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Abstract

A Walk Through Quaternionic Structures

by

Justin Kelz

In 1980, Murray Marshall proved that the category of Quaternionic Structures is naturally

equivalent to the category of abstract Witt rings. This paper develops a combinatorial

theory for finite Quaternionic Structures in the case where 1 = −1, by demonstrating

an equivalence between finite quaternionic structures and Steiner Triple Systems (STSs)

with suitable block colorings. Associated to these STSs are Block Intersection Graphs

(BIGs) with induced vertex colorings. This equivalence allows for a classification of BIGs

corresponding to the basic indecomposable Witt rings via their associated quaternionic

structures. Further, this paper classifies the BIGs associated to the Witt rings of so-called

elementary type, by providing necessary and sufficient conditions for a BIG associated

to a product or group extension.
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Chapter 1

Introduction

The algebraic theory of quadratic forms over fields is a prevalent area of modern math-

ematics. Ernst Witt introduced this topic to the mathematics community in 1937 [7],

where it has undergone substantial growth and development, continuing to this day. The

Witt ring of a field (not of characteristic 2), denoted WF , is arguably Witt’s most sig-

nificant contribution, and has been thoroughly studied. Murray Marshall proved that all

finitely generated torsion-free Witt rings are realizable as the Witt ring of a pythagorean

field in [4]. When the torsion of WF is non-trivial, there are many remaining open prob-

lems. These open problems about Witt rings of a field form a subset of a larger set of

open problems surrounding what are known as abstract Witt rings.

In 1972 Knebusch, Rosenberg, and Ware introduced the notion of an abstract Witt

Ring in [2]. The axiomatic approach to abstract Witt rings is attributed to Yucas, who

defined and developed the a theory of Quaternionic Structures, which are ordered triples

of an elementary abelian group of exponent 2, a pointed set, and a map q : G×G −→ Q

satisfying four axioms. In 1980 Murray Marshall produced the paper abstract Witt rings

[4], which catalogued and exposed much of the recent theory. In this paper Marshall

proved that the category of abstract Witt rings is naturally equivalent to the category of
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Quaternionic Structures, and provided a full classification of finitely generated torsion-

free abstract Witt rings, which were demonstrated to be realizable as Witt rings of

pythagorean fields.

Every Witt ring of a field is an abstract Witt ring; however, it is still an open problem

if every abstract Witt ring is realized so. In the case where the abstract Witt ring is

finitely generated, the problem is posed by Marshall as the Elementary Type Conjecture

in Quadratic Form Theory [5]. Significant effort has been put toward the resolution of

this conjecture; however, it remains open, along with many other problems in this field,

such as the Arason-Pfister property, denoted AP (k) for k ∈ N.

The definition of an abstract Witt ring as presented in Marshall’s text [4] requires only

3 axioms, the second axiom requires that AP (1) and AP (2) are true for an abstract Witt

ring. This leads to another question, “does AP (3) hold for arbitrary Witt rings?” The

answer is unknown, again, except for the case where the abstract Witt ring is torsion-free

or when there are sufficiently many constraints on the quaternionic structures themselves.

Whether or not AP (3) is true for an abstract Witt ring is of potentially deep impor-

tance. Given any quaternionic structure, (G,Q, q), there is an associated abstract Witt

ring call it R. Let I C R be the unique maximal ideal so that R/I ∼= Z/2Z. Marshall

showed that there is a natural isomorphism I/I2 ∼= G, and that there is a natural map,

Q −→ I2/I3. The significance of AP (3) is then captured by the following diagram.

G×G Q

I/I2 × I/I2 I2/I3.

q

∼= s

⊗

The dashed arrow highlights the uncertainty involved in the natural map s which is
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injective if and only if AP (3) is true for the Witt ring R. To approach this problem, we

have developed combinatorial methods for any abstract Witt ring with characteristic 2,

and to avoid the potential obstructions set forth by AP (3), we have avoided using the

natural map, in favor of the less studied quaternionic structure.
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Chapter 2

Quaternionic Structures

The following definition is from Marshall [4]. Let G be any elementary abelian group of

exponent 2, that is, any group isomorphic to a direct sum of copies of Z/2Z. Declare a

distinguished element −1 ∈ G. Let Q be a pointed set with distinguished element 0 ∈ Q.

Denote −a = −1 · a ∈ G, and define

q : G×G −→ Q

to be surjective map with the following properties:

Q1 Symmetry: q(a, b) = q(b, a) for every a, b ∈ G.

Q2 Excision: q(a,−a) = 0 for every a ∈ G.

Q3 Weak Bilinearity: For any a, b, c ∈ G q(a, b) = q(a, c) ⇐⇒ q(a, bc) = 0.

Q4 Linkage: For any a, b, c, d ∈ G q(a, b) = q(c, d) =⇒ ∃x ∈ G s.t. q(a, b) = q(a, x)

and q(c, d) = q(c, x).

Definition 2.0.0.1 If q satisfies Q1 through Q4, we call the triple (G,Q, q) a quater-

nionic structure.
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All of the axiom names are provided by Marshall’s text [4] with the exception of Q2, which

we call the excision axiom for reasons that will become clear once we have motivated our

combinatorial approach. The name “quaternionic structure” originates from the study

of quaternion algebras over a field, and in particular the Brauer group of a field, which

is intimately connected to the Witt ring.

In the case where F is a field not of characteristic 2, there is a natural construction

of G, and (G,Q, q), typically denoted (G(F ), Q(F ), q). Let Ḟ denote the multiplicative

group of units of F, then Ḟ /Ḟ 2 = G(F ) is a group of exponent 2. The distinguished

element −1 ∈ G(F ), may be regarded as −1Ḟ 2 ∈ Ḟ /Ḟ 2. Whenever we declare 1 = −1 ∈

G(F ), it is to say that the cosets 1Ḟ 2 = −1Ḟ 2, that is, −1 is a square in F.

If we consider the Witt ring of F, denoted WF, the fundamental ideal is the unique

maximal ideal so that WF/IF ∼= Z/2Z. Of interest are the powers of the fundamental

ideal I2F, and I3F. The nomenclature of these so-called quaternionic structures originates

in the study of the the Brauer group of F denoted Br(F ). Denote the 2-torsion of the

Brauer group as Br2(F ). A classical result is that

H2(Gal(F ),Z/2Z) ∼= Br2(F ),

and Murkeryjev’s Theorem [6] provides the natural isomorphism

I2/I3 ∼= H2(Gal(F ),Z/2Z),

giving a natural isomorphism

I2/I3 ∼= Br2(F ). (2.1)

This natural isomorphism and by defining the map q as q(a, b) =� a, b �∈ I2F, led to

calling Q(F ) = range(q) the set of quaternions, and (G(F ), Q(F ), q) as the quaternionic
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structure associated to WF. For a thorough treatment of quadratic forms over fields, the

Witt ring of a field, the Brauer group, and the proof of the natural isomorphism in (2.1),

see [3]. This leaves us with the following definition.

Definition 2.0.0.2 For any x ∈ Q, we may refer to x a quaternion.

Let W be any abstract Witt ring corresponding to some quaternionic structure (G,Q, q),

and I the fundamental ideal. As mentioned in the introduction, there is a natural way

one might attempt to embed Q ↪−→ I2/I3. Define Q∗ = Q \ {0}. Denote the free vector

space over the field with two elements GF (2) = F2 with basis Q∗ as F2 · Q∗. There is a

natural map:

s : F2 ·Q∗ −→ I2/I3, by q(a, b)
s7−→ � a, b� + I3.

However, it is precisely this approach which captures how essential the resolution of

AP (3) is. If AP (3) is not true, then the 2-fold Pfister form � a, b � may be a non-

trivial element of I3, giving this map non-trivial kernel. To avoid this exact problem,

we will not involve the Witt ring directly, but remain grounded in these quaternionic

structures.

In the case where (G,Q, q) is an “abstract” quaternionic structure, we will primarily

regard G as a vector space over F2; however, we will maintain our binary operation as

multiplication to stay consistent with the definitions and notation set forth in Marshall’s

work [4]. If the need arises we will specify a spanning set and define

spanF2
{x1, . . . , xk} = 〈x1, . . . , xk〉 = G.
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Where for any v ∈ G, we write the linear combinations multiplicatively; that is

v =
k∏
i=1

xαi
i , αi ∈ F2.

Now that we have established the fundamental definition, that of a quaternionic structure,

we begin our deviation from Marshall’s text [4].

Definition 2.0.0.3 Denote the identity of any group H as 1 ∈ H, and define H∗ = H \

{1}. For any set of quaternions Q, define Q∗ = Q\{0}. Let (G,Q, q) be any quaternionic

structure. If |G| < ∞, then we call (G,Q, q) a finite quaternionic structure. We will

refer to any (x, y) as a pairing. If q(x, y) = 0 then we call (x, y) a trivial pairing. If

q(x, y) 6= 0, we call (x, y) a non-trivial pairing, and we call (G,Q, q) non-trivial if

|Q| > 1.

Observation 2.0.0.4 (Marshall [4]) For any a, b ∈ G, the following are immediate

from the axioms:

(i) q(a, 1) = 0, since q(a, 1) = q(a, 1) ⇐⇒ q(a, 12) = q(a, 1) = 0.

(ii) q(a,−ab) = q(a, b) ⇐⇒ q(a,−ab2) = q(a,−a) = 0.

Definition 2.0.0.5 We define the notion of radical elements here, together with the

notation and terminology involving radicals. Let a ∈ G, and suppose

q(a, b) = 0, ∀b ∈ G,

then we say that a is radical. For any fixed a ∈ G, define the relative radical at a

Rad(a) = {b ∈ G | q(a, b) = 0}.
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For any (G,Q, q) define the radical of (G,Q, q) as

Rad(q) = {a ∈ G | q(a, b) = 0, ∀ b ∈ G}.

If Rad(q) = G, then we call (G,Q, q) purely radical.

Observation 2.0.0.6 For any a ∈ G, Rad(a) and Rad(q) are subgroups of G.

Proof: Let a ∈ G, and suppose x, y ∈ Rad(a). It suffices to show that xy ∈ Rad(a),

since g−1 = g for all g ∈ G. By assumption q(a, x) = q(a, y) = 0, then q(a, xy) = 0, by

Q3, so xy ∈ Rad(a), have shown that Rad(a) is a subgroup of G. It follows that

Rad(q) =
⋂
a∈G

Rad(a).

Since the arbitrary intersection of subgroups is a subgroup, then Rad(q) is a subgroup of

G.

Definition 2.0.0.7 Let a ∈ G, and suppose for any b ∈ G,

q(a, b) = 0 =⇒ b ∈ {1,−a},

then we call a rigid.

It is clear that if a ∈ G is rigid, then Rad(a) = {1,−a}. We will use this fact repeatedly

without references, as it is clear from the definition of the radical at a. Dual to the notion

of being rigid is that of being basic, which we now define.

Definition 2.0.0.8 Suppose a ∈ G, and a or −a is not rigid, then a is called basic. If

every a ∈ G is basic, then we call (G,Q, q) a basic structure.
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The following nomenclature may seem peculiar; however, the Witt ring associated to

any quaternionic structure with 1 = −1 is characteristic 2, so the following definition

stems from this fact. Other names and notations will be adopted from the Witt ring

moving forward, and will be described in a similar fashion. The information previous to

this point is primarily from Marshall’s paper, with the exception of some of the definitions,

which we use to simplify communication. The reader interested in abstract Witt rings

should refer to [4] for more information.

Definition 2.0.0.9 If 1 = −1 ∈ G, then we call (G,Q, q) a characteristic 2 quater-

nionic structure.

Observation 2.0.0.10 Let −1 = 1 ∈ G, and let a, b ∈ G be distinct. Since q(a, b) =

q(a, ab), by Observation 2.0.0.4, then q(b, ab) = q(a, ab) ⇐⇒ q(ab, ab) = 0, is true by

Q2. Thus

q(a, b) = q(a, ab) = q(b, ab)

for all a, b ∈ G.

Observation 2.0.0.11 Given any characteristic 2 quaternionic structure (G,Q, q), let

x, y ∈ G be arbitrary, and let τ ∈ Rad(x) ∩ Rad(y), then

q(x, y) = q(xτ, yτ) = q(x, τy),

for all x, y ∈ G.

Proof: Since q(xτ, yτ) = q(xy, xτ), and q(x, y) = q(xy, x), by Observation 2.0.0.10,

then weak bilinearity gives us

q(xy, x) = q(xy, xτ) ⇐⇒ q(xy, τ) = 0,
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which is true by the assumption of τ ∈ Rad(x) ∩ Rad(y), then we conclude q(xτ, yτ) =

q(x, y). Again, weak bilinearity gives

q(x, τy) = q(x, y) ⇐⇒ q(x, τ) = 0,

again by the assumption that τ ∈ Rad(x) ∩ Rad(y). So we may conclude

q(x, y) = q(xτ, yτ) = q(x, τy),

for all x, y ∈ G, τ ∈ Rad(x) ∩ Rad(y).

We see from Observation 2.0.0.11, that there are typically many pairings which are

assigned the same quaternion in Q. This motivates the following definition, as the pairings

which are mapped to some fixed quaternion value in Q will be of importance.

Definition 2.0.0.12 Let (G,Q, q) be some quaternionic structure. Then for any k ∈ Q,

define the replication number of k as |q−1({k})|/6.

Observation 2.0.0.10 tells us that there are three pairings, up to symmetry which are

assigned the same quaternion. With symmetry that gives us 6 total, thus when defin-

ing the replication number, Observation 2.0.0.10 and Q2 forces us to divide by 6 when

counting distinct pairings.

2.1 Terminology

Let G be any elementary abelian group of exponent 2. It is clear that (G, {0}, q),

where q(a, b) = 0, for all a, b ∈ G, is a quaternionic structure.

Definition 2.1.0.1 Let G = {1}, then we define (G, {0}, q) to be the trivial quater-

nionic structure, and refer to {1} alone as the trivial quaternionic structure. For any
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choice of G, we call (G, {0}, q), with q the constant 0 map a purely radical quaternionic

structure, and when there is no confusion we will simply write G rather than (G, {0}, q).

Recall, we will often regard G = 〈g1, . . . , gn〉 as a vector space over F2 while writing

linear combinations multiplicatively. If the dimension of dimG is even, and q is any

anti-symmetric (here this is trivial if −1 = 1), non-degenerate bilinear form, then there

exists a basis so that G = 〈x1, y1, . . . , xk, yk〉 and

q(xi, yj) = δij,

where δij is the Kronecker delta, and all other pairings of basis vectors are assigned the

0 quaternion. Marshall provides a proof that this is a quaternionic structure, for a proof

of this see lemma 5.4 [4].

Definition 2.1.0.2 Suppose (G,F2, q) is as stated above, then we say that G is the sym-

plectic quaternionic structure of dimension 2k.

Lemma 2.1.0.3 Let (G,F2, q) be the symplectic quaternionic structure of dimension 2n,

let

β = {x1, y1, . . . , xn, yn},

and let G = 〈β〉. Then Rad(xi) = 〈β \ {yi}〉.

Proof: Fix xi ∈ G, then q(xi,−) : G −→ F2, is a linear map, which vanishes on

β \ {yi}, by definition. So

ker(q(xi,−)) = 〈β \ {yi}〉 = Rad(xi),

and thus we have proved the claim.
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2.2 Quaternionic Morphisms

A natural consideration is that of a morphism in the category of quaternionic struc-

tures. The definition of a morphism in this category will appear too weak at first;

however, it is clear that the definition we set forth preserves the first three of the quater-

nionic structure axioms, but the fourth and most essential axiom, linkage, requires some

proof.

Definition 2.2.0.1 A morphism of quaternionic structures is defined as follows. Sup-

pose (G,Q, q) and (G′, Q′, q′) are both quaternionic structures. Then if α : G −→ G′, is

any group homomorphism satisfying the following:

α(−1) = −1, and q(a, b) = 0 =⇒ q′(α(a), α(b)) = 0, ∀a, b ∈ G,

then we call α a quaternionic momorphism.

Lemma 2.2.0.2 If α : (G,Q, q) −→ (G′, Q′, q′), then

q(a, b) = q(c, d) =⇒ q′(α(a), α(b)) = q′(α(c), α(d)).

That is, α preserves the linkage axiom.

Proof: By linkage, q(a, b) = q(c, d) =⇒ ∃ x ∈ G so that

q(a, b) = q(a, x) = q(c, x) = q(c, d) ⇐⇒ q(a, bx) = q(c, dx) = q(ac, x) = 0

by weak bilinearity. So assuming α is a quaternionic morphism, then

q′(α(a), α(bx)) = q′(α(c), α(dx)) = q′(α(ac), α(x)) = 0

12



and since α is a group homomorphism by assumption, then weak bilinearity of q′ implies

q′(α(a), α(b)) = q′(α(a), α(x)) = q′(α(c), α(x)) = q′(α(c), α(d))

and thus we have the desired implication,

q(a, b) = q(c, d) =⇒ q′(α(a), α(b)) = q′(α(c), α(d)).

By the preceding lemma, we may conclude that all of the axioms of a quaternionic

structure are preserved.

Definition 2.2.0.3 Let (G,Q, q), and (H,Q′, q′) quaternionic structures, and suppose

there exists an injective quaternionic homomorphism

α : (G,Q, q) −→ (H,Q′, q′).

Then write

(G,Q, q) ↪−→ (H,Q′, q′),

and say that (G,Q, q), is a quaternionic substructure of (H,Q′, q′), or more generally

we will simply refer to this as a substructure, when there is no confusion.

2.2.1 The Product of Quaternionic Structures

Let {(Gi, Qi, qi)}mi=1, be a family of quaternionic structures.

Definition 2.2.1.1 The product of quaternionic structures is given as follows. Let

G = G1 ⊕ · · · ⊕Gm, Q = Q1 × · · · ×Qm, and for any g = (g1, . . . , gm), h = (h1, . . . , hm)

13



elements of G, then define the map

q : G×G −→ Q, q(g, h) = (q1(g1, h1), . . . , qm(gm, hm)),

and we write
m∏
i=1

(Gi, Qi, qi) = (G,Q, q).

Where the distinguished element is 0 = (0, . . . , 0) ∈ Q. The verification of the axioms

follows immediately, as they are true for each coordinate function. Furthermore, there

are canonical projections

πi : (G,Q) −→ (Gi, Qi),

so that for any quaternionic structure (H,QH , qH) and any family of quaternionic mor-

phisms

αi : (H,QH , qH) −→ (Gi, Qi, qi)

then there exists a unique

α : (H,QH , qH) −→ (G,Q, q)

so that the following diagrams commute for all i :

H G

Gi

πi

α

αi

QH Q

Qi.

q ◦ α

qi ◦ (πi × πi)qH ◦ (αi × αi)

Lemma 2.2.1.2 Let
∏m

i=1(Gi, Qi, qi) = (G,Q, q), be any product of characteristic 2
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quaternionic structures. Then for each i, there exists a canonical injection

ηi : (Gi, Qi, qi) ↪−→ (G,Q, q).

Proof: For any g ∈ Gi, define ηi : Gi −→ G by

ηi(g) = (1, . . . , 1, g
ith
, 1, . . . , 1).

Then ηi extends naturally to a morphism of quaternionic structures. Since 1 = −1 ∈ Gi

for all i by assumption, then ηi(−1) = ηi(1) = (1, . . . , 1) ∈ G, so the first condition is

met trivially. If g, h ∈ Gi are so that qi(g, h) = 0, then

q(ηi(g), ηi(h)) = (q1(1, 1), . . . , qi−1(1, 1), qi(g, h), qi+1(1, 1), . . . , qm(1, 1)) = (0, . . . , 0) ∈ Q,

and thus qi(g, h) = 0 implies that q(ηi(g), ηi(h)) = 0. Since i was arbitrary, we have

shown that there exist canonical injections ηi : Gi ↪−→ G, and thus we have proved the

claim.

We conclude this section by examining how the quaternionic substructures of a prod-

uct “interact” with respect to their product structure.

Lemma 2.2.1.3 Let (G1, Q1, q1) and (G2, Q2, q2) be non-trivial finite characteristic 2

quaternionic structures, and let (G,Q, q) = (G1, Q1, q1)×(G2, Q2, q2). Then for all (g, 1) ∈

G1, {1} ×G2 ⊂ Rad((g, 1)), and for all (1, h) ∈ G2, G1 × {1} ⊂ Rad((1, h)).

Proof: Let (G,Q, q) be as defined above. Let (1, h) ∈ G2, then for any (g, 1) ∈ G1,

we have

q((g, 1), (1, h)) = (q1(g, 1), q2(1, h)) = (0, 0),
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by Observation 2.0.0.4, since (g, 1) ∈ G1, was arbitrary then we have shown G1 × {1} ⊂

Rad((1, h)), and a symmetric argument demonstrates that {1} ×G2 ⊂ Rad((g, 1)).

By the previous lemma, it is clear that these quaternion maps q1 and q2 don’t interact

in a direct product, that is, the substructures (G1, Q1, q1), and (G2, Q2, q2) always yield

trivial pairings. So these substructures may be referred to as relatively radical. Before

we conclude this section, we explore a result regarding the nature of certain quaternionic

structures where 1 6= 1.

Theorem 2.2.1.4 Let (G,Q, q) be any quaternionic structure, with 1 6= 1. If q(g, g) = 0

for all g ∈ G, then {1,−1} ⊂ Rad(q), and

(G,Q, q) ∼= (G′, Q′, q′)× 〈−1〉.

Proof: Suppose q(g, g) = 0 for all g ∈ G. By excision we have q(g,−g) = 0 for all

g ∈ G, so by weak bilinearity we get q(g,−g) = q(g, g) ⇐⇒ q(g,−1) = 0, for all g ∈ G.

So −1 ∈ Rad(q). Let π1 : G −→ G′ be so that ker(π1) = {1,−1}. Since −1 ∈ ker(π1),

π1(−1) = 1 satisfies the first condition of a quaternionic morphism. It is certainly the

case that if q(g, h) = 0 for some g, h ∈ G, then q′(π1(g), π1(h)) = q′(π1(g), π1(h)) if and

only if q′(π1(g), 1) = 0 by weak bilinearity of q′, but this is true by Observation 2.0.0.4.

Furthermore, this map is surjective, by Observation 2.0.0.11. Since −1 ∈ Rad(q), we have

q(g,−h) = q(g, h) for all g, h ∈ G. Thus we have shown that π1 is a canonical projection.

Similarly, take π2 : G −→ 〈−1〉. Then this map is certainly a quaternionic morphism,

since we equip 〈−1〉 with the set of quaternions {0}, so the axioms are trivially satisfied.

Thus we have shown that (G,Q, q) ∼= (G′, Q′, q′) × 〈−1〉, and thus we have proved the

claim.

We have now motivated enough to describe the fundamental factors from which we will

construct our main body of quaternionic structures, the so-called basic indecomposable
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structures.

Definition 2.2.1.5 Let (G,Q, q) be any quaternionic structure so that every element of

G is basic, as in Definition 2.0.0.8. We say (G,Q, q) is basic indecomposable if

(G,Q, q) ∼= (G1, Q1, q1)× (G2, Q2, q2)

then either (G1, Q1, q1) or (G2, Q2, q2) is the trivial quaternionic structure, as in Defini-

tion 2.1.0.1.

2.2.2 Group Extensions of Quaternionic Structures

We saw in the previous section that product factors “interact” by trivially pairing

to the zero quaternion. In this section we explore a dual notion to that of a product of

quaternionic structures, where factors in a product of groups will not be radical relative to

one another, but rather we will induce a rigid “interaction.” For an arbitrary characteristic

2 quaternionic structure, (G,Q, q), we will equip a group of rigid elements, call it W, and

we will describe the most free interaction of G and of W, where we obtain a new structure

(G′, Q′, q′), with (G,Q, q) ↪−→ (G′, Q′, q′), together with W ↪−→ G, in such a way that

G′ ∼= G⊕W, and q′, when restricted to pairings from G×G, will be the identity, and when

the two structures interact under this map q′, rather than yielding the zero quaternion,

we will always yield a non-zero quaternion, making W rigid relative to G.

Definition 2.2.2.1 Let (G,Q, q) be any finite characteristic 2 quaternionic structure,

and let W be any elementary abelian group of exponent 2. Then we form the direct sum

G[W ] = G⊕W, and the associated set

Q[W ] ⊂ Q ∨ (G⊗F2 W )⊕ (W ∧W ),
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where ∨ denotes the union of pointed sets with distinguished point 0, and Q[W ] is the

range of the map defined as follows: for any (g1, w1), (g2, w2) ∈ G⊕W,

q[W ]((g1, w1), (g2, w2)) = (q(g1, g2), g1 ⊗ w2 + g2 ⊗ w1, w1 ∧ w2).

When Q = {0} we denote {0}[W ], as simply [W ], when there is no confusion.

The choice of language, and notation for these “group extensions” has been appropriated

from the case of a ring, say R and a group, W, where the group ring is typically denoted

R[W ]. We do this because these quaternionic structures, which are group extensions in

our language, correspond precisely to the group extensions of Witt rings. Certain special

and significant group extensions are called ”purely rigid.” To simplify the proof that our

definition of a group extension is a quaternionic structure, we will construct a canonical

purely rigid structure.

Definition 2.2.2.2 We will call a quaternionic structure (G,Q, q) purely rigid if every

a ∈ G is rigid, that is Rad(a) = {1, a}.

Take G as a vector space over F2, and define Q ⊆ Λ2
F2

(G), the second exterior power of

G, and q(a, b) = a ∧ b, the canonical anti-symmetric bilinear map for all a, b ∈ G. For

simplicity, denote G∧G = {a∧ b | a, b ∈ G} when there is no ambiguity. It is important

to keep in mind that 1 ∈ G is the zero vector.

Proposition 2.2.2.3 The triple (G,G ∧ G,∧) is a purely rigid quaternionic structure

when −1 = 1 ∈ G.

Proof: Let G = 〈x1, . . . , xk〉. Define q(a, b) = a ∧ b, for all a, b ∈ G. Since every

element a ∧ b is a linear combination of the pairings xi ∧ xj, then it is clear that q :

G×G −→ G ∧G is onto. As for the axioms:
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Q1 : By definition a ∧ b = b ∧ a, since 1 = −1 ∈ G.

Q2 : Again, since 1 = −1, we have a ∧ a = 0 ∈ G ∧G.

Q3 : Suppose a ∧ b = a ∧ c. Since G ∧ G is a vector space over F2, then this implies

a∧ b+ a∧ c = 0, but this is equivalent to a∧ bc = 0. Conversely, if a∧ bc = 0, then

a ∧ b = a ∧ c, and thus we have proved weak bilinearity.

Q4 : Suppose a ∧ b = c ∧ d, then a ∧ b + c ∧ d = 0, and since the additive inverse of

a ∧ b is unique and a ∧ b+ a ∧ b = 0, then c ∈ 〈a, b〉∗, or d ∈ 〈a, b〉∗, without loss of

generality, let c = a, then

a ∧ b = a ∧ d =⇒ a ∧ b+ a ∧ d = a ∧ bd = 0.

Thus {a, bd} is linearly dependent, so bd = a, or bd = 1. If bd = a, then d = ab, so

a ∧ b = a ∧ ab

= a ∧ a+ a ∧ b

= a ∧ b

If on the other hand bd = 1, then d = b, and we have shown that there is a unique

quaternion a ∧ b. We can give a similar argument for d ∈ 〈a, b〉∗ by symmetry. So

we may conclude that linkage holds, since the quaternion a ∧ b is unique.

The uniqueness of this quaternionic structure is immediate from Q being maximal, since

all quaternions q(a, b) are distinct, up to Observation 2.0.0.10.

The following proposition motivates a property of rigid elements in a general quaternionic

structure. We see that the existence of a rigid element in (G,Q, q) forces a lower bound

for |Q|.
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Proposition 2.2.2.4 Let (G,Q, q) be any finite characteristic 2 quaternionic structure,

and |G| ≥ 4. If a ∈ G is rigid, then |Q| ≥ |G|/2.

Proof: Let a ∈ G be rigid. Since |G| ≥ 4, there are at least two elements b, c ∈

G \ {1, a}. Then q(a, b) = q(a, c) ⇐⇒ q(a, bc) = 0. So bc ∈ {1, a} by assumption of

a being rigid. If bc = 1, then b = c, but this contradicts our assumption that b, c are

distinct. So consider bc = a, then c = ab, and we have q(a, b) = q(a, ab), but this is trivial

due to Observation 2.0.0.10. Thus, for any non-trivial representatives b′〈a〉, c′〈a〉 ∈ G/〈a〉,

we have that q(a, b′) 6= q(a, c′) so |Q| ≥ |G/〈a〉| = |G|/2, as desired.

Recall that if a is basic in (G,Q, q) if a is not rigid. By the previous proposition, we

have the following useful upper bound on |Q| a characteristic 2 quaternionic structure to

be basic.

Theorem 2.2.2.5 Suppose (G,Q, q) is a characteristic 2 quaternionic structure with

|G| ≥ 4, and |Q| < |G|/2, then (G,Q, q) is basic.

Proof: By the contrapositive of Proposition 2.2.2.4, we have that |Q| < |G|/2,

implies that a ∈ G is not rigid, and therefore basic. Since a ∈ G was arbitrary then we

conclude that (G,Q, q) is basic.

It is still an open question if there exists a basic indecomposable quaternionic structure

with |Q| > 2. Thus, the previous theorem gives an upper bound on |Q| for (G,Q, q) to

be a basic characteristic 2 quaternionic structure.

Proposition 2.2.2.6 The group extension of (G,Q, q) by W is a quaternionic structure.

Proof: Since every map is surjective onto its range, we need only check the quater-

nionic structure axioms. Let g1, g2 ∈ G, and w1, w2 ∈ W and consider the following

computations.
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Q1 :

q[W ]((g1, w1), (g2, w2)) = (q(g1, g2), g1 ⊗ w2 + g2 ⊗ w1, w1 ∧ w2)

= (q(g2, g1), g2 ⊗ w1 + g1 ⊗ w2, w2 ∧ w1)

= q[W ]((g2, w2), (g1, w1)).

Q2 :

q[W ]((g1, w1), (g1, w1)) = (q(g1, g1), g1 ⊗ w1 + g1 ⊗ w1, w1 ∧ w1)

= (0, 1⊗ w1, 0)

= (0, 0, 0) = 0 ∈ Q[W ].

Q3 : Suppose that

q[W ]((g1, w1), (g2, w2)) = q[W ]((g1, w1), (g3, w3)).

Since (G,Q, q) is a quaternionic structure so Q3 is true for q, and by Proposition

2.2.2.3, the map ∧ satisfies Q3 as well, then we need only concern ourselves with

the portion of q[W ] in G⊗F2 W. So we check

g1 ⊗ w2 + g2 ⊗ w1 = g1 ⊗ w3 + g3 ⊗ w1 ⇐⇒ g1 ⊗ w2w3 + g2g3 ⊗ w1 = 0,

since G⊗F2W is a vector space over F2, and since additive inverses are unique, then

we have shown that

q[W ]((g1, w1), (g2, w2)) = q[W ]((g1, w1), (g3, w3)) ⇐⇒ q[W ]((g1, w1), (g2g3, w2w3)) = 0.
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We have shown that (G[W ], Q[W ], q[W ]) satisfies Q1 −Q3. Previously, we saw that any

purely rigid structure satisfies the linkage axiom trivially, so we introduce the following

lemma as it will be necessary to simplify the argument of Q4 in general.

Lemma 2.2.2.7 Let g ∈ G, and w ∈ W ∗, be arbitrary. Then (g, w) is rigid.

Proof: Recall that (g, w) is rigid by definition if Rad((g, w)) = {(1, 1), (g, w)}. So

let (h, v) ∈ Rad((g, w)), then

(q(g, h), g ⊗ v + h⊗ w,w ∧ v) = (0, 0, 0).

We know by the proof of Proposition 2.2.2.3 that w ∧ v = 0 if v = w or v = 1, since

we have assumed w 6= 1. If v = 1, then q(g, h) = 0, and h ⊗ w = 0 must be the case.

Since w 6= 1, again by assumption, then h = 1, because elementary tensors over F2 are

non-degenerate. Thus, q(g, h) = 0, since h = 1 by Observation 2.0.0.4, and we have

shown (h, v) = (1, 1) so (g, w) is rigid. On the other hand, if v = w, then we require that

gh⊗ w = 0. Since w 6= 1, then gh = 1, so g = h, and we get q(g, h) = q(g, g) = 0 by the

excision axiom. Thus we have shown that (h, v) = (g, w), so (g, w) is rigid, and thus we

have proved the claim.

The preceding lemma demonstrates that in a group extension, we have q[W ](g, w)(1, w) =

q[W ](g, 1)(x,w) = (0, g⊗w, 0), for all x ∈ G. So if these quaternions are to be linked, the

linkage occurs at (g, 1), (g, w) or (1, w). We return to the proof of Proposition 2.2.2.6.

Q4 Suppose that

q[W ]((g1, w1), (g2, w2)) = q[W ]((g3, w3), (g4, w4)).

We are left to verify the existence of (g′, w′) ∈ G[W ], which links these quaternions. If

w1, w2 ∈ W ∗ and w1 6= w2, then linkage is trivial by the proof of Proposition 2.2.2.3.
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We saw in Lemma 2.2.2.7 that if any wi 6= 1, then then (gi, wi) is rigid then (g′, w′)

is of the form (gi, wi), or (1, wi). If on the other hand wi = 1 for each i, that is in

the case of (g′, w′) = (gi, 1), then linkage is satisfied since q is linked by assumption,

and since all other terms are the zero quaternion in each coordinate. Thus we have

demonstrated that linkage holds.

Thus we may conclude that (G[W ], Q[W ], q[W ]) is a quaternionic structure.

Lemma 2.2.2.8 Any purely rigid quaternionic structure, (W,W ∧W,∧) is realizable as

a group extension of the trivial quaternionic structure G = {1}.

Proof: This is immediate by Definition 2.2.2.6, since G[W ] = {1} ⊕ W ∼= W,

Q[W ] = (0, 0,W ∧W ) ∼= W, and q[W ] = (0, 0,∧) is equivalent to ∧, where 0 denotes

the constant function. Thus we have shown that any purely rigid structure is a group

extension of the trivial quaternionic structure.

The following lemma is a useful inductive tool, for general proofs surrounding group

extensions of quaternionic structures.

Lemma 2.2.2.9 Let (G,Q, q) be any finite characteristic 2 quaternionic structure. Let

W ′ be any finite elementary 2 group. Assume W = W ′ ⊕ 〈w1〉. Then

(G[W ′][w1], Q[W ′][w1], q[W ′][w1]) ∼= (G[W ], Q[W ], q[W ]).

Proof: Certainly, G[W ] ∼= G[W ′] ⊕ 〈w1〉. So let α : G[W ] −→ G[W ′] ⊕ 〈w1〉, be

the natural isomorphism, and note that α restricted to G ⊕ {1} is the identity map, so

then α is the identity on (G,Q, q) ↪−→ (G[W ], Q[W ], q[W ]). We need only show that α

is a quaternionic morphism, and we will have proved the claim. Since −1 = 1 the first
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condition is trivial since α is a group homomorphism. Let (g, w), (h, v) ∈ G[W ], and

suppose q[W ]((g, w), (h, v)) = 0, then

q(g, h) = 0, g ⊗ v + h⊗ w = 0, w ∧ v = 0

so q(g, h) = 0, and by Proposition 2.2.2.3, vw = 1, so we may assume w = v. By

Lemma 2.2.2.7, it must then be the case that either g = h, or w = 1, because we need

g ⊗ w + h ⊗ w = gh ⊗ w = 0. If w = 1, we have that q[W ]((g, 1), (h, 1)) = 0 =⇒

q[W ′][w1](α(g, 1), α(h, 1)) = 0, since α restricted to (G,Q, q) is the identity map. If

g = h, then q[W ]((g, w), (g, w)) = 0 =⇒ q[W ′][w1](α(g, w), α(g, w)) = 0, is true by the

excision axiom. Thus we have shown that the natural isomorphism α is an isomorphism

of quaternionic structures.

This next lemma serves as an example of how group extensions interact with the set

of quaternions of a purely radical structure G. This inflation of the set of quaternions

preserves the structure we’re extending completely, that is, none of the original quater-

nions are replicated, in a dual sense to that of a product where the replication number

of every quaternion is inflated due to the induced relative radical structure.

Lemma 2.2.2.10 Let (G[W ], Q[W ], q[W ]) be a group extension of some finite charac-

teristic 2 quaternionic structure, and let (1, w), (g, 1) ∈ G[W ]∗. Then every quaternion

(0, g ⊗ w, 0) ∈ Q ∨ (G ⊗W ) ⊕ (W ∧W ) has replication number |Rad(g)| − 1, that is

|q[W ]−1({(0, g ⊗ w, 0)})| = |Rad(g)| − 1.

Proof:

For any (1, w), (g, 1) ∈ G[W ]∗, we have

q[W ]((1, w), (g, 1)) = (0, g ⊗ w, 0) 6= 0,
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and by weak bilinearity, for any x ∈ Rad(g), we may take (x,w) ∈ G[W ]

q[W ]((1, w), (g, 1)) = q[W ]((x,w), (g, 1)) ⇐⇒ q[W ]((x, 1), (g, 1)) = (q(g, x), 0, 0) = (0, 0, 0),

by the assumption that x ∈ Rad(g). Thus we have shown that if (x,w) ∈ G[W ], and

w 6= 1, then q[W ]((x,w), (g, 1)) = (0, g ⊗ w, 0), so we may conclude q[W ]((1, w), (g, 1))

has replication number |Rad(g)∗| = |Rad(g)| − 1, since x ∈ Rad(g) was arbitrary, and

no other pairings yield this quaternion by Proposition 2.2.2.3, we have proved the claim.

The significance of this lemma is if a ∈ G is rigid, then it isn’t necessarily the case that

q(a, b) is uniquely associated to a. This motivates the following lemma.

Lemma 2.2.2.11 Let (G,Q, q) be some characteristic 2 quaternionic structure, and sup-

pose a ∈ G is rigid. Let 〈a, b〉∗ 6= 〈c, d〉∗ for some b, c, d ∈ G and furthermore suppose

q(a, b) = q(c, d). If 〈a, b〉∗ ∩ 〈c, d〉∗ 6= ∅, then 〈a, b〉∗ ∩ 〈c, d〉∗ 6= {a}.

Proof: Let 〈a, b〉∗, and 〈c, d〉∗ be so that 〈a, b〉∗ 6= 〈c, d〉∗, and let 〈a, b〉∗ ∩ 〈c, d〉∗ =

{x}. If x = a, then without loss of generality 〈c, d〉∗ = 〈a, d〉∗. So q(a, b) = q(a, c) ⇐⇒

q(a, bc) = 0 and since a is rigid, then it must be the case that bc ∈ {1, a}. If bc = 1,

then b = c, and we have contradicted the assumption that 〈a, b〉∗ 6= 〈c, d〉∗. On the other

hand, if bc = a, then c = ba, and b = ca, which again contradicts the assumption that

〈a, b〉∗ 6= 〈c, d〉∗. Thus 〈a, b〉∗ ∩ 〈c, d〉∗ 6= {a}, and we have proved the claim.

Definition 2.2.2.12 We say that (G,Q, q) is of elementary type it may be formed

using the operations of product and group extension of the basic indecomposable quater-

nionic structures as set forth in definitions 2.0.0.5 and 2.1.0.2.

The elementary type conjecture as posed in Marshall’s works [4], [5], is an open prob-

lem concerning finitely generated Witt rings, and thus, finitely generated quaternionic
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structures. If the elementary type conjecture is true, then all Witt rings are realizable

as the Witt ring of a field. Another significant result of the elementary type conjecture

is that the classification of quadratically equivalent fields would be complete.
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Chapter 3

Graphs of Quaternionic Structures

Here we introduce the notion of the graph of a quaternionic structure. To motivate this

topic, a brief digression into the difficulty of trying to deal with quaternionic structures

via tables. Let (〈x1, y1〉,F2, q) be the symplectic quaternionic structure of dimension 2.

A natural way to deal with these quaternionic structures is by computing a “quaternion

table.”

q 1 x1 y1 x1y1

1 0 0 0 0

x1 0 0 1 1

y1 0 1 0 1

x1y1 0 1 1 0

One notices that given a sufficiently complicated structure, any table of this form would

quickly become cumbersome and difficult to extract information from. On the other

hand, one might recognize a familiar construction, that of an adjacency matrix of a
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graph 

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0


.

If we take our vertex set to be G, then it is clear that 1 as a vertex has no edges, according

to this adjacency matrix. For our purposes, we make some modifications when viewing

these quaternionic structures as graphs. By removing 1 from G in our construction, this

array of information has a natural translation in to a complete graph, with suitable edge

coloring rather than incidence relation recorded in this adjacency matrix, as motivated in

the next section. We delete loops, and preserve edges labeled 0, by giving them a “color

assignment” of 0, which will preserve the data set forth by the weak bilinearity condition.

By removing 1 from our graphs, we can now useQ2, or the excision axiom in a meaningful

way. We have no “loops” from a vertex to itself, that is, we don’t represent the quaternion

q(a, a) in our graph, and furthermore, we saw that q(a, a) = q(a, a) ⇐⇒ q(a, 1) = 0,

and so removing 1 from our graph we equivalently remove the loops from our graph. So

the name excision is less mysterious in this context.

3.0.1 Graph Theoretic Conventions

We assume all standard conventions of graph theory; however, to avoid ambiguity,

we will define the essential notation. Let Γ be any graph, then we write V (Γ) to denote

the set of vertices of Γ, and E(Γ) for the set of edges.

Definition 3.0.1.1 If Γ is any graph, and V (H) ⊆ V (Γ) is any non-empty subset, and

E(H) ⊆ E(Γ) is any subset of edges in Γ with vertices in V (H), then we call H a

subgraph of Γ, and write H ⊂ Γ.
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Definition 3.0.1.2 For any v, w ∈ V (Γ) we denote the edge vw ∈ E(Γ) as the edge

connecting v to w. A complete graph is any graph K so that for all v, w ∈ V (K), with

v 6= w we have vw ∈ E(K). For some {v1, v2, . . . , vm} ⊂ V (Γ) we call (v1, v2, . . . , vm) a

path in Γ if vivi+1 ∈ E(Γ) for all 1 ≤ i ≤ m.

Definition 3.0.1.3 Let C be any fixed non-empty set. Then any surjective function

c : E(Γ) −→ C is an called an edge coloring of Γ, with “colors” as elements of C. And

we define Γ together with c as an edge colored graph.

Definition 3.0.1.4 We call a graph connected if for any v, w ∈ V (Γ) there exists

v1, . . . , vm so that v1 = v, and vm = w so that (v1, . . . , vm) is a path in Γ.

Definition 3.0.1.5 Let p be any path from v to w, say (v1, . . . , vm) where v = v1, and

w = vm. Then we define len(p) = m− 1 is the length of the path p.

Definition 3.0.1.6 Given a graph Γ, and v ∈ V (Γ), define

Nv = {w ∈ V (Γ) | vw ∈ E(Γ)}.

We call Nv the neighborhood subgraph of v.

Definition 3.0.1.7 For any connected graph Γ, define the distance function

∂ : V (Γ)× V (Γ) −→ Z ≥ 0.

Let v, w ∈ V (Γ), and P be the set of all paths from v to w.

∂(v, w) =

 minp∈P{len(p)} if v 6= w,

0 if v = w
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Definition 3.0.1.8 We define

diam(Γ) = max
v,w∈V (Γ)

{∂(v, w)}

3.1 Quaternionic Graphs

Definition 3.1.0.1 Define the Graph of a Quaternionic Structure is a complete

graph on vertex set G∗, with Q as a set of edge colors. Denote this graph as Gq. For

clarity, to any v, w ∈ G∗ we assign the “color” q(v, w) to the edge vw ∈ E(Gq).

We now have a visual, as well as mathematical representation of a characteristic 2 quater-

nionic structure, (G,Q, q), whenever |G| > 1. The edge colors capture the function

q : G × G −→ Q, with the exception of q(a, a) and q(a, 1) where a ∈ G. Moreover,

G∗ is represented in the vertex set. We will see that the graph theoretic realization of

the axioms will provide subgraphs which encode the axioms. The first realization, is that

our graphs being undirected is representative of the the symmetry of q. Furthermore, we

will demonstrate the distinguishing axioms, weak bilinearity, and linkage as encoded by

the following subgraphs.

3.1.1 Axioms via Graphs

Let (G,Q, q) be any characteristic 2 quaternionic structure. The bolded lines indicate

what is required by the axioms, the additional edges and vertices are determined by the

(potentially repeated) application of the axioms. We regard the color red as represen-

tative of the quaternion p ∈ Q and black as representative of 0 in the following edge

coloring. Let b, d, x ∈ G be distinct, and suppose that q(x, b) = q(x, d) = p ∈ Q∗, then

q(x, bd) = 0. Then weak bilinearity gives a subgraph structure as follows.
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x d

xdxb

b

bd xbd

Then suppose a, b, c, d ∈ G are all distinct, and furthermore, suppose that q(a, b) =

q(c, d) = k ∈ Q \ {0}. Then the linkage axiom forces the following subgraph, where the

bold edges denote what is required by linkage, and the thinner edges are applications of

Observation 2.0.0.10, together with weak bilinearity.

ab

b

a abx

bx

ax x

cd

d

ccdx

dx

cx

Note that symmetry gives q(b, a) = q(d, c), this gives that the subgraphs possessing

a single edge coloring are diameter 2.
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3.1.2 Fundamental Examples when |G| = 4.

For the following, consider the structures, (〈x1, x2〉, {0}, 0), and (〈x1, y1〉,F2, q). Re-

gard black colored edges as 0, and red colored edges as 1 ∈ F2. Then the quaternionic

graphs are as follows.

x1x2

x1x2

x1y1

x1y1

(3.1)

(〈x1, x2〉, {0}, 0), (〈x1, y1〉,F2, q).

One may observe that in (3.1) that the graph with red edge coloring is both a quaternionic

structure of symplectic type, a group extension 〈x1〉[y1], and also the purely rigid structure

on 〈x1, y1〉. A more substantive set of examples follows, and will provide a useful reference

the reader to clearly distinguish these objects moving forward.
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3.1.3 Three Fundamental Examples when |G| = 8

The following are quaternionic graphs of a product of a symplectic structure and a

purely radical structure, a purely radical group extension, and a purely rigid structure.

z

x1

y1

x1y1

x1z

y1z
x1y1z

x

y
w

xw

xy

yw
xyw

x

y
z

xy

xz

yz
xyz

(〈x1, y1〉,F2, q)× 〈z〉, 〈x, y〉[w], G = 〈x, y, z〉; (G,G ∧G,∧).

(3.2)

Since |G| = 2n in general, when n > 3 the number of vertices in a given quaternionic

graph become large. One also notes that the edge set grows even more rapidly, since any

two vertices must share an edge due to these graphs being complete, so our examples

terminate here.

3.2 Steiner Triple Systems

One observes that we may partition the edge set of our quaternionic graphs into

“triangles,” or “triples.” This type of partition on the edge set of a complete graph is

a type of Steiner Triple System, which will be important in our construction of a truly

combinatorial approach to quaternionic structures. Steiner triple systems, and in general,

Steiner systems have a rich history in combinatorics, and in algebra.

Definition 3.2.0.1 A Steiner Triple System, or STS, is a set S together with a set, B,

which consists of all three element subsets of S with the property that for any distinct
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g, h ∈ S, there exists precisely one block B ∈ B, so that g, h ∈ B.

For any characteristic 2 quaternionic structure, say (G,Q, q), we have a natural

“triple” to consider. Take any distinct x, y ∈ G∗, then B = {x, y, xy}, is a block, and B

uniquely determined by x, y. Furthermore, it is clear that since G is of exponent 2, then

x, xy, and y, xy determine the same block as well. Thus, any two distinct elements of G

determine a block uniquely.

Proposition 3.2.0.2 Every group of exponent 2 naturally induces a STS.

Proof: Let G be any group of exponent 2 and let g, h ∈ G∗ be arbitrary and

distinct. Put H = 〈g, h〉 = {1, g, h, gh}. It is clear that H is the unique subgroup of

order 4 generated by g, h, or more precisely,

H = 〈g, h〉 = 〈g, hg〉 = 〈h, hg〉. (3.3)

For uniqueness, consider any k, ` ∈ G∗ and let K = 〈k, `〉, then if g, h ∈ K, then

H = 〈g, h〉 = K, since K is of order 4, and contains g, h. So we may take our triples as

the sets 〈x, y〉∗, where x, y ∈ G∗ are arbitrary, and distinct. Let

S = G∗, and B = {〈x, y〉∗ | x 6= y ∈ G∗},

then (G∗,B) is a STS, as desired.

Definition 3.2.0.3 To any group of exponent 2, we will denote the STS induced by

G as (G∗,B), and whenever we write this pair it will be assumed that G is a group of

exponent 2 with block set as defined in Proposition 3.2.0.2.
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3.2.1 Quaternionic Steiner Triple Systems

We saw that for any characteristic 2 (G,Q, q), we developed a natural STS associated

to G. We will now develop a theory for capturing the totality of the data in (G,Q, q) as a

STS equipped with a suitable block coloring function, as described in the following defini-

tion, and demonstrate an equivalence between these block colored STS and characteristic

2 quaternionic structures.

Definition 3.2.1.1 Let (G,Q, q) be any quaternionic structure, and let (G∗,B) be the

STS associated to G. For any B ∈ B, B = 〈a, b〉∗ for some a, b ∈ G∗. Define

q̃ : B −→ Q, by q̃(B) = q(a, b).

This map is well defined, since q is, and by Observation 2.0.0.10. Furthermore, it is clear

that this map is symmetric, since 〈a, b〉 = 〈b, a〉 for all a, b ∈ G.

By weak bilinearity, or Q3, we have that q(a, b) = q(a, c) ⇐⇒ q(a, bc) = 0. When

considering blocks and the induced block coloring, we get q̃(〈a, b〉∗) = q̃(〈a, c〉∗), together

with q̃(〈a, bc〉∗) = 0. Furthermore we note that 〈a, b〉∗ ∩ 〈a, b〉∗ = {a}, 〈a, b〉∗ ∩ 〈a, bc〉∗ =

{a}, so

〈a, b〉∗ ∩ 〈a, c〉∗ ∩ 〈a, bc〉∗ = {a}.

For the situation where G induces some STS (G∗,B), which is equipped with a block

coloring, not necessarily originating from a quaternionic structure, we define a weak

bilinear block coloring as follows.

Definition 3.2.1.2 Any map q : G×G −→ Q is called weak bilinear if Q1, Q2, and Q3

hold as described in section 2.

Definition 3.2.1.3 Let G be some group of exponent 2, and let (G∗,B) be the associated

STS, with some block coloring function q̃. If for any B1, B2 ∈ B where B1 = 〈a, b〉∗, and
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B2 = 〈a, c〉∗, are so that q̃(B1) = q̃(B2) if and only if B3 = 〈a, bc〉∗, and q̃(B3) = 0. Then

we define q̃ to be a weak bilinear block coloring.

Lemma 3.2.1.4 Let G be any group of exponent 2, let (G∗,B) be the associated STS,

and let

q̃ : B −→ Q

be a block coloring function. Then q̃ is a weak bilinear block coloring if and only if q̃

induces a surjective weak bilinear map

q : G×G −→ Q.

Proof: Let q̃ be a weak bilinear block coloring function. For all 〈a, b〉∗, define

q̃(〈a, b〉∗) = q(a, b). The q̃ : B −→ Q is onto with the possible exception of 0, so q :

G × G −→ Q is as well. Extend q to all of G × G by defining q(a, a) = 0 for all a ∈ G,

and as a consequence we have shown Q2 holds for q. We show Q1, by considering that

for any 〈a, b〉∗ = B = 〈b, a〉∗, so

q(a, b) = q̃(〈a, b〉∗) = q̃(〈b, a〉∗) = q(b, a),

and so we have shown Q1 holds. We must now demonstrate weak bilinearity of the

induced map q.

Since q̃ is assumed to be weak bilinear, then suppose for some B1, B2 ∈ B that

B1 6= B2, q̃(B1) = q̃(B2), and let B1 ∩ B2 = {x}. By the definition of (G∗,B), there

exists g, h ∈ G so that B1 = 〈g, x〉∗, and B2 = 〈h, x〉∗. By Definition 3.2.1.4 and by our

definition of q, we have

q(x, g) = q̃(B1) = q̃(B2) = q(x, h),
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if and only if the block B3 = 〈x, gh〉∗ is so that q̃(B3) = q̃(〈x, gh〉∗) = 0 but we defined q

so that q̃(〈x, gh〉∗) = q(x, gh), so we conclude that q(x, gh) = 0, and since g, h ∈ G∗ were

arbitrary, then we have shown that q satisfies Q3. Thus we have shown that the map

q : G×G −→ Q is surjective and satisfies Q1 −Q3.

Conversely, suppose that q : G × G −→ Q is surjective and weak bilinear, then the

induced map as defined in Definition 3.2.1.1, is symmetric, so we need only show that q̃

is weak bilinear as in Definition 3.2.1.4. Suppose for distinct a, b, c ∈ G∗, that q(a, b) =

q(a, c). Since q is weak bilinear, then q(a, bc) = 0. Since b = c by assumption, then let

B1 = 〈a, b〉∗, B2 = 〈a, c〉∗ and B3 = 〈a, bc〉∗. Then the induced map q̃(B1) = q̃(B2), and

we have constructed B3 so that q̃(B3) = 0, and thus we have shown that the induced

map q̃ satisfies Definition 3.2.1.3, and thus we have shown the equivalence.

Definition 3.2.1.5 We will say any weak bilinear block coloring function, q̃ : B −→ Q,

is linked if for any B1, B2 ∈ B so that q̃(B1) = q̃(B2), then there exists B3 and B4, with

q̃(B3) = q̃(B4), so that B1 ∩ B3 6= ∅, B2 ∩ B4 6= ∅, B3 ∩ B4 6= ∅, and q̃(B1) = q̃(B2) =

q̃(B3) = q̃(B4).

The following theorem is of deep significance to our work. For any group of exponent

2, G, if the associated STS, (G∗,B) possessed a weak bilinear block coloring, q̃ : B −→ Q,

then we saw that q̃ induces a surjective weak bilinear map q : G×G −→ Q. We will now

demonstrate that characteristic 2 quaternionic structure (G,Q, q) is equivalent to STS of

the form (G∗,B) together with a linked block coloring function.

Theorem 3.2.1.6 Let (G,Q, q) be any characteristic 2 quaternionic structure. Then the

map q is a quaternionic mapping if and only if the block coloring function associated to

(G∗,B) is linked.
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Proof: Let (G,Q, q) be as stated in the hypotheses. Then Q1 through Q4 are true

by assumption. In particular, for any a, b, c, d ∈ G, we have

q(a, b) = q(c, d) =⇒ ∃x ∈ G s.t. q(a, b) = q(a, x) and q(c, x) = q(c, d) (3.4)

Let (G∗,B) be the STS associated to G and let q̃ be the induced block coloring function.

Put B1 = 〈a, b〉∗ and B2 = 〈c, d〉∗, Take B3 = 〈a, x〉∗ and B4 = 〈c, x〉∗. Now we know that

q̃(B1) = q̃(B2) = q̃(B3) = q̃(B4),

by (3.4). It is clear that B1∩B3 = {a}, B2∩B4 = {b} and finally B3∩B4 = {x}, and thus

we have demonstrated the a linked quaternionic mapping induces a linked block coloring.

Conversely, suppose (G∗,B) is a STS associated to some group G of exponent 2,

and let q̃ be any be any linked block coloring function. Without loss of generality,

take Q to be the set of distinct block colors of (G∗,B) together with the color 0. By

Proposition 3.2.1.4 q̃ induces a map q which is surjective and weak bilinear. Since q̃

is linked, there exists B1, B2 ∈ B, not necessarily distinct, so that q̃(B1) = q̃(B2), and

similarly B3, B4 ∈ B, with q̃(B3) = q̃(B4), so that B1 ∩ B3 6= ∅, B2 ∩ B4 6= ∅, and

B3 ∩ B4 6= ∅. Represent B1 = 〈a, b〉∗, and B2 = 〈c, d〉∗. Without loss of generality, put

B1 ∩ B3 = {a}, B2 ∩ B4 = {c}, and similarly B2 ∩ B3 = {x}. Since blocks are uniquely

determined by any two of their elements, B3 = 〈a, x〉∗ and B4 = 〈c, x〉∗. Therefore, we

may conclude that the induced map q : G × G −→ Q, as defined in Definition 3.2.1.1

satisfies

q(a, b) = q(c, d) =⇒ ∃x ∈ G s.t. q(a, b) = q(a, x) and q(c, x) = q(c, d),
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and thus satisfies Q1 −Q4, as desired.

Now that the equivalence has been demonstrated, we should define this particular

family of STS.

Definition 3.2.1.7 Given any group of exponent 2, call it G, define the STS (G∗,B)

together with any fixed linked block coloring q̃ to be a Quaternionic STS or QSTS.

We saw previously that from a complete graph on 2n − 1 vertices, we obtained a

Steiner Triple System, and now we develop another graph known as a “block intersection

graph,” or BIG. These BIG are useful representatives of these QSTS, as the block coloring

function yields a vertex coloring. Representing the blocks of the STS as vertices with

colors dictated by these block coloring functions provides insight into when an arbitrary

quaternionic structure may be decomposed into a product of quaternionic structures, or

when the structure at hand is realizable as a group extension of some other structure.
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Chapter 4

Block Intersection Graphs

Associated to any STS (S,B), there is a “block intersection graph.” The vertex set is

the set of blocks B, and the edges describe when any two distinct blocks intersect, and

thus the block intersection graph will be useful for our purposes, as it captures the

totality of data of the STS. In particular, we are interested in the situation where this

STS comes equipped with a linked block coloring function. The linkage axiom forces an

interesting property for monochromatic subgraphs, namely, they are connected. These

Quaternionic Block Intersection Graphs, or QBIG as we will call them, provide new tools

for determining what quaternionic structures are realizable as products. We will begin

with definitions, and then move on to classify the basic indecomposable quaternionic

structures, moving forward to our final goal of classifying the family of QBIG of so-called

elementary type. For more information about the Block Intersection Graphs of Steiner

Triple Systems and their properties we refer the reader to [1].

4.0.1 QBIG Terminology

Definition 4.0.1.1 Given any STS (G∗,B), define the Block Intersection Graph

or BIG as a graph Γ, with V (Γ) = B, and for any B1, B2 ∈ B define the edge set by the
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following condition

B1B2 ∈ E(Γ) ⇐⇒ B1 6= B2 and B1 ∩B2 6= ∅.

Definition 4.0.1.2 Given any QSTS associated to (G,Q, q), we have the induced linked

block coloring q̃ : B −→ Q. Let Γ be the associated BIG. Since B = V (Γ) in Definition

4.0.1.1, we will write q̃ : V (Γ) −→ Q, as the induced vertex coloring on the associated

BIG. Define Γ together with q̃ as the Quaternionic BIG or QBIG associated to

(G,Q, q).

Observation 4.0.1.3 If (G∗,B) and (H∗,B′) are two STS, and |G| 6= |H|, then the

resulting STS are not equivalent, and furthermore the resulting BIG are not equivalent.

Definition 4.0.1.4 Let Γ be any QBIG, and M ⊂ Γ be a subgraph with E(M) ⊂ E(Γ)

maximal. Then we say that M is a monochromatic subgraph or if the color needs

specification, a p−monochromatic subgraph, of Γ if V (M) ⊆ q̃−1({p}). That is,

M ⊂ Γ is any subgraph so that q̃(v) = p for all v ∈ V (M).

Our goal here is to understand this induced combinatorial data in the context of its

relationship with the quaternionic structures which they represent. The following result

is an immediate result of the linkage axiom.

Proposition 4.0.1.5 Let Γ be the QBIG of some characteristic 2 quaternionic structure

(G,Q, q), and p ∈ Q. If M ⊂ Γ is so that V (M) = q̃−1{p}, then M is connected.

Proof: Since Γ is a QBIG, and for any two vertices v, w ∈ V (M), we have q̃(v) =

p = q̃(w) by assumption. If vw ∈ E(Γ), then (v, w) is a path connecting v and w. On the

other hand, if vw /∈ E(Γ), then by the fact that q̃ is a linked block coloring, there exists

blocks v′, w′ ∈ V (M), so that vv′ ∈ E(Γ), v′w′ ∈ E(Γ), and w′w ∈ E(Γ), so (v, v′, w′, w)
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is a path in Γ connecting v and w. Since v, w were arbitrary, then it follows that M is

connected.

Lemma 4.0.1.6 Let Γ be QBIG of (G,Q, q) an arbitrary quaternionic structure with

|G| > 4, then diam(Γ) = 2.

Proof: Consider Γ as stated, and let x1, x2, x3, x4 ∈ G be pairwise distinct, let

〈x1, x2〉∗ = v1, and let 〈x3, x4〉∗ = v2, be arbitrary in V (Γ). If v1∩v2 6= ∅, then ∂(v1, v2) = 0

if v1 = v2, else ∂(v1, v2) = 1. Now suppose v1 ∩ v2 = ∅, then we claim that there exists

w ∈ V (Γ) so that (v1, w, v2) is a path in Γ. Put w = 〈x1, x3〉∗. Then it is clear that v1w

and v2w ∈ E(Γ). So (v1, w, v2) is a path of length 2, and thus we have shown that any

vertices in Γ are connected by a path of length 2, and thus diam(Γ) = 2, since this is the

minimal path length greater than 1, and thus we have proved the claim.

Let (S,B) be any STS, and suppose B1, B2 ∈ B so that B1 ∩ B2 6= ∅, and let

v ∈ B1 ∩B2. The intersection is uniquely determined by the definition of STS, so {v} =

B1 ∩B2. If Γ is the associated BIG to (S,B), then we may label B1B2 ∈ E(Γ) by v, and

since the intersection is unique, then the labeling is unique.

Definition 4.0.1.7 Given any BIG of some STS (S,B), call it Γ, and define the edge

labeling described above as the natural edge labeling of E(Γ). For any v ∈ S, denote

Γ(v), as the subgraph of Γ defined on the vertex set V (Γ(v)) = {A,B ∈ B | A∩B = {v}}.

We will call Γ(v) the v−incident subgraph of Γ.

Lemma 4.0.1.8 Let Γ be the BIG associated to some STS (S,B). Then for any v ∈ S,

the subgraph Γ(v) is a complete subgraph of Γ.

Proof: Fix v ∈ S. For any distinct B1, B2 ∈ Γ(v), by assumption we have B1∩B2 =

{v}, so B1B2 ∈ E(Γ). Thus we have shown that Γ(v) is complete, since B1 and B2 were

arbitrary vertices, and B1B2 ∈ E(Γ(v)).
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Lemma 4.0.1.9 Suppose (G∗,B) is some STS associated to a group of exponent 2. Let

Γ be the associated BIG. For distinct g, h, g′, h′ ∈ G∗, if A = 〈g, h〉∗, and B = 〈g′, h′〉∗

are distinct vertices in V (Γ), and AB /∈ E(Γ), then {g, h, g′, h′} is linearly independent.

Proof: Suppose A 6= B, and AB /∈ E(Γ). Let g, h ∈ G∗, and g′, h′ ∈ G∗, be

distinct and so that A = 〈g, h〉∗, and B = 〈g′, h′〉∗. Since A 6= B, and since AB 6∈ E(Γ),

then A ∩ B = ∅. So without loss of generality, g′ /∈ A, so the set {g, h, g′}, is linearly

independent. If h′ ∈ 〈g, h, g′〉∗, then h′ = gg′ or h′ = hg′, since h′ /∈ 〈g, h〉∗, but since G is

of exponent 2, then g′h′ = h, or g′h′ = g, contradicting our assumption that A ∩ B = ∅,

so conclude that h′ /∈ 〈g, h, g′〉∗, so the set {g, h, g′, h′} is linearly independent, as desired.

Definition 4.0.1.10 Let (G∗,B) be some STS corresponding to a finite group of exponent

2. Let {v1, . . . , vn} ⊂ B, so that vi ∩
⋃
i 6=j vj = ∅. Then we call {v1, . . . , vn} a set of

independent blocks.

Definition 4.0.1.11 Let (G∗,B) be some STS corresponding to a finite group of exponent

2. Suppose {v1, . . . , vn} is any set of blocks in B, with vi = 〈gi, hi〉∗. Then we call

{v1, . . . , vn} a set of spanning blocks, if 〈g1, h1, . . . , gn, hn〉 = G.

Lemma 4.0.1.12 Let (G∗,B) be some STS, and suppose {v1, . . . , vn} is a set of blocks

which is both independent and spanning, then dim(G) is even.

Proof: It is clear from definitions 4.0.1.10 and 4.0.1.11, that
⋃n
i=1{gi, hi} is a basis

for G, and dim(G) = 2n is even, as desired.

We require this the preceding lemma to classify all QBIG corresponding to symplectic

quaternionic structures. This notion of linearly independent spanning blocks gives a

generating set of blocks, which is valuable in determining the dimension of an underlying

group.
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4.0.2 Examples of QBIG

Here are the QBIG associated to the graphs given in section 3.1.3 (3.2).

(〈x1, y1〉,F2, q)× 〈z〉, 〈x, y〉[z], (G,G ∧G,∧).

(4.1)

Let G be any purely radical quaternionic structure, and let |G| = 2n. We may readily

compute the number of vertices of the associated QBIG, call it Γ, by computing the

number of subspaces of dimension 2. There are 2n − 1 non-zero vectors, and any two

of them will span a 2 dimensional subspace. So by observation 2.0.0.10 we have the

total number of subspaces of dimension 2 in G is 2n−1(2n−2)
6

. Since each vertex in a BIG

represents a subspace of dimension 2, it is clear that the number of vertices in any given

BIG will typically be rather large. Due to this, our examples terminate here.

Lemma 4.0.2.1 If α : (G,Q, q) −→ (G′, Q′, q′), is any injective morphism of quater-

nionic structures, Γ is the QBIG of (G,Q, q), and if Γ′ is the QBIG of (G′, Q′, q′), then

we may identify Γ ⊂ Γ′.

Proof: Let g, h ∈ G∗, be distinct. Then 〈g, h〉∗ ∈ V (Γ), and 〈α(g), α(h)〉∗ ∈ V (Γ′),

since α is injective. If B1, B2 ∈ V (Γ), are distinct, if B1B2 ∈ E(Γ), then B1 ∩ B2 = {k}

for some k ∈ G∗, then and α(B1) ∩ α(B2) = {α(k)}, again since α is injective, so

α(B1)α(B2) ∈ E(Γ′). Thus we may conclude that Γ ⊂ Γ′, is a subgraph, as desired.
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4.1 The Basic Indecomposable QBIG for |Q| ≤ 2.

In this section describe the QBIG of the so-called “basic indecomposable” type. For

any basic structure no elements are rigid, and yet the quaternionic structure is not

realizable as a product, as in Definition 2.2.1.5. Recall that any (G,Q, q) is called purely

radical if Q = {0}. In such a case, we motivate the following lemma as a result of taking

any QBIG with precisely one vertex color.

Theorem 4.1.0.1 Let Γ be any QBIG, with vertex coloring so that Γ is monochromatic,

then Γ is the QBIG of some purely radical quaternionic structure.

Proof: Since q̃ : V (Γ) −→ Q = {0}, so q̃ is constant, and thus Γ is the QBIG of

some purely radical structure.

Here we determine the necessary and sufficient conditions for a QBIG to correspond

to the symplectic type quaternionic structures according to Definition 2.1.0.2.

Theorem 4.1.0.2 The quaternionic structure (G,F2, q) is a symplectic quaternionic

structure of dimension 2n, if and only if the corresponding QBIG, Γ, has precisely two

vertex colors, possesses a set of independent spanning blocks {v1, v2, . . . , vn} ⊂ V (Γ),

where

q̃(v1) = q̃(v2) = · · · = q̃(vn) = 1, vivj /∈ E(Γ),

and

V (Nvi ∩Nvj) ⊂ q̃−1{0}, ∀i 6= j. (4.2)

Proof: First, suppose (G,F2, q) is finite and of symplectic type of dimension 2n, and

let Γ be the associated QBIG. It is clear then that Γ has precisely two vertex colors. Give

G the symplectic basis, and for every i, define vi = 〈xi, yi〉∗. Thus q̃(vi) = q(xi, yi) = 1, for

every i, and we have demonstrated the first assertion. Now, it is clear that vivj /∈ E(Γ),
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since 〈xi, yi〉∗ ∩ 〈xj, yj〉∗ = ∅ as basis vectors are linearly independent. So it is clear that

{v1, . . . , vn} is a set of independent spanning blocks. Let w ∈ V (Nvi ∩Nvj) be arbitrary,

and let w = 〈x, y〉∗. By assumption w ∈ V (Nvi) and w ∈ V (Nvj), so wvi ∈ E(Γ) implies

that 〈x, y〉∗ ∩ 〈xi, yi〉∗ 6= ∅, so without loss of generality, let x ∈ 〈xi, yi〉∗. Similarly,

〈x, y〉∗ ∩ 〈xj, yj〉∗ 6= ∅, so let y ∈ 〈xj, yj〉∗. Then it is clear by the definition of (G,F2, q)

that q(x, y) = 0, so q̃(w) = 0, and we have shown that V (Nvi ∩ Nvj) ⊂ q̃−1{0} since w

was arbitrary, and thus we have established the desired properties of Γ.

Conversely, suppose Γ is as described above. We wish to show that the induced

quaternionic structure is of symplectic type. Since Γ has precisely two vertex colors, and

by Theorem 3.2.1.6, we have an induced quaternionic map q : G×G −→ F2. Without loss

of generality, let vi = 〈xi, yi〉∗, for each i in the independent spanning blocks {v1, . . . , vn}.

By Lemma 4.0.1.12, we may take G = 〈x1, y1, . . . , xn, yn〉. We wish to show that the

induced map map is so that q(xi, yj) = δij, and all other basis vector pairings are trivial.

To do so, consider by (4.2) that if w ∈ V (Nvi ∩Nvj), then viw, and vjw are both edges

in E(Γ). By definition of BIG, viw, vjw ∈ E(Γ), means for some x ∈ 〈xi, yi〉∗ we have

〈x, y〉∗ ∩ 〈xi, yi〉∗ = {x}, and similarly for some y we have 〈x, y〉∗ ∩ 〈xj, yj〉∗ = {y}. So let

w = 〈x, y〉∗. By the assumption in (4.2) q̃(w) = q(x, y) = 0, and since x, y were arbitrary,

and our assumption about the intersections of our blocks being represented by xi, xj and

yi, yj were arbitrary, it is now clear that q(xi, yj) = δij, and all other basis pairings are

trivial. Since G is of even dimension, and since q is alternating (remember this is trivial

since 1 = −1) and non-degenerate on the basis {x1, y1, . . . , xn, yn} then we may conclude

that q is non-degenerate, and therefore the symplectic pairing. Thus we have shown that

(G,F2, q) is a symplectic quaternionic structure according to Definition 2.1.0.2, and thus

we have proved that Γ is a QBIG of a symplectic quaternionic structure.
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Definition 4.1.0.3 Every QBIG as described in Theorem 4.1.0.2, will be called a QBIG

of symplectic type.

We have now classified the finitely generated basic indecomposable QBIG where

|Q| ≤ 2, namely, the purely radical 1 dimensional structure and the symplectic structures

of dimension 2n. The elementary type conjecture states “every finitely generated quater-

nionic structure can be constructed, up to isomorphism, by means of the operations of

product and group extensions of the basic indecomposable quaternionic structures.” In the

next section we will classify products and group extensions of the basic indecomposable

quaternionic structures where |Q| ≤ 2. If the elementary type conjecture is false, then

there must exist some basic indecomposable quaternionic structure with |Q| > 2.
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Chapter 5

The QBIG of Elementary Type

We begin with products of quaternionic structures, and categorize the relationship be-

tween products and their corresponding QBIG. Marshall’s approach to classifying finitely

generated torsion-free Witt rings involved spaces of orderings to identify projections. We

will dualize his technique in a manor speaking, looking for inclusions rather than projec-

tions to deal with special cases of finitely generated characteristic 2 Witt rings. In our

situation, the Witt ring is of characteristic 2, and the associated quaternionic structure

induces a QBIG which possesses subgraphs isomorphic to the QBIG of the product fac-

tors. We begin this section lemma about the nature of products and what we will come

to know as relative radicals, realized in the QBIG as subgraphs we will define as “shad-

ows.” These shadows are essential in that they are intimately connected to the notion of

elements being radical relative to some fixed subgroup.

We begin with a preliminary theorem which we will use to reduce our arguments, that

is, that Rad(q) is a purely radical quaternionic substructure. We will use this theorem

to avoid any ambiguity surrounding Rad(q) being non-trivial.

Theorem 5.0.0.1 Let (G,Q, q) be any characteristic 2 quaternionic structure. Then

(G,Q, q) ∼= (G′, Q, q′)× Rad(q).
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Proof: Since Rad(q) = {a, b ∈ G | q(a, b) = 0, }, then Rad(q) is a purely radical

quaternionic structure. Let G′ = G/Rad(q), and take π1 : G −→ G/Rad(q) to be the

canonical homomorphism. Since 1 = −1, then π1 satisfies the first axiom of a morphism

of quaternionic structures trivially. Consider non-trivial cosets xRad(q), yRad(q) ∈

G/Rad(q), then for any τ ∈ Rad(q), we may take π1(x) = xτ, and π1(y) = yτ, as

representatives of these cosets and q(xτ, yτ) = q(x, y), by Observation 2.0.0.10, we

have q(x, y) = 0, implies q′(π1(x)), q′(π1(y)) = 0, and thus π1 : G −→ G/Rad(q), is

a quaternionic morphism. Similarly, it is clear that we may take G ∼= G′ × Rad(q), so

let π2 : G −→ G/G′, be the canonical homomorphism, and since G/G′ ∼= Rad(q), and

furthermore since all quaternion pairings are zero in the image, then it is clear that π2

satisfies the criterion for (G′, Q, q′)× Rad(q), being a product, and thus we have proved

the claim.

By the previous theorem, we may assume that Rad(q) = {1} for the remainder of

these classification theorems.

5.1 Products as QBIG

Lemma 5.1.0.1 Let (G1, Q1, q1) and (G2, Q2, q2) be non-trivial finite characteristic 2

quaternionic structures, and let (G,Q, q) = (G1, Q1, q1)× (G2, Q2, q2). If for some g, g′ ∈

G∗, if q1(g, g′) = k ∈ Q1\{0}, then the replication number of (k, 0) ∈ Q, |q−1(k, 0)| ≥ |G2|.

Proof: Let g, g′ ∈ G1 be as described above. Then q((g, 1), (g′, 1)) = (q1(g, g′), 0) =

(k, 0) ∈ Q. By Lemma 2.2.1.3, for all h ∈ G2, we have (1, h) ∈ Rad((g, 1)), and (1, h) ∈

Rad((g′, 1)), so (1, h) ∈ Rad((g, 1))∩Rad((g′, 1)). Since (1, h) is arbitrary, then {1}×G2 ⊂

Rad((g, 1))∩Rad((g′, 1)), so by Lemma 2.0.0.11 we have that |q−1(k, 0)| ≥ |G2|, and thus

we have proved the claim.
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Lemma 5.1.0.2 If (G,Q, q) is a product of any two, non-trivial characteristic 2 quater-

nionic structures, then (G,Q, q) is basic. That is, no element of (G,Q, q) is rigid.

Proof: Suppose (G,Q, q) is a product of two non-trivial characteristic 2 quater-

nionic structures, (G,Q, q) ∼= (G1, Q1, q1) × (G2, Q2, q2). Let (x, z) ∈ G. To show that

this element is basic, we need only construct (y, w) ∈ G∗, where (y, w) 6= (x, z). So

consider q((x, z), (y, w)) = (q1(x, y), q2(z, w)). So we choose y = x, and w = 1. Then

q((x, z), (x, 1)) = (q1(x, x), q2(z, 1)), is true by Q2 and by Observation 2.0.0.4. Since

(x, 1) /∈ {(1, 1), (x, z)} we have shown that (x, z) is not rigid, and since (x, z) ∈ G was

arbitrary, we have shown that no element of (G,Q, q) is rigid, and therefore (G,Q, q) is

basic.

The following lemma supplies the graph theoretic equivalent of the relative radical prop-

erty established in Lemma 2.2.1.3. We will observe that products induce 0−chromatic

subgraphs of a very specific nature.

Lemma 5.1.0.3 Let Γ be the QBIG of (G,Q, q) = (G1, Q1, q1)× (G2, Q2, q2), a product

of non-trivial characteristic 2 quaternionic structures. Then Γ possesses a 0−chromatic

complete subgraph for each (1, h) ∈ {1}×G∗2, denote this graph as Kh ⊂ Γ whose vertices

are blocks of the form B1 = {〈(g, 1), (1, h)〉∗ | g ∈ G∗1}.

Proof: Fix (1, h) ∈ G1×G∗2, and let (g, 1) ∈ G∗1×G2 be arbitrary. Then by Lemma

2.2.1.3, every block of the form 〈(g, 1), (1, h)〉∗ ∈ V (Γ) will be colored 0 by q̃. So Γ((1, h))

is a complete subgraph of Γ by Lemma 4.0.1.8, and V (Γ((1, h))) = {A,B ∈ V (Γ) |

A ∩ B = {(1, h)}}. Let B1 = {〈(g, 1), (1, h)〉∗ | g ∈ G∗1}. It is clear that B1 ⊂ V (Γ(1, h)),

and since Γ((1, h)), is complete, then we may take Kh to be the complete subgraph of

Γ((1, h)) with vertex set B1, and thus we have proved the claim.
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Theorem 5.1.0.4 Let (G,Q, q) be any characteristic 2 quaternionic structure, and let

Γ be the corresponding QBIG. Then x ∈ Rad(q) if and only if V (Γ(x)) ⊂ q̃−1({0}), that

is Γ(v) is 0−chromatic.

Proof: If x ∈ Rad(q), then for all g ∈ G \ {1, x}, we have q̃(〈x, g〉∗) = 0, by the

definition of the induced vertex coloring on Γ. Since V (Γ(x)) = {〈x, g〉∗ | g ∈ G \ {1, x}},

then we have V (Γ(x)) ⊂ q̃−1{0}, as desired.

Conversely, suppose that V (Γ(x)) ⊂ q̃−1{0}, for some x ∈ G∗. Since q̃ is the linked

block coloring induced by the QBIG Γ, then the induced quaternionic map q has the

property that q(x, g) = 0 for all g ∈ G, and thus x ∈ Rad(q), and we have established

the equivalence.

Definition 5.1.0.5 We call the complete subgraph Kh in Lemma 5.1.0.3, a factor

shadow of (1, h).

We saw in Lemma 5.1.1.2 that for a product of characteristic 2 quaternionic structures,

we are able to identify sub QBIGs which correspond to the factors of our product. Upon

identifying these, Lemma 2.2.1.3 forces the existence of factor shadows as in Definition

5.1.0.5, and once identified the remaining structure is determined by observing that the

structure is basic.

5.1.1 Products of Symplectic Type and Purely Radical Type

Given any product of the form
∏N

i=1Gi, of purely radical structures, it is clear that

the set of quaternions remains the zero quaternion,
∏N

i=1{0} = {(0, 0, . . . , 0)}, and is

therefore classified by Theorem 4.1.0.1. A more substantive family of QBIG are the

products of symplectic type.
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Definition 5.1.1.1 Let (G,Q, q) =
∏N

i=1(Gi, Qi, qi), be any product of quaternionic

structures. Define

(Hj, Qj, qj) =
N∏

i=1, i 6=j

(Gi, Qi, qi).

Before we proceed, we need a lemma about subgraphs of products.

Lemma 5.1.1.2 Let (G,Q, q) =
∏N

i=1(Gi, Qi, qi) be the product of some finite charac-

teristic 2 quaternionic structures. Let Γ be the QBIG associated to (G,Q, q). Then Γ

possesses a subgraph Γi ⊂ Γ for each i which is the QBIG of (Gi, Qi, qi).

Proof: Let ηi : Gi −→ G, be canonical inclusion maps given by Lemma 2.2.1.2.

For each i, denote the QBIG associated to (Gi, Qi, qi) as Γi. If g, h ∈ G∗i , are distinct,

then 〈ηi(g), ηi(h)〉∗ is a block in G, and therefore a vertex in V (Γi), and similarly if

B1, B2 ⊂ Gi are any distinct blocks so that B1 ∩ B2 = {g′}, for some g′ ∈ G∗, then

ηi(B1) ∩ ηi(B2) = {ηi(g′)}, so if B1B2 ∈ E(Γi), then ηi(B1)ηi(B2) ∈ E(Γ). Denote the

QBIG of the image of ηi as Γi, then Γi ⊂ Γ is a subgraph, and thus we have proved the

claim.

Theorem 5.1.1.3 Let {(Gi,F2, qi)}Ni=1 be a family of finite symplectic quaternionic struc-

tures each of dimension 2ni. Let

(G,Q, q) =
N∏
i=1

(Gi,F2, qi).

Then Γ is the QBIG of (G,Q,q) if and only if Γ has subgraphs Γi ⊂ Γ, each of which

being symplectic type of dimension 2ni, and Γ has precisely 2N vertex colors, and for all

g ∈ G∗, and for every element g ∈ Gj, there exists a factor shadow of (gj, 1) with vertex

set Bj = {〈(gj, 1), (1, hj)〉∗ | hj ∈ H∗j }.
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Proof: Since (G,Q, q), is a product of symplectic structures, and since there exist

injections ηi for every i by Lemma 2.2.1.2, then there exist Γi ⊂ Γ for each i, by Lemma

4.0.2.1. Furthermore, since Q is the set of colors for Γ, and Q = F2
N , then it is clear that

Γ has 2N colors. For every element gj ∈ Gj, it is clear that there exists a factor shadow

of (gj, 1) with vertex set Bj = {〈(gj, 1), (1, hj)〉∗ | hj ∈ H∗j }, by Lemma 5.1.0.3.

On the other hand, suppose Γ is as stated in the hypotheses, and let (G,Q, q) be

the induced quaternionic structure. To each Γi, by Theorem 4.1.0.2, we may associate

a symplectic quaternionic structure of dimension 2ni, call it (Gi,F2, qi). It must be the

case that G ∼=
∏N

i=1Gi, for Γ to even potentially be the QBIG of the product. Let

πi : G −→ Gi be the canonical projections. Since Hi = ker(πi) for every i, then it is clear

that πi : (G,Q, q) −→ (Gi,F2, qi), is a quaternionic morphism, since for every element

gi ∈ Gi, there exists a factor shadow of (gi, 1) with vertex set Bi = {〈(gi, 1), (1, hi)〉∗ |

hi ∈ H∗i }, identify Gi ↪−→ G, and Hi ↪−→ G, then Hi ⊂ Rad(gi) for all i, so πi restricted

to (Gi,F2, qi) ↪−→ (G,Q, q) is an isomorphism, since πi restricted to Gi ↪−→ G is, and

thus πi is certainly a quaternionic morphism. So we may conclude that (G,Q, q) ∼=∏N
i=1(Gi,F2, qi), and we have proved the desired equivalence.

In 1980, Marshall classified all finitely generated torsion-free abstract Witt rings, and

demonstrated that any such Witt ring is realizable as the Witt ring of some pythagorean

field with finitely generated square class group. Marshall developed the theory of spaces

of orderings associated to these Witt rings, and found product decompositions for the

torsion-free, finitely generated Witt rings. To continue the work toward a resolution of

Elementary Type Conjecture, we will now use our combinatorial techniques to describe

when a characteristic 2 quaternionic structure (G,Q, q) admits a product decomposition

by classifying all QBIG which are products of Elementary Type.
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5.1.2 Products in General

Theorem 5.1.2.1 Suppose (G,Q, q) =
∏N

i=1(Gi, Qi, qi). Then Γ is the QBIG of (G,Q, q)

if and only if there exist Γi ⊂ Γ, each the QBIG of (Gi, Qi, qi), so that for all gi ∈ G∗i , it

is the case that Γ(ηi(gi)) possesses a Hi factor shadow, and furthermore, |Q| =
∏N

i=1 |Qi|.

Proof: By Lemma 2.2.1.2 ηi : (Gi, Qi, qi) ↪−→ (G,Q, q), and so by Lemma 4.0.2.1

there is an inclusion of QBIGs Γi ⊂ Γ. Furthermore, Lemma 5.1.0.3 demonstrates that

for each gi ∈ G∗i , there exists a factor shadow subgraph of Γ(ηi(gi)). Since Γ is the QBIG

of (G,Q, q) and since Q =
∏N

i=1 Qi, then it is clear that |Q| =
∏N

i=1 |Qi|, by the definition

of QBIG.

Conversely, suppose Γ has Γi ⊂ Γ each the QBIG of (Gi, Qi, qi). Let (G,Q, q) be

the quaternionic structure induced by the QSTS which defines Γ, induced according to

Theorem 3.2.1.1. Then it is clear that G ∼=
∏N

i=1Gi, and q agrees with q1×q2×· · ·×qN on

all zero quaternion pairings. Since |Q| =
∏N

i=1 |Qi|, then the maps q and q1×q2×· · ·×qN

are equivalent up to some bijection, since they have the same domain, and their codomains

are in bijection. So we may conclude that (G,Q, q) ∼=
∏N

i=1(Gi, Qi, qi), and thus we have

the desired equivalence.

5.2 QBIG of Group Extensions

The notion of a group extension is dual to that of a product in a sense, as we observed

that products of quaternionic structures induce factor shadows, which were defined as

complete 0−chromatic subgraphs. Similarly, we will observe that rigid elements of a

given quaternionic structure will induce a dual structure; namely incident subgraphs

which whose vertices all possess unique colors. We motivate this observation with the

following theorem, and define these subgraphs which correspond to rigid elements.
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Theorem 5.2.0.1 Let (G,Q, q) be any characteristic 2 quaternionic structure, and Γ the

associated QBIG. Then a ∈ G is rigid, if and only if Γ(a) is so that no distinct vertices

share the same color.

Proof: If a ∈ G is rigid, then for any b, c ∈ G, q(a, b) = q(a, c) ⇐⇒ bc ∈ {1, a}, by

definition of rigid. If bc = 1, then b = c, otherwise if bc = a, then c = ba, and Observation

2.0.0.10 gives q(a, c) = q(a, ba) = q(a, b), and so q(a, b) is unique for any b ∈ G \ {1, a},

so every block 〈a, b〉∗ ∈ V (Γ) possesses a unique color.

On the other hand, Γ(a) has the property that for all distinct A,B ∈ V (Γ(a)),

A ∩ B = {a}, and q̃(A) 6= q̃(B), then for some b, c ∈ G∗ we have A = 〈a, b〉∗, and

B = 〈a, c〉∗, so the quaternionic map induced by Theorem 3.2.1.1 has the property that

q′(a, b) 6= q′(a, c), and by weak bilinearity q′(a, bc) 6= 0, for all b, c ∈ G∗, with the exception

of bc = 1 or bc = a, so conclude that a ∈ G is rigid.

If a is rigid, then Γ(a) appears to be a “rainbow” of colors, or thinking of light

through a prism, it appears to be a refraction, and this observation motivates the following

definition.

Definition 5.2.0.2 Let (G,Q, q) be any characteristic 2 quaternionic structure, and sup-

pose that Γ is the QBIG. If a ∈ G is rigid, define Γ(a) as the a−refraction subgraph

or more generally a refraction subgraph.

Corollary 5.2.0.3 Suppose (G,Q, q) is any characteristic 2 quaternionic structure, and

let R ⊂ G be the set of rigid elements, then for all a ∈ R, Γ(a) is a refraction subgraph.

By Lemma 2.2.2.8, every purely rigid structure is realizable as a group extension of the

trivial quaternionic structure. So our classification of purely rigid QBIG is a consequence

of classifying the QBIG of general group extensions. However, the notion of a purely rigid

substructure will be useful so we begin by classifying purely rigid QBIG as a special case.
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5.2.1 Purely Rigid QBIG

Dual to the purely radical structures are the purely rigid structures. Rather than

having the property of being 0−chromatic, these structures are adorned with a maximal

vertex coloring where no two distinct possess the same color. Similarly to that of the

purely radical structure, linkage is trivially satisfied,

Theorem 5.2.1.1 Any quaternionic structure (G,Q, q) is purely rigid if and only if the

induced QBIG possesses a totally non-zero vertex coloring, with every vertex possessing

a unique color.

Proof: Suppose (G,Q, q) is purely rigid, then Q = G ∧ G, and q = ∧, and by

Proposition 2.2.2.3, for any distinct v, w ∈ G∗, v ∧ w, is unique. So let Γ be the induced

QBIG. For A,B ∈ V (Γ) if A = 〈v, w〉∗, and v′, w′ ∈ W ∗, with B = 〈v′, w′〉∗ are so that

A 6= B, then q̃(A) 6= q̃(B), since v ∧w 6= v′ ∧w′, so every vertex has a unique color, and

is non-zero, since v∧w = 0 if v = 1 or v = w, but blocks are dimension 2 subspaces, and

therefore this is absurd, since these would not constitute blocks.

Conversely, suppose Γ is some QBIG with any distinct A,B ∈ V (Γ) q̃(A) 6= q̃(B),

and no vertex is colored zero. Then by Theorem 3.2.1.1 there is an induced (G,Q, q),

so that for any distinct v, w ∈ G∗ q(v, w) 6= 0, and is unique. So by weak bilinearity of

q, for any distinct w,w′ ∈ G, with w′ 6= vw, so that 〈v, w〉∗ 6= 〈v, w′〉∗. Then we have

q(v, w) 6= q(v, w′) ⇐⇒ q(v, ww′) 6= 0, so Rad(v) = {1, v}, so v ∈ G∗ is rigid, and since

v was arbitrary we have proved the claim.

We conclude this section with the following theorem for characteristic 2 quaternionic

structures At first glance, the theorem may appear to be insignificant; however, it will

allow us to decompose arbitrary group extensions in the case of characteristic 2 quater-

nionic structures.
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Theorem 5.2.1.2 Let B ⊂ G be the set of basic elements in some characteristic 2

quaternionic structure (G,Q, q). Then B is a subgroup of G.

Proof: Let a, b ∈ B, be distinct. Since G is of exponent 2, then we need only show

ab ∈ B. Since a is basic, then there exist some x ∈ G \ {1, a} so that q(a, x) = 0, and

similarly, there exists y ∈ G \ {1, b}, so that q(b, y) = 0. By the linkage axiom, there

exists g ∈ G, so that

q(a, x) = q(a, g) = q(b, g) = q(b, y) = 0,

and by weak bilinearity q(ab, g) = 0. If g = ab, then since q(a, x) = 0 by assumption, then

q(a, b) = 0. Then by Observation 2.0.0.10, we have q(a, ab) = 0, and since a /∈ {1, ab},

then ab is basic. On the other hand, if ab = 1, then a = b, and this contradicts our

assumption, so this is absurd. We may conclude B ⊂ G is a subgroup, and thus we have

proved the claim.

A natural question to ask: “Does the set of all rigid elements constitute a sub-

group?” To see that the set of rigid elements does not form a subgroup in general,

let G be any purely radical structure of so that |G| > 2, and let 〈w〉 = W, and consider

(G[W ], [W ], q[W ]). If g ∈ G∗, and w ∈ W ∗, then (g, w) ∈ G[W ] is rigid by Lemma 2.2.2.7,

and (1, w) ∈ G[W ], is rigid by Proposition 2.2.2.3; however (g, w)(1, w) = (g, 1) is basic,

since Rad((g, 1)) = {(h, 1) | h ∈ G}, and since |G| > 2, then Rad((g, 1)) 6= {(1, 1), (g, 1)}.

Now, we provide the following theorem which will allow us to construct a maximal sub-

group of rigid elements.

Theorem 5.2.1.3 Let (G,Q, q) be any finite characteristic 2 quaternionic structure and

let B be the subgroup of basic elements of G. Then there exists a maximal subgroup P

consisting of only rigid elements together with 1, so that G = B ⊕ P.
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Proof: Take G to be a vector space over F2. Since B is a subgroup of G by Theorem

5.2.1.2 then it is a subspace, so let α : G −→ P̃ be any fixed linear transformation so

that ker(α) = B. Let {b1, . . . , bn} be a basis for B. Extend {b1, . . . , bn} to a basis for

all of G, let us call it {b1, . . . , bn, p1, . . . , pm}. Let P = 〈p1, . . . , pm〉, then it is clear that

G = B⊕P, and since P ∩B = {1}, it is clear that no element of P is basic, so P consists

of only rigid elements, and thus we have proved the claim.

Definition 5.2.1.4 Let (G,Q, q) be any finite characteristic 2 quaternionic structure,

and let P ⊂ G be the subgroup as defined in Theorem 5.2.1.3. We will refer to any

p ∈ P ∗ as purely rigid.

Lemma 5.2.1.5 Let (G,Q, q) be any finite characteristic 2 quaternionic structure. Let

a ∈ G be rigid, and let B ∈ G denote the subgroup of basic elements of G. Then for all

b ∈ B, ba is rigid.

Proof: Let B ⊂ G be the collection of basic elements of G. This follows immediately

from Theorem 5.2.1.3, by the direct sum decomposition of G = B ⊕ P, where P consists

of purely rigid elements. Suppose a ∈ G is rigid. Then there exists b′ ∈ B and p ∈ P so

that (b′, p) = a since G is a direct sum. Let b ∈ B be arbitrary, then (b, 1)(b′, p) = ba.

If ba ∈ B, then p = 1, since B ∩ P = {1}, but this is absurd, since we chose a /∈ B, so

p 6= 1. Thus we may conclude ba /∈ B for all b ∈ B, and thus ba is rigid.

Lemma 5.2.1.6 Let (G,Q, q) be any finite characteristic 2 quaternionic structure. If

B ⊂ G is the subgroup of basic elements of G then the canonical homomorphism α :

G −→ G/B, induces a canonical surjective morphism

α : (G,Q, q) −→ (G/B,G/B ∧G/B,∧).
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Proof: Let a, b ∈ G be so that q(a, b) = 0. If a ∈ B, then α(a) ∧ α(b) = 0, since

B ∧ bB = 0 by the definition of the exterior power. Suppose a ∈ G \B, then by Lemma

5.2.1.5, then a is rigid. Then if q(a, b) = 0, then b = 1 or b = a, so α(a) ∧ α(b) =

α(a) ∧ α(a), or α(a) ∧ α(b) = α(a) ∧ α(1), both of which are 0 ∈ G/B ∧ G/B, and

thus α is a quaternionic morphism. Furthermore it is clear that α is surjective since

α(a)∧α(b) = 0, implies a = b, or without loss of generality b = 1, so the quaternions are

preserved, along with their parings, and thus

We may perform a similar construction with α : G −→ G/P.

Lemma 5.2.1.7 Let (G,Q, q) be any finite characteristic 2 quaternionic structure. If

P ⊂ G is the subgroup of purely rigid elements of G then the canonical homomorphism

α : G −→ G/P ∼= B, induces a canonical surjective morphism

α : (G,Q, q) −→ (G/P,Q′, q′),

where Q′ be the range of the map

q′ = q
∣∣∣B ×B : B ×B −→ Q′ ⊆ Q.

Proof: Let α : G −→ G/P be the canonical surjection, and suppose q(a, b) = 0, for

some a, b ∈ G. If a is rigid, then q(a, b) = 0, is to say b ∈ {1, a}, since q′ is the restriction

of q, then q′(α(a), α(b)) = q′(α(a), α(a)) = 0 or q′(α(a), α(1)) = 0. On the other hand

if a ∈ G is basic, and q(a, b) = 0, then since q′ is the restriction of q, to B × B, then

it is clear that q′(α(a), α(b)) = q(α(a), α(b)) = q(a, b) = 0, and thus α is a surjective

quaternionic morphism, since q is surjective, and Q′ is the image of q′.

Theorem 5.2.1.8 Let (G,Q, q) be any finite quaternionic structure. Then there exists
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a group of exponent 2, call it W, and finite basic characteristic 2 quaternionic structure

(G′, Q′, q′) so that (G,Q, q) ∼= (G′[W ], Q′[W ], q′[W ]).

Proof: Let (G,Q, q) be any finite quaternionic structure, and denote B ⊂ G the

subgroup of basic elements of G, and take W ∼= G/B, and it is clear that W is the

purely rigid subgroup of G. Define (G′, Q′, q′) as follows, G′ = B, q′ = q
∣∣∣B ×B, and

Q′ = range(q′). Since G = B ⊕W, we take φ : G −→ B ⊕W, as the group isomorphism

determined by the direct sum decomposition.

Since for any a, b ∈ G so that q(a, b) = 0, then let φ(a) = (b1, a1) ∈ B ⊕ W, and

φ(b) = (b2, a2) ∈ B ⊕W be the unique representatives in the direct sum. We see that

q′[W ]((b1, a1), (b2, a2)) = (q′(b1, b2), b1 ⊗ a2 + b2 ⊗ a1, a1 ∧ a2) = 0

by the following cases. By Proposition 2.2.2.3 if a1 6= 1, then a1 = a2 or without loss of

generality a2 = 1. If a1 6= 1, then by Lemma 2.2.2.7, then b1 = b2, since (a1, b1) is rigid

by Lemma 5.2.1.5, so the pairing is trivially zero. If on the other hand a1 = a2 = 1,

then a = b1, and b = b2, are both basic, and so q(a, b) = q(b1, b2) = 0, and since q′ is

the restriction of q to B × B, then q′(b1, b2) = 0, and since a1 = a2 = 1, then the other

coordinates are zero. Thus we have shown, for any a, b ∈ G, that if q(a, b) = 0, then

q′[W ](b1a1, b2a2) = (q′(b1, b2), b1 ⊗ a2 + b2 ⊗ a1, a1 ∧ a2) = 0,

and thus α : (G,Q, q) −→ (B[W ], Q′[W ], q′[W ]), is a morphism of quaternionic struc-

tures. Since α is an isomorphism, and since every (g, p) ∈ B ⊕W, is rigid for any p 6= 1,

by Lemma 5.2.1.5, it is clear that α is an isomorphism of quaternionic structures.
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5.2.2 The QBIG of Group Extensions

Theorem 5.2.2.1 Let (G,Q, q) be any group extension. Then Γ is the QBIG of (G,Q, q)

if and only if Γ possesses subgraphs ΓB ⊂ Γ, the QBIG of a basic quaternionic structure,

and ΓW ⊂ Γ, the QBIG of a purely rigid structure, so that G ∼= B ⊕ W, and for all

(x,w) ∈ B ⊕ W ∗, Γ((x,w)) is a refraction graph, and for all (b, 1) ∈ B∗ ⊕ W, and

Γ((b, 1)) is not a refraction graph.

Proof: By Theorem 5.2.1.8, every quaternionic structure (G,Q, q) with basic

part B and purely rigid part W gives the existence of an isomorphism (G,Q, q) ∼=

(B[W ], Q′[W ], q′[W ]). So it is clear that if Γ is the QBIG of (G,Q, q), then there ex-

ists ΓB ⊂ Γ and ΓW ⊂ Γ the QBIG of (B,Q′, q′) and (W,W ∧W,∧) respectively. By

Lemma 2.2.2.7 every (x,w) ∈ G ⊕W ∗ is rigid, and by Theorem 5.2.0.1, Γ((x,w)) is a

refraction graph if and only if (x,w) is rigid. Since (b, 1) is basic, then by Theorem 5.2.0.1

V (Γ((b, 1))) cannot be a refraction graph, and thus we have proved the claim.

On the other hand, let (G,Q, q) be some finite characteristic 2 quaternionic structure

and suppose Γ has the properties as stated above. Then we may take G = B ⊕W. By

Theorem 5.2.0.1 every element of the form (x,w) is rigid in B⊕W ∗, so we may conclude

that B ⊂ G is the collection of basic elements, since Γ((b, 1)) is not a refraction graph for

all b ∈ B∗, and thus (1, w) ∈ B⊕W ∗, is purely rigid. By Theorem 5.2.1.8, it follows that

G ∼= B ⊕W gives (G,Q, q) ∼= (B[W ], Q′[W ], q′[W ]), so (G,Q, q) is a group extension,

and we have proved the claim.
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