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Abstract

Computational Tools for Large-Scale Linear Systems

by

Michael D. Nip

While the theoretical analysis of linear dynamical systems with finite state-

spaces is a mature topic, in situations where the underlying model has a large number

of dimensions, modelers must turn to computational tools to better visualize and ana-

lyze the dynamic behavior of interest. In these situations, we are confronted with the

Curse of Dimensionality: computational and storage complexity grows exponentially

in the number of dimensions.

This doctoral project focuses on two main classes of large-scale linear systems

which arise in system biology. The Chemical Master Equation (CME) is a Fokker-

Planck equation which describes the evolution of the probability mass function of a

countable state space Markov process. Each state of the CME is labelled with an

ordered S-tuple corresponding to one configuration of a well-mixed chemical system,

where S is the number of distinct chemical species of interest. Even in cases where

one only considers a projection of the CME to a finite subset of the states, one

still must contend with the Curse of Dimensionality: the computational complexity

grows exponentially in the number of chemical species. This dissertation describes

xi



a computational methodology for efficient solution of the CME which, in the best

cases, will scale linearly in the number of chemical species.

The second main class of high-dimensional problems requiring computational

tools are coupled linear reaction-diffusion equations. For this class of models, we focus

primarily on the computation of certain high-dimensional matrices which describe in a

quantitative sense the input-to-state and state-to-output relationships. We describe

algorithms for extracting useful information stored in these matrices and use this

information to efficiently compute both reduced order models and open-loop control

laws for steering the full system. A key feature of this approach is that the method is

completely simulation or experiment free, in fact, in our numerical experiments, the

computation of a reduced model or open-loop control law is an order of magnitude

faster on a laptop than simulation of the full system on a 32 core node of a high-

performance cluster.

In both projects, the enabling computational technology is the recently proposed

Tensor Train (TT) structured low-parametric representation of high-dimensional data.

The TT-format effectively exploits low-rank structure of the ”unfolding matrices” for

compression and computational efficiency. Formally, the computational complexity of

basic TT arithmetics scale linearly in the number of dimensions, potentially circum-

venting the curse of dimensionality. To demonstrate the effectiveness of this approach,

we performed numerous numerical experiments whose results are reported here.
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Chapter I

Introduction

I.1 Large-Scale Linear Time Invariant Systems in

Systems Biology

The work in this dissertation is concerned with the efficient simulation and con-

trol of large-scale Linear Time Invariant (LTI) systems that arise in systems biology.

The standard state-space model with state x ∈ Rn, input u ∈ Rm, and outputs y ∈ Rk

is given by

ẋ = Ax+Bu

y = Cx+Du, (I.1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n, and D ∈ Rk×m.

The first class of systems we are concerned with are discrete stochastic mod-
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els which are used to describe the biological phenomena within living cells. Each

state of the stochastic model is labeled with an ordered S-tuple corresponding to

one configuration of a well-mixed chemical system, where S is the number of distinct

chemical species of interest. The Chemical Master Equation describes the evolution

of the probability mass function conditioned on some initial probability distribution

and can be formatted as a linear ODE with countable state-space ṗ = Ap. In this

example we are concerned with the efficient numerical solution of the Initial Value

Problem and leave questions concerning model reduction and control to future work.

This problem is difficult to treat using standard reduced-basis methods since the

computational complexity grows exponentially in the number of chemical species.

The second class of problems examined are linearized reaction-diffusion equa-

tions which describe the evolution of a spatial profile of biochemicals of interest.

Here, the computational complexity of analyzing and solving these problems compu-

tationally originates in both the dimension of the spatial domain and the choice of

discretization as well as the complexity of the chemical networks under consideration.

In this case, we are interested in questions of efficient control and model reduction of

the large-scale system. For example, is there an efficient method to compute a control

policy which steers the system to a certain chemical profile by introducing small quan-

tities of certain key reactants? How should one efficiently compute a reduced order

model which sufficiently captures the input-output behavior of the original system?

We emphasize here that we will treat numerical solution of the CME itself of
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great practical interest while linearized reaction-diffusion equations are an interesting

source of examples as a test bed for our control algorithms.

I.1.1 The Chemical Master Equation

In spite of the success of continuous-variable deterministic models in describing

many biological phenomena, discrete stochastic models are often necessary to describe

biological phenomena inside living cells where random motion of reacting species

introduces randomness in both the order and timing of biochemical reactions. Such

random effects become more pronounced when one factors in the discrete nature of

reactants and the fact that they are often found in low copy numbers inside the cell.

Manifestations of randomness vary from copy-number fluctuations among genetically

identical cells [Elo+02] to dramatically different cell fate decisions [MA97] leading to

phenotypic differentiation within a clonal population. Characterizing and quantifying

the effect of stochasticity and its role in the function of cells is a central problem in

molecular systems biology.

In order to effectively capture this experimentally observed stochasticity, the

evolution of the chemical species of interest are commonly modeled using jump

Markov processes. Here, each state of the process corresponds to the copy num-

ber of one of the constituent species [Gil76]. Within this framework, the evolution

of the probability density over the possible configurations of the reaction network is

described by a Forward Kolmogorov Equation, frequently referred to as the Chemical
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Master Equation (CME) within the chemical literature. While analytical solutions

can be obtained under specific assumptions about the structure of the chemical net-

work [JH07], these assumptions prove so restrictive as to exclude the vast majority

of biologically relevant systems. In most cases, the CME cannot be solved explicitly

and various numerical simulation techniques have been proposed to approximately

solve the time-evolution problem.

A “well-stirred” solution of d chemically reacting molecules in thermal equi-

librium can be described by a jump Markov process, where for each fixed time

t ≥ 0, X(t) ∈ Zd≥0 is a random vector of nonnegative integers with each compo-

nent representing the number of molecules of one chemical species present in the

system. In [Kam92] and the references therein, it is shown that, given an ini-

tial condition X(0) ∈ Zd≥0, the corresponding probability density function (PDF)

Zd≥0 × [0,∞) 3 (x, t) 7→ px(t) of the process solves the Chemical Master Equation

(CME):

d

dt
px(t) = −px(t)

R∑
s=1

ωs(x) +
R∑
s=1

px−ηs(t)ω
s
(
x− ηs

)
(I.1.2)

where R is the number of reactions in the system, ηs ∈ Zd and ωs are the stoichio-

metric vector and propensity function of the sth reaction, respectively. The CME is

a system of coupled linear ordinary differential equations with one equation per state

X(t) = x ∈ Zd≥0.

The CME describes the dynamics of probabilities of finding the chemical system

in different states. In general the number of these different states is countably infinite,
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as it is not unknown a priori the maximum number of copies that each species can

take. While this gives rise to an infinite number of state variables, each indicating

the probability of a given chemical state, the vast majority of these probabilities are

vanishingly small. This has motivated approaches for truncating the infinite number

of state variables in the CME in a way that results in a finite number of state variables

corresponding to chemical states that are likely to have high probability mass. The

truncated CME consists of a system of linear ODEs with finite state space, that can

in principle be solved. One such truncation approach which we will follow here is

the Finite State Projection method. This truncation approach has the advantage of

yielding bounds on the error between the solution of the truncated finite system and

the original infinite set of ODEs (the CME).

In practice, the truncation satisfying a given error tolerance may still require a

very large number of states rendering a direct numerical solution of even the projected

equation infeasible in many cases. Chapter IV describes a numerical approach to solv-

ing the CME which scales favorably with the number of chemical species, expanding

the class of efficiently solvable CME problems.

I.1.2 Linearized Reaction-Diffusion Equations

For a reaction-diffusion system with S chemical species, a PDE describing the

time evolution on the cube D = (−π, π)d with control u and output y, subject to
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Dirichlet boundary conditions is given by:
∂tq(x, t) = D∆q(x, t) +R(q, x, t) + F (u(t), x, t), x ∈ D.

q(x, t) = 0, x ∈ ∂D,

y(t) = H(q(x, t)).

(I.1.3)

where q(x, t) is a vector-valued function whose s-th entry qs(x, t) corresponds to the

concentration of chemical species Qs, D is a diagonal matrix of diffusion coefficients,

R(q, x, t) accounts for the local reactions, F (u(t), x, t) describes the input to the

system, and H(q(x, t)) describes the output.

If the system has R reaction channels and if the reaction rate Rρ(q, x, t) for

each channel ρ has the form

Rρ(q, x, t) = fρ(x)Sρωρq(x, t), (I.1.4)

then the term R(q, x, t) describing the reactions can be written as the sum

R(q, x, t) =
R∑
ρ=1

(fρ(x)(Sρωρq)) . (I.1.5)

In equation (I.1.4), Sρ is the stoichiometric vector associated with reaction ρ that

describes the change in molecule counts when the reaction fires, ωρq(x, t) describes

the rate of reaction ρ as a linear functional of the concentration of reactants, and

f ρ(x) describes the spatial dependence of the reaction.

Further assuming that F (u(t), x, t) is a linear function of u(t) and time-invariant

and that H(q(x, t)) is a linear function of q(x, t):

F (u(t), x, t) = F (x)u(t),
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H(q(x, t)) = Hq(x, t),

(V.1.3) simplifies to
∂tq(x, t) =

(
D∆ +

∑R
ρ=1 f

ρ(x)(Sρωρ)
)
q(x, t) + F (x)u(t), x ∈ D.

q(x, t) = 0, x ∈ ∂D,

y(t) = Hq(x, t).

(I.1.6)

Note that (V.4.1) can also be used to represent the small fluctuations about a

solution profile of the full nonlinear system. Suppose q0(x, t) is a solution of (V.1.3)

under the constant control input u0. Consider a small perturbation in the control

input

u(t) = u0 + εu1(t),

and the corresponding perturbation in the concentration profile

q(x, t) = q0(x, t) + εq1(x, t),

where q1(x, t) = 0 on x ∈ ∂D and ε is a small parameter. Assuming R(q, x, t)

and F (u(t), x, t) can be expanded in Taylor series about q(x, t) and u0, we can ex-

pand (V.4.1) in powers of ε

ε∂tq1(x, t) = εD∆q1(x, t) + ε∇qR(q0, x, t)q1(x, t) + ε∇uF (u0, x, t)u1(t) +O(ε2).

which reduces to (V.4.1) after truncation of the terms that are O(ε2) and higher.

For the numerical experiments, we consider a version of (V.4.1) that has been

discretized in space using a finite difference scheme on a uniform tensor grid with

7



spacing h but no discretization in time (Method of Lines). Let q̂(x, t) denote the

discrete approximation of q(x, t). The time evolution of the discretized system is

given by the finite-dimensional LTI system:

∂tq̂(x, t) = Aq̂(t) +Bu(t),

y(t) = Cq̂(t). (I.1.7)

where

A =
1

h2
(∆dd ⊗D) +

R∑
ρ=1

(
diag(f̂

ρ
)⊗ (Sρω̂ρ)

)
, (I.1.8)

where ∆dd is the discrete Laplacian on a rectangular grid with Dirichlet boundary

conditions, D is the diffusion tensor, f̂
ρ

is the discretization of fρ(x) on the spatial

grid, and B and C depend on the discretizations of F (x) and H , respectively.

I.2 Structured Low-Parametric Representations of

Multidimensional Arrays

A key feature of the two applications discussed previously is that while the prob-

lems maybe very difficult to treat computationally when using a naive discretization

scheme, the operators involved and the solutions may have nice structure (e.g. sep-

arability) which may be used to reduce the complexity. A computational approach

should use a structured formatting of the data so that both the storage required to

represent the system and solutions is small and the number of floating point opera-

tions needed to perform basic arithmetic operations is reduced.

8



A formatting of the data that has proven quite advantageous, at least exper-

imentally, in this dissertation work is the Tensor Train (TT) format developed by

Oseledets and Tyrtyshnikov [Ose11; OT09]. We remark that the TT format has been

known in theoretical chemistry as Matrix Product States or Linear Tensor Networks

for at least two decades [Whi93]. Given a multidimensional array X(i1, . . . , id) with

d separate indices, a TT decomposition of X could be

X(i1, . . . , id) = X1(i1)X2(i2) . . . Xd(id). (I.2.1)

where each Xk(ik) is an indexed family of matrices of size rk−1 × rk. The collection

of rk’s are called the TT-ranks of the decomposition and measure the structure in

the data. Let n be the largest number of values that each index ik may take and

r an upper bound on the TT ranks. While a full-format representation of X would

require storage of O(nd) separate parameters, the storage of the TT decomposition

scales as O(dnr2). If the ranks are small, the storage savings may be quite significant.

The structure of the TT format also allows fast basic arithmetic. Typically, whereas a

full-format operation would require O(nd) operations, the same operation when using

TT formatted arrays will be O(dn · poly(r)). In some sense, the TT format trades

the Curse of Dimensionality for the Curse of the Ranks.

While there are many other alternative structured low-parametric representa-

tions of multidimensional arrays, e.g. [Gra10a; Hit26; HK09], the TT format has a

number of advantages. First, given an array in full format, the TT-ranks are well-

defined and are easily computed. Second, there is a stable algorithm for computing a
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TT decomposition from a full-format array. Third, the TT format admits a robust,

stable, and fast tensor rounding procedure meaning that given a TT formatted ar-

ray, there is a numerical procedure for finding an approximation of the array in a TT

decomposition with smaller ranks, without reference to the full-format representation.

The combination of good compression, fast arithmetics, and numerical stability

make the TT format a good choice for the representation of the data, in general. An

important part of the dissertation will be characterizing the TT ranks of the objects

involved since this will give a good indication of whether the TT approach will work

well for the particular problem under consideration.

I.3 Structure of the Dissertation

This dissertation is structured as follows. Chapter II reviews important back-

ground information on modeling high-dimensional systems with tensor data-structures

and, in particular, the Tensor Train representation. Chapter III discusses some ex-

tensions to the Tensor Train format which are based on alternate orderings of the

spatial, quantization, or operator levels and derives algorithms for basic arithmetic

operations in these formats including products with alternate formats. It is adapted

from material published in[Kaz+14; NHK13]. Chapters IV and V describe applica-

tions of the preceding two sections to construct algorithms for large-scale LTI sys-

tems. Chapter IV describes the hp-DG-QTT numerical solver for the Chemical Master

Equation which combines the QTT representation in the ”species” space with the hp-
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Discontinous Galerkin semidiscretization in time to efficiently simulate the evolution

of the probability distribution and demonstrates its effectiveness on some examples

from systems biology. The results of that chapter were first published in [Kaz+14],

which was work done in collaboration with Mr. Vladimir Kazeev and Dr. Christoph

Schwab of ETH-Zürich. Chapter V describes an algorithm which uses the TT format

for solving Continous Time Algebraic Lyapunov Equations (CALEs), in particular,

solving for the infinite-time horizon gramians of an LTI control system, and then

using the TT structure of the solution to compute reduced models by projecting the

dynamics onto the dominant subspaces of the gramians. This chapter also gives de-

tailed description of numerical experiments which demonstrate the effectiveness of

the approaches. The CALE solver and a portion of the numerical experiments were

originally published in [NHK13]. Chapter VII summarizes some additional projects

related to modeling and identification of stochastic gene regulatory networks. The

section on reduced models of the CME contains work originally published in [NHK12].
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Chapter II

High-Dimensional Modeling and

the Tensor Train Format

This chapter reviews the basic numerical linear algebra on which the material of

the three subsequent chapters are built, namely, basic finite-dimensional multilinear

algebra and the Tensor Train structured representation of multidimensional arrays.

This chapter is only meant to give the reader the bare essentials, i.e. we barely

scratch the surface of algebraic tensor spaces and make no mention of topological

tensor spaces. We refer the reader to [Hac12] and the references therein for a more

thorough treatment of these subjects.
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II.1 Tensors and Multidimensional Arrays

Here and in the subsequent chapters, the terms tensor and multi-dimensional

array will be used synonymously. Suppose x(i1, . . . , id) is a multi-dimensional array

with d separate indices ik which each take nk separate values for each k. We refer

to X as a d-dimensional or d-level vector. Each parameter ik taking values in a

corresponding index set Ik indexes a dimension (alternatively referred to as a level,

or mode) of the d-level vector. The ordered list of nk’s are referred to as the mode

sizes of the array.

A few basic operations on tensors will be useful to us. The contraction of the

modes ik1 , . . . , iks is a summation along the elements of the array for which those

indices are equal. For example, the contraction of modes i1 and i2 of a 3-dimensional

vector v is given by: ∑
i1=i2

v(i1, i2, i3). (II.1.1)

For the contraction to be well defined the summation must be over compatible indices,

i.e. their index sets must be the same. The tensor product of two arrays x(i1, . . . , idx)

and v(j1, . . . , jdv) denoted x⊗v is a (dx +dv)-level vector with elements given by the

following formula:

(x⊗ v)(i1, . . . , idx , j1, . . . , jdv) = x(i1, . . . , idx) · v(j1, . . . , jdv). (II.1.2)

A linear transformation of d-level vectors may be encoded in a d-level matrix

A(i1, . . . , id1 ; j1, . . . , jd2). The matrix-vector multiplication is defined as a tensor prod-
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uct of the matrix and vector followed by a contraction along the compatible indices

(Ax)(i1, . . . , id1) =
∑

j1,...,jd2

A(i1, . . . , id1 ; j1, . . . , jd2)x(j1, . . . , jd2). (II.1.3)

A major hurdle that must be overcome when working with high dimensional

arrays is the so-called curse of dimensionality [Bel61], that is, the memory require-

ments and computational complexity of basic arithmetics grow exponentially in the

number of dimensions.

One approach to circumventing the curse of dimensionality is inspired by the

low-rank approximation of matrices by the SVD. Suppose A ∈ Rm×n has rank k and

we wish to find a lower rank matrix R ∈ Rm×n that best approximates A in the

Frobenius norm, that is, which minimizes ||A − R||F . Erhard Schmidt showed that

the best choice of R can be expressed in terms of the SVD of A [Sch07]. Suppose A

has a singular value decomposition given by:

A = UΣV T

Taking s < min{m,n}, and take

Rs = UΣsV
T , with (Σs)ij =


σi i = j ≤ s

0 otherwise,

(II.1.4)

Proposition II.1.1. For A ∈ Rm×n, fix r < k and define Rr as in (II.1.4). Rr is the

solution to the following two minimization problems:

min
Rank(R)≤r

||A−R||F , min
Rank(R)≤r

||A−R||2,
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with approximation error given by

||A−R||2 = σr+1, ||A−R||F =

√√√√ k∑
i=r+1

σ2
i .

The minimizer is unique if and only if σr > σr+1.

When the singular values of A decay rapidly, both storage and computational

complexity can be reduced by using this structured representation. The storage of a

rank-r matrix of size m× n in full-format requires mn parameters while the reduced

SVD requires r(m + n). Full-format matrix-vector multiplication has complexity

O(mn), while the SVD representation of A requires O(r(m+ n)). Therefore when A

can be well approximated by a low-rank matrix, the savings can be quite significant.

Many papers have attempted to address the curse of dimensionality by gener-

alizing the SVD to higher dimensions [Cic+09; CV09; Gra10a; Hit26; HK09; LC09;

Ose09a]. One commonly used approach is known variously as the canonical polyadic

decomposition or CANDECOMP/PARAFAC, both abbreviated as CP [CC70; Hit26].

A CP decomposition of a d-level vector x is a sum of tensor products of 1-dimensional

vectors:

x(i1, . . . , id) =
R∑
k=1

x1(i1)⊗ . . .⊗ xd(id), (II.1.5)

where the number of summands R is referred to as the tensor rank of x. In applica-

tions, as long as the tensor rank of the arrays involved remain low, this approach can

be very computationally efficient as basic arithmetics for tensors in the CP format

scale linearly in the number of dimensions.
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Naturally, a key challenge in applying the CP decomposition to practical prob-

lems is estimating or controlling the tensor ranks throughout the calculation since

basic algebraic tensor operations such as addition and matrix-vector multiplication

generally increase rank and hence computational cost. This can be quite difficult

in practice. Unfortunately, the above definition implies that the approximation in

Frobenius norm of a tensor with one of fixed tensor rank is ill-posed [SL08], and the

numerical algorithms for computing an approximate representation may easily fail.

Another obstacle is that the problem is NP-hard [H̊as90; HL09] so that the complexity

of known robust algorithms scale poorly.

Hence for practical applications, one desires a tensor format with three charac-

teristics: (1) substantial compression of the vectors and matrices involved, (2) fast

tensor arithmetics (ideally, scaling linearly in dimension), and (3) a fast and robust

tensor approximation procedure. We make use of the Tensor Train format which

makes good trade-offs between these three objectives.

II.2 Tensor Train (TT) Format

This doctoral project makes heavy use of the low-parametric representation of

multi-dimensional arrays known as the Tensor Train (TT) format [Ose11; OT09].

The TT-format in its current form was recently developed by Oseledets and Tyr-

tyshnikov [Ose11; OT09], though, we remark that the Matrix Product States are an

identical data format that has been known in theoretical chemistry for at least two
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decades now [Vid03; VPC04; Whi93]). In addition, the TT-format is a special case

of a data structure known as Tensor Network States where the associated graph is

linear [VCM09].

Consider a d-dimensional n1 × . . . × nd-vector X(i1, . . . , id) and assume that

for the k-th dimension there is a collection of rk−1 × rk matrices Xk(ik) indexed by

1 ≤ ik ≤ nk such that

X(i1, . . . , id) = X1(i1)×X2(i2)× . . .×Xd(id). (II.2.1)

We say that X is represented in the Tensor Train (TT) format with TT-cores

X1(·), . . . , Xd(·), where each TT-core is a one-parameter family of matrices Xk(ik).

The matrix sizes r1, . . . , rd−1 are referred to as the TT-ranks of the decomposition.

Note that for some fixed index values, the product of the corresponding matrices is

of size r0 × rd so we constrain r0 = rd = 1. See Figure II.1 for a schematic drawing.

For any d-dimensional vector X in full format, there is a robust procedure for

computing a TT-decomposition by successively computing low-rank approximations

of its unfolding matrices. For k = 1, . . . , d− 1 the kth unfolding matrix X(k) consists

of the entries

X(k)(i1 . . . ik; ik+1 . . . id) = X(i1, . . . , id),

where i1 . . . ik and ik+1 . . . id are treated as multi-indices. The following example of a

3-dimensional array has two unfolding matrices.

Example II.2.1 (Unfolding of a tensor). Consider a tensor X of size 3× 2× 2. It
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U1 U2 U3 U4 U5

1

Figure II.1: Schematic drawing of a TT decomposition of a five-dimensional

array. Each TT core can be visualized as a stack of matrices with the size of the

stack equal to the corresponding mode size. The number of TT cores is equal to the

number of dimensions of the array. Element u(j1, . . . , j5) of the full array is given

by the (matrix) product of matrix j1 selected from core U1, matrix j2 from core U2,

etc. Note that the size of each matrix within a core must be the same, but may differ

between distinct cores. Note also that the number of matrices in each core depends

on the corresponding mode size of the full tensor and generally differs between cores.

This graphical representation is widely used for the Matrix Product States, see [Vid03;

VPC04; Whi93]
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has two unfolding matrices X(1) and X(2) given by

X(1) =


x111 x121 x112 x122

x211 x221 x212 x222

x311 x321 x312 x322

 and X(2) =



x111 x112

x211 x212

x311 x312

x121 x122

x221 x222

x321 x322



.

While X, X(1) , and X(2) are structured differently, all have the same entries and

represent the same data.

Note that the index ordering plays a crucial role in determining the numerical

values of the TT-ranks and that alternate index orderings may significantly change

the TT-ranks.

Unlike the CP decomposition, the compression (TT) ranks are readily com-

putable since each is the matrix rank of the corresponding unfolding matrix, see

Theorem 2.1 in [Ose11]. Once the TT-ranks of a full format vector are known the

TT-cores of the decomposition can be computed using numerically stable linear alge-

bra routines, e.g. QR and SVD.

We may also apply the TT format to multidimensional matrices. Consider

a d-dimensional (m1 × . . .×md)× (n1 × . . .× nd)-matrix A(i1, . . . , id; j1, . . . , jd) and

assume that for the k-th dimension there is a collection of rk−1×rk matrices Ak(ik, jk)
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indexed by (ik, jk) such that

A(i1, . . . , id; j1, . . . , jd) = A1(i1, j1)× A2(i2, j2) . . .× Ad(id, jd). (II.2.2)

We say that A is represented in the Tensor Train-Matrix (TTM) Format. The same

definitions and properties of the TT decomposition of vectors applies to the TTM

format for matrices.

Basic tensor arithmetics with vectors and matrices in the TT format, such as

addition, Hadamard and dot products, multi-dimensional contraction, matrix-vector

multiplication, etc. are described in detail in [Ose11].

Note that the storage cost and complexity of many basic operations in the TT

format are linear in d and polynomial in the TT-ranks. TT methods are therefore

seen as a means of lifting the so-called Curse of Dimensionality [Bel61] in many

applications [OT09]. We emphasize that the polynomial dependence on the TT-

ranks means that it is crucial to characterize the growth of the TT-ranks whenever

possible.

II.3 Tensor Rounding in the TT Format

Let X(i1, . . . , id1) be a multilevel array with TT decomposition

X(i1, . . . , id) = X1(i1)× . . .×Xd(id)

and suppose that it has suboptimal TT-ranks. A fast and robust tensor rounding

procedure is available based on the QR and SVD algorithms for single matrices.

20



In this context, rounding is understood to mean finding a vector Y with smaller

TT ranks close enough to satisfy a prescribed accuracy tolerance ε in the Frobenius

norm [Ose11].

||X − Y ||F ≤ ε||X||F

In this section we briefly overview the relevant results.

The k-th unfolding matrix X(k) may be written as the product

Xk = UkV
T
k ,

where

Uk(i1, . . . , ik;α) = X1(i1)× . . .×Xk(ik;α),

Vk(ik+1, . . . , id;α) = Xk+1(α; ik+1)× . . .×Xd(id).

The singular value decomposition of X(k) may be computed from the QR factoriza-

tion of Uk and Vk in the following way. Suppose Uk and Vk have ”economy” QR

decompositions given by:

Uk = QUkRUk , Vk = QVkRVk ,

where both QUk and QVk have rk orthonormal columns and RUk and RVk are each

rk × rk upper triangular matrices. Let P = RUkR
T
Vk

, and compute its SVD:

P = UPDV
T
P ,

where UP and VP have orthonormal columns, and D is an r̂c × r̂c diagonal matrix.

Let

Ûx = QUUP , V̂x = QV VP .
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Both Ûx and V̂x have orthonormal columns. Therefore,

X(k) = ÛxDV̂
T
x ,

is a singular value decomposition of X(k) with singular vectors given by the columns

of Ûk and V̂k and singular values listed in descending order along the diagonal of D.

Computing the SVD of P can be done directly since P is assumed to be small.

Computing the QR decompositions of each factor Uk and Vk when they are in the

TT format is less straightforward but can be done efficiently using the algorithm

described in [Ose11]. It is based on the following lemma.

Lemma II.3.1 (Lemma 3.1 of [Ose11]). If the tensors U k and V k are written as

U k(i1, . . . , ik;α) = Q1(i1) . . . Qk(ik;α),

V k(ik+1, . . . , id;α) = Qk+1(α; ik+1) . . . Qd(id)

where each Qs(is) is an rs−1 × rs matrix, and satisfies one of the orthogonality con-

ditions

∑
is

Qs(is)
TQs(is) = Irs−1 s = 1, . . . , k, (II.3.1)∑

is

Qs(is)Q
T
s (is) = Irs s = k + 1, . . . , d, (II.3.2)

then U k considered as an
∏k

s=1 ns × rk matrix Uk has orthonormal columns:

(UT
k Uk)α,α̂ =

∑
i1,...,ik

UT
k (α; i1, . . . , ik)Uk(i1, . . . , ik; α̂) = (Irk)α,α̂, (II.3.3)

and V k considered as an rk ×
∏k

s=1 ns matrix V T
k has orthonormal rows:

(V T
k Vk)α,α̂ =

∑
ik+1,...,id

V T
k (α; ik+1, . . . , id)Vx(ik+1, . . . , id; α̂) = (Irk)α,α̂, (II.3.4)
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We note that the statement of the lemma in [Ose11] only covers the case (??)

corresponding to Vx. The proof for the dual case of Ux is exactly the same except

for the exchange of transposes in the appropriate places. We leave the details to the

reader.

For any multilevel array given in the TT format, there is an algorithm for

transforming the first k cores into a format satisfying (II.3.1) and the last d− k cores

into a format satisfying (II.3.2) up to multiplication by matrices of size rk×rk [Ose11].

It is based on a successive reshaping and QR factorization of each core along with a

contraction of the R factor with the succeeding core. The algorithm for the structured

QR decomposition of V k is given in [Ose11] and referred to as the the Right-to-Left

Orthogonalization (qr rl). The Left-to-Right Orthogonalization (qr lr) is a similar

algorithm for U k and is summarized in Algorithm 1.

Having both the Left to Right and Right to Left Orthogonalization algorithms

implementing the structured QR factorizations in the TT format, the tensor rounding

of an array in the TT format can be computed using the procedure described pre-

viously. The idea is to successively compute low-rank approximations of each of the

unfolding matrices using the SVD. II.3.1 implies that it is unnecessary to expand the

unfolding matrices to full format: each low-rank approximation can be obtained by

considering just a single core at a time. The details are summarized in Algorithm 2.

Note that only a single run of the Right-to-Left Orthogonalization is required

in practice. When starting at the left-most core, only the RL orthogonalization is
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Algorithm 1 Left to Right Orthogonalization (qr lr)

Require: Array X in the TT Format with cores Xs(is) and with ranks r1, . . . , rd.

Unfolding number k. Implementation of the QR decomposition, qr, and a index

reshape function, reshape.

Ensure: Matrix QU(i1, . . . , ik; α̂) = Q1(i1)Q2(i2) . . . Qk(ik; α̂) with each Qs

satisfying (II.3.1) and matrix RU(α̂, α) such that Ux(i1, . . . , id;α) =∑
αQU(i1, . . . , ik; α̂)RU(α̂, α).

[Q1(i1; α̂1), R1(α̂1;α1)] = qr(X1(i1;α1)) for the first unfolding X(1),

for s = 2 to d do

X̂s(α̂s−1; is;αs) =
∑

α1
R1,s−1(α̂s−1;αs−1)Xs(αs−1; is;αs),

X̂s(α̂s−1, is;αs) = reshape(X̂s(α̂s−1; is;αs)),

[Qs(α̂s−1, is; α̂s), Rs(α̂s;αs)] = qr(X̂s(α̂s−1, is;αs)),

Qs(α̂s−1; is; α̂s) = reshape(Qs(α̂s−1, is; α̂s)),

end for

RU = Rd.
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necessary for truncation of the first core. The orthogonality of V from the SVD can

be used to ensure that the cores of Y are in the proper format for the succeeding

rank-reduction.
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Algorithm 2 TT-Rounding

Require: Tensor X in the TT-Format with cores Xk(ik) and with ranks r1, . . . , rd−1,

implementation of the qr lr(·) algorithm as in [Ose11], the qr lr(·) algorithm as in

Algorithm 1, and the singular value decomposition, svdδ(·), required accuracy ε.

Ensure: Tensor Y in TT-format with TT-ranks r̂1, . . . , r̂d−1 less than or equal to

the ranks of the truncated unfoldings X(k), where each truncation is computed

to accuracy δ = ε√
d−1
||X||F . The computed approximation satisfies the relative

accuracy requirement ||X − Y ||F ≤ ε||X||F .

Compute δ = ε√
d−1
||X||F ,

[QT ,RT ] = qr rl(X),

Y1(i1) = R(i1; α̂),

for k = 2 to d do

Yk(ik) = Qk(ik)

end for

for k = 1 to d− 1 do

[Yk(αk−1, ik; γk), D, V
T ] = svdδ(Qk(αk−1ik;αk)),

Qk+1(αk; ik+1;αk+1) =
∑

γ;αk
V (αk; γ)D(γ; γ)Qk+1(αk; ik+1;αk+1),

Yk(αk−1; ik; γk) = reshape(Yk(αk−1, ik; γk)),

end for
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II.4 Tensorization and Quantized Tensor Train For-

mat

The close connection between the TT-ranks of a tensor and the ranks of its

unfolding matrices leads to the informal interpretation of the ranks as being a measure

of the ”separability” of the data in each dimension. A route to further reduce the

complexity is to take advantage of structure in each dimension, e.g. by expansion in

a carefully selected reduced basis, etc. One approach to this complexity reduction in

the modes is by “tensorization” or “quantization folding” of the array and applying

the TT format to the resulting data structure. This approach leads to the Quantized

Tensor Train (QTT) format [Kho11; Ose09b; Ose10a].

Suppose that each mode size nk can be factorized as nk = nk,1 · nk,2 · . . . · nk,lk

in terms of integral factors nk,1, . . . , nk,lk ≥ 2. Quantization folding with respect to

“physical” dimension k consists of artificially folding the tensor into these lk “virtual”

dimensions. Typically, one uses the finest quantization, i.e., nk,k̂ = 2 for k̂ = 1, . . . , lk.

For example, if nk = 210, then the finest possible quantization would fold the k-th

dimension into lk = 10 dimensions with each corresponding index taking nk,k̂ = 2

values. The folding preserves the number of entries in the vector (matrix) but, ideally,

makes more structure in the data accessible to the TT compression. Applying the TT

decomposition to a tensor whose “physical” dimensions have all been folded results

in a QTT decomposition of the original vector. The ranks of this TT decomposition
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are called QTT-ranks of the original vector.

If the natural ordering

i1,1, . . . , i1,l1︸ ︷︷ ︸
1st dimension

, i2,1, . . . , i2,l2︸ ︷︷ ︸
2nd dimension

, . . . , id,1, . . . , id,ld︸ ︷︷ ︸
dth dimension

(II.4.1)

of the “virtual” indices is used, then the QTT-ranks are ordered as follows:

r1,1, . . . , r1,l1−1︸ ︷︷ ︸
1st dimension

, r̂1, r2,1, . . . , r2,l2−1︸ ︷︷ ︸
2nd dimension

, r̂2, . . . , r̂d−1, rd,1, . . . , rd,ld−1︸ ︷︷ ︸
dth dimension

,

where r̂1, . . . , r̂d−1 are the TT ranks of the original tensor. That is, the folding

preserves the TT-ranks.

Since the QTT decomposition is a TT decomposition, all the properties and

algorithms available for the TT format carry over to the QTT format.

Quantization has been shown to be crucial in many practical applications for

reducing the complexity. While a simple characterization of when a vector (matrix)

will have low-rank QTT structure is unavailable QTT-rank bounds are available for

many simple functions evaluated on tensor grids. Consider the following examples

taken from the literature.

Example II.4.1 (Proposition 1.1 in [Kho11]). Consider the one-dimensional vector

u whose entries are given by evaluation of the exponential with base q > 0 on the

nonnegative integers {0, 1, . . . , 2l − 1}: u =
(

1, q, . . . , q2l−1
)>

. Originally, there is

only one dimension in this vector, and the elementwise representation requires storage

of 2l parameters since it does not exploit any structure in the data. However, if we use

the quantization approach described above to split the single dimension into l virtual
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levels, the one-dimensional vector is transformed into l-dimensional one which exhibits

a low-parametric structure. Indeed, in terms of the “virtual” indices it is a rank-one

Kronecker product of l vectors with 2 components each:

u =

 1

q2l−1

⊗
 1

q2l−2

⊗ . . .⊗
1

q

 ,

which implies both rank-1 CP and QTT decompositions of u.

Other important classes of functions for which explicit QTT decompositions

have been found are univariate polynomials evaluated on uniform grids [Ose13a],

as well as univariate asymptotically smooth functions [Gra]. See [KK12; KKT11;

KRS13; Ose13a] for other explicit low-rank examples. When a uniform QTT-rank

bound is available, this implies a logarithmic scaling of the storage and complexity of

basic arithmetics with the mode size nk [Ose09b].

II.5 Density Matrix Renormalization Group

For certain optimization problems formulated in the TT format, the Alternating

Least Squares approach yields a useful set of optimization algorithms that work well

at least locally [HRS12; RU12]. One such algorithm is based on the Density Matrix

Renormalization Group approach [Vid03; VPC04; Whi93]. The basic idea is to con-

sider a succession of local optimization problems in which all but two adjacent cores

are fixed and to optimize over the parameters of these two cores together. Assuming

that the optimization objective is a quadratic cost function, by contracting the two
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cores into a so-called supercore, each local problem reduces to a linear least squares

problem which may be solved precisely when small or approximately using Lanzcos

or Arnoldi Iteration when large. The new supercore can then be re-split into the

component cores in an optimal way, e.g. using SVD. By sweeping through the chain

of cores sequentially one hopes that the method converges to a global minimum of

the full optimization problem.

Practically, DMRG based algorithms have attractive properties. While they

still lack a rigorous theoretical foundation, they prove to be highly efficient in many

applications (including our experiments) where they converge quickly when the min-

imizer can be expressed in TT format with low TT-ranks. The iterative process

is also completely rank-adaptive. When the ranks of the actual solution are large,

the DMRG-based algorithms will automatically enlarge the ranks. When the ranks

are small, it will truncate the excessive ranks so that calculations can be completed

efficiently.

One DMRG based algorithm used frequently in the subsequent chapters is the

solution of large-scale systems of linear equations in the TT-format [DO11]. By

recasting the initial linear system

Ax = b,

as a residual minimization problem

||Ax− b|| → min
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one can then apply the DMRG methodology to compute an approximate solution of

the original linear system.
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Chapter III

Numerical Algorithms Using the

TT-Format

As discussed in the previous chapter, the TT-ranks of a particular decomposition

may depend critically on the particular index ordering or separation into levels chosen

for the data. For example, consider the identity matrix I of size 2N × 2N :

I(i1; j1) =



1 0

0
. . . . . .

. . . . . . 0

0 1



︸ ︷︷ ︸
2N

2N

using the finest possible quantizations i1 = i1,1 . . . i1,N and j1 = j1,1 . . . j1,N . In the

QTT-format for vectors, there is no mixing of the quantization levels of the row and

column indices so that one of the unfolding matrices is just the identity matrix itself,
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hence at least one of the QTT-ranks is 2N . In the QTT Matrix format, however,

the quantization levels are matched and the matrix can be written as a Kronecker

product of N 2× 2 matrices:

1 0

0
. . . . . .

. . . . . . 0

0 1


=

N⊗
k=1

1 0

0 1

 ,

which implies the existence of a decomposition with uniform QTT-ranks equal to 1.

It seems strange to assert the first index ordering over the second; after all,

assuming the same level of accuracy, one should use an index structure which results

in the most parsimonious representation of the data. This observation leads directly

to two new TT-based data formats. The first is the Quantized and Transposed Tensor

Train (QT3) format which can be summarized as selecting an index structure in which

the ”actual” dimensions are mixed at the different quantization levels. This format

works well when there is strong positive correlation structure between dimensions in

the data. The second is the TT-Vectorized Matrix (TTVM) format which is actually

a low-rank SVD approximation of a linear operator.

The theoretical and algorithmic development of the QT3-format is largely the

work of Vladimir Kazeev. Section III.1 gives an overview of the format and the

main results necessary for the subsequent chapters. The interested reader should

see [Kaz+14] for the detailed treatment. The TTVM format is my own contribution.
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Section III.2 describes the format and describes basic fast tensor arithmetics that are

possible. Section III.3 discusses numerical approaches to computing the eigenvalues

and eigenvectors of matrices in the format as well as the approximation of inverses

and matrix powers.

III.1 Quantized Transposed Tensor Trains (QT3)

The example from the beginning of the chapter demonstrates that the ordering

of the indices plays a huge role in determining the compression ranks. In that ex-

ample, there was more exploitable low-rank structure when ordering the dimensions

by “quantization” levels, as opposed to the “physical” levels, meaning that the same

separable structure was present at each quantization level across dimensions. The

so-called Quantized and Transposed Tensor Train (QT3) format is based on this idea

of shuffling the indicies from an appropriately quantized vector so that the corre-

sponding quantization levels are adjacent. It was first applied to vectors in [Ose10b].

For example, for l1 = . . . = ld = l instead of

i1,1, . . . , i1,l1︸ ︷︷ ︸
1st dimension

, i2,1, . . . , i2,l2︸ ︷︷ ︸
2nd dimension

, . . . , id,1, . . . , id,ld︸ ︷︷ ︸
dth dimension

(III.1.1)

we use the ordering

i1,1, . . . , id,1︸ ︷︷ ︸
1st level

, i1,2, . . . , id,2︸ ︷︷ ︸
2nd level

, . . . . . . , i1,l, . . . , id,l︸ ︷︷ ︸
dth level

. (III.1.2)

If l1, . . . , ld are not equal, we introduce trivial indices jk,mk with nk,mk = 1 for

lk + 1 ≤ mk ≤ max1≤k′≤d lk′ and reorder the virtual indices to match (III.1.2). Since
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nk,mk = 1, this does not affect the number of elements of the vector. Following the

index reordering, the trivial indices are dropped.

The QT3 format is expected to outperform the basic QTT approach when the

data has more exploitable low-rank structure at similar quantization levels rather

than within a dimension. One example where this is the case is when the support of

the data is tightly correlated across dimensions. This was the case in the example

from the beginning of the chapter. In a later chapter, we see that the QT3 approach

does well when at compressing probability density functions when the data is tightly

correlated.

III.2 TT Vectorized Matrix Format

This section describes an alternate formatting of matrices called the Tensor

Train Vectorized Matrix (TTVM) format. This format is rank-revealing meaning

that it exploits the low-rank structure of the matrix for compression and efficient

computation. We discuss the properties of this format and its interpretation as the

Singular Value Decomposition of the matrix.

If A is a multilevel matrix and v is a multilevel vector then the multilevel

matrix-by-vector product is defined by as:

(Av)(i1, . . . , id1) =
∑
jk

A(i1, . . . , id1 , j1, . . . , jd2)v(j1, . . . , jd2)

where we refer to the indices ik as the row indices and the indices jk as the column
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indices of A.

The TT-Matrix format requires the number of row indices to be equal to the

number of column indices d = d1 = d2. It uses the index ordering

(i1, j1), (i2, j2), . . . , (id, jd)

and uses the Tensor Train compression with each core indexed by one of the ordered

pairs (ik, jk) using the lexicographic ordering. A d-level matrix with 2d-indices as an

array, will have d cores.

In contrast, the TTVM format uses the simple index ordering

i1, . . . , id1 , j1, . . . , jd2 ,

with a core indexed by each array index. That is, for a multilevel matrix with d1 +d2

indices as an array, a TTVM representation of the matrix will have d1 + d2 cores

A(i1, . . . , id1 , j1, . . . , jd2) = A1,1(i1)×. . .×A1,d1(id1)A2,1(j1)×. . .×A2,d2(jd2). (III.2.1)

The TTVM-ranks of the decomposition can be enumerated as follows:

TTVM rank(A) = r1,1, . . . , r1,d1−1, r̂c, r2,1, . . . , r2,d2−1,

where the rank r̂c corresponds to the (matrix) rank of the unfolding matrix

A(c) = A(i1, . . . , id1 ; j1, . . . , jd2).

That is, A as a linear operator has rank r̂c. Given a matrix in the TTVM format,

the rank of the corresponding linear operator is immediately known. Note that any
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permutation of the first (last) d− 1 indices will not affect r̂c since this corresponds to

reordering the rows (columns) of the unfolding matrix.

In the next subsection we introduce the TTVM stack matrix which we will use

when computing the SVD of a general TT Vectorized Matrix.

III.2.1 Stacking TT-formatted vectors into a TTVM-formatted

Matrix

Given an ordered list of vectors
{
v1, . . . , vN

}
that all have the same size, a

common procedure in matrix linear algebra is to construct matrices by stacking the

vectors, that is, constructing matrices whose nth row or column is the n-th vector in

the list:

{
v1, . . . , vN

}
7−→ V =

[
v1 v2 . . . vN

]
, V T =



v1

v2

...

vN


.

A similar data structure can be constructed for a list of TT-formatted d-vectors with

compatible mode sizes. The result is a TTVM formatted matrix.

Fix d,N ∈ N. Suppose that for each k ∈ {1, . . . , N}, vk(i1, . . . , id) is a d-

dimensional vector with TT decomposition given by,

vk(i1, . . . , id) = V k
1 (i1)× . . .× V k

d (id), (III.2.2)

and suppose further that the corresponding mode sizes are the same for every k. We
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define the stack matrix V to be the d + 1-dimensional array whose slices in the last

index are the d-vectors vk. Its transpose V T is similarly defined but with the slices

along the first index. Explicit TTVM representations of each are given by

V (i1, . . . , id; is) =

[
V 1

1 (i1) V 2
1 (i1) . . . V N

1 (i1)

]


V 1
2 (i2) 0 · · · 0

0 V 2
2 (i2)

. . .
...

...
. . . . . . 0

0 · · · 0 V N
2 (i2)


. . .

. . .



V 1
d (id) 0 · · · 0

0 V 2
d (id)

. . .
...

...
. . . . . . 0

0 · · · 0 V N
d (id)





δ1(is)

δ2(is)

...

δN(is)


,

V T (is, i1, . . . , id) =

[
δ1(is) δ2(is) . . . δN(is)

]


V 1
1 (i1) 0 · · · 0

0 V 2
1 (i1)

. . .
...

...
. . . . . . 0

0 · · · 0 V N
1 (i1)


. . .

. . .



V 1
d−1(id−1) 0 · · · 0

0 V 2
d−1(id−1)

. . .
...

...
. . . . . . 0

0 · · · 0 V N
d−1(id−1)





V 1
d (id)

V 2
d (id)

...

V N
d (id)


, (III.2.3)

where δl(is) denotes the Kronecker delta taking the value one at l and zero everywhere

else, and 0 denotes the matrix of all zeros of the compatible sizes. In each case, we
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refer to is as the selection index. In each case the explicit representation also provides

an upper bound on the TT ranks of the corresponding vectorized matrix, though in

both cases we emphasize that representations with significantly smaller ranks may be

possible.

Proposition III.2.1. If each vector vk(i1, . . . , id) has TT ranks rk1 , . . . , r
k
d−1, then for

the stack matrix V (i1, . . . , id, is) there exists a TTVM representation satisfying the

rank bound

TT Ranks(V ) ≤
N∑
n=1

rn1 , . . . ,
N∑
n=1

rnd−1, N.

Similarly for the stack matrix V T (is, i1, . . . , id) there is a TTVM decomposition sat-

isfying the bound

TT Ranks(V T ) ≤ N,
N∑
n=1

rn1 , . . . ,
N∑
n=1

rnd−1.

The stack matrix representation is commonly used in linear control theory. We

will also use it in the next section to describe the singular value decomposition of a

TTVM-formatted matrix.

III.2.2 Singular Value Decomposition of a TTVM-formatted

matrix

The singular value decomposition of a linear operator in the TTVM format may

be easily computed using a modification of the TT rounding procedure, discussed in

the previous chapter.
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Let X(i1, . . . , id1 ; j1, . . . , jd2) be a multilevel matrix with TTVM decomposition

X(i1, . . . , id1 ; j1, . . . , jd2) = X1,1(i1)× . . .×X1,d1(id1)×X2,1(j1)× . . .×X2,d2(jd2)

The unfolding matrix X(c) may be written as the product

X(c) = UxV
T
x ,

where

Ux(i1, . . . , id1 ;α) = X1,1(i1)× . . .×X1,d1(id1 ;α),

Vx(j1, . . . , jd2 ;α) = X2,1(α; j1)× . . .×X2,d2(jd2).

The singular value decomposition of X(c) may be computed from the QR factor-

ization of Ux and Vx in the following way. Both Ux and Vx have ”economy” QR

decompositions which can be computed using the Left-to-Right and Right-to-Left

Orthogonalization algorithms described previously:

Ux = QURU , Vx = QVRV ,

where both QU and QV have r̂c orthonormal columns and RU and RV are each r̂c× r̂c

upper triangular matrices. Let P = RUR
T
V , and compute its SVD:

P = UPDV
T
P ,

where UP and VP have orthonormal columns, and D is an r̂c × r̂c diagonal matrix.

Let

Ûx = QUUP , V̂x = QV VP .
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Both Ûx and V̂x have orthonormal columns. Therefore,

X(c) = ÛxDV̂
T
x ,

is a singular value decomposition of X(c) with singular vectors given by the columns

of Ûx and V̂x and singular values listed in descending order along the diagonal of D.

The TTVM-SVD takes a multilevel matrix X in the TTVM format and returns

TTVM-formatted stack matrices Ûx(i1, . . . , id1 ;α), V̂
T

x (α̂; i1, . . . , id2) containing the

right and left singular vectors, respectively, of X, and a diagonal matrix D listing

the corresponding singular values. The details are summarized in Algorithm 3.

Since the TTVM format can be interpreted as the SVD of a matrix, it is possible

to give a rough characterization of the TT ranks in terms of the rank of the matrix

and the TT ranks of the singular vectors.

Proposition III.2.2. Suppose the multilevel matrix X(i1, . . . , id1 ; j1, . . . , jd2) given

in TTVM format has singular value decomposition given by

X(i1, . . . , id1 ; j1, . . . , jd2) =
r̂c∑
k=1

σk × (uk(i1, . . . , id1)⊗ vk(j1, . . . , jd2)) (III.2.4)

where r̂c is the rank of X, σk’s are the ordered singular values, and uk and vk are

the corresponding left and right singular vectors, respectively. If the TT ranks of uk

are given by

TT ranks(uk) = rk1,1, . . . , r
k
1,d1−1,

and the TT ranks of vk are given by

TT ranks(vk) = rk2,1, . . . , r
k
2,d2−1,
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Algorithm 3 TTVM-SVD

Require: Matrix X in the TTVM Format with cores X1k(ik), X2k(jk) and with

ranks r1,1, . . . , r1,d1−1, r̂c, r2,1, . . . , r2,d2−1, implementation of the qr lr(·) algorithm

as in [Ose11], the qr lr(·) algorithm as in Algorithm 1, and the singular value de-

composition, svd(·).

Ensure: Matrices Ûx(i1, . . . , id1 ;α), V̂
T

x (α̂; j1, . . . , jd2) in the TTVM-format with

cores Û1(i1), . . . , Ûd(id1), Ûd1+1(α), and V̂0(α̂), V̂1(j1), . . . , V̂d2(jd2), respectively, and

a diagonal matrix D in full format containing the singular values of X, such that

X(i1, . . . , id1 ; j1, . . . , jd2) =
∑

α,α̂ Ûx(i1, . . . , id1 ;α)D(α, α̂)V̂
T

x (α̂; j1, . . . , jd2).

[QT
2 ,R

T
V ] = qr rl(X),

[Q1,RU ] = qr lr(X),

[UP , D, V
T
P ] = svd(RUR

T
V ),

V̂0 = V T
P ,

Ûd1+1 = Up,

for k = 1 to d do

Ûk(ik) = Q1,k(ik),

V̂k(jk) = Q2,k(jk),

end for
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then there is a TTVM decomposition of X that satisfies the following bounds on the

TT-ranks:

TT ranks(X) ≤
r̂c∑
k=1

rk1,1, . . . ,
r̂c∑
k=1

r1,d1−1, r̂c,
r̂c∑
k=1

rk2,1, . . . ,

r̂c∑
k=1

r2,d2−1.

Proof. We show that X has a particular representation in the TTVM format satisfy-

ing the rank bound. Suppose X is in the TTVM format with TTVM-SVD resulting

from the application of Algorithm 3:

X(i1, . . . , id1 ; j1, . . . , jd2) =
∑
α,α̂

Ûx(i1, . . . , id1 ;α)D(α, α̂)V̂
T

x (α̂; i1, . . . , id2). (III.2.5)

Both Ûx and V̂
T

x are stack matrices and therefore using Proposition III.2.1, their

ranks satisfy the bounds

TT Ranks(Ûx) ≤
r̂c∑
k=1

rk1,1, . . . ,
r̂c∑
k=1

rkd1−1, r̂c, TT Ranks(V̂
T

x ) ≤ r̂c,
r̂c∑
k=1

rk1,1, . . . ,
r̂c∑
k=1

rkd2−1.

Now the contraction (III.2.5) can be computed as

X =
∑
α,α̂

Ûx(i1, . . . , id1 ;α)D(α, α̂)V̂
T

x (α̂; i1, . . . , id2)

=
∑
α,α̂

(Û1(i1)× . . .× Ûd1(id1)× Ûd1+1(α))D(α, α̂)× . . .

. . .× (V̂0(α̂)× V̂1(j1)× . . .× V̂d2(jd2))

=
∑

α,α̂,βk,β̂k

Û1(i1, β1) . . . Ûd(βd1−1, id1 , βd1)Ûd1+1(βd1 , α)D(α, α̂)× . . .

. . .× V̂0(α̂, β̂0)V̂1(β̂0, j1, β̂1) . . . V̂d2(β̂d2−1, jd2)

=
∑
βk,β̂k

Û1(i1, β1) . . . Ûd1(βd1−1, id1 , βd1)

(∑
α,α̂

Ûd1+1(βd1 , α)D(α, α̂)V̂0(α̂, β̂0)

)
× . . .

. . .× V̂1(β̂0, j1, β̂1) . . . V̂d2(β̂d2−1, jd2)
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The contraction
∑

α,α̂ Ûd1+1(βd1 , α)D(α, α̂)V̂0(α̂, β̂0) can be realized by matrix multi-

plication resulting in a matrix of size r̂c× r̂c. The contraction of this matrix with the

core V̂1(β̂0, j1, β̂1) can be realized by reshaping V̂1 into a matrix of size r̂c×n2,1r2,1 and

post-multiplying. The result is a matrix of size r̂c × n2,1r2,1 which can be reshaped

into a core
ˆ̂
V1(βd1 , j1, β̂1) of size r̂c× n2,1× r2,1. Hence, X has TTVM representation

X(i1, . . . , id; j1, . . . , jd) = Û1(i1) . . . Ûd1(id1)
ˆ̂
V1(j1) . . . V̂d2(jd2),

with mode sizes n1,1, . . . , n1,d1 , n2,1, . . . , n2,d2 . The cores Û1(i1), . . . , Ûd1(id1), V̂2(j2) . . . V̂d2(jd2)

are exactly the same as from the TTVM-SVD and therefore satisfy the same TT-

rank bounds.
ˆ̂
V1 as a core has size necessary for the matrix multiplications to be

well-defined therefore the TT-ranks of X satisfy the bound

TT ranks(X) ≤
r̂c∑
k=1

rk1,1, . . . ,
r̂c∑
k=1

r1,d1−1, r̂c,
r̂c∑
k=1

rk2,1, . . . ,
r̂c∑
k=1

r2,d2−1,

as desired.

We emphasize that the bound is not tight and furthermore that any TTVM

formatted matrix may be compressed into a decomposition with ranks no larger than

those provided by the bound by applying the TT-rounding procedure (without trun-

cation of nonzero singular values). In addition, the TTVM-SVD make explicit the

rank structure of a TTVM formatted matrix. The first d1 − 1 ranks are determined

by the TT compression possible of stack matrices of the left singular vectors, while

the last d2 − 1 ranks correspond similarly to the right singular vectors. The middle
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rank r̂c is the matrix rank of X.

TT Ranks(X) = r1,1, . . . , r1,d1−1︸ ︷︷ ︸
Left Singular Vector Ranks

, r̂c︸︷︷︸
Matrix Rank

, r2,1, . . . , r2,d2−1︸ ︷︷ ︸
Right Singular Vector Ranks

III.2.3 Converting a TTVM decomposition to a TTM de-

composition

We complete this section with a characterization of the TTM decomposition of

a multilevel matrix in terms of its TTVM decomposition. This establishes TT rank

bounds on any minimal rank TTM decomposition of the matrix.

Proposition III.2.3. Suppose matrix A with d row and column indices is given in

the TTVM-format with cores A11(i1), . . . , A1d(id), A21(j1), . . . , A2d(jd) and TT ranks

r1,1, . . . , r1,d−1, r̂c, r2,1, . . . , r2,d−1. A TTM-decomposition of the same multilevel matrix

is given by:

A(i1, . . . , id; j1, . . . , jd) = Â1(i1, j1)Â2(i2, j2) . . . Âd−1(id−1, jd−1)Âd(id, jd),

with cores given by:

Â1(i1, j1) = A11(i1)⊗
[
A1

21(j1) A2
21(j1) . . . Ar̂c21(j1)

]
,

Âd(id, jd) =



A1
1d(id)

A2
1d(id)

...

Ar̂c1d(id)


⊗ A2d(jd),
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Âk(ik, jk) = Ir̂c ⊗ (A1k(ik)⊗ A2k(jk)) . (III.2.6)

and Aβ21(j1) is the β-th row of matrix A21(j1), Aβ1d(id) is the β-th column of matrix

A1d(id), and Ir̂c is a r̂c × r̂c identity matrix. This decomposition has TT ranks that

are the product of the matrix rank r̂c, and the corresponding TTVM ranks r1,k and

r2,k:

r̂cr1,1r2,1, . . . , r̂cr1,d−1r2,d−1. (III.2.7)

Proof. Starting from the TTVM decomposition of A, the formula can be expanded

as

A(i1, . . . , id; j1, . . . , jd)

= A11(i1)× . . .× A1d(id)× A21(j1)× . . .× A2d(jd)

=
r̂c∑
β=1

A11(i1)× . . .× A1d(id, β)× A21(β, j1)× . . .× A2d(jd)

=
r̂c∑
β=1

(A11(i1)⊗ A21(β, j1))× . . .× (A1d(id, β)⊗ A2d(jd)) (III.2.8)

Making the identifications Aβ21(j1) := A21(β, j), and Aβ1d(id) := A1d(id, β), (III.2.8)

can be viewed as the sum of r̂c TTM formatted matrices Aβ(i1, . . . , id; j1, . . . , jd):

A(i1, . . . , id; j1, . . . , jd) =
r̂c∑
β=1

Aβ(i1, . . . , id; j1, . . . , jd),

with

Aβ(i1, . . . , id; j1, . . . , jd) =
(
A11(i1)⊗ Aβ21(j1)

)
× . . .×

(
Aβ1d(id)⊗ A2d(jd)

)
,

where (A1k(ik)⊗ A2k(jk)) is of size (r1,k−1r2,k−1)× (r1,kr2,k) Using the result [Ose11]
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for the TT decomposition of the sum of TT formatted matrices gives the desired

TTM decomposition of A as well as the TT ranks.

The conversion from the TTVM to TTM format can be implemented easily in

MATLAB using the reshape() and kron() functions. The rank characterization is not

tight, meaning that there may exist an alternate TTM decomposition ofA with much

smaller ranks. This result establishes an upper bound on the ranks of any minimal

rank TTM decomposition of A in terms of the ranks of its TTVM decomposition,

therefore a matrix with small ranks in the TTVM format will have small ranks in the

TTM format.

III.2.4 Basic Arithmetic Operations

Many useful algorithms for tensor arithmetic such as matrix addition, matrix-

vector products, and matrix-matrix products involving matrices in the TTVM can be

formulated. These algorithms take advantage of the structured representation of the

matrices involved for efficient computation, often lifting the curse of dimensionality.

The algorithms for computing matrix-matrix products when one matrix is in the

TTVM format and the other is in the TTM format will be used extensively in the

following sections.

The details of the algorithms are summarized in Table III.1. As the derivations

of the basic algorithms are rather repetitive, the uninterested reader may wish to skip

to next subsection.

47



O
p

er
at

io
n

In
p
u
ts

O
u
tp

u
ts

C
om

p
le

x
it

y

V
M

A
d
d
it

io
n

A
,B

in
T

T
V

M
fo

rm
at

A
+
B

in
T

T
V

M
fo

rm
at

-

V
M

-V
P

ro
d
u
ct

A
in

T
T

V
M

fo
rm

at
,
x

in
T

T
V

fo
rm

at
A
x

in
T

T
V

fo
rm

at
O

(d
2
n
r4

)

V
M

-M
P

ro
d
u
ct

A
in

T
T

V
M

fo
rm

at
,
B

in
T

T
M

fo
rm

at
A
B

in
T

T
V

M
fo

rm
at

O
(d

2
n

2
r4

)

V
M

-M
-V

M
A

,
C

in
T

T
V

M
fo

rm
at

,
B

in
T

T
M

fo
rm

at
A
B
C

in
T

T
V

M
fo

rm
at

O
(d

2
n

2
r4

+
d

2
n
r7

)

T
ab

le
II

I.
1:

A
lg

or
it

h
m

s
in

vo
lv

in
g

T
T

V
M

fo
rm

at
te

d
m

at
ri

ce
s

48



A multilevel matrix A in the TTVM format with d1 row indices and d2 column

indices may alternatively be viewed as a multilevel vector in the TT format with

d1 + d2 indices. An algorithm for the summation of two such vectors with compatible

indices is given in [Ose11]. The result is a TT formatted vector whose ranks are the

sums of the corresponding ranks of the addends. The assembly of the solution vector

in TT format requires virtually no operations. The same algorithm can be used for

TTVM formatted matrices and results in the same rank characterization.

III.2.4.1 Partial summations in the TT format

The partial summation of the tensor X(i1, . . . , id) over the index iα ∈ Iα is a

key building block in many algorithms for performing tensor arithmetic in the TT

format. In some cases, Iα may be a subset of the index set for iα. The resulting

tensor has one less mode:

X(i1, . . . , iα−1, iα+1, id) =
∑
iα∈Iα

X(i1, . . . , iα, . . . , id) (III.2.9)

When the tensor is given in the TT format it is possible to compute the partial sum-

mation by summing over the matrices in a single core. This fact was used extensively

in [Ose11] but we highlight and prove a slightly more general version here.

Proposition III.2.4 (Partial Summation). Let X(i1, . . . , id) be a tensor of dimen-

sion d given in the TT-format with cores Xk(ik).

X(i1, . . . , id) = X1(i1)× . . .×Xd(id).
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The partial summation over iα ∈ Iα results in a tensor X̂(i1, . . . , iα−1, iα+1, . . . , id)

of dimension d− 1 in the TT-format with cores X̂k(ik)

X̂(i1, . . . , iα−1, iα+1, . . . , id) = X̂1(i1)× . . .× X̂α−1(iα−1)× X̂α+1(iα+1)× . . .× X̂d(id),

where

X̂k(ik) =


ZXα+1(iα+1), if k = α + 1,

Xk(ik), otherwise,

with Z =
∑

iα∈Iα Xα(iα).

Proof. This follows immediately from linearity of multiplying by fixed matrices. In-

deed,

∑
iα∈Iα

X(i1, . . . , iα, . . . , id)

=
∑
iα∈Iα

X1(i1)× . . .×Xα−1(iα−1)×Xα(iα)×Xα+1(iα+1)× . . .×Xd(id)

= X1(i1)× . . .×Xα−1(iα−1)×

(∑
iα∈Iα

Xα(iα)

)
×Xα+1(iα+1)× . . .×Xd(id).

The construction of the matrix Z has computational complexity O (nr2), while

the matrix by core product has complexity O (nr3) since it can be realized by multi-

plying a matrix of size r × r with a matrix of size r × nr after a suitable reshaping.

Hence, the overall computational complexity is O (nr3).

Many algorithms for tensor arithmetics can be formulated as a reformatting

of the tensors involved into some intermediate TT format followed by a sequence of
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partial summations. In many cases, it is possible to reduce the computational cost of

the partial summations by exploiting special structure of the intermediate format.

III.2.4.2 TT-Vectorized-Matrix-Vector Product

The most important operation in linear algebra is probably the matrix-by-

vector product. Oseledets and Tyrtyshnikov proposed an algorithm for computing

the matrix-by-vector productAx whenA is a d-level matrix in the TT-Matrix format

and x is a d-level vector in the TT format [Ose11]. We introduce a similar algorithm

for the matrix-by-vector product when A is in the TTVM format.

Suppose that A is in the TTVM format with decomposition

A(i1, . . . , , id1 ; j1, . . . , jd2) =

A11(i1) . . . A1d1(id1)A21(j1) . . . A2d2(jd2), (III.2.10)

where A1k(ik) and A2k(jk) are r1,k−1 × r1,k and r2,k−1 × r2,k matrices, respectively.

Suppose that x is in the TT format (II.2.1) with cores Xk(lk). The matrix-by vector

product is the computation of the following sum,

y(i1, . . . , id1) =
∑

j1,...,jd2

A(i1, . . . , id1 , j1, . . . , jd2)x(j1, . . . , jd2),

which is equivalent to the tensor product of A and x followed by partial summations

over the corresponding indices.

Given the TT decompositions of both A and x, the tensor product A⊗ x can
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be written in TT format as

A⊗ x = A11(i1) . . . A1d1(id1)A21(j1) . . . A2d(jd2)X1(l1) . . . Xd2(ld2).

Alternatively, after a permutation and combination of the indices, it may also be

represented in the following format:

A⊗ x = A11(i1) . . . A1d1(id1) (A21(j1)⊗X1(l1)) . . . (A2d2(jd2)⊗Xd2(ld2)) , (III.2.11)

where each jklk is interpreted as a multiindex. The matrix-vector product is given

by the contraction over the corresponding indices, that is, the partial sums over the

index sets with jk = lk. The resulting tensor will also be in the TT-format. Indeed,

y(i1, . . . , id1) =
∑

j1,...,jd2

(A11(i1) . . . A1d1(id1)) (A21(j1)⊗X1(j1))× . . .

× (A2d2(jd2)⊗Xd2(jd2))

= (A11(i1) . . . A1d1(id1))Z1 . . . Zd2 ,

where

Zk =
∑
jk

(A2k(jk)⊗Xk(jk)) .

Taking

Yk(ik) =


A1k(ik), k 6= d1

A1k(ik)Z1 . . . Zd2 , k = d1

,

we have that

y(i1, . . . , id1) = Y1(i1) . . . Yd1(id1),

and the product is in the TT-format. A formal description of the algorithm is pre-

sented in Algorithm 1.
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Algorithm 4 TT-Vectorized-Matrix-by-Vector Product

Require: Matrix A in the TTVM-Format with cores A1k(ik), A2k(jk), and vector x

in the TT-format with cores Xk(jk).

Ensure: Vector y = Ax in the TT-format with cores Yk(ik).

for k = 1 to d2 do

Zk =
∑

jk
(A2k(jk)⊗Xk(jk)).

end for

for k = 1 to d1 do

if k 6= d1 then

Yk(ik) = A1k(ik).

else

Yd1(id1) = A1d1(id1)Z1 . . . Zd2 .

end if

end for
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The assembly of the factors Zk can be realized by multiplication of a matrix

of size r2 × n by a matrix of size n × r2 (after a suitable reshaping). The computa-

tional complexity of assembly all factors is O (d2nr
4). Since Zd2 is a column vector,

evaluating Yd1(id1) reduces to the computation of matrices Zk and evaluating d2 + 1

matrix-by-vector products giving an overall computational complexity of O(d2nr
4).

Note that the first d1−1 cores of the resulting tensor are precisely the first d1−1 cores

of the matrix A. The d1-th core is the d1-th core of the matrix A post-multiplied by

the matrices Yk. For this formulation of the matrix-by-vector product, the TT-ranks

of the product are exactly the TT-ranks of the original matrixA. This is in sharp con-

trast with the matrix-by-vector product for matrices in TTM-format where the ranks

of the product are at worst bound from above by the products of the corresponding

ranks and generally the product has ranks larger than either of the factors.

III.2.4.3 TT VM-M Product

We formulate a similar algorithm for computing a matrix-matrix product when

one matrix A is in the TTVM format and the other matrix B is in the TTM format

and the number of column indices of A is equal to the number of row indices of B.

The product is given in the TTVM format.

Let multilevel matrix A have TTVM decomposition given by

A(i1, . . . , id1 ; j1, . . . , jd2) = A11(i1) . . . A1d1(id1)A21(j1) . . . A2d2(jd2),
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and multilevel matrix B have TTM decomposition given by

B(̂i1, . . . , îd2 ; ĵ1, . . . , ĵd2) = B1(̂i1, ĵ1) . . . Bd2 (̂id2 , ĵd2).

The tensor product A⊗B can be represented in the TT format by:

(A⊗B)(i1, . . . , id1 ; j1, . . . , jd2 ; î1, . . . , îd2 ; ĵ1, . . . , ĵd2)

= A11(i1) . . . A1d1(id1)A21(j1) . . . A2d2(jd2)B1(̂i1, ĵ1) . . . Bd2 (̂id2 , ĵd2),

which after rearrangement can be written in the TT format as

= A11(i1) . . . A1d1(id1)
(
A21(j1)⊗B1(̂i1, ĵ1)

)
. . .
(
A2d2(jd2)⊗Bd2 (̂id2 , ĵd2)

)
.

The matrix vector product Y = AB can then be written as the contraction over the

tensor product cores with jk = îk for each k = 1, . . . d2 which using III.2.4 results in

a TTVM formatted matrix which can be written as:

Y (i1, . . . , id1 ; ĵ1, . . . , ĵd2) = Y11(i1) . . . Y1d1(id1)Y21(ĵ1) . . . Y2d2(ĵd2),

where

Ylk(·) =


A1k(·), if l = 1,∑

jk=îk

(
A2k(jk)⊗Bk (̂ik, ·)

)
, otherwise.

The assembly of the factors Y2k can be realized by multiplication of a matrix of

size r2×n by a matrix of size n×nr2 (after a suitable reshaping). The computational

complexity of assembly all factors is O (d2n
2r4). Again, the first d1 − 1 cores of the

resulting tensor are precisely the first d1 − 1 cores of the matrix A so this procedure

does not result in increased ranks for these cores, though the last d2 − 1 cores will
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generally have ranks larger than the cores of the two factors. The details of the

algorithm are summarized in Algorithm 5.

Algorithm 5 Tensor Train VM-by-M Product

Require: Matrix A in the TTVM-format with cores A1k(ik), A2k(jk), and matrix B

in the TTM-format with cores Bk(ik, jk).

Ensure: Matrix Y = AB in the TTVM-format with cores Y1k(ik), Y2k(jk).

for k = 1 to d1 do

Y1k(ik) = A1k(ik).

end for

for k = 1 to d2 do

Y2k(jk) =
∑

αk
(A2k(αk)⊗Bk(αk, jk)).

end for

III.2.4.4 TT VM-M-VM Product

We discuss algorithms for computing the matrix product Y = ABC where A

is a TTVM formatted matrix with d1 row indices and d2 column indices, B is a TTM

formatted matrix with d2 row and column indices, and C is a TTVM formatted

matrix with d2 row indices and d3 column indices and all the corresponding mode

sizes are the same so that the contractions are all well-defined.

Let multilevel matrix A have TTVM decomposition given by

A(i1, . . . , id1 ; j1, . . . , jd2) = A11(i1) . . . A1d1(id1)A21(j1) . . . A2d2(jd2),
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multilevel matrix B have TTM decomposition given by

B(̂i1, . . . , îd2 ; ĵ1, . . . , ĵd2) = B1(̂i1, ĵ1) . . . Bd2 (̂id2 , ĵd2),

multilevel matrix C have TTVM decomposition given by

C (̂̂i1, . . . ,
ˆ̂id2 ;

ˆ̂j1, . . . ,
ˆ̂jd3) = A11 (̂̂i1) . . . A1d2 (̂̂id2)A21(ˆ̂j1) . . . A2d3(

ˆ̂jd3).

The tensor product A⊗B ⊗C can be represented in the TT format by:

(A⊗B ⊗C)(i1, . . . , id1 ; j1, . . . , jd2 ; î1, . . . , îd2 ; ĵ1, . . . , ĵd2 ;
ˆ̂i1, . . . ,

ˆ̂id2 ;
ˆ̂j1, . . . ,

ˆ̂jd3)

= A11(i1) . . . A1d1(id1)A21(j1) . . . A2d2(jd2)B1(̂i1, ĵ1) . . . Bd2 (̂id2 , ĵd2)C11 (̂̂i1)×

. . .× C1d2 (̂̂id2)C21(ˆ̂j1) . . . A2d3(
ˆ̂jd3),

which after rearrangement can be written in the TT format as

= A11(i1) . . . A1d1(id1)
(
A21(j1)⊗B1(̂i1, ĵ1)⊗ C11 (̂̂i1)

)
×

. . .×
(
A2d2(jd2)⊗Bd2 (̂id2 , ĵd2)⊗ C1d2 (̂̂id2)

)
C21(ˆ̂j1) . . . A2d3(

ˆ̂jd3).

The matrix vector product Y = ABC can then be written as the contraction over

the tensor product cores with jk = îk, ĵl = ˆ̂il for each k = 1, . . . d2, l = 1, . . . , d3 which

using III.2.4 results in a TTVM formatted matrix which can be written as:

Y (i1, . . . , id1 ;
ˆ̂j1, . . . ,

ˆ̂jd2) = Y11(i1) . . . Y1d1(id1)Y21(ˆ̂j1) . . . Y2d3(
ˆ̂jd3),

where

Ylk(·) =


A1k(·), if l = 1,

C2k(·), if l = 2,k 6= 1

Z1 . . . Zd2C21(·), otherwise,
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where the matrices Zk are given by:

Zk =
∑
jk=îk

∑
ĵk=ˆ̂ik

(
A2k(jk)⊗Bk (̂ik, ĵk)⊗ C1k (̂̂ik)

)
.

The assembly of the factors Zk can be realized by multiplication of a matrix of

size r2 × n by a matrix of size n × nr2 and then multiplication of a matrix of size

r4 × n by a matrix of size n × r2 (after suitable reshapings). The computational

complexity of assembly all factors is O (d2n
2r4 + d2nr

6). The construction of the

factor Y21(·) requires d2 matrix multiplications of matrices of size r3× r3 by a matrix

of size r3 × nr resulting in a computational complexity of O (d2nr
7). The overall

computational complexity is therefore O (d2n
2r4 + d2nr

7). Again, the first d1 cores

of the resulting tensor are precisely the first d1 cores of the matrix A while the last

d3 − 1 cores are precisely the last d3 − 1 cores of the matrix C so this procedure

does not result in increased ranks. The details of the algorithm are summarized in

Algorithm 6.

In practice, we find that explicitly assembling the factors Zk is unnecessary and

very expensive in terms of storage when the ranks of A, B, or C are large. Since

the factors Zk are multiplied together, we find it more efficient to only explicitly

represent one row of Zk at a time during the matrix multiplication. The does not affect

the estimates of the computational complexity in terms of the number of arithmetic

operations performed but it significantly reduces the storage required to compute the

product.
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Algorithm 6 Tensor Train VM-M-VM Product

Require: Matrix A with d1 row indices and d2 column indices in the TTVM-format

with cores A1k(ik), A2k(jk), matrix B with d2 row and column indices in the TTM-

format with cores Bk(ik, jk), and a matrix C with d2 row indices and d3 column

indices in the TTVM-format with cores C1k(ik), C2k(jk).

Ensure: Matrix Y = ABC in the TTVM-format with cores Y1k(ik), Y2k(jk).

for k = 1 to d1 do

Y1k(ik) = A1k(ik).

end for

Y21(j1) = C21(j1).

for k = 1 to d2 do

Y21(j1) =
(∑

αk,βk
(A2k(αk)⊗Bk(αk, βk)⊗ C1k(βk))

)
Y21(j1).

end for

for k = 2 to d3 do

Y2k(jk) = C2k(jk).

end for
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III.3 Diagonalization of TT-VM Formatted Matri-

ces

In this section we discuss the diagonalization of symmetric positive semi-definite

matrices approximated in the TTVM format. The first section describes an approach

based on the Lanczos Method for computing the dominant eigenvalues and corre-

sponding eigenvectors of a Hermitian matrix which may be done cheaply whenever

the compression ranks of the matrix are small. The second section observes that

whenever the SVD is a good approximation of the diagonalization of the matrix one

should compute that since the SVD of a TTVM formatted matrix may be computed

cheaply and accurately using the TT rounding procedure.

III.3.1 TT-Lanczos Diagonalization

The Lanczos iteration is a powerful method for quickly estimating dominant

eigenvalues and the corresponding eigenvectors of Hermitian matrices, for instance,

finding the most controllable/observable modes of a linear system from the control-

lability/observability Gramian. Given a Hermitian matrix H and a predetermined

number of iterations m, it performs an efficient Krylov iteration to construct a change

of basis transforming H into a tri-diagonal matrix Tmm that can be diagonalized ef-

ficiently, for example, using the QR algorithm. Once the eigensystem of Tmm is

known, it is straightforward to reconstruct the dominant eigenvectors of H, see for
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example [Saa03]. The Lanczos iteration is attractive computationally since the only

large-scale linear operation is matrix-by-vector multiplication.

We use a version of the Lanczos iteration described in [Hac+12] for low-rank

tensor formats incorporating the Vectorized Matrix-by-Vector product introduced in

the previous section. A key challenge of such methods is controlling the rank through

the orthogonalization step, as adding or subtracting tensors generally increases rank.

The more iterations, the larger the ranks. We use the TT-rounding procedure to re-

compress the tensor after each orthogonalization step to help control this growth. The

formal description of the procedure is listed in Algorithm 2. If the Hermitian matrix

H were instead given in the (Q)TT-Matrix format, the standard (Q)TT Matrix-by-

Vector product could be substituted in the proposed algorithm but the TT-rounding

procedure should also be performed after every matrix-by-vector product to help

control the TT-ranks.

While it can be proved that with exact arithmetic, the Lanczos iteration con-

structs a unitary transformation and that the eigenvalues/vectors computed are good

approximations to those of the original matrix, it is well understood that when using

floating point arithmetic the orthogonality may be quickly lost. An overzealous use of

the TT-rounding procedure has the same effect and we observe this in our numerical

experiments.
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Algorithm 7 (Q)TT-Lanczos Iteration

Require: MatrixA in the Vectorized-(Q)TT-Matrix format and number of iterations

m.

Ensure: Sequences of values {αk}mk=1, {βk}mk=1 and Lanczos vectors {vk}mk=1 in the

(Q)TT-format.

v1 = random (Q)TT-vector with norm 1.

v0 = zero vector.

β1 = 0.

for k = 1 to m do

wj = Avj , {Matrix-by-Vector Product}

αj = wj · vj ,

wj = wj − αjvj − βjvj−1, {Orthogonalization}

TT-Round wj to accuracy ε,

βj+1 = ||wj||,

vj+1 = wj/βj+1

end for
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III.3.2 TTVM-SVD Diagonalization

We first remark that computing the SVD of a symmetric, positive semidefinite

matrix automatically reveals its nonzero eigenvalues and associated eigenvectors since

powers and roots of a matrix can be computed in a straightforward manner once it

is diagonalized.

Proposition III.3.1. Let P be a positive semidefinite matrix with singular value

decomposition P = UΣV T . If v is a column vector of V (right-singular vector of P )

then it is also an eigenvector of P whose associated singular value is also its associated

eigenvalue. Furthermore, v is also a column of U .

Proof. Since P is positive semidefinite symmetric, there exists an orthonormal basis

for Rn of eigenvectors {wk}nk=1 of P with associated nonnegative eigenvalues λk. Recall

that the nonzero singular values of P are positive roots of the nonzero eigenvalues of

P ∗P and that the right-singular vectors of P (the columns of V T ) are eigenvectors of

P ∗P . Suppose v is a right-singular vector of P and therefore an eigenvector of P ∗P

with associated eigenvalue µ. Then v can be expressed as a linear combination of

the basis elements wk: v =
∑n

k=1 αkwk, where each αk ∈ R. Computing the matrix

vector product in terms of the expansion in the basis elements:

P ∗Pv = µv,

n∑
k=1

αkλ
2
kwk = µ

n∑
k=1

αkwk.

Computing the inner product of each side with each element of the orthonormal basis
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{wk}nk=1 yields:

αkλ
2
k = µαk, k = 1, . . . , n.

For each k, either αk = 0 or µ = λ2
k, but at least one αk 6= 0 since otherwise v = 0

and it is not an eigenvector of P ∗P as was assumed. Instead, there is some subset

K ⊂ {1, . . . , n}, where the αk̂ 6= 0 for each k̂ ∈ K. λk̂ = +
√
µ for every k̂ in this

index set. This means that for each k̂ ∈ K, the associated eigenvectors vk̂ all belong

to the same eigenspace of P . Hence, dropping all the terms of the expansion whose

coefficients αk = 0, v can be written as a linear combination of elements all belonging

to the same eigenspace and is therefore itself an eigenvector of P .

To see that the associated singular value is also an eigenvalue suppose vk is the

k-th column vector of V corresponding to a nonzero singular value and is therefore

also an eigenvector with associated eigenvalue ν:

Pvk = νvk

UΣV Tvk = νvk

σkuk = νvk

where uk is the k-th column vector of U and σk is the k-th singular value of P . Since

the above equation shows that they differ by a scalar multiple, they are collinear.

Since the singular vectors uk and vk are assumed to have unit norm, σk > 0 since it

is a nonzero singular value, and ν ≥ 0 since P is positive semidefinite, uk = vk, and

therefore ν = σk. Therefore, σk is the associated eigenvalue of vk and uk = vk so that

vk is also the k-th column of U .
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The proposition when applied to TTVM formatted positive semidefinite matri-

ces says that by computing the TTVM-SVD, we are also computing a diagonalization

of the matrix.

III.4 Matrix Powers

The controls applications described in the following chapters require easily com-

putable matrix inverses and square roots. While in general, even for positive definite

matrices, some of these objects may not be unique, simple formulas can be stated and

computed in terms of the diagonalization of the matrix in question. We first state a

formula for computing the (positive) matrix power.

Definition III.4.1. Suppose W is positive semidefinite and has rank r̂c and eigen-

vectors {wk}r̂ck=1 with associated eigenvalues {λk}r̂ck=1. For p > 0, the p-th power of W

is given by the formula:

(W )p =
r̂c∑
k=1

(λk)
p(wk ⊗ wk). (III.4.1)

Inverse powers will not be defined if W is singular. At best we may consider the

restriction of positive semidefinite W to the orthogonal complement of its nullspace,

W |N⊥W . We may also describe some of its inverse powers in terms of its eigendecom-

position.

Definition III.4.2. Suppose W is positive semidefinite and has rank r̂c and eigenvec-

tors {wk}r̂ck=1 with associated eigenvalues {λk}r̂ck=1. For p ≥ 0, the p-th inverse power
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of W |N⊥W is given by the formula:

(
W |N⊥W

)−p
=

r̂c∑
k=1

(λk)
−p(wk ⊗ wk). (III.4.2)

Since the Lyapunov Equation solver described previously outputs gramians in

the TTVM format, their square roots and inverses are easily computable in the TTVM

format assuming the gramian has been computed with high enough accuracy to be

symmetric. The process requires a computation of the TTVM-SVD, and calculating

r̂c powers of positive numbers. The details of the procedure for computing the p-th

power are summarized in Algorithm 8. The generalization to inverse powers on the

restricted domain is straightforward.
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Algorithm 8 Tensor Train Vectorized Matrix Power

Require: Positive definite matrix X in the TTVM-format with cores

X1k(ik), X2k(jk) and with ranks r1,1, . . . , r1,d1−1, r̂c, r2,1, . . . , r2,d2−1, implemen-

tation of the qr lr(·) algorithm as in [Ose11], the qr lr(·) algorithm, and the

singular value decomposition, svd(·).

Ensure: Matrix Y in the TTVM-format with cores Y1k(ik), Y2k(jk) such that Y =

X2.

[QT
2 ,R

T
V ] = qr rl(X),

[Q1,RU ] = qr lr(X),

[UP , D, V
T
P ] = svd(RUR

T
V ),

YP = UPD
2V T

P

for k = 1 to d do

Ŷ1,k(ik) = Q1,k(ik),

Ŷ2,k(jk) = Q2,k(jk),

end for

Ŷ1,d1(id1) = Y1,d1(id1)YP .
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Chapter IV

hp-DG-QTT Solver for the

Chemical Master Equation

This chapter describes the hp-DG-QTT approach to the numerical solution of

the Chemical Master Equation. It combines three main technologies. First, employ

the Finite State Projection (FSP) to reduce the formally countably infinite state-space

of the Markov Process to one with finitely many states. The FSP reduces the CME

to a large but structured system of ODEs. Second, use the Quantized Tensor Train

format to express all vectors and matrices involved. We compute upper bounds on

the QTT ranks of the CME operator. While this work does not provide rank bounds

on the solution of the CME we refer the reader to the related work of Kazeev and

Schwab [KS13] which computes rank bounds for the stationary solutions of reaction

networks with Deficiency Zero in the sense of Feinberg [Fei79]. Lastly, we employ the
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hp-Discontinous Galerkin time discretization to convert the system of ODEs into a

sequence of QTT structured linear systems which are solved at each time step using

the DMRG based solver. The resulting numerical method is adaptive both in time

and in the QTT compression. In the best cases, it demonstrates linear complexity

scaling in the number of chemical species.

IV.1 CME Truncation

A “well-stirred” solution of d chemically reacting molecules in thermal equi-

librium can be described by a jump Markov process, where for each fixed time

t ≥ 0, X(t) ∈ Zd≥0 is a random vector of nonnegative integers with each compo-

nent representing the number of molecules of one chemical species present in the

system. In [Kam92] and the references therein, it is shown that, given an ini-

tial condition X(0) ∈ Zd≥0, the corresponding probability density function (PDF)

Zd≥0 × [0,∞) 3 (x, t) 7→ px(t) of the process solves the Chemical Master Equation

(CME):

d

dt
px(t) = −px(t)

R∑
s=1

ωs(x) +
R∑
s=1

px−ηs(t)ω
s
(
x− ηs

)
(IV.1.1)

where R is the number of reactions in the system, ηs ∈ Zd and ωs are the stoichio-

metric vector and propensity function of the sth reaction, respectively. The CME is

a system of coupled linear ordinary differential equations with one equation per state

X(t) = x ∈ Zd≥0.
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Munsky and Khammash [MK06] rewrote the right-hand side of the CME (IV.1.1)

as the action of a linear operator A on the probability density at the current time:

d

dt
p(t) = Ap(t) (IV.1.2)

Throughout this paper, we refer to A as the CME operator.

Hegland and Garcke introduced an explicit representation of the CME operator

as sums and compositions of a few elementary linear operators [HG11]: let Sη be the

spatial shift of a probability density by a vector η ∈ Zd and let Mω be multiplication

by a real-valued function ω:

(
Sη p

)
x = px−η, (Mω p) x = ω(x) · px .

Then the CME operator can be written as follows, with Id denoting the identity

operator:

A =
R∑
s=1

(
Sηs − Id

)
◦Mωs . (IV.1.3)

To simplify the exposition, we assume that all propensity functions are rank-one

separable, i.e. they are of the form

ωs(x) =
d∏

k=1

ωsk(xk) , x ∈ Zd≥0, (IV.1.4)

for 1 ≤ s ≤ R, where each ωsk(xk) is a nonnegative function in the single variable xk.

Considering rank-one separable propensity functions is sufficient for all elementary

reactions which occur as building blocks in more complicated reaction kinetics.

The CME (IV.1.2) is posed on the (countably) infinite space Zd≥0 of states. In

this form, the CME (IV.1.1) is an infinite-dimensional coupled evolution problem
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which necessitates truncation prior to numerical discretization. In the case of a par-

ticular class of monomolecular reactions, Jahnke and Huisinga were able to construct

an explicit solution in terms of convolutions of products of Poisson and multinomial

distributions [JH07].

In order to address more complex systems computationally, Munsky and Kham-

mash proposed the Finite State Projection Algorithm (FSP) [MK06] which seeks to

truncate the countably infinite dimensional space Zd≥0 of states of the process to its

finite subset

Ωn =
{
x ∈ Zd≥0 : 0 ≤ xk < nk for 1 ≤ k ≤ d

}
⊂ Zd≥0 , (IV.1.5)

associated with a multi-index n = (n1, n2, ..., nd) ∈ Nd, so that the dynamics over Ωn

are close to those of the original system.

Theorem IV.1.1 (Finite State Projection, Theorem 2.2 in [MK06]). Consider a

Markov process with state space Zd≥0 whose probability density evolves according to

the initial value ODE: given an initial state p0 ∈ [0, 1]Z
d
≥0, find p(t) ∈ [0, 1]Z

d
≥0 such

that

d

dt
p(t) = Ap(t) 0 ≤ t <∞ , p(0) = p0

where the operator A : [0, 1]Z
d
≥0 7→ [0, 1]Z

d
≥0 can be interpreted as a semi-infinite

matrix.

Let An denote the restriction of A to Ωn defined by (IV.1.5) and assume that

p0 is supported in Ωn, i.e. that p0 = 0 in Zd≥0\Ωn. Denote by p̂·(·) ∈ [0, 1]Ω
n

the
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solution of the truncated system with dynamics given by the linear ODE:

d

dt
p̂(t) = Anp̂(t) , 0 ≤ t <∞ (IV.1.6)

with initial condition p̂x(0) = px(0) = p0(x). If for some ε > 0 and τ ≥ 0

∑
x∈Ωn

p̂x(τ) ≥ 1− ε (IV.1.7)

then

p̂x(τ) ≤ px(τ) ≤ p̂x(τ) + ε (IV.1.8)

for every x ∈ Ωn and ∥∥∥p̂(τ)− p(τ) |Ωn

∥∥∥
1
≤ ε. (IV.1.9)

Assuming that a truncation satisfying (IV.1.7) can be found, then (IV.1.9) gives

an explicit certificate of the accuracy of the approximate solution.

In practice, the truncation satisfying a given error tolerance may still require a

very large number of states: the dimension of the FSP vector p̂ equals card(Ωn) =∏d
k=1 nk rendering a direct numerical solution of even the projected equation (IV.1.6)

infeasible in many cases. The remainder of the chapter presents a novel approach

for the numerical solution of such FSP truncated systems that retain large numbers

of states. For notational convenience, we drop the superscripts n and the hat from

p̂ indicating the FSP since we will only consider systems which have already been

truncated. Similarly, we now use the shift and multiplication operators in (IV.1.3)

restricted to the truncated state space without change of notation.
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Assuming that a FSP has been performed, we henceforth treat px(t) as a d-

dimensional n1 × . . . × nd-vector, i.e. as an array indexed by Ωn which we identify

with ordered d-tuples of indices ik ∈ {0, 1, 2, . . . , nk − 1}, where k ranges from 1 to d.

Each dimension k (alternatively referred to as a mode or level) has a corresponding

mode size nk, that is, the number of values which the index for that dimension can

take. For our chemically reacting system, nk−1 corresponds to the maximum number

of copies of the kth species that is considered.

For the same ordering of x, consider the corresponding d-dimensional n1× . . .×

nd-vectors ωs , 1 ≤ s ≤ R, containing the values of the propensities on Ωn to which

we shall refer as propensity vectors :

ωs x = ωs(x) for all x ∈ Ωn . (IV.1.10)

Within the projected CME (IV.1.6), the operators corresponding to weighting by

the propensity functions, involved in (IV.1.3), are finite matrices: Mωs = diagωs .

Then, under the rank one separability assumption (IV.1.4), with (ωsk ) xk = ωsk(xk)

for 0 ≤ xk ≤ nk, 1 ≤ k ≤ d there holds

ωs = ωs1 ⊗ . . .⊗ωsd , 1 ≤ s ≤ R . (IV.1.11)

IV.2 Representation of the CME in QTT Format

In this section we consider the Finite State Projection of the CME, projected

onto a rectangular collection of states as described previously. We take the finest
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possible quantization and representing both the PDF p of the truncated model and

the CME operator A from (IV.1.3) in the QTT format. We first establish upper

bounds on the QTT ranks of A.

Theorem IV.2.1. Consider the projected CME operator A defined by (IV.1.3). As-

sume that for every s = 1, . . . , R and k = 1, . . . , d the one-dimensional vector ωsk

from (IV.1.10)–(IV.1.11) is given in a QTT decomposition of ranks bounded by rsk;

and that ηsk = 0 implies rsk = 1. Then the CME operator A admits a QTT decompo-

sition of ranks

q1, . . . , q1, q̂1, q2, . . . , q2, q̂2, . . . , . . . , q̂d−1, qd, . . . , qd

with q̂k = 2R for 1 ≤ k ≤ d− 1 and

qk =
∑

s=1,...,R:
ηsk=0

2 +
∑

s=1,...,R:
ηsk 6=0

3rsk

for 1 ≤ k ≤ d.

Proof. The specific details of the proof is the work of Vladimir Kazeev and is given in

the Supplementary Text of [Kaz+14]. The sketch of the proof is to establish bounds

on each of the matrices in the explicit representation of the CME operator (IV.1.3),

and to use the sum and product rules for TT-formatted arrays to establish an upper

bound on the ranks of A.

A simpler (but cruder) upper bound on the QTT ranks of the CME operator is

3 · R · r, where r = maxs,k r
s
k. Note that when all the reactions are elementary, the
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propensities can be expressed as polynomials in which case if p is the order of the

highest order polynomial then, r = p + 1, see [Gra10b, Corollary 13] and [Ose13b,

Theorem 6]. We emphasize, however, that the bound IV.2.1 holds equally well when

the reactions are not elementary. In particular, our numerical experiments (e.g. the

toggle switch example) show that the QTT ranks of vectors corresponding to rational

propensity functions are also small.

At various points of this chapter, we assume that the propensities are separable

in each species. We emphasize that this is only to simplify the exposition of the

algorithmic details and relaxation of this condition poses no mathematical difficulties.

The QTT rank bound for A in Theorem IV.2.1, does not rely on any assumption of

separability of the propensity vectors.

IV.2.0.1 Structure of the CME operator in the transposed QTT format

This subject of this section is the work of Vladimir Kazeev and is included

to provide background for one of the numerical experiments. The interested reader

should see [Kaz+14] for details. Similarly to Theorem IV.2.1, we can bound the ranks

of the CME operator in the transposed QTT format relying on the ordering (III.1.2)

of “virtual” indices.

Theorem IV.2.2. Consider the projected CME operator A defined by (IV.1.3). As-

sume that for every s = 1, . . . , R and k = 1, . . . , d the one-dimensional vector ωsk

from (IV.1.10)–(IV.1.11) is given in a QTT decomposition of ranks bounded by rsk;
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and that ηsk = 0 implies rsk = 1. Then the CME operator A admits a QT3 decompo-

sition of ranks bounded by

R∑
s=1

(
1 +

∏
k∈Ks

2

)(∏
k∈Ks

rsk

)
,

where Ks = {k ∈ N : 1 ≤ k ≤ d and ηsk 6= 0}.

Proof. The proof is the work of Vladimir Kazeev and is given in the Supplementary

Text of [Kaz+14]

We observe in the enzymatic futile cycle example below that the QT3 ranks of

the CME operator may be significantly lower than the bound of Theorem IV.2.1.

Time Integration of the CME: hp-Discontinuous Galerkin Dis-

cretization

Consider the truncated CME (IV.1.6) with a state space X = Rn1×...×nd on a

finite time interval J = (0, T ). The Initial Value Problem (IVP) with initial data

p0 ∈ X is find a continuously differentiable function p : J → X such that
ṗ(t) = A · p(t) for t ∈ J,

p(0) = p0 .

(IV.2.1)

The theoretical solution of the IVP is given by the matrix exponential, p(t) =

exp (tA) · p0 for t ∈ J , but computing the numerical value at each time by tra-

ditional methods suffers from the curse of dimensionality.
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We use hp-discontinous Galerkin (hp-DG) discretization in time as the time-

stepping scheme [SS00] to solve the truncated ODE. Given a time mesh, the hp-DG

method finds an approximate solution to the initial value problem that is a polyno-

mial when restricted to each subinterval of the time mesh and possibly discontinuous

at each mesh point. This method allows adaptation of the size of each time step

(h-adaptation), allowing good resolution of fast transients, as well as the order of

the approximating polynomial on each time step (p-adaptation), or both simultane-

ously (hp-adaptation). For linear finite-dimensional ODE initial value problems like

the projected CME, the solution is time-analytic and the hp-DG approach achieves

exponential rates of convergence to the classical solution with respect to the number

of temporal degrees of freedom [SS00]. Assuming the problem has been expressed

in QTT format, hp-DG discretization in time reduces the projected CME evolution

problem to a sequence of systems of QTT structured linear equations that must be

solved at each time step [KRS12]. Our computational method then exploits an al-

gorithm available for solving linear systems in this format that is based on Density

Matrix Renormalization Group (DMRG) methods from quantum chemistry.

To discuss the tensor structure of the hp-DG-QTT approach, we revisit the

following definitions from [Kaz+14].

Denote the space of polynomials of degree at most ρ and with coefficients from

X defined on a finite interval I by Pρ (I,X). Let M = {Jm}Mm=1 be a partition of

the time interval J into subintervals Jm = (tm−1, tm), 1 ≤ m ≤ M , and ρ ∈ NM
≥0.
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Consider the space

Pρ (M, X) =
{
p : J → X : p|Jm

∈ Pρm (Jm, X) for 1 ≤ m ≤M
}

of functions, which are polynomials of degree at most ρm on Jm for all m. For all

q ∈ Pρ (M, X) let q+
m = limt↓tm q(t) and q−m = limt↑tm q(t) for all feasible m.

Definition IV.2.3. The hp-DG formulation of (IV.2.1), corresponding to the parti-

tion M of the time interval and the vector ρ of polynomial degrees, reads as follows:

find p ∈ Pρ (M, X) such that

M∑
m=1

∫
Jm

〈ṗ−Ap, q〉 dt+
M∑
m=1

〈
p+
m−1 − p−m−1 , q

+
m−1

〉
= 0 (IV.2.2)

for all q ∈ Pρ (M, X), where p−0 stands for the initial value p0 .

Equation (IV.2.2) can be understood as a time-stepping method: if for all m

from 1 up to ` − 1 the polynomial p|Jm
∈ Pρm (Jm, X) is known through ρm + 1

coefficients from X, then p|J`
∈ Pρ` (J`, X) can be found as the solution to∫

J`

〈ṗ−Ap, q〉 dt+
〈
p+
`−1 − p

−
`−1 , q

+
`−1

〉
= 0. (IV.2.3)

For 1 ≤ m ≤M let {ϕj}ρmj=0 be a basis in Pρm ((−1, 1), X), then the correspond-

ing temporal shape functions on Jm are ϕj ◦ F−1
m , 0 ≤ j ≤ ρm, where the affine map

Fm : (−1, 1) → Jm is defined by t = Fm(τ) = 1
2
(tm + tm−1) + 1

2
(tm − tm−1)τ for τ ∈

(−1, 1). If p|Jm
=
∑ρm

j=0 (Pm ) j · (ϕj ◦ F−1
m ), where Pm ∈ Xρm+1 ' R(ρm+1)×n1×...×nd ,

then (IV.2.3) yields the following linear system on the coefficients:

(Cm ⊗ Id−Gm ⊗A) · Pm = ϕm−1 ⊗p−m−1 , (IV.2.4)
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where (Cm ) i
j

=
∫ 1

−1
ϕ′j(τ)ϕi(τ) dτ + ϕj(−1)ϕi(−1) and (Gm ) i

j
=
∫ 1

−1
ϕj(τ)ϕi(τ)dτ

for 0 ≤ i, j ≤ ρm, while
(
ϕm−1

)
i = ϕi(−1) for 0 ≤ i ≤ ρm.

In order to represent the system while preserving the tensor structure (IV.2.4),

we attach the index corresponding to the orthogonal polynomials of the temporal

discretization as a single (unquantized) dimension to the first “virtual” spatial index.

Theorem IV.2.4. Assume that A is represented in the QTT or QT3 format in

terms of D cores with ranks r1, . . . , rD−1. Then the matrix of system (IV.2.4) can be

represented in the corresponding format in terms of D + 1 cores with ranks 2, r1 +

1, . . . , rD−1 + 1.

Proof. The proof is the work of Vladimir Kazeev and is given in the Supplementary

Text of [Kaz+14].

IV.2.1 Algorithm Summary

Assuming we have a finite state projection of the CME, we summarize our

approach to the CME solution by outlining the two main algorithms we propose for its

subsequent efficient solution. Given a reaction network and a finite state projection

Algorithm 9 approximates the CME operator in QTT format. Algorithm 10 then

describes the time-stepping procedure for computing the solution. Note that the

integrals in Algorithm 10 may be pre-computed depending on the choice of temporal

basis functions. E.g. if one chooses the Legendre polynomials as the basis, then there

are explicit solutions of the integrals involved.
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Algorithm 9 Assemble Projected CME Operator in QTT Matrix Format

Require: Rank-1 separable propensity functions ωs(x), stoichiometric vectors ηs,

rectangular FSP truncation [0, . . . , 2l1 − 1]× . . .× [0, . . . , 2ld − 1], propensity QTT

compression tolerance εprop, a QTT approximation subroutine QTT Approx imple-

menting [Ose11, Algorithm 1] for quantized vectors.

Ensure: Projected CME operator A in QTT matrix format

Initialize A = 0;

for s = 1, . . . , R do

Sηs = S
(l1)
ηs1
⊗ . . .⊗S(ld)

ηsd
;

for k = 1, . . . , d do

ωsk = QTT Approx(ωsk (0, . . . , 2lk − 1)) with tolerance εprop;

end for

ωs = ωs1 ⊗ . . .⊗ωsd ;

Mωs = diagωs ;

A = A+
(
Sηs − Id

)
◦Mωs ;

end for
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Algorithm 10 hp-DG-QTT CME Solver

Require: Projected CME operator A in QTT format, time mesh M = {Jm}Mm=1,

polynomial orders ρ ∈ NM
≥0, basis of temporal shape functions {ϕj}∞j=0, DMRG-

solver tolerance RES

Ensure: Approximate solution p ∈ Pρ (M, X) of the evolution ṗ = Ap

for m = 1, . . . ,M do

for i, j = 0, . . . , ρm do

(Cm ) i
j

=
∫ 1

−1
ϕ′j(τ)ϕi(τ) dτ + ϕj(−1)ϕi(−1);

(Gm ) i
j

=
∫ 1

−1
ϕj(τ)ϕi(τ)dτ ;

end for

Solve (Cm ⊗ Id−Gm ⊗A) · Pm = ϕm−1 ⊗p−m−1 , for Pm using DMRG-solver

with tolerance RES;

pm =
∑ρm

j=1Pm,j ϕj(1);

end for
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IV.2.2 Comparison to Krylov Subspace Methods

The solution at a particular time of a finite state projection of the CME is given

analytically by the matrix exponential, but the numerical computation of such solu-

tions for large A is often expensive. When A is sparse, however, the Krylov subspace

method [Saa92; SS86] is one approach for performing the computation for the CME

as described in [Bur+06]. The method uses the Arnoldi iteration to compute the

Krylov subspace up to some order of accuracy then computes the matrix exponen-

tial in that smaller space (by diagonal Padé approximation). The publicly available

Expokit Toolbox by Sidje [Sid98] provides an implementation of the algorithm.

It is important to note that the algorithm steps incrementally in time rather

than jumping to the desired time step. In the context of the CME, this means that

the faster the support of the pdf fills the set of reachable states, the more expensive

this algorithm becomes to compute. When there is reason to believe the support of

the pdf remains small, then the algorithm can be expected to compute efficiently over

large time intervals. Generically, however,the support of the pdf quickly fills the set

of reachable states which may include every state retained in the projection. This

renders the Arnoldi iteration computationally expensive at each time step.

The QTT method effectively circumvents this problem by storing the computed

solution at each time step in the QTT format and exploiting the fast algorithms

for basic tensor arithmetic available in this format. While it is unknown whether a

given reaction network and initial probability distribution will produce an evolution
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that can be represented well by a QTT formatted tensor with low QTT ranks, our

numerical experiments find this often is the case and that the savings over using

traditional sparse representations of vectors and matrices may be quite substantial.

Below we compare our method to the Krylov subspace approach in the toggle

switch example which does not exhibit any pronounced structure favoring either one

of the methods (rank-one separability and sparse structure respectively).

Algorithm 11 Krylov-Based Matrix Exponential from MacNamara, et al. [Bur+06]

Require: Matrix A in sparse format, vector v in sparse format, time interval τ ,

dimension of Krylov subspace m, local error tolerance ε.

Ensure: exp(τA)v

for k = 0, 1, 2, . . . until tk = tf do

[Vm+1,Hm+1] :=Arnoldi(A,vk(tk),m);

while err≤ 1.2ε do

τk:= step size;

vk(tk) = βVm+1 exp(τkHm+1)e1;

err := numerical error estimate;

end while

tk + 1 := tk + τk

end for
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IV.3 Numerical Experiments

IV.3.1 Implementation Details

In order to solve the IVP (IV.1.2), we exploit the hp-DG-QTT algorithm pro-

posed in [KRS12], adapted to the CME as described above, and implemented in

MATLAB. It uses an exponentially convergent spectral time discretization scheme

which reduces the solution of the IVP to a sequence of QTT structured linear system

solves in the “species space”. We exploit a DMRG optimization-based linear system

solver [Vid03; VPC04; Whi93] and elaborated on in the context of the TT format

in [DO11] and available as the function dmrg solve3 of the TT Toolbox.

The temporal discretization requires three elements: specification of a basis of

orthogonal polynomials, a mesh of time points to solve on, and a schedule specifying

the polynomial orders of the discretization over each subinterval. For the numerical

experiments, we use normalized Legendre polynomials as the polynomial basis for

the temporal discretization. We use a time mesh that is split into three regions

[0, h], [h, T1], and [T1, T ], where each region is chosen heuristically to most efficiently

reproduce the behavior of the solution in that time region. In the first region, [0, h]

we initialize the algorithm with M0 = 10 steps increasing geometrically with the

factor σ0 = tm−1

tm
= 0.5. In the region [h, T1] where the solution exhibits fast transient

behavior, we use a uniform time mesh of width h. In the last region, [T1, T ], when

the solution is close to stationary, we increase the mesh width geometrically width
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grading factor σ2 = tm−1

tm
= 1− h

T1
. On every time interval we use polynomial spaces

of degree ρ = 3 to discretize (IV.1.2). Note that in the reported results we are forced

to use rather small time steps and to restrict the polynomial spaces to low degree

since the DMRG solver, like any other available tensor-structured solver, converges

only locally. Thus the DMRG solver prevents us from taking full advantage of the

exponential convergence of the hp-DG time discretization.

While the “DMRG” solver still lacks a rigorous theoretical foundation, it proves

to be highly efficient in many applications, including our experiments. In [RU12] a

closely related Alternating Least Squares (ALS) approach was mathematically ana-

lyzed and shown to converge locally. More on the mathematical ideas behind the

ALS and DMRG optimization in the TT format can be found in [HRS12].

The DMRG solver requires specification of the following parameters: the relative

tolerance of the residual RES in the Frobenius norm for the linear system, the max-

imum allowed number of DMRG sweeps SWP, the maximum number RST of restarts

for the GMRES solution of the DMRG local optimization problems, the max number

ITR of iterations before restarting the GMRES procedure, the maximum allowed rank

RMX, and the rank of random components added to the solution to avoid stopping in

local minima KCK. The DMRG procedure loops until either the number of iterations

reach SWP or the residual tolerance is met. In each simulation run in each numerical

experiment, these parameters are held fix for every time step.

Once a time step is successfully computed, since the elements of Pm are the

85



coefficients of the expansion in the temporal basis, we contract over the temporal

indices to evaluate p−m . Since the ranks of p−m are generally suboptimal we recompress

in the TT format with relative `2-accuracy EPS.

We evaluate the accuracy of the approach in each experiment by comparison

to reference data. In the first example, the problem setup leads to solutions that

are symmetric and independent so the marginal of each species may be computed

separately and combined to form the full PDF. For this problem, we solve each sub-

problem using the standard MATLAB solver ode15s in the sparse format to obtain

the univariate factor of a reference solution. In other examples we used SPSens

beta 3.4, a massively parallel package for the stochastic simulation of chemical net-

works (http://sourceforge.net/projects/spsens/) [SRK13], to construct refer-

ence PDFs. The stochastic simulations were carried out on up to 1500 cores of Brutus,

a high-performance cluster of ETH Zürich (https://www1.ethz.ch/id/services/

list/comp_zentral/cluster/index_EN).

Due to the high dimensionality of some problems, it is actually computationally

difficult to make a comparison using the entire PDFs; in these cases we only com-

pare marginal distributions. ∆`p denotes the `p-norm of the difference in each case.

Interestingly, the reference solution can be realistically obtained with a certain level

of accuracy which cannot be reduced arbitrarily so in some cases the hp-DG-QTT

solution appears more accurate.

Since our solution sometimes appears more accurate than the reference data,
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in the first and last experiments we reapproximate the solution again with relative

`2-accuracy α · ∆`2

‖p−m ‖ , with α = 0.05 for the first example and α = 0.01 for the second.

We refer to the reapproximation procedure as truncation and the result the truncated

solution. The procedure results in a solution which has minimal QTT ranks needed

to represent the data at a similar level of accuracy as the reference data. The relative

approximation tolerance ensures that the relative discrepancy in the `2-norm grows

by at most a factor of 1 + α.

Our Matlab implementation relies on the TT toolbox, publicly available at

http://spring.inm.ras.ru/osel and http://github.com/oseledets/TT-Toolbox,

for the object oriented implementation of the TT data structure and arithmetic oper-

ations as well as the DMRG linear system solver. For consistency, we use the GitHub

version of July 12, 2012 in all examples below. We run the hp-DG-QTT solver in

MATLAB 7.12.0.635 (R2011a) on a laptop with a 2.7 GHz dual-core processor and

4 GB RAM, and report the computational time in seconds.

IV.3.2 d Independent Birth-Death Processes

As a first example we consider a system composed of d chemical species with

{X1, . . . , Xd} a vector of random variables representing the species count of each. The

dynamics of the random vector are governed by independent birth-death processes.

For the k-th species, the corresponding reactions are given by

∅
bk−−⇀↽−−
dk

Xk
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Direct Approach Proposed Approach

run solution operator solution truncated solution operator

Mem Mem Mem ratio Mem ratio Mem ratio

d independent birth-death processes

d = 1 4.103 1.687 736 1.80−1 264 6.45−2 992 5.91−5

d = 2 1.687 2.8214 3858 2.30−4 528 3.15−5 2852 1.01−11

d = 3 6.8710 4.7221 7742 1.13−7 898 1.31−8 4800 1.02−18

d = 4 2.8114 7.9028 12176 4.33−11 1432 5.09−12 6748 8.52−26

d = 5 1.1518 1.3236 16262 1.41−14 1946 1.69−15 11032 8.30−33

genetic toggle switch

only 3.367 1.1215 65264 1.95−3 – – 10988 9.76−12

enzymatic futile cycle

(A)
4.196 1.7613

18396 4.39−3 8472 2.02−3 25848 1.47−9

(D) 360332 8.59−2 290144 6.92−2 5584 3.17−10

Table IV.1: Overview of the QTT compression of the storage needed for solutions

(maximum throughout the time stepping) and CME operators. For details on “trun-

cated solution” see Numerical experiments. Common details. Solution Mem in

the Direct Approach is the number of states taken into account in the FSP, which is

equal to the number of entries, N , in the solution vector. For the CME operator, Mem

is N2, the number of entries in the matrix. In the Proposed QTT Approach, ratio

indicates the memory storage compression ratio, i.e. the ratio of Mem in the Proposed

QTT Approach to that in the Direct Approach. In the sparse representation of the

CME operator the number of nonzero entries would be O (N) rather than N2. The

exponents are given in boldface for the base 10.

88



where bk is the spontaneous creation rate and dk is the destruction rate for species

Xk. This problem is perfectly separable in the sense that the dynamics of any one

chemical species of this system is independent of the dynamics of all others. Given

the initial condition Xk(0) = ξk for each k, the marginal distribution for any one

species Xk at time t is given by:

pk(xk; t) = P(xk, λk(t)) ?xkM(xk, ξk, p
(k)(t)), xk ∈ Z≥0

where P(·, λk(t)) is the Poisson distribution with parameter λk(t), ?xk indicates the

discrete convolution in variable xk, M
(
xk, ξk, p

(k)(t)
)

the multinomial distribution

with parameter p(k)(t), and the parameters p(k) and λk evolve according to the reaction

rate equations

d
dt
p(k)(t) = −dkp(k)(t) , d

dt
λk(t) = bk − dkλk(t),

p(k)(0) = 1, λk(t) = 0.

See [JH07, Theorem 1] for details. Since X1, . . . , Xk are mutually independent, the

joint PDF at time t, p(t), is the product of the marginals:

p(t) =
d∏

k=1

pk(t)

that is, this system has an explicit formula for the solution regardless of the number

of chemical species involved. We can, therefore, evaluate the accuracy and observe

the complexity scaling of the hp-DG-QTT solver as the number of chemical species

increases.

For numerical simulations we assume bk = 1000 and dk = 1 for 1 ≤ k ≤ d

and consider the FSP with lk = 12. We solve the corresponding projected CME
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d N ‖Ap0 ‖2
‖p0 ‖2

‖Ap−M ‖2
‖p−M ‖2

reff ∆`2 TIME

1 212 1.4 +3 1.0−3 3.53 1.9−5 87

2 224 2.4 +3 1.4−3 3.42 2.3−5 704

3 236 3.5 +3 1.8−3 3.38 3.5−5 1548

4 248 4.5 +3 2.0−3 3.37 3.6−5 2516

5 260 5.5 +3 2.3−3 3.36 3.5−5 3544

Table IV.2: d independent birth-death processes: reff = reff

[
p−M
]
, ∆`2 = ∆`2

[
p−M
]
,

computational TIME in seconds; rmax

[
p−M
]

= 6 for all d. N is the number of states

taken into account in the FSP. The exponents are given in boldface for the base 10.

for d = 1, 2, 3, 4, 5 to check that in all these cases the hp-DG-QTT method using

the ordering (III.1.1) without transposition is capable of revealing the same low-rank

QTT structure of the solution. For the CME operator we have rmax [A] ≤ 8 up to

accuracy 5 · 10−15. We compute the evolution of the PDF of the system for the zero

initial value through M = 569 time steps till T = 10. In this experiment, T1 = 10−1

and h = 10−3. The settings of the DMRG solver are: RES = 2 · 10−6, SWP = 2,

RMX = 20, ITR = 100, RST = 1, KCK = 1. The evaluation accuracy is EPS = 10−8.

The results, which are presented in Figure IV.1 and Table IV.2, show that the

same low-rank structure of the solution is adaptively reconstructed by the algorithm

for all d considered.
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Figure IV.1: d independent birth-death processes. The maximum QTT ranks of

the solutions, rmax

[
p−M
]

= 6 for each d. Markers are omitted for tm > 10−2 in (a)–(c).

(a) Relative discrepancy ∆`2 [p−m ] /
∥∥p−M ∥∥ (after truncation) vs. tm. (b) Cumulative

computation time (in seconds) vs. tm. (c) Effective QTT rank reff [p−m ] (after trunca-

tion) vs. tm. (d) Relative discrepancy ∆`2

[
p−M
]
/
∥∥p−M ∥∥ (blue) and total computation

time (red) vs. d.

.
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IV.3.3 Toggle Switch

The next example models a synthetic gene-regulatory circuit designed to pro-

duce bistability over a wide range of parameter values [GCC00]. The network consists

of two promoters constructed in a mutually inhibitory configuration that implement

a double negative feedback loop, causing the network to exhibit robust bistable be-

havior (see Figure IV.2). If the concentration of one repressor is high, this lowers

the production rate of the other repressor, keeping its concentration low. This al-

lows a high rate of production of the original repressor, thereby stabilizing its high

concentration.

φ

φ U

V

gene 1 gene 2

Saturday, February 2, 13

Figure IV.2: Toggle Switch consisting of double negative feedback loop.

Species U represses the production of species V and vice versa. Photo courtesy of

Mustafa Khammash.

A stochastic model of the toggle switch was considered in [MK08] and consists
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of the following four reactions:

∅
α1

1+V β−−−→ U, ∅
α2

1+Uγ−−−→ V

U
δ1−−→ ∅, V

δ2−−→ ∅

where U and V represent the two repressors. Denote the species counts of each by U

and V , respectively. The stochastic model admits a bimodal stationary distribution

over a wide range of values of the rate constants. We consider the set of parameters

from [MK08] which were selected to test the efficiency of using available numerical

algorithms to calculate matrix exponentials to solve low dimensional FSP approxima-

tions of the CME. We then scaled the parameters so that a larger set of states would

be required to guarantee an FSP truncation with low approximation error. While

a different set of parameters were considered in [Deu+08; SLE09], which required

a larger FSP truncation, this choice of values renders the system symmetric under

interchange of the roles of U and V. This situation is less biologically relevant than

what we consider here.

For this numerical example we assume α1 = 5000, α2 = 1600, β = 2.5, γ = 1.5,

δ1 = δ2 = 1. We consider the FSP with lU = 13, lV = 12, which allows to take into

account 225 states. The initial value is zero. We use the ordering (III.1.1) without

transposition. For the CME operator we have rmax [A] = 14 and reff [A] = 10.89 up

to accuracy 10−14. We compute the evolution of the PDF up to time T = 100 with

M = 1111 time steps. In this experiment T1 = 10 and h = 0.03. The settings of the

DMRG solver are: RES = 10−6, SWP = 3, RMX = 200, ITR = 100, RST = 2, KCK = 2.
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The evaluation accuracy is EPS = 10−8.

The results are presented in Figure IV.3. At the terminal time T we have

ERRΣ

[
p−M
]

= 3.17 · 10−5. The overall computation time is 14728 seconds. The

validation with the PDF based on 816 million Monte Carlo simulations (every 1000

draws taking on average over 360 seconds, adding up to the overall CPU time over

3 · 108 seconds), indicates ∆`1

[
p−M
]

= 8.34 · 10−4, and for the 2- and Chebyshev

norms we have ∆`2

[
p−M
]
/
∥∥p−M ∥∥2

= 6.62 · 10−4 and ∆`∞

[
p−M
]

= 5.50 · 10−6. As for

the ranks, reff

[
p−M
]

= 8.74 and rmax

[
p−M
]

= 13. Figure IV.3 (c) shows that after

t ≈ 20 the norm of the time derivative stagnates at approximately 10−5 determined

by the accuracy parameters chosen, and the following time steps require negligible

computational effort. At the same time, as we see in Figure IV.3 (b), all QTT ranks

stabilize under 15, but the transient phase preceding that moment involves far higher

ranks. Figure IV.4 (a) presents a snapshot of the distribution.

Comparison to the Krylov subspace approach. We compared the performance

of our proposed method to that of the Krylov subspace approach implemented in

Sidje’s Expokit [Sid98]. In order to make the comparison as fair as possible we further

restricted the FSP truncation used by the Krylov approach to a hyperbolic cross, that

is, we only kept states with indices (jU , jV ) satisfying the condition (jU +1)·(jV +1) <

9216000. Effectively, this reduces the states in the truncation from 225 to 21120695, a

reduction of about a third. A similar truncation was used for this model in [MK08].

We emphasize that formulating this hyperbolic cross truncation requires special
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Figure IV.3: Genetic toggle switch. The values are given vs. tm. Markers are

omitted for tm > 10−1. (a) Probability deficiency ERRΣ [p−m ]. (b) Maximum and

effective QTT ranks of the computed solution. (c) Relative norm
‖Ap−m ‖2
‖p−m ‖

2

of the

derivative (blue) and cumulative computation time (red, sec.)
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Figure IV.4: Snapshots of solutions. (a) Genetic toggle switch. The PDF for m =

350, tm ≈ 10.18, U (hor.) vs. V (vert.). As the process evolves, the probability mass

becomes concentrated in two distinct regions. Contour coloring is logarithmically

scaled with base 10. (b) Enzymatic futile cycle. The marginal PDF for m = 20,

tm = 5·10−3, X (vert.) vs. X∗ (hor.). Black diagonal lines delimit the states reachable

from the initial condition. The transposed QTT format automatically exploits this

sparsity pattern of the full PDF for compression without special input from the user.
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insight into the problem on the part of the modeler. In constrast, our proposed

method is completely naive in this respect, instead relying on the adaptivity of the

QTT compression.

For the FSP with 225 states considered we reach t ≈ 1 with the first 43 time

steps of our method in 4385 seconds; with the Krylov subspace method restricted to

the hyperbolic cross, in 10333 seconds. For the discrepancy between the two solutions

obtained we have ∆`1 = 4.04 · 10−5 and ∆`∞ = 9.64 · 10−8.

At approximately t = t43 ≈ 1, the decay of the relative norm of the solution

becomes exponential; see Figure IV.3 (c). That is exploited by our method in two

ways. On the one hand, we adjust the time mesh manually, which reduces the overall

number of time steps needed to reach t1111 = T from t43: we take 1068 steps intead

of approximately 3307 we would need if we had used a uniform time mesh for the

long-term dynamics. On the other hand, what is more significant, the adaptive QTT

representation used at each step yields a substantial speedup of the solution of linear

systems, which is possible due to the rapid convergence of the solution to a stationary

distribution. The Krylov subspace solver adapts the time mesh on its own, but

employs no self-adaptivity for efficient storage of numerically computed states. As a

result, the performance (in terms of the computational time vs. physical time of the

system) decays much slower for the Krylov subspace solver, and our method excels

even more in modelling the long-term dynamics. For example, our method achieves

t ≈ 30, when ‖ṗ‖2 / ‖p‖2 reaches 1.1 · 10−5, with the overall computation time 14541
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seconds compared to 126530 seconds of the Krylov subspace solver, i.e. approximately

8.7 times faster. For larger terminal times the advantage of our method becomes even

more pronounced.

IV.3.4 Enzymatic Futile Cycle

Futile cycles are composed of two metabolic or signaling pathways that work

in opposite directions so that the products of one pathway are the precursors of the

other and vice versa, see Figure IV.5.

Ef
+

X

Eb
+

Eb
� Ef

�

X⇤

Ef
+

Ef
�

Saturday, February 2, 13

Figure IV.5: Enzymatic Futile Cycle. X is transformed into X∗ and vice versa by

enzymes E+ and E−, respectively. Photo courtesy of Mustafa Khammash

This biochemical network structure results in no net production of molecules

and often results only in the dissipation of energy as heat [SOS04]. Nevertheless,
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there is an abundance of known pathways that use this motif and it is thought to

provide a highly tunable control mechanism with potentially high sensitivity [SOS04;

SPA05].

[SPA05] introduced a stochastic version of the model with just the essential

network components required to model the dynamics. The stochastic model consists

of six chemical species and six reactions:

X + Ef
+

k+1−−⇀↽−−
k+2

Eb
+, X∗ + Ef

−
k−1−−⇀↽−−
k−2

Eb
−,

Eb
+

k+3−−→ Ef
+ + X∗, Eb

−
k−3−−→ Ef

− + X,

{X,X∗} represent the forward substrate and product, {E+,E−} denote the forward

and reverse enzymes, respectively. Note that this system is closed meaning that par-

ticles are neither created nor destroyed. We denote the random variables representing

the molecule count of each species with italics.

For the particular set of initial conditions considered in [SPA05] the number of

states that are reachable is large enough to render a direct numerical solution of the

CME impractical. The authors instead used the Gillespie Direct SSA to generate a

large number of sample paths to estimate the distribution. The authors also applied

a diffusion approximation to their model which resulted in a SDE which produced

qualitatively similar dynamics.

To the authors’ knowledge, no attempt has been made so far towards the direct

numerical solution of the CME for this system.

At time t, let XT(t) denote the total amount of both free and bound substrate,
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and ET
+(t) and ET

−(t) the total forward and reverse enzymes, respectively. We observe

the following conservation relations:

Ef
+(t) + Eb

+(t) = ET
+(t) = ET

+(0)

Ef
−(t) + Eb

−(t) = ET
−(t) = ET

−(0)

X(t) +X∗(t) + Eb
+(t) + Eb

−(t) = XT(t) = XT(0)

Using the above, one can establish an upper and lower bound relating the species

count of X(t) to X∗(t) that depends only on the total initial amount of substrate and

the total initial amount of enzymes in the system

XT(0)−X∗(t) ≥ X(t) ≥ XT(0)−X∗(t)−
(
ET

+(0) + ET
−(0)

)
.

Assuming that the initial quantity of enzymes ET
+(0) + ET

−(0) is small, for a given

copy number of X∗(t), X(t) may take at most ET
+(0) +ET

−(0) different values. Since

XT(t) is a conserved quantity, this means that X(t) and X∗(t) will be strongly anti-

correlated with the set of reachable states having an affine structure. Under these

circumstances, we find in our numerical experiments that the transposed QTT format

is better suited than the standard QTT to efficiently represent the corresponding

PDF, since the transposed format better utilizes the sparsity pattern of the full PDF

for compression.

Following [SPA05], we consider k+1 = 40, k+2 = 104, k+3 = 104, k−1 = 200,

k−2 = 100, k−3 = 5000. For initial value we take Ef
± = 2, Eb

± = 0, X = 30, X∗ = 90.

We consider the FSP projection with lEb,f±
= 2 and lX = lX∗ = 7, i.e. with 222
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states. We present 4 runs: (A), (B) and (C) use the transposed QTT format, and

(D), the standard QTT. Theorems IV.2.2 and IV.2.1 bound the exact QTT ranks of

the CME operator by 216 and 21 respectively, and numerically for accuracy 10−14 we

have rmax [A] = 38, reff [A] = 17.93 in (A)–(C) and rmax [A] = 11, reff [A] = 8.30 in

(D). We compute the evolution of the PDF up to time T = 1 with M = 1332 time

steps. In this experiment T1 = 0.3 and h = 5 · 10−4.

For (A) and (D), which differ in the format, we keep the same accuracy param-

eters: RES = 10−6 and EPS = 10−8. On the other hand, (B) and (C) use the same

format as (A), but different accuracy parameters. In (B) they are RES = 10−8 and

EPS = 10−10; in (C), RES = 10−4 and EPS = 10−6. We set RMX = 200 in (A)–(C) and

RMX = 400 in (D). Other parameters of the DMRG solver are the same for all 4 runs:

SWP = 5, ITR = 50, RST = 2, KCK = 2.

For the runs (A) and (D), which differ in the format, we keep the same accuracy

parameters. The runs (B) and (C) use the same format as (A), but different accuracy

parameters, so that they yield, respectively, a more accurate and a cruder solution as

compared to (A).

This experiment shows, in particular, that lower ranks of the operator do not

necessarily lead to lower ranks of the solution, and that in this example the transposed

QTT format actually ensures smaller ranks of the solution than the QTT format

without transposition does and than Theorem IV.2.2 suggests. As for the solution,

we observe that max0≤tm≤0.1 rmax [Pm ] reaches 51 for (A) and 359 for (D).
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For every m, we validate our solution p−m by comparing its marginal distribution∑
Eb,f
±
p−m to that based on 18.6 · 109 Monte Carlo simulations (every 10000 draws

taking at least 110 seconds, amounting to the overall CPU time over 2 · 108 seconds).

The discrepancy ∆`p = ∆`p

[∑
Eb,f
±
p−m

]
in the marginal distribution with respect to

X and X∗ is reported for p = 1 in Figure IV.6 (a) and Table IV.3. With p = 2 we

use it for the discrepancy-based truncation, which, as Figure IV.6 (b) shows, does not

affect the probability deficiency significantly.

Figure IV.6 (a) shows that the refined run (B) yields the smallest discrepancy,

which suggests that the reference distribution is sufficiently accurate to allow for the

discrepancy to represent the actual error in the results of (A), (B) and (C). As we

can see from Figure IV.6 (d), in all 4 runs the time derivative stagnates after t ≈ 0.1,

at lower levels for more accurate runs. Let us note that at that stage in (A)–(C) it

exhibits relatively strong oscillations compared to (D), which happens due to different

effect of the addition of random components in the DMRG solver in the presence and

absence of the transposition. On the other hand, compared to (A), the run (D) yields

a less accurate solution and reaches t = 0.1 almost 9 times later, the accuracy settings

being the same in these two runs. In all, the transposition appears to make the QTT

format far more efficient in this experiment, and we expect it to be even more so in

larger systems of such type.

The results are given in Figures IV.6 and IV.7 and in Table IV.3. Figure IV.4 (b)

presents a snapshot of the marginal distribution.
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Figure IV.6: Enzymatic futile cycle. The values are given vs. tm. Markers are

omitted for tm ≥ 2 · 10−3 in (a)–(c). (a) Discrepancy ∆`1 (before truncation) from

the marginal PDF based on Monte Carlo simulations. (b) Probability deficiency

ERRΣ [p−m ]. (c) Cumulative computation time (sec.) (d) Relative norm
‖Ap−m ‖2
‖p−m ‖

2

of the

derivative.
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Figure IV.7: Enzymatic futile cycle. QTT ranks of the solution. The values are

given vs. tm. Markers are omitted for tm ≥ 2 · 10−3. (a) Effective QTT ranks reff for

parameter set (A). (b) Maximum QTT ranks rmax for parameter set (A). (c) Effective

QTT ranks reff for parameter set (D). (d) Maximum QTT ranks rmax for parameter

set (D).
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run ‖Ap−m ‖2
‖p−m ‖2

reff rmax ∆`1 ERRΣ TIME

m = 210, tm = 0.1

(A) 3.5−4 13.17 27 5.7−5 2.3−5 1.073

(B) 6.5−5 12.14 25 4.6−5 6.1−7 1.603

(C) 1.3−1 12.16 24 2.3−3 2.1−3 9.872

(D) 4.1−4 60.06 109 1.1−4 1.0−4 9.233

m = M = 1332, tm = T = 1

(A) 1.8−4 13.66 27 7.2−5 2.5−5 3.703

(B) 1.1−5 12.06 25 5.7−5 6.2−7 4.213

(C) 2.5−2 12.85 24 3.3−3 1.3−3 4.033

(D) 3.7−4 58.97 107 1.7−4 1.7−4 1.524

Table IV.3: Enzymatic futile cycle: reff = reff [p−m ], rmax = rmax [p−m ], ∆`1 =

∆`1

[∑
Eb,f
±
p−m

]
, ERRΣ = ERRΣ [p−m ] are given for the truncated solution p−m ; com-

putational TIME is given in seconds; ‖Ap0 ‖2
‖p0 ‖2

= 5.2 · 104. The exponents are given in

boldface for the base 10.
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IV.4 Conclusion

This chapter presented a new computational method for the numerical solution

of the Chemical Master equation and described numerical experiments that demon-

strated its efficiency in comparison to state of the art Monte Carlo simulations. The

method combines the hp-DG time-stepping scheme with the low-rank Quantized Ten-

sor Train representation of the “species” space. Thehp-DG time-stepping is both

step-size and order adaptive in time forming a method that is both exponentially

convergent in the number of temporal parameters and unconditionally stable. The

TT representation of the “species” space allows automatic rank-adaptation of the

solution, ensuring that the QTT manifold is sufficiently rich to represent the dynam-

ics well but also as small as possible to ensure efficient computation. In this sense,

this approach is superior to fixed reduced basis methods such as those described

in [Deu+08; Eng09; HL07; Jah10]. While this method does particularly well when

both the CME operator and the solution have a high degree of separability in both the

“physical” and “virtual” levels, meaning low TT-ranks, the method does not assume

or require the ranks to be small. If the solution requires large TT-ranks to represent

well, the adaptivity built into the method allows this to be discovered at run-time.

While the presence of large TT-ranks will decrease the efficiency of the method, other

methods will do poorly for these problems as well.

While the discussion in this chapter assumed propensity functions that are

monomials of the chemical species, the computational method extends easily to
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propensities that can be represented in the QTT format with low ranks. For exam-

ple, separable propensity function arising from stochastic mass-action and Michaelis-

Menten kinetics are considered in [KS13] where QTT rank bounds are given in each

case. The case where the propensities are rational functions of the chemical species

was shown to be experimentally feasible here. Also, the assumption of separability of

the propensities can similarly be relaxed. This requires slight (but straightforward)

modification of Algorithm 9.

The speed of the method relies essentially on the efficient solution of TT-

structured linear systems of equations. In this case, the local nature of the DMRG

optimization-based algorithm limited the feasible step-sizes and polynomial orders of

the temporal discretization. Hence, the method is unable to take full advantage of

the exponential convergence of the time-stepping scheme. However, the subject of

tensor-structured linear system solvers is a rapidly advancing research field and our

method will become more efficient as the solvers do.

We compared our numerical results to those obtained from a state-of-the-art,

massively parallel stochastic simulation package demonstrating the tremendous in-

crease in efficiency allowed by our new approach. Using a MATLAB implementation

running on a notebook, the QTT approach outperformed the Monte Carlo simula-

tions running on 1500 cores of a high-performance cluster in the wall-clock time while

computing to similar levels of accuracy in the solution.
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Chapter V

QTT-Gramian-Based Model

Reduction and Control of Linear

Systems

Consider the continuous-time LTI system with state-space realization (A,B,C,D):

ẋ = Ax+Bu,

y = Cx+Du, (V.0.1)

where A ∈ Rn×n is Hurwitz, B ∈ Rn×k, C ∈ Rm×n, and D ∈ Rm×k. We restrict our

discussion to the case where the number of state variables greatly exceeds both the

number of control inputs and the number of outputs, that is, n >> m, k.

The infinite-horizon observability and controllability gramians of the LTI system
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are given by the formulas:

Po =

∫ ∞
0

eA
∗τC∗CeAτdτ,

Pc =

∫ ∞
0

eAτBB∗eA
∗τdτ, (V.0.2)

respectively. The observability and controllability gramians are positive semidefinite

matrices whose eigenspaces characterize which directions in the state-space are more

observable/controllable in the L2 sense. That is, the eigenvalues of the observability

gramian measure how large the output signal of the system will be with a given initial

condition and zero input, while the eigenvalues of the controllability gramian measure

the minimum energy needed to drive the system from zero to a specified final state in

infinite time. Since the gramians provide quantitative and geometric characterizations

of the input and output behavior of the system, they are useful in many practical

applications such as open-loop optimal control, optimal state-reconstruction in the

presence of certain-types of measurement noise, and for model reduction.

Denote the transfer function of (A,B,C,D) by

G(s) := C(sI − A)−1B +D. (V.0.3)

The H2-norm of G(s) is given by

||G(s)||2H2
=

1

2π

∫ ∞
−∞

trace[G∗(jω)G(jω)]dω, (V.0.4)

while the H∞-norm of G(s) is given by

||G(s)||H∞ = sup
ω∈R
|G(jω)|2. (V.0.5)
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Both system norms will be used in the following sections as a measure of the distance

between two LTI systems. Recall that the H∞-norm is an induced norm while the

H2-norm is not.

A common approach to model reduction is to reduce the dimensionality of a

state-space system by restricting the dynamics to some subspace which captures most

of the interesting behavior. Consider the real matrices V and W which satisfy the

biorthogonality condition

WTV = I,

and the system

ż = WTAVz +WTBu,

y = CVz +Du. (V.0.6)

Suppose the state variables z can be partitioned as

z =

 z1

z2

 ,
and that we wish to reduce the system only to the states z1. Partitioning the matrices

V ,W conformally:

V =

[
V1 V2

]
, W =

[
W1 W2

]
,

results in the following equations for the state space system

ż1 = WT
1 AV1z1 +WT

1 AV2z2 +WT
1 Bu,
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ż2 = WT
2 AV1z1 +WT

2 AV2z2 +WT
2 B2u,

y = CV1z1 + CV2z2 +Du. (V.0.7)

One then hopes by picking W1 and V1 “well”, that z2 is essentially zero for all time

and

ż1 = WT
1 AV1z1 +WT

1 Bu,

y = CV1z1 +Du. (V.0.8)

is a good approximation of the original system V.0.1 meaning that it has approxi-

mately the same input-to-state or input-output behavior, whichever is most appro-

priate for the particular task.

How should one choose W1 and V1 “well”?

The Dominant Subspace Projection method projects the dynamics onto a sub-

space spanned by the eigenvectors of the controllability (observability) gramian corre-

sponding to the largest eigenvalues. It essentially projects the system onto the most

controllable (observable) modes as these are the most important in preserving the

input-to-state (state-to-output) characteristics of the original system. In this case, V1

is chosen to be an orthonormal basis for the subspace of most controllable (observ-

able) modes, andW1 is chosen to satisfy the biorthogonality condition. For example,

one could choose W1 = V1 to obtain an orthogonal projection onto the dominant

subspace.

The Balanced Truncation method constructs a coordinate transformation of the

original state-space so that the gramians are both equal and diagonal and then trun-
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cates to the directions corresponding to the dominant eigenspaces of the gramian [Moo81].

This is possible whenever the control system is both controllable and observable [DP00,

Corollary 4.8]. It essentially seeks to truncate directions which are not important in

describing the input-output behavior of the system. In this case, W1 and V1 both

change the coordinates and truncate to the useful modes and can be computed pro-

vided one has both the controllability and observability gramians, and can compute

matrix square roots (e.g. Cholesky) and singular value decompositions.

In both cases, the model reduction procedure requires the calculation of a

gramian for the system. This is by far the most difficult task computationally. Se-

lecting which time horizon to compute the gramian for depends on the application.

One approach to computing the infinite-horizon gramians involves solving cer-

tain linear matrix equations. The observability gramian solves the Continuous-Time

Algebraic Lyapunov Equation (CALE) given by:

A∗Po + PoA+ C∗C = 0, (V.0.9)

while the controllability gramian solves the dual equation:

APc + PcA
∗ +BB∗ = 0. (V.0.10)

Analytic solutions of these Lyapunov equations are available when the Jordan

Decomposition of A is known, but this is completely impractical for most engineering

systems. More practically, exact computational algorithms have been available for

at least four decades now [BS72; GNVec; HAM82]. Unfortunately, these approaches
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exhibit cubic scaling of the computational scaling rendering them impractical for very

large-scale problems.

In the case of large-scale systems where n is very large, the previously mentioned

direct numerical methods may prove computationally infeasible on available hardware.

However, in many of these cases it is unnecessary to compute the full gramian; often

times a few dominant singular values and singular vectors represent a good enough

approximation of the gramian for the analysis or control design task at hand. Indeed,

when A is Hurwitz and B or C is low-rank, the singular values of the solution of the

underlying Lyapunov equation can be shown to exhibit exponential decay suggesting

that an accurate low-rank approximation of the solution is possible [Gra04].

Many computational methodologies have been developed over the last two decades

that seek to exploit this fact by looking for solutions in rank-revealing matrix formats,

e.g. Cholesky, SVD. By restricting the search space to matrices of low-rank expressed

in one of these formats, many proposed algorithms have achieved significant compu-

tational savings [GH07; Pen99].

This chapter describes an approach to finding low-rank approximations of the

gramians using the TT-format and the DMRG based linear system solver and their

use in model reduction of LTI systems. Section V.1 describes a (CALE) solver that

takes advantage of the TT and DMRG technologies and discusses the TT-rank struc-

ture of the solution. Section V.2 describes the Dominant Subspace Projection Open

Loop Control (DSPOLC) procedure which is a computationally tractable method for
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steering and LTI system from the origin to a desired target state. Section V.3 de-

scribes an implementation of the well-known Balanced Truncation procedure using

TT-formatted arrays. Section V.4 describes numerical experiments which demon-

strate the feasibility of these approaches.

V.1 Solution of Lyapunov Equations in the TT-

Format

This section describes a numerical solver for CALE exploiting the TT-format

and the DMRG Linear System Solver. Subsection V.1.1 describes the tensor structure

of the Lyapunov operator and computes an upper bound on its TT-ranks. Subsec-

tion V.1.2 describes the DMRG-based solver. Subsection V.1.1 applies the solver to

an example of a controlled reaction-diffusion system and tests the efficiency of the

diagonalization procedures described in the previous chapter.

V.1.1 Tensor Structure of Lyapunov Equations

Let A be a d-level matrix. The Lyapunov Operator LA corresponding to A is

given by

LA(X) = AX +XA∗

It is a multilinear operator on the space of d-level matrices.

By considering the vectorization of (V.1.1), we can express the left-hand side in
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terms of a matrix-vector product of a sum of tensor products and the 2d-level vector

X:

(A⊗ I + I ⊗A)X = −Q, (V.1.1)

where I is the d-level identity matrix with mode sizes identical to A. We therefore

have that the 2d-level matrix representation of LA is given by

LA = A⊗ I + I ⊗A. (V.1.2)

While the process of generating the vectorized equation (V.1.1) is often a first

step in analyzing the properties of the equation and solution [HAM82] , numerically

computing the solutions by directly solving the linear system is generally a very

difficult task in full format and is universally avoided. For a simple LTI system with

n states, A, Q, and X will have n2 entries, while the full matrix representation of

LA has n4 terms. Even when A and Q are sparse or have special structure, it is

usually not the case that the solution X also has the special structure. However,

by representing the vectors and matrices involved in a low-parametric format with

fast arithmetics (like QTT) we can formulate efficient numerical algorithms using this

vectorized equation. The use of an efficient representation format allows previously

intractable approaches to problems to be fast and scalable.

Assuming a characterization of the TT-ranks of A is available, the following

theorem describes the TT-ranks of LA in the TTM format.

Theorem V.1.1. Suppose A has a TTM decomposition with TT-ranks r1, . . . , rd−1.
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The Lyapunov Operator has a TTM decomposition with ranks bound from above by

r1 + 1, . . . , rd−1 + 1, 2, r1 + 1, . . . , rd−1 + 1.

Proof. The identity matrix has an explicit rank-1 TTM decomposition. From (V.1.1)

we see that L is the sum of two parts: A⊗ I which has TTM-ranks

r1, . . . , rd, 1, . . . , 1,

and I ⊗A which has QTT matrix ranks

1, . . . , 1, r1, . . . , rd,

The ranks of the sum are bound above by the sum of the ranks which completes the

proof.

When the ranks of A are small in the TTM format, then so are the ranks of

LA. In the next subsection, we discuss the TT structure of the solution using this

vectorized approach.

V.1.2 Solution of Lyapunov Equations in the TT-Format

We propose using the DMRG-based linear system solver [DO11] to solve the

TT-structured linear system corresponding to (V.1.1). Given a system in which LA

is expressed in TTM format and Q is expressed in TTVM format and a relative
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tolerance on the Frobenius norm of the residual error, it returns a TTVM formatted

solution of the Lyapunov equation.

A key problem in designing optimization based solvers for low parametric tensor

formats is determining the sizes of the compression ranks needed for an accurate

solution. When the ranks are too small, it may be impossible to achieve a given

error tolerance. When the ranks are larger than necessary, then solving the local

problems in the optimization are more computationally expensive than necessary. The

DMRG based solver effectively balances these two problems by adaptively growing

and shrinking the TT ranks of the candidate solution by merging and then splitting

cores based on the low rank approximation of matrices [DO11].

While a convergence theory for the DMRG solver is still lacking, it has proven

highly efficient in practical applications where the TT-ranks of the solution are small.

In the case where A is Hurwitz and Q has low rank, [Gra04] has shown that the

singular values of X decay exponentially. In terms of the controllability and observ-

ability gramians, this would correspond to LTI systems that are not very controllable

or observable. One also desires that the singular vectors may be represented with low

TT-ranks.
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V.1.3 Numerical Experiments

Consider the following reaction-diffusion equation on the hypercubeD = (−π, π)d

with point control and Dirichlet boundary conditions:
∂tψ(x, t) = c1∆ψ(x, t)− c2ψ(x, t) + δ(x)u(t),

x ∈ D,

ψ(x, t) = 0, x ∈ ∂D

(V.1.3)

where c1, c2 > 0, u(t) is a control input and δ(x) is the Dirac delta function centered

at zero. This equation models a d-dimensional reaction vessel in which the only reac-

tion is spontaneous degradation. ψ(x, t) describes the concentration of a particular

chemical reactant at spatial coordinate x and at time t. The control signal allows the

injection or removal of the substance at the point x = 0.

In this section, we consider versions of (V.1.3) that have been discretized using

a finite difference scheme in space on a uniform tensor grid with spacing h but no

discretization in time (Method of Lines). We use a second-order central difference

to approximate the Laplacian and approximate the Dirac delta as a Kronecker delta

function at the nearest grid point with unit mass. Let ψ̂(x, t) denote the discrete

approximation of ψ(x, t). The time evolution of the discretized system is given by

the finite-dimensional LTI system:

∂tψ̂(x, t) = Aψ̂(x, t) +Bu(t), (V.1.4)

with

A =
c1

h2
∆dd − c2I, B =

1

hd
δ̂(x),
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where ∆dd is the discrete Laplacian on a rectangular grid with Dirichlet boundary con-

ditions and δ̂(x) is a vector that is zero everywhere except at the entry corresponding

to the grid point closest to the origin.

Kazeev, et al. showed that using the finest possible quantization, ∆dd has an

explicit QTT representation with all QTT ranks < 4 [KK12]. Hence, A has QTT-

ranks < 5. Also, B is rank 1 separable after quantization so that all the matrices and

vectors involved have low QTT-ranks.

The controllability Gramian of the discretized system is expected to have low

QTT rank for two reasons. First, the matrix B has rank one so the singular values of

the Gramian can be expected to decay rapidly (the system is not very controllable).

A low-rank approximation using only the first few singular values and vectors can be

expected to approximate the solution well. Secondly, the first few singular vectors

of the Gramian of the original system can be expected to have a high degree of

regularity so that at fine levels of discretization, they can be well approximated by

low order polynomials. Hence, the singular vectors of the approximate Gramian can

be expected to have low QTT ranks. While it is possible to use another compression

scheme other than quantization (e.g. Galerkin projection onto tensorized Legendre

polynomials), this would require a priori a choice of grid, polynomial orders, etc for

the compression. By using the QTT numerical linear algebra, the compression is

performed automatically and on the fly.

In the following, we implemented our proposed algorithms in MATLAB using
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the TT Toolbox implementation of the TT and QTT tensor formats, publicly available

at http://spring.inm.ras.ru/osel. All calculations were performed in MATLAB

7.11.0.584 (R2010b) on a laptop with a 2.7 GHz dual-core processor with 12 GB

RAM.

Our implementation relies crucially on the DMRG Linear System Solver avail-

able as dmrg solve2 in the TT Toolbox. While a rigorous convergence analysis of the

DMRG solver is still missing, we find in our examples that it can be highly efficient.

V.1.3.1 Testing the DMRG Solver

We used the proposed DMRG-based solver to compute a low-rank approximate

Gramian Ŵc and compare it to a solution computed in full format using the MATLAB

Control System Toolbox’s lyap function which we treat as the true solution. In each

case, we ran the DMRG-based solver until the following accuracy condition was met:

||P̂c − Pc||2 < 10−9

where || · ||2 denotes the induced 2-norm. Practically, this required careful tuning of

the DMRG-based linear system solver residual error tolerance to produce solutions of

the desired accuracy (and no more). In each case, the DMRG solver was initialized

with a random rank-2 QTT vector, though it is possible in practical problems to

initialize in a smarter way.

Figure V.1 plots the computation time required to compute the Gramian in

both the full and the QTT formats for the 1-D version of the problem over a range
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of discretization levels. Compute time in the full format scales linearly with the

number of discretization points while compute time for the QTT version does not.

Instead, the QTT based algorithm depends critically on the ranks of the solution.

Interestingly, on finer grids, the compute time actually decreases since the solution

can be well represented with tensors having much smaller QTT-ranks. While the

full format solution is faster for coarse levels of discretization, we emphasize that the

scaling of the QTT approach is much more favorable.

Figure V.2 plots the computation time required to compute the Gramian in

both the full and the QTT formats where the discretization level in each dimension is

kept uniform but the number of dimensions is scaled. In each case, 24 discretization

points are used in each dimension. The compute time for the full format grows

rapidly with the number of dimensions while the compute time for the QTT version

remains bounded. Again, the QTT based algorithm depends critically on the QTT-

ranks of the solution. Three dimensions was the maximum number that our compute

hardware could handle for the full format due to the exponential increase in storage

requirements but dimensions as high as ten were successfully computed in the QTT

format using a residual tolerance < 10−9 in less than 5 minutes for each problem.

V.1.3.2 A Large Scale Problem

We next tested our proposed methods on a large-scale version of the problem. In

2-D we took 210 = 1024 grid points in each direction resulting in a discretized version
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Figure V.1: DMRG Compute Time and Effective Rank vs. Number of States for

discretized 1-D reaction-diffusion model. The compute time for the full format solu-

tion (green) scales linearly with the number of states, while it remains small for the

proposed method (red). Black indicates the effective rank of the solution obtained by

the proposed method. At finer discretizations, approximations with lower effective

QTT-rank approximate the full solution to the same accuracy tolerance.
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Figure V.2: DMRG Compute Time and Effective Rank vs. Number of Dimensions

for discretized reaction-diffusion models where the number of physical dimensions

scales. The compute time for the full format solution (green) increases rapidly with

the number of dimensions, while it increases less quickly for the proposed method

(red). Effective QTT rank of the approximate solution appears in black.
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of the problem with 220 > 1.04 million states. In full format, the corresponding A

matrix has 240 entries, though it is highly structured with only 5.24 million nonzero

elements. However, even when A has a lot of sparse structure, it is rare that the

Controllability Gramian inherits this structure. In this example the Gramian would

require storage of 240 entries or over 3 TB of storage using 32-bit floating precision.

However, the rank adaptiveness of the DMRG solver combined with the high degree of

QTT structure in the solution means that it is no problem for our proposed approach.

Using a residual tolerance smaller than 10−9 for the DMRG solver and allowing

it to compute as many iterations as needed for convergence, the solver took 67.5 sec to

converge to a solution in QTT-VM format with effective rank=29.09 and only 67,680

parameters needed to specify it (a compression ratio of seven orders of magnitude).

The (matrix) rank of the approximate Gramian was 16.

We then used the QTT Lanczos algorithm to compute approximate dominant

eigenvalues. We performed 30 iterations and accepted eigenvectors with a high degree

of symmetry under exchange of the two physical dimensions due to the symmetry in

the problem, see Figure V.5. Figure V.4 plots the eigenvalues produced by the algo-

rithm. Figure V.3 plots the cumulative compute time for the QTT Lanzcos Iteration

as well as the time needed to reassemble the eigenvectors of P̂c from those of Tmm.

The total run time of the QTT Lanczos Algorithm was 2.79 hours. Orthogonality

of the iterates was lost very quickly so that the algorithm produced multiple copies

of these eigenvectors. The algorithm also produced several badly corrupted vectors
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Figure V.3: Compute time for the proposed QTT Lanczos Algorithm for the large-

scale problem. 30 iterations were performed.

that lacked the symmetry; especially in the last few iterations, see Figure V.6. These

effects are typical of the classical Lanczos Algorithm. The former problem could be

mitigated using modern heuristics such as random restarts, better orthogonalization

procedures, etc. and the latter issue can be resolved by performing more iterations.
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Figure V.4: Eigenvalues produced by the proposed QTT Lanczos Algorithm for the

large-scale problem. 30 iterations were performed. Many eigenvalues repeat, espe-

cially in the first twenty iterations. This reflects the loss of orthogonality through the

iteration process.
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(a) m = 1 (b) m = 9 (c) m = 13

(d) m = 16 (e) m = 19 (f) m = 22

Figure V.5: Approximate eigenvectors of the Controllability Gramian produced by

QTT Lanczos Iteration for the 2-D discretized reaction-diffusion equation with point

control.
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(a) m = 6 (b) m = 7 (c) m = 12

(d) m = 26 (e) m = 28 (f) m = 29

Figure V.6: Spurious eigenvectors produced by QTT Lanczos Iteration for the 2-D

discretized reaction-diffusion equation with point control.
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V.2 DSPOLC

In this section we describe a computationally efficient method for computing

open loop control laws for steering a large-scale LTI system from the origin to a point

in the controllable subspace known as Dominant Subspace Projection Open Loop

Control (DSPOLC). The computational methodology makes heavy use of the TT

numerical linear algebra discussed in III.2.4 though for the sake of clarity the details

will be suppressed.

Suppose the controllability gramian Pc is invertible. The optimal input to steer

the system to x0 is given by

uopt := Ψ∗cP
−1
c x0 =


B∗e−A

∗tP−1
c x0 for t ≤ 0,

0 otherwise.

(V.2.1)

in the sense that this signal has the minimum energy of all such signals that drive

the system to the desired point.

The bilateral Laplace transform of this input signal is given by

H(s) = −B∗(sI + A∗)−1P−1
c x0, Re(s) < −Re(σ(A∗)) (V.2.2)

with Region of Convergence including the jω axis as long as A is Hurwitz. In the

packed notation for LTI systems:

H(s) =

 −A∗ P−1
c x0

−B∗ 0

 . (V.2.3)

Now, we are interested in cases where we only have access to the SVD of a r̂c-rank

approximation of the controllability gramian V̂cΣ̂cV̂
T
c = P̂c. The columns of V̂c form
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an orthonormal basis for the r̂c-dimensional dominant subspace of the controllable

subspace. We wish to design a control law that only requires computation on this

reduced subspace.

Define the following projected open loop control law:

û(t) := Ψ∗cP̂
−1
c x0 =


B∗V̂ce

−(V̂ Tc A
∗V̂c)tP−1

c x0 for t ≤ 0,

0 otherwise.

(V.2.4)

which is based on projecting the dynamics onto the r̂c-dimensional dominant sub-

space. The bilateral Laplace transform:

Ĥ(s) = −B∗V̂c(sI + V̂ T
c A

∗V̂c)
−1P−1

c x0, Re(s) < −Re(σ(V T
c A

∗Vc)) (V.2.5)

has a Region of Convergence which contains the jω-axis as long as V T
c AVc is Hurwitz.

In the packed notation:

Ĥ(s) =

 −V̂ T
c A

∗V̂c V̂ T
c P̂

−1
c x0

−B∗V̂c 0

 . (V.2.6)

Equation (V.2.4) is computationally advantageous since, for each target state

x0, û(t) may be computed by simulation of a linear system with at most r̂c states.

Define the discrepancy between the optimal input signal and the projected input

signal in the frequency domain by

Eu(s) = H(s)− Ĥ(s). (V.2.7)
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Proposition V.2.1 (Lemma 2 in [SS05]). Suppose P̂c is the r̂c-rank approximation

of the controllability gramian with SVD P̂c = V̂cΣ̂cV̂
T
c . Then the discrepancy between

the optimal and projected inputs as defined by (V.2.7) satisfies the following:

Eu(s) = L(s)(I − V̂cV̂ T
c )F (s), (V.2.8)

where L(s) = −B∗(sI−A∗)−1 and F (s) = −(A∗V̂c(sI + V̂ T
c A

∗V̂c)
−1V̂ T

c P̂
−1
c −P−1

c )x0.

Proof. Considering ET
u (s) in the packed notation,

ET
u (s) =


−V̂ T

c ĀV̂c 0 V̂ T
c B̄

0 −Ā −B̄

xT0 P̂
−1
c V̂c xT0 P

−1
c 0

 . (V.2.9)

where Ā, B̄, C̄ are the matrices whose entries are the complex conjugates of A,B,C,

respectively. Using the coordinate transformationI V̂ T
c

0 I

 ,
leads to

ET
u (s) =


−V̂ T

c ĀV̂c −V̂ T
c Ā(I − V̂cV̂ T

c ) 0

0 −Ā −B̄

xT0 P̂
−1
c V̂c xT0 (P−1

c − P̂−1
c V̂cV̂

T
c ) 0

 .

Observing that P̂−1
c V̂cV̂

∗
c = P−1

c V̂cV̂
∗
c , this transfer function has a state-space realiza-

tion

η̇ = −V̂ T
c ĀV̂cη − V̂ T

c Ā(I − V̂cV̂ T
c )ξ
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ξ̇ = −Āξ − B̄u

e = xT0 P̂
−1
c η + xT0 P

−1
c (I − V̂cV̂ T

c )ξ

By inspection, this system also admits the transfer function

ET
u (s) = F T (s)(I − V̂cV̂ T

c )LT (s) (V.2.10)

where

LT (s) = −(sI + Ā)−1B̄, F T (s) = −xT0 (P̂−1
c V̂c(sI + V̂ T

c ĀV̂c)
−1V̂ T

c Ā− P−1
c ).

(V.2.11)

Transposing both sides of equation (V.2.10) yields the desired result.

The previous lemma allows the estimation of ||Eu||H2 in terms of the truncated

singular values of the controllability gramian.

Proposition V.2.2 (Theorem 1 in [SS05]). Suppose V̂ T
c AV̂c is Hurwitz.

||Eu||H2 ≤ ||F ||H∞

(
n∑

i=r̂c+1

σi

)1/2

, (V.2.12)

where F (s) is given by (V.2.11).

Proof. The H∞-norm of Eu(s) is given by

||Eu||2H2
=

1

2π

∫ ∞
−∞

trace[Eu(jω)E∗u(jω)]dω

=
1

2π

∫ ∞
−∞

trace[E∗u(jω)Eu(jω)]dω

=
1

2π

∫ ∞
−∞

trace[F T (−jω)(I − V̂cV̂ T
c )LT (−jω)L(jω)(I − V̂cV̂ T

c )F (jω)]dω
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≤ ||F ||2H∞
1

2π

∫ ∞
−∞

trace[(I − V̂cV̂ T
c )LT (−jω)L(jω)(I − V̂cV̂ T

c )]dω

since (I − V̂cV̂ T
c )LT (−jω)L(jω)(I − V̂cV̂ T

c ) is Hermitian, positive-semidefinite and F

has finite H∞-norm since V̂ T
c AV̂c is Hurwitz. Using linearity of the trace:

||Eu||2H2
≤ ||F ||2H∞tr

[
(I − V̂cV̂ T

c )

(
1

2π

∫ ∞
−∞

LT (−jω)L(jω)dω)

)
(I − V̂cV̂ T

c )

]
= ||F ||2H∞tr

[
(I − V̂cV̂ T

c )Pc(I − V̂cV̂ T
c )
]

= ||F ||2H∞

(
n∑

i=r̂c+1

σi

)

Formally, the projected open loop control law defined by (V.2.4) may have un-

bounded support meaning that it would take an infinite amount of time to steer

the system to the desired target state. However, as long as V̂ T
c AV̂c is Hurwitz, the

exponential stability ensures that we can find a good approximation with bounded

support, i.e., a control law that can be implemented in finite time. Define the trun-

cated projected control law by:

ûT (t) := Ψ∗cP̂
−1
c x0 =


B∗V̂ce

−(V̂ Tc A
∗V̂c)tP−1

c x0 for t ∈ [−T, 0],

0 otherwise.

(V.2.13)

where T > 0 should be chosen sufficiently large so as to capture most of the control

energy. The bilateral Laplace transform of (V.2.13) is given by

ĤT (s) = −B∗V̂c(sI + V̂ T
c A

∗V̂c)
−1
(
I − e(sI+V̂ Tc A

∗V̂c)T
)
P−1
c x0.
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Define the difference between the projected and truncated projected control laws to

be

Eû := Ĥ(s)− ĤT (s). (V.2.14)

By taking T to be sufficiently large, the H2-norm of Eû can be made as small as

desired.

Proposition V.2.3. Assume V̂ T
c AV̂c is Hurwitz. For any ε > 0, there exists a Tε > 0

such that ||Eû||2H2
< ε.

Proof. Fix ε > 0. Using Parseval’s identity, the H2-norm can be rewritten in the

time-domain as

||Eû||2H2
=

∫ 0

−∞
(û(t)− ûT (t))∗(û(t)− ûT (t))dt

=

∫ −T
−∞
|B∗V̂ce−(V̂ Tc A

∗V̂c)tP−1
c x0|2dt

Since V̂ T
c AV̂c is Hurwitz, there exists constants c > 0, λ > 0 such that for any v ∈ Rn,

|eV̂ Tc A∗V̂ctv| ≤ ce−λt|v|, for all t ≥ 0.

||Eû||2H2
≤

∫ ∞
T

||B∗V̂c||2|P−1
c x0|2c2e−2λtdt

=
c2||B∗V̂c||2|P−1

c x0|2

2λ
e−2λT

Taking

Tε = −1

λ
ln

(
ε
√

2λ

c||B∗V̂c|||P−1
c x0|

)
,

ensures the desired inequality.
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For simplicity, we will refer to the truncated projected open loop control law as

the approximate control law. The details of the TT-DSPOLC computational proce-

dure are summarized in Algorithm 12.

Algorithm 12 TT-DSPOLC

Require: LTI control system (A,B) with matrix A in the TTM format, matrix B

in the TTVM format, and target state x0.

Ensure: Approximate control law u(t) which drives the system from x = 0 near

x = x0.

Compute approximate infinite-time horizon gramian Ŵ c using TT-DMRG CALE

solver,

[Û c, D̂c, V̂
T

c ] = TT SVD(Ŵ c),

Ŵ
−1

c = Û cD̂
−1

c V̂
T

c ,

Â = V̂
T

cAV̂ c, B̂ = V̂ cB

Compute solution ψ(t) to Initial Value Problem: ψ̇ = Âψ, ψ(0) = Ŵ
−1

c x0 up to

time T ,

u(t) = B̂
T

c ψ(−t).

We can now state both pointwise and L2 error estimates for the trajectory

resulting from the DSPOLC procedure. In particular, the pointwise estimate gives

an error bound on how far the system ends up from the target state in terms of the

sum of the truncated singular values of the controllability gramian.

Let G(jω) = (jωI − A)−1B be the transfer function of the full system.
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Theorem V.2.4 (Error Estimates for the Trajectory Resulting From the Approxi-

mate Control Law). Suppose A and V̂ T
c AV̂c are Hurwitz and that ||Eû||2H2

< ε. The

difference between the optimal trajectory and the approximate trajectory satisfies the

following pointwise and L2 error estimates

(a)

|ex(t)| ≤
1√
2π
||G||H∞

||F ||H∞
(

n∑
i=r̂c+1

σi

)1/2

+ ε

 , t ≤ 0, (V.2.15)

(b)

||ex(t)||L2 ≤ ||G||H∞

||F ||H∞
(

n∑
i=r̂c+1

σi

)1/2

+ ε

 , (V.2.16)

where F (s) is as defined in (V.2.11).

Proof. Since A and V̂ T
c AV̂c are Hurwitz, the Fourier transform of the error is given

by:

Ex(jω) = G(jω)(Eu(jω) + Eû(jω)),

For part V.2.4, take the inverse Fourier transform and compute the magnitude:

|ex(t)|2 =

∣∣∣∣ 1

2π

∫ ∞
−∞

G(jω)(Eu(jω) + Eû(jω))ejωtdω

∣∣∣∣2
≤

(
1

2π

)2 ∫ ∞
−∞

∣∣G(jω)(Eu(jω) + Eû(jω))ejωt
∣∣2 dω

by Jensen’s inequality. Using the submultiplicative property of the induced 2-norm

|ex(t)|2 ≤
(

1

2π

)2 ∫ ∞
−∞
|G(jω)|2 |Eu(jω) + Eû(jω)|2 dω.
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Since A is Hurwitz, the H∞-norm of G(jω) is finite. Taking the supremum of |G(jω)|

over all ω:

|ex(t)|2 ≤
(

1

2π

)2

||G(jω)||2H∞

∫ ∞
−∞
|Eu(jω) + Eû(jω)|2 dω

=
1

2π
||G(jω)||2H∞||Eu(jω) + Eû(jω)||2H2

≤ 1

2π
||G(jω)||2H∞ (||Eu(jω)||H2 + ||Eû(jω)||H2)

2

yielding the desired result.

For part b, use Parseval’s identity to express the L2-norm of the error as

||ex(t)||2L2 =

∫ ∞
−∞

eTx (τ)ex(τ)dτ

=
1

2π

∫ ∞
−∞

E∗x(jω)Ex(jω)dω

=
1

2π

∫ ∞
−∞

(Eu(jω) + Eû(jω))∗G∗(jω)G(jω)(Eu(jω) + Eû(jω))dω.

Since A is Hurwitz, the H∞-norm of G(jω) is finite. Applying the submultiplicative

property of the norm, the last expression can be bounded by

||ex(t)||2L2 ≤
1

2π

∫ ∞
−∞
|T (jω)|2|Eu(jω) + Eû(jω)|2dω

≤ ||G(jω)||2H∞||Eu(jω) + Eû(jω)||2H2

≤ ||G(jω)||2H∞

||F ||H∞
(

n∑
i=r̂c+1

σi

)1/2

+ ε

2

,

obtaining the desired result.

We emphasize that the error estimates assume projection onto the dominant

eigenvectors of the exact gramian. We leave a characterization in terms of the ap-

proximate gramian to future work.
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V.3 Balanced Truncation

In the balanced coordinates, the controllability and observability gramians are

equal and diagonal with eigenvalues

σ1 ≥ σ2 ≥ . . . ≥ σn > 0,

which are equal to the Hankel singular values of the system. The Hankel singular

values relate the energy of the input signal to the energy of the output signal. The

larger the singular values, the greater the amplification from the input signal to the

output. They may be calculated as the singular values of P
1
2
o P

1
2
c . The balanced

truncation approach seeks to truncate the directions in the state space corresponding

to relatively small Hankel singular values, i.e., those that are relatively unimportant in

describing the input-output behavior of the system while keeping those corresponding

to the largest Hankel singular values. It can be shown that the distance between the

original and truncated systems in the H∞-norm is bound from above by twice the

sum of the truncated Hankel singular values [DP00; Moo81].

The original formulation of the balanced truncation algorithm may be difficult

to perform for large scale systems. One must first obtain both the controllability

and observability gramians, either by solving the corresponding Lyapunov equations

directly or approximately or by building up low-rank approximate gramians, e.g. from

snapshot data from experiments [Row05]. Then, in principle, one can compute the

balancing transformation using numerically stable but possibly expensive algorithms,

e.g. SVD, Cholesky [DP00; Moo81].
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In order to perform the balanced truncation efficiently, we obtain the gramians

in TTVM format from our TT-based Lyapunov equation solver, then use a modified

version known as Balanced Proper Orthogonal Decomposition [Row05] to balance

and truncate in one step. First compute approximate gramians in TTVM format and

use Algorithm 8 to compute their matrix square roots P
1
2
c and P

1
2
o . Then compute the

TTVM-SVD of the product (truncating the singular values below some threshold).

P
1
2
o P

1
2
c = UΣV T . (V.3.1)

Take the TTVM products defined by

VT1 = Σ−
1
2V TP

1
2
c , WT

1 = P
1
2
o UΣ−

1
2 , (V.3.2)

as the transformation and truncation. This transformation is balancing.

WT
1 PcW1 = (P

1
2
o UΣ−

1
2 )TPcP

1
2
o UΣ−

1
2 = Σ−

1
2UTP

1
2
o PcP

1
2
o UΣ−

1
2 = Σ,

VT1 PoV1 = (P
1
2
c V Σ−

1
2 )TPoP

1
2
c V Σ−

1
2 = Σ−

1
2V TP

1
2
c PoP

1
2
c V Σ−

1
2 = Σ.

The result is summarized in the following theorem.

Theorem V.3.1 ([Row05]). Suppose P
1
2
o P

1
2
c has rank r = n. Then with V1 and WT

1

defined above, V1 is a balancing transformation, and WT
1 is its inverse. That is,

WT
1 PcW1 = VT1 PoV1 = Σ.

Since the outputs of the TT-based Lyapunov solvers are low-rank approxima-

tions of the gramians, only a fraction of the Hankel singular values and their corre-

sponding directions are available in (V.3.1). As a result, the balancing transformation
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in (V.3.2) is not full rank, meaning that they perform the truncation to those Hankel

singular values. Once the balancing and truncating transformation has been com-

puted the matrices of the reduced system (V.0.8) can be computed using the TT

VM-M-VM product and the TT VM-VM product. The results are summarized in

Algorithm 13.

Algorithm 13 TT Balanced Truncation

Require: LTI control system (A,B,C,D) with matrix A in the TTM-format, matrix

B in the TTVM-format, C in the TTVM-format and target state x0 in the TTV

format.

Ensure: Reduced system Ared, Bred, Cred, Dred.

Compute approximate infinite-time horizon gramians P̂c and P̂o using TT-DMRG

CALE solver,

[Ûc, Σ̂c, V̂
T
c ] = TT SVD(P̂c), [Ûo, Σ̂o, V̂

T
o ] = TT SVD(P̂o),

[Û , Σ̂, V̂ T ] = TT SVD(ÛoΣ̂
1/2
o V̂ T

o ÛcΣ̂
1/2
c V̂ T

c ),

VT1 = Σ−1/2V T P̂
1/2
c , WT

1 = P̂
1/2
o UΣ−1/2,

Ared =WT
1 AV1, Bred =WT

1 B,

Cred = CV1, Dred = D,

140



V.4 Numerical Experiments

Recall the linear reaction-diffusion equation
∂tq(x, t) =

(
D∆ +

∑R
ρ=1 f

ρ(x)(Sρωρ)
)
q(x, t) + F (x)u(t), x ∈ D.

q(x, t) = 0, x ∈ ∂D,

y(t) = Hq(x, t).

(V.4.1)

For the numerical experiments, we consider a version of (V.4.1) that has been

discretized in space using a finite difference scheme on a uniform tensor grid with

spacing h but no discretization in time (Method of Lines). Let q̂(x, t) denote the

discrete approximation of q(x, t). The time evolution of the discretized system is

given by the finite-dimensional LTI system:

∂tq̂(x, t) = Aq̂(t) +Bu(t),

y(t) = Cq̂(t). (V.4.2)

where

A =
1

h2
(∆dd ⊗D) +

R∑
ρ=1

(
diag(f̂

ρ
)⊗ (Sρω̂ρ)

)
, (V.4.3)

where ∆dd is the discrete Laplacian on a rectangular grid with Dirichlet boundary

conditions, D is the diffusion tensor, f̂
ρ

is the discretization of fρ(x) on the spatial

grid, and B and C depend on the discretizations of F (x) and H , respectively.

Using the finest possible quantization for the spatial coordinates, q̂(t) has the

following index structure:

i1,1, . . . , i1,l1︸ ︷︷ ︸
1st dimension

, i2,1, . . . , i2,l2︸ ︷︷ ︸
2nd dimension

, . . . , id,1, . . . , id,ld︸ ︷︷ ︸
dth dimension

, iS︸︷︷︸
reactants

.
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# Reaction Reaction Rate Spatial Dependence

1. Q1 −−→ ∅ k1q1(x) 1

Table V.1: Reaction Network 1.

Using the sum and product estimates for TT-ranks, (V.4.3) gives an estimate the

QTT-ranks of A (and using Theorem V.1.1, those of L, as well), assuming estimates

of the ranks of each of the various terms are available. Let r∆dd
k,mk

and rf̂
ρ

k,mk
denote the

QTT ranks corresponding to spatial dimension k and quantization level mk of ∆dd

and f̂
ρ
, respectively, and let rD denote the matrix rank of D. Then the QTT ranks

of A are bound from above by

r∆dd
1,1 +

R∑
ρ=1

rf̂
ρ

1,1, . . . , r
∆dd
1,l1−1 +

R∑
ρ=1

rf̂
ρ

1,l1−1︸ ︷︷ ︸
1st dimension

, r∆dd
1 +

R∑
ρ=1

rf̂
ρ

1︸ ︷︷ ︸
TT-rank

, . . .

, r∆dd
d−1 +

R∑
ρ=1

rf̂
ρ

d−1︸ ︷︷ ︸
TT-rank

, r∆dd
d,1 +

R∑
ρ=1

rf̂
ρ

d,1, . . . , r
∆dd
d,ld−1 +

R∑
ρ=1

rf̂
ρ

d,ld−1︸ ︷︷ ︸
dth dimension

, R + 1, rD +R︸ ︷︷ ︸
reactants

,

and an upper bound for the QTT ranks of the corresponding LA are given by Theo-

rem V.1.1.

V.4.0.1 Example 1: 2D Multiple Input System

Consider the controlled reaction-diffusion system with a single chemical specie

Q1 on a square domain D = [−π, π]2, subject to the single degradation reaction listed

in Table V.1 and with four separate control channels u1(t), . . . , u4(t) corresponding
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to injection or removal of Q1 at four separate points

x1 = [1/3, 1/3],

x2 = [−1/3, 1/3],

x3 = [−1/3,−1/3],

x4 = [1/3,−1/3].

Under the finite difference discretization in space, this system can be modeled by

equation (V.4.2) with

A =
D

h2
∆dd − k1Id, B =

1

h2

[
δ̂1(x) δ̂2(x) δ̂3(x) δ̂4(x)

]

where δ̂m(x) is a vector that is zero everywhere except at the entry corresponding to

the grid point closest to xm, and we have suppressed the reactants mode since there

is only one chemical specie.

We express A in the QTTM format and B in the QTTVM format. Kazeev,

et al. showed that using the finest possible quantization, ∆dd has an explicit QTT

matrix representation with all QTT ranks < 4 [KK12]. Using Equation (V.4.4), both

A and LA have QTT ranks < 5. Each δ̂m(x) has QTT rank 1, so B has QTTVM

representation with ranks at most 4.

For the numerical experiments, we used a uniform tensor product mesh with

210 = 1024 points in each direction, and parameter values D = 1 and k1 = 1.

Table V.2 lists the number of parameters required to represent the various matrices.
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Matrix Full Format Sparse QTTM

A 2D System 1.100e12 5.243e6 1456

LA 2D System 1.100e12 5.243e6 4388

A 3D System 1.038e19 3.114e10 8699

LA 3D System 1.077e38 1.003e20 2.159e4

Table V.2: Number of parameters needed to represent matrices for the 2D and 3D

systems in various formats.

V.4.0.2 Example 2: 3D-SISO System

We next describe a very large scale system. Consider the reaction-diffusion sys-

tem with three chemical species Q1, Q2, Q3 and the set of reactions listed in Table V.3.

Reaction 1 is localized about the point x∗ =

[
−1 0 0

]T
with spatial dependence

described by the function

fx∗(x) = (8π)−3/2e−2(x−x∗)T (x−x∗).

The remaining reactions have no spatial dependence. The reaction network describes

a spatiotemporal signaling cascade. A signal molecule Q1 binds to a localized sub-

strate (whose concentration is far in excess of that of Q1) to produce a molecule Q2.

Q2 then catalyzes the production of molecule Q3 which can take place anywhere in
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# Reaction Reaction Rate Localized? Spatial Dependence

1. Q1 −−→ Q1 +Q2 k1q1(x) x fx∗(x)

2. Q2 −−→ Q2 +Q3 k2q2(x) 1

3. Q1 −−→ ∅ γ1q1(x) 1

4. Q2 −−→ ∅ γ2q2(x) 1

5. Q3 −−→ ∅ γ3q3(x) 1

Table V.3: Reaction network for the example problem.

the reaction volume. The input to the system is described by

F (u(t),x, t) =


δ(x− xu)u(t)

0

0

 ,

which models injection or removal of the signaling molecule Q1 at the point xu =

(π, 0, 0). We take the output of the system to be the total amount of Q3 produced:

y(t) = H(q(x, t)) =

∫
D

q1(x, t)dt.

We use a second-order central difference to approximate the Laplacian and ap-

proximate the Dirac delta as a Kronecker delta function at the nearest grid point

with unit mass.
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A =
1

h2
(∆dd ⊗D) +

5∑
r=1

(
diag(f̂

r
)⊗ (Srω̂r)

)
, B =

1

h3

δ̂(x)⊗


1

0

0



 ,

C = 1⊗


1

0

0

 ,

where ∆dd is the discrete Laplacian on a rectangular grid with Dirichlet boundary

conditions, D is the diffusion tensor, f̂
r

is the discretization of f r(x) on the spatial

grid, δ̂(x) is a vector that is zero everywhere except at the entry corresponding to

the grid point closest to xu.

For reactions two through five, f r(x) = 1 (no spatial dependence), diag(1) = Id,

and A can be rewritten as

A =
1

h2
(∆dd ⊗D) +

(
diag(f̂

1
)⊗ (S1ω̂1)

)
+

(
Id⊗(

5∑
r=2

Srω̂r)

)

We represent A in the TTM format while B and C are represented in the TTVM

format. We use the explicit QTT matrix representation for ∆dd with all QTT ranks <

4 [KK12], whileD, diag(f̂
1
)⊗(S1ω̂1),

∑5
r=2 Srω̂r each have TTM rank 1. If the QTT

ranks of f̂
1

are bound from above by rf1 , then so are the ranks of diag(f̂
1
)⊗ (S1ω̂1),

similarly
(
Id⊗(

∑5
r=2 Srω̂r)

)
is rank 1 since Id has QTT representation with rank

1. Hence, A has QTT-ranks < 5 + rf1 . Using Theorem V.1.1, the ranks of LA are

bounded from above by 6 + rf1 . Also, both B and C are rank 1 in the TTVM after
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quantization since each is a stack matrix with one vector that is rank 1 separable. As

a result, both QC and QB are rank 1 separable as well. Therefore, all the matrices

and vectors involved have low QTT-ranks.

For the numerical experiments, we used a uniform tensor product mesh with

210 = 1024 points in each direction, and parameter values D = 1 and k1 = 1.

Table V.2 lists the number of parameters required to represent the various matrices.

V.4.1 Implementation Details

In the following, we implemented our proposed algorithms in MATLAB using

the TT Toolbox implementation of the TT and QTT tensor formats, publicly avail-

able at http://spring.inm.ras.ru/osel. All TT-based calculations (computation

of gramians, control laws, reduced models) were performed in MATLAB 8.2.0.701

(R2013b) on a laptop with a 2.7 GHz dual-core processor with 12 GB RAM.

When testing the TT-DSPOLC algorithm, we computed the evolution of the

full-format system under the approximate control law using one DL580 node of

the High-Performance Cluster Knot: http://csc.cnsi.ucsb.edu/clusters/knot.

This node is equipped with 4 Intel X7550 eight core processors and 512GB shared

RAM. We gratefully acknowledge the Center for Scientific Computing at UCSB and

NSF Grant CNS-0960316 for making use of this system possible.
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V.4.2 TT-DSPOLC

We demonstrate the efficacy of the TT-DSPOLC method by using it to steer a

2D reaction-diffusion system to various states. For each steering problem we report

the accuracy of the control law as the relative error in the Euclidean norm between

the target state and the final state of the full system

εx =
|x0 − x̂(0)|
|x0|

as well as the expansion coefficients of the final state in the basis of the left singular

vectors of the controllability gramian obtained by orthogonal projection onto the

subspace spanned by those vectors

cα =
∑
i1,...,id

V̂ T
c (α; i1, . . . , id)x(i1, . . . , id).

We also report the computation times of both the QTT-DSPOLC and the simulation

time for the full system.

Figure V.7 plots the matrix singular values and QTT-ranks of the approximate

gramians, as well as the computation time for the DMRG-based solver for various

residual tolerances. As the tolerance becomes tighter, the ranks corresponding to the

compression of the singular vectors increases faster than the operator rank, mean-

ing that the DMRG-based solver allocates the extra computational effort to better

resolving the dominant singular vectors as opposed to finding more of them.

Figure V.8 plots a subset of the right singular vectors of Ŵc obtained from the

DMRG-based solver with residual tolerance εL = 1e−6. In each case, the majority
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of the variation in the singular vector is tightly concentrated about the points of

actuation.

We first used the QTT-DSPOLC algorithm to steer the full-order system to a

Gaussian profile 1
2π
e−
|x|2
2 , where the width of the profile was chosen to be large enough

that no single left singular vector would work well as an approximation of the target

profile. Even though each of the singular vectors of the Gramian has the majority of

the variation concentrated about the actuation points, the QTT-DSPOLC algorithm

can effectively steer the system to a profile that is qualitatively different, provided

the resolution of the dominant subspace is sufficiently high.

Figure V.10 displays the final state of full system under the QTT-DSPOLC

algorithm for various levels of approximation of the controllability gramian. As the

approximation of the dominant subspace becomes more accurate, the full system can

be driven closer to the target state. Figure V.9a plots the coefficients of the final

state under each control law expanded in the basis of left singular vectors from the

most accurately computed gramian and the coefficients of the target profile, while

Figure V.9b plots the relative error in the final state and computation time of the

control law with respect to the DMRG residual tolerance. Table V.5 gives a break-

down of the compute times for each step in generating the QTT-DSPOLC: tWc is the

compute time of the DMRG-based solver, tÂ is the compute time of the dominant

subspace projection system, and tsim is the compute time of the adjoint simulation.

Next we tested the fidelity with which the DSPOLC algorithm steers the full
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Figure V.7: Approximate controllability gramians for the multi-input system.
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(a) k = 1 (b) k = 9

(c) k = 20 (d) k = 29

Figure V.8: Left singular vectors of Ŵc with εL = 1e−6 for the multi-input system.
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Figure V.9: Results for Gaussian profile steer problem for the multi-input system

with respect to varying DMRG solver accuracy. V.9a plots the expansion coefficients

of the final state with respect to the projection basis computed with DMRG tolerance

set to 1e− 6. The black circles denote the expansion coefficients of the target state.

V.9b plots the relative error of the final state under the open loop control as well as

the total compute time of the control law.
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(a) Target State (b) 1e-2

(c) 1e-3 (d) 1e-4

(e) 1e-5 (f) 1e-6

Figure V.10: Target and final states.
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Matrix Full Format Sparse r̂c-rank Approximation QTT

P̂c, εL = 1e−2 1.100e12 1.100e12 1.678e7 1.900e4

P̂c, εL = 1e−3 1.100e12 1.100e12 3.670e7 1.016e5

P̂c, εL = 1e−4 1.100e12 1.100e12 5.557e7 2.467e5

P̂c, εL = 1e−5 1.100e12 1.100e12 6.396e7 3.939e5

P̂c, εL = 1e−6 1.100e12 1.100e12 7.445e7 6.775e5

Table V.4: Number of parameters needed to represent approximate controllability

gramians for the multi-input system in various formats. The r̂c-rank approximation

refers to an eigensystem approximation with the same rank. In all cases, the addi-

tional storage savings allowed by the QTT compression is signifcant.

system in each direction of the approximate controllable subspace by attempting to

steer the system in the direction of each left singular vector of P̂c resulting from

εL = 1e−5. Figure V.11 displays the squared coefficients of the final state expanded

in the left singular vectors of P̂c.

The QTT-DSPOLC algorithm steers the system to the desired direction with

high fidelity for the dominant directions. As may be expected, the directions corre-

sponding to smaller singular values of the controllability gramian are more difficult

to steer to both in the sense that magnitude of the final state is smaller than desired

and the coefficients of the expansion are nonzero for undesired modes.

Figure V.12 compares the total computation times for the control law and full
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εL tPc tÂ tsim

1e−2 15.4s 1.7s 0.0337s

1e−3 45.4s 20.4s 0.0664s

1e−4 339.3s 273.8s 0.3299s

1e−5 727.4s 386.1s 0.1034s

1e−6 1887.9s 1671.5s 0.1253s

Table V.5: Compute time breakdown for various levels of accuracy of the controlla-

bility gramian for the multi-input system.

model simulation when steering in each direction. Compute time of the control law

on a dual core laptop was nearly an order of magnitude faster than a simulation of

the full system on a 32 core cluster node. We emphasize that the reported compute

times are overestimated since each takes into account the time taken for both the

solution of the Lyapunov equation and the projection onto the dominant subspace.

In fact, the approximation of the dominant subspace and assembly of the projected

system need only be done once to compute every control policy. In each case, the

simulation time of the full system compared to the simulation time for the adjoint

system differed by at least five orders of magnitude.
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Figure V.11: Accuracy of DSPOLC Algorithm
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Figure V.12: Computation times for Example 1 when steering to a single mode. Com-

pute time of the control law on a dual core laptop was nearly an order of magnitude

faster than a simulation of the full system on a 32 core cluster node. We emphasize

that the reported time for the computation of the control law includes both the time

taken for the solution of the Lyapunov equation and the projection onto the dominant

subspace, which only need to be done once to compute every control law.
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V.4.3 TT-Balanced Truncation

In order to demonstrate the efficacy of the Tensor Train approach, we computed

computed reduced order models of the 3D SISO system using the Balanced Truncation

summarized in Algorithm 13.

The results of the CALE solver are summarized in Figure V.13. For tighter

solver tolerances, the TT ranks of the approximation must grow to satisfy the tol-

erances. Note that, due to the structure of the problem, the singular vectors of

the gramians have a high degree of spatial separability corresponding to low values

of the corresponding TT ranks. As the solver tolerances are tightened, the ranks

corresponding to the separation in quantization levels grow much faster than those

corresponding to both the matrix ranks of the gramians and the ranks separating

the spatial dimensions of the singular vectors. The solver does more work in better

resolving the singular vectors instead of increasing the number of singular vectors in

the approximation.

The QTT compression significantly reduces the number of parameters required

to represent the matrices and vectors involved. Table V.7 summarizes this data using

the most accurate approximations. In each case, the QTT compression reduces the

number of parameters required to represent the data by several orders of magnitude

compared to sparse or simple low-rank formats.

We then applied Algorithm 13 to compute reduced order models of the input-

output system using six different combinations of controllability and observability
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Figure V.13: Controllability and observability gramians computed using the DMRG-

based solver for various tolerances in the residual error. TT ranks of the approximate

controllability gramians (V.13a) and observability gramians (V.13b) for various tol-

erances. The matrix rank of each approximation of the operator is highlighted by

a black circle, while ranks separating spatial dimensions in the singular vectors are

highlighted by black squares. Effective ranks and compute times in seconds for var-

ious values of the residual tolerance for the controllability gramian (V.13c) and the

observability gramian (V.13d).
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gramians resulting from varying the DMRG residual levels. The combinations are

listed in Table V.6 in order of increasing accuracy. Figure V.14 summarizes the results

of the balanced truncation algorithm applied to each combination of gramians. All

relative error calculations are taken with respect to the most accurately computed

gramians. As the tolerances on the DMRG solver are tightened, more singular values

of the Hankel matrix are included in the approximation with the largest singular

values converging fastest. Note that while runs (D) and (E) result in Hankel matrices

with the same number of singular values, the TT ranks corresponding to the singular

vectors for (E) are significantly larger resulting in a longer compute time to obtain the

reduced model. In each of the numerical experiments, the majority of the compute

time was used by the DMRG solver finding the approximate gramians.

Even in the case of the most accurately computed gramians the model order

reduction is massive with a reduction in the number of states by a factor by nine

orders of magnitude.
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(d) H∞ norm distance and total compu-

tation time

Figure V.14: Balanced truncation results. Each data set corresponds to a combina-

tion of DMRG residual tolerances listed in Table V.6. Relative error are computed

with respect to the most accurate solutions of the Lyapunov equations (F). (V.14a)

Singular values of each approximate Hankel matrix. (V.14b) Relative error in the

singular values. (V.14c) Dimension of the resulting reduced models and the compute

time of Algorithm 13 versus the residual tolerances. (V.14d) Relative errors of the

transfer functions in the H∞-norm of the reduced models and total computation time

versus residual tolerances.
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Label Wc DMRG Residual Tolerance Wo DMRG Residual Tolerance

(A) 1e-6 1e-4

(B) 1e-7 1e-5

(C) 1e-8 1e-6

(D) 1e-9 1e-7

(E) 1e-10 1e-8

(F) 1e-11 1e-9

Table V.6: DMRG Tolerance Combinations

162



Full Format Sparse Format Truncated SVD QTT Format

A 1.038e19 3.114e10 – 8699

LA 1.077e38 1.003e20 – 2.159e4

Pc 1.077e38 1.077e38 1.804e11 3.531e5

Po 1.077e38 1.077e38 1.804e11 7.762e5

Table V.7: Number of parameters required to represent matrices in full, sparse, trun-

cated SVD, and QTT formats. Pc and Po are the approximate gramians computed

using the DMRG solver with tolerances (F) given in Table V.6. The number of pa-

rameters listed for the QTT format assume A and LA are represented in the QTT

Matrix format while the gramians are represented in the Vectorized Matrix format.

The truncated SVD representation refers to the low rank approximation of the grami-

ans by SVD with the same number of singular values and vectors as is encoded in the

QTTVM format.
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V.5 Conclusions

We introduced a new approach to solving CALEs based on the Tensor Train

numerical linear algebra. A key feature of the approach is that it adapts the matrix

rank of the solution to capture the essential features of interest but no more. This

parsimonious representation of the vectors and matrices involved allows substantial

savings both in memory resources and overall compute time.

We remark that low-parametric tensor formats and linear system solvers in

these formats is an active area of research. As solver technology improves we expect

a further increase in the efficiency of this approach.

Based on the new approach to solving CALEs we proposed Gramian-based

model reduction and open-loop control algorithms entirely within the TT format. A

key feature of this approach is that all elements of the calculations, e.g. computation

of dominant subspaces, coordinate transformations, subspace projections, etc., could

be completed without ever referencing the full-format system.

We demonstrated the efficacies of these new approaches on challenging large-

scale numerical examples of controlled reaction-diffusion equations.
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Chapter VI

Conclusions

We presented a series of computational algorithms for the simulation, analysis,

model reduction, and control of high-dimensional LTI systems from systems biology

based on the Tensor Train numerical linear algebra. Overall, the TT approach to

the design of numerical algorithms allows the solution of problems which classically

required high-performance compute hardware on a notebook to the same or better

levels of accuracy. In this chapter we summarize the conclusions of the doctoral

project and describe some continuing work and possible future directions.

The hp-DG-QTT numerical solver for the CME produces numerically accurate

results in a computationally efficient manner due to the combination of the efficient

hp-DG time-stepping and the rank adaptivity of the QTT approach. Unlike most

reduced basis methods, the solver automatically adapts the approximation “basis” of

the solution. However, it is unclear how to efficiently and automatically adapt the
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temporal mesh of for the hp-DG temporal semi-discretization. While the simulation

results in Chapter IV look quite promising, they neglect to report the amount of time

and effort required by the practitioner to tune the temporal mesh for both speed

and accuracy. Elaboration of a simple and computationally efficient scheme to au-

tomatically generate the temporal meshes is a necessary prerequisite for wide-spread

adoption of the method by non-specialists. This is a currently under investigation.

Both the hp-DG-QTT solver for the CME and the model reduction and control

algorithms for LTI systems essentially rely on the efficient solution of certain ten-

sor structured linear systems using the DMRG-based solver. In each case the local

nature of the solver is a limiting factor in the efficiency of the approach. For the

hp-DG-QTT solver, this restricts both the feasible step-size that can be taken and

the polynomial order of the temporal discretization. For the CALE solver, computing

additional singular values and vectors of the solution can require significant computa-

tional work. We remark that ongoing research in TT-structured linear system solvers

promises substantial increases in efficiency for both approaches. We mention a family

alternating minimal energy methods was recently announced in [DS13].

We observe that the efficiency of the TT approaches depend on the data involved

having low rank in the format and that the particular choice of index orderings might

affect this critically. We remark that the TT-format is a special case of the more

general tensor network states. In real world applications it may be more appropriate

to represent the data as some other tensor network in order to compute efficiently.
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The development of methods for determining a good tensor network data structure

for a particular problem is ongoing work. A general overview of tensor network states

and their use in numerical computations can be found in [CV09; VCM09].
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Chapter VII

Appendix

This chapter describes two projects related to the Chemical Master Equation

research. The first describes the construction of reduced basis models of the CME

without using the Finite State Projection to first reduce the countable state space

problem to a finite one. This method is aimed at reduction of stochastic models of

gene regulatory networks which combine chemical species which can take (formally)

unconstrained copy numbers (mRNA, proteins) with species that are only present in

fixed quantities (DNA) within a cell. The second section describes an approach to

computing Wasserstein pseudometrics by solving certain large-scale Linear Program-

ming problems and applies this to model discrimination of two stochastic models with

identical stationary distributions.
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VII.1 L1 - Reduced Models of CME for Gene Reg-

ulatory Networks

VII.1.1 Gene Regulatory Networks

We assume that the state of our system of chemical reactions is expressed by

a pair (x, g) where g takes values in a finite set Q = {1, . . . , Q} and x is a vector of

integers that can potentially be unbounded. We shall refer to the g component of the

state as the low count species and to x as the high count species. In a generic regulatory

circuit, the subcomponent g could correspond to the configuration of occupied/vacant

binding sites for a transcription factor, whereas x could be a vector with molecule

counts of mRNA, protein, and/or transcription factors.

For a stochastic chemical reaction network with R reaction channels, for the kth

reaction, let ωk(x, g) denote the reaction propensity, and ηxk and ηgk the components of

the stoichiometric vector affecting the high count and low count species, respectively,

when channel k fires. The Chemical Master Equation describing the time evolution

of the probability density function is given by:

ṗ(x, g; t) = −p(x, g; t)
R∑
k=1

ωk(x, g)

+
R∑
k=1

p(x− ηxk , g − η
g
k; t)ωk(x− η

x
k , g − η

g
k)

(VII.1.1)

where each p(x, g; t) is nonnegative, less than 1, and the sum of all p(x, g; t) over
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all possible values of x and g is equal to one [Kam92]. In general, this describes an

infinite dimensional coupled linear system of differential equations since for each pair

(x, g), equation (1) specifies one differential equation.

The state space on which the process evolves is Znx≥0×Q and, for each fixed time

t, p(x, g; t) is an `1 function over the index-set Zn≥0 ×Q.

VII.1.2 Projection

Let {ψα(x, g) : α ∈ A} be a (Schauder) basis for `1(Zn≥0 × Q) where A is

some infinite (but countable) index set. Expanded in this basis, the chemical master

equation reads:

∑
α∈A

ċα(t)ψα(x, g)

= −
R∑
k=1

∑
α∈A

cα(t)ψα(x, g)ωk(x, g)

+
R∑
k=1

∑
α∈A

cα(t)ψα(x− ηxk , g − η
g
k)ωk(x− η

x
k , g − η

g
k)

(VII.1.2)

∀(x, g) ∈ Zn≥0 ×Q where each cα(t) is the spectral coefficient of the expansion corre-

sponding to basis function ψα. Since the basis set is fixed for all time t, the spectral

coefficients capture the time-dependence of the solution. Our goal is to develop an

approximation to the equation (2) that accurately captures biologically meaningful

quantities that can be computed from p(x, g; t). Many such quantities can be ob-

tained by computing functionals on the state space `1(Zn≥0 × Q) that correspond to
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inner products. For example, the probability of the system occupying some subset

S of the state space is a linear functional given by the inner product of the distri-

bution with the indicator function 1S taking the value one on S and zero elsewhere.

The expected value of any function f(x, g) can be expressed as a linear functional

on `1(Zn≥0 × Q) that can be written as the inner product of the distribution with a

vector whose entries are the values of f(x, g) evaluated at the corresponding points

of the state space. For simplicity of the mathematical treatment, we only consider

functionals of this type. In view of this, we take as given a collection {ϕβ : β ∈ B}

of linear functionals on `1 parameterized by an index set B, with the understanding

that, while we may be willing to accept errors in the probability density p(x, g; t), we

want our approximation to the CME to accurately capture the evolution of the values

of each functional ϕβ along solutions to the CME, which is given by the following set

of equations:

∑
α

ċα(t)ϕβ(ψα(x, g))

=
∑
α

(−
R∑
k=1

cα(t)ϕβ(ψα(x, g)ωk(x, g))

+
R∑
k=1

cα(t)ϕβ(ψα(x− ηxk , g − η
g
k)ωk(x− η

x
k , g − η

g
k)))

(VII.1.3)

with one differential equation for each ϕβ. In order for the set of coefficients {cα(t)}

to solve equation (2) they must necessarily solve the equation (3) for each functional

ϕβ, β ∈ B.
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Our construction of the lower dimensional approximation to the CME relies

on the premise that the distribution p(x, g; t) lies close to a subspace of `1(Zn
≥0 ×Q)

generated by a finite subset {ϕα : α ∈ Â}, Â ⊂ A of the original basis for `1(Zn
≥0×Q).

To determine appropriate equations for the evolution of the coefficients {cα : α ∈ Â},

we require that the equations (3) that express the evolution of the values of the

functionals {ϕβ : β ∈ B} holds for every β ∈ B.

VII.1.2.1 Projection onto the Reduced Basis

Choosing the truncated basis functions {ψα : α ∈ Â} to form an orthogonal

basis for a subspace of a Hilbert space H and selecting the functionals {ϕβ : β ∈ B}

to be of the form ϕβ(z) = 〈ψβ, z〉, ∀z ∈ H, ∀β ∈ A = B, each equation (3) would

directly give us the evolution of one of the coefficients (due to the orthogonality of the

basis). However, this is undesirable for two reasons: (1) it excludes the possibility

to work with truncated bases that, while not orthogonal, have a better chance to

approximate well p(x, g; t) and (2) it typically prevents the use of functionals ϕβ that

provide biologically useful information, e.g. moments or other expectation values

of the distribution. The tradeoff for these desirable qualities is that the system of

equations (3) does not directly lead to one equation for each coefficient cα. However,

by stacking the coefficient {cα : α ∈ A} into a column vector c, we can write (3) as

the following system of linear differential equations

Qċ = Ãc (VII.1.4)

172



where Q and Ã denote semi-infinite matrices with one row for each element of the

finite set B and one column for each element of the infinite set A. Similarly, by

stacking all the probabilities p(x, g; t) in an infinite vector p(t) we can write

p = Bc (VII.1.5)

where B is the infinite matrix with one column for each element of the set Zn≥0 ×Q

and one row for each element of A. The CME can be expressed as

ṗ = Ap (VII.1.6)

for some infinite matrix with one row/column for each element of Zn
≥0 × Q. Finally,

we can also stack the values of all functionals {ϕβ ∈ B} into a (finite) vector d with

one entry for each element of B and write

d = Dp

where the semi-infinite matrix D has one row for each entry of the finite set B and

one column for each element of the infinite set Zn≥0 × Q. Given a truncation of the

corresponding basis elements, B can be partitioned into submatrices:

B =

[
Br B∞

]
(VII.1.7)

and c can be partitioned into subvectors:

c =

[
cr c∞

]T
(VII.1.8)

Equation (VII.1.4) can then be rewritten as

DBrċr + DB∞ċ∞ = DABrcr + DAB∞c∞
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Truncation of the basis is equivalent to assuming that c∞ = 0 for all time resulting

in the reduced system:

DBrċr = DABrcr (VII.1.9)

We refer to equation (VII.1.9) as the reduced dynamics. These equations can be

viewed as a Method of Lines approximation of the dynamics. If DBr is invertible,

then equation (VII.1.9) can be multiplied on both sides by the inverse leading to a

set of coupled ODEs which can be solved using numerical ODE integrators.

VII.1.2.2 Approximating Stationary Distributions

In many applications it is desirable to obtain an estimate of the stationary dis-

tribution. For example, many hybrid algorithms assume that a subset of the dynamics

is sufficiently fast and reaches stationarity to obtain a reduced model by averaging

the fast dynamics. Such methods require an estimate of the stationary distribution of

the fast subset. However, both Monte Carlo methods like SSA and the FSP are not

particularly adequate for determining stationary distributions. SSA requires the gen-

eration of a large number of long sample paths, with the required time span of each

simulation difficult to estimate a priori. In the FSP, the stationary distribution of

the truncated process typically corresponds to all probability assigned to an artificial

absorbing state. In this section we propose a heuristic for finding an approximation

of the stationary distribution using the framework previously discussed.

Assuming that the system has a stationary distribution p̂ it must satisfy the
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equation:

0 = Ap̂ (VII.1.10)

A candidate p̄ for the closest approximation of the stationary distribution in the

reduced subspace is given by

p̄ = arg inf

||p||1 = 1,

p ∈ R(Br)

||Ap|| (VII.1.11)

which identifies the distribution that exhibits the slowest change. Since the subspace

is finite dimensional it is closed and the infimum is achieved. The infinite vector Ap

is typically impossible to compute, but it is possible to compute the truncated vector

DABrcr so we instead solve the related minimization problem:

minimize ||DABrcr||

subject to ||Brcr||1 = 1 (VII.1.12)

where the optimization variables are the coefficients cr of the expansion. For any

choice of norm in the objective function, the optimization is convex. When it is

chosen to be the 2-norm, this is equivalent to finding the eigenvector corresponding

to the smallest eigenvalue of the positive semi-definite matrix

(DABr)
∗(DABr) (VII.1.13)

and then normalizing with respect to the 1-norm.
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While it is well-understood in the numerical linear algebra literature that a

small residual does not imply a small error in the approximate solution [numLinAlg

], our numerical experiments show this method to be highly efficient and accurate

even with heuristically chosen basis functions and functionals.

VII.1.2.3 Choice of Basis Functions

While many choices of bases in (2) are admissible, some will better capture

the dynamics when truncating to a finite number of elements. [Eng09] proposes the

use of discrete Charlier functions, which are mutually orthogonal with respect to the

Poisson distributions. [Deu+08] suggests the use of discrete Chebychev polynomials

with a suitable scaling and translation to construct a tensor basis, the elements of

which are mutually orthogonal with respect to the standard inner product.

In this work we are especially interested in systems with state spaces of the form

Zn≥0 × Q, where the component of the state in the finite set Q typically represents

the dynamics of transcription factor binding sites. A natural choice of basis for such

system is obtained by taking the tensor product between vectors in a basis of `1(Zn≥0)

with indicator functions on the set Q. Specifically, we work with basis vectors for

`1(Zn≥0 ×Q) of the form

{ψj ⊗ ek}j,k (VII.1.14)

where ψj, j ∈ Zn≥0 is an element of the basis of l1(Zn≥0) and ek, k ∈ Q, is the indicator

function ek(g) = 1 if g = k and ek(g) = 0 if g 6= k.
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This choice of basis is motivated by the observation that by expressing the

probability distribution p(x, g; t) = P (X(t) = x,G(t) = g) as a linear combination of

the vectors (14), we are implicitly expanding the distribution of X(t) conditioned to

G(t) as a linear combination of the vectors ψj since:

P (X(t) = x,G(t) = g)

= α(t)P (X(t) = x|G(t) = g)

= α(t)
∑
j,k

cj,k(ψj ⊗ ek)(x, g)

= α(t)
∑
j

cj,gψj(x) (VII.1.15)

where α(t) = P (G(t) = g). In view of this, the choice of the basis functions ψj should

be dictated by the conditional distribution of X(t) given G(t).

In many systems, the binding configuration determines the qualitative dynamics

of the mRNA, proteins, etc. For instance, the binding of a transcription factor to a

promoter can drastically increase the transcription rate of the associated gene. In the

next section, we describe a simple system where this is precisely the case and including

the binding dynamics is crucial to obtaining an accurate model of the system.

VII.1.3 Case Study: Negative Feedback Circuit Exhibiting

Bimodality

Consider the negative-feedback gene regulatory circuit modeled by

Gon

k1X
T

Gon−→ Goff
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Goff

k2
T
Goff−→ Gon

Gon
k3Gon−→ Gon +X

∅ k4−→ X

X
k5X−→ ∅

G acts as a promoter that randomly switches between the ”on” and ”off” states and

the species X is produced at a high rate when G is ”on” and at a lower basal rate

when G is ”off”. The likelihood of G switching from ”on” to ”off” is influenced by the

concentration of X: the higher the concentration, the more likely G will transition

to ”off”. T is a time-scale parameter that scales the flip rate between the two states

of the gene, that is, decreasing T decreases the mean waiting time between switching

from ”on” to ”off” and vice versa.

This system can be made to exhibit a bimodal stationary distribution for species

X, which is difficult to capture by methods that rely on a continuous approximation of

the dynamics. In the regime of slowly switching gene, the peaks of the distributions

of X conditioned on G will be offset from one another as the system will slowly

switch between two subsystems that are effectively isolated from each other. The

stationary distribution of X for the isolated subsystems is Poisson with parameter k4
k5

for the subsystem conditioned to ”off” and with parameter (k3+k4)
k5

for the subsystem

conditioned to ”on”. For k3 large enough compared to k4, the marginal distribution

of X will then have two distinct peaks corresponding to the peak of each conditional.

Note that in this parameter regime, it is essential to include the binding/unbinding
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dynamics of the promoter in the Markov model. Assuming an equilibrium model for

the state of the binding site through an averaging argument destroys the bimodality

of the full stationary distribution.

We encoded the state space of the process as the ordered pair (x, g) with x

counting the number of molecules of X present and g ∈ {0, 1} with g = 0 correspond-

ing to the ”off” state of the gene and g = 1 corresponding to the ”on” state. For this

example, we used the tensor basis:{
e−

(x−xj)2

2σ2 ⊗ ek

}
j,k

(VII.1.16)

where the first term of the product are elements of a basis for `1(Z≥0) and ek, k ∈

{0, 1} is the indicator function of the event g = k. The different basis vectors for

`1(Z≥0) are obtained using Gaussian distributions with means xj ∈ Ω, a finite subset

of Z≥0 and standard deviation σ. The use of Gaussian distributions for the basis

functions is motivated by the observation that the state distribution typically resemble

Gaussians and therefore one hopes that a low-order representation can be achieved

with such basis functions. For the linear functionals we used the evaluation mappings:

ϕ(x,g)(f) = f(x, g) (VII.1.17)

for any f ∈ `1(Zn≥0 × Q) and with g ∈ {0, 1} and x = xj corresponding to the peak

of each Gaussian. That is, for each pair (x, g) ∈ B, B = {(x, g) : x ∈ Ω, g ∈ {0, 1}},

ϕ(x,g) is the linear functional that evaluates the distribution at (x, g). This corresponds

to being able to identify whether or not the binding site is occupied (since we included
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both e0 and e1) and being able to count the number of transcription factors but with

limited resolution.

Equations (16) and (17) can be translated into the language of semi-infinite

matrices in the following way. Assuming the lexicographic ordering of the state space

and using the corresponding matrix A, the matrices encoding the choice of basis

functions and linear functionals have the block diagonal form:

Br =

 B0
r 0

0 B1
r

 , D =

 D0 0

0 D1

 (VII.1.18)

with the columns of B0
r and B1

r representing the basis for the distribution conditioned

on Goff and Gon, respectively, and with D0 and D1 representing measurements of

the amount of X present in each of the gene states:

B0
r = B1

r =

 e−
(x−0)2

2σ2 e−
(x−5)2

2σ2 . . .

 (VII.1.19)

D0 = D1 =


e0

e5

...

 (VII.1.20)

The reduced model is given by equation (VII.1.9). DBr in this case happens to

be invertible so we can directly apply conventional numerical ODE solvers.

Figure 1 compares the time evolution of the marginal distribution for X using

the approximation method with σ = 15 and Ω = {0, 5, 10, . . . , 200} with the distri-

180



0 100 200
0

0.05

0.1

T
=

1

Time t=1

0 100 200
0

0.05

Time t=4

0 100 200
0

0.05

Time t=16

0 100 200
0

0.02

0.04

P
D

F

T
=

1
0

0 100 200
0

0.01

0.02

0 100 200
0

0.01

0.02

0 100 200
0

0.05

0.1

T
=

1
0

0

 

 

MC

Approx

0 100 200
0

0.05

X Count

0 100 200
0

0.01

0.02

Figure VII.1: Comparison of the time evolutions of the marginal PDF of species

X generated by the approximation method with 105 Monte Carlo simulations. In

the case of the slow binding/unbinding dynamics (T = 100), the spectral method

successfully captures the bimodality of the solution.
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bution estimated by 104 SSA sample paths. SSA realizations were initialized with

(x, g) = (0, 0), while the approximation method was initialized with all probability

concentrated in the function e−
x2

2σ2 ⊗ e0, the basis function that is qualitatively the

closest. Even though each system is initialized differently the spectral approximation

produces qualitatively similar dynamics to the SSA with good agreement of the cen-

tering of the peaks of each mode of the distribution. Note, however, that the values

of the peaks for the approximation are smaller than those produced by Monte Carlo

and that the approximation distribution decays much more slowly. This lack of fast

decay is a consequence of using Gaussians in the choice of basis since the decay rate

of the approximation is bound below by the decay rate of any one of the Gaussians

used.

Figure 2 compares the approximate stationary distribution generated by the

heuristic using the same σ and Ω with SSA sample paths of simulated time length

100. The approximate solution was found by selecting the 2-norm for the objective

function and performing the corresponding eigenvalue/eigenvector computation. The

spectral approximation is qualitatively similar to the SSA estimate. Note here that

this solution suffers from the same inaccuracies as the transient solution: peak values

are smaller, and the distribution does not decay as rapidly.

Figure 3 compares the error produced at time t = 100 by time evolution of the

approximate system for various values of σ and different uniform spacings between the

peaks of each Gaussian. The error is calculated with respect to a solution of the FSP
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Figure VII.2: Comparison of estimates of the stationary marginal PDF of species

X generated by the spectral approximation with 105 SSA realizations. The pseudo-

color plot shows PDFs estimated by SSA over a range of binding/unbinding speeds.

The red curves show the peaks of the distribution estimated by SSA, while the blue

curves show the peaks estimated by the spectral method. At right, comparisons of

the stationary distribution predicted by the spectral method with SSA estimates.

The spectral method successfully captures the bimodality of the solution in the slow

switching regime.
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Figure VII.3: Comparison of error at time t = 100 for various values of peak spacing

and width. For each peak spacing there is a value of the variance which minimizes

the error of the approximation. Errors are calculated with respect to an FSP solution

with the same initial conditions. The value of t = 100 was chosen as each system is

approximately stationary after this amount of time.
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Figure VII.4: Comparison of approximate solutions with the best possible compres-

sion with the same basis functions. Solid lines indicate the best possible compression

while markers indicate the approximations. In each case, the approximate solution

may have a relatively large error during the initial transient phase, while the dynam-

ics appear to minimize the errors in the stationary phase. Error values plotted below

10−7 are likely innacurate since these are of the same order as the tolerances used in

the numerical optimization.

initialized with one of the basis functions. FSP reference solutions were calculated

with an error certificate of ε < 10−9 in each state at the final time. We used FSP to

generate the reference solutions rather than SSA as the computation time to do so

to the desired accuracy is significant. As expected, the more basis functions allowed,

the lower the error that can be achieved.

For each minimal error spacing and variance combination shown in Figure 3,

Figure 4 compares the `1 error of the approximation with the error of the best possible

approximation for the same choice of basis over time. The best possible approxima-
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tions were obtained by minimizing the `1 error of the FSP reference solution over

the same choice of basis functions by numerically solving the corresponding Linear

Program. While the spectral approximations may have large errors during the initial

fast transient phase, the error gaps close when approaching steady state.

VII.1.4 Conclusions/Future Research

In this paper we considered a class of models of gene regulatory networks that

explicitly include the full binding dynamics of transcription factors. Here we assumed

that the binding dynamics occur on a time scale that is too slow to be averaged out

by the rest of the system and are therefore important to the overall function of the

network. We demonstrated that general spectral methods have characteristics well

suited to solving CMEs of this type assuming a good choice of basis functions. We

also introduced a novel method for approximating the stationary distribution based

on the spectral framework.

Establishing error bounds for the approximations proposed here is the topic of

ongoing research.
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VII.2 Descrimination of Stochastic Models Using

Wasserstein Pseudometrics and MultiCrite-

rion Optimization

VII.2.1 Introduction

Quantifying the differences between two models or between experimental data

and a candidate model is a fundamental procedure in system identification, model

selection, and model reduction. Wasserstein pseudometrics have been suggested as a

useful measure of the differences between stochastic models since they do not require

strong statistical assumptions about the noise processes and can be tailored to capture

and quantify essential elements of the output properties of the processes [TK08].

Previous work has considered computation of Wasserstein pseudometrics arising from

a single comparison criteria [Koe+10; TK08; TK10]. In this project, we consider

generalizing this framework to allow model comparisons based on multiple criteria.

We show that for a particular choice of pseudometrics, approximation of their values

can be accomplished by solving a single large-scale Linear Programming problem. We

use the computational method to select the appropriate stochastic model from data

generated by stochastic realizations.
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VII.2.2 Background

Let ΩX = {f : R≥0 → X}. A Markov process Xt induces a σ-algebra FX and

probability measure µX on ΩX . Given an observation function g : X → Y with

sufficiently nice properties, this also induces a σ-algebra FY and probability measure

µY on a subset of the space ΩY = {ω : R≥0 → Y }, that is, it generates a new process,

generally not Markov, Yt parameterized by t ∈ R≥0 and with state space Y . The

basic idea is that there is some underlying Markov process that has state space X

but that we are only able to make observations of the process on a smaller space Y .

For simplicity, take Y = Rm.

Suppose we wish to compare two processes Yt and Ŷt defined on the same state

space Y that are each generated by a Markov process and choice of observation func-

tion (Xt, g) and (X̂t, ĝ) as above, respectively. We can calculate a distance between

the two measures, µY and µ̂Y , corresponding to each process. In general, there are

many different choices of distance measures. Here we restrict our attention as in [1]

to the Wasserstein pseudometric.

Let d be a pseudometric on ΩY . The Wasserstein pseudometric Wd between two

probability measures µ1 and µ2 on ΩY is given by

Wd(µ1, µ2) = inf
Q∈J(µ1,µ2)

EQ[d(ω1, ω2)] (VII.2.1)

Where the infimum is taken over all joint distributions that have µ1 and µ2 as
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marginals. As in [TK10] we consider pseudodistances of the form

d(ω1, ω2) = ||Z(ω1)− Z(ω2)|| (VII.2.2)

where Z : ΩY → R is a reporter random variable defined to capture some feature of

the trajectories, and || · || is a norm on R. Many choices of Z are possible (it only has

to be measurable with respect to both σ-algebras). Some possible choices of Z are

the copy number of a protein at time t or the first time instant that a transcriptor

factor binds to a promoter site.

Let F1 and F2 be the probability distributions for Z under measures µ1 and µ2,

respectively. Suppose that under both probability measures, the essential range of Z

is discrete and has finite cardinality, that is, Z is a discrete random variable taking

finitely many values. Then equation (1) reduces to:

Wd(µ1, µ2) = inf
Q∈J(F1,F2)

n1∑
i=1

n2∑
j=1

||Z1i − Z2j||Qij (VII.2.3)

where n1 and n2 are the maximum number of distinct values that correspond to the

preimage under Z having positive measure under F1 and F2, respectively, Z1i and

Z2j are the ith and jth value taken by Z under F1 and F2, and Qij is the probability

with which both events occur. (The insistence on Z taking finitely many values is

not so essential since we can always compose Z with a suitable projection map.) If

approximations of the marginal distributions can be obtained then an approximation

of the Wasserstein pseudometric can be calculated by solving the linear program

minimize
∑n1

i=1

∑n2

j=1 ||Z1i − Z2j||Qij
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subject to
∑n

j=1Qij = P (Zi)∑n
i=1Qij = P (Zj)

Qij ≥ 0

∑
ij Qij = 1

where Qij are the optimization variables. The last two constraints require Q to be a

probability measure, while the first two require that Q be a joint distribution with µ1

and µ2 as marginals. [TK08; TK10] do this by using kinectic monte carlo simulations

to obtain approximate distributions for Z. [Koe+10] does this by numerical inte-

gration of the Chemical Master Equations corresponding to the underlying Markov

processes.

VII.2.3 Multicriterion Comparisons

Often it may be desirable to compare two models based on more than one

criterion. For instance, if we want to model a very complicated process with a much

simpler one, it is often desirable for the reduced model to have both similar asymptotic

and transient behavior to the original process. In this case, a single reporter random

variable will be insufficient to capture information about both critera.

One method to incorporate multiple criteria into a single pseudometric is to use

multiple reporter variables and to choose a corresponding family of pseudometrics:

Theorem VII.2.1. Let {Zk}mk=1 be a collection of random variables Zk : ΩY → R.
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For each k let

dk(ω1, ω2) = ||Zk(ω1)− Zk(ω2)|| (VII.2.4)

be the pseudometric associated with Zk. Then the function Z : ΩY → Rm given by

Z(ω) =


Z1(ω)

...

Zm(ω)

 (VII.2.5)

is a vector-valued random variable. In addition, every convex combination

dλ(ω1, ω2) =
m∑
k=1

λkdk(ω1, ω2) (VII.2.6)

of the set {dk}mk=1 is a pseudometric on ΩY with associated Wasserstein distance

W λ
D(µ1, µ2) = inf

Q∈J(µ1,µ2)

m∑
k=1

λkEQ[dk(ω1, ω2)] (VII.2.7)

Proof. Measurability of Z follows from closure of FY under countable intersection.

dλ is a pseudometric can be shown by checking each of the axioms and using the fact

that each dk is a pseudometric. (VII.2.7) follows from the definition and by using

linearity of the expectation.

We consider the family of convex combinations of {dk}mk=1 since we may be

agnostic as to the relative importance of each criterion. If each Zk is discrete and takes

finitely many values under both measures then (VII.2.7) can be written explicitly as

W λ
D(µ1, µ2) = min

Q∈J(µ1,µ2)

m∑
k=1

λk

nk1∑
i=1

nk2∑
j=1

||Zk
1i − Zk

2j||Qk
ij (VII.2.8)
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where nk1, nk2 are the maximum number of distinct values that Zk takes under measure

µ1, µ2, respectively. (i and j are best interpreted in this context as multi-indices).

As before, if the marginal distributions can be obtained then we can calculate

the Wasserstein distance by solving the following linear program:

minimize
∑m

k=1 λk
∑nk1

i=1

∑nk2
j=1 ||Zk

1i − Zk
2j||Qk

ij

subject to
∑n

j=1Q
k
ij = P (Zk

i )

∑n
i=1Q

k
ij = P (Zk

j )

Qk
ij ≥ 0

∑
ijkQ

k
ij = 1

where the Qk
ij’s are the optimization variables. Note that the last two constraints

require Q to be a probability measure and the first two require Q to have marginals

µ1 and µ2. Now by sweeping through various λ’s we assign different weights to each

criterion.

VII.2.4 Example: A Gene Expression Network

Consider the following simple stochastic model of gene expression:

· k1T−−⇀↽−−
k2T

mRNA

mRNA
k3T−−→ mRNA + P
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P
k4T−−→ ·

where the ki’s are rate parameters determining the relative probability of production

and degradation events and T is a scaling parameter that determines the time-scale

that characterizes the dynamics of the reaction network. In this example, we assume

that we are able to measure the amount of proteins P present in the system for each

time but are unable to measure the amount of mRNA.

VII.2.4.1 Motivation

Suppose that for some values of the ki’s and some value of T we have a collection

of realizations of the process. Suppose further that through some other means, we

are able to obtain the values of the ki’s used to generate the process. We can then

construct a set of candidate models of the process parameterized by the unknown

parameter T .

Now, if we are only able to make measurements once the process has reached

stationarity then by simply measuring the amount of protein present at one time

instant will be insufficient to distinguish between different values of T . This is because

if π̂ is a stationary distribution for one value of T , then it is a stationary distribution

for all values of T . Consider the Chemical Master Equation:

ṗ = Ap (VII.2.9)
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If Aπ̂ = 0 then for every scaled CME TAπ̂ = 0. As a result, if we only measure the

amount of protein at a single fixed time, then the protein distributions generated by

each process will be the same.

Now, if we are able to take a second measurement we can do better since we will

then have statistical information about how the protein counts are correlated in time.

For small values of T the system will evolve slowly and the two measurements will be

tightly correlated for a longer amount of time. For larger values of T the system will

evolve quickly and the time correlation will be weaker.

Figure VII.5: Log plot of the joint distributions of Z for processes corresponding to

T = 1 and T = 100. Note that for the slower time-scale T = 1 the protein counts are

tightly correlated while for T = 100 protein counts are less strongly correlated. Since

the Wasserstein pseudometrics compare properties of probability distributions, these

differences should be reflected in the Wasserstein distances.

VII.2.4.2 Implementation

For this example I chose the parameter values k1 = k2 = k4 = 1, k3 = 100 for

the rate constants and chose the value of T = 10 as the unknown parameter for the
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observed process. Realizations of the corresponding process were generated using the

Gillespie’s Stochastic Simulation Algorithm and sampled for protein counts at time

points t = 5, 6 to generate an approximate joint distribution. Candidate models for

the observed process were then generated using values of T ∈ {1, 2, 3, 4, 5, 10, 100}

and the Finite State Projection Algorithm was used to obtain approximate joint dis-

tributions for the same sampling procedure. Once the approximate joint distributions

were obtained, a further state aggregation was performed to bin protein count values

into one of 10 distinct values. This was done to reduce the number of optimization

variables so that solving the linear programs would be tractable. This is also reflective

of the resolution of protein count data that is obtained from flourescence experiments.

For this example, two reporter random variables were used: Z1(ω) measured the

amount of protein present at time t = 5 and then performed the state aggregation

while Z2(ω) measured at time t = 6 and performed the state aggregation. A family

of multicriterion Wasserstein distances was then calculated using CVX. Calculating

each multicriterion Wasserstein distance involved solving a linear program with 104

optimization variables, 104 inequality constraints, and 201 equality constraints. For

each of the 7 candidate models, a paramter sweep through 50 different values of λ

was calculated.
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VII.2.4.3 Results

Figure VII.6 plots tradeoff curves corresponding to the parameter sweep through

λ for different values of T . As T increases to to the value used for the observed

process, the value of each pseudometric decreases to a minimal value corresponding

to the correct parameter value. After this point, further increasing of T does not

make any change to the pseudometric values. According to these comparison criteria,

there is no distinguishing processes with mixing times beyond some threshhold. The

threshhold is most likely determined by the time separation of the two samples that

are taken, though without further data, I can’t assert this conclusively.

Note that in the limits λ1 → 0 or λ2 → 0 the pseudometric values for each

T (except for T = 1) go to the same value. This is because in these limits, the

multicriterion comparison approaches the single criterion comparison using just a

single reporter random variable. The fact that the pseudometric corresponding to

T = 1 does not conform to this limit most likely indicates that the process has not

reached the stationary distribution by the first time sample.

VII.2.5 Conclusions/Future Work

This project has shown that it is possible to do model comparison using multiple

comparison criteria using Wasserstein pseudometric. A simple parameter identifica-

tion problem was investigated using multiple reporter random variables.

Further theoretical work that could be done would be to quantify the error in
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Figure VII.6: Tradeoff curves for various values of T . As T increases to the correct

value, the value of each of the pseudometrics decreases, that is, the observed process

and candidate process become more similar with respect to the comparison crite-

ria. Increasing T beyond the actual value does not change the pseudometric values

showing that under these comparison criteria, processes with fast mixing times are

indistinguishable.

the pseudometric estimate due to use of sampled data to approximate the distribu-

tions. [TK10] showed that as the number of samples approaches infinity, then the

approximate pseudometrics in their framework would approach the true value almost

surely. A similar result can probably be stated here. In addition it would be useful to

characterize the rate of convergence; my guess is that a central limit theorem argu-

ment is probably applicable. [TK08] uses bootstrap confidence intervals to quantify

the uncertainty in the estimate. A tighter estimate might be possible.
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for Applied Mathematics, ETH Zürich, 2012 (cit. on pp. 56, 60).

[KRS13] V. Kazeev, O. Reichmann, and C. Schwab. “Low-rank tensor structure of

linear diffusion operators in the TT and QTT formats”. In: Linear Algebra

and its Applications (2013). doi: 10.1016/j.laa.2013.01.009 (cit. on

p. 21).

[KS13] V. Kazeev and C. Schwab. Tensor approximation of stationary distri-

butions of chemical reaction networks . Tech. rep. 2013-18. Switzerland:

Seminar for Applied Mathematics, ETH Zürich, 2013 (cit. on pp. 49, 78).
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