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Abstract

A Visual Analysis Toolkit for Microscopic Image Mosaics of

Retinal Astrocytes

Panuakdet Suwannatat

Analyzing high-resolution images of astrocytes is important in understanding

diseases, such as glaucoma and retinal detachment, to which astrocytes are known

to become reactive. Yet, little is known about the statistics of astrocyte patterns

over the area of an entire retina.

We developed an interactive visualization system supporting the visual analysis

of microscopy mosaics of entire mouse retinas, and present preliminary findings

from the study of 8 full retina mosaics that were imaged in UCSB’s Retinal Cell

Biology Lab. We present the design and implementation of this visualization

system, which required several steps of data preparation and normalization. We

will briefly discuss our choices and validation approaches for parameter selection

in the image normalization, segmentation, and visualization steps of our pipeline.

We created tools to support the generation and visual comparison of possible

network structures interconnecting the astrocyte cells. We will report our initial

insights from using these tools on the 8 retinas.

Together with our biology collaborators, we identified 9 properties of astrocyte

cells that held most promise to shed light on underlying principles and statistics

x



in astrocyte distributions, and we will present the most interesting patterns that

emerged from our visual analysis.
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Chapter 1

Interactive Visualization Tool

Retinal astrocytes are one of two types of glial cells found in the mammalian

retina. In addition to being involved in retinal vascular growth [3], formation of

neuronal synapses, and the control of energy supply to neurons [4], astrocytes

play an important role in diseases and injuries: glaucomatous neurodegeneration

[5] and retinal detachment [6]. Studying astrocytes may elucidate their role in

pathological conditions, yet there is a lack of tools for visualizing astrocytes ef-

fectively. Although biomedical imaging techniques have improved greatly since

Stone and Dreher studied the distribution of astrocytes in 1987 [7], work ana-

lyzing astrocyte images such as [3] still visualizes astrocyte network as a whole

without distinguishing between individual cells.

In mice, these highly planar cells are located in the innermost retinal layer

termed the nerve fiber layer and are robustly stained using anti-glial fibrillary

acidic protein (GFAP). Using laser scanning confocal microscopy, whole retinal

2



Chapter 1. Interactive Visualization Tool

datasets were captured at high resolution and subsequently assembled into seam-

less montages. This produces very large images for quantitative and qualitative

analysis1.

As data is gathered at higher resolution, the need for an interactive visual-

ization tool designed specifically for astrocytes is paramount. Such a tool must

integrate relevant image processing techniques, visualize each piece of data in con-

text of the whole set, and be able to communicate uncertainty in the data. In this

chapter, we present an integrated system that has been developed in two major

stages: a prototype and the second generation. We will introduce the data and

visualization pipeline that can handle uncertainty in probabilistic segmentation.

Finally, we present how our region-based analysis tool allows the users to explore

and discover potential insights in large data sets.

1.1 Data pipeline

The data pipeline is shown in Figure 1.1. The steps are explained below.

1Parts of this chapter have previously been reported in [8] and [9].

3



Chapter 1. Interactive Visualization Tool

1.1.1 Tissue staining and imaging

Eight large retinal mosaics 2 are prepared and provided to us by our biologist

collaborators, Gabe Luna and Professor Steve Fisher of the Retinal Cell Biology

Lab, Neuroscience Research Institute, UCSB. In each of these images, a mouse’s

retina tissue was fixed and stained with anti-GFAP for astrocytes and anti-collagen

IV for blood vessels . As the astrocytes cytoskeleton contains the protein GFAP,

all astrocytes in the retina were visible. GFAP expression in astrocytes and related

issues are discussed in more details by [10]. The retina was then wholemounted

and the astrocyte layer imaged at 40X magnification on a laser scanning confocal

microscope Olympus FluoView 1000. Multiple overlapping sections are captured

into a single large mosaic using the bio-imaging software Imago [11].

The image sizes range from 217.26 (GFP1) to 324.53 megapixels (GFP13)

with an average size of 280.95 megapixels per retina3. Each pixel has a physical

dimension of 0.309697 µm.4

2The full-size mosaic is kept in the file 100percent.png under the directory
AstrocyteRoot/retName/images.

3The sizes are reported from the set of 8 retinas. Any blank margins are cropped away before
the sizes are calculated.

40.309697 µm is the width and height of a pixel. The physical area occupied by a pixel is
0.3096972 = 0.09591223181 µm2.
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1.1.2 Cell location identification

The centers of the astrocytes in the images were manually marked by the

biologist. The red stains near the cell nuclei served as a guide for the human to

confirm.

The visualization system allows the cells to be imported from an Excel file

outputted from Imago. They can also be added or removed interactively by right-

clicking and choosing the appropriate command from the context menu.5 In the

initial system design, cell identification is done completely in the first pass. In

later iterations, it was revealed certain visualization modes such as in Figure 1.9(d)

allow previously unmarked cell center to become visible6 even after the biologist

had believed that all the cells had been marked and segmented. The data pipeline

was modified to allow additional cells to be added 7 even after segmentation. The

segmentation processes for newly added cells are started automatically in the

background.

Since the nuclei of transgenic mice express GFP, the nuclei are always located

inside red blobs. Although many previous works have addressed the issue of auto-

mated nuclei detection [12] [13] [14], the results still need to be checked manually

by the biologist. The existence of noises in the red channel especially near the

5The cell locations are kept at allcells.txt under the data directory.
6as a gray cell among multi-hue neighbors with 100% saturations.
7with a “new cell here” command of the mouse context menu

5



Chapter 1. Interactive Visualization Tool

cuts is problematic for an automated approach. Hence, the biologist has decided

to perform this step manually.

1.1.3 Cell segmentation

The cells are segmented using a probabilistic method, as described in [8], which

is based on random walk [15]. The random walk program, implemented by Brian

Ruttenberg [16], works on each individual cell independently of other cells. For

each cell, the random walk agent starts from the cell center and randomly walks

toward its neighbors. The probability of stepping into each neighboring square

depends on its pixel intensity. To prevent agents from traveling too far into

other cell’s territory, the agent is occasionally reset back to the original cell center

location8. The number of times each pixel is visited as a proportion of the total

number of steps taken is recorded as a probability for that pixel. The process is

repeated until the probability map starts to converge.

This process takes approximately 1 - 2 minutes per cell. Although it is com-

putationally intensive, it is also trivially parallelizable [17]. Memory usage is also

relatively small. We have built a system to launch the random walk segmentation

program simultaneously with the number of instances equal to the number of CPU

8This parameter, called the restart probability, is set at 5× 10−5
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cores [9]. For legacy reason, the random walk program is run with OpenCV version

2.3 under the Ubuntu operating system inside a VirtualBox virtual machine9.

In the latest version, the cells can be added or deleted interactively in the

visualization software. Accordingly, the segmentation is modified so that each cell

is segmented on demand, still taking full advantage of multiple CPU cores. The

visualization client communicates with the segmentation server (which can be on

the same or on a different machine) via a shared disk space. Multiple servers

can work together to segment the retina. It has been argued in [18] that, for a

distributed system to work smoothly, a real-time performance monitoring is re-

quired. While performance debugging techniques for distributed system of black

boxes have been previously discussed in [19], we can customize and integrate our

own progress monitoring with a simple visualization. The progress of segmen-

tation, the cells being actively segmented, and the overall number and locations

of segmented cells are continuously monitored and visualized so the user does

not have to wait until the process is finished before exploring the retina. The

time-lapse video at [20] demonstrates this monitoring process.

Another segmentation method based on adaptive thresholding has recently

been developed by Aruna Jammalamadaka [21]. It is also fully integrated and

9The random walk program does not run on OpenCV version 2.4.7 or later.
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compatible with our software system.10 The file structure of the segmentation

results allow for future extensions by external tool to support a different segmen-

tation algorithm such as a watershed approach [22] [23] [24].

1.1.4 Segmentation results re-assembly

As shown in Figure 1.1, the segmentation results for individual cells are as-

signed random colors (hues) and put back together. The background color and

transparency is interactively configurable while rendering to screen. Certain seg-

mentation parameters have to be chosen at this step. This includes the cut-off

threshold and a boolean flag indicating whether to use continuous gradual coloring

to reflect the probability map or to use a solid color.

1.2 Early prototype

A prototype version is initially developed to test the viability of our visual-

ization techniques. To reduce complexity, only a quarter of the retina – one of

the four wings – is considered. Furthermore, the resolution is reduced by 50%

in each dimension, which reduces the number of pixels to only 25%. This allows

us to focus on designing the visualization and interactions to convey data and

10The segmentation results are kept under the rwalk directory with stack.raw being the raw
output from Random Walk Segmentation and ImageBW.png being the grayscale image of cell as
converted from the raw output or as produced directly by another segmentation method.

8
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Figure 1.1: The visualization pipeline
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Figure 1.2: Visualization of astrocytes in the early version

its uncertainty. We then address potential performance problems with increased

resolution in Section 1.3.

1.2.1 Visualization techniques

The visualization’s primary goal is an in-context presentation of data so un-

derlying patterns can emerge. This includes patterns of cell shapes, wrapping

patterns around blood vessels, and patterns of cell density. These patterns are

brought to the surface in Figure 1.2.

To show the cell shapes and density patterns in context, the segmentation

results are put together in a single large image. The image in Figure 1.2 is ren-

dered in accordance with design decisions made in iterative prototyping between

10
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Figure 1.3: Data pipeline in the prototype version

computer scientists and biologists [8]. Referring to the data pipeline in Figure

1.3, we describe how we construct 1.3(d) from 1.3(c).

The combined image (Figure 1.3(d)) has the same dimension as the original

image (Figure 1.3(b)). Each pixel, instead of containing a single color denotation,

contains a linked list to pairs of (id, p) where p is the probability of cellid occupying

that pixel.

In rendering the final image as in Figure 1.3(d) (inset of Figure 1.2), the colors

(hues) of different cells are initially randomly assigned. Since each pixel can be

assigned to different cells, the color of the pixel is chosen to be the hue value of

the cell whose probability is the greatest (called the winning cell). The brightness

of the color is then proportional to such score. These design decisions conform

with the principle that hue is suitable for distinguishing category while brightness

is suitable for representing continuous quantity [25].

11
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Figure 1.4: Other visualization features

1.2.2 Interactions

A variety of simple interaction techniques help the user explore the data both

in detail and in context. Layers of information can be turned on by control panel

switches, keyboard shortcuts, or mouse gestures.

In the default mode, the user sees a simple view as in Figure 1.2, but the

user can also bring up the cell center locations as shown in Figure 1.3(d). As

the user hovers the mouse over the image, the active cell becomes highlighted.

The pixel boundary of the segmented cell is highlighted and its extent outlined

by drawing its convex hull. The cell area is calculated by counting the number of

pixels belonging to the cell, then converted to µm2 and shown in a box. In Figure

1.4(a), the user is viewing the detail of cell 40 (also the cell in the upper-right

corner of the inset in Figure 1.2), as well as performing a distance measurement

of the diameter.

12
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Figure 1.5: Large glyphs appear where segmentation is uncertain.

A selection of multiple cells can be toggled by double clicking at the cell centers.

The user can also compare how the cell boundary is related to a Voronoi diagram

of the cell centers in Figure 1.4(b). When the feature is turned on, as the mouse

hovers, the centers of the cells to which this pixel belong are highlighted with lines

linked to the cells and the probability from the segmentation algorithm annotated.

1.2.3 Uncertainty Visualization

A substantial part of our analysis depends on the segmentation results. It is

important to communicate uncertainty to the user. Not only can the visualization

of uncertainty contribute to the confidence in the results, it can also be used to

guide the segmentation itself as discussed in [26] and [27]. Previous work on

uncertainty visualization of segmentation results include an approach based on

both computed uncertainty and user-annotated uncertainty [28]. In this section,

13
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we focus on computed uncertainty. The user can already annotate the damage

area, which poses uncertainty, as explained in Section 6.3.

The uncertainty of our data comes from the fact that we assign colors to

pixels based on the result of a probabilistic segmentation method. Cells overlap

more heavily in some areas than others; therefore, the confidence in our decision to

assign colors to a region varies across the image. Since the validity of any scientific

conclusion depends on the correct interpretation of this image, it is important that

the amount of uncertainty be communicated to the user. We utilize the concept

of entropy to quantify uncertainty. For each pixel, the entropy is defined as the

random walk score of the winning cell divided by the sum of the random walk

scores of all cells with respect to this pixel. The entropy is high when it is clear

which cell occupies the pixel. To visualize, the image is divided into k × k-pixel

grids (k adjustable by the user), each cell displaying a glyph (a solid disc) whose

size is inversely proportional to the average entropy. Figure 1.5 overlays the image

with glyphs of varying sizes. Wherever a glyph is big, the uncertainty is high –

there are contentions between nearby cells so the cell color assignments should

not be trusted completely.

14
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1.3 Improvements in the second generation

Continued use of the system and users’ feedback revealed a critical need to cre-

ate an updated system in which retinal datasets are viewed at full resolution (0.31

µm/pixel). Additionally, a need for interactive segmentation parameter choices

and more comprehensive visual analysis tools was identified. The challenges for

these improvements range from the size of the data to the speed of the algorithms

involved.

To handle significantly larger images, we employed two techniques: image

pyramid and multithread processing.

1.3.1 Image pyramid cache

A major hurdle in visualizing retinal data sets consists in the sheer image

dimensions of the microscopy output. Resulting montages are as large as 300

megapixels. We designed and implemented an image pyramid system, as intro-

duced in [29], to be flexible without any size constraints. We store our patches in

separate small files organized in a directory structure according to scale factors.

The system supports arbitrarily large images and is tolerant against individual

file corruptions, using a simple redundancy scheme.

15
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To support fast switching among different pre-rendered segmentation results,

the system caches recently-viewed patches in memory until they are 30 seconds 11

older than the most recently-loaded patch. For smooth navigation, low resolution

patches are always ready for display while the high resolution version is being

loaded.

The image pyramid, technically called LargeMap in the system, for the original

image is generated automatically when imported 12. Approximately seven levels

of zoom factors, depending on the size of the original image, are each kept in a

sub-directory 13. Files in the 100% zoom factor directory are potentially useful

for a quick test of image processing algorithms on small patches. The patches are

at most 300 × 300 pixels in dimension in the current implementation, although

the sizes are configurable in the LargeMap package.

The rendered segmentation visualizations according to different parameters

(cut off threshold and gradual coloring option) are also kept as LargeMaps.14 Be-

cause of image pyramid, it is possible to instantly switch back and forth between

multiple views of the retina as shown in Figure 1.6. Important special effects

such as channel splitting (showing only the GFAP or the blood vessel channel in

the original image as shown in Figure 1.8(c, d)) or color mapping (showing the

11value empirically determined in viewing experiments although this is configurable.
12It is kept at the directory data/LargeMap/origPic
13under the patches-by-zoom-factors directory
14They are located at data/preRendered directory.
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Figure 1.6: A composite image showing three views of a retina

combined segmentation result as translucent or on white instead of on black as

shown in Figure 1.9(c, d, e)) can be implemented by applying the filters on the

small patches at appropriate zoom levels instead of the entire image.

1.3.2 Multithread processing

To improve system performance from our previous version, we parallelized our

computation using Java thread pool [30]. In most cases, a large amount of com-

putation occurred in independent repetitive tasks across multiple cells. Typically,

our system spawns a pool of N threads where N = 1.5 × (# of CPU cores). A

number of threads higher than the number of cores produces a faster result be-

17
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cause threads can become intermittently idle while waiting for resource, yielding

execution time to more active tasks. Although more analytic approaches in de-

termining thread pool sizes exist [31], it has been informally observed that our

heuristic approach has yielded a CPU utilization near 100% while not exceeding

physical memory capacity. 15

This change greatly improved the performance in the following areas: pre-

computed segmentation of cells in an entire data set (4,500 cells) is now completed

in 2 hours compared to 2-3 days in the previous version. Pre-rendering of a full-

resolution whole retina using new segmentation parameters and constructing its

image pyramid is accomplished in approximately 4 minutes. Performing a basic

region-based analysis requires less than 10 seconds when analyzing up to 50,000

regions16.

1.4 System components

The system diagram is shown in Figure 1.7. The central component is the

graphic user interface (GUI) consisting of three seamlessly integrated components:

the data importer/editor, the visualization viewer, and the region-based analyzer.

15Our system was developed on an Apple iMac with 16 GB of RAM and 4 CPU cores, and
tested on an IBM PC running Windows with 42 GB of RAM and 24 CPU cores.

16A typical random-region analysis requires at most 10,000 regions.
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Figure 1.7: UCSB Retivis system diagram

The GUI is supported by integrated external tools. The random walk program

runs on a Linux virtual machine and communicates with Retivis via a shared disk

space17 and is monitored continuously in the GUI. The MATLAB technical com-

puting software is used for calculating adaptive thresholding binarization, alterna-

tive segmentation, binary image region property, connected component statistics

17the segment-me directory under each cell’s directory at rwalk/cell#
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and charts, etc. It is integrated with the program via the MatlabControl Java

library [32] which allows simultaneous connections to multiple running instances

of MATLAB. This greatly facilitates parallel processing of per-cell computations

such as segmentation and cell statistics.18 Finally the R Statistics Software is used

for calculating histograms, basic statistics, and advanced histogram comparisons.

It is used especially extensively to run the single cell injection cross validation

study (Section 2.7). The Rserve package [33] and the REngine Java library [34]

allows R commands to be issued from Retivis.

To reduce user’s workload and to ensure consistency in treatments and analy-

ses of multiple retinas, a scripting interface is provided. In the scripting mode, the

user treats Retivis as a scripting language by calling the appropriate macro name

and parameters from the command line 19. The script controls the GUI, which

in turns control the backend, to generate derived information and visualization

such as cell binarization, overlap networks, region-based analysis, multiple-retina

visualization, automated web-based insight reports, and miscellaneous screen cap-

tures. The scripts are the primary tool for running all experiments such as the

parameter adjustments in the single cell injection study, retina clustering, and

cells relocation20. The scripting interface is also used as generic utilities for scal-

18The parallel connections are managed by the custom MatlabPool library under the mutils

package.
19by calling ./retivis macro=macroName ret=retName <params>, for example
20a pilot experiment in which we place cells either at random locations or in a regular grid to

observe the difference in distributions.
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ing, combining, and comparing images or other files. For a large and complex

set of data, a custom utility that understands the basic file structure has proven

crucial in data management, gaining quick insights of the overview, and preparing

for the presentation of the data. While the GUI is used for an interactive survey

of data and the screening of relevant variables, the scripting interface is used to

create all the final visualizations presented in Appendix A.

All the information from the user’s input, the external tools, and automatic

processes are combined by the central GUI component and presented to the user

as layers of information.

1.5 Information layers

1.5.1 Basic information and interactions

Our visualization system, called UCSB Retivis, is capable of displaying basic

information such as the original image, the cell centers, the optic nerve head, the

retina border, the Voronoi diagram, and the segmentation result. The informa-

tion is displayed in layers and each layer can be turned on or off in the control

panel GUI. For many layers, basic attributes such as the color, the background

transparency, and the level of details can be configured. Most information is al-

21



Chapter 1. Interactive Visualization Tool

(a) Original image (b) cell centers, border, ONH

(c) GFAP (astrocytes) (d) blood vessels

(e) Voronoi diagram (f) segmentation result

Figure 1.8: Basic information layers (full retina)
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(a) (b)

(c) (d)

(e) (f)

Figure 1.9: Basic information layers (zoomed to 100%)
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ready stored or precomputed on the disk, but some information can be rendered

on demand using the multi-resolution image pyramid patches.

Figure 1.8 and Figure 1.9 show some examples of the information layers in full

retina overview mode and in the 100% zoom mode, respectively. The users can

double click at any part of the image to zoom in to 100% and center the view at

the cursor. The mouse wheel can be used to zoom in or out. Panning is done

by dragging while pressing the left mouse button. From any zoom level, the user

can press [R] on the keyboard to reset the view back to the overview mode where

the zoom level is automatically set such that the entire retina is displayed in the

window.

At the start, the user is presented with the original image in Figure 1.8(a),

whose 100% zoom level is shown in Figure 1.9(a). This original image can be

dimmed or turned off by adjusting a slider in the control panel or repeatedly

pressing [O]. Figure 1.8(b) shows an example when the original image is dimmed

to 25% and two other information layers are turned on: the cell centers (in red) and

the retina border (in white with draggable cyan anchor points). The cell center can

be added or deleted using a context menu by right clicking on the location of the

center. The retina border can be edited by checking the “allow edit” option under
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the analysis - define regions tab, after which the instruction will appear on

screen.21

Two additional options are provided for controlling the active channel of the

original image. The user may wish to see only the astrocytes in GFAP (green)

channel by checking “only astrocytes” as shown in Figure 1.8(c), or the blood

vessels (blue) channel by checking “only blood” as shown in Figure 1.8(d). The

channel extraction is done on-the-fly at the time of rendering using the patches

from the image pyramid.

When the original image layer is turned off completely, the background can

be set to a specific color such as white as shown in Figure 1.8(e). Here, the cell

centers are also set to a different color (black) and the Vorornoi diagram is shown

in orange. The Voronoi diagram is computed with the JTS Topology Suite [35]

as needed22. Figure 1.9(f) shows the Voronoi diagram at 100% when the “extra”

option is checked and the user clicks on a cell. The links are drawn to the Voronoi

neighbors through the Voronoi edges that they share. This visualization ensures

that all statistics based on Voronoi cell and neighbors are computed correctly.

The segmentation result, rendered with a cut-off threshold of 0.0005, is shown

in Figure 1.8(f) and Figure 1.9(b). The segmentation can be rendered on top

21The boundary polygon and its related information (e.g. size, perimeter) are kept under
data/retina-boundary. The entire edit history is also kept.

22It is kept at data/voronoi-diagram

25



Chapter 1. Interactive Visualization Tool

of the original image layer to provide context as shown in Figure 1.9(d) and (e)

when the GFAP and the blood vessel channels, respectively, are also displayed as

a gray background. Figure 1.9(d) has helped the biologist verify the accuracy and

completeness of cell center markings.23 Figure 1.9(e) is useful in surveying the

relationship between blood vessels and astrocytes.

1.5.2 Annotations

The user can toggle the scale bar on or off by opening the tab µ and selecting

“show scale reference.” The size of the scale bar adjusts automatically based

on zoom level but can be fixed at a certain physical length. On this tab, the

line, polyline, or polygon measurement tools can be selected. The user can

put virtual measurement tapes on the image and they will stay on as annotations,

as shown in Figure 1.10(a), until the end of the current session.

When there is a question regarding a specific cell, the user can quickly jump to

any cell in the retina by selecting “Go to cell ...” in the context menu. However,

there has been a situation where multiple cells need to be located and their relative

locations need to be discovered quickly. To select and highlight multiple cells, a

list of cell numbers, separated by space, can be provided by the user 24. Figure

23approximately 100 additional cells per retina have been found after the fact because they
appear to be in gray instead of another color.

24on the multi-select text box under the etc → others tab
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(a) measurements (b) multiple selections (c) major blood vessels

Figure 1.10: Annotation layers

(a) the distance map (b) nearest vector (c) nearby cells

Figure 1.11: Major blood vessels
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1.10(b) shows an output when “3 50 700 1100 3300” are provided. The five cells

are clearly highlighted. This feature has become useful when it was detected that

a number of cells did not have a corresponding Voronoi region. After a careful

inspection, it was discovered that those cells were accidentally duplicated from

another set of cells, and they were later deleted.

Major blood vessels masks are prepared by our collaborating biologist, Gabe

Luna, using Adobe Photoshop. Starting from the blue channel which shows all

blood vessels, the non-major vessels and noises were manually deleted. The result-

ing image is binarized and imported into the program. It is displayed in Figure

1.10(c). From this binary mask, a distance map is calculated for every point in-

side the retina as shown in Figure 1.11(a). The distance map was calculated by

running a Dijkstra’s single-source shortest path algorithm [36] from every edge

point of the major blood vessels. A more efficient O(n) algorithm is presented in

[37].

Based on the distance map, from every cell, a vector can be drawn toward

the nearest major blood vessel as visualized in Figure 1.11(b). This vector view

is useful in verifying the calculation and in detecting noises in the mask, which

is found in the small island near the lower right hand corner – it has since been

removed. Cells within the vicinity of a major blood vessel can be highlighted as

shown in Figure 1.11(c).
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(a) min score = 0 (b) min score = 3 (c) variable thickness

Figure 1.12: Astrocyte network visualization

1.5.3 Astrocyte network and other information

Multiple plausible approaches exist for the definition of astrocyte networks.

Different options are considered and discussed in Chapter 3. Once a network

has been generated, it is written to disk and can be loaded for visualization. The

network shown in Figure 1.12(a) is calculated from the overlap of grayscale images

of cells which are Voronoi neighbors. When a filter of a minimum score is imposed,

the network becomes more sparse; e.g. edges in Figure 1.12(b) have a minimum

connectivity score of 3. Another filter may be imposed to enforce a maximum

connection length. However, filtering may not be needed if the scores are visually

encoded into the thickness and opacity of the edges as shown in Figure 1.12(c).

In this view, the low-score connections almost disappear. Also, it is apparent that

strong overlaps usually appear along some blood vessels – specifically the veins.

There is, however, a single connection of unusual strength near the top left corner
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of the retina. Those two cell centers were later found to be located on the same

cell. It was in fact a small error in the cell center location data that was detected

with this visualization.

Another secondary information that can be visualized is a detailed view on

local networks. Figure 1.13(a) shows a local network of cell 2921. Yellow line seg-

ments connect to its six neighbors, each connection bending and passing through

a green point which is the point at which the overlap between two cells are the

strongest. Cyan lines connect through the strongest connection points, forming

polygon which can be considered the “domain” of the cell.

Finally, cell sizes can be visualized with circle glyphs as shown in 1.13(b); and

the distance to the furthest geodesic point of each cell can be visualized as shown

in 1.13(c). The cell size visualization suggests that the cells along the veins are the

biggest. Cell sizes near the ONH and the boundary seem to be an anomaly. The

furthest point visualization is useful in debugging the calculation and in explaining

why small but complex cells may have a high furthest point distance.

1.6 The region-based analysis tool

Users can divide areas into square regions (Figure 1.14(b, c)), concentric circles

around the optic nerve head (Figure 1.14(a)) or by any other options as shown in
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(a) local connectivity (b) cell sizes (c) furthest point

Figure 1.13: Other secondary information

(a) concentric map (b) opaque squares (c) translucent squares

Figure 1.14: Variations of region-based heat maps
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in Figure 1.15. Sizes of the squares or the circles are under user control. After

the regions are defined and placed, the relevant statistics (Section 1.6.2) for each

region are computed. Some variables which are slow to compute can be excluded

by the user25.

A central visualization option for analysis results consists in overlaid heat maps

using custom color coding. Heat maps can be displayed in solid color or blended

with user-selected transparency over the retina image to show context, as shown

in Figure 1.14(b, c). The heat map color transfer function can be displayed as

a continuous or customizable step function. To remove or highlight outliers, a

certain top and bottom percentiles of the data, as directed by the user, may be

excluded from the heat map color scale. The extreme values are shown as red or

blue for the top and bottom ranks, respectively. For a quantitative analysis, the

user can export all values to a spreadsheet in Microsoft Excel .xls or a generic

.csv table format.26

1.6.1 Region shapes and placements

The shape of the regions can be a square, a circle, or a ring (donut). The

ring shape can only be placed in concentric circles around the optic nerve head

25by unchecking the option do it slowly under the analysis tab
26The analysis output is located at data/analysis-output. The default filename is output

but this can be specified from the GUI or the outputName parameter of the analyze script.
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(a) on a grid (b) overlapping (c) on cells (d) random, inside

Figure 1.15: Region placement options

(ONH) as shown in Figure 1.14(a). Square and circle shapes can be placed on a

grid (see Figure 1.15(a) where the circles are of diameter 300 µm) with an option

to overlap the regions (see Figure 1.15(b) where the circles are overlapped with an

offset of 150 µm). They can also be placed around the cell centers in which case

the number of regions equal the number of cells (Figure 1.15(c)). Finally, to avoid

any sampling biases toward densely populated areas, the regions can be placed

randomly. In Figure 1.15(d), we randomly placed 5,000 circles around the retina.

Every circle is guaranteed to intersect the body of the retina as defined by the

hand-drawn boundary, but it may not be entirely inside the boundary. However,

in the case of Figure 1.15(d), all the circles are forced to be entirely inside the

boundary. The number of randomly placed regions is controlled by the user.
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1.6.2 Computed statistics

Several statistics are calculated for each region. The names of the variables,

the brief descriptions, and the units (if applicable) are included on a separate

sheet in the output Excel file27.

Nine variables that we use for the final analysis are listed and explained in

Chapter 5 although many more variables have been computed.

The numerical statistics for each region are listed on Table 1.1. While a cor-

relation between some of these variables may potentially be interesting, some

variable pairs are obviously correlated by definition (e.g. bin area and bin

equivdiameter). A few variables are omitted because they are for debugging

purpose (e.g. whether the region id is odd or even) or almost duplicates of other

variables (e.g. average amount of green, a duplicate of sum chan0 g). Variables

whose names start win bin are a result of binarization. Most of them were calcu-

lated with the function regionprops in Matlab [38].

Table 1.2 lists variables that represent non-numerical entities such as a set

of cells contained in the region or the X, Y coordinate of a certain point. For

some analysis, it is important to know the location of each region; in which case

the region center x and y variables are helpful. In other cases, it may only be

27under data/analysis-output/output.xls. Another file, output numberFields.csv, is
also created to support additional analytic tasks by an external statistics tool such as R
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required to determine if the region is between the boundary and the optic nerve

head (ONH). The boolean variables for such purpose are listed in Table 1.3.

Some variables do not describe any particular region. The variables in Ta-

ble 1.4 describe either common characteristics of all the regions (shape and size)

or the retina (name and number) under consideration.

Variable Description

region id id#

bin area Binarized segmented cell area

bin convex hull

area

Area of convex hull of binarized segmented cell

bin convex hull

holes

Number of holes between the filled-in binarized image and

the convex hull.

bin eccentricity Binarized segmented cell Eccentricity

bin equivdiameter Binarized segmented cell EquivDiameter

bin eulernumber Binarized segmented cell EulerNumber

bin extent Area of binarized segmented cell divided by area of its

bounding box (0 to 1)

bin filledarea Area of binarized segmented cell with all holes filled in

bin fraction of

convex hull

Area of binarized segmented cell divided by area of its

convex hull, AKA solidity (0 to 1)
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bin furthest

geodesic point

dist

Distance along cell body (NOT Euclidean) from cell center

to the furthest point of binarized segmented cell.

bin

majoraxislength

Length of major axis of the ellipse over the binarized im-

age (same second-moments).

bin

minoraxislength

Length of minor axis of the ellipse over the binarized image

(same second-moments).

bin num holes Binarized segmented cell’s number of holes (= 1-

EulerNumber)

bin orientation Binarized segmented cell Orientation (-90 to 90, with 0

being horizontal)

bin perimeter Binarized segmented cell perimeter

cellcenters count number of cell centers in this region

cell near center Cell number of the cell nearest to the center of this region

(-1 if none)

density numcells

per area

density (number of cells per area of retina within region)

dist 2

nearestneighbor

of center cell

distance to nearest neighbors of the cell at the center of

region
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dist center 2

label

distance from the center of optic nerve head to the ID

label position (usually at the center)

dist nearest

major blood

distance from center of region to the nearest major blood

vessel

dist of center

cell to nearest

major bv

distance from the cell at the center of region to the nearest

major blood vessels

mindist from

border

minimum distance from retina’s border

mindist from onh distance from optic nerve head to the edge of the region

region on retina

area

area of the retina within this region

sum chan0 r sum of red channel values

sum chan1 g sum of green channel values

sum chan2 b sum of blue channel values

voro area of

center cell

size of Voronoi region of the cell at the center of region

weighted cell

area of center

cell

weighted cell area of the cell at the center of region

Table 1.1: Numerical variables
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Variable Description

cellcenters set set of cell centers in this region

bin centroid x Binarized segmented cell Centroid in region of interest (X)

bin centroid y Binarized segmented cell Centroid in region of interest (Y)

region center x center of the bounding box of the region - X

region center y center of the bounding box of the region - Y

Table 1.2: Non-numerical variables

Variable Description

center inside

boundary

Is the center of region inside the retina boundary? (0 or

1)

center is between

onh and boundary

Is the center of region outside of ONH and inside the retina

boundary? (0 or 1)

center outside

onh

Is the center of region outside the optic nerve head? (0 or

1)

totally inside

boundary

Does this region reside completely inside the retina bound-

ary? (0 or 1)

totally outside

onh

Does this region reside completely outside the optic nerve

head? (0 or 1)

Table 1.3: Boolean variables
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Variable Description

region class Name of the Java class representing this region.

region diam Diameter of the circle or width of the square.

region area area

retina name Name of the retina (usu. the folder’s name, e.g. GFP9)

retina number The numeric part of the retina’s name (e.g. GFP9 → 9)

Table 1.4: Variables not specific to a region
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Data Preparation and Processing
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Chapter 2

Single Cell Injection Study

We demonstrated an approach to evaluating and optimizing the parameters for

the random walk segmentation algorithm that is used for segmenting individual

astrocytes. To accomplish this, we made use of the ground truth inferred from 54

individually injected cells that our biologist collaborators, Professor Steve Fisher

and Gabe Luna, NRI, UCSB, have collected. Evaluation of segmentation algo-

rithms in general have previously been discussed in the literature [39] and [40].

Some previous work has used hand-annotated ground truth to evaluate segmenta-

tion algorithms [41] [42] with a general-purpose ground truth database presented

in [43]. Rather than using manually-segmented images as ground truth, our work

utilizes images of Lucifer-Yellow dye to define the correct boundary of each cell’s

soma.

Three objectives of our study are: (i) to demonstrate that the random walk

segmentation algorithm can be fine-tuned to produce reasonably good results when
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Figure 2.1: Example of multiple-cell injection

compared to the ground truth; (ii) to prove that parameter optimization based

on one set of cells is generally applicable to another set of cells – this is in order

to validate our approach in – (iii) to arrive at the optimum threshold parameter

for the random walk segmentation algorithm that can be used to binarize cells for

the purpose of building astrocyte networks or any further analyses.

2.1 Objectives

The three main objectives of the single cell injection study were set and im-

plemented as follows:

1. For each individual cell, we determined its optimized parameter by using

the ground truth. We then evaluated the segmentation result adjusted by

each individually optimized parameter. (Note: parameters for different cells
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may be different.)

Purpose: to test the limit of our segmentation method.

2. We randomly split the 54 cells into a training set (60%) and a test set (40%).

We determined the best overall parameter from the training set, applied that

parameter on the test set and evaluated the segmentation result. We com-

pared the error rate on the test set against the error rate on the training

set. We also compared the error rate on the test set against the best pos-

sible error rate that could have been achieved if we were to use the perfect

parameters for the test set. This process was repeated several times.

Purpose: To ascertain that our method of parameter optimization is gen-

eralizable. That is, one set of cells is a good representative of another set of

cells.

3. We determined the best overall, single parameter for all the 54 cells. We

evaluated the segmentation results adjusted by the overall best parameter.

Purpose: To obtain the best parameter for use in the 8 full retina mosaics

by treating the 54 injected cells as a training set. We intended to use this

parameter to binarize the segmentation results, which is a necessary step for

the calculations of important statistics such as cell perimeter, orientation,

convex hull area, solidity, etc. Although – due to the lack of ground truth –
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it was not possible to evaluate the validity of the binarizations in the entire

mosaics, we can argue for its validity because the parameter we use has been

proven to minimize the errors of the cells for which we have ground truth.

2.2 The individually injected cells

Initially, we have obtained 64 images of individually injected cells. They cells

were assigned serial numbers from 1 to 64. Fifty-four cells remained after an

initial image quality screening. The images of those cells are shown on Figure 2.2.

Note that although the numbers run from 1 to 64, some numbers are missing.

The physical dimension (width) of each square is 90.43 µm. Some clippings have

occurred in order to show the body of the cells more clearly.

2.3 Definitions and abbreviation

The following terms are defined for use throughout Chapter 2.
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Figure 2.2: Original images of individually injected cells.
The physical dimension of each square is 90.43 µm.
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Term Definition

GFAP Glial Fibrillary Acidic Protein – the stain used for all astrocytes’ cy-

toskeletons (shown in red on Figure 2.2)

LY Lucifer Yellow – a dye injected into a cell’s body (soma) to show its

structure (shown in green on Figure 2.2)

GT Ground Truth

SR Segmentation Result (grayscale output of random walk)

AS Adjusted Segmentation result, derived from SR

FP False Positive

FN False Negative

error FP + FN

ACC Accuracy

ROI Region of Interest

score segmentation score with respect to ROI (between 0 and 1)

2.4 Definition of ground truth

The ground truth is defined as the intersection between Lucifer Yellow (LY)

and GFAP. To explain the meaning of “intersection,” Figure 2.3 shows an example
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(a) Original image (b) GFAP

(c) LY (d) min(GFAP, LY)

Figure 2.3: Deriving ground truth for cell 26
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cell in (a). The red channel is the GFAP as shown in (b). The green channel is

the Lucifer Yellow as shown in (c).

While we may simply take the LY channel as the ground truth, it is not

appropriate. When we optimize the parameter, we expect the adjusted result to

resemble LY as much as possible. But since the segmentation algorithm only runs

on the GFAP channel, as it would in real situations, it is unrealistic to expect

LY as a result. Therefore, we decided to use a ground truth that is realistically

achievable, by intersecting GFAP with LY.

To intersect the two channels, we use LY as a grayscale mask on GFAP. These

three methods are functionally equivalent:

1. Using LY as a layer mask for GFAP in Adobe Photoshop, or

2. In Adobe Photoshop, put GFAP as the bottom layer. Put LY as a top layer.

Change the blending mode of LY to “Darken”, or

3. Treating each pixel’s intensity as a fraction between 0 (black) and 1 (white);

for each pixel, the minimum intensity value between the corresponding pixels

in the GFAP and LY channels is chosen.

Therefore,

GT = min(GFAP,LY ) (2.1)
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The ground truth for cell 26 is shown in Figure 2.3(d). The ground truth for

all the 54 cells in our study are shown in Figure 2.4.

2.5 Calculating errors and scores

In this section, we discuss how we evaluated an adjustment of a segmentation

result. We seek to define two terms: error and score. For a good segmentation

result, the error should be low and the score should be high. The score should

reflect a percentage between 0 and 100.

In the realm of binary classification, there is a well-defined concept of the

following technical terms that can be used to evaluate a classifier: precision,

recall, accuracy, false positive, and false negative (See, for example, [44], [45],

[46] and [47].) However, the random walk segmentation algorithm that we use

is not binary. Instead, it produces a probability map that can be viewed as a

grayscale image which needs to be evaluated. In this section, we generalize the

concept of the error measures from binary classification to our situation.

2.5.1 Error

False positive (FP) is defined to be the number of “items incorrectly labeled

as belonging to the class”[45]. It is the number of pixels that the segmentation

49



Chapter 2. Single Cell Injection Study

Figure 2.4: Ground truth derived from GFAP and Lucifer Yellow.
The physical dimension of each square is 90.43 µm.
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Figure 2.5: Calculating segmentation error and score for cell 26

result includes but that should not be included. For binary images, it is the

number of pixels in AS but not in GT. In short, it is the number of white pixels

in (AS - GT).1 In this case, AS and GT are both grayscale. The same formula

can be employed for the definition of false positives. Therefore, we define false

positive to be:

FP = sum(AS −GT ) (2.2)

1Image subtraction is defined to be pixel-wise subtraction, where negative numbers are re-
placed with 0, equivalent to placing GT as a top layer in Photoshop and changing its blending
mode to Subtract. Note that it is different than counting the number of white pixels in AS and
subtracting from it the number of white pixels in GT.
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where sum(image) is the sum of pixel values in that grayscale image. Note that

each pixel is a fraction between 0 and 1 (0 = black, 1 = white). The sum of an

image is analogous to the white pixel count of a binary image.

Similary, false negative (FN) is defined to be

FN = sum(GT − AS) (2.3)

which is, conceptually, the number of pixels that the segmentation result misses.

We can define the total errors to be the sum of false positive and false negative.

total error = FP + FN (2.4)

It can be observed that total error = FP + FN = sum(AS −GT ) + sum(GT −

AS) = sum(|pixelwise difference of AS and GT|) = sum of differences of GT and

AS. In binary images, it would represent the total number of error pixels.

Our definition of error (total error) can be used to rank the relative quality

of two segmentation results. The result with a lower error is deemed better. To

optimize a parameter for a single cell, we may vary that parameter across multiple

values. For each parameter value, we produce the adjusted segmentation result

(AS) and computed its error against GT. We pick the parameter value with the

lowest associated error.

52



Chapter 2. Single Cell Injection Study

2.5.2 Score

The accuracy score is designed to be a percentage or a fraction between 0 and

1. The term accuracy is already well-defined for binary classification. That is,

ACC =
TP + TN

P +N
(2.5)

where TP = true positive, TN = true negative, P = number of positive in-

stances in ground truth, N = number of negative instances in ground truth [45].

Observe that P + N is the number of pixels in the ground truth = size(GT),

while TP + TN is essentially the number of pixels (both white and black) that

are classified correctly, which is size(GT) - sum(error). Therefore,

ACC =
size(GT )− sum(error)

size(GT )
(2.6)

Conceptually, it is a probability that a correct answer will be given by the

classifier if, for every pixel, it is asked to classify the pixel as white or black. It

gives credits to both the positive and negative answers as long as the answers are

correct.

We may expand that definition for grayscale images in Equation 2.6 by using

exactly the same formula. However, for a set of segmentation results, we noticed

that ACC almost always reached 0.99 or 1 even when there seemed to be a lot of

errors. It is apparent that this measure is not informative and can be misleading
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to report. One possible reason for this is because size(GT), the entire area of

ground truth, in our case is relatively high, 1024 × 1024 = 1, 048, 576, compared

to the sum(error).2

A simple solution is to slightly adjust the formula. Instead of using size(GT),

we may use the size of a user-defined region of interest, or ROI.

score =
area(ROI)− sum(error)

area(ROI)
(2.7)

A number of criteria were imposed on the characteristics of ROI, which should

be relative to the size of the cell, not the size of the input image. It should not

be just the tight area around the cell itself, but also its vicinity to capture any

potential false positive that may be in the area. Since, given the same error, the

size of ROI is negatively correlated with score by definition, the size of ROI must

not be arbitrary to make the score reasonable and believable. Several ideas were

discussed. The choices included:

1. a hand-drawn outline of the cell in the lucifer yellow (LY) channel.

2. a square one-third the size of the original image

3. a square whose size is 2X the sum(LY) of the biggest cell in the set.

2It is because our input image is much bigger than the actual domain for the cell. The
intent of providing extra margins was to capture everything necessary, and to give room for the
segmentation algorithm to roam.

54



Chapter 2. Single Cell Injection Study

4. a hand-drawn polygon outlining a reasonable domain of the cell (in LY

channel).

The definition #4 was deemed the most appropriate because it guarantees to

include all area of GT, and provides ample area in the vicinity to capture false

positives. Hence, the polygons were drawn by our collaborator Gabe Luna to

reflect a reasonable domain of the cell according to the view of a biologist. Figure

2.5 shows the polygon for cell 26 drawn over the LY, GT, SR, AS, and error. The

polygons for all of the 54 cells are shown in Figure 2.6. The image is zoomed in and

cropped at 2X to show details. The polygons for cell 9 and 54 extend outside their

canvases in this figure but still stay inside the original image boundary. Although

many polygons resemble a convex hull of LY, some are not necessarily convex.

The statistics for the areas of the ROI polygons, the ground truth, and Lucifer

Yellow are shown in Table 2.1. The last fraction between the polygon and LY

represents the relative size of the polygons compared to the injected dye.3

min max mean

area(polygon) 8738 px

(838.08 µm2)

114732 px

(11004.2 µm2)

17445.32 px

(5402.76 µm2)

3For further analysis and reporting, the raw number of those values are available at http:

//ilabsvn.cs.ucsb.edu/projects/retivis/cases10R/sums.csv with the following columns:
lucifer.yellow.png = LY, gt domain mask.png = the polygon, and min(GFAP LY).png = the
ground truth.
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sum(LY) 2252.22 px

(216.02 µm2)

18633.4 px

(1787.17 µm2)

8119.9 px

(778.8 µm2)

sum(GT) 885.98 px

(84.98 µm2)

13587.61 px

(1303.22 µm2)

4523.61 px

(433.87 µm2)

area(polygon)
sum(LY )

3.07 14.06 7.74

Table 2.1: Ground-truth related statistics

In calculating the score using Equation 2.7, the polygon can be used as an

ROI. In that case,

scoresimple =
area(ROI)− Σ(error)

area(ROI)

=
area(polygon)− Σ(errorinside + erroroutside)

area(polygon)

=
area(polygon)− Σ(errorinside)− Σ(erroroutside)

area(polygon)
(2.8)

When there is an error pixel (either false positive or false negative) outside

of the polygon, the pixel is counted toward error to penalize the score. It can

be argued that by accounting for the error pixels outside the polygon, the ROI

has been expanded to include those pixels. Therefore, the definition of ROI was

revised and clarified to include any error pixels outside of the polygon:
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Figure 2.6: Polygons drawn by the biologist over Lucifer-Yellow (LY).
The physical dimension (width) for each image is 158.56 µm.
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ROI = polygon+ Σ(erroroutside)

Thus,

score =
area(ROI)− Σ(error)

area(ROI)

=
area(polygon) + Σ(erroroutside)− Σ(errorinside + erroroutside)

area(polygon) + Σ(erroroutside)

=
area(polygon) + Σ(erroroutside)− Σ(errorinside)− Σ(erroroutside)

area(polygon) + Σ(erroroutside)

=
area(polygon)− Σ(errorinside)

area(polygon) + Σ(erroroutside)

Therefore,

score =
area(polygon)− Σ(errorinside)

area(polygon) + Σ(erroroutside)
(2.9)

In effect, compared to Equation 2.8, this new Equation 2.9 is changing the

role of the term erroroutside, from subtracting from the numerator to adding to

the denominator. Both of these roles result in a lower number. Therefore, both

the simple and standard definitions of score penalize the outside errors. We will

use the standard definition as shown in Equation 2.9.
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2.6 Parameters optimization for individual cells

2.6.1 Methodology

In this section, we seek to find a set of 54 best parameters for the 54 indi-

vidually injected cells. For each celli, a number of parameter values are tested.

The segmentation result is adjusted for each parameter value. The error of the

adjusted segmentation result is calculated as described in Section 2.5.1. After all

parameter values are tested, the parameter for which the error is minimum is

picked as the optimum parameter for celli.

The parameter that is being optimized is called a binary mask threshold.

Figure 2.7 shows an example for cell 26. The GFAP channel is an input to

the segmentation program, producing a grayscale segmentation result (SR). The

binarized SR is created by applying a threshold: for each pixel in SR, if the pixel

value is below the binary mask threshold (in this case, 0.405), the output is 0;

otherwise, the output is 1; hence, creating a binary image. This binary image is

not the final output, however, because it does not resemble the ground truth image

(which is grayscale). To create the final output, or “an adjusted output based on

this threshold”, or AS (adjusted segmentation result), we use the binarized SR as

a mask, and apply that mask on the GFAP image. Since the mask is binary, the

mask operation is a multiplication.
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To find the optimum parameter for each individual cell, we vary the parameter

from 0.0005 to 0.9 with an increment of 0.0005. There are 1,800 total parameter

values examined. For each parameter value, we produced AS, computed its error

(sum of difference with ground truth), and recorded it on a table. The row with

the minimum sum of differences is considered the individually optimum threshold

for the cell.4

2.6.2 Results

Figure 2.11 shows the result of parameter optimization for each individual

cell. The gray/white background is GFAP. The green overlay is the individually

optimized segmentation result. Each cell has a different optimized parameter, and

those parameters are shown under param on the images. The accuracy scores are

shown on Figure 2.12 where the colors show the following error components:

• green = true positive

• black = true negative

• red = false positive

• purple = false negative

4For cell 26, the table is kept at http://ilabsvn.cs.ucsb.edu/projects/retivis/

cases10R/cell026/info/maskingThresholdAnalysis.csv (other cells have analogous URLs).
The best parameter for cell 26 is 0.4555 with an error of 2170.49.

60

http://ilabsvn.cs.ucsb.edu/projects/retivis/cases10R/cell026/info/maskingThresholdAnalysis.csv
http://ilabsvn.cs.ucsb.edu/projects/retivis/cases10R/cell026/info/maskingThresholdAnalysis.csv


Chapter 2. Single Cell Injection Study

• yellow = partially false positive

(area is part of GT but pixel is brighter in AS than in GT)

The values of optimized parameters are shown on Figure 2.8 and their errors

shown on Figure 2.9. The ranges and means of the parameters and the errors are

listed on Table 2.2.

min max mean median SD

best parameter 0.035 0.9 0.4077 0.30975 0.318

error 949.0431 11540.13 3474.619 2838.537 2263.591

Table 2.2: Results of parameter optimization for individual cells

2.6.3 Relationship between ground truth size and error

Based on Figure 2.9, cell 54 has a relatively high error. A visual inspection of

cells in Figure 2.2 suggests that cell 54 is relatively large. We hypothesize that

the size of ground truth correlates with the individually optimized error. Figure

2.10 confirms this hypothesis. The errors are correlated with the size of ground

truth with a correlation coefficient of 0.94. The red trend line in the graph is a

regression line. A possible explanation is the following. For a bigger cell, there

is more opportunity for error. The error calculation is the absolute number of

FP + FN, not a fraction relative to the cell size. This does not mean that the
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Figure 2.7: Parameter adjustment pipeline for cell 26

segmentation algorithm is less accurate, or having less score, for larger cells. In

fact, relationship between the score and the cell size is relatively weak. The

cell size (size of GT) is only slightly negatively correlated with the score, with a

correlation coefficient of -0.58.

2.6.4 Relationship between polygon size and score

It is by definition that the score is influenced by the size of ROI (the hand-

drawn polygon). The bigger the polygon, the more credits are given to the true

negatives (the black & white area in Figure 2.12 where the segmentation classified

correctly as not belonging to the cell), hence the higher the score. However, the

correlation is not strong (only 0.29), which means that the score is not influenced

primarily by the polygon size.
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Figure 2.8: Values of individually optimized parameters

Figure 2.9: Costs (errors) of individually optimized parameters
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Figure 2.10: Relationship between error and size of ground truth

2.7 Cross validation experiment

2.7.1 Hypothesis

The purpose of the cross validation experiment is to demonstrate that our op-

timization methodology is generalizable. This depends heavily on the assumption

that the 54 cells are a good representative of astrocytes in general. Specifically,

we hope to argue that the optimized parameter based on the 54 cells obtained

in Section 2.8 is a good parameter for other astrocytes. Because of the lack of

ground truth for astrocytes in general, proving that statement directly is impos-

sible. However, if we randomly split the 54 cells into a training set and a test set,

it is possible to prove the following hypothesis:

“The overall best parameter for the training set is also a good param-
eter for the test set.”
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Figure 2.11: Results from individual cell optimization
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Figure 2.12: Results from individual cell optimization and their scores
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2.7.2 Experimental setup

We repeat the experiment in multiple iterations. For each iteration, a random

set of 32 cells (60%) is designated as a training set. The other 22 cells (40%) are

assigned to a test set. The best parameter p for the training set is calculated as

described in Section 2.8. The parameter p is good for the test set if it satisfies the

following two conditions:

• Condition #1: The average error (error per image) in the test set is not

much higher than the average error in the training set when using the same

parameter p.

• Condition #2: Let q be the overall best parameter for the test set. The

average error in the test set when using p is not much higher than the average

error in the test set when using q.

For each iteration of the experiment, we computed all the relevant statistics

pertaining the two conditions including:

1. TestPerTrain

The running average of error of p in test set
error of p in training set

. This is the comparison of the

error in the test set to the error in the training set. Condition #1 dictates

that this fraction should be as low as possible. (It can be less than 1 but

the expectation is that it is above 1.)
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Figure 2.13: Relative errors in test set VS the training set

2. TestPerTestBest

The running average of error of p in test set
error of q in test set

. This is the comparison of the errors

in the test set from using p (best parameter from the training set) VS using

q (best parameter from the test set itself). Condition #2 dictates that this

fraction should be as low as possible. (It will always be at least 1.)

2.7.3 Findings

After 131 iterations, we have found that TestPerTestBest converges, satisfy-

ing Condition #2, at 1.017663 while TestPerTrain still fluctuates, with the final

average of 1.038451 and with the maximum running average of 1.106525 after the

26th iteration. The running average of the two variables are shown in Figure 2.13

with the blue dots representing TestPerTestBest.
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The fact that TestPerTestBest converges at a very low number suggests that

the best parameter for the training set can be expected to perform very well on the

test set: the expected error is only 1.77% higher than the best overall parameter

for the test set itself.

The fact that TestPerTrain does not converge does not disprove our assump-

tion. The value of this fraction depends on two factors: (i) how good the training

set’s best overall parameter p is on the test set (relevant factor); and (ii) how low

the error can be in the test set compared to the training set (irrelevant factor).

The fact that it still oscillates after 131 iterations suggest that factor (ii) plays

an important role. Despite that, the final average is only 3.85% higher than the

error in the training set. Condition #1 is also satisfied.

As will be shown in Section 2.8, our best overall parameter for the 54 cells is

0.405; it has an average error per image of 3903.419. Therefore, we may expect

that if we use 0.405 on another set of image, the error will be within 3.85%, which

is 1.038451× 3903.419 = 4053.509.5

5Note that this is just an extension of our logical conclusion. It cannot be empirically verified
unless we have ground truth for the other set of cells.
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2.8 Parameter optimization for all cells

To the extent that our hypothesis in Section 2.7.1 has been proven, it is rea-

sonable to assume that the parameter p that minimizes the total error in the set

of 54 cells will also be a good parameter for other cells as well.

In this section, we describe an approach to determine the overall best param-

eter p that minimizes the total errors in the set of 54 cells.

The parameter p is varied over 1,800 values from 0.0005 to 0.9 with an incre-

ment of 0.0005. For each p, we adjust the segmentation results of all the 54 cells

and calculate their error (sum of differences). The sum of all the errors (sum of

sums of difference) is also calculated. Finally, the parameter p which produces

the minimum sum of errors (called total error) is chosen. It is called the overall

best parameter.

The overall best parameter is p = 0.405. Note that, even though the best

parameter for each individual cell is likely different from 0.405, the overall best

parameter – if all cells are to use the same parameter value – is 0.405. The errors

range from 1129.31 to 12554.09 with a mean of 3903.419, median = 3166.867, and

SD = 2448.499.

The graph in Figure 2.14 shows the errors of this parameter on each of the

54 cells. The size of each bar is proportional to the error for each cell. The
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Figure 2.14: Distribution of errors for the overall best parameter.
Red dots are the errors for the individually best parameters.

horizontal black dotted line is the mean of error (3903.419). The red asterisks

mark the error of the individually optimized parameters (which must never be

higher than the bar, by definition). The horizontal red dotted line is the mean of

the error of the individually optimized parameters (3474.619).

The mean error of the overall best parameter is 12.34% higher than the mean

error of the individually optimized parameter. For each cell, the error of the

overall best parameter surpasses the error of the individually optimized parameter

by 0.13% to 84.93%, with a mean of 14.70%.6

6Note that the ratio of the means of the error is different from the mean of individual ratios
of the error.
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The scores of the overall best parameters range from 0.786 to 0.979 with a

mean of 0.930, median = 0.939, and SD = 0.040 as shown in Figure 2.15.

2.9 Results and discussion

The results reveal that: (i) the random walk algorithm can potentially be

optimized to achieve an average accuracy score of 93.83%. The size of a cell

is slightly negatively correlated with its segmentation score, with a correlation

coefficient of -0.58. This suggests that the algorithm tends to work slightly better

for smaller cells. (ii) the 54 ground truth images are representative of one another.

The optimized parameter for one training set is also good for the test set no matter

how the sets are divided. This was confirmed by randomly splitting the cells into

training/test sets for 131 iterations. The expected error on the test set from

using the best parameter from the training set is only 1.77% higher than the best

overall parameter for the test set itself. Finally (iii), we found that 0.405 is the

best overall threshold parameter for binarizing the 54 cell images where we have

ground truth. The average accuracy score is 93.00%.

Our study can be repeated when more ground truth data becomes available.

It can also be extended to study the nature of cell overlaps based on ground

truth where two cells are individually injected with different dyes (Figure 2.1).
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Figure 2.15: The scores of the overall best parameter
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Although data acquisition for dual-injected cells is much more difficult than single

cell injection, the Brainbow technique described in [48] and [49], where images of

individual neurons of transgenic mice appear in multiple colors, may provide a

rich source of ground truth data in the future when the technique is adopted for

astrocytes.

Additional information about the single cell injection study including details,

raw data, and images can be found at http://ilabsvn.cs.ucsb.edu/projects/

retivis/segop.html.
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Chapter 3

Network Study

Our initial goal in the astrocyte network study is to reliably and objectively

construct astrocyte networks based on the overlap of their segmentation results.

A specific objective is to obtain eight astrocyte networks for further analysis if

there is an objectively clear reason that the networks are more plausible than

other alternatives. A more general objective is to prepare multiple alternative

networks based on reasonable techniques and parameter ranges to be chosen later

with domain experts or with a more robust criteria when one becomes known.

We experimented with multiple approaches to building astrocyte networks for a

further study of their network properties and characteristics. One major approach

is based on overlapping grayscale images of the cells, and pruned by Voronoi con-

nectivity (Section 3.2). Another major approach is based on overlapping binarized

images of the cells (Section 3.3). This requires a proper selection of thresholds

for binarization of segmentation results. We experimented with the optimized
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threshold from the single cell injection study, an adaptive thresholding binariza-

tion algorithm (as implemented by Aruna Jammalamadaka), and multiple fixed

thresholds. In the case of fixed thresholds, we visualized the eight binarized reti-

nas in context according to 114 thresholds with various visualization techniques:

coloring individual cells, coloring the connected components, or showing node-link

diagrams. Our different visualizations based on static images with relevant con-

nectivity details, large mosaics of multiple thresholds and multiple retinas (Figure

3.8), and synchronized video formats work together to help us determine proper

binarization thresholds for network construction.

3.1 Defining an astrocyte network

A network (or graph) is a set of connections between astrocytes. A pair of

astrocytes either has one or zero connection. A connection may be given a weight

or score; the higher the weight, the stronger the connection.

Before any analysis can be done on the network, a few fundamental decisions

need to be made in network formation. These include a criterion for connection

between two cells, the connection weight metric, and any dependence on a pa-

rameter. If there is a parameter, a proper value or an algorithm of arriving at the

proper value has to be determined.
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Three approaches for defining the network have been attempted:

1. Using overlapping circles

This approach was taken by Brian Ruttenberg [16]. From the segmentation

results (which is grayscale), the area of each cell is calculated. A circle is

drawn around each cell center with an area proportional to the area of the

cell. Two cells have a connection if and only if the two circles intersect.

2. Using binarized segmentation

Segmentation results are binarized (with a fixed or adaptive threshold). Two

cells have a connection if and only if their binarized segmentation images

overlap by at least 1 pixel (0.09591223 µm2). The weight of the connection

is the number of overlapping pixels.

3. Using grayscale segmentation

For each pair of cells, the sum of the product of the grayscale segmentation

images is calculated1. Two cells have a connection if that sum is above a

certain threshold. The weight of the connection is the sum.

All the three approaches have their limitations and are dependent on some

parameters or the choice of method. The first approach requires a method to

calculate the cell’s area from a grayscale segmentation result, and a decision on

1The sum of an image is the sum of pixel intensities. The product of two images is an image
where each pixel is a product of its two corresponding pixels.
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how to translate that area into the size of the circle. The second approach requires

a method to binarize the cells. The third approach requires a decision on the

threshold of the sum. It also raises the question of whether using the sum of the

product is the right approach.2

3.2 Using Voronoi neighboring as a precondition

We have experimented with Approach #3, creating network from grayscale

overlap of segmentation results. This approach has a major drawback in com-

putation time and result complexity. The number of cell pairs with overlapping

region of interests for which a grayscale image overlap needs to be computed

quickly overwhelmed the system – taking more than 12 hours to compute one

retina. Many far-apart cells still have some common pixels according to the seg-

mentation results. The resulting graph is highly complicated and contains many

connections between far-away cells that are biologically implausible.

To reduce complexity, we made a simplifying assumption:

“If two cells are not Voronoi neighbors, they are not connected.”

As a result, the number of pairs of cells that need to be considered for GFP1

dropped by a factor of 793.3 The computation time arrived at under 10 min-

2An alternative is to use the sum of the pixel-wise minimum.
3from 11,288,376 to 14,229 pairs

78



Chapter 3. Network Study

utes/retina. The network is shown in Figure 3.1. Each line is a connection be-

tween two cells. Two cells have a connection if and only if they are Voronoi

neighbors and their segmentation results have an overlap score higher than zero.

The overlap score is the sum of the pixel-wise multiplication of the brightness

values (each between 0 and 1). All connections are drawn with the same line color

and thickness regardless of overlap score. There are 14,018 connections with the

scores ranging from 10−6 to 4,221.47 with a mean of 383.96, median = 198.09 and

SD = 488.19.

For all 8 retinas4, the degrees range from 0 to 12. The median degree is 6 for

every retina. If all of the connections are drawn with equal weight and opacity,

the networks appear similar to the Voronoi diagrams themselves as shown in

Figure 3.2. If the connection score is encoded into line thickness and opacity5, the

stronger connections become more visible as shown in Figure 3.3.

An informal survey of the data suggests that two cells may be physically

connected even if they are not immediate Voronoi neighbors. In some instances,

those connections may even be stronger than some Voronoi neighbors. We have

briefly experimented with relaxing the Voronoi neighbor requirement to allow for

4GFP1, 2, 3, 8, 10, 11, 12, and 13
5with line width varying from 1 to 5 pixels, and opacity from 0.3 to 1.0, scaling linearly across

the range of connection scores
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Figure 3.1: Grayscale overlap network of Voronoi neighbors for GFP1

Figure 3.2: Networks drawn with equal weight
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Figure 3.3: Networks drawn with varying weight and opacity

two-step neighbors (neighbor of neighbor) to connect. However, the resulting

networks are too dense to be plausible for all retinas.

Therefore, it will be necessary to use a cut-off minimum weight threshold

higher than zero. For this reason, we argue that it is necessary to study this

cut-off parameter. While it is possible to perform this study based on grayscale

overlap, it is more intuitive and computationally faster to do it in the binary image

space.
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3.3 Networks based on binary segmentation

3.3.1 Network generation

An overlap network based on binary segmentation is defined after the cells are

segmented and binarized. Two cells have a connection if and only if their binary

images overlap for at least one pixel. The number of pixels is the connection score

or weight.

The algorithm to compute binary cell network is designed to work relatively

fast by trading space for time. A 2D array the same size as the original image is

allocated, each cell initialized to an empty linked list. For each white pixel of the

binary image of every cell, the cell number is appended to the linked list located at

the same array location as the pixel. After all cells are processed, each linked list

is observed. For every cell pair contained in the same linked list, the connection

score between the two cells is incremented.

Even though the number of possible cell pairs is O(n2) where n is the number

of cells, the binary network can be computed relatively quickly in O(n+ wh+ e)

where w, h are image width and height and e = the actual number of edges.

Since our image is large, wh > e > n; therefore, O(n + wh + e) = O(wh). In

practice, the O(wh) algorithm to compute binary cell network is faster than the
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O(n2) algorithm to compute the grayscale network because of a very high constant

factor in grayscale overlap calculation.6

3.3.2 Using the parameter from cell injection study

When cells in GFP1 are binarized with threshold = 0.405 as obtained from

Section 2.8, they are highly disconnected as shown in Figure 3.4. In consultation

with our biology experts, we determined that it is unlikely that this correctly

reflects all connections among Astrocytes. A reason for the non-transferability of

the optimal binarization threshold obtained from our single-cell injection study

might lie in different imaging and acquisition parameters and properties between

the stained single cells and the 8 whole retinas. While it is unfortunate that

this parameter cannot be used to generate a believable astrocyte network, we

attempted the following estimation: in absence of reliable knowledge from the

cell injection study, we seek to find a threshold which, when applied to binarize

a retina, would connect the cells and create a network that appears biologically

meaningful.

The threshold was varied from 0 to 0.9 with more samples at lower thresholds

and fewer samples at higher thresholds. For each threshold, we binarized the cells

6Note that it is not immediately possible to use the same algorithm (utilizing a large 2D
array) for grayscale network construction since the contribution to connection score from each
pixel pair is fractional. The algorithm can be modified to accommodate this information, but it
is likely to run into memory issues.
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Figure 3.4: GFP1 binarized with threshold = 0.405

with that threshold and rendered the picture of the entire retina. Initially, we

colored each cell with a random hue. To find a plausible threshold, we propose

that the number of connected components and their sizes should be considered

as an important factor. Therefore, for each rendering of the binarized retina,

we computed all relevant statistics and created appropriate visualizations of the

connected components and the networks.
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3.3.3 Threshold and coverage analysis

For each binarized image of a retina, we calculate the coverage percentage,

which is defined as “the size (pixel count) of the largest connected component

divided by the total number of non-black pixels.”

The coverage percentage is 100% when all of the cells are connected. When

coverage is high, e.g. 99%, the largest component is much larger than the other

smaller components (even if there are still a lot of unconnected components).

We also calculate the number of islands (connected components), and sumBin =

total number of non-black pixels. As threshold increases, we expect the coverage

to decrease, numIslands to increase, and sumBin to decrease.

For each threshold, a different color is assigned to each connected component7.

To minimize the chance that nearby components have similar colors, we use a color

map that is visually discrete rather than gradual8. For consistency, the first color

in our map (purple) is always assigned to the largest component and, for every i,

the ith color is assigned to the ith largest component.

The result is shown on Figure 3.6 with a zoomed-in view of GFP1 near the

threshold 0.19 on Figure 3.5. The regions occupied by connected components are

7Using label2rgb function, we can create an RGB image from a Matlab’s labelmatrix of
the bwconncomp of the binarized image

8We used a modified version of the ‘lines’ color map in Matlab. We make sure that no
color is too dark by modifying the color map to change each luminosity from x to 0.5x+ 0.5 (so
that each band is at least 50% bright)
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Figure 3.5: Some threshold variations of GFP1
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Figure 3.6: Binarization of the 8 retinas with 114 thresholds

more clearly visible compared to Figure 3.4. The biggest component always has

the same color: purple. Hence, it is now possible to compare how the biggest

component shrinks as the threshold increases.

From an informal visual exploration, we may decide to choose a threshold at

which the coverage is around 75% or 50%. It would mean that, at that threshold,

most astrocytes are connected. The network created among them, and among the

smaller but not-insignificant components, may be interesting.
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Figure 3.7: Thresholds required for coverage of the largest component

3.3.4 Thresholds required for minimum coverage

For a given coverage percentage, different thresholds may be required for differ-

ent retinas to produce a binarization with at least that coverage. The higher the

threshold, the lower the coverage. Therefore, a table has been computed where,

for any minimum coverage percentage x (x ∈ N, 0 < x ≤ 100), a set of 8 thresh-

olds can be obtained such that they are the maximum known thresholds for which

the binarizations have at least x% coverage.9 A plot of these maximum thresholds

required for each coverage amount is shown in Figure 3.7.

9The script in th-VS-coverage.R produces such table, which is saved to
AstrocyteRoot/info/thRequiredForCoverage.csv.
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Figure 3.8: Binarizations with at least 75% coverage

From this information, a list of maximum thresholds can be obtained if it is

determined that the networks must have at least a certain amount of coverage.

For example, if the minimum coverage is 75%, the thresholds have to be at least

0.190, 0.175, 0.1000, 0.080, 0.045, 0.065, 0.0750, and 0.020 for the 8 retinas. The

connected component and network visualizations are shown in Figure 3.8 and 3.9,

respectively.

Two videos are created to show these coverage map for any coverage percent-

age [50] along with the network graphs [51]10. In the two videos, the networks

are organized by minimum coverage. For each frame in the video, the 8 retinas

shown have the same minimum coverage (although they may have very different

thresholds). As can be observed, for each frame, the retinas appear relatively

10Also available at http://ilabsvn.cs.ucsb.edu/projects/retivis/pics/network/

net-comps.mov and net-graphs.mov

89

http://ilabsvn.cs.ucsb.edu/projects/retivis/pics/network/net-comps.mov
http://ilabsvn.cs.ucsb.edu/projects/retivis/pics/network/net-comps.mov
net-graphs.mov


Chapter 3. Network Study

Figure 3.9: Networks with at least 75% coverage

consistent in the first video (net-comps.mov) that shows connected components,

but they appear very different in the second video (net-graphs.mov) that shows

the node-link diagram of the network.

We offer a possible explanation. To achieve a certain coverage percentage, one

retina may be able to use a high threshold and the cells are still connected (albeit

weakly) whereas another retina may require a very low threshold in order to make

a sufficiently large connected component. When the threshold is very low, the

cells becomes very large and the network becomes highly connected.

3.3.5 Other options in organizing the networks

Instead of varying the minimum coverage for each frame, the networks can be

organized by simply varying the threshold. The thresholds are varied from 0.001
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to 0.005 by a step of 0.001, from 0.005 to 0.5 by a slightly larger step of 0.005,

and from 0.5 to 0.9 by a large step of 0.1.

For each frame of the video, a fixed threshold is applied to all retinas. The

basic connectivity statistics are calculated. In one video, the coverage maps are

created11; in the other video, the networks are visualized12.

For both of these videos, each frame does not indicate any consistency across

the retinas. This means that the image acquisition, preparation, or the natural

differences among retinas do not allow for any consistency with respect to the

binarization threshold.

Another option to organize the frames in the video, to enforce consistency

across retinas in the node-link diagrams video, is to organize them by average

degree.13 Conceptually, for each frame, all retinas should have the same average

degree. But such strict requirement may not be feasible because the threshold

which yields exactly the desired average degree may not exist in our pre-computed

set. Therefore, the definition of the frame can be relaxed. For each frame, the

same minimum average degree is maintained for all retinas. For each retina, the

maximum threshold that gives at least the minimum average degree is chosen.

While this option may produce more consistent networks across the retinas, the

11http://ilabsvn.cs.ucsb.edu/projects/retivis/pics/network/both/byTh-c.mov
12http://ilabsvn.cs.ucsb.edu/projects/retivis/pics/network/both/byTh-g.mov
13degree = number of connections per cell
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consistency is only artificial. By enforcing the average degree, any possible natural

variations may be inadvertently overlooked.

3.4 Results of network study

We have generated and visualized astrocyte networks based on grayscale over-

lap of cells. The networks can be pruned based on the minimum overlap scores

and on their Voronoi connectivity (immediate neighbors or two-step neighbors).

The node link diagram can be visualized with either fixed edge intensity (Figure

3.2) or with varying thickness/intensity based on connection strength (Figure 3.3).

This interactive view has allowed the biologists to detect some abnormally high

connectivity for some cell pairs which were later determined to be an error in the

cell center location data. Although error detection was not an explicit objective,

it was a welcome side effect and a testament to the value of visualization.

We applied the optimum segmentation threshold as determined by our single-

cell injection study (Chapter 2). Unfortunately, the resulting networks are too

sparsely connected to be believable (Figure 3.4). We hypothesize that this is due

to a still unknown difference in imaging or acquisition techniques between the

single cell injection and the full retina mosaics.
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We pre-computed networks based on cell binarization with multiple fixed

thresholds. For each threshold, we recorded the node-link diagrams, the images of

the full retinas populated with binarized cells, and relevant basic statistics such as

the number of connected components, and the percentage coverage of the largest

connected component (see, for example, Figure 3.5). We used the recorded data

to visualize the networks in multiple ways, e.g. [50] [51].

Based on these visualizations, we concluded that

(i) No single fixed threshold implies reasonable networks for all retinas.

(ii) We cannot generate comparable networks for all retinas by specifying the

minimum percentage coverage of the largest connected component either.

(iii) Based on subjective visual inspections and comparisons between the original

images and the visualization of the binarized cells, the best thresholds for

generating astrocyte networks for the eight retinas are listed in Table 3.1 with

the number of connected components between 2 (GFP2) and 101 (GFP13)

and the percentage coverage of largest component between 87.20% (GFP13)

and 99.98% (GFP2).

(iv) The eight retina images are widely inconsistent in terms of illumination

among themselves, and also among different areas within a single retina

mosaic.
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retina threshold numComps coverage

GFP1 0.02 4 99.93%

GFP2 0.005 2 99.98%

GFP3 0.015 17 97.71%

GFP8 0.0015 11 99.61%

GFP10 0.005 13 99.54%

GFP11 0.015 48 97.61%

GFP12 0.0025 31 99.11%

GFP13 0.02 101 87.20%

Table 3.1: Best thresholds for creating networks based on visual observation

Additional information about the network study, including details, raw data,

and images can be found at http://ilabsvn.cs.ucsb.edu/projects/retivis/

retinal-astrocyte-network.html.
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Chapter 4

Retina Clustering and
Normalization

4.1 Introduction

The network study in Chapter 3 presented strong evidence that the 8 retinas

are not consistent among themselves, at least regarding their imagery. Some

retinas may be more similar than others. Although it is possible that a closer

inspection of the networks and the connected component maps may yield some

useful insight about the retinas’ similarity or lack thereof, a more systematic,

unbiased inspection of their other characteristics was deemed appropriate.

We clustered the eight retinas based on their histogram similarity of a certain

set of variables. The objective was to study the nature of their differences, to

determine the existence of a cluster whose members are generally similar, and to

identify possible outliers. A secondary objective was to use this information as a
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guideline on the necessity to normalize the retinas, or to possibly exclude certain

retinas from being used in drawing general conclusions about astrocytes.

We attempted to cluster the retinas by defining the distance between them to

be the distance between the histograms of some relevant variables. Twenty-one

different variables that we identified in the beginning were later narrowed down

to nine: Voronoi area, nearest neighbor distance, cell density, size of the cell in

grayscale and in binary images, eccentricity, furthest geodesic point, distance to

optic nerve head, and perimeter. See Chapter 5 for details of the nine variables

and Section 1.6.2 for a listing of all variables.

The histograms for the variables were computed and visualized for all 8 retinas

with equal scales in a single image (Figure 4.1). This allows for visual inspection

of retina similarity or differences. Each variable was then individually analyzed for

the ‘distances’ between retinas with respect to that variable. A matrix showing the

heat map of the distances is shown for each variable. Two different metrics were

used to compute distance between each pair of histograms: Minkowski distance

of order 2 (Euclidean distance) [52] and a modified earth mover’s distance (EMD)

[53]. To visually verify that the distance metrics are correct, the 28 pairs of

histograms for each variable are ranked according to each metrics and drawn from

left to right (Figure 4.2). Also, all 28 x 9 = 252 pairs of histograms are ranked for

their similarity and arranged from top-left (most similar) to bottom-right (most
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different) to verify that the metric works properly in comparing histograms of two

different variables (Figure 4.3).

With the validity of the distance metrics visually confirmed, we defined the

distance between two retinas to be the root mean square of the 9 distances between

their histograms. The similarity score, or attraction force, is defined to be inversely

proportional to the retina distance. Finally, for each metric, we visualized the

similarity matrix among the eight retinas (Figure 4.5). We identified the most

different pairs and the most similar pairs, the outliers, and the most average

retina.

4.2 Histogram profiles

The histograms of all the nine chosen variables are drawn for the eight reti-

nas. They are shown in Figure 4.1. Each column represents a retina. Each row

represents a variable (key). The histograms for each row are on the same scale, so

they can be visually compared. The histograms for each column, however, are not

directly comparable since different variables are drawn at different scales1. In all

of these histograms, all data are kept – no removal of outliers or cells in damage

areas – and there are 100 bins per histogram.

1the rendering of the histograms are not visually comparable but the number of items in
their bins can be compared as explained in Section 4.4
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Figure 4.1: Histogram profiles for 9 relevant variables

An earlier version of the histogram profile with 21 variables, some of them

are potentially relevant, is available online2. See Section 4.9 for more information

about alternative setups and the similarity of their conclusions.

2Available at http://ilabsvn.cs.ucsb.edu/projects/retivis/pics/allHistsAllRets_

th.405_1405141118.png
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4.3 Metrics for histogram comparison

Several options are available for a metric that compares two histograms. Given

two histograms with the same number of bins, bin size and bin boundaries, the

metric should output a distance d where d is proportional to the perceptual dif-

ference between the plots of the two histograms. Although several statistical tests

exist, e.g. Chi-square, Kolmogorov-Smirnov, and Kuiper [54], we argue that a

simple visual verification of the ranking (Figures 4.2 and 4.3) is still needed to

provide confidence in the metric.

The following metrics have been considered and implemented:

1. EMD: the Earth Mover’s Distance between the two histograms. “Given

two distributions, one can be seen as a mass of earth properly spread in

space, the other as a collection of holes in that same space. Then, the EMD

measures the least amount of work needed to fill the holes with earth.” [53]

Two histograms are assumed to have the same population size, or Σ(counts),

so they are normalized by dividing the count in each bin by the sum of counts

from all bins. Therefore, Σ(counts) = 1 after normalization. Note that this

metric cannot account for the fact that one histogram may be large while

the other one very small due to the difference in population sizes.
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2. mockEMD: a modified version of the Earth Mover’s Distance concept. The

two histograms are modified to have the same Σ(counts) by first calculating

the difference of sums: ∆. This is the amount of earth (dirt) that must be

added to the smaller histogram. There are many different options for this

step. We may:

(i) add ∆ to the first bin and let the earth mover move it to other bins,

adding to the cost; or

(ii) add ∆ to all the bins uniformly; i.e. ∆
#bins

is added to each bin; or

(iii) add ∆ to the bins proportional to the amount of earth already in the

bin.

For simplicity, we chose Option (ii) – adding it uniformly.

We then normalized the two histograms (dividing them with sum) and cal-

culated EMD. We multiplied EMD with the sum of the larger histogram so that

the amount reflects the real earth mover’s work on the original histogram,

not the normalized one. We then added ∆ to the distance to reflect the

additional work of acquiring new earth mass.

3. minkowski.1: the Minkowski Distance of order 1, the sum of bin-wise

differences between the histogram. Also known as the Manhattan distance.
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Generally, a Minkowski distance is defined as a distance between two n

dimensional points P and Q where

P = (x1, x2, x3, . . . , xn) ∈ Rn

Q = (y1, y2, y3, . . . , yn) ∈ Rn

When used as a distance between histograms, P defines the first histogram

and xi is the size of the ith bin; Q similarly defines the second histogram.

The Minkowski distance of order p equals [52] [55]

(
n∑
i=1

|xi − yi|p
)1/p

4. minkowski.2: the Minkowski Distance of order 2, the square root of the

sum of squares of the bin-wise differences. Also known as the Euclidean

distance.

Although we have implemented and tested all the four metrics, this thesis will

focus on mockEMD. It has been observed that the minkowski.2 metric also produces

satisfactory outcome, based on visual verifications. The general conclusions from
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Figure 4.2: Sorted histogram distances for each variable

the final distance matrix visualizations among retinas are mostly similar between

the two metrics.

For each variable, we compared all pairs of the histograms from the 8 retinas.

There are
(

8
2

)
= 28 pairs per variable. The pairs were sorted from left to right

according to their similarity. The result, shown in Figure 4.2, convinced us that

the metric is effective at distinguishing similar histogram pairs from different pairs.
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4.4 Comparing histograms of two variables

We have at least two reasonable metrics, mockEMD and minkowski.2, to com-

pare different retinas with respect to any given variable. For any two pairs of

histograms of the same variable (from two retinas), we can judge which pair is

more similar by comparing the distances. In the situation where one pair is of one

variable while the other pair is of another variable, however, we need to verify if it

still holds true that if one pair has less distance than the other, the pair is indeed

more similar.

We argue that it is true. Similarity of histograms is reflected in the visual sim-

ilarity of the shape of the histograms, which reflects the shape of the distribution

over the entire range of the variable. Two variables may span different ranges in

their raw values, but when their histograms are drawn, the entire ranges of both

are forced to fit in bins 1 to 100. Both mockEMD and minkowski.2 only calculate

distance based on those 100 bins, ignoring the distances between the bins. As for

the y-axis of the histogram, which is the frequency, we may be concerned that the

y-axes are not of the same scale across different variables. However, the scaling on

the y-axis is used only for graphically rendering the histograms as images. When

calculating the distances, the Y scaling is irrelevant.
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It is possible to visually confirm this by ranking all 9 × 28 = 252 pairs of

histograms by their distances (there are 9 variables with 28 pairs of retinas per

variable). In order to compare them visually, histograms were drawn so that the Y

axis of all variables are of the same scale. In Figures 4.1 and 4.2, the histograms of

the same variable have the same y-max, which is the max count of the 8 histograms

for the variable. But histograms from different variables have different y-max. In

Figure 4.3, we re-drew all histograms, setting the new y-max to be the maximum

of all previous 9 values of y-max. 3

In Figure 4.3 the 252 histogram pairs were sorted by their distance from low to

high (most similar to most different). Each pair occupies a square. The variable

and the retina names are shown on the top two lines of the square. The bottom two

lines show the raw mockEMD distance and the normalized distance as a percentage

of the maximum. The colors are interpolated linearly in HSB color space between

green and red. The histograms are shown side by side for visual comparison.

The distribution of the distances are shown on Figure 4.4(a). Based on a visual

observation of this ranking, we have concluded that the distance metric works

reasonably well at comparing histograms.

3An outlier could make the rest of the histograms look flat to the ground. However, that
is the only way that guarantee that we see all the data. An alternative is to pick the second
highest y-max out of the 9 values. Some clippings will occur.
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Figure 4.3: Sorted histogram distances for all variables

(a) between histogram pairs (b) between retinas

Figure 4.4: Distribution of distances
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4.5 Distance and similarity between two retinas

The histogram distance between variables are used in the calculation of dis-

tance between two retinas. Considering each of the 9 variables as a dimension,

the histogram distance represents the distance along that particular dimension.

Therefore, we define the distance between two retinas to be the Euclidean dis-

tance in the 9-dimensional space – the square root of the sum of squares of the

histogram distances.

retina distance =

√√√√ 9∑
i=1

variablei
2 (4.1)

The histogram of the distances according to mockEMD is shown in Figure 4.4(b).

The following observations hold true for the distances: (i) the ranges are un-

known beforehand; (ii) it does not always start at 0;4 and (iii) there’s no upper

bound. These observations guide the design of a similarity measure between reti-

nas based on these distances.

To cluster the retinas based on their similarity, the relationships between the

8 retinas should be treated as a similarity graph. The graph has 8 nodes for the

8 retinas. The retinas are linked with edges. In a graphical layout, the nodes

that are more similar should appear near one another while nodes that are more

different should be further away. To achieve this, we can utilize a force-directed

4although it cannot go below zero.
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layout where the nodes naturally repel one another (to prevent collapse) and the

edges represent the attraction force between the nodes based on their similarity.

The distance measure needed to be translated into a similarity measure or

attraction force. The attraction force between two retinas should be a function

of the distance so that, the higher the distance, the lower the attraction force.

Therefore, we designed the attraction force to be inversely proportional to the

distance. To bring the numbers into a more proper range, we multiplied them by

106 (an arbitrary number).

attraction =
106

retina distance
(4.2)

Even though this constant factor does not affect clustering, it contributes to

the readability of the final visualization of the similarity matrix.

4.6 The similarity matrix

The attractions for all the 28 pairs of retinas are shown in Figure 4.5(a).

The large number in each cell is the attraction force between the two retinas.

The higher the number, the more similar the retinas, and the more green (and

brighter) it appears. The histogram of these attraction forces are shown on the top

right. The small numbers under the attraction forces are the raw distances, which
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(a) before normalization (b) after normalization

Figure 4.5: Adjacency matrices comparing the retinas.

were used to calculate the attraction force but not directly used for calculating

the square color. The retina names are shown on the diagonal along with the sum

of their edge weights (designated by Σ at the top left of each square). These sum

reflects how close the retina is to the other retinas overall5.

4.7 Retina clustering observations

We have demonstrated an approach to comparing and clustering retinas based

on chosen characteristics. Both the second order Minkowski’s and the modified

earth mover’s distances are found to be suitable metrics of computing distances

5It is the sum of all numbers to the left of or below the square.
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between histograms. For the simplicity, only results from the modified EMD

(mockEMD) is reported here. In the first iteration where 21 variables are used for

clustering6, GFP3 and GFP12 are the most similar. GFP1 and GFP2, with their

two lowest sum of edge weights, are the “outliers” because they are the least

similar to others. GFP3 - 13 form a loosely connected clique with GFP3 being

the “binding force” or an “average retina” who is the most similar to other retinas

overall (because of the highest sum of edge weights). GFP2 and GFP13 are the

most different.

In the second iteration where we selected only nine variables for clustering,

with results shown in Figure 4.5(a), GFP1 and GFP2 are still the outliers (true

for both metrics). GFP3 and GFP12 are still the most similar. GFP2 and GFP12

are the most different with a similarity score of 4.62.

After retina normalization, which will be described in Section 4.8, we clustered

the retinas again. The results are shown in Figure 4.5(b). GFP1 and GFP2 are

still the outliers. GFP10 and GFP12 are the most similar. GFP2 and GFP13

are the most different with a similarity score of 5.39, higher than in the case of

non-normalized retinas. This suggests that normalizing the retinas has an effect

of bringing the most different pairs closer together.

6result not shown here but available at http://ilabsvn.cs.ucsb.edu/projects/retivis/
cluster1.html#140520_1
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When the cells in damaged areas are excluded from histogram calculation

(and after normalization), however, the overall similarity among retinas actually

decreased. A preliminary investigation suggested that the increased difference in

population sizes between retinas may be responsible for the increased distances

between them.

4.8 Retina normalization

We normalized the images of the eight retinas to reduce discrepancies among

them which are apparent in Figure 4.6. The main objective is to obtain a new

set of images that are more evenly illuminated both within and between images.

A version of normalized images is shown in Figure 4.7 which shows a significant

difference from the original. In the final version, the difference in illumination is

more subtle as shown in Figure 4.9.

We normalized the retinas using an approach based on adaptive thresholding

[56] as shown in Figure 4.8. We applied an adaptive thresholding on the green

channel to binarize it as an intermediate step.7 This binarized version served as

a tool to boost the brightness of darker parts of the image so it became more

evenly illuminated. We then blurred the binarized green channel by some amount

7Adaptive thresholding takes two parameter: ws (window size) and C [56].
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Figure 4.6: The original images before normalization

Figure 4.7: An extreme version of normalized images
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Figure 4.8: A normalization pipeline based on adaptive thresholding

to prevent sharp edge artifacts, and added some proportion of that image to the

original green channel using a formula:

O = G+ max (0, B −G)×Gγ

where

O = output

G = original green channel

B = the blurred binarized green channel

γ = a parameter

After normalization, we re-segmented and recomputed all the statistics for all

the eight retinas.

We have used the following parameters for all the retinas in the normalization

process: window size = 804, C = 0.05 (for adaptive thresholding), blur radius =

6, and γ = 1/3. From preliminary inspections, we have noticed no significant qual-
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Figure 4.9: The normalized images
(The strip artifacts on GFP8 and 13 are not present in the final version.)

itative difference in the distribution of the nine relevant variables. This suggests

that our analysis methods are robust against slight changes in image properties.

Our decision to use adaptive thresholding to normalize the retinas has yielded

an acceptable result. We had hoped that the normalization effect would be

stronger. But in choosing our parameter set, we have to make sure that the

decision is universal – that is, all retinas must use the same set of parameters – to

prevent any human biases. The blur parameter is instrumental in the strength of

the final results. Although, lower blur results in a much more evenly illuminated

set of images, the results would only be satisfactory when viewed at a lower than

10% magnification because of the strong edge and halo artifacts at the 100% zoom
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level. For future work, an approach based on adaptive histogram normalization

should be explored. (See [57] [58] and [59].)

4.9 Alternative results and other information

All possible scenarios for comparing and clustering retinas have been experi-

mented. Eight possibilities arose from the following series of decisions.

1. Whether or not to normalize the retinas.

2. Whether or not to exclude cells under the damage areas

3. Which distance metric to use for histogram comparisons: minkowski.2 or

mockEMD

The directory compareRets is located under AstrocyteRoot/info. Under

compareRets, two subdirectories compareNotNormalized and compareNormal-

ized contain results of retina histogram comparison and clustering before and af-

ter normalization, respectively. Under each of those directories, two subdirectories

auto-histograms-collection-withDamage and auto-histograms-collection

represent the scenarios where all cells are included in the analysis VS where

the cells on the damage masks are excluded, respectively. Inside each of the

auto-histograms-collection* directories,
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• the histogram profile similar to Figure 4.1 is the file allHistsAllRets.png

located under combined.

• the similarity matrix similar to Figure 4.5 is the file matrix.mockEMD.png

located under compare/mockEMD/graphDrawings. For a difference metric,

replace mockEMD with minkowski.2.

• Individual histograms for every variable and every retina are located at

byKey/KEY/retName.png while the raw bin counts (a series of 100 numbers)

are recorded at retName.counts.txt in the same location.

Additional information about the retina clustering including details, raw data,

and images can be found at http://ilabsvn.cs.ucsb.edu/projects/retivis/

cluster1.html. For retina normalization, additional information can be found

at normalize.html on the same site.
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Part III

Visualization results
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Variables of interest

5.1 Version of the retinas

Our data set consists of eight full retina mosaics. The images of the retinas

have been normalized as describe in Section 4.8. The cell center locations are

manually marked and segmented by a random walk segmentation algorithm as

described in Sections 1.1.2 and 1.1.3. The segmentation results are binarized with

adaptive thresholding. Cells whose centers are located on the damage areas as

manually masked by the biologist are excluded from the statistics.

5.2 Selection of variables

Several variables are available for region-based analysis. They are listed and

described in Section 1.6.2. Specifically, only numerical variables listed on Table

1.1 can be visualized as a heat map. An initial selection of 21 variables is made
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based on criteria that they are potentially interesting and they are not obviously

duplicates of one another. Although some variables still represent the same bi-

ological quantity in different ways, such as [area bin] and [area gray], they

may provide useful insights into the binarization process and may give us a degree

of confidence in the interpretation of any possible conclusion. For easy reference,

each of the the 21 variables is assigned a concise and informative nickname listed

on Table 5.1.1

Variable Nickname

avg chan0 r [r]

avg chan1 g [g]

avg chan2 b [b]

bin area [area bin]

bin convex hull area [area hull]

bin convex hull holes [hull holes]

bin eccentricity [eccntrcty]

bin extent [extent]

bin filledarea [area filled]

bin fraction of convex hull [solidity]

bin furthest geodesic point dist [furthest pt]

1These nicknames were also used for the histogram profile in Figure 4.1.
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bin majoraxislength [axis major]

bin minoraxislength [axis minor]

bin num holes [holes]

bin orientation [orient]

bin perimeter [perimeter]

cellcenters count [# centers]

dist2nearestneighbor of center cell [near nb]

dist center 2 label [dist2ctr]

voro area of center cell [area voro]

weighted cell area of center cell [area gray]

Table 5.1: The 21 variables and their nicknames

The variables whose names start win bin depend on the binarization of the

segmentation results. All other variables are not influenced by the segmentation

results except for weighted cell area of center cell (or [area gray]).

The 21 variables are visualized and viewed. A discussion between the col-

laborating computer scientists and biologists on the visualization results led us

to conclude that the selection can be further narrowed down to 9 variables as

described in Section 5.3.
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5.3 Descriptions of variables

We are interested in visualizing the following variables. The order given below

is the same order as the detailed report in Appendix A. The first two variables,

[area bin] and [area gray], are related to the size of cells. The next three,

[area voro], [near NB], and [# centers] are related to cell population density.

The variable [eccntrcty]2 is related to cell shape, along with [furthest pt]

and [perimeter] which are also slightly related to cell size.

1. bin area [area bin]

The binarized cell area. This is the areas of cells after binarization with

adaptive thresholding. It is calculated by counting the pixels in the binary

image.

2. weighted cell area of center cell [area gray]

The weighted cell area. This is calculated from the grayscale segmentation

result by summing up the pixel values, each pixel being between 0 and

1. This is not influenced by the choice of binarization threshold or by the

adaptive threshold implementation, but it is influenced by the random walk

segmentation algorithm.

2It is abbreviated from ‘eccentricity’. The nicknames were initially designed for use in Figure
4.1 which offers very limited vertical space for variable labels, hence the need for an extreme
abbreviation.
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3. voro area of center cell [area voro]

The area of Voronoi region of the cell. For each retina, a voronoi diagram is

created from the locations of the cell centers. For cells whose voronoi region

intersects with the retina boundary or the optic nerve head, this value is

undefined. An example of voronoi cells is shown in Figure 1.9(f).

4. dist2nearestneighbor of center cell [near nb]

The distance to the nearest neighbor. If this distance is more than the

distance to the boundary, it is considered undefined. This is because there

might be another cell on the opposite side of the cut that is closer than the

known nearest neighbor. Figure 5.1 shows the white arrows pointing from

every cell to its nearest neighbor. Some cells are mutual nearest neighbors

as indicated by a double-headed arrow (↔). Although every cell has a

nearest neighbor, some cells are not a nearest neighbor of any other cell –

as indicated by cells without an incoming arrow head.

5. cellcenters count [# centers]

The cell centers count. This represents the density of cell centers. It is the

number of cell centers within 150 µm radius of the cell center. Note that this

value can be abnormally low around the edge of the retina because the 300

µm-diameter circle may fall outside of the boundary. We have considered
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Figure 5.1: Nearest neighbors graph

using another variable, the density – which is this value divided by the area

of the intersection between the circle and the retina boundary, but decided

against it because that variable suffers from artifacts of abnormally high

values when the intersected area is very small.

6. bin eccentricity [eccntrcty]

According to MATLAB manual, “the eccentricity is the ratio of the distance

between the foci of the ellipse and its major axis length.” The ellipse here

refers to an “ellipse that has the same second-moments as the region.” [38]

A circle has the lowest eccentricity (0) while a line segment has the highest

eccentricity (1). When applied to a binarized image of a cell, it represents
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Figure 5.2: Furthest point distances

how elongated the cell is. Cells with lower eccentricity are shaped like blobs.

Cells with higher eccentricity are more elongated in certain directions.

7. bin furthest geodesic point dist [furthest pt]

This is the distance from the cell center to the furthest point on the binarized

cell body. It is not a Euclidean distance, but rather a distance of walking

along the cell (geodesic distance). In the special circumstance where the cell

center falls outside the binarized cell body, a straight line is drawn from the

center to the closest landing point on the cell body, and this value is the

length of this line plus the geodesic distance to the furthest point on the cell

from that landing point. Figure 5.2 provides some examples.

8. bin perimeter [perimeter]

This is the perimeter of the binarized cells.

9. dist center 2 label [dist2ctr]

The distance from the cell center to the optic nerve head.
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The visual design

6.1 A single retina view

Each retina is drawn inside a square box on a white background. There is a

small disc that represents the value for each cell. The size of each disc is designed

to be large enough to be clearly visible but small enough to not overlap too much

with the neighbors in dense areas. The discs are semi-transparent to allow for some

overlapping values to be shown. The values are categorized into three groups: the

bottom five percent, the middle range, and the top five percent. Complying with

normal conventions, the bottom and top groups are assigned the color blue and

red, respectively.1

1In photography, as in microscopy, blue is typically assigned to designate underexposed areas
whereas red designates overexposed areas.
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6.2 Color scheme

For the values in the middle range, the colors are linearly interpolated in the

HSB color space between two colors. The low value color is a very light blue

(#DEEDFF) and the high value color is a darker pink (#FF8082). This color scheme

was chosen because

• The low-value color is designed to be similar to blue, the color chosen for

the bottom group.

• The high-value color is designed to be similar to red, the color chosen for

the top group.

• The low-value and the high-value colors are not too similar to blue and red

so that the bottom and the top groups can stand out – to facilitate easy

detection of the outliers.

• The low-value color is designed to be lighter (brighter) than the high value

color so that the high values stand out more on a white background.

To demonstrate this color scheme, the distances to the optic nerve head of

cells in GFP12 are visualized in Figure 6.1. This variable is chosen because an

obvious pattern is known – the lowest values are in the middle and the value grows

to the highest on the periphery. From this image, the color scheme is shown to
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Figure 6.1: A single retina view showing distance to the optic nerve head

be effective at highlighting the lowest and highest values. It is also effective at

representing the range of values in the middle range with double encoding, both

in hue (from light blue to pink) and in intensity (from light to dark).

6.3 Contextual elements

Some areas of the retina suffer tissue damage during the sample preparation

and imaging stage. Those areas are manually masked by our collaborating bi-

ologist, Gabe Luna. The damage masks are shown in dark yellow. The cells

whose centers fall inside the damage area are marked with a cross (×), signifying

a missing value. Some cells may be outside the damage area and still be marked
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with a cross; in such situation, the value of that variable for the cell is missing for

some other reasons; for example, the Voronoi areas of cells near the border may

be undefined.2

The veins and arteries are manually tracked by Aruna Jammalamadaka based

on their branching characteristics using NeuronStudio [60]. The arteries are shown

in red and the veins are shown in black. In the original track files, the width of

the blood vessels are recorded but the information is ignored in the visualization

to reduce visual complexity. In future study, an option to highlight the branching

points and the difference in diameters may become useful because of more recent

knowledge about the vessels, such as their morphology in optic nerve head drusen

[61]3. When a blood vessel crosses the retina boundary to connect with the oppo-

site side of the cut, a thin dotted line is drawn to provide just enough visual cue

of continuity without increasing visual complexity.

The retina boundary, manually created by Gabe Luna using Retivis, is drawn

with a thin gray line. On most retinas where cells are distributed over the entire

retina, this explicit visual representation of the boundary is not needed because

it is implied from the locations of the cells. However, cells may be missing near

2We consider any Voronoi cells that intersect with the retina boundary to be undefined even
if the area is not open.

3an abnormal condition in the ONH, also called optic disk drusen. See [62] for more
information.
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a border of a damage part of some retina, hence the boundary lines are deemed

helpful.

To reduce visual complexity, the optic nerve head is not shown.

6.4 Supplemental information

The retina’s name is shown on the top-left corner. Simple statistics are shown

on the top-right. These include the number of available data points (N), the

mean, the median (med), standard deviation (SD), and the number of missing

values. Written at the bottom are the min value, the 5th and 95th percentiles, and

the max values. The color scheme is also shown, reminding the viewer that blue

represents the bottom five percent and red represents the top five percent, and

that the colors of the 11 dots represent the range of value in the middle. A series

of dots (•), instead of a continuous gradient stripe, are used because they better

resemble the data points in the visualization above.

6.5 Multiple retina view

The eight retinas are displayed in eight equal-size square boxes. All retinas

are scaled by the same factor. The scale factor is the largest such that all retinas

still fit inside the squares. The variable’s name is shown at the top.
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Figure 6.2: A multi-retina view showing geodesic distance to the furthest point.
The data points are not pooled together.

Figure 6.3: A multi-retina view showing geodesic distance to the furthest point.
The data points are pooled together.
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In Figure 6.2, the visualization for each retina is rendered individually. The

color scale for each retina is calculated for the data of that particular retina,

independent of other retinas. For this reason, the top five percent and the bottom

five percent for each retina are different from that of other retinas, and are reflected

in the bottom legends of the squares. Every retina always has some data at the

top 5% and some at the bottom 5%, so red and blue dots are always present. This

allows for patterns to emerge on each retina regardless of the variation of ranges

among the retinas. Essentially, the process is similar to normalizing the values4

from the eight retinas before visualizing. An advantage of this approach is that

even though the visualizations are normalized, the raw data are not. An analyst

can still look at the variations in the means, the medians, and standard deviations

although such observations are not visual.

Another approach of calculating the color scale is to pool the data together.

Instead of rendering each retina individually and independently of each other,

all the valid data points from all retinas are first pooled together. The top and

bottom 5% of all the data are calculated (as opposed to the top and bottom 5%

of each retina). Only data above and below such amounts are colored in red and

blue. The rest of the data are scaled linearly according to the two percentiles.

4normalizing of a data set moves its mean to 0 and the standard deviation to 1. This is
accomplished by subtracting every data point by the mean and dividing them by the standard
deviation, as done in [21].
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Therefore, it is possible that a retina may not have any red dots or blue dots. In

this view, patterns on some retinas which do not possess extreme values may be

difficult to detect. However, variations between retinas will be more visible. An

example of this is shown in Figure 6.3.
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Discussion and Future Work

Many trends are more visible in GFP1 and 2 (and to a lesser degree, GFP11)

than other retinas. Generally, trends are more visible near the optic nerve head

(ONH). GFP1 and 2 are the most densely populated and GFP2 has the biggest

cell sizes. Some patterns that appear elsewhere tend to disappear or appear to

be random (or even reversed) near, but outside, the damage areas. A possible

explanation is that the damage area masks are more restrictive than the reality.

Some areas in the vicinity outside the damage mask may also be damaged. Most

interesting patterns involve the blood vessel structure. It has proven useful to

overlay the veins and the arteries with different colors because the patterns are

mostly different.

7.1 Patterns along the veins

We found that the following observations hold along the veins:
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• lower Voronoi areas, suggesting that cells are densely populated. See Figure

A.3.

• shorter nearest neighbor distances (only weakly visible on some retinas),

suggesting that the cells are densely populated. See Figure A.4.

• higher cell center counts in the 150 µm vicinity of each cell, esp for cells near

the ONH, strongly suggesting that cells are densely populated. See Figure

A.5.

• bigger cells according to weighted cells area (very clear trend). See Figure

A.2.

• bigger cells according to adaptive threshold binarization (clear trend). See

Figure A.1.

• lower eccentricity (very weak trend), suggesting that cells are shaped like a

circle or a blob. See Figure A.6.

• lower geodesic distance to furthest point, suggesting that cells are small and

not complex (not having many branches). See Figure A.7.

• lower perimeter (weak signal), suggesting that the cells do not have many

branches or holes. See Figure A.8.
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The above observations, taken together, suggest that the cells along the veins

are bigger than the rest of the retinas in terms of areas and that the areas along

the veins are densely packed with cells as observed from the cell center counts,

the Voronoi area, and the nearest neighbor distance.

The observation that cells along the veins are large seems to have suggested

that they should occupy a large portion of the image. However, the geodesic

distances to the furthest point are generally low along the veins, suggesting that

it has a low radius, occupying only a small area. Its lower perimeter also points

toward smaller cells. These seemingly contradicting trends can be reconciled by

observing the lower eccentricity along the veins. Even though the eccentricity

trend is very weak, it explicitly suggests that the cells are shaped like circles

rather than elongated. One plausible hypothesis is that the cells along the veins are

shaped like a blob. This hypothesis is compatible with the trend of low perimeter,

suggesting that cells do not have may branches which would have increased the

perimeter. The lack of branches also explain the low geodesic distance to the

furthest point, which is a clear trend, because a circle is a shape where the distance

to the furthest point is minimized for any given cell area.

It remains to be studied whether the hypothesis on the cell shapes is a result

of a biological property of cells along the veins or an artifact of the random walk

segmentation algorithm in a densely populated area.
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7.2 Patterns along the arteries

We found that the following observations hold along the arteries:

• higher Voronoi areas (weak trend) than along veins, suggesting that the

areas are sparsely populated. See Figure A.3.

• lower number of cell center counts in the 150 µm vicinity than along veins,

also suggesting that the areas are more sparsely populated than along veins.

See Figure A.5.

• A mixture of both large and small cells, but more small cells according to

adaptive thresholding binarization (Figure A.1) than that from weighted cell

area (Figure A.2), possibly suggesting that binarization causes small cells

to appear even smaller.

• higher eccentricity (very weak signal), suggesting that cells are elongated.

See Figure A.6.

• higher geodesic distance to the furthest point, suggesting that cell processes

reach farther. See Figure A.7.

Generally, the trends along the arteries are less visible than those along veins,

but still more visible than in other areas of the retinas. Based on this visual

observation alone, it is not yet conclusive if the cells along the arteries are bigger
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or smaller than over the rest of the retina. But it is known that they are smaller

than the cells along the veins.

Cells along the arteries may be sparsely populated according to the lower

number of cell counts in the vicinity. But this trend is only weakly supported

by the high Voronoi areas, and not supported nor refuted by the lack of any

trends regarding the nearest neighbor distance. It may be possible that cells

can be sparsely populated but still have low distances to the nearest neighbor.

When cells are arranged in a certain way, removing a number of cells from the

population may not significantly increase the nearest neighbor distances especially

if the removed cells are not nearest neighbors of any other cells.1

An interesting observation is that the cells along the arteries have high geodesic

distance to the furthest point, and to a lesser degree, there is a pattern of higher

eccentricity. This may suggest that the cells have branches of unequal lengths

in certain directions. The branches reach out relatively far – resulting in higher

geodesic distance, but not equally far in all directions – resulting in higher eccen-

tricity.

A plausible assumption based on these observation is that the cells along ar-

teries are branchy, and the branches reach out in certain directions. It remains to

1For example, Distribution A can be much more dense than Distribution B but still have the
same nearest neighbor distance. In A, cells are packed on a regular grid of 10 µm apart. In
B, all but two cells are removed; the two cells are 10 µm apart. Both have an average nearest
neighbor distance of 10 µm.
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be studied whether these branches reach out for another blood vessel, or another

far-away astrocyte, or another specific structure.

7.3 Future work

It may be beneficial to reconsider some other variables in Table 5.1 for a closer

inspection. The hypothesis that cells along the veins are shaped like blobs may

warrant a look at [holes], [hull holes], and [solidity] which should be low,

low, and high, respectively if the hypothesis is true.

The properties of cells along the arteries suggest that they may shape like stars

and that they may reach out in certain directions. While we have a variable that

represents direction, [orient], it only represents the angle with respect to the

horizontal line – an arbitrary construct. Another variable representing the relative

direction with respect to some other prominent structures such as a major blood

vessel or the ONH should be included for further analysis.

While the shapes of the cells along the veins or arteries may be deduced from

different variables such as [area bin], [furthest pt], and [eccntrcty], it may

be more convincing to directly and visually confirm the assumption about their

shapes. A new visualization technique could be proposed where a random sample

of cells can be queried and visualized on a grid (instead of on the retina) based
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on certain criteria. For examples, we should be able to view the shapes of cells

that are within 20 µm of any vein on one-half of the screen while the other half

shows the cells that are outside that region.

Along the veins, cells have large sizes and the areas are densely packed. It

may be possible that cells overlap more in this region. Our visualization of a

simulated cell network in which we encode the overlap scores as line thickness

and opacity, similar to Figure 1.12(c) have suggested that this is true. Another

variable, called [overlap] could be introduced into the analysis. It should be

defined as the number of pixels overlapped with at least one or more neighbors.

It remains to be decided whether to count a pixel twice if it overlaps with more

than one neighbors. It also should be considered whether to express this amount

of overlap as the absolute number of pixels, or as a percentage of the cell size.

An initial exploration of this idea has been attempted. Figure 7.1 shows the

location of cells with the most overlaps (assuming non-normalized retinas, random

walk segmentation, and adaptive thresholding binarization). The amount shown

is the sum of the number of pixels that each cell overlaps with its neighbors. For

each retina, the lowest 5% are shown in blue; the top 5% are shown in red; and

the rest are shown in colors ranging from very light gray (low value) to black (high

value). The high values appear to form a structure similar to the veins. These
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Figure 7.1: Amount of overlaps in non-normalized retinas

are the areas where the pixels are more likely to be counted twice (or more) when

[area bin] is calculated.

While single variable observations are important and already rich with poten-

tial insights, a visual survey of the relationship between variable pairs may be even

more interesting. As observed here, the trends are stronger near the ONH or near

a major blood vessels. We may be able to detect a relationship between any two

variables more quickly when an appropriate third variable (such as [dist2ctr])

is used as a filter.

In this thesis, we have proposed a comprehensive visualization system inte-

grated with a highly flexible region-based analysis tool. In close consultation

with our collaborating biologists, we developed and applied our toolkit on a large
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data set of microscopic image mosaics of retinal astrocytes. Our single cell in-

jection study, the network study, and retina clustering and normalization helped

us prepare and process the data. Finally, we presented the final visualization

and reported our observation and interpretation. We hope that this thesis may

stimulate further work and insights in the field of mammalian retinal astrocyte

analysis.
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Appendix A

Details on specific variables

We report the visualization results of eight of the nine variables along with
their histograms1. For each variable, we show the visualization of values after the
retina has been normalized. Adaptive thresholding [56] is used to binarize the
cell segmentation results. The cells in the masked damage areas are excluded. To
bring out the patterns more clearly, the data is not pooled together – i.e. each
retina is rendered individually using its own color scale.

To prepare this report, an automated script2 organizes the multiple-retina
visualizations of each variable – for both pooled and non-pooled versions, the his-
tograms, the comparison matrix with respect to the variable, and the alternative
results for non-normalized retinas – and presents them as cross-linked web pages3.

We observed each variable visually, looking for trends of low and high values
regarding any structures, and recorded our observations to a text file, one text
file for each variable4. The human’s observation records are then integrated back
on to the auto-report web pages by re-running the same reportKeys script. The
visualizations and the observations can then be viewed as an integrated report.
Based on this, we were able to refine and add further insights into the observa-
tion text, especially on the relationship between related variables (e.g. about cell
shapes). The reportKeys script was re-run after each update to bring the online
reports up to date. Based on the final reading of the detailed reports, we pro-
duced a narration that highlights the findings and potential insights as reported
in Chapter 7.

1We omitted [dist2ctr] (the distance from the optic nerve head to the cell center) because it
is used primarily to validate and demonstrate the color scheme. While a correlation analysis of
this variable against another variable is important, it is not interesting as a stand-alone variable.

2The script is run by ./retivis macro=reportKeys
3Available at http://goo.gl/rXt4Nx
4Located at the directory AstrocyteRoot/info/observationText
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Appendix A. Details on specific variables

A.1 Variable: [area bin]

Figure A.1: Visualization and histograms of [area bin]
Technical name: key bin area

• This is the areas of cells after binarization with adaptive thresholding.
• Near the veins, the trend is clear that cells are the largest. This trend is the

same as, but a little less clear than, that found in the weighted cell areas.
• Near the arteries, there also seems to be a trend, but the trend is ambiguous.

There are both red dots and blue dots. We see more blue dots (small cells)
near arteries here in binarized area than in the weighted grayscale area
version. It may suggest that adaptive thresholding binarization causes small
cells near the arteries to appear even smaller (hence the existence of more
red cells).
• GFP2 still has the biggest cells, according to the pooled version where we see

more red dots in GFP2 than in other retinas, and the vertical arrangement
of histograms. The means and medians also confirm this.
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A.2 Variable: [area gray]

Figure A.2: Visualization and histograms of [area gray]
Technical name: key weighted cell area of center cell

• This is the weighted area of cell, meaning the sum of the intensity values
for all the pixels in the grayscale segmentation result. This value does not
depend on a binarization method or threshold.
• Both in the non-pooled and pooled version, we see a clear trend that red is

hugging black. This means the biggest cells live along the veins.
• For the arteries (red lines), the trend is much less clear. From just these

visualizations, we cannot say that smallest cells live near the arteries. Nor
can we say that cells along the arteries are bigger than the general area
although we seem to see that pattern in a few places, its not conclusive.
• The pooled version shows that GFP2 has the biggest cells (along the veins).

A vertical arrangement of histograms, and a reading of means and medians,
shows that as well.
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A.3 Variable: [area voro]

Figure A.3: Visualization and histograms of [area voro]
Technical name: key voro area of center cell

• This is the area of the Voronoi region around cell center. High values (red)
mean big Voronoi regions, implying less dense area. Low values (blue) means
more dense area.
• We see blue hugging veins (black lines). That suggests that the areas around

veins are dense.
• To a lesser degree, reds are hugging arteries (red lines). This suggests that

the areas around arteries are less dense.
• When we pool data together, the trend of blue hugging veins become even

more visible for GFP1 and 2.
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A.4 Variable: [near NB]

Figure A.4: Visualization and histograms of [near NB]
Technical name: key dist2nearestneighbor of center cell

• This is the distance to nearest neighbor.
• Intuitively, this should correlate well with Voronoi area but it doesnt (at

least visually). The trend is not as clear as Voronoi area.
• GFP1 and GFP2 almost do not show any trend at all. This might be because

they are the most dense retinas (as seen from the pooled version). When the
density is high enough to a point, the nearest neighbor distance are always
low and vary very little from region to region. The SDs (standard deviation)
support this statement: we see that the SDs for GFP1 and GFP2 are around
11 whereas other retinas have higher SDs around 15.
• In GFP8, 11, 12, and 13, we see a weak trend that blue dots are hugging

black lines. Red lines sometimes also have blue dots, but sometimes have
red dots. This suggests that areas around veins are dense. For arteries, the
conclusion is not clear.
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• Histograms of GFP2 and GFP13 are the most different, possibly because of
the high number of missing cells from GFP13 (1530 cells).
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A.5 Variable: [# centers]

Figure A.5: Visualization and histograms of [# centers]
Technical name: key cellcenters count

• This represents the density of cell centers. It is the number of cell centers
within 150 micron radius of the cell center. The higher number (red), the
more dense the area.
• Seemingly, the areas around veins have high density of cells.
• Arteries seem to have lower density (but on some retinas, still higher than

general areas)
• The pooled version shows that GFP1, 2, and 11 have the most dense area.
• GFP3 has a very low populated area near the top around the neighborhood

of many damage areas. The same situation applies for GFP12 in the lower
right wing, and GFP13 left wing.
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A.6 Variable: [eccntrcty]

Figure A.6: Visualization and histograms of [eccntrcty]
Technical name: key bin eccentricity

• According to MATLAB manual, “the eccentricity is the ratio of the distance
between the foci of the ellipse and its major axis length.” The ellipse here
means an “ellipse that has the same second-moments as the region.”
• Low value = blue = resembling a circle. High value = red = elongated,

resembling a line segment.
• No clear trend is visible either with the pooled or the non-pooled version.
• Some veins have a very faint trend toward blue (circle-like) e.g. GFP13

lower branch. This may be because veins have high density. And when
density is high, random walk segmentation sees a lot of green and segments
the cell like a blob; or it can be a biological property.
• Some arteries have a very faint trend toward red (elongated) e.g. GFP12

upper branch.
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• Visually the histograms for all retinas appear generally similar to one an-
other. GFP2 and 13 are the most different and thats due to the difference
in the number of usable cells, not because of eccentricity.
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A.7 Variable: [furthest pt]

Figure A.7: Visualization and histograms of [furthest pt]
Technical name: key bin furthest geodesic point dist

• This is the distance from the cell center to the furthest point on the binarized
cell body. It is not a Euclidean distance, but rather a distance of walking
along the cell (geodesic distance).
• Blue = short distance = small and uncomplex cell. Red = long distance =

large or complex cells.
• There is a clear trend of blue hugging the black lines (veins) in all retinas

except GFP10 and 11. This suggests cells near the veins are small and
uncomplex. This suggestion that cells near veins are small contradict with
observation about cell areas (both grayscale and binarized). But we have
observed that cells near veins have low eccentricity. That is, they are circle-
like. This suggests that cells along the veins are shaped like blobs. They
have high areas and short radius.
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• We see some trend that cells near arteries have high distance to the furthest
point. This means that their branch reach out further despite having less
overall area than cells near veins.
• Pooling the data together have almost no effect on the visibility of the trends.
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A.8 Variable: [perimeter]

Figure A.8: Visualization and histograms of [perimeter]
Technical name: key bin perimeter

• This is the perimeter of the binarized cells.
• We see almost no trend except for GFP1 and GFP2.
• In GFP1 and GFP2, we see some trend of blue hugging black. This may

suggest that cells along the veins have low perimeter. This is compatible
with the assumption that these cells are shaped like blobs rather than stars.
• When we pool the data together, no trend is visible at all.
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