
University of California
Santa Barbara

Verification Techniques for Hardware Security

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Nicole Chan Fern

Committee in charge:

Professor Kwang-Ting (Tim) Cheng, Chair
Professor Forrest Brewer
Professor Tim Sherwood
Dr. Çetin Kaya Koç, Lecturer
Professor Huijia (Rachel) Lin

June 2016

The Dissertation of Nicole Chan Fern is approved.

Professor Forrest Brewer

Professor Tim Sherwood

Dr. Çetin Kaya Koç, Lecturer

Professor Huijia (Rachel) Lin

Professor Kwang-Ting (Tim) Cheng, Committee Chair

June 2016

Verification Techniques for Hardware Security

Copyright c© 2016

by

Nicole Chan Fern

iii

Acknowledgements

I would like to acknowledge my advisor, Professor Kwang-Ting (Tim) Cheng for

the support and guidance he has provided over the past 5 years. Under his mentorship I

have been given the opportunity to find and define my own research question, and explore

the area of hardware security. Through this process I have matured as an independent

researcher and thinker, and for this I will be forever greatful.

I would also like to thank my collaborators Ismail San and Professor Çetin Koç for

introducing me to the world of cryptography! Peter Lisherness has provided valuable

advice about being a graduate student at UCSB in addition to facilitating an internship

opportunity at Apple. My lab-mates Amirali Ghofrani, Miguel Lastras, Fan Lin, C.K.

Hsu, Rui Wu, Chong Huang, Leilai Shao, and Yuyang Wang provide continuing company

and support.

This work was financially supported by the National Science Foundation as well as the

Semiconductor Research Corporation. I would also like to thank the Xilinx University

Program for their generous donation of several FPGA boards.

Finally, I would like to thank my family and friends. Without their support, especially

my husband, Jacob, and my parents, I would not have been able to complete this work.

iv

Curriculum Vitæ
Nicole Chan Fern

Education

2016 Ph.D. in Computer Engineering (Expected), University of Califor-
nia, Santa Barbara.

2013 M.S. in Computer Engineering, University of California, Santa Bar-
bara.

2011 B.E. in Electrical Engineering, The Cooper Union for the Advance-
ment of Science and Art

Work Experience

2013 Hardware Verification Engineer in the Silicon Engineering Group at
Apple Inc in Cupertino, California

2012 Software Security Intern in the Cisco Security and Government
Group at Cisco Systems in Knoxville, Tennessee

Publications

• N. Fern, I. San, Ç. Koç, and K-T. Cheng. “Hardware Trojans in Incompletely
Specified On-chip Bus Systems”, Design, Automation, Test in Europe (DATE) Con-
ference, 2016.

• N. Fern and K-T. Cheng. “Detecting Hardware Trojans in Unspecified Functional-
ity Using Mutation Testing”, International Conference on Computer Aided Design
(ICCAD), 2015.

• N. Fern, S. Kulkarni, and K-T. Cheng. “Hardware Trojans Hidden in RTL Don’t
Cares - Automated Insertion and Prevention Methodologies”, International Test
Conference (ITC), 2015.

• N. Lesperance*, S. Kulkarni, and K-T. Cheng, “Hardware Trojan Detection Us-
ing Exhaustive Testing of k-bit Subspaces”, Asia South-Pacific Design Automation
Conference (ASP-DAC), 2015.

• P. Lisherness, N. Lesperance*, and K-T. Cheng, “Mutation Analysis with Cover-
age Discounting”, Design, Automation Test in Europe (DATE), 2013.

• N. Lesperance*, P. Lisherness, and K-T. Cheng, “Coverage Discounting: Im-
proved Testbench Qualification by Combining Mutation Analysis with Functional
Coverage”, SRC TechCon, 2013.

• N. Lesperance*, M. Leece, S. Matsumoto, M. Korbel, K. Lei, and Z. Dodds,
“PixelLaser: Computing Range from Monocular Texture”, Advances in Visual Com-
puting, LNCS 6455, pp. 151-160, 2010.

v

*Published under maiden name

Activities and Academic Honors

• Received 3rd place in the 2016 Test Technology Technical Council’s E.J. McCluskey
Doctoral Thesis Competition Semi-Finals

• Awarded the ECE Department Dissertation Fellowship for Spring 2016

• Teaching Assistant at UCSB for 6 academic quarters for courses requiring a weekly
lecture (ECE154, Computer Architecture) and lab-based courses (ECE152A/B, stu-
dents created hardware designs using a combination of FPGA boards and discrete
circuit components) (2012 – 2015)

• Selected to teach a seminar on Matlab and also provide supplementary presentation
of topics in signal processing and control systems (2010 – 2011)

• Winner of the Leon Machiz Prize for excellence in electrical engineering (2011)

• Winner of the Class of 1907 Award for the best enrolled or graduating student in
calculus (2011)

• Winner of the Jesse Sherman Book Award for Outstanding Average in Electrical
Engineering (2010, 2011)

• Dean’s List at Cooper Union (8 consecutive semesters)

vi

Abstract

Verification Techniques for Hardware Security

by

Nicole Chan Fern

Verification for hardware security has become increasingly important in recent years

as our infrastructure is heavily dependent on electronic systems. Traditional verification

methods and metrics attempt to answer the question: does my design correctly perform

the intended specified functionality? The question this dissertation addresses is: does

my design perform malicious functionality in addition to the intended functionality?

Malicious functionality inserted into a chip is called a Hardware Trojan.

This work is devoted to developing both new threat models and detection methodolo-

gies for a less studied but extremely stealthy class of Trojan: Trojans which do not rely

on rare triggering conditions to stay hidden, but instead only alter the logic functions of

design signals which have unspecified behavior, meaning the Trojan never violates the

design specification.

The main contributions of this work are 1) precise definitions for dangerous unspec-

ified functionality in terms of information leakage and several methods to identify such

functionality, 2) satisfiability-based formal methods to test potentially dangerous un-

specified functionality for the existence of Trojans, and 3) numerous examples of how the

proposed Trojans can completely undermine system security if inserted in on-chip bus

systems, communication controllers, and encryption IP.

vii

Contents

Curriculum Vitae v

Abstract vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation and Problem Scope . 1
1.2 Proposed Solution . 5

2 Hardware Trojans Hidden in RTL Don’t Cares 10
2.1 Introduction . 10

2.1.1 Hardware Trojans . 10
2.1.2 RTL X’s and Don’t Cares . 13

2.2 Defining Malicious Don’t Cares . 15
2.2.1 Threat Model . 15
2.2.2 Illustrative Examples . 16
2.2.3 Formal Definition . 20

2.3 Identification of Dangerous Don’t Cares 21
2.3.1 Methodology . 21
2.3.2 Existing X-Analysis Tools . 25
2.3.3 Methodology Applied to Examples 1 and 2 25

2.4 Elliptic Curve Processor . 26
2.4.1 Background . 26
2.4.2 The Hardware Trojan . 27
2.4.3 Automated X-Analysis . 30

2.5 Summary . 33

viii

3 Identifying Dangerous Unspecified Functionality 34
3.1 Introduction . 34
3.2 Related Work . 35
3.3 Information Leakage Trojans . 36
3.4 Coverage Discounting . 38

3.4.1 Motivation and Procedure . 38
3.4.2 Example . 40

3.5 Identification Methodology . 42
3.5.1 Threat Model . 42
3.5.2 Mutant Selection . 43
3.5.3 Mutant Injection and Analysis . 44
3.5.4 Ranking Undetected Faults . 47
3.5.5 Method Overhead and Coverage 48

3.6 UART Controller Case Study . 49
3.6.1 Wishbone Bus Trojan . 50
3.6.2 Interrupt Output Signal . 54

3.7 Summary . 55

4 Trojan Channels in Partially Specified SoC Bus Functionality 56
4.1 Introduction . 56
4.2 Related Work . 58

4.2.1 Bus Security . 58
4.2.2 Hardware Trojan Detection . 60

4.3 Trojan Communication Channel . 61
4.3.1 Threat Model . 61
4.3.2 Trojan Channel Components . 62
4.3.3 Topology Dependent Trojan Channel Properties 64
4.3.4 Protocol Dependent Trojan Channel Properties 65

4.4 Protocol Specific Trojan Channel Definitions 67
4.4.1 AMBA AXI4 . 67
4.4.2 AMBA APB . 69

4.5 AXI4-Lite Interconnect Trojan Example 71
4.5.1 Trojan Operation . 72
4.5.2 Overhead . 73

4.6 Trojan Channel in SoC Implementation 74
4.6.1 Zynq-7000 Based SoC Platform Overview 75
4.6.2 Hardware Trojan Operation . 76

4.7 Details of Trojan Insertion in Xilinx IP 78
4.7.1 OS-Level Extraction of Trojan Channel Information 79
4.7.2 Overhead . 80

4.8 Detection Strategies . 82
4.9 Summary . 84

ix

5 Detecting Hardware Trojans in Unspecified Functionality 85
5.1 Introduction . 85
5.2 Related Work: Information Flow Analysis 86
5.3 Threat Model . 87
5.4 Problem Formulation . 88

5.4.1 Identifying (x, C) Pairs . 89
5.5 Detection Methodology . 90

5.5.1 Overview . 90
5.5.2 SMT Formulas from RTL Code 91
5.5.3 Equivalence Checking . 95

5.6 Case Studies . 96
5.6.1 Adder Coprocessor . 98
5.6.2 UART Communication Controller 101
5.6.3 SMT Solving v. Equivalence Checking 103

5.7 Summary . 105

6 Trojan Detection Using Exhaustive Testing of k-bit Subspaces 106
6.1 Introduction . 106
6.2 Problem Definition and Formulation . 110

6.2.1 Interaction with Existing Test and Detection Methods 110
6.2.2 Trojan Trigger Models . 110
6.2.3 Subspace Coverage . 112

6.3 Our Solution . 113
6.3.1 Test Generation for Exhaustive k-subspace Coverage 113
6.3.2 Sequential Triggers . 115
6.3.3 Example Test Set Sizes . 115
6.3.4 When Exhaustive k-subspace Testing is Too Expensive 116

6.4 AES Trojan Case Study . 119
6.4.1 Area Overhead . 119
6.4.2 Factors Influencing kmax . 120

6.5 Summary . 121

7 Conclusions 122

Bibliography 124

x

List of Figures

1.1 Threats Present in the Hardware Development Lifecycle 4
1.2 Trojan-infested FIFO . 6

2.1 Generic Circuit with Don’t Care Bits . 23
2.2 Equivalence Checking Formulation . 24
2.3 Equivalence Checking Formulation Excluding Unreachable States 24
2.4 ECP State Machine . 28

3.1 Coverage Discounting Flow . 39
3.2 Discounting Example: A Bus Interface Controller 40

(a) Original Design . 40
(b) Mutated Design . 40

3.3 Scenarios for Undetected Faults . 46
3.4 Output Enable Trojan Waveform for Bus Protocol Test 53

4.1 AXI Bus Protocol VALID/READY Handshake 57
4.2 Trojan Channel Circuitry . 63
4.3 Bus Topologies . 63

(a) Shared R/W Data Channels . 63
(b) Concurrent Data Channels . 63

4.4 AMBA APB Transaction State Diagram 70
4.5 AXI4-Lite Example System Verification Infrastructure 72
4.6 Trojan Channel Logic for AXI4-Lite Interconnect 72
4.7 2-way Information Leakage Waveform . 73
4.8 Demonstration Platform Block Diagram 75
4.9 Hardware Trojan Operation . 77
4.10 Demonstration Environment . 79
4.11 OS-Level Trojan Demonstration Shell Commands 81

5.1 Detection Methodology . 91
5.2 Data-flow Graph for simple.data out Generated by Pyverilog 92

xi

6.1 AES Fault Attack Trojan . 108
6.2 All 6 2-bit Subspaces in a 4-bit Vector 112

xii

List of Tables

2.1 Classification of Don’t Cares in Elliptic Curve Processor 32
2.2 Area overhead of Specifying Don’t Cares in Elliptic Curve Processor . . . 33

3.1 Categorization of Undetected Faults . 50

4.1 Trojan-Free Design Results (After Place and Route) 73
4.2 Area Overhead of 2-way HW-Trojan Channel 74
4.3 Overhead of Programmable Logic in SoC Platform 82

5.1 Case Studies: Results Summary . 97
5.2 Trojan Detection Results for Adder Coprocessor 99
5.3 Number of Graph Nodes in Adder Coprocessor 100
5.4 Trojan Detection Results for UART Core 102
5.5 Number of Graph Nodes in UART Core 103

6.1 Activation Probabilities . 111
6.2 Test Sets for n = 8, k = 3 . 114
6.3 Test Set Length for Exhaustive k-subspace Coverage 115
6.4 Activation Probabilities: Strategy 2 v. Strategy 1 118
6.5 Activation Probabilities: Strategy 3 v. Strategy 1 118
6.6 Area Increase v. k and m (identical patterns) 119
6.7 Area Increase v. k and # of Distinct Patterns 120

xiii

Chapter 1

Introduction

1.1 Motivation and Problem Scope

Electronic devices and systems are now ubiquitous and influence key aspects of mod-

ern life such as freedom of speech, privacy, finance, science, and art. Concern about the

security and reliability of our electronic systems and infrastructure is at an all-time high.

Failure to protect these systems results in not only great financial hardship, but can give

rise to life-threatening situations as seen when patient medical records became inaccessi-

ble within all MedStar Health hospitals after their computer networks were attacked by

ransomware [1], and when cyber-attacks left nearly a quarter million people in Western

Ukraine without power or heat for several hours in the dead of winter [2].

Securing electronic systems is extremely difficult because an attacker only needs to

find and exploit a single weakness to perform malicious actions whereas defenders must

protect the system against an infinite set of possible vulnerabilities to ensure it is secure.

To address the attacker/defender asymmetry, security research has focused on developing

threat models which classify attacker capabilities, motivations, and goals, and creating a

taxonomy of vulnerabilities to address. For example, Ravi et al. [3] give an overview of

1

Introduction Chapter 1

the threats embedded systems face and the existing catalogue of mitigation techniques.

Security techniques target detection/prevention of a class of vulnerability given a

specific threat model. Identifying and disclosing (in a responsible manner) new vulner-

abilities to the security community is essential to the process of making systems more

secure. The task of enumerating and addressing all threat models and vulnerabilities is

never complete, but this dissertation contributes to this task by discovering and devel-

oping mitigation strategies for a novel class of vulnerability: the opportunity in most

hardware designs for an attacker to hide malicious behavior entirely within unspecified

functionality.

Verification and testing is a major bottleneck in hardware design, and as design

complexity increases, so does the productivity gap between design and verification [4].

It is estimated that over 70% of hardware development resources are consumed by the

verification task. To address this challenge, commercial verification tools and academic

research developed over the past several decades has focused on increasing confidence

in the correctness of specified functionality. Important design behavior is modeled then

various tools and methods are used to analyze the implementation at various stages in

the chip design process to ensure the implementation always matches the golden reference

model.

Behavior which is not modeled will not be verified by existing methods, meaning any

security vulnerabilities occurring within unspecified functionality will go unnoticed. In

modern complex hardware designs, which now contain several billion transistors, there

always exists unspecified functionality. It is simply impossible to enumerate what the

desired state of several billion transistors or logic gates should be at every cycle when

behavior depends not only on the internal state of the system, but also on external input

from the environment the device is embedded in. It is only feasible to model and verify

aspects of the design with functional importance.

2

Introduction Chapter 1

Because behaviors at a good fraction of signals for many operational cycles are un-

specified, an attacker can modify this functionality with impunity without de-

tection by existing verification methods. This thesis explores how an attacker can embed

malicious behavior completely within unspecified functionality whereas most related re-

search explores how to detect violations of specified behavior occurring under extremely

rare conditions, where the main challenge is identifying these conditions.

Malicious functionality inserted into a chip is called a Hardware Trojan. Hardware

Trojans are a major concern for both semiconductor design houses and the U.S. gov-

ernment due to the complexity of the chip design ecosystem [5, 6]. Economic factors

dictate that the design, manufacturing, testing, and deployment of silicon chips is spread

across many companies and countries with different and often conflicting goals and in-

terests. If a single party involved deems it advantageous to insert a Hardware Trojan,

the consequences can be catastrophic.

Goals of previously proposed Hardware Trojans range from denial of service attacks

such as forcing premature circuit aging [7] and on-chip system bus deadlock [8] to subtler

attacks which attempt to gain undetected privileged access on a system [9], leak se-

cret information through power or timing side channels [10], or weaken random number

generator output [11].

The process of transforming a document specifying how a chip should behave to

physical silicon is extremely complex, involving thousands of engineers and an entire

ecosystem of design tools and fabrication services. Figure 1.1 gives an overview of the

design life cycle, and the Trojan threats faced at each stage. Hardware Trojans are

extremely hard to defend against because they give the attacker the ability to modify

the circuit at any stage in the design lifecycle to introduce new vulnerabilities, not just

identify and exploit those already existing in the system [12, 13].

Before fabrication (pre-silicon), the design is modeled using an executable Register

3

Introduction Chapter 1

Design
Specification

Create and verify high-
level models (Matlab,
C, etc.)

RTL

Formal and simulation
based verification
Equivalence checking

Logic Gate

Equivalence checking
and gate-level
simulation

Layout

Verify design meets
power and timing
requirements

Synthesis
Place and

Route

Force adoption of a
weak algorithm or
vulnerable architecture

Third-party IP or rogue
designer inserts Trojan

Rogue designer or
synthesis tool modifies
netlist

Malicious layout tool or
designer inserts Trojan

Post-Silicon

Post silicon validation/debug, high-volume manufacturing test

Transistor doping levels altered, gates and wires
added/removed, or peripheral components/PCB board may
contain Trojans

System
Deployment

Online checking, fault-
tolerant computing

Software/firmware
level Trojans

Development
Stage

Verification
Techniques

Security Threats

FabricationShip

Refine
Architecture

Figure 1.1: Threats Present in the Hardware Development Lifecycle

Transfer Level (RTL) hardware description language such as Verilog or VHDL and the

model is thoroughly analyzed and tested for errors. A modern design can contain several

hundred Verilog/VHDL modules, some of which are provided by external (potentially

untrusted) 3rd parties. Before fabrication, an RTL model must be transformed into a

physical design layout, which specifies how transistors are to be arranged on the silicon

wafer. This process is performed by a mix of extremely complex Electronic Design

Automation (EDA) tools (which are potentially untrusted) and manual effort.

This thesis focuses on detecting Hardware Trojans inserted in the Verilog/VHDL code,

which in some aspects is more challenging than the detection of Trojans inserted in the

gate-level netlist, physical design layout, or during or after fabrication. The EDA ecosys-

tem contains mature tools to ensure that once an RTL design is considered “golden”, all

subsequent transformations produce designs whose behavior matches that of the golden

model. This work increases confidence that the RTL reference model, used as a guide-

post for the rest of design development, itself is Trojan-free, which is essential to detecting

4

Introduction Chapter 1

any Trojans inserted at subsequent stages in the design lifecycle.

Many of the Trojans proposed in literature hide from the verification effort using

extremely rare triggering conditions. Examples of stealthy Trojan triggers are counters,

which wait thousands of cycles before changing circuit functionality, or pattern recog-

nizers, which wait for a “magic” value or sequence to appear on the system bus [14] or

as plaintext input in cryptographic hardware [15, 16, 17]. Trojans with these triggering

mechanisms generally deploy a payload which clearly violates system specifications (such

as causing a fault during a cryptographic computation).

Existing pre-silicon Trojan detection methods assume Trojans violate the design spec-

ification under carefully crafted rare triggering conditions, and focus on identifying the

structure of this triggering circuitry in the RTL code or gate-level netlist [18, 19, 20, 21].

The Trojans proposed in this dissertation do not rely on rare triggering conditions to

stay hidden, but instead only alter the logic functions of design signals which have un-

specified behavior, meaning the Trojan never violates the design specification.

Addressing this Trojan type requires a different approach from both existing Trojan

detection and hardware verification methods, since traditional verification and testing

excludes analysis of unspecified functionality for efficiency, and focuses primarily on con-

formance checking. Identifying unspecified functionality that either contains a Hardware

Trojan or could be exploited by an attacker in the future is difficult because by definition

unspecified functionality is not modeled or known by the design/verification team.

1.2 Proposed Solution

To address the threat of Trojans modifying unspecified design functionality, this thesis

provides 1) precise definitions for dangerous unspecified functionality in terms of informa-

tion leakage, 2) methods to test this potentially dangerous unspecified functionality for

5

Introduction Chapter 1

write_enable

write_data

read_enable

read_data

0

1

FIFO
...

secret_data

Main Module

Figure 1.2: Trojan-infested FIFO (Trojan Circuitry affecting unspecified functionality
to leak information shown in red)

the existence of Trojans, 3) an abstraction-level agnostic method to identify potentially

dangerous unspecified functionality without requiring any prior or specialized knowledge

about the design, and 4) numerous examples of how the proposed Trojans can completely

undermine system security if inserted in on-chip bus systems, communication controllers,

and encryption IP.

By definition, unspecified functionality should never significantly influence design

behavior. One way to quantify the influence a signal, x, has in a design is to assign x

different values during the conditions where x is unspecified, then check if any primary

output signals or registers differ. Normally it does not matter if x propagates to other

signals in the circuit when x is unspecified as long as the design functions correctly, but a

key insight emphasized throughout this dissertation is that if the value of x can propagate

to points the attacker can observe, it is possible for an attacker to insert a Trojan which

ties x to a signal originally not accessible to an attacker. This allows an attacker to learn

the value of this signal and leak important information from the circuit without

violating design specifications.

For example, consider the simple first-in first-out (FIFO) buffer shown in Figure 1.2,

6

Introduction Chapter 1

which writes the data currently at the input write data to the buffer when the signal

write enable is 1 and the FIFO is not full, and places data from the buffer on the

read data output when the signal read enable is 1 and the FIFO is not empty. What

should the value of read data be when read enable is 0 or the FIFO is empty? It may

seem logical to assume the value of read data under such conditions retains its value

from the previous valid read, but what if the FIFO has never been written to or read

from before? In this case the value is unknowable, and cannot be specified.

It is very likely the verification effort will only examine the value of read data when

read enable is 1 and the FIFO is not empty because it is assumed that any circuitry in

the fan-out of read data is only used during a valid FIFO read. However, this means

an attacker can modify the FIFO design to leak secret information on the read data

output during all cycles for which the unverified conditions hold. This malicious cir-

cuitry is shown in red in Figure 1.2. It should be emphasized that these conditions occur

quite frequently making this Trojan behavior hard to flag using existing pre-silicon de-

tection methodologies relying on the identification of behavior occurring only under rare

conditions.

Chapter 2 focuses on a special class of unspecified functionality, RTL Don’t Cares

[22]. We present a novel Trojan which leaks information by modifying only existing don’t

care bits. RTL don’t cares have long plagued chip verification due to hard-to-diagnose

“X-bugs.” In Chapter 2, we provide a formal automated X-analysis technique based on

combinational equivalence checking which both prevents the insertion of this new Trojan

type and also has the potential to uncover accidental X-bugs as well. We demonstrate

our prevention methodology on an Elliptic Curve Processor design susceptible to the

insertion of a Trojan capable of leaking all key bits by modifying only don’t cares.

Chapter 3 presents a methodology to identify dangerous unspecified functionality

beyond RTL Don’t Cares [23]. Based on mutation testing, this method is capable of

7

Introduction Chapter 1

identifying signals and conditions corresponding to dangerous unspecified functionality

in FSM, C, SystemC, TLM, RT, and gate-level models. This chapter also provides mu-

tant ranking heuristics to prioritize analysis of the most dangerous functionality. The

presented methodology integrates easily with existing verification flows and can be run

alongside Coverage Discounting [24], a technique which reflects error propagation abilities

of the testbench in functional coverage metrics. This method applied to a UART con-

troller discovered an entire class of Trojan exploiting undefined behavior in bus protocols

along with poorly tested interrupt functionality.

Chapter 4 provides general guidelines for identifying dangerous unspecified func-

tionality for an important class of design: on-chip bus systems [25]. Regardless of

the specific bus topology and protocol, bus behavior is never fully specified, meaning

there exist cycles/conditions where some bus signals are irrelevant, and ignored by the

verification effort. Chapter 4 presents a general model for creating a covert Trojan com-

munication channel between SoC components by altering existing on-chip bus signals

only when they are unspecified and demonstrates how a Trojan channel can be inserted

undetected in several widely used standard bus protocols such as AMBA AXI4 and APB.

To illustrate how a Trojan channel can give an attacker a powerful foothold in a complex

system, a Trojan channel is inserted in an SoC design running a multi-user Linux OS.

An on-chip memory (OCM) is available to all users, but access is managed by the kernel

to ensure memory isolation and privacy. The channel allows an unprivileged attacker

running software on the system to access root-user memory transactions.

Chapter 5 provides an automated procedure to detect Trojan circuitry modifying

unspecified design functionality. Building upon Chapters 3 and 4, which focus on identi-

fying possibly dangerous functionality but do not classify the functionality as containing

a Trojan or not, the analysis procedure in Chapter 5 takes as input unspecified function-

ality given as a list of (x, C) pairs. For a design specified as RTL code or a gate-level

8

Introduction Chapter 1

netlist, a signal x, which is unspecified when a condition, C, holds, our procedure deter-

mines if a Trojan is using x to leak information during C. For the FIFO in Figure 1.2, the

(x, C) pairs would be (read data, read enable == 0), and (write data, write enable

== 0). The Trojan circuitry shown in red is detected by our procedure if the signal

secret data propagates to the boundaries of the design.

For gate-level designs, the procedure formulates the Trojan detection problem in

terms of combinational equivalence checking [26], a mature formal verification technique

for which commercial tools with the ability to analyze industry-scale designs exist. For

designs written in Verilog or VHDL, the procedure traverses the control/data-flow graph

to construct formulas for the assignment of all circuit output signals and recent advances

in Satisfiability Modulo Theory (SMT) solvers [27] provide the ability to determine if x

can affect the formula evaluation under C, thereby indicating the presence of a Trojan.

Designs analyzed include an adder coprocessor with an AXI4-Lite bus interface and a

UART communication controller with a Wishbone Bus interface.

Chapter 6 details a post-silicon Trojan detection methodology developed to ac-

tivate Trojans using rare conditions to trigger when malicious behavior occurs [28].

The goal of the proposed detection method is to overcome the weaknesses of existing

post-silicon Trojan detection strategies which bias test vectors based on controllability

and observability metrics. Our method instead uses the observation that to reduce the

area/power/timing footprint of the Trojan, an attacker is likely to only use k of n con-

trollable signals for triggering, where k << n, and we target exhaustive testing of all

k-subspaces.

Chapter 7 summarizes our contributions and gives several possible directions for

future research.

9

Chapter 2

Hardware Trojans Hidden in RTL

Don’t Cares

2.1 Introduction

In this chapter we present a novel Trojan which leaks information by modifying only

existing don’t care bits along with a formal automated X-analysis technique based on

combinational equivalence checking which both prevents the insertion of this new Trojan

type and also has the potential to uncover accidental X-bugs as well. We demonstrate

our prevention methodology on an Elliptic Curve Processor design susceptible to the

insertion of a Trojan capable of leaking all key bits by modifying only don’t cares.

2.1.1 Hardware Trojans

Many Trojan taxonomies have been proposed [12, 29, 13], which categorize Trojans

based on the design phase they are inserted, the triggering mechanism, and malicious

functionality accomplished (payload). Most existing Trojans can be divided into the

following categories:

10

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

1. The logic functions of some design signals are altered, causing the circuit to violate

the system specification

2. The Trojan leaks information through side-channels, and no functionality of any

existing signals is modified

In this chapter, we addresses a third, less studied type of Trojan:

3. The logic functions of only those design signals which have unspecified behavior

are altered to add malicious functionality without violating system specifications

The key difference between Categories 2 and 3 is that Trojans in Category 3 alter

the design in the boolean/functional domain, whereas Trojans in Category 2 only ma-

nipulate non-boolean side channels, and require characterization of these side channels

for detection.

In this chapter, the unspecified behavior necessary to implement Trojans in Category

3 results from don’t cares specified by the designer in the RTL code. We present

techniques to both insert and prevent insertion of Category 3 Trojans in the RTL code

or gate-level netlist. An attacker can assign values or tie other internal design signals to

RTL don’t cares to accomplish malicious functionality, such as leaking secret information.

Prevention of this new Trojan type requires refining the system specification (Verilog

code) by first identifying the “dangerous” don’t cares, then disambiguating them by

selecting static values to assign.

Unlike Trojans in Category 1, which often rely on rare triggering conditions to avoid

causing incorrect design behavior during testing and normal design operation (ex. [14, 15,

16, 17]), our proposed Trojans are theoretically impossible to detect even if all possible

input sequences are tested. Moreover, the proposed Trojans are undetectable even if

a perfect sequential equivalence checker is used to check if a Trojan-infested RTL or

11

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

gate-level implementation conforms to a golden RTL design. This is because the design

behavior being maliciously modified by the Trojan payload is itself unspecified in the

original specification! Therefore, existing pre-silicon detection methodologies targeting

identification of nearly unused circuitry, or rare node values [19, 20] do not address this

new Trojan type.

IP watermarking by embedding secret information in the assignment of don’t care

values [30] is conceptually similar to the proposed Trojan insertion methodology, as both

view RTL don’t cares as an opportunity for the insertion of extra functionality.

To the best of our knowledge, [31] is the only work which recognizes the potential to

implement malicious behavior in unspecified design functionality. [31] defines unspecified

functionality as incompletely specified state transition and output functions, given a

digital system specified as a finite-state machine (FSM). The process of logic synthesis

takes an incompletely specified FSM M and transforms M to a completely specified

gate-level FSM, M ′, which may contain additional unwanted state transitions and output

assignments while still conforming to the original FSM.

The method proposed in [31] uses state reachability as a metric for trust. First the

designer must manually categorize all design states as either protected or non-protected in

a golden symbolic FSM model (M). If a path to a protected state exists in the gate-level

implementation (M ′), but does not exist in M , M ′ is considered untrusted.

Our work differs significantly from this approach and overcomes the following limita-

tions of the state reachability based method for machines specified using symbolic FSM

models proposed in [31]: 1) analysis must be performed on a symbolic representation

of the design state space, 2) the labeling of protected v. non-protected symbolic states

must be done manually and it is likely most designers would not have a clear idea or

guidance for this labeling task, and 3) either full reachability analysis of protected states

is required, making the method unscalable to modern designs, or the T flip-flops in the

12

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

circuit can be modified so no transitions from unprotected to protected states are allowed.

While it is common for protocols and controller modules to have reference state dia-

grams or state tables, from which a symbolic representation can be built and analyzed,

often the only available specification for a complex design before logic synthesis is de-

scribed in HDL such as the RTL code. We focus only on analyzing RTL don’t cares since

these precisely represent the freedom given to the synthesis tool for optimization and the

freedom available to the attacker for implementing malicious functionality.

The second major difference between our work and [31] is that our notion of dangerous

unspecified functionality is based on information leakage potential instead of protected

state reachability. This has the main advantage that the designer is only required to

identify attacker-observable signals, avoiding the high-effort manual categorization of

symbolic states as protected or non-protected.

2.1.2 RTL X’s and Don’t Cares

X’s appearing in RTL code have different semantics for simulation and synthesis.

In simulation, X’s represent unknown signal values, whereas in synthesis, X’s represent

don’t cares, meaning the synthesis tool is free to assign the signals either 0 or 1.

During simulation there are two possible sources of X’s: 1) X’s specified in the RTL

code (either explicitly written by the designer or implicit such as a case statement with

no default), and 2) X’s resulting from uninitialized or un-driven signals, such as flip-flops

lacking a known reset value or signals in a clock-gated block. X’s from source 1 are don’t

cares, and are assigned values during synthesis, meaning they are known after synthesis,

whereas X’s from source 2 may be unknown until the operation of the actual silicon.

The Trojans we propose take advantage of source 1 X’s, and clearly, if the design logic

is fully specified, and don’t cares never appear in the Verilog code, these Trojans cannot be

13

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

inserted. However, don’t cares have been used for several decades to minimize logic during

synthesis [32], and forbidding their use can lead to unacceptable area/performance/power

overhead. For the case study presented in Section 2.4, replacing all X’s in the control

unit Verilog with 0’s results in almost an 8% area increase for the block.

[33] and [34] give an industry perspective and overview of the many problems caused

by RTL X’s during chip design/verification/debug along with a survey of existing tech-

niques and tools which address X-issues. Simulation discrepancies between RTL and

gate-level versions of a design due to X-optimism and X-pessimism, and propagation of

unknown values due to improper reset or power management sequences [35] are all issues

addressed by existing research and commercial tools.

Our work presents yet another issue resulting from the presence of X’s in RTL code,

and provides further incentive to allocate verification resources to these existing X-

analysis tools. However, existing tools aim to uncover accidental functional X-bugs, while

the proposed Trojans can be considered a special pathological class of X-bug specifically

crafted with malicious intent to avoid detection during functional verification.

X-analysis tools which focus only on providing RTL simulation with accurate X se-

mantics, perform X-propagation analysis only for scenarios occurring during simulation-

based verification, or formal methods which only analyze a limited number of cycles (ex.

the reset sequence) do not adequately address the proposed threat. Through the exam-

ples in the remainder of the paper we aim to highlight the aspects of this new threat that

differ most from the existing X-bugs targeted by commercial and academic tools.

The rest of this chapter is organized as follows: Section 2.2 states the threat model

we are addressing, and presents two simple examples to illustrate how typical usage

of don’t cares in Verilog code can potentially lead to undesired information leakage,

Section 2.3 presents an automated methodology to analyze all don’t care bits in a Verilog

design and classify them based on their information leakage potential, Section 2.4 shows

14

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

the application of this methodology to an Elliptic Curve Processor design with several

hundred don’t care bits, and Section 2.5 summarizes our contributions.

2.2 Defining Malicious Don’t Cares

2.2.1 Threat Model

The Trojans we are proposing are inserted at RTL or gate-level with the aim of

avoiding detection by equivalence checking against a Trojan-free RTL model. The Trojans

can be inserted by a malicious CAD tool, disgruntled employee, or any person with access

to the RTL code and the ability to modify either the RTL or the netlist.

Equivalence checking at the RT level of abstraction becomes conformance checking in

the presence of RTL don’t cares, because a single RTL specification simultaneously rep-

resents several possible valid gate-level implementations. When performing equivalence

checking between an RTL and gate-level implementation, the gate-level implementation

needs to match only one of all possible valid gate-level implementations specified by the

RTL [26]. The proposed Trojans take advantage of this by transforming the design into

a malicious, but valid implementation.

Our prevention methodology assumes the existence of a Trojan-free RTL model to

perform X-analysis on, and provides an improved Trojan-free model that can be used

detect any Category 3 Trojan through equivalence checking or simulation-based verifica-

tion methods. Although requiring the existence of a Trojan-free RTL model may seem

limiting, one should remember that before an attacker can successfully insert a Trojan

by defining RTL don’t cares there must exist a Trojan-free version of the RTL code

containing the X’s that the attacker hopes to exploit.

15

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

2.2.2 Illustrative Examples

Example 1: To illustrate how don’t cares can be exploited to perform malicious

functionality, a contrived example is presented for illustrative purposes. The module

given in Listing 2.1 transforms a 4-bit input by either inverting, XORing with a secret

key value, or passing the data to the output unmodified. The choice between the 3

transformations is selected using a 2-bit control signal, control. When control=11,

Line 17 specifies that tmp can be assigned any value by the synthesis tool to minimize

the logic used.

Listing 2.1: simple.v

1 module s imple (c lk , r e s e t , cont ro l , data , key , out) ;

2 input c lk , r e s e t ;

3 input [1 : 0] c o n t r o l ;

4 input [3 : 0] data , key ;

5 output reg [3 : 0] out ;

6 reg [3 : 0] tmp ;

7 //tmp only as s i gned a meaningfu l va lue

8 // i f c on t r o l s i g n a l i s 00 , 01 or 10

9 always @ (∗) begin

10 case (c o n t r o l)

11 2 ’ b00 : tmp <= data ;

12 2 ’ b01 : tmp <= data ˆ key ;

13 2 ’ b10 : tmp <= ˜ data ;

14 //Trojan l o g i c −−−−−−

15 // 2 ’ b11 : tmp <= key ;

16 //−−−−−−−−−−−−−−−−−−−

17 default : tmp <= 4 ’ bxxxx ;

16

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

18 endcase

19 end

20 always @ (posedge c l k) begin

21 i f (˜ r e s e t) out <= 4 ’ b0 ;

22 else out <= tmp ;

23 end

24 endmodule

An attacker can take advantage of the implementation freedom given by the RTL by

assigning key to tmp, causing the secret key value to appear at the output of this module.

The Trojan can be inserted in the RTL code by uncommenting Line 15, or at gate-level

by modifying the netlist after synthesis.

It should be emphasized that in either case, since the assignment of tmp during the

control=11 condition is unspecified, it is impossible to detect the Trojan even if the

design can be exhaustively simulated, or a perfect equivalence checker can compare the

golden and Trojan implementations. Cadence Conformal LEC [36] was used to perform 2

experiments: equivalence checking between the golden and Trojan RTL, and equivalence

checking between golden RTL and a Trojan-infested netlist. In both cases, the equivalence

checker was unable to detect the presence of the Trojan functionality.

The don’t cares assigned to tmp in Line 17 are useful to the attacker because:

1. The don’t care assignment is reachable

2. A primary output (which the attacker can observe) differs depending on the value

of the don’t care bits

Example 2: In the previous example, all the don’t care bits are dangerous and

should be disambiguated in the RTL code. The following example, similar to Example

1 with the addition of a 3-bit FSM with 5 reachable states, illustrates that not all don’t

17

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

cares are dangerous, and that the goal of any Trojan prevention or X-analysis technique

is to identify only the dangerous X’s and allow the synthesis tool to use the remaining

don’t cares for logic minimization.

Listing 2.2: simple state.v

1 module s i m p l e s t a t e (c lk , r e s e t , cont ro l , data , key , out) ;

2 input c lk , r e s e t ;

3 input [1 : 0] c o n t r o l ;

4 input [3 : 0] data , key ;

5 output reg [3 : 0] out ;

6 reg [3 : 0] tmp ;

7 reg [2 : 0] counter , next counter ;

8 reg [3 : 0] pattern ;

9 //Truncated Counter 0−4

10 // 5 ,6 , and 7 never appear

11 always @(∗) begin

12 i f (counter < 3 ’ h4)

13 next counter <= counter + 3 ’ b1 ;

14 else next counter <= 3 ’ b0 ;

15 end

16 always @(posedge c l k) begin

17 i f (˜ r e s e t) counter <= 3 ’ b0 ;

18 else counter <= next counter ;

19 end

20 always @(∗) begin

21 case (counter)

22 3 ’ d0 : pattern <= 4 ’ b1010 ;

23 3 ’ d1 : pattern <= 4 ’ b0101 ;

18

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

24 3 ’ d2 : pattern <= 4 ’ b0011 ;

25 3 ’ d3 : pattern <= 4 ’ b1100 ;

26 3 ’ d4 : pattern <= 4 ’ b1xx1 ;

27 default : pat tern <= 4 ’ bxxxx ;

28 endcase

29 end

30 always @ (∗) begin

31 case (c o n t r o l)

32 2 ’ b00 : tmp <= data ;

33 2 ’ b01 : tmp <= data ˆ key ;

34 2 ’ b10 : tmp <= ˜ data ;

35 2 ’ b11 : tmp <= data ˆ { pattern [3] , pattern [2 : 0] & counter } ;

36 endcase

37 end

38 always @ (posedge c l k) begin

39 i f (˜ r e s e t) out <= 4 ’ b0 ;

40 else out <= tmp ;

41 end

42 endmodule

In Listing 2.2 there are 6 total assignments of 1-bit don’t care values. One could

replace these X’s in the Verilog code with 6 1-bit signals, dc0, dc1, ..., dc5. The attacker

can then choose to assign other internal design signals (such as key bits) to the don’t

care bits or leave them for the synthesis tool to assign. Line 27 can be re-written as:

default: pattern <= {dc0, dc1, dc2, dc3};

Line 27 is unreachable (and thus pattern will never be assigned dc0 − dc3) because the

variable counter only takes on values 0-4. These X’s are safe, and cannot be used to

19

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

leak information, therefore are best left in the RTL to aid in logic optimization. A more

interesting X-assignment occurs on Line 26, which can be re-written as:

3’d4: pattern <= {1, dc4, dc5, 1};

The assignment of {dc4, dc5} to pattern[2:1] is reachable, however, by manual inspec-

tion, one can see that the only assignment influenced by pattern (Line 35) contains a

bitwise AND between counter and pattern[2:0], which prevents dc5 from propagating

further, but not dc4! This is because when counter = 3’d4, Line 35 effectively becomes:

2’b11: tmp <= data ^ {1, dc4, 0, 0};

In this example only 1 of 6 don’t cares is dangerous and necessary to remove. In a design

with hundreds of don’t cares, it is expected that only a small subset is dangerous, which

motivates why it is valuable for an X-analysis tool to take a fine-grain approach and

distinguish between unreachable, reachable but non-propagating don’t cares, and don’t

cares that have the potential to propagate to outputs or attacker observable points.

2.2.3 Formal Definition

The following sets of signals can be defined for any design:

S: all signals

D: don’t care bits in the RTL code, where D ⊆ S

I: signals an attacker can influence, where I ⊆ S, and D ⊆ I

O: signals an attacker can observe, where O ⊆ S

The following sets are defined for each dci, dci ∈ D:

Oi: observable signals which differ when dci = 0/1, Oi ⊆ O

Pi: set of primary input sequences which cause signals in Oi to differ

20

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

Sets O and I can be determined based on the design specification, but it is reasonable

to assume that O consists of all primary outputs and I consists of all primary inputs

and don’t care bits. Through the examples in the previous section, we have seen that a

don’t care bit, dci, is dangerous iff Pi 6= ∅. We will call an input sequence, Ti ∈ Pi, a

distinguishing input sequence for dci. Our solution for identifying dangerous don’t

cares, given in Section 2.3, determines if Pi 6= ∅. For scalability reasons, our solution

may over-approximate the set of don’t cares classified as dangerous.

If dci is classified as dangerous, dci should be specified in the Verilog code, instead

of being left as a don’t care bit. If the circuit designer cannot afford to specify all

dangerous don’t cares due to tight area and timing constraints, the following metric based

on |Pi| provides a ranking that can be used to replace the don’t cares most accessible

to an attacker. |Pi| reflects the information leakage potential of dci because if |Pi| is

large, then there exist many conditions under which the attacker can learn the value of

dci. Considering the probability of each sequence in Pi occurring during normal circuit

operation, and how many sequences the attacker can force to occur can also improve the

accuracy of this metric. An attacker can force a distinguishing input sequence Ti, if all

signals in Ti are in I.

2.3 Identification of Dangerous Don’t Cares

2.3.1 Methodology

The problem of finding if a distinguishing input sequence exists has been formulated

in [37] as a sequential equivalence checking problem. In [37], the analysis was performed

to find X-bugs, not prevent Hardware Trojans, but like the Trojans we are proposing,

X-bugs result from reachable X-assignments that affect primary outputs in the design.

21

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

A key difference between X-bugs and the proposed Trojan type is that in many de-

signs, for example, a serial multiplier, or the Elliptic Curve Processor analyzed in Section

2.4, the values at primary outputs during intermediate cycles in the computation typi-

cally don’t matter, as long as the final computation result is correct. X’s propagating

to primary outputs during intermediate cycles generally aren’t considered X-bugs if the

final result is unaffected, however, information leakage can still occur during these inter-

mediate cycles if the attacker can observe the primary outputs of the circuit.

The equivalence check is performed between 2 near identical versions of the design:

one where dci = 0 and one where dci = 1. If the designs are identical under all possible

input sequences (Pi = ∅), dci cannot possibly be used to leak design information.

We build upon this idea further by addressing the relationship between multiple don’t

cares in the design, and we formulate the problem in terms of combinational equivalence

checking and state reachability analysis.

While combinational equivalence checking between two nearly identical designs is

efficient and scalable, state reachability analysis is not. In the Elliptic Curve Processor

case study presented in Section 2.4, we illustrate how commercial code-reachability tools

can be used in place of symbolic state reachability analysis to re-classify don’t cares

erroneously marked as dangerous after combinational equivalence checking as safe.

Consider the generic example circuit in Figure 2.1, where the sequential behavior

has been removed by making all flip-flop inputs pseudo primary outputs (PPOs) and all

flip-flop outputs pseudo primary inputs (PPIs). There are n don’t care bits in the design,

and it is clear that dci and dcj have the ability to block each other from propagating.

dch is in the fan-in cone for signal a, and can also influence the propagation of dci and

dcj, while dck is completely independent from dci, dcj, and dch.

Combinational equivalence checking can be performed between 2 versions of the orig-

inal design: Cdci=0, and Cdci=1, by constructing the miter in Figure 2.2 and checking the

22

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

dci

dcj
a y

dch
...

dck
...

...

... ...

...

PIs

PPIs

POs

PPOs

C

Figure 2.1: Generic Circuit with Don’t Care Bits

satisfiability of node z. If z is UNSAT, then dci is safe. Otherwise, the equivalence checker

returns a distinguishing input vector (since we are performing combinational analysis,

the distinguishing sequence is now just a single vector). Note that when analyzing dci,

all remaining n − 1 don’t care bits are made primary inputs. This ensures the distin-

guishing input vector contains information about how the remaining don’t care bits are

constrained if dci is to successfully leak information.

Since we are not considering the sequential behavior of the design, the distinguishing

input vector could require that the pseudo primary inputs be assigned a value that can

never occur, in other words an unreachable state. State reachability analysis can be

performed before analysis of all don’t care bits, and a logic formula, L, describing the set

of unreachable states can be incorporated into the miter circuit as shown in Figure 2.3

to prevent the equivalence checker from finding distinguishing input vectors containing

these states.

State reachability is a hard problem, but recent advances in model checking [38] and

techniques such as [39], which over-approximate the set of reachable states, can aid in

addressing non-trivial designs. Additionally, since don’t cares can often be traced back

to single-line assignments in the Verilog code, dead-code analysis and code reachability

tools can help easily eliminate don’t care assignments that are unreachable.

23

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

0

a y

1

a y

XOR

{PIs, PPIs}

{dc0, dcj,…, dcn-1}

{POs, PPOs}

C0

C1

z

Figure 2.2: Equivalence Checking Formulation

0

a y

1

a y

XOR

{PIs, PPIs}

{dc0, dcj,…, dcn-1}

{POs, PPOs}

C0

C1

z

AND
w

Logic
Function L

PPIs 1 if state is unreachable

Figure 2.3: Equivalence Checking Formulation Excluding Unreachable States

24

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

For Trojan prevention, an over-approximation is ideal because it ensures that a dan-

gerous don’t care will never be classified as safe due to the elimination of a distinguishing

input vector containing a state erroneously marked as unreachable.

Our analysis uses the robust Verilog parsing capabilities of Yosys [40] to identify

don’t care bits in the design, and create and write Cdci=0, and Cdci=1 in the Berkeley

Logic Interchange Format (BLIF). The logic synthesis tool ABC [41] is then used to

perform combinational equivalence checking using the cec command. ABC is also used

to compute the set of unreachable design states (which is possible for the toy examples

in Section 2.2.2) using the ext seq dcs command.

2.3.2 Existing X-Analysis Tools

Our experiments use ABC and Yosys because of their public availability and trans-

parency, however we are aware that many commercial X-analysis tools and formal engines

exist with the capability to perform similar analysis, such as Jasper X-prop [42], Atrenta

Spyglass [43], Cadence Incisive [44], and Synopsys Magellan [45], to name only a few.

Our intention is not to argue that the existing tools are incapable of performing the

necessary analysis but that settings do not exist in these tools for analyzing don’t cares

in a security context. We illustrate our approach in the general terms of equivalence

checking and state reachability to provide a clear guide to be used by others looking to

extract the same information by taking advantage of access to existing commercial tools

with advance debug capabilities and optimized runtimes.

2.3.3 Methodology Applied to Examples 1 and 2

Our tool correctly classifies all 4 don’t care bits in Example 1 as dangerous. If

Example 2 is analyzed without state reachability analysis, our tool classifies all don’t

25

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

cares as dangerous except for dc5, which is classified as safe due to the bitwise AND on

Line 35 which always prevents propagation. All the counterexamples for dc0−dc3, assign

counter to 101, which can never occur.

ABC is used to perform reachability analysis and describe the forbidden states as a

logic function, L, which takes as input all pseudo-primary inputs and outputs 1 if the

input combination can never occur. We then modify the miter circuit in Figure 2.2 to

form the circuit in Figure 2.3 by adding an extra AND gate, with inputs L′ and z. If the

modified network is satisfiable, then the don’t care is dangerous.

Augmenting our methodology to include state reachability information results in the

correct categorization of dc0 − dc3 as safe, leaving only dc4 classified as dangerous.

2.4 Elliptic Curve Processor

We now present a case study in which manual inspection was used to identify don’t

cares in the control unit which provide an opportunity for a Trojan to leak all key bits. We

then show how our automated prevention method classifies the don’t cares which make

this exploit possible as dangerous in addition to unearthing several previously unknown

opportunities for information leakage.

2.4.1 Background

Elliptic curve cryptography (ECC) is a public key cryptosystem whose fundamental

operations use the mathematics of elliptic curves to perform key agreement and gener-

ate/verify digital signatures. ECC is currently used in SSH and TLS, and offers more

security/key bit than RSA [46].

Like other cryptographic algorithms, ECC operations can be accelerated if imple-

mented in hardware. Our case study examines a publicly available Elliptic Curve Pro-

26

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

cessor (ECP) which performs the point multiplication operation optimized for an FPGA

implementation [47].

Point multiplication is the fundamental operation on which all ECC protocols are

built, and the reader should refer to [47] for more background on the mathematics behind

this operation. Point multiplication takes as input, elliptic curve parameters, an initial

point on the elliptic curve, P , and a secret k, and computes G = [k]P , which is P “added”

to itself k times using the formulas for elliptic curve point addition and doubling. ECC

is secure because it is very difficult to discover k knowing only G and P .

2.4.2 The Hardware Trojan

The Trojan inserted into the ECP allows an attacker who only is allowed to observe

primary output signals to discover the secret k. This design contains a state machine

with 38 states (shown in Figure 2.4), multiple register files, and several custom arithmetic

units used by various scheduled operations. The final point, G, is computed when State

38 is reached. Much like the Trojans given in Section 2.2, the ECP Trojan exploits don’t

cares specified in a case statement during the assignment of control signals in the state

machine logic.

Listing 2.3 shows a snippet of the control logic. The control logic output signals cwl

and cwh are fed to all functional blocks in the ECP and control routing, register access,

and the operation of the custom ALU.

The design has 3 primary outputs: sx, sy, and done. sx and sy are both 233-bit

signals that hold the x and y coordinate of the final curve point G. The done signal

indicates when sx and sy are valid. We assume that the attacker can only observe these

output signals, and cannot examine the register file, input signals, or any other internal

signals. For each state in Figure 2.4, cwl and cwh are assigned values, however, there

27

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

INIT
1

INIT
2 3

4

5

6

7

8 9

10

11

12

13

14 15 16 38...

Point Doubling

Point Addition

Inversion

complete

di = 0

di = 1

38

Figure 2.4: ECP State Machine

are many don’t cares used to optimize the assignment logic as seen in Listing

2.3. Replacing all the X’s with 0’s results in an area increase of 8% for the control unit

after synthesis.

The assignment of don’t cares to bits in cwl and cwh do not provide opportunity for

Trojan insertion in most cases, since the don’t cares are specified based on the designer’s

knowledge of which control bits are relevant during specific states. However, in State

15, control signals for register bank 2 (write-enable and bits in both address ports) are

marked as don’t care. This can be seen by examining Line 15 in Listing 2.3 and the

register file control code in Listing 2.4.

Listing 2.3: Snippet showing X’s assigned to control signals

1 always @(s t a t e) begin

2 case (s t a t e)

3 6 ’ d0 : begin

4 cwl <= 10 ’ h000 ; /∗ I n i t L2R Step 1 ∗/

28

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

5 cwh <= 23 ’ h4x8484 ;

6 end

7 6 ’ d1 : begin

8 cwl <= 10 ’ h000 ;

9 cwh <= 23 ’ h4x808D ; /∗ I n i t L2R Step 2 ∗/

10 end

11 . . .

12 6 ’ d15 : begin /∗ Inv 1 ∗/

13 cwl <= 10 ’hx0D ;

14 /∗ NOTICE cwh [7 : 4] == xxxx ∗/

15 cwh <= 23 ’ h0x04x0 ;

16 end

17 . . .

18 endcase

19 end

These don’t cares specify that a gate-level implementation can choose to write or read

data to a choice of addresses, effectively making the contents of certain registers in bank

2 unknown during State 15.

Listing 2.4: Snippet from register bank module

1 /∗ Bank 2 Address Assignments

2 cwh [6 : 4] ARE X WHEN STATE==15 ∗/

3 assign rb2 addr1 = {2 ’ b0 , cwh [4 : 3] } ;

4 assign rb2 addr2 = {2 ’ b0 , cwh [6 : 5] } ;

5

6 /∗ cwh [7] IS X WHEN STATE==15

7 Leads to primary output Sy be ing X! ∗/

29

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

8 assign rb2 we = cwh [7] ;

9 assign rb2 d in = (cwh [2 2] == 1 ’ b1) ? c1

10 : ((cwh [1 5] == 1 ’ b0) ? c0 : c1) ;

11 . . .

One of these registers directly influences the primary output signal sy in the middle

of the point multiplication. The Trojan implemented in Listing 2.5 uses this ambiguity

to replace unknown bits in sy with key bits.

Normally, an unknown value in a circuit output during an intermediate cycle in the

computation is not considered an error, because it does not affect the final point

computed during the point multiplication. We emphasize that with the knowledge of

this new Trojan type, any X-propagation to primary outputs during any cycle must be

prevented.

Listing 2.5: Snippet showing Trojan RTL

1 assign sx = (key != 233 ’ b1) ? a0 : ‘BASEPOINT X ;

2 /∗ TROJAN −−−−−−−−−−−−−−−−−−−−−

3 When s t a t e == 15 , the s i g n a l a2 i s X due to wri te−enab l e and an

address b i t be ing s e t to X in the con t r o l l o g i c ∗/

4 assign sy = (key != 233 ’ b1) ? ((s t a t e == 6 ’ d15) ? {201 ’bx , key } :

a2) : ‘BASEPOINT Y ;

5 /∗ ORIGINAL−−−−−−−−−−−−−−−−−−−− ∗/

6 /∗ as s i gn sy = (key != 233 ’ b1) ? a2 : ‘BASEPOINT Y; ∗/

2.4.3 Automated X-Analysis

The ECP design has 572 primary input bits, 467 primary output bits, and 11232

state elements, resulting in a gate count over 300000. There are 538 don’t care bits in

30

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

the design analyzed by our tool. 282 correspond to assignments made during states 0−38

to bits in cwl and cwh, 33 correspond to the default assignments (state > 38, which

should be unreachable) of these signals (see Listing 2.3), and 233 are from a default

assignment in the quadblk module.

Combinational equivalence checking between 2 very similar designs scales well, and

each don’t care only requires a few minutes of analysis by ABC. Using only combinational

equivalence checking, the 538 don’t cares are separated into 2 groups: definitely and

possibly dangerous (307 bits), and definitely safe (231 bits).

Note that the dangerous don’t cares in Row 1 of Table 1 correspond exactly to the

don’t cares selected by our original manual analysis to implement the Trojan in Listing

2.5! Rows 2 and 3 highlight additional don’t cares which an attacker may be able utilize

to leak up to 33 bits of information during various states.

The distinction between definitely and possibly dangerous don’t cares requires state

reachability analysis, because the distinguishing input vector may contain an unreachable

state. For example, the variable nextstate is assigned don’t cares (see Row 4 of Table

2.1) only if the current state variable state is outside the 0 − 38 range, which a quick

analysis of the RTL code will reveal can never occur.

Full blown state reachability analysis does not scale well, and we were unable to

extract the exact set of unreachable states using ABC. However, we were able to deter-

mine that the lines of code containing the X-assignments in Rows 4-6 in Table 2.1 are

unreachable using Spyglass, an RTL lint tool from Atrenta [43].

Spyglass performs static analysis on RTL code in order to check that certain “design

rules” are not violated. For example, the rule NoAssignX-ML is violated if the right-

hand side of any assignment contains an X. We first checked the design against the

NoAssignX-ML rule to identify all the relevant X-assignments, confirming that the don’t

cares identified by Spyglass were consistent with the don’t cares extracted using Yosys.

31

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

Table 2.1: Classification of Don’t Cares in Elliptic Curve Processor

Row # # Don’t
Care Bits

Signal(s) Affected

Class 1: Definitely Dangerous (35 bits)
1 2 cwh[4],cwh[7], when state==15
2 1 cwh[12], when state==2
3 32 cwl, for various states ≤ 38

Class 2: Possibly Dangerous (272 bits)
4 6 nextstate[5:0], when state > 38
5 23 cwh[22:0], when state > 38
6 10 cwh[9:0], when state > 38
7 233 d[232:0], when cwh[19:16]==1 or cwh[19:16]==15

Class 3: Definitely Safe (231 bits)

It should be noted that the NoAssignX-ML rule does not perform code reachability or

X-propagation analysis.

Next the Av dontcare01 rule, which identifies reachable X-assignments was checked,

revealing that the don’t cares in Rows 4-6 in Table 2.1 are unreachable, meaning they

can be classified as definitely safe.

The don’t cares in Row 7 originate from the quadblk module and are assigned in a

default statement. While the assignment condition is possible, the propagation of these

don’t cares is gated by an enable signal, cwh[20]. When state < 38, the assignment

condition and (cwh[20]==1) can never be satisfied simultaneously. Since Spyglass only

analyzes assignment reachability, these don’t cares remain in the possibly dangerous

category. A formal property checker could be used to prove that cwh[20]==1 && state

< 38 can never be satisfied if the overhead of removing these don’t cares is too costly.

We remove the opportunity for Trojan insertion by replacing the don’t care bits listed

in Table 2.1 with 0’s and use Synopsys Design Compiler (ver I-2013.12-SP2) to synthesize

the design and measure the area overhead of the modification. The don’t cares in Rows

32

Hardware Trojans Hidden in RTL Don’t Cares Chapter 2

Table 2.2: Area overhead of Specifying Don’t Cares in Elliptic Curve Processor

% Area Increase
Don’t Cares Replaced w/ Static Values ecsmul quadblk

Class 1 0.04 –
Classes 1 and 2 1.80 3.87
All Don’t Care Bits 8.00 3.87

1-6 and Row 7 are from the ecsmul and quadblk modules respectively.

Table 2.2 shows how replacing only dangerous, both dangerous and possibly danger-

ous, and all don’t cares affects the area overhead of the ecsmul and quadblk modules.

Even though using only combinational equivalence checking over-approximates the num-

ber of dangerous don’t cares, being cautious and removing all don’t cares in Classes 1

and 2 is still preferable to the 8% area increase resulting from indiscriminately replacing

every don’t care bit (305 total) in ecsmul.

2.5 Summary

In this chapter we present a novel Trojan type that utilizes RTL don’t cares to

leak internal circuit node values without changing circuit functionality [22]. We then

formulate the insertion and prevention of such Trojans in terms of don’t care analysis,

and illustrate, through several examples, how the characteristics of our proposed Trojans

compare with already known X-bugs targeted by existing X-analysis tools. We present

an X-analysis methodology tailored to aid in the prevention of this new Trojan type, and

validate our technique on an Elliptic Curve Processor design with 538 don’t care bits.

Our technique classified a manageable number of don’t care bits as dangerous, leading

to a negligible area increase after replacing them with safe values.

33

Chapter 3

Identifying Dangerous Unspecified

Functionality

3.1 Introduction

In this chapter we present a general methodology based on mutation testing to iden-

tify unspecified functionality (beyond RTL don’t cares) that is susceptible to modification

by information leakage Trojans. After applying our method to a UART controller, we

discovered an entire class of Trojan exploiting undefined behavior in bus protocols along

with poorly tested interrupt functionality, despite the presence of a sophisticated verifi-

cation infrastructure.

In Chapter 2 we introduced a class of Trojans which leak information by only mod-

ifying RTL don’t care bits, and used combinational equivalence checking techniques to

differentiate don’t cares which can be exploited by an attacker to leak information and

those which are harmless and should remain in the design for optimization during synthe-

sis. This analysis technique relies on the maturity of combinational equivalence checking

tools for RTL designs, making it hard to generalize to SystemC, C, and other high level

34

Identifying Dangerous Unspecified Functionality Chapter 3

modeling languages. Additionally, only unspecified functionality captured by don’t care

bits can be analyzed. This chapter builds upon the ideas presented in Chapter 2, but our

proposed mutation-based method is more general since mutation testing is applicable to

FSM, C, SystemC, TLM, RT, and gate-level models, only requiring that the model be

executable and that a testing scheme exists.

The analysis methodology presented in this chapter randomly samples possible design

modifications (known as mutations in mutation testing [48]). We filter out modifications

that are not dangerous (do not affect unspecified or poorly tested functionality) by moni-

toring functional coverage and signals observable to the attacker/user. After our analysis,

the verification team is presented with a list of design modifications ordered from most

dangerous to least dangerous which are representative of functionality which either needs

to be specified or better tested to ensure the absence of Trojans.

The rest of the chapter is organized as follows: Section 3.2 summarizes existing related

work on mutation testing, Section 3.3 illustrates how a Trojan only modifying unspecified

functionality can leak design information, Section 3.4 reviews Coverage Discounting, a

technique our method builds upon, Section 3.5 introduces our methodology for detecting

dangerous unspecified functionality, Section 3.6 applies our methodology to a UART

design, and Section 3.7 summarizes our results and contributions.

3.2 Related Work

The goal of mutation testing is to gauge the effectiveness of the verification effort by

inserting artificial errors (faults) into the design code then recording how many faulty

versions of the design (mutants) are detected. Mutation analysis is motivated by the

observation that if the test bench is unable to detect artificial errors, it is likely that real

design errors are also going unnoticed.

35

Identifying Dangerous Unspecified Functionality Chapter 3

Mutation testing has been used for software security analysis to verify security proto-

cols, determine program susceptibility to buffer overflow attacks, and identify improper

error handling [48, 49]. In the hardware domain, mutation testing is primarily used for

test bench qualification [50]. Fault models and fault injection tools exist for SystemC

[51], TLM [52], and RTL [53].

Two well known drawbacks of mutation analysis are 1) long runtime and 2) large

manual effort required to analyze undetected mutants, some of which may be redundant.

Redundant mutants are those under all possible inputs, can never cause any change in

the design “care” outputs.

Coverage Discounting [24], further detailed in Section 3.4, is a technique which iden-

tifies undetected mutants which cause changes in functional coverage. In doing so 1)

redundant mutants are filtered out from analysis, 2) the remaining undetected mutants

are associated with specific functional coverpoints making analysis easier, and 3) the cov-

erage score is revised to reflect the error propagation and detection properties of the test

bench. Our technique builds upon Coverage Discounting by identifying mutants which

cause changes in attacker-observable signals (in addition to those which cause changes in

functional coverage) to filter out redundant mutants while highlighting mutants related

to functionality vulnerable for use in information leakage Trojans.

3.3 Information Leakage Trojans

We return to the simple FIFO example given in Figure 1.2 in Chapter 1, to motivate

how mutation testing can identify functionality susceptible to modification by information

leakage Trojans. Data is written to the FIFO when it is not full and write enable ==

1, and data is read from the FIFO when the FIFO is not empty and read enable == 1.

Data can be written to and read from the FIFO simultaneously.

36

Identifying Dangerous Unspecified Functionality Chapter 3

What is the correct value of read data when read enable == 0? To save energy,

it would make sense to maintain the value of read data from the last read operation,

but it is unlikely that this particular behavior is explicitly specified or tested. The red

circuitry in Figure 1.2 shows a simple Trojan which leaks information by routing a secret

internal design signal to read data whenever a read operation is not occurring. Because

the value of read data is able to propagate to the boundary of the main module, the

attacker is able to learn the value of secret data.

Listing 3.1 gives the Verilog code describing the read behavior of the FIFO in Figure

1.2. To illustrate the potential of mutation analysis to highlight the weakness in the

verification infrastructure allowing this Trojan to exist undetected, consider a fault which

changes the AND operator (highlighted in pink) to an OR operator in Line 2 of Listing

3.1. This fault causes read data to update whenever the FIFO is not empty, even if a

read operation is not occurring. If a read operation occurs, the read pointer will increment

as seen in Line 7 of Listing 3.1 and in the following cycle, even if read enable == 0,

read data will be updated with the value of the next FIFO item.

Listing 3.1: FIFO Read Behavior

1 //Memory Access Behavior

2 i f (r ead enab l e && ! buf fer empty)

3 read data <= mem[r ead pt r] ;

4 . . .

5 //Pointer Update Behavior

6 i f (r ead enab l e && ! buf fer empty)

7 r ead pt r <= read pt r + 1 ;

During testing, it is likely that a read operation will occur, but the FIFO will not

immediately become empty, meaning the spurious updating of read data can be observed

if the waveforms of the fault-free and faulty design are compared. However, it is unlikely

37

Identifying Dangerous Unspecified Functionality Chapter 3

that this fault will cause any tests to fail since the fault does not cause the read pointer

to spuriously update, and when read enable == 0, the test bench has no incentive to

check the value of read data. Notice that the functionality affected by this fault is useful

for an attacker because:

1. Observable signals at the boundary of the main module deviate from the fault-free

version during testing (indicating that information can be leaked during normal

operation without requiring the attacker to force the design into a rare state)

2. The fault is undetected

The methodology presented in Section 3.5 would flag this fault for analysis, forcing

the verification team to define behavior for the read data signal when read enable ==

0 then write a test case or checker for this behavior in order to detect the fault, resulting

in an improved test bench able to detect the Trojan in Figure 1.2.

3.4 Coverage Discounting

Before detailing our method for identifying dangerous unspecified functionality, we

review Coverage Discounting, the technique our methodology is based upon.

3.4.1 Motivation and Procedure

The goal of verification metrics are to 1) identify if test vectors adequately stimulate

the design, and 2) determine if the test bench is capable of detecting errors. Coverage

metrics, such as code, toggle, and functional coverage are widely employed and reflect

how well the design is activated by test bench, but do not qualify the error propagation

abilities of the verification infrastructure. Mutation testing, on the other hand, meets

both goals, but is time-consuming and the results are difficult to analyze.

38

Identifying Dangerous Unspecified Functionality Chapter 3

DUT	Tests	 Checker	
Detected	

Undetected	

	Add	more	tests	

No	

Yes	

Fix	

Coverage	
Changed?	

Figure 3.1: Coverage Discounting Flow

Coverage Discounting incorporates the information mutation testing provides about

the error propagation abilities of the test bench into the coverage score meaning after

Coverage Discounting, the verification team can target improvement of the coverage score

as is typical in the verification flow instead of analyzing artificial faults.

To accomplish this, the decision procedure shown in Figure 3.1 is used to determine

if the coverage score needs to be revised downward (the red path shows the conditions

necessary for decreasing the coverage score). Before fault injection, coverage is recorded

for the fault-free design during all tests. Then for each fault injected in the design:

1. Run all tests on the faulty design and record coverage

2. If all of the tests pass (the fault goes undetected) examine the coverage score: if

coverage changed under the undetected fault, subtract the differing coverage

from the original coverage score

To regain the discounted coverage, a verification engineer must write more tests or

improve the checkers. Coverage discounting relies on the observation that if a test bench

39

Identifying Dangerous Unspecified Functionality Chapter 3

cannot even detect the difference between a design which covers certain functionality

and a design which does not, the test bench is incapable of detecting potential errors

associated with that functionality.

3.4.2 Example

Driver

Driver

DUT

C
ov

er
ag

e
S

co
re

bo
ar

d

C
he

ck
er

B
U

S

(a) Original Design

Driver

Driver

DUT

C
ov

er
ag

e
S

co
re

bo
ar

d

C
he

ck
er

Mutation

B
U

S

(b) Mutated Design

Figure 3.2: Discounting Example: A Bus Interface Controller (a mutant disabling
burst mode is not detected, in turn causing the burst mode coverpoint to be dis-
counted)

Suppose we are validating the bus interface controller shown in Figure 3.2a. Listing

3.2 details the portion of the controller which enables burst transactions and defines a

coverpoint, BURST MODE, which is considered covered when burst == true.

40

Identifying Dangerous Unspecified Functionality Chapter 3

Listing 3.2: Original Design

1 i f (t r a n s a c t i o n l e n >= 5)

2 burst := true ; t r a n s a c t i o n l e n := t r a n s a c t i o n l e n − 4 ;

3 else

4 burst := f a l s e ; t r a n s a c t i o n l e n := t r a n s a c t i o n l e n − 1 ;

5 . . .

6 BURST MODE : coverpo int burst ;

Note that this controller has a bug which is undetected: the number of packets sent

in burst mode is assumed to be 5 in the condition (Line 1 in Listing 3.2) and 4 during

the transaction length calculation (Line 2 in Listing 3.2). This causes 4 packets, followed

by 1 packet to be sent instead of 5 together.

The test bench shown in Figure 3.2a sends a transaction through the controller and

captures the output on the far side of the bus. The checker (a collection of assertions,

error checks, and other test bench components that together output a binary pass/fail

verdict for each test) ensures that the received data matches the sent data. If so, the

test will pass, and as long as a transaction with length ≥ 4 is sent by the test bench, the

burst mode will be enabled and considered covered. However, consider the following

mutant, where an error has been inserted into the controller’s logic:

Listing 3.3: Mutated Design

1 i f (false)

2 burst := true ; t r a n s a c t i o n l e n := t r a n s a c t i o n l e n − 4 ;

3 else

4 burst := f a l s e ; t r a n s a c t i o n l e n := t r a n s a c t i o n l e n − 1 ;

The overall effect of this mutation is illustrated in Fig. 3.2b. The output seen on the

far side of the bus is identical in both the original and mutated design – it merely arrives

41

Identifying Dangerous Unspecified Functionality Chapter 3

later due to being broken up into smaller pieces – so this mutation is undetected by the

checker. Since the checker cannot distinguish between normal and burst mode operation,

clearly the burst functionality has not been meaningfully covered.

Using only mutation analysis, it is easy for a validation engineer to locate mutated

source code and analyze its local behavior, but it can be difficult to use this information

to determine a mutation’s effect on design functionality and uncover test or checker

deficiencies. Coverage discounting, in this example, explicitly links the transaction len

>= 4 ⇒ false mutation with the burst mode coverpoint because

1. The burst mode coverpoint is no longer covered in the mutated design

2. The mutation is undetected by the test bench

By providing a more accurate coverage score and explaining the meaning of the mu-

tation in terms of design function, it is more likely that the real bug in this controller

will be exposed.

3.5 Identification Methodology

3.5.1 Threat Model

Our method assumes the attacker can modify the design at the RT abstraction level

or higher. This is because Trojans inserted in the gate-level netlist or later design stages

(meaning there is a golden RTL model available) can be detected using commercial

equivalence checking tools which exist as part of the standard chip design flow once the

X-analysis method proposed in Chapter 2 is applied to ensure any X’s in the golden RTL

model cannot be used to implement Trojans.

Similar to Chapter 2, we assume the goal of the Trojans our method targets is to

leak information to signals at the boundary of the IP core being analyzed or to internal

42

Identifying Dangerous Unspecified Functionality Chapter 3

registers/signals the attacker can observe. Since we identify scenarios where the test

bench is unable to detect changes in attacker-observable or IP boundary signals, Trojans

performing other functions affecting unspecified behavior besides information leakage are

also targeted by our method.

Our methodology can be performed at any level of abstraction, but since identify-

ing unspecified design behavior is central to Trojan prevention, performing analysis at

abstraction levels describing the design behaviorally as oppose to structurally makes in-

terpreting the results of mutation testing easier. Moreover, simulation speed improves

when more detail is abstracted away from the design, and any improvements in the design

specification or functional tests resulting from our technique carry over to all subsequent

refined versions of the design relying on the same verification infrastructure.

To clarify, our technique does not directly mark specific lines of code, wires, or gates

as being part of a Trojan, in the same way that mutation analysis does not directly find

bugs. Rather, our analysis technique highlights design functionality that is susceptible to

Trojan insertion and calls for refinement of the specification or more thorough testing of

the at risk functionality. If a Trojan already exists in this functionality, then it is likely

that the test bench improvements will detect the Trojan, and if there is no Trojan, the

improvement effort increases the chances that Trojans inserted in this functionality later

on in the design life cycle will be detected.

3.5.2 Mutant Selection

Given the wide variety of mutation models available [48] what is the criteria for

selecting the best model for Trojan detection, and can mutation analysis aid in detection

of other Trojan types? An underlying assumption of mutation analysis is the Coupling

Effect Hypothesis [48]: “Complex faults are coupled to simple faults in such a way that

43

Identifying Dangerous Unspecified Functionality Chapter 3

a test data set that detects all simple faults in a program will detect a high percentage of

the complex faults.” The example in Section 3.3 illustrates this concept because the more

complex fault (the Trojan in Figure 1.2) can be detected if the simpler fault (highlighted

in Listing 3.1) is detected.

If our method targeted Trojans with rare triggering conditions, this hypothesis would

not hold, since these Trojans are examples of pathological faults. However, since infor-

mation leakage Trojans are most effective when they affect a large number of observable

signals during a large number of cycles, the uniform structural sampling that simple mu-

tation models provide (such as those used by Certitude [53]) should be effective enough

to highlight the most vulnerable unspecified functionality if enough faults are injected.

A more thorough analysis of the effect different mutation models have on the success of

our technique is a topic for future research.

3.5.3 Mutant Injection and Analysis

In a security context, for a fault to be dangerous, it must be 1) undetected by the

test suite and 2) cause changes in attacker-observable signals. Figure 3.3 shows how un-

detected faults can be classified based on their influence over attacker-observable signals

and functional coverage. Dangerous faults fall into Regions A and B.2 in Figure 3.3.

Identifying Attacker-Observable Signals: The labeling of attacker-observable

signals depends on the design and attack model. For example, if an attacker can run a

malicious user-level software program which interfaces with the hardware Trojan, certain

registers will be marked as attacker-observable in addition to network interfaces. If the

design being analyzed is a peripheral or co-processor, and it is assumed the main proces-

sor may contain a Trojan, the bus interfaces between modules are considered attacker-

observable. If the attacker has physical access to the device, then all chip output pads

44

Identifying Dangerous Unspecified Functionality Chapter 3

are attacker-observable.

A key point to note is that even if the correct values of some attacker-observable

signals are unknown to the verification team, our technique only requires discovering

differences in the simulation trace between the faulty and fault-free designs.

What about undetected faults affecting specified functionality (Regions B.1 and B.2 in

Figure 3.3)? The faults in Region B.1 do not affect attacker-observable signals but should

be examined because they indicate design functionality is not adequately tested! The

faults in Region B.1 cause the coverage score to be revised downward during Coverage

Discounting [24], which is detailed in Section 3.4. Discounting separates faults affecting

design functionality from redundant faults by recording changes in functional coverage

caused by each fault. Discounting can be applied to any design where it is possible to

define and record functional coverage.

We are able to add our analysis to the existing Coverage Discounting flow with only

the additional overhead of tracking attacker-observable signals. The following flow both

identifies test bench weakness affecting specified functionality and highlights dangerous

unspecified functionality:

1. Record values of attacker-observable signals and functional coverage in the original

design during all tests

2. Analyze the design and generate a set of faults, then inject each fault and re-run

all tests, recording the same information as in Step 1

3. Only examine undetected faults (ones which do not cause any tests/assertions

to fail)

The following details the actions that should be taken for every undetected fault,

based on the region in Figure 3.3 the fault belongs to:

45

Identifying Dangerous Unspecified Functionality Chapter 3

Func%onal	
coverage	
differs	

A3acker-‐
observable	
signals	 differ	

Undetected	
Faults	

A	

C	

B.1	

B.2	

Figure 3.3: Scenarios for Undetected Faults

• Region A: Functional coverage did not change under the fault, but a change

in some attacker-observable signals occurred. It is likely that the fault affects

unspecified design functionality susceptible to the insertion of information leakage

Trojans. Behavior for the functionality affected by the fault must be specified, and

then the test bench must be improved to check this newly defined behavior.

• Region B (Regions B.1 and B.2): Functional coverage changes under the fault

meaning specified design functionality has been modified and this modification

has gone unnoticed by the test bench. This indicates a weakness in the test bench,

and the verification engineer must examine why this change in functionality went

undetected and fix the test bench.

• Region C: Neither functional coverage nor attacker-observable signals change

meaning the fault is likely redundant (for example changing the loop condition

in for(x=0;x<10;x++) to for(x=0;x!=10;x++)), and is not worth examining.

46

Identifying Dangerous Unspecified Functionality Chapter 3

3.5.4 Ranking Undetected Faults

Although less than the total number of undetected faults, the number of undetected

faults in Region A of Figure 3.3 can still be too costly to completely analyze.

It is desirable that the undetected faults highlighting unspecified functionality most

advantageous for an attacker to exploit be analyzed first. Since mutation analysis is an

iterative process, after improving the test bench so that it is capable of detecting the

most dangerous faults, it is likely that many other previously undetected faults will now

be detected and not require analysis.

If there are not enough resources to dedicate to ensuring that all undetected faults

are eventually detected, the proposed ranking metrics provide confidence that precious

man-hours are spent analyzing only the most severe threats.

The following metrics are easily observed during the injection of each fault:

1. Number of attacker-observable bits differing

2. Total time attacker-observable signals differ

3. Number of distinct tests producing differences in

attacker-observable signals

Metric 1 captures whether the fault affects a few specific signals or broadly impacts

the set of attacker-observable signals. For example, if a design has 10 attacker-observable

signals, and Fault A causes 8 to differ at some point during testing, while Fault B only

causes 3 to differ, a Trojan related to the functionality of Fault A can potentially leak

more bits of information during a given cycle.

However, the number of cycles a given signal differs is also proportional to the infor-

mation leakage potential of a Trojan based on a particular fault. Metric 2 is the sum over

all tests and all attacker-observable signals of the total time each signal differs. If the 8

47

Identifying Dangerous Unspecified Functionality Chapter 3

signals differing under Fault A only differ for 2 cycles each, while the 3 signals differing

under Fault B differ for 10 cycles during testing, a Trojan formed from Fault B may be

more useful to an attacker.

Metric 3 gauges how likely information leakage will occur under normal usage sce-

narios. Presumably, the verification tests at the very least exercise typical design func-

tionality. If the attacker cannot force the design into states activating the mutated

functionality, faults that lead to observable differences across many tests are more useful

for developing Trojans which provide information leakage capabilities during more design

states.

3.5.5 Method Overhead and Coverage

One well known disadvantage of mutation testing is the long runtime required to apply

the entire test suite to each faulty version of the design. While our methodology also

requires simulation of all tests for each mutant, the additional overhead needed to record

attacker-observable signals and coverage, then compute differences with the fault-free

design, is negligible in comparison.

Another disadvantage of mutation testing is the amount of manual effort required

to analyze each undetected fault. The fault ranking mechanism presented in Section

3.5.4 somewhat alleviates this problem by allowing the verification engineer to review

the functionality with the largest risk of hiding an information leakage Trojan to be

analyzed first. Once the most dangerous fault is detectable by the test bench, all other

dangerous faults can be re-evaluated, and those which are now detected due to test bench

improvements no longer need to be analyzed.

The simplest and most effective method of decreasing the runtime of mutation analysis

is to simulate fewer faults. A method identifying the minimal fault set required to expose

48

Identifying Dangerous Unspecified Functionality Chapter 3

all verification holes for a design unfortunately does not exist. Developing metrics to

determine when a sufficient number of mutants have been simulated is one of the hardest

problems to address in mutation testing. Future research will investigate how the metrics

in Section 3.5.4 and additional simulation data can be used to develop these metrics.

3.6 UART Controller Case Study

We analyze a UART (universal asynchronous receiver/transmitter) design from Open-

Cores [54] using the methodology presented in Section 3.5. After analysis of just 4 of

the most dangerous undetected faults returned by our method, we identify unspecified

bus functionality and poorly tested interrupt functionality vulnerable to the insertion of

information leakage Trojans. After further defining portions of the bus specification and

correcting an error in the interrupt checker, the test infrastructure is able to detect these

faults as well as an example Trojan inserted in the UART bus functionality. We now

provide the case study details.

The test bench used in this case study is a propriety OVM-based suite provided by an

EDA tool vendor consisting of 80 directed tests with contained random stimuli, functional

checkers, and 846 functional cover points. This test bench is representative of a typical

mature regression suite.

There are 38 attacker-observable bits. 32 bits belong to the wb dat o signal, which

is the data bus the UART places values onto when the bus master (often a processor

core) issues read requests. The signals wb ack o, int o, and baud o, are single bit signals

which acknowledge bus transactions, signal interrupts, and define the baud rate respec-

tively. These 35 signals comprise the interface to the processor core, while the remaining

3 attacker-observable signals are the off-chip serial output, request to send, and data

terminal ready signals. For this experiment, we make the assumption that the attacker

49

Identifying Dangerous Unspecified Functionality Chapter 3

Table 3.1: Categorization of Undetected Faults

110 Undetected Faults
Region A Region B Region C
30 faults 2 faults 78 faults

is able to see all 38 signals.

Mutation analysis is performed using the commercial mutation analysis tool Certi-

tude [53]. Certitude faults are simple modifications made to the design source code, for

example replacing an AND operator with an OR operator, or tying a module port to a

static 0 or 1.

Fault Classification: 1183 faults are injected one by one in the design, and tests

are run until the fault is detected. Out of the 1183 faults, 110 are not detected by any

of the 80 tests. The classification of these faults into Regions A, B, and C in Figure 3.3

is presented in Table 3.1. Using our methodology, the number of faults requiring manual

analysis (those in Regions A and B) is reduced from 110 to 32.

3.6.1 Wishbone Bus Trojan

The 3 ranking metrics presented in Section 3.5.4 are equally weighted to identify the

most dangerous faults. The 3 most dangerous faults (1411, 1412, and 1413) all affect the

following line, which assigns the output enable control bit to 1 in the Wishbone Bus [55]

interface if all 4 conditions are true:

Listing 3.4: Assignment of Output Enable

assign oe = ˜ wb we is & wb stb i & wb cyc i & wbstate==2’b01 ;

Each of the 3 faults changes 1 of the bitwise AND operators (highlighted in pink) to

a bitwise OR operator. For example, fault 1411 changes the assignment to:

50

Identifying Dangerous Unspecified Functionality Chapter 3

Listing 3.5: Fault 1411

assign oe = ˜ wb we is & wb stb i & wb cyc i | wbstate==2’b01 ;

effectively setting oe whenever wbstate==2’b01, even if another condition is false, which

in the original fault-free design, would have prevented oe from being set.

When oe is set, the 8-bit data bus lines (coming from the UART register file) are

re-sampled, and placed in the correct byte lane on the 32-bit data output bus (wb dat o)

as seen in the following code:

Listing 3.6: Assignment of Data Output Bus

1 i f (oe)

2 case (w b s e l i s)

3 4 ’ b0001 : wb dat o <= {24 ’ b0 , wb dat8 o } ;

4 4 ’ b0010 : wb dat o <= {16 ’ b0 , wb dat8 o , 8 ’ b0 } ;

5 . . .

If oe is not set, the data bus retains its previous value.

Why Are Faults Modifying oe Undetected? To understand why spurious

changes on the data output bus are not detected by the test bench, which includes a

Wishbone bus protocol checker, we must elaborate on the functionality of the protocol

control signals involved in the assignment of oe (Listing 3.4): wb stb i (STB I in the

bus specification document), wb we is (WE I), and wb cyc i (CYC I).

From the specification, STB I, set by the bus master, selects a particular slave, and “a

SLAVE shall respond to other WISHBONE signals only when this [STB I] is asserted...”,

“the cycle input [CYC I], when asserted, indicates that a valid bus cycle is in progress”,

and “the write enable input [WE I] indicates whether the current local bus cycle is a

READ or WRITE cycle” [55].

In the original design, oe is only set during a valid read transaction. Under the

51

Identifying Dangerous Unspecified Functionality Chapter 3

3 faults, oe is incorrectly set during write transactions, when the UART slave is not

selected, and when a valid bus cycle isn’t in progress. However, during these cycles the

bus master never captures data from wb dat o, so the extra data bus changes never cause

incorrect data to be read from or written to the UART registers.

Example Output Enable Bus Trojan: This analysis indicates the UART design

may be infested with a Trojan that can leak information with impunity on the data bus

as long as all the conditions in Listing 3.4 are not simultaneously met and the test bench

would be none the wiser! Specifically, the Trojan can take advantage of the fact that the

value of wb dat o is unspecified during a write transaction or invalid cycle.

We implement this bus Trojan by changing the assignment of oe to match Listing 3.5.

We then choose to leak the value 0xdeadbeef over the bus only during write transactions

and invalid cycles by modifying the code in Listing 3.6 to the following code, shown in

Listing 3.7 (the Trojan is Lines 2-3):

Listing 3.7: Output Data Bus Trojan

1 i f (oe) begin

2 i f (wb we i | ˜ wb s tb i | ˜ wb cyc i)

3 wb dat o <= 32 ’ hdeadbeef ;

4 else

5 case (w b s e l i s)

6 4 ’ b0001 : wb dat o <= {24 ’ b0 , wb dat8 o } ;

7 4 ’ b0010 : wb dat o <= {16 ’ b0 , wb dat8 o , 8 ’ b0 } ;

8 . . .

Figure 3.4 illustrates the ability of the Trojan to leak 32 bits of data during every

write transaction while not interfering with read transactions. For example, at 135ns,

the UART responds to a read request with the correct data, not 0xdeadbeef. Simply

placing 0xdeadbeef on the data bus is good for illustrative purposes, but may not be

52

Identifying Dangerous Unspecified Functionality Chapter 3

100 ns 200 ns

00000000 DEADBEEF 00000075 DEADBEEF 00550000 DEADBEEF

Time
wb_clk_i=1
wb_rst_i=0
wb_cyc_i=1
wb_stb_i=1
wb_we_i=0
wb_ack_o=1
wb_dat_o[31:0]=00000075

Figure 3.4: Output Enable Trojan Waveform for Bus Protocol Test

useful to an attacker. One should note that Line 3 in Listing 3.7 can be changed to assign

any 32-bit value to wb dat o, including other secret internal design signals!

This Trojan is fundamentally different from Trojans relying on rare triggering con-

ditions for stealth as it is active during every write transaction, which is certainly not a

rare design state, as evidenced by Figure 3.4. It is very unlikely that this Trojan would

be detected by existing methods targeting the identification of rarely used logic.

Improving the Bus Checker: To detect faults 1411, 1412, and 1413, the following

additional check is added to the existing bus protocol checker: wb dat o can not change

unless the design has been reset, or a read request is being acknowledged. In addition to

detecting the 3 faults, the Output Enable Bus Trojan is also detected.

In a traditional verification setting, it would be unnecessary and cumbersome to add

this additional check, and the 3 faults would be considered a waste of time to analyze

because they do not affect the correctness of normal read/write operations. Our work

is the first to highlight the relationship between undetected faults affecting attacker-

observable signals and hardware Trojans, providing motivation to analyze and improve

the test bench to detect these seemingly meaningless artificial errors.

Through mutation analysis, which is a random sampling of very specific design modi-

fications, we have actually found a more general class of Trojan, the bus protocol Trojan.

The bus protocol Trojan takes advantage of unspecified functionality such as data bus

values when no valid transactions are taking place, and the value of the data output bus

53

Identifying Dangerous Unspecified Functionality Chapter 3

during a WRITE cycle. The FIFO Trojan in Section 3.3 actually belongs to this class of

Trojan.

3.6.2 Interrupt Output Signal

After improving the test bench to detect the 3 faults related to the Wishbone bus,

the ranking metrics presented in Section 3.5.4 identify Fault 918, which affects the inter-

rupt mechanism, as the most dangerous fault. This fault affects specified functionality,

and belongs to Region B.2 in Figure 3.3. Interestingly, this fault is not highlighted by

Coverage Discounting, but is by our technique.

The UART uses a single bit signal, int o, to notify the host processor of pending

interrupts. There are 5 different events which can cause an interrupt, and the Interrupt

Identification Register (IIR) indicates the highest priority interrupt currently pending.

A commonly used interrupt is the received data available (RDA) interrupt, which fires

when a threshold number of characters is received.

Fault 918 causes int o to become unknown for many cycles during 49 of the 80

tests. More specifically, Fault 918 causes the RDA interrupt pending signal rda int pnd

to become X instead of 1 under certain conditions, making it possible to selectively

suppress the RDA interrupt (and consequently int o) without the test bench noticing.

Although the test bench checks if IIR bits are set correctly when conditions for each

interrupt type are met, and most of the time checks that int o reflects the IIR interrupt

pending bit within 10 clock cycles, the behavior of int o is not checked if int o becomes

X. Moreover, even if a Trojan set int o to a non-X value in order to leak information,

as long as int o becomes both 0 and 1 within 10 clock cycles, the interrupt checkers

would not notice that int o is changing spuriously with respect to the IIR interrupt

pending bit. This oversight in the test bench is an example of poorly tested specified

54

Identifying Dangerous Unspecified Functionality Chapter 3

functionality, since the value of int o is clearly being checked in the interrupt checker,

but not thoroughly enough.

It is interesting to note that Fault 918 did not cause a change in functional coverage,

perhaps suggesting that the coverage model is not detailed enough to highlight mean-

ingful verification holes in the interrupt functionality illustrating the potential of our

analysis technique to highlight and qualify the verification of important design function-

ality outside of the coverage model.

3.7 Summary

In this chapter we propose an automated methodology to identify unspecified func-

tionality vulnerable to modification by information leakage Trojans [23]. Our method is

applicable to a wide range of abstraction levels, and also works to identify poorly tested

specified functionality in addition to dangerous unspecified functionality. We demon-

strate the effectiveness of our approach by finding an entire class of information leakage

Trojans related to unspecified bus functionality after analyzing the 3 most dangerous

faults highlighted by our method in a UART controller design. Our method also led to

the discovery of poorly tested interrupt functionality vulnerable to Trojan insertion. We

then close the verification loop by improving the design checkers to detect these faults and

show that this improvement leads to the detection of an actual Wishbone bus Trojan.

55

Chapter 4

Trojan Channels in Partially

Specified SoC Bus Functionality

4.1 Introduction

This chapter focuses on Trojans in SoC on-chip buses. In Chapter 3 we presented

a general method to identify dangerous unspecified functionality in any in any type of

design, including bus systems. Mutant simulation and analysis is expensive, but necessary

if one cannot identify dangerous unspecified functionality directly by inspection. Since

bus systems are characterized by well-defined protocols and set of common topologies,

this chapter directly presents a general model for dangerous unspecified bus functionality.

Our work takes inspiration from the Wishbone bus Trojan presented in Chapter 3, and

generalizes the Trojan to other bus protocols and more complex bus topologies.

The ability to manipulate the bus system is extremely valuable to an attacker since

the bus controls communication between critical system components. A denial of service

Trojan halting all bus traffic can render an entire SoC useless. Any information trans-

ferred to/from main memory, the keyboard, system display, network controller, etc. can

56

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

T1 T2 T3
Unspecified!

ACLK

INFORMATION

VALID

READY

Figure 4.1: AXI Bus Protocol VALID/READY Handshake [56]

be passively captured or actively modified by Trojans inserted in the interconnect.

There exist many different bus protocols designed to optimize different design pa-

rameters such as area/timing overhead, power consumption, and performance [57]. Re-

gardless, all protocols employ signals to mark when valid bus transactions occur and

handshakes to provide rate-limiting capabilities, meaning valid and idle bus cycles can

be clearly differentiated. While bus protocols clearly define the desired values for each

data or control signal during valid transactions, the values of these signals during idle

cycles are unspecified and largely ignored by bus protocol checkers, formal verification

properties, and scrutiny during simulation-based verification. Trojan behavior during

these cycles will not be detected by traditional verification methodologies. For example,

Figure 4.1 shows the VALID/READY handshake used by each channel in the widely

used AXI4 protocol. When VALID is LOW, the information lines can take on any value,

including Trojan information.

The Trojans we propose in this work operate entirely within idle bus cycles, with the

goal being to provide a covert communication channel built upon existing bus infrastruc-

ture. This Trojan channel can be used to connect Trojan components spread across the

SoC in addition to enabling information leakage from legitimate components not possible

in the original design. Unlike previously proposed bus Trojans, which lock the system

57

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

bus, modify bus data, and allow unauthorized bus transactions [8, 58], our Trojans never

hinder normal bus functionality or affect valid bus transactions.

In Section 4.2 we review the current solutions addressing bus architecture security

issues, and motivate why these are not adequate for detecting bus Trojans hiding in

partially specified bus functionality. Section 4.3 outlines the threat model and introduces

the Trojan channel model and circuitry, and Section 4.4 provides complete details for

AMBA AXI4 and APB. The overhead of creating a 2-way information leakage channel

between slaves with varying channel parameters in an AXI4-Lite interconnect is explored

in Section 4.5, then in Section 4.6 a Trojan channel is inserted in a full SoC system

running multi-user Linux to demonstrate how a malicious unprivileged software program

can access root-user data. Several detection methodologies are outlined in Section 4.8,

and Section 4.9 summarizes the results and contributions of this chapter.

4.2 Related Work

4.2.1 Bus Security

The following are bus security issues being addressed in literature and industry:

1. Malicious snooping of bus data

2. Enforcing bus slave access control policies

3. Deadlock prevention (malicious and accidental)

4. Data integrity, data tampering prevention

Previously proposed bus Trojans include denial of service attacks accomplished by

indefinitely asserting the LOCK signal in one of the bus masters or the WAIT signal in

58

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

a bus slave, observing bus transactions between other components, corrupting bus data,

and allowing a master to access forbidden address ranges [8, 58].

In [58], the authors present a secure AHB bus architecture to detect the above men-

tioned Trojans at runtime. A watchdog timer is added to detect bus deadlock, and to

prevent snooping multiplexors are added on all data lines to zero the lines visible to

components uninvolved in the current transaction, however this additional circuitry was

shown to have significant impact on the maximum bus operation frequency.

Encryption of bus data [14, 59] has been proposed as a method to prevent bus

snooping. Key maintenance, along with the overhead of encryption circuitry limits the

widespread adoption of this countermeasure. While encryption of bus data prevents

snooping, it does not prevent the existence of a Trojan communication channel.

To prevent illegal peripheral access, [58] adds registers holding the allowable access

ranges for each bus master ensuring unauthorized requests are blocked and recorded.

ARM TrustZone Controllers are commercial IP blocks which provide access control mech-

anisms to memory regions and bus peripherals and are compatible with other ARM bus

IP and AMBA protocols [60].

Both these measures monitor valid bus transactions for violations. Since our proposed

Trojans never modify existing or create new valid bus transactions, these countermea-

sures will not detect communication on the Trojan channel. Moreover, neither of these

countermeasures address rouge communication between 2 slaves.

Extensive research on formal verification of bus protocols has been performed to en-

sure deadlock avoidance and fairness [61, 62, 63]. The properties checked using formal

methods can be re-used during protocol compliance checking of specific bus implemen-

tations using either formal or simulation based methods. The availability of commercial

compliance checking verification IP (ex. [64] for AMBA protocols) and pre-packaged

SystemVerilog assertions suites [65] illustrate the importance of verifying the correctness

59

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

of specified bus functionality.

During idle bus cycles, when VALID signals are de-asserted, there are no proper-

ties/assertions to capture what the correct behavior is, because it is not relevant to the

protocol. Our proposed Trojans exploit this fact, and operate exclusively during these

cycles to avoid violating assertions or detection during property checking.

4.2.2 Hardware Trojan Detection

Many Trojans proposed in literature hide from the verification effort by only per-

forming malicious functionality under extremely rare triggering conditions. Detection

methods targeting this Trojan type identify “almost unused” logic, where rareness is

quantified by an occurrence probability threshold. This probability is either computed

statically using approximate boolean function analysis [18, 19] or based on simulation

traces [20, 21].

The Trojans we propose in this work only modify signals under conditions during

which they are unspecified, and to be detected by the existing methods, the occurrence

of such conditions must be sufficiently rare. We argue that this is seldom the case. For

example, our proposed Trojan communication channel can be used to snoop data destined

for Slave A by placing data from valid writes to Slave A into a FIFO from which the data

is read and leaked to Slave B’s bus interface whenever the channel is idle. The FIFO

write condition is a valid data transfer to Slave A, and the leakage condition causing

the data to appear at Slave B’s bus interface is an idle channel, neither of which are

inherently “rare” conditions.

60

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

4.3 Trojan Communication Channel

There are many bus standards, providing the ability to optimize with respect to area/-

timing overhead, power consumption, and performance parameters. Common among all

standards are control signals marking when valid bus transactions occur. During idle

cycles, the value of many control and data signals are unspecified, allowing a powerful

Trojan communication channel to be built using the existing bus infrastructure. This

section first gives our threat model, then details how to insert such a channel for any bus

topology and protocol.

4.3.1 Threat Model

Since a covert communication channel is useless without a sender and receiver of

information, we assume that at least one component connected to the system bus contains

a Trojan utilizing the information received on the channel, and that there is another

Trojan to either leak data from the component it resides in or snoop bus data otherwise

not visible to the receiver and send it over the channel.

Although it is possible for the Trojan to create new bus transactions adhering to the

bus protocol during unused cycles, verification infrastructure often includes bus checkers

which count and log all valid bus transactions. For this reason, our proposed Trojans

do not suppress, alter, or create valid bus transactions, but instead re-use existing bus

protocol signals to define a new “Trojan” bus protocol allowing communication between

different malicious components across the SoC.

Trojan Insertion Stage: It is assumed the Trojans are inserted in the RTL code

or higher-level model, meaning no golden RTL model exists to aid in Trojan detection

at later stages in the design cycle. A complex SoC requires hundreds of engineers to

design and test, and relies on third party IP and tools to meet time to market demands.

61

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

A single rouge design engineer or malicious 3rd party IP or CAD tool vendor has the

potential to implement a Trojan communication channel.

4.3.2 Trojan Channel Components

The structure and size of the Trojan channel circuitry depends on the following:

1. Bus Topology: Determines necessity of FIFO and extra Leakage Conditions Logic

at receiver interface

2. Bus Protocol: Defines Leakage Conditions Logic and selection of signal(s) to

mark valid Trojan transactions

3. Trojan Channel Connectivity: Channel can be one-way or bi-directional, con-

tain an active or snooping sender, and involve information leakage between two

masters, two slaves, or a master and a slave

4. Data Width of Trojan Channel (k): number of bits leaked during a Trojan

transaction

5. FIFO Depth (d): FIFO used to buffer Trojan channel data if the receiver is busy

accepting valid bus transactions

Bus topology and protocol are selected by the system designer, whereas Trojan chan-

nel connectivity is chosen by the attacker. Data width (k) and Trojan FIFO depth (d)

are parameters selected by the attacker to trade-off performance and overhead of the

Trojan channel. The black-colored components in Figure 4.2 are necessary to implement

a Trojan communication channel for a shared bus topology, which is shown in Figure

4.3a. For this case, the Data and Control lines from the sender component are directly

visible at the receiver. The red-colored components in Figure 4.2 show the extra circuitry

62

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

C0 C1 C2 C3

R W R W

S0 S1M0 M1

R WR W

0

1

0

1

W

R

W

R
S1

S0

Leakage
Conditions
(Sender)

0

1

0

1

Control

Sender Interconnect Receiver

Original

Trojan

Trojan

Control

Data
Original

Data

le
ak

s

Original

· · ·
Trojan

1

0

Trojan

Original 0

1

le
ak

r

FIFO Read

Conditions
Leakage

(Receiver)

FI
FO

W
ri

te

Interconnect

Write Data Crossbar

Read Data Crossbar

W

R

M0

M1

W

R

0

1

1

0

(c) Independent R/W Concurrent Data Channels [17](b) Shared Read and Write Data Channels [3](a) Trojan Channel in a MUX-based ConfigurationFigure 4.2: Trojan Channel Circuitry

required to implement the channel in an interconnect with a MUX based topology, which

is shown in Figure 4.3b.

C0 C1 C2 C3

R W R W

S0 S1M0

R W

M1

R W

(a) Shared R/W Data Channels [57]

0

1

0

1

W

R

W

R

S1

S0

W

R

M0

M1

W

R

0

0

1

1

Interconnect

Write Data Crossbar

Read Data Crossbar

(b) Concurrent Data Channels [66]

Figure 4.3: Bus Topologies on Opposite Ends of the Area v. Throughput Spectrum

The sender and the receiver can be any master or slave component on the interconnect.

The goal of the Trojan channel is to use only pre-existing interconnect interfaces to pass

data from the sender to the receiver. For example, the line labeled Data in Figure 4.2

on the sender’s side could be the write data or read/write address port if the sender is

63

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

a bus master and the read data port if the sender is a bus slave and vice versa for the

Data on the receiver’s side.

Since the Trojan data is transmitted using the same lines as normal bus traffic,

additional signaling must mark when valid Trojan data is being transmitted. These

signals are labeled as Control in Figure 4.2, and like the Trojan data, are mapped to pre-

existing data/address/control signals, meaning no additional interface ports are created.

The Leakage Conditions Logic is protocol dependent and examines signals at the sender’s

interconnect interface to determine when it is “safe” to replace the original bus signal

values with Trojan values.

4.3.3 Topology Dependent Trojan Channel Properties

All bus signals can be classified as address, data, or control signals, and additionally

classified as belonging to read and/or write functionality. The interconnect topology

specifies the degree of parallelism between the different categories of bus signals, and the

connectivity between masters and slaves [57].

Figures 4.3a and 4.3b show the read and write data channels for topologies sitting

at opposite ends of the area efficiency and channel throughput trade-off. Figure 4.3a

is the most area efficient, but can only support a single transaction at a time, whereas

Figure 4.3b contains significantly more circuitry, but can support multiple simultaneous

transactions.

In Figure 4.3a, all read and write transactions are visible to all bus components,

meaning no Trojan circuitry is required to simply snoop bus data. If a Trojan bus

component wishes to send information, the black-colored circuitry inside the sender block

of Figure 4.2 is required. In Figure 4.3b, data is not visible to a component uninvolved in

the transaction. Unlike Figure 4.3a, forming a channel between two slaves or two masters

64

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

requires extra circuitry inside the interconnect, shown in red in Figure 4.2. Because the

signals at the sender’s interconnect interface are not visible at the receiver’s interface and

vice versa, new leakage conditions are required, which monitor the receiver’s interface and

determine when it is safe to leak data without altering valid bus transactions. Signals

available at the receiver’s interface must also be selected to implement the Data and

Control lines. The FIFO is necessary because leakage conditions at the sender and

receiver may not occur simultaneously.

4.3.4 Protocol Dependent Trojan Channel Properties

The specifics of the Leakage Conditions Logic, which produces leak s and leak r, and

the selection of Data and Control signals depend on the bus protocol used. Because of

the similarities between various bus protocols, a general procedure for determining the

Leakage Conditions Logic and the selection of Data and Control signals can be given.

Data Signal Selection

In order to remain stealthy, the Trojan cannot create additional signals to transmit

data, and must send data via pre-existing signals in the bus protocol. Being that the

primary purpose of a bus is to transmit data, all bus protocol/topology combinations

have signals that are suitable for sending/receiving Trojan data.

In a protocol with separate read and write data signals, selection depends on if the

Trojan Sender/Receiver resides in a master or slave component, since masters drive write

data and observe read data signals, and vice versa for slave components. If the Trojan

Sender resides in a master component, the read and write address signals can also be

used to send Trojan data.

65

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Leakage Conditions Logic

Since pre-existing bus signals are used to transmit Trojan data, logic ensuring that

normal bus operation is not compromised by the Trojan is necessary. The Leakage

Conditions Logic examines protocol control signals to identify when Trojan Data signals

are not being used to transmit valid data, and have unspecified values.

Every bus protocol clearly defines the conditions for which data, address, and error

reporting signals are valid. Some protocols, such as AXI4, designate a “valid” signal for

each data channel, while others such as APB use the current state within the protocol

to identify which signals are valid.

leak s is set when the Trojan Sender has data to transmit and the Data signals are

not involved in a valid transaction. If the Trojan Sender is leaking valid bus transactions

instead of actively sending information, then leak s is not needed. leak r is set when

there are items in the Trojan FIFO and the Data signals at the receiver interface are not

currently involved in a valid transaction.

Control Signal Selection

When a Trojan Data signal is not being used in a valid bus transaction, its value is

unspecified. During idle bus cycles, either Trojan data is being transmitted, or the bus is

truly idle, and no data (Trojan or valid) is sent. To distinguish between these two cases,

existing bus signals are selected to be Trojan Control signals, which mark when Trojan

data is on the bus.

The criteria for selecting these signals and their corresponding values is that when

leak s/leak r is asserted, the normal behavior of the signal is predictable, but also un-

specified. For most protocols, control signals are good candidates because they often are

unused during idle cycles, yet their values remain static when idle for a given implemen-

66

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

tation.

4.4 Protocol Specific Trojan Channel Definitions

Following the general Trojan channel procedure outlined in Section 4.3.4, we present

the Leakage Conditions Logic and selection of Trojan Control and Data signals in detail

for two commonly used bus protocols from ARM: AMBA AXI4/AXI4-Lite and AMBA

APB in order to insert a Trojan in unspecified functionality.

AXI4 is a protocol designed for connecting high speed components such as proces-

sors, memory, and network controllers, and contains complex features to increase channel

throughput. In contrast, APB is a simple protocol designed to connect low speed periph-

erals such as UART, keyboard, and timer modules. In a typical SoC, components on the

APB bus are connected to the high speed bus via a bridging component [57].

4.4.1 AMBA AXI4

AXI4 defines 5 independent transaction channels seen at the interface of every master

and slave: read address channel, read data channel, write address channel, write data

channel, and write response channel [56]. Each channel uses the VALID/READY hand-

shake signal pair shown in Figure 4.1 to indicate when the receiver is ready to process

bus data, and to mark when valid data is on the bus. Typically, buses using AXI4

choose MUX-based configurations such as those shown in Figure 4.3b, meaning that the

red-colored circuitry in Figure 4.2 is required to create the Trojan channel.

The specific AXI4 signals selected to use as Data or Control signals depends on if the

sender and receiver are master or slave components.

67

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Master Sender

Data Signal Selection: If the sender is a bus master, data can be leaked through

any bus signals a master drives, mainly those on the read or write address channels, or

the write data channel. The values of all master driven signals on these channels have

no functional meaning when the channel VALID signal is low, hence:

leak s = troj data ready & ~VALID

Control Signal Selection: WSTRB is used in both AXI4 and AXI4-Lite, and

quoting the specification, “A master must ensure that the write strobes are HIGH only

for byte lanes that contain valid data. When WVALID is LOW, the write strobes

can take any value...” If the application uses all byte lanes in every transfer, it is

likely that all strobe bits would be kept HIGH, even when WVALID is LOW, so a good

indicator of a valid Trojan transaction would be to set 1 or more bits LOW when leak s

is asserted. If the interconnect services peripherals with data widths of 1, 2, and 4 bytes,

asserting exactly 3 out of 4 bits of WSTRB is a better option, since this set of values is

unlikely to be assigned to WSTRB during normal operation. The following assignment

of WSTRB (where WSTRB ORIG is the Trojan-free value of WSTRB) would work in

both cases:

WSTRB = leak s ? 4’b1011 : WSTRB ORIG

The signal WLAST is used to indicate the last transfer in a write burst transaction.

When WVALID is low, WLAST is not used, however almost certainly will be de-asserted,

meaning that asserting this signal can also mark a valid Trojan transaction:

WLAST = leak s ? 1 : WLAST ORIG

68

~

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Slave Sender

Data can be leaked through any bus signals a slave can drive (those on the read data

channel or write response channel). The logic for leak s is identical to the logic presented

in the previous section since both channels employ VALID signals. To mark when Trojan

data is valid, RLAST can be used in a similar manner as WLAST.

RRESP and BRESP are 2-bit error reporting signals and are typically set to indicate

“OKAY, normal access success” (all 0’s) when not in use (channel VALID is LOW).

Setting either RRESP or BRESP to a non-zero state when leak s is asserted can indicate

the presence of Trojan data on the bus, for example:

RRESP = leak s ? 2’b10 : RRESP ORIG

Trojan Receiver

A Trojan master/slave receives information on the same set of bus signals a Trojan

slave/master sends. Because of this symmetry, the selection of Data and Control signals

is identical to the previous sections. The only difference is that before leaking data to a

receiver, the FIFO must not be empty, meaning:

leak r = fifo not empty & ~VALID

4.4.2 AMBA APB

The bridging component is the only bus master in APB. The slave components have

their own slave select signal (PSELx), but typically share all read data (PRDATA) and

control signals (PREADY and PSLVERR) in an AND-OR configuration like the one

shown in Figure 4.3a.

69

~

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Figure 4.4: AMBA APB Transaction State Diagram [67]

Slave Sender

Since slaves can only drive PRDATA, PREADY, and PSLVERR, PRDATA is used

for Trojan Data and PREADY and PSLVERR are selected as the Trojan Control signals.

Since all 3 signals are visible to all bus components, the black-colored circuitry presented

in Figure 4.2 is sufficient to implement the Trojan channel.

Figure 4.4 shows the state diagram for an APB transaction. PRDATA is only valid

during the ACCESS state. The malicious slave leaks information by placing Trojan

data on PRDATA as not to conflict with a valid transaction, but can only place data

on PRDATA when PSELx is set, meaning information can only be leaked during the

SETUP state:

leak s = troj data ready & PSELx & ~PENABLE

Either PREADY or PSLVERR must be used to mark when valid data is on the

70

~

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Trojan channel. As seen in Figure 4.4, PREADY can take on any value during the

SETUP phase without affecting the behavior of a valid transaction. Similarly, quoting

the specification, “PSLVERR is only considered valid during the last cycle of an APB

transfer, when PSEL, PENABLE, and PREADY are all HIGH” [67]. The combination

of setting PSLVERR and de-asserting PREADY during the SETUP phase can be used

to signal valid Trojan data.

Master Sender

The APB bridge is the only bus master, and a malicious APB bridge component

can be used to connect a Trojan component from the high-speed bus with an APB bus

slave. The APB bridge can leak data over PWRITE during the IDLE state, and use

the combination of de-asserting all PSEL lines while asserting PENABLE to signal the

occurrence of a Trojan transaction.

4.5 AXI4-Lite Interconnect Trojan Example

The system shown in Figure 4.5 is created to verify the AXI4-Lite Interconnect Fabric

through RTL simulation. The two slaves are simple 8-bit adder coprocessors which receive

3 operands to add via the interconnect from 3 processors. Since the specifics of the main

processors are irrelevant, in the example infrastructure, they are replaced by AXI4-Lite

bus functional models (BFMs) from [68]. Additionally, AXI4-Lite assertions packaged

by ARM for protocol compliance checking [65] are active during system simulation.

The AXI4-Lite Interconnect Fabric IP block used is the LogiCORE IP AXI Inter-

connect (v1.02.a) from Xilinx [66] configured in Shared-Address Multiple-Data (SAMD)

mode (the topology shown in Figure 4.3b).

71

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

AXI4-Lite
Master

AXI4-Lite
Master

AXI4-Lite

Compliance

Checker
AXI4-Lite

Master AXI4-Lite
Slave

AXI4-Lite
Slave

SystemVerilog Testbench

Adder
8-bit

Adder
8-bit

S0 S1

AXI BFM

AXI4-Lite Interconect Fabric

Figure 4.5: AXI4-Lite Example System Verification Infrastructure

0

1

k

n

n
k

n

n− k

Interconnect

W

W

W

R

W

RR

R
M1

S0

S1

· · ·

· · ·

n

FIFO

WDATAM0

k

0

1

L
eakage

Data

leak r

Leakage Conditions Logic

k

0

1 WSTRB
4’b1001

WSTRB
(Original)

Data
RVALID

Figure 4.6: Trojan Channel Logic for AXI4-Lite Interconnect

4.5.1 Trojan Operation

The AXI4-Lite Interconnect IP in Figure 4.5 is infected with two copies of the circuitry

shown in red in Figure 4.6 to allow S1 to snoop on read requests for S0 and vice versa.

Without the Trojan, the read data channel for S0 is not visible to S1 and vice versa.

The waveform in Figure 4.7 first demonstrates how 3 read data responses (values

42, 15, then 14) from S1 are snooped and routed to S0’s write channel, then shows a

single read data response (value 96) from S0 routed to S1’s write channel, and finally

72

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

1

1

32 1 33 1 42 1 15 1 14 1 13

1 1 191 9 99

965

33 42 15 14

961

S AXI BUS A RVALID

S AXI BUS A WDATA [31:0]

S AXI BUS A RDATA [31:0]

S AXI BUS A WVALID

S AXI BUS A WSTRB [3:0]

S AXI BUS A RVALID

S AXI BUS A WDATA [31:0]

S AXI BUS A RDATA [31:0]

S AXI BUS A WVALID

S AXI BUS A WSTRB [3:0]

91

13

1

S0
Si

gn
al

s
S1

Si
gn

al
s

1

Clk

Figure 4.7: 2-way Information Leakage Waveform

Table 4.1: Trojan-Free Design Results (After Place and Route)

Configuration # FF # LUT # BRAM
Frequency

[MHz]

3 Masters 2 Slaves 1814 2474 2 250

4 Masters 6 Slaves 3071 4247 3 250

another read data response from S1 (value 13) leaked to S0. All Trojan transactions are

highlighted in red in Figure 4.7. The WSTRB signal is used to indicate when leaked data

is on the bus. Normally WSTRB == 1, but when information is leaked, WSTRB == 9.

For AXI4-Lite, there are over 50 assertions monitoring bus signals during

simulation, and none of them are violated even when information is flowing

through the Trojan channel!

4.5.2 Overhead

To determine the area and timing overhead of implementing a 2-way Trojan channel

between S0 and S1, the SystemVerilog Testbench in Figure 4.5 is replaced by several

simple bus masters. Table 4.1 shows results for the Trojan-free design, after placement

and route, assuming 3 masters and 2 slaves (labeled as 3M2S) as well as 4 masters and

6 slaves (labeled as 4M6S) for a Virtex-7 FPGA (7vx330t-3).

Table 4.2 illustrates how the selection of Trojan channel parameters Data Width (k)

73

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Table 4.2: Area Overhead of 2-way HW-Trojan Channel

Data
FIFO Depth

% Increase in FF % Increase in LUT
Width 3M2S 4M6S 3M2S 4M6S

2
2 0.8 0.5 0.9 0.4
4 1.1 0.7 1.5 0.6
8 1.4 0.8 1.8 1.1

4
2 1.0 0.6 1.4 0.7
4 1.3 0.8 2.0 0.8
8 1.7 1.0 2.0 1.5

8
2 1.4 0.8 1.8 1.0
4 1.8 1.0 2.4 1.2
8 2.1 1.2 3.0 1.7

and FIFO Depth (d) affect the results. The Trojan channel does not affect the operating

frequency of the design, and stays within 3% of the original FF and LUT utilization.

As the number of masters and slaves increases, the interconnect and overall design area

increases, but the size of the Trojan circuitry does not change.

The Trojan channel is easier to hide as the complexity of the interconnect and the

number of components connected increases. The master and slave components used to

generate the results in Tables 4.1 and 4.2 are far simpler than those in a typical SoC,

so the results in Table 4.2 give a loose upper bound on the expected percentage of area

increase caused by the Trojan channel in a modern design.

4.6 Trojan Channel in SoC Implementation

To demonstrate how our proposed Trojan channel can give an attacker an extremely

powerful foothold in a complex system, we infest a Xilinx Zynq ARM processor based

SoC framework running a Linux OS with Trojan circuitry allowing an unprivileged user

access to root-user memory transactions. In this section, we detail the Trojan channel

operation, the interactions of users within the OS, and the area overhead of the Trojan.

74

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Program

User

M

S

S S

M

← both user
and root can

access with proper
control mechanisms

2

35 6

I/
O

U
n
it

UART

A
M
B
A

SD

ENET

ARM Cortex-A9

CPU

ARM Cortex-A9

CPU

S

Processing System (PS)

Programmable Logic (PL)

1Dual-core ARM running multi-user Linux

4

Program

256-KB

SRAM

OCM

Interconnect

Root

BRAM

CDMA

AXI Interconnect

AXI Interconnect AXI Interconnect

Figure 4.8: Demonstration Platform Block Diagram

4.6.1 Zynq-7000 Based SoC Platform Overview

We design and implement a Trojan infested SoC architecture based on the Zynq-7000

programmable SoC platform in order to demonstrate the operation of the proposed Tro-

jan channel in a real-world application. A full SoC environment running multi-user Linux

is created containing Trojan infected Interconnect and Block RAM (BRAM) Controller

IP allowing an unprivileged user to observe any data transferred via the Central Direct

Memory Access (CDMA) Controller.

A block diagram of the SoC architecture is shown in Figure 4.8. The SoC architecture

includes (1) ARM processors running a multi-user Linux OS, (2) an on-chip memory

(OCM) available to all users, but managed by the kernel to ensure memory isolation

and privacy, (3) a central direct memory access (CDMA) controller only accessible by a

75

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

user with root privileges which performs direct memory transfers from a source address

to a destination address and (4) a BRAM component which can be accessed directly by

any user. Components communicate through several AXI Interconnect blocks, the most

relevant labeled as (5) and (6) in Figure 4.8. The ARM cores access the CDMA and

BRAM peripherals through (5), and in (6) the CDMA initiates read/write transactions

to the BRAM and on-chip memory.

The system is created using Vivado 2015.1 [69] targeting the Zynq-7000 All-Programmable

SoC found in the Zedboard platform [70]. The Zynq-7000 architecture integrates two

ARM Cortex-A9 cores, on-chip memory, and other peripherals, designated as the Pro-

cessing System (PS) with Xilinx Programmable Logic (PL) [71]. The Processing System

provides the necessary resources to run Xillinux [72], a multi-user Linux distribution,

while the flexibility of the Programmable Logic allows for Trojan insertion.

4.6.2 Hardware Trojan Operation

Figure 4.9 illustrates how Trojan circuitry inserted in the BRAM Controller and AXI

Interconnect enables an unprivileged user program to observe memory transfers made by

root. First, a root program must initiate a DMA transfer by writing to control registers in

the CDMA. The most basic DMA transfer requires specifying the Source Address (SA),

Destination Address (DA), and number of Bytes to Transfer (BTT) [73]. Once the BTT

register is written, the DMA transfer is performed by issuing read and write transactions

to the relevant peripheral (in Figure 4.9 the CDMA is transferring data between two

locations in on-chip memory). This flow is illustrated by blue arrows in Figure 4.9. The

following steps, shown using red arrows in Figure 4.9, illustrate Trojan operation:

1. AXI Bus Trojan leaks transactions visible only at the OCM slave interface to the

BRAM slave interface

76

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Program

User

SM

S S

3

2

M
1

2

3

program reads BRAM

Attacker:

Malicious user

I/
O

U
n
it

UART

A
M
B
A

SD

ENET

Dual-core ARM running multi-user Linux

S

Processing System (PS)

Programmable Logic (PL)

Trojan

Trojan

256-KB

SRAM

Program

Root

CDMA

BRAM

AXI InterconnectAXI Interconnect

AXI Interconnect

OCM

Interconnect

1 AXI Bus Trojan:

Leak data written

slave interface

from OCM to BRAM

in BRAM

BRAM Trojan:

Store leaked data

Figure 4.9: Hardware Trojan Operation

2. BRAM Trojan captures leaked data at the AXI interface, stores at incrementing

BRAM memory locations

3. Malicious unprivileged user program reads BRAM locations containing the leaked

data

One should note that even if an attacker does not have the ability to run or infiltrate

a software program running on the SoC, information from the Trojan channel can be

captured and transmitted to the attacker using only hardware Trojans. For example,

instead of leaking the DMA transfer data to BRAM, a Trojan infested Ethernet or

UART Controller could be used to send data to an attacker.

77

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

4.7 Details of Trojan Insertion in Xilinx IP

Each block in the Programmable Logic portion of Figure 4.8 corresponds to a Verilog

or VHDL module provided by Xilinx, with Vivado integrating the IP into a complete

system. Trojans are inserted in the AXI4 Interconnect and AXI BRAM Controller IP.

AXI4 Interconnect

The AXI Interconnect block labeled (6) in Figure 4.8 has a single bus master (the

CDMA) and two slaves. The Verilog file, axi crossbar v2 1 axi crossbar.v, from AXI

Interconnect 2.1 (Rev. 5) [74] is modified to insert the Trojan into this block.

Because there is only a single bus master, the 32-bit write data is broadcast to both

of the slaves. Even though the BRAM slave can observe write data destined for the

processing system, WVALID signals are not broadcast, meaning only the processing

system knows which cycle the data is valid. Trojan circuitry is needed to notify the

BRAM slave when valid data is being sent to the processing system.

Similar to the example in Section 4.5, the 4-bit WSTRB signal seen at the BRAM

slave interface is used to mark when valid data is being written to the processing system.

Since the BRAM data width is 32 bits, WSTRB is always 4’b1111. The Trojan circuitry

sets WSTRB to 4’b1110 to mark when data is being written to the processing system.

Since there is only one bus master, valid write data can never be sent to BRAM

and the processing system simultaneously, guaranteeing that valid write transactions to

BRAM are not disrupted when the Trojan alters WSTRB. This eliminates the need for

Trojan FIFO or buffering circuitry.

78

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

ZedBoardSD Card w/
Xillinux OS

Image

Xillinux
Terminal

Figure 4.10: Demonstration Environment

AXI BRAM Controller

The Trojan inserted in the AXI BRAM Controller, labeled (4) in Figure 4.8, captures

WDATA (32-bits) when WSTRB is 4’b1110, then writes the data to Port B of the BRAM.

In our example framework, the address the leaked data is written to starts at 0x70000000,

then increases by 4 with every data word written.

The VHDL file, full axi.vhd, from AXI BRAM Controller v4.0 [75] is modified by

adding a counter to increment the BRAM address for the leaked data and logic to monitor

the AXI write data channel and write the leaked data to the BRAM.

4.7.1 OS-Level Extraction of Trojan Channel Information

Figure 4.10 shows the demonstration environment. Xillinux runs on an SD card

located on the Zedboard, and a USB/UART cable connects a desktop workstation to

a Xillinux root terminal. The demo uses two Xillinux users: root and attacker. The

privileged user root can read/write directly to physical addresses using a program called

79

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

access addr while attacker is unprivileged, and cannot use this program.

However, to allow non-privileged users access to the BRAM, the executable read bram

runs with root privileges, but can be executed by any user, and reads the first 10 locations

in the BRAM. The read bram program can be thought of as a very simple device driver

since it provides an unprivileged user with controlled and limited access to a peripheral.

In the demo, root uses the DMA controller to transfer the contents at address 0x4

to address 0x8 (both on-chip memory locations). In the system memory map, on-chip

memory addresses start at 0x0, the CDMA base address is 0x60000000, and the BRAM

base addresses is 0x70000000.

Figure 4.11 shows Xillinux terminal output during the demonstration of Trojan func-

tionality. Note that the commands at the beginning of the demo are executed as root.

(1) Data at addresses 0x4 and 0x8 are read using access addr. (2-4) CDMA registers

are written, instructing the CDMA to transfer 4 bytes of data from address 0x4 to

address 0x8. (5) access addr is used to confirm that the correct data from address 0x4

(0xe12fff10) is written to address 0x8. (6) The demo switches to the perspective of the

attacker user. Notice that attacker tries to execute access addr to learn the contents

of addresses 0x4 and 0x8, but does not have sufficient privileges to do so. (7) Because of

the hardware Trojan, the attacker is able to recover the data transferred by root using

read bram.

4.7.2 Overhead

Table 4.3 shows the overhead of inserting the Trojan circuitry in the AXI Interconnect

and BRAM Controller IP. The Trojan channel data width is 32 bits, and the interconnect

topology is such that no FIFO is necessary. The utilization results given are for the

Programmable Logic portion of the platform, since the Processing System exists on the

80

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

1)  Read on-chip
memory locations

2)  Write DMA SA
Register

3)  Write DMA DA
Register

4)  Write DMA BTT
Register

5)  Check DMA
Transfer

6)  Switch from root
to attacker user

7)  Read leaked data
from BRAM

Figure 4.11: OS-Level Trojan Demonstration Shell Commands

81

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

Table 4.3: Overhead of Programmable Logic in SoC Platform (After Place-and-Route)

FF # LUT
Memory # Block Freq.

LUT RAMs [MHz]

Trojan-Free 4766 4149 267 1 50
Trojan-Infested 4809 4201 267 1 50

% Increase 0.9 1.2 0 0 0

FPGA board as hard silicon, and cannot be modified or further optimized by Vivado.

The presence of the Trojan circuitry did not affect the frequency of the design, and the

FF and LUT utilization rose by approximately 1% making the Trojan circuitry unlikely

to be detected due to anomalous area consumption.

4.8 Detection Strategies

To guarantee that no Trojan channel exists in the interconnect circuitry, one straightfor-

ward procedure is to:

1. Fully specify the behavior of every bus signal

2. Modify the bus implementation to comply with the fully refined specification

3. Formally prove the bus implementation conforms to the behavior specified in 1)

Even if the requirement for formal verification is replaced by assertions monitoring

the interconnect during simulation, for complex protocols, the task of complete behavior

specification without causing unacceptable overhead is formidable. For example, in AXI4,

it is easy to require that if a channel VALID signal is LOW, all other channel signals must

be driven LOW. However, given that data and address buses in AXI4 are typically 32 or

64 bits wide, an implementation adhering to this requirement must augment hundreds

of bits with MUX circuitry to switch between LOW and the original signal value.

82

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

To overcome the large area and power overhead of zeroing circuitry for data and

address signals, this circuitry can be implemented only for signals that have the potential

to become Trojan channel Control signals (ex. WSTRB and WLAST). Preventing the

ability to signal when Trojan transactions occur greatly decreases the usability of the

Trojan channel.

If no zeroing circuitry can be afforded, the Trojan channel can be targeted by de-

veloping additional complex assertions, which define the behavior of bus signals during

invalid cycles in a less straight forward, but more area efficient way. For example, instead

of requiring WSTRB == 0 when VALID is LOW, a test bench monitor can record the

value of WSTRB during the most recent valid write transaction and require that this

value remain unchanged until the next valid transaction.

Developing complex assertions and test bench code to minimize the overhead of defin-

ing unspecified behavior still may not be feasible depending on the amount of effort bud-

geted for design verification, as the development of assertions and code must be done

manually. To avoid both the area and timing overhead of defining unspecified function-

ality and the cost of increasing test bench complexity, we introduce an automated Trojan

detection methodology in Chapter 5 based on formal methods which is capable of detect-

ing the bus Trojans proposed in this chapter without requiring specification refinement.

The detection methodology determines if the values of bus signals can propagate to design

boundaries when they are unspecified without actually having to define desired values

for the bus signals during idle cycles. If any bus component is receiving information from

a Trojan channel, this method will flag that component as containing a Trojan.

83

Trojan Channels in Partially Specified SoC Bus Functionality Chapter 4

4.9 Summary

In this chapter we present a new type of Hardware Trojan which creates a covert

communication channel between components spread across an SoC using only existing

on-chip bus signals without affecting normal bus functionality [25]. We illustrate how our

Trojan channel model is applicable to any bus topology and protocol, and give details for

two widely used protocols. Our Trojan channel circuitry is shown to avoid detection by a

protocol compliance checking suite from the IP vendor, and confirmed to have manageable

area overhead. We also illustrate how Trojan channel information can be extracted by

malicious unprivileged software by creating a complete SoC platform infected with a bus

Trojan. Additionally, several detection strategies are outlined.

84

Chapter 5

Detecting Hardware Trojans in

Unspecified Functionality

5.1 Introduction

In this chapter we present a Trojan detection methodology for Trojans modifying only

unspecified design functionality. Prior chapters have proposed different Trojans in this

space such as Trojans modifying RTL don’t cares to leak information (Chapter 2) and

Trojans which create covert communication channels (Chapter 4), however we have still

not provided a detection methodology, only prevention techniques which must be applied

to a Trojan-free design (Chapter 2) and identification of unspecified design functionality

which could potentially be modified by an attacker (Chapter 3). The method presented

in this chapter provides the ability to actually classify unspecified functionality as being

Trojan-infested or Trojan-free and can detect the Trojans proposed in prior chapters.

We formulate the detection problem in terms of information leakage by making the

observation that if a signal, x, is unspecified under a condition C, the value of x should

not be able to propagate to important points in the design such as registers or primary

85

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

outputs, and if it can, Trojan circuitry is present or a design bug exists. This observation

can be concisely expressed as a satisfiability problem, allowing us to take advantage of

the recent advances in both boolean and satisfiability modulo theory (SMT) solvers.

The main contributions of this chapter are:

1. A general detection methodology for Trojans in unspecified functionality which can

be followed using a wide variety of tools and techniques

2. A precise formulation for “dangerous” unspecified functionality expressed as a sat-

isfiability problem

3. A method to detect the Trojan communication channels proposed in [25] which

are formed by only modify signals in common on-chip bus protocols when they are

unspecified

The rest of the chapter is organized as follows: Section 5.2 explores related work

in information flow analysis, Section 5.3 gives the threat model, Section 5.4 precisely

formulates the detection problem, Section 5.5 details our detection methodology, Section

5.6 demonstrates the effectiveness and quantifies the overhead of our method using several

example designs, and we summarize the chapter in Section 5.7.

5.2 Related Work: Information Flow Analysis

Information flow analysis techniques verify security properties such as confidentiality,

integrity, and availability. There exists a large body of work on how to specify and verify

these properties for software (ex. [76, 77]), as well as several methods for analysis of

information flow in hardware [78, 79, 80] and firmware [81].

Information flow properties specify the conditions under which information can safely

flow between signals in a design. A whitelist of such properties describes the proper access

86

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

and disclosure mechanisms for all important signals, and the design is analyzed to detect

violations of the specified properties. Our analysis instead focuses on creating a list of

signals and the conditions under which they are functionally meaningless, then making

the observation that it is suspicious for information to flow from a signal anywhere in the

design when it is unspecified. The threat model addressed is different, but our problem

can be formulated in terms of information leakage properties.

For example, the Cadence JasperGold Security Path Verification App [82] is a com-

mercial tool which formally proves the existence/lack of a path from a source to desti-

nation signal. We did not have access to this tool, but we suspect that our detection

formulation can be transformed into a set of properties compatible with the Security Path

Verification App. In this work we focus on providing a concise theoretical formulation

for Trojan detection, and provide several (but certainly not all possible ways) to solve

the problem.

5.3 Threat Model

Our method aims to detect Trojans using design inputs or internal signals when they

are unspecified to modify other design signals in a malicious, but covert manner. These

Trojans never violate the design specification, and hide completely within unspecified

design functionality.

For example, consider a peripheral with registers visible to unprivileged software

connected to the same on-chip bus as a memory controller. The Trojans proposed in

Chapter 4 allow an attacker to leak information such as memory accesses from the root

user to the bus interface of this easily accessible peripheral when signals in the interface

are not being used for valid bus transactions. The peripheral could then transfer the

leaked information to unused addresses in the register space or unused bit fields in existing

87

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

registers allowing a malicious, but unprivileged, software program access to sensitive data.

Trojan Insertion Stage: It is assumed that no golden RTL model exists to aid in

Trojan detection during later stages in the design cycle, meaning that it is possible for

Trojans to be inserted in the RTL code or higher-level model. Hundreds of engineers are

involved in the design and test of a silicon chip. A single malicious 3rd party IP provider,

CAD tool vendor, or disgruntled engineer has the ability to insert a Trojan in the RTL

code.

5.4 Problem Formulation

For a hardware design f , let x be a signal in f which is unspecified under condition

C. For a given hardware design, there will be many (x, C) pairs. The targeted Trojans

will insert malicious functionality by modifying x during C.

Key insight: Instead of enumerating and targeting every possible Trojan in this

space, we observe that any functionality the attacker inserts must eventually influence

design outputs or modify design state otherwise it is redundant. While malicious func-

tionality is not redundant, by definition unspecified functionality should be, and this

allows us to formulate the problem without modeling Trojan functionality or defining

“expected” behavior for the unspecified functionality. The only assumption made is that

when x is unspecified, its value should never influence any key points in the design.

Determining if x influences circuit output under C can be formulated as a satisfiability

problem. If Equation 5.1 is satisfiable, two different values of x (x0 and x1) result in

differences in circuit output under C, which is not consistent with properties of unspecified

functionality meaning the existence of Trojan circuitry or a design bug is likely.

C ∧ (fx→x0 ⊕ fx→x1) (5.1)

88

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

A Motivating Example: We return again to the simple FIFO example in Figure

1.2 in Chapter 1. Because the Trojan circuitry never affects FIFO read functionality, it

is unlikely to be detected by existing verification methodologies. The value of read data

when read enable = 0 is unspecified because it is assumed that any circuitry in the fan-

out of read data will only propagate or store its value when a valid FIFO read occurs.

It would be a waste of precious verification resources to specify and verify the value

of read data when read enable = 0, however verifying that the FIFO is Trojan-free

only involves defining the (x, C) pairs (read data, read enable = 0) and (write data,

write enable = 0) and determining the satisfiability of Equation 5.1 for each pair.

5.4.1 Identifying (x, C) Pairs

There are several approaches, based on work presented in Chapters 3 and 4, that

can be used to identify (x, C) pairs for a design. An automated approach, applicable

to any design type, uses the mutation testing based technique proposed in Chapter 3 in

which undetected mutants affecting attacker observable signals are flagged as dangerous

because an attacker can modify behavior related to the mutant to leak information. A

signal differing under a dangerous mutant, and the corresponding condition under which

the difference occurs form an (x, C) pair.

Because mutation testing is expensive, another approach is to define (x, C) pairs

manually for specific classes of designs. Identifying a complete list of (x, C) pairs for a

complex design may not always be possible, however the more pairs included for analysis

results in greater confidence in the security of the design. For designs with on-chip bus

interfaces, it is straightforward to comprehensively list (x, C) pairs involving bus signals

for several well known standard bus protocols. The example designs used to demonstrate

the effectiveness of our detection method in Section 5.6 give details for the AXI4-Lite

89

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

and Wishbone protocols.

5.5 Detection Methodology

5.5.1 Overview

Our detection methodology is given in Figure 5.1. Before any (x, C) pairs are ana-

lyzed, an SMT or boolean formula, o, is built for each primary output by traversing the

data-flow graph or synthesizing the design.

Then for each (x, C) pair, and primary output o in f :

1. Replace x with new variables x0 and x1 respectively in 2 identical copies of o

2. If SAT (C ∧ (ox→x0 ⊕ ox→x1)), flag signal x as dangerous for involvement in Trojan

circuitry

3. Inspect design behavior and code activated by the satisfying assignment

If f is an RTL design written in Verilog or VHDL, the analysis can be performed

on 1) formulas containing only boolean variables and logical connectives, or 2) formulas

containing symbols and operators whose semantic meaning is derived from a theory (ex.

the +, −, ×, <, ≥ operators all have behavior described by the theory of arithmetic and

commonly appear in Verilog/VHDL code).

Determining the satisfiability of formulas containing symbols and operators governed

by the theory of integers, bit vectors, and arrays requires Satisfiability Modulo Theory

(SMT) solvers [27]. In Section 5.5.2 we detail how to construct SMT formulas for each

circuit output directly from Verilog code (meaning no synthesis tool is required) and use

PySMT [83] to perform Step 2 in the detection procedure.

90

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Identify (x,C) pairs and
build SMT formula for
each primary output oi

Unprocessed
(x,C) pair?

End of the Algorithm

Label all
primary outputs
as unprocessed

Unprocessed
outputs?

Select unprocessed output oi

SAT (C∧(ox→x0
⊕ox→x1

))?

Flag x as dangerous for
involement in Trojan circuitry

n y

y

y

n

n

Figure 5.1: Detection Methodology

The satisfiability of boolean formulas can be determined using a SAT solver, but the

approach we present in Section 5.5.3 leverages the robustness and scalability of commer-

cial equivalence checking tools (ex. Cadence Conformal [36]) in which a gate-level model

for f produced using logic synthesis is analyzed.

5.5.2 SMT Formulas from RTL Code

Pyverilog [84], an open-source Verilog code parser and static analysis tool written in

Python is used to build a data-flow graph for each primary output. To construct the

data-flow graph, Pyverilog first builds an abstract syntax tree (AST) representation from

the Verilog code and creates a table with information about ports, signals, and constants

found in each Verilog module. Then, the AST is traversed again to determine the scope of

each signal and resolve all parameters and constants in the design hierarchy, and finally a

91

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Figure 5.2: Data-flow Graph for simple.data out Generated by Pyverilog

92

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

third pass of the AST creates an assignment tree for every signal describing the complete

data-flow.

Figure 5.2 shows the data-flow graph generated by Pyverilog for the signal data out

(an output in the Verilog module simple). The Verilog code for data out is given in

Listing 5.1.

Listing 5.1: simple.v

1

2 module s imple (c lk , r s t , data in , read , write , data out , o u t v a l i d

) ;

3

4 input c lk , r s t , read , wr i t e ;

5 input [7 : 0] da ta in ;

6 output reg [7 : 0] data out ;

7 output reg o u t v a l i d ;

8

9 wire [1 : 0] read ptr , w r i t e p t r ;

10 reg [7 : 0] f i r s t r e g , second reg , t h i r d r e g , f o u r t h r e g ;

11 . . .

12 // da ta ou t l o g i c

13 always @(posedge c l k) begin

14 i f (read)

15 case (r ead pt r)

16 2 ’ b00 : data out <= f i r s t r e g ;

17 2 ’ b01 : data out <= second reg ;

18 2 ’ b10 : data out <= t h i r d r e g ;

19 2 ’ b11 : data out <= f o u r t h r e g ;

93

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

20 endcase

21 end

22 . . .

23 endmodule

Data-flow graph nodes fall into the following categories: branches, operators (logic,

arithmetic, etc.), bit vector slicing and concatenation, constants, and terminals. Our

detection methodology builds the formula for each output, o, using Python functions

provided by PySMT [83] to create symbols/variables, and describe bit vector, arithmetic,

and boolean operations based on the nodes encountered in the data-flow graph.

PySMT provides functions to build formulas involving several theories such as Lin-

ear Real Arithmetic (LRA), Real Difference Logic (RDL), Equalities and Uninterpreted

Functions (EUF), and Bit-Vectors (BV), then calls existing solvers such as MathSAT

[85], Z3 [86], CVC4 [87], Yices 2 [88], CUDD [89], PicoSAT [90], and Boolector [91] to

determine if the formula is satisfiable based on the theories present [83].

For each output, all nodes in the data-flow graph generated by Pyverilog are processed

by a recursive traversal procedure which returns sub-formulas for each node. Branches,

operators, constants, and bit vector operation nodes are straightforward, as PySMT has

good support for constructing expressions with boolean and arithmetic bit-vector oper-

ations. New variables in the formula are created when terminal nodes are encountered.

Terminal nodes in the graph correspond to intermediate reg and wire Verilog variables

in all modules, inputs and outputs for modules instantiated by the top module, and

primary inputs for the top module. If the terminal is a primary input for the top module,

a new formula variable is either created or retrieved from a table containing formula

variables already encountered during processing. Otherwise, a formula for the reg/wire

variable, input, or output is built by exploring its data-flow graph and then stored in a

94

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

table to avoid repeated analysis.

The formula built from traversing the graph in Figure 5.2 would contain the simple.read

variable because it is a primary input, but the nodes corresponding to simple.read ptr,

simple.first reg, simple.second reg, etc. have their own data-flow graphs which are

traversed to produce formulas in terms of primary inputs.

One should note that signals corresponding to state elements in the design will ref-

erence themselves in the data-flow graph. If this situation is encountered, the variable

will become a symbol in the formula to avoid an infinite processing loop. Eventually,

the formulas for primary outputs will only reference primary input variables and state

variables.

PySMT functions are used to construct Equation 5.2.

C ∧ (ox→x0 ⊕ ox→x1) (5.2)

The exclusive-or and conjunction operators have corresponding functions in PySMT, and

the substitute function is used to create ox→x0 and ox→x1 , where x0 and x1 are new

independent variables. If Equation 5.2 is satisfiable, PySMT provides a model, or one

set of possible satisfying assignments for all variables in Equation 5.2 (including the new

variables x0 and x1) proving that x can influence o under C.

5.5.3 Equivalence Checking

The applicability of the Trojan detection procedure described in Section 5.5.2 to com-

mercial hardware designs is limited by the robustness of the Pyverilog parser and the

efficiency and usability of the available open-source SMT solvers. While the available

SMT solvers are able to handle incredibly large and complex formulas, reliable transfor-

mation of all possible constructs in Verilog/VHDL code to the input format required by

95

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

SMT solvers does not exist.

On the other hand, logic equivalence checking for hardware designs is a mature, scal-

able and robust technology, with several commercial tools available. We present a way to

perform the detection procedure outlined in Section 5.5.1 using Cadence Conformal LEC

[36], the advantage being employing a tool already part of the circuit design workflow.

One disadvantage of this approach is that if x is a multi-bit signal, the satisfiability

of Equation 5.1 must be determined for each bit in x separately. Because equivalence

checking compares two gate-level designs, it is impossible to symbolically replace x, a

multi-bit signal, with x0 in one version and x1 in the other unless x is a single bit.

To determine the satisfiability of Equation 5.1 using Conformal, 1) two versions of

the design must be created assigning a single bit in x to 0 in one version and 1 in the

other, and 2) equivalence should be proven only under C.

To form the two circuit versions, LEC has two commands: add primary input and

add pin constraints, that force arbitrary signals in the design to 0 or 1 in the golden

or revised versions of the circuit. Ignoring equivalence checking results under certain

conditions is accomplished in LEC using the $constraint function. For example, if a

and b are design signals, inserting $constraint(a==1 && b==1) in the design source

code forces LEC to ignore counterexamples requiring a or b to be 0.

5.6 Case Studies

To validate our detection methodology, we infest two designs, 1) an adder copro-

cessor, and 2) a Universal Asynchronous Receiver/Transmitter (UART) communication

controller, with Trojans modifying unspecified functionality to leak information. The

inserted Trojans covertly receive information from the bus interface during idle cycles,

and then modify unspecified design functionality either to store the information for later

96

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Table 5.1: Results Summary: Size of Example Designs and Total Analysis Time For
All (x, C) Pairs

Design
Lines of Code # 2NAND Time (sec.)
Orig. Trj. Orig. Trj. Orig. Trj.

Adder 614 616 839 877 0.61 0.69
UART 2269 2273 5829 5836 8.59 8.63

retrieval by the attacker or transmit the information outside the chip. The Trojans cre-

ated for the case studies are non-trivial and representative of malicious functionality that

can be inserted into any bus peripheral, which in a typical SoC includes most IP blocks.

The on-chip bus is a critical component, and a high value target for an attacker.

We apply both versions of the detection methodology (SMT solving and equivalence

checking) to the designs in order to demonstrate the strengths and weaknesses of both ap-

proaches. The Trojans inserted in both designs are successfully identified by the method

employing an SMT solver, and in Section 5.6.3 we discuss the limitations of using equiv-

alence checking tools for Trojan detection.

Table 5.1 summarizes the experimental results, giving the size of the two original and

Trojan-infested designs in lines of code and 2-input NAND gates. The gate count was

determined by synthesizing the design using Synopsys Design Compiler (ver I-2013.12-

SP2) with a freely available 45nm technology library from NanGate [92]. Table 5.1 also

lists the total time in seconds spent on Trojan detection using the SMT solving approach.

This includes parsing all design files and building the data-flow graph for each signal in

addition to determining the satisfiability of Equation 5.2 for each (x, C) pair and primary

output. The experiments were run on a Dell Optiplex 960 computer with 8GB RAM.

97

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

5.6.1 Adder Coprocessor

A simple coprocessor takes input from an AMBA AXI4-Lite [56] bus interface. This

coprocessor adds 3 8-bit values: a, b, and c. The programmer communicates with the

coprocessor by reading and writing to registers in the peripheral.

Trojan Description

Although the registers in the adder coprocessor are allocated 32-bits in the addressing

scheme, many only use a single bit. For example, the user writes to the least significant

bit of the b ap vld register to indicate that the b operand is valid, and the rest of the bits

go unused. The inserted Trojan circuitry takes advantage of this fact by storing 4 bits

of data leaked over the bus interface in b ap vld[5:1] for a malicious software program to

read. Unused register bits are an example of unspecified functionality common in many

designs, making the inserted Trojan an ideal example to test our detection strategy.

It is assumed that the leaked data is otherwise not accessible by the adversary and

they have access to registers in the coprocessor. The data is leaked using the Trojan

communication channel proposed in Chapter 4, which only alters bus signals at the

coprocessor’s interface when they are not in use. While the inserted Trojan modifies

unspecified functionality present in the AXI4-Lite protocol, insertion of Trojan commu-

nication channels generalizes to all bus protocols and interconnect topologies.

4-bit Trojan data is delivered on the AXI-Lite write data channel signal WDATA[3:0]

when ¬WVALID ∧ WSTRB== 4′b1111. The Trojan residing in the coprocessor recog-

nizes that when WSTRB== 4′b1111, the data present on the WDATA signal is from the

Trojan communication channel and then stores WDATA[3:0] in b ap vld[5:1].

98

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Table 5.2: Trojan Detection Results for Adder Coprocessor: Analysis Time in Seconds,
and Outputs SAT for Each (x, C) Pair

x C Time, Outputs SAT
Orig. Trj.

AWADDR[31:0] ¬AWVALID 0.13, None 0.13, None
WDATA[31:0] ¬WVALID 0.13, None 0.17, RDATA
WSTRB[3:0] ¬WVALID 0.13, None 0.17, RDATA

ARADDR[31:0] ¬ARVALID 0.10, None 0.10, None

Description of (x, C) Pairs

Input to the adder coprocessor module comes from the AXI4-Lite bus interface. AXI4

defines 5 independent transaction channels seen at the interface of every master and slave,

with each channel employing a VALID/READY handshake signal pair to indicate when

the receiver is ready to process bus data, and to mark when valid data is on the bus. We

refer the reader to [56] for further detail on the AXI4-Lite protocol.

From the perspective of Trojan detection, we wish to determine if any information

received on the bus interface on any channel while the channel VALID signal is 0 can

influence any data read out from the registers of the adder coprocessor. Since the adder

coprocessor is a bus slave, the inputs (x signals) are those shown in the first column of

Table 5.2, with C being the condition that the corresponding channel VALID signal is 0.

The signals listed in Table 5.2 cover all the inputs to the adder coprocessor exclud-

ing the clock and reset signals, meaning that this list of (x, C) pairs is complete for

guaranteeing that the adder is not processing leaked information.

Detection Results

The primary outputs for the adder coprocessor are shown in Table 5.3 along with the

number of nodes in the data-flow graph for each output in the Trojan-free and Trojan-

99

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Table 5.3: Number of Nodes in the Data-Flow Graph for Each Primary Output in the
Adder Coprocessor Design

Output Name
Nodes

Orig. Trj.
AWREADY 45 45
WREADY 45 45
BRESP[1:0] 2 2
BVALID 45 45
ARREADY 34 34
RDATA[31:0] 12507 16505
RRESP[1:0] 2 2
RVALID 34 34
interrupt 3294 4326

infested versions of the design. The satisfiability of Equation 5.2 is determined for every

output in Table 5.3 for every (x, C) pair in Table 5.2. Each row in Table 5.2 gives the

time taken (in seconds) to build and analyze Equation 5.2 for all outputs using a specific

(x, C) pair and lists any outputs for which Equation 5.2 was satisfiable (if any) for both

the Trojan-free and Trojan-infested versions of the adder.

For the Trojan-free design, none of the (x, C) pairs were able to influence primary

outputs, which is consistent with our assumption that unspecified functionality should

not be capable of significantly affecting design behavior. For the Trojan-infested design,

our analysis was able to highlight the signals involved in the Trojan circuitry. WDATA

and WSTRB are shown to influence RDATA, which is expected, because the Trojan

alters the contents of the b ap vld register, which can be read by an AXI4-Lite read

request. The read and write address signals are not involved in the Trojan, and are not

flagged by our detection methodology.

The adder coprocessor design is also analyzed using the detection methodology version

requiring Conformal, presented in Section 5.5.3, and produces results identical to those

shown in Table 5.2.

100

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

5.6.2 UART Communication Controller

We also validate our detection methodology on a UART circuit from OpenCores [54]

designed to interface with a host processor through a Wishbone Bus Interface [55].

Trojan Description

To transmit data serially on the UART output stx pad o, 8 bits are written to the

UART transmit data register through a Wishbone write transaction. Normally only a

bus master is able to issue write requests and cause the UART to transmit data, however

if a Trojan communication channel is inserted inside the Wishbone bus, it is possible for

another slave to covertly signal the Trojan inserted in the UART controller, and cause

data to be serially transmitted outside the chip.

The Trojan inserted in the UART allows writes to UART registers when the signal

wb sel i == 4′b1001. The Wishbone bus uses 32-bit data signals, but the UART registers

are only 8-bits wide. wb sel i marks which byte lanes contain valid data. For the UART

controller, any values of wb sel i with Hamming Weight > 1 are “don’t care.”

In addition to wb sel i, there are several additional control signals seen at the UART

bus interface driven by the bus master. wb cyc i indicates if a valid bus transaction is

in progress, wb stb i selects the slave, and wb we i indicates if the transaction is read or

write since the address signal is shared by read and write transactions.

A valid write transaction is marked by we o, whose assignment is given by the fol-

lowing code:

assign we o = (wb we is & wb stb i & wb cyc i & wbstate==2’b10) ;

The Trojan modifies this assignment to the following:

assign we o = (wb we is & wb stb i & wb cyc i & wbstate==2’b10)

| (w b s e l i s == 4 ’ b1001 & ˜ r e o) ;

101

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Table 5.4: Trojan Detection Results for UART Core: Analysis Time in Seconds, and
Outputs SAT for Each (x, C) Pair

x C Time, Outputs SAT
Orig. Trj.

wb adr i[4:0] ¬wb stb i ∨
¬wb cyc i

1.54, None 1.63, (int o, dtr pad o, stx pad o,
rts pad o, baud o)

wb dat i[31:0] ¬wb stb i ∨
¬wb we i ∨
¬wb cyc i

3.00, None 2.82, (int o, dtr pad o, stx pad o,
rts pad o, baud o)

wb sel i[3:0] ¬wb stb i ∨
¬wb we i ∨
¬wb cyc i

2.95, None 3.07, (int o, dtr pad o, wb ack o,
stx pad o, rts pad o, baud o)

This modification allows registers to be written to even when the slave is not selected

or a valid transaction is not occurring, provided a read transaction is not taking place.

Description of (x, C) Pairs

Table 5.4 gives the (x, C) pairs analyzed. Similar to the adder coprocessor, the goal

is to determine if bus signals can significantly affect the design during conditions in

which they are functionally irrelevant. Since the UART is a bus slave, the inputs are the

Wishbone address, data, and select signals, which are unspecified when the slave is not

selected (¬wb stb i), or a valid bus cycle is not in progress (¬wb cyc i). The data and

select signals are also unspecified when a read transaction is taking place (¬wb we i).

Detection Results

Table 5.5 lists all the primary outputs in the UART design along with the number

of nodes in the data-flow graph for each output in the Trojan-free and Trojan-infested

versions. The outputs wb dat o, int o, and stx pad o all have a large number of nodes

due to the presence of variables assigned within case statements with many branches and

102

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

Table 5.5: Number of Nodes in the Data-Flow Graph for Each Primary Output in the
UART Design

Output Name
Nodes

Orig. Trj.
wb dat o[31:0] 1.48× 1017 3.79× 1017

wb ack o 109 159
int o 8.45× 1016 21.6× 1016

stx pad o 1.35× 109 3.45× 109

rts pad o 586 1426
dtr pad o 586 1426
baud o 5492 13732

several FIFO memories.

Memory representation could be simplified by using the theory of arrays instead of

transforming all instances of Verilog arrays into a case statement in which a separate reg

variable for each memory word is assigned based on the address signal, however PySMT

currently does not provide any functions for constructing formulas with arrays.

Despite the large graph sizes, solving Equation 5.2 for all primary outputs for each (x,

C) pair takes only a few seconds, as seen in Table 5.4. For the Trojan-free design, there

were no false positives, again consistent with our assumption that bus signals should not

influence the rest of the peripheral when they are not being used in a valid transaction.

Table 5.4 also shows that the Trojan circuitry uses wb adr i and wb dat i in addition to

wb sel i. This matches the behavior of the Trojan, which allows any data to be written

to any register as long as wb sel i = 4′b1001.

5.6.3 SMT Solving v. Equivalence Checking

We attempted to use the method presented Section 5.5.3 to analyze the UART design

using equivalence checking, however ran into an issue resulting from the fact that most

of the bus signals, (wb dat i, wb sel i, etc.) are latched before use in certain portions of

103

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

the code, whereas the bus signals in the adder coprocessor were never stored.

Conformal is a combinational equivalence checking tool, meaning any inputs to stor-

age elements are considered outputs of the combinational logic (pseudo-primary outputs)

and all outputs from storage elements are treated as circuit inputs (pseudo-primary in-

puts). If x is a direct flip-flop input (ex. in data path pipelining), x is a pseudo-primary

output during combinational equivalence checking, meaning fx=0 and fx=1 are trivially

non-equivalent because a pseudo-primary output is tied to different static values in both

versions. If non-equivalence of pseudo-primary outputs is ignored, and only actual pri-

mary outputs are compared, any Trojans using different values of x (and by extension,

different values of the stored version of x, xq) to affect design outputs will not be detected

using the equivalence checking version of our detection strategy.

The fact that combinational equivalence checking cannot be used to verify sequential

circuit behavior is well known, and techniques such as bounded sequential equivalence

checking and bounded model checking exist to address this limitation. These techniques

use time-frame expansion to capture k cycles of sequential behavior in a purely com-

binational circuit by copying the combinational circuit k times and connecting pseudo-

primary outputs in one time-frame to pseudo-primary inputs in the following time-frame

(ex. [93]).

If the sequential depth, k, of x is known, the method proposed in Section 5.5.3 can

analyze a version of the design expanded k time-frames to detect Trojans such as the

ones inserted in the UART design. The version of our detection strategy based on SMT

solving does not suffer from the same problem because a latch output variable, xq will

always have the corresponding latch input variable, x, in its data-flow graph, meaning

any formula for a primary output containing xq will also contain x.

104

Detecting Hardware Trojans in Unspecified Functionality Chapter 5

5.7 Summary

In this chapter we propose a detection methodology for Trojans in unspecified func-

tionality by formulating detection as a satisfiability problem based on the assumption

that unspecified functionality should not influence design outputs. Our detection proce-

dure can be followed using a wide variety of tools and techniques, and we give specifics

for Trojan detection using 1) SMT solving and 2) equivalence checking, meaning our

method is applicable to both RT and gate-level designs. We apply our detection method-

ology to an adder coprocessor and UART communication controller and successfully and

efficiently detect Trojan-infested versions of both designs. The inserted Trojans process

information leaked through the bus interface, exploiting the fact that bus protocols only

partially specify signal behavior. Our methodology is the first to provide a detection

mechanism for this Trojan type.

105

Chapter 6

Trojan Detection Using Exhaustive

Testing of k-bit Subspaces

6.1 Introduction

This chapter presents a post-silicon Trojan detection methodology which generates

test vectors targeting Trojans with rare triggering conditions. Our method overcomes

the shortcomings of existing post-silicon detection methodologies, which focus on con-

trollability and observability metrics meaning they cannot be applied to cryptographic

hardware where all plaintext bits have equal controllability.

Existing techniques used to detect hardware Trojans in a large chip population fall

into two main categories:

1. Techniques identifying anomalies in chip side-channel characteristics such as power

consumption and delay

2. Techniques identifying Trojans in the functional domain by improving circuit ob-

servability and activation likelihood

106

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Techniques which identify chips containing Trojans by comparing side-channel char-

acteristics such as power [94, 17] and delay [95] with Trojan-free chips or models derived

from the Trojan-free netlist, unlike functional testing, have the ability to identify ma-

licious behavior which does not affect any values of known circuit nodes. However,

side-channel detection methods face ever-increasing process variation, which can over-

shadow the influence a Trojan has on the chip signature, especially for large complex

designs such as SoCs. Beyond this, these focus mainly on the detection mechanism, and

still rely on the ability of the test vectors or placement of scan flip-flops to partially or

fully activate the Trojan. Determining which design states should be explored during

testing to activate Trojan circuitry, and how to best propagate Trojan behavior to ob-

servable points is an important task, on which the effectiveness of both side-channel and

functional detection methods rely on.

This chapter presents a post-silicon test vector generation strategy, especially appli-

cable to cryptographic hardware, that detects Trojans with triggers based on patterns

and sequences of digital signals. A stealthy Trojan has a very small probability of being

activated during both the verification effort and during normal operation, but is relatively

easy for the adversary to force.

Many existing methods for post-silicon test vector generation use node controllability

and observability to bias the test set [96, 97, 98, 99]. The assumption is that in order to

decrease Trojan activation probability, the adversary will select signals that have very low

0 or 1-controllability, making the combination of these rare values unlikely to occur during

testing. These strategies first identify random-pattern resistant nodes in the circuit, and

their corresponding rare values, then derive an optimal test set to trigger low probability

node values multiple (N) times. The usability of a Trojan from the attacker’s point of

view is severely diminished if the attacker cannot reliably control the triggering signals.

Existing methods assume all inputs are attacker controllable, hence every single node is

107

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Initial Round

8th Round

Final Round

Key
Scheduler

AESTriggering
Logic

128

127

128

k
plaintext

ciphertext

Payload
...

...

key

1

1

128

128

128

Figure 6.1: AES Fault Attack Trojan

a candidate triggering signal for an attacker with complete knowledge of the design.

In cryptographic hardware, the key bits are unknown to the attacker, therefore any

internal circuit nodes influenced by key bits will be uncontrollable, hence cannot be

reliably used as triggering signals. For example, in AES, the first step is to XOR the

plaintext with key bits [100], leaving the plaintext bits as the only viable triggering

signals. For many Trojans proposed for AES [15, 16] and RSA [17], this is indeed the case,

and testing strategies based on rare circuit values are not applicable since all plaintext

bits have identical controllability and observability.

Challenge-response protocols implemented on both servers and embedded systems

such as smart cards, allow the challenger to select the plaintext. In the case of AES,

this gives the attacker 128 bits to choose from. Figure 6.1 illustrates the AES Trojan

implemented in [15] and [16]. Both works use a subset, k, of n bits (where n = 128), and

108

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

the Trojan payload implements Piret’s differential fault attack [101], allowing recovery

of all secret key bits after observing as few as 2 faulty ciphertexts. Even if the attacker

utilizes only a small subset of the 128-bit plaintext, unless the verification team can

discover which subset the attacker will use, they are left facing the impossible task of

verifying all 2128 plaintext values.

Since exhaustive testing is infeasible, our solution makes the following observation:

An attacker can realistically only afford to use a small subset, k, of all n

possible controllable signals for triggering. Our Trojan detection strategy uses this

observation, instead of controllability and observability metrics, to reduce the state space

targeted by the test vectors. To our knowledge, we are the first to address scenarios where

controllability and observability metrics do not provide a foothold for biasing testing. Our

approach is exhaustive, but with respect to k instead of n, meaning that our test vectors

are guaranteed to activate a Trojan if the k-value chosen is realistic.

Section 6.4.2 discusses the factors involved in determining k, but intuitively a hard-

ware Trojan containing a 128-bit comparator or large counter will have a noticeable area

and power footprint. The feasibility of inserting such circuits is far less during fabri-

cation, but Trojans inserted pre-silicon have the opportunity to be detected by formal

methods, simulation, and analysis of the RTL code. This chapter also provides addi-

tional strategies for the case where one cannot afford exhaustive testing with respect to

the estimated k-value.

The rest of the chapter is organized as follows: Section 6.2 specifies the class of Trojans

our solution detects and relates their activation to the concept of k-subspace coverage,

Section 6.3 details how to generate test vectors providing exhaustive k-subspace coverage,

Section 6.4 presents a case study where different Trojan triggers are inserted in a 128-bit

AES circuit and we discuss how area overhead metrics can influence the selection of k,

and Section 6.5 summarizes our contributions.

109

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

6.2 Problem Definition and Formulation

6.2.1 Interaction with Existing Test and Detection Methods

Traditional manufacturing tests target stuck-at or delay fault models, based on circuit

structure. Trojans inserted during or after fabrication are not present in the gate-level

model therefore are not targeted by test pattern generation tools or candidates for ob-

servation points.

Because of the confusion and diffusion properties of cryptographic algorithms, the dif-

ficultly in Trojan detection lies in triggering the Trojan, not propagating faulty behavior

cause by the Trojan to observable points. For example, a Trojan payload may shorten

the number of rounds in a cipher or create a fault during encryption. In both cases, the

resulting cipher text will differ from the Trojan free version, and is easily detectable.

Therefore, for the remainder of the paper we focus on test generation strategies for

trigger activation, and do not address the class of Trojans which leak circuit information

through side channels. However, our method can be used in conjunction with existing side

channel detection methodologies to magnify the difference between Trojan and Trojan-

free side channel fingerprints in the case where information leakage only occurs after a

triggering condition is met.

6.2.2 Trojan Trigger Models

Our work aims to detect Trojans whose digital triggers take as input k design signals,

where 0 < k ≤ n, and n is the total number of attacker controllable signals.

For the attacker, increasing k decreases the probability that the Trojan is triggered

during testing, however an increase in k leads to a larger Trojan area and power footprint,

making the circuitry more visible.

110

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Table 6.1: Activation Probabilities during a sequence of t n-bit uniform random test
vectors for each trigger model

Combinational Partial Ordering

1−
(
1− 1

2k

)t
1−

(
1− 1

2km

)(t
m)

Contiguous Ordering

1−
(
1− 1

2km

)t−m+1

We consider 3 classes of k-bit triggers:

1. Combinational: activation occurs immediately upon recognition of a k-bit pattern

2. Partially Ordered Sequence: activation occurs upon recognition of a partially

ordered sequence of m k-bit patterns

3. Contiguously Ordered Sequence: activation occurs upon recognition of a con-

tiguous sequence of m k-bit patterns

The Trojan activation probabilities during a sequence of t n-bit uniform random test

vectors for trigger classes 1 - 3 are given by the equations in Table 6.1. Depending on

the desired Trojan area overhead and activation probability, the attacker can implement

any of the 3 trigger types inside the Triggering Logic block in Figure 6.1.

It should be noted that for the partial and contiguous orderings, the m patterns need

not be unique. However, implementing even a few different k-bit pattern recognizers leads

to an significant increase in Trojan area, as seen in Table 6.7 in Section 6.4.1, without

decreasing activation probability. Therefore, it is very reasonable to assume that only 1

k-bit pattern is used in conjunction with a counter.

Counting m patterns before triggering greatly reduces activation probability. A spe-

cial case of trigger classes 2 and 3 is a large counter that counts clock cycles instead of

patterns. [14] refers to this type of trigger as a “time bomb”, and proposes periodically

111

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Subspace 1:

0 1 2 3

32

0 1

1 2

0

0

1

3

3

2

Subspace 2:

Subspace 3:

Subspace 4:

Subspace 5:

Subspace 6:

Figure 6.2: All 6 2-bit Subspaces in a 4-bit Vector

performing power resets during circuit operation to limit the maximum counter value,

forcing the attacker to use a smaller counter if the Trojan is ever to trigger in the field.

If circuit validation is run for a time period exceeding the power reset period, the Trojan

is guaranteed to be triggered. For the more general class of sequential triggers that we

are considering, power resets effectively limit the value of m, but the test vectors must

still ensure the appearance of the magic k-bit pattern m times before activation.

6.2.3 Subspace Coverage

Let n be the number of possible attacker-influenced circuit nodes. Some examples

are the plaintext bits in cryptographic hardware or bus data bits on a processor running

untrusted software or firmware. If a Trojan can incorporate a maximum of k bits into

its triggering mechanism, the goal of the detection effort is to apply the smallest number

of n-bit test vectors, |Tmin(n, k)|, which exhaustively cover all 2k possible values that

112

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

can occur on all
(
n
k

)
possible sets of k-bit signals (k-subspaces), guaranteeing Trojan

activation.

Figure 6.2 shows all 6 possible 2-subspaces when n = 4. One simple method of

generating the test vectors for this set is to target each subspace individually, result-

ing in
(
n
k

)
× 2k =

(
4
2

)
× 22 = 24 test vectors. However, since only 16 test vectors are

needed to exhaustively test 4-bits, it is obvious that this method does not generate

Tmin(n, k). An example exhaustive 2-subspace test set generated by trial and error con-

tains only 5 vectors: {0000, 0111, 1110, 1101, 1011}. These 5 vectors guarantee activation

of a trigger using any 2 out of 4 controllable bits matching any 2-bit pattern. Clearly,

2k ≤ |Tmin(n, k)| ≤ 2n, but it is not obvious how to generate Tmin(n, k) systematically,

or determine |Tmin(n, k)|.

6.3 Our Solution

6.3.1 Test Generation for Exhaustive k-subspace Coverage

A method for generating several sets of n-bit test vectors which exhaustively cover

all k-subspaces is given in [102]. Each test set is composed of 1 or more sets of constant

weight vectors. A set of constant weight vectors is the set of all n-bit vectors with a given

Hamming weight w. There are
(
n
w

)
vectors in a constant weight set.

There are n−k+1 test sets to choose from, and each is described by a set of weights,

which are found by solving Equation 6.1 with n− k + 1 different values for c.

w ≡ c mod (n− k + 1), 0 ≤ c ≤ n− k (6.1)

113

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Table 6.2: Test Sets for n = 8, k = 3

c Weight Set Test Length, |T (8, 3)|
0 {0, 6} 29
1 {1, 7} 16
2 {2, 8} 29
3 {3} 56
4 {4} 70
5 {5} 56

The number of test vectors in each test set is

∑
all weights

(
n

wi

)
(6.2)

For example, let n = 8 and k = 3. Equation 6.1 becomes

w ≡ c mod (6), 0 ≤ c ≤ 5 (6.3)

There are 6 different test sets which can exhaustively cover all 3-subspaces. The

weights and test lengths are given in Table 6.2. Clearly, not all generated test sets are

optimal. The test set composed of all vectors with Hamming weights 1 and 7 is the

smallest. The weights for the smallest test set are given by Equation 6.4. The size of the

minimal test set, |Tmin(n, k)|, is given by Equation 6.5 [102].

w0 =

⌊
k

2

⌋
, w1 =

⌊
k

2

⌋
+ (n− k + 1) (6.4)

|Tmin(n, k)| =
(

n⌊
k
2

⌋)+

(
n

k −
⌊
k
2

⌋
− 1

)
(6.5)

114

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Table 6.3: Test Set Length for Exhaustive k-subspace Coverage

n m k Test Set Length

128 1 2 27

128 1 4 213

128 1 8 223

128 1 16 240

128 1 32 267

128 4 8 225

128 8 8 226

128 10000 8 237

256 1 8 227

256 10000 8 241

2048 1 8 239

2048 10000 8 253

6.3.2 Sequential Triggers

If the Trojan is triggered by partially or continuously ordered sequences of m k-bit

patterns, the minimal k-subspace exhaustive test set, Tmin(n, k), provided in the previous

section does not guarantee activation.

Partial Ordering: All partially ordered sequences of m k-bit patterns can be ex-

haustively tested using |Tmin(n, k)| ×m vectors by repeating Tmin(n, k) m times.

Contiguous Ordering: If the m patterns can be distinct, then |Tmin(n, k)|m test

vectors are needed to exhaustively cover this scenario! If the same k-bit pattern, occurring

m times in a row, triggers the Trojan, we can repeat each vector in Tmin(n, k) m times

to exhaustively cover this case using only |Tmin(n, k)| ×m test vectors.

6.3.3 Example Test Set Sizes

Table 6.3 illustrates how n, m, and k affect the test set size for exhaustive k-subspace

testing. For Trojans with m > 1, Table 6.3 shows the test length assuming either partial

115

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

ordering of m possibly distinct patterns, or contiguous ordering of m identical patterns.

Increasing k and n results in exponential growth in test size. Increasing m causes linear

growth in test size, and can be limited by using the power reset technique [14].

6.3.4 When Exhaustive k-subspace Testing is Too Expensive

Although exhaustive k-subspace coverage requires fewer than 2n vectors, test size

grows exponentially with increases in n and k, as seen in Table 6.3, in some cases making

exhaustive testing infeasible. Let kmax be the maximum number of bits a Trojan trigger

can utilize, and Tmax be the number of vectors budgeted for testing. When |T (n, kmax)| ≤

Tmax, the exhaustive kmax-subspace test set is both guaranteed to activate the Trojan

and within Tmax. However, when |T (n, kmax)| > Tmax, other testing strategies must be

considered.

Since our method aims to detect Trojans in designs where signal controllability and

observability cannot guide test vector selection, the only alternative testing strategy is

the application of uniform random vectors to the attacker controllable bits in the design.

Depending on Tmax, n, k, and kmax, one can consider the following test sets:

• Strategy 1: Tmax uniform random vectors

• Strategy 2: The complete exhaustive k-subspace test set where k < kmax, and

|T (n, k)| ≤ Tmax

• Strategy 3: The complete exhaustive k-subspace test set where |T (n, k)| ≈ Tmax

2

in addition to Tmax

2
random vectors (excluding those already in T (n, k))

The Trojan activation probability, pa, for Strategy 1 is given in Table 6.1, pa for

Strategy 3 is computed using simulation, while the derivation of pa for Strategy 2 is

given below.

116

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Strategy 2 pa: The probability of observing a random kmax-bit pattern in the k-

subspace exhaustive test set T (n, k), where k < kmax, can be derived by considering the

possible Hamming weights, wtroj, for the kmax-bit triggering pattern, where 0 ≤ wtroj ≤

kmax. T (n, k) contains all possible n-bit vectors with Hamming weights {w0, w1} given

by Equation 6.1. T (n, k) is guaranteed to activate a Trojan with weight wtroj if the

kfree = n − kmax bits unused by the Trojan can be assigned a Hamming weight x such

that Equation 6.6 holds.

wtroj + x = w0 or w1 (6.6)

f(T,wtroj, kmax) =

 0 6 ∃ a solution to Eq. 6.6

1 ∃ a solution to Eq. 6.6
(6.7)

By enumerating all trigger pattern Hamming weights and considering how many such

patterns exist for a given n, the number of patterns detectable by any given T (n, k) can

be computed, leading to the formula for activation probability given in Equation 6.8.

pa =

∑kmax

wtroj=0

(
kmax

wtroj

)
× f(T,wtroj, kmax)

2kmax
(6.8)

Comparisons and Discussion: Table 6.4 compares the activation probability

given for Strategy 2 with the activation probability for Tmax uniform random vectors

when n = 128. Table 6.5 shows how the mixed test set (Strategy 3), compares with

the uniform random vectors for n = 128 and various values of k and kmax. |T (n, k)| is

the number of test vectors in the exhaustive k-subspace test set, |Trnd| is the number of

weighted random vectors used, and |Ttotal| = |T (n, k)|+ |Trnd|.

Exhaustive k-subspace test sets always have lower activation probabilities than the

same number of uniform random vectors when kmax > k. This is because uniform random

vectors sample from the entire space of 2n possible vectors while T (n, k) is restricted to

117

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Table 6.4: Strategy 2 v. Strategy 1 – Activation Probabilities for n = 128

kmax k |T (n, k)| pa (T (n, k)) pa (rand)

16 4 213 0.00235 0.1184
16 8 223 0.04904 0.9999
32 4 213 1.309e-07 1.922e-06
32 8 223 1.093e-05 0.00256
32 16 240 0.004551 0.9999
64 4 213 1.163e-16 4.476e-16
64 8 223 3.919e-14 5.968e-13
64 16 240 3.163e-10 8.263e-08

Table 6.5: Strategy 3 v. Strategy 1 – Activation Probabilities for n = 128

kmax k |T (n, k)|, |Trnd|, pa pa

|Ttotal| (mixed) (rand)

8 3 256, 256, 512 0.6574 0.8652
16 3 256, 256, 512 0.0036 0.007782
20 3 256, 256, 512 0.0003 0.0004882
10 5 214, 214, 215 0.9999 0.9999
16 5 214, 214, 215 0.213 0.3911
20 5 214, 214, 215 0.017 0.03053

vectors of particular Hamming weights. As kmax becomes larger compared to k, there

are more Trojan trigger Hamming weights not targeted by exhaustive k-subspace vectors

that uniform random vectors still sample from.

The advantage of using exhaustive k-subspace test vectors for a feasible k is that

activation for all subspaces smaller than k is guaranteed. Because hardware

Trojan insertion is challenging, especially during fabrication, k values smaller than kmax

are more likely. If random vectors can be used in combination (Strategy 3) to target

the less likely larger k values, the activation probability is closer to that of the uniform

random vectors. Strategy 3 provides a balance between guaranteed activation for smaller

k and optimal sampling of the remaining state space with random vectors.

118

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Table 6.6: % Area Increase and G: Gate Count (Equivalent 2-input NAND Gates) v.
k and m (identical patterns) for n = 128

m
1 128 1024 8192

k % G % G % G % G

4 0.11 25 0.77 176 1.00 230 1.23 282
8 0.14 32 0.83 190 1.06 243 1.29 295
32 0.32 72 1.18 270 1.41 323 1.64 376
64 0.55 125 1.65 377 1.88 430 2.11 482
128 1.01 232 2.58 590 2.82 644 3.04 695

6.4 AES Trojan Case Study

6.4.1 Area Overhead

We have implemented the Trojan in Figure 6.1 for each of the 3 Trojan trigger types

shown in Section 6.2.2 in an AES encryption IP from OpenCores [103], where n = 128.

The infected designs were synthesized in 45nm technology using the NanGate Open

Cell Library [92] with Synopsys Design Compiler (ver I-2013.12-SP2) and routed using

Cadence Encounter (v09.14) to quantify the overhead due to the trojan logic. The

percentage increase in area for the infected design and equivalent 2-input NAND gate

count of the Trojan is shown in Table 6.6 for various m and k values.

In Table 6.6, the m patterns are identical, not distinct. It can be seen in Table 6.7

that if the trigger is designed with multiple distinct patterns, the area overhead increases

significantly. For example, when k = 4 and the number of distinct patterns is 4, the area

overhead is already greater than 1% of the original design. The synthesis area and NAND

gate-count increase significantly as k and m increase, more sharply with an increase in

k than that of m. This is because the value of m doubles with addition of only a single

counter bit, while increasing k requires an increase in the comparison logic of the trigger.

119

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

Table 6.7: % Area Increase and G: Gate Count (Equivalent 2-input NAND Gates) v.
k and # of Distinct Patterns for n = 128 and m = 8192

distinct patterns
4 8 16

k % G % G % G

4 1.36 310 1.82 417 2.72 621
8 1.48 338 2.05 470 3.18 728
32 2.17 497 3.46 790 5.98 1368

A limit on m can be enforced by using the power reset strategy outlined in [14].

6.4.2 Factors Influencing kmax

Determining the feasibility of different kmax values requires formulating a realistic

threat model for each design and testing scenario. Our method can target Trojans in-

serted both pre-silicon and during fabrication, but the ease of Trojan insertion and the

variety of detection methodologies available at both stages differs greatly.

Trojan Insertion Pre-silicon: On one hand, Trojans inserted in 3rd party IP

have practically no limits on Trojan size, since the customer often only has access to

the net list or a pre-routed block, making it difficult to reverse engineer the design and

identify Trojans or detect increases in area due to Trojan circuitry. Also, post-silicon

side-channel detection methods will fail due to the lack of Trojan-free gate-level models,

as well as the lack of golden reference chips.

On the other hand, complete observability during simulation and the availability of

formal methods such as equivalence checking provide powerful opportunities for detec-

tion strategies such as [104]. If a Trojan is inserted at gate-level (post-synthesis), and

attempts to hide within minor changes made during the effort to meet timing and power

requirements, the presence of several hundred extra gates will surely be noticed, as is

120

Trojan Detection Using Exhaustive Testing of k-bit Subspaces Chapter 6

the case for when k > 32, and m > 128 as seen in Table 6.6. How reverse engineering,

code and circuit analysis, and formal methods can be used to either prove kmax = 0

or determine a reasonable kmax to target using our post-silicon exhaustive k-subspace

approach is a topic for further research.

Trojan Insertion During Fabrication: Modifying the optical mask to insert

Trojans is extremely difficult. Only a few works have actually fabricated circuits con-

taining hardware Trojans and analyzed the complexity of insertion at mask level. In [16],

Trojans instrumenting Piret’s fault attack on an AES circuit are inserted into the layout

using a commercial Engineering Change Order (ECO) placement tool. They vary the

number of plaintext bits used in the trigger until the software is no longer able to place

the ECO without completely re-routing the entire design.

With a Core Utilization Rate of 99%, the tool cannot place an ECO for a Trojan

composed of as few as 16 AND gates. While further research is required to validate this

approach for estimating an upper bound on kmax, it is clear that k is severely restricted

for mask level Trojan insertion, making exhaustive k-subspace testing a feasible and

complete method for guaranteeing Trojan activation.

6.5 Summary

Our AES circuit case study shows that realistically, an attacker can only incorporate

k out of all n possible controllable signals into a Trojan triggering mechanism, where

k << n. In this chapter we use this observation instead of the controllability and

observability metrics widely employed in existing methods to guarantee detection of

Trojans in cryptographic circuits using up to k triggering signals [28]. We also present

additional strategies when the size of k requires a prohibitively large exhaustive test set

to guarantee detection.

121

Chapter 7

Conclusions

In this document we have addressed the threat of Hardware Trojans in unspecified design

functionality. Due to the complexity of modern chips, a design specification usually

only defines a small fraction of behavior. Traditional verification techniques only focus

on ensuring the correctness of specified behavior, meaning any modifications or bugs

(malicious or accidental) only affecting unspecified functionality will likely go undetected.

Several chapters of this dissertation are dedicated to illustrating how this verification

hole allows an attacker with the ability to modify the design to stealthily undermine the

security of a system. We have shown that all secret key bits in an Elliptic Curve Processor

can be leaked by only modifying RTL don’t cares, and that it is possible to create a covert

Trojan communication channel on top of existing on-chip bus infrastructure for several

common bus protocols by only modifying the on-chip bus interface signals when the

channel is idle. This channel is shown to allow an attacker running as an unprivileged

software program access to root-user data.

By viewing security as an extension of the verification problem we develop several

analysis methodologies based on existing techniques such as equivalence checking and

mutation testing which both detect Trojans and increase confidence in the correctness of

122

specified design functionality. These techniques include a Trojan prevention methodology

based on equivalence checking that classifies all don’t care bits in a design as dangerous

or safe, a mutation testing based methodology capable of identifying dangerous unspec-

ified functionality regardless of the abstraction level or class of design analyzed, and a

methodology which inspects this dangerous unspecified functionality for the existence of

Trojans by formulating Trojan detection in terms of satisfiability. Once Trojan detec-

tion is expressed as a satisfiability problem, there is a wide variety of existing tools and

techniques which can be employed to detect Trojans. In this document we detail Tro-

jan detection using SMT solvers and data-flow graph analysis for RT-level designs, and

combinational equivalence checking for gate-level designs. We also present a post-silicon

Trojan detection methodology for Trojans with rare triggering conditions.

Because unspecified functionality is by nature unknown, there is still much work to

be done in fully exploring the scope of the Trojan threat in this space. Future work

includes exploration of unspecified functionality at higher levels of abstraction such as

TLM and SystemC, and analyzing how unused instruction fields (common in almost every

instruction set architecture) can be used to encode Trojan operations. The Trojan threat

at the hardware/software boundary is another direction for future work as device driver

and operating system code interacts closely with hardware, and many of the techniques

developed in this thesis may be applicable to detecting software Trojans.

123

Bibliography

[1] I. Duncan and A. K. McDaniels, “Medstar hack shows risks
that come with electronic health records,” The Baltimore Sun,
April 2016. [Online]. Available: http://www.baltimoresun.com/health/
bs-md-medstar-healthcare-hack-20160402-story.html

[2] K. Zetter, “Inside the cunning, unprecedented hack of ukraine’s power
grid,” Wired, March 2016. [Online]. Available: http://www.wired.com/2016/03/
inside-cunning-unprecedented-hack-ukraines-power-grid/

[3] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in embedded
systems: Design challenges,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 3, pp.
461–491, Aug. 2004.

[4] M. Dale, “Verification crisis: Managing complexity in SoC designs,” EE
Times, 2001. [Online]. Available: http://www.eetimes.com/document.asp?
doc id=1215507

[5] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5, pp. 34–39,
May 2008.

[6] S. Mitra, H.-S. P. Wong, and S. Wong, “Stopping hardware trojans in their tracks,”
IEEE Spectrum, Jan. 2015.

[7] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer, and W. Clay,
“Process reliability based trojans through NBTI and HCI effects,” in Adaptive
Hardware and Systems (AHS), 2010 NASA/ESA Conference on. IEEE, 2010, pp.
215–222.

[8] L.-W. Kim, J. D. Villasenor, and Ç. K. Koç, “A trojan-resistant system-on-chip
bus architecture,” in Proceedings of the 28th IEEE Conference on Military Com-
munications, ser. MILCOM’09, 2009, pp. 2452–2457.

[9] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and
implementing malicious hardware,” in Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats (LEET). Berkeley, CA, USA: USENIX
Association, 2008, pp. 5:1–5:8.

124

http://www.baltimoresun.com/health/bs-md-medstar-healthcare-hack-20160402-story.html
http://www.baltimoresun.com/health/bs-md-medstar-healthcare-hack-20160402-story.html
http://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
http://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
http://www.eetimes.com/document.asp?doc_id=1215507
http://www.eetimes.com/document.asp?doc_id=1215507

[10] L. Lin, W. Burleson, and C. Paar, “Moles: Malicious off-chip leakage enabled by
side-channels,” in 2009 IEEE/ACM International Conference on Computer-Aided
Design - Digest of Technical Papers, Nov 2009, pp. 117–122.

[11] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy dopant-level
hardware trojans,” in Cryptographic Hardware and Embedded Systems (CHES), ser.
Lecture Notes in Computer Science, G. Bertoni and J.-S. Coron, Eds. Springer
Berlin Heidelberg, 2013, vol. 8086, pp. 197–214.

[12] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp. 10–25, Jan 2010.

[13] C. Krieg, A. Dabrowski, H. Hobel, K. Krombholz, and E. Weippl, “Hardware
malware,” Synthesis Lectures on Information Security, Privacy, & Trust, vol. 4,
no. 2, pp. 1–115, 2013.

[14] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,” in Proceed-
ings of the 2011 IEEE Symposium on Security and Privacy, ser. SP’11, 2011, pp.
49–63.

[15] S. S. Ali, R. S. Chakraborty, D. Mukhopadhyay, and S. Bhunia, “Multi-level at-
tacks: An emerging security concern for cryptographic hardware,” in 2011 Design,
Automation Test in Europe, March 2011, pp. 1–4.

[16] S. Bhasin, J. L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage, “Hardware trojan
horses in cryptographic ip cores,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2013 Workshop on, Aug 2013, pp. 15–29.

[17] D. Agrawal et al., “Trojan detection using ic fingerprinting,” in Security and Pri-
vacy, IEEE Symposium on, 2007.

[18] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification of
stealthy malicious logic using boolean functional analysis,” in Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security,
CCS’13. ACM, 2013, pp. 697–708.

[19] D. Sullivan, J. Biggers, G. Zhu, S. Zhang, and Y. Jin, “FIGHT-Metric: Functional
identification of gate-level hardware trustworthiness,” in Proceedings of the 51st
Annual Design Automation Conference, DAC’14. ACM, 2014, pp. 173:1–173:4.

[20] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “VeriTrust: Verification for hardware
trust,” in Proceedings of the 50th Annual Design Automation Conference, DAC’13.
ACM, 2013, pp. 61:1–61:8.

[21] M. Hicks et al., “Overcoming an untrusted computing base: Detecting and remov-
ing malicious hardware automatically,” in Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP’10. IEEE Computer Society, 2010, pp. 159–172.

125

[22] N. Fern, S. Kulkarni, and K.-T. Cheng, “Hardware Trojans hidden in RTL don’t
cares - Automated insertion and prevention methodologies,” in Test Conference
(ITC), IEEE International, Oct 2015, pp. 1–8.

[23] N. Fern and K.-T. Cheng, “Detecting hardware trojans in unspecified functionality
using mutation testing,” in Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, ICCAD’15. IEEE Press, 2015, pp. 560–566.

[24] P. Lisherness, N. Lesperance, and K. T. Cheng, “Mutation analysis with cover-
age discounting,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, March 2013, pp. 31–34.

[25] N. Fern, I. San, Ç. K. Koç, and K. T. Cheng, “Hardware trojans in incompletely
specified on-chip bus systems,” in 2016 Design, Automation Test in Europe Con-
ference Exhibition (DATE), March 2016, pp. 527–530.

[26] S.-Y. Huang and K.-T. Cheng, Formal Equivalence Checking and Design Debugging.
Kluwer Academic Publishers, 1998.

[27] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and
applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, Sep. 2011.

[28] N. Lesperance, S. Kulkarni, and K.-T. Cheng, “Hardware trojan detection using
exhaustive testing of k-bit subspaces,” in The 20th Asia and South Pacific Design
Automation Conference, Jan 2015, pp. 755–760.

[29] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan: Threats and
emerging solutions,” in High Level Design Validation and Test Workshop, 2009.
HLDVT 2009. IEEE International. IEEE, 2009, pp. 166–171.

[30] G. Qu and L. Yuan, “Secure hardware ips by digital watermark,” in Introduction
to Hardware Security and Trust. Springer New York, 2012, pp. 123–141.

[31] C. Dunbar and G. Qu, “Designing trusted embedded systems from finite state
machines,” ACM Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 5s, pp. 153:1–153:20, Oct. 2014.

[32] R. A. Bergamaschi, D. Brand, L. Stok, M. Berkelaar, and S. Prakash, “Efficient
use of large don’t cares in high-level and logic synthesis,” in Computer-Aided De-
sign, 1995. ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM International
Conference on, Nov 1995, pp. 272–278.

[33] M. Turpin, “The dangers of living with an x (bugs hidden in your verilog),” in
Boston Synopsys Users Group (SNUG), October 2003.

126

[34] L. Piper and V. Vimjam, “X-propagation woes: Masking bugs at rtl and unneces-
sary debug at the netlist,” in Design and Verification Conference and Exhibition
(DVCon), 2012.

[35] H. Z. Chou, H. Yu, K. H. Chang, D. Dobbyn, and S. Y. Kuo, “Finding reset
nondeterminism in rtl designs - scalable x-analysis methodology and case study,”
in 2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010),
March 2010, pp. 1494–1499.

[36] “Cadence conformal equivalence checker.” [Online]. Available: http://www.
cadence.com/products/ld/equivalence checker

[37] M. Turpin, “Solving verilog x-issues by sequentially comparing a design with itself.
you’ll never trust unix diff again!” in Boston Synopsys Users Group (SNUG), 2005.

[38] A. R. Bradley, “SAT-based model checking without unrolling,” in Verification,
Model Checking, and Abstract Interpretation. Springer, 2011, pp. 70–87.

[39] G. Cabodi, S. Nocco, and S. Quer, “Improving sat-based bounded model checking
by means of bdd-based approximate traversals,” in Design, Automation and Test
in Europe Conference and Exhibition, 2003, 2003, pp. 898–903.

[40] C. Wolf, “Yosys Open SYnthesis Suite.” [Online]. Available: http://www.clifford.
at/yosys/

[41] “ABC.” [Online]. Available: http://www.eecs.berkeley.edu/∼alanmi/abc/

[42] “Jasper x-prop app.” [Online]. Available: http://www.jasper-da.com/products/
jaspergold-apps/x-propagation-verification-app

[43] “Atrenta spyglass lint tool.” [Online]. Available: http://www.atrenta.com/pg/2/

[44] “Cadence incisive.” [Online]. Available: http://www.cadence.com/rl/Resources/
articles/10Ways Incisive 13 2.pdf

[45] “Synopsys magellan.” [Online]. Available: http://www.synopsys.com/Tools/
Verification/FunctionalVerification/Pages/Magellan.aspx

[46] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow,
“Elliptic curve cryptography in practice,” in Financial Cryptography and Data Se-
curity. Springer, 2014, pp. 157–175.

[47] C. Rebeiro and D. Mukhopadhyay, “High performance elliptic curve crypto-
processor for FPGA platforms,” in 12th IEEE VLSI Design And Test Symposium,
2008.

127

http://www.cadence.com/products/ld/equivalence_checker
http://www.cadence.com/products/ld/equivalence_checker
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.jasper-da.com/products/jaspergold-apps/x-propagation-verification-app
http://www.jasper-da.com/products/jaspergold-apps/x-propagation-verification-app
http://www.atrenta.com/pg/2/
http://www.cadence.com/rl/Resources/articles/10Ways_Incisive_13_2.pdf
http://www.cadence.com/rl/Resources/articles/10Ways_Incisive_13_2.pdf
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Magellan.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Magellan.aspx

[48] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” Software Engineering, IEEE Transactions on, vol. 37, no. 5, pp. 649–678,
2011.

[49] B. Breech, M. Tegtmeyer, and L. Pollock, “An attack simulator for systematically
testing program-based security mechanisms,” in 2006 17th International Sympo-
sium on Software Reliability Engineering, Nov 2006, pp. 136–145.

[50] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe, “Functional
qualification of tlm verification,” in 2009 Design, Automation Test in Europe Con-
ference Exhibition, April 2009, pp. 190–195.

[51] P. Lisherness and K. T. Cheng, “Scemit: A systemc error and mutation injection
tool,” in Design Automation Conference (DAC), 2010 47th ACM/IEEE, June 2010,
pp. 228–233.

[52] N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation model for the systemc tlm
2.0 communication interfaces,” in 2008 Design, Automation and Test in Europe,
March 2008, pp. 396–401.

[53] “Synopsys certitude.” [Online]. Available: https://www.synopsys.com/TOOLS/
VERIFICATION/FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx

[54] “UART 16550 core.” [Online]. Available: http://opencores.org/project,uart16550

[55] “Wishbone bus.” [Online]. Available: http://opencores.org/opencores,wishbone

[56] AMBA AXI and ACE Protocol Specification, Issue E, ARM, 2013.

[57] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System on Chip
Interconnect. Morgan Kaufmann Publishers Inc., 2008.

[58] L.-W. Kim and J. D. Villasenor, “A system-on-chip bus architecture for thwarting
integrated circuit trojan horses,” VLSI Systems, IEEE Transactions on, vol. 19,
no. 10, pp. 1921–1926, 2011.

[59] M. Henson and S. Taylor, “Memory encryption: A survey of existing techniques,”
ACM Computing Surveys, vol. 46, no. 4, pp. 53:1–53:26, 2014.

[60] “Arm trustzone controllers.” [Online]. Available: http://www.arm.com/markets/
trustzone-controllers.php

[61] D. Wang, “Formal verification of the PCI local bus: A step towards ip core based
system-on-chip design verification,” Master’s thesis, Carnegie Mellon University,
May 1999.

128

https://www.synopsys.com/TOOLS/VERIFICATION/FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx
https://www.synopsys.com/TOOLS/VERIFICATION/FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx
http://opencores.org/project,uart16550
http://opencores.org/opencores,wishbone
http://www.arm.com/markets/trustzone-controllers.php
http://www.arm.com/markets/trustzone-controllers.php

[62] A. Roychoudhury, T. Mitra, and S. R. Karri, “Using formal techniques to debug the
AMBA system-on-chip bus protocol,” in Design, Automation and Test in Europe
Conference and Exhibition, DATE’03, 2003, pp. 828–833.

[63] R. Luo and H. Tan, “Formal modeling and model checking analysis of the wishbone
system-on-chip bus protocol,” in Proceedings of the Third International Conference
on Information Computing and Applications, ICICA’12. Springer-Verlag, 2012,
pp. 211–220.

[64] “Synopsys vip for arm amba.” [Online]. Avail-
able: http://www.synopsys.com/Tools/Verification/FunctionalVerification/
VerificationIP/amba/Pages/default.aspx

[65] “Amba 4 axi4, axi4-lite and axi4-stream protocol assertions bp063 release note
(r0p1-00rel0),” ARM. [Online]. Available: https://silver.arm.com/browse/BP063

[66] DS768: LogiCORE IP AXI Interconnect (v1.02.a), Xilinx Inc., March 2011.

[67] AMBA 3 APB Protocol v1.0 Specification, Issue B, ARM, 2004.

[68] “Axi4 bfm.” [Online]. Available: https://github.com/sjaeckel/axi-bfm

[69] “Vivado design suite, 2015.1.” [Online]. Available: http://www.
xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/
vivado-design-tools/2015-1.html

[70] ZedBoard Hardware User’s Guide (v2.2), Avnet Inc., 2014. [Online]. Available:
http://zedboard.org/

[71] UG585: Zynq-7000 All Programmable SoC Technical Reference Manual (v1.10),
Xilinx Inc., February 2015.

[72] “Xillinux.” [Online]. Available: http://xillybus.com/xillinux

[73] PG034: LogiCORE IP AXI Central Direct Memory Access (v4.1), Xilinx Inc.,
November 2015.

[74] PG059: LogiCORE IP AXI Interconnect (v2.1), Xilinx Inc., April 2016.

[75] PG078: LogiCORE IP AXI BRAM Controller (v4.0), Xilinx Inc., April 2016.

[76] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” Selected
Areas in Communications, IEEE Journal on, vol. 21, no. 1, pp. 5–19, 2003.

[77] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software,” 2005.

129

http://www.synopsys.com/Tools/Verification/FunctionalVerification/VerificationIP/amba/Pages/default.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/VerificationIP/amba/Pages/default.aspx
https://silver.arm.com/browse/BP063
https://github.com/sjaeckel/axi-bfm
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-1.html
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-1.html
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-1.html
http://zedboard.org/
http://xillybus.com/xillinux

[78] D. W. Palmer and P. K. Manna, “An efficient algorithm for identifying security
relevant logic and vulnerabilities in rtl designs,” in Hardware-Oriented Security and
Trust (HOST), 2013 IEEE International Symposium on. IEEE, 2013, pp. 61–66.

[79] T. McComb and L. Wildman, “SIFA: A tool for evaluation of high-grade security
devices,” in Information Security and Privacy. Springer, 2005, pp. 230–241.

[80] X. Li, M. Tiwari, B. Hardekopf, T. Sherwood, and F. T. Chong, “Secure informa-
tion flow analysis for hardware design: Using the right abstraction for the job,”
in Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, ser. PLAS ’10. New York, NY, USA: ACM, 2010, pp.
8:1–8:7.

[81] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying infor-
mation flow properties of firmware using symbolic execution,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016, pp. 337–
342.

[82] “Cadence jaspergold security path verification app.” [Online]. Available:
http://www.cadence.com/products/fv/jaspergold security/pages/default.aspx

[83] M. Gario and A. Micheli, “PySMT: a solver-agnostic library for fast prototyping
of smt-based algorithms,” 2015.

[84] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design processing
toolkit for verilog hdl,” in Applied Reconfigurable Computing, 2015, pp. 451–460.

[85] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The mathsat5 smt
solver,” in Proceedings of the 19th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, ser. TACAS’13. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 93–107.

[86] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 2008, pp. 337–340.

[87] C. Barrett et al., “Cvc4,” in Computer Aided Verification. Springer, 2011, pp.
171–177.

[88] B. Dutertre, “Yices 2.2,” in Computer-Aided Verification, vol. 8559. Springer,
July 2014, pp. 737–744.

[89] F. Somenzi, “Efficient manipulation of decision diagrams,” International Journal
on Software Tools for Technology Transfer, vol. 3, no. 2, pp. 171–181, 2001.

[90] A. Biere, “Picosat essentials,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 4, pp. 75–97, 2008.

130

http://www.cadence.com/products/fv/jaspergold_security/pages/default.aspx

[91] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for bit-vectors
and arrays,” in Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2009, pp. 174–177.

[92] “Nangate 45nm open cell library,” 2011. [Online]. Available: https://www.si2.org/
openeda.si2.org/projects/nangatelib

[93] F. Lu and K.-T. Cheng, “SEChecker: A sequential equivalence checking framework
based on k-th invariants,” VLSI, IEEE Transactions on, vol. 17, no. 6, pp. 733–746,
2009.

[94] Y. Liu, K. Huang, and Y. Makris, “Hardware trojan detection through golden
chip-free statistical side-channel fingerprinting,” in Proceedings of the 51st Annual
Design Automation Conference, ser. DAC ’14. New York, NY, USA: ACM, 2014,
pp. 155:1–155:6.

[95] K. Xiao, X. Zhang, and M. Tehranipoor, “A clock sweeping technique for detecting
hardware trojans impacting circuits delay,” IEEE Design & Test of Computers,
vol. 30, no. 2, pp. 26–34, 2013.

[96] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards trojan-free
trusted ics: Problem analysis and detection scheme,” in 2008 Design, Automation
and Test in Europe, March 2008, pp. 1362–1365.

[97] R. S. Chakraborty et al., “MERO: A statistical approach for hardware trojan de-
tection,” in CHES 2009, ser. LNCS. Springer Berlin Heidelberg, 2009, vol. 5747,
pp. 396–410.

[98] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. Wolff1, C. Papachristou,
K. Roy, and S. Bhunia, “Multiple-parameter side-channel analysis: A non-invasive
hardware trojan detection approach,” in Hardware-Oriented Security and Trust
(HOST), 2010 IEEE International Symposium on, June 2010, pp. 13–18.

[99] A. Sreedhar, S. Kundu, and I. Koren, “On reliability trojan injection and detec-
tion,” J. Low Power Electronics, vol. 8, no. 5, pp. 674–683, 2012.

[100] “Advanced encryption standard (aes).” [Online]. Available: http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

[101] G. Piret and J.-J. Quisquater, “A differential fault attack technique against spn
structures, with application to the aes and khazad,” in Cryptographic Hardware
and Embedded Systems (CHES), Sep. 2003, ser. LNCS, vol. 2779. Springer, 2003,
pp. 77–88.

[102] D. Tang and L. S. Woo, “Exhaustive test pattern generation with constant weight
vectors,” Computers, IEEE Transactions on, Dec 1983.

131

https://www.si2.org/openeda.si2.org/projects/nangatelib
https://www.si2.org/openeda.si2.org/projects/nangatelib
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[103] “Aes (rijndael) ip core,” 2002. [Online]. Available: http://opencores.org/project,
aes core

[104] M. Banga and M. Hsiao, “Trusted rtl: Trojan detection methodology in pre-silicon
designs,” in Hardware Oriented Security and Trust (HOST), June 2010, pp. 56–59.

132

http://opencores.org/project,aes_core
http://opencores.org/project,aes_core

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Scope
	Proposed Solution

	Hardware Trojans Hidden in RTL Don't Cares
	Introduction
	Hardware Trojans
	RTL X's and Don't Cares

	Defining Malicious Don't Cares
	Threat Model
	Illustrative Examples
	Formal Definition

	Identification of Dangerous Don't Cares
	Methodology
	Existing X-Analysis Tools
	Methodology Applied to Examples 1 and 2

	Elliptic Curve Processor
	Background
	The Hardware Trojan
	Automated X-Analysis

	Summary

	Identifying Dangerous Unspecified Functionality
	Introduction
	Related Work
	Information Leakage Trojans
	Coverage Discounting
	Motivation and Procedure
	Example

	Identification Methodology
	Threat Model
	Mutant Selection
	Mutant Injection and Analysis
	Ranking Undetected Faults
	Method Overhead and Coverage

	UART Controller Case Study
	Wishbone Bus Trojan
	Interrupt Output Signal

	Summary

	Trojan Channels in Partially Specified SoC Bus Functionality
	Introduction
	Related Work
	Bus Security
	Hardware Trojan Detection

	Trojan Communication Channel
	Threat Model
	Trojan Channel Components
	Topology Dependent Trojan Channel Properties
	Protocol Dependent Trojan Channel Properties

	Protocol Specific Trojan Channel Definitions
	AMBA AXI4
	AMBA APB

	AXI4-Lite Interconnect Trojan Example
	Trojan Operation
	Overhead

	Trojan Channel in SoC Implementation
	Zynq-7000 Based SoC Platform Overview
	Hardware Trojan Operation

	Details of Trojan Insertion in Xilinx IP
	OS-Level Extraction of Trojan Channel Information
	Overhead

	Detection Strategies
	Summary

	Detecting Hardware Trojans in Unspecified Functionality
	Introduction
	Related Work: Information Flow Analysis
	Threat Model
	Problem Formulation
	Identifying (bold0mu mumu xxxxxx, bold0mu mumu CCCCCC) Pairs

	Detection Methodology
	Overview
	SMT Formulas from RTL Code
	Equivalence Checking

	Case Studies
	Adder Coprocessor
	UART Communication Controller
	SMT Solving v. Equivalence Checking

	Summary

	Trojan Detection Using Exhaustive Testing of k-bit Subspaces
	Introduction
	Problem Definition and Formulation
	Interaction with Existing Test and Detection Methods
	Trojan Trigger Models
	Subspace Coverage

	Our Solution
	Test Generation for Exhaustive k-subspace Coverage
	Sequential Triggers
	Example Test Set Sizes
	When Exhaustive k-subspace Testing is Too Expensive

	AES Trojan Case Study
	Area Overhead
	Factors Influencing kmax

	Summary

	Conclusions
	Bibliography

