
UNIVERSITY OF CALIFORNIA
Santa Barbara

Mining Disparate Sources for Question Answering

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Huan Sun

Committee in Charge:

Professor Xifeng Yan, Chair

Professor Linda Petzold

Professor Ambuj Singh

March 2016

The Dissertation of Huan Sun is approved:

Professor Linda Petzold

Professor Ambuj Singh

Professor Xifeng Yan, Committee Chair

January 2016

Mining Disparate Sources for Question Answering

Copyright c© 2016

by

Huan Sun

iii

To my parents and elder brother.

iv

Acknowledgements

The five-year Ph.D. life has turned out to be invaluable for me to reflect and

rediscover myself. I am sincerely grateful to every person and every experience

for what they taught me along the journey. I feel incredibly fortunate to have

Professor Xifeng Yan as my advisor. Professor Yan provides tremendous advice

and support, promoting me from whom I was five years ago to whom I am now.

He always encourages me to step out of the comfort zone, enabling me to achieve

a higher and higher level in academics. He shares with me a lot of experience

and lessons in not only research but also life, benefiting me so much that I would

not have grown so quickly otherwise. His broad knowledge and vision, rigorous

attitude towards research, and selflessness towards students make him an absolute

role model that I will always look up to in my life afterwards.

I am also in great debt to my committee members: Professor Linda Petzold

and Professor Ambuj Singh. They provided me invaluable feedback at each stage

of my graduate study. Thank Professor Jiawei Han from UIUC for giving me

great suggestions on my work, as well as on thesis writing. I would also like to

give sincere thanks to all of them for their support and encouragements during

my job search process.

I am truly blessed to have great mentors and collaborators. Thank Dr. Mud-

hakar Srivatsa from IBM for offering a lot of help with my internship project and

v

follow-up work. Thank Dr. Lance Kaplan from Army Research Lab (ARL) for

valuable comments on the work in Chapter 4. Thank Dr. Ananthram Swami,

Dr. Brian Sadler, Dr. Hasan Cam, Dr. Michelle Vanni, and Dr. Sue Kase for

sharing their insights during my visit at ARL. I would like to thank my mentors

and collaborators in Microsoft Research, Redmond. Special thanks to Dr. Hao

Ma who offered me wonderful opportunities to visit MSR and introduced me to

exciting research topics. Many thanks to Dr. Scott Yih, Dr. Xiaodong He, Dr.

Ming-Wei Chang, Dr. Li Deng, and Dr. Yi-Min Wang for their precious advice

on my two summer internship projects in Chapter 2 and 3.

I am always grateful to have studied and worked in the fantastic University

of California, Santa Barbara. It has been such a great pleasure to work with my

friends, former and current labmates: Shengqi Yang, Bo Zong, Yang Li, Shulong

Tan, Yinghui Wu, Fangqiu Han, and Yu Su. The work in this dissertation is

the result of close collaboration with them. Thank them for always being super

supportive to me; for fruitful discussions and debates on various projects and

topics; for taking care of me like a younger sister, especially during the first few

years; for memories of many late nights and weekends to catch up with a deadline,

and those of splendid trips to Las Vegas and Yosemite. I wish time could slow

down a bit so that I could create more memories with these adorable guys on

this adorable campus. I would also like to thank former members in the lab: Dr.

vi

Gengxin Miao, Dr. Ziyu Guan, Dr. Nan Li, and Dr. Arijit Khan. They provided

tremendous help for me to successfully adapt to the Ph.D. life. Thank them for

being excellent role models. I also thank other friends in and outside our lab:

Honglei Liu, Semih Yavuz, Izzeddin Gur, Xiaohan Zhao, Wen Chen, and Xin Jin.

Thank them very much for sharing many happy moments and enriching my life at

Santa Barbara. Special thanks go to my sister and closest friend, Xintong Yang.

Thank her very much for witnessing my growth along the way, for sharing a lot of

philosophies about life which I truly benefited from, and for all the encouragements

she gave me whenever I felt frustrated or panic.

Last but not least, I would like to express my deepest gratitude to my parents

and older brother for their unconditional love and support. Thank them for always

encouraging me to be a fearless dream pursuer, and for being my strongest backing

during this life-long process.

The research in this dissertation is funded in part by NSF IIS 0917228, IIS

0954125, ARMY W911NF-09-2-0053, and UCSB Regents Special Fellowship.

vii

Curriculum Vitæ

Huan Sun

Education

2010-2015 Ph.D. in Computer Science
University of California, Santa Barbara (UCSB)

2006-2010 B.S. in Electronic Engineering and Information Science
University of Science and Technology of China (USTC)

Experience

07/2016- Assistant Professor, CSE Dept.@the Ohio State University

01/2016-06/2016 Visiting Scholar, the University of Washington, Seattle

09/2015-12/2015 Visiting Scholar, Baidu Research, Sunnyvale

09/2010-09/2015 Research Assistant, University of California, Santa Barbara

06/2015-09/2015 Research Intern, Microsoft Research, Redmond

06/2014-09/2014 Research Intern, Microsoft Research, Redmond

06/2013-09/2013 Research Intern, IBM T.J. Watson Research Center

12/2009-03/2010 Research Intern, Microsoft Research Asia

09/2008-12/2009 Undergraduate Research Assistant, USTC

Selected Publications

H. Sun, H. Ma, X. He, S. Yih, Y. Su, X. Yan. Table Cell Search for Question
Answering. In WWW 2016.

Y. Li, S. Tan, H. Sun, J. Han, D. Roth, X. Yan. Entity Disambiguation with
Linkless Knowledge Bases. In WWW 2016.

viii

F. Han, S. Tan, H. Sun, X. Yan, M. Srivatsa, D. Cai. Distributed Representations
of Expertise. In SDM 2016.

Y. Su, H. Sun, B. Sadler, M. Srivatsa, I. Gur, Z. Yan, X. Yan. A Configurable
Natural Language Query Benchmark for Knowledge Bases.
Submitted to SIGMOD 2016.

H. Sun, H. Ma, S. Yih, C. Tsai, J. Liu, M. Chang. Open Domain Question
Answering via Semantic Enrichment. In WWW 2015.

Y. Su, S. Yang, H. Sun, M. Srivatsa , S. Kase, M. Vanni, X. Yan. Exploiting
Relevance Feedback in Knowledge Graph Search. In SIGKDD 2015.

Z. Guan, S. Yang, H. Sun, M. Srivatsa, X. Yan. Fine-Grained Knowledge Shar-
ing in Collaborative Environments. In TKDE 2015.

H. Sun, M. Srivatsa, S. Tan, Y. Li, L. Kaplan, S. Tao, X. Yan. Analyzing Expert
Behaviors in Collaborative Networks. In SIGKDD 2014.

S. Yang, Y. Wu, H. Sun, X. Yan. Schemaless and Structureless Graph Querying.
In VLDB 2014.

S. Yang, Y. Xie, Y. Wu, T. Wu, H. Sun, J. Wu, X. Yan. SLQ: A User-friendly
Graph Querying System. In SIGMOD 2014 (Demo).

N. Li, H. Sun, K. Chipman, J. George, X. Yan. A Probabilistic Approach to
Uncovering Attributed Graph Anomalies. In SDM 2014.

S. Tan, Y. Li, H. Sun, Z. Guan, X. Yan, J. Bu, C. Chen, X. He. Interpreting the
Public Sentiment Variations on Twitter. In TKDE 2014.

H. Sun, A. Morales, X. Yan. Synthetic Review Spamming and Defense.
In SIGKDD 2013.

H. Sun, G. Miao, X. Yan. Noise-Resistant Bicluster Recognition.
In ICDM 2013.

ix

Awards and Honors

Outstanding Dissertation Award in CS Dept., UCSB, 2015.

Regents Special Fellowship, UCSB, 2010-2011, 2014-2015.

Ph.D. Progress Award in CS Dept., UCSB, 2014.

NSF Student Travel Award, SIGKDD 2014.

NSF Travel Award, RECOMB 2013.

Doctor Forum Travel Award, SDM 2012.

ICML registration waiver, 2011.

Excellent Graduation Thesis Award, USTC, 2010

Guanghua Education Scholarship, USTC, 2009

Excellent Undergraduate Research Project Scholarship, USTC, 2009

National Scholarship, USTC, 2008

National Scholarship, USTC, 2007

x

Abstract

Mining Disparate Sources for Question Answering

by

Huan Sun

Today’s paradigm of information search is in the midst of a significant transfor-

mation. Question answering (QA) techniques that can directly and precisely an-

swer user questions are becoming more and more desired, in contrast to traditional

search engines retrieving lengthy web pages. The big data age is endowed with

large-scale diversified information sources, such as structured knowledge bases

(KBs), unstructured texts, semi-structured tables, as well as human networks in-

cluding social and expert networks. How to mine such large-scale and disparate

sources to advance question answering? In this dissertation, we systematically

investigate this problem from the perspectives of text mining, network analysis

and human behavior understanding. Specifically, our research lies in:

(1) Text-based question answering. We recognize that KBs are usually far from

complete and information required to answer questions may not always exist

in KBs. This framework jointly utilizes web texts and knowledge bases: It

xi

mines answers directly from large-scale web corpora, and meanwhile employs

KBs as a significant auxiliary to boost QA performance.

(2) Table-based question answering. Owing to their prevalence on the Web and

large topical diversity, we explore tables, which are distinctive from KBs

and texts, for question answering. Specifically, we investigate the problem

of given millions of tables, how to precisely retrieve table cells to answer a

user question. We propose a table cell search framework to deal with it.

The framework is compared with state-of-the-art KB-based QA systems.

Experimental results validate the hypothesis that web tables provide rich

knowledge missing from existing KBs, and thus serve as a good complement.

(3) Expert-based question answering. The intelligence possessed by current ma-

chines is still limited in many aspects. Human intelligence, contributed by

crowdsourcing platforms and collaborative networks, should be exploited to

complement machine-aided question answering and problem solving. We are

among the first to quantitatively analyze task/question routing behaviors of

experts in real collaborative networks, which aims at detecting the efficiency

bottleneck and optimizing human collaboration.

The developed methodologies and frameworks in this dissertation hence pave

the path for building intelligent systems which can utilize an array of comple-

xii

mentary knowledge sources including knowledge bases, texts, tables, and human

networks to directly answer user questions in various domains, discover novel

knowledge, and thereby assist problem solving and decision making.

Professor Xifeng Yan

Dissertation Committee Chair

xiii

Contents

Abstract xi

List of Figures xvi

List of Tables xvii

1 Introduction 1
1.1 Text-based Question Answering 5
1.2 Table-based Question Answering 8
1.3 Expert-based Question Answering 10
1.4 Contributions . 13

2 Text-based QA 17
2.1 Preliminaries . 17
2.2 Text Mining . 21
2.3 Feature Development . 24

2.3.1 Count . 24
2.3.2 Textual Relevance . 24
2.3.3 Answer Type . 26

2.4 Word to Answer Type . 28
2.5 Type Association Modeling . 31

2.5.1 Model Solution . 34
2.5.2 JQA Feature Extraction 36

2.6 Experiments . 37

3 Table-based QA 50
3.1 Preliminaries . 53
3.2 Table Cell Search . 58

xiv

3.3 Chain Inference via Deep Neural Networks 62
3.4 Answer Cell Ranking . 68

3.4.1 Shallow Features . 68
3.4.2 Deep Features . 68
3.4.3 Ranking . 70

3.5 Experiments . 70

4 Expert-based QA 83
4.1 Preliminaries . 85
4.2 Modeling Expert Routing Behaviors 87

4.2.1 Routing Patterns . 87
4.2.2 Task-Specific Routing . 90
4.2.3 Expertise Estimation . 91

4.3 Generative Model . 95
4.3.1 Variational Inference . 98
4.3.2 Parameter Estimation . 100

4.4 Experiments . 101

5 Conclusion 115

Bibliography 124

xv

List of Figures

1.1 Mining disparate sources for QA. 4
1.2 A sample collaborative network. 11

2.1 KB-based (left) and traditional text-based (right) QA systems. . 19
2.2 Process diagram of our framework. 20
2.3 System framework of QuASE. 22
2.4 QA textual relevance features. 26
2.5 Word to Answer Type (WAT) model. 29
2.6 JQA generative model. 32

3.1 Freebase representation of relation “Grandfather” is complex. . . 51
3.2 An example of mining table cells for QA. 54
3.3 Graph representation of a question chain. 56
3.4 A table row graph (top) and a relational chain (bottom). 57
3.5 Semantic similarity between question pattern and answer type. . . 64
3.6 Architecture of C-DSSM [60]. 66

4.1 Task transfer frequency vs. expertise difference. 84
4.2 Graphical representation of our model. 95
4.3 Efficiency of TNR vs. TSR. 109
4.4 Effect of TSR weights. 113

xvi

List of Tables

1.1 An example table on the Web. 9

2.1 Two question sets in our experiments. 38
2.2 Comparison among different feature combinations. 44
2.3 Comparison among different QA systems. 46
2.4 Error analysis of QuASE and AskMSR+. 47
2.5 Results on answerable question sets. 48

3.1 Statistics of question sets. 72
3.2 Table coverage of question sets. 73
3.3 Performance of different feature combinations. 76
3.4 Comparison of different systems. 78
3.5 Advantages of deep neural networks. 80
3.6 Comparison of different table sources. 81

4.1 The lifetime of an example task. 86
4.2 Three datasets on ticket resolution. 103
4.3 Effectiveness of routing models. 108
4.4 Variants of EX routing pattern. 111
4.5 Training recommendation. 114

xvii

Chapter 1

Introduction

Question answering (QA) aims at directly returning exact answers to natural

language questions. With the popularity of mobile devices, directly and precisely

answering natural language questions greatly enhances user experience [22], in

contrast to traditional information search returning lengthy documents. Apart

from information retrieval, QA is also being actively investigated in various other

disciplines. Database researchers have been building natural language interfaces

to databases [4, 37, 39, 53], which shall shield users from understanding complex

database schemas and constructing formal queries like SQL or SPARQL. Question

answering based on images and videos [54, 73, 77] is becoming a more and more

popular task in computer vision to demonstrate the intelligence possessed by a

computer program. In the near future, not only humans use search engines, but

also robots will. Search engines for robots such as RoboBrain [56] are under active

construction. Given a natural language command “Bring me sweet tea from the

1

Introduction Chapter 1

kitchen”, an autonomous robot can interact with RoboBrain to obtain knowledge

necessary to execute the command, such as “Sweet tea can be kept on a table or

inside a refrigerator” and “Bottle can be grasped in certain ways”. QA research

empowers humans to efficiently acquire knowledge and to build more and more

intelligent systems for understanding big data and executing assigned tasks.

Not only connected with many research disciplines, question answering tech-

niques are also entitled with various real-life applications in the big data age. In

healthcare, given a large number of electronic health records, frontier research

reports, and medical forum posts, it is unaffordable for humans to digest all such

data to acquire certain knowledge. People can simply ask an intelligent QA sys-

tem, e.g., “What diseases can be induced by fever in babies”, “How to treat a flu

when pregnant’ ’, “What is a good meal plan for people with Anemia and wheat

allergy” to obtain precise information and formulate best and personalized treat-

ment options. Such intelligent QA in healthcare is being pursued in many com-

panies and clinics such as Baidu, IBM, and Mayo Clinic. Customer service is a

critical part in almost every business. A service provider might need to handle,

on a daily basis, thousands of queries that report various types of product prob-

lems from its customers. How to organize an expert team to efficiently resolve such

queries determines, to a large extent, its competitive advantage. Decision-support

systems in business intelligence directly answer human questions after analyzing

2

Introduction Chapter 1

massive enterprise data, press coverage, and social sentiment in blogs and cus-

tomer reviews etc. A handful of companies including IBM and HG Data [2] are

building cost-effective and scalable systems to achieve such goals. Such systems

can greatly benefit various business dimensions including new customer discovery,

customer behavior analysis, and monitoring potential competitors.

The big data age is known for the flood of diversified large-scale information

sources, such as structured knowledge bases, unstructured texts like news articles

and forum posts, semi-structured tables on the Web and in the enterprise domain,

as well as human networks including social and expert networks. How to utilize

such big, disparate yet connected data resources to advance QA? In this disserta-

tion, as shown in Figure 1.1, we systematically investigate this problem from the

perspectives of text mining, network analysis and human behavior understanding,

based on two key observations:

• Although QA based on knowledge bases is popularly studied in recent years,

existing knowledge bases are far from complete. Other information sources

including comprehensive web texts and HTML tables should be exploited

together with knowledge bases, in a complementary manner with each other.

• What current automated algorithms can achieve is still quite limited in

many aspects, which necessitates the exploitation of human intelligence for

knowledge discovery and problem solving.

3

Introduction Chapter 1

Figure 1.1: Mining disparate sources for QA.

The thesis statement of this dissertation is as follows: (1) Question answering

is well connected to many disciplines and endowed with various real-life applica-

tions in the big data age. (2) Both intelligent computing machines and large-scale

human networks shall be resorted to answer questions and solve problems: On the

one hand, human-aided question answering tends to induce a high cost in both

time and money. Automated question answering is efficient and thereby highly

desired. On the other hand, given the limited intelligence of current machines

in understanding languages, human collective intelligence should be exploited to

4

Introduction Chapter 1

complement machine-aided problem solving. (3) In the big data era with large-

scale knowledge bases, web texts, web tables, and human networks, methodologies

in text mining, network science, and human behavior understanding can signifi-

cantly advance both automated and human collaborative question answering.

Driven by this statement, our work has centered around mining disparate

sources for question answering: (1) Text-based question answering [62]; (2) Table-

based question answering [61]; (3) Expert-based question answering [63].

1.1 Text-based Question Answering

Various intelligent knowledge discovery and retrieval systems (e.g., Google

Now, Apple Siri, Microsoft Cortana, and Amazon Echo) largely benefit from large-

scale knowledge bases, or knowledge graphs, such as Freebase, Microsoft Satori,

Google Knowledge Graph. Not only in industry, but also in academia numerous

QA systems [6,7,24,25] are developed based on knowledge bases. However, despite

their large size, existing knowledge bases are still far from complete and not up-

dated in a timely fashion [21,45,68]. As a result, information required to answer a

question may not always exist in KBs. In contrast, interesting or important facts

and statements can often appear repeatedly in copious web texts including news

articles, Wikipedia-like pages, community QA sites, blogs and forums.

5

Introduction Chapter 1

Prior to the blossom of KBs, text-based QA systems were popularly studied

and generally viewed as a variation of information retrieval systems. This view

can be exemplified by the TREC QA tracks [67], where each participant system is

required to extract a small piece of text from a large collection of documents, as the

answer to a natural language query. Systems like Mulder [35] and AskMSR [11]

leverages the crowd knowledge from the Web and avoids deep natural language

analysis: such systems issue simple reformulations of the given questions as queries

to a search engine, and rank the repeatedly occurring N -grams in the top snippets

as answers, based on named entity recognition (NER) [43] and heuristic answer

type checking. Despite the simplicity of this strategy, such systems are highly

scalable and are among the top performing systems in TREC-10 [12]. One main

weakness of these text-based QA systems is its insufficient knowledge about the

generated answer candidates. For instance, different mentions of the same entity

such as “President Obama” and “Barack Obama” are viewed as different answer

candidates, and will not be grouped together in most cases. Answer type checking,

which verifies whether the type of an answer candidate matches the question, relies

on a generic named entity recognition component that provides a small set of crude

type labels. As a result, such systems are typically limited to answering questions

in only a handful of categories.

6

Introduction Chapter 1

Given such situations about KB- and traditional text-based QA systems, we

consider : Can we jointly utilize texts and knowledge bases for question answer-

ing? In Chapter 2, our QuASE (i.e., question answering via semantic enrichment)

system mines answer candidates from large-scale web texts, and meanwhile em-

ploys KBs as a significant auxiliary to determine the true answer. Specifically, to

the best of our knowledge, we make the first attempt to link answer candidates

to entities in Freebase, during answer candidate generation. Several remarkable

advantages follow: (1) Redundancy among answer candidates is automatically

reduced; (2) The types of an answer candidate can be effortlessly determined by

those of its corresponding entity in Freebase; (3) Capitalizing on the rich informa-

tion about entities in Freebase, such as entity description texts and entity types,

we can naturally develop semantic features for each answer candidate after linking

them to Freebase. Particularly, we propose two novel probabilistic models to con-

struct answer-type related features, which directly evaluate the appropriateness

of an answer candidate’s types under a given question. Overall, such semantic

features turn out to play significant roles in determining the true answers from

the large answer candidate pool. The experimental results show that across two

testing datasets, our QA system achieves an 18% ∼ 54% improvement under F1

metric, compared with various existing QA systems.

7

Introduction Chapter 1

1.2 Table-based Question Answering

Apart from texts, we observe that informative tabular data are also pervasive

on the Web: According to [40], based on a conservative estimation, over 25 million

tables in 500 million web pages are expressing relational information, as opposed

to implementing visual layout. Such tables naturally serve as valuable answer

sources to satisfy user information needs. For example, Table 1.1 shows a list

of countries and their attributes, which can answer question “What languages

do people in France speak”. Driven by this observation, in this dissertation, we

investigate an important yet largely under-addressed problem: Given millions of

tables, how to precisely mine table cells to answer a user question?

Question answering based on tables has been studied but in different formula-

tions. In Pasupat et al. [51], the table that contains answers to an input question

is known beforehand, and their task is to find answers in the given table. In our

concerned problem, however, we need to explore a huge set of tables to answer a

question. Using natural language interfaces to databases (NLIDBs) [4, 37, 39,53],

users can pose natural language queries instead of complex SQL queries to access

databases. An NLIDB translates a natural language query into an SQL query

based on the rigid schema of a given relational database. It is therefore hard to be

applied on the unconstrained schemas of web tables in our task, where each table

has a self-defined schema. Finally, while the authors in [15, 20] directly search

8

Introduction Chapter 1

Country Capital Currency Main Language
Algeria Algiers Dinar Arabic
Egypt Cairo Pound Arabic
France Paris Euro French

...

Table 1.1: An example table on the Web.

relevant tables to satisfy user queries, we move one step further to precisely find

table cells that contain correct answers (i.e., answer cells). There are two main

challenges in identifying the correct answer cells: (1) Among millions of tables,

how to detect the relevant ones that may contain answers? (2) How to precisely

locate answer cells in a relevant table? This dissertation proposes a novel table

cell search framework to tackle these challenges in Chapter 3.

We first formulate the concept of a relational chain which connects two cells in

a table and represents the semantic relation between them. With the help of search

engine snippets, our framework generates a set of relational chains pointing to po-

tentially correct answer cells. We further employ deep neural networks to conduct

more fine-grained inference on which relational chains best match the input ques-

tion and finally extract the corresponding answer cells. Based on millions of tables

crawled from the Web, we evaluate our framework in the open-domain question

answering setting, using both the well-known WebQuestions dataset and user

queries mined from Bing search engine logs. On WebQuestions, our framework

is comparable to state-of-the-art QA systems based on knowledge bases, while on

9

Introduction Chapter 1

Bing queries, it outperforms other systems by at least 56.7%. Moreover, when

combined with results from our framework, KB-based QA performance can be

significantly boosted by 28.1% to 66.7%, demonstrating that web tables supply

rich knowledge that might not exist or is difficult to be identified in existing KBs.

1.3 Expert-based Question Answering

Despite the recent boom of automated QA systems, the intelligence possessed

by current machines is still limited in many aspects such as understanding com-

plicated questions and organizing different information pieces to form an answer.

Human intelligence can be exploited to complement machine-aided problem solv-

ing. In fact, the surge of crowdsourcing platforms (e.g., Amazon MTurk, Crowd-

flower) and collaborative networks (e.g., Github) symbolizes the popularity of

human-aided knowledge discovery and problem solving systems.

Collaborative networks are composed of experts who cooperate with each other

to complete specific tasks, such as answering questions and resolving problems

from customers (e.g., “Reset password for user X ” and “How to solve blue screen

problem”). We use “task”, “question”, and “problem” interchangeably in this

context. A task is posted and subsequently routed in the network from an expert

to another until being resolved. When an expert cannot solve a task, his routing

10

Introduction Chapter 1

decision (i.e., where to transfer a task) is critical since it can significantly affect

the completion time of a task.

E

A

B

C

D

F

G

H

t1

t2

Figure 1.2: A sample collaborative network.

Figure 1.2 shows a sample collaborative network with task routing examples.

Task t1 starts at expert A and is resolved by expert D while task t2 starts at

expert D and is resolved by expert F . The sequences A → B → C → D and

D → E → F are called routing sequences of task t1 and t2 respectively. The

number of experts on a routing sequence measures the completion time of a task.

The average completion time of tasks signifies the efficiency of a collaborative

network in problem solving: the shorter, the more efficient. When the number of

experts in a collaborative network becomes large, to whom an expert routes a task

significantly affects the completion time of the task. For example, in Figure 1.2,

task t1 can be directly routed to resolver D from A. In this case, the routing

decision made by expert A is critical. Therefore, understanding how an expert

makes a certain routing decision and mining his routing behavioral patterns shall

ultimately help improve the efficiency of a collaborative network.

11

Introduction Chapter 1

Task resolution in collaborative networks has been studied before. Shao et al.

[58] propose a sequence mining algorithm to automatically and efficiently route

tasks to resolvers. Miao et al. [44] develop generative models and recommend

better routing by considering both task routing sequence and task content. In [76],

Zhang et al. study the resolution of prediction tasks, which is to obtain probability

assessments for a question of interest. All of these studies aim at developing

automated algorithms that can effectively speed up a task’s resolution process.

However, they largely ignore human factors in real task routing. Take Figure 1.2

as an example. Why does expert A route task t1 to B instead of D? Is it because

he does not understand t1 well, thus randomly distributing it to B, or he believes

B has a better chance to solve it, or B has a better chance to find the right expert

to solve it? Does expert A make more rational decisions than random decisions?

While it is very hard to infer A’s decision logic based on an individual task, it is

possible to infer it by analyzing many tasks transferred and solved by A, B and

D. In Chapter 4, we focus on analyzing real experts’ decision logic, i.e., what kind

of routing patterns an expert follows when deciding where to route a task. This

understanding will help detect the inefficiency spots in a collaborative network

and give guidance to management teams to provide targeted expert training.

12

Introduction Chapter 1

1.4 Contributions

This dissertation comprehensively investigates the potential of disparate sources

for QA, including unstructured texts linked with structured knowledge bases,

semi-structured tables, and human networks. The concepts and techniques de-

veloped in this dissertation are to deal with key problems in both automated

and human-aided QA, such as answer type matching with questions, representa-

tion of table cells, how to match table cells with a natural language question, and

real expert behavior understanding for collaboration optimization. Our developed

mining frameworks and analytical models aim at unleashing the power of big and

diversified data to advance QA, which shall benefit various domains in the future

including but not limited to healthcare, customer service, business intelligence,

and software engineering. Our key contributions are summarized as follows:

Exploiting multiple disparate yet connected sources.

Given the limitations of separately using them as answer sources, knowledge

bases and texts are jointly exploited via the links in between: our QA frame-

work mines answer candidates from comprehensive web corpora, links them to

knowledge bases, and employs rich semantic information in knowledge bases to

help determine the true answer. Apart from knowledge bases (structured) and

texts (unstructured), we also explore the information covered by abundant semi-

13

Introduction Chapter 1

structured HTML tables on the Web for QA. Unlike unstructured texts, tables

come with schemas, making it much easier to interpret each column and relations

between columns. Moreover, relation representation in tables is quite different

from, often more straightforward than, that in knowledge bases. These distinc-

tions from knowledge bases and texts call for new mining frameworks in order to

detect answers from tables. Last but not least, human networks are also a critical

source to answer questions and solve problems, especially in complicated situa-

tions where automated QA fails. We focus on understanding human networks

via mining individual behavioral patterns, in order to optimize collaboration and

boost problem solving efficiency. Our research paves the way for an array of in-

teresting topics, including how to unify/combine disparate data sources for QA,

successful marriage of automated and human-aided QA, and harnessing machine

intelligence and human intelligence in a mutually-boosting manner.

Identifying critical challenges/limitations.

Chapter 2 identifies the incompleteness limitation of knowledge bases to QA,

and aims at mining answers via jointly using web texts and KBs. After linking

answer candidates detected from web texts to knowledge bases, how to utilize their

rich information in KBs, such as fine-grained entity types, is anything but a trivial

task. In Chapter 3, we recognize pervasive web tables as a valuable information

14

Introduction Chapter 1

source for QA. When mining tables, however, two main challenges need to be

attacked: (1) Among millions of tables, how to detect the relevant ones that may

contain answers? (2) How to precisely locate answer cells in a relevant table? For

human-aided QA in Chapter 4, we are among the first to quantitatively analyze

the task routing behaviors of real experts, i.e., how an expert decides where to

transfer a task when she could not solve it. Such analysis shall spot the efficiency

bottleneck and help further optimize human collaborations.

Novel and effective methodologies, models and concepts.

In Chapter 2, we utilize web texts to detect answer candidates, and generate

features based on the rich information in KBs to help determine the true answer.

Particularly, we develop novel probabilistic models to directly evaluate the ap-

propriateness of an answer candidate’s types (available in KBs) given a question.

The experimental results show that across two testing datasets, our framework

jointly using KBs and web texts achieves an 18% ∼ 54% improvement under F1

metric, compared with QA systems based on either KBs or web texts. Chapter

3 proposes an effective framework to find table cells that can answer a question.

The core concept underlying the proposed framework is the relational chain rep-

resentation of table cells. We employ deep neural networks to match a natural

language question with a relational chain to detect correct answer cells thereafter.

15

Introduction Chapter 1

Our table cell search framework is either comparable to or significantly outper-

forms state-of-the-art KB-based QA systems by at least 56.7%. Moreover, when

combined with results from our framework, KB-based QA performance can be sig-

nificantly boosted by 28.1% ∼ 66.7%. Chapter 4 presents a generative modeling

approach to investigate the decision making and cognitive process of real experts,

where a routing decision is a mixture of routing patterns potentially followed by

an expert. We experimentally show that our analytical model can be employed

to both accurately predict the completion time of a task before starting routing

it in the network, and optimize collaborative networks via hypothesis testing.

16

Chapter 2

Text-based QA

In this chapter, we introduce question answering based on either knowledge

bases or texts, and discuss in great details our QA framework jointly exploiting

knowledge bases and web texts. Since our framework mines answer candidates

from web texts, we still refer it to text-based QA. However, the fundamental

difference between our methodology and traditional text-based QA is that rich

information in KBs is utilized to determine the correctness of answer candidates.

2.1 Preliminaries

Knowledge bases store a wealth of relation tuples (e.g., <Obama, Place-Of-

Birth, Honolulu>), which provide answers to questions such as “Where was Obama

born”. Figure 2.1 (left) briefly illustrates the scheme of a KB-based QA system,

where a question gets answered by being parsed and transformed to a specific

form such as logic form, graph query and SPARQL, suitable to execute on KBs.

17

Text-based QA Chapter 2

For example, Berant et al. [6, 7] develop semantic parsing techniques that map

natural language utterances into logical forms. The Paralex system [24] extracts

relation tuples from general web corpora via information extraction tools (e.g.,

ReVerb [23]) and stores them as extracted KBs; during QA, it maps open-domain

questions to queries over the extracted KBs. QA systems developed in [25] resort

to both curated KBs such as Freebase and extracted KBs from general corpora, to

answer a question. Zou et al. [78] propose to represent a natural language question

using a semantic graph query to be matched with a subgraph in KBs and reduce

question answering to a subgraph matching problem. Unger et al. [66] rely on

parsing a question to produce a SPARQL template, which mirrors the internal

structure of the question. This template is then instantiated using statistical

entity identification and predicate detection. Similarly, Yahya et al. [70] present a

methodology for translating natural language questions into structured SPARQL

queries based on an integer linear program.

To counter the incompleteness issue of existing knowledge bases [21, 45, 68],

consider the fact that interesting or important stories and statements can of-

ten appear repeatedly in rich web corpora including news articles, Wikipedia-like

pages, community QA sites, blogs and forums. Prior to the availability and popu-

larity of knowledge bases, most of early QA systems such as [11,17,26,34,57,67],

mine answers from TREC [67] document collections or rich web corpora. In [34],

18

Text-based QA Chapter 2

Who founded apple?

Steve Jobs

iPad

Apple Inc.

Founder

iPhone

Product

Steve

Wozniak

Parsing and Transformation

Founder

Founder

Product
Inventor

Inventor

Ronald

Wayne

Question

Understanding

Knowledge Base

Who first landed on the Moon?

Type Detection, NER Parsing, and

Candidate Ranking

Question

Understanding

Web Corpus
Apollo 11 was the spaceflight that

landed the first humans on the Moon,

Americans Neil Armstrong and Buzz

Aldrin, on July 20, 1969, at 20:18 UTC.

Figure 2.1: KB-based (left) and traditional text-based (right) QA systems.

Ko et al. focus on a general model to estimate the correctness of answer can-

didates, instead of developing an entire QA system. Ferrucci et al. [26] give an

overview of IBM Watson system framework including question analysis, search,

hypothesis generation, and hypothesis scoring. Without deep natural language

analysis, Mulder [35] and AskMSR [11] issue simple reformulations of questions

to a search engine, and rank the repeatedly occurring N -grams in the top snip-

pets as answers, based on named entity recognition [43] and heuristic answer type

checking. A high-level view of such systems is illustrated in Figure 2.1 (right).

As discussed in Section 1.1, to address the disadvantages of KB-based and tra-

ditional text-based QA systems, we propose a new framework, named QuASE,

(i.e., question answering via semantic enrichment), which jointly utilizes knowl-

edge bases and web texts for QA. Our system extends traditional text-based QA

system by linking answer candidates in the search texts to a knowledge base.

19

Text-based QA Chapter 2

Who first landed on the Moon?

Entity Linking, Feature Construction, and

Candidate Ranking

Question

Understanding

Web Corpus

Apollo 11 was the spaceflight that

landed the first humans on the Moon,

Americans Neil Armstrong and Buzz

Aldrin, on July 20, 1969, at 20:18 UTC.

Knowledge Base

Apollo 11

Michael

Collins

Buzz Aldrin

Type

Neil

Armstrong

Astronauts

Astronauts

Moon

Astronauts

Person

Type

Type

Type

Spaceflight

Celestial

Object

Type

Figure 2.2: Process diagram of our framework.

Figure 2.2 briefly illustrates how our system works, in contrast to systems in Fig-

ure 2.1. Specifically, given a question, QuASE first selects a set of most prominent

sentences from web texts. Then from those sentences, we utilize entity linking

tools [19] to detect answer candidates and link them to entities in Freebase. Once

each answer candidate is mapped to the corresponding entity in Freebase, redun-

dancy among answer candidates is automatically reduced. Additionally, abundant

information, such as entity description texts and Freebase types, can be utilized

for feature generation and modeling. A ranking algorithm is subsequently trained

based on such features to rank correct answers as top choices. Section 1.1 summa-

rizes the remarkable advantages brought by harnessing both KBs and web texts

for QA in our framework.

20

Text-based QA Chapter 2

2.2 Text Mining

Figure 2.3 shows an end-to-end pipeline of our QA framework, which contains

the following components in order: (1) Web Sentence Selection via Search Engine;

(2) Answer Candidate Generation via Entity Linking; (3) Feature Generation and

Ranking. We elaborate the details of each component as follows:

(1) Web Sentence Selection via Search Engine. Given a question, in

order to find high-quality answer candidates, we design the following mechanism

to retrieve highly relevant sentences from the Web that can potentially answer

the question. We first issue the question in a commercial search engine, and

collect the top-50 returned snippets, as well as the top-50 documents. Since a

query itself is generally short and contains only a few words, we compute the

word count vector based on the returned snippets to represent the information for

the query, denoted as wq. For each sentence we parsed from the top-50 returned

documents, we compute its word count vector ws, and select those sentences with

a high cos(ws, wq) into the high-quality sentence set. If ws deviates far from wq,

the corresponding sentence is regarded as irrelevant and thereby discarded.

(2) Answer Candidate Generation via Entity Linking. Once we obtain

the sentence set, one of the state-of-the-art entity linking systems [19] is applied

to identify answer candidates linked to Freebase. This system achieves the best

scores at TAC-KBP 2013, by several novel designs such as postponing surface

21

Text-based QA Chapter 2

Question

Who was

the first

American

in space?

Sentence Collection

1. On May 5, 1961,

Shepard piloted …

2. Alan Shepard

became the first

American …

3. …

Answer Candidate Pool

1. Freedom 7; 2. Alan Shepard

3. Sally Ride; 4. …

Top-K Answers

1. Alan Shepard

2. Sally Ride

3. John Glenn

4. …1. Entity Description Texts

2. Entity Types

Figure 2.3: System framework of QuASE.

form boundary detections and discriminating concepts and entities in Wikipedia

pages. Since the major target here is to verify that incorporating rich information

from KBs will greatly boost the QA performance, we do not focus on constructing

new entity linking tools in this chapter. Moreover, for questions whose answers

are not entities in Freebase, such as questions starting with “when”, our system

can be reduced to traditional web texts based QA systems without the auxiliary

of KBs. In this chapter, without loss of generality, we primarily focus on those

questions targeted at certain entities in KBs.

(3) Feature Generation and Ranking. For each answer candidate, Free-

base contains a wealth of information, such as their description texts and entity

types. A set of semantic features shall be developed based on such rich informa-

tion, and subsequently utilized in a ranking algorithm to evaluate the appropri-

ateness of each candidate as the true answer.

Now we use an example to show how our system works. Given a question

“Who was the first American in space”, we submit it to a search engine to return

22

Text-based QA Chapter 2

a set of relevant sentences {1. On May 5, 1961, Shepard piloted the Freedom 7

mission... ; 2. Alan Shepard became the first American in space when the Freedom

7...; ... }. On this sentence set, we apply entity linking to extract entities , such as

“Freedom 7 ”, “Alan Shepard”, and “Sally Ride”, and link them to Freebase. Such

linked entities are treated as answer candidates to the given question. For each

answer candidate, semantic features are developed based on their rich information

in Freebase, and subsequently integrated into a ranking algorithm, so that the true

answer “Alan Shepard” will be ranked at the top of the candidate list.

Our QA system distinguishes itself from existing ones, in that it not only

mines answers directly from large-scale web texts, but also employs Freebase as

a significant auxiliary to boost QA. Freebase plays a significant role in both an-

swer candidate generation and feature generation. By linking answer candidates

to Freebase, our system is entitled with several unique advantages, such as re-

ducing the redundancy among answer candidates and effortlessly granting answer

candidates with Freebase entity types. Moreover, two kinds of rich information in

KBs, entity description texts and entity types, will be naturally utilized to develop

semantic features for downstream answer candidate ranking.

23

Text-based QA Chapter 2

2.3 Feature Development

Upon the generation of an answer candidate pool, effective features shall be de-

veloped in order to rank true answers as top choices. In this section, we elaborate

the features developed for answer candidate ranking. Given a question, totally

three categories of features are computed for each answer candidate. The features

include both (1) non-semantic features: frequency that an answer candidate oc-

curs in the retrieved sentence set, and (2) semantic features: Since we have linked

each answer candidate to Freebase via entity linking, we are able to utilize their

rich information in KBs to develop semantic features.

2.3.1 Count

The sentence set, returned by the sentence selection component, is considered

quite related to the given question. The more frequent an answer candidate occurs

in the sentence set, the more related it is to the question. Therefore, the count

or frequency of each answer candidate serves as a significant indicator of being

correct or not. We compute the count of each answer candidate as one feature.

2.3.2 Textual Relevance

Given a question, the context where the true answer occurs and its descriptions

in KBs should match the question. To evaluate the relevance of an answer can-

24

Text-based QA Chapter 2

didate to a question, we first extract textual information from both the question

side and the answer candidate side.

Textual Information on Question Side

(1) The set of words in question q;

(2) The relevant sentence set returned for question q.

Textual Information on Answer Candidate Side

(3) The context windows where an answer candidate a appears in retrieved

sentences. Due to the general short length of a sentence, the size of a context

window is set at 2, i.e., 2 words before and after answer candidate a compose the

context where a occurs in a sentence. We collect all the context windows for each

answer candidate in all the sentences.

(4) The description texts of answer candidate a in KBs. For example, Free-

base describes entity “Alan Shepard”, as “Alan Bartlett ‘Al’ Shepard, Jr., was

an American naval officer and aviator, test pilot, flag officer, one of the original

NASA Mercury Seven astronauts ...”.

Based on the textual information for both questions and answer candidates,

there can be many methods to measure the matching degree between a question

and an answer candidate. We utilize a most intuitive method: For each piece

25

Text-based QA Chapter 2

Question word vector

Sentence-set word vector

Context windows

Description texts in KBs

Cosine

Question Answer Candidate

Figure 2.4: QA textual relevance features.

of information (1) to (4), we compute the word frequency vector denoted as vq,

sq, ca, and da respectively. Then we apply cosine similarity measure between

the textual information on the question side and that on the answer candidate

side. As shown in Figure 2.4, we totally compute 4 features based on textual

information for each <question, answer candidate> pair. Despite their simplicity,

the features turn out to be very effective in improving QA performance. In fact,

as future work, more sophisticated features can be developed and incorporated

into our framework, such as deep semantic features learnt via deep learning [30].

2.3.3 Answer Type

Given a question “the first American in space”, in the sentence set we selected,

both the entity “Alan Shepard” (the astronaut) and the entity “Freedom 7 ” (the

spaceflight) occur frequently. Both of them would be textually related to the

question measured by features in Section 2.3.2. Therefore, the above count and

textual relevance features turn out to be insufficient for such questions. However,

26

Text-based QA Chapter 2

by further checking the expected answer type of the question, it is obvious that

the question is looking for a person, not a spaceflight. Therefore, to find cor-

rect answers, we need to build answer-type related features, which evaluate the

appropriateness of an answer candidate’s types under a question.

There has been much research studying the expected answer types of a ques-

tion [5, 36, 38, 48, 49, 52]. Directly applying their methodology to our setting is

not trivial. First, previous type-prediction methods adopt a supervised learning

methodology where they classify questions into a small set of types such as person

and location. Such methods can hardly scale to thousands of entity types in Free-

base, especially when the expected answer of a question is associated with multi-

ple types in Freebase, e.g., entity “Barack Obama” associated with multiple types

such as “government.president”, “people.person”, and “celebrities.celebrity”. On

the other hand, it is quite challenging, if not impossible, to build a mapping

between the small set of types and an answer candidate’s Freebase types, since

Freebase contains thousands of fine-grained types while the types studied in previ-

ous methods are quite general and limited. In this dissertation, we directly handle

thousands of Freebase types, and propose probabilistic models to directly mea-

sure the matching degree between a question and an answer candidate’s Freebase

types. The intuition behind such models is that words in a question should cor-

relate with its answer types. Given a question q, we try to model the probability

27

Text-based QA Chapter 2

P (ta|q) or P (q, ta), where ta is the set of Freebase types associated with answer

candidate a. Answer candidate a with correct types should correspond to a higher

P (ta|q) or P (q, ta). We next discuss two perspectives to model P (ta|q) and P (q, ta)

respectively, and build our answer-type related features based on them.

2.4 Word to Answer Type

Now we first model the type predictive power of a single word, and then explore

different models to integrate the predictive power of each word in a question. To

emphasize the separate consideration of each word in the first step, the underlying

methods are named word to answer type (WAT) models.

In WAT, we define P (t|w) as the conditional probability of observing Freebase

type t as one answer type, if word w occurs in the question. To learn P (t|w),

we rely on a training set of questions, each of which is paired with its expected

answer types. We will give more details on such training sets in our experiments.

Given such a training set, we model P (t|w) as follows:

P (t|w) =
#(w, t)∑
t #(w, t)

, (2.1)

where #(w, t) represents the co-occurrence frequency of word w and type t in the

<question, answer types> pairs. The more frequently a type t co-occurs with a

word w, the more likely the answer contains type t, if word w is in the question.

28

Text-based QA Chapter 2

i
w

(|)
j i

P t w

…

…

j
t

q
a
t

Figure 2.5: Word to Answer Type (WAT) model.

Given a question q with a set of words {wi} and answer candidate a with

a set of Freebase types ta = {tj}, Figure 2.5 shows the point-wise word-to-type

conditional probability, between the word set in q and the type set of a. Based on

this point-wise conditional probability, the probability P (ta|q), can be estimated

using the following different models.

1. Best Word-to-Type: Choose the highest point-wise conditional probability.

P (ta|q) = max
wi∈q,tj∈ta

P (tj|wi). (2.2)

2. Pivot Word: Choose the word in q that generates the highest productive

conditional probability for all the types in ta.

P (ta|q) = max
wi∈q

∏
tj∈ta

P (tj|wi). (2.3)

3. Pivot Word-to-Type: Choose the best set of point-wise conditional probabilities

that give the highest productive conditional probability for all the types in ta.

P (ta|q) =
∏
tj∈ta

max
wi∈q

P (tj|wi). (2.4)

29

Text-based QA Chapter 2

Now we define the WAT feature for answer candidate a based on the perplexity [10]

of its type set ta as:

Perplexity(ta) = exp(− log(P (ta|q))
|ta|

), (2.5)

where |ta| is the number of types in ta. For Best Word-To-Type, since only one

type is considered in the calculation, |ta| = 1.

Perplexity has been applied for the evaluation of different topic models such

as LDA [10], whereas in this chapter we use it as a matching measure between an

answer candidate’s Freebase types and words in a question. WAT model works

based on the assumption that words in a question are predictive of the expected

answer types. Based on golden pairs of questions and their expected answer types,

we extract the distribution pattern of different types given a specific word in a

question. For a new question and one answer candidate, if the answer candidate’s

types are expected, they should be better explained under the WAT models,

i.e., associated with a higher P (ta|q), than otherwise. Correspondingly, WAT

features for answer candidates with expected types should be lower than those

with unmatched types. Overall three WAT features can be extracted, with P (ta|q)

respectively instantiated by one of the three proposed models.

30

Text-based QA Chapter 2

2.5 Type Association Modeling

Now we consider the question “How likely can we observe a question and an

entity with certain Freebase types, as a question-answer pair”. Different from

WAT, we consider the predictive power of all the words simultaneously in a ques-

tion. Given a question-answer pair, where answer a is associated with multiple

Freebase types ta, we build a generative model of the joint likelihood P (q, ta), to

measure the matching of ta with the question.

We assume the observation of a question q and its associated answer types ta,

can be explained by latent association patterns. One of such latent associations

might be, words such as “city”, “place”, and “where” will occur frequently in a

question, if the expected answer type of the question is “location” in Freebase. The

interplay of multiple latent associations can be captured by a generative model,

named joint <question, answer type> association (JQA) model. Figure 2.6 shows

the graphical representation of our generative model for JQA. We first clarify the

notations in the figure as follows: (1) D is the set of <question, answer types>

pairs while |D| denotes the set size. A plate means replicating a process for

multiple times. (2) θi is the K×1 mixture weights of K latent association patterns,

for the i-th <question, answer types> pair. (3) α, a K×1 vector, is parameters in

a Dirichlet prior, and serves as a constraint of the mixture weights θi’s. A Dirichlet

prior for the mixture weights tends to alleviate over-fitting problems [10]. (4) Zi

31

Text-based QA Chapter 2

Figure 2.6: JQA generative model.

is the hidden pattern label that can explain the joint observation of the current

question and its answer types. Here we assume all the words in q and types in ta

are generated from the same latent association, since the number of words in a

question, together with its associated types, is usually very small. (5) qi and tia

respectively refer to the i-th question and its answer types. (6) βQ, a K × |V Q|

matrix, defines the probability distribution over the word vocabulary V Q, under

K hidden patterns. βT , a K × |V T | matrix, defines the probability distribution

over the Freebase type vocabulary V T , under K hidden patterns. (7) The shaded

variable w indicates one word observed in qi while t represents one type in tia.

Figure 2.6 conveys the generative process of a question and its answer types

under multiple latent associations. Now we formally describe it as follows:

For the i-th <question, answer types> pair in D,

32

Text-based QA Chapter 2

– Draw the mixture weights of K hidden association patterns:

θi ∼ Dir(α).

– Draw a pattern label: Zi ∼Mult(θi).

∗ Draw a word for the question qi from V Q:

w ∼ βQZi,: .

∗ Draw a type for the answer ai from V T :

t ∼ βTZi,: .

We formulate the likelihood of observing all the question and its associated

answer types as follows:

L =
∏
i∈D

P (qi, tia|α, βQ, βT) =
∏
i∈D

∫
θi

P (θi|α)P (qi, tia|θi, βQ, βT) dθi, (2.6)

where,

P (qi, tia|θi, βQ, βT) =
∑
Zi

P (Zi|θi)
∏
w∈qi

P (w|Zi, βQ)
∏
t∈tia

P (t|Zi, βT). (2.7)

Finally, we resort to the maximum likelihood estimation approach to optimize

the parameters in the model:

arg max
α,βQ,βT

logL. (2.8)

33

Text-based QA Chapter 2

2.5.1 Model Solution

Variational Inference

Due to the interdependence of the latent variables, their true posterior distri-

butions are computationally intractable. We introduce a variational distribution

Q [8] in which the latent variables are independent of each other to approximate

their true posterior distribution, i.e., Q(θ, Z) = Q(θ)Q(Z), where θ = {θi,∀i ∈ D}

and Z = {Zi,∀i ∈ D}. According to the variational distribution, Q(θi) ∼ Dir(γi),

Q(Zi) ∼Mult(φi), where γi and φi are K × 1 variational parameters.

Instead of directly maximizing L, we can maximize the lower bound of the log

likelihood under the variational distribution and Jensen’s inequality:

logL ≥ EQlogP (D, θ, Z|α, βT , βQ) +H(Q) = blogLc, (2.9)

where D denotes all the questions and their associated answer types. We expand

the lower bound of the log likelihood as follows:

blogLc =
∑
i∈D

EQ logP (θi|α) +
∑
i∈D

EQ logP (Zi|θi)

+
∑
i∈D

EQ logP (w ∈ qi, t ∈ tia|Zi, βQ, βT)

+H(Q(θ, Z)).

(2.10)

Each term on the right-hand side of the above equation, is a function over the

model parameters as shown in Eqn. 2.11 to Eqn. 2.14.

∑
i∈D

EQ logP (θi|α) = −|D| ·B(α) +
∑
i∈D

∑
k

(αk − 1)[ψ(γi,k)− ψ(
∑
k

γi,k)], (2.11)

34

Text-based QA Chapter 2

where B(α) =
∏
k Γ(αk)

Γ(
∑
k αk)

is the normalization constant of the distribution Dir(α).

∑
D
EQ logP (Zi|θi) =

∑
i∈D

∑
k

φi,k[ψ(γi,k)− ψ(
∑
k

γi,k)]. (2.12)

The third term ∑
i∈D

EQ logP (w ∈ qi, t ∈ tia|Zi, βQ, βT)

=
∑
i∈D

∑
k

φik(
∑
w∈qi

N qi

w log βQk,w +
∑
t∈tia

log βTk,t),

(2.13)

where N qi

w is the frequency of word w in question qi. The entropy term

H(Q(θ, Z)) = −
∑
i∈D

EQ logQ(θi|γi) +
∑
i∈D

EQ logQ(Zi|φi)

=
∑
i∈D

[logB(γi)−
∑
k

(γi,k − 1)(ψ(γi,k)− ψ(
∑
k

γi,k))]

−
∑
i∈D

∑
k

φik log φik.

(2.14)

Parameter Estimation

The model parameters are estimated by using the variational expectation-

maximization (EM) algorithm. In E-step, we update the variational parameters

{γ’s, φ’s} while in M-step, we update the model parameters α, βQ, and βT so that

blogLc is maximized.

Specifically, E-step updates the variational parameters according to Eqn. 2.15

and Eqn. 2.16:

φi,k ∼ exp(
∑
w∈qi

N qi

w log βQk,w +
∑
t∈tia

log βTk,t.+ ψ(γi,k)− ψ(
∑
k

γi,k)− 1), (2.15)

35

Text-based QA Chapter 2

γi,k = αk + φi,k. (2.16)

During M-step, we maximize the lower bound over the parameter α, βQ, and βT ,

by utilizing the classic L-BFGS optimization algorithm [41]. The derivatives over

the parameter α are calculated in Eqn. 2.17.

∂blogLc
∂αk

= |D|[−ψ(αk) + ψ(
∑
k

αk)] +
∑
i∈D

[ψ(γi,k)− ψ(
∑
k

γi,k)]. (2.17)

We solve βQ and βT by βQk,w ∝
∑

i∈D φi,kN
qi

w and βTk,t ∝
∑

i∈D φi,k.

We conduct E-step and M-step iteratively until the algorithm converges, indi-

cating the current model parameters fit the observed training data.

2.5.2 JQA Feature Extraction

Now we discuss how to apply the learnt JQA model to evaluate the ap-

propriateness of an answer candidate’s types w.r.t a given question. Given a

new question qnew and an answer candidate anew with types tanew , we evaluate

P (qnew, tanew|α, βQ, βT) using Eqn. 2.7. Similar to WAT, perplexity of observing

question qnew and answer types tanew is defined as:

Perplexity(qnew, tanew) = exp(− log(P (qnew, tanew |α, βQ, βT))

|qnew|+ |tanew |
).

This perplexity is named JQA feature for answer candidate ranking. The

rationale behind JQA is similar to WAT. JQA assumes words in a question are

36

Text-based QA Chapter 2

associated with its expected answer types. We try to capture such associations

by training JQA on golden pairs of questions and their expected answer types.

2.6 Experiments

We are interested in evaluating QuASE in terms of the following aspects: (1)

How do different feature combinations affect QuASE’s performance? (2) How does

QuASE compare to the state-of-the-art question answering systems? (3) What

are the advantages of incorporating rich semantics in KBs into text-based QA

systems? (4) What are the advantages of our answer-type related features JQA

and WAT? We further provide a detailed error analysis of different QA systems

on questions they fail to answer.

2.6.1 Experimental Setup

QA Evaluation Datasets

We evaluate different question answering systems on two datasets: TREC

questions and Bing queries. Table 2.1 shows statistics and example questions

from each set.

TREC. The Text REtrieval Conference (TREC) had a QA track [67] since

1999. In the competition, editors first prepared some questions, and each partici-

37

Text-based QA Chapter 2

Datasets Example Questions
TREC what are pennies made of

1700 training what is the tallest building in Japan
202 testing who sang “Tennessee Waltz”

Bing query the highest flying bird
4725 training indiana jones named after
1164 testing designer of the golden gate bridge

Table 2.1: Two question sets in our experiments.

pant system then finds answers from a big collection of news articles. TREC data

have been publicly available, and become popular benchmarks for evaluating QA

systems. We use factoid questions from TREC 8-12 as the TREC dataset in this

section. Example questions are listed in Table 2.1. For questions to which an-

swers are not entities in KBs, such as those starting with “when”, QuASE can be

reduced to traditional web texts based QA systems without incorporating KBs.

Without loss of generality, we thus eliminate those questions from the original

dataset. Among the remaining 1902 questions, 202 questions from TREC 12 are

used for testing and 1700 from TREC 8-11 for training. Although answers to these

questions are provided by TREC, they are incomplete or sometimes incorrect for

two reasons. First, the provided answers were detected from the given corpus. It

is possible that some correct answers do not occur in the corpus, and therefore

not included. Second, the correct answers to some questions may have changed,

38

Text-based QA Chapter 2

such as “Who is the prime minister of France”. In order to have a fair evaluation,

we revise the answers using Amazon MTurk (see [65] for detail).

Bing query. Although roughly 10% of the queries submitted to a search en-

gine are with specific informational intent, only one fifth of them are formulated

as well-formed questions (e.g., lack of Wh-words) [69]. Bing query dataset in

Table 2.1 shows several such examples. We create Bing query dataset by select-

ing queries from Bing users: queries are not well-formed questions, but targeted

at certain entities in Freebase. Questions here are from real search engine users

and reflect more realistic information need than many existing QA datasets. We

crowdsource each question to at least three experienced human labelers for collect-

ing correct entity answers in Freebase. Once all the labelers reach an agreement on

the correct answers, we save the question paired with the correct answers. In the

end, we have gathered approximately 6000 question-answer pairs in total, where

we randomly select around 20% for testing and 80% for training.

Training Dataset for JQA and WAT

To train JQA and WAT proposed, a sufficiently large training dataset with

golden <question, answer types> pairs is indispensable. In reality, we do not

have purified data available for training. Instead, we adopt a novel alternative

way to obtain labels by joining users’ implicit behavioral data in query click logs

39

Text-based QA Chapter 2

and the Freebase data. Specifically, we can obtain the <query, clicked url> pairs

from the query click logs. Moreover, each entity in Freebase is also linked to some

urls that are related to this entity (mostly Wikipedia pages or official web sites of

this entity). Hence once a user issued a query and clicked on an entity related url,

we can form a <question, answer types> pair: The question is the query given

by the user, while we use the Freebase types of the entity corresponding to the

clicked url as the answer types. Although such collected dataset is noisy in the

sense that the clicked url might not be what the user truly look for, we will show

that useful answer-type related features can still be learnt from the large amount

of data to benefit the ultimate QA performance. Overall we collect a dataset of

around 1.3 million <question, answer types> pairs based on Bing query logs.

We have also tried directly using the training portion of each dataset in Table 2.1

to train the models. However, the training portions contain too limited questions,

and features learnt from them can not perform as well as those learnt from the

big query log dataset.

Answer Candidate Ranking

For each input question, our question answering pipeline produces an answer

candidate pool. To rank these candidates, we first extract all the features discussed

previously, and map an answer candidate to a feature vector representation w.r.t.

40

Text-based QA Chapter 2

the question. Our ranker then assigns a score to each feature vector and orders

the answer candidates accordingly. We use an in-house fast implementation of the

MART gradient boosting decision tree algorithm [13,27] to learn our ranker using

the training set of our data. This algorithm learns an ensemble of regression trees

and has shown great performance in various search ranking tasks [14].

Evaluation Measures

We compare different QA systems on each dataset using the following metrics:

(1) Precision, Recall & F1: As in [25], we treat the top ranked answer can-

didate as the answer returned to a question. Notice that because the answer

candidate pool might be empty, it is possible that no answer is returned by a QA

system. As usual, precision and recall are defined as #(correct answers)
#(questions with answers returned)

and #(correct answers)
#questions

. We also compute the F1 score, which is the harmonic mean

of precision and recall.

(2) Mean Reciprocal Rank (MRR). Given a question, Reciprocal Rank (RR)

is the reciprocal of the highest ranking position of a correct answer [55]. MRR is

the average of the reciprocal ranks over questions:

MRR =
1

N

N∑
i=1

1

ri
, (2.18)

41

Text-based QA Chapter 2

where N is the number of questions and ri is the highest ranking position of an

answer to question i. If the true answer to a question is not detected, the RR for

the question is 0.

Alternative QA systems

We compare QuASE with existing web texts based and KB-based QA systems.

Due to unavailability of most existing QA systems, we select one representative

from each category to compare.

(1) Web texts based QA system: AskMSR+ [65]. Early web texts based sys-

tems like Mulder [35] and AskMSR [11] have demonstrated that by leveraging the

Web redundancy, a simple system can compete with those conducting sophisti-

cated linguistic analysis of either questions or answer candidates1. We compare

QuASE with AskMSR+ [65], an advanced version of AskMSR with two main

changes. First, instead of reformulating a question according to some statement-

like patterns as query terms to a search engine, AskMSR+ issues the question

directly, as [65] found out that question reformulation no longer helps retrieve

high-quality snippets. This may be due to the better performance of modern

search engines, as well as the increased coverage of various community QA sites.

Second, instead of using only N-grams extracted from snippets as answer candi-

1For instance, AskMSR is one of the top systems in TREC-10 [12].

42

Text-based QA Chapter 2

dates, AskMSR+ requires candidates to be specific types of named entities that

can match the question. For instance, only a location entity can be a candidate

to the “where” questions. With these design changes and other enhancements

detailed in [65], AskMSR+ increases MRR by roughly 25% on the TREC dataset,

compared to the original AskMSR system, and is thus a solid baseline.

(2) KB-based QA system: Sempre [6, 7]. Sempre [6] and ParaSempre [7]

develop semantic parsers to parse natural language questions to logical forms,

which are subsequently executed against knowledge bases. They have shown great

performance for questions that are directly coined based on relation tuples in KBs.

Here we test them on questions that are not necessarily answerable in KBs. The

implementation of their systems is publicly available2, as well as the well-trained

systems. We have applied the well-trained systems to our evaluation datasets,

and also re-trained the systems on our training datasets. We finally show the best

performance we could obtain by these two systems.

2.6.2 Extensive Feature Comparison

Results of different feature groups in QuASE are summarized in Table 2.2. We

have made the following observations:

2https://github.com/percyliang/sempre .

43

Text-based QA Chapter 2

Bing query TREC
Features in QuASE Precision Recall F1 MRR Precision Recall F1 MRR

Count 0.5513 0.5262 0.5384 0.6111 0.5446 0.5446 0.5446 0.6224
TR 0.5243 0.5004 0.5121 0.5880 0.4554 0.4554 0.4554 0.5740

JQA 0.1358 0.1296 0.1326 0.2737 0.1980 0.1980 0.1980 0.3579
WAT 0.1709 0.1631 0.1669 0.3100 0.2624 0.2624 0.2624 0.4049

Count+TR 0.5674 0.5416 0.5512 0.6239 0.5644 0.5644 0.5644 0.6425
Count+TR+WAT 0.5926 0.5657 0.5788 0.6370 0.5693 0.5693 0.5693 0.6513
Count+TR+JQA 0.5764 0.5502 0.5630 0.6296 0.5743 0.5743 0.5743 0.6476

ALL 0.5962 0.5691 0.5823 0.6402 0.5792 0.5792 0.5792 0.6532

Count+TR−KBs 0.5638 0.5382 0.5507 0.6187 0.5495 0.5495 0.5495 0.6281

Table 2.2: Comparison among different feature combinations.

(1) As we discussed previously, Count is a significant indicator of the true an-

swer to a question. Although the simplest feature, it performs the best compared

with other separated features. Such observation is consistent with the conclusion

in [11] that based on data redundancy: Simple techniques without complicated

linguistic analyses can work well in QA systems.

(2) Combined with the Textual Relevance (TR) features, Count+TR can fur-

ther boost the performance by around 3% under F1 and MRR, on both datasets.

TR can be effective when some wrong answer candidates appear very frequently

but their context information does not match the question. For example, given a

question “Who first landed on the moon”, entity “American”, the nationality of

the astronaut, occurs quite frequently in the retrieved texts. However, the tex-

tual information related to “American” in Freebase can distinguish itself from the

true answer, as its description is about American people, rather than people first

landing on the Moon.

44

Text-based QA Chapter 2

(3) Comparing ALL (Count+TR+WAT+JQA) with Count+TR, our answer-

type related features WAT and JQA turn out to be effective: They further improve

the performance by around 2% on TREC and by 2% ∼ 5% on Bing query across

all the metrics.

(4) The advantages of incorporating rich semantics in KBs into QuASE can

be observed by comparing Count+TR+WAT+JQA with Count+TR−KBs, where

TR−KBs denotes the two textual relevance features without involving entity de-

scription texts from KBs, i.e., cos(vq, ca) + cos(sq, ca) in Figure 2.4. With around

5% improvements on both datasets, utilizing rich semantics in KBs can obviously

benefit QA performance.

2.6.3 Comparison against Either KB or Text Based QA

Table 2.3 shows the performance of different QA systems. Compared with

AskMSR+ system, which also utilized the count of an answer candidate for rank-

ing, the single feature Count in QuASE, as shown in Table 2.2, performs better

by at least 10% in terms of F1. The potential reason is that through linking

answer candidates to KBs, same answer candidates with different surface forms

can be automatically merged, and therefore, redundancy and noise among answer

candidates can be significantly reduced. On Bing query, QuASE with all the fea-

tures can obtain around 54% improvement on F1 and 20% improvement under

45

Text-based QA Chapter 2

Bing query TREC
QA Systems Precision Recall F1 MRR Precision Recall F1 MRR

QuASE 0.5962 0.5691 0.5823 0.6402 0.5792 0.5792 0.5792 0.6532
AskMSR+ [65] 0.3782 0.3760 0.3771 0.5337 0.4925 0.4901 0.4913 0.6223
Sempre [6, 7] 0.2646 01940 0.2239 0.2372 0.1567 0.1040 0.1250 0.1437

Table 2.3: Comparison among different QA systems.

MRR, while on TREC, it can achieve about 18% improvement under F1 and 5%

improvement under MRR. The great improvement further verifies the advantages

of employing KBs as an auxiliary into web texts based QA systems. The im-

provement on F1 measure is generally higher. MRR takes into account the entire

candidate list while F1 focuses on the first ranking position, implying AskMSR+

has a poor ability to rank the true answer at the top position. We will give more

detailed analysis on QuASE and AskMSR+ in the next section.

Sempre systems formulate a question into logical forms to be executed against

KBs. They are among the state-of-the-art KB-based QA systems on questions

that are guaranteed answerable in KBs. However as shown in Table 2.3, the

performance of Sempre is generally much lower than our system under all the

measures. Similar performance of Sempre on TREC has also been reported

in [25]. There are potentially two reasons why Sempre systems cannot perform

well on Bing query and TREC dataset. First, the knowledge required to answer

questions might not exist in KBs. For example, given one example question in

TREC “What color is indigo”, there is no relationship between the true answer

46

Text-based QA Chapter 2

The distribution of QuASE’s rank on failed questions
Dataset r =∞ r=2 r=3 r=4 r ≥ 5

Bing query 63.76% 12.86% 7.62% 2.86% 11.90%
TREC 53.57% 14.29% 12.50% 3.57% 16.07%

The distribution of AskMSR+’s rank on failed questions
Dataset r =∞ r=2 r=3 r = 4 r ≥ 5

Bing query 13.82% 27.88% 21.66% 11.75% 24.88%
TREC 19.64% 35.71% 14.29% 10.71% 19.64%

Table 2.4: Error analysis of QuASE and AskMSR+.

“blue” and “indigo” corresponding to “alias” or “synonym” although both en-

tities “blue” and “indigo” exist in Freebase. Second, many questions, especially

those not well-formed ones in Bing query, are generally hard to be transformed

to logical forms and thereby unsuccessful to obtain answers by executing logical

forms against KBs. Since Sempre turns out to be much less effective on both

datasets, we will not include it in the following experiments.

2.6.4 System Comparison on Failed Questions

Now we provide detailed analysis of QuASE and AskMSR+ on their respective

failed questions. We first define the failed questions for each system: AskMSR+’s

failed questions are those where AskMSR+ ranks the true answer lower than

QuASE, whereas QuASE’s failed questions as those where QuASE ranks the true

answer lower than AskMSR+. If there are multiple answers to a question, we

consider the highest-ranked answer in defining failed questions.

47

Text-based QA Chapter 2

Bing AQS
Systems MRR F1 |AQS|
QuASE 0.8583 0.7629 869

AskMSR+ [65] 0.6230 0.4388 998
TREC AQS

QuASE 0.8195 0.7267 161
AskMSR+ [65] 0.7023 0.5530 179

Table 2.5: Results on answerable question sets.

Table 2.4 shows the rank distribution of the true answer given by each system

on their failed questions. r = ∞ means the true answer is not in the candidate

list. For those questions where QuASE performs worse than AskMSR+, in most

cases, we do not have the answer in the candidate list, i.e., r = ∞. However,

for those AskMSR+ performs worse, in most cases, AskMSR+ did find the true

answer, but ranks it lower than QuASE. This result verifies that compared with

AskMSR+, features in QuASE for ranking are effective as long as true answers

are in the candidate list.

Due to the imperfectness of any answer candidate generation technique, in-

cluding entity linking or named entity detection, true answers to many questions

might not be detected and included in the candidate list. Therefore, no matter

how effective a ranking feature is, the performance on questions without true an-

swers in the candidate list, cannot be boosted. For each method, we define the

answerable question set (AQS) as those questions with true answers included in

their candidate list. Table 2.5 shows the performance of QuASE and AskMSR+

48

Text-based QA Chapter 2

on their respective answerable question sets. Although the answerable questions

by QuASE are slightly fewer than those by AskMSR+ system, the performance of

QuASE is significantly better than AskMSR+ with a 17% ∼ 38% improvement

on MRR and a 31% ∼ 74% improvement on F1. For QuASE, how to improve

entity linking performance, in order to include true answers in the candidate list,

can be important to further improve QA performance. However the study of that

problem is beyond the scope of this dissertation and we leave it to future work.

49

Chapter 3

Table-based QA

Tables on the Web contain a huge body of semi-structured information about

wide-ranging topics, and naturally serve as a rich knowledge pool to answer open-

domain questions. Employing tables as the answer source is entitled with the

following advantages:

1. Web tables have schema. Different from unstructured texts, each table

comes with its own schema; therefore it is much easier to interpret the

entities and relations contained in a table. For example, in Table 1.1, entity

“France” can be easily interpreted as a country by its column name, and

the column name pair <Country, MainLanguage> 1 is likely to indicate

main languages spoken in a country. Such schema and structure provide

valuable clues for answering questions.

1We will use this representation to distinguish column names from other texts.

50

Table-based QA Chapter 3

Figure 3.1: Freebase representation of relation “Grandfather” is complex.

2. Web tables complement knowledge bases. On the one hand, knowledge bases

are incomplete, and web tables might contain information not covered by

knowledge bases. On the other hand, the semantic structure of a KB is

often more complex than that of a table: For example, Freebase stores the

simple fact “Prescott Bush is George W. Bush’s grandfather” in a complex

structure, as shown in Figure 3.1. On the contrary, tables often represent

relations in a more straightforward way, with each column for a relation such

as Father, Mother, Grandfather etc. Such straightforwardness makes

answering questions like “Who is X’s grandfather” much easier.

In this chapter, we propose an end-to-end framework to identify table cells

that can answer a natural language question. The core problem is to match a

natural language question with the information in tables. We propose a uni-

fied chain representation for both the input question and table cells. The ques-

tion chain starts from an identified topic entity in the question (e.g., “France”),

goes through an edge labeled with the question pattern, and points to the to-

51

Table-based QA Chapter 3

be-determined answer. The question pattern is just the input question excluding

the topic entity, and expresses the relation between the topic entity and the an-

swer. On the other hand, we also represent the semantic relation between any

two cells in the same row of a table as a relational chain. For example, the

semantic relation between “France” and “French” in Table 1.1 is represented as

“France
Country−−−−−→© MainLanguage−−−−−−−−→French”, where© is a pseudo-node referring to the

particular row (to be discussed later in Section 3.1). Question answering is then

reduced to finding the relational chains that best match with the question chain.

There are two main challenges in identifying the correct answer cells: (1)

Among millions of tables, how to retrieve the relevant ones that may contain

answers? (2) How to precisely locate answer cells in a relevant table? With the

chain representations, we tackle the first challenge as follows: (a) Detect topic

entities in the given question, retrieve tables that contain the topic entities, and

generate an initial set of candidate (relational) chains pointing to possible answer

cells; (b) Issue the input question to a search engine, and use the returned snippets

to select relevant candidate chains from the initial set.

To deal with the second challenge, we develop techniques for more fine-grained

matching between candidate chains and the question chain, i.e., to find which can-

didate chain represents the relation expressed in the question. Simple bag-of-words

based matching is insufficient because few words are shared by a candidate chain

52

Table-based QA Chapter 3

and the input question. We therefore employ deep neural networks to map both

the question and the information about a candidate chain into a common semantic

space. We adopt information about a candidate chain from three perspectives:

answer type, pseudo-predicate, and entity pairs, which we shall detail in Sec-

tion 3.3. We conduct extensive experiments and show that table cells containing

correct answers can be effectively identified using the proposed framework. More-

over, combining our table cell search framework with state-of-the-art KB-based

QA systems can achieve even better performance, showing that the two different

kinds of systems complement each other.

3.1 Preliminaries

Now we give a more formal task description, followed by the high-level idea of

our approach.

Task Definition

Given a natural language question, we aim at answering it by retrieving table

cells that contain correct answers, from a large collection of tables. Figure 3.2

shows a concrete example of this task. Given a question, such as “What languages

do people in France speak”, we assume that the answer lies in a particular cell

53

Table-based QA Chapter 3

What	 languages	 do	 people	 in	 France	 speak?	

Country Capital Location Main
Language

Currency

Algeria Algiers Africa Arabic,
French

Dinar

France Paris Europe French Euro

Hungary Budapest Europe Hungarian Forint

Singapore Singapore Asia Malay,
Chinese,
Tamil

Singapore
Dollar

French	

Country Main Language
France French
Source:	 h7p://hasibul.info/gk/countries.php	

Question

Table Database

Answer

Evidence

Figure 3.2: An example of mining table cells for QA.

in one of the collected web tables. As the column MainLanguage can be in-

terpreted as main languages spoken in a country, we would like to identify the

table cell “French” lying under the MainLanguage column and in the same row

as “France”. The identified answer as well as a small sub-table composed of the

related cells and column names can be presented, together with the URL of the

source table for further exploration.

As implied in this example, we make two assumptions when attacking this

task. First, we take an entity-centric view: The targeted questions in this task

are those that contain at least one entity, named topic entity. This view has

been commonly adopted in recent question answering studies [6, 7, 75]. Second,

we assume that the relationship between the topic entity in the question and the

54

Table-based QA Chapter 3

answer can be represented by the information in a single table. A cell matched

with a topic entity and that matched with an answer should occur in the same row.

These two assumptions are made because of the unique setting of our task. Using a

large collection of web tables as the sole information source for answering questions

poses both advantages and challenges, especially when compared to relying on a

well-curated knowledge base. For instance, instead of having a rigid schema that

define all possible relations between entities using a fixed set of predicates, as

usually seen in a knowledge base, more diversified types of relations are described

by a large number of column names existing in millions of tables. Due to the

Web redundancy and coverage, it’s more likely that a pair of column names can

match with a given question, in contrast to a single predicate in a knowledge

base2. On the other hand, it is challenging to find relevant tables that might

contain answers, from a large collection of independent tables. Diversified forms of

relations presented by the column names also increase the difficulty of determining

whether they are equivalent to the natural-language description of a question.

2More sophisticated analysis of multiple tables and their column names will be needed for
complicated, highly compositional questions, which we leave for future work.

55

Table-based QA Chapter 3

Figure 3.3: Graph representation of a question chain.

Approach

Our strategy is to formulate the task as a joint entity and relation matching

problem. Here we present the basic idea with intuitive graphical views, leaving

more details to be introduced in Section 3.2.

For each input question, we apply entity linking [72] to identify possible entities

in the question. Each identified entity defines the topic entity and question pattern,

where the former is just the canonical name of the entity and the latter is the rest of

the question after removing the entity mention. For instance, assuming “France”

is the topic entity identified in “What languages do people in France speak”, the

question pattern is simply “What languages do people in <e> speak”, where <e>

indicates the slot for the topic entity. A question can then be naturally represented

as a two-node graph as shown in Figure 3.3, where the topic entity node points to

the answer node, and the edge is labeled with the question pattern. We call this

graph a question chain. Notice that a question may produce multiple question

chains because it can contain more than one topic entity.

56

Table-based QA Chapter 3

Figure 3.4: A table row graph (top) and a relational chain (bottom).

Each table essentially defines a “mini knowledge base” – each row describes

multi-relations among the cells it contains. Following [51], a row in a table can be

represented by an undirected row graph that connects each cell to a pseudo-node,

where the edge is labeled with the corresponding column name (i.e., relation). The

pseudo-node3 simply indicates the row where the cells come from. Figure 3.4 (top)

shows an example of this graph. The circle is a pseudo-node for this particular

row, connecting all the cells with their column names as edges.

A row graph can be decomposed into several relational chains. Each relational

chain connects two cell nodes by starting from one node, going through the pseudo-

node and then pointing to the other node. Similarly, the edges are labeled with

the corresponding column names. Figure 3.4 (bottom) shows one example of this

construction. Hereafter, we denote the starting cell of a relational chain as the

topic cell, and the ending cell as the answer cell.

3The pseudo-node can be analogous to the compound-value-type design in Freebase, which
is a standard way to encode multi-relations in RDF triples.

57

Table-based QA Chapter 3

Reminiscent of our second assumption mentioned previously, we shall map

the question to a pair of cells in the same row of a table. Having represented

the question as a question chain q and a pair of cells as a relational chain r,

finding a table cell to answer the question is reduced to a chain matching problem.

Comparing Figure 3.3 and 3.4 (bottom), for q and r to be matched, the topic entity

in q has to be matched with the topic cell of r, and the question pattern in q needs

to be implied by both inward and outward relations of r. After that, the answer

cell of r can thus be extracted. In cases where multiple topic entities are identified,

all the corresponding relational chains will be jointly considered.

3.2 Table Cell Search

Our end-to-end table cell search framework consists of three main steps. We

first generate a set of candidate (relational) chains. To do that, we detect topic

entities in an input question, match the topic entities with tables to find topic

cells, and generate candidate chains from each topic cell. The first step results

in a large set of candidate chains, many of which are irrelevant to the question.

Therefore, in the second step, search engine snippets providing more information

about the input question are utilized to help filter out irrelevant chains. We

further employ deep neural networks to match the question and a candidate chain

in a common semantic space. Overall candidate chains are ranked based on a set

58

Table-based QA Chapter 3

of carefully derived features. An answer cell can subsequently be extracted from

each top ranked candidate chain.

Candidate Chain Generation

Given a question, one can first apply named entity recognition [50] to identify

topic entities, and then retrieve all the table cells that contain any of the topic

entities via substring matching. Since an entity often has many aliases (e.g.,

“Barack Obama” and “President Obama”), it is beneficial to match table cells

with not only the entity mention in the question, but also other entity aliases.

Fortunately, open-domain knowledge bases like Freebase store common aliases of

an entity; therefore, in our framework, we link each topic entity in the question

to Freebase and fetch its alias list. We employ a state-of-the-art entity linking

system [72], which is designed particularly for short and noisy texts and has been

shown especially suitable for topic entity linking in natural language questions [75].

Table cells containing any alias of a topic entity are retrieved as topic cells. In

the rest of this chapter, any statement like a table cell contains an entity, means

the cell contains the entity mention or any of its aliases (if available).

As discussed in Section 3.1, given a topic cell, we assume the answer cell lies

in the same row. But it is not known which one is the answer cell at this stage.

We therefore first blindly generate a candidate chain for each possible answer cell,

59

Table-based QA Chapter 3

and leave candidate chain ranking for later. Consider Table 1.1, suppose we have

identified the “France” cell under the Country column as a topic cell, we will

generate 3 candidate chains, one for each cell in the same row (“Paris”, “Euro”,

and “French”). Each candidate chain starts from the topic cell, goes through the

corresponding column names in the table, and points to the candidate answer cell.

We repeat the same procedure for every topic cell, and end up with a large (can

be hundreds of thousands) set of candidate chains.

Coarse-Grained Pruning

In the first step, all relational chains related to any identified topic entity are

generated as candidates. One consequence is that many of them are not truly

relevant to the input question, e.g., “France
From−−−→© Actress−−−−−→Sophie Marceau” in

Figure 2.3, which is generated from a table about French actresses. We now prune

the candidate chain set for the subsequent ranking model as well as for efficiency

consideration. To do that, we need to evaluate the relevance of a candidate chain

to the input question. However, both the question and a candidate chain usually

only contain a few words, and have even fewer words in common. If we directly

compare them word-by-word, many relevant chains will be deemed as irrelevant.

Therefore, we employ search engine snippets to enrich the question, a common

technique used in information retrieval related tasks [62].

60

Table-based QA Chapter 3

We issue the input question q as a query to a commercial search engine, then

compute the word frequency vector based on the top-50 returned snippets, denoted

as wq. For each candidate chain c, we also compute its word frequency vector,

denoted as wc, based on the table caption, topic/answer cells, and column names

on it. Two vector similarities are adopted: cosine(wc, wq) and InterScore(wc, wq)

where InterScore(wc, wq) = ‖wc � wq‖0 computes the number of unique words in

common. Here � is the element-wise product and ‖ · ‖0 is the l0 norm of a vector.

Candidate chains with both high cosine(wc, wq) and InterScore(wc, wq) are kept.

These two measures inspect vector similarity from different aspects and make a

more restrictive selection of relevant candidate chains. If wc deviates far from wq,

the corresponding candidate chain is regarded as irrelevant and thereby discarded.

Deep Chain Inference

After relevant candidate chains to the input question are collected, we perform

deeper inference on whether a candidate chain can represent the natural language

statement of the given question. On the candidate chain side, we explore its infor-

mation from three perspectives: answer type, pseudo-predicate, and entity pairs.

We use the question pattern defined in Section 3.1 to represent what factual in-

formation is being asked in the question, regardless of the specific topic entity.

In order to capture the syntactically different but semantically equivalent ways of

61

Table-based QA Chapter 3

stating the same question, as well as to handle the mismatch between natural lan-

guage sentences and table schemas, we construct deep neural networks to evaluate

the matching degree between a question pattern and each perspective of a can-

didate chain in a common semantic space. Finally, for each candidate chain, we

develop a set of features for downstream ranking so that candidate chains pointing

to correct answer cells can be ranked as high as possible. Next we introduce our

methodology for deep chain inference in greater details.

3.3 Chain Inference via Deep Neural Networks

Coarse-grained pruning gives a set of candidate chains that are likely relevant

to the input question. We now need to conduct deeper inference on which candi-

date chain can actually answer the question. Each candidate chain is inspected

from the following perspectives, which give clues about whether the candidate

chain matches the question.

• Answer type. Answer type is defined as the column name correspond-

ing to the answer cell of a candidate chain. Obviously, the answer type

MainLanguage matches the question “What languages do people in France

speak” better than the answer types in other candidate chains such as

Currency and Capital.

62

Table-based QA Chapter 3

• Pseudo-predicate. While answer type gives information about the answer

cell, the relation between the topic cell and the answer cell is also critical for

identifying the answer. Predicate is a term representing the relation between

two entities in a knowledge base. For example, President-Of is a predicate

between Barack Obama and the United States. Analogically, we use the col-

umn name pair, e.g., Country-MainLanguage, on each candidate chain

to form a pseudo-predicate. A pseudo-predicate connects a topic cell to

an answer cell and represents a certain relation between them. Intuitively,

the pseudo-predicate Country-MainLanguage matches questions asking

about languages spoken in a country better than other pseudo-predicates

such as Country-Population and Country-Currency.

• Entity pairs. Entity pairs from two columns in a table shall have the same

relation. For example, all the entity pairs {<Algeria, Arabic>, <Egypt,

Arabic>, <France, French>, <Germany, German>, ...} are about some

country and its main language. The entity pairs from the same columns as

the topic and answer cells in a candidate chain therefore provide significant

information about the implicit relation expressed in the chain, complement-

ing the pseudo-predicate.

Because the question pattern represents what information is being asked ir-

respective of the topic entity, intuitively a correct candidate chain should match

63

Table-based QA Chapter 3

Figure 3.5: Semantic similarity between question pattern and answer type.

the question pattern from the above three perspectives. Since a question pattern

usually share few common words with each perspective, we can hardly build ef-

fective matching models based on word-level information. For example, the entity

pair <Spain, Spanish> shares no common word with the question pattern “What

languages do people in <e> speak”, yet they are about the same relation, i.e.,

the spoken language of a country. Therefore, we first map them into a common

semantic space, where semantically similar texts will be represented as similar

fixed-length vectors. Text embedding via neural networks (more broadly termed

“deep learning for natural language processing”) has been extensively studied re-

cently and demonstrated to excel at capturing the syntactically different ways of

stating the same meaning [28, 31, 33, 64, 74, 75]. Hence we employ deep neural

networks to embed question patterns and various perspectives about candidate

chains and measure their similarity in the semantic space.

64

Table-based QA Chapter 3

Take answer type as example. Figure 3.5 shows the architecture to match

the question pattern with the answer type of a candidate chain. Two deep neural

networks are constructed respectively to embed both the question pattern and the

answer type. We then compute the cosine similarity of the embedded semantic

vectors as the matching degree between the given question and the answer type.

The same model architecture is applied to match other perspectives of candidate

chains with a question pattern, but model parameters are separately learned for

each perspective using the corresponding inputs.

There could be different designs for the deep neural network in Figure 3.5. We

select the Convolutional Deep Structured Semantic Model 4 (C-DSSM) developed

in [60] because of its great potential that has been demonstrated in many informa-

tion retrieval related tasks [28,59,75]. Figure 3.6 illustrates the C-DSSM. It takes

a word sequence such as “What languages do people in <e> speak” as input. The

word hashing layer decomposes a word into a vector of letter-trigrams. For exam-

ple, word “speak” is converted to a bag of letter-trigrams {#-s-p, s-p-e, p-e-a, e-a-

k, k-e-#} where “#” is the word boundary symbol. All the unique letter-trigrams

in the dataset form the letter-trigram vocabulary of size N and each word will be

converted to an N × 1 vector (e.g., ft) with each component being the frequency

of a letter-trigram in the word. Following this, a convolutional layer concatenates

4Publicly available at: http://research.microsoft.com/en-us/projects/dssm/.

65

Table-based QA Chapter 3

the letter-trigram frequency vectors in a context window of size 3 and projects it to

a local contextual feature vector, e.g., ht = tanh(Wc[ft−1, ft, ft+1]),∀t = 1, ..., T .

Then a max pooling layer is deployed to extract the most salient local features

and forms a fixed-length global feature vector. This global feature vector is sub-

sequently fed to a non-linear feed-forward neural network layer, which outputs

the final semantic representation of the original input word sequence (a question

pattern or word sequence representing answer type, pseudo-predicate, or entity

pairs), i.e., y = tanh(Wsv).

!

30k 30k 30k 30k 30k

300 300 300

!"# !"#

$$$

$$$

$$$
!"#

300

$$$

$$$

128

%&'()*"+*,-.)/"01'2)!"

3&-4&/56,&-"/)/"01'2)#"

7"#)8&&/,-.)/"01'2)$

91!"-6,:)/"01'2)%

&&&&&;+<&&&&&&&&&&&&&'(&&&&&&&&&&&&&&')&&&&&&&&&&&*&&&&&&&&&'+&&&&&&&&&&&&&;+<%&'()+1=51-:12),"

%&'()*"+*,-.)!"6',#2)-!

3&-4&/56,&-)!"6',#2)-.

7"#)8&&/,-.)&81'"6,&-

>??,-1)8'&@1:6,&-)!"6',#2)-/

$$$ $$$

Figure 3.6: Architecture of C-DSSM [60].

We instantiate the deep neural networks in Figure 3.5 with C-DSSM. Three

matching models shall be learned for question pattern respectively paired with

answer type, pseudo-predicate, and entity pairs. To train these semantic matching

models, we need to collect three training sets, formed by pairs of question patterns

and their true answer type/pseudo-predicate/entity pairs. Unfortunately, no such

66

Table-based QA Chapter 3

training sets are readily available. Instead, question-answer pairs are available

in existing question answering datasets. Based on the question-answer pairs, our

mechanism to construct training sets is as follows: For each question in a question-

answer set, we first match both the topic entities and the answer entities with table

cells. Then we extract the relational chains connecting a topic cell to an answer

cell. In order to effectively train the model, we shall obtain a cleaner training

set; therefore we conservatively keep only the relational chains with both top-

20 cos(wc, wq) and InterScore(wc, wq) scores. We choose top-20 because it induces

high-quality training sets via manual checking. For each selected chain, we extract

its answer type, pseudo-predicate, and entity pairs to respectively pair with the

corresponding question pattern, and finally form the training sets.

In each case, we randomly sample 5% pairs as the held-out set, and the rest

as the training set. Hyper-parameters of the C-DSSM, such as the number of

neurons in each layer, are selected using the held-out set. Consistent with other

studies employing deep neural networks [32, 75], we observe that the C-DSSM is

insensitive to the hyper-parameters in a reasonable range (e.g., 300 ∼ 500 nodes

in the semantic layer, and learning rate 0.05 ∼ 0.005). We leave more details

about the C-DSSM related model learning to [32,59,60].

67

Table-based QA Chapter 3

3.4 Answer Cell Ranking

We summarize our developed features to rank candidate chains as below.

3.4.1 Shallow Features

Shallow features consider the matching degree between a question and a can-

didate chain at the word level.

As introduced in Section 3.2, for each question, we prepare the word frequency

vector wq based on the top-50 snippets returned by a search engine. On the

candidate chain side, we construct the word frequency vector wc based on its table

caption, column names and table cells. Two similarity measures are applied:

• cosine(wq, wc) = wq ·wc
‖wq‖2‖wc‖2 ,

• InterScore(wq, wc) = ‖wq � wc‖0,

where InterScore stands for the intersection score and calculates the number of

overlapped words in wq and wc.

3.4.2 Deep Features

Three perspectives are investigated: answer type, pseudo-predicate, and entity

pairs. For a candidate chain c, the word sequence of the three types of information

is denoted as ca, cp, and ce, respectively. With the trained C-DSSM model, we

68

Table-based QA Chapter 3

capture the high-level features of ca, cp, and ce respectively as y(ca), y(cp), and

y(ce). On the question side, we input the word sequence representing the question

pattern (qp) and extract its high-level features y(qp). Additionally, we concatenate

the topic cell with the pseudo-predicate cp, noted as cp∗, and compare it with the

original question sentence q. This feature specifically takes into account the effect

of topic entities on semantic matching, which was also adopted in [75].

The semantic similarities between information on the question side and that

on the candidate chain side are calculated as below and incorporated as features

in our framework:

• DeepType: cosine
(
y(qp), y(ca)

)
,

• DeepPredicate: cosine
(
y(qp), y(cp)

)
,

• DeepEntityPairs: cosine
(
y(qp), y(ce)

)
,

• DeepSentence: cosine
(
y(q), y(cp∗)

)
.

Here DeepSentence can be regarded as a variation of DeepPredicate.

For the word sequence on entity pairs ce, we include two variations: (1) ce is the

word sequence generated by concatenating all entity pairs under the two columns

of a candidate chain, in the order of their row indices; (2) ce is the word sequence

corresponding to a single entity pair, and we average cosine
(
y(qp), y(ce)

)
over all

entity pairs corresponding to a candidate chain as DeepEntityPairs.

69

Table-based QA Chapter 3

Overall, for each candidate chain, features investigated in our framework in-

clude shallow features {cosine, InterScore} and deep features {DeepType, Deep-

Predicate, DeepEntityPairs, DeepSentence }. Nevertheless, this frame-

work is readily extensible by incorporating other features.

3.4.3 Ranking

Based on the above features, we map a candidate chain to a feature vector

w.r.t. the question. A ranking algorithm is then deployed to order candidate

chains. For each question, in the coarse-grained pruning stage, we select candi-

date chains with both top-3K cosine similarity and top-3K InterScore, in order

to reduce noise and speed up the ranking process. For training, we label each

candidate chain as correct if its answer cell contains at least one gold-standard

answer and incorrect if otherwise. We adopt an in-house fast implementation

of the MART gradient boosting decision tree algorithm [13, 27], which learns an

ensemble of regression trees and has shown great performance in various tasks [14].

3.5 Experiments

We evaluate our table cell search framework in the open-domain question an-

swering setting from the following aspects: (1) How do different feature combina-

70

Table-based QA Chapter 3

tions affect the search performance? (2) What are the advantages of the features

learned by deep neural networks? Which deep feature is the most discriminative?

(3) How does our table cell search framework compare with state-of-the-art QA

systems? Can the two kinds of systems complement each other?

3.5.1 Experimental Setup

Table Sets

We test our framework using two sets of tables as answer sources: one is

extracted from Wikipedia pages whereas the other is from the broader Web, de-

noted respectively as WikiTables and AllTables. We employ the table extractor

used in [71], which extracts HTML tables from the web crawl and deploys a clas-

sifier to distinguish relational tables from other types of tables, such as layout or

formatting tables. This approach is also similar to the one used in [16]. We do not

discuss the details here since it is not the main focus of our table search frame-

work. WikiTables contains around 5 million tables whereas AllTables contains

roughly 99 million tables, much larger but also noisier than WikiTables.

Question Answering Evaluation Sets

To test our table cell search framework, we pick the popularly studied open-

domain QA setting: Open-domain QA datasets and systems are available, which

71

Table-based QA Chapter 3

WebQ Splits: WebQ Examples:
2,032 testing who did the voice for lola bunny
3,778 training in what coutries do people speak danish

BingQ Splits: BingQ Examples:
1,164 testing cherieff callie voice
4,725 training boeing charleston sc plant location

Table 3.1: Statistics of question sets.

makes the evaluation and comparison with different systems very straightforward.

Nevertheless, our framework can be extended to closed-domain question answering

as long as the table sources are domain-specific. In our experiments, two question-

answer sets are employed, where the gold-standard answer set of each question

contains one or more entities in Freebase. We show the statistics and example

questions in Table 3.1.

WebQ. WebQuestions (WebQ) is developed by [6] and consists of 5,810

question-answer pairs. The questions are collected using the Google Suggest API

and answers are obtained from Freebase with the help of Amazon MTurk. The

dataset is split into training and testing sets, respectively containing 3,778 ques-

tions (65%) and 2,032 questions (35%). Since its release, WebQ has been widely

used in testing an array of open-domain QA systems [6, 7, 25, 74,75].

BingQ. BingQ is constructed in [62]. Questions in this dataset are mined from

search engine logs, and therefore not necessarily well-formed yet reflect realistic

information needs of the general public. Each question is crowdsourced to obtain

72

Table-based QA Chapter 3

Datasets WikiTables AllTables

WebQ
Training: 2,551 (68%) Training: 2,818 (75%)
Testing: 1,362 (67%) Testing: 1,507 (74%)

BingQ
Training: 2,794 (59%) Training: 3,235 (68%)
Testing: 679 (58%) Testing: 793 (68%)

Table 3.2: Table coverage of question sets.

correct entity answers. One distinction between BingQ and WebQ is that the

knowledge required to answer a question in BingQ (i.e., the relation between its

topic entity and answer entity) might not exist in knowledge bases. There are in

total 5,889 question-answer pairs, in which 4,725 (80%) are randomly selected for

testing and 1,164 (20%) for training in [62].

Table-answerable question sets. The construction of the above evaluation

sets does not refer to our table collections, therefore the knowledge required to

answer a question might not exist in WikiTables or AllTables. Such questions are

unanswerable using the table collections, no matter what algorithms are developed

to search table cells. In order to evaluate the effectiveness of our framework, we

need to remove those unanswerable questions. It is difficult, if not impossible,

to automatically verify whether a question is answerable by a huge set of tables.

We adopt the following mechanism to make an approximation: We will keep a

question if and only if at least one of its topic entities and at least one of its answer

entities simultaneously exist in the same row of some table. The percentage of

questions left in each evaluation set is defined as its coverage by a particular table

73

Table-based QA Chapter 3

set, which are shown in Table 3.2. As one can see, a large proportion of questions

in both sets, around 58% to 75%, are covered by tables, and AllTables covers

roughly 10% more questions than WikiTables. We next evaluate our framework

only on questions covered by each table set.

Evaluation Measures

For each question, we extract the answer cell from each of the top-K ranked

candidate chains, and thereby top-K answer cells are retrieved. To evaluate the

results, we adopt Precision, Recall, and F1 measures as similarly defined in tradi-

tional information retrieval [42], since table cell search is analogical to retrieving

relevant documents to a query. We regard an answer cell as relevant to the in-

put question if it contains at least one entity in the gold-standard answer set.

Therefore, for question q, Precision (P) and Recall (R) are defined as P = nq
K

and

R = aq
Nq

. Here nq is the number of relevant answer cells retrieved, aq is the num-

ber of unique gold-standard answer entities contained in the top-K answer cells,

and Nq is the total number of gold-standard answer entities. F1 is the harmonic

mean of P and R. We present the average Precision, Recall, and F1 over all test

questions as final results.

74

Table-based QA Chapter 3

Alternative Systems for Comparison

KB-based QA systems via semantic parsing can be regarded as a special kind

of table cell search if we take a tabular view of knowledge bases: Each predicate

corresponds to a two-column table with subject entities in one column and object

entities in the other. Two state-of-the-art such systems are taken into account.

Sempre and ParaSempre developed in [6] and [7] have shown excellent per-

formance to answer questions in WebQ. We directly use their predicted results

on WebQ. On BingQ, we re-train the systems on the training set and evaluate

using the testing set. The implementation of the systems is publicly available

in https://github.com/percyliang/sempre. These systems return a set of en-

tities from Freebase as answer. For fair comparison, the returned entity set is

treated as their top-1 retrieved answer cell, and evaluated according to our pre-

viously defined measures. Unless otherwise stated, we compare the top-1 answer

cell returned by each system in the following experiments.

3.5.2 Performance of Different Feature Groups

We first discuss the performance of different feature combinations in our frame-

work, with Wikitables as the answer source. For each feature combination, we

merely use features from that combination for training and testing. As shown in

Table 3.3, we have made the following discoveries:

75

Table-based QA Chapter 3

WebQ BingQ

Features Precision Recall F1 Precision Recall* F1

Shallow Features 0.4214 0.3373 0.3561 0.4035 0.4035 0.4035
Deep Features 0.5352 0.4210 0.4462 0.4757 0.4747 0.4750

Shallow + Deep Features 0.5712 0.4540 0.4804 0.5817 0.5817 0.5817

Shallow + DeepType 0.5433 0.4323 0.4566 0.5493 0.5493 0.5493
Shallow + DeepPredicate 0.5492 0.4315 0.4572 0.5493 0.5493 0.5493
Shallow + DeepSentence 0.4728 0.3768 0.3954 0.4227 0.4227 0.4227

Shallow + DeepEntityPairs 0.4662 0.3703 0.3907 0.5538 0.5528 0.5531

All Features − DeepType 0.5551 0.4362 0.4623 0.5538 0.5538 0.5538
All Features − DeepPredicate 0.5609 0.4474 0.4732 0.5714 0.5714 0.5714
All Features − DeepSentence 0.5639 0.4467 0.4729 0.5803 0.5803 0.5803

All Features − DeepEntityPairs 0.5698 0.4523 0.4786 0.5596 0.5596 0.5596

* Recall is close to precision, as almost every question in BingQ has one answer.

Table 3.3: Performance of different feature combinations.

(1) Shallow features, which only take advantage of word-level information, ac-

tually achieve surprisingly good performance on both evaluation sets. This may

be explained by the high redundancy of web tables: A table using similar wording

as the input question likely exists, which makes direct word-level matching effec-

tive on some questions. It shows a unique advantage of using web tables as answer

sources, as opposed to using a rigidly defined knowledge base. Nevertheless, deep

features still get much better performance than shallow features, showing that

deeper inference is also necessary and is more advanced.

(2) Shallow features and deep features complement each other. Search engine

snippets used in computing shallow features can gather question-related infor-

mation on the Web to help match a question with the correct candidate chain.

Therefore, although shallow features are less effective than deep features, com-

76

Table-based QA Chapter 3

bining them achieves the best performance, with a 34.9% ∼ 44.2% relative im-

provement over only shallow features and 7.7% ∼ 22.5% over only deep features

on both evaluation sets.

(3) Each deep feature defined in Section 3.3 is combined with shallow features

to compare their relative advantage. The two deep features based on answer type

and pseudo-predicate, i.e., DeepType and DeepPredicate, are most impor-

tant in both evaluation sets. Both DeepType and DeepPredicate contain the

answer type information, i.e., the column name corresponding to the answer cell.

This gives us an important implication that correctly inferring the answer type

of a question is critical to finding correct answers. The performance of Deep-

EntityPairs is quite different on these two evaluation sets. On BingQ, Deep-

EntityPairs is slightly better than DeepPredicate and DeepType. This is

possibly because BingQ questions are not well-formed (see examples in Table 3.1),

and using a significant number of entity pairs to match them can be more effec-

tive than using regular word sequences such as answer type and pseudo-predicate.

Although overall DeepSentence and DeepEntityPairs are not as effective as

DeepType or DeepPredicate, removing either of them from our framework

can hurt the performance, as seen from the last two rows in Table 3.3.

77

Table-based QA Chapter 3

WebQ BingQ
System Precision Recall F1 Precision Recall F1

TabCell 0.5712 0.4540 0.4804 0.5817 0.5817 0.5817
Sempre 0.5419 0.4738 0.4895 0.3328 0.3328 0.3328

ParaSempre 0.6013 0.5294 0.5463 0.3711 0.3711 0.3711
TabCell +ParaSempre 0.7702 0.6765 0.6998 0.6186 0.6186 0.6186

Table 3.4: Comparison of different systems.

3.5.3 Comparison with KB-based QA Systems

We now compare our table cell search framework with two state-of-the-art

KB-based QA systems Sempre and ParaSempre, which extract answers from

Freebase, a large and widely used knowledge base. This comparison can help

gain insights about the two answer sources (web tables vs. knowledge bases).

Apart from separately evaluating each system, we also combine the predicted

answer cell from our framework with that from ParaSempre. If our framework

and ParaSempre complement each other in answering different questions, the

combined results are expected to induce a large performance gain. Results are

shown in Table 3.4, with TabCell referring to our framework.

Our observations lie in two aspects:

(1) System performance varies on different evaluation sets. On WebQ, ParaSem-

pre obtains the best performance, yet TabCell is still comparable to Sempre.

While on BingQ, TabCell outperforms Sempre and ParaSempre respectively

by 74.8% (from 0.3328 to 0.5817) and 56.7% (from 0.3711 to 0.5817). These

78

Table-based QA Chapter 3

significant differences partly result from the evaluation set construction process.

Questions in WebQ were coined on Freebase and are guaranteed answerable by

Freebase. However, in BingQ, questions were collected from search engine logs

and the knowledge required to answer them does not necessarily exist in Free-

base. Nevertheless, we can safely draw the conclusion that our framework is at

least as effective as state-of-the-art KB-based QA on these evaluation sets.

(2) We concatenate the answer cells returned by TabCell and ParaSem-

pre for each question, which brings around 28.1% (from 0.5463 to 0.6998) and

66.7% (from 0.3711 to 0.6186) improvements over ParaSempre on WebQ and

BingQ, respectively. The simple combination approach asserts non-decreasing

performance; however, such a large performance gain convincingly indicates that

table cell search can complement KB-based QA. It verifies our hypothesis that

tables contain rich information that might be missing or difficult to be identi-

fied in KBs, and our framework presents an effective way to precisely locate such

information to satisfy user needs.

3.5.4 Deep Neural Networks versus Shallow Models

In Section 3.3, we employ deep neural networks to embed a question pattern

and one perspective about a candidate chain such as pseudo-predicate or answer

type, and measure their similarity in the semantic space. In ParaSempre [7], the

79

Table-based QA Chapter 3

WebQ BingQ
Features Precision Recall F1 Precision Recall F1

Shallow + DeepPredicate 0.5492 0.4315 0.4572 0.5493 0.5493 0.5493
Shallow+ Paraphrase 0.4339 0.3452 0.3644 0.4197 0.4197 0.4197

Shallow Features 0.4214 0.3373 0.3561 0.4035 0.4035 0.4035

Table 3.5: Advantages of deep neural networks.

paraphrase model was used to measure the semantic closeness between a question

x and a canonical utterance c generated based on a candidate logic form. The

paraphrase model is composed of two parts: an association model and a vector

space model. The association model produces a score based on whether x and c

contain phrases that are likely to be paraphrases. The vector space model assigns

a vector representation for x and c, and learns a scoring function to evaluate their

semantic similarity. Both models are based on shallow linear combinations. Now

we employ these two models in our task to score the semantic matching between

a question pattern qp and the pseudo-predicate cp on a candidate chain, as an

alternative to deep neural networks. The scores are treated as features (named

Paraphrase here) and combined with the shallow features in our framework.

As seen from Table 3.5, adding Paraphrase features only slightly improves the

performance than otherwise. In contrast, with DeepPredicate extracted by

deep neural networks, we can obtain a much better performance, showing the

advantage of deep neural networks for semantic matching.

80

Table-based QA Chapter 3

Table Sources Precision Recall F1

WebQ
WikiTables 0.5162 0.4103 0.4342
AllTables 0.4738 0.3708 0.3923

BingQ
WikiTables 0.4981 0.4981 0.4981
AllTables 0.5233 0.5226 0.5228

Table 3.6: Comparison of different table sources.

3.5.5 Mining All Tables on the Web for QA

We not only test our framework with WikiTables as the answer source, but

also with AllTables which is around 20 times larger and covers 10% more ques-

tions than the former. On the other hand, AllTables is also noisier since general

web users compose tables with less attention to table schema or column naming

than Wikipedia contributors. Table parsers [71] can be more error-prone when

extracting tables from the general webpages. We now compare these two table

sets as answer sources using the larger testing set in Table 3.2, i.e., 1507 questions

in WebQ and 793 in BingQ. These testing sets are preferred over the smaller ones,

because it allows the opportunity to show advantages of the larger coverage by

AllTables. Table 3.6 shows the results of our framework using all the features.

On WebQ, WikiTables can provide better results than AllTables, partly because

of the strong connection between Freebase and Wikipedia, i.e., the knowledge

stored in Freebase is heavily derived from Wikipedia [1]. Detecting answers to

WebQ questions from the smaller and cleaner WikiTables shall be easier than

81

Table-based QA Chapter 3

from AllTables. On the other hand, for BingQ questions which are not necessarily

answerable by Freebase or Wikipedia pages, AllTables performs better owing to

its higher coverage.

82

Chapter 4

Expert-based QA

Apart from automated algorithms and systems based on various kinds of infor-

mation sources including knowledge bases, texts, and tables, human collaborative

networks are also abundant in real life for question answering and problem solv-

ing. Now in this chapter, we analyze real expert behaviors in human collaborative

networks, which largely affects the network problem solving efficiency. Recall the

task resolution process introduced in Section 1.3. After investigating thousands

of tasks from an IBM IT service department, we recognize that in many cases, an

expert might not route a task to the best candidates (in terms of the possibility

to solve the task), especially when the task is far beyond his expertise. Instead,

the task is transferred to an expert whose speciality is between the current expert

and the best candidates. This routing pattern is clearly indicated by Figure 4.1.

Figure 4.1 plots the histogram of expertise difference ‖EA−EB‖‖EA‖
, which is calculated

when expert A transfers a task to B. EA represents the expertise of A and is auto-

83

Expert-based QA Chapter 4

matically learnt based on A’s task resolution records. It is observed that an expert

tends to transfer a task to some expert whose expertise is neither too similar to

nor too different from his own. This phenomenon can be explained as follows: An

expert is less likely to transfer a task to another expert whose expertise is very

similar, given that the current expert already fails to resolve the task. On the

other hand, if the expertise of two experts are very different, they might actually

specialize in quite different domains; therefore, an expert might not be clear about

the other’s speciality and few tasks would be transferred between them.

0

0.05

0.1

0.15

0.2

Relative Expertise Difference

N
or

m
al

iz
ed

 T
ra

ns
fe

r
F

re
qu

en
cy

Figure 4.1: Task transfer frequency vs. expertise difference.

Inspired by the above observation, we introduce a routing pattern describing

the general trend of expert A transferring a task to B, based on the expertise

difference between A and B. Apart from this routing pattern, another two are

also formalized. Specifically, when an expert finds there are five candidates to

dispatch a task to – all of them can solve the task, who is he going to contact? A

84

Expert-based QA Chapter 4

straightforward approach is to randomly pick one. An alternative is to look at the

capacity of these candidates and route more tasks to an expert who can process

more tasks. An expert could follow a certain pattern when deciding where to

transfer a task. Different experts might adopt each routing pattern to a different

degree and demonstrate different routing behavioral characteristics. Our study

is going to infer the routing patterns as well as experts’ preferences over them,

from the historical routing data, and finally give insightful analysis of expert

performance in a collaborative network to improve the problem solving efficiency.

4.1 Preliminaries

We first clarify the notations used in this chapter. E = {e1, e2, ..., ei, ..., eG} is

a set of experts in a collaborative network. Ni denotes the 1-hop neighborhood

of expert ei in the network. W = {w1, w2, ..., wn, ..., wN} is a set of words used

to describe the tasks. T = {t1, t2, .., tm, ..., tM} is a set of tasks resolved by the

collaborative network, where each tm is an N×1 word vector with each dimension

recording the word frequency in the task description. Apart from the textual

description, each task is also associated with a routing sequence starting from an

initial expert to the resolver of the task.

Table 4.1 shows one example problem ticket in an IT service department. The

ticket with ID 599 is a problem related to operating system, specifically, the low

85

Expert-based QA Chapter 4

ID Entry Time Expert
599 New ticket: the available space 9/14/06 IN039

on the /var file system is low 5:57:16
599 ...(operations by IN039)... ... IN039
599 Ticket 599 transferred ... IN039

to SAV59
599 ...(operations by SAV59)... ... SAV59
599 Ticket 599 transferred ... SAV59

to SAV4F
599 ...(operations by SAV4F)... ... SAV4F
599 Problem resolved: free up 9/14/06 SAV4F

disk space in the file system 9:57:31

Table 4.1: The lifetime of an example task.

percentage of the available file system space. It was assigned to or initiated by

expert IN039, then routed through SAV59, and finally resolved by expert SAV4F.

In this chapter, we study the following problems: How does an expert in a

collaborative network make a routing decision? Is there any pattern an expert

generally follows when routing a task? Different from previous studies [44,58,76],

we do not propose algorithms to perform more efficient routing. Instead, we hope

to understand the routing decisions actually made by the real experts.

Our intuition is that an expert makes a routing decision by adopting a cer-

tain routing strategy either consciously or unconsciously. For example, an expert

might decide where to route a task by evaluating the next expert’s possibility

to solve the task. We advocate a general and extensible methodology to ana-

lyze the routing decision making process, which consists of two routing strategies:

Task-Neutral Routing (TNR) and Task-Specific Routing (TSR). Under the Task-

86

Expert-based QA Chapter 4

Neural Routing, an expert does not take into account the specificity of a task

when making a routing decision, and treat different tasks equivalently. Under the

Task-Specific Routing, however, an expert makes a routing decision by analyzing

the specific task being transferred. We attempt to deduce the cognitive process of

an expert during task routing, and model the decision making of an expert as a

generative process where a routing decision is generated based on the two routing

strategies. Each routing strategy is respectively combined with three basic routing

patterns, which overall produces six particular routing patterns. Our generative

model, with these six routing patterns as mixture components, is then proposed

to describe the process of an expert’s decision making.

4.2 Modeling Expert Routing Behaviors

4.2.1 Routing Patterns

Given a task, we assume an expert ei first establishes a pool of candidates, C,

to dispatch the task to. The difference between the Task-Neutral Routing (TNR)

and the Task-Specific Routing (TSR) lies in the composition of C. In terms of

TNR, C contains all of his neighbors Ni. In terms of TSR, C is limited to experts

who are able to solve the current task in Ni. TNR accommodates the situations

when an expert does not understand a task very well, or an expert has a careless

87

Expert-based QA Chapter 4

work attitude, and thereby making a routing decision irrespective of the specific

task and its possible resolvers; whereas TSR mimics the situation where an expert

assesses others’ ability to solve a task before dispatching it.

Once C is established, ei selects one expert from C to route the task to, based

on a certain routing pattern. We identified three basic routing patterns:

Uniform Random (UR). This routing pattern implies that an expert makes a

decision by randomly selecting one of the candidates in C with an equal proba-

bility.

P (ei
t−→ ej | UR) = 1(ej ∈ C)

1

|C|
, (4.1)

where ei
t−→ ej denotes the event that expert ei transfers task t to ej. 1 is an

indicator function: 1(ej ∈ C) picks value 1 if ej ∈ C holds otherwise 0.

Volume-biased Random (VR). Under this routing pattern, an expert also ran-

domly dispatches tasks, but with a rate proportional to the volume of tasks pre-

viously dispatched. VR mimics the situation where the task processing capacity

could vary for different experts. VR can be regarded as an expert’s reaction when

he finds tasks are processed slowly by some of his collaborators. Let volume vij

denote the number of transferred tasks from expert ei to ej.

P (ei
t−→ ej | VR) = 1(ej ∈ C)

vij∑
ek∈C vik

. (4.2)

Expertise Difference (EX). In addition to the above two routing patterns, this

one is derived from the observation shown in Figure 4.1: An expert is more likely

88

Expert-based QA Chapter 4

to send a task to another expert whose expertise is neither too close nor too far

from his own. Let fij denote the general trend of expert ei sending a task to ej,

given their expertise.

P (ei
t−→ ej | EX) = 1(ej ∈ C)

fij∑
ek∈C fik

. (4.3)

To estimate fij, we build a model based on the observation in Figure 4.1. The

relative expertise difference between expert ei and ej, is calculated as ∆(ei, ej) =

‖ei−ej‖
‖ei‖ , where for simplicity ei is reused to represent the expertise vector of expert

ei. The expertise estimation problem will be discussed later in this section. Based

on Figure 4.1, we assume for those tasks transferred, the relative expertise differ-

ence between a task sender and a task receiver follows a log-normal distribution

with parameters µ and σ2. We made this assumption due to the non-negative

nature of ∆(ei, ej) and the asymmetric shape of the distribution. However, in

our experiments, we also test a model with a normal distribution to estimate fij

and show that the log-normal distribution works better. Under the log-normal

distribution, expert ei is more likely to transfer tasks to ej once ∆(ei, ej) obtains

a higher probability density; therefore, fij is estimated by:

fij ∝
1

∆(ei, ej)
e−

[ln ∆(ei,ej)−µ]2

2σ2 . (4.4)

Note that the histogram in Figure 4.1 is the accumulation of all possible routing

patterns, not only the expertise difference pattern. Later, in the experiments, we

will show that the EX pattern with µ and σ2 directly estimated from Figure 4.1

89

Expert-based QA Chapter 4

does not perform the best. Instead, parameters µ and σ2 shall be estimated with

more emphasis on tasks transferred following the EX pattern, which are not known

a priori. We will learn them simultaneously through a mixture model with all the

routing patterns considered.

To summarize, the three basic patterns {UR, VR, EX} combined with the

Task-Neutral Routing and Task-Specific Routing strategy, generate six particular

routing patterns: TNRur, TNRvr, TNRex, TSRur, TSRvr, and TSRex.

4.2.2 Task-Specific Routing

TNR does not take into account the distinctiveness of a specific task. In

contrast, TSR means that an expert makes a routing decision based on the specific

task and matches it with potential resolvers. Given expert ei to transfer task t, his

routing decision under TSR is influenced by two factors: (1) whether an expert

can solve the task or not, and (2) how familiar ei is with that expert. The first

factor, only related to the task itself, can be conducted by a classification process

without involving ei. The classification identifies a subset of ei’s neighbors who

can solve the task, as the candidate pool C. We build the classifier based on the

task resolution records of experts. The second factor is a human factor which can

be modeled by the same routing patterns we previously introduced such as UR,

VR, and EX. Overall, TSR will check the neighborhood of ei, run the classifier,

90

Expert-based QA Chapter 4

and establish a set of candidates C who are capable of solving t. It then selects

one particular candidate from C based on one of {UR, VR, EX}. In a special case

where C = ∅, TSR is reduced to TNR where we simply use the entire neighborhood

Ni as the candidate pool.

The success of our work is related to the recognition of human factors in

task routing. A straightforward routing pattern considering the specificity of a

task is to transfer the task to an expert with the highest probability to solve

it. Our experiments show that such a routing pattern cannot capture the real

characteristics of human decision making, such as randomness, uncertainty, and

sub-optimality. We observe that similar tasks are often routed to very different

experts. Moreover, one usually does not search for people who are most likely

to solve a problem due to, e.g., unfamiliarity with those people. Instead, he

might select a close collaborator who should be able to solve the problem, but not

necessarily with the highest probability.

4.2.3 Expertise Estimation

In TSR strategy and the EX routing pattern, we need to estimate an expert’s

expertise and capability to solve a task. Intuitively, the capability depends on both

the expert’s expertise and the task description. We resort to a classic logistic

regression model [8] that takes an expert’s expertise vector and a task’s word

91

Expert-based QA Chapter 4

vector as input, and outputs the expert’s capability to solve the task. In the

logistic model, the probability for expert ei to solve task t, denoted as P (ei, t), is

defined as follows:

P (ei, t) =
1

1 + exp(−(W1t+W2ei + b))
. (4.5)

For simplicity, the expertise vector for expert ei is of the same length as task t, i.e.,

an N × 1 vector. W1 and W2 are the 1×N weights respectively associated with

the word vector of a task and the expertise vector of an expert. Each component

of W1 and W2 denotes the contribution of the corresponding dimension in t or ei

to the capability prediction. b is a bias scalar in the logistic model. The expertise

vectors ei’s are not known a priori and to be estimated with the model parameters

{W1,W2, b}. We use W = {W1,W2, b, e
′
is} to denote all the parameters.

Given a task t and its routing sequence, e.g., ei → ... → ek, we observe the

groundtruth regarding the resolution capability: expert ek solves t and any other

expert on the sequence does not solve it. Therefore, we can formulate a training

dataset composed of <expert, task> pairs as instances and {0, 1} as the observed

probability of an expert to solve a task, e.g., 0 for <ei, t> while 1 for <ek, t>.

Parameters in the model are obtained by minimizing the cross-entropy error

function [8], based on the <expert, task> pairs in the training dataset:

arg min
W

∑
<ei,t>

[−P ∗(ei, t) logP (ei, t)− (1− P ∗(ei, t)) log(1− P (ei, t))], (4.6)

92

Expert-based QA Chapter 4

where P ∗(ei, t) is the observed probability for expert ei to solve task t. After the

parameters are learnt, given a task and an expert, one can predict the probability

for the expert to solve the task using Eqn. 4.5. Under Task-Specific Routing,

when transferring task t, expert ei identifies a subset of his neighbors Ni as the

candidate pool C = {ej ∈ Ni : P (ej, t) ≥ δ}, where δ is set at 0.5 in our imple-

mentation. Experts in C have a probability to solve t larger than a threshold, and

are estimated capable to solve the task.

Discussion

(1) In our scenario, the expertise vector of an expert is not known a priori

and needs to be learnt. One might consider using the average word vector of

the tasks resolved by an expert to represent the expert’s knowledge. However, in

practice, this method can be problematic, because we observe that there might be

many experts in a network that serve as “intermediate transferrers” and did not

resolve any tasks. Therefore, we also utilize those tasks unresolved by an expert

to estimate his expertise as shown in Eqn. 4.6.

(2) In general, human expertise can be characterized in two aspects: specializa-

tion (the topics/areas an expert is good at) and proficiency level (how proficient

an expert is in his area). For specialized collaborative networks, i.e., those desig-

nated to resolve tasks in a certain domain such as Java programming contests, the

93

Expert-based QA Chapter 4

specialization of all the experts can be regarded as the same (i.e., the designated

domain), but their task solving abilities, or proficiency levels, differ. Our model

described in this section only captures the proficiency level of experts, in that it

focuses on predicting whether the proficiency level of an expert is high enough

to solve a given task. The ranking of experts based on proficiency level is fixed

and does not vary across different tasks. For collaborative networks dealing with

more broad-range topics, however, more advanced expertise modeling that is also

able to distinguish the specialization of experts is needed (e.g., one expert may

excel at civil laws while another expert is adept at criminal laws). We refer in-

terested readers to our recent work [29], where specialization and proficiency level

are jointly modeled. Expertise modeling, or more broadly representation learning,

in human networks is a new yet important problem that calls for further study.

Here the expert proficiency/capability estimation under a given task is casted

as a traditional classification problem. Different classification models could be

employed potentially. Our adopted model can be perceived as the most basic

neural network model, i.e., perceptron [9]. We also built multi-layer neural net-

works, where non-linear higher-level features for a given expert ei and task t can

be extracted and further used for classification. For the specific datasets tested

in this chapter, the multi-layer neural networks only outperform the perceptron

model by around 3%, by promoting the classification accuracy from roughly 80%

94

Expert-based QA Chapter 4

α

Zi,t

θi

ri,t β
i,t

µ

σ
2

Figure 4.2: Graphical representation of our model.

to 83%. Therefore, for simplicity, we adopt the perceptron model, as it is much

more efficient when incorporated with our task routing patterns.

4.3 Generative Model

In this section, we present a generative model to put the previously discussed

routing patterns together and describe an integrated decision making process.

Figure 4.2 shows the graphical representation of our generative model. We

first clarify the notations in the figure as follows: (1) |E| denotes the number of

experts while |Ti| is the number of tasks expert ei ∈ E has ever transferred. A

plate means replicating a process for multiple times. (2) θi is the K × 1 mixture

weights of different routing patterns for expert ei, where K is the number of

95

Expert-based QA Chapter 4

routing patterns. In our current setting, we have K = 6 routing patterns, from

TNRur to TSRex. The k-th component of θi reveals the probability that the k-

th routing pattern is adopted by ei to transfer a task. (3) α, a K × 1 vector,

is parameters in a Dirichlet prior, and serves as a constraint of all the mixture

weights θi’s. A Dirichlet prior for the mixture weights tends to alleviate over-

fitting problems [10]. Besides, with the Dirichlet prior, the mixture weight θnew

for a new expert can be naturally assigned. (4) Zi,t is the label of the routing

pattern employed by expert ei when transferring task t. (5) βi,t, a K × |Ni|

matrix, defines the probability distribution of expert ei transferring task t to an

expert in his neighborhood Ni, under K routing patterns. Particularly, each row

of βi,t is filled by a probability distribution under one of the six routing patterns,

as defined in Section 4.2.1. For experts in Ni but not in the candidate pool C, the

corresponding elements in βi,t are naturally filled with 0. For patterns irrelevant

to EX, we pre-compute their probability distributions and fill corresponding rows

of βi,t, while TNRex and TSRex are parameterized with µ and σ2. Note that βi,t

is in the inner plate of the graphical model because βi,t is associated with expert

ei and task t. (6)The shaded variable ri,t indicates the observed receiver of task t

transferred from expert ei.

96

Expert-based QA Chapter 4

Figure 4.2 conveys that expert ei decides where to route task t based on mul-

tiple routing patterns βi,t and his preference θi towards adopting different routing

patterns. Now we formally describe the generative process as follows:

For each expert ei to transfer tasks,

– Draw the mixture weights of K routing patterns: θi ∼ Dir(α).

– For each task t to be transferred by expert ei,

∗ Draw a pattern label: Zi,t ∼Mult(θi).

∗ Draw an expert from Ni to receive t:

ri,t ∼ P (ei
t−→ ej|Zi,t, βi,t), ∀ej ∈ Ni.

For each task t ∈ Ti, the transfer relationship for t is represented by ei
t−→ ri,t. We

formulate the likelihood of observing all the task transfer relationships as follows:

L = P (ei
t−→ ri,t, ∀t ∈ Ti,∀ei ∈ E|α, µ, σ2). (4.7)

Since a routing decision of an expert is independent from that of another

expert while the routing decisions of the same expert for different tasks are not

independent from each other, we can rewrite L in the following way:

L =
∏
ei∈E

P (ei
t−→ ri,t,∀t ∈ Ti|α, µ, σ2)

=
∏
ei∈E

∫
θi

P (θi|α)P (ei
t−→ ri,t , ∀t ∈ Ti|θi, µ, σ2) dθi,

(4.8)

where,

97

Expert-based QA Chapter 4

P (ei
t−→ ri,t , ∀t ∈ Ti | θi, µ, σ2) =

∏
t∈Ti

{
∑
Zi,t

P (Zi,t|θi)P (ei
t−→ ri,t | Zi,t, βi,t)}, (4.9)

where P (Zi,t|θi) = θi,k and P (ei
t−→ ri,t | Zi,t, βi,t) = βi,tk,r, if Zi,t = k, i.e., the k-th

routing pattern is adopted. βi,tk,r is the probability for ei routing task t to expert

ri,t, under the k-th pattern. βi,tk,r shall contain parameters µ and σ2 if the k-th

pattern is TNRex or TSRex.

Finally, we resort to the maximum likelihood estimation approach to optimize

the parameters in the model:
arg max

α,µ,σ2
logL. (4.10)

Now we discuss how to estimate the model parameters in detail. The latent

variables {θi’s, Zi,t’s} are not independent of each other, which makes their true

posterior distributions computationally intractable. In this section, we employ a

variational approach [8] to solve our model.

4.3.1 Variational Inference

We introduce a variational distribution Q in which the latent variables are

independent of each other to approximate their true posterior distribution, i.e.,

Q(θ, Z) = Q(θ)Q(Z), where θ = {θi,∀ei ∈ E} and Z = {Zi,t,∀ei ∈ E , t ∈ Ti}.

According to the variational distribution, Q(θi) ∼ Dir(γi), Q(Zi,t) ∼Mult(φi,t),

, where γi and φi,t are K × 1 variational parameters. γi and φi,t have significant

meanings where γi represents the variational prior for θi and reflects which routing

98

Expert-based QA Chapter 4

pattern ei tends to adopt, while φi,t is the variational posterior mixture weights

of different routing patterns adopted by ei when transferring task t. Given the

observed data, both γi and φi,t will be derived automatically.

Under the variational distribution and Jensen’s inequality, we can maximize

the lower bound of the log likelihood, instead of directly maximizing L.

logL ≥ EQlogP (D, θ, Z|α, µ, σ2) +H(Q) = bLc, (4.11)

where D denotes all the observed task transfer relationships. We expand the lower

bound of the log likelihood as follows:

bLc =
∑
ei∈E

EQ logP (θi|α) +
∑
ei∈E

∑
t∈Ti

EQ logP (Zi,t|θi)

+
∑
ei∈E

∑
t∈Ti

EQ logP (ei
t−→ ri,t|Zi,t, µ, σ2)

+H(Q(θ, Z)).

(4.12)

Each term on the right-hand side of the above equation, is a function over the

model parameters as shown in Eqn. 4.13 to Eqn. 4.16.

∑
ei∈E

EQ logP (θi|α) = −|E| logB(α) +
∑
ei∈E

∑
k

(αk − 1)[ψ(γi,k)− ψ(
∑
k

γi,k)], (4.13)

where B(α) =
∏
k Γ(αk)

Γ(
∑
k αk)

is the normalization constant of the Dirichlet distribution

Dir(α). ∑
ei∈E

∑
t∈Ti

EQ logP (Zi,t|θi) =
∑
ei∈E

∑
t∈Ti

∑
k

φi,tk [ψ(γi,k)− ψ(
∑
k

γi,k)]. (4.14)

The third term

∑
ei∈E

∑
t∈Ti

EQ logP (ei
t−→ ri,t|Zi,t, µ, σ2) =

∑
ei∈E

∑
t∈Ti

∑
k

φi,tk log βi,tk,r. (4.15)

99

Expert-based QA Chapter 4

As discussed in Eqn. 4.9, βi,tk,r contains parameters µ and σ2 if the k-th pattern is

TNRex or TSRex.

The entropy term

H(Q(θ, Z)) = −
∑
ei∈E

[EQ logQ(θi|γi) +
∑
t∈Ti

EQ logQ(Zi,t|φi,t)]

=
∑
ei∈E

[logB(γi)−
∑
k

(γi,k − 1)(ψ(γi,k)− ψ(
∑
k

γi,k))]

−
∑
ei∈E

∑
t∈Ti

∑
k

φi,tk log φi,tk .

(4.16)

4.3.2 Parameter Estimation

The model parameters are estimated by using the variational expectation-

maximization (EM) algorithm. In the E-step, we update the variational parame-

ters {γ’s, φ’s} while in the M-step, we update the model parameters α, µ, and σ2

so that bLc is maximized.

Specifically, the E-step updates the variational parameters according to Eqn. 4.17

and 4.18.

φi,tk ∼ β
i,t
k,r exp(ψ(γi,k)− ψ(

∑
k

γi,k)− 1), (4.17)

γi,k = αk +
∑
t∈Ti

φi,tk . (4.18)

During the M-step, we maximize the lower bound over the parameter α, µ, and

σ2, by utilizing the classic L-BFGS optimization algorithm [41]. The derivatives

over the parameter α are calculated in Eqn. 4.19.

100

Expert-based QA Chapter 4

∂L
∂αk

= |E|[−ψ(αk) + ψ(
∑
k

αk)] +
∑
ei∈E

[ψ(γi,k)− ψ(
∑
k

γi,k)]. (4.19)

Derivatives over µ and σ2 depend on the routing pattern TNRex and TSRex, as

well as the mixture weights corresponding to the two patterns.

∂L
∂µ

=
∑
ei∈E

∑
t∈Ti

2∑
k=1

1(ri,t ∈ Ck)×
φi,tk
βi,tk,r
×

fir
∑

ej∈Ck Xij

σ2(
∑

ej∈Ck fij)
2
, (4.20)

∂L
∂σ2

=
∑
ei∈E

∑
t∈Ti

2∑
k=1

1(ri,t ∈ Ck)×
φi,tk
βi,tk,r
×

fir
∑

ej∈Ck Yij

2(σ2
∑

ej∈Ck fij)
2
, (4.21)

where we assume TNRex and TSRex are the 1st and 2nd mixture component respec-

tively. Ck is the candidate pool established under TNR or TSR by ei when routing

task t. fir is the general trend of ei sending a task to ri,t, based on ∆(ei, ri,t). Xij
.
=

fij(ln ∆(ei, ri,t)− ln ∆(ei, ej)) and Yij
.
= fij [(ln ∆(ei, ri,t)− µ)2 − (ln ∆(ei, ej)− µ)2].

The E-step and M-step are performed iteratively until the algorithm converges,

which indicates that the current model parameters fit the observed training data.

4.4 Experiments

Now we validate the expertise difference routing pattern and evaluate the accu-

racy of our method in modeling expert behaviors on various real-life datasets. We

will further demonstrate that with the help of our model, better recommendations

on expert training could be automatically obtained and provided to managers for

improving the performance of collaborative networks.

101

Expert-based QA Chapter 4

4.4.1 Datasets and Evaluation Measures

Datasets

We use real-world problem ticket data collected from a problem ticketing sys-

tem in an IBM IT service department throughout 2006. Three datasets in different

problem categories are explored: DB2, WebSphere, and AIX. DB2 contains prob-

lem tickets on database usage and management; WebSphere is a set of problem

tickets on the enterprise software IBM WebSphere [3]; and AIX is the category of

problem tickets on operating systems.

The details of the three datasets, i.e., the number of tasks, experts, and the

distribution of completion time (CT), are shown in Table 4.2. The three datasets

involve approximately 50 to 400 experts. Understanding how an expert makes a

certain routing decision among many candidates is a meaningful yet potentially

challenging problem. As evident in these datasets, the completion time for dif-

ferent tasks possesses a large diversity, which drives us to analyze expert routing

behaviors that possibly lead to such diversity. For each dataset, we randomly par-

tition it into two disjoint subsets: 75% of tasks for training and 25% for testing.

102

Expert-based QA Chapter 4

Datasets
of # of % of tasks with CT
tasks experts = 2 = 3 = 4 ≥ 5

DB2 26,740 55 44.2 34.3 16.5 5.0
WebSphere 65,786 234 39.0 36.2 20.0 4.8

AIX 120,780 404 40.0 39.4 14.2 6.4

Table 4.2: Three datasets on ticket resolution.

Evaluation Measures

Routing Sequence Likelihood . We compute the log likelihood (LL) of the routing

relationships in the held-out testing dataset, according to Eqn 4.8. The higher

the log likelihood, the better a model explains the routing decisions of experts.

Predicted Task Completion Time. In a real collaborative network, a task is routed

and completed as long as it reaches an expert who can solve it. The completion

time (CT) of a task is defined as the number of experts in its routing sequence.

Estimation of the completion time before actually routing a task is critically useful,

as it can raise attention for those troublesome tasks and ask the network allocate

more resources to handle such tasks. The estimated completion time can also

be used to evaluate routing models. A good routing model shall reflect the real

decision making process and give the estimation as accurate as possible.

Experts that can resolve a task are not unique and are not known before the

task is actually routed. For a new task, one cannot estimate its completion time

by targeting a unique “resolver”. Instead, we need to consider multiple potential

resolvers and multiple routing sequences. Given a task and its initial expert,

103

Expert-based QA Chapter 4

our generative model can generate a routing sequence of experts to process the

task. Specifically, given a task t and its current holder, ei, the receiver ri,t can be

sampled according to our generative process described in Section 4.3. Once ri,t is

obtained, it is treated as the current holder of t; the same procedure is repeated

to produce the next receiver, until we have L experts to process t in sequence.

Although the initial expert to deal with a task is important, in our work, we do

not particularly deal with the assignment of an initial expert to a certain task. We

assume that the initial expert to a task is given beforehand: it is either decided

by the task requestor (e.g., a customer) or by the system.

Task t will stop routing once an expert can solve it. Since each expert in the

routing sequence has a probability to solve the task, the completion time can be

estimated (ĈTt) as the expected number of experts having accessed the task when

it is solved, named predicted completion time.

ĈTt =
L∑

m=1

m
m−1∏
n=1

[1− P (rn, t)]P (rm, t), (4.22)

where rm (rn) is the m-th (n-th) expert in a routing sequence.∏m−1
n=1 [1−P (rn, t)]P (rm, t) gives the probability for them-th expert in the sequence

to solve the task while the previous m − 1 experts fail to, where P (rm, t)’s are

estimated using Eqn. 4.5. Since the probability diminishes quite quickly, we set

L = 10 in practice. Indeed, ĈTt does not vary much when L is beyond 10.

104

Expert-based QA Chapter 4

The routing decision of an expert significantly affects the completion time of

a task. Our model is considered valid if a task routed according to our generative

process can achieve a similar completion time as it does in real situations. Two

measures are employed to calculate the difference between the predicted, ĈT and

the real completion time, CT.

a. Mean Absolute Error (MAE).

MAE =
1

|Test Set|
∑

t∈Test Set

|ĈTt − CTt|. (4.23)

b. Step Loss Measure (SL). Instead of directly computing the difference be-

tween ĈTt and CTt as errors, step loss measure [47] incorporates some tol-

erance of the difference. If the difference is larger than the tolerance, one

estimation mistake is made. We set the tolerance in our case as 1. That is,

if the difference between ĈTt and CTt is within 1, the estimation is regarded

as correct; otherwise, it is regarded as wrong. We calculate the percentage

of the wrong estimations in the testing data set. The lower, the better.

SL =
1

|Test Set|
∑

t∈Test Set

1(|ĈTt − CTt| > 1), (4.24)

where 1 is an indicator function: it picks value 1 if the condition |ĈTt −

CTt| > 1 holds otherwise 0.

We compare our model with the following algorithms:

105

Expert-based QA Chapter 4

(1) Regression: For each task, to estimate its completion time, one can resort

to a regression algorithm to make the prediction. We use two classic methods:

Support Vector Regression (SVR) [18] and Bayesian regression method [46]. Given

a task, two types of features are input to each method: (i) word frequency vector

in the description of a task; (ii) the initial expert assigned to the task. 10-fold

cross validation is conducted for both methods. We evaluate SVR with differ-

ent kernels including a linear kernel, a polynomial kernel, an RBF kernel and a

wavelet kernel. For Bayesian regression, we consider Bayesian linear regression

and Bayesian logistic regression. Classification using SVM [18] or naive Bayes

classifier [46] are also tested, which turns out to be worse than the regression

methods. Among all the variants of SVR or Bayesian regression, we always show

their best results obtained. The classification/regression approaches are employed

as straightforward methods for completion time estimation. They do not attempt

to understand the decision making process of experts, and their results on the

sequence likelihood measure are not available.

(2) Generative models. Miao et al. [44] estimate the probability of an expert to

solve a task and the probability of transferring a task from an expert to another.

Given a task, [44] recommends a sequence of experts to route the task. Their goal

is to shorten the routing as much as possible, while our goal is to characterize

human routing patterns in the real network.

106

Expert-based QA Chapter 4

4.4.2 Model Accuracy

Table 4.3 summarizes the performance of all the methods on step loss measure,

MAE, and log likelihood, where step Loss is shown in percentage and LL is ×104.

From the results of SVR and Bayesian regression, we can see that the completion

time of a task cannot be accurately predicted based on the straightforward regres-

sion methods. In fact, we observe that in the real datasets, similar tasks, even

if assigned initially to the same expert, are often routed to different experts and

resolved with a different completion time. This implies the resolution of a task

is a complicated process and involves human factors. The estimated completion

time in [44] is usually shorter than the real one as its goal is to shorten routing

sequences. It is not surprising that it incurs a large step loss and MAE.

Now we test multiple variants of our generative model. For each variant, we

select combinations of different routing patterns to train a generative model, and

test the learned model under the three measures.

We first examine the performance of TNR-related and TSR-related routing

patterns separately. Then they are combined together as TNR+TSR. Table 4.3

clearly shows both TNR and TSR play a critical role to reduce SL and MAE,

indicating both types of strategies are adopted by experts in real cases. Our model

does capture the decision making process of experts in a collaborative network.

Our method significantly outperforms the content-only classification methods by

107

Expert-based QA Chapter 4

DB2 WebSphere AIX
Models SL MAE LL SL MAE LL SL MAE LL
TNR 4.11 0.30 -0.28 4.77 0.40 -0.88 4.46 0.37 -0.41
TSR 4.56 0.29 -0.25 4.56 0.37 -0.80 4.15 0.30 -0.35

TNR+TSR 1.77 0.08 -0.07 1.44 0.07 -0.19 1.99 0.15 -0.17
TNR+TSR−EX 3.05 0.14 -0.10 3.86 0.25 -0.25 3.86 0.25 -0.25

Miao et al. [44] 9.89 0.68 -0.61 11.10 0.81 -1.21 11.10 0.81 -1.21
SVR 14.78 0.80 N/A 18.20 0.71 N/A 15.08 0.77 N/A

Bayesian regression 13.77 0.84 N/A 17.02 0.80 N/A 12.56 0.85 N/A

Table 4.3: Effectiveness of routing models.

75%. Moreover, the MAE between our estimated completion time and the real

one is between 0.07 and 0.15, which shows that our method can be used to

accurately predict the task completion time.

We then experiment if the expertise difference (EX) routing pattern makes

sense. Specifically, we test the model that combines all the routing patterns

except TNRex and TSRex, denoted as TNR+TSR−EX. The results indicates that

with the EX routing pattern considered, TNR+TSR will better capture the real

decision making process. This result can be attributed to our observation: an

expert is more likely to transfer a task to some expert whose expertise is neither

too similar nor too different.

4.4.3 Resolution Efficiency

One natural hypothesis is that under the task-specific routing, a task will be re-

solved quickly, since TSR directly takes into account the next expert’s ability to

108

Expert-based QA Chapter 4

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Remaining Experts

P
er

ce
nt

ag
e

DB2

Experts favoring TNR
Experts favoring TSR

Figure 4.3: Efficiency of TNR vs. TSR.

solve the task. We now verify this hypothesis. Recall that the variational param-

eter γi in our model TNR+TSR reflects the mixture weights used by expert ei

when transferring a task. If in γi, the sum of the components corresponding to

TSR-related routing patterns is larger than that corresponding to TNR-related

patterns, expert ei is regarded as using TSR more to transfer a task; otherwise

the expert is using TNR more. Therefore, we can roughly divide experts into two

groups: TNR-kind and TSR-kind. After an expert transfers a task, we count the

number of remaining experts needed to resolve the task. We respectively sum-

marize the distribution of the remaining expert number when a TSR-kind expert

transfers a task, and that when a TNR-kind expert transfers a task. Figure 4.3

shows the results on the DB2 tickets. It clearly verifies the hypothesis. On DB2

tickets, a ticket will likely get solved with one more step when an expert favoring

TSR routes it. However, if routed by a TNR-kind expert, a ticket might still

need 2 or 3 more experts to get resolved. We obtain an additional implication

109

Expert-based QA Chapter 4

from Table 4.3 and Figure 4.3, that is, TNR+TSR better captures the expert real

routing behaviors in a collaborative network while routing based on TSR can lead

to more efficient task resolution. Due to space constraints, we omit the results for

AIX and WebSphere, which are very similar to that of DB2.

4.4.4 Expertise Difference Routing Pattern

In our EX routing pattern, given the expertise of ei and ej, we estimate fij, i.e.,

the general trend of ei sending a task to ej, based on a log-normal distribution of

∆(ei, ej). The selection of log-normal is due to the non-negative nature of ∆(ei, ej)

and the asymmetric shape of the distribution shown in Figure 4.1. However, one

might consider estimating fij based on a normal distribution, since a normal

distribution also seems to be quite similar to Figure 4.1:

fij ∝ e−
[∆(ei,ej)−µ]2

2σ2 . (4.25)

Table 4.4 empirically justifies our selection of a log-normal distribution (Step Loss

is shown in percentage and LL is ×104). (TNR+TSR)# is the result corresponding

to using a normal distribution to estimate fij based on Eqn. 4.25, which is much

worse compared with TNR+TSR.

Instead of optimizing µ and σ2 during model solution, we could pre-estimate µ

and σ2 based on the distribution of the relative expertise difference in the training

dataset, as shown in Figure 4.1, and keep them fixed during model training. We

110

Expert-based QA Chapter 4

DB2 WebSphere AIX
Models SL MAE LL SL MAE LL SL MAE LL

TNR+TSR 1.77 0.08 -0.07 1.44 0.07 -0.19 1.99 0.15 -0.17
(TNR+TSR)# 3.54 0.22 -0.18 3.67 0.24 -0.55 4.01 0.34 -0.38
(TNR+TSR)* 1.90 0.10 -0.08 1.59 0.08 -0.20 2.12 0.17 -0.19

Table 4.4: Variants of EX routing pattern.

denote this setting as (TNR+TSR)*. As discussed in Section 4.2.1, the histogram

in Figure 4.1 is due to the integrated effects of all the routing patterns, whereas

TNR+TSR optimizes µ and σ2 with more emphasis on tasks transferred following

the EX pattern, and can further improve the accuracy. Nevertheless, given that

the performance does not differ too much between TNR+TSR and (TNR+TSR)*,

in practice, one might consider saving the trouble of deriving complicated deriva-

tives over µ and σ2 during model solution.

4.4.5 Optimizing Collaborations

In the management of real collaborative networks, system administrators need to

optimize the current network, e.g., in terms of expert training, to improve the

efficiency of task execution. However, it is very expensive, if not impossible, to

alter the real collaborative network just for hypothesis testing. Currently such

decisions are manually made by experienced managers or consultants, without

much quantitative analysis on how the resulting network will perform. Since our

model accurately captures the routing behaviors of experts, it can naturally serve

111

Expert-based QA Chapter 4

as a trustable simulation means for real task routing in the collaborative network.

Hypotheses on whether a certain change to the network can improve the efficiency

or not, can be much more easily examined with the help of our model.

Here we study optimization of the collaborative network, in terms of train-

ing experts to have more efficient routing patterns. Particularly, we examine two

questions: What kind of routing patterns might bring better resolution efficiency?

Which expert(s) should be selected for more training, given a limited budget? Sec-

tion 4.4 implies if an expert is more likely to route a task based on TSR, the task

will be resolved more quickly. We now formally verify this hypothesis. For each

expert, we treat TSR and TNR as two groups of routing patterns, and set the

group mixture weights respectively as (x, 1−x). When an expert transfers a task,

we first randomly select TSR or TNR based on the group mixture weights, and

then select a routing pattern inside the selected group according to their mixture

weights previously learnt in our model TNR+TSR. Based on Section 4.4, we es-

timate the completion time of a task, and evaluate the task resolution efficiency

by the average CT of all the tasks. We vary x to test the change of the task

resolution efficiency. Only the results in the DB2 tickets are shown in Figure 4.4

since similar results on WebSphere and AIX are observed. We can see that as

the mixture weight for TSR gets closer to 1, the average completion time tends

112

Expert-based QA Chapter 4

to become shorter, indicating task resolution becomes more efficient. Therefore,

experts in the network should be trained to route a task based on TSR.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x: Mixture Weight for TSR

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e

DB2

Figure 4.4: Effect of TSR weights.

When the training budget is limited, which experts should be trained first to

maximize the performance of the entire network, is an interesting problem. For

simplicity, we consider the problem of selecting the best candidate. One can ex-

tend to top-k candidate selection by adopting a greedy method. Possible methods

to recommend an expert include (1) randomly select one expert from the network,

denoted as Random; (2) select the expert that transfers the most tasks, denoted

as Frequent Transferrer ; (3) select the expert that is the least efficient: after the

expert transfers a task, the average number of remaining steps to solve a task is

the highest, denoted as Least Efficient ; (4) use our model to conduct task routing

after an expert’s routing pattern is changed and select the expert that can lead to

the most improvement of efficiency. Efficiency improvement is evaluated by the

decrease of the average CT of tasks. Methods (2)-(4) are executed on a training

113

Expert-based QA Chapter 4

Methods Efficiency Improvement (%)
Random 0.27

Frequent Transferrer 0.91
Least Efficient 1.21

Recommendation with Our Model 2.75

Table 4.5: Training recommendation.

task set and evaluated by calculating the efficiency improvement on a testing task

set. Table 4.5 clearly demonstrates that compared with other methods, train-

ing the expert recommended with the help of our model, can result in a much

more efficiency improvement. This result is expected because through routing a

training set of tasks with our model, we are able to know which expert’s rout-

ing pattern plays a critical role in decreasing the average CT of tasks. This study

demonstrates that our model could help conduct hypothesis testing easily and can

provide valuable recommendations to decision makers during the optimization of

a collaborative network.

114

Chapter 5

Conclusion

Question answering (QA), which is concerned with directly returning precise

answers to natural language questions, has been advocated as the key problem for

advancing web search [22]. In fact, not only general web search, QA techniques

are transforming the way to acquire knowledge in many domains such as querying

relational databases via natural language interfaces, healthcare consulting, cus-

tomer service, robotics etc. In this dissertation, we mine disparate information

sources granted by big data age, including texts linked with knowledge bases,

tables, and human networks, for question answering.

In Chapter 2, we develop a novel web texts based question answering frame-

work with KBs as a significant auxiliary. Driven by the incompleteness problem

of KBs, our system directly mines answers from the web texts and shows great

advantages in questions not necessarily answerable by KBs. Unlike existing text-

based QA systems, our system links answer candidates to KBs during answer

115

Conclusion Chapter 5

candidate generation, after which, rich semantics of entities, such as their descrip-

tion texts and entity types in KBs, are utilized to develop effective features for

downstream answer candidate ranking. Compared with various QA systems, our

system framework has achieved an 18% ∼ 54% improvement under F1.

Chapter 3 proposes an end-to-end framework to precisely locate table cells in

millions of web tables for question answering. Our table cell search framework

is compared with state-of-the-art KB-based QA systems. Through extensive ex-

periments, we show that our framework could outperform other systems by a

large margin on real-world questions mined from search engine logs. Our results

also support the hypothesis that web tables are a good complement to knowledge

bases, providing rich knowledge missing from existing knowledge bases.

We investigate employing human networks for question answering and particu-

larly study mining expert behaviors in Chapter 4. We model the decision making

and cognitive process of a human expert during task/question routing in collab-

orative networks. A routing decision of an expert is formulated as a result of a

generative process based on multiple routing patterns. We formalize each routing

pattern in a probabilistic framework, and modele experts’ routing decision making

through a generative model. Our analytical model has been verified that it not

only explains the real routing sequence of a task very well, but also accurately

predicts a task’s completion time in the current collaborative network. In com-

116

Conclusion Chapter 5

parison with all the alternatives, our method improves the performance by more

than 75% under three different measures. We also demonstrate that our model

can provide guidance on optimizing the performance of collaborative networks.

Research Frontiers

This dissertation is towards our long-term goal to advance knowledge discov-

ery and problem solving systems that directly take natural language questions

from users as inputs. To approach this goal, we shall continue to study both

machine-aided (e.g., Chapter 2 and 3) and human-aided (e.g., Chapter 4) question

answering and knowledge discovery systems separately, advance their respective

effectiveness and efficiency. Meanwhile, we will design frameworks/mechanisms

to marry up their advantages and develop both types of systems in a mutually

reinforcing manner. Therefore, a wealth of research problems are awaiting our

efforts to investigate:

(1) Deep Understanding of Human Behaviors. Existing human networks are

far more complicated than the collaborative networks we have explored in this

thesis. For example, Bugzilla1 is a bug tracking system where software developers

jointly fix the reported bugs in projects. Various companies, such as Amazon and

oDesk, maintain a pool of freelancers to provide crowdsourcing services for users.

1Bugzilla: http://www.bugzilla.org/

117

Conclusion Chapter 5

Community question answering websites, such as Quora and Zhihu in China, at-

tract a large pool of users to ask and answer questions they are interested in.

Different systems have different mechanisms, and human behaviors in different

systems can demonstrate different characteristics. Exploring all these types of

human-aided systems will provide us a deep and comprehensive understanding

on human behaviors for problem solving, which will ultimately help boost system

efficiency. Other interesting future work include designing mechanisms and incen-

tives for human-aided systems, in order to organize and motivate experts to solve

problems in a more efficient manner.

(2) Full Exploration and Exploitation of Knowledge Bases. Although a wealth

of valuable information is provided in knowledge Bases, they tend to be quite noisy

and disorganized, which poses severe challenges in utilizing the information in an

effective way. One manifestation of the information disorganization in Freebase

lies in the cluttered types associated with each entity. In Freebase, an entity is

usually associated with dozens of types. For example, entity Barack Obama is

associated with types person, president, politician, artist, celebrity, etc. However,

each type is by no means of the same significance under a given context. Given a

relation tuple in knowledge bases <Obama, President-Of, U.S.A>, the type “pres-

ident” and “politician” should be more important than others. It is important to

rank the types of an entity based on their relevance w.r.t. a context, which will be

118

Conclusion Chapter 5

important in various scenarios including question answering, entity disambigua-

tion and so on. Such information disorganization studies can also be applied to

canonicalizing the relation information and building the hierarchy of entity types,

where the common goal is to arrange information in knowledge bases in a more

precise and organized manner, in order for systems relying on knowledge bases to

make the most of them.

In terms of exploitation of various knowledge graphs, most of existing works

focus on directly querying them to retrieve information. In [62], we explored the

great potential of knowledge graphs as a significant auxiliary in question answer-

ing, where answer candidates extracted from the Web were linked to Freebase

and semantic features were developed based on their types and description texts

in Freebase. However, the information provided by knowledge bases is far beyond

entity types and their description texts (e.g., the relations or paths between two

entities). How to utilize such information to help question answering is worth

studying in the future. Apart from question answering, massive amount of knowl-

edge manually encoded in knowledge bases, such as relations among entities, nat-

urally makes tremendous labeled information, which could be employed in NLP

tasks such as sentence parsing and information extraction.

(3) Mutual Promotion and Effective Union of Two Types of Systems. Interest-

ing studies to conduct are on the union of the two types of systems. For example,

119

Conclusion Chapter 5

given a problem, which type of systems should be employed to solve it? One might

not find satisfying answers by searching Google or by reading lengthy technical

manuals, whereas one might wait for a long time, yet still get low-quality, un-

trustworthy answers after consulting friends or an expert forum. What is a good

measure that takes into account both the cost (waiting time) and the gain (answer

quality)? These questions inspire future studies on leveraging machine-aided and

human-aided systems in an effective manner for better task accomplishments.

(4) Advanced Text Mining via Incorporating Semantics. Text is a significant

type of human knowledge carriers, and effective mining of useful information from

diversified texts will significantly benefit intelligent knowledge discovery systems.

Traditional text mining techniques mostly rely on bag-of-words models, which only

take into account the co-occurrence statistics of words for modeling. As a known

fact, word semantics and linguistic structures, referred to as semantics here, play

important roles in understanding the meaning of texts: (i) Word semantics. Lan-

guage models and deep neural networks have been proposed to embed each word

into an N-dimensional space, where words sharing similar semantic meanings are

close to each other in the embedded space; (ii) Structural semantics, such as those

obtained by sentence parsers. Recurrent structural patterns in large-scale texts,

together with word semantic representations and word co-occurrence statistics,

shall all be combined in a systematic way to capture deep meanings underlying

120

Conclusion Chapter 5

surface texts. Future work in this line could be to systematically investigate the

potential of incorporating word and structural semantics into classic topic model-

ing approaches. Combining such semantics with statistical information in big data

is promising in significantly boosting traditional text mining techniques, especially

for short texts where word co-occurrence patterns are inconspicuous.

(5) Domain-specific Knowledge Discovery. Apart from the previously discussed

knowledge graph, texts, and tables, other domain-specific data such as health

records, are also of huge significance in our daily life. By effectively mining such

data, one could build more advanced domain-specific knowledge discovery sys-

tems, such as doctor assistant systems to recommend effective and affordable

treatments. Specifically, given vast amounts of medical information, such as in

scientific reports or health records, tremendous knowledge mining efforts could

be made, including (i) extracting entities in the medicine domain and linking

them to knowledge bases, and detecting relations between two entities. Deducing

the causes of certain symptoms and their potential treatments can be conducted

later based on the extracted relations; (ii) capturing correlation patterns between

treatment and outcome, based on historical treatment-outcome pairs; (iii) among

various information sources including different scientific journals and medical spe-

cialists, identifying those trustable or accurate ones so that information from them

121

Conclusion Chapter 5

should be put more emphasis on. Such mined knowledge will undoubtedly play

significant roles in assisting doctors to make wiser decisions in different situations.

In summary, this dissertation aims at unleashing the power of disparate in-

formation sources for question answering and knowledge discovery. We deal with

fundamental limitations of current automated QA, and critical factors that affect

the efficiency and effectiveness of human collaborative QA. Our work helps us

build close collaborations with researchers at Microsoft Research, Army Research

Lab, IBM Research, and Institute for Collaborative Biotechnologies. Our recent

collaboration with Baidu Research Big Data Lab initiates a series of exciting re-

search projects on deep question answering in healthcare forums to assist disease

diagnosis and generate treatment recommendations. Not only in healthcare, tech-

niques for understanding natural language questions and for mining answers from

disparate sources could be applied in any other domain where people desire to

access knowledge more effortlessly. For example, in software engineering, how to

retrieve code snippets available on the Web for re-use, or more excitingly generate

code snippets based on a natural language task description, could largely pro-

mote project development efficiency. Such topics are of interdisciplinary nature

and request collaborative efforts from researchers in natural language process-

ing, crowdsourcing, human computer interaction, software engineering, etc. My

122

Conclusion Chapter 5

upcoming visit to the Computer Science Department at the University of Wash-

ington is dedicated to establishing such collaborations with experts in these areas.

Hence, our research studies unfold a bright future for data mining to boost natural

language question answering in various domains, and for jointly utilizing human

intelligence and machine intelligence for problem solving and decision making.

123

Bibliography

[1] Freebase wiki. http://wiki.freebase.com/wiki/Wikipedia.

[2] Hg data. hgdata.com.

[3] http://en.wikipedia.org/wiki/ibmwebsphere.

[4] Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural lan-

guage interfaces to databases–an introduction. Natural language engineering,

1(01):29–81, 1995.

[5] Krisztian Balog and Robert Neumayer. Hierarchical target type identification

for entity-oriented queries. In CIKM, pages 2391–2394. ACM, 2012.

[6] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic

parsing on Freebase from question-answer pairs. In EMNLP, pages 1533–

1544, 2013.

124

Bibliography

[7] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In

ACL, 2014.

[8] Christopher Bishop et al. Pattern recognition and machine learning, volume 1.

springer New York, 2006.

[9] C.M. Bishop. Pattern recognition and machine learning. 2006.

[10] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation.

JMLR, 3:993–1022, 2003.

[11] Eric Brill, Susan Dumais, and Michele Banko. An analysis of the AskMSR

question-answering system. In EMNLP, pages 257–264, 2002.

[12] Eric Brill, Jimmy J Lin, Michele Banko, Susan T Dumais, and Andrew Y

Ng. Data-intensive question answering. In TREC, 2001.

[13] ChristopherJC Burges. From RankNet to LambdaRank to LambdaMART:

An overview. Learning, 11:23–581, 2010.

[14] ChristopherJC Burges, Krysta Marie Svore, Paul N Bennett, Andrzej Pastu-

siak, and Qiang Wu. Learning to rank using an ensemble of lambda-gradient

models. In Yahoo! Learning to Rank Challenge, pages 25–35, 2011.

125

Bibliography

[15] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang

Zhang. Webtables: exploring the power of tables on the web. VLDB,

1(1):538–549, 2008.

[16] Michael J Cafarella, Alon Y Halevy, Yang Zhang, Daisy Zhe Wang, and

Eugene Wu. Uncovering the relational web. In WebDB. Citeseer, 2008.

[17] Jennifer Chu-Carroll, John Prager, Christopher Welty, Krzysztof Czuba, and

David Ferrucci. A multi-strategy and multi-source approach to question an-

swering. Technical report, DTIC Document, 2006.

[18] Nello Cristianini and John Shawe-Taylor. An introduction to support vector

machines and other kernel-based learning methods. Cambridge university

press, 2000.

[19] Silviu Cucerzan and Avirup Sil. The msr systems for entity linking and

temporal slot filling at TAC 2013. In Text Analysis Conference, 2013.

[20] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei

Wu, Reynold Xin, and Cong Yu. Finding related tables. In SIGMOD, pages

817–828. ACM, 2012.

[21] Xin Dong, K Murphy, E Gabrilovich, G Heitz, W Horn, N Lao, Thomas

Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A Web-scale

126

Bibliography

approach to probabilistic knowledge fusion. In SIGKDD, pages 601–610,

2014.

[22] Oren Etzioni. Search needs a shake-up. Nature, 476(7358):25–26, 2011.

[23] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations

for open information extraction. In EMNLP, pages 1535–1545, 2011.

[24] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Paraphrase-driven

learning for open question answering. In ACL, pages 1608–1618, 2013.

[25] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answer-

ing over curated and extracted knowledge bases. In SIGKDD. ACM, 2014.

[26] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,

Aditya A Kalyanpur, Adam Lally, J Murdock, Eric Nyberg, John Prager,

et al. Building watson: An overview of the DeepQA project. AI magazine,

31(3):59–79, 2010.

[27] Jerome Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of Statistics, pages 1189–1232, 2001.

[28] Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, Li Deng, and

Yelong Shen. Modeling interestingness with deep neural networks. In

EMNLP, 2014.

127

Bibliography

[29] Fangqiu Han, Shulong Tan, Huan Sun, Xifeng Yan, Mudhakar Srivatsa, and

Deng Cai. Distributed representations of expertise. SDM, 2016.

[30] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of

data with neural networks. Science, 313(5786):504–507, 2006.

[31] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional

neural network architectures for matching natural language sentences. In

NIPS, pages 2042–2050, 2014.

[32] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. Learning deep structured semantic models for web search using click-

through data. In CIKM, pages 2333–2338. ACM, 2013.

[33] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for gener-

ating image descriptions. In CVPR, 2015.

[34] Jeongwoo Ko, Eric Nyberg, and Luo Si. A probabilistic graphical model

for joint answer ranking in question answering. In SIGIR on Rearch and

Development in IR, pages 343–350. ACM, 2007.

[35] Cody Kwok, Oren Etzioni, and Daniel Weld. Scaling question answering to

the Web. TOIS, 19(3):242–262, 2001.

128

Bibliography

[36] Adam Lally, John Prager, Michael McCord, BK Boguraev, Siddharth Pat-

wardhan, James Fan, Paul Fodor, and Jennifer Chu-Carroll. Question anal-

ysis: How watson reads a clue. IBM Journal of Research and Development,

56(3.4):2–1, 2012.

[37] Fei Li and HV Jagadish. Constructing an interactive natural language inter-

face for relational databases. VLDB, 8(1):73–84, 2014.

[38] Xin Li and Dan Roth. Learning question classifiers. In ICCL, pages 1–7,

2002.

[39] Yunyao Li, Huahai Yang, and HV Jagadish. Nalix: an interactive natural

language interface for querying xml. In SIGMOD, pages 900–902. ACM, 2005.

[40] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and

searching web tables using entities, types and relationships. VLDB, 3(1-2).

[41] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for

large scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[42] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. In-

troduction to information retrieval, volume 1. Cambridge university press

Cambridge, 2008.

129

Bibliography

[43] Elaine Marsh and Dennis Perzanowski. MUC-7 evaluation of ie technology:

Overview of results. In MUC-7, volume 20, 1998.

[44] Gengxin Miao, Louise E Moser, Xifeng Yan, Shu Tao, Yi Chen, and Nikos

Anerousis. Generative models for ticket resolution in expert networks. In

SIGKDD, pages 733–742. ACM, 2010.

[45] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek.

Distant supervision for relation extraction with an incomplete knowledge

base. In HLT-NAACL, pages 777–782, 2013.

[46] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45,

1997.

[47] Herbert Moskowitz and Kwei Tang. Bayesian variables acceptance-sampling

plans: quadratic loss function and step-loss function. Technometrics,

34(3):340–347, 1992.

[48] J William Murdock, Aditya Kalyanpur, Chris Welty, James Fan, David A

Ferrucci, DC Gondek, Lei Zhang, and Hiroshi Kanayama. Typing candidate

answers using type coercion. IBM Journal of Research and Development,

56(3.4):7–1, 2012.

130

Bibliography

[49] SeungHoon Na, InSu Kang, SangYool Lee, and JongHyeok Lee. Question

answering approach using a WordNet-based answer type taxonomy. In TREC,

2002.

[50] David Nadeau and Satoshi Sekine. A survey of named entity recognition and

classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[51] Panupong Pasupat and Percy Liang. Compositional semantic parsing on

semi-structured tables. ACL, 2015.

[52] Christopher Pinchak and Dekang Lin. A probabilistic answer type model. In

EACL, 2006.

[53] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of

natural language interfaces to databases. In Proceedings of the 8th interna-

tional conference on Intelligent user interfaces, pages 149–157. ACM, 2003.

[54] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data

for image question answering. In Advances in Neural Information Processing

Systems, pages 2935–2943, 2015.

[55] Stephen Robertson and Hugo Zaragoza. On rank-based effectiveness measures

and optimization. Information Retrieval, 10(3):321–339, 2007.

131

Bibliography

[56] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K Misra,

and Hema S Koppula. Robobrain: Large-scale knowledge engine for robots.

preprint arXiv:1412.0691, 2014.

[57] Nico Schlaefer, Petra Gieselmann, Thomas Schaaf, and Alex Waibel. A pat-

tern learning approach to question answering within the ephyra framework.

In Text, speech and dialogue, pages 687–694. Springer, 2006.

[58] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. Efficient

ticket routing by resolution sequence mining. In SIGKDD, pages 605–613.

ACM, 2008.

[59] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil. A

latent semantic model with convolutional-pooling structure for information

retrieval. In CIKM, pages 101–110. ACM, 2014.

[60] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil.

Learning semantic representations using convolutional neural networks for

web search. In WWW companion, pages 373–374, 2014.

[61] Huan Sun, Hao Ma, Xiaodong He, Wen-Tau Scott Yih, Yu Su, and Xifeng

Yan. Table cell search for question answering. Under Review, 2016.

132

Bibliography

[62] Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai, Jingjing Liu, and Ming-

Wei Chang. Open domain question answering via semantic enrichment. In

Proceedings of the 24th International Conference on World Wide Web, pages

1045–1055. International World Wide Web Conferences Steering Committee,

2015.

[63] Huan Sun, Mudhakar Srivatsa, Shulong Tan, Yang Li, Lance M Kaplan, Shu

Tao, and Xifeng Yan. Analyzing expert behaviors in collaborative networks.

In SIGKDD, pages 1486–1495. ACM, 2014.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning

with neural networks. In NIPS, pages 3104–3112, 2014.

[65] Chen Tsai, Wentau Yih, and ChrisJ.C. Burges. Web-based question an-

swering: Revisiting AskMSR. Technical Report MSR-TR-2015-20, Microsoft

Research, 2015.

[66] Christina Unger, Lorenz Bühmann, Jens Lehmann, AxelCyrille

Ngonga Ngomo, Daniel Gerber, and Philipp Cimiano. Template-based

question answering over RDF data. In WWW, pages 639–648. ACM, 2012.

[67] Ellen M Voorhees and Dawn M Tice. Building a question answering test

collection. In SIGIR on Rearch and Development in IR, pages 200–207. ACM,

2000.

133

Bibliography

[68] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul

Gupta, and Dekang Lin. Knowledge base completion via search-based ques-

tion answering. In WWW, pages 515–526, 2014.

[69] Ryen W. White, Matthew Richardson, and Wentau Yih. Questions vs. queries

in informational search tasks. Technical Report MSR-TR-2014-96, Microsoft

Research, 2014.

[70] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, Maya Ramanath,

Volker Tresp, and Gerhard Weikum. Natural language questions for the

Web of data. In EMNLP-CoNLL, pages 379–390, 2012.

[71] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaud-

huri. Infogather: entity augmentation and attribute discovery by holistic

matching with web tables. In SIGMOD, pages 97–108. ACM, 2012.

[72] Yi Yang and Ming-Wei Chang. S-mart: Novel tree-based structured learning

algorithms applied to tweet entity linking. ACL, 2015.

[73] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola.

Stacked attention networks for image question answering. arXiv preprint

arXiv:1511.02274, 2015.

134

Bibliography

[74] Xuchen Yao and Benjamin Van Durme. Information extraction over struc-

tured data: Question answering with Freebase. In ACL, 2014.

[75] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic

parsing via staged query graph generation: Question answering with knowl-

edge base. ACL, 2015.

[76] Haoqi Zhang, Eric Horvitz, Yiling Chen, and David C Parkes. Task routing

for prediction tasks. In AAMS-Volume 2, pages 889–896. IFAAMS, 2012.

[77] Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexander G Hauptmann. Un-

covering temporal context for video question and answering. arXiv preprint

arXiv:1511.04670, 2015.

[78] Lei Zou, Ruizhe Huang, Haixun Wang, Jeffer Xu Yu, Wenqiang He, and

Dongyan Zhao. Natural language question answering over RDF: a graph

data driven approach. In SIGMOD, pages 313–324. ACM, 2014.

135

