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ABSTRACT 

 

Bottom-up Drivers of Bacterial Community Composition and  

Metabolism of Dissolved Organic Carbon in the Santa Barbara Channel, CA 

by 

Emma Kate Wear 

 

 Approximately 50 percent of marine primary production passes through the dissolved 

organic matter (DOM) pool (Myklestad 2000; Nagata 2000). The major consumers of DOM 

are marine bacterioplankton, which can direct DOM down three pathways: respiration to 

inorganic constituents, incorporation into biomass, or modification or lack of consumption 

leading to persistence as DOM. The aspects of DOM source and composition that determine 

its bioavailability, and its interactions with the clades comprising the bacterial community, 

are broadly understood, but many of the finer details remain to be studied. This dissertation 

investigates bottom-up controls on bacterial community composition (BCC) and activity 

through a time-series study in the Santa Barbara Channel (SBC), CA, and examines the 

effects of phytoplankton DOM on bacterial metabolism, in field and laboratory experiments. 

 Chapter II describes the results of a four-year time-series study of BCC and metabolic 

activity in the SBC. BCC showed the greatest variability over depth; at the surface, the 

seasonal cycle was significantly more influential on BCC than spatial variability within 

cruises. Community types showed repeating patterns following the annual upwelling and 

phytoplankton bloom season; however, new community types appeared in the second half of 

the time-series, possibly in association with the Pacific warm anomaly observed in 2014. 



	
	
	

viii	

Individual operational taxonomic units (OTUs) were strongly correlated with environmental 

parameters, reflecting a successional pattern in OTUs following the spring upwelling. 

Seasonality was moderately repeatable in both the community as a whole and in individual 

OTUs, with long-term changes in BCC possibly linked to broader climatological phenomena. 

 In Chapter III, interactions between dissolved organic carbon (DOC) and 

bacterioplankton were examined during a diatom and Phaeocystis bloom in the SBC over 5 

days following an upwelling event, encompassing phytoplankton physiological states from a 

healthy bloom through the onset of silicon (Si) stress. DOC bioavailability, bacterial growth, 

and BCC responses were assessed with dilution batch-culture bioassays. In these 

experiments, as the bloom state progressed: bacterioplankton DOC usage increased; bacterial 

growth efficiencies increased; and measureable DOC that accumulated during the bloom 

remained unutilized in the bioassays. Thus, DOC released by the plankton community during 

a bloom simultaneously contributes to several DOM pools of variable longevity. 

 In Chapter IV, the ecological role of carbon-rich DOM exuded by nutrient-stressed 

phytoplankton was assessed using DOM from four coastal diatoms following depletion of 

nitrogen (N), Si, or both N+Si. In bioassay experiments, short-term responses were affected 

both by diatom source species and by the nutrient stress under which the DOM was 

produced. Si-stress DOM was generally the most bioavailable over several days and led to 

higher bacterial growth efficiencies. However, the amount of diatom-derived DOC that 

persisted over months differed among source diatom species, with no evidence of a nutrient 

stress effect. The identity of the nutrient that terminates a phytoplankton bloom can therefore 

impact heterotrophic activity in the short term, while source phytoplankton species is more 

likely to influence DOC persistence in surface waters and its potential export. 
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I. Introduction 

 Interactions between heterotrophic bacterioplankton and dissolved organic matter 

(DOM) comprise a critical juncture in the global carbon cycle. The carbon contained in 

oceanic DOM (~662 Pg; Hansell et al. 2009) is similar in magnitude to that present in 

atmospheric CO2, suggesting that the ongoing anthropogenic perturbations to the latter 

reservoir have the potential to impact the former (Carlson and Hansell 2015). Around 50% of 

marine primary production is thought to pass through the dissolved phase, with 

phytoplankton instantaneous release spanning a potential range of 5-80% of total primary 

production, depending on the physiological state of the phytoplankton (Myklestad 2000; 

Nagata 2000). Correspondingly, bacteria are estimated to consume 50% or more of marine 

primary production (though mass balance is often problematic; Williams 2000). Furthermore, 

DOC can constitute a significant portion of carbon exported from the surface ocean into the 

mesopelagic: often under 20%, but up to 30-50% at particular sites (Carlson et al. 2001).   

 By virtue of their small size and high surface-area-to-volume ratio (Azam et al. 1983) 

heterotrophic bacteria and archaea are the primary consumers of marine DOM (Pomeroy 

1974) [photochemical oxidation by short-wave sunlight chemically degrades an additional 

portion directly to CO2 and CO (Mopper and Kieber 2002), and a poorly constrained pool of 

polysaccharides may form transparent exopolymer particles (TEP), with highly altered 

metabolic and biogeochemical implications (Passow 2002; Windecker 2016)], and thus the 

nature of their use of that DOM can have large-scale consequences. If bacteria use the DOM 

to build biomass, they act as a link in the marine food chain, returning what would otherwise 

be lost energy to the biological pool (Azam et al. 1983). In contrast, if they remineralize the 

DOM to its inorganic constituents while extracting energy for maintenance and movement, 
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they act as a sink, removing the energy held in the DOM from the system; however, this 

process simultaneously makes inorganic nutrients such as nitrogen and phosphorus available 

to primary producers (Ducklow et al. 1986). Bacterial “link” and “sink” functions thus both 

fulfill an important role in marine carbon biogeochemistry, and an understanding of the 

factors determining whether one or the other will predominate is critical to developing 

accurate models of the global carbon cycle. 

 

A. Dissolved organic matter 

 DOM is conventionally defined as those organic compounds that pass through a glass 

fiber filter (Whatman GF/F; nominal pore size 0.7 µm), though for certain analyses 

specialized cutoffs such as a 0.2 µm membrane filter or a molecular weight in tangential flow 

filtration may be used (Hedges 2002). This definition encompasses a broad range of 

compounds, from truly dissolved small monomers to macromolecules and polymers to 

colloids (Hedges 2002), which are both dilute and difficult to isolate from seawater. 

Investigators have therefore historically focused on characterizing either bulk properties or 

specific pools of molecular types. Bulk characterization includes quantification of specific 

dissolved organic elements, particularly carbon (DOC), nitrogen (DON), and phosphorus 

(DOP) (Sharp 2002) and ratios thereof (e.g., Benner et al. 1997), as well as qualitative 

descriptors such as bioavailability measured through dilution batch-culture remineralization 

bioassays (e.g. Carlson et al. 2004) and source or age discerned from stable isotopic ratios 

(Benner et al. 1997; Bauer 2002; Guo et al. 2003) and radiocarbon dating (Bauer 2002; e.g., 

Santschi et al. 1995; Repeta and Aluwihare 2006). Individual pools frequently described 

include: amino acids (Keil and Kirchman 1993) and dissolved combined neutral sugars 
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(DCNS) (Borch and Kirchman 1997; Skoog and Benner 1997; Goldberg et al. 2009; 

Goldberg et al. 2010; Goldberg et al. 2011), characterized by high pressure liquid 

chromatography (HPLC); chromophoric dissolved organic matter (CDOM) measured by 

ultraviolet-visible light spectroscopy (Blough and Del Vecchio 2002; Nelson and Siegel 

2002) and characterized by excitation-emission matrix spectroscopy (Coble 1996); and 

specific classes of biogeochemically or ecologically relevant compounds such as 

siderophores (Vraspir and Butler 2009) and phosphonates (Clark et al. 1998; Kolowith et al. 

2001; Dyhrman et al. 2009).   

 More recently, advanced analytical techniques have begun to allow characterization 

of the molecular structure of the DOM pool as a whole. For example, mass spectrometry and 

nuclear magnetic resonance spectroscopy can be used to identify and quantify known 

constituents and small compounds such as metabolites or to provide a “fingerprint” analysis 

of the composition of the DOM pool (Mopper et al. 2007; Kujawinski 2011; Repeta 2015). 

One of the most striking results of these studies is the emphasis that thousands of compounds 

constitute marine DOM, regardless of whether the sample is dominated by fresh production 

or is deep ocean water composed of primarily refractory compounds (Repeta 2015). 

Although it is currently difficult or impossible to identify many of the compounds extracted 

from bulk seawater beyond the level of elemental composition and compound class (i.e., 

carbohydrates, proteins, etc.), these techniques can be used to track changes in DOM 

composition over space and time, or to characterize the results of microbial or abiotic 

processing (e.g., Kujawinski et al. 2009; Flerus et al. 2012) and to identify specific 

compounds for further study (e.g., Kujawinski et al. 2009; Fiore et al. 2015; Longnecker et 

al. 2015). 
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 Not surprisingly, given its varied composition, marine DOM originates from a broad 

range of sources. The DOM source most relevant to this work is phytoplankton, which 

release DOM: through leakage, i.e., passive diffusion across permeable lipid membranes 

(Bjornsen 1988); as toxins or an allelopathic mechanism (Granéli and Turner 2006); and as a 

(hypothesized) carbon-rich photon shunt under high-light, low-nutrient conditions (Carlson 

2002; see Chapter IV). Sources that are important DOM contributors but that will not be 

discussed further here include: zooplankton, through sloppy feeding, excretion, and 

dissolution of fecal pellets; viral lysis of algal and bacterial cells and bacterial lysis of algal 

cells; and bacterial solubilization of sinking particles (Carlson 2002: Carlson and Hansell 

2015). In coastal regions, terrestrial runoff and subsidies from macroalgae, marshes, and 

estuaries can be locally important sources (Cauwet 2002; e.g., Moran et al. 1991); terrestrial-

derived DOM is present but quite dilute in the open ocean (Meyers-Schulte and Hedges 

1986; Opsahl and Benner 1997). In addition to consuming DOM, bacteria also produce an at 

times substantial amount, both through normal growth processes and death and dissolution 

(McCarthy et al. 1998; Kaiser and Benner 2008) and through active release of functional 

compounds such as siderophores (Vraspir and Butler 2009) and ectohydrolytic enzymes 

(Martinez et al. 1996) (though these released compounds may not be quantitatively 

significant).  

 DOC concentrations generally range between 50-80 µM in the surface ocean (with 

seasonal oscillations above the baseline concentration spatially variable and spanning 

undetectable levels to a range of 30 µM; Williams 2000) and 35-45 µM in the deep ocean 

(Benner 2002; Hansell et al. 2009). Coastal regions and estuaries, however, can easily reach 

millimolar DOC concentrations from inputs of allochthonous DOC (Hopkinson et al. 1998). 
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DON concentrations are generally 3.5-7.5 and 1.5-3.0 µM in the surface and deep oceans, 

respectively, while DOP concentrations are 0.1-0.4 and 0.02-0.15 µM (Benner 2002); marine 

DOM is therefore quite carbon-rich relative to the canonical Redfield ratio (C:N:P of 

106:16:1) of its most common source, marine phytoplankton (Hedges et al. 2002). While 

components of freshly produced DOM may turn over on timescales of hours to days, more 

refractory compounds persist for years to millennia (Bauer 2002; Carlson 2002). For 

example, the mean age of DOM in the interior of the North Pacific has been radiocarbon 

dated at 6000 years (Williams and Druffel 1987), several times the measured duration of 

global ocean circulation. DOM resistance to degradation has been observed through short-

term accumulation in field studies (Hansell 2002; e.g., Carlson et al 1994; Williams 1995; 

Halewood et al. 2012) as well as empirically demonstrated by experiments in which bacterial 

communities consumed a limited portion of DOM, even that from the euphotic zone (e.g., 

Carlson et al. 2004; Halewood et al. 2012) or appeared to be experiencing energy limitation 

in situ (e.g., Kirchman 1990). Though in reality its degree of reactivity is a continuum (Flerus 

et al. 2012), DOM can be conceptually divided into labile (turned over on scales of minutes 

to days), semi-labile (months to years), and refractory (centuries to millennia) subcategories 

(Carlson 2002; Hansell 2013); experimental approaches therefore assess processing of the 

longer-lived labile and shorter-lived semi-labile components. Various approaches indicate 

that the composition of the DOM pool changes with age, due to the effects of bacterial and 

photochemical degradation (Amon and Benner 1996; Mopper and Kieber 2002; Carlson et al. 

2004; Goldberg et al. 2011).   

 The cause of what makes recalcitrant, deep-ocean DOM “recalcitrant” is still a matter 

of debate, in large part due to the relatively short time-scales of measured “recalcitrance” 
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tractable to laboratory analysis compared with those detected via DOM persistence in the 

field. Further, as noted by Hansell (2013), overall “recalcitrance” and the various pools on 

the labile to refractory continuum are at present only definable by DOM removal. The initial 

stages of DOM processing are relatively intuitive, as bacteria assimilate the least aged, most 

reactive DOM and leave behind more processed, less bioavailable compounds (Amon and 

Benner 1996). However, there remains a debate over what proportion of the DOM left 

behind, and which accumulates over time in the deep oceans, consists of the various posited 

source pools (Dittmar 2015; Moran et al. 2016): byproducts of microbial metabolism 

modified in a way that induces recalcitrance; compounds that are fundamentally bioavailable 

but too dilute for the bacterioplankton to access at an energetically favorable rate (Arrieta et 

al. 2015; Traving et al. 2015); molecules that are only recalcitrant in the context of the 

environment at the time of observation (Jiao et al. 2014); or compounds that simply never 

constituted a viable food source. For example, some phytoplankton are known to produce 

compounds inherently resistant to microbial degradation over scales of months, such as acyl 

heteropolysaccharides (Aluwihare and Repeta 1999). Over longer time-scales, the “microbial 

carbon pump” framework posits that repeated bacterial processing of DOM, as well as inputs 

of DOM sourced from bacterial cellular components via the viral shunt, gradually form a 

carbon-rich pool of recalcitrant DOM (Jiao et al. 2010). Microcosm experiments where 

simple sugars were transformed by a bacterial inoculum into complex “exometabolite” 

molecules resembling natural DOM indicate that this is mechanistically plausible 

(Lechtenfeld et al. 2015). Field surveys demonstrating the accumulation of fluorescent DOM, 

and the humic-like fractions in particular, in the ocean’s interior in conjunction with 

increasing apparent oxygen utilization support the hypothesis of microbial generation of at 
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least a portion of the presumably moderately recalcitrant deep DOM pool (Yamashita and 

Tanoue 2008; Jørgensen et al. 2011).  

 A major loss mechanism for this recalcitrant DOM is the photobleaching that can 

occur when deep waters are brought to the surface through upwelling or ventilation. One of 

the effects of photobleaching is direct oxidation of DOM to CO and CO2, which is estimated 

to occur in the oceans at a quantitatively significant rate, slightly exceeding that of the input 

of DOM from the world’s rivers (Mopper et al. 2015). More importantly here, 

photobleaching can alter the bioavailability of DOM to bacteria by changing the structure of 

its molecular bonds and producing low molecular weight compounds, although the 

circumstances under which photobleaching increases or decreases availability and microbial 

processing are at present not fully constrained (Mopper et al. 2015). Photobleaching can 

thereby have additional downstream effects on the bacterial community through alterations 

of bacterial growth efficiency (e.g., Smith and Benner 2005) and community composition 

(e.g, Lønborg et al. 2016).  

 As knowledge of DOM concentrations and reactivity throughout the oceans continues 

to increase, many of the outstanding questions in marine DOM research aim to expand our 

understanding of how reactivity relates to source, age, and composition of specific, 

measureable pools, and how those multiple pools interact with microbial communities of in 

turn varying composition (Repeta 2015; Moran et al. 2016).  

 

B. Bacterioplankton community activity 

 Historically, bacterioplankton communities have been considered as bulk aggregates, 

with much attention focused upon community-level bacterial production and cell abundance. 



	 8	

As techniques have been developed to open up the microbial “black box,” however, the field 

has progressed towards traditional community ecology questions, such as: what controls 

distributions of individual phylotypes, and how do resource gradients impact and interact 

with community structure as well as function? Both approaches provide valuable insights 

into bacterial dynamics, and indeed, research that links the bulk processes and rates 

impacting biogeochemistry with community ecology and genomic analyses of distinct 

phylotypes will be key to refining our understanding of DOM processing and microbial 

carbon cycling. 

 At their most fundamental, bulk analyses of bacterioplankton communities begin with 

measures of the standing stock and production of biomass. Bacterial abundance (BA), or the 

concentration of individual cells, is generally constrained between 105 and 107 bacteria ml-1 

in marine systems (Cole et al. 1988) by a combination of bottom-up and top-down factors.  

While BA increases in conjunction with chlorophyll a biomass, demonstrating the influence 

of bottom-up resources, BA only increases by two orders of magnitude in natural systems, 

while chlorophyll a spans three (Cole et al. 1988). This upper limitation or carrying capacity 

has been ascribed to top-down control by micrograzers such as flagellates and ciliates (Strom 

2000) and by viruses (Fuhrman 2000).   

 Net bacterial production (BP) measures how much biomass a community (or, if 

normalized to BA, an average cell in the community) is synthesizing over time, extrapolated 

from incorporation of an amino acid, leucine (Kirchman et al. 1985), or a nucleotide, 

thymidine (Fuhrman and Azam 1982), which can be converted to carbon units through 

empirical conversion factors. In marine systems, BP values have been reported between 

roughly 0.05 and 8.5 µmol C L-1 day-1, though the higher end of those values are most likely 
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from estuarine or bloom-influenced samples rather than from oligotrophic regions (converted 

from Cole et al. 1988). BP is positively correlated with primary production, chlorophyll a 

biomass, and bacterial abundance (Cole et al. 1988), and generally falls in the range of 10-

20% of primary production in oceans (Ducklow 2000). The specific growth rate, or µ, is 

distinct from measures of BP, as it addresses increases in discrete cell numbers while BP 

deals in carbon units, though the parameters are mathematically and conceptually related. 

Growth rates are difficult to measure in natural environments without manipulations such as 

dilution and size fractionation to minimize grazing and are therefore less commonly reported 

than BP (Ducklow 2000); studies across a range of marine environments have found in situ 

community growth rates spanning an order of magnitude from 0.05 to 1 day-1 (Ducklow 

2000), with cross-study mean values slightly below 0.1 day-1 (although measurement 

technique induces variability in the mean value; Kirchman 2016). 

 Bacterial growth efficiency (BGE) is the proportion of DOC taken up by bacteria that 

is used to build biomass rather than expended on maintenance and motility, or in traditional 

ecological terms, the assimilation efficiency. In natural bacterioplankton populations, BGE 

may span a range from as little as 1% up to 60% or higher, though values towards the lower 

end of this range are most common in marine settings (del Giorgio and Cole 1998), with one 

review reporting an open ocean mean of 15% and a coastal mean of 27% (del Giorgio and 

Cole 2000). Because BGE is the quantitative measure of the degree to which a bacterial 

community is functioning as a link or sink, much attention has been paid to exploring those 

factors that may influence it. In the definitive review on the subject, del Giorgio and Cole 

(1998) argue that the main determinant of BGE is the trophic status of the ecosystem in 

which it is measured, though teasing apart the relative importance of the concentration and 
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composition of organic substrates, the availability of nutrients, and the particular metabolic 

implications of different environments, communities, and mixtures of single-cell activity 

states has proved challenging. Other factors, such as temperature (Rivkin and Legendre 

2001), abiotic stressors, and bacterial community richness, are supported by some studies but 

remain more controversial (Carlson et al. 2007). The assessment of bottom-up controls on 

BGE is further complicated by an apparent bacterial ability to partition DOC compounds of 

different quality between growth and respiration in a differential manner; in some 

circumstances, more labile DOC may not necessarily be used to directly increase production 

of bacterial biomass, as would be expected from the traditional understanding of controls on 

BGE, but rather may act primarily as an energy source to facilitate synthesis of biomass from 

poorer quality DOC (Guillemette et al. 2016). 

 

C. Bacterioplankton community composition 

 Bacterial community composition is controlled by a broad range of physical, 

chemical, and biological factors. [While archaea are important contributors to the 

heterotrophic microbial community at depth and in certain regions of the surface ocean, in 

these studies they constitute a minority of the community, and the general term “bacterial” 

community composition is used herein for simplicity.] Standard ecological controls include 

bottom-up factors (i.e., nutrient and carbon substrate availability and composition), top-down 

influences of viruses (Fuhrman 2008; Breitbart 2012) and grazers (Jürgens and Massana 

2008), and potentially competition with other bacterial phylotypes, though the latter is less 

well studied in the pelagic environment (Fuhrman and Hagström 2008). While individual 

bacterial cells may be responding to environmental cues at spatial and temporal resolutions 
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smaller than our ability to resolve using standard community analysis techniques (Stocker 

2012), nonetheless evidence exists for the importance of a number of bottom-up drivers that 

act over larger scales amenable to sampling. Certain phylotypes, particularly the 

roseobacters, flavobacteria, and select Gammaproteobacteria, are positively associated with 

phytoplankton blooms, and these groups have been observed to demonstrate succession 

following phytoplankton bloom progression in a manner suggestive of niche partitioning 

(Amin et al. 2012; Teeling et al. 2012; Buchan et al. 2014). Potential physicochemical 

controls include salinity (e.g., Bouvier and del Giorgio 2002; Crump et al. 2004; Kirchman et 

al. 2005), pH (Yannarell and Triplett 2005), metal chemistry (Methé and Zehr 1999), light 

(as a stressor, e.g., Arrieta et al. 2000; Winter et al. 2001; or as an energy source, e.g., Béjà et 

al. 2000; Straza and Kirchman 2011), and climate- and weather-driven factors such as water-

column structure (Nelson 2009; Nelson et al. 2014; Bryant et al. 2016). BCC has been shown 

to follow repeating annual cycles in diverse systems, presumably following seasonal 

transitions in some combination of these drivers (see further discussion in Chapter II). As is 

often the case in microbial ecology, investigating the importance of a given bottom-up factor 

independently is challenging, as many of the common marine bacterioplankton phylotypes 

remain unculturable (and even within groups with cultured representatives, some, such as 

SAR11, display a notable resistance to manipulation; Giovannoni and Stingl 2007), 

restricting the field to correlation analyses in field settings or experiments that manipulate the 

community as a whole.  

 The difficulty of assessing bottom-up controls in general, combined with the 

complexity of natural DOM pools, complicates quantifying the role of DOM in shaping 

BCC; however, there is growing evidence to support the concept that specific DOM 
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compounds support distinct heterotrophic communities. Some of the most clear-cut evidence 

for interactions between DOM and BCC comes from manipulative experiments, where a 

known or characterized DOM source is exposed to a known or characterized bacterial 

community, leading either to changes in overall BCC or bacterial activity within the 

experiments or to selective uptake of labeled DOM by particular phylotypes. Numerous 

studies utilizing fluorescent in situ hybridization combined with microautoradiography have 

shown that different clades preferentially take up different DOM compounds, even on broad 

phylogenetic scales of class or sub-class (Cottrell and Kirchman 2000; Sarmento and Gasol 

2012; see also those reviewed in Kujawinski 2011). [Recent work suggests that such 

metabolic specialization may be reduced when high concentrations of labile DOC, in this 

case phytoplankton exudate, are available; however, the concentrations of freshly produced 

DOC observed to reduce specialization would rarely if ever be expected in oligotrophic 

marine systems (Sarmento et al. 2016).] Other studies that have generated isotopically 

labeled DNA or proteins or used –omics approaches have shown that this metabolic 

selectivity extends to lower phylogenetic levels as well (McCarren et al. 2010; Nelson and 

Carlson 2012; Bryson et al. 2016). Evidence also exists for specific taxa that act as 

generalists and can utilize diverse compounds (Mou et al. 2008; Gómez-Consarnau et al. 

2012; Pedler et al. 2014), possibly related to the practice of a copiotrophic (or patch-

associated, in alternative terminology), rather than oligotrophic (or free-living), lifestyle 

(Lauro et al. 2009; Yooseph et al. 2010; Luo and Moran 2015; Kirchman 2016). Increasingly, 

sequenced genomes, including those from single isolated cells, and –omics techniques are 

strengthening these observations by providing evidence for the presence or expression of 

distinct metabolic genes (that is, transporters and genes associated with degradation 
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pathways, such as dehydrogenases and hydrolases) in distinct bacterial taxa (Newton et al. 

2010; Gifford et al. 2013; Swan et al. 2013). A relatively new approach addresses the 

question from the opposite direction, demonstrating variability in the composition of the 

DOM remaining after incubation with different bacterial communities, with low molecular 

weight DOM generally universally available but utilization of high molecular weight DOM 

more related to BCC (Logue et al. 2016). 

 Recent improvements in sequencing technologies have greatly and rapidly increased 

our ability to sample larger numbers of bacterial communities, and to sample those 

communities to a greater sequencing depth, in the context of both –omics techniques and the 

more traditional 16S ribosomal RNA (rRNA) gene amplicon sequencing. One of the results 

of the increased accessibility of sequencing has been a series of projects conducting 

ambitious sampling transects across the surface ocean, expanding from the first exploratory 

metagenomes in the Sargasso Sea (Venter et al. 2004) to the Global Ocean Sampling 

Expedition (Rusch et al. 2007) and the Tara Oceans Expedition (Sunagawa et al. 2015). 

These projects have provided insight into microbial biogeography and potential controls on 

community structure on basin scales (Rusch et al. 2007; Sunagawa et al. 2015; Villar et al. 

2015) and have begun to be used to address biogeochemical questions (Guidi et al. 2016), as 

well as establishing extensive reference databases of microbial genes and their distributions. 

Other studies have leveraged abundant sequences to investigate associations between 

planktonic taxa at unprecedented resolutions, suggesting that suites of co-occurring 

phylotypes respond to similar, or at least synchronous, environmental drivers (Gilbert et al. 

2012; Lima-Mendez et al. 2015; Needham and Fuhrman 2016). 



	 14	

 While much progress has been made towards understanding the driving forces behind 

bacterial community structure and activity in the past several decades, in many ways the 

same improvements in analytical techniques that have allowed for these broad 

understandings have also raised more detailed questions about BCC and the scale at which 

we study it. One example of this is the improved ability of new sequencing approaches to 

detect the relatively abundant members of the rare biosphere (sometimes defined as those 

taxa comprising less than 0.1% of the total community, though this is arbitrary: Fuhrman 

2009; Lynch and Neufeld 2015), accompanied by an increased appreciation for the role of 

“conditionally rare” microbes as a diverse seed bank capable of responding to changing 

environmental conditions (Shade et al. 2014; Lynch and Neufeld 2015). [It is worth noting 

that, from a broader ecological perspective, a relatively shallow sequencing depth is 

effectively sufficient to resolve changes in community structure in response to bottom-up 

drivers or across large ecological gradients (that is, there are diminishing returns to obtaining 

increasing numbers of sequences for strictly large-scale ecological questions: Kuczynski et 

al. 2010; Caporaso et al. 2011), which here is related to the high richness but low evenness 

characteristic of marine bacterial communities (Sogin et al. 2006; Kirchman 2016).] 

However, this increased sequencing depth raises the question of when those rare taxa are 

relevant to addressing ecological questions; for investigations into bottom-up controls on 

BCC, such relevancy largely rests on determination of whether a rare taxon is active at a 

given point in time, rather than dormant or in endospore stage, which simple DNA surveying 

cannot determine. Comparisons of rRNA and the corresponding DNA have shown that some 

members of the rare biosphere are active while present at low abundance, but the level of 

activity vs. dormancy can vary widely between taxonomic groups (Jones and Lennon 2010; 
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Campbell et al. 2011). Another outstanding question is the taxonomic resolution necessary 

for sampling – specifically, to what degree sub-species variation, for example that seen 

between ecotypes, matters for community structure or function. The drivers behind single 

phylotype or ecotype dynamics have been extensively explored in a few specific cases (e.g., 

SAR11: Carlson et al. 2009; Salter et al. 2015; and Prochlorococcus: Johnson et al. 2006; 

Chandler et al. 2016; and linked to genomic variations: Brown et al. 2012; Kashtan et al. 

2014) but the vast majority of these finer-scale taxa remain ecologically uncharacterized, 

with studies frequently pooling operational taxonomic units (OTUs; traditionally defined as 

97% similarity in 16S rRNA gene composition) when discussing community composition at 

the genus level or higher. Some argue that this overlooks too much, potentially functionally 

significant diversity [e.g., Kleindienst et al. (2016) found that sub-OTU level differences in 

16S rRNA sequences correlated with environmental parameters] but the correct taxonomic 

resolution to target remains an open question and may well continue to vary, depending on 

the study question, for the foreseeable future. 

 Ultimately, from an ecosystem function perspective, the hope is that improved 

accessibility afforded by the rapid decrease in costs of next-generation sequencing 

technologies, and the resulting feasibility of –omics approaches, may allow us to address the 

relationship between phylogeny and function in a more decisive manner: that is, to better 

discern generalists from specialists, and to identify what those specialists specialize in 

(Jansson et al. 2012). In particular, advances in molecular techniques that better link 

biogeochemical processes to traditional ecological inquiries such as community composition 

and to the roles of individual populations will address some of the currently most intriguing 

questions in microbial ecology (Giovannoni and Rappé 2000; Fuhrman 2009), as well as 
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point towards unexpected areas of inquiry. Molecular approaches have, for example, shown 

the existence of a “cryptic” sulfur cycle in oxygen minimum zones that produces sulfur 

species too transient to detect by traditional biogeochemical measurements (Canfield et al. 

2010). Likewise, metagenomic surveys have revealed unexpectedly widespread and diverse 

proteorhodopsin genes in bacteria and archaea, greatly expanding potential energy flows in 

the euphotic ocean (reviewed in Fuhrman and Steele 2008). Finally, beyond improving our 

basic ecological understanding of the processes underpinning marine microbial ecosystems, 

developing a more predictive relationship between community structure, metabolic function, 

and ecosystem characteristics will also improve models of carbon fluxes through the 

microbial pool (Yokokawa and Nagata 2010), which will become increasingly critical in the 

coming decades as the effects of climate change impact bacterial-DOM interactions (Moran 

et al. 2016). 

 

D. Santa Barbara Channel 

 The studies discussed herein were conducted in, or utilized seawater and bacterial 

communities obtained from, the Santa Barbara Channel (SBC), California, USA (see Figure 

3.1 in Chapter 3). This system is particularly amenable to these investigations due to both 

marine and general climatological phenomena. Although the SBC is a coastal system, it 

experiences minimal terrestrial influence as a result of low precipitation the majority of the 

year, with the exception of localized freshwater and sediment plumes from winter storm 

events (Otero and Siegel 2004), and, while highly productive (Kostadinov et al. 2007), 

features gyre-level concentrations of DOM (Halewood et al. 2012; Carlson and Hansell 

2015) rather than the elevated allochthonous load typical of nearshore waters. In addition, the 
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SBC experiences reliable spring upwelling leading to a pronounced phytoplankton bloom 

(Otero and Siegel 2004; Antoine et al. 2011; Brzezinski and Washburn 2011), as well as 

seasonally variable circulation reflected in alternating equatorward and poleward flow and an 

episodic cyclonic eddy (Winant et al. 2003), all of which contribute to observed variability in 

DOM composition (Halewood et al. 2012). These phenomena have been characterized for 

two decades by the Plumes and Blooms program 

[http://www.oceancolor.ucsb.edu/plumes_and_blooms] and for fifteen years by the Santa 

Barbara Coastal Long Term Ecological Research project [http://sbc.lternet.edu] cruises, and 

several decades of primarily physicochemical data with lower spatial resolution are available 

from the California Cooperative Oceanic Fisheries Investigations (CalCOFI; 

http;//calcofi.org). This combination of a dynamic yet well-understood system facilitates both 

studies that contrast a wide range of bacterial-DOM states and studies that depend upon 

locating particular in situ conditions. 
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Chapter II: Annual upwelling and stratification underlie temporal variability in free-

living prokaryotic communities in a productive California coastal system 

 

Abstract 

 Prokaryotic community composition (here, BCC for historical consistency) and 

metabolic activity were measured over four years in the Santa Barbara Channel (California, 

USA), a heterogeneous coastal upwelling system. BCC showed the greatest variability over 

depth, driven by a ten-fold increase in the relative abundance of archaea between the surface 

and 75 m. At the surface, the seasonal cycle resulted in significantly greater UniFrac 

distances than spatial variability within cruises. When clustered by UniFrac distance, 

community types showed repeating patterns following the annual upwelling and 

phytoplankton bloom season; however, the system experienced a shift in the second half of 

the time-series, with new community types appearing, possibly in association with the Pacific 

warm anomaly observed in 2014. Individual operational taxonomic units (OTUs) were 

strongly correlated with parameters such as temperature, chlorophyll a, and bacterial 

production, both when sampled simultaneously and when examined over time lags, reflecting 

a successional pattern in OTUs following the spring upwelling. Shannon diversity and 

abundance-weighted phylogenetic diversity at the surface were highest during periods of 

recent upwelling and phytoplankton blooms, and were associated with higher bacterial 

production; Chao1 estimated richness was more noisy than diversity measures and was 

generally greater during the fall and winter stratified period. Overall, seasonality as set by 

upwelling was clear and moderately repeatable in both the community as a whole and in the 
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relative abundance of individual OTUs, with long-term changes in BCC potentially linked to 

broader climatological phenomena. 

 

Introduction 

 The importance of physical controls, and their subsequent effects on bottom-up 

factors like inorganic resource delivery and subsequent organic matter production by 

phytoplankton, in driving succession in microbial OTUs and thereby prompting repeatable 

annual patterns in BCC, have been demonstrated in numerous oceanic time-series studies 

(Bunse and Pinhassi 2017). The seasonally oligotrophic Bermuda Atlantic Time-series Study 

site, BCC dynamics are ultimately driven by annual patterns of deep winter mixing, with 

BCC following the resource dynamics of the subsequent phytoplankton bloom and 

stratification (Morris et al. 2005; Carlson et al. 2009; Treusch et al. 2009). Temperate coastal 

systems, at least those removed from estuaries and other terrestrial influence, show similarly 

recurring annual patterns (Fuhrman et al. 2006; Gilbert et al. 2012). In contrast, at sites that 

have more subtle seasonal cycles, such as that observed at the Hawai’i Oceanic Time-series 

(Eiler et al. 2011), the influence of short-term physical factors such as wind-driven mixing on 

BCC are more prominent (Bryant et al. 2016). BCC can also respond to discrete events 

affecting resource availability on timeframes shorter than seasonal scales. For example, 

Teeling et al. (2012) observed changes in BCC over days during a strong phytoplankton 

bloom in the North Sea, and Wear et al. (2015) saw similar shifts in BCC and bacterial 

production over the build-up of a diatom bloom in the coastal Santa Barbara Channel.  

 Studies of pelagic marine systems have found basin-scale spatial patterns in BCC that 

primarily follow broad physicochemical gradients (e.g., Morris et al. 2012). Those explicitly 
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looking at spatial distance as a driving factor of BCC tend to do so over scales that are so 

large as to span multiple biogeochemical provinces (Sunagawa et al. 2015; Milici et al. 

2016). However, open ocean bacterioplankton may vary spatially over 10s of kms, 

potentially reflecting the mixing effects of mesoscale features (Hewson et al. 2006; Nelson et 

al. 2014). On a global scale, coastal regions show greater overall heterogeneity in BCC than 

open-ocean systems (Zinger et al. 2011), raising the possibility of an interactive effect 

between more dynamic bottom-up resources and greater effects of spatial heterogeneity on 

BCC in the near-shore environment. 

 To examine both the role of bottom-up controls on BCC and the relative importance 

of, and interactions between, spatial and temporal variability, we sampled a seven-station 

transect spanning the western Santa Barbara Channel (SBC), California, USA, on the Plumes 

and Blooms (PnB) cruise line (Fig. 2.1; Henderikx Freitas et al. in prep), for greater than four 

years. The SBC experiences strong shifts in physical states over the annual cycle, including 

seasonal and episodic, wind-driven upwelling events; a seasonal internal eddy; and incoming 

currents from the north and south that trade off over the course of the year and can be 

opposing across the north-south axis of the SBC (Harms and Winant 1998).  These 

phenomena set up a strong cycle of physicochemical and biological properties featuring 

upwelling-driven phytoplankton blooms in the spring and stratified, more oligotrophic 

conditions in the late summer and fall (Otero and Siegel 2004). Previous work over the 

shallow continental shelf in this system has shown that bacterial production and abundance 

closely follow these physical drivers over an annual cycle, mediated by organic matter 

dynamics (Halewood et al. 2012). Because the PnB cruise line spans the spatially distinct 

physical features of the SBC in addition to capturing its seasonality, it potentially samples 
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greater heterogeneity than its time-series neighbor to the south, the San Pedro Ocean Time-

Series, which features highly predictable BCC over an annual cycle (Fuhrman et al. 2006).  

 In this study, we compared the extent of variability in BCC over scales of time, 

transect distance, and depth, and further investigated the role of seasonality in BCC. We 

examined how bottom-up drivers correlate with the community as a whole and with 

particular OTUs. Finally, we asked whether diversity metrics and secondary productivity 

follow similar patterns in spatiotemporal variability and bottom-up correlates as BCC. 

 

Methods 

Sample collection 

 Samples were collected approximately monthly on 43 cruises between July 2010 and 

September 2014 on the Plumes and Blooms (PnB) cruise program (Antoine et al. 2011; 

Henderikx Freitas et al. in prep; http://www.oceancolor.ucsb.edu/plumes_and_blooms) in the 

Santa Barbara Channel (SBC), CA, USA (Fig. 2.1). The PnB transect encompasses 7 stations 

between the northernmost Channel Islands and the mainland to the north, with the two end 

stations over the shallow continental shelf and the remainder at sites between ~260 and 540 

m bottom depth. Samples were collected for BCC (see Table 2.1 for sampling depths at each 

station) and bacterial production from Niskin bottles mounted on a sampling rosette. On 

some cruises, only partial transects were collected due to poor weather or mechanical issues. 

Bacterial community composition (BCC) 

 BCC samples were collected from the Niskin bottles in acid-washed and sample-

rinsed 2 L high-density polyethylene bottles with drainage ports on the bottom (Nalgene) 

stopped with a one-way valve. The seawater was stored in the dark in a cooler at ambient 
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temperature until return to shore, where it was processed within 10 hours of collection (with 

the longest storage time for the outermost station, Stn. 7). Samples were pre-filtered through 

a 1.2 µm filter in a polycarbonate filter holder (to remove particle-attached bacteria and 

microphytoplankton) then collected on a 0.2 µm polyethersulfone filter cartridge (Sterivex-

GP; EMD Millipore, Darmstadt, Germany) under gentle peristaltic pressure (~1L pumped 

per 20 minutes) and stored frozen at -40°C. For samples collected from 75 m and above, 1 L 

was filtered; from 150 m and below, 2 L were filtered. 

 Samples were lysed in sucrose lysis buffer (40 mM EDTA, 50 mM Tris-HCl, 750 

mM sucrose, 400 mM NaCl, pH adjusted to 8.0) with 1% w/v sodium dodecyl sulfate and 0.2 

mg mL-1 proteinase-K at 55° C. Genomic DNA was extracted with a commercial silica 

centrifugation kit (DNEasy, Qiagen, Valencia, CA) and used to conduct dual-index multiplex 

amplicon sequencing following a modified protocol of Kozich et al. (2013). PCR reactions 

(25 µL) were conducted with 3 µL genomic DNA using 0.4 µM each of primers targeting the 

V4 hypervariable region (515F-Y, Parada et al 2016, and 806RB, Apprill et al. 2015, with 

adapter and index construction following Kozich et al. 2013), 12.5 µL Kapa Robust 2G 

HotStart MasterMix (Kapa Biosystems; Wilmington, MA), and PCR water (5 Prime; Hilden, 

Germany). Reactions were cycled for 3 minutes at 95°C; 30 cycles of 30 seconds at 95°C, 30 

seconds at 65°C, and 1 minute at 72°C; and 10 minutes at 72°C. PCR product was cleaned 

and normalized using SequalPrep plates (Invitrogen, Carlsbad, CA), pooled by equal 

volumes, and concentrated using Amicon Ultra 30K tubes (EMD Millipore). Amplicons were 

sequenced on an Illumina MiSeq using PE250 v2 chemistry at the University of California, 

Davis DNA Technologies Core. 
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 Sequence analysis was conducted in mothur (v1.38.0; Schloss et al. 2009). Quality-

controlled sequences were aligned to a non-redundant subset of the SILVA SSU Ref16S 

alignment database (v115; Quast et al. 2013) curated as in Nelson et al. (2014). Chloroplast 

sequences were removed, and samples were sub-sampled to 1000 sequences, with those 

containing fewer than 1000 sequences removed from analysis. Sequences were assigned to 

operational taxonomic units by abundance-based greedy clustering in VSEARCH (Rognes et 

al. 2016) at the 97% similarity level, and OTUs were classified at the 70% confidence level. 

The most abundant OTUs at the surface and 75 m were defined as those comprising on 

average 1% or more of total BCC at their respective depth. Weighted UniFrac (Lozupone and 

Knight 2005) was used to calculate phylogenetic distances between samples. UniFrac 

distance explicitly incorporates phylogenetic relatedness by defining community distance as 

the proportion of unshared to total branches in a taxonomic tree of the OTUs in two samples, 

such that less closely related OTUs are more influential in the distance measure; weighted 

UniFrac incorporates the relative abundance of those OTUs (Lozupone and Knight 2005). 

 We used a variety of diversity and richness parameters to characterize different 

aspects of bacterial community biodiversity. Shannon diversity and bias-corrected Chao1 

estimated richness (Chao 1984) were calculated in mothur. Phylogenetic diversity measures, 

including unweighted Faith’s phylogenetic diversity (PD; Faith 1992) and abundance-

weighted phylogenetic diversity (or balance-weighted PD, BWPD; McCoy and Matsen 

2013), were calculated in guppy (McCoy and Matsen 2013) using output from an 

independent bioinformatics pipeline executed through pplacer (Matsen et al. 2010) as 

described in Goldberg et al. (in review). Phylogenetic diversity measures were thus based on 
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a different OTU calling approach than the rest of the data and should be interpreted 

cautiously.  

Bacterial production 

 Bacterial production (BP) was measured on whole-water samples that were aliquoted 

from the DNA collection bottles where applicable. Additional samples were collected in 30 

mL, acid-washed and sample-rinsed, polycarbonate centrifuge tubes at all depths at Station 4 

(Table 2.1); when this resulted in duplicate BP with aliquots from DNA bottles, the median is 

reported. BP was measured via tritiated leucine incorporation (3H-Leu; specific activity 54.1- 

58.5 Ci/mmol; Perkin Elmer, Boston, MA) using a modified microcentrifuge method as in 

Halewood et al. (2012). Samples were spiked to a mean final concentration of 16.5 nmol L-1 

3H-Leu (preliminary experiments showed that SBC bacteria saturate above 10 nmol L-1) and 

incubated in the dark for 1-3 hours in laboratory seawater. 3H-Leu incorporation was 

converted to bacterial carbon production (BP) using a conversion factor of 1.5 kg C (mol 

leucine)-1 (Simon and Azam 1989). As the laboratory seawater differed in temperature from 

the sampling location (generally warmer, particularly relative to samples collected below the 

euphotic zone), the directly measured BP is more correctly seen as potential BP, and 

therefore we adjusted measured rates of BP (BPmeas) using in situ temperature and a Q10 

conversion of 1.5 (Rivkin et al. 1996) to estimate in situ BP (BPQ10): 

Equation 1: BPQ10 = 10^[log(BPmeas) – (log(1.5) * (tempincubation – tempin situ)/10))] 

 

Environmental data 

 Ancillary data obtained from the Plumes and Blooms program included physical data; 

inorganic nutrients; phytoplankton variables including chlorophyll a, accessory pigments 
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measured by high performance liquid chromatography, and particulate organic carbon and 

nitrogen (POC and PON); and chromophoric dissolved organic carbon (CDOM) (Henderikx 

Freitas in prep; CDOM as in Barrón et al. 2014). The CDOM spectral slope coefficient (S) 

over 320-420 nm was calculated following Stedmon et al. (2000). Because PnB is primarily 

an ocean color program, the environmental data are richest at the surface and therefore much 

of our investigation into bottom-up drivers is likewise focused there. 

Statistical analyses  

 Statistical analyses were conducted in SPSS Statistics v24 (IBM), Primer v6 (Clarke 

and Gorley 2006), and JMP Pro 12.0.1 (SAS Institute Inc.). Spatial figures were prepared in 

Ocean Data View v4 (R. Schlitzer; http://odv.awi.de); additional figures were prepared in 

Prism 7 (GraphPad Software Inc.). All correlations included here are nonparametric 

Spearman’s rho unless indicated otherwise. 

Data availability  

 PnB environmental data were curated as in Henderikx Freitas (in prep) and will be 

available through the Santa Barbara Coastal LTER data archive (http://sbc.lternet.edu//data/), 

as will be BP and analyzed sequencing results from this study. Raw sequencing output is 

available in the NCBI Sequence Read Archive, Accession Number PRJNA379850. 

 

Results 

 After quality control, 581 samples that sequenced successfully contained 1067 - 

18764 sequences per sample (mean = 7300, median = 7270) prior to sub-sampling to 1000 

sequences. Three samples were subsequently identified as outliers and removed from 

analysis. The subsampled sequences clustered into 8098 OTUs at 97% similarity, of which 
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2212 were present in 2 or more samples; there were 50-192 OTUs per sample, with a median 

of 118.5. 

 The 18 most abundant surface OTUs (that is, those constituting an average of 1% or 

more of overall BCC) included representatives of the oligotrophs Alphaproteobacteria 

SAR11 Surface 1, SAR11 Surface 2, and AEGEAN-169 group, as well as traditionally r-

selected, copiotrophic groups such as the Roseobacter NAC11-7, Gammaproteobacteria 

including SAR86 and SAR92, and assorted Flavobacteria (Table 2.2; where they are defined 

as OTUs S1-S18). The 15 most abundant OTUs at 75 m included representatives of the 

Thaumarchaeota Candidatus Nitrosopumilus and an unclassified Marine Group I OTU; the 

Alphaproteobacteria SAR11 Surface 1; and the Gammaproteobacteria Oceanospirillales 

ZD0405 (Table 2.2; D1-D15). Four OTUs met the mean 1% relative abundance cutoff at 

both the surface and at 75 m: SAR11 Surface 1, Roseobacter NAC11-7, SAR11 Surface 2, 

and Oceanospirillales ZD0405. These abundant OTUs were present in the majority of 

samples (75% or more of discrete samples at their respective depths; Table 2.2), although 

their relative abundance within samples fluctuated greatly. 

 The time-series encompassed four full annual cycles in the SBC, with a progression 

from spring upwelling (indicated by low surface temperature and high surface nitrate 

concentrations, Fig. 2.2A and B; Fig. 2.3A and B), through subsequent phytoplankton 

blooms, dominated by diatoms as indicated by chlorophyll a and fucoxanthin (Fig. 2.2C and 

D), and stratification in the late summer through fall (in the sense that high surface 

temperatures coincide with a larger thermal gradient between surface organisms and nutrient-

rich deeper waters, though the mixed layer depth not necessarily shallower, Fig. 2.2A; Fig. 

2.3A and B). CDOM spectral slope (CDOM S), which was used here as an approximation of 
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dissolved organic matter quality as a substrate for the free-living prokaryotic community, 

was generally lowest (indicating the freshest, likely most bioavailable DOM; Blough and Del 

Vecchio 2002) during the spring phytoplankton bloom periods (Fig. 2.2E). This is consistent 

with the decrease in CDOM S seen in conjunction with an increase in DOC bioavailability 

over a diatom bloom in the SBC (Wear et al. 2015) and is also consistent with the low 

terrestrial influence on CDOM in the SBC (Barrón 2014). 

Scales of variability in BCC 

 The primary factor explaining overall BCC variability within the total sample pool 

was depth (Fig. 2.4A; Fig. 2.5A), with UniFrac distances between surface samples and 

corresponding samples at 75 m or below significantly larger than those of any spatial or 

temporal comparisons (Tables 2.3 and 2.4). The large community shifts over depth were 

associated with a strong increase in the relative abundance of archaea (Fig. 2.6), which would 

be expected to increase the UniFrac distance substantially through incorporating community 

members from two Domains. Archaea increased over depth from a mean relative abundance 

of 2.9% of surface prokaryotic communities to 38.5% at 75 m and 45.7% at 300 m (Fig. 2.6).  

 Temporal variability at the surface was the next largest scale of community variability 

(Fig 2.4B; Fig. 2.5B). Temporal patterns were examined by taking the mean of the three 

center stations (Stations 3-5), as the center of the SBC was expected to be the most similar 

within cruises, based on prior studies of biological parameters across the PnB transect (e.g., 

Krause et al. 2013). Strong seasonality in BCC was demonstrated by the significantly higher 

UniFrac distances at three month and six month lags (effectively comparing between 

seasons) than at one month and one year lags (Tables 2.3 and 2.4). This scale of variability in 

UniFrac distance is consistent with the timescales of the strong temporal variability in the 
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physics and subsequent bottom-up factors in the SBC (Fig. 2.2A-F). When all pairwise 

comparisons in UniFrac distance were plotted against their respective time-lags, the resulting 

curve was a sine wave with a period of approximately one year up through roughly a two-

year lag (Fig. 2.7A), after which the pattern became much noisier. 

 The temporal variability at 75m was dampened relative to that seen at the surface 

(Fig. 2.4C; Fig. 2.5C).  There were still significantly greater mean UniFrac distances at 3 

month and 6 month lags than at a 1 month lag (Tables 2.3 and 2.4), and the annual cycle 

across all pairwise comparisons was still apparent up through roughly a 1.5 year time-lag, 

although the amplitude of the overall pattern was muted relative to that at the surface (Fig. 

2.7B). 

 Within-cruise spatial variability was the least important dimension examined. (Station 

1 was omitted from analyses of spatial variability, as its frequent relatively large UniFrac 

distance from neighboring Station 2 could be plausibly influenced by proximity to a kelp bed 

and a natural oil seep, rather than reflecting the more pelagic processes considered in this 

dataset.) When defined strictly as the UniFrac distance between points on opposite sides of 

the SBC, spatial variability was less than that of temporal variability at both the surface and 

the 75 m depth horizon (Fig. 2.5D). However, this approach obscures the true scale of spatial 

heterogeneity, as we only saw a traditional, linear distance decay relationship at the surface 

in 13 out of 42 cruises where there was sufficient data to evaluate it and in 18 of 39 cruises at 

75 m (Fig. 2.8); rather, the pattern of UniFrac distance moving south from Station 2 was 

often nonlinear, showing a sawtooth or concave pattern, consistent with the known eddy 

dynamics and variable current patterns in the SBC. The greatest UniFrac distance observed 

between any two samples at the surface (again omitting Station 1) within cruises was 
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significantly larger than the UniFrac distance between endpoints the surface, but still 

significantly smaller than inter-seasonal variability (Tables 2.3 and 2.4); at 75 m, the greatest 

observed spatial variability was not significantly different than temporal variability. 

Therefore, while there is a measureable level of spatial variability within cruises in the SBC, 

it is less important to understanding BCC dynamics at the surface than the temporal 

progression and will not be examined in detail here.  

Seasonal succession and bottom-up correlates of community as a whole 

 To examine bottom-up correlates of the community as a whole, surface samples were 

restricted to those with a comprehensive suite of ancillary measurements (205 out of 287 

total surface samples; those with measurements of temperature, salinity, inorganic nutrients, 

chlorophyll a, POC and PON, phytoplankton pigments, BPQ10, and CDOM slope). A BIO-

ENV test identified BPQ10 and temperature as the best-fit variables to the UniFrac distance 

matrix, albeit with a weak overall correlation (Spearman’s R = 0.339). Because far fewer 

parameters are measured at 75 m, only temperature, salinity, and BPQ10 were examined 

(available for 163 out of 199 total 75 m samples); BIO-ENV identified BPQ10 alone as the 

best correlate with BCC (R = 0.484).  

 To examine community seasonality on a more refined scale, surface BCC samples 

were clustered based on UniFrac distance (Fig. 2.9A) and groups for further examination 

were selected at a UniFrac distance of 0.35, yielding 7 groups containing between 2 and 105 

samples. There were clear temporal patterns to the presence of the groups in the SBC (Fig. 

2.9B), corresponding to the magnitude of environmental parameters associated with each 

group (Fig. 2.9C). This is an intentionally qualitative analysis designed to identify the major 

parameters that co-vary with the bacterial communities. Mean environmental and OTU 
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values are presented in Tables 2.5 and 2.6, but we are focusing here on the relative 

differences in those values between UniFrac groups. Group B was associated with recently 

upwelled water and was only present during temperature minima; it had high levels of OTU 

S1 (SAR11 Surface 1, as in Table 2.2) and notably low levels of any of the more 

copiotrophic OTUs. Groups E and F were associated with phytoplankton blooms; Group F 

was present annually shortly after upwelling, while Group E was an outlier that was only 

observed during one cruise. Copiotrophic OTUs were particularly abundant in Group F, 

including OTU S3 (Roseobacter NAC11-7), S7 (a member of the Alteromonadaceae), S8 

(SAR92), and S13 (Polaribacter), associated with moderate Shannon diversity but low 

Chao1 richness and very low PD. Group G represented a medium level of resources 

(moderate levels of BPQ10, POC and CDOM S), with moderate levels of the same copiotrophs 

seen in Group F but also increased relative abundance of OTUs such as S6 and S9 (both 

SAR86). Group G had high levels of Shannon diversity and PD but only moderate BWPD 

and Chao1 richness; however, Group G contained the most disparate assortment of 

communities, as grouping at a lower UniFrac distance level would subdivide Group G first 

(Fig. 2.9A). 

 Groups C and D both represented communities associated with the warm, stratified 

summer and fall periods; of these two, only Group C was present during the first half of the 

time-series, while starting in mid-2012 Groups C and D traded off over time and sometimes 

co-occurred within a cruise (Fig. 2.9B). Group C had lower relative abundances of OTUs S1 

(SAR11 Surface 1) and S2 (SAR11 Surface 2) and higher relative abundances of S4 

(AEGEAN-169), S5 (SAR11 Surface 4), and S9 (SAR86) than did Group D, which had a 

much lower mean Shannon diversity index, BWPD, and PD than Group C. 



	 31	

 Group A was an outlier, containing only 7 samples, all of which came from August 

2014 (the same samples which are visible outliers in the surface NMS plot, Fig. 2.4B). The 

main OTU differentiating this group was S16, Synechococcus. S16 was present at other dates 

in the time-series (Fig. 2.10E), albeit at much lower relative abundances. Group A also had 

higher relative abundances of two Flavobacteria, S12 and S14 (NS5 group). 

Individual patterns of abundant OTUs 

 Patterns of relative abundance of individual OTUs at the center three stations were 

examined over time (Fig. 2.10). Several OTUs showed clear seasonality in relation to 

temperature (indicative of the transition from upwelling to stratified conditions). For 

example, OTU S3, the Roseobacter NAC11-7, always reached a maximum in relative 

abundance during or slightly after upwelling, while S2, SAR11 Surface 2, generally was 

most abundant when the temperature was highest and stratification greatest.  

 This seasonality was also apparent in a cross-correlation analysis between the most 

abundant surface OTUs at the center three stations and a subset of environmental parameters 

sampled simultaneously and 1, 3, and 6 months prior to the BCC sample (Fig. 2.11A). As 

expected, many OTUs were strongly correlated with environmental parameters from the 

same month. A smaller number showed strong time-lag patterns related to upwelling, with 

consistent positive or negative correlations at 1 and sometimes 3 month lags, and the 

opposite sign correlation at 6 months. For example, OTU S2, SAR11 Surface 2, which was 

most abundant during the warm stratified period (Fig. 2.10A), was positively correlated with 

simultaneous temperature and temperature at 1 and 3 month lags but negatively correlated 

with temperature at a 6 month lag (Fig. 2.11A). 
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 We also observed temporal succession amongst the most abundant OTUs (Fig. 2.10). 

For example, peak abundances of S6, SAR86, often followed peak abundance of S3, the 

Roseobacter NAC11-7, by about a month, while peak abundance of S4, AEGEAN-169, in 

turn generally lagged that of S6. However, these apparent successional patterns were 

generally not significant when examined as cross-correlations of a subset of the surface 

OTUs (Fig. 2.11B), with simultaneous correlations stronger than those seen over time lags. 

This is likely due to the strongly episodic nature of the peaks in abundance of these OTUs, in 

particular the copiotrophic OTUs such as Roseobacter and SAR86. For most of the annual 

cycle, the OTUs are present at low relative abundance, as seen in Fig. 2.10, thereby diluting 

out the statistical significance of successional patterns over two to three months when 

succession is examined by correlations incorporating the full time-series. 

Community diversity and richness metrics 

 We used several diversity and richness parameters that describe different aspects of 

BCC. None of these metrics are necessarily more correct than the others, but rather they 

address fundamentally different questions. Shannon diversity is the classic diversity 

measurement that incorporates richness and evenness of OTUs within a sample. The two 

phylogenetic diversity parameters, BWPD and PD, are calculated in a way that explicitly 

accounts for the relatedness of the OTUs in a sample, by placing OTUs on a phylogenetic 

tree and using branch lengths to assess diversity. BWPD is a phylogenetically aware 

alternative to Shannon diversity, which weights a summation of tree branch length over 

subdivisions by the evenness of OTU distribution within that tree (McCoy and Matsen 2013). 

Traditional PD (Faith 1992) is unweighted by abundance and therefore does not incorporate 

evenness. PD is included for comparison with earlier time-series work (e.g., Gilbert et al 
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2012). Despite its name, without weighting by relative abundance, PD is more accurately a 

descriptor of phylogenetic richness, in the traditional ecological sense of the word. Chao1 

estimated richness uses the ratio of singlet sequences (only present once in the sample) to 

doublet sequences (present twice) to assess thoroughness of sequencing depth, and from 

there corrects the observed OTU richness to that expected if the sample were sequenced to 

the depth where all OTUs were captured (Chao 1984; Hughes et al. 2001).  

 Shannon diversity was between 1.84 and 3.74 at the surface, with a mean of 2.93 

(Fig. 2.12A); diversity increased with depth, to means of 3.27 at 30 m and 3.54 at 75 m, 

before leveling off at 3.63 at 150 m and 3.58 at 300 m (Fig. 2.12B).  The lowest Shannon 

diversity values at the surface were generally in the late summer and fall and the greatest 

were in spring and early summer, although there was substantial variability around that trend, 

particularly in 2014. Shannon diversity was weakly but significantly correlated with 

environmental parameters indicating higher diversity during recent upwelling and 

phytoplankton blooms (Table 2.7). 

 BWPD was between 0.31 and 1.64 at the surface, with a mean of 1.04 (Fig. 2.12C); it 

increased over depth, primarily within the euphotic zone, to means of 1.27 at 30 m, 1.50 at 75 

m, 1.51 at 150 m, and 1.55 at 300 m (Fig. 2.12D). As with Shannon diversity, BWPD 

correlates indicated higher phylogenetic diversity during upwelling and phytoplankton 

blooms, with higher correlation coefficients than those seen with Shannon diversity (Table 

2.7); this was reflected in higher BWPD values during the spring and early summer, with the 

exception of 2014 when BWPD showed no clear seasonality. BWPD and Shannon diversity 

were significantly positively correlated at the surface (R = 0.664; Table 2.7) but were 

negatively correlated at 75 m (R = -0.449; N = 190; p <0.0001). 
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 Chao1 estimated richness was between 59.2 and 294.6 OTUs at the surface, with a 

mean of 158.7 OTUs (Fig. 2.12E); it followed a similar pattern over depth as Shannon 

diversity, increasing to means of 203.8 OTUs at 30 m, 275.6 OTUs at 75 m, 325.1 OTUs at 

150 m, and 305.8 OTUs at 300 m (Fig. 2.12F). The temporal pattern of Chao1 richness was 

different than that of Shannon diversity (although the two metrics were positively correlated; 

Table 2.7), with estimated richness minima generally occurring in the spring and late summer 

and maxima in the fall and winter, again with substantial noise. Chao1 richness at the surface 

was negatively correlated with BPQ10, POC, and fucoxanthin (Table 2.7). 

 Faith’s phylogenetic diversity (PD, which is not weighted by abundance) was 

between 5.5 and 16.4 at the surface, with a mean of 10.2 (Fig. 2.12G). PD initially increased 

over the euphotic zone to means of 11.5 at 30 m and 11.6 at 75 m, before declining to 11.0 at 

150 m and 10.6 at 300 m (Fig. 2.12H). PD at the surface was weakly negatively correlated 

with BPQ10 and POC, and positively correlated with NO3 (Table 2.7), but had overall 

minimal seasonality (Fig. 2.12G). 

 While the percent of BCC consisting of archaea is not a measure of diversity per se, it 

is a contributing factor to the phylogenetic diversity measures above. Relative abundance of 

archaea in the SBC increased with depth, as discussed above (Fig. 2.6B). Percent archaea at 

the surface was highest in the winter and early spring, strongly correlated with upwelling 

parameters (temperature and NO3) and less strongly but significantly correlated with 

phytoplankton bloom indicators (Table 2.7).  

Bacterial production 

 BPQ10 was examined in more detail to see if a measure of bulk prokaryotic 

community activity followed similar temporal patterns, and correlated with similar 
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environmental parameters, as properties of BCC. BPQ10 ranged between 0.06 and 2.33 µmol 

C L-1 day-1, with a mean of 0.66 µmol C L-1 day-1, at the surface (Fig. 2.2F). Surface BPQ10 

was strongly associated with phytoplankton blooms and more weakly associated with recent 

upwelling, based on correlations with environmental parameters (Table 2.8). 

Correspondingly, BPQ10 showed a general seasonality, with lowest rates in the late fall and 

winter and highest rates during spring and summer. Surface BPQ10 was significantly 

positively correlated with Shannon diversity and BWPD, and negatively correlated with 

Chao1 estimated richness and PD (Table 2.7). 

 BPQ10 increased slightly over shallow depths, to a mean of 0.83 µmol C L-1 day-1 at 

10 m, and then declined over subsequent depths as would be expected, to a mean of 0.30 

µmol C L-1 day-1 at 30 m, 0.05 at 75 m, 0.02 at 150 m, and 0.01 at 300 m (Fig. 2.3D). BPQ10 

at 75 m is particularly interesting, with a small number of samples across eight cruises 

showing increases in BPQ10 three- to seven-fold over the mean at that depth (Fig. 2.3F). This 

is suggestive of an input of organic resources at depth, perhaps by export events; however, 

we cannot address this definitively with our dataset. These putative export events were 

associated with slightly higher mean copiotroph relative abundances than in the 75 m 

samples overall (S4, NAC11-7, had a mean relative abundance of 4.8% in high BPQ10 

samples, versus 1.2% at 75 m overall; S12, SAR92, 1.4% versus 0.5%; S7, SAR86, 2.9% 

versus 0.9%; and S14, SAR86, 1.5% versus 0.8%). Overall BPQ10 at 75m was significantly 

negatively correlated with percent archaea (R = -0.387, p < 0.0001, N = 163), BWPD (-

0.278; N = 163; p < 0.0001), and Chao1 estimated richness (R = -0.155, p = 0.049, N = 163), 

and positively correlated with PD (R = 0.232; N = 163; p = 0.003). 
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Discussion 

Overall BCC patterns: seasonality 

 Suites of OTUs that show synchronous changes in abundance in response to seasonal 

patterns, as we saw with our UniFrac groups, are a common feature of BCC time-series 

studies (Eiler et al. 2011; Lindh et al. 2015). Eiler et al. (2011) argued that this is evidence 

that bacterial communities are responding to deterministic forcing, rather than reflecting 

random community assembly. Many time-series studies have also documented succession in 

BCC during and following the spring phytoplankton bloom (Lamy et al. 2009; Teeling et al. 

2012; Treusch et al. 2009; Needham and Fuhrman 2016), which for the free-living 

community is consistent with the progression in quality and quantity of dissolved organic 

matter available as the phytoplankton community composition and physiological state change 

(Buchan et al. 2014; Wear et al. 2015). We observed evidence of succession in some of the 

individual OTUs, such as the apparent time-lag between the maximum relative abundance in 

OTU S3, the Roseobacter NAC11-7, and S6, a SAR86 OTU that often reaches a maximum 

relative abundance a month after the Roseobacter (Fig. 2.10). However, these time-lags 

between OTUs were mostly not significant in the cross-correlation analysis (Fig. 2.11), likely 

due to the boom-and-bust nature of these populations. Our sampling frequency is not high 

enough to capture the full details of shifts in BCC over the upwelling to bloom progression. 

For example, Needham and Fuhrman (2016) observed shifts in dominant OTUs over 

timescales of days. Instead, we would have sampled individual phytoplankton blooms and 

their degradation process at random points in the BCC progression, which could explain why 

UniFrac Group G, the group associated with moderate resource levels, contained the most 

diverse suite of communities (Fig. 2.9). 
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 The most geographically relevant time-series with which to compare our study is the 

San Pedro Ocean Time-series (SPOT), a monthly sampling located approximately 160 km to 

the southeast in the San Pedro Basin of the Southern California Bight. The SPOT site is 

relatively oligotrophic compared with the SBC, with chlorophyll a concentrations < 1 µg L-1 

at the surface (Chow et al. 2013) versus annual highs between 8 and 28 µg L-1 in the SBC 

(Fig. 2.2C), lower surface nitrate levels, and a slightly greater prevalence of cyanobacteria 

(Cram et al. 2015). However, prokaryotic communities in the SBC have a broad 

compositional similarity to those at SPOT. At the surface, both sites share dominant OTUs 

from the SAR11, SAR86, OCS155, and AEGEAN-169 clades (Table 2.2; Cram et al. 2015); 

the most noticeable differences between the sites is the lack of Roseobacter clades amongst 

the most abundant OTUs at SPOT, whereas the Roseobacter NAC11-7, OTU S3, repeatedly 

constitutes about 10-15 percent of BCC in the SBC during the spring phytoplankton bloom 

(Fig. 2.10). Most time-series community characterization at SPOT has been conducted with a 

method that does not detect archaea (Cram et al. 2015) and therefore quantitative 

comparisons with samples at depth are not meaningful. Communities at both sites show 

similar: seasonality over the course of a year, with BCC largely driven by the progression 

from upwelling to stratified conditions; and recurring patterns between years; and more 

apparent seasonality at the surface than at the base of the euphotic zone. However, the exact 

timing of environmental parameters underlying the seasonality differs between sites (Chow 

et al. 2013; Cram et al. 2015). 

 Chao1 richness reached a maximum during the late fall and winter in the SBC, 

lagging the height of the warm, stratified period but generally preceding strong spring 

upwelling. Winter maxima in richness have also been observed in the English Channel 
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(Gilbert et al. 2012), the Sargasso Sea (Vergin et al. 2013), and at SPOT (Cram et al. 2015), 

although in those systems richness is associated with the winter mixing period, which can 

increase richness by bringing deep-water clades to the surface and reducing the SAR11 

dominance common in stratified summer waters (Bunse and Pinhassi 2017). Richness and 

diversity were temporally decoupled in the SBC [whereas in Gilbert et al. (2012) OTU 

richness and PD are tightly linked], with both Shannon diversity and BWPD positively 

associated with phytoplankton blooms during the spring (Table 2.7; Fig. 2.12). This 

difference may be partly due to the poor sampling coverage of physical mixing on PnB on 

account of vessel limitations; one sample encompassing recently upwelled water (11.6 µM 

NO3 and temperature of 11.6°C) but with low chlorophyll a (0.9 µg L-1), April 2011 Station 

5, had one of the greatest BWPD values of the entire time-series. Thus, it is possible we 

would see observe similar patterns on a seasonal scale if we had greater sampling coverage 

of winter mixing and recently upwelling water. Nonetheless, the increased diversity 

associated with phytoplankton blooms relative to the more stratified summer and fall is real 

and may represent metabolic niche partitioning (discussed below). 

Overall BCC patterns: depth stratification 

 The largest scale of community variability measured was depth, which is consistent 

with previous depth profile studies of marine BCC. The SBC is a Case II water system 

(Otero and Siegel 2004), and thus the samples from 75 m and below in this system are below 

the euphotic zone. Vertical stratification in BCC is a well-documented phenomenon (Morris 

et al. 2005; DeLong et al. 2006; Carlson et al. 2009; Treusch et al. 2009; Eiler et al. 2011; 

Cram et al. 2015; Sunagawa et al. 2015; Walsh et al. 2016), with OTUs often restricted to 

specific portions of the water column (Brown et al. 2009). Community functional potential 
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likewise changes with sample depth, whether assessed by genomic (DeLong et al. 2006) or 

experimental approaches (Carlson et al. 2004). 

 One of the major drivers of depth stratification as measured by UniFrac distance was 

the increase in relative abundance of archaea with depth, a trend consistent with previous 

findings of enhanced archaeal abundance below the euphotic zone (Karner et al. 2001). A 

previous time-series study of prokaryotic community composition in the SBC measured the 

percent contribution of archaea (Murray et al. 1999). We observed slightly lower archaeal 

relative abundance at the surface (a mean of 2.9% in our study vs. a mean of 8.0% in Murray 

et al.) and slightly greater abundance at depth (38.5% vs. 31.0% at 75 m and 45.7% vs. 

39.2% at 300 m). However, considering that our study used 16S rRNA gene sequencing and 

Murray et al. (1999) used hybridization of group-specific 16S rRNA oligonucleotide probes, 

these values agree surprisingly well, suggesting long-term stability in the prokaryotic 

community in the SBC at its broadest sense. The most common surface archaea, 

Euryarchaeota Marine Group II (MGII) OTU S18 showed moderate seasonality in one- and 

three-month time lags relative to upwelling and bloom parameters (Fig. 2.11), which in our 

study could indicate either a physical shoaling of archaeal-enriched deep waters with 

upwelling or a positive selection by bloom conditions. There is some recent support for the 

latter scenario: Needham and Fuhrman (2016) observed a high relative abundance of an 

MGII OTU following a strong phytoplankton and copiotrophic bacteria bloom period at 

SPOT. Further, Orsi et al. (2015) showed that some MGII populations from the California 

Current System increase their growth rate in the presence of phytoplankton and are 

associated with higher chlorophyll a levels in field surveys. The Thaumarchaeota 

Nitrosipumilus OTU D1, the most common and abundant OTU at 75 m in the SBC, was 
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largely restricted to samples from depth, whereas the similarly dominant OTUs from the 

surface were regularly also present at depth (Table 2.2). Mesopelagic Thaumarchaeota have 

been shown to lack light stress response genes present in epipelagic Thaumarchaeota clades 

(Luo et al. 2014), which may contribute to this vertical partitioning. 

Individual OTUs 

 The seasonality of the individual OTUs is more muted than that of the community as 

a whole. While a number of OTUs have distinct maxima over time (Fig. 2.10), this pattern 

does not always carry through to statistically significant seasonality in cross-correlations with 

environmental parameters (Fig. 2.11). This is likely an effect of the boom-and-bust nature of 

the bloom-forming OTUs such as the copiotrophs, which are at effectively a baseline 

concentration for much of the year but then increase rapidly to high relative abundances for 

one or two months. However, many of the individual OTUs do have clear bottom-up 

correlates (Fig. 2.11), which are generally stronger than the correlations between 

environmental parameters and the community as a whole. 

 We measured a high overall relative abundance of SAR11, presumably as a result of 

our use of primers modified specifically to improve affinity for SAR11 (Apprill et al. 2015, 

which demonstrated that increased degeneracy in the 806R-B primer increased measured 

SAR11 relative abundance by an order of magnitude or more over the older version of 

806R). The mean relative abundances of the three most abundant SAR11 OTUs at the 

surface of (SAR11 surface 1, 32%; Surface 2, 6%; and Surface 4, 1%; Table 2.2) were 

consistent with the global SAR11 average of 20-40% (Giovannoni 2017), although the SBC 

also showed large oscillations around those means. As SAR11 isolates have been shown to 

be incapable of increasing their growth rates in response to substrate additions (Giovannoni 
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2017), their seasonal patterns were most likely driven by changes in the relative abundance 

of those copiotrophic OTUs that are known to lead boom-and-bust, blooming lifestyles, 

rather than by growth patterns of the SAR11 OTUs themselves. 

 One of the most abundant OTUs was a member of the Roseobacter NAC11-7 clade 

(OTU S3, Table 2.2), which was positively correlated with phytoplankton blooms and 

showed a seasonal progression in relative abundance subsequent to upwelling (Fig. 2.11). 

This is consistent with many studies showing a strong association between members of the 

Roseobacter clade and diatoms in particular (reviewed in Amin et al. 2012; Buchan et al. 

2014), and NAC11-7 is often notably prominent during diatom blooms (Buchan et al. 2005). 

The Flavobacteria are also commonly associated with diatoms (Amin et al. 2012; Buchan et 

al. 2014); four members of this class were amongst the most abundant surface OTUs (S11 – 

S14; Table 2.2), although several of them were poorly correlated with environmental 

parameters indicative of the upwelling and bloom states (chlorophyll a and POC; Fig. 2.11). 

This could be because Flavobacteria are thought to reach maximum abundance during the 

decay phase of phytoplankton blooms (Buchan et al. 2014), when the pigment signatures 

would be less pronounced and therefore would not be identified as a bloom period in our 

analysis. 

 Gammaproteobacteria are often generalized as copiotrophs (that is, r-selected 

organisms capable of a rapid and numerically dominant response to resource inputs; Fuhrman 

et al. 2015). This characterization fits the known lifestyles of such groups as the 

Vibrionaceae and the Altermonadaceae (e.g., Mou et al. 2008), including OTU S8, a member 

of the SAR92 clade that was correlated with phytoplankton blooms in this study (Fig. 2.11). 

SAR86, a common Gammaproteobacterium in the SBC, is more ambiguous, with some 
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studies finding it shows low growth rates and reduced DOM uptake compared with other 

groups in the subphylum (Nikrad et al. 2014) and weak responses to phytoplankton blooms 

(Alderkamp et al. 2006), but others indicating high uptake of model compounds (Mou et al. 

2007). This discrepancy is likely due to the large phylogenetic diversity within the SAR86 

clade (Treusch et al. 2009). Previous studies either did not specify which subclades they 

examined, or, as is the case here, did not have sufficient resolution in their chosen taxonomic 

reference to do so. In the SBC, the main SAR86 OTU (S6; Table 2.2) had similar temporal 

patterns (albeit often at a month lag) and maximal abundances as the main copiotroph, the 

Roseobacter NAC11-7, and was similarly positively correlated with proxies of phytoplankton 

blooms (Fig. 2.10 and Fig. 2.11). Although extrapolating activity from abundance is 

inherently risky, this suggests that the most abundant SAR86 OTU in this system was likely 

practicing a copiotrophic lifestyle. In contrast, a less abundant SAR86 OTU in this study, 

OTU S9, was most abundant during stratified periods (Fig. 2.10) and was positively 

correlated with chlorophyll a at a time-lag of six months (Fig. 2.11A), suggesting different 

metabolic preferences than the closely related OTU S6. 

Long-term trends 

 There was a noticeable decrease in the long-term repeatability of the surface 

community in the last year of sampling, seen in the increased scatter around the seasonal 

pattern of all paired UniFrac samples beyond an approximately 3.5 year time lag (Fig. 2.7). 

This plot of aggregate surface pairwise UniFrac comparisons versus time lags (Fig. 2.7) 

shows a slight positive slope (0.0075 units year-1), consistent with the gradual shift of an 

approximately 1% decrease per year in Bray-Curtis similarity over four years in a similar 

analysis by Chow et al. (2013). The progressive UniFrac distance of the surface center 
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stations in the SBC relative to the start of the time-series in July 2010 (July vs. August, July 

vs. September, and so forth) has a greater positive slope of 0.028 units year-1 (Fig. 2.13), 

which might be driven by the larger shifts in stratified communities (such as the appearance 

of UniFrac Group D; Fig. 2.9). The relatively repeatable bloom and moderate resource 

communities (Groups F and G), in contrast, would be expected to reduce the inter-annual 

variability seen in the aggregate pairwise comparison of Fig. 2.7. [The 75 m communities 

were much more consistent, with a slope of UniFrac distances relative to July 2010 of 0.0013 

units year-1 and an aggregate slope of 0.0019 units year-1.] Individual OTUs reflect this shift 

at the surface, with new peaks in abundance appearing in 2014 (Fig. 2.10; in particular, OTU 

S13 Polaribacter and OTU S16 Synechococcus), as well as the appearance of a new 

stratification-associated UniFrac group (Group D; Fig. 2.9B) in the second half of the time-

series. Perhaps the most obvious example of this is the BCC measured in August 2014, 

which was a substantial outlier (Fig. 2.4B), differentiated from the rest of the time-series by a 

strong Synechococcus bloom (Fig. 2.9C and 2.10E). 

 We speculate that at least some of these shifts were related to the Pacific warm 

anomaly, which led to elevated temperatures and reduced surface nitrate delivery in the near-

shore SBC beginning in December 2013 (Reed et al. 2016) and which strengthened in the 

offshore SBC beginning in June 2014 (Gentemann et al. 2017). For example, Synechococcus 

clades have distinct thermal and macronutrient preferences that correspond with their 

distribution in the global ocean (Pittera et al. 2014; Sohm et al. 2016). The Synechococcus 

bloom we observed was not a total ecosystem shift, as that OTU was present in 75% of 

surface samples (Table 2.2), with maxima prior to 2014 mostly occurring in the stratified late 

summer and fall. However, 16S rRNA genes are notoriously incapable of distinguishing 
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Synechococcus from Prochlorococcus at OTU-level similarity (Rocap et al. 2002; Fuhrman 

et al. 2015), and thus we are potentially combining ecologically distinct cyanobacteria within 

our 97% OTU definition. Nonetheless, conditions in 2014 must have shifted in some way 

that favored a cyanobacterial bloom. Assuming this OTU truly represents Synechococcus, 

then this summer maximum was in contrast with cyanobacterial patterns at SPOT, where 

Prochlorococcus OTUs increase in abundance in the summer and fall while Synechococcus 

OTUs bloom following upwelling (Chow et al. 2013). As our time-series sampling ended in 

the middle of the warm anomaly, we are unable to definitively rule out an association with 

longer-term, climatic shifts. Our study started towards the end of a strong La Niña period and 

continued through a more neutral El Niño Southern Oscillation state, though we did not 

sample any of the very strong El Niño events that are most influential in this system (NOAA 

Multivariate ENSO Index, https://www.esrl.noaa.gov/psd/enso/mei/). Likewise, our study 

began during a negative phase in the Pacific Decadal Oscillation, which began increasing 

towards a positive, warm phase in 2014 (NOAA NCEI PDO index, 

https://www.ncdc.noaa.gov/teleconnections/pdo/). A number of other studies in the Southern 

California Bight have seen shifts in the planktonic community over the 3-5 year range, so this 

may also simply be a sufficiently long time period to capture stochastic change or drift in 

BCC. For example, Chow et al. (2013) saw decreases in Bray-Curtis similarity over four 

years, and Martiny et al. 2016) measured increasing POM C:P and C:N ratios over three 

years in the California Current, although this latter study encompassed the 2014 start of the 

warm anomaly. 

Community function 
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 BPQ10 was strongly correlated with phytoplankton blooms at the surface (Table 2.8), 

which follows the general paradigm of phytoplankton blooms as sources of energy and 

carbon to the free-living, heterotrophic prokaryotic community. This was also consistent with 

the prokaryotic activity patterns observed by Murray et al. (1999), who measured strong 

positive correlations between leucine incorporation and chlorophyll a and POM 

concentrations. Halewood et al. (2012) likewise measured greatest BP during the spring 

upwelling period and positive correlations between BP and POM in the nearshore SBC. We 

interpret the strong associations between overall BCC and BPQ10, as well as between select 

copiotrophic OTUs and BPQ10, as indications of bacterial responses to increased resources 

associated with phytoplankton blooms (or, conversely, the seasonal lack thereof during the 

stratified periods). 

 We hypothesize that the episodic high bacterial production at 75 m is indicative of 

export events from the surface ocean. While we cannot address this directly with our 

environmental data, the greater than average relative abundances of copiotrophic OTUs in 

those samples supports this hypothesis. It is also possible there is a slight decoupling between 

the BPQ10, which was measured on whole water and therefore might contain some small 

particles by chance, and the BCC, which was measured on 1.2-µm prefiltered water. 

However, a strong export event would likely still be visible in the free-living fraction of the 

BCC, as copiotrophs would respond to the dissolved resource plumes diffusing away as 

particles are solubilized (Cho and Azam 1988; Stocker et al. 2008). 

 It is somewhat ambiguous whether the SBC demonstrates a positive relationship 

between BCC diversity and function as measured by BPQ10. Shannon diversity and BWPD 

were both significantly correlated with BPQ10, while Chao1 richness and PD were negatively 
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correlated (Table 2.8). The latter initially appears contrary to the idea that a greater number 

of OTUs in the prokaryotic community would be able to fill a greater number of metabolic 

niches (e.g., Cottrell and Kirchman 2000), thereby increasing overall growth; however, 

Chao1 richness in particular peaks during the stratified fall and winter periods (see Fig. 2.9C, 

Groups C and D and Fig. 2.12D) when at times more than half of the community was 

comprised of the oligotrophic, slow-growing SAR11 Surface 1 (Giovannoni 2017). In 

contrast, diversity reached a maximum during and shortly following phytoplankton blooms 

(Fig. 2.9C). Although the BCC during phytoplankton blooms generally reflected 

corresponding blooms of copiotrophic bacteria, these bacterial blooms usually consisted of 

multiple OTUs at moderate abundances and therefore were more diverse than the stratified 

communities. UniFrac Group F had the greatest mean BPQ10 with moderately high Shannon 

diversity and BWPD, while Group G had particularly high Shannon diversity but lower 

BWPD with moderate BPQ10; this is suggestive of a proliferation of niches as resources are 

processed post-bloom. The diversity-BPQ10 correlations were not especially strong, but 

bacterial metabolism can also be driven by one or a few particularly active OTUs (Pedler et 

al. 2014), and in this case we cannot distinguish between the effects of diversity itself 

enhancing community secondary production and the co-occurrence of copiotroph blooms and 

peak diversity.  

 

Conclusions 

 Temporal variability was greater than that of within-cruise spatial variability at both 

the surface and the base of the euphotic zone in the SBC, although changes over depth were 

significantly greater than any variability within depth horizons. Surface communities as a 
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whole and individual OTUs showed distinct seasonality, although this was relative to 

upwelling rather than strictly time-based. Bottom-up factors correlated with the community 

as whole, OTUs, and diversity metrics to varying degrees, with BPQ10 and temperature the 

most frequently significant correlates. Long-term shifts were apparent, with new community 

states appearing mid-way through the four-year time-series, possibly in association with 

larger climatological changes in the Southern California Bight. 
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Table 2.1: Sampling by location and depth 
 
Station Depth (m) DNA 

(volume 
filtered) 

BP Full PnB 
data 

PnB 
nutrients 
and CTD 

PnB 
CTD 

7 Surface* X (1 L) X X   
6 Surface X (1 L) X X   
6 75 X (1 L) X   X 
5 Surface X (1 L) X X   
5 75 X (1 L) X   X 
4 Surface X (1 L) X X   
4 5  X X   
4 10  X X   
4 20  X X   
4 30 X (1 L) X X   
4 50  X X   
4 75 X (1 L) X X   
4 100  X  X  
4 150 X (2 L) X  X  
4 200  X  X  
4 300 X (2 L) X  X  
4 400  X  X  
3 Surface X (1 L) X X   
3 75 X (1 L) X   X 
2 Surface X (1 L) X X   
2 75 X (1 L) X   X 
1 Surface X (1 L) X X   
* Surface samples are collected at approximately 1 m, or with the rosette just below the 
surface. 
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Table 3: Summary of scales of temporal and spatial variability, as UniFrac distance. 
 N Median Mean Minimum Maximum 
Depth 
0 vs. 30 m 34 0.280 0.311 0.108 0.636 
0 vs. 75m 180 0.598 0.590 0.197 0.782 
0 vs. 150m 33 0.656 0.654 0.505 0.796 
0 vs. 300m 35 0.670 0.666 0.542 0.825 
Temporal – surface 
1 month* lag 36 0.296 0.303 0.161 0.499 
3 months lag 34 0.341 0.364 0.221 0.589 
6 months lag 33 0.406 0.440 0.273 0.685 
1 year 30 0.282 0.306 0.214 0.549 
Temporal – 75m 
1 month lag 34 0.153 0.169 0.092 0.327 
3 months lag 30 0.199 0.197 0.125 0.300 
6 months lag 29 0.219 0.219 0.126 0.354 
1 year 28 0.196 0.202 0.091 0.361 
Spatial 
Surface, 2 vs. 6 38 0.189 0.204 0.086 0.372 
Surface, 2 vs. 7 30 0.199 0.212 0.108 0.428 
Surface, max 43 0.276 0.289 0.166 0.481 
75m, 2 vs. 6 30 0.134 0.180 0.075 0.543 
75m, max 41 0.166 0.208 0.094 0.543 
N = number of observations, out of 43 total cruises. *Time lags are nominal, such that one 
month is defined as any time lag between 0.5 and 1.5 months, and so forth, due to the 
inconsistent spacing of cruises. 
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Table 2.4: Mann-Whitney U-tests between UniFrac distances over depth, temporal, and 
cross-SBC distance scales. 
 Depth Temporal: surface Temporal: 75 m 
 0-75 0-150 0-300 1 mo 3 mo 6 mo 1 yr 1 mo 3 mo 6 mo 1 yr 

0-30 U = 
490 
p < 
0.0001 

31 
< 
0.0001 

24 
< 
0.0001 

572 
0.638 

387 
0.019 

238 
< 
0.0001 

466 
0.554 

175 
< 
0.0001 

228 
< 
0.0001 

280 
0.003 

239 
0.001 

0-75  1704 
< 
0.0001 

1518 
< 
0.0001 

141 
< 
0.0001 

384 
< 
0.0001 

885 
< 
0.0001 

126 
< 
0.0001 

10 
< 
0.0001 

16 
< 
0.0001 

25 
< 
0.0001 

26 
< 
0.0001 

0-
150 

  531 
0.568 

0 
< 
0.0001 

14 
< 
0.0001 

68 
< 
0.0001 

1 
< 
0.0001 

0 
< 
0.0001 

0 
< 
0.0001 

0 
< 
0.0001 

0 
< 
0.0001 

0-
300 

   0 
< 
0.0001 

5 
< 
0.0001 

59 
< 
0.0001 

1 
< 
0.0001 

0 
< 
0.0001 

0 
< 
0.0001 

0 
< 
0.0001 

0 
< 
0.0001 

S: 
1mo 

    402 
0.014 

182 
< 
0.0001 

538 
0.979 

119 
< 
0.0001 

145 
< 
0.0001 

215 
< 
0.0001 

188 
< 
0.0001 

S: 3 
mo 

     336 
0.005 

325 
0.013 

39 
< 
0.0001 

39 
< 
0.0001 

86 
< 
0.0001 

80 
< 
0.0001 

S: 6 
mo 

      135 
< 
0.0001 

6 
< 
0.0001 

2 
< 
0.0001 

20 
< 
0.0001 

26 
< 
0.0001 

S: 1 
yr 

       71 
< 
0.0001 

73 
< 
0.0001 

150 
< 
0.0001 

124 
< 
0.0001 

75: 
1 
mo 

        340 
0.022 

251 
0.001 

343 
0.060 

75: 
3 
mo 

         341 
0.154 

403 
0.791 

75: 
6 
mo 

          314 
0.142 

Statistically significant results are in bold. 
 
Table continues on next page 
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Table 2.4, continued 
 Distance: surface Distance: 75 m 
 2 vs 6 2 vs 7 max 2 vs 6 max 

0-30 315 
< 0.0001 

273 
0.001 

730 
0.992 

201 
< 0.0001 

361 
< 0.0001 

0-75 25 
< 0.0001 

36 
< 0.0001 

130 
< 0.0001 

55 
< 0.0001 

80 
< 0.0001 

0-150 0 
< 0.0001 

0 
< 0.0001 

0 
< 0.0001 

1 
< 0.0001 

1 
< 0.0001 

0-300 0 
< 0.0001 

0 
< 0.0001 

0 
< 0.0001 

1 
< 0.0001 

1 
< 0.0001 

S: 1mo 239 
< 0.0001 

220 
< 0.0001 

707 
0.510 

177 
<0.0001 

308 
< 0.0001 

S: 3 mo 90 
< 0.0001 

106 
< 0.0001 

409 
0.001 

110 
< 0.0001 

186 
< 0.0001 

S: 6 mo 14 
< 0.0001 

42 
< 0.0001 

176 
< 0.0001 

55 
< 0.0001 

86 
< 0.0001 

S: 1 yr 148 
< 0.0001 

144 
< 0.0001 

560 
0.341 

146 
< 0.0001 

244 
< 0.0001 

75: 1 mo 422 
0.012 

322 
0.011 

151 
< 0.0001 

451 
0.427 

573 
0.187 

75: 3 mo 551 
0.814 

439 
0.871 

215 
< 0.0001 

295 
0.022 

554 
0.478 

75: 6 mo 489 
0.433 

380 
0.404 

300 
< 0.0001 

232 
0.002 

454 
0.094 

75: 1 yr 515 
0.825 

402 
0.779 

251 
< 0.0001 

284 
0.034 

533 
0.616 

S: 2v6  567 
0.970 

323.5 
< 0.0001 

384 
0.022 

704 
0.462 

S: 2v7   288.5 
< 0.0001 

292 
0.019 

534 
0.346 

S: max    229 
< 0.0001 

405 
< 0.0001 

75: 2v6     451 
0.057 
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Table 2.8: Surface BPQ10 correlations with environmental parameters (Spearman’s rho.) 
Significant correlations are marked with an *. 
Parameter Correlation with BPQ10 
*Temperature R = -0.169; N = 235; p = 0.009 
*Salinity 0.298; 234; <0.0001 
NO3 -0.060; 233; 0.365 
NO2 -0.075; 234; 0.254 
*SiO2 -0.269; 235; <0.0001 
*PO4 -0.155; 235; 0.017 
*Chlorophyll a 0.569; 235; <0.0001 
*POC 0.789; 228; <0.0001 
*PON 0.680; 227; <0.0001 
*bSi 0.751; 221; <0.0001 
*Fucoxanthin 0.682; 222; <0.0001 
*Peridinium 0.135; 222; 0.044 
*Zeaxanthin -0.189; 222; 0.005 
*CDOM S -0.314; 232; <0.0001 
*Shannon diversity 0.238; 227; <0.0001 
*BWPD 0.363; 227; <0.0001 
*Chao1 estimated richness -0.360; 227; <0.0001 
*PD -0.199; 227; 0.003 
Percent archaea -0.106; 227; 0.111 
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Fig. 2.1: Map of the PnB transect, from the northern Channel Islands in the south to the 
California mainland in the north. 
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A.   

B.  

C.   

D.  
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E.   

F.  
 
Fig. 2.2: Maps of surface parameters. Surface maps are a birds-eye view of the PnB transect, 
as shown in Fig. 2.1, with latitude on the Y axis and time on the X axis. A: Temperature. B: 
Nitrate. C: Chlorophyll a. D: Fucoxanthin. E: CDOM spectral slope (S), multiplied by 103 for 
visual clarity. F: BPQ10. 
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A.   

B.  

C.   

D.  
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E.   

F.  
 
Fig. 2.3: Depth profiles at Station 4 and 75 m surface maps of physicochemical parameters. 
Note that color bar scales vary across map types here and with Fig. 1. A: Temperature over 
depth, with time on the X axis. B: Nitrate over depth. C. Chlorophyll a over depth; 
chlorophyll is only measured to 75 m. D. BPQ10 over depth. E. Temperature at 75 m, in a 
birds-eye view of the transect as in Fig. 2.2. Stations 1 and 7 are not sampled at 75 m, but 
surface maps were plotted on the same latitudinal scale as those in Fig. 2.2. F. BPQ10 at 75 m. 
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A.  

B.  

C.  
 
Fig. 2.4: NMS plots of samples using weighted UniFrac distance. A: All samples, colored by 
depth. B: Surface samples, colored by month, aligned so that the annual cycle is roughly 
clockwise from the top. Outliers on the bottom right are from August 2014.  C: 75m samples, 
colored by month. 



 64 

A.  
 

B.  

C.  

0 vs. 30m 0 vs. 75 0 vs. 150 0 vs. 300
0.0

0.2

0.4

0.6

0.8
U

ni
Fr

ac
 d

is
ta

nc
e

1 month 3 months6 months 1 year
0.0

0.2

0.4

0.6

0.8

U
ni

Fr
ac

 d
is

ta
nc

e

1 month 3 months6 months 1 year
0.0

0.2

0.4

0.6

0.8

U
ni

Fr
ac

 d
is

ta
nc

e



 65 

D.  
 
 
 
Fig. 2.5: UniFrac distance across scales of spatial and temporal variability. The center line is 
the median; the box delineates the 25-75th percentile; the whiskers show the maximum and 
minimum values observed for the specified comparison. All plots are on the same scale for 
comparative purposes. A: Over depth: surface vs. 30 m, 75 m, and 300 m samples from the 
same station. B. and C. Temporal variability at the surface and 75 m, respectively, using the 
average of all pairwise comparisons between the three center stations. Because the PnB 
cruises are not spaced at exactly one-month intervals, one month here is a nominal measure 
encompassing cruises taking place between 0.5 and 1.5 months apart, and so forth. D. 
Spatial: comparisons were made between points on opposite sides of the SBC, and the 
maximum UniFrac distance observed between points within a depth horizon in a single 
cruise was identified. For the surface, Stn. 1 was omitted because of strong ecological 
gradients (see text), and both 2v6 and 2v7 were considered because Stn. 7 is under-sampled 
within the time-series due to frequent high winds.  
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A.  

B.  
Fig. 2.6: Total relative abundance of archaea in overall BCC. A: Surface map, with a birds-
eye view of the time-series as in Fig. 1. B: Depth profile at Station 4. Note that color bar 
scales differ between the two plots. 
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A.  
 

B.  
 
Fig. 2.7: Temporal patterns of UniFrac distance at surface (A) and 75 m (B). Plots show the 
mean UniFrac distance between all pairwise comparisons of the three center stations for each 
cruise, with error bars indicating the standard deviation within a cruise, at each depth 
horizon, against the respective time lag in decimal years. Note that the overall mean UniFrac 
distance and variability within a particular time lag are larger at the surface than at 75, as is 
the amplitude across the annual cycle. Linear trendlines show the lack of directional shifts in 
BCC over time, for comparison with the similar analysis in Chow et al. (2013). 
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A.  

B.  

C.  
 
Fig. 2.8: Example distance decay patterns of surface BCC, relative to Stn. 2. Plots are log 
UniFrac distance, relative to Stn. 2, over log physical distance across the SBC in km. A. An 
example of distance decay, from November 2011. To be considered as distance decay, the 
plot needed to show a positive slope and have a linear curve fit R2 of 0.5 or greater. Thirteen 
out of 42 cruises met these criteria. B and C. Examples of non-linear BCC patterns over 
spatial distance, from April 2013 and September 2013, respectively. Twenty-six of 42 cruises 
had concave, sawtooth, or variable spatial patterns, likely due to eddy and current dynamics. 
An additional 3 cruises showed an increase in BCC similarity with distance. 
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A.  

B.  
C. 

 
 
Fig. 2.9: UniFrac distance-based groupings of BCC samples. A. Cluster diagram of all 
samples, with a line demarcating the UniFrac distance of 0.35 that was used to define groups. 
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Groups are in alphabetical order from left to right. B. Temporal pattern of groups, as percent 
of total BCC samples within each cruise. C. Means of environmental parameters and most 
abundant OTUs from each of the seven groups. Darker colors indicate higher values. Each 
column is scaled independently, to highlight between-group differences rather than exact 
quantities; individual OTU means therefore do not represent actual relative abundance, and 
only trends, not magnitude, should be compared across OTUs. X = no data. 
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A.  

B.  

C.  

D.  
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E.  
 
Fig. 2.10: Temporal patterns of the most abundant surface OTUs, examined as the mean of 
the center three stations. OTU IDs are as defined in Table 2.2, with brief descriptors where 
useful. A: Temporal patterns of the SAR11 clade. Temperature is shown on all plots as an 
indicator of upwelling periods. B: Temporal patterns of all other Alphaproteobacteria. C. 
Temporal patterns of all Gammaproteobacteria. D. Temporal patterns of Flavobacteria. E. 
Temporal patterns of remaining OTUs.  
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A.  
 

B.  
 
Fig. 2.11: Bottom-up correlates and cross-correlation analysis of the most abundant 
OTUs, examined as the mean of the center three stations. OTU IDs are as defined in 
Table 2. A: Bottom-up correlates (Spearman’s rho) with environmental parameters, both 
simultaneous and at temporal lags of 1, 3, and 6 months (that is, the OTU relative 
abundance is correlated with the preceding environmental parameter). Nonsignificant 
correlations are shown as a zero value, i.e., a white square; all colored squares are thus 
significant correlations. B. Cross-correlations of a subset of the most abundant OTUs. No 
lag N = 43, 1 month N = 36, 3 months N = 34, 6 months N = 33. 
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A.  

B.  

C.  
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D.  

E.  

F.  
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G.  

H.  
 
Fig. 2.12: Distribution of Shannon diversity index and Chao1 estimated richness. A. Shannon 
index at the surface, as a birds-eye view of the time-series as in Fig. 1. B. Depth profile of 
Shannon index at Station 4. C. Balance-weighted phylogenetic diversity (BWPD) at the 
surface. D. Depth profile of BWPD. E. Chao1 at the surface. F. Depth profile of Chao1. G. 
Faith’s phylogenetic diversity (PD) at the surface. H. Depth profile of PD. Note that color bar 
scales differ between surface maps and depth profiles. 
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A.  

B.  
 
Fig. 2.13: UniFrac distances between July 2010 and all subsequent samples, plotted over the 
time-lag between cruises (mean UniFrac distance of all pairwise comparisons between the 
three center stations from each cruise). A: Surface. B: 75 m. 
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III. Synchronous shifts in dissolved organic carbon bioavailability and bacterial 

community responses over the course of an upwelling-driven phytoplankton bloom 

 

Reprinted from: EK Wear, CA Carlson, AK James, MA Brzezinski, LA Windecker, and CE 

Nelson. 2015. Synchronous shifts in dissolved organic carbon bioavailability and bacterial 

community responses over the course of an upwelling-driven phytoplankton bloom. 

Limnology and Oceanography 60: 657-677. doi:10.1002/lno.10042 

With permission from John Wiley & Sons, Inc. © 2015 Association for the Sciences of 

Limnology and Oceanography. 

 

A. Abstract  

 Interactions between dissolved organic carbon (DOC) and bacterioplankton were 

examined during a diatom and Phaeocystis bloom in the Santa Barbara Channel (SBC) over 

5 days following an upwelling event. The SBC was heterogeneous in physical state (recently 

upwelled vs. more stratified), nutrient concentration, and productivity, encompassing 

phytoplankton physiological states from a healthy bloom through the onset of silicon stress. 

DOC accumulated in the upper 10 m over the bloom, with compositional shifts indicated by 

chromophoric dissolved organic matter (CDOM) parameters. DOC bioavailability and 

bacterial growth and community composition responses were assessed with dilution batch-

culture bioassays. In these experiments, bacterioplankton DOC usage increased over the 

bloom, with uptake of 1.5-5.3 µmol L-1 over 3 days, 1.5-5.7 µmol L-1 over 1 week, and 1.8-

10.8 µmol L-1 over 10 weeks. DOC removal was poorly correlated with traditional proxies of 

bioavailability (chlorophyll a concentration, elemental ratios of dissolved organic matter, and 
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CDOM). However, bacterial growth efficiency (BGE) was strongly related to in situ 

conditions, with higher BGEs on fresher, late-bloom DOC. After 10 weeks, 1.6-15.7 µmol L-

1 of the DOC that accumulated during the bloom remained unutilized in the bioassays, with 

higher concentrations of persistent DOC in experiments from senescent bloom physiological 

states, supporting the putative relationship between phytoplankton blooms and seasonal DOC 

accumulation in the field. These experiments demonstrate that DOC released by the plankton 

community during a bloom fuels increased short-term and long-term bacterial activity, 

enhances presumed trophic transfer via increased BGEs, and leads to the accumulation of 

persistent, potentially exportable, DOC. 

 

B. Introduction 

 Seasonal upwelling within the eastern boundary current is a characteristic 

biogeochemical driver of phytoplankton blooms along the coast of California. Upwelling-

driven blooms are important sources of dissolved organic matter (DOM), a substrate that 

supports bacterioplankton growth and respiration and organic matter processing within the 

microbial loop, with increased proportions of primary production consumed by bacteria 

during various phases of such blooms (Montero et al. 2007; Halewood et al. 2012). These 

systems therefore provide an excellent opportunity to examine how shifts in the physiological 

state of a phytoplankton bloom affect the amount, bioavailability, and fate of DOM that is 

produced. Phytoplankton on average release 16-20% of their daily productivity as DOM 

(Baines and Pace 1991; Carlson and Hansell 2015), but the magnitude can vary greatly (2-

80%), from low constitutive release to a response to stressors such as nutrient limitation and 

irradiance at the high end (Carlson and Hansell 2015). The partitioning of the most 
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bioavailable portion of this DOM between bacterial incorporation into biomass, with 

potential for subsequent trophic transfer, and respiration to inorganic constituents is of 

interest to the microbial ecologist, as is the relationship between DOM and bacterioplankton 

community composition (BCC). The portion of bloom-produced DOM that is produced as, or 

transformed to, recalcitrant compounds and that persists in dissolved form can have 

significant biogeochemical consequences, as the advection of dissolved organic carbon 

(DOC) to depth accounts for 20% of the global organic carbon export from the epipelagic 

zone (Carlson and Hansell 2015). Resolving the partitioning of net DOC production between 

bioavailable (labile) and persistent (semi-labile) pools can therefore inform our estimates 

across multiple scales of carbon cycling. 

 The canonical relationships between primary productivity, DOM, and heterotrophic 

bacterioplankton have been primarily inferred from cross-system studies, meta-analyses, and 

time-series work. Such studies have linked bacterial abundance with chlorophyll a (Chl a; 

Cole et al. 1988); bacterial production and bacterial growth efficiencies (BGEs) with net 

primary production (PP; Cole et al. 1988; del Giorgio and Cole 1998) and organic carbon to 

nitrogen ratios (del Giorgio and Cole 1998); and DOM bioavailability with compositional 

characteristics including molecular weight (Benner 2002), chromophoric DOM (CDOM) 

properties (Guillemette and del Giorgio 2011), elemental ratios (Sun et al. 1997), and 

diagenetic state (Benner 2002; Goldberg et al. 2009), as well as with Chl a (Guillemette and 

del Giorgio 2011). Time-series and cross-system studies have also demonstrated the 

contributions of phytoplankton blooms to DOC accumulation (Carlson et al. 1994; Williams 

1995), variability in DOM quality (Goldberg et al. 2009), and DOC export (Carlson et al. 

1994).  
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 However, there is a paucity of field studies in which bacterial and DOM dynamics are 

assessed at high temporal and spatial resolution across a single phytoplankton bloom event, 

with most such studies focused on BCC (e.g., Teeling et al. 2012) or inferring shifts in DOM 

bioavailability from bacterial production (Barbosa et al. 2001) or enzymatic activity (Teeling 

et al. 2012). While the relationships measured in time-series and cross-system studies are 

often assumed to apply over ecologically relevant timeframes as well, this extrapolation 

likely misses subtleties inherent to the development and senescence of a discrete 

phytoplankton bloom, such as the shift from nutrient-replete to nutrient-stressed 

phytoplankton and the associated compositional changes in the DOM pool. Phytoplankton 

are thought to respond to incipient nutrient limitation by increasing the quantity and altering 

the chemical composition and stoichiometry of the DOM they produce (Williams 1995; 

Goldberg et al. 2009; Carlson and Hansell 2015), as Conan et al. (2007) saw in the elevated 

ratios of organic carbon to limiting nutrients and increased carbohydrate concentration in 

mesocosms experiencing various nutrient stresses. Although DOC released by phytoplankton 

is generally thought to be of high quality to bacterioplankton (del Giorgio and Cole 1998), 

the accumulation of C-rich DOM observed in the field after phytoplankton blooms (Carlson 

et al. 1994; Williams 1995) suggests that some DOM produced under nutrient stress is less 

bioavailable and can persist in the dissolved phase. 

 We repeatedly measured in situ biogeochemical parameters and experimentally 

assessed DOM bioavailability and bacterioplankton growth responses over 5 days across a 

heterogeneous, upwelling-driven phytoplankton bloom spanning conditions of recently 

upwelled water through the late-bloom onset of silicon stress (Si stress), in the Santa Barbara 

Channel (SBC), with the goal of assessing DOM-mediated effects of phytoplankton nutrient 
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stress on bacterioplankton activity. The SBC, an eastern boundary current system, features 

regular wind-driven upwelling of cold, nutrient-rich water in spring and early summer, 

prompting strong phytoplankton blooms (Otero and Siegel 2004). The fortuitous timing of an 

intensive process cruise immediately following such a wind event allowed us to sample the 

major physical driver of biogeochemistry in this system and its subsequent effects, and the 

high spatial heterogeneity of the SBC following the upwelling event enabled us to assess 

various physiological states of a phytoplankton bloom over a limited timeframe by sampling 

over a spatial grid.   

 

C. Methods 

1. Experimental design 

 Dilution batch-culture bioassay experiments were established 11-15 May 2011 (Table 

3.1) on the SBDOM11 cruise aboard the R/V Point Sur in the western SBC, California, 

United States of America (Fig. 3.1). Water samples were collected within the upper 8 m of 

the water column (Table 3.1) using a conductivity temperature depth (CTD) profiling rosette 

equipped with 12 L Niskin bottles. Water was gravity-filtered directly from the Niskin bottle 

through two in-line mixed cellulose ester filters (1.2 µm (RAWP) and 0.2 µm (GSWP), 

Millipore, Billerica, MA) in polycarbonate cartridges that had been thoroughly flushed with 

Nanopure water or mesopelagic seawater (> 1 L) and sample seawater (0.5 L) to prevent 

organic contamination. Duplicate 500 mL polycarbonate bottles (previously washed in 5% 

hydrochloric acid) were rinsed then filled with 375 mL 0.2 µm filtrate (filter sterilized media) 

and 125 mL 1.2 µm filtrate (bacterial inoculum) collected from the same cast. Bottles were 

incubated in the dark in an upright incubator at 11°C (within 2.5°C of in situ temperatures; 
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Table 3.1) for 10 weeks. Samples for bacterial abundance, DOM, and DNA for BCC were 

collected by decanting from the bottles. 

2. Sampling and analysis 

a. Dissolved organic matter 

 In situ DOM samples were collected directly from the Niskin bottles through 

combusted GF/F filters (Whatman, Piscataway, NJ) in polycarbonate cartridges and into 

acid-washed high-density polyethylene bottles that were stored frozen at -20°C. 

Experimental seawater was initially filtered during bioassay set-up, as described above; to 

avoid contamination from handling, experimental DOM samples were collected without 

further filtration into combusted glass EPA vials with Teflon-lined silicone septa and frozen 

at -20° C. Experiments were sampled for DOC concentration at initiation, nominal 3 days, 

nominal 1 week, and 10 weeks. DOC values at the initial, 3-day, and 1-week time points 

were corrected by subtracting bacterial biomass (using a carbon conversion factor of 10 fg C 

cell-1, consistent with the measured cellular carbon content of oceanic bacteria according to 

Fukuda et al. (1998)) before calculating DOC drawdown (to measure total bacterial carbon 

demand rather than just respiration). DOC and total dissolved nitrogen (TDN) were 

quantified by high-temperature combustion on a modified Shimadzu TOC-V calibrated as in 

Halewood et al. (2012). Dissolved organic nitrogen (DON) was calculated by subtracting 

dissolved inorganic nitrogen (measured as below) from TDN.  

 In situ CDOM samples were collected in amber glass bottles, filtered under low 

vacuum pressure through 0.2 µm polycarbonate filters (Nuclepore Track-Etch, Whatman), 

and stored in the dark at 4°C in combusted amber glass EPA vials with Teflon-lined silicone 

septa following Swan et al. (2009). UV-Visible absorption spectra were obtained from an 



	 84	

UltraPath single-beam instrument (World Precision Instruments, Sarasota, FL; as in Swan et 

al. 2009). Absorption values at 355 nm were normalized to in situ DOC concentrations 

(a355:DOC).  Spectral slope coefficients (S) over 320-500 nm were calculated following 

Stedmon et al. (2000). 

b. Bacterial abundance and production 

 Samples for bacterial abundance were collected in sterile cryovials daily for the first 

week, preserved with 0.2% final concentration paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA), fixed at room temperature for >30 minutes, flash-frozen (liquid 

nitrogen or -40°C), and stored frozen until analysis. Bacterioplankton were stained with 

SYBR Green I (Molecular Probes) and enumerated with a BD LSRII flow cytometer (Becton 

Dickinson, San Jose, CA) with an autosampler attachment as in Halewood et al. (2012). 

 Bacterial production was measured by 3H-leucine (3H-Leu) incorporation (specific 

activity 54.1 Ci/mmol; Perkin Elmer, Boston, MA), using a modified microcentrifuge 

method (following Halewood et al. 2012). Samples were spiked to a final concentration of 

15.7 nmol L-1 3H-Leu (preliminary experiments showed that uptake by SBC bacteria 

saturated at >10 nmol leucine L-1) and incubated in the dark for 45-90 minutes at in situ 

temperature (±2°C). 3H-Leu incorporation was converted to bacterial carbon production (BP) 

using the conversion factor of 1.5 kg C (mol leucine)-1 (Simon and Azam 1989). 

c. Physicochemical and phytoplankton data 

 Temperature, conductivity/salinity, depth, and photosynthetically active radiation 

(PAR) were obtained from a CTD sensor array (SBE9+; Sea-Bird Electronics, Inc., Bellevue, 

WA) equipped with, respectively: dual SBE 3Plus Temperature sensors, SBE 4C 

conductivity sensor, Tri-Tech altimeter, and Biospherical PAR sensor. Primary production 
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(PP) was measured by 14C-bicarbonate tracer with 24-hour deck-board incubations as 

described in Anderson et al. (2006). Chl a was collected on 0.45 µm mixed cellulose ester 

filters (HAWP, Millipore), extracted in acetone, and quantified by fluorescence with 

acidification as in Anderson et al. (2006). Water for inorganic nutrient analysis was filtered 

through 0.6 µm polycarbonate filters (Nuclepore, Whatman), stored frozen, and analyzed 

using flow injection analysis on a QuikChem 8000 (Lachat Instruments, Loveland, CO; 

detection limits: nitrate+nitrite (N+N), 0.2 µmol L-1; ammonium, 0.1 µmol L-1; silicic acid, 

1.0 µmol L-1). Limitation of the rate of silicic acid uptake (Si stress) was assessed at the 

depth of the 50% light level in deckboard incubations using 32Si(OH)4 as a tracer. Si stress 

was quantified as the ratio of the rate of uptake of Si(OH)4 at its ambient concentration to the 

rate obtained in the same water after a 20 µmol L-1 addition of sodium silicate (Vamb:Vmax; 

Nelson et al. 2001); uptake was measured with additions of 280 Bq of high specific activity 

32Si (>40,000 Bq (µg Si)-1) as sodium silicate (National Isotope Development Center, Oak 

Ridge National Laboratory). After 24-hour incubations to ensure a full photocycle, Si stress 

samples were filtered (0.6 µm polycarbonate) and processed as in Krause et al. (2011). 

Particulate organic carbon (POC) was collected on a GF/F filter (Whatman) and quantified 

by combustion elemental analysis on a CE440 Elemental Analyzer (Exeter Analytical Inc., 

North Chelmsford, MA). Wind data were obtained from National Data Buoy Center 

(http://www.ndbc.noaa.gov) stations 46053 (in the center of the SBC) and 46054 (at the 

western end of the SBC, south of Point Conception). 

d. Bacterial community composition 

 In situ (i.e., starting community or T0) DNA from 1 L of water was prefiltered 

through 1.2 µm mixed cellulose ester filters (RAWP, Millipore) under low pressure using a 
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peristaltic pump and collected on 0.2 µm polyethersulfone filter cartridges (Sterivex-GP, 

Millipore), which were stored frozen (-20° at sea, -40° on shore). Experimental DNA was 

collected at day 3 (T3) from duplicate bottles combined (to conserve volume); 125 ml from 

each bottle was filtered through a 0.2 µm polyethersulfone filter (Supor-200, Pall, Port 

Washington, NY) under low vacuum pressure and filters were frozen in sterile cryovials. 

Samples were lysed in sucrose lysis buffer (40 mmol L-1 EDTA, 50 mmol L-1 Tris-HCl, 750 

mmol L-1 sucrose, 400 mmol L-1 NaCl, pH adjusted to 8.0) with 1% w/v sodium dodecyl 

sulfate and 0.2 mg ml-1 proteinase-K at 55° C for 2 hours. Genomic DNA was extracted 

using a commercial silica centrifugation kit (DNEasy, Qiagen, Valencia, CA) and used to 

conduct multiplex amplicon pyrosequencing following Nelson et al. (2014). Briefly, 25 µL 

polymerase chain reactions were conducted with 4 µL genomic DNA template using primers 

targeting the V1 and V2 hypervariable regions of the 16S ribosomal ribonucleic acid (rRNA) 

gene (8F and 338R, with adaptors and oligonucleotide barcodes as in Nelson et al. 2014). 

Amplicons were pooled at equimolar quantities before pyrosequencing on a Roche/454 GS 

FLX using Titanium Chemistry (lab of Stephan Schuster, Pennsylvania State University). 

Results and barcodes were deposited in the NCBI Sequence Read Archive 

(http://trace.ncbi.nlm.nih.gov/Traces/sra) as run accession SRR1222603. 

 Sequence analysis was conducted in mothur (v1.28.0; Schloss et al. 2009) using a 

bioinformatic pipeline as described in Nelson and Carlson (2012) and Nelson et al. (2014). 

Quality-controlled sequences were aligned to a non-redundant subset of the SILVA SSU Ref 

16S alignment database (v111) (Quast et al. 2013) curated as in Nelson et al. (2014). 

Sequences were assigned to operational taxonomic units (OTUs) by average-neighbor 

hierarchical clustering at the 95% identity level [over the highly variable V1-V2 region of the 
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16S gene examined here, a 5% difference is similar to a 3% difference over the full length of 

the 16S gene, and therefore this clustering is comparable with the 97% sequence identity 

commonly used for other amplified regions (Schloss 2010)] and OTUs were consensus 

classified at the 70% confidence level. Diversity metrics were calculated within mothur and 

weighted UniFrac (Lozupone and Knight 2005) was used to calculate phylogenetic distances 

between samples.  Multivariate analyses (ordination and clustering algorithms) were 

conducted in PRIMER 6 (Clarke and Gorley 2006).  

3. Calculations and statistics 

 To estimate net DOC and POC production during the bloom, it was necessary to 

determine the “background” DOC and POC values in upwelling source water at depth. We 

used salinity as a conservative tracer to identify the water masses from which recently 

upwelled surface water would have originated, assuming minimal isopycnal mixing, focusing 

on sub-euphotic zone water that should have experienced minimal biological activity 

resulting from the bloom; temperature was not used as a water mass tracer because upwelled 

water may have warmed at the surface. Salinities at 5 m nominal depth were between 33.76 

and 33.84 under recently upwelled conditions (N+N >15 µmol L-1); therefore, we identified 

potential upwelling source waters as those with salinity in this range and at less than 1% 

surface PAR. As this salinity range was found at two distinct depth ranges on 14 May 2011, 

suggesting the introduction of new water masses at depth, we excluded this and later 

sampling dates to focus on casts on 11-13 May 2011. The analysis was further restricted to 

casts at or north of 34.2° N latitude (approximately the northerly 2/3 of the basin; Fig. 3.1), 

as upwelling occurs primarily along the northward mainland coast in the western SBC, and to 

samples with >15 µmol L-1 N+N, where biological processing related to mixing with the 
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euphotic zone had presumably been minimal. Mean DOC and POC values within the samples 

meeting all of these conditions were considered to represent background values (Table 3.2). 

The proportion of freshly produced total organic carbon (TOC) that was partitioned into 

DOC (TOC partitioning, or % DOCTOC) (Carlson and Hansell 2003; Halewood et al. 2012), 

was then calculated as:  

 

Equation 1: % DOCTOC = (in situ [DOC] – background mean [DOC]) x ((in situ [DOC] + in 

situ [POC]) – (background mean [DOC] + background mean [POC]))-1 x 100.   

 

Persistent DOC, here defined as the freshly produced DOC that remained in the bioassays at 

the final 10-week sampling, was calculated as:  

 

Equation 2: persistent [DOC] = 10-week [DOC] – background mean [DOC]. 

 

 Bacterial specific growth rate (µ) was calculated as the rate of change of the natural 

log of cell abundance during exponential growth. Bacterial growth efficiency (BGE) was also 

calculated over the exponential growth phase as the rate of change in bacterial cell biomass 

divided by the slope of the DOC drawdown from experiment initiation to 1 week, with DOC 

concentrations corrected for the bacterial biomass present at time of sampling. Exponential 

growth phase for both µ and BGE was considered to extend from the end of lag phase to the 

start of stationary phase or to the maximum biomass observed (with additional 

abundance/biomass measures from lag and stationary phases averaged where available to 

increase robustness of estimates). We assumed linear growth and DOC drawdown based on 
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observed linear bacterial growth curves and lag phases that did not exceed 24 hours. 

 Spearman’s nonparametric correlation analyses were run (on means of parameters 

from replicate bottles where applicable) in PASW Statistics 18.0 (SPSS Inc.). CDOM slopes 

were calculated in JMP 9 (SAS Institute Inc.). Bootstrap analyses were run using 

Statistics101 2.8 (http://www.statistics101.net; 2013). Figures were generated in SigmaPlot 

12.0 (Systat Software Inc.), Adobe Illustrator (Adobe Systems Incorporated), JMP, and 

PRIMER. 

 

D. Results 

1. In situ conditions 

 The SBC experienced a wind-driven upwelling event shortly before and during the 

early portion of the cruise. Winds south of Point Conception were elevated 7-14 May 2011, 

averaging 9.7 m s-1 out of the northwest, with gusts to 15.5 m s-1; winds in the central SBC 

were elevated 9-10 May 2011, averaging 10.2 m s-1 out of the west-northwest, with gusts to 

17.9 m s-1 (National Data Buoy Center). The upwelling from this physical forcing was 

reflected in the low temperatures, high inorganic nutrient concentrations, low phytoplankton 

biomass, and low DOC values measured in the early samples (11-12 May 2011) (Table 3.1). 

Over the course of the cruise, a strong phytoplankton bloom (mixed diatoms, dominated by 

Guinardia striata, and Phaeocystis sp.; L. Windecker, pers. comm.) developed in the SBC.  

Surface PP rates increased from a low of 1.2 to a high of 43.1 µmol C L-1 d-1; Chl a from 0.2 

to 14.1 µg L-1; and POC from 6.2 to 70.7 µmol L-1 (Table 3.1). Because the phytoplankton 

bloom was spatially heterogeneous, we used in situ N+N concentration (which decreased 

from 24.7 to as low as 1.4 µmol L-1 over the sampling period) as an indicator of bloom 
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progression from upwelling through the onset of late-bloom nutrient stress. N+N 

concentration was strongly negatively correlated with temperature and with in situ biological 

parameters including POC and BP, supporting its use as an indicator of bloom state (Table 

3.3, Fig. 3.2). N+N was also highly positively correlated with silicic acid such that N+N 

concentration closely approximates the corresponding Si(OH)4 concentrations (Table 3.1, 

Table 3.3). Si stress (Vamb:Vmax < 0.8, with lower values indicating higher stress; Nelson et 

al. 2001) was observed in 15 of 24 samples with Si Vamb:Vmax measurements (Table 3.1); Si 

stress appeared related to the bloom progression, as Si Vamb:Vmax was positively correlated 

with N+N (i.e., Si stress was higher at lower N+N; Table 3.3; Fig. 3.3A) and negatively with 

POC. However, Si stress did not increase linearly with inorganic nutrient drawdown, in that 

limitation was first apparent at about 10 µmol L-1 Si(OH)4 (Fig. 3.3A), consistent with the 

known average half-saturation constant for Si uptake of about 2.5 µmol L-1 (Martin-Jézéquel 

et al. 2000). 

 As the bloom developed, in situ DOC concentrations increased from 50.9 to 72.0 

µmol L-1 (Table 3.1, Table 3.3, Fig. 3.2C). In situ bulk DOC:DON values were between 6.2 

and 41.1, with a mean of 15.0, and with no discernable trends over the N+N gradient. 

However, the strong increase in DOC (Fig. 3.2C) combined with the lack of significant trend 

in DON over the N+N gradient (Fig. 3.2D) suggests that the accumulated DOM became 

increasingly C-rich as nutrients were depleted. Shifts in DOM composition were also 

indicated by an increase in CDOM specific absorbance (a355:DOC, from 2.974 to 4.438 

a355 m-1 (mmol DOC L-1)-1) (Table 3.1, Fig. 3.2E) and a decrease in CDOM spectral slope 

coefficient values (S, 15.76 x103 to 13.32 x103) (Table 3.1, Fig. 3.2G) as N+N decreased, 

suggesting an input of relatively fresh, high molecular weight, increasingly aromatic DOM 
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(Blough and Del Vecchio 2002). The phytoplankton bloom was accompanied by an increase 

in in situ BP, from 0.13 to 1.53 µmol C L-1 day-1 (Table 3.1).   

 Upwelling source waters were identified at depths between 13 and 72 m, with DOC 

and POC values each taken from 7 bottle samples between 30 and 50 m over 6 casts (Table 

3.2). Samples that fit the background criteria showed little evidence of recent PP, with high 

mean N+N of 19.0 µmol L-1 and low mean Chl a of 1.3 µg L-1. The mean DOC concentration 

in these samples was 49.3 µmol L-1 (45.7 to 51.8 µmol L-1) and mean POC was 8.0 µmol L-1 

(5.3 to 12.5 µmol L-1); these mean values were taken to represent the background state of 

freshly upwelled waters. Elevated DOC and POC concentrations above these background 

values indicated that an average of 30% of newly produced TOC was partitioned to DOC (% 

DOCTOC spanned 5 to 92% of new TOC), although % DOCTOC did not vary systematically 

over the bloom (Table 3.1; Fig 3.2F).   

2. DOC bioavailability and persistence 

 We analyzed 25 experiments that had at least one uncontaminated replicate bottle 

(exhibiting decreasing or stable DOC concentrations over time) (Table 3.4). After ~3 days 

(see Table 3.4 for exact durations), 9 experiments showed DOC drawdown greater than our 

detection limit (i.e., ≥1.5 µmol L-1) with a range of 1.5 to 5.3 µmol L-1, or between 2.3 and 

7.6% remineralization of initial DOC concentrations (Table 3.4; Fig. 3.4A). This drawdown 

was positively correlated with µ (Table 3.3). Over the first week, 14 experiments showed 

significant drawdown between 1.5 and 5.7 µmol L-1, or between 2.5 and 8.1% (Table 3.4; 

Fig. 3.4B); this drawdown was positively correlated with 10-week drawdown (Table 3.3). 

Over the total ten weeks, 22 of the 25 experiments had measureable drawdown of between 

1.8 and 10.8 µmol L-1, or 3.1 to 15.3% (Table 3.4; Fig. 3.3C). The 10-week DOC 



	 92	

remineralization was strongly related to conditions in the SBC at the time of sample 

collection, including indicators of bloom progression (N+N, negatively, Fig. 3.4C; and 

temperature, positively; Table 3.3) and biological parameters (POC and in situ DOC, both 

positively; Table 3.3). Persistent DOC was measureable in at least one replicate from all 25 

experiments, at concentrations between 1.6 and 15.7 µmol L-1 (Table 3.4: Fig. 3.4D). The 

magnitude of persistent DOC was likewise negatively correlated with N+N (Fig. 3.4D; Table 

3.3) and positively with temperature; positive correlations with parameters related to DOC 

composition and quality (in situ DOC, a355:DOC, % DOCTOC, and 10-week DOC 

drawdown) and bacterial growth (maximum bacterial biomass and µ), and a negative 

correlation with Si Vamb:Vmax (that is, a positive relationship with Si stress; Fig. 3.3D) (Table 

3.3), collectively imply a relationship with bloom progression and the associated DOM 

alterations. 

 One caveat of our results is that we documented a variable, but measureable, 

difference in DOC concentrations between samples collected from the field and the initial 

samples from the corresponding bioassay experiments, presumably from handling 

contamination due to the multiple surfaces involved in filtration. We do not believe that this 

offset impacted our conclusions, as initial DOC concentrations in experiments were highly 

correlated to in situ DOC concentrations (Spearman’s rho: r = 0.835, n = 23, p <0.0001). 

This difference (mean increase of 3.7 µmol L-1 ± standard deviation of 3.4 in experiments, 

corresponding to a 6.6 ± 5.9% increase) showed no trends across the range of experiments 

and was not significantly correlated with any of the parameters discussed in Table 3.3 

(Spearman’s rho: all p > 0.05; not shown). Further, two-sample bootstrap analysis of the 

magnitude of this increase between samples with and without significant DOC drawdown 
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indicated that this increase was significantly larger in samples with measureable drawdown 

over the 1-week period (iterations = 1000000, p = 0.024) but was not different over the other 

two time periods over which DOC drawdown was assessed. Therefore, this concentration 

increase was not associated with a reduced ability to detect DOC consumption, as differences 

were only seen in samples where drawdown was measured, and the lack of correlation with 

any measured parameters suggests it is neither driving nor obscuring experimental responses.  

3. Bacterial growth rates and efficiencies 

 Bacterial growth parameters within the experiments also showed strong relationships 

with in situ bloom state (Table 3.3; Fig. 3.4E and 3.4F). The maximum bacterial abundance 

measured in each bottle during the first week of the experiments (effectively the carrying 

capacity) increased from 0.63 to 2.06 x 109 cells L-1 across the bloom gradient, with higher 

abundances in experiments drawn from later bloom stages. This corresponded to maximum 

bacterial biomasses of 0.48 to 1.71 µmol C L-1 (Table 3.4), which were correlated with in situ 

and experimental parameters including N+N (Table 3.3, Fig. 3.4E). Specific growth rates 

increased from 0.20 to 1.10 day-1 across experiments as the bloom progressed (Table 3.4), as 

shown by a strong negative correlation with N+N, positive correlations with temperature, Chl 

a, POC, and DOC, and a negative correlation with Si Vamb:Vmax (that is, a positive 

relationship with Si stress) (Table 3.3). Bacterial growth efficiency (BGE) was resolved in 13 

experiments from the later portion of the bloom, with a mean of 40% and a range of 17 to 

62% (Table 3.4). BGE was significantly correlated with several in situ factors indicating 

higher BGEs later in the bloom, including negative correlations with N+N (Fig. 3.4F) and 

CDOM slope and positive correlations with temperature, POC, BP, in situ DOC, and 

a355:DOC, as well as with a small number of experimental parameters (Table 3.3).  
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4. Bacterial community composition 

 The 16S rRNA gene amplicon pyrosequencing produced a total of 44,388 quality-

filtered sequence reads over 45 samples, which clustered into 479 operational taxonomic 

units (OTUs). Across 21 initial (T0) samples that amplified well, we obtained between 347 

and 1344 sequences per sample (median 1164) distributed among 54 to 122 OTUs (median 

80). After discarding one sample with a highly contaminated replicate bottle, the 24 

experimental day 3 (T3) samples had between 570 and 1444 sequences (median 924.5) 

among 35 to 96 OTUs (median 55.5).  

 BCC strongly clustered by time-point, with distinct community groupings at T0 and 

T3 (Fig. 3.5, Fig. 3.6). Within each time-point cluster, communities then sorted 

approximately along the N+N gradient (Fig. 3.5, Fig. 3.6), indicating that BCC first changed 

in situ in conjunction with the phytoplankton bloom and subsequently retained the signature 

of that change through the further compositional shifts in the experimental incubations. To 

quantify the magnitude of community differentiation response in the bioassays, we compared 

corresponding T0 and T3 samples. Weighted UniFrac distances are a phylogenetic 

community distance measure ranging from 0 to 1 that incorporate the relatedness of OTUs in 

two communities by constructing phylogenetic trees and comparing shared and unshared 

branch lengths, such that greater distances indicate lower community similarity (Lozupone 

and Knight 2005). UniFrac distances between corresponding T0 and T3 samples were 

between 0.27 and 0.49, with an average value of 0.40 (Table 3.5); these distances were not 

correlated with N+N or any experimental parameters (Table 3.3; Fig. 3.5B), though they 

were negatively correlated with Chl a and in situ BP. Shannon diversity index values were 

between 2.49 and 3.13 in the field and 1.74 and 3.32 in the experiments (Table 3.5). The 
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percent change in Shannon diversity between paired T0 and T3 samples was between -22.4% 

and 16.8%, mean -6.7% (Table 3.5), with most paired samples showing a decrease in 

diversity from T0 to T3; this percent change was not correlated with any short-term DOC 

usage parameters or in situ bloom indicators (Table 3.3; Fig. 3.5C). 

 We observed a distinct shift in BCC within the experimental incubations, but the 

divergence along the N+N gradient observed in T0 communities was maintained in the 

experimental samples at T3 (Fig. 3.5A). While the specific details of the in situ BCC will be 

discussed in a subsequent manuscript, this result is noteworthy here in that the bacterial 

response to increased DOM bioavailability is not a wholesale, systematic shift to a reduced 

number of copiotrophic phylotypes, as might be expected. Oligotrophic phylotypes such as 

SAR11 and SAR116 decreased in relative abundance and known copiotrophs such as 

Roseobacter and Alteromonas phylotypes increased from T0 to T3 samples, but these 

changes were relatively subtle, and the magnitude of these shifts did not show directionality 

along the N+N gradient (Fig. 3.6), in contrast with a typical copiotrophic response that would 

correlate with the increased DOC bioavailability seen in the later bloom samples. 

 

E. Discussion 

 This study demonstrates the pronounced bottom-up effects of an upwelling-driven 

phytoplankton bloom, experiencing a gradient of Si stress, on both heterotrophic 

bacterioplankton activity and DOM dynamics. We observed multiple lines of evidence for 

the production and accumulation of new, compositionally distinct DOM, which influenced 

bacterioplankton activity both in situ and in experimental bioassays, DOM bioavailability, 

and the efficiency of DOC use. This study documents a novel relationship between in situ 
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conditions and subsequent remineralization responses in experiments derived from natural 

coastal waters spanning a range of physiological states within a phytoplankton bloom.   

1. DOC accumulation, bioavailability, and persistence 

 Rather than using a Lagrangian approach to track an identified phytoplankton bloom, 

we substituted spatial heterogeneity across the SBC following an upwelling event for the 

temporal progression of a bloom. Because of the dynamic circulation in the SBC, which 

receives surface inflow from both the eastern and western ends of the Channel, we cannot say 

with certainty that the observed in situ gradients were produced by one discrete 

phytoplankton bloom. However, we were clearly sampling DOM derived from a recent 

bloom, whether it was centered in the SBC or continuously advected into it, rather than 

advected aged Southern California Bight water, which is low in nutrients and biomass. The 

increases in PP, POC, CDOM absorbance, and in situ BP, concurrent with a strong decrease 

in N+N, indicate that the increase in DOC concentrations over the course of the study was 

associated with fresh production; older, previously processed waters would also show 

elevated DOC and CDOM absorbance, but not the high biomass and production values that 

corresponded with low inorganic nutrients in our later samples. 

 As N+N concentrations decreased and phytoplankton biomass and Si stress increased, 

in situ DOC concentrations increased (Table 3.1, Fig. 3.2) and shifts in DOM optical 

properties (Table 3.1, Fig. 3.2E and 3.2G) suggest increases in molecular weight and 

aromaticity and therefore a fresher DOM pool (Blough and Del Vecchio 2002). Though we 

did not observe increases in bulk DOC:DON or in TOC partitioning towards the dissolved 

phase over the bloom, we did see evidence for a shift towards a C-rich pool of newly 

accumulated DOM as would be expected under the carbon overflow model (Williams 1995): 
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DOC concentrations increased by 20 µmol L-1 over the N+N gradient, while DON showed no 

trend and only a 6 µmol L-1 range (Table 3.1, Fig. 3.2C and 3.2D). 

 The majority of in situ parameters that are often interpreted as proxies of DOM 

bioavailability in long-term or cross-system work (Carlson and Hansell 2015) were not 

correlated with measured DOC drawdown in this study, including in situ BP, Chl a as a 

source indicator (Guillemette and del Giorgio 2011), and measures of DOM compositional 

quality such as DOC:DON (Sun et al. 1997) and CDOM parameters (Guillemette and del 

Giorgio 2011). The exception was in situ DOC concentration, which was positively 

correlated with long-term DOC drawdown, as in Guillemette and del Giorgio (2011). Some 

of these parameters were related to other aspects of DOC usage; for example, BGE was 

correlated with traditional quality indicators including in situ DOC concentration, in situ BP, 

and CDOM absorption and slope (Table 3.3).  

 The general lack of relationships between bloom development and short-term DOC 

bioavailability differs notably from the findings of both del Giorgio and Pace (2008) and 

Guillemette and del Giorgio (2011), which showed strong correlations between short-term 

DOC respiration in microcosms and in situ Chl a across multiple freshwater ecosystems. The 

contribution of allochthonous DOC in the freshwater systems may explain this discrepancy 

by setting up a contrast between terrestrial and phytoplankton-derived DOC bioavailability, 

compared to minimal terrestrial inputs in the SBC (Otero and Siegel 2004). In addition, tight 

coupling between in situ BP and DOM production may have led to minimal accumulation of 

the most labile DOM fraction during the SBC phytoplankton bloom, such that our 

experiments were measuring a portion of the semi-labile pool. This scenario was observed in 

the coastal Ross Sea, where a hyperproductive phytoplankton bloom was accompanied by a 
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commensurate increase in bacterial carbon demand, preventing DOM accumulation during 

the exponential growth phase of the bloom (Carlson and Hansell 2003). This disconnect 

between typical indicators of quality, source, and bulk composition and empirical measures 

of DOC drawdown indicates that, while these proxies may help in the assessment of 

chemical constituents and diagenetic state, they are nonetheless poor predictors of DOC 

turnover rates (Goldberg et al. 2009). Thus, direct measurements of DOC remineralization in 

bioassay experiments are required to assess true DOC bioavailability, rather than 

extrapolating from presumed quality based on properties of the bulk DOM stock, particularly 

over discrete events and in autochthonous-driven systems like the SBC. 

 In addition to supporting short-term remineralization and biomass production, a 

portion of the bloom-produced DOC was sufficiently recalcitrant to resist microbial 

degradation over weeks to months, at least while isolated under experimental conditions. The 

persistent pool, representing the carbon available for vertical and horizontal export from the 

system and potentially for long-term sequestration, was greater late in the bloom, as Si stress 

and senescence set in (Tables 3.1 and 3.4; Fig. 3.3D). A similar phenomenon has been 

observed over seasonal scales in the field, as recently-produced DOM accumulates over 

months in the surface ocean before dilution by convective overturn (Carlson et al. 1994; 

Williams 1995; Barbosa et al. 2001), and has also been observed in DOM-enriched 

microcosm experiments (Fry et al. 1996; Meon and Kirchman 2001) and mixed bacterial-

phytoplankton mesocosms (Norrman et al. 1995).  

 Persistent DOC was positively related to bacterial growth and biomass in our 

experiments, suggesting that the food web processes responsible for the increased DOC 

concentration and bioavailability may have led to the secondary production of more 
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recalcitrant compounds. Heterotrophic processes can transform DOM by stripping away the 

most labile compounds and diagenetically altering the DOM (Benner 2002; Goldberg et al. 

2009) or by producing recalcitrant byproducts through utilization of more labile compounds 

(Jiao et al. 2010). The observed increase in a355:DOC could indicate such in situ processing 

of DOM, as one hypothesized source of CDOM is a byproduct of phytoplankton-derived 

DOM processing by heterotrophic bacteria (Blough and Del Vecchio 2002). The 

phytoplankton bloom may have also directly contributed to the persistent DOC; Aluwihare 

and Repeta (1999) demonstrated the direct release of recalcitrant acyl-oligosaccharides by 

cultured phytoplankton. The persistent DOC in this study was approximately equivalent to or 

greater than the corresponding 10-week DOC removal (on average 2-fold and as much as 4-

fold greater), making it a non-trivial component of carbon-cycling dynamics.  

2. Bacterial community responses: BGE and BCC 

 The strong increase in BGE as the bloom progressed (Fig. 3.4F) indicated that the 

fresh DOM production, in combination with suitable inorganic nutrient availability and BCC, 

promoted greater potential trophic transfer of DOC by way of bacterial incorporation into 

biomass. A similar increase in BGE over the temporal progression of a phytoplankton bloom 

has been observed in other nutrient-rich coastal systems such as the Ross Sea (Carlson and 

Hansell 2003). The range of BGEs observed in this short-term study is comparable to that 

observed across many marine (particularly coastal) systems (del Giorgio and Cole 1998), 

although our results skew higher than the dominant range of 5-30% in that review, and 

generally higher than the open-ocean data reviewed by Carlson (2002); this supports our 

assessment that a portion of the DOM produced by this bloom was of high quality, at least to 

the resident bacterioplankton community over the short time period considered by BGE 
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calculations.  

 Our calculated BGE values were strongly negatively correlated with in situ inorganic 

nitrogen, in contrast with the positive correlation seen in an upwelling system by Lønborg et 

al. (2011), and strongly positively correlated with in situ temperature, in contrast with the 

negative correlations seen in a broad literature survey of the euphotic ocean (Rivkin and 

Legendre 2001) and the lack of relationship observed in a cross-system review (del Giorgio 

and Cole 1998). We believe these disagreements are due to the distinct progression of 

physical and chemical properties during an intensely sampled, upwelling-driven, short-term 

phytoplankton bloom, rather than the inorganic nitrogen and temperature per se: the 

upwelling-to-bloom progression that we sampled resulted in the production of highly 

bioavailable DOM in relatively warm, nutrient-poor water, setting up a contrast with the 

productive poles and oligotrophic tropics underlying cross-system comparisons in the global 

ocean. We do not expect that these temperature and nutrient relationships would have 

persisted if we had continued sampling after the bloom’s termination. CDOM absorption and 

slope were highly correlated with BGE (positively and negatively, respectively), further 

suggesting that DOM composition impacted bacterial usage of the accumulated DOM. While 

we saw no correlation between BGE and bulk DOC:DON, we did find a positive correlation 

between in situ DOC concentrations and BGE. As we infer an increasingly C-rich DOM pool 

from the increase in DOC, there may be a relationship between BGE and DOM 

stoichiometry that is obscured by the bulk pool. However, in that case, our BGEs would 

show the opposite trend (an increase in BGE with increasing DOC:DON) of that seen by 

Lønborg et al. (2011), likely due to a combination of the freshly produced nature of the DOM 

and the continued availability of inorganic nitrogen (Table 3.1).  
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 BGE was not correlated with the magnitude of short-term DOC removal (3 days or 1 

week, the relevant timeframes to our BGE calculation) but was positively correlated with 10-

week DOC drawdown in this study. A similar correlation was seen between BGE and 24-day 

DOC bioavailability by Apple and del Giorgio (2007), suggesting the systematic qualitative 

shifts across multiple sub-pools of the bioavailable DOM they posited might apply here as 

well. BGE was not significantly related to Chl a nor to PP, in contrast with cross-system 

analyses (del Giorgio and Cole 1998), further indicating that at high sampling resolution the 

significance of phytoplankton biomass and productivity is complicated by more subtle 

factors like the increase in DOM exudation from healthy log-phase phytoplankton growth to 

senescence (Carlson and Hansell 2003; Halewood et al. 2012) and the compositional shifts in 

that exudate upon phytoplankton nutrient stress (Williams 1995; Conan et al. 2007), versus 

the relatively simple presence of bloom conditions indicated by Chl a and PP in cross-system 

comparisons. 

 We want to emphasize two aspects of BCC in the context of increased bacterial 

growth across the bloom: First, community shifts between starting (T0) communities and 

experimental communities after 3 days (T3) were not merely a convergence on a limited 

number of copiotrophic OTUs (Fig. 3.5, Fig. 3.6), as has been noted in enrichment 

microcosms (McCarren et al. 2010; Nelson and Carlson 2012) and unenriched dilution 

culture experiments (Beardsley et al. 2003). Second, as bacterial growth within the 

experiments increased substantially as N+N values decreased, we expected to see a 

corresponding increase in community differentiation (an increased UniFrac distance) 

between paired T0 and T3 samples, a greater decline in diversity from T0 to T3 pairs (a more 

negative percent change of the Shannon diversity index), and higher relative abundances of 



	 102	

copiotrophic phylotypes in late-bloom T3 samples, yet none of these parameters showed 

trends across the N+N gradient (Table 3.5, Fig. 3.5). Rather, the BCC of the responding 

communities maintained a diverse assemblage with a resemblance to those found in the field, 

and therefore our rate parameters were not grossly skewed by shifts to “weed” species.   

3. Effects of phytoplankton Si stress on DOC cycling 

 We observed the onset of, and an increase in, phytoplankton Si stress as the bloom 

progressed. The effects of this stress on DOM and bacterial parameters cannot be 

distinguished from the effects of the overall increase in phytoplankton biomass and 

productivity in this study, but the observed relationships are consistent with expectations 

from the literature (Williams 1995; Carlson and Hansell 2015). The accumulation of in situ 

DOC with increased Si stress (Fig. 3.3B) is consistent with the carbon overflow model in 

which C-rich DOM accumulates towards the nutrient-depleted phase of a phytoplankton 

bloom (Williams 1995). While the simultaneous increases in DOM bioavailability (although 

generally not significantly correlated with Si stress, Table 3.3) and µ (Table 3.3; Fig. 3.3C) 

would not be expected under the classic understanding of this mechanism, in situ inorganic 

nitrogen remained at measureable concentrations throughout the bloom (Table 3.1), possibly 

facilitating continued heterotrophic utilization of increasingly C-rich DOM. The complexity 

of the responses to nutrient stress may also relate to water mass history; the DOM pool in any 

given sample would integrate across previous bloom conditions, such that those samples with 

measured Si stress at the time of collection may have also previously experienced longer 

periods of nutrient-replete production and associated DOM accumulation. Nonetheless, this 

study supports the idea that persistent semi-labile DOC largely originates during the nutrient-

stressed and senescent phases of phytoplankton blooms (Williams 1995), whether it is 
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produced in recalcitrant form (Aluwihare and Repeta 1999) or results from microbial 

processing of labile compounds (Jiao et al. 2010). 

 

F. Conclusions 

 In this study, we have shown simultaneous shifts in DOM and bacterial composition 

and rates in association with a system-wide shift from recent upwelling to a mixed-

composition phytoplankton bloom experiencing Si stress. In situ bloom conditions were 

related to parameters of DOC processing and shifts in bacterial activity and BCC within 

experimental bioassays, but traditional, cross-system proxy measurements of DOM 

bioavailability were more closely related to bacterial growth properties such as µ and BGE 

than to measured DOC drawdown. As Si stress increased, in situ DOC concentrations, 

bioavailable DOC, and persistent DOC all increased as well, supporting the putative 

relationship between phytoplankton blooms and observed seasonal DOC accumulation in the 

field. This series of remineralization experiments demonstrates that DOC “lost” by the 

plankton community during a bloom simultaneously fuels increases in short-term and long-

term bacterial activity, enhances presumed trophic transfer by way of increased BGE, and 

leads to the accumulation of persistent, potentially exportable, DOC.  
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Table 3.2: Characteristics of upwelled source water, which were used to estimate background 
DOC concentration at depth (see text for details on how these samples were identified). Date: 
date sampled. Lat: latitude (degrees north) sampled. Lon: longitude (degrees west) sampled. 
Depth of euphotic zone base: depth in cast where PAR < 1% of surface PAR. Depth of 
salinity range: depth range in cast, below the base of the euphotic zone, where target salinity 
range was observed. Depths of bottle samples: sampling depth of bottles fitting all specified 
qualifiers for background conditions. N+N, DOC, POC, and Chl a: all concentrations as 
measured at specified depths. Mean background values: mean of above measurements at 
depth, used for further calculations as applicable. Mean recently upwelled samples: mean of 
respective concentrations in surface samples that were identified as recently upwelled (N+N 
> 15 µmol L-1) (see Table 3.1), shown here for comparison. 
 

Date  Lat  
(°N) 

Lon 
(°W) 

Depth of 
euphotic 
zone base 
(m) 

Depth of 
salinity  
range 
(m) 

Depths of 
bottle 
samples 
(m) 

N+N 
(µmol 
L-1) 

DOC  
(µmol 
L-1) 

POC  
(µmol 
L-1) 

Chl a  
(µg L-

1) 

11 May 
2011 

34.39 120.31 23 23-41 30 20.1  12.5 3.1 

11 May 
2011 

34.22 120.09 26 26-43 30 21.6 48.8 10.3 2.8 

13 May 
2011 

34.38 120.11 13 27-67 30 23.4 51.5 5.4 0.6 

13 May 
2011 

34.38 120.11 13 27-67 50 20.4 49.2 5.3 0.3 

13 May 
2011 

34.31 120.00 14 20-64 30 15.3 51.8 11.0 1.8 

13 May 
2011 

34.31 120.00 14 20-64 50 16.1 45.7 5.3 0.6 

13 May 
2011 

34.27 119.95 22 22-40 40 17.7 50.3 5.8 0.7 

13 May 
2011 

34.22 119.90 33 33-60 50 17.3 47.5  0.2 

Mean background values 19.0 49.3 8.0 1.3 
Mean recently upwelled surface sample values 20.9 52.9 13.1 1.6 
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Table 3.3: Correlation matrix (nonparametric Spearman’s rho) of in situ parameters and 
experimental response variables. Significant correlations (p < 0.05) are indicated in bold.  
 

 Si(OH)4 Temp. Chl. a POC PP Si  
Vamb:Vmax 

BP in situ 
DOC 

N+N R = 0.939  
n = 25 
p < 0.0001 

-0.874 
25 
<0.0001 

-0.362 
25 
0.076 

-0.608 
25 
0.001 

-0.339 
24 
0.105 

0.680 
20 
<0.0001 

-0.564 
25 
0.003 

-0.720 
23 
<0.0001 

Si(OH)4  -0.777 
25 
<0.0001 

-0.458 
25 
0.021 

-0.681 
25 
<0.0001 

-0.268 
24 
0.205 

0.746 
23 
<0.0001 

-0.598 
25 
0.002 

-0.618 
23 
0.002 

Temp.   0.105 
25 
0.617 

0.414 
25 
0.040 

0.277 
24 
0.190 

-0.430 
23 
0.041 

0.274 
25 
0.186 

0.765 
23 
<0.0001 

Chl. a    0.793 
25 
<0.0001 

0.577 
24 
0.003 

-0.307 
23 
0.154 

0.760 
25 
<0.0001 

0.143 
23 
0.515 

POC     0.591 
24 
0.002 

-0.674 
23 
<0.0001 

0.642 
25 
0.001 

0.350 
23 
0.102 

PP      -0.267 
23 
0.218 

0.326 
24 
0.120 

0.089 
22 
0.695 

Si  
Vamb:Vmax 

      -0.368 
23 
0.084 

-0.369 
22 
0.091 

BP        0.458 
23 
0.028 

(Table continues on next page) 
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Table 3.3 continued 
in situ DON DOC: 

DON 
a355: 
DOC 

CDOM 
spectral slope 

% DOCTOC ΔDOC3day ΔDOC1wk Variable 

-0.266 
21 
0.243 

0.155 
20 
0.503 

-0.591 
19 
0.008 

0.514 
21 
0.017 

-0.220 
23 
0.313 

-0.269 
9 
0.484 

-0.342 
12 
0.276 

N+N 

-0.211 
21 
0.359 

0.097 
21 
0.676 

-0.590 
19 
0.008 

0.570 
21 
0.007 

-0.056 
23 
0.798 

-0.414 
9 
0.269 

-0.169 
12 
0.599 

Si(OH)4 

0.112 
21 
0.628 

-0.029 
21 
0.902 

0.625 
19 
0.004 

-0.253 
21 
0.268 

0.427 
23 
0.042 

0.530 
9 
0.142 

0.028 
12 
0.931 

Temp. 

-0.054 
21 
0.817 

0.152 
20 
0.511 

0.052 
19 
0.833 

-0.615 
21 
0.003 

-0.557 
23 
0.006 

-0.013 
9 
0.974 

0.384 
12 
0.217 

Chl. a 

0.138 
21 
0.549 

-0.049 
21 
0.832 

0.142 
19 
0.562 

-0.471 
21 
0.031 

-0.497 
23 
0.016 

-0.017 
9 
0.966 

0.366 
12 
0.242 

POC 

0.358 
20 
0.121 

-0.335 
20 
0.148 

-0.068 
19 
0.781 

-0.282 
21 
0.216 

-0.465 
22 
0.029 

-0.156 
8 
0.713 

-0.092 
11 
0.788 

PP 

-0.412 
20 
0.071 

0.361 
20 
0.118 

-0.147 
19 
0.549 

0.359 
20 
0.120 

0.166 
22 
0.460 

-0.631 
7 
0.129 

-0.202 
11 
0.552 

Si  
Vamb:Vmax 

-0.188 
21 
0.415 

0.288 
21 
0.206 

0.118 
19 
0.629 

-0.563 
21 
0.008 

-0.133 
23 
0.544 

0.017 
9 
0.966 

0.338 
12 
0.283 

BP 

-0.156 
21 
0.499 

0.271 
21 
0.235 

0.585 
19 
0.009 

-0.191 
19 
0.434 

0.584 
23 
0.003 

0.464 
7 
0.294 

0.394 
12 
0.205 

in situ  
DOC 

 -0.977 
21 
<0.0001 

-0.092 
19 
0.707 

0.010 
19 
0.967 

-0.298 
21 
0.190 

-0.543 
6 
0.266 

-0.060 
11 
0.861 

in situ  
DON 

  0.112 
19 
0.647 

-0.044 
19 
0.858 

0.312 
21 
0.169 

0.314 
6 
0.544 

0.064 
11 
0.851 

DOC:DON 

   -0.509 
19 
0.026 

0.411 
19 
0.081 

0.600 
5 
0.285 

0.301 
9 
0.431 

a355:DOC 

    0.095 
19 
0.700 

-0.523 
7 
0.229 

-0.391 
9 
0.298 

CDOM  
spectral  
slope 

     0.643 
7 
0.119 

0.211 
12 
0.510 

% DOCTOC 

      0.551 
6 
0.257 

ΔDOC3day 

(Table continues on next page) 
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Table 3.3 continued 
ΔDOC10wk Persistent 

DOC 
Max. 
bacterial 
biomass 

µ BGE UniFrac 
distance 

% Δ 
Shannon 
diversity 
index 

Variable 

-0.776 
20 
<0.0001 

-0.792 
25 
<0.0001 

-0.776 
25 
<0.0001 

-0.649 
25 
<0.0001 

-
0.817 
13 
0.001 

-0.150 
20 
0.527 

-0.150 
20 
0.527 

N+N 

-0.644 
20 
0.002 

-0.700 
25 
<0.0001 

-0.640 
25 
0.001 

-0.738 
25 
<0.0001 

-
0.817 
13 
0.001 

-0.053 
20 
0.823 

-0.114 
20 
0.613 

Si(OH)4 

0.778 
20 
<0.0001 

0.849 
25 
<0.0001 

0.842 
25 
<0.0001 

0.625 
25 
0.001 

0.713 
13 
0.006 

0.349 
20 
0.131 

0.331 
20 
0.154 

Temp. 

0.289 
20 
0.217 

-0.026 
25 
0.902 

0.225 
25 
0.280 

0.396 
25 
0.050 

0.531 
13 
0.062 

-0.500 
20 
0.025 

-0.386 
20 
0.093 

Chl. a 

0.540 
20 
0.014 

0.232 
25 
0.265 

0.414 
25 
0.040 

0.636 
25 
0.001 

0.670 
13 
0.012 

-0.362 
20 
0.116 

-0.090 
20 
0.705 

POC 

0.325 
19 
0.175 

0.189 
24 
0.377 

0.334 
24 
0.111 

0.338 
24 
0.106 

0.189 
12 
0.557 

0.030 
19 
0.904 

0.051 
19 
0.836 

PP 

-0.464 
18 
0.053 

-0.423 
23 
0.045 

-0.313 
23 
0.146 

-0.644 
23 
0.001 

-
0.490 
12 
0.106 

0.054 
19 
0.825 

-0.311 
19 
0.195 

Si  
Vamb:Vmax 

0.316 
20 
0.175 

0.282 
25 
0.173 

0.201 
25 
0.336 

0.394 
25 
0.051 

0.555 
13 
0.049 

-0.522 
20 
0.018 

-0.357 
20 
0.122 

BP 

0.682 
18 
0.002 

0.701 
23 
<0.0001 

0.591 
23 
0.003 

0.541 
23 
0.008 

0.593 
13 
0.033 

0.018 
19 
0.943 

0.112 
19 
0.647 

in situ  
DOC 

-0.001 
16 
0.996 

0.014 
21 
0.951 

0.254 
21 
0.266 

0.095 
21 
0.684 

-
0.273 
11 
0.416 

0.253 
18 
0.311 

0.134 
18 
0.595 

in situ  
DON 

0.055 
16 
0.841 

0.031 
21 
0.893 

-0.152 
21 
0.511 

-0.031 
21 
0.895 

0.509 
11 
0.110 

-0.243 
18 
0.332 

-0.228 
18 
0.363 

DOC:DON 

0.511 
14 
0.062 

0.563 
19 
0.012 

0.489 
19 
0.033 

0.382 
19 
0.106 

0.767 
9 
0.016 

0.105 
17 
0.687 

0.169 
17 
0.516 

a355:DOC 

-0.240 
16 
0.370 

-0.257 
21 
0.262 

-0.333 
21 
0.141 

-0.219 
21 
0.339 

-
0.828 
9 
0.006 

0.230 
18 
0.358 

0.193 
18 
0.443 

CDOM  
spectral  
slope 

(Table continues on next page) 
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Table 3.3 continued 
ΔDOC10wk 
 

Persistent 
DOC 

Max. 
bacterial 
biomass 

µ BGE UniFrac 
distance 

% Δ 
Shannon 
diversity 
index 

Variable 

0.380 
18 
0.120 

0.567 
23 
0.005 

0.242 
23 
0.267 

0.018 
23 
0.937 

0.432 
13 
0.141 

0.262 
19 
0.279 

0.193 
19 
0.428 

% DOCTOC 

0.552 
8 
0.156 

0.496 
9 
0.175 

0.496 
9 
0.175 

0.689 
9 
0.040 

-0.429 
6 
0.397 

0.559 
7 
0.192 

0.018 
7 
0.969 

ΔDOC3day 

0.653 
12 
0.021 

-0.359 
12 
0.252 

0.162 
12 
0.615 

0.028 
12 
0.931 

-0.009 
11 
0.979 

-0.515 
8 
0.192 

-0.515 
8 
0.192 

ΔDOC1wk 

 0.522 
20 
0.018 

0.784 
20 
<0.0001 

0.520 
20 
0.019 

0.667 
13 
0.013 

0.150 
15 
0.593 

-0.190 
15 
0.498 

ΔDOC10wk 

  0.640 
25 
0.001 

0.597 
25 
0.002 

0.544 
13 
0.055 

0.231 
20 
0.327 

0.583 
20 
0.007 

Persistent  
DOC 

   0.454 
25 
0.023 

0.555 
13 
0.049 

0.382 
20 
0.097 

0.192 
20 
0.416 

Max.  
bacterial  
biomass 

    0.513 
13 
0.073 

-0.053 
20 
0.825 

0.404 
20 
0.077 

µ 

     -0.050 
9 
0.898 

-0.550 
9 
0.125 

BGE 

      0.071 
20 
0.767 

UniFrac  
distance 
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Table 3.5: Weighted UniFrac distances between paired T0 and T3 samples, Shannon 
diversity indices for each timepoint, and percent change in Shannon index between paired T0 
and T3 samples. Blank cells indicate no valid sequencing results were obtained. 
 
Expt. ID UniFrac 

distance  
(T0-T3 
pairs) 

Shannon 
diversity 
index: T0 

Shannon 
diversity 
index: T3 

% change in 
Shannon 
index  
(T0-T3 
pairs) 

C10   1.74  
C12 0.45 2.84 2.21 -22.4 
C14 0.40 2.85 2.59 -9.3 
C16 0.42 2.79 2.51 -10.1 
C18   2.37  
C19 0.41 2.96 2.59 -12.7 
C20 0.38 2.81 2.40 -14.7 
C21 0.27 2.58 2.26 -12.4 
C22 0.39 2.87 2.45 -14.7 
C23 0.38 2.54 2.97 16.8 
C24 0.38 2.79 2.76 -1.2 
C25 0.48 2.55 2.72 6.5 
C26 0.47 2.56 2.55 -0.4 
C28 0.36 2.91 3.32 14.3 
C29 0.35 3.02 2.69 -10.8 
C30 0.28 2.98 2.45 -17.6 
C31 0.45 2.69 2.15 -20.1 
C33 0.48 2.49 2.28 -8.2 
C35 0.49 2.49 2.46 -1.4 
C37  2.62   
C38 0.32 3.13 3.03 -3.2 
C39 0.40 2.83 2.65 -6.3 
C40 0.35 2.67 2.53 -5.3 
C42   2.58  
C46   2.44  
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Figure 3.1: Map of the study site in the Santa Barbara Channel, California, USA, with locator 
map in inset. Numbers indicate stations sampled on the SBDOM11 cruise and correspond to 
those listed in Table 3.1. Triangles indicate the location of buoys from which wind data was 
obtained. Bathymetry depth is in meters. 
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Figure 3.2: In situ physical and biological conditions and DOM concentration and 
composition followed shifts in N+N concentration. Symbols indicate corresponding Si stress: 
gray triangle, Si replete (Vamb:Vmax ≥ 0.8); black square, low Si stress (Vamb:Vmax 0.4-0.8); 
gray circle, high Si stress (Vamb:Vmax 0-0.4); open triangle, missing Si stress data. High vs. 
low Si stress here is somewhat arbitrarily defined at the halfway point of the Vamb:Vmax range 
and is intended only as a visual guide. A. Chl a. B. POC. C. In situ DOC concentration. D. In 
situ DON concentration. E: In situ CDOM absorbance at 355 nm normalized to in situ DOC 
concentrations (a355:DOC). F. The percent of freshly produced total organic carbon 
partitioned as DOC (% DOCTOC); see text for description of calculation. G. In situ CDOM 
spectral slope coefficient, calculated following Stedmon et al. (2000).  
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Figure 3.3: Relationship between Si stress and DOM accumulation and persistence, where Si 
stress increases as Si Vamb:Vmax decreases (see text for methodological details). Symbols as in 
Fig. 3.2; for C and D, values are medians with error bars ± range where two good values, one 
from each experimental replicate, were obtained; points without error bars indicate only one 
good value was obtained. A. Si stress over the bloom, indicated by N+N. B. Si stress and in 
situ DOC. C. Si stress and µ. D. Si stress and persistent DOC.  
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Figure 3.4: Experimental DOC dynamics and bacterial growth responses changed in 
conjunction with N+N concentrations. Symbols as in Fig. 3.2; values are medians with error 
bars ± range where two good values, one from each experimental replicate, were obtained; 
points without error bars indicate only one good value was obtained. For A-C, gray hatched 
section indicates values less than 1.5 µmol L-1, which are below the analytical detection limit 
and which were not used in calculation of correlation values or any further analysis. A. DOC 
drawdown between experiment initiation and day 3. B. DOC drawdown between experiment 
initiation and one week. C. DOC drawdown between experiment initiation and ten weeks. D. 
Persistent DOC remaining above background concentrations after 10 weeks’ remineralization 
(see text for details on calculation). E. Maximum bacterial biomass obtained in experiments 
(mean of stationary phase when applicable). F. BGE over the exponential growth phase.   
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Figure 3.5: Shifts in bacterial community composition from starting (T0) to day 3 (T3). B 
and C, symbols as in Fig. 3.2. A. Non-metric multidimensional scaling ordination plot of in 
situ and experimental BCC, with symbols indicating timepoint (circles, T0; triangles, T3) and 
N+N concentration (µmol L-1) divided into four ranges for clarity. B. UniFrac distances 
between T0 and T3 pairs of bacterial community composition. C. Percent change in Shannon 
diversity index from paired T0 to T3 samples.   
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Figure 3.6: Phylotypes (approximately genus level) comprising greater than 0.1% mean T0 or 
T3 communities. Communities were clustered based on UniFrac distance (right axis) and 
arranged to maximally follow the N+N gradient. Phylotypes (in columns) were standardized 
[(phylotype value – mean of phylotype) (standard deviation of phylotype)-1] such that each 
phylotype is plotted on the same scale, with darker colors representing an enriched relative 
abundance of that particular phylotype in one sample relative to another sample, although not 
necessarily an increased abundance relative to other phylotypes within the same sample. 
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IV. Roles of diatom nutrient stress and species identity in determining the short- and 

long-term bioavailability of diatom exudates to bacterioplankton 

 

Reprinted from Marine Chemistry; 177; EK Wear, CA Carlson, LA Windecker, and MA 

Brzezinski; Roles of diatom nutrient stress and species identity in determining the short- and 

long-term bioavailability of diatom exudates to bacterioplankton; pages 335-348; 2015; with 

permission from Elsevier. doi:10.1016/j.marchem.2015.09.001 

 

A. Abstract  

 Phytoplankton exude carbon-rich dissolved organic matter (DOM) upon nutrient 

stress, yet the ecological role of this exudate in stimulating bacterial growth is not well 

understood. We harvested DOM produced by four coastal diatoms (Skeletonema marinoi, 

Chaetoceros socialis, Thalassiosira weissflogii, and Odontella aurita) subjected to depletion 

of nitrogen (N), silicon (Si), or N + Si simultaneously in batch culture and assessed its 

bioavailability to natural bacterioplankton communities using dilution batch-culture 

remineralization bioassays. Short-term, ecologically-relevant responses were affected both by 

diatom source species and by the nutrient stress under which the DOM was produced. Si-

stress DOM was generally more bioavailable over the first week than that produced under N 

or N + Si stress, and led to higher bacterial growth efficiencies. In contrast, the amount of 

diatom-derived total organic carbon (TOC) that persisted over months in the same 

experiments differed among source diatom species, with no evidence of a nutrient stress 

effect. These results nuance the carbon overflow hypothesis of DOM release, which has been 

suggested to be maladaptive due to the possibility of DOC release allowing bacterioplankton 
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to better compete for the same nutrient that is limiting the phytoplankton. Our results suggest 

that bacterial activity is most promoted when diatoms are limited by Si, a nutrient that is not 

subject to competition with bacteria. They imply that the identity of the nutrient that 

terminates a diatom bloom impacts heterotrophic activity in the short term; however, source 

diatom species has the greater influence on DOC persistence in surface waters and its 

potential export from the system. 

 

B. Introduction 

 Extracellular release of organic matter is a substantial component of marine 

productivity, with on average 10–20%, and at times up to 80%, of marine primary 

productivity released by living phytoplankton as dissolved organic matter (DOM) (Carlson 

2002; Nagata 2000). Two non-exclusive hypotheses address DOM release by living 

phytoplankton (Carlson and Hansell 2015): constant, passive diffusion or “leakage” of low-

molecular-weight compounds across the semi-permeable cell membrane and active release as 

a stress-response carbon “overflow” mechanism. Under the carbon overflow hypothesis, 

excess energy taken up under high irradiance, and in the sudden absence of nutrients needed 

to build biomass, is shunted into the synthesis of carbon-rich compounds that are then 

exuded, preventing the build-up of free radicals until the cell can deactivate photosystems 

(Fogg 1983; Wood and van Valen 1990). While both hypotheses are generally accepted in 

the literature as mechanisms of DOM release (Carlson and Hansell 2015), the ecological 

consequences of the latter remain less well understood. The major outstanding objection to 

the carbon overflow hypothesis posits that releasing DOM, which would spark heterotrophic 

bacterial activity and thus increase competition for inorganic nutrients, would be 
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counterproductive for nutrient-limited phytoplankton (Bjørnsen 1988; Bratbak and Thingstad 

1985). 

 Nonetheless, increased DOM release when phytoplankton become nutrient stressed 

has been observed directly in culture studies (Goldman et al. 1992; Obernosterer and Herndl 

1995), in microcosms and in mesocosms (Børsheim et al. 2005; Meon and Kirchman 2001; 

Smith et al. 1998; Wetz and Wheeler 2004), and, indirectly, by DOM accumulation in the 

field as phytoplankton blooms senesce (Carlson et al. 1994; Wear et al. 2015; Williams 

1995). This DOM is enriched in carbon (Conan et al. 2007; Carlson and Hansell 2015; Wetz 

and Wheeler 2004) and in carbohydrates (Børsheim et al. 2005; Conan et al. 2007; Carlson 

and Ducklow 1996; Meador and Aluwihare 2014; Myklestad 1995). The bioavailability of 

this DOM can affect ecological interactions, as bacteria incorporate C into biomass and 

bacterial community composition (BCC) possibly shifts. DOM bioavailability can also have 

biogeochemical implications, as C that resists or escapes microbial remineralization and 

persists as dissolved organic carbon (DOC) for long enough to be entrained in physical 

mixing can contribute to the ~ 20% of global export production attributed to DOC (Carlson 

and Hansell 2015). 

 Diatoms are estimated to be responsible for ~ 40% of total marine primary production 

and up to 75% in areas such as coastal upwelling zones that experience strong seasonal 

blooms (Nelson, Tréguer, Brzezinski, Leynaert, and Quéguiner 1995). Nitrogen limitation 

controls diatom growth in about half of the global ocean during the summer (Moore, Doney, 

Glover, and Fung 2002); silicon limitation is the primary diatom stressor in ~ 10% of the 

ocean, including portions of productive regions such as the northern North Atlantic Ocean 

(Martin-Jézéquel et al. 2000; Moore et al. 2002; and Sieracki et al. 1993). While exuded 
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DOM differs in composition from phytoplankton cellular components (Benner 2002; 

Myklestad 1974; Repeta 2015), the physiological changes induced in diatoms by nitrogen 

versus silicon stress (N and Si stress, respectively) are substantially different and may lead to 

the release of distinct qualities and quantities of exudate. Intracellular C:N ratios increase 

under N stress, as phytoplankton temporarily continue to build biomass (Gilpin et al. 

2004; Shifrin and Chisholm 1981); C:N ratios are equivocal under Si stress, with some 

studies showing moderately increased intracellular C:N (Harrison, Conway, Holmes, and 

Davis 1977) and others no change (Gilpin et al. 2004). Diatoms can rapidly increase their 

carbohydrate content and decrease their protein content under N stress, while maintaining a 

composition similar to replete cells under Si stress over scales of hours (Harrison, Thompson, 

and Calderwood 1990). Differential responses to N and Si stress extend to concentrations of 

cell C (Harrison et al. 1977), lipids (Shifrin and Chisholm 1981), pigments (Harrison et al. 

1977), and storage compounds (Gilpin et al. 2004; Granum et al. 2002; and Myklestad 1995). 

Overall, Si-stressed diatoms are capable of a rapid return to normal growth upon 

reintroduction of Si, while N-stressed diatoms recover more slowly, presumably having 

undergone more unfavorable physiological shifts (De La Rocha and Passow 2004). 

 Studies investigating bacterial utilization of DOM produced by nutrient-stressed 

phytoplankton have yielded conflicting results. Pete, Davidson, Hart, Gutierrez, and Miller 

(2010) found enhanced bacterial production and abundance, and a community shift to 

copiotrophic Gammaproteobacteria, with DOM derived from diatoms under Si stress, but 

not from those under N stress. In a field study, Wear et al. (2015) measured increases in 

bioavailable DOC, bacterial growth rates, and bacterial growth efficiencies (BGEs) as an 

upwelling-induced phytoplankton bloom transitioned from nutrient-replete to a Si-stressed 



	
	

124	

state. Wetz and Wheeler (2004) observed elevated growth rates of bacterioplankton with high 

nucleic acid content in microcosms following increased DOM production under N stress. In 

contrast, Conan et al. (2007) measured similar total microbial respiration in mesocosms 

exposed to inorganic amendments covering a range of N:P and with or without added Si, 

despite great variability in the resulting DOM composition. Because these studies used a 

variety of methods and manipulated numerous phytoplankton species with different nutrients, 

it is difficult to generalize about how the bioavailability of phytoplankton-produced DOM 

varies with nutrient stress. 

 Here, we examined the bacterioplankton response to exudate produced by multiple 

diatom species under multiple nutrient stresses to test the hypothesis that DOM produced 

under Si stress would be a better substrate for bacterioplankton growth than DOM produced 

under N stress. That is, we expected that Si-stress DOM would: be more bioavailable (more 

DOC consumed); yield higher BGEs, due to anticipated lower DOC:DON; and lead to 

distinct bacterial communities compared to N-stress DOM. Conducting dilution batch-culture 

bioassays to assess DOC bioavailability independent of continuous primary production 

allowed us to measure DOC utilization more accurately. By measuring both remineralization 

and bacterial growth, we tracked the fate of the DOC over short-term timeframes relevant to 

ecological questions and long-term timeframes more relevant to the biogeochemical potential 

of exudates to contribute to horizontal or vertical carbon export. Using this experimental 

design, we were able to examine whether Si- and N-stress affect the bioavailability of 

diatom-derived DOM in ways that can be generalized across limiting nutrient or diatom 

source species. 
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C. Methods 

1. Diatom exudate production 

 DOM exudate was harvested from batch cultures of four coastal, centric diatoms 

obtained from the National Center for Marine Algae and Microbiota (NCMA; 

http://ncma.bigelow.org): Skeletonema marinoi (strain CCMP1332), Chaetoceros socialis 

(CCMP172), Thalassiosira weissflogii (CCMP1051), and Odontella aurita (CCMP595). 

Batch cultures were designed to stress diatoms by depletion of nitrogen as nitrate (N stress), 

silicon as silicic acid (Si stress), and nitrate and silicic acid simultaneously (N + Si stress). 

The S. marinoi N-stress treatment will not be discussed, as it also depleted Si. Experiments 

on each species were conducted sequentially, rather than simultaneously, for logistical 

reasons (Table 4.1). Diatom growth dynamics will be discussed in detail elsewhere 

(Windecker et al. in prep); only relevant parameters and time-points are presented in this 

paper. As several parameters were measured in both the diatom cultures and the subsequent 

remineralization-focused dilution batch-culture bioassays, the experimental component will 

be indicated by subscript (e.g., S. marinoidiatom and S. marinoiremin for parameters measured in 

the diatom cultures and the remineralization bioassays, respectively) and when neither is 

specified (e.g., S. marinoi) the diatom itself is referenced. 

 Media consisted of seawater from the Santa Barbara Channel (SBC), California, 

USA, that was aged in the dark for up to two weeks to remineralize the most labile ambient 

DOC. The aged seawater was then gravity filtered through a 0.2 µm filter (polyethersulfone 

filter cartridge, Pall, Port Washington, NY, or mixed cellulose ester, GSWP, EMD Millipore, 

Billerica, MA, in a polycarbonate (PC) holder) to remove particulate organic matter (POM), 

including the extant microbial community. Media seawater was collected and aged 
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independently in advance of each experiment. Duplicate acid-washed 20 L PC carboys with 

spigots (Nalgene Labware) were filled with 0.2 µm filtrate, enriched with nutrients (NO3 and 

Si(OH)4 at concentrations estimated to produce the same nutrient-replete diatom biomass in 

each treatment [roughly normalized to the biomass produced with 40 µM NO3], Table 4.1; 

PO4 and standard vitamins and metals sufficient to remain replete), and inoculated with 

diatom cells in exponential growth. Batch cultures were grown at 14 °C, on a 14:10 

light:dark cycle at ~ 200 µmol photons s− 1 m− 2, with daily sampling to monitor [NO3] and 

[Si(OH)4] timed to the end of the light period. 

 The DOM generated from the diatom cultures was harvested 48 h after the target 

nutrient concentration was too low to sustain the next day's doubling (< ca. 3 µM, Appendix 

I) and used as media for the dilution batch-culture bioassays. Replicate diatom cultures were 

combined, thereby eliminating any variance in the exudate pool in terms of concentration and 

composition of diatom production, allowing us to focus on the bacterial response. Pooled 

exudates were gravity-filtered through a 3 µm mixed cellulose ester filter (SSWP, EMD 

Millipore) followed by sequential gravity filtration through two 0.2 µm mixed cellulose ester 

filters (GSWP). The filtered diatom exudate was therefore operationally defined as dissolved 

and contained a continuum from truly dissolved compounds to colloids (e.g., transparent 

exopolymers) (Carlson and Hansell 2015). Filters were rinsed copiously with deionized water 

before use and changed frequently over the course of the filtration, which took several hours. 

The exudate was collected in duplicate acid-washed and sample-rinsed 8 L PC spigoted 

carboys and stored overnight at 4 °C. 

2. Dilution batch-culture bioassay design 

 To assess the bioavailability of the ambient DOM that remained in the aged seawater 
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filtrate used to construct the diatom culture media, a portion of the aged seawater filtrate for 

each experiment was set aside to serve as an unmanipulated control during the corresponding 

dilution batch-culture bioassays. Control filtrates were stored at 4 °C for the duration of each 

diatom culture and were re-filtered with a 0.2 µm filter (GSWP) before use. Natural surface 

bacterial communities for inocula were collected from the near-shore SBC (~ 200–400 yards 

offshore) for S. marinoiremin, C. socialisremin, and T. weissflogiiremin, and from the central SBC 

for O. auritaremin. Each inoculum was gravity-filtered through a 1.2 µm mixed cellulose ester 

filter (RAWP, EMD Millipore) to largely remove POM and flagellate grazers, and the filtrate 

was sampled for DOM, nutrients, and DNA. Exudates and unamended controls were 

combined with 25% inoculum to a total of 8 L; bioassay volumes varied slightly in the S. 

marinoiremin experiment based on the volume of diatom exudate obtained (between 5.3 and 

8 L total volume; Appendix I). Bioassays were incubated in the dark at 14°C for 16 weeks. 

 To verify that bacterial responses were the result of DOM variability rather than of 

non-limiting nutrients remaining in the exudate, we conducted parallel experiments to 

examine the effects of inorganic nutrients alone alongside the O. auritaremin exudate 

bioassays. Two 8 L duplicated treatments consisted of the same aged seawater as the O. 

auritaremin control treatment, but with PO4 and either NO3 (Aged SW + N&P) or Si(OH)4 

(Aged SW + Si&P) added at the approximate concentrations remaining in the carboys not 

stressed by NO3 or Si(OH)4, respectively (Appendix II). To control for bacterial responses 

induced by DOM or nutrients that were added when inoculating the diatom culture, two 2 L 

duplicated treatments were amended with F/2 media (Aged SW + F/2) or 0.2-µm filtered 

media from a primary O. aurita culture in exponential growth (Aged SW + Culture; 

resembling the diatom inoculum media) at concentrations approximating their initial 
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presence in the diatom cultures (18:1000 dilution). These experiments were sampled less 

frequently and for fewer variables than the larger-volume experiments (Appendix I). 

3. Organic matter and inorganic nutrients 

 Samples for DOM analysis were collected daily during the growth of the diatom 

culture. During the bioassays, samples were collected daily for one week followed by weekly 

then monthly sampling. Samples were stored frozen at − 20 °C in acid-washed high-density 

polyethylene bottles or combusted glass EPA vials with Teflon-lined septa. DOM samples 

collected from the diatom cultures were gravity-filtered through an inline combusted glass 

fiber filter (GF/F, Whatman, Pittsburgh, PA) in a PC holder. To avoid contamination from 

handling, DOM samples from the bioassays were collected without further filtration, as 

biomass concentrations in the bioassays were several orders of magnitude lower than in the 

diatom cultures. Bioassay DOM concentrations are therefore most accurately interpreted as 

total organic carbon (TOC) and nitrogen (TON), as they do contain bacterial biomass. DOC, 

TOC, and total dissolved nitrogen (TDN) were quantified via high-temperature combustion 

as in Halewood, Carlson, Brzezinski, Reed, and Goodman (2012). DON and TON were 

calculated by subtracting dissolved inorganic nitrogen from TDN. In the diatom cultures 

only, particulate organic carbon (POC) was collected on a combusted GF/F and measured by 

elemental analysis as in Wear et al. (2015). Samples for inorganic nutrients were filtered if 

collected from the diatom experiments or unfiltered if from the bioassays and were analyzed 

using flow injection analysis as in Wear et al. (2015). Silicic acid was measured using the 

manual colorimetric method of Brzezinski and Nelson (1995; detection limit 0.3 µM, 2 times 

the standard deviation of the blank). 

 To examine TOC remineralization in the bioassays independently of variable starting 
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concentrations, the percent of newly added TOC that was remineralized from the start of the 

experiment (T0) to a subset of later time-points (TX), or %new TOC, was calculated as: 

 

Equation 1: %new TOC = ([T0 TOC] – [TX TOC]) * ([T0 TOC] – mean of [16-week TOC] in 

corresponding control bioassays)-1 *100. 

 

The final (16-week) TOC concentration in each experiment's respective control was taken to 

represent the recalcitrant, bulk background concentration, while any initial TOC in excess of 

the 16-week concentration in the exudate treatments would have originated from either the 

diatom exudate or bioavailable TOC introduced with the media and inoculum (assumed to be 

similar across treatments within an experiment). Conversely, persistent TOC in the diatom-

derived bioassays that remained in excess of the respective control bioassays after 16 weeks 

was calculated as: 

 

Equation 2: [persistent TOC] = [16-week TOC] – mean of [16-week TOC] in corresponding 

control bioassays. 

 

To better estimate total DOC usage by accounting for incorporation of DOC into bacterial 

biomass, bacterial carbon demand (BCD) was calculated at 4 days: 

 

Equation 3: BCD = ([T0 TOC] – [T0 bacterial biomass]) – ([T4 day TOC] - [T4 day bacterial 

biomass]). 
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4. Bacterial growth rates, production, and growth efficiencies 

 Samples for bacterial abundance were collected twice daily for the first week of the 

dilution batch-culture bioassays and preserved as in Wear et al. (2015). Bacteria were 

enumerated on a BD LSRII flow cytometer (Becton Dickinson, San Jose, CA) equipped with 

an autosampler as in Halewood et al. (2012). Bacterial abundance at time-points where 

biomass was calculated (for BGE and BCD calculations) was determined from 

epifluorescence microscopy of 4′6-diamidino-2-phenylindole (DAPI) stained slides (Porter 

and Feig 1980), as preliminary comparisons showed that the flow cytometer accurately 

captured growth rates but had offset absolute cell abundance relative to DAPI slides. 

Bacterial abundance was converted to biomass (BB) using 30 fg C cell− 1 [the mean C cell− 1 

measured in similar bioassays using phytoplankton exudate additions and SBC 

bacterioplankton (A. Cano, unpublished)]. Preliminary measurements of cell cross-sectional 

areas indicated that bacteria did not vary significantly in size between experiments or 

treatments at time-points used in BGE calculations (not shown) and therefore a consistent 

conversion factor was reasonable. Bacterial production (BP) was measured daily on whole 

water and filtered (3 µm) samples from the diatom experiments (Appendix III) and daily on 

whole water for the first 6 days of the bioassays via 3H-leucine (3H-Leu) incorporation (14–

19 nmol L− 13H-Leu; specific activity 54.1 Ci/mmol; PerkinElmer, Boston, MA), using a 

modified microcentrifuge method (Halewood et al. 2012; Wear et al. 2015). 

 Bacterial specific growth rate (µ) was calculated as the rate of change of the natural 

log of cell abundances during exponential growth (the timeframes of which varied and are 

specified in Appendix IV). BGE was calculated as the increase in bacterial biomass over the 

exponential phase (with all biomass measures from the lag or stationary phase averaged to 
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increase measurement robustness) divided by the change in true [DOC] (the change in [TOC] 

corrected for [BB]) over the same time period: 

 

Equation 4: BGE = ((mean [Tstationary BB] – mean [Tlag BB]) * ((mean [Tlag TOC] – mean [Tlag 

BB]) – (mean [Tstationary TOC] – mean [Tstationary BB]))-1) * 100. 

 

5. Bacterial community composition (BCC) 

 DNA samples for BCC analysis were collected from the bioassays at T0 and at 1, 2 

and 4 days. BCC was assessed via terminal restriction fragment length polymorphism (T-

RFLP) to compare frequency distributions of 16S ribosomal RNA gene amplicons, following 

a modified protocol of Morris et al. (2005) (see Appendix V for detailed methods). Genomic 

DNA was amplified with the universal bacterial primers 8f-FAM and 519r; amplicons were 

digested with HaeIII restriction endonuclease and analyzed by capillary gel electrophoresis. 

T-RFLP peaks were manually assigned using integer-length fragment groups ( Nelson, 

2009). Bacterial groups associated with the observed terminal restriction fragments (T-RFs) 

were putatively identified from in silico digests of 16S rRNA gene amplicon sequences from 

the SBC (Wear et al. 2015; Appendix V). 

6. Statistical analyses 

 Statistical analyses were performed using SPSS Statistics 22.0 (IBM). Figures were 

made in Sigma Plot 12.0 (Systat Software Inc.), JMP 9 (SAS Institute Inc.), and Microsoft 

Office. Full results are available through the Biological and Chemical Oceanography Data 

Management Office (http://www.bco-dmo.org; project name “SBDOM”). 
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D. Results 

 The major findings of these experiments are summarized in Fig. 4.1. While there are 

exceptions to the patterns shown in this conceptual diagram, it is intended to highlight the 

overall trends in the following results.  

 Because each experiment (that is, the examination of DOM from each diatom 

species) was conducted separately, the aged seawater media used for the various diatom 

cultures and the bacterial inoculum in the dilution batch-culture bioassays were necessarily 

different for each experiment. Results should therefore be compared primarily within 

experiments (e.g., whether the bioavailability of Si-stress DOM and N-stress DOM from one 

given diatom differ), as the media and inoculum are internally consistent. 

1. Diatom culture DOM yield 

 All diatom batch cultures produced substantial biomass, as evidenced by ca. 10- to 

100-fold increases in POC over the experiments through the time-point preceding harvest 

(TH; Table 4.1), indicating normal growth occurred prior to the onset of their respective 

nutrient stresses. Net DOC production was observed in all batch cultures by TH, between 4.8 

and 21.6 µM DOC (Table 4.1). In some bioassays, the initial observed [DOC] differed from 

that calculated via mass balance of the inoculum and the pre-harvest (TH) [DOC] in the 

diatom cultures (Table 4.1 and Table 4.2), which we attribute to continued exudation or 

remineralization during the several hours needed to filter the diatom cultures and to general 

effects of handling, possibly including diatom cell breakage. We observed no accumulation 

of DON above our detection limit of 1.5 µM during the diatom growth experiments 

(Appendix VI). At TH, DOC:DON ratios of the bulk DOM fell between 11.6 and 17.9, with 

no clear trends between nutrient stresses (Table 4.1). Growth and exudation dynamics will be 
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discussed in greater detail in a subsequent manuscript (Windecker et al. in prep). 

 The diatom cultures were not axenic, as we measured 3H-Leu incorporation in both 

whole water and filtered (i.e., diatom-free) samples (Appendix III). The highest incorporation 

was observed in the C. socialisdiatom attached bacteria fraction, suggesting the most active 

bacteria were part of the phycosphere. We made a substantial effort to reduce bacteria by 

filtering media seawater, rinsing diatom primary cultures (prior to inoculation) with sterile 

seawater, and treating some diatom primary cultures with a standard antibiotic cocktail (S. 

marinoi, C. socialis, and T. weissflogii: penicillin G, gentamicin, and dihydrostreptomycin 

HCl following Guillard (2005)). Autoclaving diatom growth media to further inhibit bacteria 

would have undermined our goal of low background DOC concentrations, as preliminary 

work has shown that autoclaving seawater results in measureable increases in DOC (C. 

Carlson, unpublished). Despite these efforts, bacterioplankton grew in diatom cultures 

(Appendix III); thus, we acknowledge that we measured net rather than gross DOM 

production. Microbial processing of DOM during the diatom experiments would make the 

harvested exudate most realistically resemble a mix of the labile and semi-labile pools 

(Carlson and Hansell 2015), comparable to the DOM that accumulates in the field as a bloom 

senesces (Wear et al. 2015; Williams 1995). 

2. Short-term DOM bioavailability 

 TOC remineralization (that is, respiration) was calculated as the change in TOC 

between T0 and subsequent time-points throughout the dilution batch-culture bioassays 

(Table 4.2; Fig. 4.2). Four days after T0, which corresponded to peak bacterial growth in 

many treatments and the final BCC time-point, TOC remineralization ranged between no 

resolvable change (i.e., < 1.5 µM C) and 24.8 µM (Table 4.2; Fig. 4.2), with no clear patterns 
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by nutrient stress or source diatom species. Because our duplicate bioassays represent the 

pooled exudate from duplicate diatom cultures rather than an evaluation of each diatom 

culture independently, we have insufficient replication to analyze the statistical significance 

of species or nutrient effects when a two-way crossed ANOVA would be the appropriate test. 

As the range of starting [TOC] spanned 30 µM, we calculated the percent bioavailability of 

“new” TOC (the combined bioavailability of the diatom exudate, bioavailable TOC 

introduced with the bacterial inoculum, and bioavailable TOC from the aged seawater media, 

i.e., TOC above the 16-week mean [TOC] in each experiment's respective control bioassays 

(Eq. 1). At day 4, %new TOC remineralization ranged from below detection limits to 52%new. 

BCD over 4 days ranged between 1.9 and 34.2 µM C (in experiments where it could be 

resolved) and likewise showed no clear patterns between nutrient-stress treatments and 

source diatom species (Table 4.2; Appendix IV). 

 After 1 week, TOC remineralization showed clearer patterns between nutrient-stress 

treatments. Both absolute and %new TOC remineralization were consistently highest within 

the Si-stress DOM treatments in each source diatom group (or one of two approximately 

equally high in the case of O. auritaremin) (Table 4.2; Fig. 4.3A and C). While TOC 

remineralization in the Si-stress treatments varied by a factor of 10 between source diatom 

species, the remineralization in all other treatments was similar in magnitude across all 

diatom species (between ~ 2 and 5 µM C), suggesting any potential diatom species effects on 

short-term TOC bioavailability were overshadowed by the effects of diatom nutrient stress. 

The crash of bacterioplankton cell abundance at 1 week, associated with prevalent 

nanoflagellate grazers in several bioassays (as is common for this type of dilution culture 

experiment), made accurate estimates of BCD impossible. 
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 Initial TOC:TON in the bioassays was between 11.7 and 20.4, with no systematic 

variability by diatom species or by nutrient stress treatment (Table 4.2). We observed no 

resolvable TON remineralization over 8 weeks within the bioassays (Appendix VII). 

3. Long-term DOM bioavailability and persistent TOC 

At 16 weeks, absolute and %new TOC remineralization resembled one another, with the clear 

Si-stress pattern seen at 1 week no longer apparent (Table 4.2; Fig. 4.3B and D). The highest 

remineralization was seen in the Si-stress DOM treatments in S. marinoiremin and C. 

socialisremin, the N-stress DOM treatment in T. weissflogiiremin, and the N + Si-stress DOM 

treatment in O. auritaremin, albeit with dampened variability in the %new remineralization 

relative to the absolute drawdown (Table 4.2). Therefore, while remineralization of Si-stress 

TOC appeared universally elevated relative to that produced under N stress over a week, 

nutrient stress effects were no longer clear over timescales of months. The magnitude of 

long-term absolute TOC remineralization was strongly correlated with initial TOC 

concentrations (Table 4.2; Fig. 4.2; Table 4.3); however, the persistence of the patterns 

between treatments after remineralization was normalized to a percentage suggests that there 

were differences in the inherent bioavailability of the exudate produced under the different 

nutrient stresses by the various diatoms and that remineralization patterns were not solely 

driven by bulk carbon availability. 

 Notably in Fig. 4.2, [TOC] in each of the diatom exudate bioassays remained in 

excess of the [TOC] in their respective control bioassays at 16 weeks, that is, every exudate 

bioassay had measureable persistent TOC at the end of the experiment. Persistent TOC was 

between 4.8 and 15.4 µM, or 16–69% of the “new” TOC (Table 4.2; Fig. 4.3E). Persistent 

TOC varied between diatom source species (S. marinoiremin: mean 7.2 µM; C. socialisremin: 
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10.5 µM; T. weissflogiiremin: 5.3 µM; O. auritaremin: 13.6 µM), but the nutrient stress imposed 

on the diatoms did not have an obvious effect within experiments from a given species. A 

one-way ANOVA for species effects with Ryan-Einot-Gabriel-Welsch Range post-hoc 

showed that persistent TOC was lower in T. weissflogiiremin than in C. socialisremin and higher 

in O. auritaremin than in all other experiments at p < 0.05 (F3,7 = 26.540, p < 0.0001; Fig. 

4.3E). 

4. Bacterial growth parameters and BGEs 

 The bacterioplankton specific growth rate, µ, was between 0.09 and 

1.85 doublings day− 1, with the highest rate in the S. marinoiremin Si-stress DOM treatment by 

more than 2-fold (Table 4.4, Fig. 4.3F). In general, the N-stress DOM treatments had the 

lowest µ and the Si-stress DOM treatments had the highest µ within experiments. 3H-Leu 

incorporation was more variable, with 2- to 3-fold higher 1-week integrated 3H-Leu 

incorporation in the S. marinoiremin and C. socialisremin Si-stress DOM treatments (127.7 and 

109.5 nmol 3H-Leu L− 1 week− 1, respectively) than in any other treatments (between 7.7 and 

41.6 nmol 3H-Leu L− 1 week− 1) (Table 4.4; Fig. 4.3G). Maximum bacterial biomass (the 

mean biomass during stationary phase) was between 1.4 and 9.7 µM C (Table 4.4; Appendix 

IV), with the highest values again in the S. marinoiremin and C. socialisremin Si-stress DOM 

treatments and an overall pattern resembling that of the 3H-Leu incorporation rates. 

 BGEs were between 27 and 61% (Table 4.4; Fig. 4.3H). Surprisingly, despite the 

extremely high biomass production in the S. marinoiremin Si-stress DOM bioassay, this 

experiment had one of the lowest resolvable BGEs. In general, however, BGEs were higher 

in Si-stress DOM bioassays than in the corresponding N-stress DOM bioassays, with the 

N + Si-stress DOM bioassays varying in relation to the other treatments within diatom source 
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species. Based on the moderately elevated BGEs observed in two of the N + Si-stress 

treatments that lacked residual DIN (Table 4.4; Fig. 4.3H), it is unlikely that the elevated 

BGEs seen in the Si-stress DOM treatments were solely attributable to inorganic nitrogen 

carried over from the diatom cultures. 

5. Carbon parameter relationships 

 We examined the relationships between numerous parameters of TOC usage and 

bacterial growth using Spearman's rho non-parametric correlation analysis (Table 4.3). 

Overall, few parameters correlated, suggesting additional aspects of substrate quantity and 

composition were likely impacting the various processes. Notably, the majority of short-term 

and long-term TOC remineralization measures were not significantly correlated with one 

another. Measures of TOC remineralization (particularly %new remineralization) and 

persistent TOC were generally not related to initial concentrations or stoichiometry (T0 

[TOC], [TON], and TOC:TON), with the exception of the positive correlation between 16-

week TOC remineralization and T0 [TOC]. Maximum BB and integrated BP were more 

closely related to starting [TOC], suggesting that initial DOM availability may have 

influenced bacterial anabolism. µ was correlated with 4-day BCD and with absolute and %new 

TOC remineralization over 1 week. Unexpectedly, BGE was not correlated with any of the 

other carbon-processing or bacterial growth parameters measured (Table 4.3). 

6. Inorganic nutrient amendments 

 The inorganic nutrient amendment treatments were designed to elucidate any effects 

of remnant inorganic nutrients from the diatom media (in particular, NO3 remaining in the Si-

stress DOM treatments, which would be consistent with an Si-stress scenario in the field but 

which could also disproportionately increase bacterial metabolism). We did not see enhanced 
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overall TOC remineralization in the nutrient amended treatments relative to the unamended 

control, nor significantly enhanced BCD (Table 4.2; Fig. 4.2E). These experiments had µ 

between 0.11 and 0.28 doublings day− 1 (Table 4.4), with the greatest µ by a factor of 2–3 

observed in the Aged SW + N&P amendment (analogous to the inorganic nutrients 

remaining in the Si-stress DOM treatments). This suggests the elevated µ seen in the Si-stress 

DOM treatments might be associated with the presence of readily available inorganic 

nitrogen, allowing for rapid cell replication despite carbon-rich DOC; supporting this, µ was 

positively correlated with T0 N + N concentrations in the exudate and control bioassays 

(Spearman's rho = 0.601, N = 15, p = 0.018). BP over 1 week was indistinguishable between 

the O. auritaremin unamended control and the Aged SW + N&P and Aged SW + Si&P 

treatments (Table 4.4), as was the maximum BB (Table 4.4). BCC in the inorganic nutrient 

amended treatments was likewise indistinguishable from that of the unamended O. auritaremin 

controls (Appendix V); therefore, the observed shifts in BCC in the exudate bioassays were 

presumably driven by the DOM, not by non-limiting inorganic nutrients remaining in the 

experiments. 

7. Bacterial community composition 

 T-RFLP profiles were obtained for 146 samples, with 5 samples discarded for poor 

amplification. Individual samples contained 12 to 27 T-RFs, from a total of 72 distinct peaks 

between 31 and 568 base pairs in length across all samples. BCC in all treatments deviated 

from the respective inoculum over 4 days (Fig. 4.4; Appendix V). We interpret changes in 

the control treatment communities as resulting from growth on DOM present in the inoculum 

and in the background aged seawater from the diatom media; further changes from the 

control treatment would then represent the bottom-up effects of the additional DOM in the 
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exudate bioassays. Within an experiment, BCC in all exudate bioassays changed similarly, 

with minor differences between nutrient stress treatments (Fig. 4.4; Appendix V). The BCC 

response was dominated by strong increases in the relative abundance of putative copiotrophs 

(the 33 base pair peak, which constituted 33–72% of the DOM treatment communities at day 

4) and decreases in putative oligotrophs such as SAR11 Surface 1 (the 114 base pair peak; 

Fig. 4.4; Appendix V). 

 

4. Discussion 

 Our hypothesis that Si-stress DOM would be more bioavailable than N-stress DOM 

was supported over the first week of the experiment (Table 4.2; Fig. 4.3A and C), although 

nutrient stress effects on TOC bioavailability were not evident over timescales of months 

(Table 4.2; Fig. 4.3B and D). Rather, after 16 weeks, we observed consistent concentrations 

of persistent TOC within experiments from a given source diatom, regardless of nutrient 

stress treatment (Table 4.2; Fig. 4.3E). Our prediction that Si-stress DOM would yield higher 

BGEs was supported in most experiments; however, the mechanism we expected to underlie 

this response, lower TOC:TON ratios in Si-stress DOM treatments, was not substantiated 

(Table 4.2). Finally, our hypothesis of variable BCC between nutrient stress treatments was 

not supported at the resolution attainable by T-RFLP (Fig. 4.4; Appendix V), with all 

treatments overwhelmingly shifting to copiotrophic phylotypes. 

1. DOC bioavailability 

 We observed very rapid DOC remineralization over the first week in several 

treatments, most notably in the Si-stress DOM treatments of the S. marinoiremin (28.7 µM) 

and C. socialisremin (12.1 µM) that had correspondingly high initial DOC concentrations (Fig. 
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4.2A-D; Fig. 4.3A). This DOC remineralization was several-fold higher than the < 7 µM 1-

week remineralization of DOM from a diatom-dominated phytoplankton bloom in the SBC 

(Wear et al. 2015) but comparable with the 15 µM DOC drawdown observed within 1 week 

on water from an SBC kelp forest (Halewood et al. 2012), indicating that such high DOC 

remineralization is plausible for the SBC, albeit not common. This high DOC 

remineralization is consistent with that seen in seawater amended with labile DOM (~ 10 to 

35 µM over 1 week, Carlson and Ducklow 1996; ~ 10 to 40 µM over 3 days, Cherrier et al. 

1996), while the lower remineralization in the other experiments more closely resembles the 

range of magnitudes seen in dilution-culture bioassays of unamended seawater (unresolvable 

to ~ 7 µM over 1 week, Carlson and Ducklow 1996 and Wear et al. 2015). 

 DOC remineralization followed a pattern of very high drawdown over the first week, 

slowing and approaching an asymptote over several months (Fig. 4.2), that is congruent with 

the average marine DOC drawdown as calculated by del Giogrio and Davis (2003). The high 

initial DOC remineralization in some treatments and the general lack of correlation between 

short-term and long-term DOC bioavailability (Table 4.3) suggest the presence of distinct 

pools of DOM with independent reactivity. The initial rapid, and variable, remineralization 

may therefore most reflect the C-rich compounds produced in response to nutrient stress 

(e.g., as with the bacterial response to phytoplankton-produced glycolate, which is primarily 

respired rather than incorporated into biomass; Fogg 1983). 

2. Bacterial growth efficiency response 

 The measured BGEs (Table 4.4; Fig. 4.3H) were high for pelagic systems (where 

values ca. 10–20% are more common; Carlson 2002). However, they closely resemble those 

observed during a phytoplankton bloom in the SBC, when BGEs increased from 17 to 62% 
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as the bloom progressed (Wear et al. 2015). The high BGE values are in part attributable to 

the high cellular carbon conversion factor we used to estimate bacterial biomass 

(30 fg C cell− 1); however, the pattern between experiments and treatments is consistent 

regardless of the conversion factor chosen. We interpret the higher BGEs in the Si-stress 

DOM treatments relative to the N-stress DOM treatments as an indication of a higher-quality 

substrate for the bacterioplankton produced by diatoms under Si-stress, allowing the bacteria 

to incorporate relatively more DOC into biomass. While inorganic nitrogen carried over from 

the diatom cultures in the Si-stress DOM treatments could also lead to elevated BGEs, we 

saw high BGEs in two N + Si-stress DOM treatments that did not contain significant 

inorganic nitrogen (Appendix VII). Given this apparent difference in DOM quality as a 

growth substrate (in the sense of del Giorgio and Cole 1998), it was surprising that BGEs 

were not correlated with initial TOC and TON concentrations or stoichiometry, TOC 

remineralization over any timeframe, or bacterial growth (i.e., any of the other parameters in 

Table 4.3). This decoupling between TOC bioavailability and BGEs suggests that other 

factors are limiting biomass production at the expense of bulk DOC uptake; thus, further 

investigation of the composition of DOM produced by nutrient-stressed phytoplankton and 

resolution of the role of micronutrient dynamics in these types of experiments is warranted. 

3. Persistent TOC 

 Persistent TOC was present at concentrations between 5 and 15 µM above the control 

treatments in every DOM bioassay at 16 weeks, analogous to the accumulated DOC observed 

in the field after phytoplankton blooms (Carlson et al. 1994; Williams 1995) and similar to 

that observed persisting in prior experiments assessing diatom-produced DOC (Fry et al. 

1996; Meon and Kirchman 2001; Wear et al. 2015). Given the high variability in initial 
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[TOC] and TOC remineralization within bioassays from a given diatom source (Table 4.2; 

Fig. 4.2), the consistency of the corresponding persistent TOC is surprising (Fig. 4.3E). 

Dilution batch-culture bioassay experiments are by design removed from in situ conditions 

and therefore we cannot say that persistent TOC was solely an effect of the diatom species, 

or whether there might have been an additional influence from the seawater media or 

bacterioplankton inoculum. Persistent TOC should consist primarily of true DOC and only 

minimally of bacterial biomass; BB at 1 week, the final time-point where it was measured, 

was between 0.7 and 2.5 µM C within the cultures that had clearly begun to decline in 

abundance (Appendix IV). Previous unpublished work in the SBC and elsewhere has shown 

that bacterial biomass subsequent to the death phase remains close to its T0 concentration, 

presumably due to tight coupling between bacterial production and mortality due to 

nanoflagellate grazing and viral lysis. Thus, while we cannot rule it out, it is highly unlikely 

that BB would contribute significantly to total TOC in the later stages of these experiments. 

Because persistent TOC was calculated relative to the corresponding control treatment (Eq. 

2), we feel confident that this carbon was a remnant of the diatom exudate, whether it was 

produced by the diatoms in a recalcitrant form (e.g., as in Aluwihare and Repeta 1999) or 

transformed to a recalcitrant composition by bacterial processing of more labile precursors 

(i.e., the microbial carbon pump; Jiao et al. 2010). 

 The consistent amounts of persistent TOC suggest that, from a biogeochemical 

perspective, knowing the nutrient stress that terminated a diatom bloom will not inform 

expectations of potentially exportable TOC production, but rather that improved estimates of 

the fate of post-phytoplankton bloom TOC may rely on knowledge of source species identity. 

In this case, treating multiple diatom species as a single functional group could obscure a 
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potential 2-fold difference in the quantity of phytoplankton-produced TOC that persists 

following a diatom bloom (Fig. 4.3E). This finding differs from the results of Wear et al. 

(2015), wherein concentrations of persistent DOC (remaining after 10 weeks in dilution 

batch-culture bioassays derived from field samples during a diatom and Phaeocystis sp. 

bloom) covered a similar range of magnitudes but increased with increasing in situ Si stress. 

Therefore, while we saw no effect of stressor nutrient identity on persistent TOC 

concentrations in the experiments described here, this conclusion would need to be verified 

for situations of varying levels of nutrient stress prior to extrapolating these results. 

4. Effects of nutrient stress on DOM utilization 

 We observed greater variability in bacterioplankton responses to DOM produced 

under different nutrient stresses than has been seen in previous studies. Conan et al. (2007) 

saw variable partitioning of phytoplankton production into DOC, but similar microbial 

respiration, in mesocosms experiencing a range of N or P stresses. Pete et al. (2010), who 

used N and Si additions similar to those we employed to elicit diatom nutrient stress, 

measured elevated BP and bacterial abundance on Si-stress DOM from Skeletonema 

costatum, similar to our observations of elevated BP and µ on S. marinoiremin Si-stress DOM. 

However, their N-stress DOM did not elicit bacterial responses that were different from the 

controls, despite an approximately 70 µM DOC addition, while we observed that N-stress 

DOM consistently produced higher BP (Table 4.4) and a shift in BCC (Fig. 4.4; Appendix V) 

relative to our unamended controls. It is difficult to compare the two studies, as Pete et al. 

(2010) do not specify when after the onset of nutrient stress they harvested their DOM, only 

that they grew the cultures for 14 days (ca. twice as long as in this study; Appendix III), and 

therefore their DOM pools might have been more enriched in recalcitrant compounds. 
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 We hypothesize that the higher bioavailability of DOM produced under Si stress may 

be an adaptive strategy for diatoms, allowing them to use the activity of bacterioplankton for 

their benefit, rather than sparking competition. Bacteria have been shown to degrade organic 

matrices associated with dead diatom frustules, enhancing frustule dissolution to dissolved Si 

(Bidle and Azam 2001), and therefore priming this degradation process with bioavailable 

DOM could be advantageous during the onset of Si stress. This hypothesis counters the 

objections of Bjørnsen (1988) and Bratbak and Thingstad (1985) to the carbon overflow 

mechanism, which suggested that releasing bioavailable DOM would harm phytoplankton by 

stimulating further competition with bacterioplankton, and expands on the hypothesis of 

Wood and van Valen (1990) that Si stress could be an exception to the diatom and 

bacterioplankton competition scenario. We did not test Si recycling with this experiment, as 

diatom frustules were removed with the overall diatom biomass prior to bioassay inoculation, 

and therefore this scenario is strictly hypothetical. This idea of selective bacterial stimulation 

likely would not translate to other phytoplankton groups, as diatoms are relatively unique in 

their requirement for a major nutrient that is not used by heterotrophic bacteria, nor would it 

explain the smaller releases of bioavailable DOC under N and N + Si stress. 

5. Bacterial community composition 

 Bacterial communities in all of our experiments shifted towards a greater relative 

abundance of presumed copiotrophs, those phylotypes that grow rapidly upon introduction of 

labile DOM (predominantly the 33 base pair T-RF; Fig. 4.4 and Appendix V). This contrasts 

with Pete et al. (2010), who observed an increase in copiotrophic Gammaproteobacteria in 

bacterial communities growing on exudate produced by diatoms under Si stress and a 

decrease on exudate produced under N stress. The similarities in BCC within our 
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experiments were surprising given the variability in µ and BGEs. We would have expected 

variable community composition to accompany these differences in growth rates, which 

imply differing substrate quality and thus phylogenetic selective pressure (e.g., Cottrell and 

Kirchman 2000; Nelson et al. 2013). Instead, while diatom nutrient stress had a strong impact 

on DOC bioavailability, effects of nutrient stress on DOM composition appeared minimally 

influential in shaping subsequent BCC, at least at the taxonomic resolution obtained via T-

RFLP and over scales of days. 

 While BCC dominated by copiotrophs might indicate a growth of rare “weed” species 

in bioassays established from the oligotrophic ocean, the responding phylotypes in these 

experiments are ecologically relevant to an upwelling system and to a phytoplankton bloom 

scenario. An in silico digest of 16S rRNA gene amplicon sequences from the SBC allowed us 

to putatively identify our 33 base pair T-RF peak as a mix of Roseobacters, Flavobacteria, 

and Gammaproteobacteria including Vibrio sp., Pseudoalteromonas sp., and SAR92 (Fig. 

4.4B-D and Appendix V). These phylotypes are common to the coastal ocean and include 

presumed generalists known to respond to phytoplankton-derived compounds (Mou, Sun, 

Edwards, Hodson, and Moran 2008). These clades can be strongly associated with diatom 

blooms in the field (Amin et al. 2012; Buchan et al., 2014), and previous work in the SBC 

has demonstrated a strong response by Roseobacters in DOM remineralization experiments 

conducted during a diatom bloom (Wear et al. 2015). Some Gammaproteobacteria are 

further known to facilitate Si regeneration through hydrolysis of detrital diatom organic 

matrices (Bidle and Azam 2001). 

6. Conclusions 

 The results point to a transition in the relative importance of diatom nutrient stress 
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and species identity on the bioavailability of exudates to bacterioplankton between timescales 

of days and timescales of months (Fig. 4.1). The effects of nutrient stress on the 

bioavailability and suitability of DOM exuded by diatoms as a bacterial growth substrate 

varied over ecologically relevant timescales of days, with the exception of generally higher 

BGEs yielded on Si-stress DOM. And over 1 week, DOM produced by diatoms under Si 

stress was generally more bioavailable. We hypothesize that this exudation could be 

advantageous for Si-stressed diatoms, as in that scenario promoting bacterial activity could 

regenerate dissolved Si rather than stimulating competition for nutrients. Bacterial 

community composition did not reflect this enhanced growth on Si-stress DOM, as all 

treatments shifted towards copiotrophs commonly found in association with coastal 

phytoplankton blooms. On a timescale relevant for seasonal export, the concentrations of 

diatom-produced TOC persisting in the experiments after 16 weeks were not dependent on 

nutrient stress treatment, but rather varied by diatom species that produced the exudate. 

These experiments suggest that the identity of the nutrient that terminates a phytoplankton 

bloom may impact subsequent heterotrophic activity in the short term, but it is unlikely to 

have a strong influence on TOC persistence and potential export from the system, where 

instead phytoplankton species identity appears more influential. 
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Table 4.3. Correlations between various TOC processing and bacterial growth parameters 
and multiple timeframes. Spearman's rho non-parametric correlations; significant 
correlations (p < 0.05) are in bold. Control seawater and inorganic nutrient amendment 
samples were omitted, as their starting conditions and overall growth were substantially 
different. Correlations were run on the mean of duplicate carboy values where applicable. 
TOC remineralization values that were below detection limits were omitted from the 
analysis. 
 [TON] 

T0 
TOC:TON 
T0 

BCD 4 
days 

%new BCD 
4 days 

Δ TOC 1 
week 

%new TOC 1 
week 

Δ TOC 16 
weeks 

[TOC] T0 R = -
0.487 
N = 11 
p = 
0.128 

0.729 
11 
0.011 

0.358 
10 
0.310 

-0.237 
10 
0.510 

0.191 
11 
0.574 

0.041 
11 
0.905 

0.791 
11 
0.004 

[TON] T0  -0.932 
11 
< 0.0001 

-0.122 
10 
0.738 

0.311 
10 
0.382 

-0.670 
11 
0.024 

-0.516 
11 
0.104 

-0.474 
11 
0.141 

TOC:TON T0   0.164 
10 
0.651 

-0.426 
10 
0.220 

0.583 
11 
0.060 

0.395 
11 
0.229 

0.624 
11 
0.040 

BCD 4 days    0.663 
10 
0.037 

0.564 
10 
0.090 

0.673 
10 
0.033 

0.564 
10 
0.090 

%new BCD 4 
days 

    0.109 
10 
0.763 

0.347 
10 
0.327 

0.000 
10 
1.0000 

Δ TOC 1 week      0.943 
11 
<0.0001 

0.464 
11 
0.151 

%new TOC 1 
week 

      0.360 
11 
0.277 

Δ TOC 16 
weeks 

       

Δ TOC (16-1) 
weeks* 

       

%new TOC 16 
weeks 

       

Pers. TOC        
µ        
Max. BB        
Integ. BP        
(Table continues on next page.) 
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Table 4.3 continued. 
 Δ TOC (16-1) 

weeks* 
%new TOC 16 
weeks 

Pers. 
TOC 

µ Max. 
BB 

Integ. 
BP 

BGE 

[TOC] T0 0.745 
11 
0.008 

0.269 
11 
0.424 

0.282 
11 
0.401 

-0.064 
11 
0.852 

0.802 
11 
0.003 

0.709 
11 
0.015 

0.041 
11 
0.905 

[TON] T0 -0.132 
11 
0.699 

-0.199 
11 
0.558 

-0.164 
11 
0.630 

-0.365 
11 
0.269 

-0.221 
11 
0.513 

-0.633 
11 
0.036 

-0.144 
11 
0.672 

TOC:TON T0 0.342 
11 
0.304 

0.174 
11 
0.610 

0.328 
11 
0.325 

0.208 
11 
0.540 

0.461 
11 
0.153 

0.729 
11 
0.011 

0.188 
11 
0.581 

BCD 4 days 0.224 
10 
0.533 

0.784 
10 
0.007 

-0.527 
10 
0.117 

0.709 
10 
0.022 

0.584 
10 
0.077 

0.382 
10 
0.276 

0.134 
10 
0.712 

%new BCD 4 days -0.073 
10 
0.841 

0.604 
10 
0.065 

-0.802 
10 
0.005 

0.608 
10 
0.062 

0.104 
10 
0.776 

-0.188 
10 
0.602 

-0.073 
10 
0.840 

Δ TOC 1 week 0.000 
11 
1.000 

0.588 
11 
0.057 

-0.300 
11 
0.370 

0.747 
11 
0.008 

0.164 
11 
0.630 

0.573 
11 
0.066 

0.110 
11 
0.748 

%new TOC 1 
week 

-0.137 
11 
0.689 

0.580 
11 
0.061 

-0.415 
11 
0.205 

0.874 
11 
<0.0001 

0.132 
11 
0.698 

0.415 
11 
0.205 

0.151 
11 
0.658 

Δ TOC 16 weeks 0.855 
11 
0.001 

0.715 
11 
0.013 

-0.255 
11 
0.450 

0.292 
11 
0.384 

0.497 
11 
0.120 

0.682 
11 
0.021 

0.027 
11 
0.936 

Δ TOC (16-1) 
weeks* 

 0.551 
11 
0.079 

-0.173 
11 
0.612 

-0.123 
11 
0.719 

0.410 
11 
0.210 

0.473 
11 
0.142 

-0.164 
11 
0.629 

%new TOC 16 
weeks 

  -0.761 
11 
0.007 

0.612 
11 
0.045 

0.135 
11 
0.693 

0.333 
11 
0.318 

-0.105 
11 
0.758 

Pers. TOC    -0.547 
11 
0.082 

0.260 
11 
0.441 

0.027 
11 
0.937 

0.064 
11 
0.852 

µ     0.100 
11 
0.769 

0.118 
11 
0.729 

0.268 
11 
0.426 

Max. BB      0.556 
11 
0.076 

0.217 
11 
0.521 

Integ. BP       -0.178 
11 
0.600 

*Δ TOC at 1 week was subtracted from Δ TOC at 16 weeks to give an independent measure 
of long-term TOC remineralization; otherwise, the 16-week remineralization was in some 
cases up to 75% determined by remineralization in the first week. 
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Table 4.4. Bacterial growth parameters from the dilution batch-culture bioassay experiments. 
All values are mean of duplicate carboys (range of duplicate carboys). Expt. & treatment: 
diatom species that was source of exudate and nutrient stress under which exudate was 
produced. µ: specific growth rate over exponential phase (times vary; see Appendix IV). 
Integrated BP: total 3H-Leucine incorporation over the first week of the experiment. Max. 
BB: maximum bacterial biomass observed over the first week of the experiment. BGE: 
bacterial growth efficiency over exponential phase. BDL: below detection limits. N/A: not 
calculated for this sample. 
 
Expt. & Treatment µ (day-1) Integrated BP  

(nmol 3H-Leu  
L-1 week-1) 

Max BB  
(µM C) 

BGE (%) 

S. marinoiremin Si stress 1.85 (0.09) 127.7 (15.0) 9.7 (0.0) 29 (3) 
S. marinoiremin N+Si stress 0.47 (0.00) 26.2 (2.5) 1.7 (0.1) 27 (7) 
S. marinoiremin Control 0.31 (0.03) 9.6 (1.1) 1.4 (0.0) BDL 
C. socialisremin N stress 0.19 (0.01) 33.7 (1.8) 2.7 (0.4) 44 (3) 
C. socialisremin Si stress 0.50 (0.03) 109.5 (9.0) 6.4 (0.6) 58 (3) 
C. socialisremin N+Si stress 0.26 (0.02) 41.6 (1.1) 3.4 (0.1) 34 
C. socialisremin Control 0.36 (0.06) 17.1 (0.8) 3.5 (0.3) 57 
T. weissflogiiremin N stress 0.18 (0.03) 39.6 (0.5) 3.6 (0.0) 34 
T. weissflogiiremin Si stress 0.73 (0.03) 26.7 (0.1) 2.5 (0.1) 61 
T. weissflogiiremin N+Si stress 0.55 (0.05) 24.7 (0.4) 3.4 (0.1) 52 (19) 
T. weissflogiiremin Control 0.62 (0.03) 21.4 (1.0) 2.4 (0.0) 28 (3) 
O. auritaremin  N stress 0.09 (0.03) 31.5 (1.8) 2.6 (0.0) 27 (5) 
O. auritaremin  Si stress 0.18 (0.00) 24.9 (0.5) 4.1 (0.3) 57 (4) 
O. auritaremin  N+Si stress 0.14 (0.04) 38.0 (1.4) 3.5 (0.1) 46 (11) 
O. auritaremin  Control 0.19 (0.08) 7.7 (1.0) 3.2 (0.1) 35 
Aged SW +N&P 0.28 (0.02) 7.7 (0.4) 2.9 (0.3) 64 
Aged SW +Si&P 0.11 (0.01) 8.0 (0.5) 3.1 (0.0) BDL 
Aged SW +Culture 0.11 (0.00) N/A N/A N/A 
Aged SW +F/2 0.13 (0.01) N/A N/A N/A 
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Fig. 4.1.  Conceptual diagram of the major conclusions of the paper, contrasting short-term 
and long-term effects of the nutrient stress under which DOM was produced. Arrows indicate 
carbon flow from the diatom cultures, through the mixed bacterial community inoculum, to 
select outcomes of the dilution batch-culture bioassays. Arrow color indicates nutrient stress 
treatment (as labeled in Panel A) and arrow size indicates relative carbon flow through that 
pathway. A: Short-term effects: over timescales of days to 1 week, nutrient stress effects 
were apparent in the differential remineralization and incorporation of diatom exudate into 
bacterioplankton biomass. Si-stress exudate was generally most bioavailable (although 
biomass production varied, as indicated by the two Si-stress arrows), while source diatom 
species effects were relatively muted. B: Long-term effects: after 16 weeks, nutrient stress 
effects were no longer obvious, and the amount of diatom-produced persistent TOC (see Eq. 
2) remaining in the experiments varied between diatom source species. 
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Fig. 4.2.  TOC concentrations over time. A–D, legend as in B; E, separate legend. Points are 
means of duplicate bioassays; error bars indicate range of duplicates. No error bars indicate 
only one valid sample at that time-point. Please note different X-axis scales on each side of 
axis break. A: S. marinoiremin. B: C. socialisremin. C: T. weissflogiiremin. D: O. auritaremin, with 
persistent TOC indicated (Eq. (2)). E: O. auritaremin inorganic nutrient amendments. 
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Fig. 4.3. TOC remineralization, persistent TOC, and bacterial growth parameters. All plots 
are medians of duplicate samples, with error bars indicating range of duplicates. No error 
bars indicate only one valid sample. Plots C, D, and E intentionally do not contain Control 
SW data, due to the calculation of the data presented. A: [TOC] remineralized after 1 week. 
B: [TOC] remineralized after 16 weeks. C: %bioav TOC after 1 week. D: %bioav TOC after 
16 weeks. E: Persistent TOC at 16 weeks; letters indicate significantly different source 
diatom groups based on an ANOVA. F: µ. G: integrated BP over the first week of the 
experiment. H: BGE. 
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Fig. 4.4. A: Cell plot of relative abundance of common T-RFs. BCC at T0 (mean of all 
samples) and day 4 (mean of duplicate samples, with “Si” here indicating “Si-stress DOM 
treatment,” and so forth), with common T-RFs included here operationally identified as those 
constituting a mean of 1% or more of either the T0 or day 4 communities, and “Rare” T-RFs 
as the sum of the remainder. Putative T-RF identifications are based on in silico digests of 
pyrosequenced 16S rRNA gene amplicons from the SBC (Wear et al. 2015; see Appendix V 
for methodological details). B: The number of operational taxonomic units (OTUs) within 
each clade contained in the 33 base pair peak, according to the aforementioned in silico 
digest. C: Proportion of these OTUs represented by each clade in the surface SBC during a 
diatom-dominated phytoplankton bloom (Wear et al. 2015). D: Proportion of these OTUs 
represented by each clade in dilution-culture bioassays initiated with SBC water from the 
same phytoplankton bloom after 3 days. 
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Chapter IV Appendices 
 
Appendix I. Diagrams of experimental set-up, bioassay starting volumes, and sampling 
schedule 
 
Appendix I, Figure 1: Diagram of experimental set-up, as detailed in Methods. Inset: An 
example N-stress phytoplankton culture incubation, showing how NO3 drawdown (squares) 
and DOC production (circles) were used to determine the timing of the DOM harvest. 
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Appendix I, Table 1: Dilution batch-culture bioassay initial volumes (total volume, 
encompassing 75% exudate and 25% bacterial inoculum) 
 
Expt. & Treatment Volume 

(L) 
Expt. & Treatment Volume (L) Inorganic nutrient 

amendments 
Volume (L) 

S. marinoiremin Si 5.3 T. weissflogiiremin N 8 Aged SW +N&P 8 
S. marinoiremin N+Si 7.7 T. weissflogiiremin Si 8 Aged SW +Si&P 8 
S. marinoiremin Control 8 T. weissflogiiremin N+Si 8 Aged SW +F/2 2 
 T. weissflogiiremin 

Control 
8 Aged SW +Culture 2 

   
C. socialisremin N 8 O. auritaremin  N 8   
C. socialisremin Si 8 O. auritaremin  Si 8   
C. socialisremin N+Si 8 O. auritaremin  N+Si 8   
C. socialisremin Control 8 O. auritaremin  Control 8   
 
Appendix I, Table 2: Parameters sampled during diatom cultures and dilution batch-culture 
bioassays. Blank cell indicates parameter was not sampled (or results are not discussed here, 
for some diatom culture parameters). 
 
 Diatom cultures Dilution batch-culture 

bioassays and Aged SW 
+N&P and +Si&P 

Aged SW +F/2 and 
+Culture (2L 
experiments) 

DOC/TOC and 
TDN 

Daily Daily for 1 week, then 
weekly to monthly to 16 
weeks 

T0, days 2 and 4, 1 
week, then monthly 
to 16 weeks 

Inorganic 
nitrogen 

Daily T0, 1 week, 8 weeks T0, 1 week, 8 weeks 

Silicic acid Daily T0, 1 week, 8 weeks (O. 
auritaremin and inorg. 
nutrient amendments only) 

T0, 1 week, 8 weeks  

POC Daily   
BA (flow 
cytometry) 

 Twice a day for 1 week Twice a day for 1 
week 

BA 
(microscopy) 

 Daily for 1 week  

BP (3H-leucine) Daily (all but S. 
marinoidiatom) 

Daily for 6 days  

DNA  T0 and days 1, 2, and 4 T0 and days 2 and 4 
 



	 161	

Appendix I Figure 2: Timeframes over which parameters discussed in the text were 
calculated, using one replicate of an S. marinoiremin Si-stress DOM experiment as an example. 
Timeframes marked in red varied between samples due to variable growth curves; parameters 
marked in blue were measured at a consistent time across all samples. A: Bacterial 
abundance from flow cytometry (measured every ~12 hours) and DAPI slide counts 
(collected every ~24 hours and counted only at relevant time-points) over time, with growth 
phases, and the parameters they were used to calculate, identified. Flow cytometry counts 
were used to identify growth phases and to calculate µ.  DAPI counts were used to estimate 
bacterial biomass for BGE (Equation 4) and BCD (Equation 3) calculations. B: [TOC] over 
time. Changes in [TOC] to the left of the blue line (7 days or shorter) are discussed as short-
term drawdown in the text; changes in [TOC] to the right of the line (14 days or longer) are 
considered long-term TOC drawdown. 
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Appendix II. Inorganic nutrient amendments to aged seawater used for O. auritaremin Control 
and O. auritaremin samples (i.e. target concentrations for comparison) 
 

 NO3+NO2 (µM) Si(OH)4 (µM) PO4 (µM) 
 T0 1 week 8 

weeks 
T0 1 week 8 weeks T0 1 week 8 

weeks 
O. auritaremin  
N stress 

BDL BDL 
 

0.2 
(0.0) 

14.8 
(0.3) 

14.4 
(0.6) 

15.2 
(0.4) 

4.8 
(0.0) 

4.7 
(0.1) 

4.9 
(0.0) 

O. auritaremin  
Si stress 

8.9 
(0.0) 

8.9 
(0.1) 

8.9 
(0.1) 

BDL BDL BDL 2.9 
(0.0) 

2.9 
(0.1) 

3.1 
(0.0) 

O. auritaremin 
N+Si stress 

0.2 
(0.0) 

BDL BDL BDL BDL BDL 5.6 
(0.1) 

5.4 
(0.0) 

5.9 
(0.1) 

O. auritaremin 
Control  

BDL BDL 0.7 
(0.4) 

0.4 
(0.0) 

0.4 
(0.0) 

0.4 (0.0) 0.3 
(0.0) 

0.3 
(0.0) 

0.3 
(0.0) 

Aged SW 
+N&P 

7.5 
(0.0) 

7.5 
(0.1) 

7.8 
(0.3) 

0.4 
(0.0) 

0.4 
(0.0) 

0.4 (0.0) 3.4 
(0.1) 

3.1 
(0.1) 

3.7 
(0.0) 

Aged SW 
+Si&P 

BDL BDL 0.7 
(0.6) 

16.7 
(0.3) 

17.3 
(0.1) 

16.9 
(0.2) 

3.5 
(0.2) 

3.3 
(0.2) 

3.7 
(0.1) 

Aged SW 
+Culture 

1.7 
(0.0) 

1.7 
(0.0) 

3.7 
(0.0) 

2.7 
(0.1) 

3.1 
(0.3) 

2.7 (0.0) 0.4 
(0.0) 

0.4 
(0.0) 

0.5 
(0.0) 

Aged SW 
+F/2 

2.6 
(0.1) 

2.6 
(0.1) 

4.4 
(0.3) 

3.6 
(0.1) 

3.6 
(0.1) 

3.7 (0.1) 0.5 
(0.0) 

0.5 
(0.0) 

0.6 
(0.0) 

Mean of duplicate samples (range). Detection limits: NO3+NO2: 0.2 µM; PO4: 0.1 µM; Si(OH)4: 0.3 µM. BDL 
= below detection limit. 
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Appendix III. Bacterial production in diatom experiments 
 
 

Supplemental methods: 3H-Leucine incorporation was measured as described for the dilution 

batch-culture bioassays (as in Halewood et al. 2012). To assess the distribution between free-

living bacteria and those attached to phytoplankton and other particles (e.g., transparent 

exopolymer particles, or TEP), samples were filtered through a 3 µm polycarbonate filter 

(Millipore TSTP) under gentle pressure from a rubber-free syringe. Both filtrate and whole 

water samples were assessed simultaneously.  

 

BP was not measured during the S. marinoiphyto phytoplankton growth experiment. However, 

we note that one of the S. marinoiphyto Si-stress treatments appeared cloudy prior to DOM 

harvest, suggesting bacterial and/or viral activity was likely in this experiment as well. 
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Appendix III Table 1: Bacterial production in diatom experiments. 
 
  Integrated BP (T0 to TH) – nmol Leu L-1 
 Days to TH

A Whole water Filtered water 
(< 3 µm) 

Attached bacteriaB  
(> 3 µm) 

C. socialisphyto 
N stress 

6 537.9 (1.8) 112.1 (56.3) 425.8 (58.1) 

C. socialisphyto  
Si stress 

6 563.5 (17.9) 76.2 (18.2) 487.3 (0.3) 

C. socialisphyto 
N+Si stress 

6 545.2 (33.4) 72.4 (23.9) 472.8 (9.5) 

T. 
weissflogiiphyto  
N stress 

5 32.5 (0.3) 17.7 (1.0) 14.7 (1.3) 

T. 
weissflogiiphyto  
Si stress 

5 42.9 (4.4) 25.0 (2.2) 17.9 (2.2) 

T. 
weissflogiiphyto 
N+Si stress 

5 32.7 (2.4) 20.6 (0.8) 12.1 (1.6) 

O. auritaphyto  
N stress 

6 24.7 (2.6) 20.0 (1.9) 4.7 (0.7) 

O. auritaphyto  
Si stress 

6 37.0 (0.8) 32.6 (0.0) 4.4 (0.7) 

O. auritaphyto  
N+Si stress 

6 25.0 (1.9) 21.2 (1.1) 3.8 (0.7) 

Mean of duplicate samples (range). A: TH: last sampling point before DOM was harvested for dilution-culture 
remineralization bioassays. Therefore, “Days to TH” represents the number of days over which the total 
Integrated BP was calculated. B: Attached bacteria BP was calculated as the difference between whole water 
BP and filtered BP. 
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Appendix IV.  Bacterial abundance and biomass in bioassays 
 
Appendix IV, Figure 1: Bacterial abundance over the first week of the bioassays. Legends as 
specified at bottom right; note variable Y-axis scales. Points are means and error bars are 
ranges of duplicate bioassays. The bacterial abundance in Fig. 1 is derived from flow 
cytometry data, while the bacterial biomass data presented in Table 1 below were converted 
from epifluorescence microscopy counts, as we have observed an offset in absolute 
abundance between the two methods. The abundance data here were used to calculate µ and 
to identify the correct time-points for our BGE calculations; for exact time-points selected, 
see Appendix IV, Table 1. A: S. marinoiremin. B: C. socialisremin. C: T. weissflogiiremin. D: O. 
auritaremin. E: O. auritaremin inorganic nutrient amendments. 
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Appendix IV, Table 1: Bacterial biomass (BB) used in BCD and BGE calculations, and the 
timeframes over which BGEs were calculated.  Biomass was converted from bacterial 
abundance as measured by epifluorescence microscopy of 4’6-diamidino-2-phenylindole 
(DAPI) stained slides (Porter and Feig 1980), using a factor of 30 fg C cell-1 (A. Cano, 
unpublished). 
 
Expt. & 
Treatment 

Bacterial biomass 
mean (range) 

BGE timepoints and bacterial biomass 
(two replicate carboys are on two lines) 

 T0 µM 4 days 
µM 

1 week 
µM 

Lag 
timepoints 
(days) 

Mean BB 
µM 

Stationary 
timepoints 
(days) 

Mean BB 
µM 

S. marinoiremin Si 0.4 (0.0) 9.7 (0.0) 1.0 (0.0)* 0-1 
0-1 

0.4 
0.4 

3.5-4.5 
3.5-4.5 

9.8 
9.7 

S. marinoiremin 
N+Si 

0.4 (0.0) 1.7 (0.1) 1.3* 0-1 
0-1 

0.5 
0.5 

3.5-4.5 
3.5-4.5 

1.8 
1.6 

S. marinoiremin 
Control 

0.5 (0.1) 1.9 (0.1) 2.3 (0.1) 0-1.5 
0-2 

0.5 
0.4 

6 
4.5-6.5 

1.3 
1.4 

C. socialisremin N 1.1 (0.0) 3.0 (0.1) 0.8 (0.2)* 0-0.5 
0-0.5 

1.1 
1.1 

1.5-3.5 
3-4.5 

2.3 
3.1 

C. socialisremin Si 0.9 (0.1) 6.4 (0.6) 0.7 (0.2)* 0-1 
0-0.5 

1.1 
0.9 

4 
3.5-4.5 

6.9 
5.8 

C. socialisremin 
N+Si 

1.1 (0.1) 3.6 (0.1) 1.2 (0.4)* 0-0.5 
0-0.5 

1.2 
1.0 

5 
4 

3.2 
3.5 

C. socialisremin 
Control 

1.1 (0.1) 3.3 (0.4) 1.0 (0.0)* 0 
0 

1.2 
1.0 

2.5-4.5 
2.5-4.5 

3.8 
3.2 

T. weissflogiiremin 
N 

0.9 (0.1) 3.6 (0.0) 1.6 (0.1)* 0 
0 

1.0 
0.9 

4.5-5.5 
5-5.5 

3.6 
3.7 

T. weissflogiiremin 
Si 

0.7 (0.1) 2.9 (0.0) 2.5 (0.5)* 0-0.5 
0-0.5 

0.6 
0.8 

3 
3 

2.4 
2.6 

T. weissflogiiremin 
N+Si 

0.8 (0.1) 3.3 (0.2) 2.9 (0.1)  0-0.5 
0-0.5 

0.8 
0.9 

3-4 
3 

3.2 
3.5 

T. weissflogiiremin 
Control 

0.8 (0.1) 2.3 (0.0) 1.5 (0.1)* 0-0.5 
0-0.5 

0.7 
0.8 

2.5-4 
2.5-3 

2.5 
2.4 

O. auritaremin  
N 

1.7 (0.4) 2.3 (0.0) 2.7 1 
0-2 

1.3 
1.7 

6 
6-7 

2.7 
2.6 

O. auritaremin  
Si 

1.6 (0.1) 2.7 (0.4) 3.5 (0.5) 0-1 
0-1 

1.5 
1.7 

6 
6-7 

4.4 
3.9 

O. auritaremin  
N+Si 

1.7 (0.1) 3.0 (0.6) 3.1 (0.4) 0-2 
0-2 

1.9 
1.7 

5-7 
6 

3.6 
3.4 

O. auritaremin  
Control 

1.7 (0.0) 2.9 (0.2) 3.1 (0.2) 0 
0 

1.7 
1.7 

5-7 
6-7 

3.3 
3.1 

Aged SW +N&P 1.5 (0.0) 2.8 (0.1) 3.2 (0.6) 0 
0 

1.5 
1.5 

3-5 
2-4 

3.1 
2.6 

Aged SW +Si&P 1.8 (0.2) 2.9 (0.3) 2.8 (0.1) 2 
2 

2.1 
2.5 

6 
5-6 

3.1 
3.1 

*Cultures that had clearly entered death phase by 1 week are noted (see Discussion on persistent TOC for 
context of long-term biomass after death phase). 
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Appendix IV, Figure 2: Maximum bacterial biomass and BCD. Columns are means and error 
bars are ranges of duplicate samples. A: Maximum bacterial biomass observed over the first 
week (the biomass at stationary phase, as identified from cell abundance as counted by flow 
cytometer, and converted from abundance data derived by epifluorescence microscopy). B: 
Absolute BCD at 4 days (see Methods for details on calculation). C: %new BCD at 4 days 
(Control SW is intentionally omitted). 
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Appendix V. Bacterial community composition: Methods, NMS plots, and results for in 

silico digest for putative T-RF identifications 

 

Supplemental complete methods for T-RFLP analysis: 

 Samples for bacterial community composition (BCC) analysis were collected at the 

initial sampling and at 1, 2 and 4 days. Sample water (300 mL) was filtered through a 0.2 µm 

polyethersulfone filter (Supor-200, Pall) in an acid-washed plastic housing under low 

vacuum pressure. Filters were placed in sterile cryovials and stored frozen at -40° C. Samples 

were lysed in sucrose lysis buffer (40 mmol L-1 EDTA, 50 mmol L-1 Tris-HCl, 750 mmol L-1 

sucrose, 400 mmol L-1 NaCl, pH adjusted to 8.0) with 1% w/v sodium dodecyl sulfate and 

0.2 mg ml-1 proteinase-K at 55° C for 2 hours. Genomic DNA was immediately extracted 

using a commercial silica centrifugation kit (DNEasy, Qiagen, Valencia, CA). 

 After DNA was extracted, BCC was assessed via the DNA fingerprinting technique 

terminal restriction fragment length polymorphism (T-RFLP) to compare frequency 

distributions of 16S ribosomal RNA gene amplicons. Polymerase chain reactions (PCR: 4 µL 

genomic DNA template in 25 µL reaction mixture containing 1 U Taq (5PRIME Inc., 

Gaithersburg, MD) in 1x 5Prime buffer amended to 4 mM MgCl2, 400 µM dNTPs, 5% 

acetamide, and 200 nM each of universal bacterial primers 8f-FAM (5′-

AGRGTTYGATYMTGGCTCAG-3′) and 519r (5′-GWATTACCGCGGCKGCTG-3′; 

Morris et al, 2005)) were thermally cycled for an initial 3 minutes at 94° C; 30 cycles of 30 

seconds at 94° C, 30 seconds at 57° C, and 1 minute at 72° C; and a final extension of 10 

minutes at 72° C.  



	 169	

 Amplicons were digested with HaeIII restriction endonuclease (New England 

Biolabs, Ipswich, MA, USA) for 4 hours at 37° C, denatured with formamide, and analyzed 

by capillary gel electrophoresis at the University of California, Berkeley DNA Sequencing 

Facility. T-RFLP peaks were aligned to a custom fragment size standard (30 to 600 basepair 

range; BioVentures Inc., Murfreesboro, TN, USA) using PeakScanner v1.0 (Applied 

Biosystems, Foster City, CA, USA) with sample peak identification minimum cutoff of 50 

relative fluorescence units (RFU) and standard peak cutoff of 20 RFU. Peaks were manually 

assigned using integer-length fragment groups (Nelson 2009), with minima of ≥1% total 

sample area for peak definition and ≥ 0.5% for inclusion in the sample matrix. Samples that 

had amplified poorly were discarded, and the Sørensen similarity index (Sørensen 1948) was 

used as the basis for nonmetric multidimensional scaling (NMS) ordination analysis 

conducted in Primer 6 (Clarke and Gorley 2006). 

 

Supplemental methods for in silico digest:  

 Putative T-RF identifications were derived from in silico digests of pyrosequencing 

results from the Santa Barbara Channel and dilution batch-culture bioassays of ambient 

DOM during a phytoplankton bloom (Wear et al. 2015). Briefly, 16S rRNA gene amplicons 

were: generated using 8F and 338R primers; pyrosequenced on a Roche/454 GS FLX using 

Titanium Chemistry; aligned to a non-redundant subset of the SILVA SSU Ref 16S 

alignment database; and assigned to operational taxonomic units (OTUs) by average-

neighbor hierarchical clustering at the 95% identity level (for this highly variable region of 

the 16S gene, the equivalent of a 97% identity level over the entire 16S gene; Schloss 2010). 
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 The consensus sequences for the 40 most abundant OTUs were put through a 

simulated in silico HaeIII digest. Because the amplicons were sequenced from the reverse 

primer, the consensus sequences generally did not extent far enough in the 5’ direction to 

encompass the forward primer and thus could not give us an accurate T-RF length on their 

own, as our T-RFLP FAM label is on the forward primer. Therefore, ca. 150 basepairs of the 

consensus sequences were run through the Basic Local Alignment Search Tool nucleotide 

database (BLASTn; http://	http://blast.be-md.ncbi.nlm.nih.gov/Blast.cgi) to find amplicons 

that extended far enough in the 5’ direction to partially cover the 8F primer. Results generally 

were 99-100% identical with the search sequence (results down to 97% similarity were 

tolerated in a few cases when they were the best available), and most matches came from 

aquatic environmental samples. BLAST result sequences were then subjected to the same in 

silico HaeIII digest. 

 These results were compared to those of Morris et al. (2005), who used in silico 

digests and clone libraries to derive similar putative T-RF identifications in the Sargasso Sea.  

 T-RFs were only assigned a putative phylogenetic identification when there were 

unambiguous peaks in the region of interest, as there was generally an offset between the in 

silico results and measured T-RF length in well-known OTUs. For example, SAR11 Surface 

1 had an in silico expected T-RF length of 117 basepairs and a measured length of 114; 

because this was the most prominent peak for at least 30 basepairs in either direction, the 

putative identity could be assigned with high confidence. In contrast, a SAR11 Surface 2 

sequence had an expected length of 293; because there were measured T-RF peaks at 292, 

293, 294, and 295 basepairs, with those at 293 and 295 both fairly abundant, we could not 

assign this phylotype to any single one of those peaks with high confidence. 
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Appendix V, Figure 1: NMS ordination of all T-RFLP samples (inocula, nutrient stress and 
control experiments, and inorganic nutrient amendments, from all sampled time-points) 
together.  Each experiment was inoculated with a distinct bacterioplankton community 
collected from the SBC at different times of the year, yet the resulting experimental 
communities overlap substantially rather than developing distinct groupings. 
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Appendix V, Figure 2: NMS ordination plots of individual experiments. All NMS plots are 
oriented with T0 samples in the upper left corner and day 4 at the terminal end of the lines, 
generally towards the bottom right corner. Black and gray symbols of the same shape are 
duplicate carboys. All inorganic nutrient controls were given the same symbol for clarity, as 
none of the communities are distinct from the unamended control seawater communities; 
note that inorganic nutrient controls are only shown in panel D. A: S. marinoiremin NMS. B: 
C. socialisremin NMS. C: T. weissflogiiremin NMS. D: O. auritaremin NMS, including inorganic 
nutrient amendments. 
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Appendix V, Table 1: Putative identities of T-RF peaks based on in silico digest of 16S 
rRNA gene amplicon pyrosequencing of samples collected in the Santa Barbara Channel 
(Wear et al. 2015).  Phylotype identities are grouped by approximate expected base pair 
length of corresponding T-RF.  
 
Phylotype, to lowest clade identified in sequence 
processing pipeline 

Base pairs, 
in silico 
digest of 
consensus 
sequence 

Base 
pairs, in 
silico 
digest of 
BLAST 
result 
sequence 

Base 
pairs, 
Morris et 
al. (2005) 
(in silico/ 
assigned) 

Base 
pairs, 
putative 
assigned 
peak 

Actinobacteria: Acidimicrobiia: Acidimicrobiales: 
Sva0996 marine group 

 39  33 

α-proteobacteria: OCS116 clade  39  33 
α-proteobacteria: Rhodobacterales: Rhodobacteraceae: 
Pacificibacter 

 39  33 

α-proteobacteria: Rhodobacterales: Rhodobacteraceae: 
Roseobacter clade AS-21 lineage 

 39  33 

α-proteobacteria: Rhodobacterales: Rhodobacteraceae: 
Roseobacter clade DC5-80-3 lineage 

 39  33 

α-proteobacteria: Rhodobacterales: Rhodobacteraceae: 
Roseobacter clade OCT lineage 

39 39  33 

α-proteobacteria: Rhodobacterales: Rhodobacteraceae  39  33 
Bacteroidetes: Cytophagia: Cytophagales: 
Flammeovirgaceae: Fabibacter 

 39  33 

Bacteroidetes: Flavobacteria: Flavobacteriales: 
Cryomorphaceae: Fluviicola 

 39  33 

Bacteroidetes: Flavobacteria: Flavobacteriales: 
Flavobacteriaceae: NS4 marine group 

 39  33 

Bacteroidetes: Flavobacteria: Flavobacteriales: 
Flavobacteriaceae: NS5 marine group 

 39  33 

γ-proteobacteria: Alteromonadales: Alteromonadaceae: 
SAR92 clade (2 OTUs) 

 39 39/ ND 33 

γ-proteobacteria: Alteromonadales: 
Pseudoalteromonadaceae: Pseudoalteromonas 

 39 39/ ND 33 

γ-proteobacteria: Oceanospirillales: Oceanospirillaceae: 
Balneatrix 

 39 39/ ND 33 

γ-proteobacteria: Vibrionales: Vibrionaceae: Vibrio  39 39/ ND 33 
     
α-proteobacteria: SAR11: Surface 1  117 117/ 113 114 
     
γ-proteobacteria: Oceanospirillales: SAR86 clade  188 188/187 

and 
189/188 

 

α-proteobacteria: Rickettsiales: SAR116 clade: 
Candidatus Puniceispirillum 

 189   

γ-proteobacteria: Oceanospirillales: Oceanospirillaceae: 
Pseudospirillum 

 190   

     
α-proteobacteria: Rickettsiales: SAR116 clade  193 193/ 192  
     
γ-proteobacteria: Alteromonadales: Ferrimonadaceae: 
Paraferrimonas 

 204   
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γ-proteobacteria: Oceanospirillales: Oceanospirillaceae: 
Spongiispira 

 223   

β-proteobacteria: Methylophilales: Methylophilaceae: 
OM43 clade 

 223   

α-proteobacteria: Rickettsiales: SAR116 clade  224   
α-proteobacteria: Rickettsiales: SAR116 clade  226   
     
α-proteobacteria: SAR11: Surface 1  228 228/ 227 

and 230/ 
228 

 

     
Bacteroidetes: Flavobacteria: Flavobacteriales: 
Flavobacteriaceae: Polaribacter 

 284  284 

     
α-proteobacteria: SAR11: Surface 2  293 293/ 291  
α-proteobacteria: SAR11: Deep 1  293   
α-proteobacteria: SAR11: Deep 1  293   
α-proteobacteria: Rhodospirillales: Rhodospirillaceae: 
AEGEAN-169 marine group 

 294   

     
γ-proteobacteria: Oceanospirillales: ZD0405  323 326/ 325 324 
γ-proteobacteria: Oceanospirillales: Oceanospirillaceae: 
Marinomonas 

 323 326/ 325 324 

     
δ-proteobacteria: SAR324 clade (Marine group B)  405 405/ 405  
     
Bacteroidetes: Flavobacteria: Flavobacteriales: 
Flavobacteriaceae: Polaribacter 

 409   

     
Bacteroidetes: Flavobacteria: Flavobacteriales: 
Flavobacteriaceae: NS5 marine group 

 411   

γ-proteobacteria: Oceanospirillales: Oceanospirillaceae: 
Balneatrix 

 412   

     
Bacteroidetes: Flavobacteria: Flavobacteriales: 
Flavobacteriaceae: NS5 marine group (2 OTUs) 

 > 600*   

*: > 600: no digest site found in sequence, nor 519r primer – would be edited out based on our T-RFLP QC 
guidelines. 
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Appendix VI: DON dynamics in diatom batch cultures and bacterial inocula 
 
Appendix VI, Table 1: DON dynamics in diatom batch cultures and bacterial inocula. [NO3] 
is presented for comparison. All values are: mean of duplicate carboys (range of duplicate 
carboys). Expt. & treatment: Diatom species that was source of exudate and nutrient stress 
under which exudate was produced. T0: values at initiation of growth culture. TH: values at 
last timepoint sampled before exuded DOM was harvested for use in dilution-culture 
bioassays, usually a few hours before harvest filtration began. Diatom data adapted from 
Windecker et al. (in prep). 
 

Expt. &  
treatment 

NO3 (µM) DON (µM) 
T0 TH T0 TH 

S. marinoiphyto  
Si stress 

133.6 (10.4) 16.1 (0.6) 26.8 (11.3)A 7.7 (0.3) 

S. marinoiphyto  
N+Si stress 

37.1 (0.0) BDLA 9.7 (0.8) 5.6 (0.0) 

C. socialisphyto  
N stress 

41.6 (0.2) BDL 8.7 (0.0) 6.2 (0.3) 

C. socialisphyto  
Si stress 

86.1 (1.1) 20.7 (3.2) 7.6  6.0 (0.8) 

C. socialisphyto  
N+Si stress 

42.5 (0.4) BDL 5.5 (0.0) 6.9 (0.2) 

T. weissflogiiphyto  
N stress 

35.6 (0.3) BDL 8.0 (1.3) 7.2 (0.2) 

T. weissflogiiphyto  
Si stress 

84.9 (0.8) 20.3 (1.3) 12.0 (5.1) 5.5 (2.0) 

T. weissflogiiphyto N+Si stress 36.9 (0.1) BDL 10.3 (1.5) 5.6 (0.4) 
O. auritaphyto  
N stress 

36.0 (0.2) BDL 7.2 (0.1) 6.9 (0.1) 

O. auritaphyto  
Si stress 

89.5 (0.6) 14.6 (2.1) 13.1 (2.5) 7.8 (0.4) 

O. auritaphyto  
N+Si stress 

36.5 (0.4) BDL 6.7 (0.5) 6.6 (0.4) 

Dilution batch-culture bioassay inocula 
 DIN (µM) DON (µM) 
S. marinoiremin 12.6 11.3 
C. socialisremin N/A N/A (TDN 5.0)B 
T. weissflogiiremin 4.3 5.4 
O. auritaremin 0.6C 4.7 

A: This experiment had tightly replicated TDN between duplicate carboys, but a 20 µM difference in NO3 at T0. 
As this discrepancy was no longer apparent by the subsequent time-point (~24 hours later), it was likely due to 
point-source contamination in the sampling/filtering process. As we cannot identify which sample is incorrect, 
we are reporting both. B: DIN data not available, but total dissolved nitrogen (TDN) was 5.0 µM, indicating 
both DON and DIN must be below that value. C: N+N BDL, therefore set to the detection limit of 0.2 µM for 
this sample only. 
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Appendix VII. DIN, DON, and DOC:DON at all time-points where measured in dilution 
batch-culture bioassays 
 
 NO3+NO2 (µM) NH4 (µM) 
 T0 1 week 8 weeks T0 1 week 8 weeks 
S. marinoiremin Si 13.9 (0.1) 11.7 (0.0) 12.0 (0.0) 1.1 (0.3) 1.7 (0.0) 2.6 (0.2) 
S. marinoiremin N+Si 3.2 (0.0) 3.2 (0.1) 4.5 (0.0) 0.9 (0.1) 0.8 (0.0) BDL 
S. marinoiremin Control 4.0 (0.8) 5.3 (0.1) 6.7 (0.0) 2.1 (0.2) 0.8 (0.0) 0.2/BDL 
C. socialisremin N 0.3/BDL 0.2/BDL BDL 0.2 (0.0) 0.2 (0.1) 0.9 (0.0) 
C. socialisremin Si 15.4 (0.0) 14.6 (0.3) 14.6 (0.0) 0.2 (0.0) 1.1 (0.1) 2.1 (0.1) 
C. socialisremin N+Si 0.3 (0.1) BDL BDL BDL BDL 0.8 (0.1) 
C. socialisremin Control 0.2/BDL 0.2/BDL 1.5 (0.1) 1.3 (0.0) 1.3 (0.0) 0.1/BDL 
T. weissflogiiremin N 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.6 (0.0) 0.5 (0.0) 0.8 (0.1) 
T. weissflogiiremin Si 15.0 (0.2) 15.1 (0.0) 15.2 (0.0) 0.6 (0.0) 0.6 (0.0) 0.9 (0.1) 
T. weissflogiiremin N+Si 0.4 (0.0) 0.4 (0.0) 0.7 (0.1) 0.6 (0.1) 0.6 (0.0) 0.8 (0.1) 
T. weissflogiiremin Control 0.5 (0.0) 0.4 (0.0) 1.9 (0.0) 1.0 (0.0) 1.0 (0.0) 0.1/BDL 
O. auritaremin N BDL BDL 0.2 (0.0) 0.3 (0.1) 0.3 (0.1) 0.7 (0.0) 
O. auritaremin Si 8.9 (0.0) 8.9 (0.1) 8.9 (0.1) 0.4 (0.1) 0.3 (0.0) 0.7 (0.1) 
O. auritaremin N+Si 0.2 (0.0) BDL BDL 0.3 (0.0) 0.3 (0.0) 0.7 (0.1) 
O. auritaremin Control BDL BDL 0.7 (0.4) 2.2 (0.1) 2.6 (0.3) 1.8 (0.5) 
Inorganic nutrient amendments to aged seawater used for O. auritaremin Control 
Aged SW +N&P 7.5 (0.0) 7.5 (0.1) 7.8 (0.3) 2.3 (0.1) 2.2 (0.0) 2.3 (0.3) 
Aged SW +Si&P BDL BDL 1.3/BDL 2.3 (0.0) 2.3 (0.1) 1.9 (0.6) 
Aged SW +Culture 1.7 (0.0) 1.7 (0.0) 3.7 (0.0) 2.3 (0.0) 2.2 (0.0) 0.5 (0.1) 
Aged SW +F/2 2.6 (0.1) 2.6 (0.1) 4.4 (0.3) 2.4 (0.0) 2.6 (0.3) 0.6 (0.0) 
Mean of duplicate samples (range). Detection limits: NO3+NO2: 0.2 µM; NH4: 0.1 µM. BDL = below detection 
limits; value/BDL = only one of two replicate samples was BDL. 
 
 DON (µM) DOC:DON 
 T0 1 week 8 weeks T0 1 week 8 weeks 
S. marinoiremin Si 5.5 (0.6) 6.0 (0.2) 5.2 (0.1) 20.4 (2.5) 13.5 (0.1) 14.1 (0.1) 
S. marinoiremin N+Si 6.6 (0.0) 6.1 (0.1) 6.0 (0.5) 11.9 (0.1) 11.9 (0.6) 11.6 (1.2) 
S. marinoiremin Control 5.5 (0.2) 5.2 (0.6) 4.6 (0.2) 12.2 (0.5) 11.6 14.0 (1.0) 
C. socialisremin N 6.3 (0.2) 5.9 (0.0) 6.0 (0.5) 13.2 (0.3) 13.2 (0.1) 11.6 
C. socialisremin Si 6.0 (0.3) 6.1 (0.1) 5.6 (0.7) 16.1 (0.7) 13.9 (0.0) 14.1 (2.3) 
C. socialisremin N+Si 6.0 (0.2) 6.5 (0.1) 6.4 (0.2) 14.2 (0.8) 12.3 (0.3) 11.7 (0.2) 
C. socialisremin Control 4.4 (0.3) 4.8 (0.2)* 5.1 (0.5)* 15.8 (1.1) 14.4 (0.4) 12.7 (1.1) 

T. weissflogiiremin N 6.9 (0.7) 6.9 (0.6) 6.2 13.1 (0.8) 12.4 (0.8) 11.6 
T. weissflogiiremin Si 5.6 (0.4) 5.4 (0.7) 5.9 (0.5) 15.0 (1.0) 14.8 (1.9) 12.4 (1.0) 
T. weissflogiiremin N+Si 7.1 (0.1) 6.7 (0.5) 8.0 (0.7) 11.7 (0.1) 11.9 (1.0) 9.3 (0.9) 
T. weissflogiiremin Control 5.4 (0.4) 5.2 (0.0) 6.4 (0.2) 13.3 (0.8) 13.2 (0.1) 10.6 (0.2) 
O. auritaremin N 6.2 (0.2) 6.8 (0.3) 6.2 (0.2) 14.0 (0.4) 12.5 (0.6) 12.4 (0.5) 
O. auritaremin Si 6.5 (0.3) 6.6 (0.1) 6.2 (0.1) 13.2 (0.8) 12.7 (0.2) 12.5 (0.4) 
O. auritaremin N+Si 6.1 (0.4) 6.2 (0.2) 5.7 (0.3) 15.3 (0.8) 14.3 (0.5) 14.0 (0.6) 
O. auritaremin Control 4.9 (0.0) 4.4 (0.6) 5.0 (0.3) 14.4 (0.2) 15.9 (1.7) 13.5 (0.4) 
Inorganic nutrient amendments to aged seawater used for O. auritaremin Control 
Aged SW +N&P 5.6 (0.1) 6.1 (0.1) 5.1 (0.2) 12.1 (0.0) 11.2 (0.1) 12.5 (0.4) 
Aged SW +Si&P 4.7 (0.5) 4.4 (0.4) 4.2 (0.2) 14.9 (1.3) 15.9 (0.9) 15.9 (0.8) 
Aged SW +Culture 5.6 (0.4) 5.9 (0.3) 5.3 (0.2) 13.1 (0.9) 12.1 (0.4) 13.3 (0.3) 
Aged SW +F/2 5.6 (0.2) 5.7 (0.1) 5.5 (0.4) 12.8 (0.5) 12.4 (0.1) 12.8 (0.8) 
Mean of duplicate samples (range); no range value indicates only one valid replicate. *Because DIN was below 
detection limits in both NO3+NO2 and NH4 for these samples, we used an assumed DIN value of 0.1 µM. 
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