,i, for i = 2, . . . , q.

Ad+2, . . . ,Ad+q are then added to both D and V+ if q > 1.

At the next iteration, the procedure finds the next model available in V− and assign

it as B−. Once the update of the last model in V− is finished, the procedure updates V−

by setting V− = V+. Then the forward selection process goes through the same routine

again for each model in V−. The forward selection for each model in D and V+ stops

when the BIC stops decreasing, or when the number of basis functions exceeds M . The

whole forward selection process stops when both V− and V+ are empty sets.

There are two ways the look-ahead procedure prevents overfitting. First, at most M

basis functions are allowed to be selected for each model. Second, to prevent having too

many models after the forward selection completes, we can also control the maximum

number of models to be returned, denoted as Md. Thus, we have |D| ≤ Md, and this

helps to reduce the computation burden, especially when many libraries are used. For a

certain iteration, if q new models are generated, but |D| + q > Md, then only the first

Md − |D| of them are added to D and V+, and the rest are discarded. The maximum

73

Look-Ahead Procedure Chapter 3

number of models that can be generated in the forward selection is
∏L

l=1 |Sl|. This

happens when every IDF tuning vector in S leads to a unique model. Therefore, when

we set Md ≥
∏L

l=1 |Sl|, there is no limitation on the number of models. We used this

latter setting in all of our simulations.

Now let us look at a specific example that illustrates the forward selection process in

the look-ahead procedure. Consider the Blocks-Curves function defined in Table 2.1. We

use similar simulation settings as in Section 2.2, with sample size n = 512, grid design

points from 1/n to 1, and the response values generated with SNR = 3.

We use the same libraries as in Table 2.1 for this example, where L0 = U1 consists

of the constant and linear terms, L1 = C2 consists of cubic spline representers, and

L2 = T0 consists of step functions. The knots used in L1 and L2 are grid points {(j +

3)/n, j = 1, . . . , n − 6}, so both L1 and L2 contain 506 basis functions. In addition,

each model allows at most M = 30 basis functions to be selected, including both basis

functions from L0. Denote the IDF of Li as si, for i = 1, 2. s1 and s2 can take values in

S1 = S2 = {1, 2, 3, 4, 5, 6}, so in total there are 62 = 36 IDF tuning vectors in the IDF

space S = S1 × S2. The maximum number of candidate models Md is set to be 36, so

none of the new models that could be generated are discarded in the forward selection.

The IDF of each basis function in L0 is fixed at 1. Let ξi be the ith basis function

in L0 ∪ L1 ∪ L2, so L0 = {ξ1, ξ2}, L1 = {ξ3, . . . , ξ508}, and L2 = {ξ509, . . . , ξ1014}. We

now present the details of the steps that the look-ahead procedure took in performing

the forward selection based on a single realization of y. Note that the basis functions

selected can change if a different realization of y were used.

Initialization: Set D = V− = V+ = {A1} and S1 = S, where A1 = {ξ1, ξ2}.

Example Iterations:

(1). Set B− = A1 and S− = S1. For our y, the pair {ξ863, ξ379} was selected for all

74

Look-Ahead Procedure Chapter 3

s ∈ S−, so A1 is updated by setting A1 = {ξ1, ξ2, ξ863, ξ379}. S1 stays the same.

After the update, D = V+ = V− = {A1}.

(2). Set B− = A1 and S− = S1. Given the IDF set S1,0 = {(s1, s2) ∈ S : s2 >

3}, none of the BICs of the candidate models is lower than BICs(B−), so A1

completes forward selection for s ∈ S1,0, and is removed from V+. S1 is updated

by setting S1 = S1,0.

Given the IDF set S1,1 = {(s1, s2) ∈ S : s2 ≤ 3}, the pair {ξ709, ξ607} is selected,

so a new model A2 is generated with A2 = B− ∪ {ξ709, ξ607} = {ξ1, ξ2, ξ863, ξ379,

ξ709, ξ607}. The IDF set for A2 is S2 = S1,1. A2 is then added to D and V+.

After the update, D = {A1,A2} and V+ = {A2}. V− is updated by setting

V− = {A2}.

(3). Set B− = A2 and S− = S2. Given the IDF set S2,1 = {(s1, s2) ∈ S :

s1 ≤ 3, s2 ≤ 2}, the pair {ξ85, ξ970} is selected. Given the IDF set S2,2 =

{(s1, s2) ∈ S : s1 ≥ 4 and s2 ≤ 2, or, s1 ≥ 5 and s2 = 3}, the single ba-

sis {ξ835} is selected. Given the IDF set S2,3 = {(s1, s2) ∈ S : s1 ≤ 4, s2 =

3}, the pair {ξ607, ξ85} is selected. Thus, A2 is updated by setting A2 =

B− ∪ {ξ85, ξ970} = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ85, ξ970}, and S2 is updated by

setting S2 = S2,1. Two new sets A3 and A4 are generated, where A3 =

B− ∪ {ξ835} = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ835} and A4 = B− ∪ {ξ607, ξ85} =

{ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ85}. The IDF sets for A3 and A4 are S3 = S2,2 and

S4 = S2,3 respectively. A3 and A4 are then added to D and V+. After the up-

date, D = {A1,A2,A3,A4} and V+ = {A2,A3,A4}. V− is updated by setting

V− = {A2,A3,A4}.

(4). Set B− = A2 and S− = S2. For all s ∈ S−, none of the BICs of the candidate

models is lower than BICs(B−), so A2 completes forward selection, and is re-

75

Look-Ahead Procedure Chapter 3

moved from V+. After the update, D = {A1,A2,A3,A4}, V+ = {A3,A4}, and

V− = {A2,A3,A4}.

(5). Set B− = A3 and S− = S3. Given the IDF set S3,0 = {(s1, s2) ∈ S : s1 ≥ 5, s2 =

3}, none of the BICs of the candidate models is lower than BICs(B−), so A3

completes forward selection, and is removed from V+. S3 is updated by setting

S3 = S3,0.

Given the IDF set S3,1 = {(s1, s2) ∈ S : s1 ≥ 4, s2 = 1}, the pair {ξ875, ξ932}

is selected. Given the IDF set S3,2 = {(s1, s2) ∈ S : s1 ≥ 4, s2 = 2}, the

single basis {ξ875} is selected. Thus, two new models A5 and A6 are generated

with A5 = B−∪{ξ875, ξ932} = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ835, ξ875, ξ932} and A6 =

B−∪{ξ875} = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ835, ξ875}. Their IDF sets are S5 = S3,1,

and S6 = S3,2. A5 and A6 are then added to D and V+. After the update,

D = {A1,A2,A3,A4,A5,A6}, V+ = {A4,A5,A6}, and V− = {A2,A3,A4}.

(6). Set B− = A4 and S− = S4. For all s ∈ S−, none of the BICs of the candi-

date models is lower than BICs(B−), so A4 completes forward selection, and

is removed from V+. After the update, D = {A1,A2,A3,A4,A5,A6} and

V+ = {A5,A6}. V− is updated by setting V− = {A5,A6}.

(7). Set B− = A5 and S− = S5. For all s ∈ S−, the pair {ξ984, ξ970} is selected. Thus,

A5 is updated by setting A5 = B−∪{ξ984, ξ970} = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ835,

ξ875, ξ932, ξ984, ξ970}. S5 stays the same. After the update, D = {A1,A2,A3,A4,

A5,A6}, V+ = {A5,A6}, and V− = {A5,A6}.

(8). Set B− = A6 and S− = S6. For all s ∈ S−, none of the BICs of the candi-

date models is lower than BICs(B−), so A6 completes forward selection, and

is removed from V+. After the update, D = {A1,A2,A3,A4,A5,A6} and

V+ = {A5}. V− is updated by setting V− = {A5}.

76

Look-Ahead Procedure Chapter 3

(9). Set B− = A5 and S− = S5. For all s ∈ S−, the single basis {ξ665} is selected.

Thus,A5 is updated by settingA5 = B−∪{ξ665} = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ835,

ξ875, ξ932, ξ984, ξ970, ξ665}. S5 stays the same. After the update, D = {A1,A2,A3,

A4,A5,A6}, V+ = {A5}, and V− = {A5}.

(10). Set B− = A5 and S− = S5. For all s ∈ S−, none of the BICs of the candidate

models is lower than BICs(B−), so A5 completes forward selection, and is re-

moved from V+. After the update, D = {A1,A2,A3,A4,A5,A6} and V+ = ∅.

V− is updated by setting V− = ∅. Therefore, the whole forward selection process

has ended.

We can see from above that whenever new sets are added to D and V , the IDF sets

for these new models together with those for the updated current model form a partition

of the IDF set for B−. For example, at iteration (2), S1,0 and S1,1 form a partition of S−.

The IDF sets for all the sets in D at iterations (1), (2), (3), and (5) are shown in Figure

3.2. We can clearly see that as the number of models in D increases, S is divided into

more and more parts, where each part corresponds to a unique model in D. Also, the

boundaries between different parts in S need not be parallel or perpendicular, as can be

seen from iteration (3).

We can also use the tree diagram to summarize the forward selection process described

above, as shown in Figure 3.1. Here the edges are labeled with the iteration numbers,

and each node represents a unique model with its IDF set. The set V− at each round

corresponds to the collection of internal nodes with the same depth in the tree. For

example, after iteration (3), V− becomes {A2,A3,A4}, which can be represented by the

collection of all three nodes with depth equal to 3 in the tree diagram. After each model

in V− is updated at iteration (4) through (6), V− is updated by setting V− = {A5,A6},

since the nodes containing A5 and A6 are the only two internal nodes at the next level

of the tree.

77

Look-Ahead Procedure Chapter 3

At each iteration, new basis functions that are added to the current model are colored

in cyan. For example, from the diagram we can see that at iteration (1), the pair of bases

{ξ863, ξ379} is selected and added to A1. Each end node is red-filled and corresponds to

the end of forward selection for each model. Thus, it can be seen that A1 through A6

completes the forward selection at iteration (2), (4), (5), (6), (10), and (8) respectively.

In addition, when a node has multiple branches, this means the IDF set of the current

model is partitioned into multiple parts, where each part leads to a unique model (the

child node) after the iteration.

78

Look-Ahead Procedure Chapter 3

S1 =
{

1 ≤ s1, s2 ≤ 6
}
,

A1 = L0 = {ξ1, ξ2}

S1 =
{

1 ≤ s1, s2 ≤ 6
}
,

A1 = {ξ1, ξ2, ξ863, ξ379}

S1 =
{

1 ≤ s1 ≤ 6,

4 ≤ s2 ≤ 6
}
,

A1 = {ξ1, ξ2, ξ863, ξ379}

(2)

S2 =
{

1 ≤ s1 ≤ 6, 1 ≤ s2 ≤ 3
}
,

A2 = {ξ1, ξ2, ξ863, ξ379,
ξ709, ξ607}

S2 =
{

1 ≤ s1 ≤ 3,

1 ≤ s2 ≤ 2
}
,

A2 = {ξ1, ξ2, ξ863, ξ379,
ξ709, ξ607, ξ85, ξ970}

S2 =
{

1 ≤ s1 ≤ 3,

1 ≤ s2 ≤ 2
}
,

A2 = {ξ1, ξ2, ξ863,
ξ379, ξ709, ξ607,
ξ85, ξ970}

(4)

(3)

S3 =
{

4 ≤ s1 ≤ 6, 1 ≤ s2 ≤ 2
}

∪
{
s1 ≥ 5, s2 = 3

}
,

A3 = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ835}

S3 =
{
s1 ≥ 5,

s2 = 3
}
,

A3 = {ξ1, ξ2,
ξ863, ξ379,

ξ709, ξ607, ξ835}

(5)

S5 =
{

4 ≤ s1 ≤ 6,

s2 = 1
}
,

A5 = {ξ1, ξ2,
ξ863, ξ379,
ξ709, ξ607,
ξ835, ξ875}

S5 =
{

4 ≤ s1 ≤ 6,

s2 = 1
}
,

A5 = {ξ1, ξ2,
ξ863, ξ379, ξ709,
ξ607, ξ835, ξ875,
ξ987, ξ970}

S5 =
{

4 ≤ s1 ≤ 6, s2 = 1
}
,

A5 = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607,
ξ835, ξ875, ξ987, ξ970, ξ665}

S5 =
{

4 ≤ s1 ≤ 6, s2 = 1
}
,

A5 = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607,
ξ835, ξ875, ξ987, ξ970, ξ665}

(10)

(9)

(7)

(5)

S6 =
{

4 ≤ s1 ≤ 6,

s2 = 2
}
,

A6 = {ξ1, ξ2,
ξ863, ξ379,
ξ709, ξ607, ξ835,
ξ875, ξ932}

S6 =
{

4 ≤ s1 ≤ 6,

s2 = 2
}
,

A6 = {ξ1, ξ2,
ξ863, ξ379,

ξ709, ξ607, ξ835,
ξ875, ξ932}

(8)

(5)

(3)

S4 =
{

1 ≤ s1 ≤ 4,

s2 = 3
}
,

A4 = {ξ1, ξ2, ξ863, ξ379,
ξ709, ξ607, ξ85}

S4 =
{

1 ≤ s1 ≤ 4,

s2 = 3
}
,

A4 = {ξ1, ξ2, ξ863, ξ379,
ξ709, ξ607, ξ85}

(6)

(3)

(2)

(1)

Figure 3.1: Tree diagram of the forward selection process for a data set from the
Blocks-Curves example. Note that s1 and s2 take integer values from 1 to 6 in this
illustration. The numbers in parentheses on left or right side of arrow represent
iteration number in the searching procedure. Each end node is red-filled. New basis
functions that are selected at each iteration are colored in cyan.

79

Look-Ahead Procedure Chapter 3

1 2 3 4 5 6

1

2

3

4

5

6

s1

s 2
S1 at iteration (1)

1 2 3 4 5 6

1

2

3

4

5

6

s1

s 2

S1 at iteration (2)
S2 at iteration (2)

80

Look-Ahead Procedure Chapter 3

1 2 3 4 5 6

1

2

3

4

5

6

s1

s 2
S1 at iteration (3)
S2 at iteration (3)
S3 at iteration (3)
S4 at iteration (3)

1 2 3 4 5 6

1

2

3

4

5

6

s1

s 2

S1 at iteration (5)
S2 at iteration (5)
S3 at iteration (5)
S4 at iteration (5)
S5 at iteration (5)
S6 at iteration (5)

Figure 3.2: The sets of IDF tuning vectors for all the models in D at different iterations
for a data set from the Blocks-Curves example

81

Look-Ahead Procedure Chapter 3

3.5 Selection of IDFs

After the forward selection process is completed, the look-ahead procedure returns a

set of models D. Each model has its own IDF set which contains at least one IDF tuning

vector in the IDF space S. Clearly if |D| < Md, then {S1, . . . ,S|D|} forms a partition of

S. Otherwise {S1, . . . ,S|D|} are disjoint subsets of S. Now the question is how to select

one of the models to be our final model.

Selecting a model in D is equivalent to selecting one of the IDF tuning vectors in

S, because for a fixed IDF vector, the model is uniquely determined by the forward

selection process. The role of the IDF tuning vector is similar to the role of the s-

moothing parameter λ in the smoothing spline model. By penalizing libraries differently

via IDFs, our procedure controls the selection of each type of basis functions. For in-

stance, for the Blocks-Curves example presented in Section 3.4, when the procedure

correctly selects the suitable penalties on L1 and L2 with s1 ≤ 4 and s2 = 3, mod-

el A4 = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ85} will be the final model and exactly three step

functions with jump points close to 0.2, 0.4, and 0.7 are selected.

We will use k-fold cross validation to select the best IDF tuning vector in S. The

whole data set is split into k roughly equal-sized parts. For v = 1, ..., k, we use the v-th

part as the validation set and the other parts combined as the training set. For a tuning

vector s ∈ S, define its average cross validation error as:

CVs =
1

k

k∑
v=1

{
1

nv

nv∑
i=1

(
y

[v]
i − f̂ [−v]

s

(
x

[v]
i

))2
}
, (3.69)

where
{(
x

[v]
i , y

[v]
i

)
, 1 ≤ i ≤ nv

}
is the v-th validation set, and f̂

[−v]
s is the ordinary least

squares fit based on all observations except those in the v-th validation set, using the

basis functions obtained from the forward selection for the fixed IDF tuning vector s.

82

Look-Ahead Procedure Chapter 3

The best IDF tuning vector is chosen to minimize CVs:

s∗ = argmin
s∈S

CVs. (3.70)

Let S∗ be the IDF set in {S1, . . . ,S|D|} that contains s∗, then the final model A∗ is the

model in D whose IDF set is S∗.

For the same Blocks-Curves example presented in Section 3.4, here is the levelplot

of the average cross validation error for each IDF tuning vector in
{

(s1, s2), s1, s2 ∈

{1, 2, 3, 4, 5, 6}
}

. We can see that given s1 ∈ {1, 2, 3} and s2 = 3, the average cross

validation error is the smallest. Thus, model A4 = {ξ1, ξ2, ξ863, ξ379, ξ709, ξ607, ξ85} is

chosen to be the final model for this specific example.

s1

s 2

1

2

3

4

5

6

1 2 3 4 5 6

0.320

0.322

0.324

0.326

0.328

0.330

0.332

0.334

0.336

0.338

0.340

0.342

0.344

0.346

0.348

Figure 3.3: The average cross validation error for each IDF tuning vector, using a
data set from the Blocks-Curves example.

83

Look-Ahead Procedure Chapter 3

For the choice of IDF tuning values for each library, one can first try values within a

wide range, for example the {1, 2, 3, 4, 5, 6} used above. Based on the IDF values selected

by LAP, we can then fine-tune the IDFs and apply the LAP again. In the example above,

LAP selects s∗1 ∈ {1, 2, 3} and s∗2 = 3. For s1, we can then specify a finer grid points

between 1 and 3, and apply the LAP again to see if the basis functions selected will be

different. For this example, the results stay the same.

3.6 The Whole Look-Ahead Procedure

The whole look-ahead procedure is summarized below.

The Look-Ahead Procedure

1. Initialization: Set A1 = L0, let M be an upper bound on the number of basis

functions to be selected (including those in L0), and Md be the maximum

number of models to be generated in the forward selection. Let S be the IDF

space. Set D = V+ = V− = {A1}. Set S1 = S, B− = A1 and S− = S1.

2. Forward selection:

while V+ 6= ∅ and V− 6= ∅ do

Find Ah ∈ V−, which the first set in V− that has not been updated.

Set B− = Ah, and set the IDF set of Ah as S−.

Set k = |B−|+ 1 and d = |D|. Set Ψ− = ∅.

for l = 1, . . . , L do

if k = M then

Select ψ−l using (3.1). Update Ψ− with Ψ− ∪
{
ψ−l
}

.

else

84

Look-Ahead Procedure Chapter 3

Select ψ−l using (3.1). Update Ψ− with Ψ− ∪
{
ψ−l
}

.

Select ψ−·|l using (3.2). Update Ψ− with Ψ− ∪
{
ψ−l , ψ

−
·|l
}

.

end if

end for

Let Ψ−j be the jth element of Ψ−. Let B−j = B−∪Ψ−j for j = 1, . . . , |Ψ−|.

Set Sh,0 = ∅,Ψ−∗ = ∅.

for s ∈ S− do

if BICs(B−) ≤ min1≤j≤|Ψ−| BICs
(
B−j
)

then

Set Sh,0 = Sh,0 ∪ {s}.

else

Solve j∗(s) = argmin
1≤j≤|Ψ−|

BICs
(
B−j
)
, with BICs defined in (3.6).

Set Ψ−∗ = Ψ−∗ ∪
{

Ψ−j∗(s)
}

.

end if

end for

if Sh,0 = S− then

Ah is removed from V+. The IDF set of Ah is Sh = Sh,0.

else

Denote the elements in Ψ−∗ as Ψ−j∗1 , . . . ,Ψ
−
j∗q

. Generate the new models

Ah,1, . . . ,Ah,q using (3.67), and their IDF sets Sh,1 . . .Sh,q, where

Sh,i =
{
s : s ∈ S− \ Sh,0,BICs

(
B−j∗i
)

= min1≤j≤|Ψ−| BICs
(
B−j
)}

,

for i = 1, . . . , q.

if Sh,0 (S− and Sh,0 6= ∅ then

Remove Ah from V+.

Generate Ad+i = Ah,i and Sd+i = Sh,i for i = 1, . . . , q.

Add the first min(q,Md − d) of Ad+1, . . . ,Ad+q to D and V+.

85

Look-Ahead Procedure Chapter 3

For Aj ∈ V+, remove it from V+ if |Aj| = M .

else

Update Ah by setting Ah = Ah,1. Update Sh by setting Sh = Sh,1.

if q > 1 then

Generate Ad+i−1 = Ah,i and Sd+i−1 = Sh,i for i = 2, . . . , q.

Add the first min(q− 1,Md− d) of Ad+1, . . . ,Ad+q−1 to D and

V+. For Aj ∈ V+, remove it from V+ if |Aj| = M .

end if

end if

end if

if all sets in V− have been updated then

Update V− by setting V− = V+.

end if

end while

3. Elimination: Compute the average cross validation error CVs in (3.69) for each

s ∈ S. Find the s∗ in (3.70). The final model is Ah∗ such that s∗ ∈ Sh∗ .

86

Look-Ahead Procedure Chapter 3

3.7 Bootstrap Confidence Intervals

The nonparametric bootstrap confidence intervals have been well studied. The main

difficulty in constructing them is due to the bias, which can not be estimated consistently

using the bootstrap method. Consider the nonparametric regression model

yi = f(xi) + εi, εi
iid∼ N(0, σ2), i = 1, . . . , n, (3.71)

where xi’s are design points with arbitrary domain X . As Cummins et al. (2001)

has pointed out, by minimizing the average mean squared error (averaged across de-

sign points), the bias and variance of the estimate f̂ are deliberately balanced, so

Bias(f̂(xi))
2/Var(f̂(xi)) converges to a fixed ratio. When this ratio is large, the con-

fidence interval will be consistently centered at the wrong place, causing low coverage.

The bias of f̂ tends to be big especially at points where f has sharp curvature or sudden

jumps, and the coverage probability will be low at these points.

There are two common approaches to overcome this problem. One is by oversmooth-

ing and inducing an explicit or implicit bias estimator, for example see Härdle and Bow-

man (1988), Härdle and Marron (1991), Hall (1992a), Eubank and Speckman (1993), Sun

and Loader (1994), Härdle et al. (1995), and Xia (1998). The other approach is using

undersmoothing to reduce the impact of bias, for example see Bjerve et al. (1985), Hall

(1992b), Neumann (1995), Neumann and Polzehl (1998), Picard and Tribouley (2000),

Claeskens and Keilegom (2003), McMurry and Politis (2008). See Hall and Horowitz

(2013) for a more comprehensive review. In the smoothing splines literature, Wang and

Wahba (1995) compared the average coverage probability of various bootstrap confidence

intervals, such as the percentile interval (Efron (1982)) and the pivotal interval (Efron

(1981)), with Bayesian confidence intervals (Wahba (1983)) for smoothing splines with

87

Look-Ahead Procedure Chapter 3

Gaussian data, and found they have similar performance. Cummins et al. (2001) con-

structed pointwise confidence intervals by selecting local smoothing parameters to yield

more uniform pointwise coverage.

For the look-ahead procedure, we construct the bootstrap confidence intervals using

the undersmoothing approach. First, the LAP is applied to the data {(xi, yi), i = 1 . . . , n}

to obtain the estimate f̂ . Recall that in LAP, criteria such as the BIC and AIC are used

for selecting basis functions, and in order to avoid overfitting, the forward selection

process for a candidate model stops once BIC or AIC starts to increase. Therefore, the

estimate f̂ tends to have big bias, especially at places where f has sharp curvature or

sudden jumps. To reduce the bias, we use the undersmoothing approach to obtain a

“big” model. Sklar et al. (2013) found that for the BSML procedures the cross validation

method generally tends to lead to a model that overfits. We will use the same method

for the look-ahead procedure.

Let s∗ be the IDF tuning vector that minimizes the average cross validation error and

leads to an estimate f̂ , as defined in (3.70). The same LAP forward selection routine

in Section 3.2 is then applied again with the IDF vector fixed at s∗. However, this

time instead of stopping the forward selection once the BIC or AIC starts to increase,

we let it continue until the number of basis functions in the model reaches M . The

forward selection starts with B(1) = L0 at the first iteration. At the jth iteration, for

j = 2, 3, . . ., LAP sets B− = B(j−1), then selects the set of basis functions Ψ−j∗ by following

the same selection routine in (3.1), (3.2), (3.5), (3.6), (3.7), (3.9), (3.12), (3.13), and

sets B(j) = B(j−1) ∪ Ψ−j∗ . This process continues until it reaches iteration D such that

|B(D)| = M . Therefore, we have D candidate models: B(1), . . . ,B(D). Then the k-fold

cross validation method is used to select one of them as the final model. The average

88

Look-Ahead Procedure Chapter 3

cross validation error for model B(j), j = 1, . . . , D, is defined as:

CV
(
B(j)

)
=

1

k

k∑
v=1

{
1

nv

nv∑
i=1

(
y

[v]
i − f̂

[−v]
(j)

(
x

[v]
i

))2
}
, (3.72)

where
{(
x

[v]
i , y

[v]
i

)
, 1 ≤ i ≤ nv

}
is the v-th validation set, and f̂

[−v]
(j) is the ordinary least

squares fit based on all observations except those in the v-th validation set, using the

basis functions contained in B(j). The final model B̃ is chosen to minimize the average

k-fold cross validation error:

B̃ = argmin
B(j) ∈

{
B(1), . . . ,B(D)

}CV
(
B(j)

)
. (3.73)

Once B̃ has been chosen, denote f̃ as the ordinary least squares fit using the basis

functions contained in B̃. Then B bootstrap samples ỹb = (ỹ1,b, . . . , ỹn,b)
′ for b = 1 . . . , B

are generated according to

ỹi,b = f̃(xi) + ε̃i,b, ε̃i,b
iid∼ N(0, σ̂2), i = 1, . . . , n; b = 1, . . . , B, (3.74)

where σ̂2 is an estimate of σ2. Typically a difference-based estimator of σ2 is used, for

example see Rice (1984), Gasser et al. (1986), and Tong and Wang (2005). For the look-

ahead procedure, the Rice estimator defined in (2.13) is used as the default. Alternatively,

the bootstrap samples can be generated by resampling the residuals with replacement. In

the look-ahead procedure, only the parametric bootstrap given in (3.74) is implemented.

For each bootstrap sample ỹb, b = 1, . . . , B, the same forward selection routine men-

tioned above is applied to obtain the sequence of candidate models B(1)
b , . . . ,B(Db)

b . To

select one of them as the final model, we use the average square error (ASE) instead of

the average cross validation error as the model elimination criterion, because the true

89

Look-Ahead Procedure Chapter 3

function f̃ in the generation of the bootstrap samples is known. The ASE of the model

B(j)
b is defined as:

ASE
(
B(j)
b

)
=

1

n

n∑
i=1

(
f̂

(j)
b (xi)− f̃(xi)

)2

, (3.75)

for j = 1, . . . , Db, where f̂
(j)
b is the ordinary least squares fit using the basis functions

contained in B(j)
b . For the bth bootstrap sample, the final model B∗b is selected to minimize

the ASE, i.e.,

B∗b = argmin
B(j)b ∈

{
B(1)b , . . . ,B(D)

b

}ASE
(
B(j)
b

)
. (3.76)

Denote f̂ ∗b as the ordinary least squares fit using the basis functions contained in B∗b , for

b = 1 . . . , B. Then the (1−α)% confidence interval of f(x) is
(
f̂α/2, f̂(1−α/2)

)
, where f̂α/2

and f̂(1−α/2) are the α/2 and (1− α/2) percentiles of
(
f̂ ∗1 (x), . . . , f̂ ∗B(x)

)
.

The simulation results for the bootstrap confidence intervals are presented in Section

4.2.

90

Look-Ahead Procedure Chapter 3

3.8 R Functions for the Look-Ahead Procedure

The look-ahead procedure has been implemented in R. Here we briefly introduce the

input arguments and output values of the R functions that can be used for applying LAP

and performing predictions.

3.8.1 LAP.R

Description

This function implements the look-ahead procedure (LAP). The program adaptively

select one or a pair of basis functions from different libraries according to certain criterion

such as the BIC. Each library is associated with an IDF, which is treated as a tuning

parameter. K-fold cross validation is used for selecting the best IDF values and the final

model.

Usage

LAP(y, baseslist, maxbas=30, sub.maxbas=c(), idfs, maxmod=nrow(idfs),

nfolds=10, criterion="BIC")

Arguments

• y: response vector.

• baseslist: list of libraries of basis functions, where each element corresponds on

the list corresponds to a library. The first library is the null library L0, the second

library is L1 and so on. Each library should be a matrix, where each column

corresponds to a basis function evaluated at the design points.

• maxbas: maximum number of bases allowed to be selected. This is the M in the

LAP algorithm.

91

Look-Ahead Procedure Chapter 3

• sub.maxbas: a vector with length equal to the number of nonnull libraries. Each

element specifies the maximum number of bases to be preselected for each nonnull

library.

• idfs: matrix of IDF tuning values with L+ 1 columns, where each row represents

an IDF tuning vector. The IDF for L0 (the first column) should be fixed at 1.

• maxmod: maximum number of models allowed to be generated during the forward

selection process. This is denoted as Md in the LAP algorithm. The default is

the total number of IDF tuning vectors, or equivalently, the number of rows in the

matrix idfs.

• nfolds: the number of folds used in the cross validation.

• criterion: basis selection criterion. Available options are “AIC” and “BIC”.

Default is “BIC”.

Value

• bases.chosen: a matrix with two columns. The second column contains indices

of the basis functions selected by LAP. The first column contains the indices of the

libraries to which basis functions in the second column belong, where “1” represents

the null library, “2” represents L1, and so on.

• cv.error: the average cross validation error for each IDF tuning vector, see (3.72).

• idfs.cv: the IDF values that minimize average cross validation error, see (3.70).

• fit: the fitted values of the final model.

• coef: the coefficients in the final model.

• sigma_hat: estimated error standard deviation.

92

Look-Ahead Procedure Chapter 3

• RSS: residual sum of squares of the final model.

• y: response vector. Same as input.

• baseslist: list of libraries of basis functions. Same as input.

• maxbas: maximum number of bases allowed to be selected. Same as input.

• idfs: list of IDF tuning values for each library, including L0. Same as input.

• maxmod: maximum number of models allowed to be generated during the forward

selection process. Same as input.

• criterion: basis selection criterion. Same as input.

3.8.2 predict.LAP.R

Description

This function is for making predictions using the output object from LAP.

Usage

predict.LAP (object, bases.include=NULL, new.baseslist=NULL,

confint=F, alpha=0.05, sigma=NULL, bootrep=200)

Arguments

• object: output object from LAP.

• bases.include: a vector of length (number of null bases + number of nonnull

libraries). The elements should be either 0 or 1, with 0 means the corresponding

basis or library will not be included in the prediction, and 1 otherwise.

• new.baseslist: the list of libraries used in the prediction. If the original list in

the LAP object is used, the prediction will be same as the fitted values in the LAP

object.

93

Look-Ahead Procedure Chapter 3

• confint: True or False. If True, a confidence interval with significance level alpha

will be computed. The default is False.

• alpha: the significance level for the confidence interval. Default is 0.05.

• sigma: the error standard deviation used in constructing the bootstrap sample.

The Rice estimator is used as the default.

• bootrep: number of bootstrap samples used in constructing the confidence interval.

Default is 200.

Value

• fit: predicted values.

• fit.boot: the fit of the model B̃ obtained by using cross validation.

• bases.boot: the indices of the basis functions contained in the model B̃.

• bootfits: a matrix which contains all the bootstrap fitted values used in con-

structing the confidence interval as its columns. NULL if confint=F.

• boot.y: a matrix which contains the bootstrap samples generated for the response

variable as its columns. NULL if confint=F.

• bootbases.all: a list which contains the indices of all the basis functions selected

for each bootstrap sample. NULL if confint=F.

• bootbases.pred: a list which contains the indices of selected basis functions, a-

mong all the wanted ones as specified in bases.include, for each bootstrap sample.

NULL if confint=F.

• lower: the lower bound of the confidence interval. NULL if confint=F.

94

Look-Ahead Procedure Chapter 3

• upper: the upper bound of the confidence interval. NULL if confint=F.

• sigma: the error standard deviation used in constructing the bootstrap sample.

3.8.3 stdz.R

Description

This function is used to standardize the basis functions (columns) in a design matrix,

so that each basis functions evaluated at the design points has norm one.

Usage

stdz(X)

Arguments

• X: matrix of basis functions. Each column of X is a basis function evaluated at the

design points.

Value

• matrix with standardized basis functions as its columns.

3.8.4 An Example

We use one simulated data set from the Block-Curves example in Section 3.4 to

illustrate the usage of these R functions. The R code is shown below, where the R

file LAP.R contains LAP and predict.LAP functions. Here the stdz function is used

to numerically stabilize the computation. The input matrix in the stdz function is

standardized by column so that each column has norm one.

library(assist)

source("LAP.R")

set.seed(82)

95

Look-Ahead Procedure Chapter 3

n <- 512

x <- seq(from=1/n, to=1, by=1/n)

fx <- 1*(x-0.2 >= 0 & x-0.4 < 0) - x^10*(x-0.7 >= 0) +

exp((x+0.5)^2)*(x-0.4 >= 0 & x-0.7 < 0)

Libraries of basis functions:

loc <- x[-c(1,2,3,n-2,n-1,n)]

pt <- rep(1,n)%o%loc

L0 <- stdz(cbind(1, x))

L1 <- stdz((cubic(s = x, t = loc)))

L2 <- stdz((1*(x-pt)>0))

baseslist <- list(L0, L1, L2)

Look-Ahead Procedure:

y <- fx + rnorm(n, mean=0, sd=sd(fx)/3)

nlib <- length(baseslist)

idfs <- append(list(1),rep(list(c(1:6)),nlib-1))

idfs <- as.matrix(expand.grid(idfs))

fit.lap <- LAP(y, baseslist, maxbas=30, idfs=idfs, criterion="BIC")

95% bootstrap confidence interval:

pred.lap <- predict.LAP(fit.lap, bases.include=c(1,1,1,1),

new.baseslist=baseslist, confint=T, bootrep=200)

Plot of the LAP fit with its 95% confidence interval:

plot(x, y, col="gray")

lines(x, fx, type="l", lwd=2)

lines(x, fit.lap$fit, col=2, lty=1, lwd=2)

lines(x, pred.lap$lower, col=2, lty=2, lwd=2)

lines(x, pred.lap$upper, col=2, lty=2, lwd=2)

Figure 3.4 shows the LAP fit with its 95% bootstrap confidence interval for this

example.

96

Look-Ahead Procedure Chapter 3

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●

●

●●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4
5

x

y

Figure 3.4: LAP fit of the Block-Curves example in Section 3.4. Gray dots are the
simulated data points. Black solid line is true function. Red solid line is the LAP fit.
Red dashed lines are the upper and lower bounds of the 95% bootstrap confidence
interval based on 200 bootstrap samples.

97

Chapter 4

Simulations

4.1 Estimation of Univariate Functions

We performed simulations to compare the performances of the BSML procedures and

our look-ahead procedure with the same six univariate examples presented in Section

2.2. See Table 2.1 for the true functions and the libraries of basis functions used for each

example.

The design points used for all simulations are the grid points {xi = i/n : i = 1, . . . , n},

where the sample size n ∈ {256, 512, 1024}. The response variable is generated using

(2.6), where σ is chosen such that SNR ∈ {1, 2, 3, 4, 5, 6}. The knots used in the libraries

P2, C2, T0, T2 are grid points {j/n, j = 4, . . . , n − 3}. For all procedures, the maximal

number of bases M is fixed at 30. For the look-ahead procedure, we used IDF spaces

Si = {1, 2, 3, 4, 5, 6} for i = 1, 2. The maximal number of models can be returned after

the forward selection, denoted by Md, was set to be |S1| × |S2| = 36, so that all new

models generated during the forward selection are kept in D. The 10-fold cross validation

is used to select the final model in the look-ahead procedure. For each sample size, 100

random samples are simulated to evaluate the performances of the BSML procedures

98

Simulations Chapter 4

and the look-ahead procedure. We use the MSE defined in (2.8) as the measure of

performance. For convenience, we will use the acronym “LAP” when referring to the

look-ahead procedure from now on. The simulation results are shown in Figure 4.1 – 4.9.

We can see that LAP’s performance is comparable to that of BSML-C and BSML-S

in terms of the MSE. For the Sine-Jumps and LW6 examples, on average LAP selected

fewer basis function than BSML-C and BSML-S. Also, as we mentioned in Section 2.4, for

the Heavisine example the basis functions from L1 and L2 need to be treated separately.

Because of this, for the Heavisine example the performance of BSML-C is not as good

as that of BSML-S and LAP across all SNR values and sample sizes. In terms of the

computation speed, LAP has clear advantage over both BSML procedures. Table 4.1 –

4.3 lists the average CPU time of fitting each univariate example using BSML-C, BSML-

S, and LAP for different samples sizes with SNR = 3. Without having to estimate the

GDF at each forward selection step as BSML-C and BSML-S do, LAP manages to be

about twice as fast as BSML-C , and more than 10 times faster than BSML-S.

99

Simulations Chapter 4

1 2 3 4 5 60.
05

0.
15

0.
25

0.
35

Blocks−Curves

SNR

M
ed

ia
n

M
S

E

●

●

●

●

●

●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Heavisine

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●

0.
01

0.
03

0.
05

0.
07

Blocks−Curves

M
S

E

BSML−C BSML−S LAP

●

●

●

●
●

●
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Heavisine

M
S

E

BSML−C BSML−S LAP

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

4
6

8
10

12
14

Blocks−Curves

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●●

●

●●

●

●●

●●

6
8

10
12

14

Heavisine

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.1: Simulation results for the Blocks-Curves and Heavisine examples with
n = 256. The top panel shows the median

√
MSE across different SNR values for

both examples, where the symbols used are: for BSML-C, for BSML-S, and
for the look-ahead procedure. The middle panel shows the boxplots of the MSE when
SNR = 3. The bottom panel shows the number of basis functions selected when
SNR = 3.

100

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Sine−Jumps

SNR

M
ed

ia
n

M
S

E
●

●

●

●
●

●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
02

0.
06

0.
10

0.
14

Poly−Sine

SNR

M
ed

ia
n

M
S

E

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●
●●

0.
00

0
0.

01
0

0.
02

0
0.

03
0 Sine−Jumps

M
S

E

BSML−C BSML−S LAP

●
●
●●●
●
●●

●

●

●
●●●

●●●

●

●

●

●

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Poly−Sine

M
S

E

BSML−C BSML−S LAP

●●

●

●●

●

●

●

4
5

6
7

8
9

10

Sine−Jumps

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●●

●

●

●

●●●●●●●

●

●

●

●●●●●●●●

●

●

●●●●

●

●

●

●●●●

●

●●

●

●●●●

●

●

4
5

6
7

8
9

10

Poly−Sine

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.2: Simulation results for the Sine-Jumps and Poly-Sine examples with
n = 256. The top panel shows the median

√
MSE across different SNR values for

both examples, where the symbols used are: for BSML-C, for BSML-S, and
for the look-ahead procedure. The middle panel shows the boxplots of the MSE when
SNR = 3. The bottom panel shows the number of basis functions selected when
SNR = 3.

101

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

0.
25

LW6

SNR

M
ed

ia
n

M
S

E

●

●

●
●

●
●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
05

0.
15

0.
25

0.
35

LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●
●

●

●

●

●●
●

●●

0.
00

5
0.

01
0

0.
01

5

LW6

M
S

E

BSML−C BSML−S LAP

●
●●

●

●●

● ●

●●

●

●
0.

00
0.

02
0.

04
0.

06

LW7

M
S

E

BSML−C BSML−S LAP

●

10
15

20

LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●●

6
8

10
12

14
16

18

LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.3: Simulation results for the LW6 and LW7 examples with n = 256. The
top panel shows the median

√
MSE across different SNR values for both examples,

where the symbols used are: for BSML-C, for BSML-S, and for the look-ahead
procedure. The middle panel shows the boxplots of the MSE when SNR = 3. The
bottom panel shows the number of basis functions selected when SNR = 3.

102

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

0.
25

Blocks−Curves

SNR

M
ed

ia
n

M
S

E

●

●

●

●

●
●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Heavisine

SNR

M
ed

ia
n

M
S

E

●

●

●
●

●

●

●
● ●●●●

●

●

●

●

0.
01

0.
02

0.
03

0.
04

Blocks−Curves

M
S

E

BSML−C BSML−S LAP

●

●

●

●

●
●

●

0.
2

0.
4

0.
6

0.
8

Heavisine

M
S

E

BSML−C BSML−S LAP

●

●

●

●

●

●

●

●

●

●

●

●

●

8
10

12
14

16

Blocks−Curves

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●5
10

15
20

Heavisine

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.4: Simulation results for the Blocks-Curves and Heavisine examples with
n = 512. The top panel shows the median

√
MSE across different SNR values for

both examples, where the symbols used are: for BSML-C, for BSML-S, and
for the look-ahead procedure. The middle panel shows the boxplots of the MSE when
SNR = 3. The bottom panel shows the number of basis functions selected when
SNR = 3.

103

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

Sine−Jumps

SNR

M
ed

ia
n

M
S

E
●

●

●

●
● ●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
02

0.
04

0.
06

0.
08

0.
10

Poly−Sine

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●

●

●●●

0.
00

2
0.

00
6

0.
01

0

Sine−Jumps

M
S

E

BSML−C BSML−S LAP

●

●
●

●

●

●●

●

●

●

●

●
●

0.
00

1
0.

00
3

0.
00

5

Poly−Sine

M
S

E

BSML−C BSML−S LAP

●

●●

●●●●

●

●●●

●

●●●

●

●●●●●

●

●●●

●●●

●

●

●

●

●●●

●

●

●

●●

5
6

7
8

9

Sine−Jumps

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●●●●●●● ●●●●●● ●

●●

●●●

●

●●●

●

●●●

●

●●

5.
0

5.
5

6.
0

6.
5

7.
0

Poly−Sine

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.5: Simulation results for the Sine-Jumps and Poly-Sine examples with
n = 512. The top panel shows the median

√
MSE across different SNR values for

both examples, where the symbols used are: for BSML-C, for BSML-S, and
for the look-ahead procedure. The middle panel shows the boxplots of the MSE when
SNR = 3. The bottom panel shows the number of basis functions selected when
SNR = 3.

104

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

LW6

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●●

●

●

●●
●

0.
00

1
0.

00
3

0.
00

5
0.

00
7

LW6

M
S

E

BSML−C BSML−S LAP

●

●

●
●

●●

●

0.
00

0
0.

01
0

0.
02

0

LW7

M
S

E

BSML−C BSML−S LAP

●

●
●

●
●

10
15

20
25

LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●●

●

10
15

20

LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.6: Simulation results for the LW6 and LW7 examples with n = 512. The
top panel shows the median

√
MSE across different SNR values for both examples,

where the symbols used are: for BSML-C, for BSML-S, and for the look-ahead
procedure. The middle panel shows the boxplots of the MSE when SNR = 3. The
bottom panel shows the number of basis functions selected when SNR = 3.

105

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

0.
25

Blocks−Curves

SNR

M
ed

ia
n

M
S

E
●

●

●

●
● ●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0

Heavisine

SNR

M
ed

ia
n

M
S

E

●

●

●

●

●
●

●

●●●

●●

●

●●

●

●

●

0.
00

5
0.

01
0

0.
01

5

Blocks−Curves

M
S

E

BSML−C BSML−S LAP

●

●
●

●

●●

0.
1

0.
2

0.
3

0.
4

0.
5

Heavisine

M
S

E

BSML−C BSML−S LAP

●●

●

●●

●

●

●●

●●

●

●

●

●●

●

●●

8
10

12
14

16
18

Blocks−Curves

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●●

6
8

10
12

14
16

18

Heavisine

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.7: Simulation results for the Blocks-Curves and Heavisine examples with
n = 1024. The top panel shows the median

√
MSE across different SNR values for

both examples, where the symbols used are: for BSML-C, for BSML-S, and
for the look-ahead procedure. The middle panel shows the boxplots of the MSE when
SNR = 3. The bottom panel shows the number of basis functions selected when
SNR = 3.

106

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

Sine−Jumps

SNR

M
ed

ia
n

M
S

E ●

●

●
●

● ●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
02

0.
04

0.
06

0.
08

Poly−Sine

SNR

M
ed

ia
n

M
S

E

●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.
00

1
0.

00
3

0.
00

5

Sine−Jumps

M
S

E

BSML−C BSML−S LAP

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

0.
00

00
0.

00
10

0.
00

20

Poly−Sine

M
S

E

BSML−C BSML−S LAP

●

●

●●● ●

6
8

10
12

14

Sine−Jumps

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●●●● ●●●●●●

●●

●●●●●●●●

5.
0

5.
5

6.
0

6.
5

7.
0

Poly−Sine

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.8: Simulation results for the Sine-Jumps and Poly-Sine examples with
n = 1024. The top panel shows the median

√
MSE across different SNR values

for both examples, where the symbols used are: for BSML-C, for BSML-S, and
for the look-ahead procedure. The middle panel shows the boxplots of the MSE

when SNR = 3. The bottom panel shows the number of basis functions selected when
SNR = 3.

107

Simulations Chapter 4

1 2 3 4 5 6

0.
02

0.
06

0.
10

0.
14

LW6

SNR

M
ed

ia
n

M
S

E ●

●

●

●

●
●

●

BSML−C
BSML−S
LAP

1 2 3 4 5 6

0.
05

0.
10

0.
15

LW7

SNR

M
ed

ia
n

M
S

E

●

●

●
●

●
●

●

●

●

●

0.
00

1
0.

00
3

0.
00

5

LW6

M
S

E

BSML−C BSML−S LAP

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

0.
00

2
0.

00
6

0.
01

0
0.

01
4

LW7

M
S

E

BSML−C BSML−S LAP

●

●

●

●

●

●

●
●

●

●

●

●●
●●
●
●

●

10
15

20
25

LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●
●

10
15

20

LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.9: Simulation results for the LW6 and LW7 examples with n = 1024. The
top panel shows the median

√
MSE across different SNR values for both examples,

where the symbols used are: for BSML-C, for BSML-S, and for the look-ahead
procedure. The middle panel shows the boxplots of the MSE when SNR = 3. The
bottom panel shows the number of basis functions selected when SNR = 3.

108

Simulations Chapter 4

Table 4.1: Average CPU time (in seconds) of fitting the Block-Curves and the Heav-
isine examples using BSML-C, BSML-S, and LAP for sample sizes n = 256, 512, 1024
with SNR = 3.

Blocks-Curves Heavisine

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

BSML-C 2.10 8.89 64.27 2.12 9.00 56.89

BSML-S 14.93 52.58 243.76 14.77 53.05 256.37

LAP 1.04 3.92 11.33 1.00 3.74 12.02

Table 4.2: Average CPU time (in seconds) of fitting the Sine-Jumps and the Poly-sine
examples using BSML-C, BSML-S, and LAP for sample sizes n = 256, 512, 1024 with
SNR = 3.

Sine-Jumps Poly-Sine

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

BSML-C 2.10 9.01 64.80 1.26 4.12 24.63

BSML-S 14.75 52.99 245.93 9.44 29.52 124.84

LAP 0.98 4.79 7.11 0.70 1.77 9.75

Table 4.3: Average CPU time (in seconds) of fitting the LW6 and LW7 examples using
BSML-C, BSML-S, and LAP for sample sizes n = 256, 512, 1024 with SNR = 3.

LW6 LW7

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

BSML-C 2.11 8.91 55.42 2.07 8.87 64.36

BSML-S 14.64 52.80 245.53 14.66 52.32 253.17

LAP 1.11 3.82 11.26 1.07 3.63 11.45

109

Simulations Chapter 4

As we mentioned in Section 3.2, LAP only considers the pairs of basis functions of

the form
{
ψ−l , ψ

−
·|l
}

for l = 1, . . . , L−, where ψ−·|l is selected given ψ−l already in the

model. Alternatively, the selection scheme in (3.4) can be used, where all possible pairs

of unselected basis functions are considered. This alternative procedure is referred to as

LAP-2. The same 100 random samples of the six univariate examples with SNR = 3 and

n = 512 are used to compare the performances of LAP and LAP-2. Figure 4.10 shows

the boxplots of the MSE, and Table 4.4 lists the average CPU time for both procedures.

●

●

●

●

●

●

0.
01

0.
02

0.
03

0.
04

0.
05

Blocks−Curves

M
S

E

LAP LAP−2

●

●

●

●

●

●

●

●

●●

●

0.
2

0.
4

0.
6

0.
8

1.
0

Heavisine

M
S

E

LAP LAP−2

●●

●
●

●

●

●

●

●

●

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Sine−Jumps

M
S

E

LAP LAP−2

●

●

●

●

●

●

●

●

●

●

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Poly−Sine

M
S

E

LAP LAP−2

●●

●

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

LW6

M
S

E

LAP LAP−2

●

●

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

LW7

M
S

E

LAP LAP−2

Figure 4.10: Boxplots of the MSE for fitting six univariate examples using LAP and
LAP-2 with SNR = 3 and n = 512.

110

Simulations Chapter 4

Table 4.4: Average CPU time (in seconds) of fitting each univariate example using
LAP and LAP-2 with n = 512 and SNR = 3.

Blocks-Curves Heavisine Sine-Jumps LW6 LW7 Poly-Sine

LAP 3.92 3.74 4.79 3.82 3.63 1.77

LAP-2 124.33 64.7 142.58 127.31 109.03 13.65

We can see from Figure 4.10 and Table 4.4 that when all pairwise search scheme is

used, there is no significant improvement in terms of MSE, but the computation time has

increased dramatically. Therefore, we will use LAP, because it is less computationally

demanding than LAP-2.

111

Simulations Chapter 4

4.2 Bootstrap Confidence Intervals

We use the same Sine-Jumps and Blocks-Curves examples to evaluate the performance

of the bootstrap confidence intervals from the LAP procedure, and compare them with

that from the BSML procedures. For each example, we construct the 95% bootstrap

confidence intervals under two settings: n = 256, SNR = 4 and n = 512, SNR = 6 with

bootrep=200. All the other settings are exactly the same as in 4.1. Each simulation is

repeated nr = 100 times.

The pointwise coverage probability (PCP) and average coverage probability (ACP)

are calculated to evaluate the performance of the confidence intervals. For any n arbitrary

points {x1, . . . ,xn} in the domain, let f(xi) be the true function evaluated at xi. For

the r-th simulated data set
{

(x1, y1,r), . . . , (xn, yn,r)
}

, where r = 1, . . . , nr, let f̂
(r)
α/2(xi)

and f̂
(r)
1−α/2(xi) be the lower and upper bound of the 100(1 − α)% bootstrap confidence

interval at xi. Then the pointwise coverage probability (PCP) at xi is defined as

PCPi =
1

nr

nr∑
r=1

I
(
f(xi) ∈

[
f̂

(r)
α/2(xi), f̂

(r)
1−α/2(xi)

])
, (4.1)

where I(·) is the indicator function. The average coverage probability (ACP) is computed

for each 100(1− α)% bootstrap confidence interval across the function, defined as

ACPr =
1

n

n∑
i=1

I
(
f(xi) ∈

[
f̂

(r)
α/2(xi), f̂

(r)
1−α/2(xi)

])
. (4.2)

Besides coverage probabilities, we are also interested in the width of a confidence

interval, since given the same coverage probability a narrower confidence interval pro-

vides more precise information about the true function than a wider one. We define the

pointwise average interval width (PAIW) at each design point xi as follows, where the

112

Simulations Chapter 4

average is across the results for the nr simulated data sets:

PAIWi =
1

nr

nr∑
r=1

(
f̂

(r)
1−α/2(xi)− f̂ (r)

α/2(xi)
)
. (4.3)

For the Blocks-Curves and Sine-Jumps examples, Figures 4.11 to 4.14 show the com-

parisons of the PCP, ACP, and PAIW based on the 95% bootstrap confidence intervals

from the LAP, BSML-C, and BSML-S procedures for nr = 100. For all settings the

BSML-S confidence intervals gave the lowest median ACP and virtually always the low-

est PCP values. The median ACP for BSML-S confidence intervals for each of the four

simulation cases considered is below the nominal value 0.95. The BSML-C confidence

intervals and LAP confidence intervals have similar performances, and the median ACP

for both of them are above the nominal value for all settings. The advantage of the

LAP confidence intervals is that in general they are pointwise narrower than the BSML-

C confidence intervals. For the Sine-Jumps example the LAP confidence intervals have

shorter widths almost uniformly than the BSML-C confidence intervals, except at the

places near 0.25 and 0.5 where the Sine-Jumps function is discontinuous.

We can also see that coverage probabilities depend on the true function, as well as the

sample size and signal-to-noise ratio. Although the median ACP for all LAP confidence

interval is above the nominal value of 0.95, the pointwise coverage probabilities can still

be below 0.95. For the Blocks-Curves example when n = 512 and SNR = 6, the PCP

is much lower than 0.95 at the design points near 0.7 where the Blocks-Curves function

has a big jump. Therefore, same as the conclusions in Wang and Wahba (1995), the

bootstrap confidence intervals from the LAP procedure should be interpreted as across

the curve, instead of pointwise. As we mentioned earlier, the bias of the estimates tends

to be large at places where f has sharp curvature or sudden jumps. Our simulations

support this claim, and we found that the confidence intervals tend to be very wide at

113

Simulations Chapter 4

these places as well.

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−C
LAP

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−S
LAP

●

●

●

●
●

●

●

●
●

LAP BSML−C BSML−S

0.
80

0.
85

0.
90

0.
95

1.
00

Average Coverage Probability

C
ov

er
ag

e
P

ro
ba

bi
lit

y

+
+

+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Pointwise Average Interval Width

x

In
te

rv
al

 W
id

th

BSML−C
BSML−S
LAP

Figure 4.11: PCP, ACP, PAIW of the 95% bootstrap confidence intervals from
the LAP, BSML-C, and BSML-S procedures using the Blocks-Curves example with
SNR = 4 and n = 256. Top left: pointwise coverage probability comparisons be-
tween the LAP and BSML-C confidence intervals. Top right: pointwise coverage
probability comparisons between the LAP and BSML-S confidence intervals. Bot-
tom left: boxplots of the average coverage probabilities of the LAP, BSML-C, and
BSML-S confidence intervals. Bottom right: pointwise average interval width of the
LAP, BSML-C, and BSML-S confidence intervals. In the PCP and PAIW plots, red
solid curve represents LAP, black solid curve represents BSML-C, and blue solid curve
represents BSML-S. In the three coverage probability plots, the magenta dashed line
represents the nominal coverage probability of 0.95. The + symbols in the ACP panel
show the means for the three methods.

114

Simulations Chapter 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−C
LAP

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−S
LAP

●

●

●

●

●

●

●

●

●

LAP BSML−C BSML−S0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Average Coverage Probability

C
ov

er
ag

e
P

ro
ba

bi
lit

y

+ +

+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pointwise Average Interval Width

x

In
te

rv
al

 W
id

th

BSML−C
BSML−S
LAP

Figure 4.12: PCP, ACP, PAIW of the 95% bootstrap confidence intervals from LAP,
BSML-C, and BSML-S procedures using the Blocks-Curves example with SNR = 6
and n = 512. Top left: pointwise coverage probability comparisons between the LAP
and BSML-C confidence intervals. Top right: pointwise coverage probability com-
parisons between the LAP and BSML-S confidence intervals. Bottom left: boxplots
of the average coverage probabilities of the LAP, BSML-C, and BSML-S confidence
intervals. Bottom right: pointwise average interval width of the LAP, BSML-C, and
BSML-S confidence intervals. In the PCP and PAIW plots, red solid curve represents
LAP, black solid curve represents BSML-C, and blue solid curve represents BSML-S.
In the three coverage probability plots, the magenta dashed line represents the nom-
inal coverage probability of 0.95. The + symbols in the ACP panel show the means
for the three methods.

115

Simulations Chapter 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−C
LAP

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−S
LAP

●

●

●●

●

●

●

●

LAP BSML−C BSML−S

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Average Coverage Probability

C
ov

er
ag

e
P

ro
ba

bi
lit

y +
+

+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Pointwise Average Interval Width

x

In
te

rv
al

 W
id

th

BSML−C
BSML−S
LAP

Figure 4.13: PCP, ACP, PAIW of the 95% bootstrap confidence intervals from LAP,
BSML-C, and BSML-S procedures using the Sine-Jumps example with SNR = 4 and
n = 256. Top left: pointwise coverage probability comparisons between the LAP and
BSML-C confidence intervals. Top right: pointwise coverage probability comparisons
between the LAP and BSML-S confidence intervals. Bottom left: boxplots of the
average coverage probabilities of the LAP, BSML-C, and BSML-S confidence intervals.
Bottom right: pointwise average interval width of the LAP, BSML-C, and BSML-S
confidence intervals. In the PCP and PAIW plots, red solid curve represents LAP,
black solid curve represents BSML-C, and blue solid curve represents BSML-S. In
the three coverage probability plots, the magenta dashed line represents the nominal
coverage probability of 0.95. The + symbols in the ACP panel show the means for
the three methods.

116

Simulations Chapter 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−C
LAP

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pointwise Coverage Probability

x

C
ov

er
ag

e
P

ro
ba

bi
lit

y

BSML−S
LAP

●

●

●

●
●

●

LAP BSML−C BSML−S

0.
80

0.
85

0.
90

0.
95

1.
00

Average Coverage Probability

C
ov

er
ag

e
P

ro
ba

bi
lit

y +
+

+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Pointwise Average Interval Width

x

In
te

rv
al

 W
id

th

BSML−C
BSML−S
LAP

Figure 4.14: PCP, ACP, PAIW of the 95% bootstrap confidence intervals from LAP,
BSML-C, and BSML-S procedures using the Sine-Jumps example with SNR = 6 and
n = 512. Top left: pointwise coverage probability comparisons between the LAP and
BSML-C confidence intervals. Top right: pointwise coverage probability comparisons
between the LAP and BSML-S confidence intervals. Bottom left: boxplots of the
average coverage probabilities of the LAP, BSML-C, and BSML-S confidence intervals.
Bottom right: pointwise average interval width of the LAP, BSML-C, and BSML-S
confidence intervals. In the PCP and PAIW plots, red solid curve represents LAP,
black solid curve represents BSML-C, and blue solid curve represents BSML-S. In
the three coverage probability plots, the magenta dashed line represents the nominal
coverage probability of 0.95. The + symbols in the ACP panel show the means for
the three methods.

117

Simulations Chapter 4

4.3 Estimation of Multivariate Functions

4.3.1 Additive Model Examples

Now consider the bivariate nonparametric regression model

yi = f1(xi1) + f2(xi2) + εi, i = 1, . . . , n, (4.4)

where xi1 ∈ [0, 1] and xi2 ∈ [0, 1] are the observations of two explanatory variables for

observation yi, and the independent random errors ε = (ε1, . . . , εn) have mean 0 and

constant variance σ2. We choose from the same six univariate functions in Table 2.1 to

construct three combinations, which are shown in Table 4.5. Table 4.6 contains the basis

libraries used in BSML-C, BSML-S, and LAP for each example.

Table 4.5: Test functions for additive model simulations.

Function Name True Function f(x) SD(f)

Sine-Jumps sin(2πx1)− 1(0.5,1](x1) + 1(0.25,1](x1)
1.6141

+ LW7 +(4x2 − 2) + 2 exp[−256(x2 − 0.5)2]

Blocks-Curves 1[0.2,0.4)(x1) + exp[(x1 + 0.5)2]1[0.4,0.7)(x1)− x10
1 1[0.7,1](x1)

1.7702
+ Sine-Jumps + sin(2πx1)− 1(0.5,1](x1) + 1(0.25,1](x1)

Poly-Sine sin(16πx1)− 8(x1 − 0.5)2 + 8(x1 − 0.5)31(0.5,1](x1)
1.1866

+ LW6 + sin[2(4x2 − 2)] + 2 exp[−256(x2 − 0.5)2]

In the simulation, the design points (xi1, xi2) for i = 1, . . . , n are uniformly sampled

from [0, 1] × [0, 1], where the sample size is n ∈ {256, 512, 1024}. The error variance σ2

is chosen such that SNR ∈ {1, 2, 3, 4, 5, 6}. The knots used in all libraries are grid points

{0.06+0.02j, j = 1, 2, . . . , 44}. For the BSML and LAP procedures, the maximal number

of bases M is fixed at 30. For LAP, the IDF spaces are Si = {1, 2, 3} for i = 1, 2, 3, 4,

and Md is set to be
∏4

i=1 |Si| = 34 = 81. The 10-fold cross validation is used to select

118

Simulations Chapter 4

Table 4.6: Basis libraries used in BSML-C, BSML-S, and LAP for each additive model
example. Notations of basis libraries can be found in Table 1.1.

Function Name Basis Libraries

L0 L1 L2 L3 L4

Sine-Jumps + LW7 {1, x1, x2} P2(x1) T0(x1) C2(x2) T2(x2)

Blocks-Curves + Sine-Jumps {1, x1, x2} C2(x1) T0(x1) P2(x2) T0(x2)

Poly-Sine + LW6 {1, x1, x2} F8,25(x1) T2(x1) C2(x2) T2(x2)

the final model in the look-ahead procedure.

We also applied the SS-ANOVA model, the COSSO method, and the MARS proce-

dure to these three examples. We used the function ssr in the R package assist (Wang

and Ke (2015)) to fit the SS-ANOVA models. For the Blocks-Curves + Sine-Jumps

example, we assume f ∈ W 2
2 [0, 1] ⊗ W 2

2 (per). For the Sine-Jumps + LW7 example,

we assume f ∈ W 2
2 (per) ⊗ W 2

2 [0, 1]. For the Poly-Sine + LW6 example, we assume

f ∈ W 2
2 [0, 1] ⊗W 2

2 [0, 1]. For all SS-ANOVA models, only the main effects are included.

For the COSSO method, we used the function cosso in the R package cosso (Zhang

and Lin (2013)), with 10-fold cross validation for the tuning parameter selection. For

the MARS procedure, we used the function mars in the R package mda (Hastie et al.

(2015)), with degree = 1 which means no interaction term is included. The IDF used

in mars is fixed at 3, and the maximum number of model terms nk is fixed at 30. The

simulation results for BSML-C, BSML-S, LAP, SS-ANOVA, COSSO, and MARS based

on 100 random samples are shown in Figures 4.15 – 4.17. The average CPU time for

each sample size is listed in Table 4.7.

Based on the results, MARS did not work well when SNR ≥ 2 for all three examples.

For COSSO, it did not work well for the Poly-Sine + LW6 example. When SNR ≥ 4,

LAP has the best performance for the Blocks-Curves + Sine-Jumps and Polysine + LW6

examples across all sample sizes, and also for the Sine-Jumps + LW7 example when

119

Simulations Chapter 4

the sample size is 256 or 512. On average LAP has selected fewer basis functions than

BSML-C and BSML-S. SS-ANOVA has comparable performance as the BSML and LAP

procedures, but in terms of computation time it has disadvantage when the sample size

is big, e.g., when n = 1024. LAP and BSML-C have similar computation speed, both

are much faster than BSML-S.

1 2 3 4 5 6

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Blocks−Curves + Sine−Jumps

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Sine−Jumps + LW7

SNR

M
ed

ia
n

M
S

E
●

●

●

●
●

●

1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

Poly−Sine + LW6

SNR

M
ed

ia
n

M
S

E

●

●

●
● ● ●

●

●●

0.
2

0.
3

0.
4

0.
5

0.
6

Blocks−Curves + Sine−Jumps

M
S

E

M
A

R
S

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●
●

●

●

●
●

●

●●

●
●

●

●●

● ●

●

●

0.
15

0.
25

0.
35

Sine−Jumps + LW7

M
S

E

M
A

R
S

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●●

●
●
●●

●

●●

●

●
●

●

●

●

●
●●
●

●● ●0.
2

0.
4

0.
6

0.
8

Polysine + LW6

M
S

E

M
A

R
S

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●●●●

●

●

●

●

●●

10
15

20
25

Blocks−Curves + Sine−Jumps

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●
●

●

●

●

10
15

20
25

30

Sine−Jumps + LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●
●

●●
●

●

●●

●

●

10
15

20
25

30

Poly−Sine + LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.15: Simulation results for three additive model examples with n = 256.
The top panel shows the median

√
MSE across different SNR values for each exam-

ple, where the symbols used are: for BSML-C, for BSML-S, for LAP, + for
SS-ANOVA, × for COSSO, and for MARS. The middle panel shows the boxplots
of the

√
MSE when SNR = 3. The bottom panel shows the number of basis functions

selected by BSML-C, BSML-S, and LAP when SNR = 3.

120

Simulations Chapter 4

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Blocks−Curves + Sine−Jumps

SNR

M
ed

ia
n

M
S

E

●

●

●
●

● ●

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

Sine−Jumps + LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
● ●

1 2 3 4 5 6

0.
1

0.
3

0.
5

0.
7

Poly−Sine + LW6

SNR

M
ed

ia
n

M
S

E

●

●
●

● ● ●

●●
●●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Blocks−Curves + Sine−Jumps

M
S

E

M
A

R
S

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●●

0.
10

0.
15

0.
20

0.
25

0.
30

Sine−Jumps + LW7
M

S
E

M
A

R
S

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●
●

0.
1

0.
3

0.
5

0.
7

Polysine + LW6

M
S

E

M
A

R
S

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●

●

●●●
●

●

●

●10
15

20
25

Blocks−Curves + Sine−Jumps

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

15
20

25
30

Sine−Jumps + LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●●

●●

15
20

25
30

Poly−Sine + LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.16: Simulation results for three additive model examples with n = 512.
The top panel shows the median

√
MSE across different SNR values for each exam-

ple, where the symbols used are: for BSML-C, for BSML-S, for LAP, + for
SS-ANOVA, × for COSSO, and for MARS. The middle panel shows the boxplots
of the

√
MSE when SNR = 3. The bottom panel shows the number of basis functions

selected by BSML-C, BSML-S, and LAP when SNR = 3.

121

Simulations Chapter 4

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Blocks−Curves + Sine−Jumps

SNR

M
ed

ia
n

M
S

E

●

●

●
● ● ●

1 2 3 4 5 6

0.
10

0.
15

0.
20

0.
25

0.
30

Sine−Jumps + LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

1 2 3 4 5 6

0.
1

0.
3

0.
5

0.
7

Poly−Sine + LW6

SNR

M
ed

ia
n

M
S

E

●

●
● ● ● ●

●●●

●
●

●●

●

0.
1

0.
2

0.
3

0.
4

Blocks−Curves + Sine−Jumps

M
S

E

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●●

●

●

●

●

●

●

●

0.
10

0.
12

0.
14

0.
16

0.
18

Sine−Jumps + LW7
M

S
E

C
O

S
S

O

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●

●

●

●

●
●

●0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Polysine + LW6

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●

●●15
20

25
30

Blocks−Curves + Sine−Jumps

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●

●●

●

15
20

25
30

Sine−Jumps + LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●●

●●●

15
20

25
30

Poly−Sine + LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.17: Simulation results for three additive model examples with n = 1024.
The top panel shows the median

√
MSE across different SNR values for each exam-

ple, where the symbols used are: for BSML-C, for BSML-S, for LAP, + for
SS-ANOVA, × for COSSO, and for MARS. The middle panel shows the boxplots
of the

√
MSE when SNR = 3. The results of fitting all three examples with MARS

and the result of fitting the Polysine + LW6 example with COSSO are not shown here
because they are much worse compared to the results from the BSML and LAP pro-
cedures. The bottom panel shows the number of basis functions selected by BSML-C,
BSML-S, and LAP when SNR = 3.

122

Simulations Chapter 4

Table 4.7: Average CPU time (in seconds) of fitting each additive model exam-
ple using BSML-C, BSML-S, LAP, SS-ANOVA, COSSO, MARS for sample sizes
n = 256, 512, 1024 with SNR = 3.

Blocks-Curves + Sine-Jumps Sine-Jumps + LW7

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

BSML-C 0.89 1.73 3.51 1.04 1.35 3.29

BSML-S 8.23 16.26 30.82 8.16 22.23 37.46

LAP 0.65 1.37 2.04 1.09 1.86 2.85

SS-ANOVA 0.32 1.66 9.42 0.18 1.00 6.87

COSSO 0.39 0.87 3.11 0.27 0.86 2.61

MARS 0.05 0.06 0.05 0.02 0.02 0.02

Poly-Sine + LW6

n = 256 n = 512 n = 1024

BSML-C 1.04 1.39 3.33

BSML-S 8.36 22.80 39.34

LAP 0.81 1.18 1.56

SS-ANOVA 0.20 1.05 6.00

COSSO 0.30 0.94 2.88

MARS 0.02 0.02 0.03

123

Simulations Chapter 4

4.3.2 Models with Interactions

Consider the bivariate nonparametric regression model

yi = f12(xi1, xi2) + εi, i = 1, . . . , n, (4.5)

where xi1 ∈ [0, 1] and xi2 ∈ [0, 1] are the observations of two explanatory variables

for observation yi, and the independent random errors ε = (ε1, . . . , εn) have mean 0 and

constant variance σ2. We constructed three examples of such function f , which are shown

in Table 4.8. Table 4.9 and 4.10 contain the basis libraries used in the BSML and LAP

procedures for each example. Here the knots used are zj = 0.06 + 0.02j, j = 1, . . . , 44.

For all three examples, L1 to L5 contain similar spline representers used in SS-ANOVA

model with the model space Wm
2 [0, 1] ⊗ Wm

2 [0, 1]. L6 for the SJ·LW7 and BC·LW6

examples contains 2d step functions in x1, which are used to capture the jumps in the

true functions.

Table 4.8: Test functions for models with interactions.

Function Name True Function f(x) SD(f)

SJ·LW7 2
[
0.5 sin(2πx1)− 1(0.5,1](x1) + 1(0.24,1](x1)

]
1.7930

+4x2 + 6(x1 − 0.5) exp[−256(x2 − 0.5)2]

BC·LW6 1[0.2,0.4)(x1) + exp[(x1 + 0.5)2]1[0.4,0.7)(x1)− x10
1 1[0.7,1](x1)

1.6671
+ sin[2(4x2 − 2)] + 6(x1 − 0.5) exp[−256(x2 − 0.5)2]

LW6·LW7 sin[2(4x1 − 2)] + 6(x2 − 0.5) exp[−256(x1 − 0.5)2]
1.6483

+4(x2 − 0.5) + 2 exp[−256(x2 − 0.5)2]

In the simulation, the design points (xi1, xi2) for i = 1, . . . , n are uniformly sampled

from [0, 1] × [0, 1] for all examples. The sample size used is n ∈ {256, 512, 1024}. The

error variance σ2 is chosen such that SNR ∈ {1, 2, 3, 4, 5, 6}. For the BSML and LAP

procedures, the maximal number of bases M is fixed at 40. For the look-ahead procedure,

124

Simulations Chapter 4

the IDF spaces are Si = {1, 2, 3} for each library Li. Md is set to be
∏6

i=1 |Si| = 36 = 729

for the SJ·LW7 and BC·LW6 examples, and
∏5

i=1 |Si| = 35 = 243 for the LW6·LW7

example. The 10-fold cross validation is used to select the final model in the look-ahead

procedure.

Table 4.9: Basis libraries for the SJ·LW7 and BC·LW6 examples.

Basis libraries for the SJ·LW7 and BC·LW6 examples

L0 =
{

1, x1 − 0.5, x2 − 0.5, (x1 − 0.5)(x2 − 0.5)
}

L1 = C2(x1) =
{{
R2(xi1, z1)

}n
i=1
, . . . ,

{
R2(xi1, zq)

}n
i=1

}
L2 = C2(x2) =

{{
R2(xi2, z1)

}n
i=1
, . . . ,

{
R2(xi2, zq)

}n
i=1

}
L3 =

{{
(z1 − 0.5)(xi1 − 0.5)R2(xi2, z1)

}n
i=1
, . . . ,

{
(zq − 0.5)(xi1 − 0.5)R2(xi2, zq)

}n
i=1

}
L4 =

{{
(z2 − 0.5)(xi2 − 0.5)R2(xi1, z1)

}n
i=1
, . . . ,

{
(zq − 0.5)(xi2 − 0.5)R2(xi1, zq)

}n
i=1

}
L5 =

{{
R2(xi1, z1)R2(xi2, z1)

}n
i=1
, . . . ,

{
R2(xi1, zq)R2(xi2, zq)

}n
i=1

}
L6 = T0(x1) =

{{
1(z1,1](xi1)

}n
i=1
, . . . ,

{
1(zq ,1](xi1)

}n
i=1

}

Table 4.10: Basis libraries for the LW6·LW7 example.

Basis libraries for the LW6·LW7 example

L0 =
{

1, x1 − 0.5, x2 − 0.5, (x1 − 0.5)(x2 − 0.5)
}

L1 = C2(x1) =
{{
R2(xi1, z1)

}n
i=1
, . . . ,

{
R2(xi1, zq)

}n
i=1

}
L2 = C2(x2) =

{{
R2(xi2, z1)

}n
i=1
, . . . ,

{
R2(xi2, zq)

}n
i=1

}
L3 =

{{
(z1 − 0.5)(xi1 − 0.5)R2(xi2, z1)

}n
i=1
, . . . ,

{
(zq − 0.5)(xi1 − 0.5)R2(xi2, zq)

}n
i=1

}
L4 =

{{
(z2 − 0.5)(xi2 − 0.5)R2(xi1, z1)

}n
i=1
, . . . ,

{
(zq − 0.5)(xi2 − 0.5)R2(xi1, zq)

}n
i=1

}
L5 =

{{
R2(xi1, z1)R2(xi2, z1)

}n
i=1
, . . . ,

{
R2(xi1, zq)R2(xi2, zq)

}n
i=1

}

125

Simulations Chapter 4

We also applied the SS-ANOVA model and the MARS procedure to these three

examples. For all examples, SS-ANOVA model assumes f ∈ W 2
2 [0, 1]⊗W 2

2 [0, 1]. For the

MARS procedure, we set degree = 2 in mars which means we allow pairwise interactions

terms in the model. The IDF used is fixed at 3, and the maximum number of model

terms nk is fixed at 40. The simulation results for BSML-C, BSML-S, LAP, SS-ANOVA,

and MARS based on 100 random samples are shown in Figure 4.18 – 4.20. The average

CPU time for each sample size is listed in Table 4.11.

Based on the results, for both the SJ·LW7 and BC·LW6 examples LAP has the best

performance across all sample sizes when SNR ≥ 3. For these two examples, it makes

sense that the LAP and BSML procedures outperform SS-ANOVA, since they can select

the step functions from L6 to fit the jumps perfectly while SS-ANOVA can only smooth

out the jumps using the cubic spline representers. For the LW6·LW7 example, however,

because the true function is continuous and can be approximated well by using only the

cubic spline representers, SS-ANOVA has better performance than the LAP and BSML

procedures. For all three examples, on average LAP selected fewer basis functions than

BSML-C and BSML-S. In terms of the computation speed, LAP is not as fast as BSML-C,

but is still at least 3 times faster than BSML-S.

126

Simulations Chapter 4

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

SJ ⋅ LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

1 2 3 4 5 6

0.
1

0.
3

0.
5

0.
7

BC ⋅ LW6

SNR

M
ed

ia
n

M
S

E ●

●

●

●
●

●

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

LW6 ⋅ LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●

●●

●
●

0.
1

0.
2

0.
3

0.
4

0.
5

SJ ⋅ LW7

M
S

E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●
●

●

●

●

●●

●●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BC ⋅ LW6
M

S
E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●
●

●

●

●

0.
10

0.
20

0.
30

LW6 ⋅ LW7

M
S

E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

10
15

20
25

30
35

40

SJ ⋅ LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

10
15

20
25

30
35

40

BC ⋅ LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

20
25

30
35

40

LW6 ⋅ LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.18: Simulation results for the SJ·LW7, BC·LW6, and LW6·LW7 examples
with n = 256. The top panel shows the median

√
MSE across different SNR values

for each example, where the symbols used are: for BSML-C, for BSML-S, for
LAP, + for SS-ANOVA, and for MARS. The middle panel shows the boxplots of
the
√

MSE when SNR = 5. The bottom panel shows the number of basis functions
selected by BSML-C, BSML-S, and LAP when SNR = 5.

127

Simulations Chapter 4

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

SJ ⋅ LW7

SNR

M
ed

ia
n

M
S

E

●

●

●
●

● ●

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

BC ⋅ LW6

SNR

M
ed

ia
n

M
S

E

●

●

●
●

● ●

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LW6 ⋅ LW7

SNR

M
ed

ia
n

M
S

E

●

●

●

●
●

●

●

●

●

●

●

●

0.
1

0.
2

0.
3

0.
4

SJ ⋅ LW7

M
S

E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BC ⋅ LW6
M

S
E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●●

●

0.
10

0.
15

0.
20

0.
25

0.
30

LW6 ⋅ LW7

M
S

E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●
●

●

●

10
15

20
25

30
35

40

SJ ⋅ LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●●

20
25

30
35

40

BC ⋅ LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●
●

●
●
●

●
20

25
30

35
40

LW6 ⋅ LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.19: Simulation results for the SJ·LW7, BC·LW6, and LW6·LW7 examples
with n = 512. The top panel shows the median

√
MSE across different SNR values

for each example, where the symbols used are: for BSML-C, for BSML-S, for
LAP, + for SS-ANOVA, and for MARS. The middle panel shows the boxplots of
the
√

MSE when SNR = 5. The bottom panel shows the number of basis functions
selected by BSML-C, BSML-S, and LAP when SNR = 5.

128

Simulations Chapter 4

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

SJ ⋅ LW7

SNR

M
ed

ia
n

M
S

E

●

●

●
●

● ●

1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BC ⋅ LW6

SNR

M
ed

ia
n

M
S

E

●

●

●
● ● ●

1 2 3 4 5 60.
05

0.
15

0.
25

0.
35

LW6 ⋅ LW7

SNR

M
ed

ia
n

M
S

E

●

●

●
●

●
●

●

●●

●

●

●

0.
1

0.
2

0.
3

0.
4

SJ ⋅ LW7

M
S

E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●●
●

●●

●●●

●
●

●●

●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BC ⋅ LW6
M

S
E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●

0.
05

0.
15

0.
25

LW6 ⋅ LW7

M
S

E

M
A

R
S

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●●●

15
20

25
30

35
40

SJ ⋅ LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

20
25

30
35

40

BC ⋅ LW6

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

20
25

30
35

40

LW6 ⋅ LW7

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.20: Simulation results for the SJ·LW7, BC·LW6, and LW6·LW7 examples
with n = 1024. The top panel shows the median

√
MSE across different SNR values

for each example, where the symbols used are: for BSML-C, for BSML-S, for
LAP, + for SS-ANOVA, and for MARS. The middle panel shows the boxplots of
the
√

MSE when SNR = 5. The bottom panel shows the number of basis functions
selected by BSML-C, BSML-S, and LAP when SNR = 5.

129

Simulations Chapter 4

Table 4.11: Average CPU time (in seconds) of fitting the SJ·LW7, BC·LW6, and
LW6·LW7 examples using BSML-C, BSML-S, LAP, SS-ANOVA, MARS for sample
sizes n = 256, 512, 1024 with SNR = 5.

SJ·LW7 BC·LW6

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

BSML-C 1.67 3.10 5.18 1.61 3.19 5.20

BSML-S 17.90 34.25 67.16 17.62 34.11 67.55

LAP 3.43 5.00 8.06 4.34 7.73 11.43

SS-ANOVA 1.60 9.65 61.28 1.62 9.59 61.56

MARS 0.02 0.04 0.06 0.02 0.03 0.05

LW6·LW7

n = 256 n = 512 n = 1024

BSML-C 1.32 2.70 4.31

BSML-S 14.74 28.39 56.02

LAP 1.74 3.34 5.46

SS-ANOVA 1.37 7.84 51.29

MARS 0.02 0.03 0.05

130

Simulations Chapter 4

4.4 Three Other Examples

Now we consider three other examples where the true function f is not additive in

nature. Similar examples can be found in Qiu (2005). Again consider the model in (4.5).

The true functions f(x1, x2) are listed in Table 4.12 and plotted in Figure 4.21 – 4.23.

Table 4.13 – 4.15 contain the basis libraries used in the BSML and LAP procedures for

each example.

Table 4.12: Test functions of the Paraboloid-Jump, Mexican hat, and Sinusoid-Jump
examples.

Function Name True Function f(x) SD(f)

Paraboloid-Jump
−2
[
(x1 − 0.5)2 + (x2 − 0.5)2

]
+0.5× 1[0,0.09)

{
(x1 − 0.5)2 + (x2 − 0.5)2

} 0.4051

Mexican hat (2π)−1(2− x2
1 − x2

2) exp
(
− 0.5(x2

1 + x2
2)
)

0.0498

Sinusoid-Jump 0.5(1− x1)x2 +
[
1 + 0.2 sin(2πx1)

]
1[0.6 sin(πx1)+0.2,1](x2) 0.5716

Figure 4.21: Paraboloid-Jump function.

131

Simulations Chapter 4

Figure 4.22: Mexican hat function.

Figure 4.23: Sinusoid-Jump function.

132

Simulations Chapter 4

Table 4.13: Basis libraries for the Paraboloid-Jump example.

Basis libraries for the Paraboloid-Jump example

L0 = {1}

L1 = {x1, x
2
1, x

3
1}

L2 = {x2, x
2
2, x

3
2}

L3 =
{

1[0,r]{(x1 − c1)2 + (x2 − c2)2},where c1, c2 ∈ {0.2, 0.3, . . . , 0.8},

r ∈ {0.1, 0.2, . . . , 0.5}
}

L4 =
{

exp
{
− 0.09

[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {0.2, 0.3, . . . , 0.8}

}
L5 =

{
exp

{
− 0.36

[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {0.2, 0.3, . . . , 0.8}

}

Table 4.14: Basis libraries for the Mexican hat example.

Basis libraries for the Mexican hat example

L0 = {1}

L1 =
{

exp
{
− 0.09

[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {−3,−2,−1, 0, 1, 2, 3}

}
L2 =

{
exp

{
− 0.36

[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {−3,−2,−1, 0, 1, 2, 3}

}
L3 =

{
exp

{
−
[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {−3,−2,−1, 0, 1, 2, 3}

}
L4 =

{
exp

{
− 4
[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {−3,−2,−1, 0, 1, 2, 3}

}
L5 =

{
exp

{
− 9
[
(x1 − c1)2 + (x2 − c2)2

]}
,where c1, c2 ∈ {−3,−2,−1, 0, 1, 2, 3}

}

133

Simulations Chapter 4

Table 4.15: Basis libraries for the Sinusoid-Jump example.

Basis libraries for the Sinusoid-Jump example

L0 = {1}

L1 = {x1, x2, x1x2}

L2 =
{

sin(πkx1), cos(πkx1) : k = 1, 2, 3, 4, 5
}

L3 = 1[a sin(2πb−1x1)+c,1](x2)where a, c ∈ {0.2, 0.4, 0.6}, b ∈ {1, 2, 4}

L4 =
{
ξ`ξκ, for ξ` ∈ L2, ξκ ∈ L3

}
(tensor product basis functions)

L5 =
{
ξiξj,where ξi ∈ {1[di,di+1](x1), i = 1, . . . , 10}, ξj ∈ {1[dj ,dj+1](x2), j = 1, . . . , 10},

di, dj are the ith and jth elements of the sequence (0, 0.1, . . . , 0.9, 1)
}

L6 = C2(x1), with knots {0.02 + 0.01j, j = 1, . . . , 95}

For the Paraboloid-Jump example, L3 contains the 2d step functions which have

jumps for points inside a circle with different center locations and radii. Bases from L3

are used to capture the jump in the Paraboloid-Jump function. L4 and L5 contains radial

basis functions which have shapes close to the paraboloid.

For the Mexican hat example, the nonnull libraries contains radial basis functions

with different centers and shape parameters. These bases can be used to approximate

the Mexican hat function well because both are closely related to the Gaussian density.

For the Sinusoid-Jump example, L3 contains the 2d step functions which have jumps

for x2 is greater or equal to the sine functions of x1 with different amplitudes, periods,

and shifts. These basis functions are used to capture the jump in the Sinusoid-Jump

example. We also included another type of step functions, which are the 2d B-spline

function with degree equal to zero contained in L5. If a basis selection procedure works

well, then it should not select a basis from L5 since none of the bases from L5 is used to

construct the Sinusoid-Jump function. To fit the continuous part of the Sinusoid-Jump

134

Simulations Chapter 4

function, we have the Fourier series in L2, the tensor product basis functions in L4, and

the cubic spline representers of x1 in L6. A good basis selection procedure should select

a single basis function from L4, and none from L6.

In the simulation, the design points (xi1, xi2) for i = 1, . . . , n are uniformly sampled

from [0, 1]×[0, 1] for the Paraboloid-Jump and Sinusoid-Jump examples. For the Mexican

hat example, they are uniformly sampled from [−4, 4]× [−4, 4]. The sample size used is

n ∈ {256, 512, 1024}. The error variance σ2 is chosen such that SNR ∈ {1, 2, 3, 4, 5, 6}.

For the BSML and LAP procedures, the maximal number of bases M is fixed at 30. For

the look-ahead procedure, the IDF spaces are Si = {1, 2, 3} for each library Li. Md is

set to be
∏5

i=1 |Si| = 35 = 243 for the Paraboloid-Jump and Mexican hat examples, and∏6
i=1 |Si| = 36 = 729 for the Sinusoid-Jump example. The 10-fold cross validation is used

to select the final model in the look-ahead procedure.

We also applied the SS-ANOVA model and the MARS procedure to these three

examples. For all examples, SS-ANOVA model assumes f ∈ W 2
2 [0, 1] ⊗W 2

2 [0, 1], where

the support for the Mexican hat example has been scaled to [0, 1]× [0, 1]. For the MARS

procedure, we set degree = 2 in mars which means we allow pairwise interactions terms

in the model. The IDF used is fixed at 3, and the maximum number of model terms

nk is fixed at 30. The simulation results for BSML-C, BSML-S, LAP, SS-ANOVA, and

MARS based on 100 random samples are shown in Figure 4.24 – 4.26. The average CPU

time for each sample size is listed in Table 4.16.

Based on the results, MARS did not work well for all three examples and SS-ANOVA

works relatively well only for the Mexican hat example. LAP has the best performance

for the Sinusoid-Jump example when SNR ≥ 3 across all sample sizes. For the other two

examples, LAP has similar performance as the BSML procedures. In terms of compu-

tation speed, LAP is faster than BSML-S for all examples, and is similar to BSML-C

except for the Sinusoid-Jump example.

135

Simulations Chapter 4

1 2 3 4 5 6

0.
05

0.
10

0.
15

Paraboloid−Jump

SNR

M
ed

ia
n

M
S

E

●

●
● ● ● ●

1 2 3 4 5 6

0.
00

5
0.

01
5

0.
02

5
0.

03
5

Mexican Hat

SNR

M
ed

ia
n

M
S

E

●

●
●

● ● ●

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

0.
25

Sinusoid−Jump

SNR

M
ed

ia
n

M
S

E

●

●

●
●

●
●

●

●

●

●

●

●

0.
00

0.
04

0.
08

Paraboloid−Jump

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●
●

●

●

●

●

●
●

●

●

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Mexican Hat
M

S
E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●
●

0.
05

0.
10

0.
15

Sinusoid−Jump

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●●●

●

●

●

●

●●

●●●●

●●

●

●

●

● ●

●

●

●

●

3
4

5
6

7
8

9
10

Paraboloid−Jump

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

4
6

8
10

Mexican Hat

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●●

●

●

●

●●●

●

●●

●●●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

4
6

8
10

12

Sinusoid−Jump

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.24: Simulation results for the Paraboloid-Jump, Mexican hat, and Sinu-
soid-Jump examples with n = 256. The top panel shows the median

√
MSE across

different SNR values for each example, where the symbols used are: for BSML-C,
for BSML-S, for LAP, + for SS-ANOVA, and for MARS. The middle panel shows
the boxplots of the

√
MSE when SNR = 3. The results of fitting all three examples

with MARS are not shown here because they are much worse compared to the results
from the BSML and LAP procedures. The bottom panel shows the number of basis
functions selected by BSML-C, BSML-S, and LAP when SNR = 3.

136

Simulations Chapter 4

1 2 3 4 5 60.
00

0.
04

0.
08

0.
12

Paraboloid−Jump

SNR

M
ed

ia
n

M
S

E

●

●
● ● ● ●

1 2 3 4 5 6

0.
00

5
0.

01
5

0.
02

5

Mexican Hat

SNR

M
ed

ia
n

M
S

E

●

●
● ● ● ●

1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

0.
25

Sinusoid−Jump

SNR

M
ed

ia
n

M
S

E

●

●

●

● ● ●

●
●
●

●

●● ●
●●
●●
●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

Paraboloid−Jump

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●●

0.
00

4
0.

00
6

0.
00

8

Mexican Hat
M

S
E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●●

●●

0.
05

0.
10

0.
15

Sinusoid−Jump

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●●

●

●

●●

●

●●●

●

●

●●

●

●●

●●

●4
6

8
10

12
14

Paraboloid−Jump

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●

●
●

●

●

●

5
10

15
20

Mexican Hat

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●●●

●

●

●

●

●●

●●●●

●●

●

●

●●

5
10

15

Sinusoid−Jump

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.25: Simulation results for the Paraboloid-Jump, Mexican hat, and Sinu-
soid-Jump examples with n = 512. The top panel shows the median

√
MSE across

different SNR values for each example, where the symbols used are: for BSML-C,
for BSML-S, for LAP, + for SS-ANOVA, and for MARS. The middle panel shows
the boxplots of the

√
MSE when SNR = 3. The results of fitting all three examples

with MARS are not shown here because they are much worse compared to the results
from the BSML and LAP procedures. The bottom panel shows the number of basis
functions selected by BSML-C, BSML-S, and LAP when SNR = 3.

137

Simulations Chapter 4

1 2 3 4 5 60.
00

0.
04

0.
08

0.
12

Paraboloid−Jump

SNR

M
ed

ia
n

M
S

E

●

● ● ● ● ●

1 2 3 4 5 6

0.
00

5
0.

01
5

0.
02

5

Mexican Hat

SNR

M
ed

ia
n

M
S

E

●

● ● ● ● ●

1 2 3 4 5 60.
00

0.
05

0.
10

0.
15

0.
20

Sinusoid−Jump

SNR

M
ed

ia
n

M
S

E

●

●

● ● ● ●

●

●

●
● ●

●

0.
00

0.
02

0.
04

0.
06

0.
08

Paraboloid−Jump

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●
●

●●

●

0.
00

35
0.

00
45

0.
00

55

Mexican Hat
M

S
E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●

●

0.
00

0.
04

0.
08

0.
12

Sinusoid−Jump

M
S

E

S
S

−
A

N
O

V
A

B
S

M
L−

C

B
S

M
L−

S

LA
P

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

3
4

5
6

7
8

9
10

Paraboloid−Jump

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●

●●

●

●

●

●

●

●

●

●

●●

5
10

15
20

25
30

Mexican Hat

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

●

●

●

●

●

●

●

●

●

●●

●●●

5
10

15
20

Sinusoid−Jump

N
um

be
r

of
 B

as
es

BSML−C BSML−S LAP

Figure 4.26: Simulation results for the Paraboloid-Jump, Mexican hat, and Sinu-
soid-Jump examples with n = 1024. The top panel shows the median

√
MSE across

different SNR values for each example, where the symbols used are: for BSML-C,
for BSML-S, for LAP, + for SS-ANOVA, and for MARS. The middle panel shows
the boxplots of the

√
MSE when SNR = 3. The results of fitting all three examples

with MARS are not shown here because they are much worse compared to the results
from the BSML and LAP procedures. The bottom panel shows the number of basis
functions selected by BSML-C, BSML-S, and LAP when SNR = 3.

138

Simulations Chapter 4

Table 4.16: Average CPU time (in seconds) of fitting the Paraboloid-Jump, Mexican
hat, and Sinusoid-Jump examples using BSML-C, BSML-S, LAP, SS-ANOVA, MARS
for sample sizes n = 256, 512, 1024 with SNR = 3.

Paraboloid-Jump Mexican hat

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

BSML-C 1.63 3.06 6.57 1.08 2.12 4.27

BSML-S 15.21 31.62 52.54 13.39 28.64 43.03

LAP 1.40 2.47 4.71 1.55 2.39 3.41

SS-ANOVA 0.85 4.56 36.31 0.47 2.08 9.16

MARS 0.01 0.02 0.03 0.02 0.02 0.04

Sinusoid-Jump

n = 256 n = 512 n = 1024

BSML-C 2.37 4.48 9.71

BSML-S 21.64 43.28 74.05

LAP 6.41 10.13 16.31

SS-ANOVA 0.97 5.50 50.76

MARS 0.01 0.02 0.03

To sum up, based on the simulations presented in Sections 4.1 – 4.4, we conclude

that our look-ahead procedure has similar or better performance compared to the BSML

procedures, and it tends to select fewer basis functions on average. Moreover, in terms

of the computation speed our procedure is superior than BSML-S, and has the edge over

BSML-C in some situations.

139

Chapter 5

Applications

5.1 Well Log

The well log data were introduced in Ruanaidh and Fitzgerald (1996). These data

contain measurements of magnetic resonance of the rock strata at different time points

while drilling a well. The response magnetic resonance is in the scale of 104. The

data set is available at http://mldata.org/repository/data/viewslug/well-log/.

Because the data contain a considerable number of outliers, we removed the 40 smallest

observations as done similarly in Ruanaidh and Fitzgerald (1996). The adjusted data

set contains 4010 observations and is plotted in Figure 5.1. The explanatory variable

is scaled into x = [0, 1]. Here is the R code for loading the data set and creating the

variables.

library(bsml)

library(assist)

source("LAP.R")

wl <- read.csv("well-log.csv", header=FALSE)

N <- nrow(wl)

outliers <- order(wl[,1])[1:40]

y <- wl[-outliers,1]/(10^4)

140

http://mldata.org/repository/data/viewslug/well-log/

Applications Chapter 5

n <- length(y)

time <- c(1:N)[-outliers]

x <- (time-min(time))/(max(time)-min(time))

plot(time, y, type="l", ylab="Magnetic Resonance", xlab="Time Points")

0 1000 2000 3000 4000

10
11

12
13

14

Time Points

M
ag

ne
tic

 R
es

on
an

ce

Figure 5.1: Well log data

We first fit a cubic spline to the data using the R function ssr in the assist package,

where the smoothing parameter is selected by the generalized maximum likelihood (GML)

criterion. The fit is shown in Figure 5.2. Here is the R code we used:

fit.ssr <- ssr(y~x, cubic(x), spar="m")

plot(time, y, col="gray", ylab="Magnetic Resonance", xlab="Time Points",

main="Cubic Spline", xaxt="n", cex.lab=1.5, cex.main=2)

axis(1, at=seq(0,4100, by=200), label=seq(0,4100, by=200))

lines(time, fit.ssr$fit, lwd=3, col=3)

We can see that cubic spline overfits the data. For example, at time points around

1210, and 1430 the fit is clearly affected by some outliers.

141

Applications Chapter 5

10
11

12
13

14

Cubic Spline

Time Points

M
ag

ne
tic

 R
es

on
an

ce

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Figure 5.2: Cubic spline fits of the well log data. The Gray dots are the observations.
The green line is the cubic spline fit with the smoothing parameter selected by GML
criterion.

Next we fit the data using BSML-C, BSML-S and LAP. Table 5.1 lists the libraries

of basis functions used in these procedures.

Table 5.1: Basis libraries for the well log example.

L0 = {1, x}

L1 = C2(x), with knots {0.01j, j = 1, . . . , 99}

L2 = T0(x) =
{

1(z1,1](x), . . . , 1(z99,1](x)
}
, zj = 0.01j, j = 1, . . . , 99

L3 = T1(x) =
{

(x− z1)+, . . . , (x− z99)+

}
, zj = 0.01j, j = 1, . . . , 99

L4 = T2(x) =
{

(x− z1)2
+, . . . , (x− z99)2

+

}
, zj = 0.01j, j = 1, . . . , 99

Here is how we generate the libraries of basis functions in R:

loc <- seq(0.01,0.99,0.01)

142

Applications Chapter 5

baseslist.gen <- function(x, loc){

n <- length(x)

pt <- rep(1,n)%o%loc

L0 <- cbind(1, x)

L1 <- cubic(x,t=loc)

L2 <- 1*(x>pt)

L3 <- (x-pt)*(x>pt)

L4 <- (x-pt)^2*(x>pt)

baseslist <- list(L0, L1, L2, L3, L4)

return(baseslist)

}

baseslist <- baseslist.gen(x, loc)

For the BSML and LAP procedures, we specified M = 100, which allows at most 100

basis functions to be selected in the final model (including the null bases). Here are the

R codes for fitting the data using BSML-C and BSML-S.

BSML-C:

fit.bsmlc <- bsml(y, baseslist, method="bsmlc", maxbas=100)

BSML-S:

fit.bsmls <- bsml(y, baseslist, method="bsmls", maxbas=100)

Figure 5.3:

par(mfrow=c(2,1))

plot(time, y, col="gray", ylab="Magnetic Resonance", xlab="Time Points",

main="BSML-C", xaxt="n", cex.lab=1.5, cex.main=2)

axis(1, at=seq(0,4100, by=200), label=seq(0,4100, by=200))

lines(time, fit.bsmlc$fit, lwd=3, col=1)

plot(time, y, col="gray", ylab="Magnetic Resonance", xlab="Time Points",

main="BSML-S", xaxt="n", cex.lab=1.5, cex.main=2)

axis(1, at=seq(0,4100, by=200), label=seq(0,4100, by=200))

lines(time, fit.bsmls$fit, lwd=3, col=4)

The BSML-C and BSML-S fits are shown in Figure 5.3. The BSML-C procedure

also seem to overfit the data. The fit contains many small jumps besides the obvious

big jumps. In comparison, the BSML-S procedure gives a smoother fit. BSML-C has

143

Applications Chapter 5

selected 90 basis functions, among which 55 of them are from L2. BSML-S has selected

90 basis functions, among which 20 of them are from L2.

10
11

12
13

14

BSML-C

M
ag

ne
tic

 R
es

on
an

ce

Time Points
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

10
11

12
13

14

BSML-S

M
ag

ne
tic

 R
es

on
an

ce

Time Points
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Figure 5.3: BSML-C and BSML-S fits of the well log data. The Gray dots are the
observations. The black line in the top panel is the BSML-C fit. The blue line in the
lower panel is the BSML-S fit.

144

Applications Chapter 5

For the LAP, the IDF values used are {1, 2, 3, 4, 5, 6} for each library, since this works

well for the Sine-Jumps and Blocks-Curves examples in our simulation. The input IDF

matrix contains in total 64 = 1296 IDF tuning vectors. By the default setting in LAP,

Md = 1296, so that given any tuning vector in the IDF matrix, there exists a unique

candidate model generated from the forward selection process. Figure 5.4 shows the LAP

fit together with the 95% bootstrap confidence interval. Here for the confidence interval

we specified the number of bootstrap replicates to be bootrep = 200. The R code used

is shown below.

LAP:

nlib <- length(baseslist)

idfs <- append(list(1),rep(list(c(1:6)),nlib-1))

idfs <- as.matrix(expand.grid(idfs))

set.seed(123)

fit.lap <- LAP(y, baseslist, maxbas=100, idfs=idfs, criterion="BIC")

Confidence interval for LAP:

pred.lap <- predict.LAP(fit.lap, bases.include=c(1,1,1,1,1,1),

new.baseslist=baseslist, confint=T)

Figure 5.4:

par(mfrow=c(1,1))

plot(time, y, col="gray", ylab="Magnetic Resonance", xlab="Time Points",

main="LAP", xaxt="n", cex.lab=1.5, cex.main=2)

axis(1, at=seq(0,4100, by=200), label=seq(0,4100, by=200))

lines(time, pred.lap$fit, lwd=3, col=2)

lines(time, pred.lap$lower, col=1, lwd=2, lty=2)

lines(time, pred.lap$upper, col=1, lwd=2, lty=2)

The LAP fit has the most parsimonious representations in terms of the basis func-

tions since only 41 bases are selected, among which 13 of them are from L2. LAP has

successfully identified the major jumps and does not overfit the data by adding small

jumps like BSML-C does. Although BSML-S does a better job than BSML-C, its fit is

still affected by some outliers when compared to LAP, for example at time points around

145

Applications Chapter 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●
●
●

●
●
●

●

●
●

●
●
●

●

●●

●

●

●

●
●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●
●●

●

●●

●

●

●
●

●
●

●
●
●

●●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●
●
●

●

●
●
●●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●
●

●
●
●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●

●●
●●

●
●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●
●
●
●
●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●
●

●

●
●

●
●
●

●

●●

●

●

●
●
●●
●

●

●●

●

●

●
●

●●

●
●

●●●

●
●

●

●
●

●

●

●
●
●

●●

●●

●
●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●
●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●
●●

●
●

●

●

●

●●

●●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●

●●
●

●

●

●

●●

●
●

●
●
●
●
●
●
●
●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●
●●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●●●

●●

●●

●●

●

●

●

●●

●
●●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●

●

●
●

●
●
●

●

●
●

●

●

●●●

●
●

●●
●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●

●

●
●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●●

●

●

●●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●●●

●

●

●

●●

●●●
●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●●
●

●

●
●

●●
●
●

●●

●
●

●

●●

●
●

●

●●

●●

●●●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●
●
●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●●
●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●●

●●

●

●●
●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●●●

●

●●

●

●
●●
●

●
●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●

●

●
●

●

●●

●

●●
●
●
●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●●●
●●
●

●●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●●
●
●
●●●
●
●

●

●
●

●

●

●

●

●

●●
●

●●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●●●

●

●

●

●

●

●
●
●
●

●
●

●

●●

●

●

●

●

●

●●
●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●●●
●

●

●●

●
●

●

●●
●

●●

●

●

●●●

●

●

●

●
●
●
●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●
●

●●
●
●

●
●
●

●

●
●

●

●

●●●
●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●●●●

●●

●●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●●

●●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●

●●

●

●●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●
●●

●●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●●

●

●

●●

●

●●
●

●

●
●●

●

●

●

●
●
●

●
●
●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●●

●

●●

●

●
●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●●
●
●

●●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●●

●●●

●

●●

●
●●

●●

●●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●●

●
●
●

●

●●
●●●●

●

●

●

●

●

●
●
●

●

●

●

●●

●●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●●

●
●

●●●

●●
●

●

●

●

●

●
●

●
●
●●
●●

●
●

●●●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●●

●

●

●

●●

●
●●

●●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●●
●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●●●●

●
●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●
●●

●
●
●

●
●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●
●●●

●

●

●

●●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●●

●
●
●●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●●
●
●

●●●●

●

●

●
●

●

●
●
●

●
●

●

●

●
●

●●

●
●
●
●

●●
●
●●

●
●●●

●●

●

●
●

●

●
●
●

●●●
●
●
●

●

●

●●

●●
●●
●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●

●
●

●

●

●●

●
●

●●
●

●●●

●

●
●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●
●

●
●
●
●

●

●

●●

●

●

●
●
●

●

●

●
●

●●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●●

●

●

●

●

●

●

●
●
●●●

●●●
●

●

●

●
●
●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●
●●

●

●
●
●
●●

●●
●●

●

●
●
●

●
●

●●

●

●

●●

●●●
●

●
●
●

●
●

●

●

●

●●

●

●●●
●●

●
●

●

●

●
●

●
●
●●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●●●●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●
●●
●

●
●

●●

●

●

●

●
●

●●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●●
●●
●
●

●

●

●

●

●
●

●
●
●

●

●●●

●

●
●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●●

●

●

●

●●●

●

●

●
●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●
●●●●

●●

●
●

●

●
●
●

●

●
●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●
●

●

●●●
●●

●

●

●
●

●

●

●●

●

●

●●
●●

●
●
●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●
●●●
●

●
●

●●

●

●●
●
●●

●

●
●

●

●●●
●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●●●
●●
●●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

10
11

12
13

14

LAP

M
ag

ne
tic

 R
es

on
an

ce

Time Points

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Figure 5.4: LAP fit of the well log data. The Gray dots are the observations. The
red solid line is the LAP fit. The black dashed lines are the lower and upper bounds
of the 95% bootstrap confidence interval.

40 and 1010.

5.2 Ozone Pressure

The Antarctic ozone hole refers to the ozone depletion observed in the stratosphere of

the antarctic region. This phenomenon has be widely studied, for example see Solomon

(1999). Ozone depletion in Antarctica was first documented in 1985, and is observed dur-

ing the Spring season. We will use the ozonesonde data collected at the Amundsen-Scott

South Pole Station to investigate this phenomenon. The data is available on the Na-

tional Oceanic and Atmospheric Administration website: ftp://ftp.cmdl.noaa.gov/

ozwv/Ozonesonde/SouthPole,Antartica/100MeterAverageFiles/. The raw data be-

tween September 2006 and August 2009 contains 0.1-km vertical averages of the ozone

partial pressure (in mPa) for 207 unique ozonesonde launch dates. We will focus on the

146

ftp://ftp.cmdl.noaa.gov/ozwv/Ozonesonde/South Pole, Antartica/100 Meter Average Files/
ftp://ftp.cmdl.noaa.gov/ozwv/Ozonesonde/South Pole, Antartica/100 Meter Average Files/

Applications Chapter 5

altitude levels (in km) within the range 11 km to 30 km, where the lower stratosphere is

located. Among the total 207 launch dates, we selected 181 dates for which few than 20

values are missing for the ozone partial pressure at the altitude levels of interest.

For our analysis, the response variable is the ozone partial pressure. The covariates

are the altitude (from 11 km to 30 km for every 0.1 km, in total 191 levels) and the dates

of the records. For convenience, we treat the dates as numerical by counting the number

of days elapsed since the start of the records, which is September 06, 2006. We call this

variable “day”. For example, for the first record, day = 1. For the second record that

occurred on September 09, 2006, day = 4, and so on. The variable “day” has 181 unique

values.

Instead of including all the 191 different altitude levels in our analysis, we used two

subsets of them. The first subset consists of altitude levels {10 + j : j = 1, . . . , 20}. The

second subset consists of altitude levels {10.5 + j : j = 1, . . . , 19}. All the observations

with altitude levels in the first subset forms the training set. All the observations with

altitude levels in the second subset forms the test set. We will build models based on

the training set, and test their performances using the test set. For the training set, 91

out of 3620 observations are missing. For the test set, 54 out of 3439 observations are

missing. Most of the missing values occur at upper altitudes on a subset of dates. We

scale the covariates altitude and day in both the training set and the test set to [0, 1].

Denote x1 as the scaled altitude and x2 as the scaled day.

In the R code below, alt.train and alt.test are the first and the second sub-

sets of distinct altitude levels. date.uni contains unique values of the variable day.

ozone.train is a 20×181 matrix that contains observed ozone partial pressure from the

training set. ozone.test is a 19× 181 matrix that contains observed ozone partial pres-

sure from the test set. The (i, j)th element in ozone.train and ozone.test corresponds

to the ozone pressure observed at the ith altitude on jth ozonesonde launch date. The

147

Applications Chapter 5

missing values in ozone.train are removed to form the 3529×1 vector ozone. index.na

contains the indices of these missing values. x1 and x2 are 3529 × 1 vectors that con-

tain the scaled altitude and the scaled day respectively for each observation in ozone.

x1.test and x2.test are the scaled covariates for the observations in ozone.test. The

code used to generate x1, x2, x1.test, and x2.test is given below.

library(assist)

library(bsml)

library(gss)

library(lattice)

source("LAP.R")

alt.train <- seq(from=11, to=30, by=1)

n.date <- length(date.uni)

n.alt <- length(alt.train)

index.na <- which(is.na(ozone.train))

ozone <- na.omit(as.vector(ozone.train))

n <- length(ozone)

covar <- as.matrix(expand.grid(alt.train, date.uni))

var1 <- covar[-index.na,1]

var2 <- covar[-index.na,2]

x1 <- (var1-min(var1))/(max(var1)-min(var1))

x2 <- (var2-min(var2))/(max(var2)-min(var2))

alt.test <- seq(from=11.5, to=29.5, by=1)

covar.test <- expand.grid(alt.test, date.uni)

x1.test <- (covar.test[,1]-min(var1))/(max(var1)-min(var1))

x2.test <- (covar.test[,2]-min(var2))/(max(var2)-min(var2))

The following R code is used to generate the level plot of the ozone partial pressure,

shown in Figure 5.5. Here month.tick and month.labels are the tick mark locations and

labels for the x-axis of the level plot. The level plot illustrates that the lowest ozone partial

pressure occurred between 14 km and 20 km in September, October, and November. In

addition, the frequency of launches shows seasonality. Among all the launches of interest,

148

Applications Chapter 5

the months with most frequent launches were September and October, with a total of

30 and 31 launches respectively. In contrast, the month with fewest launches was April,

which had only 6 launches in total.

Figure 5.5:

levelplot(t(ozone.train), aspect=0.5,

ylab=list(label="Altitude (km)", cex=1.5),

xlab=list(label="Month/Year", cex=1.5),

main=list(label="Ozone Pressure from Sep 2006

to Aug 2009 \n (training set)", cex=2),

col.regions = topo.colors(300),

at=seq(min(ozone.train, na.rm=TRUE),

max(ozone.train, na.rm=TRUE), length=300),

colorkey=list(tick.number=10, labels=list(cex=1.2)),

scales=list(x=list(cex=1, at=month.tick, labels=month.labels),

y=list(cex=1.4), at=1:n.alt))

Ozone Partial Pressure from Sep 2006 to Aug 2009
 (training set)

Month/Year

A
lti

tu
de

 (
km

)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9/06 10/06 12/06 2/07 4/07 6/07 8/07 10/07 12/07 2/08 4/08 6/08 8/08 10/08 12/08 2/09 4/09 6/09 8/09
0

2

4

6

8

10

12

14

16

18

Figure 5.5: Level plot of the ozone partial pressure at altitudes 11 km, 12 km, ..., 30
km, for 181 launch dates between September 2006 and August 2009.

149

Applications Chapter 5

We first fit an SS-ANOVA model with the model space W 2
2 [0, 1] ×W 2

2 (per) to the

training set, using the R package gss (Gu (2013a)). The smoothing parameter is selected

by the generalized maximum likelihood (GML) criterion. The following R code is used:

set.seed(321)

SS-ANOVA:

z2 <- 3*x2

fit.gss <- ssanova(ozone~x1*z2, type=list(x1=list("cubic", c(0,1)),

z2=list("per", c(0,3))), nbasis=100, method="m")

Here we multiply x2 by 3 to make the period of the periodic spline representers to be 1/3,

so the data for each year are fitted using the same periodic spline representers. In order

to make fair comparisons between the performance of the SS-ANOVA model and that

of the BSML and LAP procedures, we specified nbasis=100, so 100 randomly selected

knots are used in the SS-ANOVA model.

Next we fit the training data using the BSML and LAP procedures. Table 5.2 lists

the libraries of basis functions used in these procedures. Here L1 contains cubic spline

representers for the altitude, where the knots used are the unique values of x1. L2

contains Fourier series with the frequencies equal to multiples of 3, because the data are

from three years. The bases in L2 can be used to model the seasonal main effect of day

on the ozone partial pressure. L3 contains the basis functions that are tensor products

of the bases from {x1 − 0.5} ∪ L1 and the bases from L2. The bases in L3 can be used

to model the interaction effect of the covariates altitude and day on the ozone partial

pressure. There are 462 basis functions in total.

150

Applications Chapter 5

Table 5.2: Basis libraries for the ozone example.

L0 = {1, x1 − 0.5}

L1 = C2(x1), with knots
{

(j − 1)/19, j = 1, . . . , 20
}

L2 =
{

sin(6πkx2), cos(6πkx2) : k = 1, 2, . . . , 10
}

L3 =
{
ξiξj : ξi ∈ {x1 − 0.5} ∪ L1, ξj ∈ L2

}

The following code is used to generate the basis libraries for the training set and the

test set:

baseslist.gen <- function(x1, x2, loc){

L0:

L.null <- cbind(1, x1-0.5)

L1:

L.cubic <- cubic(x1, t=loc)

L2:

kappa <- c(1:10)

L.fou <- cbind(sin(6*pi*x2%o%kappa),cos(6*pi*x2%o%kappa))

L3:

L.prod <- (cbind(x1-0.5,L.cubic)%x%matrix(1,ncol=ncol(L.fou)))*

(matrix(1,ncol=ncol(cbind(x1-0.5,L.cubic)))%x%L.fou)

baseslist <- list(L.null, L.cubic, L.fou, L.prod)

return(baseslist)

}

libraries of basis functions for the training set:

baseslist <- baseslist.gen(x1, x2, loc=unique(x1))

libraries of basis functions for the test set:

baseslist.test <- baseslist.gen(x1.test, x2.test, loc=unique(x1))

For the BSML and LAP procedures, we specified the maximum number of bases that

can be selected to be M = 100. The following code is used to fit the training data with

the BSML procedures.

set.seed(321)

BSML-C:

151

Applications Chapter 5

fit.bsmlc <- bsml(ozone, baseslist, method="bsmlc", maxbas=100)

BSML-S:

fit.bsmls <- bsml(ozone, baseslist, method="bsmls", maxbas=100)

For LAP, we first tried the IDF values {0.5, 1, 1.5, 2} for each library, so the input

IDF matrix contains in total 43 = 64 IDF tuning vectors. By the default setting in

LAP, Md = 64, so that each tuning vector in the IDF matrix corresponds to a unique

candidate model generated from the forward selection process. The fitted object is named

fit1.lap in the code below. The IDF values selected by cross validation in fit1.lap

are 1, 0.5, and 0.5 for L1, L2, and L3 respectively. Therefore, we adjusted the IDF values

to be {0.2, 0.5, 0.8, 1} for each library, and refit the training data with LAP to obtain the

final model. The second fitted objected is named fit2.lap. Given below is the code for

fitting the training data twice with LAP.

idfs1 <- append(list(1),rep(list(c(0.5, 1, 1.5, 2)),nlib-1))

idfs1 <- as.matrix(expand.grid(idfs1))

set.seed(321)

fit1.lap <- LAP(ozone, baseslist, maxbas=100,

idfs=idfs1, criterion="BIC")

fit1.lap$idfs.cv

Adjust the IDF tuning values and refit with LAP:

idfs2 <- append(list(1),rep(list(c(0.2, 0.5, 0.8, 1)),nlib-1))

idfs2 <- as.matrix(expand.grid(idfs2))

set.seed(321)

fit2.lap <- LAP(ozone, baseslist, maxbas=100,

idfs=idfs2, criterion="BIC")

Figures 5.6, 5.7, 5.8, and 5.9 are the level plots of the fitted ozone partial pressure

at 191 equally spaced grid points for altitude and 218 equally spaced grid points for

day, by using SS-ANOVA model, BSML-C, BSML-S, and LAP procedures respectively.

152

Applications Chapter 5

Figures 5.10 and 5.11 show the observed and fitted ozone partial pressure at six specific

altitudes, so that the differences among SS-ANOVA fit, BSML fits and LAP fit can be

seen more easily. The following code is used to generate these figures.

Fitted values at the grid points for SS-ANOVA, BSML-C, BSML-S, LAP:

grid1 <- seq(11, 30, 0.1)

n.grid1 <- length(grid1)

grid2 <- seq(1, 1086, 5)

n.grid2 <- length(grid2)

X.grid <- expand.grid((grid1-11)/(30-11), (grid2-1)/1085)

x1.grid <- X.grid[,1]

x2.grid <- X.grid[,2]

fitted.gss <- matrix(predict(fit.gss, newdata=data.frame(x1=x1.grid,

z2=3*x2.grid)), nrow=length(grid1), ncol=length(grid2))

baseslist.grid <- baseslist.gen(x1.grid, x2.grid, loc=unique(x1))

fitted.bsmlc <- matrix(predict(fit.bsmlc, bases.include=c(1,1,1,1,1),

new.baseslist=baseslist.grid, confint=F),

nrow=n.grid1, ncol=n.grid2)

fitted.bsmls <- matrix(predict(fit.bsmls, bases.include=c(1,1,1,1,1),

new.baseslist=baseslist.grid, confint=F),

nrow=n.grid1, ncol=n.grid2)

fitted.lap <- matrix(predict.LAP(fit2.lap, bases.include=c(1,1,1,1,1),

new.baseslist=baseslist.grid, confint=F)$fit,

nrow=n.grid1, ncol=n.grid2)

Tick marks and labels for the plots:

month.tick2 <- c(1, 12, 25, 36, 49, 61, 73, 85, 98,

110, 122, 134, 146, 159, 171, 183, 195, 207)

month.labels2 <- c("9/06", "11/06", "1/07", "3/07", "5/07", "7/07",

"9/07", "11/07", "1/08", "3/08", "5/08", "7/08",

"9/08", "11/08", "1/09", "3/09", "5/09", "7/09")

alt.labels <- seq(11,30,1)

alt.tick <- seq(1, 191, 10)

Figure 5.6:

levelplot(t(fitted.gss), aspect=0.5,

ylab=list(label="Altitude (km)", cex=1.5),

153

Applications Chapter 5

xlab=list(label="Month/Year", cex=1.5),

main=list(label="SS-ANOVA fit of the ozone partial

pressure based on the training set", cex=2),

col.regions = topo.colors(300),

at=seq(min(fitted.gss, na.rm=TRUE),

max(ozone.train, na.rm=TRUE), length=300),

colorkey=list(tick.number=10, labels=list(cex=1.2)),

scales=list(x=list(cex=1,at=month.tick2, labels=month.labels2),

y=list(cex=1.4, at=alt.tick, labels=alt.labels)))

Figure 5.7:

levelplot(t(fitted.bsmlc), aspect=0.5,

ylab=list(label="Altitude (km)", cex=1.5),

xlab=list(label="Month/Year", cex=1.5),

main=list(label="BSML-C fit of the ozone partial

pressure based on the training set", cex=2),

col.regions = topo.colors(300),

at=seq(min(fitted.bsmlc, na.rm=TRUE),

max(ozone.train, na.rm=TRUE), length=300),

colorkey=list(tick.number=10, labels=list(cex=1.2)),

scales=list(x=list(cex=1,at=month.tick2, labels=month.labels2),

y=list(cex=1.4, at=alt.tick, labels=alt.labels)))

Figure 5.8:

levelplot(t(fitted.bsmls), aspect=0.5,

ylab=list(label="Altitude (km)", cex=1.5),

xlab=list(label="Month/Year", cex=1.5),

main=list(label="BSML-S fit of the ozone partial

pressure based on the training set", cex=2),

col.regions = topo.colors(300),

at=seq(min(fitted.bsmls, na.rm=TRUE),

max(ozone.train, na.rm=TRUE), length=300),

colorkey=list(tick.number=10, labels=list(cex=1.2)),

scales=list(x=list(cex=1,at=month.tick2, labels=month.labels2),

y=list(cex=1.4, at=alt.tick, labels=alt.labels)))

Figure 5.9:

levelplot(t(fitted.lap), aspect=0.5,

ylab=list(label="Altitude (km)", cex=1.5),

154

Applications Chapter 5

xlab=list(label="Month/Year", cex=1.5),

main=list(label="LAP fit of the ozone partial

pressure based on the training set", cex=2),

col.regions = topo.colors(300),

at=seq(min(fitted.lap, na.rm=TRUE),

max(ozone.train, na.rm=TRUE), length=300),

colorkey=list(tick.number=10, labels=list(cex=1.2)),

scales=list(x=list(cex=1,at=month.tick2, labels=month.labels2),

y=list(cex=1.4, at=alt.tick, labels=alt.labels)))

Figure 5.10:

par(mfrow=c(3,1))

for(i in c(2,5,8)){

plot(grid2, fitted.gss[10*(i-1)+1,], type="l",

col=3, lwd=2, ylim=range(0,17),

main=paste("Altitude = ", alt.train[i], "km"),

cex.main=2, ylab="", xlab="", xaxt="n", yaxt="n")

lines(grid2, fitted.lap[10*(i-1)+1,], col=2, lwd=2)

lines(grid2, fitted.bsmlc[10*(i-1)+1,], col=1, lwd=2)

points(date.uni, ozone.train[i,], col="gray60")

axis(1,at=grid2[month.tick2], labels=month.labels2)

axis(2, at=seq(0,17,2), labels=seq(0,17,2))

mtext("Month/Year", side=1, line=3)

mtext("Ozone Partial Pressure (mPa)", side=2, line=2.5)

}

Figure 5.11:

par(mfrow=c(3,1))

for(i in c(11,14,17)){

plot(grid2, fitted.gss[10*(i-1)+1,], type="l",

col=3, lwd=2, ylim=range(0,17),

main=paste("Altitude = ", alt.train[i], "km"),

cex.main=2, ylab="", xlab="", xaxt="n", yaxt="n")

lines(grid2, fitted.lap[10*(i-1)+1,], col=2, lwd=2)

lines(grid2, fitted.bsmlc[10*(i-1)+1,], col=1, lwd=2)

points(date.uni, ozone.train[i,], col="gray60")

axis(1,at=grid2[month.tick2], labels=month.labels2)

axis(2, at=seq(0,17,2), labels=seq(0,17,2))

mtext("Month/Year", side=1, line=3)

mtext("Ozone Partial Pressure (mPa)", side=2, line=2.5)

}

155

Applications Chapter 5

SS−ANOVA fit of the ozone partial pressure based on the training set

Month/Year

A
lti

tu
de

 (
km

)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0

2

4

6

8

10

12

14

16

18

Figure 5.6: Level plot of SS-ANOVA fit of the ozone partial pressure based on the
training set, for 191 different altitudes and 218 different dates.

BSML−C fit of the ozone partial pressure based on the training set

Month/Year

A
lti

tu
de

 (
km

)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

2

4

6

8

10

12

14

16

18

Figure 5.7: Level plot of the BSML-C fit of the ozone partial pressure based on the
training set, for 191 different altitudes and 218 different dates.

156

Applications Chapter 5

BSML−S fit of the ozone partial pressure based on the training set

Month/Year

A
lti

tu
de

 (
km

)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09
0

2

4

6

8

10

12

14

16

18

Figure 5.8: Level plot of the BSML-S fit of the ozone partial pressure based on the
training set, for 191 different altitudes and 218 different dates.

LAP fit of the ozone partial pressure based on the training set

Month/Year

A
lti

tu
de

 (
km

)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

2

4

6

8

10

12

14

16

18

Figure 5.9: Level plot of the LAP fit of the ozone partial pressure based on the training
set, for 191 different altitudes and 218 different dates.

157

Applications Chapter 5

Altitude = 12 km

●●
●●●●●

●

●
●

●
●●

●
●
●●

●
●●

●
●●●

●●
●

●

●
●●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●●
●
●●

●
●

●

●●●●●●●
●
●●●●

●

●●
●
●●

●●●●●●
●●●●●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●●●●

●

●
●●

●

●●●
●

●●●●

●

●
●●●

●
●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0
2

4
6

8
10

12
14

16

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Altitude = 15 km

●

●●

●

●

●

●

●

●●●
●
●●●●●●

●

●●

●
●●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●
●●●

●

●

●●

●

●

●
●

●
●●

●

●●

●

●
●

●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●

●● ●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●●●
●
●

●●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0
2

4
6

8
10

12
14

16

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Altitude = 18 km

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●

●
●●

●
●
●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●●

●
●●

●
●
●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●

●

●

●●
●● ●

● ●

●

●

●●

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0
2

4
6

8
10

12
14

16

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Figure 5.10: SS-ANOVA, BSML-C, BSML-S, and LAP fits of the ozone pressure at
altitudes 12 km, 15 km, and 18 km. Here represents the SS-ANOVA fit,
represents the LAP fit, represents the BSML-C fit. The BSML-S fit is omitted
because it is very close to the BSML-C fit. Circles represent the observations.

158

Applications Chapter 5

Altitude = 21 km

●

●
●

●●

●
●

●
●

●

●

●●●●●

●●
●
●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●●●

●
●

●
●

●●●
●

●

●

●
●

●●

● ●●●●

●

●

●

●
●
●

●

●

●●
●
●●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●
●●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●● ●●
●●

●●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●●●

●

●

● ●

●
●

●●

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0
2

4
6

8
10

12
14

16

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Altitude = 24 km

●●●
●●●

●

●
●
●
●
●●●
●
●●

●

●●
●
●

●

●●●

●

●
●

●

●
●

●

●
●

●

●●●

●

●

●●

●

●

●
●●●

●
●

●
●

●

●● ●●●
●
●

●

●●
●

●

●

●

●

●

●●●●
●
●

●
●

●

●●

●●
●

●
●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●●●

●●
●●

● ●●●●●
●
●
●

●

●●●

●
●
●●

●●●
●●

●

●
●

●
●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●●●
●●

●

● ●
● ●

●
● ●●

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0
2

4
6

8
10

12
14

16

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Altitude = 27 km

●●
●
●●●

●●
●●
●●●●

●

●

●

●

●
●
●
●

●
●
●●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●● ●
●

●●●●

●●●●●●
●

●●
●●●●●●

●●
●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●●●●

●●
●●

●● ●
●●

●
●

●●●
●
●●●

●●
●●

●●
●
●●

●

●●●

●

●
●

●
●●

●

●

●

●

●

●●

●
●

●

●●
●●●

●●

●●●
●●

●●●
●

●
●●

● ●
●

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

0
2

4
6

8
10

12
14

16

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Figure 5.11: SS-ANOVA, BSML-C, BSML-S, and LAP fits of the ozone pressure at
altitudes 21 km, 24 km, and 27 km. Here represents the SS-ANOVA fit,
represents the LAP fit, represents the BSML-C fit. The BSML-S fit is omitted
because it is very close to the BSML-C fit. Circles represent the observations.

159

Applications Chapter 5

Based on the plots above, we can see that the BSML and LAP procedures have similar

fits, whereas the SS-ANOVA model tends to oversmooth the data. Among all the 462

basis functions used in the BSML and LAP procedures, 86 of them are selected by LAP. In

comparison, BSML-C and BSML-S have selected 67 and 72 bases respectively. The model

returned from the LAP procedure has the lowest residual sum of squares compared to

other three models. For fair comparison, we compute the predictive squared error (PSE)

for the test set using the following code:

PSE from the SS-ANOVA model:

pred.gss <- predict(fit.gss, newdata=data.frame(x1=x1.test,z2=3*x2.test))

(PSE.gss <- mean((pred.gss - ozone.test)^2, na.rm=TRUE))

PSE from the BSML-C procedure:

pred.bsmlc <- predict(fit.bsmlc, bases.include=c(1,1,1,1,1),

new.baseslist=baseslist.test, confint=F)

(PSE.bsmlc <- mean((pred.bsmlc - as.vector(ozone.test))^2, na.rm=TRUE))

PSE from the BSML-S procedure:

pred.bsmls <- predict(fit.bsmls, bases.include=c(1,1,1,1,1),

new.baseslist=baseslist.test, confint=F)

(PSE.bsmls <- mean((pred.bsmls - as.vector(ozone.test))^2, na.rm=TRUE))

PSE from the look-ahead procedure:

pred.lap <- predict.LAP(fit2.lap, bases.include=c(1,1,1,1,1),

new.baseslist=baseslist.test, confint=F)

(PSE.lap <- mean((pred.lap$fit - as.vector(ozone.test))^2, na.rm=TRUE))

We found that PSE.gss = 2.191, PSE.bsmlc = 1.863, PSE.bsmls = 1.900, and

PSE.lap = 1.826. Therefore, because the LAP procedure returns the lowest PSE, we

conclude that LAP has the best performance compared to other three methods.

For the look-ahead procedure, here we construct the 95% bootstrap confidence inter-

vals for the seasonal and nonseasonal effects at the same grid points of altitude and day

used earlier. The seasonal effect includes the main effect of day and the interaction effect

between altitude and day, which can be obtained by using the bases in L2 and L3 that

160

Applications Chapter 5

have been selected by LAP. We can estimate the seasonal effect alone by specifying the

last two elements in the bases.include argument of the predict.LAP function to be 1

and others be 0, as shown in the code below. The nonseasonal effect includes the con-

stant and the main effect of the latitude, which can be obtained by using the bases in L0

and L1 that have been selected by LAP. We can estimate the nonseasonal effect alone by

specifying the first three elements in the bases.include argument of the predict.LAP

function to be 1 and others be 0, where the first two elements in the bases.include

corresponds to the null basis functions. For the same six altitudes studied earlier, the

seasonal effects are plotted in Figure 5.12 and 5.13. The nonseasonal effect is shown in

5.14. Here is the R code we used to generate these figures.

Seasonal fit and its confidence interval:

lap.season.fit <- predict.LAP(fit2.lap, bases.include=c(0,0,0,1,1),

new.baseslist=baseslist.grid, confint=T)

season.lap <- matrix(lap.season.fit$fit, nrow=n.grid1, ncol=n.grid2)

season.lap.lower <- matrix(lap.season.fit$lower,

nrow=n.grid1, ncol=n.grid2)

season.lap.upper <- matrix(lap.season.fit$upper,

nrow=n.grid1, ncol=n.grid2)

Nonseasonal fit and its confidence interval:

lap.nonseason.fit <- predict.LAP(fit2.lap, bases.include=c(1,1,1,0,0),

new.baseslist=baseslist.grid, confint=T)

nonseason.lap <- matrix(lap.nonseason.fit$fit, nrow=n.grid1,ncol=n.grid2)

nonseason.lap.lower <- matrix(lap.nonseason.fit$lower,

nrow=n.grid1, ncol=n.grid2)

nonseason.lap.upper <- matrix(lap.nonseason.fit$upper,

nrow=n.grid1, ncol=n.grid2)

Figure 5.12:

par(mfrow=c(3,1))

for(i in c(11, 41, 71)){

plot(grid2, season.lap[i,], col=2, lwd=2,

main=paste("Seasonal Effect \n Altitude = ", grid1[i], "km"),

ylim=range(min(season.lap.lower[i,], na.rm=T),

max(season.lap.upper[i,], na.rm=T)),

xlab="", ylab="", cex.main=1.5, type="l", xaxt="n")

161

Applications Chapter 5

axis(1,at=grid2[month.tick2], labels=month.labels2)

lines(grid2, season.lap.lower[i,], col=1, lwd=2, lty=2)

lines(grid2, season.lap.upper[i,], col=1, lwd=2, lty=2)

mtext("Month/Year", side=1, line=3)

mtext("Ozone Partial Pressure (mPa)", side=2, line=2.5)

}

Figure 5.13:

par(mfrow=c(3,1))

for(i in c(101,131,161)){

plot(grid2, season.lap[i,], col=2, lwd=2,

main=paste("Seasonal Effect \n Altitude = ", grid1[i], "km"),

ylim=range(min(season.lap.lower[i,], na.rm=T),

max(season.lap.upper[i,], na.rm=T)),

xlab="", ylab="", cex.main=1.5, type="l", xaxt="n")

axis(1,at=grid2[month.tick2], labels=month.labels2)

lines(grid2, season.lap.lower[i,], col=1, lwd=2, lty=2)

lines(grid2, season.lap.upper[i,], col=1, lwd=2, lty=2)

mtext("Month/Year", side=1, line=3)

mtext("Ozone Partial Pressure (mPa)", side=2, line=2.5)

}

Figure 5.14:

par(mfrow=c(1,1))

plot(nonseason.lap[,1], grid1, col=2, lwd=2, main="Nonseasonal Effect",

xlim=range(min(nonseason.lap.lower[,1]-1, na.rm=T),

max(nonseason.lap.upper[,1]+1, na.rm=T)),

xlab="", ylab="", cex.main=1.5, type="l", xaxt="n", yaxt="n")

axis(1, at=2:12, labels=2:12)

axis(2, at=alt.train, labels=alt.train)

lines(nonseason.lap.lower[,1], grid1, col=1, lwd=2, lty=2)

lines(nonseason.lap.upper[,1], grid1, col=1, lwd=2, lty=2)

mtext("Altitude (km)", side=2, line=3)

mtext("Ozone Partial Pressure (mPa)", side=1, line=2.5)

162

Applications Chapter 5

−
2

−
1

0
1

2
Seasonal Effect
 Altitude = 12 km

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

−
6

−
4

−
2

0
2

4

Seasonal Effect
 Altitude = 15 km

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

−
10

−
5

0
5

Seasonal Effect
 Altitude = 18 km

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Figure 5.12: Seasonal effect at altitudes 12 km, 15 km, 18 km. The red solid line is
the fit. The black dashed lines are the lower and upper bounds of the 95% bootstrap
confidence interval.

163

Applications Chapter 5

−
8

−
6

−
4

−
2

0
2

4
6

Seasonal Effect
 Altitude = 21 km

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

−
2

0
2

4
6

Seasonal Effect
 Altitude = 24 km

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

−
2

0
2

4
6

Seasonal Effect
 Altitude = 27 km

9/06 11/06 1/07 3/07 5/07 7/07 9/07 11/07 1/08 3/08 5/08 7/08 9/08 11/08 1/09 3/09 5/09 7/09

Month/Year

O
zo

ne
 P

ar
tia

l P
re

ss
ur

e
(m

P
a)

Figure 5.13: Seasonal effect at altitudes 21 km, 24 km, and 27 km. The red solid
line is the fit. The black dashed lines are the lower and upper bounds of the 95%
bootstrap confidence interval.

164

Applications Chapter 5

Nonseasonal Effect

2 3 4 5 6 7 8 9 10 11 12

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

A
lti

tu
de

 (
km

)

Ozone Partial Pressure (mPa)

Figure 5.14: Nonseasonal effect. The red solid line is the fit. The black dashed lines
are the lower and upper bounds of the 95% bootstrap confidence interval.

Based on Figures 5.12, 5.13, and 5.14, we can see that the seasonal effect is different

at different altitudes. From Figure 5.12 we can observe the clear drop of ozone pressure

during Spring time at low altitudes. However, this pattern no longer exists at high

altitudes, as shown in the middle and bottom panels of Figure 5.13. The nonseasonal

165

effect does not depend on the dates, since it is fitted using only basis functions related

to the variable altitude. Figure 5.14 suggests that in general, we should expect the

ozone partial pressure to first increase and then decrease as the altitude increases. This

finding agrees with the general pattern of ozone distribution in the stratosphere reported

in literature. For example, Watson et al. (1986) mentioned that “the ozone layer has

a continuous distribution with a peak concentration in the lower stratosphere between

about 20 and 25 kilometers altitude”.

166

Bibliography

H. Akaike. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19(6):716–723, 1974.

D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu. Rollout algorithms for combinatorial opti-
mization. Journal of Heuristics, 3(3):245–262, 1997. doi: http://dx.doi.org/10.1023/A:
1009635226865.

S. Bjerve, K. A. Doksum, and B. S. Yandell. Uniform confidence bounds for regression
based on a simple moving average. Scandinavian Journal of Statistics, 12(2):159–169,
1985.

G. Claeskens and I. V. Keilegom. Bootstrap confidence bands for regression curves and
their derivatives. The Annals of Statistics, 31(6):1852–1884, 2003.

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische
Mathematik, 31(4):377–403, 1978.

D. J. Cummins, T. G. Filloon, and D. Nychka. Confidence intervals for nonparametric
curve estimates: toward more uniform pointwise coverage. Journal of the American
Statistical Association, 96(453):233–246, 2001.

B. Efron. Nonparametric standard errors and confidence intervals. Canadian Journal of
Statistics, 9(2):139–158, 1981. doi: http://dx.doi.org/10.2307/3314608.

B. Efron. The Jackknife, the Bootstrap and Other Resampling Plans, volume CBMS-NSF
Regional Conference Series in Applied Mathematics, Vol. 38. SIAM, Philadelphia,
1982.

R. L. Eubank. Spline Smoothing and Nonparametric Regression. Marcel Dekker, second
edition, 1999.

R. L. Eubank and P. L. Speckman. Confidence bands in nonparametric regression. Jour-
nal of the American Statistical Association, 88(424):1287–1301, 1993.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

167

J. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):
1–67, 1991.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.
The Annals of Applied Statistics, 1(2):302–332, 2007. doi: http://dx.doi.org/10.1214/
07-AOAS131.

J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Regularization Paths for Generalized
Linear Models via Coordinate Descent, 2010. URL http://www.jstatsoft.org/v33/

i01/. R package version 2.0-5.

D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction prob-
lems. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 572–578, 1995.

T. Gasser, L. Sroka, and C. Jennen-Steinmetz. Residual variance and residual pattern
in nonlinear regression. Biometrika, 73(3):625–633, 1986.

G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University
Press, fourth edition, 2013.

C. Gu. gss: General Smoothing Splines, 2013a. URL http://CRAN.R-project.org/

package=gss. R package version 2.1-0.

C. Gu. Smoothing Spline ANOVA Models. Springer-Verlag New York, second edition,
2013b.

P. Hall. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals
for a probability density. The Annals of Statistics, 20(2):675–694, 1992a.

P. Hall. On bootstrap confidence intervals in nonparametric regression. The Annals of
Statistics, 20(2):695–711, 1992b.

P. Hall and J. Horowitz. A simple bootstrap method for constructing nonparametric
confidence bands for functions. The Annals of Statistics, 41(1):1892–1921, 2013.

W. Härdle and A. W. Bowman. Bootstrapping in nonparametric regression: local adap-
tive smoothing and confidence bands. Journal of the American Statistical Association,
83(401):102–110, 1988.

W. Härdle and J. S. Marron. Bootstrap simultaneous error bars for nonparametric re-
gression. The Annals of Statistics, 19(2):778–796, 1991.

W. Härdle, S. Huet, and E. Jolivet. Better bootstrap confidence intervals for regression
curve estimation. Statistics, 26(4):287–306, 1995.

168

http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://CRAN.R-project.org/package=gss
http://CRAN.R-project.org/package=gss

T. Hastie and J. Qian. Glmnet vignette, 2014. URL http://www.stanford.edu/

~hastie/glmnet/glmnet_alpha.html.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, 1990.

T. Hastie, R. Tibshirani, F. Leisch, K. Hornik, and B. D. Ripley. mda: Mixture and
flexible discriminant analysis, 2015. URL http://CRAN.R-project.org/package=

mda. S original by Trevor Hastie and Robert Tibshirani. Original R port by Friedrich
Leisch and Kurt Hornik and Brian D. Ripley. R package version 0.4-8.

Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate non-
parametric regression. The Annals of Statistics, 34(5):2272–2297, 2006. doi: http:
//dx.doi.org/10.1214/009053606000000722.

Z. Luo and G. Wahba. Hybrid adaptive splines. Journal of the American Statistical
Association, 92(437):107–116, 1997.

T. L. McMurry and D. N. Politis. Bootstrap confidence intervals in nonparametric regres-
sion with built-in bias correction. Statistics & Probability Letters, 78(15):2463–2469,
2008.

M. H. Neumann. Automatic bandwidth choice and confidence intervals in nonparametric
regression. The Annals of Statistics, 23(6):1937–1959, 1995.

M. H. Neumann and J. Polzehl. Simultaneous bootstrap confidence bands in nonpara-
metric regression. Journal of Nonparametric Statistics, 9(4):307–333, 1998.

D. Picard and K. Tribouley. Adaptive confidence interval for pointwise curve estimation.
The Annals of Statistics, 28(1):298–335, 2000.

W. Qian and Y. Yang. Model selection via standard error adjusted adaptive lasso. Annals
of the Institute of Statistical Mathematics, 65(2):295–318, 2013.

P. Qiu. Image Processing and Jump Regression Analysis. John Wiley & Sons Publication,
2005.

J. Rice. Bandwidth choice for nonparametric regression. The Annals of Statistics, 12(4):
1215–1230, 1984.

J. Ruanaidh and W. Fitzgerald. Numerical Bayesian Methods Applied to Signal Process-
ing. Springer-Verlag New York, 1996.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

G. A. Seber and A. J. Lee. Linear Regression Analysis. John Wiley & Sons Publication,
second edition, 2003.

169

http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html
http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html
http://CRAN.R-project.org/package=mda
http://CRAN.R-project.org/package=mda

J. C. Sklar, J. Wu, W. Meiring, and Y. Wang. Non-parametric regression with basis
selection from multiple libraries. Technometrics, 55(2):189–201, 2013. doi: http://dx.
doi.org/10.1080/00401706.2012.739104.

S. Solomon. Stratospheric ozone depletion: a review of concepts and history. Reviews of
Geophysics, 37(3):275–316, 1999.

J. Sun and C. R. Loader. Simultaneous confidence bands for linear regression and s-
moothing. The Annals of Statistics, 22(3):1328–1345, 1994.

T. Tong and Y. Wang. Estimating residual variance in nonparametric regression using
least squares. Biometrika, 92(4):821–830, 2005.

S. Voss, A. Fink, and C. Duin. Looking ahead with the pilot method. Annal-
s of Operations Research, 136(1):285–302, 2005. doi: http://dx.doi.org/10.1007/
s10479-005-2060-2.

G. Wahba. Bayesian confidence intervals for the cross-validated smoothing spline. Journal
of the Royal Statistical Society, Series B, 45(1):133–150, 1983.

G. Wahba. Spline models for observational data, volume CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 59. SIAM, Philadelphia, 1990.

Y. Wang. Smoothing Splines Methods and Applications. CRC Press, 2011.

Y. Wang and C. Ke. assist: A Suite of S-Plus Functions Implementing Smoothing Splines,
2015. URL http://CRAN.R-project.org/package=assist. R package version 3.1.3.

Y. Wang and G. Wahba. Bootstrap confidence intervals for smoothing splines and their
comparison to bayesian confidence intervals. Journal of Statistical Computation and
Simulation, 51(2-4):263–279, 1995.

R. T. Watson, M. A. Geller, R. S. Stolarski, and R. F. Hampson. Present state of knowl-
edge of the upper atmosphere: An assessment report. NASA Reference Publication
1162, 1986.

J. Wu, J. Sklar, Y. Wang, and W. Meiring. bsml: Basis Selection from Multiple Libraries,
2012. URL https://cran.r-project.org/src/contrib/Archive/bsml/. R package
version 1.5-1.

Y. Xia. Bias-corrected confidence bands in nonparametric regression. Journal of the
Royal Statistical Society. Series B. Statistical Methodology, 60(4):797–811, 1998.

J. Ye. On measuring and correcting the effects of data mining and model selection.
Journal of the American Statistical Association, 93(441):120–131, 1998.

170

http://CRAN.R-project.org/package=assist
https://cran.r-project.org/src/contrib/Archive/bsml/

H. H. Zhang and C.-Y. Lin. cosso: Fit Regularized Nonparametric Regression Models
Using COSSO Penalty, 2013. URL http://CRAN.R-project.org/package=cosso. R
package version 2.1-1.

J. L. Zhang and J. S. Liu. A new sequential importance sampling method and its ap-
plication to the two-dimensional hydrophobichydrophilic model. Journal of Chemical
Physics, 117(7):3492–3498, 2002.

J. L. Zhang, M. T. Lin, J. S. Liu, and R. Chen. Lookahead and piloting strategies for
variable selection. Statistica Sinica, 17(3):985–1003, 2007.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

171

http://CRAN.R-project.org/package=cosso

	Curriculum Vitae
	Abstract
	Introduction
	Nonparametric Regression with Splines
	Smoothing Spline ANOVA
	COmponent Selection and Smoothing Operator
	LASSO and Adaptive LASSO
	Hybrid Adaptive Spline
	Multivariate Adaptive Regression Splines
	Generalized Degrees of Freedom and Covariance Penalty
	The BSML Procedure

	Basis Selection from Multiple Libraries Using Adaptive LASSO
	Adaptive LASSO Basis Selection
	Simulations to Compare ALBS, BSML, and HAS
	Adaptive LASSO Basis Selection with Estimated IDF
	Simulations to Compare ALBS-2, BSML, and HAS

	Look-Ahead Procedure
	Problems With Greedy Search
	Forward Selection In the Look-Ahead Procedure with Fixed IDFs
	Forward Selection Via Householder Transformation
	Forward Selection In the Look-Ahead Procedure with IDFs as Tuning Parameters
	Selection of IDFs
	The Whole Look-Ahead Procedure
	Bootstrap Confidence Intervals
	R Functions for the Look-Ahead Procedure

	Simulations
	Estimation of Univariate Functions
	Bootstrap Confidence Intervals
	Estimation of Multivariate Functions
	Three Other Examples

	Applications
	Well Log
	Ozone Pressure

