
UNIVERSITY of CALIFORNIA
Santa Barbara

Data Model Verification via Theorem Proving

A Dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Ivan Bocić

Committee in Charge:

Professor Tevfik Bultan, Chair
Professor Ben Hardekopf
Professor Jianwen Su

December 2016

The Dissertation of Ivan Bocić is approved.

Professor Ben Hardekopf

Professor Jianwen Su

Professor Tevfik Bultan, Committee Chair

September 2016

Curriculum Vitæ
Ivan Bocić

Education

2016 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2015 M.A. in Computer Science, University of California, Santa Barbara.

2010 B.Sc. in Computer Science, School of Computing at Union Univer-
sity, Belgrade, Serbia.

Publications

ASE 2016 Ivan Bocić, Tevfik Bultan. ”Finding Access Control Bugs in Web
Applications with CanCheck”

ASE 2015 Ivan Bocić, Tevfik Bultan. ”Efficient Data Model Verification with
Many-Sorted Logic”

ICSE 2015 Ivan Bocić, Tevfik Bultan. ”Coexecutability for Efficient Verifica-
tion of Data Model Updates”

NFM 2015 Ivan Bocić, Tevfik Bultan. ”Data Model Bugs”

TOSEM 2015 Jaideep Nijjar, Ivan Bocić, Tevfik Bultan. ”Data Model Property
Inference, Verification and Repair for Web Applications”

GSWC 2014 Ivan Bocić, Tevfik Bultan. ”Coexecutability: How To Automati-
cally Verify Loops”

ICSE 2014 Ivan Bocić, Tevfik Bultan. ”Inductive Verification of Data Model
Invariants for Web Applications”

FormaliSE 2013 Jaideep Nijjar, Ivan Bocić, Tevfik Bultan. ”An Integrated Data
Model Verifier with Property Templates”

iii

Abstract

Data Model Verification via Theorem Proving

by

Ivan Bocić

Software applications have moved from desktop computers onto the web. This is

not surprising since there are many advantages that web applications provide, such as

ubiquitous access and distributed processing power. However, these benefits come at a

cost. Web applications are complex distributed systems written in multiple languages.

As such, they are prone to errors at any stage of development, and difficult to verify, or

even test. Considering that web applications store and manage data for millions (even

billions) of users, errors in web applications can have disastrous effects.

In this dissertation, we present a method for verifying code that is used to access and

modify data in web applications. We focus on applications that use frameworks such as

Ruby on Rails, Django or Spring. These frameworks are RESTful, enforce the Model-

View-Controller architecture, and use Object Relational Mapping libraries to manipulate

data. We developed a formal model for data stores and data store manipulation, including

access control. We developed a translation of these models to formulas in First Order

Logic (FOL) that allows for verification of data model invariants using off-the-shelf FOL

theorem provers. In addition, we developed a method for extracting these models from

existing applications implemented in Ruby on Rails. Our results demonstrate that our

approach is applicable to real world applications, it is able to discover previously unknown

bugs, and it does so within minutes on commonly available hardware.

iv

Contents

Curriculum Vitae iii

Abstract iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Data Model Bug Examples . 3
1.2 Discussion on Data Model Bugs . 7
1.3 Our Approach Overview . 11
1.4 Contributions . 15

2 Abstract Data Stores 17
2.1 Data Models in Ruby on Rails . 17
2.2 Abstract Data Stores . 21
2.3 Data Store Correctness . 27
2.4 Abstract Data Store Language . 31

3 Model Extraction 35
3.1 Model Extraction and Dynamic Features of Ruby 36
3.2 Symbolic Model Extraction . 39
3.3 Symbolic Extraction for Data Model Verification 51
3.4 Experiments . 59

4 Verification via First Order Logic 63
4.1 Classical First Order Logic . 63
4.2 ADS Translation . 65
4.3 Experimental Evaluation . 77

v

5 Coexecutability 83
5.1 Coexecution overview . 84
5.2 Formalization . 90
5.3 Syntactic Analysis . 101
5.4 Experimental Evaluation . 106

6 Verification via Many-sorted Logic 110
6.1 Many-Sorted Logic . 111
6.2 Empty Logic . 112
6.3 Translation to Many-sorted Logic . 114
6.4 Experimental Evaluation . 120

7 Related Work 129
7.1 Modeling and Verification of Web Applications 129
7.2 Access Control . 133
7.3 Theorem Prover Based Verification . 134
7.4 Coexecution . 136
7.5 Extraction . 137

8 Conclusion 140

Bibliography 143

vi

List of Figures

1.1 Architecture imposed by web application frameworks 2
1.2 Verification of data model invariants . 12

2.1 Excerpt from a Rails application . 18
2.2 Class diagram corresponding to Figure 2.1 19
2.3 Action translation example . 25

3.1 Example of Rails dynamic features . 36
3.2 Static equivalent to action in Figure 3.1. 37
3.3 Model extracted from Figure 3.1. 39
3.4 Overview of symbolic model extraction 41
3.5 Symbolic model extraction from dynamically generated methods. 45
3.6 Symbolic model extraction example. 48
3.7 Ability class from Figure 2.1 . 54
3.8 Model extracted from the authorization check in line 48 of Figure 3.7. . . 59

4.1 A data model schema example based on FatFreeCRM [36] 66
4.2 Axioms defining the class diagram in Figure 4.1 in classical FOL 67

5.1 An example action . 84
5.2 Example of sequential execution . 85
5.3 Example of coexecution . 86
5.4 Unparallelizable but coexecutable loop 88
5.5 Parallelizable but not coexecutable loop 89
5.6 Sequential execution vs. coexecution . 94
5.7 Syntactic analysis pseudocode . 103
5.8 Application information and verification results 108

6.1 A data model schema example based on FatFreeCRM [36] 114
6.2 Axioms defining the class diagram in Figure 6.1 in classical (unsorted) first

order logic . 115
6.3 Axioms defining the class diagram in Figure 6.1 in many-sorted logic . . 116

vii

6.4 Example action based on FatFreeCRM [36] 118
6.5 Unsorted action translation example . 118
6.6 Many-sorted action translation example 119
6.7 Verification time distribution . 122
6.8 Distribution of the slowdown factor compared to (many-sorted) Z3 124

viii

List of Tables

2.1 State-migrating abstract data store statement nodes 32
2.2 State-preserving abstract data store statement nodes 33

3.1 Instrumentation for symbolic extraction 43
3.2 ActiveRecord methods and corresponding ADS statement nodes 52
3.3 Mapping actions to CRUD operations . 55
3.4 Experimental results for symbolic extraction 60

4.1 Verification experiments summary . 78

6.1 Verification performance summary . 122
6.2 Observed slowdown compared to (many-sorted) Z3 124
6.3 Coexecution vs sequential execution with many-sorted logic 128

ix

Chapter 1

Introduction

Nowadays, most computers are connected to the Internet. This network connectivity,

when combined with the increasingly prevalent cloud computing platforms, enables soft-

ware applications to store data on remote servers and use thin clients (web browsers or

mobile applications) that provide access to application data from any device, anywhere,

anytime, without maintaining any local copies. Web applications have started to play

a significant role in improving the efficiency of national infrastructures in many critical

areas such as healthcare [2, 49], policy making [105], national security, and the power

grid [50].

However, these applications are challenging to develop and maintain since they are

complex software systems consisting of distributed components that run concurrently and

interact over the Internet. In order to reduce this complexity and achieve modularity, web

application frameworks have been developed for various languages: Ruby on Rails [87]

for Ruby, Django [31] for Python, and Spring [94] for Java. These frameworks, while

developed for different language, share similar architectures and basic features, as shown

in high level in Figure 1.1.

1

Introduction Chapter 1

Controller

ModelView

Internet

Database

Actions

RESTful Requests

ORM

Figure 1.1: Architecture imposed by web application frameworks

These web application development frameworks use the Model-View-Controller (MVC)

pattern [69] to separate the code for the model (Model) from the user interface logic

(View) and the navigation logic (Controller).

The model’s responsibility is to define all the data that the web application manages

and stores in the persistent data store. Typically, the model is implemented using Object-

Relational Mapping (ORM) libraries. ORM libraries require that the ORM schema is

configured. This configuration encompasses declaring the classes of the model, basic type

fields of these classes, and special declarations for all associations between these classes.

This configuration is loaded at runtime and serves to guide the execution of ORM library

commands.

Actions are defined by the controller as operations that the user can invoke to browse

and/or modify the data. A widely used paradigm in web application frameworks is

the Representational State Transfer (REST) architecture with RESTful interfaces. In

RESTful applications, any action on the data model can be invoked at any time and

any number of times. These actions should be atomic and execute quickly. All requests

2

Introduction Chapter 1

should provide all the information needed to fulfil the request. RESTful applications are

supposed to be scalable, reliable and performant [39].

None of the major web application frameworks support access control by default. In-

stead, the access control implementation is left to the developers and third party libraries.

Access control is typically enforced at runtime: inside an action, there will typically be

an authorization check. If this check fails, the action will abort without modifying or

reading any data. In addition, access control is typically role-based: each user is assigned

a role, and roles define user access. However, since these checks are either written man-

ually or automatically generated using heuristics, the enforcement of access control may

be lacking.

For data-oriented web applications, the correctness of actions that update the data

store is the most significant correctness concern since erroneous actions can lead to cor-

ruption, loss or theft of data.

1.1 Data Model Bug Examples

Data model bugs are bugs related to data storage and manipulation in web applica-

tions [14]. In this section we analyze data model bugs that were found in several real

world Ruby on Rails applications by automated data model verification techniques. We

discuss the nature of these bugs: their severity, potential for discovery, recovery and

prevention.

Before we proceed to discuss data model bugs in general, we will list four web appli-

cations and show examples of data model bugs that were found in them [13, 78, 75, 16].

These bugs vary in nature, severity and potential for recovery, serving as useful back-

ground for a deeper discussion.

3

Introduction Chapter 1

FatFreeCRM1 is an application for customer-relation management. It allows for storing

and managing customer data, leads that may potentially become customers, contacts,

campaigns for marketing etc. The code is written in a highly dynamic and reusable

way, with different controllers running the same source code, dynamically loading and

referring to specific classes based on the circumstances. It spans 20178 lines of Ruby

code, 32 model classes and 120 actions. Using data integrity verification [12], we found

two bugs in FatFreeCRM that we reported to the developers, who confirmed them and

immediately fixed one of them. In future discussion we refer to these two bugs as F1 and

F2. Rubicon [75] is a tool for verification of Ruby of Rails applications that translates

abstract unit tests to Alloy [62], with the goal of ensuring that these tests would pass

when given any set of concrete objects. Bug F3, related to access control, was detected

using Rubicon.

Bug F1 is caused by Todo objects, normally associated with a specific User, to not

get deleted when their User is deleted. We call these Todo objects orphaned. Orphaned

Todo objects are fundamentally invalid because the application assumes that their owner

exists, causing crashes whenever an orphaned Todo’s owner is accessed. Because of the

severity, this bug was acknowledged and repaired immediately after we submitted a bug

report. It is interesting to note that the same bug could not be replicated upon deleting

other types of objects that belong to a User, only Todos were not properly cleaned up.

Bug F2 relates to Permission objects. Permission objects serve to define access permis-

sions for either a User or a Group to a given Asset. Our tool has found that it is possible

to have a Permission without associated User or Group objects. This bug is replicated by

deleting a Group that has associated Permissions. Interestingly, this bug cannot be repli-

cated by deleting Permissions of a User, only Permissions of Groups. Although similar to

F1 in causality, the repercussions of this bugs are very different. If there exists an Asset

1www.fatfreecrm.com

4

Introduction Chapter 1

object whose all Permission objects do not have associated Users or Groups, it is possible

to expose these assets to the public without any user receiving an error message, and

without any User or Group owning and managing this asset.

Bug F3 is an access control bug that exposes a User’s private Opportunity objects to

other Users. This bug is exploited by registering a new User in a way that it shares some

of the target User’s Contacts, giving access to private Opportunity objects through these

Contacts. This bug was caused by a false assumption by the developers that all Opportunity

and Contact objects that belong to the same person will have the same Permissions. This

bug was reported and acknowledged by the developers.

Tracks2 is an application for organizing tasks, to-do lists etc. This application spans

17562 lines of code, 11 model classes and 117 actions. We identify four bugs in Tracks,

which we refer to as T1, T2, T3, and T4. Bug T3 was detected using data model schema

verification [78]. Bugs T1, T2 and T4 were discovered using data integrity verifica-

tion [12], were reported to and have been fixed by the developers.

Bug T1 is related to the possibility of orphaning an instance of a Dependent class.

Deleting a Todo directly, using the action dedicated to deleting Todos, cleans up related

Dependent objects properly. However, The action that deletes a Project also deletes all

Todos of that Project without deleting the Dependent objects of deleted Todos. Since only

Todos of the same project can be interdependent, the orphaned Dependent objects are

completely disconnected from any remaining Todos. This bug is similar to bugs F1 and F2,

except that the orphaned objects cannot be accessed by the user in any way. Therefore,

this bug does not affect the semantics of the application. However, it does present a

memory-leak like bug, affecting performance by unnecessarily populating database tables

and indexes.

2getontracks.org

5

Introduction Chapter 1

Bug T2 is very similar in nature to T1. When a User is deleted, all Projects of the

User are deleted as well, but Notes of deleted Projects remain orphaned. These orphaned

Note objects are not accessible in any way, however, the orphaned Todos take up space in

the database and inflate indexes.

Bug T3 is caused by deleting a Context without correctly cleaning up associated

RecurringTodo objects. This is similar to bug F1 because the orphaned RecurringTodo

objects are accessible by the application and cause the application to crash.

We found bug T4 when the action verification method [12] reported an inconclusive

result within the action used to create Dependent instances between two given Todos.

Semantically, there must not be dependency cycles between Todos; this is a structural

property of the application. Our method could not prove or disprove that cycles between

Todos cannot be created. Upon manual inspection we found that, while the UI prevents

this, HTTP requests can be made to create a cycle between Todos. The repercussions of

this bug are potentially enormous. Whenever the application traverses the predecessor

list of a Todo inside a dependency cycle it will get stuck in an infinite loop, eventually

crashing the thread and posting an error to the User. No error is shown when the user

creates this cycle, only later upon accessing it. This creates a situation when repairing

the state of the data may be impossible.

LovdByLess3 is a social networking application. It allows people to create accounts,

write posts and comment on posts of other users, upload and share images etc. It contains

29667 lines of code, 12 model classes and 100 actions.

Data model schema analysis [78] was used to find bug L1 where the Comments of a User

were not cleaned up properly when a User is deleted. The orphaned Comments, however,

remain connected to the Post they belong to, and are visible from the said Post. The

3github.com/stevenbristol/lovd-by-less

6

Introduction Chapter 1

application previews these Comments, along with their content and other data, except for

the author. The author’s name field remains blank. This is not expected behavior: either

the Comments are supposed to be deleted, or they are supposed to remain, in which case

the author’s data is lost.

CoRM4 is a consumer relationship manager designed for small businesses. It spans 7745

lines of Ruby code, with 39 model classes and 163 actions. We found more than one bug

in this application [16], but here we will present a single bug C1. While the admin panel

is not accessible to non-administrators, a specific page that is used for batch importing

and exporting data (related to the ImportsController) is accessible by all users. This is

due to a lack of an access control check. While normal users will never see the link needed

to access this panel, experienced Rails developers can target the controller directly and

maliciously read or alter any data used by the application.

1.2 Discussion on Data Model Bugs

We identified two types of bugs: access control bugs and data integrity bugs. Access

control bugs give access to data to users with insufficient privileges. Data integrity bugs

are bugs that allow invalidation of the application’s data. Note that we draw a distinction

between bugs that allow data to be invalidated and bugs that are caused by data that

has been invalidated. The latter bug is a symptom of the former.

1.2.1 Severity

Access control policies are hard to correctly specify and hard to correctly enforce [75].

Access control bugs are severe bugs. Exposing private information is not permissible in

4https://github.com/SIGIRE/CoRM

7

Introduction Chapter 1

any application that stores and manages private information, nor is allowing access to

admin or root level operations. This is especially true for bug C1, where any user can

maliciously control all of the applications data.

The severity of data integrity bugs varies on the specifics of the bug, spanning from

benign bugs that at most cause minor performance problems, over bugs causing crashes

in the application, to bugs causing data loss and corruption from which recovery is

exceptionally difficult or impossible.

We identified several data integrity bugs that allow invalid data to exist in the

database, but in such a way that this invalid data is never used by the application.

We refer to these bugs as data model leaks. They are usually caused by incorrect cleanup

of related entities when an entity is deleted. This category is demonstrated by bugs T1

and T2. These bugs are hard to detect unless the leaked data accumulates to a cer-

tain point. Their impact is limited to performance, not affecting the semantics of the

program. They negatively impact performance by taking up space in the database and

populating indexes unnecessarily.

In many cases, corrupted data can be accessed by the application, causing the ap-

plication to misbehave in some way. We identified a wide range of misbehavior severity.

For example, orphaned objects may be visible to the user as empty fields on the webpage

(L1), allow operations and further data updates that should not be allowed (F2), or crash

the web application (F1, T3, T4).

1.2.2 Recovery

Access control bugs allow no recovery. Once private information has been exposed,

fixing the bug only prevents future threats. No measure exists to make the exposed

information private again. Furthermore, in case of bug C1, since the malicious user

8

Introduction Chapter 1

can modify the applications data in any way, graceful recovery may be impossible and

backups would have to be used to restore data. Data integrity bugs generally have a

higher recovery potential. Repairing a data integrity bug involves two steps: repairing

the data and preventing future invalidation.

In some cases, data is recoverable. For example, once a data model leak is discovered,

leaked entities can be identified and removed. The same applies in the case of data being

incorrectly deleted: bugs F1, F2, T3 are recoverable from because the original intent

of the developer was to delete data. Removing the invalid data not only removes the

corruption, but also brings the data store to the state that was originally expected by

the developers.

Data integrity bugs that do not manifest themselves through improper deletion are far

more difficult to recover from. Repairing the corruption implies modifying the corrupted

data into valid data, which may be impossible. T4 is an example of a bug in which valid

data is not distinguishable from invalid data. Even clearly distinguishable corrupted data

may be unrecoverable if, for example, invalid data has overwritten correct data and the

corrupted data seeped into long term backups.

Backups can be used to recover corrupted data in certain cases. This would be

a manual and error prone effort, however, and it would rollback the user’s data to a

previous point which may be undesirable. To make matters worse, since data integrity

bugs are observable only if the data has already been invalidated, the corruption may

have been backed up in the time frame between the cause of the corruption and the

escalation of the bug, making short term backups unusable.

9

Introduction Chapter 1

1.2.3 Detection and Prevention

Data model bugs are hard to anticipate, and addressing them after being detected

by users is undesirable because recovery may be extremely difficult. Detection of access

control bugs after they are exposed is difficult since a malicious user may leave no trace

when accessing restricted information. Similarly, data integrity bugs are hard to detect.

They are not observed until the application accesses the invalidated (corrupted) data

and misbehaves, which may not be possible (as is the case with bugs T1 and T2). If a

user does access the invalidated data, the resulting faulty behavior cannot be replicated

by the developer without being given access to the same invalidated data. Furthermore,

even given access to this data, the code causing this strange behavior may be correct.

No trace might exist on how the data was originally invalidated.

Runtime validation is a commonly used technique for the prevention of potential data

model integrity bugs. We define runtime validation as any runtime check that aborts

the operation with the goal of preventing invalidation. In web application frameworks,

validation can be done in the web application layer automatically (both Rails and Django

support user definable model validators), or could be manually implemented in actions

(in form of conditional branches that abort unless a specific condition is met), or in the

database by defining constraints. Frequently multiple approaches are used: for example,

the database may validate the integrity of foreign keys, whereas the application layer may

validate that email strings adhere to a given format. Runtime validation alone provides

an insufficient solution to the problem. This is demonstrated by the fact that we found

serious bugs in applications that rely heavily on runtime validation, and attempted to

enforce correctness and security policies. For all the bugs we found, the problem was

caused by incorrect implementation of runtime validation.

10

Introduction Chapter 1

1.3 Our Approach Overview

Considering the difficulty of detection, potential severity and unrecoverability of data

model bugs, we strongly believe that automated verification techniques should be used

to prevent data model bugs. However, given the complexity and distributed nature of

web applications, static analysis is rarely, if ever, used to address the correctness concerns

developers might have. Instead, testing has become the industry standard. While writing

tests requires little developer training and quickly finds defects covered by the test suite,

complete assurance of correctness is practically impossible. Behaviors not covered by the

test suite could always contain bugs, and high coverage is difficult to achieve.

Static verification allows a rigorous method of analyzing an application systematically

and exhaustively. However, the thoroughness of static verification comes at a cost. Static

verification techniques either have problem scaling to real world applications, require

manual effort by developers with extensive training and experience, or risk reporting

false positives doe to coarse abstractions. As such, static verification is rarely, if ever,

used in real world application development.

The focus of our work is the verification of data models and data model behaviors

in web applications developed using web application frameworks. We posit that the

conventions and modularity that these frameworks impose make static verification of

data models feasible in practice and useful for finding bugs with little developer effort.

Our key observation is that, in RESTful applications, actions are (or should be)

atomic and can be executed in any order. This lets us use inductive verification to

verify data integrity by considering each action in isolation and checking whether an

action could possibly invalidate a property that was presumed to be valid before the

action executed. If no action breaks any property, then assuming the application starts

executing in a valid state, no invalid state could possibly be reached.

11

Introduction Chapter 1

Rails Application

Extraction

Instrumentation Execution

Verification

Translation to
First Order Logic

First Order Logic
Theorem Provers

Abstract Data Store

Verification Results

Action/Invariant
Pairs

Authorization
Properties

Figure 1.2: Verification of data model invariants

Besides reasoning about how actions modify data with regards to data integrity, we

can reason about how they modify data with regards to access control. This gives us

power to verify access control statically, to ensure that access control enforcement is

correct with regards to the desirable access control policy. Specifically, we can iden-

tify authorization properties : signatures of how an application modifies or exposes data

depending on the role of the current user. These signatures can be automatically ver-

ified against the access control policy that a developer already wrote for a third party

authorization library.

We developed a novel approach for automatically verifying data integrity and access

control for web applications (Figure 1.2). First, by exploiting the structure of the MVC-

pattern, we automatically extract an abstract specification of the data model, called

abstract data store. Abstract data stores include information on the database schema,

actions that update the data store, as well as access control information. Next, we convert

verification queries about the data model (stated as invariants) to formulas in First-Order-

Logic (FOL) based on inductive invariant verification in order to verify data integrity.

12

Introduction Chapter 1

In addition, we identify authorization properties in order to verify access control, which

we also translate to FOL. Finally, we use automated FOL theorem provers to verify data

integrity and access control.

We implemented our approach for Ruby on Rails [87], or Rails in short. We decided

to focus on the Rails framework since it is widely used, however, our approach can

be adapted to other MVC-based web application frameworks such as Django [31] and

Spring [94].

We developed a Rails library that lets developers verify data integrity or access control

in their Rails applications. To verify data integrity, developers need to specify desirable

properties, or invariants, they expect to hold in their web application. To verify access

control enforcement, the developer needs to utilize CanCan, a popular third party access

control library, to implement access control. Although our implementation supports

CanCan only, this is not a limitation of our general approach.

Given a Rails application and a set of invariants and/or a compatible access control

system, the verification approach consists of two major phases. The first phase is auto-

matic extraction of a formal specification, which we call an Abstract Data Store (ADS),

that characterizes the model and the actions of the input web application, as well as in-

variants and access control information if applicable. ADS models the data store as sets

of objects (corresponding to objects of the data model classes) and associations among

them (corresponding to the associations among the data model classes). Attributes that

correspond to basic types are not modeled (i.e., they are abstracted away). This means

that we can verify invariants about sets of objects and associations among them (like the

example above), but for example, not about numeric attributes of objects.

The crucial part of the extraction phase is extraction of action specifications, where

actions of the web applications are translated to ADS actions. ADS actions contain

constructs for creating and deleting objects and updating associations, and they allow

13

Introduction Chapter 1

non-determinism, which is necessary due to abstraction of the attributes with basic types.

We exploit the MVC-pattern during the extraction phase. Actions that update the

data model correspond to actions that are executed in response to user requests. We can

ignore the View construction since it does not influence the data store state. All other

parts of the application are irrelevant for our purposes.

Statically extracting actions specifications from Rails code is still challenging due to

the dynamic nature of the Ruby language. To address this challenge, we developed a novel

model extraction technique for programs written using dynamically typed languages. We

extract the model of the entire application in a single execution of the instrumented

application in a way that avoids path explosion. Furthermore, we implement program

instrumentation in the source program language itself, Ruby in our case, in order to be

able to instrument and extract models from dynamically generated methods.

The second major phase of our approach is automated verification of inductive in-

variants on the extracted model using First Order Logic (FOL) theorem provers. For

each action/invariant pair we generate a FOL theorem that checks whether, assuming all

invariants hold in the action’s pre-state, the action preserves the invariant. If there exists

an access control policy, we also generate FOL theorems that ensure that any operations

done by an action conform to the access control policy in all cases.

These FOL theorems are sent to a theorem prover to check if they are correct (which

means that the invariant holds, or access control is correctly enforced), or incorrect

(which means that the invariant or the access control policy can be violated by the

action). Alternatively, since our translation produces arbitrarily nested quantification

and FOL is undecidable in general, the theorem prover may not produce a conclusive

result. As such, if a theorem prover does not deduce a result within a time frame, we

stop the deduction and mark the result as inconclusive. Inconclusive results are supposed

to be followed up by manual investigation by the developer, and as such, do not provide

14

Introduction Chapter 1

useful feedback to the developer. As a consequence of our efforts to reduce the rate of

inconclusive results (Chapters 5 and 6), we managed to reduce the rate of inconclusive

results to 0.14% over a number of real world Ruby on Rails applications.

1.4 Contributions

The contributions of this dissertation are:

• The Abstract Data Store (ADS) modeling language, that represents portions of web

applications that are focusing on the data model schema, actions, as invariants and

access control information,

• A way to translate ADS models to classical first order logic for verification of data

integrity and access control,

• A method for model extraction from web applications written in dynamically typed

programming languages,

• An approach for translating loops to FOL that is equivalent to modeling sequential

sequences of iterations, but generally easier to verify, and

• Discussions and experimental evaluations on translating ADS models to different

kinds of non-classical first order logic and how they can be leveraged to increase

verification viability.

The rest of this dissertation is organized as follows. Chapter 2 defines Abstract Data

Stores, a model of the data types web applications manipulate, as well as the ways

in which this data is being manipulated. Chapter 3 discusses the extraction method

we implemented to extract ADSs from Rails applications. Chapter 4 defines our basic

approach to verification of ADSs [12]. Chapter 5 introduces an alternate way of modeling

15

Introduction Chapter 1

loops in data model verification [13]. Chapter 6 discusses non-classical FOL and how the

translation can be modified to support non-classical FOL and other theorem provers [15].

Chapter 7 discusses related work, and Chapter 8 concludes the dissertation.

16

Chapter 2

Abstract Data Stores

In this chapter we define abstract data stores (ADSs). After presenting an example

Rails data model, we will introduce formalisms that define the data a web application is

designed to store and manage, as well as the ways in which this data is being managed.

In addition, ADSs can have expected properties (invariants) defined on them, or have an

access control policy.

2.1 Data Models in Ruby on Rails

Figure 2.1 presents an example of an excerpt of a Rails application based on Tracks [103].

This excerpt would normally be contained in multiple files, one for each model class and

one for each controller. For brevity, we only show relevant details in these examples.

An example of how ActiveRecord (default ORM for Ruby on Rails) can be used to

define a model is provided in Figure 2.1, lines 1-18. The example application defines four

ActiveRecord classes: User, Project, Todo and Note, declared in lines 1-6, 7-11, 12-15 and

16-18 respectively.

Each class contains a set of associations (relations) with other classes. These associa-

17

Abstract Data Stores Chapter 2

1 class User

2 devise :database_authenticable

3 enum role: [:admin, :nonadmin]

4 has_many :todos

5 has_many :projects

6 end

7 class Project

8 belongs_to :user

9 has_many :todos

10 has_many :notes

11 end

12 class Todo

13 belongs_to :user

14 belongs_to :project

15 end

16 class Note

17 belongs_to :project

18 end

19

20 class Ability

21 def initialize(user)

22 can [:index, :show], :all

23 if user.admin?

24 can :manage, :all

25 else

26 can :manage, User, id: user.id

27 can :manage, Project, user_id: user.id

28 can :manage, Todo, user_id: user.id

29 can :manage, Note

30 end

31 end

32 end

34 class TodosController

35 def create

36 @project = Project.find(params[:project_id])

37 @user = current_user

38 @todo = Todo.new

39 @todo.user = @user

40 @todo.project = @project

41 @todo.save!

42 respond_to(...)

43 end

44 end

45 class ProjectsController

46 def destroy

47 @project = Project.find(params[:project_id])

48 raise unless can? :destroy, @project

49 @project.notes.each do |n|

50 n.delete

51 end

52 @project.delete

53 respond_to(...)

54 end

55 end

Figure 2.1: Excerpt from a Rails application

tions are declared using methods belongs to, has one, has many and

has and belongs to many that imply different cardinality and schema details. Figure 2.2

shows the class diagram corresponding to the code given in Figure 2.1. For example,

each Todo object has at most one associated Project (line 14). The types and symme-

try of associations are inferred from association names. For example, Project.todos and

Todo.project are symmetrical: for every Project p and every Todo t of that Project, the

Project of t is p.

Lines 20-32 define the Ability class. The Ability class is used to declare the access

control policy using CanCan [20], a role-based access control library for Rails. The

developer has to implement the Ability class in order to use CanCan. Every time an

18

Abstract Data Stores Chapter 2

User

+todos: list<Todo>

+projects: list<Project>

Todo

+user: User

+project: Project

Project

+todos: list<Todo>

+user: User

+notes: list<Note>

Note

+project: Project

0..1

0..1

0..1

0..1

0..*

0..*

0..*

0..*

Figure 2.2: Class diagram corresponding to Figure 2.1

action is invoked, an ability object that corresponds to the user that made the request

is created. Typically, the way this object is initialized depends on the role of the user

making the request. Once this object has been created, it can be queried during the

action’s execution to check if certain operations are permissible for the current user.

The constructor of an Ability object takes a single argument, the User object repre-

senting the user who invoked the action, referred to as the current user (line 21). Inside

the constructor we see branches and can statements. These statements whitelist certain

operations on certain objects. For example, in line 22, the current user is permitted to

execute operations index and show on objects of all types (special keyword all). These

operations by convention correspond to action names. Then, if the user has the admin

role (line 23), in line 24 he is permitted to execute all operations (special keyword manage)

on all objects. Otherwise, if the user does not have the admin role (line 25), in line 26 he

is permitted to manage all User objects whose id is equal to the id of the current user.

In other words, a user can do all actions on their own user object. In lines 27 and 28 it

is declared that a user can manage all Projects and Todos whose user id match the id of

the current user. In other words, each nonadmin can execute any action on all Projects

and Todos that belong to them as defined by associations in lines 8 and 13. Finally, in

19

Abstract Data Stores Chapter 2

line 29, it is declared that a nonadmin can manage all Note objects.

Two actions can be seen in Figure 2.1: one in TodosController called create (lines

35-43) and one in ProjectsController called destroy(lines 46-54).

The TodosController#create action takes an argument as part of the request, called

project id. This argument is used to lookup the corresponding Project object and assign

it to a variable @project (line 36). In line 37, the current user object is stored in a variable

called @user. The action, then, creates a new Todo instance (line 38), associates it with

the loaded user and project objects (lines 39 and 40) and saves the changes (line 41).

The response is synthesized in line 42 by the view, which is omitted for brevity.

The TodosController#destroy action (lines 46-54) takes a single request argument

project id. The corresponding Project object is loaded in line 47 and stored in a variable.

Line 48 serves to enforce access control. The can? method will check whether the Ability

object that corresponds to the current user can execute the :destroy operation on the

loaded project, as defined by the Ability object. An exception will be raised if that is not

the case. If we look at the Ability class, there are two ways in which this operation can

be allowed: either in line 24 if the current user is an admin, or in line 27 if the project in

question is associated with the current user. Assuming the access control check passes,

in line 49, the action iterates through all Notes associated with that project and deletes

them one at a time (line 50). Finally, said project gets deleted (line 52).

Assume that we would like to verify the following property for the application in

Figure 2.1: Each Todo object is associated with a Project object. In order to do that, we

first need a way to express this property. We developed a Rails library for specification

of data model invariants using Rails syntax. For example, this property would be stated

as:

invariant forall{ |todo| not todo.project.empty? }

For this property, our tool would show that the TodosController#create action pre-

20

Abstract Data Stores Chapter 2

serves the given invariant, whereas the ProjectsController#destroy action potentially vi-

olates the invariant. If the deleted project had Todo objects associated with it at the

beginning of the action, after deleting it, these Todo objects will be left with no associated

Project, invalidating the invariant.

Similarly, we could use our tool to verify access control enforcement. For example,

the TodosController#create action creates a Todo object without any enforcement of access

control. However, if we take a closer look, we observe that this action does not violate

the access control policy. Note that the only side-effect of this action is that it creates

a Todo object. If the current user is an admin, this is permitted by the can statement in

line 24. Otherwise, if the current user is not an admin, considering that the new Todo’s

user is always the current user, line 28 permits this object creation.

2.2 Abstract Data Stores

In this section we define the model that we extract from a web application. The

abstract data store, or data store in short, is an abstraction of a web application that

focuses on the persistent data that the application manages.

An abstract data store (or just data store) is a structure DS = 〈C,L,A, I, R, P 〉

where C is a set of classes, L is a set of associations, A is a set of actions, I is a set of

invariants, R is a tuple defining user roles, and P is a set of permissions.

A data store state is a tuple 〈O, T, U〉 where O is the set of objects, T is the set

of tuples denoting associations among objects, and U is the set of role assignments for

users. We define DS to be the set of all data store states of DS.

21

Abstract Data Stores Chapter 2

2.2.1 Classes and Objects

The set of classes C identifies the types of objects that can be stored in the data

store. Each class can have a set of superclasses (superclass(c) ⊂ C) and, transitively,

the superclass relation cannot contain cycles. We will use operator cc < cp to denote

that cp is a parent class to cc, transitively or directly. We will use operators >, ≤ and ≥

accordingly.

One class cU ∈ C is called the authenticable class. The authenticable class is the class

whose objects represent users of the application. Typically it is called just User. The

concept of the user class is used in Rails whenever authorization and/or authentication

take place, and it makes it straightforward to associate users with data that belongs to

them.

For example, given the application presented in Figure 2.1, C would encompass four

classes: User, Project, Todo and Note, and User is the authenticable class cU = User.

The superclass set of each of these classes is empty.

Given a data store state 〈O, T, U〉 ∈ DS, O is the set of objects that are stored in

a data store at some point in time. Each object o ∈ O is an instance of a class c ∈ C

denoted by c = classof(o). We use the notation Oc to encapsulate all objects in O whose

class is c or any subclass of c. We define O to be the set of all sets of objects that appear

in DS.

In each data store state 〈O, T, U〉 ∈ DS, there exists a special object oU ∈ OcU

that represents the current user object. The current user object represents the user who

invoked the action.

22

Abstract Data Stores Chapter 2

2.2.2 Associations and Tuples

An association l = 〈name, co, ct, card〉 ∈ L contains a unique identifier name, an

origin class co ∈ C, a target class ct ∈ C and a cardinality constraint card. Cardinality

constraints supported by ORM tools are limited, and so is our definition of valid cardi-

nality constraints. Cardinality constraints are a pair of ranges no and nt written as no-nt.

Ranges no and nt describe the allowed number of objects on the origin and target side

of the association respectfully. The possible ranges are: [0 . . . 1], 1, [1 . . . ∗] and ∗. For

example, cardinality constraint 1− ∗ defines that every target object is associated with

exactly one origin object. Alternatively, cardinality constraint [0 . . . 1] − 1 defines that

every object of the target class is associated with an object of the origin class, and that

no object of the origin class is associated with more than one object of the target class.

For example, given the application presented in Figure 2.1, there are four associations

in L:

l1 = 〈User todos, User, Todo, 1− ∗〉

l2 = 〈User projects, User, Project, 1− ∗〉

l3 = 〈Project todos, Project, Todo, 1− ∗〉

l4 = 〈Project notes, Project, Note, 1− ∗〉

Similar to how objects are instances of classes, tuples are instances of associations.

Each tuple t ∈ T is in the form t = 〈l, oo, ot〉 where l = 〈name, co, ct, card〉 ∈ L and

classof(oo) ≤ co and classof(ot) ≤ ct. For a tuple t = 〈r, oo, ot〉 we refer to oo as the origin

object and ot as the target object.

Note that we did not define that data store states need to have association cardinality

correctly enforced. This is because, sometimes, an action will temporarily invalidate

23

Abstract Data Stores Chapter 2

cardinality while mutating data. In fact, cardinality is enforced when the data gets sent to

the database, either by application-level validations or by the database schema directly. If

cardinality constraints are violated, the action should abort without modifications to the

data, trivially preserving all invariants. This behavior is not interesting for our purpose.

Hence, we treat cardinality constraints as implicit invariants that are necessarily correct

before and after an action executes.

2.2.3 Actions

Given a data store DS = 〈C,L,A, I, R, P 〉, A denotes the set of actions. Actions are

used to query or update the data store state. Each action a ∈ A is a set of executions

〈s, s′, α〉 ⊆ DS × DS × O where s = 〈O, T, U〉 is the pre-state of the execution, s′ =

〈O′, T ′, U ′〉 is the post-state of the execution, and α ⊆ O′ is the set of objects shown to

the user as the result of this action’s execution.

Given an action a ∈ A and an execution 〈s, s′, α〉 ∈ a, we can define the sets of objects

this execution created, deleted, and read as follows:

o ∈ created(〈s, s′, α〉)⇔ o 6∈ s ∧ o ∈ s′

o ∈ deleted(〈s, s′, α〉)⇔ o ∈ s ∧ o 6∈ s′

o ∈ read(〈s, s′, α〉)⇔ o ∈ α

In practice, an action is not an arbitrary set of state transitions. Instead, it is a sequence

of statements. Statements are state transitions specified using a combination of boolean

and object set expressions. Boolean expressions have the usual semantics, and object set

expressions represent a set of objects of a common class. We further discuss the specifics

of this language in Section 2.4. For now, the TodosController#create action corresponds

24

Abstract Data Stores Chapter 2

to the AST presented in Figure 2.3.

Action

Block

Assign Assign Assign CreateTuple CreateTuple

'@project' OneOf '@user' CurrentUser '@todo' CreateObject VarRead Todo#user VarRead VarRead Todo#project VarRead

AllOfClass

'Project'

'Todo' '@todo' '@user' '@todo' '@project'

Figure 2.3: Action translation example

2.2.4 Invariants

Given a data store DS = 〈C,L,A, I, R, P 〉, I is the set of invariants. An invariant

i ∈ I corresponds to a function i : DS → {false, true} that identifies the set of data store

states which satisfy the invariant.

2.2.5 Roles and Role Assignments

In a data store DS = 〈C,L,A, I, R, P 〉, R is a tuple 〈R,Rx〉 where R is the set of

roles, and Rx is a role constraint.

Roles are used to distinguish different types of users. For example, a role could be

defined to distinguish administrators from other users, or employees, etc.

In a data store state 〈O, T, U〉, U ⊆ OcU × R is a set of role assignments. Each role

assignment 〈o, r〉 ∈ U defines that user object o has user role r in this data store state.

The role constraint Rx is a function that maps a data store state to a boolean:

Rx : DS → {true, false}. The rule constraint ensures a data store state’s role assign-

ments are semantically correct. This is application dependent and can be an arbitrary

25

Abstract Data Stores Chapter 2

condition, but in practice it often declares that each user has to have exactly one user

role.

For example, line 3 of Figure 2.1 declares the set of roles R to be {admin, nonadmin}.

In addition, it defines that roles admin and nonadmin are mutually exclusive:

Rx(〈O, T, U〉)⇔ (∀o ∈ Ocu : 〈o, admin〉 ∈ U ⇔ 〈o, nonadmin〉 6∈ U)

2.2.6 Permits

Given a data store DS = 〈C,L,A, I, R, P 〉, P is the set of permits. Permits are used

to whitelist operations on a data store, depending on the role of the user executing the

operation and the object the operation is executed on.

Each permit p ∈ P is a tuple 〈g, ops, e〉 where g ⊆ R is a non-empty set of roles to

which the permit applies, ops ⊆ {create, delete, read} is a non-empty set of operations

permitted by this permit, and e is an expression e : DS → O that maps a data store

state to a set of objects: e(〈O, T, U〉) = α such that α ⊆ O. The expression e is used

to determine the set of objects to which the permit applies. Note that, because we

abstract basic type fields away in our model, updating an object is outside our domain

of abstraction. Updating associations is equivalent to atomically deleting and creating

tuples. As such, we can only consider these three operations.

To demonstrate how permits correspond to web applications, line 22 of Figure 2.1

defines that all admins and nonadmins are permitted to read all objects. This corresponds

to the following permit:

p = 〈{admin, nonadmin}, {read}, e〉, where o ∈ e(〈O, T, U〉)⇔ o ∈ O

Similarly, line 26 of Figure 2.1 declares that all nonadmins can do any operation on all

26

Abstract Data Stores Chapter 2

Projects that belong to the current user. Let l be the “User.projects” association, and

oU the current user object. This can declaration corresponds to the following permit:

p = 〈{nonadmin}, {create, read, delete}, e〉, where o ∈ e(〈O, T, U〉)⇔ 〈l, oU , o〉 ∈ T

In words, this is a permit 〈{nonadmin}, {create, read, delete}, e〉 where e is defined as an

expression that, when given a state 〈O, T, U〉, contains all objects o that are associated

to the current user object via association l.

2.2.7 Behaviors

A behavior of a data store is an infinite sequence of data store states such that the

initial state satisfies all invariants, and each pair of consecutive states is covered by at

least one action. Formally, given a data store DS = 〈C,L,A, I, R, P 〉, a behavior of

a data store DS is an infinite sequence of data store states 〈O0, T0, U0〉, 〈O1, T1, U1〉,

〈O2, T2, U2〉, . . . where

• For all k ≥ 0, 〈Ok, Tk, Uk〉 ∈ DS and there exists an action a ∈ A such that

(〈Ok, Tk, Uk, 〉, 〈Ok+1, Tk+1, Uk+1〉, α) ∈ a for some α ⊂ Ok+1, and

• ∀i ∈ I : i(〈O0, T0, U0〉) = true

Given a data store DS = 〈C,L,A, I, R, P 〉, all states that appear in a behavior of DS

are called reachable states of DS and denoted as DSR.

2.3 Data Store Correctness

We use our approach to verify correctness of abstract data stores in two respects:

data integrity and access control.

27

Abstract Data Stores Chapter 2

2.3.1 Data Integrity

Given an abstract data store DS = 〈C,L,A, I, R, P 〉, we call DS consistent if and

only if all reachable states of DS satisfy all the invariants of DS, i.e., DS is consistent

if and only if for all 〈O, T, U〉 ∈ DSR, for all i ∈ I, i(〈O, T, U〉) = true. The verification

problem for data integrity is to determine if a given abstract data store is consistent. Since

we do not bound the sizes of the classes and relations in a data model, and since we allow

arbitrary quantification in invariant properties, determining if a data store specified in

the ADS language is consistent or not is an undecidable verification problem.

As we discussed earlier, in RESTful applications, each action is required to preserve

the invariants of the data model independently of the previous execution history. This is

a stronger requirement that implies the consistency condition defined above, and can be

formulated as inductive invariant verification. An inductive invariant is a property where

given a state that satisfies the property, all the next states of that state also satisfy

the property. In other words, an inductive invariant is a property that is preserved

by all transitions (i.e., all actions) of a given system. An abstract data store DS =

〈C,L,A, I, R, P 〉 is consistent if the conjunction of all the invariants i ∈ I is an inductive

invariant. In other words, an abstract data store DS = 〈C,L,A, I, R, P 〉 is consistent if

and only if every execution of every action preserves all invariants:

Fcons ≡ ∀a ∈ A : ∀〈s, s′, α〉 ∈ a : (∀i ∈ I : i(s))⇒ (∀i ∈ I : i(s′))

2.3.2 Access Control

Authorization is fundamentally about ensuring that users can view and modify only

data that they have been permitted to view and modify, using a set of methods that are

permitted to them. The goal of approach is to check whether all operations that could

28

Abstract Data Stores Chapter 2

be executed by any action and for any user are permissible with respect to the access

control policy.

Given a data store DS = 〈C,L,A, I, R, P 〉, a permit p = 〈g, ops, e〉 ∈ P accepts an

operation op on an object o in state s, denoted as p[op, s, o], if and only if the current

user oU has at least one role from g, the operation op is in ops, and o is inside the set

that e evaluates to in data store state s. Formally:

p[op, s, o]⇔ (∃r ∈ g : 〈oU , r〉 ∈ U) ∧ op ∈ ops ∧ o ∈ e(s)

Now that we defined how to check permissions for a given operation in a given state

for a given set of objects, we need to extend this check to cover all possible behaviors.

One question we need to answer before we can do that is: In which state of an

action’s execution should we check for permissions? If we choose the pre-state, it becomes

impossible to check permissions for object creation because the created objects do not

yet exist in the pre-state, as well as tuples that might be necessary to check the access

control policy correctly. Similarly, it is impossible to evaluate permissions for the delete

operation in the post-state of an execution. In order to handle all possible scenarios, we

chose to evaluate creation permissions in the post-state (once all the objects and tuples

have been created), deletion permissions in the pre-state (before any objects or tuples

have been deleted), and read permissions in the post-state (as this is the state shown to

the user of the application).

We define whether an action a ∈ A of a data store DS = 〈C,L,A, I, R, P 〉 correctly

enforces the access control policy as follows. An action correctly enforces the access

control policy if and only if, for every execution in a:

• There exists a permit that accepts the creation of every object created by this

execution,

29

Abstract Data Stores Chapter 2

• There exists a permit that accepts the deletion of every object deleted by this

execution, and

• There exists a permit that accepts the read operation on every object read by this

execution.

Formally, an action a correctly enforces the access control policy if and only if:

∀〈s = 〈O, T, U〉, s′ = 〈O′, T ′, U ′〉, α〉 ∈ a :

∀o ∈ created(〈s, s′, α〉) ∃p ∈ P : p[{create}, s′, o]

∧ ∀o ∈ deleted(〈s, s′, α〉) ∃p ∈ P : p[{delete}, s, o]

∧ ∀o ∈ read(〈s, s′, α〉) ∃p ∈ P : p[{read}, s′, o]

For example, let us take a look at the TodosController#create action in Figure 2.1.

This action will, in its every execution 〈s, s′, α〉, create a single Todo object as well as

a pair of tuples. No matter the role of the current user, this creation is covered by the

access control policy: if the current user is an admin, by a permit that corresponds to

line 24. Otherwise, if the current user is a nonadmin, this creation is covered by the

permit that corresponds to line 27 because, in state s′, the newly created object will be

associated to the current user.

Let us examine the ProjectsController#destroy action in Figure 2.1. Logically, if any

object is deleted, then the action has not been aborted in line 48. Therefore, the current

user is either an admin (in which case the permit in line 24 accepts the object and the

operation), or the current user is a nonadmin but is also the user of the project (which is

covered by the permit in line 27). Since there exists no execution in which the project

is deleted without proper authorization, this action correctly enforces the access control

policy with regards to deleting objects of the Project class.

30

Abstract Data Stores Chapter 2

2.4 Abstract Data Store Language

Abstract Data Store Language (ADSL) is a language for describing ADSs. Since we

extract ADS language specifications from existing applications, ADSL is an intermediate

language whose specifications are represented by abstract syntax trees. The abstract

syntax tree for an ADS specification contains a set of Class, Association, Action, Invariant,

Role and Permit nodes corresponding to the model DS = 〈C,L,A, I, R, P 〉.

Following the formal definition of C and L given in Section 2.2, a Class node may

refer to other Class nodes as superclasses, and contains any number of Associations.

Association nodes are defined by name, target Class and cardinality. Modifiers exist to

denote mutually symmetrical associations.

The most complex part of an ADS specification are action specifications. Action nodes

typically contain a Block node, which in turn contains any number of other statement

nodes. Each statement node may migrate the data store state, or be evaluated to a

boolean or set of objects, or both. Statement nodes that return an object set will return

a set of objects in the data store that share a common class or superclass. Statement

nodes that return a boolean will evaluate to true or false, typically used as conditions

in branches. Some statement nodes also use variable, class or association names as

arguments.

For example, the AllOf(class) node returns all objects of class (or subclass of) class.

Most statement nodes rely on other statement nodes to fully define their behavior: for

example, the Subset(e) node will have the same side-effects as e, and return a subset of

the object set e returned.

As another example, the OneOf(object set) node represents a non-deterministic se-

lection of one object from its argument object set object set. This node also implicitly

defines that the argument will have at least one object inside it. The TryOneOf(object

31

Abstract Data Stores Chapter 2

Node Children State Migrations Returns
Block *Stmt State migrations of the arguments applied

sequentially
The last child’s return value,
or an empty object set if
there are no children

CreateObject Class name Creates a new object of the stated class that
is not associated to any other object

The singleton set containing
this object

Delete Object Set Deletes objects belonging to the object set,
as well as all tuples tied to these objects

Empty object set

CreateTuple Object Set,
Association,
Object Set

Associates all objects from the two object
sets over the association

The second object set

DeleteTuple Object Set,
Association,
Object Set

Disassociates all objects from the two ob-
ject sets over the association

The second object set

If Boolean,
Node, Node

Migrations of the condition, followed by
only the migrations of the appropriate
branch node

Return value of the branch
that corresponds to the result
of the branch condition

ForEach Variable
name, Object
Set, Block

Executes the block once for each object in
the given object set, assigning the singleton
set of this object to the variable for each
iteration

Empty object set

Assign Variable
name,
Object Set

Assigns the object set returned by the ob-
ject set to the variable

The object set assigned to the
variable

DereferenceCreate Object Set,
Association

Creates a new object and associates it with
all objects from the supplied object set over
the association

The singleton set containing
the newly created object

Raise - Defines the program path to be unreachable -

Table 2.1: State-migrating abstract data store statement nodes

set) statement node does not implicitly define the argument to be non-empty: if the

argument is empty, it will return an empty set itself. Otherwise it will return a singleton

subset of the argument.

The list of all statement nodes in given in Tables 2.1 and 2.2. This list is presented in

two tables for space reasons, as we allow nodes from both lists to be used as arguments

for either list. Table 2.1 lists nodes with side effects: these nodes migrate the state when

they are evaluated. They may or may not return a value when evaluated. Table 2.2 lists

nodes that have no side effects. In both tables we use the words Object Set and Boolean

to imply strict type requirements. Furthermore, in both tables, we omit explicitly listing

state migrations of the children as part of the state migrations of a node. In all cases,

state migrations of children are applied before any state migrations of a node in question,

in listed order.

Invariant nodes are represented using boolean nodes as defined in Table 2.2. Note

32

Abstract Data Stores Chapter 2

Node Children Returns
VarRead Variable name The set of objects assigned to the variable that were not

deleted since the assignment
AllOf Class name Contains all objects of the given class, including subclasses
Subset Object Set Contains a subset of the argument object set
TryOneOf Object Set Exactly one object from the given object set, or empty if the

given object set is empty
OneOf Object Set Exactly one object from the given object set, enforcing the

argument object set to be non-empty
Union *Object Set Union of given object sets. Legal only if there exist a common

type between said object sets
Empty - Contains no objects
Dereference Object Set,

Association
All objects associated with at least one object from the given
object set over the association

And, Or, Implies
etc.

*Boolean Expected semantics, evaluating all expressions in the order in
which they are listed

ForAll, Exists Variable, Object Set,
Boolean

Expected quantification semantics over object sets

=, ⊂ etc. *Object Set Expected set operators
IsEmpty Object Set Evaluates to true iff supplied Object Set is empty
True, False - Boolean constants
* - Non-deterministic boolean value
CurrentUser - A singleton set containing the current user object
InUserGroup Object Set, Role name Returns true iff all objects in the object set have the argument

role. Legal only if it is an object set of the authenticable class

Table 2.2: State-preserving abstract data store statement nodes

that invariants are forbidden from migrating state.

Role nodes are used to declare user roles. They contain no information other than the

name of the role. For example, Figure 2.1 defines two role nodes: one for a role named

admin, and one for nonadmin. The Role constraint is a single boolean statement node that

is defined to always hold. Like invariants, role constraints cannot migrate state.

Finally, Permit nodes have a non-empty set of role nodes as children, a non-empty

set of operations (chosen among read, create and delete), and an object set node that

represents its expression. This object set node cannot migrate state. Corresponding to

33

Abstract Data Stores Chapter 2

the example in Figure 2.1 are the following permit nodes:

p1 = 〈{admin, nonadmin}, {read},AllOf(User)〉

p2 = 〈{admin, nonadmin}, {read},AllOf(Project)〉

p3 = 〈{admin, nonadmin}, {read},AllOf(Todo)〉

p4 = 〈{admin, nonadmin}, {read},AllOf(Note)〉

p5 = 〈{admin}, {read, create, delete},AllOf(User)〉

p6 = 〈{admin}, {read, create, delete},AllOf(Project)〉

p7 = 〈{admin}, {read, create, delete},AllOf(Todo)〉

p8 = 〈{admin}, {read, create, delete},AllOf(Note)〉

p9 = 〈{nonadmin}, {read, create, delete},CurrentUser〉

p10 = 〈{nonadmin}, {read, create, delete},Dereference(CurrentUser, projects)〉

p11 = 〈{nonadmin}, {read, create, delete},Dereference(CurrentUser, todos)〉

p12 = 〈{nonadmin}, {read, create, delete},AllOf(Note)〉

34

Chapter 3

Model Extraction

In this chapter we present symbolic model extraction, an approach for extracting models

from programs written in dynamically typed programming languages.

The key ideas of symbolic model extraction are 1) to use the source language inter-

preter for model extraction, which enables us to handle dynamic features of the language,

2) to use code instrumentation so that execution of each instrumented piece of code re-

turns the formal model that corresponds to that piece of code, 3) to instrument the code

dynamically so that the models of methods that are created at runtime can also be ex-

tracted, and 4) to execute both sides of branches during instrumented execution so that

all program behaviors can be covered in a single instrumented execution.

We theoretically generalize the approach to different languages and models, and im-

plement evaluate it for extracting abstract data models from Rails applications.

Section 3.1 demonstrates why model extraction can be difficult given the dynamic

features of Ruby, by discussing a small portion of a Rails application. Section 3.2 defines

our approach. Section 3.3 applies the approach for extraction of abstract data models

from Rails applications, and Section 3.4 experimentally evaluates our extraction method.

35

Model Extraction Chapter 3

1 class Article < ActiveRecord::Base

2 acts_as_paranoid

3 end

4 class ArticlesController < ApplicationController

5 load_resource

6 before_action :destroy do

7 redirect_to :back unless current_user.verified?

8 end

9 def destroy

10 @article.destroy!

11 end

12 end

Figure 3.1: Example of Rails dynamic features

3.1 Model Extraction and Dynamic Features of Ruby

Consider the excerpt of a Rails application in Figure 3.1. Lines 1-3 declare a model

class called Article. This particular class defines articles that are managed by this web

application. This class does not contain any fields or additional methods for the sake of

brevity. Lines 4-12 define the ArticlesController, which contains one action called destroy

(lines 9-11). This action seemingly deletes the object stored in the @article variable by

invoking the destroy! method on it in line 10.

Ruby is a dynamically typed language and lets the developer freely define and replace

existing methods at runtime. In this example, the dynamic features of Ruby are used to

such an extent that the action’s source code deceptive. The action does much more than

deleting an object.

First, it is not clear which article object is being deleted. In line 5 of Figure 3.1

we see the load resource declaration, defined by the CanCan gem [20]. This declaration

will ensure that, before an action executes, the framework will preload an object and

store it in a variable, to be accessed from inside the action. The specifics of this preload

operation are subject to a number of conventions such as the name of the controller, the

name of the action, and configurations.

Second, the before action declaration in lines 6-8 prepends a filter to the action.

36

Model Extraction Chapter 3

1 class ArticlesController < ApplicationController

2 def destroy

3 @article = Article.find(params[:id])

4 redirect_to :back unless current_user.verified?

5 @article.deleted_at = Time.now

6 @article.save!

7 end

8 end

Figure 3.2: Static equivalent to action in Figure 3.1.

Filters execute before or after an action and are usually used to prepare data for an

action, or to conditionally prevent an action from executing any further. In this case, if

the current user is not verified (line 7), the filter will redirect to a different page. This

redirection will prevent the action from executing.

Finally, in line 10, the action invokes the destroy! method on the object in order

to delete it. However, in line 2, the acts as paranoid declaration (provided by the Act-

sAsParanoid gem [84]), overrides the destroy! method for the Article class. Instead of

deleting an object, the object is simply marked as deleted but not removed from the

database. This allows for Article objects to be restored later if need be.

Figure 3.2 contains a destroy action that is semantically equivalent to the action in

Figure 3.1, but with its semantics transparent and directly understandable from source

code.

This is a simple example of how actions can be enhanced using dynamic features of

the Ruby language. There exists a rich set of libraries that Rails developers can use

to enhance the framework. Some of these libraries, such as ActiveAdmin [3], can even

generate entire actions that are not present statically.

Dynamic method generation is not limited to advanced Rails features. Even core

Ruby use dynamic method generation to implement basic functionality. For example, to

declare fields that objects of a Ruby class have, one might use code:

class Class

attr_accessible :field1, :field2

end

37

Model Extraction Chapter 3

The attr accessible declaration is actually a class-level method call that dynamically

generates getters and setters for all listed fields. Similarly, association declarations (lines

4-5, 8-10, 13-14 and 17 in Figure 2.1 are core Rails methods that dynamically generate

other methods based on the state of the class and the arguments. As such, every Rails

application uses dynamic method generation.

In our experience, in practice, method generation in Rails is input independent : in-

puts coming from the user do not dictate the kind of methods that are generated. For

example, the attr accessible declaration will generate getters and setters at class load

time, independently from any actions that may be invoked by the user. Even methods

that are generated during action execution are input independent: the same methods

would be generated for every action execution regardless of user inputs. As such, by ex-

ecuting the application without regard to user input, we are able to capture dynamically

generated methods and extract their models.

Dynamic method generation in applications makes static analysis and model extrac-

tion difficult, as the semantics of an application are fully defined only at runtime, after li-

braries have had the opportunity to augment them. This problem has been observed [56],

and the solution typically involves manual modeling of source code or semantics of dynam-

ically generated methods. This process, while helpful, is prone to error as the manually

written model may not match the actual semantics of the program. This is especially

dangerous in case a third-party library overrides the expected semantics of a core Rails

method. Our approach, conversely, will capture the correct semantics of the program

without manual effort and with a higher level of confidence that the extracted model

correctly matches the application.

We explain symbolic model extraction and its application to data model verification in

Section 3.3, but to demonstrate the purpose of symbolic extraction, it extracts the ADS

38

Model Extraction Chapter 3

Action

Block

Assign If

'@article' OneOf * Raise Block

AllOf

'Article'

Figure 3.3: Model extracted from Figure 3.1.

model in Figure 3.3 from the Rails program in Figure 3.1. This model is an abstraction

of the original method. The OneOf node defines that an Article object is read from the

database, without specifics on which object is loaded, and the Assign node stores this

object in a variable. The If node will, because of a non-deterministic condition (node *),

either Raise an exception and abort the action or execute an empty Block (equivalent to

a noop). Finally, the model will correctly omit the delete operation that was seemingly

present in the original source code.

3.2 Symbolic Model Extraction

We explain symbolic model extraction on an abstract programming language L that

captures the core features of the languages such as JavaScript, Python or Ruby. Let us

assume that L is an interpreted, dynamically typed, imperative programming language

with functions as first-class citizens (e.g. functions can be assigned to variables, passed

as arguments to function calls etc.).

For simplicity, we will represent a program written in L as a statement s. Since a

sequence of statements is itself a statement, this perspective is accurate. At runtime,

39

Model Extraction Chapter 3

programs written in L are executed using the interpreter I where I evaluates statements

to migrate the program from one state to another state.

Because this is a dynamically typed language, the types of objects assigned to vari-

ables may change over time. In addition, the type system in the program can change in

any number of ways: classes can be defined at runtime, methods can be added or even

replaced at runtime.

Let L be the set of program states in L. These states include the program counter,

the stack and heap memory states. This lets us define a statement s as a set of state

transitions:

s ⊆ L× L

In words, given an initial state l ∈ L, executing a statement s will migrate the program

state to some state l′ such that 〈l, l′〉 ∈ s. Furthermore, we constrain the definition of

statements to have at least one state transition from any program state1. Let S be the

set of all statements in language L.

For model-based verification, in order to verify a program (statement) s ∈ S, we need

to extract s]: the model of a statement s in some modeling language L]. This model is

an abstraction of the original statement, meaning that if there are undesirable behaviors

in s, they can be detected in s].

Let L] be the set of abstract program states. Each abstract program state l] ∈ L] is

a set of concrete program states:

l] ⊆ L

1In practice, these languages raise exceptions if the statement is not normally executable from a
program state. This behavior itself constitutes a state transition.

40

Model Extraction Chapter 3

s

Source Program

T

Instrumenter

I

Interpreter

s]
Model

Figure 3.4: Overview of symbolic model extraction

Similarly, an abstract statement s] is a set of transitions between abstract states that

abstracts a concrete statement s. More precisely, for every state transition in s, s]

contains the transition of corresponding abstract states:

∀〈l, l′〉 ∈ s : ∃〈l], l]′〉 ∈ s] : l ∈ l] ∧ l′ ∈ l]′

We can see that s] simulates the behavior of s, i.e., for each behavior in s there exists a

corresponding behavior in s]. Hence, s] is an abstraction of s.

Notice that, in order to simplify the presentation, this definition of statements does

not account for expressions and expression values. Where relevant, we use notation I(s)

to refer to the return value of an execution of s in some program state by the interpreter

I.

3.2.1 Symbolic Model Extraction Rules

Symbolic model extraction uses the interpreter for the source language, and an in-

strumentation function that is accessible during runtime, to execute the input program

in an instrumented, path-insensitive environment to explore static as well as dynami-

cally generated code and extract the model for the given program in the target modeling

language.

We illustrate the high level information flow in the symbolic model extraction in Fig-

41

Model Extraction Chapter 3

ure 3.4 where the input program (s) in the source language is passed to the instrumenter

function (T). The instrumenter will instrument the given program and pass it to the

interpreter for execution. When new code is encountered or dynamically generated, the

interpreter will pass this new code to the instrumenter for immediate instrumentation.

The execution of the instrumented program returns the extracted model (s]) in the target

modeling language.

In order for this approach to work without developing a custom interpreter, the

instrumenter has to be implemented in the source programming language itself. Newly

generated code can then be investigated and instrumented using metaprogramming.

Key to our approach is the symbolic model extraction instrumentation function T , or

the instrumenter in short. T is a function T : S → S that, given a statement s ∈ S,

returns the instrumented statement T (s). When executed by the interpreter I, T (s)

evaluates to the model of s:

I(T (s)) = s]

In words, the instrumenter transforms a statement such that executing the transformed

statement using the source language interpreter returns the model of the original state-

ment.

After implementing T in the source language, we can use it to instrument and extract

a model of a dynamic program using the source language interpreter. We surround

the program’s entry point with a call to the instrumenter, and the instrumenter will

propagate instrumentation as new code is encountered. As instrumentation prepares

instrumentation of all encountered code (that is not already instrumented), this ensures

that all executed code is instrumented, with the obvious exception of the instrumenter

itself.

42

Model Extraction Chapter 3

Rule # s T (s) I(T (s))

1 α1;α2; . . . ;αn ins_block(T (α1), T (α2), . . ., T (α3)) α]
1;α]

2; . . . ;α]
n

2 fn(α1 . . . αn) T(fn)(T (α1) . . . T (αn)) fn](α]
1 . . . α

]
n)

3 if α then β
else γ

ins_if(T (α), T (β), T (γ)) if](α], β], γ])

4 1 while α
2 β

ins_while(T (α), T (β)) while](α], β])

5 αop β ins_op(op, T (α), T (β))
α] op] β] if op] is within L]

∗ otherwise

6 var = α

result = T (α)

var = SymVar.new(result.sym_type, ’var’)

ins_asgn(’var’, result)

var =] α]

7 var var var]

Table 3.1: Instrumentation for symbolic extraction

Implementing the instrumenter with regards to operations that are directly tied to

the abstraction is generally straightforward. For example, if we are extracting a model

of integer operations, T replaces integer addition so that, instead of returning the sum

of two integers, integer addition returns a model of the addition operation.

The instrumenter’s behavior is not obvious when it comes to dynamic language fea-

tures, control flow, and data flow features such as scoping and assignments that appear in

the source program. Table 3.1 demonstrates how the instrumenter could be implemented

with regards to basic language constructs.

Sequences of statements

Rule 1 in Table 3.1 demonstrates how a sequence of statements is instrumented in

order to extract the model of the sequence.

Let us extract the model of a sequence of statements s = α1;α2; . . . ;αn using symbolic

model extraction. Our goal is to instrument the sequence in such a way that executing the

instrumented sequence returns the model of the sequence. To achieve this, we replace

each statement αk with its instrumented version T (αk) and pass these instrumented

43

Model Extraction Chapter 3

statements as arguments to an ins block function. As such,

T (s) = ins block(T (α1), T (α2), . . . , T (αn))

Note that this instrumented statement is still a valid statement in the source language.

ins block is method provided by our instrumentation library that merges a sequence of

models of statements into a block model.

When executing T (s), the interpreter will first evaluate each argument for ins block

in order. The result of each argument T (αk) will be α]k, the model of the statement αk.

Finally, these models will be merged by ins block into the sequence of statements in the

modeling language.

Method calls

Rule 2 in Table 3.1 refers to how function (or method) calls are treated by the in-

strumenter. Any call to a function fn(α1, . . . , αn) in the source program is replaced with

a call to T (fn)(T (α1), . . . , T (αn)). In words, the instrumented function gets executed

instead of the original function, with arguments having been instrumented as well. The

result of this execution, as defined by the instrumenter, will be the model of the function’s

body.

To illustrate this approach, consider Figure 3.5(a). It illustrates the execution of

a program that dynamically generates a method α and subsequently invokes it. Since

code generation is done at runtime, it poses a problem for standard model extraction

techniques. Figure 3.5(b) demonstrates how symbolic model extraction extracts the

model of a dynamically generated method.

After generating the method, the interpreter instruments the generated method at

runtime. The instrumentation alters the method such that, after it is invoked with

44

Model Extraction Chapter 3

Dynamic Method Calls

E
xe

cu
ti

o
n
 o

v
e
r

ti
m

e

...
Generate method α
Invoke method α

Instrumented Dynamic Method Calls

E
xe

cu
ti

o
n
 o

v
e
r

ti
m

e

...
Generate method α
Instrument α
Invoke method α

Execution of instrumented α

...

Symbolic arguments

Model of α

Execution of α

...

Arguments

Return value

(a) Normal execution (b) Instrumented execution

Figure 3.5: Symbolic model extraction from dynamically generated methods.

symbolic arguments, the instrumented method returns its own model. This is how in-

strumentation is propagated through the program: all functions are instrumented just

before they are invoked, allowing us to extract statically available source code as well as

source code that might not exist statically.

Control Flow

Dynamic program analysis is typically subject to the problem of path explosion.

Symbolic model extraction bypasses this problem by exploring all paths of the program

at the same time. In order to achieve this, in order to extract the model of a branch, we

execute both paths in an instrumented environment. After executing the branch in this

manner in order to extract the models of both branches, we can continue to extract the

model of subsequent statements as usual, again by executing them only once.

Rule 3 in Table 3.1 summarizes our approach for extracting models of branches. Given

a branch where α is the condition and β and γ are the then and else block respectfully,

the instrumenter replaces the branch with a call to ins if(T (α), T (β), T (γ)) which will

consecutively instrument and execute the condition and both paths. The results of ex-

ecutions of instrumented elements are the models of each element, which are combined

45

Model Extraction Chapter 3

into a model representation of the branch itself. Note that, contrary to intuition, this

approach can handle some often encountered situations where different paths have seem-

ingly conflicting side effects, such as assigning different values to the same variable. This

will be made clear when discussing assignments further below.

Loops are handled analogously (Rule 4 in Table 3.1). Instead of executing the loop

body a number of times, the loop can be instrumented and executed only once to extract

the model of the loop.

Expressions

Rule 5 in Table 3.1 explains how our approach handles expressions. Even though this

discussion assumes that the expression is a binary operator, the principle generalizes to

any number of arguments.

Given an expression α op β, we first extract the model of α and β by instrumenting

and evaluating them. Then, depending on the operation op itself and α] and β], using

the ins op function, we return either the model that correctly abstracts the expression

(α]op]β]), or ∗, representing any possible value.

The specifics of handling expressions depend on the source programming language, the

target modeling language, and the desired abstraction. For example, if the abstraction

handles integer addition and string concatenation, ins op would check whether α] and β]

are both integers or both strings and return the model of the corresponding operation. If

the types of arguments do not match, the result of ins op would be a symbol representing

any possible value.

Variables and scoping

Rule 6 in Table 3.1 refers to how variable assignments are treated by the instrumenter

and Rule 7 explains how variable reads are treated by the instrumenter. These two

46

Model Extraction Chapter 3

operations are closely tied to each other, as we actually instrument variable reads as a

side effect of instrumenting assignments.

Given an assignment var = α, the instrumenter should generate code that, when

executed, returns the model representation of an assignment operation. Similarly, when

a variable var is read in the original program, the corresponding model should represent

the variable reading operation.

As shown in Rule 6 in Table 3.1, the instrumenter replaces the assignment with a

sequence of three statements. The first statement instruments and extracts the model of

the assigned expression, storing it in a temporary, local variable result.

The second statement creates a model of the variable read operation and stores it in

the assigned variable, along with the type of the assigned expression and the name of the

variable. That way, whenever this variable is subsequently read by the interpreter, the

interpreter will identify the correct variable using the scoping rules of the language and

return the proper variable read model. This not only reduces the amount of work needed

to implement symbolic model extraction as we need not worry about variable scoping

rules in the source language. Finally, the third statement constructs and returns the

model of the assignment operation itself.

Since variables do not contain a value that is tied to the expression that was assigned

to the variable, symbolic model extraction does not have a problem with the source

program assigning different values to the same variable in different program paths. During

symbolic model extraction from such a program, although a different models will be

extracted from each assignment, all assignments will assign the very same value to the

variable in question.

47

Model Extraction Chapter 3

1 do

2 a = Article.new

3 a.destroy!

4 end

1 ins_block(

2 (

3 result = ins_call(Article, :new);

4 a = SymVar.new(result.sym_type, ’a’);

5 ins_assignment(:a, result)

6),

7 ins_call(a, :destroy!)

8)

Action

Block

Assign Delete

'a' CreateObject VarRead

'Article' 'a'

(a) Rails code (b) Instrumented Rails code (c) Extracted model

Figure 3.6: Symbolic model extraction example.

Dynamic Features

Symbolic model extraction is built on the assumption that the dynamic features used

in a program are input independent. Based on this assumption, during instrumented exe-

cution, methods are generated the same way they would be during normal execution, with

symbolic values instantiated into concrete values of the appropriate type. This enables

our symbolic model extraction technique to capture dynamically generated methods.

3.2.2 Symbolic Extraction Example

We will proceed to demonstrate how symbolic model extraction can be used for model

extraction on an example. This example is designed to demonstrate key features of the

technique, and how the approach deals with difficulties more straightforward techniques

could not handle easily.

Assume that we wish to extract a model from the Ruby block in Figure 3.6(a). This

block creates a new Article object (Article.new) and assigns it to a variable called a in

line 2. In line 3 the destroy! method is invoked on the previously created object, deleting

the object from the database. These statements are wrapped in a block (lines 1-4). The

model we will eventually extract is presented in Figure 3.6(c)).

48

Model Extraction Chapter 3

The instrumenter will automatically transform the block in Figure 3.6(a) to the block

in Figure 3.6(b). This instrumented code follows the instrumentation rules previously

discussed in Table 3.1.

The block presented in lines 1-4 of Figure 3.6(a) corresponds to the ins block state-

ment that spans lines 1-8 of Figure 3.6(b). This is a direct application of Rule 1 in

Table 3.1. The two arguments of ins block, spanning lines 2-6 and 7 of Figure 3.6(b),

directly correspond to the two statements in lines 2 and 3 of Figure 3.6(a) respectively.

When executing the instrumented code, arguments of ins block will be evaluated one at

a time, evaluating to their models. The models of these statements will be conjoined into

the extracted block by the ins block call.

The assignment in line 2 of Figure 3.6(a) is transformed into the sequence of state-

ments in lines 3-5 of Figure 3.6(b), as described by Rule 6 in Table 3.1.

The statement in line 3 of Figure 3.6(b) instruments and evaluates the expression

that is being assigned to a variable, storing the resulting model in a temporary variable.

In this case, the expression is invoking the new method on the Article class. This is a

core Rails method that creates a new model object, and as such, returns the model of

the object creation operation: create(Article).

The statement in line 4 of Figure 3.6(b) assigns a model of a variable read operation to

a. This value mimics the type that was assigned to the variable in the original program,

but otherwise has no state. Whenever any subsequent statement reads variable a, the

value it reads will be the model of the operation of reading a.

The statement in line 5 creates a model representation of an assignment operation -

the Assign statement node. This node will be returned to the ins block call in lines 1-8

of Figure 3.6(b) as the first argument, ultimately becoming the first child of the Block

node present in Figure 3.6(c).

The method call in line 3 of Figure 3.6(a) is transformed into the method call in line 7

49

Model Extraction Chapter 3

of Figure 3.6(b). This is in concordance with Rule 2 presented in Table 3.1. The ins call

statement will execute a method in an instrumented environment in two steps:

1. Find the method that will be invoked on the provided object with any provided

arguments, and instrument it.

2. Invoke the method with any provided arguments.

By default in Rails, the destroy! method deletes an object from the database. During

instrumented execution, calling destroy! on an Article object returns the model of a

delete operation invoked on the called object. In this case, given that ’a’ contains the

model of the variable read operation, invoking the destroy! method in line 7 results in

the Delete node present in Figure 3.6(c).

Finally, the models of these statements (Assign and Delete nodes) are passed to

ins block. This method will merge the arguments into a Block node that represents

the extracted action.

3.2.3 Limitations

Symbolic model extraction has limitations. For one, the approach assumes that the

application does not utilize input dependent dynamic features. If it does, for example if a

user is given the ability to enter code that will be executed by the application, symbolic

model extraction will not extract a sound abstraction of the original source code. In

practice, generating code from user input is avoided for performance and security reasons.

We encountered this issue only once: in FatFreeCRM, one set of actions determines the

class that they are about to handle from a user-supplied string parameter. Since we do

not provide this string during symbolic extraction, extraction halts upon encountering

this issue.

50

Model Extraction Chapter 3

Our treatment of branches is designed under the assumption that different paths in the

program will not use mutually conflicting code generation. Consider a branch statement

that executes statement A if the condition holds true and statement B if the condition

holds false. Let A and B generate a method under the same name with different source

codes. Inside A you would see A’s method during both concrete and symbolic execution,

inside B you would see B’s method during both executions. However, after the branch,

symbolic model extraction would only consider B’s implementation. Although this is a

problem in theory, in practice, we did not encounter such programs. We believe that this

problem can be avoided by keeping track of every generated method and using aliasing

to access different versions of the same method.

3.3 Symbolic Extraction for Data Model Verification

The first phase of running instrumented execution on a Rails application is to install

and configure the analyzed application. To a properly setup application we add our own

symbolic model extraction library that overrides core Rails methods with their symbolic

versions. Finally, we start model extraction of each action by generating http requests

that will invoke them one at the time.

Because ActiveRecord is used in Rails applications to manage data from the database,

the usage of ActiveRecord methods and classes is key to extract a model of a Rails ap-

plication. As such, we override ActiveRecord methods with their symbolic counterparts.

Table 3.2 shows parts of the target modeling languages that are common to the

models we used to verify data integrity or access control. Table 3.2 a) contains class

(static) methods, and Table 3.2 b) contains instance (object) methods. The first column

represents various Ruby on Rails methods. The second column explains the semantics

of the corresponding method. The third column defines the statement nodes that are

51

Model Extraction Chapter 3

ActiveRecord method Semantics ADSL Statement Node
Class.new(attrs) Creates an object with provided attributes (basic

type values)
create(Class)

Class.all Load all model objects of this type from the
database

allof(Class)

Class.where(...) Load all model objects in the database that
satisfy some criteria

subset(Class)

Class.find(id) Finds an object using the provided unique
identifier

oneof(Class)

a) Class methods

ActiveRecord method Semantics ADSL Statement Node
expr.select(...) Returns all objects in expr that meet

some criterion
subset(expr)

expr.association Returns object(s) related to expr via
the association

expr.association

expr.association << expr2 Associates object expr with expr2 via
association association

createTuple(expr, association, expr2)

expr.association = expr2 Mutates an association expr.association = expr2
expr.delete! Deletes the object delete(expr)
expr.destroy! Deletes the object, propagating

deletion to associated objects
delete(expr.assoc); delete(expr)

expr.destroy all! Deletes all objects in a collection
expression

delete(expr)

expr.each(block) Executes block once for each element
in expr

foreach v in expr : block

expr.nil? Checks whether expr is null or not isempty(expr)
expr.any? Checks whether expr has at least one

object
not(isempty(expr))

b) Instance methods

Table 3.2: ActiveRecord methods and corresponding ADS statement nodes

extracted from the method. This list is not exhaustive because many methods in Ruby

on Rails have multiple aliases (different names that achieve the same functionality) for

developer convenience.

For example, Model.new(attrs) is a constructor. Developers can use this method to

create a new object of type Model, setting the newly created object’s fields corresponding

to the attrs argument. Similarly, Model.all will return a collection of all objects of type

Model that exist in the database.

Our library will, when the Rails application is booting up, replace core ActiveRecord

methods with their instrumented versions. However, other libraries that build on top of

ActiveRecord do not need to be manually specified and overridden, as when they imple-

ment their functionality on top of core ActiveRecord, they become implicitly prepared

for model extraction.

52

Model Extraction Chapter 3

After overriding the core ActiveRecord methods, we identify the set of actions that

the Rails application contains. We instrument them and execute them one at the time.

Each action will return the model of itself, and these models make part of the entire

model we extract from the applications.

For data integrity verification, we make an additional step to extract invariants. These

invariants are written in Ruby using a library we developed for this purpose. Adapting

our extraction method to extract invariants was straightforward. For example, we added

quantification to ActiveRecord objects that can be used to quantify over sets.

3.3.1 Extraction from CanCan

Extraction of CanCan policies requires an additional extraction step to extract the

set of user roles and the set of permits.

User Role Extraction

Neither Rails nor CanCan implement authentication by default. Instead, they rely

on third party libraries to define the authenticable class and roles. CanCan is usually

paired with Devise [29] for this purpose. Extracting the authenticable class and roles

is straightforward from an application that uses Devise. If an application does not use

Devise, we rely on the convention that the authenticable class is called User and define

roles according to branch conditions in the Ability object (see Section 3.3.1).

Access Control Policy Extraction

In CanCan, the access control policy is declared in the Ability class. For ease of

reading, we repeat the Ability class from Figure 2.1 in Figure 3.7. Every time an action

is executed, an Ability object is implicitly generated with the current user in mind.

53

Model Extraction Chapter 3

19 ...

20 class Ability

21 def initialize(user)

22 can [:index, :show], :all

23 if user.admin?

24 can :manage, :all

25 else

26 can :manage, User, id: user.id

27 can :manage, Project, user_id: user.id

28 can :manage, Todo, user_id: user.id

29 can :manage, Note

30 end

31 end

32 end

33 ...

Figure 3.7: Ability class from Figure 2.1

A typical Ability class constructor is defined with a sequence of if/elsif/else branches

where branch conditions query the user role of the current user. can statements outside

these branches apply to all roles. Each can statement permits the current user to execute

a set of operations on a class type, with optional qualifiers that restrict the set of objects

the can statement applies to.

In order to extract the policy, we instrument the Ability constructor as follows.

Branches are instrumented to execute both paths as usual, but in addition, if the branch

condition tests the role of the current user, this is taken note of. Any can statements

executed in a particular branch will then refer to the corresponding role or roles. In

addition, we override the can method to generate permits ADS nodes based on its argu-

ments. Finally, we initiate instrumented execution by creating an Ability object, using

a CurrentUser statement node as the argument.

In order to extract the set of roles a can statement applies to, during instrumented

execution of the Ability constructor, each branch is associated with a set of roles. Any

can statement executed under a branch is assigned roles that correspond to the branch

condition (or branch conditions, in case branches are nested). The root block of the

constructor applies to the entire set of roles.

54

Model Extraction Chapter 3

For example, the can statement in line 22 of Figure 3.7 is in the root block of the

constructor and, as such, applies to both roles. In line 23 we have a branch condition

that only accepts admins, meaning that the statement in line 24 only applies to admins.

Statements in lines 26-29 are part of the else branch, which means they refer to all

roles associated with the root block but that were not expected by the branch condition:

{admin, nonadmin} \ {admin} = {nonadmin}.

The second piece of information that needs to be extracted is the set of operations.

The operation symbols used in can statements, by convention, correspond to action

names. Moreover, Rails has a strong convention on action names that correspond to

create/read/update/delete (CRUD) operations [88]: each model class typically has a

separate action for each CRUD operation. Therefore, if we recognize that a user is per-

mitted to execute an action that by convention corresponds to a CRUD operation on

objects of a model class, then we infer that the user is permitted to execute the corre-

sponding CRUD operation on objects of the corresponding model class.

Table 3.3 presents our mapping of action names to operations. For example, new and

create actions by convention serve to create a new object of a given model class. If a

user is permitted to execute these actions, we infer that the user is permitted to create

objects of corresponding type in general.

Operation symbols Implied CRUD operations
:manage create, delete, read
:create, :new create
:destroy delete
:index, :show read
:update create, delete

Table 3.3: Mapping actions to CRUD operations

Finally, extracting the expression of a permit is straightforward. If a can statement

refers to a class without any additional constraints, it applies to all objects of said class

in a given data store state. For example, line 10 of Figure 3.7 refers to all objects of the

Note class, corresponding to an AllOf(’Note’) ADS node.

55

Model Extraction Chapter 3

In case there are additional constraints (such as in lines 26-28 of Figure 3.7), we

can use already instrumented methods of ActiveRecord classes to extract the symbolic

representation of the set of objects the can statement refers to.

To summarize the entire extraction of an ADS permit from the can statement in line

22 of Figure 3.7. This can statement is executed in the root block and as such applies to

all user roles (admin and nonadmin). It lets users of these roles to execute :index and :show

operations, implying the read operation in the resulting permit. It refers to objects of

all classes without any additional limitations. Since there are four classes in our running

example, Therefore, this can statement translates to the following permits:

p1 = 〈{admin, nonadmin}, {read}, AllOf(User)〉

p2 = 〈{admin, nonadmin}, {read}, AllOf(Project)〉

p3 = 〈{admin, nonadmin}, {read}, AllOf(Todo)〉

p4 = 〈{admin, nonadmin}, {read}, AllOf(Note)〉

This remaining permits are extracted from the remainder of the Ability object. Per-

mits p5, p6, p7 and p8 are extracted from the can statement in line 24 of Figure 3.7.

56

Model Extraction Chapter 3

Permits p9, p10, p11 and p12 are extracted from lines 26, 27, 28 and 29 respectfully.

p5 = 〈{admin}, {read, create, delete}, AllOf(User)〉

p6 = 〈{admin}, {read, create, delete}, AllOf(Project)〉

p7 = 〈{admin}, {read, create, delete}, AllOf(Todo)〉

p8 = 〈{admin}, {read, create, delete}, AllOf(Note)〉

p9 = 〈{nonadmin}, {read, create, delete}, CurrentUser〉

p10 = 〈{nonadmin}, {read, create, delete}, Dereference(CurrentUser, projects)〉

p11 = 〈{nonadmin}, {read, create, delete}, Dereference(CurrentUser, todos)〉

p12 = 〈{nonadmin}, {read, create, delete}, AllOf(Note)〉

Authorization Check Extraction

Extracting the access control policy is not enough for verification of access control

in a web application. Runtime enforcement of the policy via authorization checks is an

integral part of access control in Rails. Our goal is to ensure that actions, considering

implemented authorization checks, correctly enforce the access control policy at all times.

There are two ways to check authorization using CanCan: 1) explicitly, using the can?

method inside action code, and 2) implicitly, using automatically generated authorization

checks.

Both explicit and automated authorization checks are extracted during action extrac-

tion via instrumented execution, as described below.

Explicit checks. The can? method takes two arguments: an operation symbol and the

subject of the authorization check. For example, line 48 of Figure 2.1 (can? :destroy,

@project) checks if the current user can execute operation destroy with the subject being

57

Model Extraction Chapter 3

the object stored in @project. The operation is a symbol that matches an operation in

the Ability object. The subject of the authorization check might be an object, a set

of objects, or a class (denoting all objects of that class). The can? method queries the

current Ability object to check if at least one can statement covers the operation symbol

and the subject.

We extract can? checks into boolean expressions in our model as follows. First, we

extract the subject of the check directly using instrumented execution. Next, we inspect

the Ability class to identify all can statements that are relevant to the authorization

check at hand. Let ops be the list of operations checked. For each role r, we identify all

can statements that apply to role r and whose operations correspond to ops and whose

expression type corresponds to the type of the subject of the can? check. Assuming

that e1, e2 . . . ek are expressions of these can statements, we extract (inusergroup(r) and

subject in union(e1, ..., ek)). We generate this conjunction for each role and disjoin

the results to get the complete boolean expression of the can? check.

For example, let us extract the can? check in line 48 of Figure 2.1. The extracted

boolean expression should evaluate to true if and only if the current user is permitted to

execute operation destroy on the @project object.

For each role, we identify can statements that are relevant to the check and union

their expressions if there are multiple. In this case, we identify can statements in lines

24 and 27 of Figure 3.7 The object sets that correspond to these can statements and

the Project class are allof(’Project’) for the admin role, and Dereference(CurrentUser,

’projects’) for the nonadmin role.

At this point we have defined the set of objects each role is permitted to operate on.

As such, the instrumented can? statement returns the boolean ADS statement node in

Figure 3.8.

58

Model Extraction Chapter 3

Or

And And

InUserGroup ⊂ InUserGroup ⊂

CurrentUser 'admin' VarRead AllOf

'@project' 'Project'

CurrentUser 'nonadmin' VarRead Dereference

@project CurrentUser 'projects'

Figure 3.8: Model extracted from the authorization check in line 48 of Figure 3.7.

Automated checks. CanCan can automatically generate access control checks using

controller-level declarations that prepend authorization checks to actions. In our ex-

perience, most access control checks are created using these declarations. Since these

checks are “automagical,” we found bugs related to misuse or misunderstanding of these

automated checks.

Since we use instrumented execution for model extraction, we do not need to treat

automated checks differently from explicit checks. We extract automated checks by

allowing CanCan to follow its own logic and heuristics to determine which checks need

to be executed, then we extract these generated checks as they are executed.

3.4 Experiments

We used symbolic model extraction to extract models from Rails applications in order

to verify their data integrity [12, 13, 15] and access control [16] properties. The result of

our experiments are summarized in Table 3.4.

We analyzed a total of 19 open source Rails applications. We found these applications

from various sources. We looked at the 25 most starred open-source Rails applications on

github according to the OpenSourceRails.com website [83], a compilation of open source

59

Model Extraction Chapter 3

LoC Access Extraction
Application

(Ruby)
Classes Actions Invariants

Control
Permits

Time (sec)
Avare 1137 6 26 3 X 34 3.708
Bootstrap 785 2 4 - X 2 2.861
Communautaire 753 5 28 6 X 10 3.236
Copycopter 3201 6 11 6 3.534
CoRM 7745 39 163 32 X 86 33.868
FatFreeCRM 20178 32 120 8 X 34 14.383
Fulcrum 3066 5 40 6 4.966
Illyan 1486 3 24 - X 4 5.099
Kandan 1535 5 25 6 X 7 5.395
Lobsters 5501 17 86 9 7.576
Obtvse2 828 2 13 1 6.266
Quant 4124 9 38 4 X 9 5.688
Redmine 84770 74 264 21 62.295
S2L 1334 9 44 4 X 15 3.913
Sprintapp 3042 15 120 8 X 11 14.899
Squash 15801 19 46 18 8.251
Tracks 17562 11 117 9 16.349
Trado 10083 33 66 10 X 36 12.094
WM-app 2425 18 95 4 X 36 6.095
Totals 185356 310 1330 155 284 220.476

Table 3.4: Experimental results for symbolic extraction

Rails applications categorized by domain [1], and applications investigated by related

work.

Our implementation of symbolic extraction does not support all versions of Rails,

as that would require a substantial engineering effort. Our tool supports Rails 3, up

to and including Rails 4.2. Furthermore, since we focused on how applications employ

ActiveRecord, we did not extract models from applications that bypass ActiveRecord:

for example, if they are not backed by a relational database.

We feel that these applications are representative of real world Rails applications for

several reasons. They vary in size and complexity, their domain of purpose, the number of

developers who developed and maintained them, as well as the technologies they utilize.

For example, FatFreeCRM is an application for customer-relation management. The

coding style is characterized by high flexibility in the model, where often the types and

names of objects and associations are generated using string manipulations instead of

static declarations. That way the same implementation of an action can be used for dif-

ferent controllers and actions. Because the extraction was done in instrumented runtime,

60

Model Extraction Chapter 3

the translator had sufficient information to automatically infer the correct semantics of

these actions including the dynamically generated code, which would not be doable by

pure static analysis.

Tracks is an application for organizing tasks. It is interesting because of an unortho-

dox pattern in the data model, where the association among the Todo objects defines a

partial order.

Kandan is a chat application that heavily relies on third-party gems, most notably for

authentication and authorization (devise[29] and cancan[19]). These libraries offer many

features that are manually implemented in Tracks and FatFreeCRM, and therefore, much

Kandan’s application logic is handled by external gems.

Column LoC (Ruby) shows the number of Ruby lines of code in these applications.

This number does not include JavaScript, html, dynamic html generation through irb

files, or configuration files. Columns Classes, Actions and Invariants show the number

of model classes, actions, and invariants respectfully. As invariants are not part of the

core Rails framework, we wrote them manually for each application after investigating

their source code. We did not write any invariants for Bootstrap and Illyan because their

models were too simple to warrant any non-trivial invariants.

Column Access Control shows whether the application employs access control through

CanCan [20]. For applications that do, we extracted access control information in ad-

dition to data integrity. Column Permits shows the number of permits extracted from

these applications.

Finally, column Extraction Time shows the total amount of time it took to extract

models from these applications. This includes booting up the Rails application, instru-

menting it, and executing each action as described in Section 3.3. We obtained these

results on a computer with an Intel Core i5-2400S processor, running 64bit Linux. Mem-

ory consumption was typical for starting and running a Rails application.

61

Model Extraction Chapter 3

We manually investigated the extracted models. Based on our manual inspection

of the models and the automated verification results we report in Chapter 4, we find

the performance and the quality of our model extraction to be acceptable for real world

use, potentially both as part of verification of real world applications during the quality

assurance process, and for daily developer use.

62

Chapter 4

Verification via First Order Logic

In this chapter we will first present the translation of ADS language specifications to

classical first order logic and show how this translation can be used to verify whether

invariants hold on a given ADS. In Chapters 5 and 6 we modify the translation presented

here in order to make the translation more conducive to verification.

4.1 Classical First Order Logic

A FOL language L is a tuple 〈F, P, V 〉 where F is a set of function symbols, P is

a set of predicate symbols, V is a set of variable symbols. All function and predicate

symbols are associated with their arities, which are positive integers denoting the number

of arguments they accept1.

Given a FOL language L = 〈F, P, V 〉, a term is a variable v ∈ V or a function

invocation f(t1, t2 . . . tk) where f ∈ F and t1 . . . tk are terms and k is the arity of function

f .

1We may extend this to introduce constants as functions of arity 0 and propositional variables as
predicates of arity 0.

63

Verification via First Order Logic Chapter 4

A (well formed) FOL formula is defined as either:

• p(t1, . . . tk), where p ∈ P is a predicate of arity k and t1 . . . tk are terms

• ∀v : f , where v ∈ V and f is a formula

• ¬f1, f1 ∧ f2, f1 ∨ f2 where f1 and f2 are formulas

• t1 = t2, where t1 and t2 are terms.2

Given a FOL language L, a structure S is an instance that may or may not satisfy a

formula expressed in this language. More formally, it is a tuple 〈U, F S, P S, V S〉 where U

is a non-empty set of elements called the universe. F S is a mapping of F onto a set of

functions such that for every f ∈ F of cardinality k there exists an fS ∈ F S such that

fS is a function that maps Uk → U . Similarly, for every predicate p ∈ P of arity k, there

exists a pU ∈ PU such that pU ⊂ Uk.

We can test whether a structure S satisfies a formula (whether the formula is true

within this structure). To do this we assign elements of U to all terms in the formula.

Each variable v ∈ V is assigned an element vS ∈ U . Term f(t1 . . . tk) is mapped to the

return value of fU when using elements of U assigned to terms t1 . . . tk as arguments.

Similarly, p(t1, . . . tk) is considered to be true if and only if elements corresponding to

t1 . . . tk form a tuple that is in PU . Boolean operators and equality are interpreted in a

standard way. Universal quantification is a bit more involved: ∀v : f is satisfied by S if

and only if, for every structure S(v|e) that is identical to S except that v was assigned a

(potentially different) element e of U , f is satisfied by S(v|e).

A formula that is satisfied by one structure may not be satisfied by another. For

example, x = y is true for all structures that happen to map variables x and y to the

2Although classical FOL does not include equality, since the theorem provers we use operate on FOL
with equality, we include equality in our definition of FOL.

64

Verification via First Order Logic Chapter 4

same element. A formula ∀x : (∀y : x = y) is true if and only if U is a singleton set. If

a formula is satisfied by all structures, we call this formula valid. E.g. x = x is a valid

formula.

We take note of free variables : variables that are not quantified outside the term

in which they appear. For example, ∀x : x = y has one free variable y. Since theorem

provers we use do not allow free variables, from this point on, we will only evaluate the

truth value of formulas without free variables. Such a formula is true if and only if it is

valid for all structures.

4.2 ADS Translation

To translate an ADS to first order logic for verification, we create a different set of

formulas for each action and for each invariant. We translate the schema (Section 4.2.1),

the action (Section 4.2.2), and invariants in the pre-state (Section 4.2.3) into axioms. We

also translate the invariant in question into a conjecture. If the resulting set of axioms

implies the conjecture, then the action correctly preserves the invariant. If axioms do not

imply the conjecture, a bug is reported as there exists a way for the action to invalidate

the invariant that is being verified. This recipe is changed depending on the theorem

prover (further discussed in Chapter 6), but this explanation suffices for the purpose of

this chapter.

A single translation that models all actions and all verifies all invariants at once is

feasible, but we decided to not take this approach for two reasons. First, this would

make identifying a detected bug difficult, as the theorem prover would show that an

action could break an invariant without specifying which invariant and which action

are the violators. Second, the resulting set of formulas would be rather large and if

a theorem prover were not able to terminate for any isolated action/invariant pair, it

65

Verification via First Order Logic Chapter 4

Account Contact

Taggable Commentable

Tag Comment

0..*
taggings

0..*
tags

1
commentable

0..*
comments

0..1
account

0..*
contacts

Figure 4.1: A data model schema example based on FatFreeCRM [36]

would probably not terminate if given all actions and invariants (depending on theorem

prover heuristics, it may be possible that this would instead terminate, though extremely

unlikely). Such a failure would provide no partial result to the developer. By partitioning

the problem and verifying each action/invariant or authorization property in isolation,

the developer can get results for everything successfully proven or falsified even if there

exist action/invariant pairs or authorization properties for which the theorem prover

produced no conclusive result.

In this section we frequently conjoin or disjoin a set of formulas. When a set of

conjoined or disjointed formulas is empty, we substitute the conjunction or disjunction

with their neutral elements (true and false respectively).

4.2.1 ADS Schema Translation

We will use the class diagram in Figure 4.1 as the running example in this subsection.

We assume to be given a data store DS = 〈C,L,A, I, R, P 〉.

Class translation. First, for each class c ∈ C, we define a unary predicate c that

semantically denotes whether its argument represents either an instance of that particular

class or an instance of any superclass.

Then we define axioms that enforce our type system. We define three groups of

66

Verification via First Order Logic Chapter 4

Predicates: Account, Contact, Taggable, Commentable, Tag, Comment, XTaggable, XCommentable.
∀o : Account(o)→ Taggable(o) ∧ Commentable(o) (1)

∀o : Contact(o)→ Taggable(o) ∧ Commentable(o) (2)

∀o : XTaggable(o)↔ Taggable(o) ∧ ¬Account(o) ∧ ¬Contact(o) (3)

∀o : XCommentable(o)↔ Commentable(o) ∧ ¬Account(o) ∧ ¬Contact(o) (4)

∀o : Account(o)→ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (5)

∀o : Contact(o)→ ¬Account(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (6)

∀o : XTaggable(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (7)

∀o : XCommentable(o)→ ¬Account(o) ∨ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (8)

∀o : Tag(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Comment(o) (9)

∀o : Comment(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) (10)

Figure 4.2: Axioms defining the class diagram in Figure 4.1 in classical FOL

axioms: inheritance axioms that define superclass relationships, instance axioms that

define predicates that we can use to denote that an object is an instance of a given class

(specifically not of a subclass), and membership axioms that define that every object is

an instance of at most one class.

Inheritance axioms define that objects of subclass types are also of superclass types.

For each class c ∈ C that has a non-empty superclass set superclass(c) = {p1, p2 . . . pk}

we generate an axiom:

∀o : c(o)→ p1(o) ∧ p2(o) ∧ · · · ∧ pk(o)

For example, given the model in Figure 4.1 this method produces Formulas (1) and (2)

in Figure 4.2.

Instance axioms constitute one axiom per class c ∈ C and serve to define instance

predicates cx. These predicates are used to express that an object is an instance of class

c, or more explicitly, of class c but not of any of c’s subclasses. Given {s1 . . . sk}, the

set of all direct subclasses of c (all classes s for which c ∈ superclass(s)), we generate an

67

Verification via First Order Logic Chapter 4

axiom:

∀o : cx(o)↔ c(o) ∧ ¬s1(o) ∧ · · · ∧ ¬sk(o)

Note that, if c has no subclasses, this axiom defines equivalence between c and cx. If this

is the case, as an optimization, we omit defining cx and use c instead. Given the model

in Figure 4.1 this creates Formulas (3) and (4) in Figure 4.2.

Membership axioms define that each object represents an instance of exactly one

class. Assuming that C = {c1 . . . ck}, for every class ci ∈ C, we create an axiom in order

to constrain that, if an object is an instance of class ci, it cannot be an instance of any

other class:

∀o : cix(o)→ ¬c1x(o) ∧ · · · ∧ ¬ci−1x(o) ∧ ¬ci+1x(o) ∧ · · · ∧ ¬ckx(o)

These formulas correspond to Formulas (5)-(10) in Figure 4.2.

The resulting number of generated formulas is linear in the number of classes, and so

is the size of these formulas.

Association translation. Similarly to objects, we use FOL universe elements to rep-

resent tuples. A convenient consequence of this approach is that it allows us to define

the creation and deletion of objects and tuples uniformly. We introduce unary predicates

is object and is tuple to distinguish whether a universe element represents an object or

a tuple. We define that no domain element can be both an object and a tuple.

For each association l ∈ L we introduce a unary predicate l(t) that returns true if

and only if t is representing a tuple that belongs to l.

In order to associate tuples with objects, for each association l ∈ L we define two

unary functions: originl(t) and targetl(t) such that t = 〈l, originl(t), targetl(t)〉.
68

Verification via First Order Logic Chapter 4

We enforce association cardinality constraints using formulas to limit the number

of tuples per origin/target object in a data store state. Note that we do not enforce

cardinality globally, but only in the action’s pre and post state. We do this because real

world applications often invalidate cardinality temporarily while an action is executing.

4.2.2 Action translation

Actions are the most complex part of ADS translation to FOL. We will first define

how states are represented in FOL, then define how object sets and boolean nodes are

translated to FOL. Only then do we have all the definitions necessary to define statements.

For brevity, we will not present the translation of all ADS nodes in Tables 2.1 and 2.2.

Here we only include the definitions of the most representative or interesting nodes.

States are translated to unary predicates that define which objects and tuples exist

in the state. For example, given a state predicate s, if s(x) then x is a domain element

representing either an object or a tuple that exists in state s.

Object set translation

Most ADS statement nodes manipulate or return object sets. An object set α repre-

sents a set of objects that share a common set of classes or superclasses.

Every object set α is translated into a formula Fα that has one free variable o. Object

sets inside loops are translated to formulas with more than one free variable, but for

simplicity, we will focus on object sets outside loops in the following discussion.

Fα evaluates to true if and only if the free variable o is assigned a universe element

that represents an object that belongs to the object set α. Object set formulas are meant

to be directly injected into formulas that quantify over these free variables, and use the

object set according to the statement’s semantics.

69

Verification via First Order Logic Chapter 4

For example, let us translate an object set node AllOf(c) to FOL. Let c be the type

predicate corresponding to the argument class, and let s be a predicate denoting the

state in which the object set is being evaluated. Then, the object set is defined simply

using the formula:

s(o) ∧ c(o)

meaning that domain element o represents a member of this object set if and only if it

exists in the current state s and is of class c. Note that o is the one free variable in this

formula.

As an another example, a Subset node semantically evaluates to an object set that is

a subset of its argument object set. Let β be the argument object set of a subset node

α. To translate a Subset node in state s, we introduce a new predicate subsetα(x) and

define an axiom:

∀x : subsetα(x)⇒ Fβ(x)

With this axiom, Fα(o) is translated as:

subsetα(o)

The resulting formula still has o as a free variable, meaning that it is a valid object

set formula. Notice that we enforced this subset function to be non-deterministic by not

having any rules on which o is included in the subset using subsetα(o).

More interesting are Assign and VarRead nodes. Note that this translation is done

after transforming the program to static single assignment that ensures that all variables

are defined once.

70

Verification via First Order Logic Chapter 4

The Assign node takes two arguments: a variable identifier v and object set node α.

It defines a predicate v that corresponds to the object set set α. It accomplishes this by

defining an axiom:

∀x : v(x)⇔ alpha(x)

After defining this predicate, the Assign node returns v(o) as its object set formula.

Variable read nodes VarRead take a variable v as an argument. When evaluated in

state s, they translate to the object set formula denoting all object that were assigned

to v and still exist in the current state:

v(x) ∧ s(x)

Boolean expression translation

Boolean expressions are translated to formulas that are embedded into statements,

similarly to object sets. Unlike object set formulas, these formulas do not have free

variables, unless inside a loop. Free variables are only introduced to facilitate loops, as

will be explained further down in this section.

For example, the IsEmpty statement node takes an object set as an argument and

evaluates to true if and only if the argument object set is empty. If object set α is this

argument, the node translates to formula:

∀x : ¬α(x)

As one more example, the ⊂ node accepts two object sets and is expected to evaluate to

true if and only if the first object set is a superset of the other. Let F1(o) and F2(o) be

71

Verification via First Order Logic Chapter 4

the translations of the two object sets. The ⊂ node translates to the formula:

∀o : F1(o)→ F2(o)

Translation of state migrations

Many ADS statement nodes migrate the data store state. Each state migration can

be represented as a set of pairs of states 〈s, s′〉 ⊆ DS×DS which semantically represent

possible state transitions by means of that statement node. For a statement node S and

two states s and s′, we will use [s, s′]S to denote that 〈s, s′〉 is a possible execution (state

transition) of S.

For example, let us translate a Delete statement node D that deletes objects from

an object set α, as well as all tuples associated with deleted objects. Assuming there

exists only one association between class t and other types, this statement node can be

translated as follows:

∀s, s′ ∈ DS ×DS :

[s, s′]D ⇔ (∀o : is object(o)⇒ (o ∈ s′ ⇔ o ∈ s ∧ ¬Fα(o)))

∧ (∀t : is tuple(t)⇒ t ∈ s′ ⇔ (t ∈ s ∧ ¬(Fα(originr(t)) ∨ Fα(targetr(t)))))

As an other example, consider a Block statement node B, which contains a sequence of

other statement nodes Ai for 1 ≤ i ≤ n for some n. Let statement node A1 transition

between states s and s1 if and only if [s, s1]A1 . The set of states that the sequence A1;A2

can transition to from s is equal to the union of all states that A2 can transition to from

any state s1 such that [s, s1]A1 . Therefore, ∀s, s′ ∈ DS ×DS : [s, s′]A1;A2 ⇔ (∃s1 ∈ DS :

72

Verification via First Order Logic Chapter 4

[s, s1]A1 ∧ [s1, s
′]A2). If we extrapolate this reasoning to the whole block B:

∀s, s′ ∈ DS ×DS : [s, s′]B ⇔ (∃s1, s2 . . . sn−1 ∈ DS × · · · ×DS :

[s, s1]A1 ∧ [s1, s2]A2 ∧ · · · ∧ [sn−1, s
′]An)

Loop translation. A ForEach loop statement (FE) is defined with three parameters:

the set of objects being iterated over, the variable containing the iterated value, and the

block of code that will be executed for each object in the object set. Let α be the object

set, v the variable, and B the block of code. Let |α| = n. By definition, the order of

iteration is non-deterministic.

Since B has access to the iterated object that is different for each iteration, executions

of B are affected by the iterated variable. Effectively, each iteration is a different state

transition: we use notation [s, s′]Bo to refer to a possible execution of an iteration executed

for object o. In this case, we refer to o as the trigger object. The formula defining the

FE loop is:

∀s, s′ ∈ DS ×DS : [s, s′]FE ⇔ ∃o1 . . . on ∈ α, ∃s1 . . . sn ∈ DS :

∀i, j ∈ [1 . . . n] : i 6= j ⇔ oi 6= oj∧ (1)

[s, s1]Bo1 ∧ [s1, s2]Bo2 ∧ · · · ∧ [sn−1, sn]Bon ∧ sn = s′ (2)

In words, a pair of states is an execution of a given loop FE if and only if there exists an

enumeration of objects from α and a sequence of states such that (1) the said enumeration

of objects is a permutation of α, and (2) the said sequence of states is achievable by

triggering iterations in the order of the object permutation.

There exists a corner case where an object that is about to trigger an iteration gets

deleted by a prior iteration. We did not include this corner case as part of the definition as

73

Verification via First Order Logic Chapter 4

it introduces considerable complexity, but the semantic is as follows: such an iteration will

still execute with an empty set iterator variable value. This behavior is in concordance

with our abstraction and the behavior of ORM tools when objects are deleted before

triggering iterations.

We take a closer look at the translation of loops in Chapter 5, and improve on it in

order to better facilitate verification.

4.2.3 Invariant Translation

Invariants are translated as boolean expressions. Unlike boolean expressions, invari-

ants can be translated twice: once in the pre-state of the action and, for the purpose of

data integrity verification, once in the post-state of the action. In the pre-state of an

action, we state that the conjunction of all invariants holds, defining that the pre-state

is consistent. We translate the invariant once again in the post-state if we are verifying

data integrity.

4.2.4 Access Control Verification

We want to use FOL theorem provers to verify that, regardless of the role of the

current user, all objects created, deleted or read by any possible execution of an action

are permitted for creation, deletion and reading, respectively. We generate a set of

authorization properties to express this expectation.

An authorization property is a tuple 〈a, op, c〉 that defines the expectation that ac-

tion a ∈ A correctly enforces the access control policy with respect to the operation

op ∈ {create, read, delete} for all objects of type c ∈ C. We generate an authorization

property for every action, every operation, and every class where the action might possi-

bly execute that operation on objects of that class. For example, we will not generate an

74

Verification via First Order Logic Chapter 4

authorization property for creating Articles in an action that never creates an Article, as

this authorization property is vacuously valid.

Our goal is to, given an authorization property 〈a, create, c〉, generate a formula

that verifies whether the access control policy is correctly enforced with regards to this

property. To do this we need to first express the set of objects created, deleted or read

by an action in FOL. We also need to translate permits to FOL. With these two, we

can express the expectation that all objects created, deleted or read by an action are

accepted by at least one permit in FOL.

Create, delete and read sets of an action. As a consequence of translating an

action to FOL using existing techniques [12], we have access to a predicate sc(o) that

determines whether object o of class c exists in the action’s pre-state s. Similarly, we

have access to a predicate s′c(o) that determines whether object o of class c exists in the

action’s post state s′. We can use these predicates to define new predicates createdc and

deletedc that identify objects of class c that have been created or deleted by an action:

∀o ∈ Oc : createdc(o)⇔ ¬sc(o) ∧ s′c(o)

∀o ∈ Oc : deletedc(o)⇔ sc(o) ∧ ¬s′c(o)

In order to identify all objects read by an action, we look for objects stored in any

variable whose name begins with @. In Rails, these variables are referred to by the view in

order to synthesize the response. When translating an action to FOL, after static single

assignment, every variable v corresponds to a predicate v(o) that determines whether an

object is stored in the variable. Formally, given an action a, class c, and a set of variables

75

Verification via First Order Logic Chapter 4

v1 . . . vi ∈ V that are of type c and whose name starts with @:

∀o ∈ Oc : readc(o)⇔ s′(o) ∧ (v1(o) ∨ · · · ∨ vi(o))

Translation of permits and permit acceptance. Given a permit p = 〈g, ops, e〉, a

specific operation op and state predicate s(o), we can generate a predicate pop,s(o) that

accepts objects o if and only if p[op, s, o]. This predicate should be satisfied by o if and

only if three conditions hold: op ∈ ops, the current user has a role in g, and o belongs to

the result of expression e in state s.

The first condition is the easiest to translate. If op 6∈ ops, this permit does not accept

o. We can at this point stop translating pop,s(o) to first order logic and declare that it

will accept no object o.

The second condition checks the role of the current user. In our FOL translation, each

role r ∈ R corresponds to a predicate r(o) where o ∈ OcU . Therefore, if g = {r1 . . . rk},

the second condition is r1(cU) ∨ · · · ∨ rk(cU).

Finally, we need to translate the expression e to FOL. All expressions e, in actions and

permits alike, translate to formulas with a single free variable x (denoted as f(x)) such

that f(x) is satisfied by all x that correspond to objects that the expression evaluates

to [12]. Therefore the third condition is directly defined as e(o).

With that in mind, we can define the permit predicate pop,s. If op 6∈ ops:

∀o ∈ Oc : ¬pop,s(o)

Otherwise:

∀o ∈ Oc : pop,s(o)⇔ (r1(oU) ∨ · · · ∨ rk(oU)) ∧ e(o)

76

Verification via First Order Logic Chapter 4

Translation of authorization properties. After defining the create, delete and read

sets of actions, as well as translating permits, we have all the tools we need to generate

FOL formulas that correspond to authorization properties. In order to check whether an

action is valid with regards to authorization property 〈a, create, c〉, we use the theorem

prover to check whether the following formula is implied from the definition of the action.

Let the set of permits P be {p1 . . . pk}:

∀o ∈ createdc(o) : p1 create,s′(o) ∨ · · · ∨ pk create,s′(o)

In other words, an action is valid with regards to authorization property 〈a, create, c〉

if and only if every object of class c created by a is accepted by at least one permit p:

p[create, s′, o].

We similarly define the condition for whether an action is valid with regards to au-

thorization properties 〈a, read, c〉 and 〈a, delete, c〉 as:

∀o ∈ readc(o) : p1 read,s′(o) ∨ · · · ∨ pk read,s′(o)

∀o ∈ deletedc(o) : p1 delete,s(o) ∨ · · · ∨ pk delete,s(o)

Note that, in accordance with our discussion in Section 2.3, the condition for deletedc(o)

refers to the pre-state, while the conditions for createdc(o) and readc(o) both refer to the

post-state.

4.3 Experimental Evaluation

We evaluated the tool on 19 open source Rails applications, presented in Table 3.4.

Chapter 3 discusses the approach and performance of model extraction, here we focus

77

Verification via First Order Logic Chapter 4

Verified Average Max Average False
Application

Properties Predicates Memory (Mb) Time (sec)
Verified Falsified Timeouts

Positives
Bugs

Avare 111 59 50 0.02 75 36 0 0 9
Bootstrap 4 15 2 0.00 3 1 0 0 1
Communautaire 216 35 3 0.00 208 2 0 6 1
Copycopter 66 47 46 0.01 66 0 0 0 0
Corm 5555 436 93 0.08 5432 88 9 26 35
FatFreeCRM 1134 192 7 0.02 1087 44 0 3 15
Fulcrum 240 40 4 0.01 233 7 0 0 4
Illyan 46 44 2 0.00 36 10 0 0 1
Kandan 173 34 4 0.01 160 13 0 0 4
Lobsters 774 201 69 0.77 753 13 4 4 10
Obtvse2 13 10 1 0.00 13 0 0 0 0
Quant 203 45 2 0.01 203 0 0 0 0
Redmine 5565 432 20 0.05 5542 12 5 6 7
S2L 310 124 6 0.02 230 70 0 10 12
Sprintapp 1079 96 29 0.03 1033 46 0 0 32
SquareSquash 828 175 9 0.03 824 4 0 0 4
Tracks 1053 88 286 0.23 1036 13 3 1 6
Trado 724 278 50 0.43 638 78 2 6 20
WM-app 418 117 5 0.01 418 0 0 0 0
Total 18512 317.38 286 0.11 17990 437 23 62 161

Table 4.1: Verification experiments summary

only on verification of extracted models.

4.3.1 Verification details and identified bugs

Our tool verifies each extracted ADS specification using Spass [107] and Z3 [25] for

theorem proving. First we translate action/invariant pair (or authorization property) to

FOL. These FOL formulas are sent both to Z3, an SMT solver, and Spass, a FOL theorem

prover. We express our FOL theorems in SMT using problem group UF, which includes

free quantification, free sorts and uninterpreted functions. Z3 checks satisfiability, so

when we construct a formula to be sent to Z3, if a satisfying model exists for the formula,

then there exists an execution of the action violates data integrity (or the access control

policy). If, on the other hand, Z3 reports that the formula is unsatisfiable, then we

can conclude that the action correctly enforces data integrity (or access control). Spass,

on the other hand, checks whether a conjecture implies from a set of axioms. This

conjecture is a formula that defines that data integrity is preserved (or authorization

property correct). If Spass reports that the conjecture implies from the axioms, then

78

Verification via First Order Logic Chapter 4

we can conclude that no execution that violates data integrity (or the access control

policy) exists. However, if Spass reports that the conjecture does not always imply from

the axioms, then we can conclude that an execution that violates data integrity (or the

access control policy) exists.

Note that FOL is undecidable in general. We generate formulas without restrictions

on quantification nesting, without a bound on the number of arguments for predicates,

and without a bound on the domains. The formulas we generate are not in a decidable

fragment of FOL that we could find. This implies that Z3 and Spass may not be able to

produce a conclusive result for some of the formulas we generate.

We use Z3 and Spass concurrently, waiting for either theorem prover to produce a

result, after which the other prover is terminated. In our experiments we observed that

Z3 is faster and is more likely to report conclusive results for the formulas we generate.

We will compare these theorem provers directly in Section 6.4. In this chapter, we focus

on the overall results of our approach.

Table 4.1 shows the verification results we produced. These experiments were run

on a computer with an Intel Core i7-6850K processor, with 128GB RAM, running 64bit

Linux. We run a total of 12 processes concurrently to cover the experimental set.

Column Verified Properties shows the number of action/invariant pairs and authoriza-

tion properties generated from the application. Each of these properties is translated to

FOL and verified independently. Column Average Predicates shows the average number

of predicates in FOL formulas we generated. Corm and Redmine have the highest num-

ber because their schemas are the most complicated, increasing the number of predicates

and axioms needed to specify it.

Column Max Memory (Mb) shows the maximum memory a theorem used to produce

a conclusive result. Column Average Time (sec) shows the average time it took before a

theorem prover (Z3 or Spass) took to deduce a conclusive result. Columns Verified, Fal-

79

Verification via First Order Logic Chapter 4

sified, Timeouts and False Positives refer to the number of properties that were verified,

falsified, timed out, or that reported a bug that we found not to be an actual bug.

From a total of 18512 properties, we verified 17990 to be correct. 437 of properties

failed verification, which we manually traced to actual bugs in the application. 23 prop-

erties timed out for both theorem provers, and there were 62 false positives which were

manually confirmed not to be actual bugs.

These false positives are due to the impreciseness of our extraction method. Specif-

ically, we do not differentiate objects that are saved to the database from those that

are not. Sometimes actions create objects that are not saved to the database, either to

provide to the view or to process data, and sometimes these objects would invalidate the

database if saved. These false positives could be avoided if the extraction method were

made more precise.

Finally, column Bugs lists the number of distinct bugs we identified based on falsified

properties. Often, addressing one falsified property will fix other falsified properties too.

For example, if the access control policy is deficient, fixing the access control policy might

fix more than one falsified property (one for each action).

Our criterion for determining which falsified properties correspond to distinct bugs

is based on the fix required to address the falsified property. For example, if multiple

falsified properties can be fixed with a single controller-level change, we consider all

those falsified properties to correspond to the same bug. As another example, if multiple

falsified properties can be fixed on the level of the model class, we consider all those

falsified properties to refer to the same bug. We manually analyzed all the falsified

properties based on this criterion, and based on our analysis, we identified 161 bugs that

correspond to 437 falsified properties.

80

Verification via First Order Logic Chapter 4

Data integrity bugs. We discussed some of these bugs in Section 1.1. This list is not

exhaustive, but it shows a few bugs that we found.

In Tracks, one bug we found showed that it is possible to orphan an instance of a

Dependent class. This stems from the way the ProjectController deletes a Project; it cleans

up all Project’s Todos, but does not clean up the Dependencies of deleted Todos. The other

bug is caused when a User is deleted using the UsersController. All Projects of the User

are deleted, but Notes of deleted Projects remain orphaned.

In FatFreeCRM, one of the bugs we found relates to Permission objects. These objects

define permissions for either User or Group objects. Our tool has shown that it was possible

to have a Permission without associated User or Group objects. The other bug relates to

Todo objects being orphaned when a User is deleted.

Access control bugs. There are 11 actions in CoRM that violate the access control

policy in a total of 26 different ways. In AccountsController and ContactsController,

destroy actions can be used to, as a side-effect, delete Tasks and Aliases. The policy

explicitly forbids the superuser role from deleting these objects, yet superusers are allowed

to execute these actions. Furthermore, none of the actions in the Emails controller ever

checks policies, accounting for several access control violations. The same holds for the

Imports controller mentioned in Section 1.1.

Our tool found 4 access control violations in SprintApp, all ultimately caused by

poor communication between CanCan and ActiveAdmin, a library SprintApp uses for

action generation. In SprintApp, ActiveAdmin pre-loads data relevant to the action,

and CanCan subsequently authorizes operations on this data. However, in four actions,

CanCan fails to capture the pre-loaded objects and proceeds to authorize the action

ignoring pre-loaded objects. ActiveAdmin then proceeds with the pre-loaded objects

that were not correctly authorized. Using this exploit, any user can access the private

81

Verification via First Order Logic Chapter 4

information of any user and change their information including their password. What is

specifically interesting about this bug is that it is not caused by a developer error, but

by a configuration error. The action and the controller source code both look like they

authorize data correctly.

There is a total of 10 policy violations in Kandan. The policy does not refer to

Attachment and Activity classes, implicitly disallowing operations on them. However,

the policy is never checked with regards to these classes. Semantically all operations

should be allowed on them, and as such, this represents a deficient policy.

Quant uses a simple access control policy. There is only one user group, and every user

can access only their own objects. This policy is simple enough to correctly be enforced

using automated checks that are present in every controller. As such, this application

has no access control violations.

Trado is an e-commerce platform, letting users browse items, add them to their carts

and place orders. However, the policy only mentions a few of these classes, most notably

not mentioning Orders and order-related classes at all. In addition, it attempts to enforce

this policy in only a few controllers, and as such is enforced inconsistently. For the sake

of consistency we categorized these errors as policy errors as the policy is too sparse to

be usable, however, even a more complete policy wouldn’t be correctly enforced on the

application as-is. The policy and the enforcement of the policy are both amateurish, but

show that our tool is useful for detecting basic errors in addition to esoteric ones.

Other applications that utilized access control have numerous access control bugs

in them, but these applications are typically developed by beginners and abandoned

mid-development. Wm-app has no bugs or policy errors, and is a nice example of how

automated access control can be used correctly and uniformly. All applications other than

Wm-app and Illyan that utilized access control had errors either in the access control

policy or access control enforcement.

82

Chapter 5

Coexecutability

In Chapter 4 we demonstrated that one can check invariants about the data store by

translating verification queries about actions to satisfiability queries in First Order Logic

(FOL), and then using an automated FOL theorem prover to answer the satisfiability

queries. However, due to undecidability of FOL, an automated theorem prover is not

guaranteed to come up with a solution every time, and sometimes it may timeout without

providing a conclusive result.

In our experience, actions that have loops in them are the most difficult to check

automatically. In general, verification of code that contains loops typically requires man-

ual intervention where the developer has to provide a loop invariant in order to help the

theorem prover in reasoning about the loop. This reduces the level of automation in the

verification process and, hence, its practical applicability. Otherwise, unrolling the loop

a finite number of times fully automatic but makes verification unsound.

Automated reasoning about loops is difficult since it is necessary to take into ac-

count many possible intermediate states that can appear during the loop execution. In

this chapter, we present a fully automated technique that significantly improves the

83

Coexecutability Chapter 5

1 class PostsController

2 def destroy_tags

3 ...

4 posts = Post.where(id: params[:post_ids])

5 ...

6 posts.each do |p|

7 p.tags.destroy_all!

8 end

9 ...

10 end

11 end

Figure 5.1: An example action

verifiability of actions with loops. Here we define coexecution, an alternative definition

of iterative loops which, while intuitively similar to parallel or concurrent execution,

does not correspond to an execution on actual hardware. It is a concept we introduce

specifically to make verification easier. We call a loop coexecutable if coexecution of its

iterations is equivalent to their sequential execution. We present an automated static

analysis technique that determines if a loop is coexecutable. We also developed a cus-

tomized translation of coexecutable loops to FOL that exploits the coexecution semantics

and improves verifiability.

5.1 Coexecution overview

Figure 5.1 presents an example Rails action. This action deletes all Tag objects

associated with a set of Post objects. The set of Post objects that are chosen by the

user are assigned to a variable called posts in line 4. Then, using a loop (lines 6 to 8)

that iterates over each Post object in posts (with the loop variable p), all Tag objects that

are associated with such p are deleted.

A data store invariant could be that each Tag object in the data store is associated

with at least one Post object. In order to verify such an invariant, we need to prove that

each action that updates the data store (such as the one shown in Figure 5.1) preserves

84

Coexecutability Chapter 5

{p1, p2, p3, t1, t2, t3,
⟨p1, t1⟩, ⟨p2, t1⟩, ⟨p2, t2⟩, ⟨p3, t2⟩}

{p1, p2, p3, t3}

{p1, p2, p3, t3}

{p1, p2, p3, t2, t3, ⟨p2, t2⟩, ⟨p3, t2⟩}

Iteration execution for p1
Delta: remove{t1, ⟨p1, t1⟩, ⟨p2, t1⟩}

Iteration execution for p2
Delta: remove{t2, ⟨p2, t2⟩, ⟨p3, t2⟩}

Iteration execution for p3
Delta: empty

Figure 5.2: Example of sequential execution

the invariant.

Actions with loops are especially hard to verify when translated to FOL. Upon looking

at deduction logs of our theorem prover, we noticed that it was often getting stuck while

reasoning about states between subsequent iterations. Since the number of iterations is

unbounded and theorem provers attempt to enumerate dependencies between iterations,

even loops with empty bodies can cause inconclusive results. We observed that most

iterative loops seen in web applications can be modeled in a way that does not require

iteration interdependency. In such cases, it is possible to translate the loops to FOL in

a way that is more amenable to verification. We call this alternate execution model for

loops that removes iteration interdependency coexecution.

Consider the action shown in Figure 5.1. Assume that the initial data store state

contains three Post objects p1, p2 and p3 and three Tag objects t1, t2 and t3, with

the following associations: 〈p1, t1〉, 〈p2, t1〉, 〈p2, t2〉, 〈p3, t2〉. Also, assume that the loop

iterates on all the Post objects in the order p1, p2, p3 (i.e., the variable posts is the ordered

collection of p1, p2, p3).

85

Coexecutability Chapter 5

{p1, p2, p3, t1, t2, t3,
⟨p1, t1⟩, ⟨p2, t1⟩, ⟨p2, t2⟩, ⟨p3, t2⟩}

{p1, p2, p3, t1, t2, t3,
⟨p1, t1⟩, ⟨p2, t1⟩, ⟨p2, t2⟩, ⟨p3, t2⟩}

Delta union: remove{t1, t2,
⟨p1, t1⟩, ⟨p2, t1⟩, ⟨p2, t2⟩, ⟨p3, t2⟩}

{p1, p2, p3, t1, t3, ⟨p1, t1⟩, ⟨p2, t1⟩}

{p1, p2, p3, t3}

{p1, p2, p3, t2, t3, ⟨p2, t2⟩, ⟨p3, t2⟩} {p1, p2, p3, t3}

Iteration execution for p1
Delta: remove{t1, ⟨p1, t1⟩, ⟨p2, t1⟩}

Iteration execution for p2
Delta: remove{t1, t2, ⟨p1, t2⟩,
⟨p2, t1⟩, ⟨p2, t2⟩, ⟨p3, t2⟩}

Iteration execution for p3
Delta: remove{t2, ⟨p2, t2⟩, ⟨p3, t2⟩}

Delta union

Figure 5.3: Example of coexecution

Given this initial state, the standard sequential execution semantics of the loop in

lines 6 to 8 in Figure 5.1 is shown in Figure 5.2 where gray rectangles with rounded

corners denote states of the data store, and solid line arrows denote iteration executions.

The first iteration, executed for Post p1, deletes all Tags of p1 and their associations.

We identify the operations executed by this iteration and summarize them as a delta

of this operation (i.e., the changes in the data store state caused by this operation).

The first iteration removes t1 and all associations of t1 (〈p1, t1〉 and 〈p2, t1〉). Similarly,

the second iteration deletes all Tags of p2, resulting in a delta that removes t2, 〈p2, t2〉

and 〈p3, t2〉. Finally, the third iteration does not alter the data store state as p3 is not

associated with any Tags at that point.

Figure 5.3 demonstrates the alternate coexecution semantics for the same loop. In-

stead of executing iterations sequentially to reach the post-state, we first identify the

delta for each iteration directly from the pre-state, in isolation from other iterations. As

expected, the first iteration (the one for p1) is identical to the one from Figure 5.2. How-

ever, the iteration for p2 deletes all Tags of p2, its delta removing t1 and t2 and all their

associations. Note that this delta is different from the delta of the sequential execution

iteration for p2 shown in Figure 5.2. Similarly, the iteration for p3 deletes t2 and all

86

Coexecutability Chapter 5

associations whereas sequential execution for p3 produced an empty delta. The deltas

of these independent executions are combined together using the delta union operation,

which in this case returns a union of all the delete operations (we formally define the

deltas and the delta union operation in Section 5.2). In this example, the unified delta

removes t1, t2 and their associations. Finally, we use the unified delta to migrate from

the pre-state to the post-state in one step, reaching the same post-state we acquired using

sequential execution as shown in Figure 5.3. We call this one step execution semantics

based on the unified delta, coexecution.

For some loops, based on the dependencies among loop iterations, coexecution will

yield a different result than sequential execution. However, coexecution is equivalent

to sequential execution for some classes of interdependencies. Note that, in our exam-

ple, iterations are interdependent (since the p1 iteration prevents the p2 iteration from

deleting t1 and its associations), and yet coexecution and sequential execution produce

identical results. In Section 5.2.4, we formally define the Coexecutability Condition that,

if true for a given loop, guarantees that coexecution of the loop is equivalent to sequential

execution of iterations. In Section 5.3 we implement this condition as a static program

analysis, and based on this analysis we are able to translate loops to FOL in a manner

that is more amenable to verification.

Remember that we assume that actions that update the data store are executed as

transactions. The database ensures that actions do not interfere with one another during

runtime. Effectively, all actions can be considered to execute within atomic blocks, and

hence, so are the loops we are verifying. This gives us to freedom to model operations

within a loop in any order, or no specific order at all as is the case with coexecution, as

long as the final effects of this alternative loop execution are identical to the effects of

sequential execution.

87

Coexecutability Chapter 5

1 class Class {

2 0+ RelatedClass related_objects

3 }

4 class RelatedClass {

5 0+ Class origin_objects inverseof related_objects

6 }

7
8 action delete_related(0+ Class objects) {

9 foreach o: objects {

10 delete o.related_objects

11 }

12 }

Figure 5.4: Unparallelizable but coexecutable loop

5.1.1 Coexecution vs Parallel Execution

Coexecution intuitively resembles parallel execution, but is fundamentally different.

First and foremost, concurrency is well known to be more difficult to verify than single

threaded execution [35]. Modeling concurrent execution of iterations would make verifica-

tion even less feasible, which is contrary to our goal. To illustrate the difference between

parallel execution and coexecution, we present a loop with coexecutable iterations that

are not parallelizable in Figure 5.4 and a loop with parallelizable iterations that are not

coexecutable in Figure 5.5.

The loop in Figure 5.4 demonstrates how exclusivity of domains touched by iterations

(the condition for parallelization) is too strict a condition for our purpose. This data store

has two classes Class and RelatedClass, whose objects can be associated with many-to-

many cardinality. The action takes a set of any number of Class objects as an argument

objects (line 8), iterates over this set and deletes all associated objects (lines 9-11).

We observe that this loop could be coexecuted, implying simultaneous deletion of all

RelatedClass objects that are related to at least one object in the objects set. However,

these iterations are not parallelizable because multiple iterations may attempt to delete

the same objects (in case any two distinct objects in objects are associated with the same

RelatedClass object).

88

Coexecutability Chapter 5

1 class Class1 {}

2 class Class2 {}

3

4 action delete_class2_if_no_class1 {

5 foreach ... {

6 if not isempty(allof(Class1)) {

7 delete allof(Class1)

8 } else {

9 delete allof(Class2)

10 }

11 }

12 }

Figure 5.5: Parallelizable but not coexecutable loop

It is a well known result that, if operations are atomic and commutative, then they are

also parallelizable [91]. Figure 5.5 demonstrates a loop whose iterations are commutative

but whose coexecution could yield a different result then any sequential execution.

The set of objects iterated upon is irrelevant for the purposes of this demonstration

(line 5), and let us assume the iteration will be executed more than one time. Each

iteration tests whether objects of class Class1 exist or not (line 6). If they exist, they are

deleted in line 7. Otherwise, all objects of class Class2 are deleted (line 9).

These iterations are commutative, as the same result is achieved for any order of

iterations. For all sequential executions of more than one iteration, this loop will delete

all objects of classes Class1 and Class2.

However, coexecution of these iterations produces a different result. If we were to

execute all iterations in isolation from a pre-state that contains an object of class Class1,

then all isolated iteration executions delete the objects of Class1. Combining these iso-

lated operations into one operation produces the same operation as they include nothing

but deleting objects of Class1, and applying this combined operation on the pre-state

leaves objects of Class2 existing.

89

Coexecutability Chapter 5

5.2 Formalization

Here we formally define coexecution. We also give a condition under which coexecu-

tion is equivalent to sequential execution, and we call this property coexecutability. Note

that multiple iterations of a loop correspond to repeated sequential execution of the loop

body.

In order to simplify our presentation, we will discuss how any two statements A and

B can be coexecuted (which, for example, can represent the execution of the same loop

body twice for different values of the iterator variable). This discussion can be extended

to coexecution of any number of statements, and, hence, is directly applicable to loops

by treating iterations of a loop as separate statements.

For brevity and simplicity, we will assume that the data store we reason about contains

only one class called Class and only one association called association that associates

objects of type Class with objects of type Class with many-to-many cardinality. This

allows us to use minimal notation for data-store states, avoiding the need to explicitly

provide type information. For example, the state {a, b, c, 〈a, b〉, 〈a, c〉} contains exactly

three objects of type Class, as well as two tuples of the association type that associate

object a with the other two.

As we discussed earlier, given two statements A and B, their sequential composition

A;B is defined by the sequential execution formula below:

∀s, s′ ∈ DS ×DS : [s, s′]A;B ⇔ ∃si : [s, si]A ∧ [si, s
′]B (1)

5.2.1 Execution Deltas

In order to define coexecution, we first need to define a way to express the effects of

executing statements. Without loss of generality, assume that the set of role assignments

90

Coexecutability Chapter 5

is immutable. Let us define a structure 〈Oc, Tc, Od, Td〉 for that purpose: Oc and Tc are

sets of objects and tuples, respectively, that are created by a given execution, and Od

and Td are sets of objects and tuples, respectively, that are deleted by a given execution.

Let us call this structure the delta of an execution.

Given an execution from state s to s′, we denote the delta of this execution as s′	 s.

For example, if given two states s1 = {a, b, 〈a, b〉} and s2 = {a, b, c}, then s2 	 s1 =

〈{c}, {}, {}, {〈a, b〉}〉 and s1 	 s2 = 〈{}, {c}, {〈a, b〉}, {}〉.

A delta is consistent if and only if its corresponding create and delete sets are mutually

exclusive, i.e.,

Oc ∩Od = Tc ∩ Td = ∅ ∧

(∀t = 〈oo, ot〉 ∈ Tc : oo 6∈ Od ∧ ot 6∈ Od) ∧

(∀t = 〈oo, ot〉 ∈ Td : oo 6∈ Oc ∧ ot 6∈ Oc)

In order to combine the changes done by different executions, we introduce the union (∪)

of two deltas:

∀δ1 = 〈Oc1, Tc1, Od1, Td1〉, δ2 = 〈Oc2, Tc2, Od2, Td2〉 :

δ1 ∪ δ2 = 〈Oc1 ∪Oc2, Tc1 ∪ Tc2, Od1 ∪Od2, Td1 ∪ Td2〉

We will use this operation to merge the changes done by independently executed state-

ments. Note that the result of the union operation may not be a consistent delta even if

all the arguments were individually consistent. We call deltas conflicting if and only if

their union is not consistent.

91

Coexecutability Chapter 5

5.2.2 Delta Apply Operation

We will introduce the apply operation, that takes a state s and a consistent delta δ

and updates the state as dictated by the delta. The result is a new state that contains

all objects and tuples that existed in s and were not deleted by δ, and all objects and

tuples created by δ. In addition, whenever an object is deleted, all the tuples referring

to that object are deleted as well. The apply operation maps a state and a consistent

delta into a state, and we use the ⊕ operator to denote this operation. Formally, given

a state s and a consistent delta δ = 〈Oc, Tc, Od, Td〉:

∀s = 〈O, T, U〉 ∈ DS, s′ = 〈O′, T ′, U ′〉 ∈ DS : s′ = s⊕ δ ⇔

(∀o : o ∈ O′ ⇔ (o ∈ O ∨ o ∈ Oc) ∧ o 6∈ Od) ∧

(∀t = 〈l, oo, ot〉 : t ∈ T ′ ⇔ (t ∈ T ∨ t ∈ Tc) ∧ t 6∈ Td ∧ oo ∈ O′ ∧ ot ∈ O′)∧

U = U ′

For example, given a state s = {a, b, c, 〈a, b〉} and a delta δ = 〈{c}, {b}, {〈a, c〉}, {}〉,

s ⊕ δ = {a, c, 〈a, c〉}. Notice how the creation of object c was idempotent given that s

already had that object, and that deletion of object b implied that all tuples related to

b were deleted as well.

We can observe that ∀s, s′ ∈ DS ×DS : s′ = s⊕ (s′ 	 s). This follows directly from

the definition, as s′ 	 s will create all entities (objects and tuples) in s′ that are not in s

and delete all the entities that are part of s and not s′.

Lemma 1 Given any two non-conflicting deltas δ1 and δ2:

∀s ∈ DS : (s⊕ δ1)⊕ δ2 = s⊕ (δ1 ∪ δ2)

92

Coexecutability Chapter 5

This lemma follows directly from definitions of delta union and the apply operation. For

simplicity we will limit the proof to objects, but the same proof can be extended to cover

tuples.

Given a state s = 〈O, T, U〉, non-conflicting deltas δ1 = 〈Oc1, Tc1, Od1, Td1〉 and δ2 =

〈Oc2, Tc2, Od2, Td2〉, and post-states ss = 〈Os, Ts, Us〉 = (s⊕δ1)⊕δ2 and sp = 〈Op, Tp, Up〉 =

s⊕ (δ1∪ δ2), we proceed to show that any object in ss must be in sp, and that any object

in sp must be in ss.

∀o ∈ Os : (o ∈ O ∧ o 6∈ Od1 ∧ o 6∈ Od2) ∨

(o ∈ Oc1 ∧ o 6∈ Od2) ∨ o ∈ Oc2

⇒ ∀o ∈ Os : (o ∈ O ∧ o 6∈ Od1 ∧ o 6∈ Od2) ∨

(o ∈ Oc1 ∨ o ∈ Oc2)

Because these deltas are non-conflicting, (o ∈ Oc1 ∨ o ∈ Oc2) ⇒ (o 6∈ Od1 ∧ o 6∈ Od2).

Joining this implication with the previous formula:

∀o ∈ Os : (o ∈ O ∧ o 6∈ Od1 ∧ o 6∈ Od2)∨

((o ∈ Oc1 ∨ o ∈ Oc2) ∧ o 6∈ Od1 ∧ o 6∈ Od2)

⇒ ∀o ∈ Os : (o ∈ O ∨ o ∈ Oc1 ∨ o ∈ Oc2) ∧ o 6∈ Od1 ∧ o 6∈ Od2

⇒ ∀o ∈ Os : (o ∈ O ∨ o ∈ Oc1 ∪Oc2) ∧ o 6∈ Od1 ∪Od2

⇒ ∀o ∈ Os : o ∈ Op

93

Coexecutability Chapter 5

s

si

si ⊖ s

s'

s' ⊖ si

s

sA ⊖ s sB ⊖ s

sA sB

s

s'

(sA ⊖ s) U (sB ⊖ s)
U

Figure 5.6: Sequential execution vs. coexecution

The inverse implication also holds:

∀o ∈ Op : (o ∈ O ∨ o ∈ Oc1 ∪Oc2) ∧ o 6∈ Od1 ∪Od2

⇒ ∀o ∈ Op : (o ∈ O ∧ o 6∈ Od1 ∧ o 6∈ Od2)∨

(o ∈ Oc1 ∧ o 6∈ Od2) ∨ o ∈ Oc2

⇒ ∀o ∈ Op : o ∈ Os

A consequence of this property is that the delta apply operation is commutative for

non-conflicting deltas (as delta union is trivially commutative).

5.2.3 Coexecution

Coexecution of two statements A and B, which we denote as A|B, means finding the

deltas of independent executions of both statements starting from the pre-state, finding

the union of those deltas, and applying the union to the pre-state. This is visualized in

Figure 5.6, similar to Figures 5.2 and Figures 5.3 but applied to two generic states and

any two statements A and B. Formally,

∀s, s′ ∈ DS ×DS : [s, s′]A|B ⇔ ∃sA, sB ∈ DS ×DS :

[s, sA]A ∧ [s, sB]B ∧ s′ = s⊕ ((sA 	 s) ∪ (sB 	 s)) (2)

94

Coexecutability Chapter 5

Notice that coexecution, because of the delta apply operation, is defined only if no two

possible deltas from the pre-state via statements A and B are conflicting.

For example, if statement A adds a new object to a state, and statement B deletes

all tuples from a state, executing these statements from the state s = {a, b, 〈a, b〉} inde-

pendently will yield the following states:

sA = {a, b, c, 〈a, b〉}, sB = {a, b}

Therefore

sA 	 s =〈{c}, {}, {}, {}〉

sB 	 s =〈{}, {}, {}, {〈a, b〉}〉

(sA 	 s) ∪ (sB 	 s) =〈{c}, {}, {}, {〈a, b〉}〉

and, the coexecution A|B will result in the following state:

s⊕ ((sA 	 s) ∪ (sB 	 s)) ={a, b, c}

which is the same state to which sequential execution of A and B would transition from

s, which means that A and B are coexecutable.

5.2.4 Coexecutability Condition

Not all statements are coexecutable since coexecution requires non-conflicting deltas,

and even if their deltas are not conflicting, the result of coexecution may not be equal to

the result of sequential execution. Below we define a coexecutability condition, such that,

given any two statements A and B, if A and B satisfy the coexecutability condition, then

95

Coexecutability Chapter 5

their sequential execution is always equivalent to their coexecution.

We have already shown that, given two non-conflicting deltas, applying them se-

quentially is equivalent to applying their union. Therefore, [s, s′]A|B if and only if

∃sA, sB ∈ DS × DS : [s, sA]A ∧ [s, sB]B ∧ s′ = (s ⊕ δ(sA 	 s)) ⊕ δ(sB 	 s). This view

of coexecution gives us a candidate for the coexecutability condition: If the set of deltas

achievable from s via B is equal to the set of deltas achievable from si via B for any si

where [s, si]A, coexecution and sequential execution are equivalent.

This condition, while valid, is too restrictive. For example, let us consider the state-

ment that deletes all objects of a particular class. Let both A and B be this statement,

corresponding to the case of executing this statement twice in a row. Since both A and

B always transition from s to an empty state, there is only one delta achievable from s

and it will delete all contents of s. When we look at the sequential execution formula (1),

the only state si such that [s, si]A is an empty state si = ∅. Subsequently, the only delta

achievable from an empty state si via B is an empty delta. Hence, the deltas achievable

from si via B are different from the deltas achievable from s via B (assuming s is not

itself empty). If we were to use the coexecutability condition mentioned above, we would

conclude that these two statements are not coexecutable. However, these two statements

are indeed coexecutable. During coexecution both deltas from s via A and B will delete

all contents of s, the union of these deltas will do the same, and the result of applying

this delta union to s will yield an empty post-state which is equivalent to the result of

sequential execution.

The reason why these delete-all statements A and B are coexecutable is that the only

thing preventing B from achieving the same deltas from s and si is that A does part of

B’s work while transitioning from s to si. B’s intent to delete all objects is not altered

by A’s operations. We will now proceed to define a condition under which a statement’s

behavior is affected by execution of another statement.

96

Coexecutability Chapter 5

Statement Reads, Creates and Deletes

We model each statement as a set of (potentially non-deterministic) state transitions.

This definition of statements is very general and widely applicable, but makes it difficult

to identify a statement’s read set. We need to have access to a statement’s read set in

order to reason about interdependencies of statements. In the remainder of this subsec-

tion we define how to infer a statement’s read, create and delete sets from its transition

set.

Note that these definitions are different from the definitions we introduced for the

purpose of access control verification in Chapter 4. More specifically, before by read we

refer only to data that is directly exposed to the user via the view. Here we refer to

a more general operation of loading data from the database inside a single statement,

regardless of the purpose.

First, we define what it means for a delta set ∆ to cover a given statement A from a

given set of states S = {s1, s2 . . . sn}:

cover(∆, A, S)⇔(∀s ∈ S, s′ ∈ DS : [s, s′]A ⇒ (∃δ ∈ ∆ : s′ = s⊕ δ))

∧ (∀s ∈ S, δ ∈ ∆ : [s, s⊕ δ]A)

I.e., a set of deltas ∆ covers a statement A from a set of states S if and only if every

state transition achievable from any state in S via A is achievable from the same state

via some delta in ∆, and any transition achievable from any s ∈ S via any delta in ∆ is

a transition of A.

A delta cover precisely describes all possible executions of a statement from a set of

states using a single set of deltas. Intuitively, the existence of a delta cover shows that

the given statement does not need to distinguish between the covered states in order to

97

Coexecutability Chapter 5

decide how to proceed with execution.

Note that this does not mean that ∆ is the collection of all deltas achievable from

states in S via A. We can demonstrate this by considering a delete-all statement with

S = DS, and ∆ containing a single delta that creates no entities and deletes all entities

that exist in any state in DS. In this particular case, the delta in ∆ is different than any

delta achievable from any finite s ∈ S via A, yet it is true that this ∆ covers A from S.

We can now define what it means for a statement A to read an entity e:

reads(A, e)⇔ ∃s ∈ DS : ¬∃∆ ⊆ DS∆ : cover(∆, A, {s ∪ {e}, s \ {e}})

This means that A reads e if and only if there exists a pair of states s ∪ {e} and s \ {e}

that cannot be covered by any ∆ for the statement A. This implies that A’s actions are

dependent on e’s existence in some way, for example if it is deciding whether to delete

or not delete some object other than e based on e’s existence. I.e., if statement A reads

entity e, then in order to describe the behavior of A, we need to specifically refer to e.

Based on this definition, a delete-all statement does not read any entity e because,

for any two states s∪{e} and s\{e} for any state s, there exists a ∆ that covers it: ∆ =

{〈{}, {}, objects of (s∪{e}), tuples of (s∪{e})〉}. Hence, using this definition, we are able

to infer that two delete-all statements that are executed back to back are coexecutable,

although in sequential execution, behavior of the second delete-all statement changes (it

becomes a no-op) due to the presence of the first delete-all statement.

We can also define what it means for a statement A to create or delete an entity

similarly:

creates(A, e)⇔ ∃s, s′ ∈ DS : [s, s′]A ∧ e 6∈ s ∧ e ∈ s′

deletes(A, e)⇔ ∃s, s′ ∈ DS : [s, s′]A ∧ e ∈ s ∧ e 6∈ s′

98

Coexecutability Chapter 5

Recall that, since we are abstracting away the basic types, any update to the data store

state consists of creation and deletion of entities (i.e., objects and associations).

Coexecutability Condition Definition and Proof

We can now define the coexecutability condition and our main result:

Theorem 1 Given two statements A and B, if the following condition holds:

∀s ∈ DS, ∀e ∈ s : (reads(A, e)⇒ ¬creates(B, e) ∧ ¬deletes(B, e))

∧(creates(A, e)⇒ ¬reads(B, e) ∧ ¬deletes(B, e))

∧(deletes(A, e)⇒ ¬reads(B, e) ∧ ¬creates(B, e))

then coexecution of A and B is equivalent to their sequential execution (i.e., ∀s, s′ ∈ DS :

[s, s′]A;B ⇔ [s, s′]A|B). In other words, A and B are coexecutable.

The proof of the above theorem is tedious due to the differences between objects and

tuples and how they depend on one another (e.g., deleting an object deletes all associated

tuples, and creating a tuple that is associated with a non-existing object is impossible

etc.). In order to simplify the proof, without loss of generality, we will outline the proof

by focusing only on the creation and deletion of objects.

First, the condition in Theorem 1 implies that no statement can delete an object

that can be created by the other. Therefore the deltas from any s via A and B are not

conflicting, and coexecution is always defined.

Let us take any two states s and s′ and assume that there exists a state sA such that

[s, sA]A.

Let us consider any object oc that is created by sA	 s. All objects created by sA	 s

are not read by B. Therefore, there exists a delta cover ∆ that describes all transitions

99

Coexecutability Chapter 5

from s∪ {oc} and s \ {oc} via B. Since sA	 s is creating oc we know that oc 6∈ s, so this

delta cover describes all transitions from s and s ∪ {oc} via B.

Let us inspect every member of such a delta set ∆. If any δ ∈ ∆ creates anything in

s then this operation is always redundant for states s and s∪{oc}, so we can remove this

operation and still have a delta cover of B over {s, s ∪ {oc}}. We can similarly remove

all deletions of all objects outside s ∪ {oc} as redundant operations. Since oc cannot be

deleted by B, we know that this trimmed delta cover does not delete anything outside s.

From the definition of a delta cover it follows that the resulting trimmed delta cover is,

in fact, precisely the set of all deltas achievable from s via B.

Similar reasoning can be followed for any object od that is deleted by sA	s. It follows

that the set of deltas achievable from s via B covers B over {s, s \ {od}}.

Because the set of all deltas achievable from s via B covers {s, s∪{oc}}, directly from

the definition of delta covers (with the prior assumption that an sA s.t. [s, sA]A exists):

∀s, s′ ∈ DS ×DS : ∃sA : [s, sA]A ⇒

([s ∪ {oc}, s′]B ⇔ ∃sB ∈ DS : [s, sB]B ∧ s′ = sB ∪ {oc})

Let us generalize and say that sA 	 s creates objects oci for some 1 ≤ i ≤ nc and deletes

objects odi for some 1 ≤ i ≤ nd. If we were to now enumerate all objects created and

deleted by sA	s one by one and apply the above reasoning to them, the resulting formula

would be:

∀s, s′ ∈ DS ×DS : ∃sA ∈ DS : [s, sA]A ⇒

([s ∪ {oc1, . . . ocnc} \ {od1, . . . odnd
}, s′]B ⇔ ∃sB ∈ DS :

[s, sB]B ∧ s′ = sB ∪ {oc1, . . . ocnc} \ {od1, . . . odnd
})

100

Coexecutability Chapter 5

Which is equivalent to

∀s, s′ ∈ DS ×DS : ∃sA ∈ DS : [s, sA]A ⇒

[s⊕ (sA 	 s), s′]B ⇔ ∃sB ∈ DS : [s, sB]B ∧ s′ = sB ⊕ (sA 	 s)

Because sB = s⊕ (sB 	 s), and applying non-conflicting deltas in sequence is equivalent

to applying their union, this formula is equivalent to

∀s, s′ ∈ DS ×DS : ∃sA ∈ DS : [s, sA]A ⇒

([sA, s
′]B ⇔ ∃sB ∈ DS : [s, sB]B ∧ s′ = s⊕ (sB 	 s) ∪ (sA 	 s))

We can move the sA quantification and implication (∃sA ∈ DS : [s, sA]A ⇒ . . .) to both

sides of the inside equivalence:

∀s, s′ ∈ DS ×DS :

(∃sA ∈ DS : [s, sA]A ∧ [sA, s
′]B)⇔

(∃sA, sB ∈ DS ×DS : [s, sA]A ∧ [s, sB]B

∧ s′ = s⊕ (sB 	 s) ∪ (sA 	 s))

which is the formula for equivalence of sequential execution and coexecution.

5.3 Syntactic Analysis

In order to keep our verification process fully automatic, we developed a syntactic

check that determines, for a given ForEach loop, whether we can coexecute the iterations

while maintaining the loop semantics. Our syntactic analysis works on an intermediate

101

Coexecutability Chapter 5

abstract data store (ADS) language defined in Chapter 2.4.

The syntactic check is two-fold: 1) we analyze if sequential execution is necessary to

uphold variable dependencies, and 2) if iteration operations may overlap as defined in

the coexecutability condition (Theorem 1).

First, to check if coexecution would invalidate variable dependences, we convert the

whole action to static single assignment (SSA) form. If, after converting to SSA and

removing unnecessary assignments, there exists a Phi function assignment at the be-

ginning of the loop’s iteration body (i.e. an iteration reads a variable assigned to by a

previous iteration) or at the end of the loop (i.e. the iteration assigns to a variable that is

read after the loop terminates), then iterations must be modeled sequentially to preserve

variable state.

If the variable dependency check passes, we proceed to check whether the loop is

coexecutable. To achieve this, we identify every data store class or association that is

touched by a read, create or delete operation inside the iteration body.

For example, if a Delete statement deletes a set of objects of class c, we mark that c

as well as all c’s subclasses have had a delete operation executed. In addition, since all

tuples of deleted objects are deleted as well, we mark all associations of these classes and

their supertypes as having had a delete operation executed.

We increase the precision of our analysis by identifying whether operations are ex-

ecuted on iteration-local objects. For example, if an iteration were to create an object

of class c and subsequently delete it, then the coexecutability condition would not be

violated (since no object created by one iteration would be deleted by another) but the

above syntactic check would fail as c would have had both a create and a delete operation

executed.

In order to facilitate this we denote whether each read, create or delete operation is

done iteration-locally or not. For example, CreateObject creates an object iteration-locally

102

Coexecutability Chapter 5

1 program Analysis

2 var data: AnalysisData;

3
4 function Analyze(loop: ForEach): Boolean

5 data.clearAllData;

6 AnalyzeStatement(loop);

7 for type in DataStoreTypes:

8 operations = data.operationsDoneOn(type);

9 if (operations.hasTwoDifferentOpsWithOneGlobal()) then

10 return False;

11 end;

12 end;

13 return True;

14 end

15

16 procedure AnalyzeStatement(stmt: Statement)

17 case type(stmt) of

18 Block:

19 for subStmt in stmt.subStatements do

20 AnalyzeStatement(subStmt);

21 end;

22 Delete:

23 <objSetType, objSetLocal> = AnalyzeObjset(stmt.objSet)

24 data.markDelete(objSetType, objSetLocal);

25 for relation in objSetType.associations do

26 data.markDelete(relation, False);

27 end;

28 ObjectSet:

29 AnalyzeObjset(stmt.objSet);

30 Assign:

31 <objSetType, objSetLocal> = AnalyzeObjset(stmt.objSet);

32 stmt.variable.objSetType = objSetType;

33 stmt.variable.objSetLocal = objSetLocal;

34 ForEach:

35 <objSetType, objSetLocal> = AnalyzeObjset(stmt.objSet);

36 data.markRead(objSetType, objSetLocal);

37 stmt.iteratorVariable.objSetType = objSetType;

38 stmt.iteratorVariable.objSetLocal = objSetLocal;

39 AnalyzeStatement(stmt.block, data);

40 ...

41 end;

42 end

43

44 function AnalyzeObjset(objSet: ObjectSet): <Type, Boolean>

45 case type(objSet) of

46 CreateObject:

47 data.markCreate(objSet.createdType, True);

48 return <objSet.createdType, True>;

49 Variable:

50 return <objSet.objSetType, objSet.objSetLocal>;

51 Dereference:

52 <originType, originLocal> =

53 AnalyzeObjset(objSet.originObjSet);

54 data.markRead(originType, originLocal);

55 data.markRead(objSet.relation, False);

56 return <objSet.targetType, False>;

57 ...

58 end

59 end

Figure 5.7: Syntactic analysis pseudocode

103

Coexecutability Chapter 5

as every iteration will create a different object and these created sets will not overlap.

Operations such as dereferencing from an object set return a global domain object set

even if a local domain was dereferenced, because even if each iteration dereferences from

a different object domain, the target object sets may overlap.

Therefore, in order for the syntactic check to pass, there must not exist a domain of

objects or tuples that has two of the operations (read, create, delete) executed, where

at least one of this operations is not done iteration-locally. The pseudocode for the

operation domain analysis is provided in Figure 5.7.

The AnalysisData global variable called data (line 2) aggregates information about

which domains of objects and tuples are operated on and in what way. It is essentially

a key-value structure that maps every class and association in the data store into a

set of operation entries, which are pairs 〈o, l〉 where o ∈ {create, read, delete} and l ∈

{True, False}. This structure lists, for each data store class and association, all the

different create, read and write operations executed on entities of that particular class or

association and if these operations were executed iteration-locally (True) or not (False).

This structure is populated by invoking methods markRead, markCreate and markDelete on

it, all of which take two arguments: a data store class or association type, and a boolean

denoting whether the operation is iteration-local (e.g. line 24).

The Analyze function is the entry point of our algorithm (lines 4-14). It first clears all

information from the data object (line 5), then proceeds to gather information in the data

object by invoking the AnalyzeStatement on the given loop (line 6). It then iterates over all

classes and associations (lines 7-12) and tests whether there exist two operation entries on

the same class or association such that they contain different {create, read, delete} types

where at least one of them is executed on a global domain. If such a pair of operation

entries is found, the coexecutability check fails and the function returns False (line 10).

Otherwise, it returns True (line 13).

104

Coexecutability Chapter 5

The AnalyzeStatement procedure takes a statement as an argument and its purpose is to

populate the data object with information about which operations are executed on which

domain by that statement. For example, a Delete statement (lines 22-27) invokes the

AnalyzeObjset method to acquire domain information about the object set to be deleted

(line 23), then marks this domain as deleted (line 24). Since the Delete statement also

deletes all tuples of the deleted objects, all associations around the object set’s type are

iterated over (lines 25-27) and are marked deleted globally (line 26). Tuples are always

deleted on a global domain because, even if the deletion is on a local domain, these tuples

may relate to some other iteration’s local domain.

The Assign statement (lines 30-33) does not add any entry to the data object, and

instead stores the domain of the assigned object set in the variable. These values will

later be extracted when the variable is referred to in lines 49-50.

The AnalyzeObjset function (lines 44-59) is invoked with an object set argument and

it returns the domain of the objects inside the object set in form of a 〈Type,Boolean〉

pair. In addition, object sets may populate the data object themselves. For example,

the CreateObject object set (lines 46-49) creates a new object and returns a singleton

set containing it. For each such object set, we mark that object’s class with the create

operation (line 47) in an iteration-local domain because this object set will contain a

different object for each iteration.

The Dereference object set (lines 51-56) takes another object set, referred to as the

origin object set, and an association type. It contains all the objects that can be reached

from the origin object set via at least one tuple of the given association type. As such,

the origin object set is read in the domain supplied by it (lines 52-54), and the association

type is read on the global domain (line 54). Finally, the returned domain of this very

Dereference object set is equal to the target type of the association and is always global

(line 56).

105

Coexecutability Chapter 5

5.4 Experimental Evaluation

In order to evaluate the effect of coexecution on the verification process, we imple-

mented two ways to model ForEach loops (as sequentially executed iterations, and as

coexecuted iterations). These experiments were originally run using an earlier version of

our tool that does not support many-sorted logic (presented in Chapter 6), and as such,

uses only Spass for theorem proving. After introducing many-sorted logic and the cor-

responding translation that enables us to use Z3, we compared sequential execution and

coexecution on our larger dataset in Section 6.4.4. Our findings can only be explained

after the discussions present in Chapter 6.

These experiments were ran on a sample of actions with loops from some of the

most popular (most starred) Rails applications hosted on Github. We found a total of

38 loops in actions of these applications: 5 in Discourse [30], 9 in FatFreeCRM [36],

5 in Tracks [103], 4 in Lobsters [72], 5 in SprintApp [95], 8 in Redmine [89], and 1

in Kandan [64]. The loops we extracted contain various program structures such as

branches, object and association creation and deletion as well as loop nesting. Our

analysis determined that all these loops were coexecutable. In these experiments we

stopped verification after 5 minutes, at which point we deemed the result as inconclusive.

Interestingly, 12 of the 38 loops we extracted had empty loop bodies. This is due

to the fact that the abstract data store model we extract abstracts away the fields with

basic types. Hence, loops that do not modify the state of the data store as far as the

set of objects and associations are concerned (but might change the value of basic type

fields of some objects) result in empty loop bodies. Note that loops with empty bodies

trivially preserve data integrity and correctly enforce access control. However, during

our experiments, we found out that Spass would occasionally timeout even for loops with

an empty body when the sequential semantics is used. This demonstrates the inherent

106

Coexecutability Chapter 5

complexity of reasoning about the sequential loop model, even without the complexity

of reasoning about the statements in the loop body.

Spass guides the formula space exploration using heuristics that can be fine tuned by

the user. We used two heuristics: one with the Sorts option on, and the other with that

option off. The Sorts option allows Spass to make decisions based on soft sorts [106]. By

turning the Sorts option on and off and looking at the deduction logs of Spass we noticed

that the order of deduction Spass takes changes significantly, so in theory, one of these

heuristics may terminate when the other one does not. Therefore, running Spass with the

Sorts option on and off gives us very different heuristics for comparison of coexecution

and sequential execution.

Normally, when we encode an action/invariant pair or an authorization property in

FOL, loop semantics are encoded as axioms with an invariant or authorization property

being the conjecture. In order to isolate the effect of the axioms on the overall deduction

process, we also verified all actions using the conjecture false. This conjecture often gives

us the worst case performance for a set of axioms. Because Spass attempts to deduce a

contradiction from the axioms and negated conjecture, it negates the conjecture to true

and hence needs to explore the entire space of deducible formulae to reach a contradiction

that does not exist. If Spass terminates with the false conjecture then we can reasonably

expect that it will terminate with other invariants as long as they do not add significant

complexity to the verified theorem. We also included 4 actions that we manually created

to explore how the theorem prover handles coexecution vs sequential execution of nested

loops and branches in iterations.

In total, we had 94 action/conjecture pairs. We translated each one of those to

two FOL theorems, one using coexecution and the other using sequential execution to

model loops. We sent each one of these theorems to two instances of Spass with different

heuristic settings, resulting in 376 verification tasks. These verification experiments were

107

Coexecutability Chapter 5

Loop Model Heuristic # of Timeouts / Total Avg Time (seconds)
Sorts on 66/94 (70.2%) 216.4

Sequential
Sorts off 56/94 (60.2%) 186.0
Sorts on 27/94 (29.3%) 94.0

Coexecution
Sorts off 18/94 (19.8%) 68.5

(a) Verification results

(b) Number of action/invariants per performance gain factor

Figure 5.8: Application information and verification results

executed on a computer with an Intel Core i5-2400S processor and 32GB RAM, running

64bit Linux. Memory consumption never exceeded 200Mb.

We specifically looked at how coexecution fared as opposed to sequential execu-

tion. With the sequential execution model, out of 188 verification tasks, 122 timed

out (64.89%). With the coexecution model, only 45 tasks out of 188 timed out (24.19%).

The summary of our results can be seen on Figure 5.8. Figure 5.8(a) summarizes the

number of timeouts and average verification time over loop interpretation (sequential vs

coexecution) and heuristic.

Figure 5.8(b) summarizes the performance effects of coexecution as opposed to se-

quential execution. We had 188 cases in which to compare coexecution and sequential

execution under identical action/invariants and theorem prover heuristics. In 86 cases

(45%, columns labeled 10x and up), coexecution improved verification times by at least

an order of magnitude. Among them, in 24 cases (13%) the theorem prover reached

a conclusive answer instantly using coexecution and could not deduce a conclusive an-

108

Coexecutability Chapter 5

swer at all with sequential execution (column labeled 10000x). Coexecution yielded no

improvement in a total of 99 tasks (52%, column 1x). In these cases either both loop

models resulted in a timeout or both methods produced results instantly. In three cases,

coexecution produced worse results than the sequential model. This is not surprising

since, as we mentioned above, the proof search implementation of the theorem prover

relies on several heuristics which influence its performance.

In total, we found that coexecution reduced the timeout rate from 65% to 24% (almost

threefold), made verification at least an order of magnitude faster 45% of the time, with

13% of cases terminating quickly as opposed to not terminating at all. We conclude that,

overall, coexecution allows for significantly faster verification and significantly decreases

the chance of verification never terminating.

109

Chapter 6

Verification via Many-sorted Logic

Minimizing the ratio of inconclusive results is a necessary step for making our approach

usable in practice. Inconclusive results force the developer to manually investigate actions

and invariants, and since we encounter inconclusive results in the most complex actions,

this is a difficult and error prone process.

In order to understand the cause of inconclusive results, we investigated the logs of

the theorem prover we used in our previous experiments. We noticed that the theorem

prover did an excessive number of deductions solely to reason about the types of quantified

variables and objects. Since FOL does not have a notion of type, our FOL translation

generates predicates that encode all the type information, and the theorem prover was

spending a lot of time reasoning about these predicates.

This seemed unnecessary to us, as in general, inheritance is rarely used in web ap-

plications. Out of 25 most starred Ruby on Rails applications on Github only 7 employ

inheritance, and on average, only 23% of classes inherit or are inherited from other classes.

This means that, if FOL would allow us, we could annotate our formulas with precise

type information and a theorem prover might use this information to greatly trim the

110

Verification via Many-sorted Logic Chapter 6

space of deductions it makes.

There exists a variant of FOL called many-sorted logic. Many-sorted logic enforces a

rigid type system on top of FOL, where all predicates, functions etc have to be annotated

with types.

In this chapter we present a translation of our model to many-sorted logic, and en-

counter and fix a problem regarding empty logic in our many-sorted translation. We

then show that that using many-sorted logic drastically increased our verification perfor-

mance, and furthermore, that sorts themselves are the main factor in this performance

increase.

6.1 Many-Sorted Logic

Sometimes it is useful to divide the universe of a structure using types with mutually

exclusive domains. This is especially true if the functions and predicates make sense

only within a specific domain. For example, if we need a language to express integer

and string operations, many-sorted logic makes it easy to express that all elements of the

universe are either integers or strings. It also allows us to define that, for example, the

stringLength function always maps a string element to an integer element, and that the

isPositive predicate can only accept an integer as its argument.

Types in many-sorted logic are called sorts. Many-sorted logic requires us to explicitly

declare the types of all function and predicate arguments, function return values and

variables. It also gives us the ability to quantify over elements of a given type instead of

over the whole universe.

Formally, many-sorted logic is very similar to classical FOL. In addition to everything

discussed in Section 4.1, L includes a set of sorts S. Functions and predicates in F and P

respectively define the sorts of their arguments, functions define the sort of their return

111

Verification via Many-sorted Logic Chapter 6

value, and all variables are associated with a sort from S. We also require all formulas

to be well typed (e.g. a predicate can only accept a term as an argument if the term’s

sort matches the predicate’s declaration).

A structure S in many-sorted logic does not contain a single universe U . Instead,

it contains a non-empty universe U s for each sort s ∈ S. For each predicate p of sorts

s1 . . . sk and arity k, we define P S as a subset of U s1 × · · · × USk . The set FU is defined

analogously, and V U assigns an element of a variable’s sort to each variable. Quantifica-

tion is always done over a specific sort’s universe. For clarity, we explicitly declare the

sort s of a variable v when quantifying by using the notation ∀s v : f .

Note that many-sorted logic and unsorted logic have equivalent expressive power [22].

Given a set of many-sorted formulas, a similar set of unsorted formulas is equisatisfiable

if we introduce predicates used to denote sorts and conjoin the formulas that partition

the universe to these sorts. Unsorted logic can be translated to many-sorted logic by

introducing a single sort that applies to all language elements.

6.2 Empty Logic

Empty universes are a useful concept for data model verification. In general, a data

model state may contain no objects. This is an important consideration for data model

verification (e.g. does the application behave properly even if there exist no Users or

Accounts?). For this reason it is necessary to consider empty universes as a possibility

during verification. As one would expect, data model verification tools, such as Alloy [62],

support empty domains. However, empty universes are outside the scope of classical FOL.

Even though Spass, the tool we used previously, does not support empty universes, our

translation was such that the empty model state was a possibility. This will cease to be

the case after optimizations introduced in Section 6.3. However, before we explain this

112

Verification via Many-sorted Logic Chapter 6

problem, we must define empty logic: FOL that allows an empty universe.

FOL universes are typically defined to be non-empty. Allowing the special case of

an empty universe makes definitions more complicated, and invalidates certain inference

rules that stop working only in the case of an empty universe (for example, φ ∨ ∃xψ

implies ∃x(φ ∨ ψ) where x is not a free variable in φ). The treatment of variables and

function return values becomes problematic because terms are expected to always take

a value of one element of the universe. This is not possible in empty universes.

Furthermore, the possibility of an empty universes breaks certain fundamental rules

about FOL. E.g. ∀x : x 6= x is normally an unsatisfiable formula. If we define quantifica-

tion over an empty universe to be vacuously true (as there does not exist an assignment

of the variable that does not satisfy the subformula), this example formula is satisfied by

a structure with an empty universe.

Empty logic is a variant of FOL that allows empty universes. The treatment of

empty universe in empty logic is defined by Quine [86]: universal quantification over an

empty set is considered vacuously true (since there exists no counterexample variable

assignment), and existential quantification over an empty set is considered vacuously

false (since there exists no satisfactory variable assignment).

This interpretation of quantification over empty sorts is in concordance with an al-

ternative definition of universal quantification: Given a universe U , quantification ∀v : f

can be unrolled into a conjunction of all formulas that result from replacing v in f with

an element of U . In case of an empty universe this list of quantified formulas is empty,

and the neutral element of conjunction is the boolean true.

In combination with many-sorted logic, empty logic allows a sort’s universe to be

empty. Although theorem provers we use during verification do not support empty logic,

in our translation of data models to FOL, we simulate the empty logic semantics so

that the resulting translation covers the data model behaviors where data classes can be

113

Verification via Many-sorted Logic Chapter 6

Account Contact

Taggable Commentable

Tag Comment

0..*
taggings

0..*
tags

1
commentable

0..*
comments

0..1
account

0..*
contacts

Figure 6.1: A data model schema example based on FatFreeCRM [36]

empty (i.e., without any instances). We discuss our formalization of the data models and

how we deal with many-sorted logic and empty universes in our translation to FOL in

the following sections.

6.3 Translation to Many-sorted Logic

The translation presented in Chapter 4 is based on unsorted, empty logic. We

found [15] that many-sorted logic allows for more efficient theorem proving. In this

section we modify the previously presented translation to many-sorted logic. For brevity,

we focus only on classes as associations are largely analogous. We will repeat Figures 4.1

and 4.2 in this section as Figures 6.1 and 6.2 for self containment.

Within our translation where universe elements correspond to entities, sorts naturally

serve the purpose similar to classes and associations. However, sorts imply disjoint

universes, which is only suitable for classes that do not employ inheritance. Classes

that employ inheritance cannot be directly mapped to sorts because a subclass’s object

set is a subset of a parent’s.

To work around this problem, we partition the set of all classes into inheritance

clusters. An inheritance cluster is a maximal set of classes such that, for any two classes

c1 and ck in the cluster, there exists a list of classes c1, c2, . . . ck where each consecutive

114

Verification via Many-sorted Logic Chapter 6

Predicates: Account, Contact, Taggable, Commentable, Tag, Comment, XTaggable, XCommentable.
∀o : Account(o)→ Taggable(o) ∧ Commentable(o) (1)

∀o : Contact(o)→ Taggable(o) ∧ Commentable(o) (2)

∀o : XTaggable(o)↔ Taggable(o) ∧ ¬Account(o) ∧ ¬Contact(o) (3)

∀o : XCommentable(o)↔ Commentable(o) ∧ ¬Account(o) ∧ ¬Contact(o) (4)

∀o : Account(o)→ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (5)

∀o : Contact(o)→ ¬Account(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (6)

∀o : XTaggable(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (7)

∀o : XCommentable(o)→ ¬Account(o) ∨ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬Tag(o) ∧ ¬Comment(o) (8)

∀o : Tag(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Comment(o) (9)

∀o : Comment(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) ∧ ¬Tag(o) (10)

Figure 6.2: Axioms defining the class diagram in Figure 6.1 in classical (unsorted)
first order logic

pair of classes constitutes a child-parent or parent-child relationship. In other words,

in the class graph where vertices are classes and edges correspond to inheritance, an

inheritance cluster is a maximally connected component. Note that all classes that do

not employ inheritance are members of singleton clusters.

For each inheritance cluster we introduce a sort that is common to all classes in the

cluster. In case of an inheritance cluster with multiple classes we introduce predicates and

axioms in order to differentiate classes within the cluster. These predicates and axioms

are similar in purpose to the predicates used in the unsorted logic translation. For each

class c in a non-singleton inheritance cluster we introduce unary predicates c and cx of

the cluster’s sort and introduce axioms that resemble the ones defined for unsorted logic,

the key distinction being these axioms refer to classes of that cluster only.

Specifically, inheritance axioms are defined as follows: for each class c that belongs to

an inheritance cluster of sort s and whose superclass set is superclass(c) = {p1, p2 . . . pk}:

∀s o : c(o)→ p1(o) ∧ p2(o) ∧ · · · ∧ pk(o)

For the model presented in Figure 6.1, inheritance axioms are formulas (1) and (2)

115

Verification via Many-sorted Logic Chapter 6

Sorts: Cluster, Tag, Comment.
Predicates: Account(Cluster), Contact(Cluster), Taggable(Cluster), XTaggable(Cluster),

Commentable(Cluster), XCommentable(Cluster).

∀ Cluster o : Account(o)→ Taggable(o) ∧ Commentable(o) (1)

∀ Cluster o : Contact(o)→ Taggable(o) ∧ Commentable(o) (2)

∀ Cluster o : XTaggable(o)↔ Taggable(o) ∧ ¬Account(o) ∧ ¬Contact(o) (3)

∀ Cluster o : XCommentable(o)↔ Commentable(o) ∧ ¬Account(o) ∧ ¬Contact(o) (4)

∀ Cluster o : Account(o)→ ¬Contact(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) (5)

∀ Cluster o : Contact(o)→ ¬Account(o) ∧ ¬XTaggable(o) ∧ ¬XCommentable(o) (6)

∀ Cluster o : XTaggable(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XCommentable(o) (7)

∀ Cluster o : XCommentable(o)→ ¬Account(o) ∧ ¬Contact(o) ∧ ¬XTaggable(o) (8)

Figure 6.3: Axioms defining the class diagram in Figure 6.1 in many-sorted logic

in Figure 6.3.

An instance axiom is generated for each class c. Let {s1 . . . sk} be the set of c’s

subclasses and let s be the sort of c’s inheritance cluster:

∀s o : cx(o)↔ c(o) ∧ ¬s1(o) ∧ · · · ∧ ¬sk(o)

Given the model presented in Figure 6.1, instance axioms are formulas (3) and (4) in

Figure 6.3.

Finally, membership axioms are generated for each non-singleton inheritance cluster

individually instead of for the entire set C. Given an inheritance cluster that consists of

classes {c1, . . . ck} where k > 1 we generate an axiom for each class ci inside this cluster:

∀s o : ci(o)→ ¬c1(o) ∧ · · · ∧ ¬ci−1(o) ∧ ¬ci+1(o) ∧ · · · ∧ ¬ck(o)

Formulas (5)-(8) in Figure 6.3 correspond to membership axioms for the model in Fig-

ure 6.1.

The number of introduced predicates and axioms is highly dependent on the data

116

Verification via Many-sorted Logic Chapter 6

model in question. With no inheritance, no additional predicates and axioms are in-

troduced. The number and size of formulas introduced by each inheritance cluster are

linear in the number of classes in the cluster. However, most classes do not employ inher-

itance in data models of real world applications (18 out of 25 most starred Ruby on Rails

applications do not employ inheritance at all, with an average of 23% classes involving

inheritance), making most classes part of singleton inheritance clusters. Furthermore, if

multiple non-singleton inheritance clusters exist in the data model, the size of generated

axioms is relatively small when compared to those generated by the unsorted logic trans-

lation. Finally, in case of a model with only singleton clusters, no additional axioms are

required to define the type system.

6.3.1 Empty logic

Our treatment of empty structures is dependent on whether the underlying theory

is unsorted or many-sorted. In fact, our translation to unsorted logic as presented in

Chapter 4 allows empty structures by default. This becomes clear when we change the

interpretation of all type predicates c to imply that the universe element in question is

of the given type, but in addition, it exists semantically. Notice that our encoding does

not require that all universe elements are of a class type. For example, we use universe

elements to represent tuples, and it is not required for a universe element to represent

either an object or a tuple.

Whenever we define functions and predicates in unsorted logic we constrain argument

values and the return value, if applicable, to be of expected types. As a corollary of our

expanded interpretation, function return values objects exist semantically if and only if

arguments exist semantically and are of corresponding types. Similarly, predicates may

accept a set of domain elements under the condition that they exist semantically and are

117

Verification via Many-sorted Logic Chapter 6

1 class CommentsController

2 ...

3 def destroy

4 @comment = Comment.find(params[:id])

5 @comment.destroy

6 respond_with(@comment)

7 end

8 ...

9 end

Figure 6.4: Example action based on FatFreeCRM [36]

of corresponding types.

As for quantification, whenever quantifying over a class type, we introduce a condition

that the subformula is relevant only for domain elements that represent objects of the

given type. For example, in order to universally quantify over elements of class c using the

variable v and a subformula f we generate a formula ∀v : c(v)→ f . In case of existential

quantification we would instead generate ∃v : c(v) ∧ f .

Predicates: PreState, PostState, AtComment.
∀x : AtComment(x)⇒ Comment(x) (1)

∀x : (∀y : AtComment(x) ∧ AtComment(y)⇒ x = y) (2)

∀x : AtComment(x)⇒ ¬PostState(x) (3)

∀x : ¬AtComment(x)⇒ (PreState(x)⇔ PostState(x)) (4)

Figure 6.5: Unsorted action translation example

For example, the action presented in Figure 6.4 can be translated to FOL as defined

in Figure 6.5. For brevity, we omit listing all predicates and axioms that define the type

system. In this translation, the AtComment predicate denotes values that are saved in

the @Comment variable. First we constrain type-specific predicates to refer to their actual

types (formula (1)). Note that as part of our interpretation of class type predicates,

any entity accepted by the AtComment is also accepted by Comment and therefore exists

semantically. Next, in formula (2) we constrain that there exists at most one element in

variable AtComment, as the find method in Ruby on Rails (line 4 in Figure 6.1) returns

at most one object.

118

Verification via Many-sorted Logic Chapter 6

Formulas (3) and (4) define the delete statement. Formula (3) defines that the objects

in the @Comment variable no longer exist after the statement (regardless of their existence

before). Formula (4) defines that all objects outside this variable existed before if and

only if they exist after the statement has finished executing. This particular translation

allows for an empty universe. Such a structure would have no elements accepted by

predicates Comment and AtComment.

The problem with the empty universe becomes more apparent with the many-sorted

logic translation. If we were to define a Comment sort and use it alone to define the

set of all comments, then the universe of this sort would be non-empty, meaning that

at least one Comment would exist for every sort. To go around this problem, for each

such class c, we introduce a predicate c that accepts a single argument of c’s sort. We do

not introduce any axioms. We use these predicates to define object sets of these classes,

implying that object sets are subsets of their corresponding universes.

Predicates: PreStateCluster(Cluster), PreStateComment(Comment), PreStateTag(Tag),
PostStateCluster(Cluster), PostStateComment(Comment), PostStateTag(Tag),
AtComment(Comment), CommentP (Comment), TagP (Tag).

∀ Comment x : AtComment(x)⇒ CommentP (x) (1)

∀ Comment x : (∀Commenty : AtComment(x) ∧ AtComment(y)⇒ x = y) (2)

∀ Comment x : AtComment(x)⇒ PreStateComment(x) ∧ ¬PostStateComment(x) (3)

∀ Comment x : ¬AtComment(x)⇒ (PreStateCluster(x)⇔ PostStateCluster(x)) (4)

Figure 6.6: Many-sorted action translation example

Given the example action in Figure 6.4, a many-sorted translation can be defined as

in Figure 6.6. Note that, once again, we omit declaring all sorts, predicates and axioms

from Figure 6.3 for brevity.

Notice that we introduce predicates CommentP and TagP in addition to previously

defined sorts Comment and Tag. In Formula (1) we define that all elements accepted

by AtComment are also accepted by CommentP . This is necessary to express since, with-

119

Verification via Many-sorted Logic Chapter 6

out this axiom, there could be an element accepted by AtComment that is not accepted

by CommentP . Formula (2) defines that there exists at most one element accepted by

AtComment. Formulas (3) and (4) define how the delete statement transitions between

the pre-state and the post-state. These formulas are analogous to formulas (3) and (4)

in the unsorted translation. Note that, however, these formulas are constrained to the

Comment sort. All other sorts are handled implicitly (we do not differentiate between

their pre- and post-states). This demonstrates the benefit of introducing sorts, as the

theorem prover does not need to reason at all about other types by default.

Empty structures are handled by this translation. For example, a structure that

represents this case would have no entities of sort Comment be accepted by predicates

CommentP and AtComment. Without introducing a predicate CommentP this would not be

the case.

6.4 Experimental Evaluation

We conducted two sets of experiments. Both these experiments involved verification

of applications previously presented in Table 3.4. In total, we had 18512 data integrity

or access control theorems for theorem proving. We refer to these theorems as verifica-

tion cases or verification instances. We translated these 18512 cases into different FOL

variants in order to evaluate the performance using different provers, heuristics and trans-

lations: a total of 74048 FOL theorems. For each of these cases, we ran verification with

a time limit of 5 minutes. If the theorem prover did not deduce a result within 5 minutes

we treated the result as inconclusive. Given that most verification cases terminate in a

few seconds, we believe that this is a reasonable time limit.

120

Verification via Many-sorted Logic Chapter 6

6.4.1 FOL Theorem Provers

In these experiments, we used Spass [107] for our unsorted theorem prover. Spass is

a FOL theorem prover based on superposition calculus. While Spass supports multiple

input formats, we translated the verification cases to Spass’s own input format [106].

Spass tries to prove that a conjecture follows from a set of axioms by negating the

conjecture and attempting to deduce a contradiction. If this contradiction is found, then

the conjecture is proven to follow from the axioms.

Note that Spass supports soft sorts [107] which are different than the sorts in many-

sorted logic we discussed earlier, and any other sort system we encountered. Soft sorts do

not imply mutually exclusive universes. In a soft sort system any universe element may

be of a sort, of no sort, or of multiple sorts. Semantically, these sorts are indistinguishable

from unary predicates. Furthermore, Spass by default infers soft sorts even if none are

explicitly specified. Spass provides a command option that allows us to disable the soft

sort system, in which case the theorem prover treats soft sorts as unary predicates. The

differences between these soft sorts and sorts as defined in many-sorted logic have been

observed before [11]. In the following discussion, whenever we refer to sorts we refer to

sorts defined by many-sorted logic. We will use “soft sorts” to refer to Spass’s version of

sorts specifically.

We used Z3 [25] to evaluate effectiveness of data model verification using many-sorted

logic. Z3 is a DPLL(T) [33] based SMT solver that deals with free quantification and

uninterpreted functions using E-matching [24].

SMT solvers tend to support many different theories, such as arithmetic, arrays or

bit arrays. These theories are combined in propositional logic, which serves to tie the

underlying theories without interpreting them. Instead, predicates in underlying theories

are treated as propositional variables, and left to the underlying provers to be solved.

121

Verification via Many-sorted Logic Chapter 6

of Verif. Time (sec) Unit Propagations (#) Memory (Mb)
Method

Timeouts Average Median Average Median Average Median Maximum
Spass (Soft sorts on) 3,154 (17.04%) 9.99 9.01 n/a n/a 60.57 61.55 93.19
Spass (Soft sorts off) 2,878 (15.55%) 11.67 9.21 n/a n/a 60.46 61.55 111.83
Z3 (Many-sorted) 26 (0.14%) 0.08 0.04 577.01 23 4.02 3.87 285.64
Z3 (Unsorted) 879 (4.75%) 2.28 0.44 1098.34 82 134.59 40.44 15,490.26

Table 6.1: Verification performance summary

Figure 6.7: Verification time distribution

Partial conclusions from these underlying theories may be propagated to other underlying

provers in DPLL(T) in order to reach other conclusions. When used only with free

quantification, free sorts and uninterpreted functions (which is denoted as the problem

group UF), SMT solvers behave like many-sorted logic theorem provers.

SMT solvers try to find instances that satisfy the specification, so in order to prove

that the conjecture follows from axioms, we negate our conjecture and state it as an

additional axiom. The conjecture follows from the axioms if and only if this resulting set

of axioms is unsatisfiable.

6.4.2 Spass vs. Z3 Performance

Our first set of experiments compare the performance of Spass and Z3 for the purpose

of data model verification. These experiments were done solely to detect whether Z3 can

sometimes outperform Spass, either by reaching results that Spass could not, or reaching

122

Verification via Many-sorted Logic Chapter 6

them in less time. If so, our efforts in translating data models to SMT would increase the

performance and/or reduce the ratio of inconclusive results in our data model verification

efforts, and therefore increase the viability of data model verification in the real world.

Our results are summarized in Table 6.1 and Figure 6.7. The performance difference

was beyond our initial expectations. Note that the Z3 (Unsorted) entries are only relevant

for the experiment discussed in the next subsection and can be disregarded for now, as

is the case for Unit Propagations columns. With soft sorts enabled, Spass produced 3154

inconclusive results (17.04%). With soft sorts disabled, Spass produced 2878 inconclusive

results (15.55%). Interestingly, there are 63 cases where enabling sorts led Spass to a

conclusive result where disabling sorts did not, yet there are 336 cases where the opposite

is true. Performance-wise, Spass performed similarly regardless of the soft sorts setting.

For both settings, excluding timeouts, verification took an average of about 10 seconds

per case. The median case is just over 9 seconds. Memory consumption averaged at

around 60Mb, with the median case of 61.55Mb. Memory consumption peaked at just

over 100Mb memory when Spass produced a conclusive result. For inconclusive results,

memory consumption peaked at just over 1Gb.

Z3 performed far better than Spass with either heuristic. Z3 produced far fewer in-

conclusive results, only 26 (0.14%). In addition, in only 3 cases did Z3 fail to produce

a result when Spass succeeded. In the remaining 23 cases, neither prover could reach a

conclusive result in 300 seconds. On average, Z3 took 0.08 seconds per verification case,

with a median time of 0.04 seconds. Spass outperformed Z3 in only 6 cases in terms of

time performance, while Z3 outperformed both Spass heuristics in 15269 cases, counting

only cases where all provers produced a result. Furthermore, Z3’s average memory con-

sumption was just over 4Mb, a with median under 4Mb. Memory consumption peaked

at just under 300Mb. However, Z3 tends to consume far more memory when it is failing

to produce a conclusive result. In our case, Z3 used 35Gb of memory before forcefully

123

Verification via Many-sorted Logic Chapter 6

Figure 6.8: Distribution of the slowdown factor compared to (many-sorted) Z3

Method Average Median Interdecile Range
Spass (Soft sorts on) 281.86 185.0 19.5 – 349.5
Spass (Soft sorts off) 299.62 191.0 19.0 – 357.8
Unsorted Z3 80.43 11.8 3.6 – 47.2

Table 6.2: Observed slowdown compared to (many-sorted) Z3

being terminated after 5 minutes.

Figure 6.7 shows the distribution of the verification cases over the verification time

ranges for each theorem prover. For example, the leftmost column (labeled .01) shows

that Z3 produced a verification result in less or equal than 0.01 seconds 3315 times. Spass

achieved a result within this time only 13 times, which is not visible on the chart. The

next time range is labeled .02 and shows that Z3 produced a verification result in more

than 0.01 seconds but less or equal to 0.02 seconds 2908 times, while Spass with soft

sorts on produced a result 208 times within the same timeframe.

We wanted to compare the performance of different provers on case-by-case basis.

For each verification case, we calculated the relative slowdown factor induced by a prover

compared with Z3. So, for example, if an verification case was verified 85 times slower

using Spass with sorts enabled when compared with Z3, this counts as a slowdown factor

of 85. Figure 6.8 and Table 6.2 summarize this data.

Figure 6.8 contains the distribution of slowdown factors per prover. For example,

124

Verification via Many-sorted Logic Chapter 6

Spass (with and without soft sorts) is most frequently 29 times slower than Z3. Table 6.2

contains additional information about this slowdown. On average, Z3 was 281.86 times

faster than Spass with soft sorts on, and 299.62 times faster with soft sorts off. In the

median case, Z3 was 185 and 191 times faster, respectively.

In order to estimate a range of performance increase factor for the majority of cases,

we calculated interdecile ranges of these distributions. The interdecile range of a sample

is the range of values ignoring the lowest and highest 10% of the sample. It serves to

communicate a range of values, ignoring outliers. The interdecile ranges of performance

increases of Z3 over Spass with soft sorts on and off are 19.0-349.5 and 19.0-357.8 re-

spectively. This means that, 80% of the time, Spass was one to two orders of magnitude

slower than Z3.

In summary, our translation to SMT and use of Z3 for verification increased the

performance of verification of our method by two orders of magnitude, and reduced the

number of inconclusive results removed all inconclusive results down from around 16%

to 0.14%.

6.4.3 Many-sorted vs Unsorted Performance

We observed a drastic improvement in our method’s performance by utilizing Z3

instead of Spass. However, this difference was beyond our expectations, and we wanted

to investigate the reason behind the performance difference. This is hard to pinpoint

since Spass and Z3 are fundamentally different. They utilize a different approach to

theorem proving and have different optimizations and heuristics.

During manual investigation of Spass’s deduction logs we noticed that Spass was

taking a significant amount of time reasoning about types of quantified variables. This is

true regardless of whether soft sorts are enabled or not. This reasoning about types would

125

Verification via Many-sorted Logic Chapter 6

not be necessary or would be drastically reduced if the theorem prover supported (non-

soft) sorts. Even if the model contains a larger number of classes that inherit from one

another, causing us to introduce predicates and axioms that resemble the ones generated

for unsorted logic, this type reasoning is constrained to a smaller scope of an inheritance

cluster instead of the set of all classes.

We implemented an unsorted translation to SMT in order to observe the benefit

of using sorts. Because SMT-LIB requires all predicates and functions to be sorted, we

defined a single sort (called Sort) that we used for all language elements. Since this single

sort represents everything, we effectively provide no explicit type information. On top of

this sort(less) system we enforce the type system using predicates and axioms using the

unsorted translation presented in Section 6.1. Thereby we specify the type system in a

way that requires type reasoning in a way that corresponds to the amount of information

we provide to Spass.

We ran the same suite of application models and action-invariant pairs using the

many-sorted and unsorted translations to SMT. Table 6.1 summarizes the performance

of many-sorted and unsorted Z3 verification. Unsorted Z3 did not produce a conclusive

result in 879 cases (4.75%). On average, many-sorted Z3 took 0.08 seconds per case

whereas unsorted Z3 took 2.28 seconds. Median values are 0.04 for the many-sorted logic

and 0.44 for the unsorted translation.

The Unit Propagations columns in Table 6.1 refer to the number of DPLL(T) unit

propagations done by Z3. On average, the many-sorted translation required 577.01 unit

propagations before deducing a conclusive result, with a median number of 23. The

unsorted translation required 1098.34 propagations for conclusive results on the average,

with a median number of 82. Therefore, Z3 needed to do more work to reach conclusive

results when using unsorted logic.

Finally, the memory footprint of verification suffered as well. The many-sorted trans-

126

Verification via Many-sorted Logic Chapter 6

lation used an average of 4.02Mb of memory per verification case, with a median of

3.87Mb. The unsorted translation was drastically more demanding, with an average

of 134.59Mb and median of 40.44Mb. Memory consumption peaked at over 15Gb of

memory for unsorted theorem proving.

Figure 6.7 contains data for the unsorted Z3 translation in addition to (many-sorted)

Z3 and Spass results. Similarly, Figure 6.8 and Table 6.2 show the distribution of case-

by-case slowdown factors when comparing unsorted Z3 to many-sorted Z3. On average,

the many-sorted translation resulted in 80.43 times faster verification compared to the

unsorted translation when both methods produced conclusive results. The median case

is 11.8, and the interdecile range is 3.6-47.2.

These results imply a large performance difference between many-sorted and unsorted

logic verification in Z3. While this does not imply that implementing proper many-sorted

logic in Spass would increase Spass’s performance by a similar factor, it does indicate that

the reduction of reasoning induced by many-sorted over unsorted logic plays a significant

role in the performance gain we observed.

6.4.4 Coexecution and Many-Sorted First Order Logic

After having implemented the many-sorted translation, we reevaluated the perfor-

mance of loop verification using coexecution and sequential iterations. We found that,

with a many-sorted translation, the performance benefits to coexecution are less consis-

tent.

We compared coexecution and sequential execution on all actions with loops in ap-

plications present in Table 3.4. The results are presented in Table 6.3. We observe gains

from using coexecution only for z3 with many-sorted enabled, which is our best perform-

ing configuration. In this case, coexecution reduced the number of false positives from

127

Verification via Many-sorted Logic Chapter 6

Loop Model Prover # of Timeouts / Total Avg Time (seconds)
Spass, Sorts on 284/581 (48.88%) 24.45
Spass, Sorts off 267/581 (45.96%) 46.11
Z3 21/581 (3.61%) 1.13

Sequential

Z3 Unsorted 59/581 (10.15%) 15.73
Spass, Sorts on 286/581 (49.23%) 25.29
Spass, Sorts off 263/581 (45.27%) 48.27
Z3 3/581 (0.52%) 0.87

Coexecution

Z3 Unsorted 54/581 (9.29%) 8.16

Table 6.3: Coexecution vs sequential execution with many-sorted logic

21 to 3 (3.61% to 0.52%), which is a bigger improvement than the improvements we

previously observed. However, in other cases, the differences between coexecution and

sequential iteration modeling are not significant.

We believe this difference comes from the differences in our FOL encoding since

the coexecution experiments were originally ran. Our current encoding uses type-aware

predicates to encode actions. Specifically, we now use a dedicated predicate for each

program state and type, as opposed to just state. Because of this, we only define a state

predicates specific to a type when necessary because of a state change with regards to said

type. As such, for example, if a loop modifies only objects of type A, state predicates

for type B will bypass the loop altogether. This is the case even in our unsorted Z3

translation: even though this translation does not utilize sorts, it does have independent

state predicates for each type. This makes it easier for the theorem prover to bypass

reasoning about loops altogether.

128

Chapter 7

Related Work

7.1 Modeling and Verification of Web Applications

Nijjar et al. present techniques for analysis and verification of data models in Rails

applications [80, 81, 79]. The data model used in Nijjar et al.’s work is a static model

that does not represent actions that modify data store states. Properties are checked

with respect to association declarations without considering how they are updated via

actions. Moreover, some assumptions used in constructing the static data model (such as

assuming belongs to associations have exactly one associated object) are not guaranteed

to hold by the Rails semantics. In contrast, our model captures the exact behavior of

a data store by modeling how actions update the data store states. Their solution does

not address the problem of sorts and empty universes, making their verification unsound.

Finally, their work does not delve into the difference between logics and their implied

encodings.

We checked some of the properties of the Tracks application that were also checked

by Nijjar et al. [80, 81, 79]. One of the properties (Every User has a Preference) is proven

129

Related Work Chapter 7

to hold by our tool. However this property cannot be proven on the static model used by

Nijjar et al. and causes a false positive with their approach. Both approaches are able

to prove another invariant (Every Todo has a Context), but in our approach we do not

assume that belongs to associations in Rails have exactly one associated object since this

assumption is not enforced by the Rails framework.

Near et al. [75] developed Rubicon, a web application verification tool that adds

quantification to unit tests and translates tests into verifiable Alloy specifications using

symbolic execution. Rubicon uses the Alloy Analyzer for bounded verification of gen-

erated specifications. Even though Rubicon is not specifically designed to find access

control bugs, they did find one. Since their approach requires the developer to write

tests, it requires more effort than our automated method and may miss bugs.

Both Tracks and Fat Free CRM were analyzed by the tool developed by Nijjar et al.

and Rubicon. Neither of their tools were able to uncover the four bugs we found. Since

the tool developed by Nijjar et al. only analyzes the static data model it is unable to

capture the semantics of actions and find the bugs in them. Rubicon’s approach, on the

other hand, is a testing based framework. Successful tests verify that, after an explicitly

stated sequence of steps, the application behaves as expected. Tests are not suitable

for verifying that no possible sequence of action executions could lead to a faulty state,

which is the condition checked by our verification framework.

Space[77] is a tool for verification of access control in Rails applications. It uses

symbolic execution to detect exposures, and checks whether these exposures conform

to a set of user supplied patterns. We rely on developer-supplied policies and verify

the enforcement, regardless of patterns. Furthermore, our model extraction technique is

better suited for extracting models of dynamically generated code.

The Unified Modeling Language (UML) is a language commonly used for specification

of object oriented models. The Object Constraint Language (OCL), which is part of the

130

Related Work Chapter 7

UML standard, enhances UML with the ability to specify invariants and pre- and post-

conditions of methods [82, 104]. Research on verification of OCL specifications have

ranged from simulation of object oriented models [90], to interactive verification with

automated theorem prover support [4]. However, UML combined with OCL does not

provide a way to specify method bodies, whereas method bodies can be mapped to

action specifications in our language. Hence, because of the semantic gap between the

UML/OCL specifications and actual implementations, the method bodies are unlikely to

be modeled precisely using UML/OCL, which means that the bugs we found are likely

to be missed by a verification approach based on UML/OCL specifications.

Alloy [62, 63] is formal language for specifying object oriented data models and their

properties. Alloy Analyzer is used to verify properties of Alloy specifications. Unlike

our work, Alloy focuses on static models and does not directly support specification

of actions or dynamic behavior. Moreover, Alloy Analyzer uses SAT-based bounded

verification techniques as opposed to the FOL based unbounded verification technique

used in our work.

DynAlloy is an extension of Alloy that supports dynamic behavior [42, 43] by trans-

lating dynamic specifications onto Alloy. While they talk about actions in their work,

those actions do not correspond to actions in web applications. Instead, they are more

similar to individual statements in programming languages [45]. Their work has focused

on verification of data structures, not behaviors in data models of web applications.

There has been prior work on formal modeling of web applications, mainly focusing on

state machine based formalisms to capture the navigation behavior[97, 54, 17, 53, 108, 92].

In contrast to these previous efforts, we are focusing on analysis of the data model rather

than the navigational aspects of the web applications.

There are previous results on unbounded verification of data-driven web applications

based on high level specifications [27, 26, 28]. Deutsch et al. model actions as input/out-

131

Related Work Chapter 7

put rules instead of specifying them procedurally, creating a semantic gap between the

implementation and the specification of the actions. Due to the semantic gap between

the input/output rule format used in their language and the actual implementations of

actions, the bugs we found would not be discovered by their verification approach. Addi-

tionally, they impose restrictions on the use of quantification in their properties whereas

we do not have any restrictions.

Rails’s mechanisms for ensuring data validity have been investigated [7], finding po-

tential faults in both how these mechanisms are used and in their implementation in-

herently. They found that developers rarely used transactions in actions, and often

improperly. Our method, thus far, assumes that transactions are used correctly, and as

such, we may miss bugs. Enhancing our method to not rely on this assumption is future

work.

SafeWeb [58] is a Rails middleware tool for access control. It stands as a layer between

the web application and the data. At runtime, it tracks data items and propagates

associated permissions in a way that is similar to dynamic taint analysis, raising errors if

a user gains access to restricted information. We statically ensure that access control is

implemented correctly, while SafeWeb incurs a runtime overhead. In addition, in order

to use SafeWeb, existing Rails applications to be fundamentally overhauled. Our goal

was to examine existing applications.

RailroadMap [73] is an automated tool for verification of access control in Rails using

CanCan and Pundit. The similarities between our approach and theirs end at trying

to achieve the same goal. Their program analysis is limited to parsing a few specific

Rails files and examining the AST, not even taking file dependencies into account. They

expect the Ability class to be declared in a limited manner, not allowing elsif branches or

branch nesting or method calls in the constructor. They naively assume that not showing

url links to actions is sufficient to prevent unrestricted execution of actions. Finally, they

132

Related Work Chapter 7

evaluated their method on small applications: all but a few had a single developer and

were abandoned in weeks. We could not directly compare our results to theirs because

their reported results are not specific enough to compare: they report the number of

bugs but no specific description of bugs. In addition, we are confused by them reporting

access control bugs in two applications (Artdealer and shiroipantsu) that, as far as we

can see, had never in their history of development used access control.

7.2 Access Control

Our basic access control model maps each user, operation and object, to a boolean [70].

There are more elaborate access control systems [38, 59]. Our model can be considered

a simplified version of role-based access control (RBAC). Our model of access control

reflects the access control mechanisms used in real world Rails gems like CanCan, Can-

CanCan and Pundit.

There is an extensive body of research that focuses on verification of access control

policies [32, 60], as well as aiding the creation of access control policies [40, 34]. This work

describes and investigates policies specified using standards such as XACML. In our work,

rather than focusing on policy correctness in isolation, we are focusing on inconsistencies

between policy specification and policy enforcement. In most cases such inconsistencies

point to bugs in policy enforcement, even though policy specification might itself be

deficient. In addition, we focus on verifying access control policies in Rails applications,

and XACML is not used in any Rails application we came across.

The problem of access control policy enforcement has been tackled before. For ex-

ample, there exists work that checks whether a user of a particular role could access

a restricted webpage [98]. Their work requires manual specification of user roles and

categorizing pages based on which roles can access them. We automatically extract this

133

Related Work Chapter 7

information from existing code. Instead of just ensuring authorized actions are accessi-

ble, we also ensure that all operations executed by accessing these actions conform to

the policy. As an other example, access control can be verified on Java objects, given an

appropriate policy [6]. Our problem domain, level of automation, and approach are all

different.

7.3 Theorem Prover Based Verification

Verification of software using theorem provers has been explored before in projects

such as Boogie [9], Dafny [71] and ESC Java [41]. These projects focus on languages

such as C, C#, and Java, and typically require user guidance in the form of explicit

pre- and post-conditions, explicit data structure constraints, and loop invariants. While

loop invariants may be inferred for certain loops, they are ultimately required to reason

about the loops. Our method does not require loop invariants, and uses static analysis

to automatically optimize the loop translation to FOL. While low level languages such

as C and Java present different challenges then our high level language, we believe that

modeling loops via coexecution is applicable and would be beneficial for the verification

of loops in low level languages as well.

Another line of related work is inductive verification of abstract data type specifi-

cations [51, 74, 46], where algebraic specifications are used to model behaviors of data

types such as stacks, queues etc., and automated verification techniques based on term-

rewriting systems are used for verification. The types of specifications we focus on, and

the verification techniques we use, are significantly different.

The improvements we noticed from using many-sorted first order logic hint at a fun-

damental mismatch between programming languages and the input of theorem provers.

This lack of support for precise reasoning about programming language constructs in the-

134

Related Work Chapter 7

orem provers has been noticed and addressed before [23]. Specifically, [23] discusses this

problem with regard to ANSI-C basic types and operations, bit-vectors and structures,

pointers and pointer arithmetic. They address this problem by devising a theorem prover

that supports all these elementary operations. These improvements do not improve on

the basic problems with loop verification as tools that use Simplify still require loop

invariants [41], and they do not focus on object-oriented code with multiple inheritance.

As part of a research effort to use Spass as the theorem prover engine for interactive

theorem proving [11], Spass was modified to support many-sorted logic. This was done in

order to make deduction logs sort aware, which in turn makes it possible to reconstruct

readable proofs from these logs and show them to the user for the purpose of interactive

theorem proving. They observed an increase in the number of theories Spass could solve.

However, this modification was done for performance reasons, making it reasonable to

expect an even larger performance gain from sorts in Spass. The source of this Spass

modification is not available, and so we could not include it as part of our experiments.

There are other theorem provers that can be used for data model verification. Vam-

pire [68] is a high performance FOL theorem prover that supports sorts. Snark [96] is

another FOL theorem prover, also supporting sorts. We plan to, as part of our future

work, implement automatic translation of data models into TPTP syntax [101, 102]), the

syntax of the test suite that is used by the annual World Championship for Automated

Theorem Proving [100, 85]. This language is readable by many theorem provers, includ-

ing Spass and Z3. However, given that many-sorted logic has only recently been added

to TPTP [99], we expect that the highest performing theorem provers are optimized for

unsorted logic. Unless the theorem prover integrates sorts within its resolution engine,

we can expect many-sorted logic to perform no better than unsorted logic. Support for

many-sorted logic is possible to implement syntactically (e.g., by treating sorts as pred-

icates and implicitly introducing axioms that define disjoint universes), however, this

135

Related Work Chapter 7

would not result in the performance gains we observed.

In addition to unsorted and many-sorted logic, there exists order-sorted logic [48].

Order-sorted logic defines a partially ordered set of sorts, and the universes that corre-

spond to these sorts are such that universe of class c1 is a subset of the universe of class

c2 if c1 ≤ c2. While order-sorted logic is highly similar to our data-models involving

multiple inheritance, we are not aware of theorem provers that support it in first order

logic with free quantification.

7.4 Coexecution

An interesting parallel can be drawn between coexecution of loop iterations and snap-

shot isolation in the domain of databases [10, 37]. The coexecutability problem is similar

to the problem of equivalence of serializability and snapshot isolation. However, we see

no parallel between our delta union and the delta apply operations and snapshot iso-

lation notions such as first-committer-wins, transactions aborting or committing based

on conflicts etc. Our purpose is verification viability, not scalability or optimization of

transactions. Our domain of application is quite different, with our model being purely

based on sets and relations with no basic types, and operations being only creates and

deletes (which we differentiate in our approach instead of considering both of them as

writes.

There exists a long body of work focusing on operation commutativity with applica-

tions such as automatically parallelizing data structures [66] and computation [61, 91].

Automatic loop parallelization has been researched for decades [5, 8, 52]. This prior

research acknowledges loop dependencies as problematic for parallelization, and the po-

tential for performance increase if no such dependencies exist. While we are also avoiding

loop dependencies, our purpose is not optimization or making execution scalable, but

136

Related Work Chapter 7

making verification more feasible in practice. Coexecution is a theoretical concept that

is not executable in actual hardware. Furthermore, there exist parallelizable loops that

are not coexecutable.

Semantic properties of operations have been used for the purposes of simplifying

verification [35]. This is similar to our approach at a high level. However, we do static

analysis of a particular condition that allows us to use a completely alternate definition

of a loop, whereas [35] iteratively abstracts and subsequently reduces the model in order

to infer and enhance atomicity rules without altering the validity of the given invariants.

Their problem, domain of application, goal and solution are fundamentally different.

Semantic properties of operations have been used for the purposes of simplifying

verification [35]. This is similar to our approach at a high level. However, we do static

analysis of a particular condition that allows us to use a completely alternate definition

of a loop, whereas [35] iteratively abstracts and subsequently reduces the model in order

to infer and enhance atomicity rules without altering the validity of the given invariants.

Their problem, domain of application, goal and solution are fundamentally different.

7.5 Extraction

Rubicon [75] uses symbolic execution for program analysis. Their symbolic execution

is fully explained in a technical report [76]. Like them, we use the dynamic features of an

unmodified Ruby runtime to override concrete methods with their symbolic counterparts.

However, they override methods with their symbolic counterparts only once, before sym-

bolic execution has started. Considering that they use classical symbolic execution in

a Ruby interpreter, there are some key differences between our methods: most impor-

tantly, in the fact that we can extract models from dynamically generated source code.

Recently, they used their symbolic execution technique to extract access control signa-

137

Related Work Chapter 7

tures from Rails programs [77]. Their experimental set is limited to applications much

smaller and simpler than ours. We suspect this is caused by their extraction method

not supporting dynamic features as ours, so they had to exclude these applications from

their experimental set.

There has been work on the static analysis of Rails [56]. This line of work focuses

on typechecking Rails applications and builds on DRuby [44], which is a Ruby static

type-checker. The presented techniques infer types and detect errors by converting each

statement into a type constraint, and exhaustively applying a set of rewrite rules. In

effect, they insert type information that refers to dynamically generated methods by as-

suming that dynamically generated methods will adhere to the core Rails specification.

As such, their method, as our model extraction, relies on dynamic method generation

being input-independent. However, instead of investigating dynamically generated meth-

ods, they have assumptions about the semantics of these methods that are based on

Rails specifications. However, they admit that their assumptions about the functionality

of Rails methods may be incomplete or incorrect. Their approach not handle methods

generated by a third party library, as those were not explicitly listed by their tool. In

addition, if a third party library augments a core Rails method, their approach may

assume the wrong semantics.

RubyX [21] is a tool for symbolic execution in Rails that can be used to find access

control bugs. It uses manually written scripts, each of which has to setup a database

with symbolic values, execute an action, manually capture relevant output of the action,

and check whether specific post-conditions hold. We require no manual effort from the

developer both in terms of specifying expectations of correctness and scenarios under

which these expectations should be met. Furthermore, symbolic model extraction does

not rely on SMT solvers and a custom symbolic runtime. Because we do not use SMT

solvers during model extraction, we are not limited to conditionals that can be specified

138

Related Work Chapter 7

in decidable logic fragments. We accomplish model extraction without a custom runtime

that keeps track of symbolic values. Furthermore, they use DRails [56] to make specific

usages of Rails code explicit, whereas we capture metaprogramming natively.

Symbolic execution [67, 55, 65, 47, 93, 18] is a well know technique for program

analysis. Instead of executing source code in a normal runtime, symbolic execution

will execute source code in an alternate runtime, operating on symbolic values instead of

concrete values. These symbolic values are abstractions of concrete values. SAT and SMT

solvers are used in branch conditions to determine if branch conditions are satisfiable, in

order to guide path exploration for the purpose of testing. We use an unmodified Ruby

runtime which makes our technique easier to implement, and we do not use solvers to

resolve branch conditions as our purpose does not extend beyond extracting the model

of a branch condition.

Concolic execution [93] extends on symbolic execution by keeping track of concrete

values as well as symbolic. This is useful when solvers are not able to check satisfiability

or find satisfying assignments to a branch conditions. One could look at our treatment

of dynamic features as concolic, as we execute them concretely instead of symbolically.

Rubydust [57] attempts to typecheck Ruby code, accomplishing this by wrapping

objects with type constraints and running actual code. They also use some basic instru-

mentation. This makes their approach similar to the core idea behind our extraction by

instrumented execution technique, and in both cases, the goal is to get around dynamic

features of Ruby. However, their wrapped objects contain type information whereas we

inject abstract syntax trees into ActiveRecord objects and variables. Their solution fo-

cuses on general purpose Ruby which our solution cannot cover, but within our domain

and with the code generation purpose, we cover much larger applications.

139

Chapter 8

Conclusion

In this dissertation we presented an approach for verification of data models of web

applications. Specifically, our automated method is effective in finding data integrity

bugs and access control bugs in web applications.

Verification of data integrity and access control of web applications involves several

steps. First, to extract an abstract data store model from a given application, we devel-

oped symbolic extraction, an approach for model extraction that can handle dynamically

generated code. This was necessary considering the dynamic nature of Ruby and typical

Rails programming.

We designed the Abstract Data Store (ADS) modeling language to represent an ab-

straction of a web application that focuses on how an application stores, manages and

accesses its data. This model is designed to be precise enough to find bugs with a low rate

of false positives, yet abstract enough to be translatable to first order logic and verifiable

using theorem provers quickly and effectively.

Finally, we translate the abstract data store, including correctness criteria to first

order logic, to be verified using off the shelf theorem provers. To improve verification

140

Conclusion Chapter 8

viability, we found two ways to improve our translation: using coexecution to model

loops, and leveraging many-sorted first order logic. Coexecution allows us to model

loops in a way that does not directly correspond to a potential execution on a com-

puter, but is significantly easier to reason about by theorem provers, and is logically

equivalent under conditions we defined. Many-sorted logic lets us define our model with

fewer axioms, lessening the theorem prover’s burden of reasoning about the type system.

We experimentally demonstrate that these improvements highly increase the viability of

verification.

We experimentally evaluated our approach on 19 open source Ruby on Rails web

applications. Using this approach we identified numerous bugs regarding both data

integrity and access control.

Future work. Our work can be improved in two general ways: improving the quality of

verification on the current problem domain, and expanding the method to other domains.

Both model extraction and translation to logic can be improved. Model extraction

can be made more precise to avoid false positives: for example, by differentiating objects

that are saved in actions from those that are not. Furthermore, our implementation is

aimed at specific versions of Rails and associated libraries. This set can be expanded.

As for the translation to first order logic, we believe that some real world abstract

data store models can be translated to decidable fragments of first order logic. We do

not know what the conditions required to guarantee translation to a decidable fragment

are, or how restrictive they would be, but this would definitely improve our verification

performance. In addition, we believe that we could greatly speed up translation and

verification if we could trim the schema on a per-action or per-property basis in order to

further reduce the number of axioms used to model a behavior.

In addition, we would like to expand the domain of our approach. First, we would

141

like to see how our method fairs with other web application frameworks, such as Django

or Spring. We believe that our approach could be useful to them, given a lack of research

on data models for those application frameworks.

Second, we would like to expand on abstract data stores to cover basic type field

manipulation. While this would probably hurt the viability of verification using first

order logic, SMT is a viable alternative. If successful, this would make our approach

more precise and potentially applicable to other domains.

Third, we would like to investigate applications that use non-relational databases.

While this would probably require fundamental changes to the abstract data store mod-

eling language, data integrity bugs are far more likely in these applications.

Finally, we would like to develop a new programming language based on abstract data

stores that is simple to use and expressive enough to synthesize portions of web applica-

tions. In addition to providing ease of use to the developer, data models written in this

language would be verifiable using our approach, making web application development

easier and resulting applications more robust and secure.

142

Bibliography

[1] ekremkaraca/awesome-rails: A collection / list of awesome projects, sites made
with Rails.

[2] Health Insurance Marketplace — Healthcare.giv. https://www.healthcare.gov/,
2015.

[3] activeadmin/activeadmin: The administration framework for Ruby on Rails appli-
cations., Aug. 2016. https://github.com/activeadmin/activeadmin.

[4] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and Systems Modeling, 4(1):32–54, 2005.

[5] A. Aiken and A. Nicolau. Optimal loop parallelization. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation
(SIGPLAN 1988), PLDI ’88, pages 308–317, New York, NY, USA, 1988. ACM.

[6] A. Ali and M. Fernández. Static enforcement of role-based access control. In
M. H. ter Beek and A. Ravara, editors, Proceedings 10th International Workshop
on Automated Specification and Verification of Web Systems, WWV 2014, Vienna,
Austria, July 18, 2014., volume 163 of EPTCS, pages 36–50, 2014.

[7] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Feral
concurrency control: An empirical investigation of modern application integrity. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 1327–1342, New York, NY, USA, 2015. ACM.

[8] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program
parallelization. Proceedings of the IEEE (1993), 81(2):211–243, 1993.

[9] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, editors, Proceedings of the 4th Interna-
tional Symposium on Formal Methods for Components and Objects (FMCO 2005),
volume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer, 2005.

143

https://github.com/activeadmin/activeadmin

[10] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil. A
critique of ansi sql isolation levels. In Proceedings of the 1995 ACM International
Conference on Management of Data (SIGMOD 1995), pages 1–10, 1995.

[11] J. C. Blanchette, A. Popescu, D. Wand, and C. Weidenbach. More SPASS with
isabelle - superposition with hard sorts and configurable simplification. In Inter-
active Theorem Proving - Third International Conference, (ITP 2012), Princeton,
NJ, USA, August 13-15, 2012. Proceedings, pages 345–360, 2012.

[12] I. Bocic and T. Bultan. Inductive verification of data model invariants for web
applications. In Proceedings of the 36th International Conference on Software En-
gineering (ICSE 2014), May 2014.

[13] I. Bocic and T. Bultan. Coexecutability for efficient verification of data model
updates. In 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 744–754, 2015.

[14] I. Bocic and T. Bultan. Data model bugs. In NASA Formal Methods - 7th Interna-
tional Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceed-
ings, pages 393–399, 2015.

[15] I. Bocic and T. Bultan. Efficient data model verification with many-sorted logic.
In 30th IEEE/ACM International Conference on Automated Software Engineering
ASE 2015, Lincoln, Nebraska, USA, November 9-13, 2015, 2015.

[16] I. Bocic and T. Bultan. Finding access control bugs in web applications with
cancheck. In 31st IEEE/ACM International Conference on Automated Software
Engineering ASE 2016, Singapore, 2016.

[17] M. Book and V. Gruhn. Modeling web-based dialog flows for automatic dialog con-
trol. In Proceedings of the 24th IEEE/ACM International Conference Automated
Software Engineering (ASE 2004), pages 100–109, 2004.

[18] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX conference on Operating systems design and implementation (OSDI
2008), pages 209–224, 2008.

[19] cancan — RubyGems.org — your community gem host, Sept. 2013. http:

//rubygems.org/gems/cancan.

[20] ryanb/cancan • GitHub, Nov. 2015. https://github.com/ryanb/cancan.

[21] A. Chaudhuri and J. S. Foster. Symbolic security analysis of ruby-on-rails web
applications. In Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010, pages
585–594, 2010.

144

http://rubygems.org/gems/cancan
http://rubygems.org/gems/cancan
https://github.com/ryanb/cancan

[22] K. Claessen, A. Lillieström, and N. Smallbone. Sort it out with monotonicity
- translating between many-sorted and unsorted first-order logic. In Automated
Deduction - CADE-23 - 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, pages 207–221, 2011.

[23] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem proving
for program verification. In Proceedings of the 17th International Conference on
Computer Aided Verification, (CAV 2005), pages 296–300, 2005.

[24] L. de Moura and N. Bjrner. Efficient e-matching for smt solvers. In Automated
Deduction - CADE-21, 21st International Conference on Automated Deduction,
Bremen, Germany, July 17-20, 2007, Proceedings, volume 4603 of Lecture Notes in
Computer Science, pages 183–198. Springer, 2007.

[25] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, pages 337–340, 2008.

[26] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web
applications. Journal of Computer and System Sciences, 73(3):442–474, 2007.

[27] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A system for specification and verifi-
cation of interactive, data-driven web applications. In S. Chaudhuri, V. Hristidis,
and N. Polyzotis, editors, SIGMOD Conference, pages 772–774. ACM, 2006.

[28] A. Deutsch and V. Vianu. WAVE: Automatic verification of data-driven web ser-
vices. IEEE Data Engineering Bulletin, 31(3):35–39, 2008.

[29] devise — RubyGems.org — your community gem host, Sept. 2013. http:

//rubygems.org/gems/devise.

[30] Discourse, Mar. 2014. www.discourse.org.

[31] The Web framework for perfectionists with deadlines — Django, Feb. 2013. http:
//www.djangoproject.com.

[32] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and reasoning about
dynamic access-control policies. In U. Furbach and N. Shankar, editors, Automated
Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA,
August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer Sci-
ence, pages 632–646. Springer, 2006.

[33] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In
Computer Aided Verification, 18th International Conference, CAV 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, pages 81–94, 2006.

145

http://rubygems.org/gems/devise
http://rubygems.org/gems/devise
www.discourse.org
http://www.djangoproject.com
http://www.djangoproject.com

[34] S. Egelman, A. Oates, and S. Krishnamurthi. Oops, i did it again: Mitigating re-
peated access control errors on facebook. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, pages 2295–2304, New York,
NY, USA, 2011. ACM.

[35] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2009), pages 2–15, 2009.

[36] Fat Free CRM - Ruby on Rails-based open source CRM platform, Sept. 2013.
http://www.fatfreecrm.com.

[37] A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil, and D. Shasha. Making
snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–528, 2005.

[38] D. Ferraiolo and R. Kuhn. Role-based access controls. Proc. of 15th NIST-NSA
National Computer Security Conference, 1992.

[39] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[40] K. Fisler and S. Krishnamurthi. A model of triangulating environments for policy
authoring. In J. B. D. Joshi and B. Carminati, editors, SACMAT 2010, 15th ACM
Symposium on Access Control Models and Technologies, Pittsburgh, Pennsylvania,
USA, June 9-11, 2010, Proceedings, pages 3–12. ACM, 2010.

[41] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
234–245, 2002.

[42] M. F. Frias, J. P. Galeotti, C. L. Pombo, and N. Aguirre. Dynalloy: upgrading
alloy with actions. In 27th International Conference on Software Engineering (ICSE
2005), 15-21 May 2005, St. Louis, Missouri, USA, pages 442–451, 2005.

[43] M. F. Frias, C. L. Pombo, J. P. Galeotti, and N. Aguirre. Efficient analysis of
dynalloy specifications. ACM Transactions on Software Enginnering Methodology,
17(1), 2007.

[44] M. Furr, J. hoon (David) An, J. S. Foster, and M. W. Hicks. Static type inference
for ruby. In Proceedings of the ACM Symposium on Applied Computing (SAC
2009), pages 1859–1866, 2009.

[45] J. P. Galeotti and M. F. Frias. Dynalloy as a formal method for the analysis of java
programs. In Software Engineering Techniques: Design for Quality, SET 2006,
October 17-20, 2006, Warsaw, Poland, pages 249–260, 2006.

146

http://www.fatfreecrm.com

[46] S. J. Garland and J. V. Guttag. Inductive methods for reasoning about abstract
data types. In J. Ferrante and P. Mager, editors, Conference Record of the 15th
Annual ACM Symposium on Principles of Programming Languages (POPL 1988),
pages 219–228. ACM Press, 1988.

[47] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing.
In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI 05), pages 213–223, 2005.

[48] J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theor. Com-
put. Sci., 105(2):217–273, 1992.

[49] Google Health. http://health.google.com/.

[50] Google Powermeter. http://www.google.org/powermeter/.

[51] J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract data types and software
validation. Communications of the ACM, 21(12):1048–1064, 1978.

[52] M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. De-
tecting coarse-grain parallelism using an interprocedural parallelizing compiler. In
Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, Supercomput-
ing ’95, New York, NY, USA, 1995. ACM.

[53] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating navigation errors in
web applications via model checking and runtime enforcement of navigation state
machines. In Proceedings of the 25th IEEE/ACM Int. Conf. Automated Software
Engineering (ASE 2010), pages 235–244, 2010.

[54] M. Han and C. Hofmeister. Relating navigation and request routing models in
web applications. In Proceedings of the 10th Int. Conf. Model Driven Engineering
Languages and Systems (MoDELS 2007), pages 346–359, 2007.

[55] S. L. Hantler and J. C. King. An introduction to proving the correctness of pro-
grams. ACM Computing Surveys, 8(3):331–353, September 1976.

[56] J. hoon (David) An, A. Chaudhuri, and J. S. Foster. Static typing for ruby on rails.
In Proceedings of the 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2009), pages 590–594, 2009.

[57] J. hoon (David) An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic inference
of static types for ruby. In Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL 2011), pages 459–472,
2011.

147

[58] P. Hosek, M. Migliavacca, I. Papagiannis, D. M. Eyers, D. Evans, B. Shand, J. Ba-
con, and P. Pietzuch. Safeweb: A middleware for securing ruby-based web applica-
tions. In Middleware 2011 - ACM/IFIP/USENIX 12th International Middleware
Conference, Lisbon, Portugal, December 12-16, 2011. Proceedings, pages 491–511,
2011.

[59] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scar-
fone. Guide to attribute based access control (abac) definition and considerations.
NIST Special Publication, 800:162, 2014.

[60] G. Hughes and T. Bultan. Automated verification of access control policies using
a SAT solver. STTT, 10(6):503–520, 2008.

[61] O. H. Ibarra, P. C. Diniz, and M. C. Rinard. On the complexity of commutativity
analysis. International Journal of Foundation of Computer Science, 8(1):81–94,
1997.

[62] D. Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Enginnering and Methodology (TOSEM 2002), 11(2):256–290, 2002.

[63] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge, Massachusetts, 2006.

[64] kandanapp/kandan, Sept. 2013. http://github.com/kandanapp/kandan.

[65] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In H. Garavel and J. Hatcliff, editors, TACAS, volume
2619 of Lecture Notes in Computer Science, pages 553–568. Springer, 2003.

[66] D. Kim and M. C. Rinard. Verification of semantic commutativity conditions and
inverse operations on linked data structures. In Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2011), pages 528–541, 2011.

[67] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

[68] L. Kovács and A. Voronkov. First-order theorem proving and vampire. In Proceed-
ings of the 25th International Conference on Computer Aided Verification (CAV
2013), Saint Petersburg, Russia, July 13-19, 2013., pages 1–35, 2013.

[69] G. E. Krasner and S. T. Pope. A cookbook for using the model-view controller
user interface paradigm in Smalltalk-80. Journal of Object Oriented Programming
(JOOP 1988), 1(3):26–49, Aug. 1988.

[70] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, Jan. 1974.

148

http://github.com/kandanapp/kandan

[71] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In
Proceedings of the 16th International Conference on Logic Programming, Artificial
Intelligence, and Reasoning (LPAR), pages 348–370, 2010.

[72] Lobsters, Mar. 2014. https://lobste.rs.

[73] S. Munetoh and N. Yoshioka. Model-assisted access control implementation for
code-centric ruby-on-rails web application development. In 2013 International
Conference on Availability, Reliability and Security, ARES 2013, Regensburg, Ger-
many, September 2-6, 2013, pages 350–359, 2013.

[74] D. R. Musser. On proving inductive properties of abstract data types. In Proceed-
ings of the 7th ACM Symp. Principles of Programming Languages (POPL 1980),
pages 154–162, 1980.

[75] J. P. Near and D. Jackson. Rubicon: bounded verification of web applications.
In Proceedings of the ACM SIGSOFT 20th Int. Symp. Foundations of Software
Engineering (FSE 2012), pages 60:1–60:11, 2012.

[76] J. P. Near and D. Jackson. Symbolic execution for (almost) free: Hijacking an
existing implementation to perform symbolic execution. Technical Report MIT-
CSAIL-TR-2014-007, MIT, April 2014.

[77] J. P. Near and D. Jackson. Finding security bugs in web applications using a catalog
of access control patterns. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 947–
958, 2016.

[78] J. Nijjar. Analysis and Verification of Web Application Data Models. PhD thesis,
University of California, Santa Barbara, Jan. 2014.

[79] J. Nijjar, I. Bocić, and T. Bultan. An integrated data model verifier with property
templates. In Proceedings of the ICSE Workshop on Formal Methods in Software
Engineering (FormaliSE 2013), 2013.

[80] J. Nijjar and T. Bultan. Bounded verification of Ruby on Rails data models. In
Proceedings of the 20th Int. Symp. on Software Testing and Analysis (ISSTA 2011),
pages 67–77, 2011.

[81] J. Nijjar and T. Bultan. Unbounded data model verification using SMT solvers.
In Proceedings of the 27th IEEE/ACM Int. Conf. Automated Software Engineering
(ASE 2012), pages 210–219, 2012.

[82] OMG unified modeling language specification, version 1.3. http://www.omg.org.

[83] Open Source Rails, Jan. 2016. http://www.opensourcerails.com.

149

https://lobste.rs
http://www.opensourcerails.com

[84] ActsAsParanoid/acts as paranoid: ActiveRecord plugin allowing you to hide and
restore records without actually deleting them., Aug. 2016. https://github.com/
ActsAsParanoid/acts_as_paranoid.

[85] F. Pelletier, G. Sutcliffe, and C. Suttner. The Development of CASC. AI Commu-
nications, 15(2-3):79–90, 2002.

[86] W. V. Quine. Quantification and the empty domain. J. Symb. Log., 19(3):177–179,
1954.

[87] Ruby on Rails, Feb. 2013. http://rubyonrails.org.

[88] Rails Routing from the Outside In - Ruby on Rails Guides, Jan. 2016. guides.

rubyonrails.org/routing.html#crud-verbs-and-actions.

[89] Overview - Redmine, Sept. 2014. www.redmine.org.

[90] M. Richters and M. Gogolla. Validating UML models and OCL constraints. In
Proceedings of the 3rd Int. Conf. Unified Modeling Language (UML 2000), LNCS
1939, 2000.

[91] M. C. Rinard and P. C. Diniz. Commutativity analysis: A new analysis technique
for parallelizing compilers. ACM Transactions on Programming Languages and
Systems (TOPLAS 1997), 19(6):942–991, 1997.

[92] E. D. Sciascio, F. M. Donini, M. Mongiello, R. Totaro, and D. Castelluccia. Design
verification of web applications using symbolic model checking. In Proceedings of
the 5th Int. Conf. Web Engineering (ICWE 2005), pages 69–74, 2005.

[93] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c.
In Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE 05), pages 263–272, 2005.

[94] Spring Framework — SpringSource.org, Feb. 2013. http://www.springsource.

org.

[95] macfanatic/SprintApp, Sept. 2014. https://github.com/macfanatic/

SprintApp.

[96] M. E. Stickel, R. J. Waldinger, M. R. Lowry, T. Pressburger, and I. Underwood.
Deductive composition of astronomical software from subroutine libraries. In Au-
tomated Deduction - CADE-12, 12th International Conference on Automated De-
duction, Nancy, France, June 26 - July 1, 1994, Proceedings, pages 341–355, 1994.

150

https://github.com/ActsAsParanoid/acts_as_paranoid
https://github.com/ActsAsParanoid/acts_as_paranoid
http://rubyonrails.org
guides.rubyonrails.org/routing.html#crud-verbs-and-actions
guides.rubyonrails.org/routing.html#crud-verbs-and-actions
www.redmine.org
http://www.springsource.org
http://www.springsource.org
https://github.com/macfanatic/SprintApp
https://github.com/macfanatic/SprintApp

[97] P. D. Stotts, R. Furuta, and C. R. Cabarrus. Hyperdocuments as automata: Veri-
fication of trace-based browsing properties by model checking. ACM Transactions
on Information Systems (TOIS 1998), 16(1):1–30, 1998.

[98] F. Sun, L. Xu, and Z. Su. Static detection of access control vulnerabilities in
web applications. In 20th USENIX Security Symposium, San Francisco, CA, USA,
August 8-12, 2011, Proceedings. USENIX Association, 2011.

[99] G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP typed first-
order form with arithmetic. In Logic for Programming, Artificial Intelligence, and
Reasoning - 18th International Conference, LPAR-18, Mérida, Venezuela, March
11-15, 2012. Proceedings, pages 406–419, 2012.

[100] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48,
2006.

[101] G. Sutcliffe, C. B. Suttner, and T. Yemenis. The TPTP problem library. In
Automated Deduction - CADE-12, 12th International Conference on Automated
Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings, pages 252–266,
1994.

[102] TPTP Syntax, Jan. 2015. http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.

html.

[103] Tracks, Sept. 2013. http://getontracks.org.

[104] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1998.

[105] https://petitions.whitehouse.gov/, 2015.

[106] C. Weidenbach. Spass input syntax version 1.5. http://www.spass-
prover.org/download/binaries/spass-input-syntax15.pdf.

[107] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
SPASS version 3.5. In Proceedings of the 22nd Int. Conf. Automated Deduction
(CADE 2009), LNCS 5663, pages 140–145, 2009.

[108] S. Yuen, K. Kato, D. Kato, , and K. Agusa. Web automata: A behavioral model of
web applications based on the MVC model. Information and Media Technologies,
1(1):66–79, 2006.

151

http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
http://getontracks.org

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Data Model Bug Examples
	Discussion on Data Model Bugs
	Our Approach Overview
	Contributions

	Abstract Data Stores
	Data Models in Ruby on Rails
	Abstract Data Stores
	Data Store Correctness
	Abstract Data Store Language

	Model Extraction
	Model Extraction and Dynamic Features of Ruby
	Symbolic Model Extraction
	Symbolic Extraction for Data Model Verification
	Experiments

	Verification via First Order Logic
	Classical First Order Logic
	ADS Translation
	Experimental Evaluation

	Coexecutability
	Coexecution overview
	Formalization
	Syntactic Analysis
	Experimental Evaluation

	Verification via Many-sorted Logic
	Many-Sorted Logic
	Empty Logic
	Translation to Many-sorted Logic
	Experimental Evaluation

	Related Work
	Modeling and Verification of Web Applications
	Access Control
	Theorem Prover Based Verification
	Coexecution
	Extraction

	Conclusion
	Bibliography

