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Abstract

Analyzing and Processing Big Real Graphs

by

Xiaohan Zhao

As fundamental abstractions of network structures, graphs are everywhere,

ranging from biological protein interaction networks and Internet routing net-

works, to emerging online social networks. Studying graphs is critical to under-

standing the fundamental processes behind the networks, and of practical im-

portance in experimental research. Although many studies on graphs have been

carried out in decades, most of the work focused on small or synthetic graphs. In

recent years, because of the unprecedented increase of existing networks and the

emergence of new complex networks, more and more big real graphs are becoming

available. Compared to the graphs studied in prior work, the graphs from these

networks are significantly different in scale, level of dynamics and structure.

In this dissertation, we tackle three important graph research problems caused

by the significant differences of the big real graphs: efficient node distance com-

putation, graph dynamic analysis and modeling, and graph privacy.

First, we target on a fundamental graph analysis problem, i.e. node distance

computation. As a primitive of graph analysis and network applications, the com-

putation of shortest path or random walk distances is computationally expensive,

and difficult to scale with the sheer size of big real graphs. To address the scal-

ability issue, we design a novel node distance computation method, named graph

coordinate systems, to efficiently estimate node distances with high accuracy.

x



Our second work is to understand and model the dynamic processes in big

real graphs. Specifically, we propose methods to analyze graph dynamics at mul-

tiple network scales and explore temporal properties of network growth. Through

measurements on Renren first two-year dynamic data, we find independent and

predictable processes at different network levels, and detect self-similar properties

in its edge creation process. Based on the observations, we propose a new dynamic

graph model to capture both temporal and spatial properties. Calibrated with the

Renren dataset, our model successfully produces synthetic graphs showing similar

dynamic properties.

Finally, to address privacy issue in sharing graphs, we design a graph privacy

system to guarantee the required level of privacy. The goal of our work is to de-

sign a system that can both maintain a meaningful graph structure and provide

strong privacy guarantee. To navigate the tradeoff between the strength of pri-

vacy and graph structure utility, we propose a differentially-private graph model.

Our rigorous proof shows that the graphs produced by the system can achieve the

required level of privacy. By running the system on real graphs collected from

Facebook, Internet, and Web, the results demonstrate that the generated syn-

thetic graphs match the original graphs in terms of graph structural metrics and

application-level performance.

In summary, to analyze and process the graphs from today’s large complex

networks, we work on three important problems, including efficiently computing

node distances in massive graphs, analyzing and modeling high volume of dynam-

ics in big real graphs, and protecting graph privacy in sharing graphs. We propose

novel solutions to address these problems. Through our extensive experiments,

we show that our designs perform consistently well on big real graphs.
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Chapter 1

Introduction

Graphs are fundamental abstractions of network structures. They are every-

where, ranging from biological protein interaction networks and Internet rout-

ing networks, to emerging online social networks. Studying graphs is critical

to understanding the fundamental processes behind networks, and of practical

implications in real world applications. For example, understanding and mod-

eling influence propagation in online social networks, such as Facebook, Twit-

ter, and Renren, is important for the service providers to successfully launch

social advertising [33]. In previous decades, there have been many studies on

graphs [104, 102, 182, 117, 5, 6, 18]. Most of the prior work focused on small or

synthetic graphs [104, 102, 182, 117, 5, 6, 18], such as arXiv citation networks,

DBLP collaboration networks, and Email communication networks.

More recently, because of the unprecedented increase of existing networks, such

as Internet, and the emergence of new networks like online social networks, more

and more big real graphs are becoming available. Compared to the graphs studied

in prior work, these big real graphs are significantly different in the following three

aspects. First, big real graphs are much larger in scale. For example, in online

1
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social networks, like Facebook, Twitter, and LinkedIn, there are millions or even

billions of users while only hundreds of thousands of nodes exist in the graphs in

prior studies, such as arXiv networks and DBLP networks [104, 102, 182, 117, 5, 6,

18]. Second, big real graphs have higher level of dynamics. Compared with online

social networks like Renren, which has hundreds of thousands of new users and

more than 1 millions new edges per day, there are only thousands of new nodes

and new edges per year in the arXiv network [104]. Third, from the perspective of

graph structure, big real graphs have significantly distinct properties. Take graph

density as an example. In online social networks, such as Facebook, its average

degree of each user are more than 190 [12], which is several times larger than the

average degree in the prior graphs [104].

Thus, it is challenging to understand big real graphs. First, because of their

sheer size, many traditional graph algorithms are not scalable in big real graphs,

which makes processing these graphs extremely difficult. For example, to com-

pute one shortest path in a graph with millions of nodes and billions of edges, it

can take up to minutes or even an hour using breadth-first search (BFS), which

is too slow to support any real-time applications based on shortest paths. Sec-

ond, although many studies have worked on dynamic graphs [104, 102, 5, 6], few

progress is reported on understanding high volume of graph dynamics. In order

to understand dynamic processes in big real graphs, systematic analysis methods

and comprehensive dynamic graph models are desired. Third, protecting privacy

in sharing big real graphs is a new issue. This is because the structure of big real

graphs may contain sensitive information, such as strength of social ties, number

and frequency of social interactions, and information flows in online social net-

works. Sharing such graphs raises risks to expose users’ private information to

2
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the public. Therefore, how to preserve graph privacy is becoming one important

problem in studying big real graphs.

My research work aims to address the above three challenges in big real graphs,

and the statement of this dissertation is as follows:

To analyze and process an increasing number of big real graph

datasets today, we need to build tools and algorithms to address issues

of scale, dynamics, and data privacy.

Driven by the statement, the following are the three goals in this dissertation.

First, we target on a fundamental graph processing problem, i.e. node distance

computation. As a primitive of graph analysis and network applications, the com-

putation of shortest path or random walk distances is computationally expensive.

In this dissertation, we design a new node distance computation method, named

graph coordinate systems, which can accurately approximate node distances in

constant time. The second goal of the dissertation is to understand and model

dynamic processes in big real graphs. Specifically, we propose methods to ana-

lyze graph dynamics at multiple network scales, and explore temporal properties

of network growth. Based on the observations, we design a new dynamic graph

model to capture both temporal and spatial dynamic properties. Finally, we

tackle privacy issue in sharing graphs. To protect graph privacy, we design a

differentially-private graph model, which can guarantee the required level of pri-

vacy while maintaining a meaningful graph structure. In the following, we briefly

introduce the work included in this dissertation.

3
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1.1 Efficient Node Distance Computation

Node distance computation, including shortest path distances and random

walk distances, is computationally expensive, and difficult to scale to big real

graphs. To address this problem, we propose an efficient approach, named graph

coordinate systems, which can accurately estimate node distances in real time.

At high level, in graph coordinate systems, we embed graph nodes to a geo-

metric space. After the embedding, each node can be represented by its geometric

coordinates. With the coordinates, we estimate the distance between any pair of

nodes by computing their geometric distance, which is a constant time computa-

tion. Based on this idea, we propose the framework of graph coordinate systems,

which is a landmark-based scheme.

To accurately embed shortest path distance in large graphs, we explore two key

design decisions in the implementation of a graph coordinate system, including

choice of geometric spaces and scalable embedding process. By implementing

three graph coordinate systems using three well-studied geometric spaces, such

as Euclidean space, spherical space, and hyperbolic space, we study the impact

of geometric spaces on estimation accuracy, and find that the hyperbolic space

performs the best out of the three spaces. Thus, we adopt the hyperbolic space

in the design of the graph coordinate system to embed shortest path distances.

Further, to scalably embed big real graphs, we naturally parallelize the embedding

process across multiple servers. The resulting parallel hyperbolic graph coordinate

system is called Rigel. Moreover, we propose a heuristic method to locate shortest

paths using the generated coordinates. By running the system on different big
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real graphs, we show that Rigel can accurately approximate graph shortest path

distances in microseconds.

Different from shortest path distances, graph coordinate systems using tradi-

tional geometric spaces can not accurately approximate asymmetric random walk

distances. To address this challenge, we study the cause of the asymmetry in

random walks, and propose a new space with two independent height vectors to

explicitly account for the asymmetry. By embedding various large graphs, we show

that the new space not only accurately estimates asymmetric distances, such as

hitting time and personalized PageRank (PPR), but also improves the accuracy

of symmetric distance prediction, like commute time.

1.2 Dynamic Graph Analysis and Modeling

In this work, we analyze and model the high level of dynamics in big real

graphs. More specifically, we aim to design systematic dynamic graph analysis

methods, and build a complete dynamic graph model that can capture both tem-

poral and spatial dynamic properties. To make it concrete, we focus on analyzing

dynamics in a large time-stamped social network, Renren, with 19 million nodes

and 199 million edges.

To comprehensively understand dynamics in the Renren network, we measure

the network in two dimensions: spatial dimension and temporal dimension. In

spatial analysis, instead of considering a single dynamic process in the graph, we

understand users’ activities at different network levels. In particular, we propose a

multi-scale dynamic measurement method, including individual node level, com-

munity level, and network level. At each level, we seek for the evidence of the

5



Chapter 1. Introduction

underlying processes, and learn how they impact users’ behavior. Along the way,

we also make a number of intriguing observations about dynamic processes in net-

work communities and network-wide events. In temporal analysis, we explore the

efforts to detect and identify the existence of self-similarity in Renren’s network

growth. Self-similarity refers to that the relative variance or volatility of a dynamic

process stays similar across different time scales. Because of the non-stationary

diurnal pattern in Renren’s network growth, it is challenging to detect self-similar

properties in a statistically rigorous manner. To overcome the challenge, we use a

range of different detection algorithms to reliably identify self-similar properties.

Finally, to capture the observed spatial and temporal properties, we propose

a new dynamic graph model. It includes a temporal component and a spatial

component, which explicitly accounts for “when” and “where” an edge is created.

As a whole, this model can produce a sequence of graph events that captures

the evolutionary dynamics in graph structure. By calibrating the model with the

Renren network, the generated graphs not only reproduce the self-similar edge

creation process but also match the evolution of several structural metrics.

1.3 Graph Privacy

Successes of studies on big real graphs strongly depend on the availability of

the graphs from the real networks. However, sharing graph data raises risks to

expose sensitive users’ data to the public. Unfortunately, current studies [71, 111]

only focus on defending a specific attack, and have been proved vulnerable [13,

126, 127]. In our work, our goal is to design a graph privacy system that can

6



Chapter 1. Introduction

both maintain a meaningful graph structure and provide strong privacy guarantee

without any assumptions about attacks.

To balance such tradeoff, we propose a differentially-private graph model,

called Pygmalion. Given a graph and a desired level of privacy guarantee, the

system extracts the graph structure represented by the joint degree distribution,

adds a controlled level of noise, and produces synthetic graphs similar to the

original graph.

However, by running this method on big real graphs collected from various

networks, we find that directly adding the required noise to the graph structure

representation introduces high distortion into the generated synthetic graphs. To

maintain the utility of differentially private graphs, we further develop a partition-

ing method, which significantly reduces amount of added noise while providing the

same level of privacy guarantee. We run the improved system on the same set of

graphs. The results show that the generated synthetic graphs consistently match

their original graphs in terms of graph structural metrics and application-level

performance.

1.4 Contributions

In this dissertation, there are two key contributions to the study of big real

graphs. First, we design novel systems or solutions to address the important

problems in big real graph study. In Chapter 2, we propose the framework of

graph coordinate systems, which can efficiently approximate node distances with

high accuracy. Based on this framework, we implement a practical graph co-

ordinate system to embed shortest path distances. Furthermore, to accurately
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capture asymmetric distances, we design a novel embedding space with two in-

dependent heights. In Chapter 3, we develop a multi-scale measurement method

to understand graph structural dynamics. Also, inspired by lessons from network

traffic modeling, we explore the self-similar properties in Renren edge creation

process. Based on the measurement results, we propose a new dynamic graph

model, which not only captures the structural evolution but also produces the

sequence of edge creation events in absolute time. At the last of this dissertation

(Chapter 4), we apply differential privacy to address graph privacy issue. The

proposed differentially-private graph model can generate synthetic graphs similar

to the original graph in terms of structure with a desired privacy guarantee.

Second, we validate our solutions on a range of big real graphs. To demonstrate

the generality of our designed systems, including the graph coordinate systems and

the differentially-private graph model, we evaluate their performance on a number

of big real graphs collected from various networks, including different online social

networks and computer networks. The results from these graphs show that in

most of big real graphs, our systems can consistently perform well. Our work in

Chapter 3 is the first dynamic study on such massive scale. By fitting the model

with the Renren dynamic dataset, we generate synthetic graphs showing dynamic

properties similar to the Renren network.

1.5 Thesis organization

The roadmap of the dissertation is as follows:

In Chapter 2, we describe the design of graph coordinate systems. We be-

gin with description of the framework of graph coordinate systems. Then we
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implementation a graph coordinate system to embed shortest path distances by

exploring studying two design decisions, such as embedding space and scalable

embedding process. We also run it on three applications to demonstrate its accu-

racy, and propose a heuristic method to locate shortest path with the generated

coordinates. Finally, we explore a new embedding space to explicitly account for

the asymmetry of random walk distances, and evaluate its performance on various

networks.

In Chapter 3, we elaborate our analysis on the Renren dynamic dataset, and

describe a new dynamic model based on the measurement. After describing the

dataset and showing basic measurement results, we introduce our measurement

on Renren graph structure at different network levels, including nodes, commu-

nities, and networks. Second, we apply three methods to detect and identify the

self-similar properties in edge creation process, which is an important temporal

property in network growth. At last, to reproduce the observed spatial and tem-

poral properties, we propose a new dynamic graph model combining a temporal

component and a spatial component, and validate it using the Renren dataset.

In Chapter 4, we propose a differentially-private graph model to protect graph

privacy. Following the background, we propose our basic solution by applying

differential privacy to graphs. Because of high distortion in the graphs generated

by the basic design, we improve the system using a partitioning method, and

provide a rigorous proof to show the improved system maintains the same level of

differential privacy with much less noise. Finally, we use different big real graphs

to evaluate the structure utility of the generated graphs.

At the end of this dissertation, we summarize the work, and discuss future

directions.
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Chapter 2

Efficient Node Distance

Computation

2.1 Introduction

1 Analysis of large graphs is critical to understanding the ongoing growth of

complex networks, such as online social networks, biological protein interaction

networks, and Internet router backbone. One important measure in such analysis

is to compute node distance. Such distance can be quantified either by short-

est path, or by random-walk distances, such as commute time, hitting time and

personalized PageRank (PPR).

Computing the shortest path distance between two nodes is a primitive that

lies at the core of both graph analysis and complex network applications. For

example, in a network of n nodes, computing exact values for node separation

metrics like graph radius, diameter and average path length, requires comput-

1Abbreviated version of content in this chapter can be found in papers ”Orion: Shortest
Path Estimation for Large Social Graphs” [186], ”Efficient Shortest Paths on Massive Social
Graphs” [187], ”Fast and Scalable Analysis of Massive Social Graphs” [188], and ”On the Em-
beddability of Random Walk Distances” [184].
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ing O(n2) shortest path. Node distance is also the determining factor for other

common graph problems, such as centrality and mutual friend detection.

Unfortunately, current algorithms to compute shortest path distances cannot

scale with graph size. For a graph with n nodes and m edges, efficient implemen-

tations of traditional algorithms, such as breadth-first-search (BFS), Dijkstra and

Floy-Warshall, compute short path between two nodes in O(n log n + m) time,

and all pair shortest-paths in Θ(n3) [36]. Tolerable for small graphs, the com-

putation for a single pair of nodes on a large million-node graph can take up to

minutes on modern computers [141]. Given the prohibitively high costs of storing

precomputed distances, researchers have little choice but to sample portions of

the graph or seek approximate results.

In this chapter, we propose a novel method to approximate shortest path

distance computation, called as Graph Coordinate Systems. A graph coordinate

system maps nodes in high dimensional graphs to positions in a geometric space.

Using the coordinates associated with each graph node, we can use a simple ge-

ometric distance computation to estimate, in constant time, its distance to any

other node in the graph.

Moreover, compared to shortest path distances, random-walk distances are

more useful in term of quantifying similarity between nodes in graphs. For exam-

ple, social networks like LinkedIn often provide a measure of similarity between

users. Pure shortest path distance cannot reflect the strength of ties between

users. An alternative uses the number of paths between nodes. But this fails to

capture the impact of a user’s degree, i.e. m paths between user A and user B is

more significant when A and B each have few friends. On the contrary, random

walks is a powerful measure of similarity by combining two well studied notions of
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affinity between graph nodes, namely the node distance and the number of paths.

Intuitively, two nodes are more similar if they are close in terms of their graph

distance. Independently, two nodes are more similar if they have more paths

between them. Random walk distances, such as commute time, hitting time and

PPR, successfully capture both of the notions through the simple iterative random

walk process.

However, the computation of random walk distances is also computationally

expensive. For example, hitting time is the expected number of random walk hops

from a source node to a destination node. Computing the expected hitting time

from node A to node B requires computing hundreds of thousands of random

walks. Such costs are intractable in today’s massive graphs with millions of nodes

and billions of edges. Assuming the availability of sufcient memory resources,

Computing a single hitting time on a massive graph can take anywhere from

minutes to an hour or longer. Thus, it is unsurprising that random walk distances

are rarely used in practice.

With the proposed graph coordinate systems, we investigate the possibility of

using a geometric space embedding to provide an efficient way to answer queries

on random walk distances. Unlike shortest path length, random walk distances,

such as hitting time and PPR, are asymmetric, i.e. the distance from node A to

node B may be not the same as the distance in the reverse direction. In addition,

the distances in any geometric space, e.g. Euclidean space or hyperbolic space, are

symmetric. The asymmetry of random walks can cause high errors in embedding

graphs into a geometric space, which is confirmed by our extensive measurements.

Based on this observation, we design a new space for graph coordinate systems to

account for the asymmetry of random walks.
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In this chapter, we make four contributions. First, we propose graph coordi-

nate systems, i.e. the use of embedding graphs into geometric spaces, as a new

method to approximate node distances in constant time. By explaining the de-

sign goals, we describe a landmark-based framework of graph coordinate systems.

In the design, we consider and discuss several schemes to select and compute

landmarks.

Second, we use graph coordinate systems to embed shortest path distances,

and explore the key design decisions in the implementation of graph coordinate

systems, including choice of geometric spaces and parallel techniques to fast embed

large graphs. The study results in a parallel hyperbolic graph coordinate system

named Rigel, which estimates shortest path distances in microseconds with high

accuracy.

Third, we propose an algorithm to efficiently locate shortest paths between

node pairs with the generated coordinates. Comparing with several sketch-based

algorithms, our method is more efficient in finding shortest paths, which matches

the best accuracy of these algorithms.

Finally, considering the power of random walk distances in applications, we

design a new embedding space to capture the asymmetry of random walk dis-

tances. Based on the insight of the asymmetry of random walks, we propose two

independent heights to capture the intuition of graph density on a per-node basis.

In addition, we propose a simple low cost technique to generate ground truth.

With the two techniques, we implement a new practical graph coordinate system

named Leo. By running Leo on a range of big real graphs, the extensive exper-

iments show that using this new graph coordinate system not only accurately
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Networks Node # Edge # Avg. Degree
Monterey Bay 6K 31K 10.26
Santa Barbara 26K 226K 17.05

Egypt 246K 1,618K 13.12
Los Angeles 275K 2,115K 15.38

Norway 293K 5,589K 38.15
India 363K 1, 556K 8.57
Flickr 1,715K 15,555K 18.14
Orkut 3,072K 117,185K 76.29

Livejournal 5,189K 48,942K 18.86
Renren 43,197K 1,040,429K 48.17

Collaboration 21,363 91,342 8.55
AS 26,475 533,831 40.33

Citation 34,401 420,828 24.47
P2P 62,562 147,878 4.73

Email 224,832 339,925 3.02
Amazon 262,111 899,792 6.87

Web 325,729 1,117,563 6.86
Planar 265,722 531,441 3.99

Table 2.1: Datasets used in our experiments.

estimates the asymmetric random walk distances, but also significantly improves

the accuracy of symmetric distances.

2.2 Experiment Datasets and Evaluation Met-

rics

Before we describe the details of graph coordinate system designs, we first

introduce the graph datasets used in later sections, and explain the metrics used

to evaluate the performance of the systems.

2.2.1 Datasets

Throughout this chapter, we use a number of anonymized graph datasets gath-

ered from different networks to evaluate our system design. We utilize 17 graphs
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listed in Table 2.1, ranging in size from 6K nodes and 31K edges, to 43 million

nodes and 1 billion edges. We also generate one synthetic planar graph for the

evaluation. We use these graphs to demonstrate the scalability and applicability

of graph coordinate systems across a variety of graph topologies.

Listed in Table 2.1, six of the graphs, Monterey Bay, Santa Barbara, Egypt,

Los Angeles, Norway and India, are Facebook regional networks [179]. We also

use four large graphs collected from four different online social networks, i.e.

Flickr, Orkut, Livejournal [125], and Renren [78]. The next seven graphs in Ta-

ble 2.1 are from various networks. They are a collaboration network graph from

arXiv [105], an Internet Autonomous system (AS) graph from CAIDA [104], a ci-

tation graph from arXiv [104], a snapshot of the Gnutella peer-to-peer file sharing

network [104], a measurement Email network graph of a large European research

institution [105], an Amazon product co-purchasing graph [100], and a web graph

from North Dame [7]. Finally, we produce a synthetic planar graph using the

Dorogovtsev-Goltsev-Mendes Internet Model [46]. In each section of this chap-

ter, we run the experiment on a subset of the graphs in Table 2.1 to show the

performance of the graph coordinate systems.

2.2.2 Evaluation Metrics

Accuracy Metrics. We use Relative Error to evaluate the accuracy of graph

coordinate systems. For each node pair in a graph, the relative error is the ratio of

the absolute difference between the ground truth node distance and the geometric

node distance (the estimated distance) to the ground truth distance. A smaller

relative error means the estimated node distance matches the ground truth better.
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We also use two other metrics to describe the accuracy of the system. The

first metric is average relative error (ARE) of the estimated distances, which is

used in evaluating the accuracy of the graph coordinate systems when embedding

shortest path distance. The second accuracy metric is the 90th percentile relative

error over all node pairs, called 90th relative error, which is the key metric to

measure the accuracy of embedding random-walk distances.

Efficiency Metrics. To investigate the efficiency of the system, we use compu-

tation time. It includes two parts, i.e. the system bootstrap time and the response

time for per query. First, the system bootstrap time involves two main opertation

time, including the time to measure distances between each landmark and all the

other nodes and the time to compute coordinates for all nodes. As shown later,

since the complexity of embedding scales linearly with graph size, we parallelize

the bootstrap process across multiple servers. In this case, the parallel bootstrap

time is defined as the longest computation time for the servers used in the par-

alle embedding process. Second, the response time for per query is measured as

the average time to compute pairwise node distances using generated coordinates.

Our measurement results show that the per-query response time in our system

is almost constant time in microseconds after up to several hours of bootstrap

process. This bootstrap time is acceptable since bootstrapping is a one-time cost,

which enable us to respond queries in real time.
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2.3 Graph Coordinate Systems

The goal of our work is to accurately and efficiently estimate distance between

any two nodes in large graphs. To achieve this goal, we propose graph coordinate

systems, which use a geometric coordinate space to capture node distances on

large graphs.

In this section, we first explain the goals of graph coordinate system design.

Then, based on the goals, we describe a landmark-based framework of graph co-

ordinate systems, and discuss different methods to select and compute landmarks.

Finally, through experiments on several graphs collected from Facebook, we study

the impact of three landmark selection schemes on the accuracy.

Shortest
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Figure 2.1: An example to map graph into a Euclidean space. The shortest path
between node A and E is 3 hops (left) and their Euclidean distance is 2.9 hops
(right).

2.3.1 Design Goals

Graph coordinate systems are designed to efficient approximate node shortest

path distances with high accuracy. At a high level, this approach captures complex

graph structures by embedding node shortest path distance relationships into a
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geometric space, such as a Euclidean space, a spherical space and a hyperbolic

space. Each node is represented by a set of coordinate in the geometric space such

that its distance to another node in the geometric space matches its shortest path

length to the node in the actual graph. For example in Figure 2.1, the shortest

path between node A and node E is 3 hops in the graph and the Euclidean distance

calculated using their coordinates is 2.9.

Graph coordinate systems work in two phases. First, nodes in the graph are it-

eratively added to the coordinate space, the position of each node being calibrated

by ground truth node-distance measurements. This “calibration phase” is where

a graph coordinate system incurs its one-time computational overhead. Once all

nodes in the graph have been added, the resulting system can be integrated with

graph applications to answer node distance queries with estimates.

Since the per-query computation cost is O(1), the focus of our design is to

ensure the calibration phase is computationally efficient, and the results are as

accurate as possible. More specifically, our goals are three-fold:

• Scalability. The computational cost of the calibration phase must scale

linearly with the number of nodes, i.e. O(n).

• Accuracy. While individual node distance predictions might incur reason-

able errors, predictions should approximate ground truth at the large scale.

• Fast convergence. Impact of individual node calibrations should be localized,

i.e. should not trigger significant new adjustments to their neighbors.

Based on these goals, we describe the design and explain key decisions in the

next section.
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2.3.2 A Landmark-based Framework

To accurately translate pairwise hop-count distances in the graph into geomet-

ric distances in the coordinate space, the framework of graph coordinate systems is

based on landmarks, where the positions of all nodes are calibrated with their rel-

ative distances to a fixed number (k) of chosen landmark nodes. Landmark nodes

are initially chosen from the entire graph based on their position and degree of

connectivity.

We use a landmark-based scheme in the framework for two main reasons. First

and foremost, we wish to minimize the number of shortest path computations

needed to establish ground truth on the actual graph, since each computation can,

in the worst case, require a full traversal of the graph. Using a landmark approach,

we limit the total number of Breadth-First-Search operations to k, the number

of landmarks. Each BFS computes the shortest path distance from a landmark

to all other nodes. Computing BFS for all landmarks essentially precomputes all

values needed to calibrate all nodes in the graph.

The second advantage of a landmark-based scheme is that the positions of

incoming nodes depend only on the landmark nodes. This bounds the number of

operations required to compute a node’s position, guaranteeing fast convergence.

In contrast, in decentralized models adding a new node will often force its nearby

neighbors to make adjustments on their position, a process that can propagate

adjustments iteratively throughout the entire space.

Scalable Landmark Coordinates. Intuitively, the number of landmarks used

to calibrate a graph should have a direct impact on the accuracy of the Euclidean

mapping. The highly connected and complex nature of social graphs leads us to
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believe that an accurate graph coordinate system requires a significant number of

landmarks. The challenge is to find a way to accurately and quickly compute the

coordinates for a large number of landmarks.

To compute a node’s D-dimension coordinates, we consider Simplex Down-

hill algorithm [128] by minimizing the sum of squares of prediction errors. The

algorithm runs in O(k2 · D) time to compute coordinates of k landmarks. Since

running Simplex Downhill on our desired number of landmarks (up to 100 in our

study) is computationally expensive, we propose a new approach, where we sep-

arate our landmarks into two groups, a small initial group of 16 landmarks, and

a larger secondary group composed of the remaining landmarks.

We leverage the Simplex Downhill algorithm to compute the coordinates for

the initial (kI = 16) landmarks, thus its asymptotical complexity is O(kI
2 · D).

The secondary group of landmarks calibrate their positions using the initial kI

landmarks as anchors, contributing to a computational complexity of only O(kI ·D)

each. Thus, the total time required to compute landmark coordinates is O(kI
2 ·

D) + (k − kI) ×O(kI ·D), where k is the total number of landmarks.

Furthermore, we describe two ways to compute the coordinates of the sec-

ondary group of landmarks, while maintaining the same computational complex-

ity. In the global approach, we compute the coordinates of each node in the

secondary group relying only on the initial group as anchors. In the incremental

landmarks approach, nodes in the secondary group are added one by one. Once a

node receives its coordinate values, it becomes an anchor for all remaining nodes.

To compute its coordinates, any remaining node in the secondary group can choose

any kI nodes from all embedded nodes to be its landmarks.
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Landmark Selection. Finally, we consider the problem of choosing landmark

nodes to produce the most accurate graph to geometric coordinate mapping. Prior

work by Potamias et. al considered the problem of choosing landmarks, and con-

cluded experimentally that choosing nodes with high centrality performed signifi-

cantly better than random choice [141]. Given the complexity of computing node

centrality, we consider two groups of alternative landmark selection strategies as

possible approximations of centrality-based selection: Random and High-degree.

• Random. This is the basic landmark selection strategy. Landmarks are

chosen uniformly at random from all nodes in the graph.

• High-degree. Prior measurements on social networks [125, 179] show that

social graphs exhibit a power-law-like degree distribution. Intuitively, high

degree nodes reside at the core of social graphs, effectively approximating

central nodes. This strategy chooses nodes with the highest degree.

• Landmark separation. Closely positioned landmarks are less effective at

“covering” the graph as anchors. Therefore, we add variants to the two

basic strategies, where we select the landmarks one by one, ignore any po-

tential landmarks that are too close in the graph to existing landmarks, and

continue selecting landmarks until the desired number has been met.

Summary. The framework of graph coordinate systems works as a landmark-

based scheme, where an initial core of 16 landmarks is first fixed in the space

using Simplex Downhill optimization. A secondary group of landmarks position

themselves based on the original landmarks. Finally, all remaining graph nodes
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Figure 2.2: ARE of nodes’ distances with different combination of landmark
selection and computation strategies in India graph

calibrate their positions based on node distances obtained from computing BFS

from all landmarks.

2.3.3 Evaluating Landmark Selection Strategies

We now empirically evaluate the effectiveness of the landmark selection strate-

gies. Based on framework, we implement a prototype graph coordinate system,

named Orion [186], which embeds node shortest path length into a Euclidean

space. In the evaluations, we select 1000 random nodes and compute the pairwise

distances between them with different landmark computation methods. The met-

ric used here is the average relative error (ARE). All the experiment is repeated

for 5 times and on the four largest Facebook graphs, i.e. Norway, Egypt, Los

Angeles and India, in Table 2.1.

As the results on the four graphs are consistent, we only show India in Fig-

ure 2.2 for brevity. Figure 2.2 plots AREs for a variety of landmark selection

strategies using the India graph. It shows that the graph coordinate system using

Euclidean space provides low relative errors compared to actual path lengths for

different landmark selection strategies. Among the considered strategies, high-
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degree strategies can produce slightly lower errors. Furthermore, the impact of

landmark separation on the accuracy of shortest path length estimation is fairly

small. Overall, the two landmark strategies have no significant impact on the

accuracy. Thus, in the later sections of this chapter, we use the Random method

to select landmarks.

2.4 Embedding Shortest Path Distances

In this section, we apply graph coordinate systems to embed shortest path

distances. Although the study in Section 2.3 shows that the system can accu-

rately approximate shortest path distances using a Euclidean space, there are two

key questions to be addressed when implementing a practical graph coordinate

system in practice. First, among different geometric spaces, such as a Euclidean

space, a spherical space and a hyperbolic space, can we find a better space in

terms of the accuracy in embedding shortest path? Second, since the centralized

embedding process is computationally expensive in large graphs, can we improve

the embedding process to scale with large graphs?

In this section, we address the above two key questions and implement a

practical graph coordinate system for shortest path distances called Rigel. First,

we study the embedding accuracy using the three popular geometric spaces, and

determine to use the most accurate space in capturing shortest path distances,

i.e. a hyperbolic space. Second, we naturally parallelize the embedding process

across servers. The embedding time can be significantly accelerated. In addition,

in Section 2.4.4, we propose an approach to approximate shortest path for any

node pair using graph coordinates. Comparing with the proposed algorithms,
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our proposed method produces the accuracy similar to the most accurate scheme,

while resolving queries up to 18 times faster.

2.4.1 Choice of Geometric Spaces

Based on the framework of graph coordinate systems, we now study the impact

of geometric spaces on the estimation accuracy. First, we introduce three popular

geometric spaces: a Euclidean space, a spherical space and a hyperbolic space,

and empirically compute the distortion metrics [110] using different spaces.

Discussion on Geometric Spaces. A Euclidean space is the most widely used

coordinate space. Each node in a D-dimension Euclidean space is represented by

a D-dimension coordinate, i.e. (x1, x2, ..., xD). The distance between any two

nodes, A and B, is calculated by Equation 2.1. The dimension of a Euclidean

space may impact the estimation accuracy of the graph coordinate system.

dAB =
√

ΣD
i=1(x

A
i − xB

i )2 (2.1)

A spherical space is a 3-dimension space, which is the nature representation of

a sphere, such as the Earth. One representation of a node’s spherical coordinate

is a tuple (r, φ, λ), where r is the radius of the sphere, φ is the latitude and λ is

the longitude. The distance between two nodes, A and B, in a spherical space is

the shortest distance between the two nodes on the surface of the sphere, which

is computed using Equation 2.2. The radius of a spherical space is an important

parameter in defining a spherical space.

dAB = r arccos (sinφA sinφB + cosφA cosφB cos (λA − λB)) (2.2)
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A Hyperbolic space can be thought of a space with a tightly connected core,

where all paths between nodes pass through. There are five known “Hyperbolic

models” that have been proposed for different purposes and graph structures,

including the Half-plane, the Poincaré disk model, the Jemisphere model, the

Klein model and the Hyperboloid model [153]. Each model is a different method of

assigning coordinates and computing distances over the same hyperbolic structure.

Since choosing a model fundamentally changes how graphs can be embedded, it

is currently unknown how the choice of models affects embedding distortion.

In our design, we chose the Hyperboloid model for two practical reasons. First,

computing distances between two points in this model is computationally much

simpler than alternative models. Second, the computational complexity of calcu-

lating distances is independent of the space curvature. This gives us additional

flexibility in tuning the structure of the hyperbolic space for improved embedding

accuracy.

For a Hyperboloid model with curvature c, the distance between two n-dimension

points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is defined as follows:

δ(x, y) = arccosh



√√√√(1 +

n∑

i=1

x2
i )(1 +

n∑

i=1

y2i ) −
n∑

i=1

xiyi


 · |c| (2.3)

We empirically evaluate the accuracy of the above three graph coordinate

systems using the three popular geometric spaces. Here, we use a 10-dimension

Euclidean space, the best tradeoff between accuracy and efficiency [186]. In the

Hyperbolic graph coordinate system, we use the curvature parameter c = −1 and

the dimension of the space is also 10, which gives us the best accuracy in the later
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Metrics Euclidean Hyperbolic Spherical
Ideal
Value

ARE 0.16 0.10 0.36
0

AAE 0.78 0.50 1.83
AER 0.97 1.00 0.91

1
ACR 1.07 1.02 1.72

ASPD 1.19 1.11 1.96
SD 58.46 30.63 134173.04

Table 2.2: Evaluating different embedding spaces via several metrics on the
Facebook LA graph.

study. For a fair comparison, we vary the radius of the spherical space from 5 to

50, and display the best results.

We run the experiment on LA graph in Table 2.1 and use different distor-

tion metrics [110], including average relative error (ARE), average absolute error

(AAE), average expansion ratio (AER), average contraction ratio (ACR), aver-

age symmetric pair distortion (ASPD), and space distortion (SD). The results are

shown in Table 2.2. Compared among the three spaces, we find that the hyper-

bolic space is significantly more accurate than Euclidean and spherical space in

all metrics. This result is consistent previous study in network distance embed-

ding [153, 40, 138]. An intuitive explanation is that both social graphs and the

Internet topology feature highly connected graph cores, which fit the hyperbolic

model well. Therefore, for the best estimation accuracy, we use the Hyperboloid

model in the graph coordinate system to embed shortest path.

Optimizing Local Paths. It has been shown in Internet embedding sys-

tems [113] that the largest errors are introduced when estimating node distances

for nearby nodes, i.e. nodes separated only by 1 or 2 hops. In addition, accuracy

in resolving “local” graph queries is critical to many graph operations. In the

context of graphs, this is an easy limitation to overcome, since 1-hop neighbors
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Figure 2.3: Impact of hyperbolic curvature on accuracy.

are easily accessible via graph representations, e.g. edge lists or adjacency matri-

ces. The hyperbolic system uses local neighbor information to augment the node

knowledge about its close-by topology. Before answering a query for a pair of

nodes, it first checks their adjacency lists to detect if they are direct neighbors

or 2 hop neighbors (share a node in their adjacency list), which guarantees 0 dis-

tortion in estimating 1- or 2-hop shortest path length. This optimized system is

called Rigel.

Embedding Accuracy on Real Graphs. We now investigate how two impor-

tant parameters in Rigel, i.e. curvature of the space c and number of dimensions

of the space n, impact the embedding accuracy. Also we evaluate the efficiency

of the system in terms of per-query time. We report experimental results using

three Facebook datasets presented in Table 2.1, i.e. Egypt graph, LA graph and

Norway graph.

Impact of Curvature. The curvature c of a hyperbolic space is an important

parameter that determines the structure of the space. We build different Hyper-

bolic spaces using curvature values that range from −50 to 0, and investigate the

effect on the accuracy of the distance estimation. When the curvature is 0, the
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Figure 2.4: Impact of dimensionality on embedding accuracy.

hyperbolic space is equivalent to a Euclidean space. We include this value as the

rightmost point in our plot. From our results in Figure 2.3, we see that the average

error decreases significantly as the curvature approaches −1. We performed fur-

ther fine grain tests with curvature values around −1, and find that the accuracy

of our system reaches a plateau near −1. Results at curvature of -1 are 30% more

accurate than results from a Euclidean system, shown in the plot as curvature of

0. Thus we use the curvature value at −1 in the rest of this chapter.

Impact of Dimensionality. The number of dimensions of a geometric space

plays an important role in determining the accuracy level in the estimate of dis-

tances between nodes. Therefore, we vary the number of dimensions from 2 to 14

and evaluate the resulting accuracy. Figure 2.4 shows that increasing dimensions

reduces the error from more than 0.2 to about 0.1, with most of the significant im-

provement occurring between 2 and 6 dimensions. Since the number of dimensions

is a linear factor in the computational complexity of the Simplex method used in

our embedding, we need to balance prediction accuracy against computational

complexity. We find a sweet spot close to 10 dimensions, where the accuracy has

essentially reached a plateau. Thus we also use 10-dimension for our hyperbolic

system.
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Graphs Rigel-S Rigel BFS
Egypt 0.33µs 6.8µs 750,000µs
L.A. 0.33µs 8.5µs 1,027,000µs

Norway 0.33µs 17.8µs 1,440,000µs

Table 2.3: Response time for Rigel-S, Rigel and BFS.

Summary. The accuracy of the hyperbolic graph coordinate system is im-

pacted by the choice of the space curvature c and the space dimension n. The

results measured from real graphs shows that as the curvature increases, the ARE

of the system decreases. While with the dimension more than 10, there is no

significant improvement on accuracy. Therefore, in the remaining of this chapter,

we use a 10-dimensional hyperbolic space with curvature of -1 in Rigel.

Per-Query Latency. Table 2.3 shows the average per-query response time to

compute the distance of two random nodes using Rigel, and BFS. We also list the

query time of Rigel without the local path optimization labeled as “Rigel-S”. Since

memory access in Rigel’s the local path optimization adds several microseconds

to each query, the per-query time of Rigel is slightly longer than Rigel-S (see the

second column). But overall, Rigel per-query time is still 5 orders of magnitude

faster than BFS.

2.4.2 Parallelizing Embedding Process

Since the complexity of Rigel embedding scales linearly with graph size, this

processing overhead presents a significant performance bottleneck for large graphs

with millions of nodes, and prevents practical applications of Rigel on large social

graphs. Here, we describe a mechanism to address this challenge by parallelizing
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Parallel Rigel

Rigel

Input Output

Parallel Bootstrap
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Embedding
Bootstrap
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Parallel Embedding

Renren Graph Coordinates

43M nodes;

1B edges

43M nodes;

10 dimensions

50 machines
6.4 hours

Graph

Partitioning
0.07 hours

Figure 2.5: A high-level view of how embedding is parallelized and its net impact
on embedding latency for Renren, our largest graph.

Rigel’s embedding process across multiple servers, named as “Parallel Rigel”. We

then evaluate its impact using four large social graphs.

Parallel Rigel. We integrate the parallel mechanisms with the original Rigel

design, called Parallel Rigel. Figure 2.5 demonstrates the Parallel Rigel system on

top of and contrasts it to the original Rigel design. It consists of three components:

parallel bootstrapping, graph partitioning and parallel embedding. The parallel

bootstrapping module distributes BFS tree computation related to each landmark

across servers, one or more landmarks per server. The graph partitioning module

provides a balanced distribution of nodes across servers. The cost of this operation

is negligible since simple partitioning schemes are sufficient. Finally, the parallel

embedding module embeds all graph nodes in parallel across the servers, allowing

Parallel Rigel to achieve significant speedup.

Computational Efficiency Evaluation. We have implemented a fully func-

tional prototype of parallel Rigel, and used it to four of the largest social graphs

available today, Flickr, Orkut, Livejournal and Renren in Table 2.1, to examine
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Graphs Bootstrap Graph Partitioning Embedding (hours) Response
(hours) (hours) (hours)

Rigel P-Rigel P-Rigel Rigel P-Rigel BFS Rigel
Flickr 1.4 0.028 0.003 9.7 0.24 24,500,000µs 12.9µs
Orkut 7.5 0.15 0.005 19.4 0.42 56,200,000µs 36.6µs

Livejournal 4.8 0.096 0.008 32.2 0.66 65,200,000µs 8.4µs
Renren 136.2 2.7 0.07 250 6.4 1,598,000,000µs 28.9µs

Table 2.4: Comparing the time complexity of Rigel and Parallel Rigel (P-Rigel)
using a cluster of 50 servers.
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Figure 2.6: Average speedup achieved by Parallel Rigel on different cluster
configurations.

the efficiency of Parallel Rigel. All the experiment is tested on a cluster of 50

servers (Dell Xeon, 2GB).

We evaluate the efficiency of Parallel Rigel by comparing its computation time

to that of original Rigel. By utilizing a cluster of servers, Parallel Rigel distributes

the tasks of landmark bootstrapping and graph embedding over multiple parallel

servers. While Parallel Rigel does require an extra step of graph partitioning

by distributing nodes among machines, it only leads to a minor increase in time

complexity, less than 0.1% of the original bootstrapping time. Table 2.4 shows

the comparison when Parallel Rigel runs on a cluster of 50 servers. We see that

Parallel Rigel achieves close to linear speedup, even slightly better due to reduced

virtual memory paging on each server.
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Metric Method Egypt L. A. Norway Flickr Orkut Livejournal Renren

Radius
Ground Truth 9 11 8 13 6 13 12

Rigel 8.7 11.0 7.5 12.7 6.4 12.2 12.0
Orion 9.2 10.7 7.8 12.6 6.3 12.0 12.1

Diameter
Ground Truth 14 18 12 19 8 17 15

Rigel 14.8 17.9 11.7 18.6 10.2 17.7 14.9
Orion 14.4 17.8 12.2 17.3 10.0 16.8 14.9

Average
Path
Length

Ground Truth 5.0 5.2 4.2 5.1 4.1 5.4 5.0

Rigel 4.9 5.1 4.2 5.0 4.3 5.5 4.9
Orion 4.7 5.0 4.1 4.3 3.9 4.8 4.6

Table 2.5: Comparing separation metric results, as computed by Rigel, Orion,
and BFS (ground truth).

To examine the impact of the cluster size, we compare the speedup of Parallel

Rigel by using 5, 10, 20 and 50 servers, where speedup is the decrease in embedding

time. Figure 2.6 shows that run time decreases almost linearly with cluster size.

2.4.3 Evaluating System Accuracy in Applications

In this section, we implement three path-length based applications, i.e. sep-

aration metric computation, graph centrality computation and distance-ranked

social search, and evaluate the performance of using the coordinates generated by

Rigel. In each case, we compare the accuracy of using Rigel against that of Orion,

the prototype system proposed in Section 2.3.

Computing Separation Metrics Social network graphs are known for dis-

playing the “Small World” behavior. Graph separation metrics such as diameter,

radius and average path length, have been widely used to examine and quantify

the Small World behavior. But since each of these metrics relies on large num-

bers of node distance computations, computing them for large graphs can become

extremely costly or even intractable.
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Using Rigel, we build an application to compute the graph separation metrics

listed above, and examine their accuracy by comparing their results to ground

truth. Since computing shortest path length between all node pairs takes several

days even for our smallest graph (Facebook Egypt), we take a random sampling

approach to compute the ground truth. We randomly sample 5000 nodes from the

three Facebook graphs, 500 nodes from Flickr, Livejournal and Orkut, and 100

nodes from Renren, and use shortest path lengths between these pairs to derive

the separation metrics.

We report the results in Table 2.5 for Radius, Diameter and Average Path

Length on seven different graphs, for Rigel, Orion and Ground Truth. In general,

Rigel consistently provides more accurate results compared to Orion. More im-

portantly, Rigel provides results across all three metrics that are extremely close

to ground truth values.

Computing Graph Centrality. Graph centrality is an extremely useful metric

for social applications such as influence maximization [33] and social search. For

example, application developers can use node centrality values to identify the

most influential nodes for propagating information in an online social network.

Formally, the most “central” node is defined as the node that has the lowest

average node distance to all other nodes in the network.

Using Rigel, we implement a simple application to compute node centrality

directly from node distance values, where a node with a small average path length

has a high centrality score. As before, we examine the accuracy of our Rigel-

enabled application by computing the centrality of x = 5000 randomly chosen

nodes on the three Facebook graphs, i.e. Egypt, LA and Norway, x = 500 ran-
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Figure 2.7: Average accuracy of queries for the top k high centrality nodes.
Rigel consistently outperforms Orion.

domly chosen nodes each for Flickr, Livejournal Orkut, and x = 100 nodes for

Renren. For each graph, we sort these x nodes by centrality, and select the top k

nodes. We compute the “accuracy” of Rigel’s centrality ordering by counting the

number of overlapping nodes (m) in Rigel’s top k nodes and actual top k central-

ity nodes as computed by BFS on the original graph. We study the accuracy of

our Rigel-based system as the ratio of m to k.

We perform our experiments on the seven of our social graphs, and find the

results to be highly consistent. For the rest of this section, we will only report

results for three of them: Facebook LA, Orkut and Livejournal. Figure 2.7 shows

the centrality accuracy results for different values of k. As expected, the accu-
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Figure 2.8: Average accuracy of social search queries that return top k ranked
nodes

racy of both Rigel and Orion increases with larger k values. In general, Rigel

consistently outperforms Orion for different graphs and different values of k.

Distance-Ranked Social Search. Social networks such as Facebook and LinkedIn

can best serve their users by ranking search results by the proximity of each result

to the user in the social graph [123]. This is because users are likely to care about

its social proximity to the origin of the search result as much as the quality of the

result itself, i.e. a user would pay more interest to results from her close friend

rather than those from an unrelated stranger.

Despite its usefulness, using social distance in search results is highly costly

due to the number of node distance computations necessary for each social search
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query. Instead, we can leverage Rigel’s constant time node-distance functionality

to build powerful distance-based social search applications.

To verify the impact of Rigel on distance-ranked social search, we perform

the following experiment. For each node initiating a query, we select 100 random

nodes in the graph to respond to the query. We sort the responses by their

distances to the query node, computed via Rigel and Orion, and return the top k

nodes to the user. We then compute the same top k nodes using BFS for distance

computation, and examine the percent of overlapping nodes between the result

sets as a measure of accuracy. We repeat this experiment 5000 times on smaller

graphs, e.g. Facebook Egypt, LA and Norway, and 100 times on our largest graph,

i.e. Renren. We vary k from 5 to 50, and show the results of L.A, Orkut and

Livejournal in Figure 2.8. It shows that Rigel’s hyperbolic coordinates consistently

and significantly outperform Orion’s Euclidean coordinates. On Livejournal, for

example, when we rank the top 5% search results, average accuracy of Rigel is

70% while Orion only achieves 40%.

2.4.4 Finding Shortest Paths Using Graph Coordinates

A number of critical graph-based applications require not only the length of the

shortest paths, but also the actual shortest path between two nodes. For example,

on the Overstock social auction system, users can search how they connect to the

seller of a given object, and choose to buy from friends of friends instead of

complete strangers [159].

In this section, we describe a novel extension to Graph Coordinate Systems

that produces accurate approximations of shortest paths by using node distance
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queries as a tool. We first describe how this extension to Rigel computes short

paths between any two nodes. Next, we describe the Sketch algorithm [42], an

efficient algorithm for shortest path estimation, and its followup algorithms in-

cluding SketchCE, SketchCESC, and TreeSketch [67]. Finally, we compare Rigel’s

shortest path algorithm against these algorithms on a variety of social graphs in

both accuracy and per-query runtime. We show that while Rigel requires simi-

lar preprocessing times to these algorithms, Rigel’s shortest paths return query

results 3-18 times faster, while matching the best of these algorithms in accuracy.

An Algorithm to Find Shortest Paths Using Graph Coordinates. We

now describe a heuristic that uses our coordinate system to find a good approxi-

mation of the shortest path connecting any two nodes. Our algorithm, which we

call Rigel Paths, uses techniques reminiscent of the routing algorithm in [138].

Given two nodes A and B, we start by computing the distance between them

d(A,B). If the distance is 1 or 2 hops, we can use simple lookup on their adjacency

lists to determine the shortest path between them. If the predict distance between

the nodes is greater than 2 hops, then we begin an iterative process where we

attempt to explore potential paths between the nodes using the coordinate space

as a directional guide.

Starting from A, we use Rigel to estimate the distance of each of its neighbors

NA
i to B. The expected distance for a neighbor on the shortest path should be

d(A,B) − 1. If any neighbor’s estimated distance is within a δ factor of that

prediction, it is considered a candidate to explore. For each of A’s neighbors that

qualify as a candidate node, we repeat the process to obtain candidates for hop 2.

This process iterates until one of the candidate nodes is a direct neighbor of B.
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At each iteration of the algorithm, i.e. for the nth hop, we keep a maximum

number of candidates Cmax to explore. Choosing this number manages the trade-

off between exploring too many paths (and extending processing latency) and

exploring too few paths (and finding a dead end or inefficient paths). In practice

we choose Cmax to be 30, and δ to be 0.3.

Sketch-based Algorithms for Shortest Path. We first describe the state-

of-the-art algorithms for locating shortest paths. There are four algorithms all

based on variants of the Sketch algorithm [42, 67].

Sketch [42]. Sketch is a landmark-based solution where each node computes

its shortest paths to the landmarks and then uses common landmarks between

itself and another node in the graph to estimate their shortest paths. This method

selects r = ⌊logN⌋ sets of landmark nodes, where N is the number of the graph

nodes. For each node, Sketch computes its shortest paths to k (k=2) different

landmarks in each set. Those shortest paths are precomputed by using the results

of BFS trees rooted in each landmark. Therefore, for an undirected graph, each

node is associated with k · r shortest paths.

Cycle Elimination, Short Cutting and TreeSketch [67]. These three algorithms

are variants of the basic Sketch approach for finding shortest paths [67]. First,

Cycle Elimination, called SketchCE, improves Sketch by simply removing cycles in

the estimated paths computed by Sketch. Second, Short Cutting improves Sketch

by searching for bridging edges between two nodes x and y, where x is on the path

between the source and the landmark and y is on the path from the landmark to

the destination. If such an edge is found, this edge replaces the sub-path through
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the landmark. This approach is called as SketchCESC. It locates shorter paths,

but dramatically increases computational time.

Finally, TreeSketch is a tree-based approach. At query time, TreeSketch builds

two trees separately rooted in the source and the destination using precomputed

paths to landmarks. Given the two trees, the path search starts from both root

nodes, and iteratively explores more nodes from both trees. BFS computation

starts from roots of both trees. For each visited node u in a tree, its neighbors

are compared with any visited node v in the other tree. Once a common node is

found, the shortest path between source and destination is constructed using the

sub-path from source to node u, the edge (u, v), and the sub-path from v to the

destination. While producing very accurate paths, TreeSketch is computationally

slow due to the tree construction and extensive search process.

Comparing Shortest Path Algorithms. We compare our Rigel Paths to

Sketch, SketchCE, SketchCESC and TreeSketch in accuracy and query latency.

Experimental Settings. To compare Rigel Paths against prior work, we ob-

tained the source code for the sketch-base algorithms from the authors [67]. The

code runs on RDF-3X [129], a specialized database system optimized for effi-

cient storage and computation of large graphs. We run both Rigel Paths and

sketch-base algorithms on seven graphs in Table 2.1, including Egypt, LA, Nor-

way, Flickr, Orkut, Livejournal and Renren. All experiments were performed on

Dell quad-core Xeon servers with 24GB of RAM, except for Renren experiments,

which were performed on similarly configured Dell servers with 32GB of RAM.
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Figure 2.9: Absolute error (in hops) of shortest paths returned by Rigel Paths,
Sketch, SketchCE, SketchCESC and TreeSketch.

Accuracy. For the above seven graphs, we randomly sample 5000 node pairs,

and compare the shortest path results of Rigel Paths, Sketch, SketchCE, SKetchCESC,

and TreeSketch algorithms against the actual shortest paths computed via BFS.

Figure 2.9 shows the average absolute error of the five different algorithms

broken down by length of the actual shortest path. Here we define the absolute

error as the additional number of hops in the estimated path compared to the real

path. As before, we only show the Facebook Los Angeles, Orkut and Livejournal

graphs for brevity, because their results are representative of results on other

graphs. The results show consistent trends across the graphs. The Sketch and

SketchCE algorithms are highly inaccurate, and generally produce shortest paths
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Figure 2.10: CDF of the absolute error in path finding among Rigel Paths,
Sketch, SketchCE, SketchCESC and TreeSketch.

that are roughly 2 hops longer than the real path. TreeSketch and Rigel Paths

are the most accurate algorithms and often indistinguishable from each other.

We show the CDF of absolute errors of the different algorithms in Figure 2.10.

This shows a clear picture of the distribution of errors. Rigel paths and TreeSketch

are by far the most accurate algorithms. Both produce exact shortest paths for

a large majority of node pairs. Both are significantly better than SketchCESC.

SketchCE and Sketch are fairly inaccurate, and provide paths with multiple hop

errors for the overwhelming majority of node pairs. While Rigel Paths provides

accuracy that matches or beats all of the Sketch based algorithms, we will show

later that it is significantly faster than both SketchCESC and TreeSketch (ranging

from a factor of 3 to a factor of 18 depending on the specific graph).
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Graphs Preprocessing (Hours) Per-Query Response Time (µs)
Rigel Sketch Rigel Sketch SketchCE Rigel Paths SketchCESC TreeSketch

Egypt 1.3 0.43 6.8 1781 1792 3667 38044 62407
L.A. 1.5 0.54 8.4 936 946 4008 20597 56828

Norway 1.4 0.67 17.8 1492 1501 4621 21472 59635
Flickr 9.7 3.3 12.9 17157 17178 41279 732332 630890
Orkut 19.4 13.1 36.6 21043 21054 49470 273586 730284

Livejournal 32.2 14.2 8.4 75101 75114 28355 253976 348464
Renren 250 348 28.9 124327 124334 181814 546925 2594756

Table 2.6: Comparing the preprocessing times and per-query response times of
Rigel Paths, Sketch and variants SketchCE, SketchCESC and TreeSketch. Pre-
processing/embedding time for Rigel (and Rigel Paths) is for single server (non-
parallel version).

Computational Costs. We now compare Rigel Paths and the four Sketch algo-

rithms on computational time complexity. We break down our analysis into two

components. First, we measure each algorithm’s preprocessing time. For Rigel

Paths (and Rigel), this represents the time required to embed the graph into the

coordinate space. For all Sketch algorithms, this is the time to compute shortest

paths (using BFS) to all of their landmark nodes [67]. Our second component

measures the computational latency required to resolve each query. All experi-

ments are run on a single server.

In Table 2.6, we see that Rigel takes roughly 2–3 times longer preprocessing

time. Note, however, that these measurements were run on only a single server. As

shown in Figure 2.6, we can distribute Rigel’s preprocessing phase across multiple

machines with close to linear speedup. Thus, we can reduce Rigel preprocessing

by spreading the load over 2 or 3 machines.

Again, we choose 5000 random node pairs in each graph, and compare the

average query response time for each algorithm in Table 2.6. Recall that Sketch

and SketchCE produce paths that are highly inaccurate, i.e. introduce an average

of 2-3 additional hops in each path. Of the two best algorithms, Rigel Paths
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Figure 2.11: CDF of computing time in path finding among Rigel Paths, Sketch,
SketchCE, SketchCESC and TreeSketch.

and TreeSketch, Rigel paths returns results in a fraction of the time required

by TreeSketch and SketchCESC. The latency reduction ranges from ∼3 (against

SketchCESC on Renren) to a factor of 18 (against SketchCESC on Flickr). We

show a CDF of these results in Figure 2.11. Rigel Paths is clearly much faster

than both TreeSketch and SketchCESC.

Finally, we also include the node-distance computation time from Rigel as a

point of reference. Clearly, finding actual shortest paths is orders of magnitude

more expensive than simply computing node distance. Luckily, the large majority

of graph analysis tasks only require node-distance computation, and only user-

interactive queries require the full shortest path between node pairs.
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2.5 Embedding Random Walk Distances

Compared to shortest path length, random-walk distances, such as hitting

time, commute time, and PPR, are more effective metrics to measure node simi-

larity in a graph. This comes from the fact that in addition to the node distance,

random-walk distances capture the number of paths. Therefore, random-walk dis-

tances are widely used in quantifying user similarity in social networks [107] or

measuring web proximity in search engine [95].

However, because of the inherent randomness, computing random-walk dis-

tances is a computational costly process. In today’s graphs with millions of nodes,

computing hitting time between a single pair of nodes takes minutes or even an

hour. This prevents random-walk distances from being used in practice.

As shown in Section 2.3, graph coordinate systems are an alternative approach

to capture and estimate shortest path length in microseconds. In this section, we

explore whether graph coordinate systems can be used to embed random-walk

distances with high accuracy. First, we introduce three popular random-walk dis-

tance metrics, including hitting time, commute time and PPR. We also identify

two key challenges in embedding them on the basic graph coordinate systems, i.e.

the asymmetry of random-walk distances and high cost of precomputation. To

solve the two challenges, we design a new graph coordinate space that explicitly

accounts for asymmetry in random walks in Section 2.5.2, and propose simple

techniques that generate ground truth samples with low computation cost in Sec-

tion 3.4.2. Finally, by experimenting on various graphs from different networks,

it is shown that with low computational cost, the new space not only accurately

captures asymmetric distances, but also significantly improves the accuracy of
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symmetric distance embedding. In addition, we use two application level tests

to demonstrate that our embedding causes very small deviations in the results

produced by applications.

2.5.1 Random-Walk Distances and Challenges

In this section, we first define in detail random-walk distances in undirected

unweighted graphs, including hitting time, commute time and personalized PageR-

ank. We then identify the two challenges that arise when this approach is applied

to random-walk distances.

Random-walk based Distances. In undirected unweighted graphs, a random

walk is a sequence of random steps. Consider an undirected unweighted graph G,

with vertices V and edges E. Starting from node v0, a random walk in G chooses

its next destination: if we are at node vk at the kth step, we randomly select a

neighbor vk+1 of vk with probability 1/d(vk) as the destination of the (k + 1)th

step, where d(vk) is the degree of node vk. Thus, the sequence of random nodes

vk(k = 0, 1, 2, · · · ) is a random walk from node v0 in Graph G.

There are a number of distance measures based on random walks. Our work

focuses on the three most popular random-walk distances, Hitting Time, Commute

Time and Personalized PageRank (PPR).

Hitting Time. Hitting time from node i to node j is the expected number

of hops in a random walk starting from node i before it reaches node j for the first

time. Since graph density and local structure around nodes i and j are different,
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hitting time from node i to node j is likely different from the hitting time from

node j to node i. In other words, hitting time is asymmetric.

Commute Time. Commute time between two nodes i and j is the expected

number of random walk hops from node i to j and then back to node i. Thus

commute time is the sum of two hitting time distances, one from i to j and one

from j to i. Thus, commute time is symmetric.

Personalized PageRank. Personalized PageRank (PPR) [95, 77] from node

i to node j is the likelihood that a random walk starting from node i ends at node

j with the reset probability α. In a random walk with reset, the reset probability

α is the probability that at each hop, a node v can choose to selects itself as its

next random walk step (i.e. resets its walk). In each step at node vk, the ran-

dom walk selects the current node vk as the next step with reset probability α,

and uniformly selects one of its neighbors with probability 1 − α. By starting m

such random walks originating at node i, we count the number of random walks

ending at node j on the T th step (mj), where T is a parameter chosen to capture

the number of hops before the random walk probability converges for any given

destination. PPR from node i to j is the ratio mj/m.

All three distance measures have been used extensively in different contexts.

Despite the simplicity, these measures are very powerful because they are able to

incorporate two fundamental properties behind the affinity of pairs of nodes in

graphs - specifically the node distance, as well as the number of paths. In partic-

ular, the similarity between two nodes based on any of the three aforementioned

random walk measures is likely to be higher if the two nodes are closer in the node
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distance sense. Alternatively, given the same node distance between two nodes, at

a very high level, the random-walk based similarities are likely to be higher when

multiple paths exist between these nodes. From an application standpoint, notice

that any path between two nodes is a weak signal of similarity, and with multiple

paths, any such reasonable notion of similarity should be reinforced. Similarly, a

short path means the two nodes are close/similar.

Ground Truth Computation. In this section, we will study the embed-

dability of the three random walk distances. One challenging component of the

embedding process is computing ground truth values of the random-walk distances

between landmarks and regular nodes. Our solution is brute force search, where

we simulate multi-round random walks on each social graph and derive the mean

values.

Hitting time computation. The hitting time from node i to j, H(i, j), is the

expected number of random walk hops from i to j. To compute H(i, j), we

simulate a random walk starting from i until it reaches j for the first time, repeat

the process N times, and compute the average of the hop count from each walk.

We choose N = 2000 because our experiments show that the average hop count

stabilizes at this value.

Commute time computation. Once we measure the hitting time from node i to

node j and the hitting time in the other direction, i.e. H(i, j) and H(j, i), we can

easily derive the commute time between node i and j, C(i, j) = H(i, j) + H(j, i).

PPR computation. We initiate a random walk from node i with reset prob-

ability α, terminate the walk at the T th step, and repeat the process for N

times. We then compute mj, the number of times that a node j is visited at
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the T th step across all N rounds. The PPR from node i to j is computed as

PPR(i, j) = mj/N . Our experiments use α = 0.15, the common choice of PPR

computations [77, 17], and T = log n/α because prior work proved that PageRank

converges in O(log n/α) hops [43]. We also found that N = 8000 is adequate to

get a stable PPR estimation.

Unlike hitting time and commute time, PPR cannot be directly embedded

using graph coordinates. This is because of two reasons. First, the embedding

process assumes when two nodes are close to each other in the embedded graph,

their actual distance is also small. This is true for shortest path, hitting time and

commute time, but not for PPR. The larger the PPR value, the more similar (and

thus closer) the two nodes. Second, the value of PPR is always between 0 and

1, a range that cannot be accurately captured by graph coordinate systems. We

address these two issues by embedding an alternative metric (1−PPR(i, j)) · 106

instead of PPR(i, j) itself.

Challenges in Embedding Random-Walk Distances. Our goal is to test

the feasibility of using geometric space embeddings to capture random-walk dis-

tances. Specifically, we look for a graph coordinate system that maps nodes in a

graph into a geometric space of fixed dimensions, where distances between nodes

represent estimated values of expected random-walk distances. Using a node’s

coordinate position in the space, we can accurately estimate the corresponding

random-walk distances between any two nodes in constant time.

A naive solution is to apply the design of current graph coordinate systems, and

substitute random-walk based distances for shortest path distances. However, two

key properties of random-walk based distances pose real challenges and prevent
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Figure 2.12: Relative error CDF of random-walk distances embedding using
Orion in Facebook graphs

us from using this naive approach. We explore and summarize these two issues

below.

Asymmetry. The first and most critical difference between random-walk dis-

tances and shortest path distances is symmetry. In undirected graphs, shortest

path length is symmetric by definition. In contrast, hitting time and PPR are

asymmetric [112, 77], i.e. distance (either hitting time or PPR) from node A

to B may not be the same as the distance in the reverse direction. In addition,

distances in any geometric space, e.g. Euclidean space or hyperbolic space, are

symmetric. This leads us to believe that embedding random-walk distances on

coordinate spaces will produce significant errors.
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To prove our conjecture, we examine whether we can simply apply existing

graph coordinate systems to embed random-walk based distances. Using 11 graphs

in Table 2.12, we evaluate the embedding accuracy using two graph coordinate

systems based on traditional geometric spaces, i.e. Orion using a Euclidean space

and Rigel using a hyperbolic space. As the Euclidean space is more accurate

when embedding high-variance metrics like hitting time and commute time, we

only show the embedding accuracy using Orion.

Since the results are consistent on different graphs, we only use the results of

the three Facebook graphs in Figure 2.12 to demonstrate the embedding accuracy.

As expected, the relative error in embedding symmetric commute time is low in

Figure 2.12(a), while the accuracy of the embedded asymmetric hitting time is

significantly larger in Figure 2.12(b).

An interesting observation is that while PPR is also an asymmetric metric, its

embedding error is similar to that of commute time. This is because an inherent

artifact of the PPR computation. Our measurement shows that 63.6% node pairs

in the three graphs have zero PPR for both directions, while for the rest, the

degree of asymmetry, i.e. the relative difference for PPR in both directions, is less

than 0.006. This means PPR in fact becomes a symmetric metric, and explains

why the embedding performance is closer to that of commute time.

The experiments show that existing graph coordinate systems based on tradi-

tional geometric spaces embed commute time and PPR at a reasonable accuracy

similar to that of shortest path, but produces large errors on asymmetric distances

2The 11 graphs includes 3 different size Facebook graphs, i.e. MontereyBay, Santa Barbara
and Egypt, 7 graphs from different non-social networks and the synthetic planar graph
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like hitting time. This motivates us to search for a new space in Section 2.5.2 to

properly capture both symmetric and asymmetric distances.

Cost of precomputation. Second, we note that it takes significantly more time

to obtain ground truth of random-walk based distances, especially for hitting time

and commute time. Depending on graph structure, arriving at a stable expected

value for random walks can require thousands of independent random walks. For

instance, using a commodity server with sufficient main-memory, computing ex-

pected hitting time from one landmark node to all nodes in a 250K-node social

network graph takes 60 days. In contrast, it takes only 2 hours to compute the

shortest path distance (using BFS) between 100 landmarks and all nodes in the

graph. Therefore, to make any embedding system practical for random-walk dis-

tances, we also need to address the issue of efficiently obtaining ground truth. We

address this issue further in Section 2.5.3.

2.5.2 A Directional Height Space

Our experiments in Section 2.5.1 show that a traditional embedding system

produces significant errors when estimating random walk distances, especially

asymmetric distances. In this section, we present a new graph coordinate space,

a directional height space, which explicitly accounts for asymmetry in random

walks. The intuition behind our design is that asymmetry in random walks is

caused by distinct “local” graph density around each node, and by capturing such

effect on a per-node basis, one can effectively model random walks via graph

coordinates.
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Figure 2.13: Example of a random walk from node A to B in (a) and a random
walk from node B to A in (b).

Our discussion begins by analyzing the cause of asymmetry in hitting time

based random walks, where we illustrate the significant effect of local graph den-

sity. We then present a new coordinate space combining Euclidean coordinates

and heights to capture such effect on a per-node basis, followed by a description

of the overall embedding process.

A Closer Look at Hitting Time. To illustrate the cause of asymmetry in

hitting times, we consider a toy example using random walks between node A and

B in Figure 2.13. In this example, an arrow from node i to node j represents a

random walk step from i to j, and the number k on top of the arrow represents

the sequential order of the current random walk, i.e. the kth step.

Figure 2.13(a) shows an instance of random walk from node A to B. Since

A’s neighborhood is tightly connected, i.e. a clique consisting of A, H, I and J ,

it takes 5 hops to leave A’s local structure and reach node C. The subsequent

random walk takes 2 hops to reach node B’s local neighborhood E, and another 1

hop to reach B. In total, the random walk takes 8 hops. Figure 2.13(b) illustrates

the random walk from node B to A. Here node B only has two neighbors, and

the current instance of random walk takes 3 hops to leave B’s local neighborhood.
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It takes another 2 hops to reach C, and another extra hop to reach A. In total

this random walk from B to A only requires 6 hops, 2 hops less than that from A

to B.

This example also sheds light on one potential view of why random walks are

asymmetric. We can think of random walks as traversing through three abstract

“regions” of the graph: first exiting an outgoing local structure near the source

node, moving across a backbone global structure in the graph, and finally finding

the destination node inside its an incoming local structure. Our intuition into the

asymmetry of hitting time is that random walk distances are largely dominated by

a node’s incoming and outgoing local structures, while traversal across the global

graph structure can be thought of as fairly symmetric. For example, both node A

and B’s incoming (Figure 2.13(b)) and outgoing (Figure 2.13(a)) local structures

are significantly different, leading to the large difference of 2 hops between their

corresponding average random walk distances. Clearly, these differences cannot

be captured by traditional embeddings.

Per-Node Height Vectors. The above intuition implies that we need a graph

coordinate system with three components, two asymmetric components that cap-

ture each node’s local structure for outgoing and incoming random walks, and

a symmetric component that captures the global structure. Coordinate systems

(i.e. Euclidean, Hyperbolic or Spherical spaces) can easily capture the symmet-

ric component. Our task is to identify and model the remaining two directional

asymmetric components. For this, we introduce directional height vectors. More

specifically, we use two distinct height vectors for each node, hin(i) and hout(i)
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Figure 2.14: An example of two nodes in our new coordinate space composed
of the 2D Euclidean space and two heights. The vertical lines represent height
vectors, and the arrows mark the directionality (incoming/outgoing). The line e
represents the distance in the Euclidean space, and the red dashes represent the
predicted random walk distances produced by our system. Note that a node’s
outgoing vector is typically smaller than its incoming vector.

(hin(i) ≥ 0, hout(i) ≥ 0), to represent the asymmetric outgoing and incoming

local structure for a node in random walks.

Our embedding system for random walks computes predicted distances by

combining two appropriate height vectors with an undirected distance captured

by the baseline embedding space. As shown in Figure 2.14, a random walk from

node A to B will first exit its local structure with outgoing height hout(i), followed

by the core global structure represented by a Euclidean distance between A and

B, and finally through the local structure of j with incoming height hin(j). The

total expected random walk length, i.e. predicted hitting time, is the sum of the

Euclidean distance and two heights, hout(i) and hin(j):

d(A,B) = hout(A) +

√√√√
n∑

i=1

(xi(A) − xi(B))2 + hin(B) (2.4)

where the vector {xi}ni=1 represents the n-dimension Euclidean coordinates of node

i.
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The example in Figure 2.14 shows a basic 2-dimensional Euclidean plane co-

ordinate space. The heights of node A are hin = 8.1 and hout = 6.2, and those

for node B are hin = 7.0 and hout = 1.3. Their embedded distance in the 2D

Euclidean plane is 5.5. We compute the random walk distance from node A to

B (the top dash line in Figure 2.14), d(A,B), by summing node A’s hout, the 2D

Euclidean distance and node B’s hin, which is 18.7 in total. Similarly, the dis-

tance from node B to node A (the bottom dash line) is the sum of the Euclidean

distance and node B’s hout and node A’s hin, producing a distance of 14.9.

Embedding Process. By treating the node heights as two extra components in

the coordinate system, we use this new space into the embedding process proposed

in Section 2.3. The resulting new graph coordinate system is called as Leo. The

main process is driven by optimizing the coordinate positions and height vectors

to minimize distortion between the embedding and the ground truth of the graph.

The key change is that we must compute ground truth in terms of random walk

distances, and use Equation (2.4) for node distance.

2.5.3 Fast Precomputation

As we mentioned earlier, a critical challenge in embedding random walk dis-

tances is the cost of ground truth computation. When applying the Orion embed-

ding process, the embedding must make (2 · L · n) · 2000 pairwise random walks

to measure actual hitting time (and commute time) between landmarks and non-

landmark nodes. Here L and n are the number of landmarks and graph nodes,

respectively. For a large graph like the Egypt Facebook graph, it takes around 60
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days just to compute the ground truth distances between a single landmark node

and all other nodes.

To address this challenge, we propose a novel precomputation method that

reduces the pairwise random walks to (L+n) ·2000, reducing the total embedding

time for Egypt from 60 to only 7 days.

Multi-destination Random Walk. The fast precomputation algorithm is

based on a random walk with multiple destinations. Running such random walk

from a node can produce random walk steps from this node to multiple nodes,

which is similar to BFS algorithm. More specifically, a random walk starting from

node i follows its definition to select its next step. If the random walk visits a

node j for the first time, we record the current walk steps as one trial for hitting

time measurement from node i to node j. Instead of stopping this random walk

as defined hitting time, the random walk continues and records its current steps

when it reaches a new node for the first time. This random walk can stop when

it visits require number of k nodes or its steps get to the maximum steps. As a

result, one such random walk can measure the steps to multiple nodes when they

are visited for the first time.

Although such random walk with multiple destinations can reduce the number

of random walks a lot, it is still not scalable to large graphs if it stops when it visits

all graph nodes. Take Egypt as an example again. One such random walk takes

1.5 minutes from a node to reach each node in the graph. To get the converged

hitting time from a node, we need to repeat such random walk for 2000 times,

which takes 48 hours. To understand this efficiency of random walk, we plot

the percentage of nodes visited by the random walk vs. the computation time
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Figure 2.15: Percentage of visited nodes vs. the computation time of a random
walk normalized by the time to visit all nodes.

normalized by the time visiting all nodes in Figure 2.15. We find that 90% of

the nodes can be visited within 10% ∼ 20% of the normalized computation time.

That means in a random walk visiting all nodes, more than 80% of time is used to

visit less than 10% of nodes, which is the main reason causing high computation

cost. Thus, we explore a tradeoff between efficiency and quantity of visited nodes

and find that it is a better compromise when a random walk visits 90% of nodes.

We run the random walk starting from a node for more times to make up the

10% not visited nodes. Recall that we measure stable hitting time from node i to

node j by repeating the random walk from node i to j for 2000 times. Similarly,

we have to repeat the random walk with multiple destinations for several times for

a reasonable expectation. In addition, since such random walks have no explicit

destinations, we cannot promise each visited node can be visited for 2000 times,

which can provide a stable hitting time, after 2000 times repeating random walks.

In other words, we may need to run such random walks for more than 2000 times.

We empirically repeat the random walk starting from a node for N times, where N

is from 2000 times to 6000 times. In Figure 2.16, we show the percentage of nodes

which are visited for at least 2000 times by random walks when we repeat random

walks for different times. We find that when we repeat random walks for more
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Figure 2.16: Percentage of nodes with stable hitting time vs. Repeating times
of random walks

times, the percentage of nodes with stable hitting time increases. Specifically,

when we repeat the random walk for 2000 times, only 40% of the nodes get stable

hitting time. When the repeating time is 6000 times, 99% of the nodes have stable

hitting time. Thus, starting from a node, we repeat the random walks for 6000

times to get more nodes with stable hitting time.

For the remaining 1% nodes without stable hitting time, we run simple end-

to-end random walks from the source node to it to ensure that they are visited

for 2000 times. Finally, we can compute the ground truth of hitting time from

one node to all the other nodes in the graph more efficiently.

In one word, this optimized algorithm works based on random walks with a

soft cutoff. That is, a random walk starting from node i records the steps to each

node that is visited for the first time and stops when it visits 90% of nodes in the

graph. To get stable hitting time for each visited node, we repeat such random

walk for 6000 times. For the remaining nodes which are visited for only k(≤ 2000)

times, we carry out end-to-end random walks from node i to it for 2000− k times

to guarantee that it has stable hitting time.

We can directly run this algorithm for each landmark to fast compute the

actual hitting time from the landmark to all the nodes. To compute the ground
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truth from non-landmarks to landmarks, we can use this algorithm for each non-

landmark with a small modification. In detail, since each node only needs to

compute the hitting time to a subset of landmarks, i.e. 16 landmarks, the random

walk starting from it stops when 16 landmarks are reached. As a whole, we can

efficiently measure the ground truth of hitting time and commute time for the

embedding process using this fast computation algorithm.

2.5.4 Performance Evaluation

In this section, we first understand the performance of Leo in terms of accuracy

and speed. Specifically, we investigate the accuracy of random-walk distance

estimation using Leo compared against Orion and study the impact of number of

dimensions on its estimation accuracy. Then, we measure its efficiency by using

average response time for pairwise queries. Second, we examine the utility of this

system in two important applications built on random-walk distances, i.e search

ranking and link prediction.

Accuracy Compared to Orion. We examine the accuracy of hitting time, com-

mute time and PPR embedding on the seven graphs in Table 2.1. To make fair

comparison to the accuracy of 10-dimension Orion, we use Leo to embed all three

distances into a space of 10-dimension Euclidean coordinates plus 2 heights. For

simplicity, we call the space of d-dimension Euclidean coordinates plus 2 heights in

Leo as a d-dimension Leo. Since hitting time computation is intractable, we sam-

ple 1000 random pairs of nodes from each graph and measure the actual hitting

time, commute time and PPR between them for comparison. To avoid possible

impact of landmarks on results, we choose the 1000 node pairs randomly from all
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Figure 2.17: Relative error CDF of embedding Hitting Time, PPR and Commute
Time in Egypt using 10D Leo vs. 10D Orion.

non-landmark nodes. We use two metrics to quantify the accuracy of the embed-

ding system. One is relative error, and the other is the 90th percentile relative

error over all nodes pairs (90% relative error). Since Leo performs consistently

better than Orion, we focus on the CDF of relative error in Egypt and show the

90% relative error of all graphs.

Figure 2.17(a) shows CDF of relative error of hitting time estimation using Leo

compared to the results from Orion. We find that Leo can significantly improve

the estimation accuracy for hitting time. Specifically, for 90% of node pairs, the

relative error is less than 0.1 using Leo while the relative error of Orion is more

than 0.95. In other word, the accuracy improvement of Leo is 90%.
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Metric System MontereyBay SB Egypt Collab AS Citation P2P Email Amazon Web Planar

Hitting
Time

Orion 0.970 0.919 0.977 0.988 0.971 0.962 0.914 0.987 0.945 0.956 0.969
Leo 0.119 0.058 0.100 0.121 0.084 0.058 0.100 0.161 0.238 0.058 0.322

PPR
Orion 0.307 0.318 0.323 0.314 0.331 0.300 0.342 0.351 0.342 0.322 0.354
Leo 0.004 0.006 0.003 0.004 0.004 0.005 0.006 0.003 0.004 0.005 0.006

Commute
Time

Orion 0.311 0.333 0.383 0.352 0.325 0.341 0.301 0.311 0.362 0.381 0.375
Leo 0.211 0.244 0.214 0.242 0.232 0.199 0.205 0.211 0.223 0.214 0.283

Table 2.7: 90th percentile relative errors for Hitting time, PPR and Commute
time (Leo vs. Orion w/ 10 dimensions)

We plot CDF of relative error of PPR estimation in Figure 2.17(b). Similar to

results in Figure 2.17(a), it shows that Leo is more accurate in estimating PPR.

For example, for 90% of node pairs in Figure 2.17(b), the relative error of Leo is

0.005. This is much smaller than the relative error of Orion, i.e. 0.3 ∼ 0.4 for 90%

pairs of nodes. The accuracy in estimating PPR is improved 98% by Leo. Both

the results in Figure 2.17(a) and 2.17(b) show that the two heights introduced in

Leo can accurately capture the asymmetric random-walk distances.

We also use Leo to embed symmetric commute time and compare its accu-

racy to the results of Orion in Figure 2.17(c). It shows that Leo significantly

outperforms Orion that was designed for symmetric distances. Still for 90% pairs

of nodes, Leo produces relative error 0.2 while the error in Orion is 0.38. Our

measurement shows that low degree nodes tend to have large heights while high

degree nodes tend to have small heights. This means that our heights can help to

capture the local structure around nodes that have poor connection to the core of

the graph. Thus, Leo can also capture symmetric distances more accurately than

Orion.

We show the 90% relative error of 10-dimension Leo and 10-dimension Orion

over all graphs in Table 2.7. Leo is consistently more accurate than Orion across

all graphs and all metrics. For hitting time, the accuracy is improved by 67%−94%
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Figure 2.18: Impact of embedding dimension on the accuracy of hitting time.

by Leo. Among all graphs, we notice that the 90% relative errors of three sparse

graphs, i.e. Planar, Email and Amazon, are slightly higher. Their much lower

density means random walks pay a lower price both exiting their local cliques

and trying to find their destination nodes. Not surprisingly, our results show that

the symmetric global structures make up a much bigger component of the total

random walk distance in these graphs. The higher relative errors likely come

from estimation errors in the symmetric global distances. For PPR, we find that

Leo improves the accuracy 98% − 99% for all graphs. For symmetric commute

time, Leo also produces consistently better accuracy for all graphs, by 25%−44%

compared to Orion.
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Impact of Dimensionality. We also study how the number of dimensions used

in the embedding impacts the accuracy of random-walk distance estimation. We

vary the dimensions of the Euclidean coordinates from 0 to 10. A 0-dimension

space in our system means that no Euclidean coordinates are used for embedding

the global structure component, and we only use two heights to represent a node’s

local structure. Since it is symmetric, the accuracy of commute time embedding

increases as the embedding dimension increases. In addition, the number of di-

mensions has no significant impact on PPR accuracy. Thus we omit those plots

for brevity and instead focus on the hitting time results. For clarity, we show the

embedding accuracy using 0-dimension Leo and 10-dimension Leo. Figure 2.18(a)

shows the results of hitting time in Egypt to demonstrate the impact. We find

that the accuracy of 0-dimension Leo embedding is similar to than 10-dimension

Leo embedding. This indicates that the asymmetric local structure of Egypt graph

dominates the total random walk distance. In other words, two heights are enough

to accurately capture the hitting time in the Egypt graph. In fact, we found this

to be consistently true for our small-world and high density graphs, including the

other two social graphs.

However, the results in our sparser, more hierarchical graphs look quite dif-

ferent. These include the Planar, Email and Amazon graphs. Figure 2.18(b)

shows that 10-dimension Leo embedding of planar graph is more accurate than

its 0-dimension Leo embedding. For example, for 90% nodes, the relative error

in 10-dimension embedding space is 0.3, which is half of the error in 0-dimension

space. We observe the same trend in the other three graphs and show the results of

Email graph in Figure 2.18(c). Both results show that the symmetric component

in the design of Leo, i.e. the Euclidean coordinate in Equation 2.4, is necessary,
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Metric Graphs One-thread Bootstrap (hours) Parallel Bootstrap (hours) Per-query response (ms)
Precomputation Embedding Precomputation Embedding Ground Truth Orion Leo

Hitting
Time

Egypt 168.12 1.59 1.88 0.12 566,359 0.0089 0.0089
Amazon 157.23 1.93 1.67 0.13 162.08 0.0080 0.0085

Web 235.12 2.11 2.39 0.15 1463.99 0.0084 0.0081

PPR
Egypt 11.20 1.63 0.16 0.15 17.5 0.0082 0.0087

Amazon 12.09 1.94 0.17 0.14 18.2 0.0085 0.0088
Web 12.15 2.12 0.17 0.15 17.9 0.0087 0.0085

Commute
Time

Egypt 168.12 1.60 1.88 0.12 1,132,719 0.0082 0.0081
Amazon 157.23 2.03 1.67 0.12 345.11 0.0082 0.0080

Web 235.12 2.09 2.39 0.14 3,012 0.0083 0.0082

Table 2.8: Computation time of Leo on three largest real graphs, including
bootstrap time and per-query response time.

especially as the symmetric global structure of network increases. Again, this

validates our hypothesis that the less dense a network is, the lower the cost of

exiting local subgraphs and finding destination nodes. Thus the relative cost of

our directional height vectors decreases, and the symmetric component grows in

importance.

Embedding and Query Performance. We study the efficiency of our em-

bedding system in this section, including up-front bootstrap costs and average

response time for a query. To evaluate the bootstrap time, we measure results

for both a single thread instance and a distributed version parallelized across 100

servers. All experiments are measured on a 2Ghz, 8-core Intel Xeon machine

with 192GB RAM, and all graphs are embedded into a 10-dimension Leo using 2

height vectors per-node. We show computation time on Egypt, Amazon and Web

graphs.

The bootstrap process of Leo includes two phases. The first phase is the pre-

computation phase, which is to compute the actual distances between landmarks

and non-landmarks. We apply our proposed fast precomputation algorithm to

compute hitting time and commute time in this phase. The second phase is to
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embed the random walk distances into a low-dimension space. We measure the

computation time of the precomputation phase and embedding the graph into a

10-dimension space using one single thread. To minimize the bootstrap time, we

then parallelize the bootstrap across 100 servers and use the longest computation

time of the 100 servers as the parallel bootstrap time.

We show the bootstrap time for hitting time, commute time and PPR using

one single thread in Table 2.8. Since the commute time between node i and node

j is the sum of hitting time from node i to j and hitting time for the reverse

direction, the computation time of commute time between landmarks and non

landmarks is equal to the time to compute the ground truth of hitting time.

Since the maximum random walk hops for PPR is log(n)/α, much smaller than

the network size, its computation time is much faster than hitting time.For each

graph, we find that the majority of bootstrap time is used to measure the ground

truth between landmarks and non-landmarks. For example, to embed hitting

time in Egypt, the precomputation for hitting time requires 168 hours while the

embedding time is around 2 hours using one single thread.

We parallelize the bootstrap across 100 servers to reduce the bootstrap time,

and results are shown in Table 2.8. Since the precomputation process is embar-

rassingly parallel, we do achieve very high speedups (90x for hitting time and

commute time, and 70x for PPR). Since landmarks can only be embedded by one

single thread, the parallel embedding time is the sum of landmark embedding time

and non-landmark embedding time on the slowest server. Table 2.8 shows that

parallelizing embedding reduce the time taken from around 2 hours to less than 10

minutes for our largest graphs. Next, we measure the average per-query response

time for Leo, Orion, and the traditional Monte Carlo measurement method. Aver-
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age response time is defined as the average time to compute the expected or stable

random walk distance for a node pair. We average the computation time across

1000 random pairs of nodes. Table 2.8 shows the average response time using Leo,

Orion, and the average response time to compute ground truth using the tradi-

tional method. As expected, response time on Leo is constant for different graph

sizes, and is several orders of magnitude faster than traditional methods. For

example, the time to estimate hitting time using Leo is 0.008ms (8µs), 8 orders

of magnitude faster than the time required to compute the ground truth, ∼ 10

minutes. As expected, Table 2.8 also confirms that per-query response times on

Leo and Orion are essentially identical. Once the upfront bootstrap phase is com-

plete, Leo’s response time is 8 microseconds for hitting time, PPR, and commute

time queries, which makes it more than capable of handling real-time queries on

large graphs.

Applications. Now, we evaluate the utility of graph coordinate systems at the

application level. We apply our embedding system into two popular applications,

search ranking and link prediction. The two applications are built on expensive

random walk distances, but are useful in practical search engines and social net-

work analysis. Our experiments show that using graph coordinate systems in

these applications can produce answers that closely approximate results derived

from measured (ground-truth) random walk distances3.

Search ranking. Ranking search results or entities based on their relevance is a

fundamental problem in search engines [32] and recommendation systems [31]. For

example, Google might return thousands of answers for the query “publications

3We use Leo with 10 dimensions.
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about social network published in 2012.” For a better user experience, Google

ranks the returned results based on the relevance metrics such that the most

wanted results by the user should be prioritized. Among the metrics to quantify

relevance, random walk distance is one of the most important and widely used

metrics [32, 31, 30].

We implement a search ranking application to evaluate the impact of Leo. We

choose a random node i to send out a query for which N answers are returned.

Here, each answer is represented by a node in the graph. We then measure the

random walk distances from node i to each node j in the set of N nodes. Finally,

we rank the N nodes based their distances to node i and select the top K nodes as

the best results for the query. We separately use commute time, hitting time and

PPR as random walk distances in the ranking. When using commute or hitting

time, we rank the result in an increasing order such that results with low commute

time or hitting time are in top positions. In contrast, using PPR, we rank the

results in descending order and the top K nodes have the highest PPR.

In our experiment, when a node sends out a query, N = 2000 random nodes

return answers. We rank them using their distances to the query origin. Finally,

we return the top K = 100, 500, 1000 answers, which is corresponding the top

5% ∼ 50% answers. We repeat this experiment 2000 times. Each time we choose

a random node to generate a query and rank the nodes using commute time,

hitting time and PPR independently. For each random walk distance, we get two

sets of top K nodes. One set is generated using measured actual distance and the

other set is based on the distances estimated by Leo. We count the amount of

overlap between the top K nodes in the two sets. We use the ratio of the number

of overlapping nodes to the total number of top K nodes to quantify the accuracy.
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Figure 2.19: Accuracy of Top k ranked nodes.

All our experiment is measured on the three Facebook graphs in Table 2.1, i.e.

MontereyBay, Santa Barbara and Egypt.

We plot the results of hitting time, commute time and PPR in Figure 2.19. It

shows that for all three distances, our system can more accurately approximate

the ground truth as K is larger. For example, using commute time in Egypt

graph, the accuracy increases from 70% to more than 80% when K increases from

500 to 1000.

Link prediction. Social network is a network with high dynamics. The addition

of edges is one of the main reasons to cause the frequent changes in network.

Predicting link creation in the future is one important problem for understanding

network evolution and predicting network growth. [107] shows that node structure
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Graphs Hitting Time (%) PPR (%) Commute Time (%)
GT Leo GT Leo GT Leo

MontereyBay 71.21 69.12 72.16 69.56 61.23 69.11
Santa Barbara 69.28 71.28 71.22 70.01 65.26 70.26

Egypt 73.52 69.93 71.56 72.38 68.01 67.98

Table 2.9: Link prediction application accuracy using hitting time, commute
time, and PPR, based on Ground Truth (GT) and Leo.

similarity in a network can be used to predict links. This paper uses several metrics

to quantify nodes similarity. Among them, commute time, hitting time and PPR

are three important metrics with high accuracy. However, the computation of

these similarity metrics is very expensive. This motivates several studies [151,

156] to accelerate the random walk distance estimation and is one important

application to evaluate the accuracy of the estimation. Thus, we use our system to

estimate random walk distances to predict future links and compare the predicting

accuracy to the accuracy generated by the actual distances. Again, we separately

use hitting time, commute time and PPR in link prediction.

Our link prediction experiment is similar to [151]. We delete 10% random edges

from each graph G for prediction, which results in a new graph G′. We test how

accuracy of our system is in predicting the deleted 10% edges. Since measuring

the actual distances for all nodes pairs as ground truth is costly in terms of

computation time, we only consider all pairs of nodes that have edges deleted as

potential edges. Then we rank all potential edges based distances between their

two endpoints in graph G′. Similar to search ranking, we rank commute time and

hitting time in an increasing order while rank PPR in a descending order. We

choose top M pairs of nodes in the ranked edge list, where M is the exact number

of the 10% deleted edges in the graph. Again, we can have two sets of top M
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results using actual measured distances and estimated distances from Leo for each

distance metric. For each set, we count how many of edges, i.e. node pairs, in

this set overlap with the actual deleted edges and use the ratio of the overlapping

edges to the total M edges as the accuracy metric. Thus, we can compare the

prediction accuracy using Leo to the prediction accuracy using actual distances.

We run our experiment on the three Facebook graphs and show the results of

the three random-walk distances in Table 2.9. For each metric, we find that the

prediction accuracy of Leo is quite similar to the accuracy using actual distances.

For example, in Egypt, using hitting time in link prediction, the accuracy using

actual distances is 73.52% while the accuracy of Leo is 69.93%. We notice that Leo

outperforms actual distances in few cases. This is because the estimation error

of Leo results in that some deleted edges are ranked higher than they should be.

However, the number of this kind of node pairs is relatively small. The prediction

accuracy of Leo is almost as accurate as the results using actual distances.

2.6 Related Work

In this section, we briefly summarize other related work, including shortest

path estimation methods, random walk distance estimation, studies on network

coordinate systems and applications using node distances.

2.6.1 Shortest Path Estimation

Since exact shortest path computation methods, such as BFS, Dijsktra and

Fast shortest path distance estimation in large networks, fail to scale with graph

size, several fast algorithms [145, 147, 141, 42, 67] are proposed to efficiently
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estimate shortest path, which can be classified into two classes. The first class

of algorithms is to apply embedding methods to shortest path queries. [145] is

an initial work to embed metrics in small graphs into a Euclidean space. [147]

proposes a network structure index (NSI) to compute node positions in a graph.

[141] is a landmark scheme for approximating shortest path distances by storing for

each node its distance to every landmark. All three algorithms are with significant

limitations in scalability.

The second class is Sketch-based algorithms [42, 67], which precompute and

store BFS trees rooted in each landmark. For any pair of two nodes, the algorithms

use the results of BFS trees to approximate their shortest path length and locate

the path. Comparing with different sketch-based algorithms, the graph coordinate

systems, e.g. Rigel, are more efficient with similar level accuracy.

2.6.2 Random Walk Distance Estimation

Given the prevalence of Personal PageRank in search engines and recommen-

dation systems, researchers have developed two general approaches to compute

PPR, i.e. linear algebraic optimization [80, 119] and Monte Carlo approximation

algorithms [52, 11]. Monte Carlo algorithms to compute PPR can be significantly

sped up using a variety of techniques, ranging from parallelization via MapRe-

duce [16] to improved bounds for distributed algorithms [43].

Since commute time is symmetric, many have tried to approximate it using

fast matrix computation. Standard matrix computations based on matrix inverse

require O(n3) time, which does not scale. One solution is to produce fast ap-

proximations using the Lanczos process [30]. Since network effective resistance is
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analogous to commute time, [157] uses graph sparsification to compute effective

resistances between any pair of nodes in O(log n) time. Finally, [151] focuses on

efficiently computing hitting time and commute time within a fixed number of T

hops, instead of a generalized query between any two nodes.

2.6.3 Network Coordinate Systems

Embedding techniques have been used in a variety of application contexts. The

most recent and well-known use of such techniques was in the context of network

coordinate systems [133, 54, 41, 37], which are efficient and scalable mechanisms

to estimate Internet latencies without performing end-to-end measurement. In

contrast, graph coordinate systems are designed to preserve node distances in

large complex graphs.

We summarize the studies on network coordinate systems with the three popu-

lar geometric spaces, i.e. Euclidean, Spherical and Hyperbolic. A Euclidean space

is widely used to predict routing latency between hosts [133, 41, 37, 162, 152]. For

example, GNP [133] is a centralized system that uses a small number of public

landmarks to embed all Internet hosts in the space. Similar systems proposed later

include those using Simplex Downhill [128] to optimize host coordinates [37], Lip-

schitz embedding [162], a spring force model [41], and most recently a system

using Euclidean Big-Bang Simulation [152]. These systems calibrate nodes’ geo-

metric positions based on distances, e.g. Internet round-trip time (RTT), which

are measured in a distributed manner. Still later work proposed bounds on the

distortion of Euclidean embedding. To the best of our knowledge, J. R. Lee’s re-
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cent result [96] proves the tightest upper bound, O(
√

log n log log n) for an n-point

Euclidean embedding.

Spherical embedding was first studied in Vivaldi [41]. While morphing on

spherical spaces is widely used in computer vision [89], there is little theoretical

work investigating spherical embedding.

Intuitively, a hyperbolic space can better model Internet topology with tightly

connected cores. Thus, several experimental systems for embedding Internet dis-

tances [113, 153, 114] use a hyperbolic space to improve the embedding accuracy.

In the context of ad hoc networks, a greedy hyperbolic embedding in [88] yields

routes with low stretch, where greedy embedding is a graph embedding with the

following property: for any pair of nodes (u, v), there is at least one neighbor of

node u closer to node v than node u itself. A later work [40] improves the greedy

embedding algorithm for dynamic graphs, and proposes a modified greedy rout-

ing algorithm for message routing. They either focus on graphs in the context of

routing in wireless networks or on small synthetic graphs (∼50 nodes as in [40]).

A recent project [138] proposes a graph model using hyperbolic spaces that is ca-

pable of producing synthetic graphs with scale-free structural properties. Unlike

our work, this project aims to generate synthetic graphs instead of embedding

real graphs.

In addition to the three geometric spaces, Vivaldi [41] augments a Euclidean

coordinate with a height. This is used to capture the congestion delay from a

node to cores of Internet, which is for symmetric routing latencies. In contrast,

the directional height space for random walk distances decouples incoming and

outgoing heights, which successfully adapts to a wide range of graph structures. As
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a significantly more general model, the directional height space produces accurate

results for both symmetric and asymmetric node distances.

2.6.4 Applications Using Node Distances

There are many social applications based on shortest path length. For exam-

ple, distance-ranked social search ranks search results by the proximity of each

result to the user in social graphs [141, 123]. Information dissemination [33] can

leverage distances between nodes to find the most influential nodes. Community

detection algorithms on social graphs (see taxonomy from [53]) can benefit from

shortest path distances between nodes to classify them in different clusters. Fur-

thermore, Sybil attack detections are in essence based on community detection

strategies [171], which make them suitable candidates to leverage our system.

Neighborhood function [137] uses node distance distribution to predict whether

two graphs are similar or not. Mutual friends detection computes the mutual

friends between social users. In [159], the auction site calculates social distances

to identify items auctioned within social circle defined by users. All these appli-

cations are based on shortest path computations, therefore, in essence, they can

benefit from our system.

Random walks appear in numerous applications in fields such as computer

vision, data mining, network security and social network analysis. For example,

work in computer vision [63] reliably extracts shape properties in Silhouettes using

hitting time. [64] utilizes hitting time from all nodes to a chosen node as threshold

to determine automated graph partitions. Commute time is an important way to

track real-world multi-body motions [144] and image segmentations [143]. In
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data mining problems, standard clustering algorithms such as K-means produce

more accurate results by replacing traditional distance with commute time [181].

Personal page rank has been used to improve partitioning in [9], and commute time

has been used to detect global and local outliers in data [85]. Since random walks

are resistant to noise and manipulation, they are also widely used to build robust

reputation systems [74] and Sybil detection systems on social networks [183, 182].

In social networks, commute time, hitting time and PPR are important metrics

to accurately perform link prediction over time [107].

2.7 Summary

Node distance computation, including shortest path length and random walk

distances, is one of the most critical primitives for both graph analysis and appli-

cations. Unfortunately, traditional algorithms for node distance computation no

longer scale with big real graphs with millions of nodes and billions of edges. In

this chapter, we explore a novel technique, graph coordinate systems, to accurately

approximate node distances in constant time.

To estimate shortest path distances, we propose Rigel, a hyperbolic graph

coordinate system. We discuss the impact of geometric spaces on the estimation

accuracy, and show that the hyperbolic space can better model large complex

networks in terms of the accuracy. To scalably embed large graphs, we naturally

parallelize the embedding process across multiple servers. For large graphs like

Renren with 43 million nodes and 1 billion edges, Rigel not only produces more

accurate results than using other geometric spaces, but also replies node distance

queries 5 orders of magnitude faster than BFS. In addition, we propose Rigel path,

75



Chapter 2. Efficient Node Distance Computation

a heuristic shortest path finding algorithm using the generated coordinates. The

measurements on various big real graphs show that Rigel path matches the best

accuracy produced by prior work while returning results up to 18 times faster

than state-of-the-art shortest-path systems with similar levels of accuracy.

To account for the asymmetry of random walk distances, we propose two

”height vectors” to model per-direction, per-node random walk costs. In an ab-

stract sense, one height captures the cost of leaving the subgraph around the

source node, and the other one captures the cost of finding the destination in the

local subgraph. We show that these factors change dramatically for a variety of

graph topologies. Particularly, for small-world graphs, asymmetric hitting time is

dominated by a single per-destination cost. The results show that Leo, the graph

coordinate system based on the directional height space, accurately predicts both

symmetric and asymmetric random walk distances while responding the queries

in microseconds, 8 orders of magnitude faster than existing methods.
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Chapter 3

Analyzing and Modeling

Dynamics in Big Real Graphs

3.1 Introduction

1As the emergence of massive Online Social Networks (OSNs), a deeper under-

standing of the dynamics in these networks have numerous practical implications

on many social network specific applications, including the design of infrastruc-

ture, applications, and security mechanisms for social networks.

However, despite recent progress in the areas of analyzing and modeling OSNs [21,

57, 78, 101, 124, 58], their network dynamics is still poorly understood. Although

there is general agreement that OSNs are structures that are highly dynamic in

nature and driven by a number of interrelated dynamic processes, most current

works tend to study them only via static snapshots [21, 57, 78, 124, 58], or seek to

capture network dynamics as a single process [101, 124, 58], such as preferential

attachment (PA). As a result, current models of network dynamics [5, 6, 84, 104]

1Abbreviated version of content in Section 3.2 and Section 3.3 can be found in paper ”Multi-
scale dynamics in a massive online social network” [185]. The content in Section 3.4 and Sec-
tion 3.5 does not yet appear in any currently published paper.
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focus primarily on a final graph with some desired structural properties, but fail

to model or match the sequence of dynamic events that leads to the structure.

Our goal in this chapter is to build a model of social network dynamics that

successfully reproduces not only time-dependent structural properties of the net-

work, but also the sequence of dynamic events leading to the structure and its

evolution in time. Such a detailed dynamic graph model would address a num-

ber of practical OSN problems. First, the research community has repeatedly

expressed a need for real dynamic graph traces. Using a real trace for calibra-

tion, our model can generate “realistic” dynamic graphs with a complete list of

time-stamped network events. Second, our model can be used to perform “inter-

polation”, i.e. constructing complete dynamic graph traces that connect static

snapshots of OSNs. Given successive static snapshots from OSNs, our model can

approximate the continuous network evolution between them. Finally, our model

can be used to detect abnormal events in real networks, i.e. events that disrupt the

expected or “normal” network dynamics. Such events might represent malicious

attacks or significant changes in user behavior.

To achieve the goal, we understand in detail the evolutionary dynamics in

a social network in term of both structural dynamics and temporal dynamics.

Specifically, to better study the evolution of network structure, we measure dy-

namic social network graphs at three network scales, including nodes, communi-

ties, and networks. In contrast with prior studies in network structural dynam-

ics [18, 101, 124, 58], which modeled or validated the network dynamics as a single

process, the multi-scale measurement method can help us to learn the interrelated

dynamics processes and how they impact users’ activities. To understand tem-

poral properties in network growth, our approach is heavily influenced by past
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work on network traffic modeling that showed measured network traffic to exhibit

a statistical property called self-similarity, which is different from popular traffic

models such as the well-known Poisson processes. Similarly, whether the observed

dynamics of social networks do in fact exhibit self-similarity will have a significant

impact on the way we view and consider dynamic graph models. Based on the

observations, we develop a model capturing both spatial and temporal properties.

In this chapter, our work focuses on analyzing and modeling a large dynamic

online social graph, i.e. Renren. With over 220 million users, Renren is the

largest social network in China, and provides functionality similar to Facebook.

The anonymized Renren data studied in this chapter includes timestamps of all

the first two-year events, including the creation of 19 million user accounts and

199 million edges. This captures the network’s initial burst of growth, as well as

a period of more sustained growth and evolution. This dataset is notable because

of three features: its scale, the absolute time associated with each event, and a

rare network merge event, when the network merged with its largest competitor in

December 2006, effectively doubling its size from 600K users to 1.3 million users

in a single day.

Throughout this chapter, we make three key contributions. First, we analyze

the Renren network at three network scales, including nodes, communities and

networks. Our analysis produces a number of interesting findings of dynamics

at different scales. First, at the level of individual nodes, we find that new edge

creation is increasingly dominated by existing nodes in the system, even though

new node arrivals is keeping pace with network growth as the network matures.

At the same time, the influence of the preferential attachment model weakens

over time. Second, at the level of user communities, we find that users in large

79



Chapter 3. Analyzing and Modeling Dynamics in Big Real Graphs

communities are more active in creating friends. Active nodes with high degrees

tend to join and help form large communities, and their activity introduces new

friends to their neighbors, further encouraging edge formation within the commu-

nity. Finally, in our analysis of the network merge event, we use user activity to

identify duplicate accounts across the networks. We also find that the network

merge event has a distinct short-term impact on user activity patterns.

Second, we detect and quantify the self-similarity in the edge creation process

at various time scales. We find that edge creation in the Renren online is non-

stationary over long term periods, even after removing the impact of node arrivals

by sampling edge creation over a fixed user population. On the contrary, by

applying the more robust wavelet-based method for examining self-similarity, we

find edge creation in the Renren social network does exhibit properties consistent

with self-similarity at small time scales (see Section 3.4). The exhibition of self-

similarity in edge creation process has significant impact on modeling dynamics

of network growth.

Third, we propose a detailed model for graph dynamics that captures both

the temporal properties of graph dynamics (self-similar over time scales from

minutes to hours) and spatial properties (long term graph distance shrinkage

and slow reduction in local clustering). Our validation shows that it produces

dynamic traces that match key dynamic properties of the original graph in both

temporal and spatial dimensions. Thus, by producing realistic traces of time-

stamped network events, our model fills a large void in the research community

(see Section 3.5).
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3.2 Dataset and Basic Analysis

We begin our study by first describing the dataset, and performing some ba-

sic analysis to understand the impact of network dynamics on first order graph

metrics. Our data is an anonymized stream of timestamped events shared with

us by Renren, whose functionality is similar to those of Facebook, Google+ and

Orkut. Our basic measurements in this section set the context for the analysis of

more detailed metrics in later sections.

3.2.1 Renren Dynamic Dataset

The first edge in Renren was created on November 21, 2005. The social network

was originally built as a communication tool for college students, named Xiaonei

or ”inside school”. But Xiaonei expanded beyond schools in November 2007, and

changed its name to Renren (“everyone”) in 2009.

Our anonymized dataset encompasses the timestamped creation events of all

users and edges in the social network. The dataset covers more than 2 years,

starting on November 21, 2005 and ending December 31, 2007. In all, the dataset

includes the creation times of 19,413,375 nodes and 199,563,976 edges. To perform

detailed analysis on the social graph, we produce 771 graphs representing daily

static snapshots from the timestamped event stream. Note that in this chapter,

we will use the term node to mean an OSN user and edge to mean a friendship

link.

On Renren, default user policy limits each user to 1,000 friends. Users may

pay a fee in order to increase their friend cap to 2,000. However, prior work by

the network has shown that very few users take advantage of such features. We
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make the same observation about our dataset: the number of users with >1,000

friends is negligibly small.

Network Merge Event. An unusual event happened on December 12, 2006,

when Renren/Xiaonei merged its social network with 5Q, a competing social net-

work that was created in April 2006. Before the two networks merged, Ren-

ren/Xiaonei counted 624K active users and 8.2M edges, and 5Q included 670K

active users and 3M edges.

During the merge, both OSNs were “locked” to prevent modification by users,

and all information from 5Q was imported and merged into Renren/Xiaonei’s

databases. Starting the next day, users could log-in to the combined system and

send friend requests normally, e.g. users with Renren/Xiaonei profiles could friend

5Q users, and vice versa. Since both 5Q and Renren/Xiaonei targeted university

students, it was inevitable that some users would have duplicate profiles after

the merge. Renren/Xiaonei allowed users to choose which profile they wanted to

keep, either Renren/Xiaonei or 5Q, during their first log-in to the site after the

merge. New users just joining the system would not notice any difference between

Renren/Xiaonei and 5Q user’s profiles.

Wherever possible, we treat the merge as an external event to minimize its

impact on our analysis. We present detailed analysis of the network merge event

in Section 3.3.3.

3.2.2 Network Level Measurement

Network Growth. We begin with measuring the overall network growth. Fig-

ure 3.1(a) depicts the growth of the Renren network in terms of the number of
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Figure 3.1: Network growth over time.

nodes and edges added each day. Day 0 is November 21, 2005. Overall, the net-

work grows exponentially, which is expected for a social network. However, there

are a number of real world events that temporarily slow the growth, and mani-

fest as visible artifacts in Figure 3.1(a). The two week period starting at day 56

represents the Lunar New Year holiday; a two-month period starting on day 222

accounts for summer vacation; the merge with 5Q network causes a jump in nodes

and edges on day 386; additional dips for the lunar new year and summer break

are visible starting at days 432 and 587, respectively. In Figure 3.1(b), we plot

daily growth as a normalized ratio of network size from the previous day. It shows

that relative growth fluctuates wildly when the network is small, but stabilizes as

rapid growth begins to keep rough pace with network size.

Graph Metrics Over Time. We now look at how four key graph metrics

change over the lifetime of our data stream, and use them to identify structural

changes in the Renren network. We monitor average degree, average path length,

average clustering coefficient, and assortativity. As before, the analysis of each

metric starts from November 21, 2005.
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Figure 3.2: The evolution of four important graph metrics over time.

Average Degree. As shown in Figure 3.2(a), average node degree grows for

much of our observed time period, because the creation of edges between nodes

out paces the introduction of new users to the network. This trend changes

around day 305, when a period of rapid growth in users starts to reduce average

degree. This arises from a sudden influx of new users due to several successful

publicity campaigns by Renren. In December 2006, average degree drops suddenly

when 670K loosely connected 5Q nodes join the Renren network. Average degree

resumes steady growth following the event, again showing edge growth out pacing

node growth and increasing network densification [104].

Average Path Length. We follow the standard practice of sampling nodes to

make path length computation tractable on our large social graphs. We compute
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the average path length over a sample of 1000 nodes from the SCC for each

snapshot, and limit ourselves to computing the metric once every three days. As

seen in Figure 3.2(b), the results are intuitive: path length drops as densification

increases (i.e. node degree increases). There is a significant jump when 5Q joins

Renren on day 386, but resumes a slow drop as densification continues after the

merge.

Average Clustering Coefficient. Clustering coefficient is a measure of local den-

sity, computed as the ratio of the existing edges between the immediate neighbors

of a node over the maximum number of edges possible between them. We plot

average clustering coefficient in Figure 3.2(c). In early stages of network growth

(before day 60), the network was very small and contained a large number of small

groups with loose connections between them. Groups often formed local cliques or

near-cliques, resulting in high clustering coefficients across the network. Once the

network grows in size, average clustering coefficient transitions to a smooth curve

and decreases slowly. The network merge produces a small jump, since the 5Q

network had many small clusters of 3 or 4 nodes that boosted average clustering

coefficient.

Assortativity. Finally, we plot assortativity in Figure 3.2(d). Assortativity is

the probability of a node to connect to other nodes with similar degree, computed

as the Pearson correlation coefficient of degrees of all node pairs. In the early

stages of the network, the graph is sparse and dominated by a small number of

supernodes connecting to many leaf nodes. This produces a strong negative assor-

tativity that fluctuates and then evens out as the network stabilizes in structure.

Assortativity evens out at around 0, meaning nodes in Renren have no discernible

inclination to be friends with nodes of similar or different degree.
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Summary. We observe that the high-level structure of the Renren social net-

work solidifies very quickly. Several key properties stabilize after the first 2

months, with others establishing a consistent trend after 100 days. While the

notable network merge with 5Q introduces significant changes to network proper-

ties, the effects quickly fade with time and continued user growth.

3.3 Understanding Network Dynamics at Mul-

tiple Scales

Our goal of this section is to study in detail the evolutionary dynamics of the

Renren network. This includes not only the initial growth process during a social

network’s formation, but also the ongoing dynamics afterwards, as the network

matures. Much of the prior work in this area, including generative graph models

and efforts to validate them [18, 101, 124, 58], has focused on capturing network

dynamics as a single process. In contrast, we are interested in the question “how

are individual user dynamics influenced by processes at different scales?” How

much are the dynamics of users influenced by external forces and events, such as

the activities of friends in communities they belong to, or by large-scale events

that occur at the network level?

In this section, we explore these questions empirically through a detailed analy-

sis of network dynamics in the Renren dataset at multiple scales: at the individual

user level, at the level of user communities, and at the global network level.
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3.3.1 Edge Evolution

First, we study the behavior of individual nodes in terms of how they build

edges over time. Many studies have shown that nodes build edges following the

preferential attachment (PA) model [18, 101, 124, 58]. Specifically, when a new

node joins the network and creates edges, it chooses the destination of each edge

proportionally to the destination’s degree. In other words, nodes with higher

degrees are more likely to be selected as the destination of new edges, leading to

a “rich get richer” phenomenon.

Using the dynamic Renren network data, we extend the analysis of this model

in two new dimensions. First, while PA assume that new nodes are the driving

force behind edge creation, we seek to understand how node activities are corre-

lated with node age, i.e. the time that a node have been in the network. Second,

we are interested in whether, as the network evolves, the predictive ability of the

PA model grows or weakens over time.

Node Age and Edge Creation. Since most generative graph models, such as

the PA model, use new nodes to drive edge creation, we ask the question “What

portion of the new edges created in the network are driven by the arrival of new

nodes?” For each day in our dataset, we take each edge created on that day

and determine its minimal age, i.e. the minimum age of its two endpoints. The

distribution of this value shows what portion of new edges are created by new

nodes.

We compute and plot this distribution in Figure 3.3. We show the relative

contribution by nodes of different ages by plotting three stacked percentages,

showing the portion of daily new edges with minimal age ≤ 1 day, ≤ 10 days,
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Figure 3.3: The portion of edges created by new nodes each day.

and ≤ 30 days. We see that when the network is young (≤ 60 days), the vast

majority of new edges connect brand new nodes (i.e. 1 day old). As the network

stabilizes and matures, that portion quickly drops, and continues to decrease over

time. Edges with minimal age of 10-30 days dominate new edges for much of

our trace, but their contribution steadily drops over time from 95% around day

100 to 48% by day 770. Note that this drop occurs even after the daily relative

network growth has reached a constant level (see Figure 3.1(b)). It is reasonable

to assume that in today’s Renren network (4.5 years past the end of our data), the

vast majority of new edges connect mature users who have been in the network

for significant amounts of time.

This result is important, because it shows a dramatic change in the driving

force behind edge creation as the network matures. Most generative graph models

assume edge creation is driven by new nodes. However, our data indicates that

existing models will only accurately capture the early stages of network creation.

Capturing the continuous evolution of a mature network requires a model that

not only recognizes the contribution of mature nodes in edge creation, but also

its continuous change over time.
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Strength of Preferential Attachment. We then take a look at the prefer-

ential attachment model and how well it predicts changes over time and network

growth. We follow the method in [101] to measure the strength (or degree) of

preferential attachment using edge probability pe(d). This function defines the

probability that an edge chooses its destination with degree d, normalized by the

total number of nodes of degree d before this time step:

pe(d) =
Σt{et(u, v) ∧ dt−1(v) = d}

Σt|v : dt−1(v) = d| (3.1)

where {et(u, v) ∧ dt−1(v) = d} = 1 if the destination v of the edge et(u, v) is of

degree d, and 0 otherwise.

Intuitively, if a network grows following the PA model, its edge probability

pe(d) should have a linear relationship with d: pe(d) ∝ d. The authors of [101]

verified this conclusion using synthetic graphs, and also tested the PA model on

four real social networks: Flickr, Delicious, Answers, and LinkedIn. The first three

networks follow the PA model pe(d) ∝ dα with α ≈ 1, while for LinkedIn, α = 0.6.

From these observations, we can define a criterion for detecting preferential at-

tachment: when α → 1, the network grows with a strong preferential attachment,

and when α → 0, the edge creation process becomes increasingly random. Using
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this criterion, we validate the level of PA model over time on Renren by fitting

pe(d) measured at time t to dα(t) and examining α(t) over time.

We make some small adjustments to the computation of pe(d) on the Renren

data. First, because our data does not state who initiated each friendship link

(edge directionality), we perform our test with two scenarios. The first is biased

in favor of preferential attachment because it always selects the higher degree

end-point as the destination. In the second scenario the destination is chosen

randomly from the two end-points. Second, to make the computation tractable

on our large number of graph snapshots, we compute pe(d) once after every 5000

new edges. Finally, to ensure statistical significance, we start our analysis when

the network reaches a reasonable size, e.g. 600K edges.

We examine α(t) over time in Figure 3.4. We make two key observations.

First, α(t) when using the higher-degree method is always larger than when using

random selection. This is as expected since the former is biased in favor of pref-

erential attachment. More importantly, the difference between the two results is

always 0.2. This means that despite the lack of edge destination information, we

can still accurately estimate pe(d) from these upper and lower bounds.

Second, α(t) decays gradually over time, dropping from 1.25 (when Renren

first launched) to 0.65 (two years later at 199M edges). This means that when

the network is young, it grows with a strong preferential attachment. However,

as the network becomes larger, its edge creation is no longer driven solely by

popularity. Perhaps this observation can be explained by the following intuition.

When a social network first launches, connecting with “supernodes” is a key factor

driving friendship requests. But as the network grows, it becomes harder to locate

supernodes inside the massive network and their significance diminishes.
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Finally, we observe a small ripple at the early stage of the network growth,

when α(t) experiences a surge on December 12, 2006 (8.26M edges). This is due to

the Renren/5Q merge event, which generated a burst of new edges that produce

a bump in α(t) for that single day.

Summary. Our analysis on the impact of individual nodes on edge creation

produces two conclusions:

• Edge creation in early stages of network growth is driven by new node ar-

rivals, but this trend decreases significantly as the network matures.

• While edge creation follows preferential attachment, the strength degrades

gradually as the network expands and matures.

3.3.2 Community Evolution

In online social networks, communities are groups of users who are densely

connected with each other because of similar backgrounds, interests or geographic

locations. Communities effectively capture “neighborhoods” in the social network.

As a result, we believe they represent the best abstraction with which to measure

the influence of social neighborhoods on user dynamics. We ask the question,

“how do today’s social network communities influence their individual members

in terms of edge creation dynamics?”

To answer our question, we first introduce the background of community def-

inition and the detection algorithms. We then develop our method to scalably

identify and track communities as they form, evolve, and dissolve in a dynamic

network. We then present our findings on community dynamics in Renren. Fi-
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nally, we analyze community-level dynamics and use our detected communities to

quantify the correlation between node and community-level dynamics.

Background. Communities can be defined based on network structure as groups

of well-connected nodes. There are dense connections inside communities but

sparse connections between communities [132]. Modularity [130] is a widely used

metric to quantify how well a network can be clustered into communities. It is

defined as the difference between the fraction of edges falling in communities and

the expected fraction when edges are randomly connected. It is formally defined

in Equation 3.2, where A is the adjacency matrix (Aij = 1 if node i and j are

connected, and Aij = 0 otherwise), ki is the degree of node i, m is the total

number of edges and δ(ci, cj) = 1 if node i and j are in the same community and

δ(ci, cj) = 0 otherwise. The value of modularity should be between -1 and 1, and

a large modularity means the network can be well clustered into communities.

Q =
1

2m

∑

ij

(Aij −
kikj
2m

)δ(ci, cj) (3.2)

Several algorithms are designed to optimize modularity. [132] proposes a sim-

ple method to optimize modularity, reducing complexity to O(n3). [131] improves

the algorithm further using hierarchical clustering method and its complexity is

O(n2). [35] further reduces the complexity to O(m · d · log(n)) using balanced bi-

nary trees and max heaps. [172] improves the computation efficiency by avoiding

unbalanced partitions.

Tracking Communities over Time. Tracking communities in the presence

of network dynamics is a critical step in our analysis of network dynamics at
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different scales. Prior work proved that dynamic community tracking is an NP-

hard problem [164]. For scalability and efficiency, we use the similarity-based

community tracking mechanism, which is a modified version of [65] that provides

tighter community tracking across snapshots using the incremental version of the

Louvain algorithm [25]. At a high level, we use incremental Louvain to detect and

track communities over snapshots, and use community similarity to determine

when and how communities have evolved.

Similarity-based Community Tracking. Louvain [25] is a scalable com-

munity detection algorithm that significantly improves both modularity and effi-

ciency using greedy local modularity optimization. It uses a bottom up approach

that iteratively groups nodes and communities together, and migrates nodes be-

tween communities until the improvement to modularity falls below a threshold δ.

To the best of our knowledge, Louvain is the only community detection algorithm

that scale to graphs with tens of millions of nodes. In this section, we use the

source code for Louvain algorithm from the authors [25].

Our approach leverages the fact that Louvain can be run in incremental mode,

where communities from the current snapshot are used to bootstrap the initial

assignments in the next snapshot. Given how sensitive community detection is to

even small changes in modularity, this approach enables more accurate tracking

of communities by providing a strong explicit tie between snapshots. Finally,

we follow the lead of [65], and track communities over time by computing the

similarity between communities. Similarity is quantified as community overlap

and is computed using set intersection via the Jaccard coefficient.
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Figure 3.5: Tracking communities over time and the impact of δ.

Choosing δ. The δ threshold in Louvain is an important parameter that

controls the trade off between quality of community detection and sensitivity to

dynamics. If δ is too small, the algorithm is too sensitive, and over-optimizes to

any changes in the network, needlessly disrupting the tracking of communities.

If δ is too large, the process terminates before it optimizes modularity, and it

produces inaccurate communities.

Choosing the best value for δ means optimizing for the dual metrics of high

modularity and robustness (insensitivity) to slight network dynamics. First, we

use network-wide modularity as a measure of modularity optimization for a given

δ value. Second, to capture robustness to network dynamics, we use community

similarity [65]: the ratio of common nodes in two communities to the total number

of different nodes in both communities. More specifically, for two consecutive

snapshots, we compute the average similarity between communities that exist

in both snapshots. We run the Louvain algorithm on Renren dynamic graph

snapshots generated every 3 days. We start from Day 20, when the network is

large enough (64 nodes) to support communities, and only consider communities

larger than 10 nodes to avoid small cliques.
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We scale δ between 0.0001 and 0.3, and plot the resulting modularity and

average similarity in Figure 3.5. As shown in Figure 3.5(a), in all snapshots the

modularity for all thresholds is more than 0.4. According to prior work [93],

modularity ≥ 0.3 indicates that Renren has significant community structure. As

expected, a threshold around 0.01 is sensitive enough for Louvain to produce

communities with good modularity. Note that the big jump in modularity on

Day 386 is due to the network merge event. Figure 3.5(b) shows that thresholds

0.0001 and 0.001 produce lower values of average similarity (i.e. they are less

robust and more sensitive) compared to higher thresholds between 0.1 and 0.3.

Thus, Louvain with δ > 0.01 generates relatively good stability of communities

between snapshots.

Based on the results in Figure 3.5, we repeat the Louvain algorithm within a

finer threshold range of 0.01 to 0.1. We find that a threshold value of 0.04 provides

the best balance between high modularity and similarity. We use δ = 0.04 to track

and measure dynamic communities in the rest of our analysis on the dataset.

Community Statistics Over Time We now leverage the Louvain-based com-

munity tracking technique to analyze the dynamic properties of Renren commu-

nities.

Community Size. Our goal is to understand not only the instantaneous

community size distribution, but also how the distribution changes over time

as the network evolves. Thus, we compute the distributions for days 401, 602,

and 770, 3 specific snapshots roughly evenly spaced out in our dataset following

the network merge event. We plot the resulting community size distributions
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Figure 3.6: Analysis on the evolution of communities.

in Figure 3.6(a). The figure shows that the three snapshots consist of a large

number of small communities and a long tail of large communities, consistent

with the power-law distribution. This is consistent with other daily snapshots

as well. More importantly, these snapshots show a gradual trend towards larger

communities. Over the year of time between snapshots 401 and 770, the number

of small communities shrunk by an order of magnitude. In turn, the sizes of the

largest communities increase significantly.

Community Lifetime. In a dynamic network, how long a community re-

mains in the network is another important statistical property. By using our

community identification method between snapshots, we measure the distribution

of community lifetime. Figure 3.6(b) shows that most of the communities only

stay in the network for a very short period of time. Specifically, 20% of commu-

nities have lifetimes of less than a day, meaning that they disappear in the next

snapshot after they are first detected. 60% of the communities have lifetimes less

than 30 days, at which point they are merged into other communities. This shows

an extremely high level of dynamics at the community level.
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Figure 3.7: Comparing activity of users inside and outside communities.

Impact of Community on Users. To understand how communities impact

users’ activity, we compare edge creation behaviors of users inside communities

to those outside of any community. Overall, our results show that community

users score higher on all dimensions of activity measures, confirming the positive

influence of community on users.

Edge Inter-arrival Time. Figure 3.7(a) plots the CDF of edge inter-

arrival times for community and non-community users. The considerable distance

between the two curves confirms that community users are more enthusiastic in

expanding their social connections than non-community users.
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User Lifetime. Next, we examine how long users stay active after joining

the network, and whether engagement in a community drives up a user’s activity

span. We define a user i’s lifetime as the gap between the time i builds her last

edge and the time i joins the network.

Figure 3.7(b) plots the CDF of user lifetime for users in different size com-

munities as well as non-community users. [x, y] represents communities of size

between x and y. We find that the lifetime distribution depends heavily on the

size of the community. The larger the community is, the longer its constituent

user’s lifetimes are. Compared to non-community users, users engaging in a com-

munity tend to stay active for a longer period of time. This confirms the positive

impact of community on users.

In-Degree Ratio. We also study how users within each community connect

to each other. We compute each user’s in-degree ratio, i.e. the ratio of her edge

count within her community to her degree. Figure 3.7(c) shows the CDF of the

in-degree ratio for users in communities of different sizes. We observe that users

in larger communities have a larger in-degree ratio, indicating that they form a

greater percentage of edges within their own community. In particular, 18-30%

of nodes only interact with peers in their own communities, and the portion of

these nodes grows with the community size. These results show that like offline

communities, online social communities also encourage users to interact “locally”

with peers sharing mutual interests.

Summary. Our efforts on tracking and analyzing the evolution of communities

lead to the following key findings:
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• The Renren social network displays a strong community structure, and the

size of the communities follows the power-law distribution.

• The majority of communities are short-lived, and within a few days they

quickly merge into other larger communities.

• The membership to a community has significant influence on users’ activ-

ity. Compared to stand-alone users, community users create edges more

frequently, exhibit a longer lifetime, and tend to interact more with peers in

the same community.

3.3.3 Merging of Two OSNs

On December 12, 2006 the OSN Xiaonei merged with another OSN called

5Q. This combined entity became the Renren that exists today. Our access to

the graph topological and temporal data that characterizes this merge gives us a

unique opportunity to study how this network-level event impacts users’ activity.

In this section, we analyze the forces at work during the merge. First, we look

at the edge creation activity of users over time in order to isolate users that have

become inactive. This enables us to estimate how many duplicate accounts there

were between Xiaonei and 5Q. Second, we examine edge creation patterns within

and between the two OSNs, and show that user preferences vary by OSN and over

time. Finally, we calculate the average distance between users in each group to

quantify when the two distinct OSNs become a single whole.

Definitions. In this section, we investigate the details of the merge between

Xiaonei and 5Q. To facilitate this analysis, we classify the edges created after
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the merge into three different groups. External edges connect Xiaonei users to

5Q users, whereas internal edges connect users within the same OSN. New edges

connect a user in either OSN with a new user who joined Renren after the merge.

Time based measurements are presented in “days after the merge,” e.g. one day

after the merge is day 387 in absolute terms, since the merge occurs during day

386 of our dataset.

User Activity Over Time. We start to address the question: how many du-

plicate accounts were there on Xiaonei and 5Q?, by examining the number of

active Xiaonei and 5Q users over time. Users with accounts on both services were

prompted to choose one account or the other on their first log-in to Renren after

the merge. However, the discarded accounts were not deleted from the graph.

Thus, it is likely that any accounts that are inactive on the first day after the

merge are discarded, duplicate accounts.

Here we define a user as “active” if it has created an edge within the last t

days. In our data, 99% of Renren users create at least one edge every 94 days

(on average), hence we use that as our activity threshold t. Since our minimum

activity threshold is t = 94 days, we cannot determine whether users have become

inactive during the tail of our dataset. Thus, instead of 384 days of data after the

merge, we only show 290 days in the results.

Figure 3.8(a) shows the number of active users over time for Xiaonei, while

Figure 3.8(b) focuses on the 5Q users. Each “all edges” line highlights the number

of users actively creating edges in each group. Both figures reveal that 11% of

Xiaonei accounts and 28% of 5Q accounts are immediately inactive. Thus, it

is likely that at least 39% of users had duplicate accounts on Xiaonei and 5Q
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Figure 3.8: The number of active users over time after the network merge event.

before the merge. Interestingly, users demonstrate a strong preference for keeping

Xiaonei accounts over 5Q accounts.

As time goes on, the number of active accounts in each group continues to

drop. Presumably, these users lose interest in Renren and stop generating new

friend relationships. After 284 days, the number of inactive Xiaonei accounts

doubles to 23%, while on 5Q, 52% of accounts are inactive. The relative decrease

in active accounts over time (12% on Xiaonei versus 24% on 5Q) demonstrates

that Xiaonei users are more committed to maintaining their OSN presence. This

observation corresponds to our earlier finding that users with duplicate accounts

tended to keep their Xiaonei accounts. Xiaonei users form a self-select population

of more active OSN users when compared to 5Q users.

The “new users,” “internal,” and “external” lines give the first glimpse of the

types of connections favored by Xiaonei and 5Q users. For each line, a user is

considered active only if they have created an edge of the corresponding type in

the last 94 days. Users in both graphs show similar preferences: edges to new

users are most popular, followed by internal and then external edges. The large

activity gap between internal and external edges highlights the strong homophily
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Figure 3.9: Analysis of edge creation over time after the network merge event.

among each group of users. Internal and external edge creation activity declines

more rapidly than edges to new users. This makes sense intuitively: the number

of Xiaonei and 5Q users is static, and hence the pool of possible friends slowly

empties over time as more edges are created.

Edge Creation Over Time. Next, we switch focus to look at the character-

istics of edges, rather than individual users. By looking at the relative amounts

of internal, external, and edges to new users that are created each day, we can

identify what types of connections are driving the dynamic growth of Renren after

the merge.
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Figure 3.9(a) shows the number of internal, external, and new edges created per

day. Initially, internal and external edges are more numerous than edges to new

users. However, 3 days after the merge new edges begin to outnumber external

edges, and by day 19 new edges out pace internal edges as well. This result

demonstrates that new users quickly become the primary driver of edge creation,

as opposed to new edges between older, established users. This is not surprising:

since Renren is growing exponentially, the number of new users eventually dwarfs

the sizes of Xiaonei and 5Q, which remain static.

We now ask the question: are there differences between the types of edges

created by Xiaonei and 5Q users? Although Figure 3.9(a) demonstrates that

internal edges always outnumber external edges, the reality of the situation is

more complicated when the edges are separated by OSN.

Figure 3.9(b) plots the ratio of internal to external edges over time for Xiaonei

and 5Q. Initially, users on both OSNs favor creating internal edges (i.e. the

ratio is >1). However, by day 16, the ratio for 5Q users starts to permanently

favor external edges. The reason for this strange result is that Xiaonei users

create more than twice as many edges than 5Q users. In our dataset Xiaonei

users create 3.9 million internal edges, while 5Q users only create 1.5 million.

However, unlike internal edges, external edges affect the statistics for both groups.

Thus, the number of external edges (2.2 million total in our dataset) is driven by

the more active user base. Even though Xiaonei users create less external edges

than internal edges, the number is still proportionally greater than the number

of internal edges created between 5Q users. The “both” line in Figure 3.9(b) is

always >1 because Xiaonei users create more edges overall, which weights the

average upwards.
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Figure 3.10: Distance between the two OSNs over time

Figure 3.9(c) plots the ratio of edges to new users versus external edges over

time for Xiaonei and 5Q. This plot reveals that the inflection point where users

switch from preferring external edges to new edges is different for the two OSNs.

The ratio becomes ≥1 for Xiaonei 5 days after the merge, whereas 5Q takes 32

days. Despite these differences, both OSNs demonstrate the same overall trend

for the ratio to eventually tip heavily in favor of edges to new users.

Distance Between Xiaonei and 5Q. Finally, we examine the practical con-

sequences of edge creation between Xiaonei and 5Q. Our goal is to answer the

question: at what point do Xiaonei and 5Q become so interconnected that they

can no longer be considered separate graphs?

To answer this question, we calculate the distance, in hops, between users in

each group. Intuitively, the distance between the groups should decrease over

time as 1) more external edges are created, and 2) more internal edges increase

the connectivity of users with external edges. In our experiments, we select 1,000

random users from each OSN on each day after the merge and calculate the

shortest path from each of them to any user in the opposite OSN. Thus, the

lowest value possible in this experiment is 1, e.g. the randomly selected user has
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an external edge directly to a user in the opposite OSN. New users and edges to

new users are not considered in these tests.

Figure 3.10 shows that the average path length between the two OSNs rapidly

declines over time. Although average path lengths for both OSNs initially start

above 3 hops, within 47 days average path lengths are <2. Path lengths from

Xiaonei to 5Q are uniformly shorter, and by the end of the experiment the average

path length is <1.5.

The distance between Xiaonei and 5Q rapidly approaches an asymptotic lower

bound in Figure 3.10. Once this bound is reached, it is apparent that the graphs

can become no closer together. Thus, we conclude that by day 50, when both lines

begin to flatten and approach the lower bound, Xiaonei and 5Q can no longer be

considered separate OSNs. These results demonstrate how quickly the two disjoint

OSNs can merge into a single whole, even when edge creation is biased in favor

of internal edges (see Figure 3.9(b)).

Summary. Our analysis of the network merge produces several high-level con-

clusions:

• There were a large number of duplicate accounts between Xiaonei and 5Q

that become inactive immediately after the merge.

• Edges to new nodes quickly become the driving force behind edge creation.

• Despite user’s preference against external edges, Xiaonei and 5Q very quickly

merge into a single, well connected graph.
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3.3.4 Summary of Observations

In this section, we focus on analyzing social network dynamics at different

levels of scale, including dynamics at the level of individual users, dynamics in-

volving the evolution of communities, and dynamics involving the merging of two

independent online social networks.

Our analysis produced three significant findings of dynamics at different scales.

First, at the individual node level, we found that the preferential attachment

model gradually weakens in impact as the network grows and matures. In fact,

edge creation in general becomes increasingly driven by connections between ex-

isting nodes as the network matures, even as node growth keeps pace with the

growth in overall network size. Second, at the community level, we use an incre-

mental version of the popular Louvain community detection algorithm to track

communities across snapshots. We empirically analyze the impact of community

on edges, and find that communities, especially large communities, have signifi-

cant impact on their inside users’ activities. Finally, we analyze detailed dynamics

following a unique event merging two comparably-sized social networks, and ob-

serve that its impact, while significant in the short term, quickly fades with the

constant arrival of new nodes to the system.

3.4 Detecting Self-Similarity in Edge Creation

To develop a model that can capture the network dynamic events in absolute

time, we explore the temporal properties of the edge creation process in Renren. In

recent years, as an important statistical property, self-similarity has been found in

a variety of contexts, including local network traffic, wide-area network traffic, file
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system accesses, and web traffic requests [39, 66, 98, 140, 177]. Since self-similar

traffic has very different statistical properties, e.g. significantly higher burstiness

than conventional processes, it cannot be captured by conventional traditional

randomized models [140]. Influenced by the lessons from those areas, in this

section we measure the existence of self-similarity in social network dynamics. If

any exists, a complete dynamic model needs to account for it.

In this section, we describe our efforts to search for and identify the presence

of self-similarity in the edge creation process of Renren. Specifically, we examine

edge creation events aggregated across users over time and study the time series

representing the total number of newly-generated edges per time unit. Note that

our analysis efforts focus on edge creation, mainly because an exploratory analysis

of the Renren data revealed no particular structure underlying the observed node

creation events.

3.4.1 Background

In this section, we briefly introduce the notion of self-similarity, and then

describe three popular methods used to measure self-similarity

Self-Similarity. For a continuous or discrete time process, self-similarity refers

to the scale invariance behavior of the process [22, 98, 38]. Intuitively, it means

that the statistic properties of the process look similar at different time scales.

This type of structure is commonly associated with fractals, but has been found in

a variety of contexts in computing systems and networks, including web traffic [39],

file system accesses [66], and traffic in both wide area networks [140] and local

Ethernet networks [98]. For self-similar traffic, the aggregation of a large number
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of bursty sources produces bursty data, unlike conventional Poisson processes that

tend to look uniform at large time scales.

To formally define self-similarity, let X = {Xi : i = 0, 1, 2, ...} be a covariance

stationary stochastic process whose autocorrelation function r(k) ∝ k−β (0 < β <

1) as k → ∞. For each integer m (m > 0), we form a new process X(m) containing

the averaged values of X in disjoint blocks of size m. That is, the jth element of

X(m) is:

X
(m)
j =

1

m
(X(j−1)m+1 + X(j−1)m+2 + ... + Xjm). (3.3)

If X is self-similar, then r(m)(k), the autocorrelation function of X(m), should

satisfy [66, 98]:

r(m)(k) = r(k), or r(m)(k) → r(k),m → ∞. (3.4)

Ideally, the stochastic distributions of a self-similar process should stay invari-

ant across all time scales. In reality, this property often exists at smaller time

scales, but breaks down at large time scales due to periodic patterns and finite

lifetimes [59, 66]. Thus, it is not only important to identify self-similarity, but

also the range of time scales for which it is visible in the dataset [1, 59, 66].

An effective (and commonly used) metric to measure the existence of self-

similarity is the Hurst parameter H, measureable in multiple ways [1, 98, 175].

Intuitively, H helps to capture the “burstiness” of a covariance stationary process,

where a higher H corresponds to aggregate traffic with stronger bursts. Formally,

H = 1 − β/2, where β is defined by the process X’s autocorrelation function

r(k) ∝ k−β. A process exhibits self-similarity if H falls in the range of (0.5, 1).
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Estimating H. In this section, we consider three popular methods to estimate

the Hurst parameter H: variance analysis, R/S analysis and wavelet-based anal-

ysis.

Variance analysis [98, 140] estimates H directly from β. From Eq. (3.4), a

self-similar process X satisfies

log(V ar(X(m))) ∝ −β log(m), m → ∞

where X(m) are the aggregated processes introduced earlier where m is the block

size and β = 2(1−H) . Thus, by linearly fitting the plot of log(V ar(X(m))) versus

log(m), this method can estimate β and then H.

R/S analysis computes H by measuring how apparent the variability of a time

series changes with the length of the time-period being considered. This can be

formally captured by the R/S statistic [66, 98]. To compute H, this method

divides the process X into blocks of size n, and computes the corresponding R/S

statistic R(n)/S(n). Because E[R(n)/S(n)] ∝ nH [66] for self-similar processes,

one can estimate H using the slope of log(E[R(n)/S(n)]) versus log(n).

Wavelet-based analysis represents a process X by a sequence of subspaces

{Wj}j∈Z where Wj is at a finer scale than Wj−1 (Wj ⊂ Wj−1). This way, the

method can reveal detailed properties of X at different time scales. If X ex-

hibits self-similar scaling, its projection on the Wj subspace, Γj, satisfies: E[Γj] ∼

|2−jv0|1−2H . Here 2−jv0 represents the reference frequency of the jth subspace

Wj while v0 is the reference frequency of the root subspace W0. Then H can

be estimated by plotting E[Γj] vs. scale j on log-log scale and applying linear

regression.
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Discussion. Because of the simplicity, variance analysis and R/S analysis

are widely used in self-similarity studies [59, 66, 98]. However, as ”eyeballing”

approaches, they produce results with higher estimation errors [83, 166], which is

also shown in Section 3.4.2. In contrast, wavelet-based analysis offers a principled

and rigorous analysis of a given dataset’s scaling property, and provide more

reliable results with confidence interval in detecting self-similarity [1], which will

be explored in Section 3.4.3.

3.4.2 Preliminary Analysis on Sampled Data

Our goal is to investigate if Renren’s network evolution displays properties

consistent with self-similarity, and if so, over what range of time scales. A key

challenge we face is identifying and isolating the impact of non-stationary patterns

in the edge creation data. As a first step, we limit the impact of new node arrivals

on edge creation, by focusing our analysis on edges created between members of

a fixed user population.

In the following, we start by briefly describing how we sample the original

dataset by removing certain node arrival and other obvious non-stationary events.

We then show our initial analytical findings and resulting key insights.

Data Sampling. We begin our analysis with a conservatively sampled subset

of our data to remove obvious non-stationary factors that may impede any direct

analysis of self-similar scaling properties. Specifically, we limit our sample to

include only existing users as of December 1, 2007, and study all edge creation

events between them during December 1-31, 2007, i.e. days 741 to 771. This

sampling eliminates three factors. First, by studying only edges created between
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Figure 3.11: The number of new edges created per second in the sampled dataset.

members of a fixed user population, we minimize the impact of new node arrivals.

Second, this month avoids the abnormal expansion of new edges around day 386

as a result of the one-time merge of two social networks (Renren and 5Q). Finally,

this time period is sufficiently late in the history of Renren that it avoids the

initial exponential network growth experienced by the Renren network. This data

sample represents a stable growth period in Renren, and contains 18, 714, 712

edges created between 6, 219, 531 existing users.

Measurement Results. We now present the results using the following three

heuristics: visualization of raw data, variance analysis and R/S analysis.

A Long-term Diurnal Pattern. Figure 3.11 visualizes the edge creation

process by plotting the number of new edges created in each second over the

one month (Day 741-771). It shows a clear diurnal pattern in the edge creation

process. This obvious non-stationary behavior precludes any direct analysis of

self-similarity.

We also confirm this from the results of the variance and R/S analysis. Fig-

ure 3.12 plots the values of log(V ar(X(m))) against log(m). The curve maintains

a linear shape until m reaches about 104 seconds (≈ 3 hours), and then its slope
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Figure 3.12: Variance analysis in
the sampled dataset.
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Figure 3.13: R/S analysis in the
sampled dataset.

changes significantly. Similarly, Figure 3.13 plots in log-log scale individual R/S

statistics as a function of the block size n (in seconds). The red straight line

shows the best linear fit and its slope results in an H-estimate of H = 1.19, clearly

outside the allowed range of (0.5 < H < 1).

We also note that the appearance of such a pronounced diurnal pattern has

a direct impact on subsequent efforts to model our dataset and suggests that

models should include a component that accounts for this expected user-generated

periodic behavior.

Self-similar Fluctuations. An interesting observation from Figure 3.11

is that the fluctuations on top of the diurnal component appear to display con-

sistently bursty behavior. Similarly, Figures 3.12 and 3.13 both show that the

measurement data only starts to lose its (straight line) shape when m or n ex-

ceeds 104 seconds (about 3 hours). These observations suggest that over time

scales that are not significantly impacted by the presence of the observed diurnal

patterns (i.e., a few hours and below), the time series of new edge creations may

be consistent with self-similar scaling behavior.
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Figure 3.14: Estimates of H for 248 disjoint 3-hour segments.

We confirm this intuition by performing variance and R/S analysis on each 3-

hour log segment and computing its corresponding H value. Figure 3.14 plots the

results over the entire month as 248 disjoint 3-hour segments. H estimates based

on the variance analysis method vary across segments, with a mean of 0.8867 and

variance of 0.0108. Regarding the R/S analysis method, the obtained H-estimates

remain stable across all segments, with a mean 0f 0.6752 and variance of 0.0006.

For both methods, the overwhelming majority of segments (98.4% for variance,

99.5% for R/S) estimate H within (0.5 < H < 1). These results provide strong

evidence that the Renren edge creation process exhibits self-similarity over time

scales ranging from seconds to hours.

The Reliability of our H Estimates. In the process of our preliminary

data analysis, we encountered potential issues regarding the reliability of the H-

estimates obtained by both the variance and R/S analysis methods. For a number

of segments, the methods produced poorly-fitting linear regression lines, which in

turn resulted in highly questionable estimates of H. Figure 3.15 shows an example

of such a “problematic” segment (6-9am, December 6, 2007), where the quality of

the line fitting is poor via variance analysis. We also plot as an inset in the figure
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Figure 3.15: An example of poor line fitting in variance analysis.

the raw edge growth during the time period, which shows a clear non-stationary

event.

To quantify the impact of such poor data fitting on the obtained H estimates,

we compute for each segment the coefficient of determination R2, which mea-

sures how well the observed data points (from each method) are represented by a

straight line. Like [66], we use the criterion of R2 > 0.9 to indicate that the fitting

is sufficiently good to provide a reliable H estimate. Out of all segments, 38.31%

of the segments have unreliable H estimates using R/S analysis vs. 70.97% using

variance analysis! We note that similar reliability issues have also been reported

by prior studies [83, 166].

Summary of Observations. Our initial analysis led to three main findings.

• The edge creation process in Renren displays a typical diurnal pattern in user

activity that makes the process inherently non-stationary and thus prevents

a direct analysis of self-similarity.

• Local fluctuations on top of the periodic component display behavior consis-

tent with self-similar scaling in 3-hour segments using variance analysis and

R/S analysis.
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• We find that both the variance and R/S analysis methods cannot provide

reliable H.

3.4.3 Wavelet-Based Analysis

To avoid most of the encountered problems in Section 3.4.2, we apply a rig-

orous wavelet-based method to systematically study potential self-similar scaling

behavior exhibited by our dataset. In this section, we start our analysis by con-

firming and substantiating our preliminary results that show properties consist

with self-similar properties in sampled data. Then, we remove the restriction and

extend our analysis to all edge creation events. In our analysis, we refer to a seg-

ment as “abnormal” if its corresponding H estimate (including its 95% confidence

interval) does not completely fall within the required range (0.5, 1).

Experiment Setup. We estimate H using the wavelet software developed for

self-similarity analysis [169]. By carefully choosing the number of vanishing mo-

ments N that controls v0, the tool can systematically detect and then remove the

impact of various types of deterministic trends in the dataset. Furthermore, it

also relies on known theoretical properties of the resulting H-estimate to provide

confidence intervals for H. In the analysis of our dataset, we choose the value of

N that produces both a good fit and the smallest confidence interval.

Confirming Preliminary Results. First, we use a wavelet-based analysis to

measure whether Renren’s edge creation process exhibit self-similar scaling be-

havior in 3-hour segments as shown in Section 3.4.2. Figure 3.16 shows the H

estimates with their 95% confidence intervals for all 248 disjoint 3-hour long seg-
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Figure 3.16: Wavelet analysis of sampled data using 3-hour segment length.

Start Time Shift
Normal Segments Abnormal Segment

H mean H variance Portion
0 hour 0.6312 0.0020 2.02%
1 hour 0.6326 0.0021 2.43%
2 hours 0.6291 0.0019 2.02%

Table 3.1: Statistics of 3-hour segments with start time shifts.

ments derived from the sampled used in Section 3.4.2. We see that only 5 segments

are abnormal, and all other segments have highly consistent H estimates that are

tightly clustered around H = 0.63. In other words, the large majority (98%) of

data segments consistently produce H estimates that are well within the interval

(0.5, 1).

To examine the robustness of our results, we check different segment composi-

tions. For instance, we shift the start times of each segment by 0, 1, and 2 hours,

and summarize the results in Table 3.1. We notice that the mean and variance

of the resulting H-estimates for all normal segments remain stable. In addition,

the portion of segments deemed abnormal also remains stable at 2.02% ∼ 2.43%.

These results provide further evidence that Renren’s edge creation process is con-

sistent with self-similar scaling over time scales in 3-hour time scale.
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Figure 3.17: The estimate of H of all the disjoint 3-hour segments between
September - December 2007 on the dataset without sampling.

Analysis Without Sampling. Next, we expand our analysis to consider the

full, unsampled dataset. Our goal is to understand whether the observed self-

similar scaling behavior on the sampled data is still present after including new

nodes with rapid (and non-stationary) edge growth.

We examine all edge events in the year of 2007, when the network growth get

stabilized after the network merge event. Similar to the results on the sampled

dataset in Figure 3.16, 97% of the 3-hour segments fall into the self-similar range,

with mean H = 0.64. Figure 3.17 shows H estimates for September-December

2007 (due to the space limit), which are representative of all other months. The

result suggest with high confidence, that the same self-similar scaling property

exists consistently in the edge creation process of the Renren network throughout

time. These results also confirm the high reliability of the wavelet method in

self-similar detection.

Summary. We apply the more reliable and accurate wavelet method to detect

self-similarity in 3-hour segment length. There are two key findings.

• The outcomes confirm prior R/S and variance results, with high confidence,

that the property consistent with self-similar scaling lasts to several hours.
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• We also note that this property holds for our full, unsampled dataset (minus

the network merge event).

3.4.4 Summary of Observations

In this section, in addition to the “eyeballing” approach, we measure the ex-

istence of self-similarity in edge creation process with three popular methods,

i.e. variance analysis, R/S analysis and wavelet-based analysis. There are two

important take-aways from our observations.

First, in long-term time scale, such as days or weeks, there is an obvious diurnal

pattern in edge creation, indicating the Renren network is non-stationary. This

makes the analysis of self-similarity challenging.

Second, with a more reliable wavelet-based method, we identify that local

fluctuations on top of the diurnal component of the Renren data exhibit self-

similar scaling properties in short-term time scale, i.e. 3 hours.

3.5 A model of network dynamics

Motivated by our analysis on the dynamics of Renren network structure and

the self-similar analysis of Renren’ edge creation process, we seek to build a com-

plete model of social network edge dynamics. The model includes two components:

a temporal component that produces a sequence of time-stamped events defining

when and how many new edges are formed, and a spatial component defining

where in the graph these new edge creations take place. Ideally, the model should

produce synthetic dynamic graphs that display diurnal and self-similar properties

in edge dynamics, as well as graph structural changes observed in Section 3.2 and
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Section 3.3, such as graph densification, path shrinkage, local declustering and the

fact that old nodes drive edge creation as the network grows. Next, we explain

the model in detail, and provide validation at the end of this section.

3.5.1 The Temporal Component

Our analysis in Section 3.4 shows that for the Renren social network, the edge

creation process displays a combination of (long-term) diurnal patterns and self-

similar behavior over shorter time scales (3 hours). This motivates us to build

the temporal component by combining two sub-modules: a non-stationary diurnal

module that dominates at large time scales and captures the predictable cycles in

user daily activities, and a self-similar module that produces the inherent short-

term burstiness in user edge creations.

The Self-Similar Module. Prior work has demonstrated two effective methods

for producing self-similar traffic. The first aggregates many ON/OFF processes

and the superposition displays a self-similar traffic pattern [178]. It requires sta-

tistical knowledge of the ON and OFF periods, both following some heavy-tailed

distributions. The second type constructs an M |G|∞ queuing model [38, 176].

Each source arrives according to a Poisson process, and its active time follows

a heavy-tailed distribution, e.g. the Pareto distribution. With a constant rate

during each node’s active time, the resulting count process {Nt, t = 0, 1, 2, ...},

where Nt is the number of active sources at time t, is self-similar. In other words,

by multiplexing sources with Poisson arrivals and heavy-tailed active times, one

can produce a self-similar process.
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Figure 3.18: CCDF of edge # created per user in Dec. 2007.

A deeper look at our measurement data shows that the M |G|∞-based method

provides a more natural way and a better fit for modeling the Renren social net-

work. This is because over time, the number of edges created per Renren user

follows a heavy-tailed distribution. For example, Figure 3.18 plots the distribu-

tion of the number of edges created per user during December 2007, which clearly

displays a heavy-tailed pattern. Assuming each user creates edges at a constant

rate, the active time of a user is directly proportional to its count of edges cre-

ated. This implies that each Renren user’s active time also follows a heavy-tailed

distribution, consistent with the construction of the M |G|∞-based method.

We build the self-similar module similar to a standard M |G|∞ process [38].

Each user starts its active time period following a Poisson process with rate λ.

As it starts, we determine its active time duration Ti (seconds) based on a Pareto

distribution P (X > x) = (xm

x
)α, (x ≥ xm, 1 < α < 2). Assuming that each

user creates edges at a constant rate γ/s, we can calculate the total number of

edges created by user i by Ti · γ. Since an edge is created by two users, we derive

the number of edges St created at time t from the number of active users Nt:

St = γ ·Nt/2, and get the self-similar module {St, t = 0s, 1s, 2s, ...}.
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The Diurnal Module. We extract the non-stationary diurnal component by

subtracting the self-similar component from the original edge creation process.

Suppose the number of original edge creation in Renren is Ot at time t. Then the

subtraction produces a process {Ut = Ot − St, t = 0s, 1s, 2s, ...}. We then apply

a sliding window over Ut to derive a smooth long-term curve, and then fit this

curve with a periodic function, i.e. Sine, to produce Dt, the diurnal module for

our temporal component.

Integrating the Two Modules. We combine St and Dt together as our tar-

geted edge creation process Et: {Et = St+Dt, t = 0s, 1s, 2s, ...}. Since the diurnal

component Dt may generate negative values, we set a minimum for the sum to be

0.

Note that we design this temporal component to characterize new edge events

aggregated across all the users, capturing the key properties of edge dynamics that

are consistent with self-similar scaling and diurnal patterns. Thus this component

only generates timestamps of new edges (in terms of the total number of edges

created in each second), but do not associate any of these new edges to specific

users. The actual distribution of edge events across users is performed by the

spatial component, which we will describe next.

3.5.2 The Spatial Component

To determine where each new edge is created in the network evolution process,

we first highlight two key observations made during our analysis of dynamics in

the Renren network structure, i.e. Section 3.2 and 3.3. First, in Section 3.3, we

observed that past an initial rapid growth phase, new edge creation was dominated
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by pairs of existing nodes (>80%). This result differs from existing graph models,

which generally assume that new node arrivals consistently drive edge creation

regardless of network size. Second, the results in Section 3.2 show that the Ren-

ren network displays three structural properties over time: graph densification,

distance shrinkage, and high but decreasing clustering coefficient (CC). Existing

graph models [104, 118, 29, 6, 5] capture only a subset of these properties.

Intuition. We consider a stable social network in a state of ongoing growth.

The results in Section 3.2 show that past a fast initial period of explosive growth

(from 0 to 0.1M users in Renren), the arrival rate of new users becomes relatively

small compared to existing active users. At this point, continuous friend discovery

between existing users dwarfs the initial bursts of edge creations triggered by new

user arrivals. Therefore, in our model, we use inter-arrival gaps between new users

as iterations to drive the formation of new edges between existing users.

Our intuition is to focus on the creation of edges between existing users follow-

ing the arrival of each new user. For simplicity, we assume a new user ui creates

an edge before the arrival of the next user ui+1, and after this edge creation ui

immediately becomes an “existing user.” We hypothesize that existing users are

often introduced to groups of friends, either discovering the presence of an offline

friend (and other mutual friends), or creating new groups of friends via common

interests or social applications. To capture this intuition, in each iteration, our

model selects two existing nodes u and v at random, and connects node u repeat-

edly to multiple users in node v’s neighborhood. Here node v can be an existing

friend of u or a previously unknown “stranger.” The continuous formation of ran-

dom connections between existing users shrinks average path lengths and lowers
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the clustering coefficient by building shortcuts between nodes, while connecting

friends of friends slows the rate of declustering.

A Detailed Spatial Component. The spatial component is strongly depen-

dent on the temporal component to determine the maximum number of edges

created in any iteration (i.e. between two node arrivals). Let F (n) represent

the number of edges in the network when the network contains n nodes. Then

F (i+ 1)−F (i) represents the total number of edges created between the arrivals

of ui and ui+1, which can be computed by the results generated by the tempo-

ral model. With the knowledge of node arrival time statistics, i.e. ti and ti+1,

we can estimate the total number of edges k to create between ti and ti+1 as

k = F (i + 1) − F (i) =
∑ti+1

t=ti
Et.

Specifically, our proposed edge formation process is defined as follows. We

drive the process using a parameter p, which defines the probability a node is

selected in the recursive edge creation process between existing nodes.

1. When a new node ui joins the network, k = F (i + 1) − F (i).

2. Edge creation by the new node: The new node ui randomly selects an

existing node uj to connect. k = k − 1. Now ui becomes an existing node.

3. Edge creation between existing nodes: Randomly select two existing

nodes u and v. If they are not connected, connect them and set k = k − 1.

Then node u starts the following steps (a)-(c) to connect neighbors of node

v and repeat them until all the required edges have been created (i.e. k = 0)

or there are no more nodes to connect. Each time an edge is created, set

k = k − 1.
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(a) Generate a random number x following the geometric distribution with

mean (1 − p)−1.

(b) Randomly selected the neighbors of node v that do not connect node u

until reaching any of the three situations: 1) x neighbors are selected;

2) there is no more edges that need to be created, i.e. k=0; 3) all

available neighbors of node v are selected. Let R={r1, r2, . . . , rx} be

the set of selected nodes.

(c) For each node ri ∈ R, node u connects node ri and repeats steps (a)-(b)

on node ri.

4. If more edges need to be created (k 6= 0), repeat step 3.

Discussion. The existing model most similar to our new model is the Forest

Fire model [104], which simulates network growth by creating edges between each

new node to a set of existing nodes. A new node joining the network randomly

connects to an existing node and some of its neighbors; this repeats across the

network, like a fire burning through a forest. This “burning process,” and the

recursive edge creation process between existing nodes in our model both act

to produce high clustering coefficients, by recursively connecting to neighbors of

neighbors.

Three key differences separate our model from Forest Fire. First, our model

captures the observation that existing nodes drive edge creation in a stable growth

network. Second, our model produces decreasing clustering coefficients by con-

necting pairs of random existing nodes. Forest Fire does not capture this prop-

erty because it always forms close triangles in each node’s neighborhood, leading
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to relatively high clustering coefficients unlikely to decrease over time. Third,

our model can be accurately calibrated to the observed dynamics of an existing

network trace, by incorporating the network growth function from the temporal

model. This additional flexibility makes it more attractive for generating realistic

dynamic network traces.

3.5.3 Model Validation

Having described the model for network edge dynamics, we now validate this

model using the Renren dataset. Specifically, we calibrate the model using the

Renren measurement, and then use the calibrated model to generate a set of syn-

thetic dynamic graphs. We then compare these graphs to the original data in

terms of both temporal and spatial properties. Because the output of the tem-

poral component is used as an input to the spatial component, the corresponding

validation on the spatial component also validates the complete model with both

components.

Validating the Temporal Component. To demonstrate the accuracy of the

temporal component, we calibrate the component with the Renren dataset of the

month of December 2007, the same dataset used in our self-similarity analysis.

Calibrating the Self-Similar Module. We construct the self-similar pro-

cess according to the M |G|∞ model with Poisson arrival rate λ, whose active time

period follows a Pareto distribution with parameters α and xm. Consider the Ren-

ren edge creation data collected in December 2007 where 7, 246, 621 nodes have

created edges. We can estimate the corresponding value of λ in this period by the
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R/S Variance Wavelet
H Estimation 0.6784 0.6322 0.6935

Confidence Interval – – 0.0099

Table 3.2: Self-similar analysis on the self-similar component of the synthetic
data.

average active node count in the unit of seconds, i.e. λ ≈ 2.7/s. To derive the

active time (in seconds) statistics, we leverage a proven relationship between H

and α [38, 98]: H = (3 − α)/2. Because our measured average H value for the

December 2007 dataset is 0.65, we have α = 1.7. Finally, assuming a node creates

edges at a constant rate of 1/s, the average number of edges created per node is

then equal to the average active time across all the nodes, i.e. the mean of the

Pareto distribution xm ∗ α/(α − 1). By measuring the average edges created per

node in December 2007, we get xm ≈ 3.2.

Using the M |G|∞-based method with λ = 2.7/s, α = 1.7 and xm = 3.2, we

generate a synthetic trace that represents the edge creation process contributed by

the self-similar module. To validate that the resulting trace is indeed consistent

with the designed-for self-similar scaling behavior (i.e., H = 0.65), we apply the

earlier-described R/S, variance and wavelet analysis methods. Table 3.2 summa-

rizes the results of this exercise and shows that the estimated H values are 0.68,

0.63 and 0.69, respectively (95% confidence interval is 0.0099).

Calibrating the Diurnal Module. We calibrate the diurnal module by

first subtracting the synthetic trace generated by the self-similar module from the

original edge creation data. We apply a sliding window of size 1 hour and a step

size of 1 second to smooth the subtraction result over time. The smoothed data for

December 2007 is well-fitted by the sine function: 9.7 sin(7.27·10−5 t+3.56)−0.003.
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Figure 3.19: Synthetic edge creation process in Dec. 2007
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Figure 3.20: Variance analysis of
synthetic edge creation.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

lo
g(

R
/S

)

log(n)

H estimation = 1.2454

value
fitting

Figure 3.21: R/S analysis of syn-
thetic edge creation process.

Validation Results. We sum the synthetic traces produced by the above

two sub-modules to build a single synthetic edge creation trace, and then com-

pare it to the original data. Repeating the process 5 times produces extremely

consistent outcomes. The total edge counts are very similar, with the average

ratio between synthetic traces and the original of 1.007 with variance < 10−6.

Figure 3.19 plots a sample of one synthetic trace together with the original trace

(for December 2007) where the synthetic data displays diurnal patterns similar to

the original data.

We further compare the two traces using the self-similarity analysis over both

longer time scales and short time scales discussed in Section 3.4. Figures 3.21

(R/S analysis) and 3.20 (variance analysis) demonstrate that the synthetic trace

127



Chapter 3. Analyzing and Modeling Dynamics in Big Real Graphs

0

0.5

1.0

1.5

2.0

 0  50  100  150  200  250
H

 V
al

ue
Segment Index

Figure 3.22: Wavelet analysis of synthetic edge creation process in segments of
3 hours.

exhibits the very same issues that plagued our preliminary analysis of the original

data; e.g., scaling behavior changes drastically for time scales larger than a few

hours, H-estimates are outside the theoretical range (0.5, 1.0), and non-stationary

diurnal patterns preventing a direct scaling analysis of the data.

Next we apply the wavelet-based analysis method to examine the self-similar

nature of the synthetic trace over 3-hour segments. Figure 3.22 plots the resulting

H-estimates for each segment together with their 95% confidence intervals. We

see that the H-estimates for the synthetic trace also fall consistently between 0.5

and 1 with an exception of 4.03%, which closely matches the 3% exception seen

from the original data. The average H value for the synthetic trace is around

0.75, again very similar to that of the original trace (mean H=0.65) as shown in

Figure 3.16.

Together, these results demonstrate that our temporal component can accu-

rately capture the diurnal patterns and properties consistent with self-similarity

in short time scales displayed by the original Renren data. The contributions of

the two sub-modules also explain why self-similarity exists in short time scales

but breaks down in longer ones.
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Figure 3.23: The synthetic network growth trace of Dec. 2007 generated by the
temporal component vs. the original network growth trace in Dec 2007.

Connecting the Temporal and Spatial Components. Recall that the

spatial component of our model uses the temporal component to compute the

number of edges created between each pair of node arrivals, e.g. between arrival

of ith and i + 1th nodes:
∑ti+1

t=ti
Et. This requires us to accurately estimate ti,

the arrival time of each node. From our analysis, we find that no properties

consistent with self-similarity exist in the node arrival process. Instead, we find

that a Poisson process with arrival rate λnew can accurately model new node

arrivals, where λnew is estimated as the average number of new nodes arriving

per second. This is consistent with the observation in [140], that while packet

arrivals appear better modeled using self-similar processes, Poisson processes can

effectively capture user sessions. With the new node arrival process modeled by

the Poisson process, the network edge growth F (i) can be predicted as a function

of the network node count i, where F (i+ 1)−F (i) =
∑ti+1

t=ti
Et. Figure 3.23 shows

that our solution F (i) can accurately predict the network growth in Dec. 2007.

Validating the Spatial Component Because of extremely costly calibration

process and the network merge event on Dec. 12, 2006, it is impractical to calibrate

the model using the entire Renren dataset. Instead, we use two data segments to
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Graph # of Nodes # of Edges Avg. Deg Avg. path Avg. CC
2006 Original 624,364 8,258,266 26.45 4.16 0.159

2006 Synthetic 624,364 8,721,927 27.93 4.46 0.183
2007 Original 1,751,146 18,203,520 20.79 4.87 0.156

2007 Synthetic 1,751,146 18,305,972 20.9 4.78 0.159

Table 3.3: Statistics of the original graph and the synthetic graph generated by
our spatial component.

validate the spatial component. The first segment (referred to as 2006 Original)

covers the launch of the network (Nov. 21, 2005) to Dec. 11 2006, right before

the merge event. The last snapshot of the graph includes 624K nodes and 8M

edges. This represents the “early” period of the Renren network. The second

segment (2007 Original) covers the first two months of 2007, and its last snapshot

has 1.75M nodes and 18M edges. This represents the “stable growth” period of

the Renren network. We use the snapshot on Dec. 31, 2006 as the initial graph

and apply our spatial component to model the network evolution. Table 3.3

summarizes the observed network statistics for the two segments.

Calibrating Spatial Component. For each of the two segments, we cali-

brate the two parameters of the spatial component: network growth function F (n)

and node selection probability p. For the 2007 segment, we derive F (n) from the

temporal component. For the 2006 segment, since the 2006 network is not stable

and large enough to display significant temporal patterns, we manually fit the

network growth by a polynomial function. Figure 3.24 shows the F (n) estima-

tion results for both segments, which closely match the original data. Next, we

determine p by generating synthetic graphs with p varying between 0.1 and 0.9,

and choose the optimal p value that produces graphs with network distance and

clustering coefficient most similar to the original data. The resulting p values

130



Chapter 3. Analyzing and Modeling Dynamics in Big Real Graphs

0M

4M

8M

12M

16M

20M

0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M

# 
of

 E
dg

es

# of Nodes

Generated by F(n)=1.5*10-16*n4-2*10-10*n3-8.5*10-5*n2+2.8*n+176

Nov. 21, 2005 -Dec. 11, 2006

Generated by the temporal  component

Jan-Feb. 2007

Original
Synthetic

Figure 3.24: Network growth fitted by F (n).

are different for the two segments: 0.7 for the 2006 segment and 0.5 for the 2007

segment.

Validation Results. Using the calibrated component, we generate syn-

thetic dynamic graphs for the two data segments. As shown in Table 3.3, the

synthetic graphs statistically match the original graphs in terms of average degree,

average path length and average clustering coefficient. The goal of our validation

is to understand whether the synthetic graphs display graph densification, average

path length shrinkage and decreasing clustering coefficient (CC). Figure 3.24 con-

firms that the synthetic graphs can accurately capture the densification property.

Thus in the following, we focus on evaluating the dynamic properties of average

path length and average clustering coefficient in the synthetic graphs.

As a reference, we also include the results using the preferential attachment

(PA) model, the most popular static graph model, and the original Forest Fire

model, which is the most similar to our model 2. We repeated our experiments five

times for all three models. Due to the consistency of the results with variance ≥ 3

2Following a similar procedure described by [149], we modify the forest fire model to produce
undirected graphs by creating undirected edges and allowing the “burning” process to proceed
in both directions of an edge. To calibrate the model, i.e. determining the burning probability
p, we sample values between (0, 1) to find the best fit p where the corresponding synthetic graphs
match the original graph the most in terms of network distance and clustering coefficient
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Figure 3.25: Synthetic graph dynamic properties

order of magnitude smaller than the average value, we only show the results for a

single run in the following, where “Original” stands for the Renren graph, “Spatial

Component” stands for the graph generated by our spatial component, “PA”

means the graph generated by the preferential attachment model and “Forest

Fire” is the graph generated by the original Forest Fire model.

Average Path Length Evolution: Figure 3.25(a) plots the average path length

over time using our spatial component, the PA model, the original Forest Fire

model and the original data, for the two time segments. For the 2006 segment,

our proposed spatial component displays the most similar pattern to the original

data, where the path length decreases first and then increases slightly, while the

PA and the Forest Fire models lead to a different pattern where the path length

continues to increase over time. For the 2007 segment, all four graphs display
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a similar pattern where the average path length decreases over time. Even in

this case, our spatial component is the most close to the original graph. In this

segment, the behaviors of the PA and Forest Fire models change because the

initial graph used to generate the synthetic graphs is a snapshot of the original

data captured on Dec. 31, 2006. This helps to remove the long-term impact of

preferential attachment that produces increasing average path length over time.

Average Clustering Coefficient Evolution: Figure 3.25(b) plots the results

of average clustering coefficient from the three models and the original data. For

the 2006 segment, both the original data and our spatial component produce an

average clustering coefficient between 0.15 and 0.25, which decreases slightly over

time. The clustering coefficient of the PA model stays closely to 0 while that of

the Forest Fire model remains around 0.4. For the 2007 segment, again our spatial

component produces nearly identical value of the original data, while the result

of the PA model deviates largely and that of the Forest Fire model displays an

opposite pattern. Together, these results confirm three key findings. First, our

spatial component can accurately capture the significant local connectivity and

the slowly decreasing clustering coefficient. Second, the PA model is unable to

maintain high clustering coefficient over time, even when growing from a highly

clustered graph. Finally, as indicated by our earlier analysis, the Forest Fire model

produces relatively high clustering coefficients, and thus is unable to capture the

key properties of Renren such as decreasing clustering coefficient.

Our validation confirms that the spatial component can accurately capture

the dynamic features observed from Renren. Since our 2007 dataset takes input

from the temporal component, the spatial component validation also validates the

complete model with both the temporal and spatial components.
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3.6 Related Work

Dynamic OSN Measurement Several studies have measured basic dynamic

properties of graphs. [104] analyzed four citation and patent graphs, and proposed

the forest fire model to explain the observed graph densification and shrinking di-

ameter. [101] studied details of dynamics in four OSNs to confirm preferential

attachment and triangle closure features. Similar conclusions were reached by

studies on Flickr [124] and a social network aggregator [58]. [82] measured net-

work temporal radius and found out that there is a gelling point to distribution.

In addition, [6] measured weighted dynamic graphs, [3] analyzed the growth of

a Korean OSN, and [170] considered temporal user interactions as graph edges

instead of static friendship. Finally, [68, 90] analyzed blogspace dynamics.

Some studies focused on analyzing social network dynamics through explicitly

defined groups [14, 190, 79] or disconnected components [91, 118, 81]. [90] tried

to identify blog communities and detect bursts in different temporal snapshots.

[136] utilized the clique percolation method [44] to identify overlapping community

dynamics in mobile and citation graphs. Unlike these studies, our work focuses

on the evolution of implicit communities in a densely connected, large-scale social

graph.

Dynamic Community Detection and Tracking Algorithms There are two

approaches to detecting and tracking dynamic communities. One approach is to

minimize the self-defined temporal cost of communities between snapshots. [164]

proved that this problem is NP-hard and then several works [164, 163, 109] pro-

posed approximation algorithms. However, these algorithms only scale to graphs

with thousands of nodes. [158] and [87] propose dynamic community detection al-
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gorithms that scale to graphs with hundreds of thousands of nodes. The drawback

of [158] is that it cannot track individual community evolution.

The other approach is to match communities detected by static community

detection algorithms across temporal snapshots. [65] maps communities between

snapshots if their similarity is higher than a threshold. [10, 161] tracks commu-

nities between snapshots based on critical community events. These algorithms

do not consider any temporal correlation when detecting communities between

snapshots.

Self-similarity Measurements and Models Self-similarity describes the phe-

nomenon where a certain property of an object is preserved with respect to scaling

in space and/or time. That is, if an object is self-similar, its parts, when magnified,

resemble the shape of the whole [139]. Previous works have examined structural

self-similarity [155, 86], which is concerned with the scale-invariance of certain

aspects of the spatial structure of a graph (e.g., node degree distribution) un-

der coarse-graining of vertices. In this work, we focus on temporal self-similarity,

which describes the scaling properties of certain statistics (e.g., variance, R/S,

wavelet coefficients, finite-dimensional distributions) of a time series when com-

puted at different time scales [139]. Note that throughout the chapter we simply

refer to temporal self-similarity as self-similarity. We also recall that while for

discrete- and continuous-time stochastic processes, the concept of self-similarity

is well-defined and has resulted in a large body of literature, for graph struc-

tures, the concept of self-similarity remains ill-defined and often reduces to the

above-mentioned simple notion of structural self-similarity.

135



Chapter 3. Analyzing and Modeling Dynamics in Big Real Graphs

Temporal self-similarity has been discovered in diverse contexts such as ecol-

ogy, life sciences and stock markets [51], and was first introduced to network

traffic for the purpose of modeling the bursty characteristics observed in mea-

sured Ethernet LAN traffic [99, 98]. Later studies reported self-similarity also

in other network traffic scenarios, including wide-area traffic [140], World Wide

Web traffic [39], variable-bit-rate video [23, 59], blog posts [62], messages [148]

and emails [51] in communication networks. Note that several of these empirical

studies mentioned that in practice, self-similarity is typically observed over a finite

range of time scales [1, 59, 66] and can be difficult to discern at both very small

and very large time scales.

The traditional way to quantify the existence and degree of self-similarity is

to estimate the Hurst parameter H. Four of the most well-known methods for

estimating H are the variance analysis [98, 140], R/S analysis [98, 66], Whittle’s

method [175], and wavelet-based method [1]. Variance and R/S analysis are pop-

ular heuristic methods and have been used to measure self-similarity in various

areas [23, 39, 59, 66, 98, 140]. However, due to their heuristic nature, they can give

incorrect estimates when non-stationary effects in the form of shifts in the mean

or slow trends exist in data [83, 166]. Under appropriate conditions, Whittle’s

method and wavelet-based techniques are more advanced and robust and can be

used to obtain more reliable H-estimates with associated confidence intervals.

Generally speaking, there are two classes of self-similar models. The first

includes purely mathematical models, e.g. fractional Gaussian noise [116], frac-

tional Brownian motion (FBM) [116], fractional ARIMA processes [75] and b-

model [173]. However, these models are strictly descriptive and cannot explain the

root cause underlying the formation of self-similarity. The second class of models
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intends to provide physical reasons behind the existence of self-similarity. Inspired

by the application of the class of renewal reward process in economics [165], the su-

perposition of many ON/OFF sources [178, 66] captures the observed self-similar

nature of Ethernet LAN traffic, provided the duration of the ON- or OFF-periods

have a heavy-tailed distribution. The M |G|∞ queuing model [38, 140, 139], also

known as the immigration death model, where sources arrive according to a Pois-

son process and each source is active for a duration that is described by a heavy-

tailed distribution, can also successfully explain self-similar phenomena.

Graph Models In general, graph models can be classified as static graph mod-

els or dynamic graph models. We can further classify static models into three

sets. One set includes feature-driven models designed to capture one or more

static graph features, e.g. small-world [174], power-law degree distribution [18],

and high clustering coefficients [73]. A second set includes intent-driven models

that try to explain the underlying process of graph formation. Nearest neighbor

models [168, 167], random walk models [26, 168] and copying models [92, 168]

belong to this set. Finally, a third set of models generates graphs based on graph

structural statistics instead of graph features. Kronecker graphs [103] apply Kro-

necker multiplication to generate graphs similar to real graphs. The dK-series

model [115] uses subgraph degree distributions to capture increasingly detailed

representations of graph structures. Finally, [149] proposes a general technique

to produce “realistic” synthetic graphs by calibrating graph models using real

graphs.

Dynamic models aim to capture dynamic features of graphs. [104] proposes a

Forest Fire model to capture graph densification and diameter shrinking proper-
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ties in networks. A later model [118] captures similar properties. The dynamic

copying model captures the property of decreasing clustering coefficients, but does

not produce a power-law degree distribution [29]. Based on graph structure statis-

tics, [6] proposes a 3D Kronecker model. [5] is a model based on random typing

statistics to capture several graph dynamic features. Unlike our work, [5] is not

modeled after empirical data of graph dynamics. Finally, [101] designs a model

of network evolution, but focuses on reproducing desired structural properties in

the final snapshot.

3.7 Summary

This chapter first presents a detailed analysis of user dynamics in the Renren

network, a dataset that covers the creation of 19 million users and 199 million

edges over a 25-month period. More specifically, we focus on analyzing the network

dynamics at different levels of network scale, and identifying the existence of self-

similar properties in edge creation process.

Our analysis on dynamics at different scales produced three important find-

ings. First, at the individual node level, unlike the assumption of most graph

models, we found that edge creation is increasingly driven by existing nodes as

network matures and keeps growing. At the same time, however, the strength of

preferential attachment gradually weakens over time as the network grows and

matures. Second, at the community level, we use the incremental Louvain algo-

rithm to track communities across snapshots, and show users’ activities are in fact

impacted by the users in the same community. Finally, we analyze the dynamics

following the unique network merge event in detail, and find that due to the large
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number of new nodes joining the network, the impact of this event fades quickly

after a short term.

To detect self-similarity, we use a range of techniques, including R/S analysis,

the variance fitting method, and a wavelet-based method. Given the presence

of the diurnal pattern in long-term time scales, from days to weeks, we rely on

the robust wavelet-based method to not only reliably identify the existence self-

similarity, but also determine the time scales where self-similarity is visible, i.e 3

hours.

Motivated by the results of a detailed analysis of dynamics in the Renren net-

work, we propose a complete dynamic graph model for large online social networks.

Our model includes a temporal component that defines when and how many new

edges are formed across all the users, and a spatial component that defines where

in the graph new edges form. While the temporal component captures the co-

existence of a diurnal pattern and self-similar behavior, the spatial component

ensures that the edge creation process is primarily driven by existing nodes and

is responsible for the dynamic properties of the graph structure, such as graph

densification, shrinking network diameter, and decreasing local clustering. Our

extensive validation shows that our model accurately captures both the temporal

and spatial dynamic properties of the Renren network. Importantly, this model

produces a sequence of time-stamped edge creation events, which uniquely define

the formation and evolution of a social network in time and space, and can be

used by other researchers for generating “realistic” dynamic graph traces.
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Chapter 4

Privacy Preserving

Graph-Sharing

4.1 Introduction

1Studying structure of real social and computer networks through graph anal-

ysis can produce insights on fundamental processes such as information dissemina-

tion, viral spread and epidemics, network dynamics and resilience to attacks [78,

91, 135, 8]. The use of real graphs generated from measurement data is invalu-

able, and can be used to validate theoretical models or realistically predict the

effectiveness of applications and protocols [3, 34, 149, 179].

Unfortunately, there is often a direct tension between the need to distribute

real network graphs to the research community, and the privacy concerns of users

or entities described by the dataset. For example, social graphs from real measure-

ments are used to capture a variety of artifacts in online social networks, including

strength of social ties, number and frequency of social interactions, and flow of

information. Similarly, detailed topology graphs of enterprise networks or major

1Abbreviated version of content in this chapter can be found in paper ”Sharing Graphs Using
Differentially Private Graph Models” [150].
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ISPs contain confidential information about the performance and robustness of

these networks. Releasing such sensitive datasets for research has been challeng-

ing. Despite the best of intentions, researchers often inadvertently release more

data than they originally intended [126, 127, 192]. Past experience has taught us

that traditional anonymization techniques provide limited protection, and often

can be overcome by privacy attacks that “de-anonymize” datasets using external

or public datasets [13, 126, 127].

Thus we are left asking the question, how can researchers safely share realistic

graph datasets from measurements without compromising privacy? One option is

to develop and apply stronger anonymization techniques [71, 111], many of which

modify the graph structure in subtle ways that improve privacy but retain much

of the original graph structure. However, these approaches generally only provide

resistance against a specific type of attack, and cannot provide protection against

newly developed deanonymization techniques. Techniques exist in the context of

databases and data mining, which provide provable levels of protection [55, 56],

but are not easily applied to graphs. Still other techniques can protect privacy on

graphs, but must significantly change the graph structure in the process [142, 71].

Our approach to provide graph privacy and preserve graph structure.

We seek a solution to address the above question, by starting with observation

that any system for sharing graphs must deal with the tension between two goals:

protecting privacy and achieving structural similarity to the original, unmodified

graph. At one extreme, we can distribute graphs that are isomorphic to the orig-

inal, but vulnerable to basic deanonymization attacks. At the other extreme, we

can distribute random graphs that share no structural similarities to the origi-
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nal. These graphs will not yield any meaningful information to privacy attacks,

but they are also not useful to researchers, because they share none of the real

structures of the original graph.

Ideally, we want a system that can produce graphs that span the entire privacy

versus similarity spectrum. In such a system, users can specify a desired level of

privacy guarantee, and get back a set of graphs that are similar to the real graph

in structure, but have enough differences to provide the requested level of privacy.

The main premise of our work is that we can build such a system, by distilling

an original graph G into a statistical representation of graph structure, adding

controlled levels of “noise,” and then generating a new graph G′ using the result

statistics. This requires two key components. First, we need a way to accurately

capture a graph’s structure as a set of structural statistics, along with a generator

that converts it back into a graph. For this, we use the dK-series, a graph model

that is capable of capturing sufficient graph structure at multiple granularities to

uniquely identify a graph [115, 45]. We can achieve the desired level of privacy by

introducing a specific level of noise into G’s degree correlation statistics. Second,

we need a way to determine the appropriate noise necessary to guarantee a desired

level of privacy. For this, we develop new techniques rooted in the concept of ǫ-

differential privacy, a technique previously used to quantify privacy in the context

of statistical databases.

In chapter, we develop Pygmalion, a differentially private graph model for

generating synthetic graphs. Pygmalion preserves as much of the original graph

structure as possible, while injecting enough structural noise to guarantee a chosen

level of privacy against privacy attacks. Initially, we formulate a basic differen-

tially private graph model, which integrates controlled noise into the dK degree
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distributions of an original graph. We use the dK-2 series, which captures the

frequency of adjacent node pairs with different degree combinations as a sequence

of frequency values. However, when we derive the necessary conditions required

to achieve ǫ-differential privacy, they show that an asymptotical bound for the

required noise grows polynomially with the maximum degree in the graph. Given

the impact of dK values on graph structure, these large noise values result in

synthetic graphs that bear little resemblance to the original graph.

To solve this challenge, we seek a more accurate graph model by significantly

reducing the noise required to obtain ǫ-differential privacy. We develop an algo-

rithm to partition the statistical representation of the graph into clusters, and

prove that by achieving ǫ-differential privacy in each cluster, we achieve the same

property over the entire dataset. Using a degree-based clustering algorithm, we

reduce the variance of degree values in each cluster, thereby dramatically re-

ducing the noise necessary for ǫ-differential privacy. Finally, we apply isotonic

regression [19] as a final optimization to further reduce the effective error by more

evenly distributing the added noise.

We apply our models to a number of Internet and Facebook graphs ranging

from 14K nodes to 1.7 million nodes. The results show that for a given level of

privacy, our degree-based clustering algorithm reduces the necessary noise level

by one order of magnitude. Isotonic regression further reduces the observed error

in dK values on our graphs by 50%. Finally, we experimentally show that for

moderate privacy guarantees, synthetic graphs generated by Pygmalion closely

match the original graph in both standard graph metrics and application-level

experiments.
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Access to realistic graph datasets is critical to continuing research in both

social and computer networks. Our work shows that differentially-private graph

models are feasible, and Pygmalion is a first step towards graph sharing systems

that provide strong privacy protection while preserving graph structures.

4.2 A differential private graph model

In this section, we provide background on graph anonymization techniques,

and motivate the basic design of our approach to graph anonymization. First, we

discuss prior work, the inherent challenges in performing graph anonymization,

potential privacy risk in generating synthetic graphs, and our desired privacy

goals. Second, we introduce the main concepts of ǫ-Differential Privacy, and lay

out the preconditions and challenges in leveraging this technique to anonymize

graphs. Finally, we motivate the selection of the dK-series as the appropriate

graph model on which to build our system.

4.2.1 Background and Goals

A significant amount of prior work has been done on protecting privacy of

datasets. We summarize them here, and clarify our privacy goals in this project.

Private Datasets. Many research efforts have developed privacy mechanisms

to secure large datasets. Most of these techniques, including cryptographic ap-

proaches [20] and statistical perturbations [134, 56], are designed to protect struc-

tured data such as relational databases, and are not applicable to graph datasets.

An alternative, probabilistic approach to privacy is k-anonymity [160]. It is de-
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signed to secure sensitive entries in a table by modifying the table such that

each row has at least k − 1 other rows that are identical [55]. Several public

datasets have been successfully anonymized with k-anonymity [121, 2] or through

clustering-based anonymization strategies [24].

Graph Anonymization. Several graph anonymization techniques have been

proposed to enable public release of graphs without compromising user privacy.

Generally, these techniques only protect against specific, known attacks. The

primary goal of these anonymization techniques is to prevent attackers from iden-

tifying a user or a link between users based on the graph structure. Several

anonymization techniques [71, 191, 111, 193, 142] leverage the k-anonymity model

to create either k identical neighborhoods, or k identical-degree nodes in a target

graph. These types of “attack-specific” defenses have two significant limitations.

First, recent results have repeatedly demonstrated that researchers or attackers

can invent novel, unanticipated de-anonymization attacks that destroy previously

established privacy guarantees [126, 127, 13, 189]. Second, many of these defenses

require modifications to the protected graph that significantly alter its structure

in detectable and meaningful ways [71, 142].

Graph Models. Because of high privacy risk in sharing real graphs, an attrac-

tive alternative to protecting graph privacy is to generate synthetic graphs with

near identical graph properties matching real graphs. Along this direction, two

models are proposed to capture structural characteristics of real graphs. One is

Kronecker graph model [103], which uses Kronecker multiplication to approximate

real graph structures. The other model is called dK-graph model, which extracts
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subgraph degree distributions and reproduces synthetic graphs with identical de-

gree distributions. However, the high computational complexity limits their ac-

curacy in practical settings. Alternatively, [149] proposes a systematic approach

to calibrate graph models with real graphs. Given a real graph and a model,

this approach finds the best parameters for the model by adaptively searching the

parameter space and looking for the set of parameters with minimum structural

differences between the generated graph and the real graph. The structural dif-

ference is quantified as the Euclidean distances between the dK-series of the two

graphs. By applying the method, the improved versions of traditional graph mod-

els, such as preferential attachment [18], nearest neighbor model [168], and forest

fire model [104], can produce synthetic graphs similar to the original real graphs

in term of structures. However, what would happen if the models are highly ac-

curate such that the generated graphs are identical with the real graphs? Clearly,

privacy problem will remain in sharing the accurate synthetic graphs. Thus, a

new graph model with privacy guarantee is needed.

Our Goals: Edge vs. Node Privacy. In the context of privacy for graphs,

we can choose to focus on protecting the privacy of either node or edges. As

will become clear later in this chapter, our approach of using degree correlations

(i.e. the dK-series), captures graph structure in terms of different subgraph sizes,

ranging from 2 nodes connected by a single edge (dK-2) to larger subgraphs of

size K.

Our general approach is to produce synthetic graphs by adding controlled

perturbations to the graph structure of the original graph. This approach can

provide protection for both node privacy and edge privacy. This choice directly
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impacts the sensitivity of the graph privacy function, and as a result, how much

structural noise must be introduced to obtain a given level of privacy guarantees.

In this chapter, we choose to focus on edge privacy as our goal, and apply this

assumption in our analysis of our differential privacy system in Section 4.3 and 4.4.

We chose to target edge privacy because our work was originally motivated by

privacy concerns in sharing social graphs, where providing edge privacy would

address a number of practical privacy attacks.

4.2.2 Differential Privacy

Our goal is to create a novel system for the generation of anonymized graphs

that support two key properties:

1. Provides quantifiable privacy guarantees for graph data that are “future-

proof” against novel attacks.

2. Preserves as much original graph structure as possible, to ensure that anonymized

data is still useful to researchers.

Differential privacy [47] is a recently developed technique designed to provide

and quantify privacy guarantees in the context of statistical databases [48, 72].

Others have demonstrated the versatility of this technique by applying differen-

tial privacy to distributed systems [146], network trace anonymization [120], data

compression techniques [180], and discrete optimization algorithms [69]. Other

work focused specifically on applying differential privacy to simple graph struc-

tures such as degree distributions [70, 72]. In contrast, our work has the potential

to inject changes at different granularities of substructures in the graph, instead

of focusing on a single graph metric.
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One piece of prior work tried to guarantee graph privacy by adding differential

privacy to Kronecker graphs [122]. Whereas this approach tries to guarantee

privacy by perturbing the Kronecker model parameters, our strategy acts directly

on graph structures, which provides tighter control over the perturbation process.

Unfortunately, the author asserts there are incorrect results in the paper2.

Basic Differential Privacy. The core privacy properties in differential privacy

are derived from the ability to produce a query output Q from a database D, which

could also have been produced from a slightly different database D′, referred to

as D’s neighbor [47].

Definition 1. Given a database D, its neighbor database D′ differs from D in

only one element.

We obtain differential privacy guarantees by injecting a controlled level of sta-

tistical noise into D [49]. The injected noise is calibrated based on the sensitivity

of the query that is being executed, as well as the statistical properties of the

Laplace stochastic process [50]. The sensitivity of a query is quantified as the

maximum amount of change to the query’s output when one database element is

modified, added, or removed. Together, query sensitivity and the ǫ value deter-

mine the amount of noise that must be injected into the query output in order to

provide ǫ-differential privacy.

Differential privacy works best with insensitive queries, since higher sensitivity

means more noise must be introduced to attain a given desired level of privacy.

Thus insensitive queries introduce lower levels of errors, and provide more accurate

query results.

2See the author’s homepage.

148



Chapter 4. Privacy Preserving Graph-Sharing

4.2.3 Differential Privacy on Graphs

We face two key challenges in applying differential privacy concepts to privacy

protection on graphs. First, we must determine a “query” function in our context,

which we can use to apply differential privacy concepts. Second, the sensitivity of

this query function must be low enough, so that we can attain privacy guarantees

by introducing only low levels of noise, thus allowing us to preserve the accuracy

of the results. In our context, this means that we want to generate graphs that

retain the structure and salient properties of the original graph. We address the

former question in this section by proposing the use of the dK-series as our graph

query operation. We address the accuracy question in Sections 4.3 and 4.4, after

fully explaining the details of our system.

Recall that the problem we seek to address is to anonymize graph datasets

so that they can be safely distributed amongst the research community. We

leverage a non-interactive query model [47], such that the original graph structure

is queried only once and the entire budget to enforce privacy is used at this time.

dK is used to query the graph and the resulting dK-series is perturbed under

the differential privacy framework. Note that only the differentially private dK-

series is publicized. Unlike applications of differential privacy in other contexts,

we can now generate multiple graphs using this differentially private dK-series

without disrupting the level of privacy of the original graph. Therefore, we use

a non-interactive query model to safely distributed graph datasets without being

constrained to a single dataset.

The dK-Graph Model. We observe that the requirements of this query func-

tion can be met by a descriptive graph model that can transform a graph into a set
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<1, 2> = 1   (A-B)

<2, 2> = 1   (B-C)

<2, 3> = 1   (C-D)

<1, 3> = 2   (E-D), (D-F)
A C

B

E F
D

{
dK-2
Series

 

dK-3
Series {

<1, 2, 2> = 1   (A-B-C)

<2, 2, 3> = 1   (B-C-D)

<2, 3, 1> = 2   (C-D-E), (C-D-F)

<1, 3, 1> = 1   (E-D-F)

Figure 4.1: An illustrative example of the dK-series. The dK-2 series captures
the number of 2-node subgraphs with a specific combination of node-degrees, and
the dK-3 captures the number of 3-node subgraphs with distinct node-degree
combinations.

of structural statistics, which are then used to generate a graph with structure sim-

ilar to the original. Specifically, we propose to use the dK-graph model [115] and

its statistical series as our query function. dK captures the structure of a graph at

different levels of detail into statistics called dK-series. dK can analyze an orig-

inal graph to produce a corresponding dK-series, then use a matching generator

to output a synthetic graph using the dK-series values as input. The dK-series is

the degree distribution of connected components of some size K within a target

graph. For example, dK-1 captures the number of nodes with each degree value,

i.e. the node degree distribution. dK-2 captures the number of 2-node subgraphs

with different combinations of node degrees, i.e. the joint degree distribution.

dK-3 captures the number of 3-node subgraphs with different node degree combi-

nations, i.e. an alternative representation of the clustering coefficient distribution.

dK-n (where n is the number of nodes in the graph) captures the complete graph

structure. We show a detailed example in Figure 4.1, where we list dK-2 and

dK-3 distributions for a graph.
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dK is ideal for us because the dK-series is a set of data tuples that provides a

natural fit for injecting statistical noise to attain differential privacy. In addition,

together with their matching generators, higher levels of dK-series, i.e. n > 3,

could potentially provide us with a bidirectional transformation from a graph to

its statistical representation and back.

While larger values of K will capture more structural information and produce

higher fidelity synthetic graphs, it comes at the expense of higher computation

and storage overheads. Our work focuses on the dK-2 series, because generator

algorithms have not yet been discovered for dK-series where K≥3. While this

may limit the accuracy of our current model, our methodology is general, and can

be used with higher order dK-series when their generators are discovered.

ǫ-Differential Privacy in Graphs. Given the above, we can now outline how

to integrate differential privacy in the context of graphs. An ǫ-differentially private

graph system would output a graph that given a statistical description of an input

graph, the probability of seeing two similar graphs as the real input graph is close,

where closeness between the two probabilities is quantified by ǫ. A larger value of

ǫ means it is easier to identify the source of the graph structure, which means a

lower level of graph privacy.

Prior work has demonstrated that in many cases, accuracy of query results on

differentially private databases can be improved by decomposing complex queries

into sequences of “simple counting queries” that happen to have extremely low

sensitivity [27, 28, 48]. Unfortunately, this approach will not work in our context,

since our goal is to achieve privacy guarantees on whole graph datasets, and not

just privacy for simple graph queries such as node degree distributions. In the
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Figure 4.2: Overview of Pygmalion. ǫ-differential privacy is added to measured
graphs after sorting and clustering the dK-2-series.

next section, we start with a basic formulation of a differentially private graph

model, and then provide an optimized version. We illustrate the final process,

shown as Pygmalion in Figure 4.2.

4.3 Basic Design

In this section, we perform the analytical steps necessary to integrate ǫ-differential

privacy into the dK graph model. Our goal is to derive the amount of noise neces-

sary to achieve a given ǫ-privacy level. The amount of Laplacian noise necessary

is a function of both ǫ, the user-specified privacy parameter, and S, the sensitiv-

ity of the dK function. First, we formally define the dK-2 series, and derive its

sensitivity SdK−2. Next, we describe the dK-perturbation algorithm (dK-PA) for

injecting noise into the original dK-2 series, and prove that it provides the desired

ǫ-differential privacy. Our analysis shows that the asymptotic bound on noise

used in dK-PA grows polynomially with maximum node degree, which means we

need to inject relatively large levels of noise to guarantee ǫ-privacy. Finally, as

expected, our experiments on real graphs confirm that dK-PA generates synthetic

graphs with significant loss in accuracy. This poor result motivates our search for

improved techniques in Section 4.4.
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4.3.1 Sensitivity of dK − 2

dK-function. We formally define dK-2 as a function over a graph G = (V,E),

where V is the set of nodes and E is the set of edges connecting pair of nodes in

V :

dK(G) : Gn → ℑ

where Gn is the set of graphs with n = |V | nodes and ℑ is the set of unique

degree tuples in the dK-2-series with the corresponding count of instances in G.

Formally, ℑ is a collection of {dx, dy; k} where each entry represents that the

number of connected components of size 2 with degree (dx, dy) is k. Let m be the

cardinality of ℑ. Because the maximum number of entries in dK-2 is bounded by

the number of possible degree pairs,
∑dmax

i=1 i, where dmax be the maximum node

degree in G, thus m = O(d2max). Prior studies have demonstrated that in large

network graphs dmax is upper bounded by O(
√
n) [179, 94], and thus, in those

cases, m is upper bounded by O(n).

Sensitivity Analysis. In the context of differential privacy, the sensitivity of a

function is defined as the maximum difference in function output when one single

element in the function domain is modified. The domain of dK-2 is a graph G.

Neighbor graphs of G are all the graphs G′ which differ from G by at most a single

edge. Changing a single edge in G will result in one or more entries changing in

the corresponding dK-2-series. Thus, the sensitivity of dK-2 is computed as the

maximum number of changes in the dK-2-series among all of G’s neighbor graphs.

Lemma 1. The sensitivity of dK-2 on a graph G, SdK−2, is upper bounded by

4 · dmax + 1.
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Proof. Let e be a new edge added to a graph G = (V,E) between any two nodes

u, v ∈ V . Once the edge e is added to G the degrees of u and v increase from d to

(d + 1) and from d′ to (d′ + 1) respectively. This graph transformation produces

the following changes in the dK-2 on G: the frequency k of tuple {d+ 1, d′ + 1; k}

gets incremented by 1 because of the new edge (u, v). For example, a new edge

between A and C in Figure 4.1 produces an increment of the frequency k of the

tuple {2, 3; k} from k = 1 to k = 2. Furthermore, a total of d+ d′ already present

tuples need to be updated with the new degree of u and v, and so the tuples

with the old degrees get decremented by a total of d+ d′ and the tuples reflecting

the new degree get incremented for a total of d + d′. To summarize, the overall

number of changes in the dK-2 -series is 2(d + d′) + 1. In the worst case, when

u and v are nodes of maximum degree dmax, the total number of changes in the

original dK-2-series by adding an edge between u and v is upper bounded by

4 · dmax + 1.

Lemma 1 derives only the upper bound of the sensitivity because, as in Defi-

nition 3 [47], it is the sufficient condition to derive the necessary amount of noise

to achieve a given ǫ-privacy level. Lemma 1 shows that the sensitivity of dK-2 is

high, since dmax has been shown to be O(
√
n) in measured graphs [179, 94]. Note

that prior work on differential privacy [27, 28, 48, 70] generally involved functions

with a much lower sensitivity, i.e. 1. In these cases, the low sensitivity means

that the amount of noise required to generate differentially private results is very

small. In contrast, the sensitivity of our function indicates that the amount of

noise needed to guarantee ǫ-differential privacy in dK-2 will be high. Therefore,

the accuracy of synthetic graphs generated using this method will be low. Note
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that if we use a higher order dK-series, i.e. K ≥ 3, we would have found an even

higher sensitivity value, which may further degrade the accuracy of the resulting

synthetic graphs.

4.3.2 The dK-Perturbation Algorithm

We now introduce the dK-perturbation algorithm (dK-PA) that computes

the noise to be injected into dK-2 to obtain ǫ-differential privacy [47]. In dK-PA,

each element of the dK-2-series is altered based on a stochastic variable drawn

from the Laplace distribution, Lap(λ). This distribution has density function

proportional to e−
|x|
λ , with mean 0 and variance 2λ2. The following theorem

proves the conditions under which ǫ-differential privacy is guaranteed [50].

Theorem 1. Let D̃K be the privacy mechanism performed on dK such that

D̃K(G) = dK(G) + Lap(SdK−2

ǫ
)m. For any G and G′ differing by at most one

edge, D̃K provides ǫ-differential privacy if:

∣∣∣ ln Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]

∣∣∣ ≤ ǫ

Proof. Let s =< s1, s2, ..., sm > be a possible output of D̃K(G) and m the number

of its entries, and let G′ be the graph with at most one different edge from G.

Using the conditional probabilities, we have:

Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]
=

m∏

i=1

Pr[D̃K(G)i = si|s1, ...si−1]

Pr[ ˜DK(G′)i = si|s1, ...si−1]
,

since each item of the product has the first i−1 values of dK-2 fixed. Each si is the

result of applying Laplacian noise calibrated by SdK−2. Note that Lemma 1 has
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studied the sensitivity of dK-2, SdK−2, under the condition that two graphs differ

by at most one edge. Thus, the conditional probability is Laplacian, allowing us

to derive the following inequalities:

m∏

i=1

Pr[D̃K(G)i = si|s1, ...si−1]

Pr[ ˜DK(G′)i = si|s1, ...si−1]
≤

m∏

i=1

e
| ˜DK(G)i−

˜DK(G′)i|

σ

where σ is the scale parameter of the Laplace distribution that is 4dmax+1
ǫ

. Thus,

m∏

i=1

e
| ˜DK(G)i−

˜DK(G′)i|

σ = e
||D̃K(G)− ˜DK(G′)||1

σ

where, by definition D̃K(G) = dK(G)+Lap(SdK−2

ǫ
), and ||DK(G)−DK(G′)||1 ≤

SdK−2 with SdK−2 ≤ 4dmax + 1 as proved in Lemma 1. Thus, we have:

e
||D̃K(G)− ˜DK(G′)||1

σ =

= e
||dK(G)+Lap(

SdK−2
ǫ )−dK(G′)−Lap(

SdK−2
ǫ )||1

σ ≤ e
4dmax+1
4dmax+1

ǫ = eǫ

and so, by applying the logarithmic function, we have that

∣∣∣ ln Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]

∣∣∣ ≤ ǫ

which concludes the proof.

Theorem 1 shows that by adding noise to the dK-2-series using independent

Laplace random variables calibrated by SdK−2 from Lemma 1, we achieve the

desired ǫ-privacy.
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Quantifying Accuracy. We apply the error analysis proposed by [72] on dK-

PA to quantify the accuracy of the synthetic graphs it produces, compared to the

original graphs.

Definition 2. For a perturbed dK-2-series that is generated by the privacy mech-

anism D̃K on a graph G, as defined in Theorem 1, the estimated error on D̃K

can be computed as the expected randomization in generating D̃K.

We now quantify the expected randomization in D̃K:

m∑

i=1

E[(D̃K(G)i − dK(G)i)
2] = mE[Lap(

SdK−2

ǫ
)2]

Using Lemma 1 and that m = O(d2max)we have:

mE[Lap(
SdK−2

ǫ
)2] = mV ar(Lap(

dmax

ǫ
)) =

2m · d2max

ǫ2
= O(

d4max

ǫ2
).

This asymptotical bound shows that the noise injected by dK-PA into dK-2

scales with the fourth-degree polynomial of dmax. This result implies that syn-

thetic graphs generated by dK-PA will have relatively low accuracy because of the

large error introduced by the perturbation process. Furthermore, it implies that

even for relatively weak privacy guarantees, dK-PA will introduce large errors

that may significantly change the structure of the resulting synthetic graphs from

the original.

4.3.3 Validation on Real Graphs

At this point, we have demonstrated analytically that the impact of adding

noise to the dK-2-series using dK-PA will result in synthetic graphs that deviate
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Type Graph Nodes Edges

Internet
WWW 325,729 1,090,108

AS 16,573 40,927

Facebook

Monterey Bay 14,260 93,291
Russia 97,134 289,324
Mexico 598,140 4,552,493

LA 603,834 7,676,486

Table 4.1: Different measurement graphs used for experimental evaluation.

significantly from the originals. In this section, we empirically evaluate the impact

of adding noise to the dK-2-series by executing dK-PA on real graphs.

Methodology. To illustrate that our system is applicable to different types of

graphs, we select a group of graphs that include social graphs from Facebook [179,

149], a WWW graph [7] and an AS topology graph [135] crawled on Jan 1st, 2004,

which have been used in prior graph mining studies [93]. The social graphs were

gathered using a snowball crawl of the Facebook regional networks [179], and show

graph metrics highly consistent with Facebook graphs generated using unbiased

sampling techniques [61]. Table 4.1 lists the graphs used in our evaluation, which

range from 14K nodes to 650K nodes.

We extract the dK-2-series for each graph, introduce noise using the dK-PA

strategy, then compute the Euclidean distance between the perturbed dK-2-series

and the original as a measure of the level of graph structural error introduced.

We computed results for all graphs in Table 4.1, and they are consistent. For

brevity, we limit ourselves to report results only for the AS graph, the WWW

graph, and the Russia Facebook graph. We choose Russia to represent our social

graphs because its results are representative of the other graphs, and its size does

not result in extremely long run time for our experiments.
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Figure 4.3: The noise required for different privacy levels quantified as the Eu-
clidean distance between a graph’s original and perturbed dK-2 series.

Results. Figure 4.3 shows that the dK-PA strategy produces a large error for

small values of ǫ (i.e. strong privacy guarantees). We compute the error as

the Euclidean distance between the original dK-2-series and the perturbed dK-

2-series with dK-PA strategy. As we mentioned, the low level of accuracy is due

to the large noise dK-PA injects into dK-2, resulting in a perturbed dK-2 that

is significantly different from the original. The bright side is that the dK-PA

strategy is robust across different datasets, and the error decreases exponentially
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as ǫ grows, which is shown by the linear correlation in the log-log scale plot of

Figure 4.3.

The high error is largely due to the high sensitivity of our function dK-2. To

understand the potential lower-bound on the error, we imagine a scenario where

if we had a function with sensitivity of 1, then we could achieve much lower

error, plotted in Figure 4.3 as the Ideal line. Note that this line is a hypothetical

lower bound that is only meant to demonstrate the impact of the dK function’s

sensitivity on the final result. Indeed, Figure 4.3 shows that the loss in accuracy

of our model can largely be attributed to the sensitivity of the dK-2 series.

4.4 Improvement via Partitioning

The results in the previous section demonstrate the loss of accuracy in the

perturbed dK-2-series after adding noise to guarantee ǫ-differential privacy. In

this section we propose a novel algorithm called Divide Randomize and Conquer

(DRC) that enables more granular control over the noise injected into the dK-

2-series. This qualifies DRC to support ǫ-differential privacy while also allowing

for more accurate results. First, we discuss the design of DRC and prove that

it does guarantee ǫ-differential privacy. Next, we investigate the amount of error

introduced with this approach, and show that DRC requires significantly less noise

than dK-PA to achieve an equal level of privacy. Finally, we propose an optimized

version of DRC, called LDRC, and empirically verify the improved accuracy of

our algorithms using measured graphs.
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4.4.1 Divide Randomize and Conquer Algorithm

Our goal is to develop an improved privacy mechanism that significantly re-

duces the amount of noise that must be added to achieve a given level of ǫ-privacy.

While we cannot change the fact that the sensitivity of dK-2 scales with dmax, our

insight is to partition data in the dK-2-series into a set of small sub-series, then

apply the perturbation independently to achieve ǫ-privacy within each sub-series.

If we carefully perform the partitioning to group together tuples with similar

degree, we effectively reduce the value of dmax for each of the vast majority of

sub-series. This means we can achieve ǫ-privacy on each sub-series for a fraction

of the noise required to achieve ǫ-privacy across the entire series. We will then

prove that ǫ-differential privacy holds across the entire dK-2-series if it holds for

each of the partitioned sub-series. Thus, we produce an alternative algorithm that

achieves the same level of privacy as dK-PA, while introducing significantly less

noise.

We instantiate our ideas as the Divide Randomize and Conquer algorithm

(DRC). The core steps of DRC are:

1. Partition (Divide) the dK-2-series into sub-series with specific properties;

2. Inject noise into each sub-series (Randomize);

3. Conquer the perturbed sub-series into a single dK-2-series.

In the remainder of this section we discuss the partitioning step of DRC. We

first define an ordering function on dK-2 to sort tuples with similar sensitivity.

The ordered dK-2 is then partitioned into contiguous and mutually disjoint sub-

series. We prove that the properties of these sub-series lead to the definition
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of a novel sensitivity function and consequently to a novel methodology to add

noise. Noise injection, conquering, and the resulting error analysis are discussed

in Section 4.4.2.

∂ ordering on dK-2. The dK-2-series is sorted by grouping dK-tuples with

numerically close pairs of degrees. In particular, the dK-tuples are sorted in the

new dK-2 series, named β-series, by iteratively selecting from the original series

all the tuples {dx, dy; k} with degrees (dx & dy) ≤ i, ∀ i ∈ [1, dmax]. Thus, the

β-series is simply the sorted list of dK-tuples that adhere to the above inequality

ordering. For example, the tuple {1, 2; k} is closer to {5, 5; k′} than to {1, 8; k′′}.

We can formally describe this transformation with the following function:

Definition 3. Let ∂ be the sorting function on dK-2 which is formally expressed

as:

∂(i) = min
dx,dy∈dK

{max(dx, dy) ≥ max(dx′ , dy′) = ∂(i− 1) }

Note that {dx, dy; k} 6= the first i − 1 tuples. Thus, the ∂ function is a transfor-

mation of dK-2 such that ∂ : ℑ → β where β identifies the ordered dK-2.

Partitioning the β-Series. The β-series is partitioned into m̃ sub-series, with

the ith named βi for i ∈ [1, m̃]. The partition of β is based on two properties.

First, the ∂ ordering has to be obeyed and thus each partition can only acquire

contiguous tuples in the β-series. Second, each tuple can appear in one and only

one sub-series. Given the ∂ ordering and the above two rules we can guarantee

mutually disjoint and contiguous sub-series βi. These two constraints are funda-

mental to satisfying the sensitivity properties we prove in the following Lemma 2

and Lemma 3.
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Sensitivity of βi sub-series. The sensitivity of each βi-series can be studied

following the same logic used to find the sensitivity of dK-2, by quantifying the

maximum number of changes that may occur in the βi-series due to an edge change

in the graph G. Due to the ∂ ordering imposed in each sub-series, we can show

that the maximum degree in each βi plays a fundamental role in bounding its

sensitivity.

Lemma 2. The sensitivity Sβi
of a sub-series βi with tuple degrees almost equal

to dk + 1 is upper bounded by 4 · dk + 1.

The proof of this lemma is sketched because it follows the logic of Lemma 1.

Due to the proposed ∂ ordering, each sub-series i is composed only of tuples where

both degrees are less than or equal to a particular integer d. The worst-case (i.e.

the maximum number of changes to the tuples in the same βi) occurs when the

tuple with degrees d − 1 are in the same sub-series. Therefore, the maximum

number of changes occur when a new edge is added between two nodes (u, v) both

with degree d− 1, after which both nodes u and v have degree d. Adding a new

edge between u and v causes dk = d − 1 entries in βi to become invalid. Each

invalid entry is replaced with new entry of degree d. Thus, the upper bound on

the total number of changes is 2 · dk deletions, 2 · dk additions, and one new edge,

with the total being 4 · dk + 1.

Given the partitioning approach and the imposed ∂ ordering across sub-series,

we are able to exploit further properties on the βis-series. In particular, the

sensitivity of any βi is independent from the location where the change occurs in

the graph. Conversely, the sensitivity of a particular partition is dependent on

the tuple with the highest degree values, as proved in Lemma 2. Therefore:
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Lemma 3. The sensitivity of any βi is independent by the sensitivity of any other

βj with i 6= j.

Proof. The proof proceeds by contradiction from the following assumption: the

sensitivity of a βi is impacted by a change occurring in a βj with i 6= j. Without

loss of generality, assume i < j, and ∂(i′) is a tuple in βi and ∂(j′) is a tuple in

βj, as from Definition 3. Assume that an edge is formed between a node x with

corresponding tuples < ∂(i′), ∂(i′ + 1), .. > ∈ βi and a node y with corresponding

tuples < ∂(j′), ∂(j′ + 1)... > ∈ βj. The maximum number of changes that can

occur due to this event is bounded by the degree values of x and y. Let d be the

new degree of x. The maximum number of tuples that can change in βi are d− 1

tuples that get deleted and d that get added, which is < 2 · d. Symmetrically, let

b be the new degree of y so the maximum number of tuples that can change in

βj is < 2 · b. Even if d and b are equal to the maximum degree value dk within

their sub-series, as demanded in Lemma 2, the number of changes involved in each

sub-series is 2 · dk < 4 · dk + 1 which means that the sensitivity of both βi and βj

are not mutually effected, which contradicts the hypothesis.

4.4.2 Theoretical Analysis

This section is devoted to the theoretical analysis of the privacy and accuracy

properties the DRC approach achieves. First, we prove that ǫ-differential privacy

can be applied to each sub-series created during the partitioning phase of DRC.

Next, we build on this result to prove that the individual differentially private

sub-series’ can be reunified into a complete dK-2-series that is also ǫ-differentially
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private. Lastly, we perform error analysis on DRC and compare the results to

dK-PA.

Analyzing ǫ-Privacy in βis. We now quantify the privacy of each βi and prove

that they satisfy ǫ-differential privacy.

Theorem 2. For each cluster βi with i = 1, .., m̃, let β̂i be a novel privacy mech-

anism on βi such that β̂i = βi + Lap(
Sβi

ǫ
)|βi|. Then, for all sub-series βi and

β′
i derived from graphs G and G′ that differ by at most one edge, β̂i satisfies

ǫ-differential privacy if:

∣∣∣ ln Pr[β̂i = s]

Pr[β̂′
i = s]

∣∣∣ ≤ ǫ

Proof. Let m∗ be the the cardinality of cluster βi. Let G′ be a graph with at most

one edge different from G. Let sj be the jth item of the β̂i-series, that is β̂i[j] = sj.

Using the conditional probability on sj we can write:

Pr[β̂i = s]

Pr[β̂′
i = s]

=
m∗∏

j=1

Pr[β̂i[j] = sj |s1, ...sj−1]

Pr[β̂′
i[j] = sj |s1, ...sj−1]

Each item of the product has the first j − 1 tuples of the β̂i-series fixed. Each

sj is the result of the Laplace noise that has been calibrated for βi based on

its sensitivity, as calculated using in Lemma 2. The sensitivity of this function

is derived under the assumption that the two graphs have, at most, one edge

difference. Thus, the conditional probabilities are Laplacians, which allows us to

derive the following inequalities:
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m∗∏

j=1

Pr[β̂i[j] = sj |s1, ...sj−1]

Pr[β̂′
i[j] = sj |s1, ...sj−1]

≤
m∗∏

j=1

e
|β̂i[j]−

̂
β′
i
[j]|

σ

By definition β̂i = βi + Lap(
Sβi

ǫ
)|βi| and by Lemma 2 ||βi − β′

i||1 ≤ Sβi
with

Sβi
≤ 4dki + 1. Let σi be the scale parameter of the Laplacian noise applied in

each cluster i, thus:

m∗∏

j=1

e
|β̂i[j]−

̂
β′
i
[j]|

σ = e
||β̂i−

̂
β′
i
||1

σ

= e
||β̂i+Lap(

Sβi
ǫ )−̂

β′
i
−Lap(

Sβi
ǫ )||1

σ = e
||βi−β′i||1

σ ≤ e

4dmi
+1

4dmi
+1

ǫ

Finally, by applying the logarithmic function the theorem statement is proved.

Theorem 2 shows that adding noise does achieve provable ǫ-differential privacy

on each cluster. In particular, we prove that by only leveraging m∗ independent

Laplace random variables, with parameter λ = (
Sβi

ǫ
), it is possible to generate

sufficient noise per cluster to satisfy the privacy requirement.

Conquering ǫ-privacy into ∪iβ̂i. Our next task is to leverage the proved ǫ-

differential privacy of each independent β̂i to guarantee privacy on the entire

perturbed β̂-series= ∪iβ̂i. In order to achieve this goal a further step is required,

shown in the following corollary.

Corollary 1. The amount of information an attacker can learn on β̂i by observing

any β̂j with i 6= j is null.

This proof considers only two sub-series for simplicity. Given Lemma 3, this

proof can be extended to any number of clusters.
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Proof. Let A and B be two sub-series built out of our partition strategy and

let Â and B̂ be their ǫ-differentially private projection as proved in Theorem 2.

Finally, let a and b be events on Â and B̂, respectively. Through the Shannon

Entropy Theory we quantify the information a sub-series could exploit on another

sub-series. In particular, the Mutual Information

I(Â; B̂) =
∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)

is the amount of information an attacker can infer on Â by observing B̂. By

construction the sensitivity of the sub-series A is independent from the sensitivity

of the sub-series B, as proved in Lemma 3. This means that the sub-series A

is perturbed by a Laplace random process with parameter λA that is indepen-

dent from the Laplace random process acting on B, as consequence of Lemma 2.

Thus, this independence property directly implies that the Mutual Information

I(Â, B̂) = 0, that is, an attacker gains no information on Â by observing B̂, which

concludes the proof.

The properties derived on the different βis are sufficient to begin the conquer

phase of our DRC approach. The goal of the conquer phase is to unify the

β̂is such that the union set inherits the ǫ-privacy guarantees from the individual

sub-series.

Theorem 3. Given m̃ different sub-series β̂i with i = 1, ..., m̃, the result of the

DRC conquer strategy ∪iβi satisfies the ǫ-differential privacy property.

Proof. The DRC strategy produces m̃ ǫ-differentially private sub-series β̂i, as

proved in Theorem 2. Each βi satisfies Lemma 2 and Lemma 3, and any com-

167



Chapter 4. Privacy Preserving Graph-Sharing

bination of β̂is satisfies Corollary 1. The privacy independence property, from

Corollary 1, implies that ∪iβ̂i satisfies the ǫ-Differential Privacy property.

Thus, we have proven that our perturbed dK-2, ∪iβ̂i, satisfies the ǫ-differential

privacy requirement. DRC achieves a tighter bound on noise than dk-PA due to

the properties from Lemmas 2 and 3.

Error Analysis. We now quantify the error introduced to dK-2 via our DRC

strategy. Error analysis on DRC is complicated because our algorithm does not

specify the number of clusters to generate during partitioning. Instead, our clus-

tering approach is general, and covers any possible set of cuts on the β-series such

that the resulting sub-series differ in cardinality and sensitivity from each other,

so long as they respect Lemmas 2 and 3. Therefore, in order to provide an error

analysis that covers any possible clustering of the β-series we have to study both

the lower and the upper bound of the error injected into those series.

Definition 4. The error estimation of the union of the β̂is under the ∂ ordering

on dK-2 of a graph G can be computed as the expected randomization in generating

β̂ = ∪iβ̂i.

The expected randomization in β̂ is quantified as

m̃∑

i=1

E


∑

j

(β̂i[j]− βi[j])
2


 =

m̃∑

i=1

|βi|E[Lap(
Sβi

ǫ
)2]

The lower bound is found when each Sβi
have the same minimum value, which

is 1, and thus

m̃∑

i=1

|βi|E[Lap(
Sβi

ǫ
)2] ≥ d2maxV ar(Lap(

1

ǫ
)) = Ω(

d2max

ǫ2
)
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Note that the considered minimum, i.e. 1, happens only when a graph of nodes

with zero degree is considered, and after adding an edge Sβ is 1. The upper bound

is found when each Sβi
have the maximum value that, as proved in Lemma 2, is

O(dmax), and thus

m̃∑

i=1

|βi|E[Lap(
Sβi

ǫ
)2] ≤ d2maxV ar(Lap(

dmax

ǫ
)) = O(

d4max

ǫ2
)

The worst-case error level of DRC is equal to that of dK-PA. However, de-

pending on graph structure, the error level can decrease down to Ω(d
2
max

ǫ2
). As we

demonstrate in the next section, real graphs exhibit error rates towards the lower

bound. Thus, in practice, DRC performs much better than dK-PA.

4.4.3 Evaluating and Optimizing DRC

To quantify the improvement DRC achieves over the dK-PA strategy, we com-

pare the results of applying each algorithm on our graphs. As before in Sec-

tion 4.3.3, we quantify error using the Euclidean distances between each of their

dK-2-series and the dK-2-series of the original graph. As seen in Figure 4.4, DRC

reduces the Euclidean distance by one order of magnitude for different graphs and

a range of ǫ values. As is the case for dK-PA, error introduced by DRC decreases

exponentially as the value of ǫ increases, which is clear from the linear correlation

in the log-log scale plot of Figure 4.4.

Further Optimization with LDRC. Despite its improvement over dK-PA,

DRC is still quite far from the idealized function in terms of error (see Figure 4.4).
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Figure 4.4: Euclidean distances of the dK-2-series of different ǫ-Differential Pri-
vacy strategies on three real graphs.

We apply a prior result from [72] that proves how to use isotonic regression [19],

i.e. evenly “smooth” out the introduced noise across tuples, without breaking

differential privacy properties. This technique enables a reduction of the error

introduced in the dK-2-series by another constant factor.

Formally, given a vector p of length p∗, the goal is to determine a new vector p′

of the same length which minimizes the L2 norm, i.e. ||p−p′||2. The minimization

problem has the following constraints: p′[i] ≤ p′[i + 1] for 1 ≤ i < p∗. Let p[i, j]
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be a sub-vector of length j − i + 1, that is: < p[i], ..., p[j] >. Let define M [i, j] as

the mean of this sub-vector, i.e. M [i, j] =
∑j

k=i p[k]/(j − i + 1).

Theorem 4. [19] The minimum L2 vector, p′, is unique and is equal to p′[k] =

M̃k, with:

M̃k = minj∈[k,p∗]maxi∈[1,j]M [i, j]

We apply this technique on the set of all tuples produced by DRC. We refer to it

as the L2 minimization Divide Randomize and Conquer algorithm, or LDRC. We

include LDRC in our comparison of algorithms in Figure 4.4, and see that LDRC

provides roughly another 50% reduction in error over the DRC algorithm. Since

it consistently outperforms our other algorithms, we use LDRC as the algorithm

inside the Pygmalion graph model.

Implications. Finally, we note that our DRC partition technique is general,

and has potential implications in other contexts where it is desirable to achieve

differential privacy with lower levels of injected noise. More specifically, it can

serve to reduce the amount of perturbation necessary when the required pertur-

bation is a function of a parameter that varies significantly across values in the

dataset.

4.5 End-to-end Graph Similarity

We have already quantified the level of similarity between real and synthetic

graphs by computing the Euclidean distances between their respective dK-series

datasets. These values represent the distortion in the statistical representation

of a graph, i.e. the dK-series, but do not capture the ultimate impact of the

171



Chapter 4. Privacy Preserving Graph-Sharing

added noise on graph structure. In this section, we evaluate how well Pygmalion

preserves a graph’s structural properties by comparing Pygmalion’s differentially

private synthetic graphs against the originals in terms of both graph metrics and

outcomes in application-level tests. Strong structural similarity in these results

would establish the feasibility of using these differentially private synthetic graphs

in real research analysis and experiments.

4.5.1 Graph Metrics

Our evaluation includes two classes of graph metrics. One group includes

degree-based metrics such as: Average Node Degree, Degree Distribution, Joint

Degree Distribution and Assortativity. These are basic topological metrics that

characterize how degrees are distributed among nodes and how nodes with partic-

ular degree connect with each other. The second group includes node separation

metrics that quantify the interconnectivity and density of the overall graph. This

group includes metrics such as Graph Diameter, Radius and Average Path Length.

For our evaluation purposes, we always use our most advanced algorithm, i.e.

Pygmalion LDRC. We only focus on Pygmalion LDRC, because there are practical

problems in generating large graphs from dK values after significant noise has been

added. As shown earlier, the dK-PA model introduces the highest noise. In fact,

errors introduced by dK-PA are so large that the generator fails when trying to

generate large graphs with the resulting noisy dK distributions.

We generate ǫ-private graphs for ǫ ∈ [5, 100], and compare the graph metrics of

the resulting synthetic graphs against those of the original graph, and a synthetic

graph generated by the dK model with no additional noise added. We limit
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ourselves to ǫ-private graphs with ǫ ∈ [5, 100] because of three reasons. First,

we aim to find the ǫ value that contributes to a smallest noise such that it is

statistically similar to the synthetic dK-2 graph with no privacy enforced. This

way, we can indirectly quantify the level of privacy introduced by a pure synthetic

graph with no additional steps taken to improve privacy. This by itself is a

potentially interesting result. In particular, we obtain this property only when

ǫ is equal to 100. Second, the dK-2 distribution is a very sensitive function

and it naturally requires a high level of noise to provide strong levels of privacy

guarantees. Unfortunately, very small values of ǫ require larger noise values, thus

producing synthetic graphs that are extremely different in structure from the

original. Finally, for ǫ < 1, the required noise level is so high for larger graphs,

that the dK graph generator fails to produce synthetic graphs that match the

resulting dK distributions. This is clearly a limitation of the current system,

one that we hope will be removed with the discovery of less sensitive models and

optimization techniques to further reduce noise required for ǫ-differential privacy.

As we mentioned, our results are highly consistent across our pool of graphs

(Table 4.1), and we only report experimental results on three graphs: the Russia

Facebook graph, the AS graph and the WWW graph.

Degree-based Metrics. These metrics are fundamental in understanding the

statistical properties of node degrees and how nodes connect to each other to

form specific topological structures. Out of the four metrics mentioned above,

we report results for Degree-Distribution (which supersedes average node degree)

and Assortativity (which is related to joint degree distribution).
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Figure 4.5: Degree distribution of three real measured graphs, i.e. Russia,
WWW and AS, each compared to the dK-synthetic graph without noise and
Pygmalion synthetic graphs with different ǫ values.

Degree Distributions. Figure 4.5 compares the node degree CDFs. For each

of the Russia, WWW, and AS graphs, the degree distributions of both the Pyg-

malion (ǫ=100) graph and the dK-synthetic graph very closely match the degree

distribution of the original graphs. When we increase the strength of the privacy

guarantees, i.e. smaller ǫ values of 5 and 10, the accuracy of the synthetic degree

distribution progressively decreases. For example, both the Russia and WWW

graphs show a small deviation from the original distribution even for ǫ = 5. Across
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Figure 4.6: Assortativity of three real measured graphs, i.e. Russia, WWW
and AS, each compared to the dK-synthetic graph without noise and Pygmalion
synthetic graphs with different ǫ values.

all models for these two graphs, the worst-case degree distribution deviation is still

within 10% of the original.

The AS graph, on the other hand, shows a slightly different behavior. For

small ǫ values, i.e. ǫ = 5 and ǫ = 10, the largest error is within 35% from the

original graph values. The AS graph shows a different behavior because a small

number of high degree nodes connect the majority of other nodes. Thus, when

the privacy perturbation hits those high-degree nodes, it can produce structural

changes that send ripples through the rest of the graph.
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Assortativity. Figure 4.6 reports the results of the assortative metric computed

on both real and synthetic graphs for each of the three graphs (Russia, WWW

and AS). The assortativity metric describes the degree with which nodes with

similar degree are connected to each other. Positive assortativity value denotes a

positive correlation between the degrees of connected nodes, and negative values

indicate anti-correlation. Note that both the WWW and AS graphs show negative

assortativity (Figure 4.6(b) and Figure 4.6(c)).

As with the degree distribution results, for each of our graphs (Russia, WWW,

and AS), assortativity results from synthetic graphs for ǫ = 100 and those from

the dK-series closely match results from the original graphs. As we increase the

level of privacy protection, the results get slightly further from the original values.

For example, using ǫ = 5 on Russia produces an error less than 0.05 on the

assortativity value. The same ǫ value for the WWW graph produces negligible

error on assortativity. Assortativity results on the AS graph are also consistent

with degree distribution results. Under high privacy requirements, i.e. ǫ = 5,

error on assortativity reaches 0.12.

Node Separation Metrics. For brevity, we report only the Average Path

Length as a representative of the node separation metrics. Figure 4.7 shows the

Average Path Length (APL) values computed on Russia, WWW and AS com-

pared to the APL values on their synthetic graphs. On Russia and WWW, APL

results denote a moderate level of error (higher when compared to results for the

earlier graph metrics). We can see that the error is mainly introduced by the im-

preciseness of the dK-model, since the synthetic graph from the dK-series with no

noise shows the same error. In comparison, the error introduced by strengthening
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Figure 4.7: Average path length of three real measured graphs, i.e. Russia,
WWW and AS, each compared to the dK-synthetic graph without noise and
Pygmalion synthetic graphs with different ǫ values.

privacy (and hence decreasing ǫ) is relatively small. This is encouraging, because

we can eliminate the bulk of the error by moving from dK-2 to a more accurate

model, e.g. dK-3.

As with previous experiments, the AS graph shows a slightly different behavior.

In this case, all of our synthetic graphs do a good job of reproducing the average

path length value of the AS graph.
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Summary. Our experimental analysis shows that synthetic graphs generated

by Pygmalion exhibit structural features that provide a good match to those of

the original graphs. As expected, increasing the strength of privacy guarantees

introduces more noise into the structure of the synthetic graphs, producing graph

metrics with higher deviation from the original graphs. These observations are

consistent across social, web, and Internet topology graphs.

Overall, these results are very encouraging. They show that we are able to ef-

fectively navigate the tradeoff between accuracy and privacy by carefully calibrat-

ing the ǫ values. The fact that significant changes in ǫ values do not dramatically

change the graph structure means owners of datasets can guarantee reasonable

levels of privacy protection and still distribute meaningful graphs that match the

original graphs in structure.

4.5.2 Application Results

For a synthetic graph to be usable in research, ultimately it must produce the

same results in application-level experiments as the original graph it is replacing.

To quantify the end-to-end impact of trading graph similarity for privacy pro-

tection, we compare the results of running two real world applications on both

differentially private synthetic graphs and the original graphs. We implement

two applications that are highly dependent on graph structure: Reliable Email

(RE) [60] and Influence Maximization [33].

Reliable Email. RE [60] is an email spam filter that relies on a user’s social

network to filter and block spam. One way to evaluate the security of RE is

to compute the number of users in a network who can be spammed by a fixed
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Figure 4.8: Reliable Email (RE) experiment run on three real measured graphs,
i.e. Russia, WWW and AS, each compared with the dK-synthetic graph without
noise and Pygmalion synthetic graphs with different ǫ values.

number of compromised friends in the social network. This experiment depends

on the structure of the network, and is a useful way to evaluate whether Pygmalion

graphs can be true substitutes for measurement graphs in research experiments.

Figure 4.8 shows the portion of the nodes flooded with spam as we increase

the number of malicious spammers, using different graphs as the underlying social

network topology. We show results on the usual three graphs, Russia, WWW and

AS. On the Russia Facebook graph, all synthetic graphs closely follow the original

graph. Even in the case of the strongest privacy setting, i.e. ǫ = 5, the difference
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(c) Weighted Cascade on AS

Figure 4.9: Results of the Degree Discount Influence Maximization algorithm
on the AS graph, compared to dK graphs without added noise, and Pygmalion
synthetic graphs with different ǫ values.

between the synthetic graph result and those of the original is at most 10%. For

both the WWW and AS graphs, all synthetic graphs with and without noise

produce results within 20% of the original graphs.

Influence Maximization. The influence maximization problem tries to locate

users in the network who can most quickly spread information through the net-

work. This problem is most commonly associated with advertisements and public

relations campaigns. Evaluating a solution to this problem includes two steps.
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Figure 4.10: Results of the Degree Discount Influence Maximization algorithm
on the MontereyBay graph.

First, the solution must identify the nodes who can maximize influence in the

network. Second, it must model the spread of influence through the network to

quantify how many users the influence has ultimately reached.

For our purposes, we use a recently proposed heuristic for influence maxi-

mization that minimizes computation. The heuristic is called the Degree Dis-

count method [33], and is able to find the most influential nodes, called “seeds,”

on a given graph. Starting from those seed nodes, we run three different influ-

ence dissemination models: Linear threshold (LT), Independent Cascade (IC) and
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Weighted Cascade (WC), to determine the total number of users in the network

influenced by the campaign. We use source code we obtained from the authors.

However, significant memory overhead in the code meant that we had to limit

our experiments to smaller graphs. Therefore, we use the MontereyBay Facebook

graph and the AS network topology graph in this experiment.

For both AS and MontereyBay graphs and each of the three influence dissem-

ination models, Figure 4.9 and 4.10 shows the expected number of influenced

nodes when increasing the number of initial seed nodes. While the actual per-

centage of users influenced varies across dissemination models, there are clear

and visible trends. Results on the AS graph in Figures 4.9(a), 4.9(b), 4.9(c) all

show that Pygmalion with ǫ = 100 and the dK-synthetic graph without noise are

almost identical to the original AS graph under all three dissemination models.

Graphs with stronger protection, Pygmalion ǫ = 10 and ǫ = 5, progressively di-

verge from the results of the AS graph. Results on the MontereyBay graph are

shown in Figures 4.10(a), 4.10(b), 4.10(c), and are quite similar to those on the

AS graph. They confirm that Pygmalion ǫ = 100 produces near perfect results,

but higher privacy protection increases the deviations from results on the original

MontereyBay graph.

4.5.3 Summary of Evaluation

We have used both popular graph metrics and application-level tests to evalu-

ate the feasibility of using differentially private synthetic graphs in research. Our

tests are not comprehensive, and cannot capture all graph metrics or application-

level experiments. However, they are instructive because they show the observable
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impact on graph structure and research results when we replace real graphs with

differentially private Pygmalion graphs.

Our results consistently show that Pygmalion introduces limited impact as a

result of adding noise to guarantee privacy. In fact, many of the largest errors can

be attributed to limitations of the dK-2 series. Given the significant demand for

realistic graphs in the research community, we expect that generator algorithms

for more complex dK models will be discovered soon. Moving to those models,

e.g. dK-3, will eliminate a significant source of error in these results.

4.6 Summary

We study the problem of developing a flexible graph privacy mechanism that

preserves graph structures while providing user-specified levels of privacy guar-

antees. We introduce Pygmalion, a differentially-private graph model that aims

these goals using the dK-series as a graph transformation function. First, we use

analysis to show that this function has a high sensitivity, i.e. applied naively, it

requires addition of high levels of noise to obtain privacy guarantees. We con-

firm this on both social and Internet graphs. Second, we develop and prove a

partitioned privacy technique where differential privacy is achieved as a whole

when it is achieved in each data cluster. This effectively reduces the level of noise

necessary to attain a given level of privacy.

We evaluate our model on numerous graphs that range in size from 14K nodes

to 1.7 million nodes. Our partitioned privacy technique reduces the required noise

by an order of magnitude. For moderate to weak levels of privacy guarantees,
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the resulting synthetic graphs closely match the original graphs in both graph

structure and behavior under application-level experiments.

We believe our results represent a promising first step towards enabling open

access to realistic graphs with privacy guarantees. The accuracy of our current

model is fundamentally limited by both the degree of descriptiveness of dK-2 se-

ries, and the high noise necessary to inject privacy properties. There are two ways

to improve our results. One way is to use a more descriptive, higher-order dK

model, under the assumption that its sensitivity is reasonable low. While genera-

tors for higher order dK-models are still unknown, our techniques are general, and

can be applied to obtain more accurate models as higher-order dK generators are

discovered. Another way to improve is to discover a function (or model) of graph

structure with much lower sensitivity. If such a function exists, it can potentially

lower the noise required for a given privacy level by orders of magnitude.
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Conclusion

In this section, we first summarize our work on analyzing and processing big

real graphs. We then share our lessons and wisdom learned from our work. Hope-

fully, this provides useful guidelines for researchers working in this area. Finally,

we discuss future directions that we will pursue.

5.1 Summary

A growing number of big real graphs become available due to the recent ex-

plosive growth of networks. They are significantly different from the graphs in

prior studies in terms of scale, level of dynamics, and structure. New challenges

emerge in studying these big real graphs. In this dissertation, we focus on three

key problems in analyzing and processing big real graphs, including node distance

computation, dynamic graph analysis and modeling, and graph privacy. For each

problem, we propose novel solutions, and evaluate the performance on a range of

big real graphs.

First, to efficiently compute node distances, such as shortest path distances

and random walk distances, we propose graph coordinate systems. To accurately
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embed shortest path distances on massive graphs, we implement a hyperbolic

graph coordinate system with naturally parallel embedding process. We also study

the possibility to embed random walk distances using graph coordinate systems.

Since traditional geometric spaces cannot capture the asymmetry of random walks,

we design a novel space with two independent directional heights to account for the

asymmetry. Through our extensive experiments on graphs from various networks,

we show that using graph coordinate systems, node distances can be accurately

estimated in microseconds, which can support real-time applications.

Next, we study dynamics in a large online social network. Given the first two-

year growth of the Renren network, we first analyze its structural evolution at

multiple network scales. Through the measurement, we observe users’ activities

are significantly impacted by the processes at different network scales, and identify

several evolutionary properties in Renren network structure. We then explore our

efforts to detect self-similar properties in Renren edge creation process. Using

three popular measurement methods, we not only reliably identify self-similarity

in the edge creation process, but also detect the time scale over which the self-

similar property exists. Based on these observations, we propose a new dynamic

model including a temporal component and a structural component. Using the

Renren dynamic dataset to fit this model, the graphs generated by the model

reproduce the sequence of edge creation events in absolute time, which exhibits

the observed dynamic properties.

Last, we tackle privacy issue in sharing graph datasets. Observing the tension

between graph structure utility and graph privacy, we develop a differentially-

private graph model. In the basic design, we directly add a controlled level of

noise into the dK-2 series, and use the perturbed dK-2 series to generate syn-

186



Chapter 5. Conclusion

thetic graphs. Although this design can achieve the required level of privacy, our

theoretical and empirical analysis on big real graphs shows that the amount of

noise grows polynomially with the maximum degree of a graph. In other words,

high distortion can be introduced into graph structure. To improve the accuracy

of the generated graphs, we develop a Divide Randomize and Conquer algorithm,

and prove this algorithm not only maintains the same level of privacy but also

reduces the noise required by differential privacy. Our end-to-end experiments

on a range of big real graphs confirm that the synthetic graphs generated by the

improved model are similar to the original graphs in terms of graph metrics and

application-level performance.

5.2 Lessons

Through studying the problems, we have learned three important lessons in

analyzing and processing big real graphs. We summarize them as follows, hoping

to provide high-level guidance for researchers working in this direction.

Scale with Big Graph Size via. Approximation. Scalability becomes one

of the most important problems in analyzing and processing big real graphs. Many

efforts have been made to address this challenge, such as parallel systems, new

algorithms with lower bound, and approximation methods. Among them, ap-

proximation methods are one promising direction to efficiently process big real

graphs.

We learned this lesson from our work on node distance computation (Chap-

ter 2). Given a graph with millions of nodes and billions of edges, the time to
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compute the distance between one pair of nodes can take up to hours. This is a big

obstacle for both graph analysis and real-time applications using node distances.

To efficiently compute node distances, we propose an approximation approach by

embedding graphs into a geometric space. With one-time precomputation, node

distances can be accurately estimated in constant time (microseconds). This re-

sult is important for large graph analysis, and has significant meaning for practical

applications.

Although it is not panacea, approximation methods raise the hope to scal-

ably process large graphs. In big real graphs, it is often difficult to obtain exact

results for many problems, such as modularity, betweenness centrality, and sub-

graph matching. With approximation methods, we may efficiently compute an

accurate result, which is meaningful in understanding graph structure and helpful

to support related applications.

Balance Tradeoff Based on Realistic Needs. Many system or algorithm

designs on top of big real graphs face the challenge: how to prioritize multiple

goals. For example, in node distance computation, accuracy and efficiency are two

important goals. Each of them can be achieved by sacrificing the performance

of the other one. We find that efficiency is more important in many practical

applications, such as distance based search and friend recommendation. Therefore,

our design emphasizes the goal of efficiency, and proposes a constant-time distance

estimation method with small errors. This instance demonstrates the importance

that when designing graph systems with multiple goals that may not be easily

attained at the same time, as system designers, we need to understand the real

needs so as to better balance the tradeoff between goals.

188



Chapter 5. Conclusion

Another example on navigating tradeoff between goals is our work on graph

privacy in Chapter 4. Strong privacy guarantee and high utility of graph structure

are two extremes in the study space. In prior studies, researchers tend to bias

in favor of one extreme. For example, k-degree anonymization [111] maintains

low distortion in graph structure but only protects graph privacy against a spe-

cific attack. However, from our observations, both graph privacy and structure

utility are important for real world applications. Thus, in our design, we make a

reasonable adjustment between them using differential privacy.

Although it is not easy to identify the needs sometimes, it is important for

designing practical graph systems. To make proper tradeoff between design goals,

one possible way to uncover realistic needs is to explore the demands from network

operators and graph application developers.

Invalid Traditional Graph Assumptions. Small graph analysis in prior work

helped to build some useful graph assumptions or models, such as preferential

attachment. Because of fast growth of different networks, some of the traditional

assumptions may not be applicable in modeling the graphs abstracted from these

networks.

For example, we find the decay of the strength of preferential attachment in

Renren. In particular, in the preferential attachment model, new nodes select

destination nodes with probability proportional to nodes’ degree. That means,

the strength of preferential attachment is constant. But in Section 3.3.1, we

show as network grows, the strength weakens. This result does not say that the

preferential attachment model is false. It is just because there was no chance to

validate its effectiveness on large, high dynamic real graphs. From this example,
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we learn that due to the significant difference of big real graphs, it is necessary to

validate traditional graph assumptions before using them in big real graph study.

5.3 Future Work

Our work in this dissertation introduces novel solutions to three important

problems in studying big real graphs. Because of the fast evolution of networks,

our solutions need to adapt to such dramatic changes in big real graphs. In this

section, we discuss three potential directions in analyzing and processing big real

graphs.

5.3.1 Processing and Querying Large Dynamic Graphs

Today’s complex networks are highly dynamic. The graphs from these net-

works dramatically grow and change over time. While they continue to fast evolve,

few work has worked on processing and querying these large dynamic graphs. Here

we target two of fundamental computational problems in dynamic graphs: node

distances computation in dynamic graphs, and link prediction.

Embedding Dynamic Graphs. Node distance is difficult to compute on big

real graphs. As complex networks continue to thrive with fast pace, fast node

distance computation in dynamics graphs is of significant impact on understanding

and processing the graphs from these highly dynamic networks. While most of the

proposed solutions focus on computing node distance in static graphs, few work

is reported in dealing with this problem in dynamic graphs, especially at large

scale. Our goal is to fast reveal the changes of node distances in dynamic graphs.

190



Chapter 5. Conclusion

Inspired by our work on graph coordinate systems, we consider to implement a

dynamic graph embedding system.

To embed dynamic graphs, we face two key challenges. First, it is crucial to fast

update the distances between landmarks and all other nodes, referred to as ground

truth distances. Recall that as the essential of graph coordinate systems, ground

truth distances are used to calibrate node positions in a geometric space. Thus,

in dynamic graphs, it is important to efficiently renew the ground truth distances.

Recently, several algorithms have been proposed to incrementally update shortest

path in dynamic graphs [97, 4]. We may adopt one of such algorithm to solve

this problem. Second, once any of ground truth distances changes, we encounter

the problem: how to efficiently recompute graph coordinates. Although we can

parallel the embedding process to reduce the embedding time, it is still expensive

to compute the coordinates for all the nodes in a large graph.

Link Prediction. In complex networks, especially online social networks, large

numbers of new edges arrives everyday, which signify the appearance of new in-

teractions between nodes. Predicting edge creations is one fundamental problem

for dynamic graph study. Many solutions have been proposed to address this

problem [107, 15, 76, 108]. These studies focused on improve the accuracy of

prediction, whereas few of them are validated on real dynamic graphs at massive

scale. Moreover, little work is known about how various link prediction algorithms

work in the context of large dynamic graphs. Thus, we aim to fill this research

gap. We will use big real dynamic graphs, like Renren used in Chapter 3, to

compare the performance of the various link prediction methods. Based on our

analysis, we may develop a more accurate algorithm to predict link formation.
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5.3.2 Applications on Graph Coordinate Systems

As shown in Chapter 2, graph coordinates systems can be used in node distance

based applications, such as social-distance based search rank, graph separation

metric computation, and link prediction. In the future, we will explore more

applications, which graph coordinate systems help to reduce their computation

complexity. Now we discuss two potential applications, including graph matching,

and community detection.

Graph Matching. Graph matching is a fundamental problem in graph study

and of practical importance. Graph matching, also known as graph isomorphism

problem, is a one-to-one mapping between nodes in two graphs such that an edge

exists between any two nodes in a graph if and only if their mapped nodes in

the other graph has one edge. As a classical graph computational problem, graph

matching is known for its high computation cost.

To solve this problem, we consider to use graph coordinate systems to effi-

ciently determine whether two graph matches. Intuitively, if two isomorphism

graphs use same landmarks, same nodes in both graphs should be embedded into

the same space positions such that their coordinates are the same. Thus, given

the coordinates of two graphs, graph matching problem is reduced to compare the

node coordinates in the two graphs. However, simple pairwise comparison is still

of high computation complexity. That is, to match two n-node graphs, it takes

O(n2) pairs of coordinate comparison. Thus, our goal is to design an algorithm

to efficiently compare node coordinates in large graphs.
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Community Detection. Structural community is an important notion to clus-

ter graph nodes, and widely used in graph analysis and applications. A structural

community is defined as a group of nodes where more edges resides than outside.

In the past, various metrics are proposed to quantity how well a graph is clustered

into communities, such as modularity [130] and conductance [154], and different

algorithms are developed to detect communities [130, 132, 131, 35, 172, 25, 106].

Most of them suffer the scalability problem, i.e. efficiently identify communities

in large graphs. Intuitively, because of high density inside communities, commu-

nity nodes are closer to each other than to nodes outside the communities. As an

alternative, we can use random walk distances as a metric to define communities.

That is, if a group of nodes are closer to each other in terms of random walk

distances than to other nodes in the graph, we say these nodes form a commu-

nity. Under this definition, we can apply embedded graph coordinates to identify

communities. Similar to graph matching problem, instead of pairwise distance

computation, we need to explore an efficient method to use graph coordinates to

detect communities.

5.3.3 Graph Watermarking

Today’s graphs represent sensitive information. Controlling access to these

datasets is a difficult challenge. More specifically, instead of sharing sensitive

datasets publicly, the data owners would like to share the data with trusted en-

tities. For example, a large social network like Facebook may choose to share its

social graph with trusted collaborators, but do not want to leak the data into the
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broader research community. Even so, it is still challenging to prevent the shared

datasets from being leaked.

To prevent data leakage, we propose a new solution, graph watermarks. Intu-

itively, graph watermarks are small, and serve to associate some metadata to the

data, like the information of the data owner. Thus, once a shared dataset is found

in later, the data owner can extract the watermark from the leaked copy, and use

it as proof to seek damages against the collaborator responsible for the leak.

An effective graph watermark system needs to provide several key properties.

First, graph watermarks should be small, which introduces small distortion on

graph structure and cannot be easily detected by attackers. Second, watermarks

should be unique, which is difficult to forge and should not occur naturally in

graphs. Third, both embedding and extraction of watermarks should be efficient,

even in extremely large graphs. The last and the most important, a watermark

system works in any application involving graphs. Thus, we make no assumption

about graphs. Instead, our system works on symmetric, unweighted graphs with-

out any node or edge labels. To achieve the goals, we need to explore the possible

designs to embed and extract watermarks in graphs, prove the uniqueness of the

design watermarks, and evaluate the robustness of the watermarks.
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