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Abstract

Braid Groups and Euclidean Simplices

Elizabeth Eileen Leyton Chisholm

In the early 2000s, Daan Krammer and Stephen Bigelow independently proved

that braid groups are linear. They used the Lawrence-Krammer-Bigelow (LKB)

representation for generic values of its variables q and t. The t variable is related

to the Garside structure of the braid group used in Krammer’s algebraic proof.

The q variable, associated with the dual Garside structure of the braid group, has

received less attention.

In this dissertation we give a geometric interpretation of the q portion of the

LKB representation in terms of an action of the braid group on the space of non-

degenerate euclidean simplices. In our interpretation, braid group elements act

by systematically reshaping (and relabeling) euclidean simplices. The reshapings

associated to the simple elements in the dual Garside structure of the braid group

are of an especially elementary type that we call relabeling and rescaling.
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Chapter 1

Introduction

The braid groups were formally introduced by Emil Artin in the 1920s [1]. He

formalized the notion that braids with n strings form a group called the braid

group on n strings, denoted Braidn. In particular, he described this group alge-

braically as the following:

Definition 1.0.1 (Braid group, standard generators). The braid group, Braidn,

is a group with presentation

〈s1, . . . , sn−1 | sisi+1si = si+1sisi+1, i = 1, . . . , n− 2, sisj = sjsi, |i− j| > 1〉

We will call the generators s1, . . . , sn−1 the standard generators and denote this

set by Stdn.
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Topologists and algebraists have studied these groups extensively. One prop-

erty of the braid groups that has been investigated is the linearity of Braidn.

Definition 1.0.2 (Linearity of a group). A group G is said to be linear if it

admits an injective homomorphism ρ : G → GLm(R) for some natural number

m. Equivalently, a group G is linear if it admits a faithful representation into

GLm(R).

The first candidate for a faithful representation of Braidn was proposed in the

1930s by Werner Burau and is known as the Burau representation [7]. In 1991,

Moody showed that it is not faithful for n ≥ 9 [19]. This was extended to n ≥ 6

by Long and Patton and finally to n ≥ 5 by Bigelow in [17] and [2], respectively.

The representation is faithful for n ≥ 3, but it is still unknown whether the Burau

representation is faithful for n = 4.

Another candidate for a faithful representation of Braidn was introduced

by Ruth Lawrence in 1999 [16]. This representation was studied extensively by

Daan Krammer and Stephen Bigelow and is now commonly called the Lawrence-

Krammer-Bigelow (LKB) representation. Three papers regarding the faithfulness

of the LKB representation (for suitably generic values of its variables q and t)

appeared in the early 2000s. First, Krammer published a proof that the LKB

representation is faithful for n = 4 [14]. Shortly following this, Bigelow proved

this representation is faithful for all n [4]. Bigelow’s proof was topological nature,
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and Krammer followed this with a more algebraic proof in [15]. The main differ-

ence between the two papers by Krammer is that the first uses the dual Garside

presentation of the braid groups, also known as the Birman-Ko-Lee representation

[5], and the second reverts to the standard presentation of the braid group.

These linearity results of the braid groups were extended to prove linearity

of certain Artin groups. In particular, Arjeh Cohen and David Wales proved

that Artin groups of finite type are linear [8] and François Digne extended linear-

ity to the Artin groups of crystallographic type [10]. Following this, Luis Paris

generalized these results further by proving that the Artin monoid injects in the

generalization of the LKB representation [20]. These results, as well as Krammer’s

algebraic proof, heavily utilize the meaning of the t variable in the representation.

The q variable in the LKB representation has received less attention. Recently,

Tetsuya Ito and Bert Wiest made some progress in this when they proved that the

highest power of q in the LKB representation of a dual positive braid is its dual

Garside length [12]. In this dissertation, we present a new way to interpret the q

variable. In order to focus on the q variable, we consider the LKB representation

with t = 1. We call this the simplicial representation. We show that every element

of the n-string braid group determines a reshaping of a metric euclidean simplex,

and in particular the dual simple elements in the dual Garside structure have an

especially nice way of reshaping the simplices.

3



We have the following two theorems.

Theorem A (Braids act on metric euclidean simplices). The action of the spe-

cialized LKB representation of Braidn with t = 1, referred to as the simplicial

representation, preserves the subset of RN , with N =
(
n
2

)
, that represents the

squared edge lengths of euclidean (n− 1)-simplices.

More explicitly, let ρ be the simplicial representation of the n-string braid

group acting on RN with q ∈ R, t = 1, and written with respect to the explicit

basis used by Krammer in [14]. We will call this the simplicial representation.

Let v ∈ RN be a tuple representing the squared lengths of the edges of a metric

(n − 1)-simplex, ∆. Let β be a braid and v′ be the image of v under the action

of ρ(β). Then v′ also represents the squared lengths of the edges of a euclidean

(n− 1)-simplex, ∆′.

In particular, the standard generators of the braid group, as well as the dual

simple elements in the dual garside structure of the braid group, reshape simplices

in a very elementary way that we call edge rescaling.

Definition 1.0.3 (Edge Rescaling). Let ∆ and ∆′ be two euclidean simplices with

labeled vertices in a common vector space. We say that an edge e in ∆ is merely

rescaled if it and the corresponding edge e′ in ∆′ point in the same direction. More

generally, we say that ∆′ is an edge rescaling of ∆ if there exist enough pairs of

4



corresponding edges pointing in the same direction (but with possibly different

lengths) to form a vector space basis out of these common direction vectors.

We then have the following theorem.

Theorem B (Dual simple braids relabel and rescale). Under the simplicial repre-

sentation of the braid group, each dual simple braid acts by relabeling the vertices

and rescaling specific edges.

The structure of the dissertation is as follows. The first chapter discusses

the braid groups in a traditional sense, while the second introduces the dual

Garside structure. Next, we discuss the geometry of Euclidean simplices and

edge rescalings in particular. The fourth chapter discusses representations of the

braid group and focuses on the action of the simplicial representation on euclidean

simplices as in Theorem A. In the fifth chapter we focus how dual simple braids

act on simplices, in particular addressing Theorem B. The sixth chapter focuses

on future plans.
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Chapter 2

The Braid Groups

2.1 Braidn as the braid group on n-strings

Traditionally Braidn is thought of as the braid group on n-strings. We now

make this idea more precise. For a more in depth discussion see [13].

Definition 2.1.1 (Braid on n-strings). A braid on n-strings is a set b ⊂ R2 × I

consisting of n disjoint topological intervals called the strings of b such that the

projection from R2 × I to I maps each string homeomorphically onto I and

b ∩ (R2 × 0) = {(1, 0, 0), (2, 0, 0), . . . , (n, 0, 0)}

b ∩ (R2 × 1) = {(1, 0, 1), (2, 0, 1), . . . , (n, 0, 1)

6



Figure 2.1: A braid in Braid4

Based on this definition, we see that each string of b connects some point

(i, 0, 0) to some (j, 0, 1) and intersects each plane R2×{t} for t ∈ [0, 1] at exactly

one point. An example of a braid in Braid4 is shown in Figure 2.1.

Definition 2.1.2 (Products of braids on n-strings). Given two braids on n-strings

b1 and b2, we define their product b1b2 as the set of points (x, y, t) ∈ R2 × I such

that (x, y, 2t) ∈ b1 if 0 ≤ t ≤ 1
2

and (x, y, 2t− 1) ∈ b2 for 1
2
≤ t ≤ 1.

Figure 2.2 shows the product of the braid in Braid4 shown in Figure 2.1 with

itself. This multiplication is associative and has an identity element given by the

trivial braid {1, 2, . . . , n} × {0} × I ⊂ R2 × I.

7



Figure 2.2: A product of braids

Definition 2.1.3 (Isotopic braids). Two braids on n-stings b and b′ are isotopic

if there exists a continuous map F : b × I → R2 × I such that for each s ∈ I we

have F (b× s) is a braid on n-strings, F (b× 0) = b and F (b× 1) = b′.

It is clear that Definition 2.1.3 gives an equivalence relation on the braids on

n-strings. It is also clear that if b1 is isotopic to b′1 and b2 is isotopic to b′2 then

b1b2 is isotopic to b′1b
′
2.

Theorem 2.1.4. Isotopy classes of braids on n-strings with multiplication as in

Definition 2.1.2 form a group, denoted Bn. Moreover, this group is isomorphic to

Braidn as defined in Definition 1.0.1.

8



Proof. Based on Definition 2.1.2 and Definition 2.1.3 it is clear that Bn is a group.

Let ψi denote the equivalence class with representative the braid with ith string

connecting (i, 0, 0) and (i+ 1, 0, 1), the (i+ 1)st string connecting (i+ 1, 0, 0) and

(i, 0, 1) with the ith string behind the (i + 1)st string, and jth string connecting

(j, 0, 0) and (j, 0, 1) for j 6= i, i+ 1. See Figure 2.3 for an example.

Define a map

Braidn → Bn

si 7→ ψi

for i = 1, . . . , n− 1. It can be shown that ψ1, . . . , ψn−1 satisfy the braid relations

and that this map is an isomorphism. See [13] for a detailed proof of this theorem.

2.2 Braidn as a mapping class group

The braid group Braidn is also isomorphic to the mapping class group of an

n-punctured disk. We now make this more precise.

Definition 2.2.1 (Half-twist). Let Dn be a topological disc in R2 with labeled

punctures pi for i = 1, . . . , n. Given two punctures i and j in Dn, we define the

following homeomorphism. Connect i and j by a straight line arc and take a small

neighborhood of this path avoiding all other punctures. Define the half-twist φij

9



Figure 2.3: Representative of ψ1 ∈ Braid4
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Figure 2.4: Dn
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Figure 2.5: Half-twist φ12 in D9

to be the homeomorphism switching i and j clockwise around each other in this

neighborhood where punctures pass on the left to avoid collision.

The half-twist φ12 in Braid8 is pictured in Figure 2.5. To witness this home-

omorhpism, we have included the n-gon along with its image under the homeo-

morphism.

Definition 2.2.2 (Mapping class group of Dn). The mapping class group of Dn,

Mcg(Dn) is the set of equivalence classes of homeomorphisms of Dn that fix the

boundary of Dn.

It is a well known fact that Braidn is isomorphic to the mapping class group

Mcg(Dn). For an in depth discussion of this, see [11].

11



Theorem 2.2.3. The mapping class group Mcg(Dn) is generated by the n − 1

equivalence classes of half-twists φi,i+1 for i = 1, . . . , n− 1. Moreover, this group

is isomorphic to the braid group Braidn in Definition 1.0.1.

Proof. To see that Mcg(Dn) is isomorphic to Braidn, we define a map

Mcg(Dn)→ Bn

φi,i+1 7→ ψi

For a discussion of this isomorphism see [11]. Since we know that B ∼= Braidn

this completes the proof. In particular, we can identify the equivalence class φi,i+1

with the standard generator si.

Remark 2.2.4. Note that by identifying the standard generators of Braidn with

equivalence classes of homeomorphisms, we will compose braids from right to left

as with function composition.

12



Chapter 3

Partitions, Permutations and

Braids

In this chapter we first discuss non-crossing partitions and permutations in a

convexly punctured disc, and then use these ideas to discuss dual simple elements,

presentations of the braid group and some properties.

3.1 Noncrossing Partitions and Permutations

In this section convexly punctured discs are used to define the lattice of non-

crossing partitions as well as noncrossing permutations.

13



Definition 3.1.1 (Convexly punctured disc). Let Dn be a topological disc in the

euclidean plane with a distinguished n-element subset that we call its punctures

or vertices. When the disc Dn is a convex subset of R2 and the convex hull of

its n punctures is an n-gon (i.e. every puncture occurs as a vertex of the convex

hull) then we say that Dn is a convexly punctured disc. See Figure 2.4. There is a

natural cyclic ordering of the vertices corresponding to the clockwise orientation

of the boundary cycle of the n-gon. A labeling of the vertices is said to be standard

if it uses the set [n] := {1, 2, ..., n} and the vertices are labeled in the natural cyclic

order. More generally, when the vertices pi are bijectively labeled by elements i

in a finite set A, we refer to the convexly punctured disc as DA.

There are important two element subsets of the vertices of Dn that we call

edges.

Definition 3.1.2 (Edges). Let Dn be a convexly punctured disc. For each two

element subset {i, j} ⊂ [n], the convex hull of the corresponding points pi and

pj in Dn is called an edge, denoted ei,j = ej,i, or possibly eij when the comma

is not needed for clarity. When a standard name is needed we insist i < j. The

number of edges is
(
n
2

)
and we consistently use N for this number throughout the

dissertation. For later use, it is also convenient to impose a standard order on the

set of all N =
(
n
2

)
edges. We do so by lexicographically ordering them by their

standard names.

14
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e23

e34

e14

e13

e24

Figure 3.1: Edges of D4

In D4, for example, the standard names of its 6 =
(
4
2

)
edges in their standard

order are e12, e13, e14, e23, e24 and e34. See Figure 3.1.

We also need words to describe the position of one edge relative to another.

Definition 3.1.3 (Pairs of edges). Let (eij, ekl) be an ordered pair of edges in Dn.

Consider the subdisc DB where B = {i, j, k, l}. Inside of DB, there are precisely

five possible configurations for (eij, ekl):

• noncrossing : all four endpoints are distinct and the edges do not cross.

• crossing : all four endpoints are distinct and the edges cross.

• identical : eij and ekl have both endpoints in common.

15
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Figure 3.2: Examples of pairs of edges in D9

• clockwise: eij and ekl have exactly one endpoint in common and the convex

hull of the three endpoints is a triangle where eij is followed by ekl clockwise

on the boundary. In this case, we say that ekl is to the right of eij.

• counterclockwise: eij and ekl have exactly one endpoint in common and the

convex hull of the three endpoints is a triangle where eij is followed by ekl

counterclockwise on the boundary. In thise case, we say that ekl is to the

left of eij.

Consider the example in Figure 3.2. The edges e34, e49 and e67 are to the left

of the edge e47 and the edges e27, e78 and e45 are to the right. This is because

ordered pairs such as (e34, e47) and (e67, e47) are clockwise while the ordered pair

(e27, e47) is counterclockwise.

We now define noncrossing partitions in a convexly punctured disc.

16
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Figure 3.3: The subsets {1, 2, 4, 5} and {3, 7, 8} are crossing. The subsets

{1, 2, 4, 5} and {7, 8, 9} are noncrossing.

Definition 3.1.4 (Noncrossing partitions). Let Dn be a convexly puncured disc.

Two subsets B,B′ ⊂ [n] are noncrossing when the convex hulls of the vertices of

B and B′, respectively, are completely disjoint. More generally, a partition σ of [n]

is noncrossing when its blocks are pairwise noncrossing. Noncrossing partitions

can be partially ordered by refinement, where σ < τ if and only if each block of

σ is contained in some block of τ . With this ordering, the set of all noncrossing

partitions of [n] form a bounded graded lattice denoted NCn. The number of

noncrossing partitions in NCn is Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number.

See Figure 3.3 for an example of two noncrossing subsets in D9. The poset

NC4 is shown in Figure 3.4.

To each noncrossing partition of [n] we can assign a permutation in Symn.

17



Figure 3.4: Noncrossing partition lattice NC4.

Definition 3.1.5 (Noncrossing permutations). To every subset B ⊂ [n] with

|B| ≥ 2 we can associate a permutation in Symn by linearly ordering the elements

of B. In general, we associate a permutation to each partition by multiplying the

permutations that correspond to its blocks. This product is well-defined as the

blocks of a noncrossing partitions are disjoint and hence their corresponding per-

mutations commute. We identify each noncrossing partition with its noncrossing

permutation using the same symbol for both. The permutation associated to the

full set [n] is an important n-cycle that we call δ.

As an example, the subset B = {1, 3, 4} becomes the permutation (134) and

the noncrossing partition σ = {{1, 3, 4}, {2}, {5, 6, 7, 8, 9}} becomes the permuta-

tion σ = (134)(56789).

18



3.2 Dual Simples, Presentations of Braidn and

Complements

In this section we discuss the dual simple braids, presentations of Braidn and

introduce the definition and properties of the left and right complement.

From Theorem 2.2.2, we know that elements of the braid group can be iden-

tified with equivalence classes of motions of the vertices in Dn. The dual simple

braids are a finite set of braids indexed by the noncrossing permutations as follows.

Definition 3.2.1 (Rotations). For each set B ⊂ [n], let PB be the convex hull of

the vertices indexed by B inside of DB. The braid group element sB is the motion

where each labeled point in DB moves clockwise along the boundary of PB to the

next vertex, leaving all other vertices fixed. The braid element sδ is the motion

where each labeled point in Dn moves clockwise along the boundary of the convex

n-gon formed by the vertics of Dn to the next vertex. When |B| = 1, the motion

is trivial. When B has two elements, the motion is the same as the half-twist in

Definition 2.2.1.

See Figure 3.5 for an example of a rotation in B9.

The association of rotations to subsets of [n] allows us to associate each non-

crossing partition to an element of the braid group.
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Figure 3.5: The rotation s137.

Definition 3.2.2 (Dual simple braids). The dual simple braids are elements of

Braidn in one-to-one correspondence with the noncrossing partitions NCn. In

particular, for a noncrossing partition σ, we can associate the braid given by the

product of the rotations corresponding to each of its blocks denoted sσ. This is

well defined as the blocks of a noncrossing partition correspond to rotations that

occur in disjoint subdiscs.

The dual simple braids in Braid4 written as products of rotations are shown

in Figure 3.6.

There are four particular subsets of the dual simple braids that we will use in

this dissertation, and as such we give them the following names. First, we note

that the standard generators given in Definition 1.0.1 can be rewritten in our new

notation as the rotation si,i+1.
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Figure 3.6: The dual simple elements in Braid4.

Definition 3.2.3 (Four sets of simple braids). The standard generating set of

the braid group Braidn is the set identified in Definition 1.0.1 consisting of the

n − 1 rotations si,i+1 for i = {1, . . . , n − 1}. The dual generators of Braidn are

the N =
(
n
2

)
set of rotations sB where |B| = 2. The rotations are the elements of

Braidn given by sB where |B| 6= 1. The full set of all dual simple braids form a

fourth set. We write Stdn ⊂ Genn ⊂ Rotn ⊂ Simpn for these four nested sets,

whose sizes are n− 1, N , 2n − n and Cn = 1
n+2

(
2n
n

)
.

When n = 4, these sets have 3, 6, 11 and 14 elements, respectively. It is clear

that each of the sets in Definition 3.2.3 generate Braidn. We can use these sets to

develop alternate presentations of the braid group. In particular, we can restate
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the dual presentation of the braid group in [5], as well as the rotation presentation

of [18], using our language.

Note again that we are breaking with convention and elements of Symn, as well

as elements of Braidn, are multiplied from right to left as in function composition.

For example, the product (1, 2, 3)·(3, 4, 5) is (1, 2, 3, 4, 5) and the product s123 ·s345

is s12345.

In order to define relations between the elements of Genn and Rotn, we first

discuss special partitions of [n] called admissible partitions. Following the conven-

tion of [18], we represent subsets of [n] with uppercase letters such as A,B,C and

elements of [n] as lower case letters such as i, j, k. Further, we abbreviate unions

such as {i} ∪ B ∪ C as iBC, removing braces around single elements and using

juxtaposition to indicate union.

Definition 3.2.4 (Admissible partitions). If A1, . . . , Ak are pairwise disjoint sub-

sets of [n] such that there is a place to start reading the boundary cycle of the

convex hull of the points in ∪ki=1Ai so that, reading clockwise, one encounters

all of the elements in A1 followed by A2, followed by A3, etc., then the partition

{A1, . . . , Ak} is called admissible.

Examples and non-examples of admissible partitions are shown in Figure 3.7.

The partition ({1,2,3},{4,5}, {6,7,8}) is an admissible partition as is ({4, 5}, {6, 7, 8}, {1, 2, 3}),

but ({6,7,8}, {4,5}, {1,2,3}) is not.
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Figure 3.7: Admissible and nonadmissible partitions in D9

Based on Definition 3.2.2 and the multiplication of elements in Symn, we have

the following relations for elements of Rotn.

Definition 3.2.5 (Rotation relations). The elements in Rotn as defined in Def-

inition 3.2.3 satisfy the following two types of relations:

sBsC = sCsB when B and C are non-crossing (commutation)

sBiC = sBisiC when (B, {i}, C) is admissible (factorization)

We note that the factorization relation is slightly different from the original

literature as we are composing braids from right to left.

See Figure 3.8 for an example of the factorization relation. We then have the

following presentaiton of the braid group.
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Figure 3.8: s123456789 = s123s3456789

We can now write the Birman-Ko-Lee presentation of the braid groups in [5],

the dual presentation, using our notation.

Definition 3.2.6 (Dual presentation). Using the generators of Braidn given by

the set Genn = {sB | |B| = 2}, we have the following presentation:

〈
{sij}1≤i<j≤n

∣∣∣∣∣∣∣∣
sijskl = sijskl when {i, j} and {k, l} are non-crossing

sijk = sijsjk when ({i}, {j}, {k}) is admissible

〉

Using our new language, we can also define a presentation of the braid group

with rotations as generators.

Definition 3.2.7 (Rotation presentation). The rotations of Braidn, Rotn, as

defined in Definition 3.2.3 generate the braid group Braidn with the following

relations:

24



1

2

3
4

5

6

7
8

9

1

2

3
4

5

6

7
8

9

Figure 3.9: Left and right complement example in Sym9.

sBsC = sCsB when B and C are non-crossing (commutation)

sBisiC = sBiC when (B, {i}, C) is admissible (factorization)

Another construction that will be crucial in our later results is the left and

right complement of a noncrossing permutation.

Definition 3.2.8 (Complements). Let σ be a noncrossing permutation. Recall

that δ is the n-cycle of (1, 2, . . . , n). The left complement of σ is the unique element

σ′ where σ′σ = δ. Similarly, the right complement of σ is the unique element σ′′

where σσ′′ = δ. These permutations are denoted σ′ = lc(σ) and σ′′ = rc(σ). The

permutations lc(σ) and rc(σ) are always also noncrossing permutations, and in

particular the edges in the blocks of lc(σ), respectively rc(σ), consist of the edges
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that are to the left, respectively to the right, or noncrossing with respect to each

of the edges in the blocks of σ.

In Figure 3.9, (23)(456)(789) is the left complement of (136) in Sym9 and

(12)(345)(6789) is its right complement.

The following observation is not crucial to our results, but we sometimes use

this language.

Remark 3.2.9 (Hypertrees). A hypergraph is a generalization of a graph where

its hyperedges are allowed to span more than two vertices, and a hypertree is the

natural generalization of a tree. As can be seen in Figure 3.9, the blocks of the

noncrossing partition associated to a dual simple element and the blocks of one

of its complements together form the hyperedges of a planar hypertree.

Using the notion of left and right complements, we now introduce a definition

that will be useful in proving later results.

Definition 3.2.10 (Five permutations). If σ1 and σ2 are permutations in Symn

such that σ1, σ2 and their product σ1σ2 are all three noncrossing, then there exist

noncrossing permutations σ3, σ4 and σ5 such that δ = σ1σ2σ3 = σ1σ4σ2 = σ5σ1σ2.

The permutations σ5 and σ3 in Definition 3.2.10 are simply the left and right

complements of the product σ1σ2, while σ4 is obtained by conjugation. An example

is shown in Figure 3.10.
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Figure 3.10: If σ1 = (2, 3, 4, 5) and σ2 = (5, 6, 7), then the permutations σ3,

σ4 and σ5 defined in Definition 3.2.10 are σ3 = (1, 7, 8, 9), σ4 = (1, 5, 8, 9) and

σ5 = (1, 2, 8, 9).
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Chapter 4

Euclidean Simplices

In this chapter we discuss the geometry of Euclidean simplices, and then a

particular reshaping that we call edge rescaling.

4.1 Geometry of Euclidean Simplices

In this section we discuss geometry of euclidean simplices with n labeled ver-

tices. We start by distinguishing between points and vectors as in [6].

Definition 4.1.1 (Points and Vectors). Let V be an (n − 1)-dimensional real

vector space with a positive definite inner product. Let E be an (n−1)-dimensional

euclidean space, which may be defined as a set with a fixed simply-transitive action
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of the additive group of V . We call the elements of V vectors and the elements

of E points. We write 〈u, v〉 for the inner product of two vectors u and v.

Vectors and points in V and E, respectively, can be used to define other objects

that we calle edges and lax vectors.

Definition 4.1.2 (Edges and Lax Vectors). Given two points p, p′, the line seg-

ment connecting them is called an edge and p, p′ are its endpoints. We also define

two vectors from these points by using the simply-transitive action of V on E:

the unique vector v that sends p to p′ and the unique vector −v that sends p′ to

p. The pair of vectors ±v is a lax vector. When p and p′ are labeled, for example

as pi and pj, we call the edge they span eij = eji and the vectors they determine

v = vij and −v = vji.

Since V is equipped with an inner product, its vectors have norms.

Definition 4.1.3 (Norm). The positive definite inner product defined on V gives

rise to a norm on V given by the map Norm : V → R where Norm(v) = 〈v, v〉.

Note that the norm of a lax vector is well defined as Norm(v) = Norm(−v). We

also define the norm of an edge to be the norm of the lax vector determined by

its endpoints. For readability, when points are labeled we write aij = Norm(vij).

Using our definition of points in E, we can define (n−1)-dimensional euclidean

simplices.
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Definition 4.1.4 (Simplices). Let {pi} be a set of n labeled points in E. These

points are said to be in general position if they are not contained in a proper affine

subspace E. If the n points {pi} are in general position, then their convex hull

determines a labeled euclidean simplex ∆ of dimension (n − 1) and the points pi

are called the vertices of ∆.

Throughout the dissertation we use the following convention. Given a labeled

euclidean simplex ∆ with labeled vertices p1, . . . , pn, we can identify simplicial

faces of ∆ with subsets of the vertices in the convexly punctured disc Dn. For

example, the three blocks of the left complement of s136 in Figure 3.9 correspond

to an edge, a triangle and a tetrahedron in any 8-dimensional simplex ∆ with 9

labeled vertices.

We are primarily interested in the isometry class of a labeled euclidean simplex

∆ and this is completely determined by the ordered list of the norms of its edges.

Definition 4.1.5 (Edge norm vectors). Let ∆ be a labeled eulidean simplex with

n vertices. The edge norm vector of ∆ is a column vector v ∈ RN with N =
(
n
2

)
consisting of the positive real numbers aij that are the norms of the edges eij of ∆,

listed in the standard lexicographic order of edges discussed in Definition 3.1.2.

Edge norm vectors characterize classes of labeled euclidean simplices. When

we reshape simplices, the modifications to the edges lengths manifest in its edge

norm vector. Given two vectors u and v, we know that their inner product can
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Figure 4.1: Tetrahedron determined by 4 points, edges labeled by norm.

be determined completely using norms by the formula 2〈u, v〉 = Norm(u + v)−

Norm(u) −Norm(v). In general, however, we need a formula to determine the

inner product of two vectors formed by four not necessarily distint points in a

euclidean space E.

Proposition 4.1.6 (Inner products and norms). Let pi, pj, pk, pl ∈ E be four not

necessarily distint points. Then 2〈vij, vkl〉 = ail + ajk − aik − ajl.

Proof. To improve readability, we write a, b, c, d, e and f for the norms aij,

aik, ail, ajk, ajl and akl, respectively. See Figure 4.1. Expanding the norms of

vik = vij + vjk and vjl = vjk + vkl produces the identities

b = a+ d+ 2〈vij, vjk〉

e = d+ f + 2〈vjk, vkl〉
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Expanding the norm of vil = vij + vjk + vkl produces

c = a+ d+ f + 2〈vij, vjk〉+ 2〈vjk, vkl〉+ 2〈vij, vkl〉

Thus

2〈vij, vjk〉 = b− a− d,

2〈vjk, vkl〉 = e− d− f

and

2〈vij, vkl〉 = c− a− d− f − (b− a− d)− (e− d− f) = c+ d− b− e

4.2 Edge Rescaling

We now define a class of geometric shapings of labeled euclidean simplices that

we call edge rescalings and investigate their properties.

Definition 4.2.1 (Edge Rescaling). Let ∆ and ∆′ be two labeled euclidean sim-

plices with n vertices in the same euclidean space E. An edge eij of ∆ is rescaled if

it and the corresponding edge e′ij in ∆′ point in the same direction. More generally,

we say ∆′ is an edge rescaling of ∆ if there exist enough pairs of corresponding

edges pointing in the same direction (with possibly different lengths) to form a

basis for the vector space out of these common direction vectors.
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Remark 4.2.2 (Spanning Trees). Let ∆′ be an edge rescaling of a euclidean

simplex ∆. By definition, there are enough pairs of edges that are rescaled to

form a basis for E. Moreover, a minimal set of these edges would form a spanning

tree in the 1-skeleton of ∆ consisting of these rescaled edges. However, there may

exist more than one of these spanning trees. In particular, given any two edges

that share an endpoint and are rescaled by the same factor, the third edge of the

triangle they span would also be rescaled by that factor. Thus any two of the

vectors that form this triangle could be used in the spanning tree of ∆. Because

of this, it makes more sense to identify the maximal simplicial faces of ∆ that

are rescaled by the same factor. In particular, in light of Remark 3.2.9, we can

construct a partition of the vertices where each block consists of the vertices of the

maximal simplicial subsimplex for each scale factor, called a canonical spanning

hypertree. The aforementioned spanning trees could then be identified by selecting

edges inside the blocks of the canonical spanning hypertree.

Definition 4.2.3 (Edge Rescaling Maps). It is clear from Definition 4.2.1 that

an edge rescaling of a simplex ∆ is completely described by the edges that are

rescaled and their scale factors. In particular, we can define an edge rescaling map

R from the space of euclidean simplices to itself that rescales each simplex ∆ to

a new simplex ∆′. Notice that each edge rescaling map R is invertible by simply
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rescaling the edges rescaled by R by the multiplicative inverse of the scale factors

of R.

We are particularly interested in the edge rescalings where the only scale factors

are 1 and q, and we call these q-rescalings. We introduce a special notation for

these edge rescalings as follows. Let R be a q-rescaling. Let σ be a partition where

the edges in the blocks index the subsimplices which are rescaled by q, and let τ

be a partition where the edges in the blocks index the subsimplices rescaled by 1.

Then we write R = Rσ
τ .

Every edge rescaling map R can be described as a matrix. The following

proposition makes this more precise.

Proposition 4.2.4 (Edge Rescaling Matrices). Let R be an edge rescaling map

and v ∈ RN an edge norm vector for a labeled euclidean simplex ∆. Then there

exists an N by N matrix M that describes the map R whose entries only depend

on R and not on v or ∆. In particular, R(v) = M · v for all v and ∆.

Proof. Let T be a spanning tree in the 1-skeleton of ∆ consisting of edges that

are rescaled by R. Let eij be an edge in ∆ and vij its corresponding vector. We

can write the vector vij as a sum of edges in T , and hence we can write the

corresponding vector v′ij of ∆′ as a sum where the vectors in the sum are rescaled

accordingly. The norm of v′ij, denoted a′ij, can then be expressed as a linear

combination of vectors in T . Then a′ij can be written as a linear combation of
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Figure 4.2: An edge reshaping R = R12
23 that rescales e12 by a factor of q and fixes

e23 (i.e. rescales e23 by a factor of 1).

inner products of edges in T where the cofficients do not dependent on the original

edge norms. Using Proposition 4.1.6 we can then write these inner products in

terms of the original edge norms. Hence, we obtain a′ij as a linear combination of

the original edge norms in v whose coefficients do not depend on v. We construct

M using these coefficients.

In abuse of notation, we use R to represent both the edge rescaling map and

the edge rescaling matrix associated to R. We now give a specific example of an

edge rescaling map by demonstrating the rescaling of a triangle.
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Proposition 4.2.5 (Edge Rescaling a Triangle). Let ∆ be a labeled euclidean

triangle and ∆′ the labeled euclidean triangle obtained by the edge rescaling R12
23.

Then the edge norms of ∆′ can be computed from the edge norms of ∆ as follows:

a′12 = q2a12

a′13 = (q2 − q)a12 + qa13 + (1− q)a23

a′23 = a23

In particular, we can describe the action of R on the edge norm vector of ∆

as a matrix with entries in Z[q]:

v′ =


a′12

a′13

a′23

 =


q2 0 0

q2 − q q 1− q

0 0 1

 ·

a12

a13

a23

 = R ·


a12

a13

a23

 = R · v (4.1)

Proof. To minimize notation, we denote a12, a13 and a23 by a, b and c, respectively,

and add primes for the corresponding norms in ∆′. In the original triangle ∆, we

have the following:

a = 〈v12, v12〉

b = 〈v13, v13〉 = 〈v12 + v23, v12 + v23 = a+ 2〈v12, v23〉+ c

c = 〈v23, v23〉
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Note in particular that the above equation for b shows that

2〈v12, v23〉 = b− a− c

Since R rescales e12 by q and e23 by 1, for the edge norms of ∆′ we have:

a′ = 〈qv12, qv12〉 = q2〈v12, v12〉 = q2a

b′ = 〈qv12 + v23, qv12 + v23〉 = q2〈v12, v12〉+ 2q〈v12, v23〉+ 〈v23, v23〉

= q2a+ q(b− a− c) + c = (q2 − q)a+ qb+ (1− q)c

c′ = 〈v23, v23〉 = c

Notice in Proposition 4.2.5 that the matrix for R not only consists of entries

from Z[q], but in particular these entries are polynomials of degree at most 2.

This is not special to R12
23 and we have the following result.

Proposition 4.2.6 (Quadratic Matrices). Let R = Rσ
τ be a q-rescaling of a labeled

(n−1)-dimensional euclidean simplex ∆. The effect of R on the edge norm vector

v of ∆ is realized by multiplying on the left by an N by N matrix with entries in

Z[q] of degree at most 2.

Proof. Notice from Proposition 4.2.5 that whenever an edge is rescaled by a factor

of q, the edge norm of the corresponding edge in ∆′ is multiplied by q2. In
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Figure 4.3: The edge rescaling R12
234 which fixes the triangle ∆234 and rescales edge

e12 by a factor of q.

particular, there is at most one q on each side of any given inner product, and

hence any given coefficient is at most quadratic.

A natural next example to consider is rescaling a tetrahedron, which we demon-

strate below.

Example 4.2.7 (Rescaling a Tetrahedron). Consider the edge rescaling R12
234

shown in Figure 4.3. We can compute all of the new edge norms using Proposi-

tion 4.2.5. To minimize notation, we label the edge norms a through f for a12

through a34 in lexicographic order. The edge rescaling R = R12
234 can be described

as follows:
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R ·



a

b

c

d

e

f



=



q2a

(q2 − q)a+ qb+ (1− q)d

(q2 − q)a+ qc+ (1− q)e

d

e

f



=



a′

b′

c′

d′

e′

f ′



(4.2)

Thus the matrix that encodes the rescaling R is

R =



q2 0 0 0 0 0

q2 − q q 0 1− q 0 0

q2 − q 0 q 0 1− q 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(4.3)

We now describe a way of defining the matrices for an edge rescaling when the

simplices are higher dimensional.

Definition 4.2.8 (Row Descriptions). As seen above, the new edge norms under

an edge rescaling are determined by the rows of the matrix R = Rσ
τ . We now

introduce a way to describt these rows. Recall that the eij represents both an

edge in a labeled euclidean simplex ∆ and an edge in Dn. We can also think
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of the edge eij as an element of a basis of the vector space RN containing the

edge norm vectors. For example, the second row of the matrix for R = R12
23

can be described in the basis e12, e13, e23 in Proposition 4.2.5 as the row vector

(q2 − q, q, 1 − q), or equivalently, as the linear combination (q2 − q)e12 + qe13 +

(1 − q)e23. Moreover, to select the second row of the matrix R, we act on the

vector (0, 1, 0), which corresponds to e13, from the right by R. In other words,

(e13)R = q2 − q)e12 + qe13 + (1− q)e23.

Remark 4.2.9 (Left and Right). Notice that the linear combination that de-

scribes the image of a basis vector acted on by an edge rescaling matrix R from

the right looks very similar to the corresponding entry in the edge normal vector

when acted on by R from the left. This is because both are encoding the entries

of one row of R. It is important to keep in mind that we act on edge norm vectors

from the left, but when describing the matrices for edge rescalings we define them

by acting on basis vectors from the right.

At this point, it should not be surprising that the ekl row of the matrix Rij
rc(ij)

only depends on the geometric relationship between the edges eij and ekl (as

described in Definition 3.1.3) in the punctured disc Dn. In particular, we can

describe the rows of matrix Rij
rc(ij) based on the positions of the basis vectors ekl

relative to eij. We first do an example.
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Example 4.2.10 (Rescaling a Boundary Edge). In this example we give explicit

row descriptions for the q-rescalings which stretch a single boundary edge while

fixing either its left or its right complement as in Definition 3.2.8. We first compute

the row description of the matrix R = R12
rc(12).

(ekl)R =



q2ekl identical (k = 1, l = 2)

ekl noncrossing (k, l > 2)

ekl to the right (k = 2)

(q2 − q)e12 + qekl + (1− q)e2l to the left (k = 1)

(4.4)

This is a natural generalization of the trianglar and tetrahedral examples in the

new notation. The row description of R = Rij
rc(ij) with j = i+ 1 mod n is similar,

with the added notation of using enew for the third edge of the triangle formed

when eij and ekl have exactly one end point in common. Using the language of

Definition 3.1.3, this means ekl is either to the left or to the right of eij.

(ekl)R =



q2ekl identical

ekl noncrossing

ekl to the right

(q2 − q)eij + qekl + (1− q)enew to the left

(4.5)
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Switching from the right complement to the left complement causes only very

minor changes. The row description of the matrix R = R12
lc(12) is as follows.

(ekl)R =



q2ekl identical (k = 1, l = 2)

ekl noncrossing (k, l > 2)

ekl to the left (k = 1)

(q2 − q)e12 + qekl + (1− q)e1l to the right (k = 2)

(4.6)

And finally, we gie the row description of Rij
lc(ij) with j = i + 1 mod n, with the

same convention that enew denotes the third edge of the triangle when eij and ekl

have exactly one endpoint in common.

(ekl)R =



q2ekl identical

ekl noncrossing

ekl to the left

(q2 − q)eij + qekl + (1− q)enew to the right

(4.7)

Notice that edge rescaling a boundary edge is particularly nice because in this

case the basis vector ekl never crosses eij. In order to extend Example 4.2.10, we

need a computation for edge rescalings corresponding to diagonal edges.

Proposition 4.2.11 (Diagonal Edges). Let ∆ be a labeled euclidean tetrahedron

and ∆′ the labeled euclidean tetrahedron obtained by the edge rescaling R = R24
rc(24).

The new edge norm a′13 can be computed from the edge norms of ∆ as follows:

a′13 = a13 + (q − 1)2a24 + (q − 1)(a14 + a23 − a12 − a34)
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Figure 4.4: The edge rescaling R24
rc(24) which rescales the edge e24 while fixing the

edges e23 and e14.

Proof. Since

v13 = v12 + v24 + v43,

we have

v′13 = v12 + qv24 + v43.

Expanding, we find

a′13 = 〈v′13, v′13〉 = a12 + q2a24 + a34 + 2q〈v12, v24〉+ 2q〈v24, v43〉+ 2〈v12, v34〉.

Using Proposition 4.1.6 we have

〈v12, v24〉 = a14 − a12 − a24,

〈v24, v43〉 = a23 − a24 − a34
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and

〈v12, v43〉 = a13 + a24 − a14 − a23.

Substituting and simplifying yields the result.

Notice that the edge norms involved in the new edge norm a′13 obtained by

the rescaling R24
rc(24) are precisely those that correspond to the edges in the convex

hull of the points p2, p4, p1, p3. This is true in general, and we describe the general

situation below.

Example 4.2.12 (Rescaling a Diagonal Edge). The row description for the gen-

eral rescaling matrix Rij
rc(ij) is essentially identical to the one in Example 4.2.10

with the added case where eij and ekl cross. We can then use Proposition 4.2.11 to

compute (ekl)R
ij
rc(ij). In particular, if the clockwise ordering of i, j, k, l is (k, i, l, j)

then we have

(ekl)R
ij
rc(ij) = ekl + (q − 1)2eij + (q − 1)ekj + (q − 1)eil + (1− q)eki + (1− q)elj.

Notice that this agrees with the calculation of a′13 in Proposition 4.2.11.

More generally, we can describe (ekl)R
ij
rc(ij) using the convex hull of the points

pi, pj, pk, pl in Dn. The answer is ekl plus (q − 1)2eij plus (q − 1) times the two

boundary edges of the convex hull which are simultaneously to the right of eij and

to the left of ekl plus (1−q) times the two boundary edges which are simultaneously

to the right of eij and to the left of ekl. Notice again that this description agrees
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with the calculation of a′13 in Proposition 4.2.11. The row description for Rij
lc(ij)

can be found similarly.
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Chapter 5

Braid Groups and Euclidean

Simplices

In this chapter, we define three explicit representations of the braid group and

prove the first of our two main theorems, Theorem A.

5.1 Representations of Braidn

We now discuss three explicit representations of the braid group: the Lawrence-

Krammer-Bigelow (LKB) representation, the simplicial representation and the

permutation representation. The first representation, and the most complicated,

is the LKB representation.
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Definition 5.1.1 (LKB representation). Let q and t be nonzero positive real

numbers, E be the set {eij} with 1 ≤ i < j ≤ n of size N =
(
n
2

)
and RN be

the N =
(
n
2

)
-dimensional real vector space with E as its ordered basis. The LKB

representation of the braid group is the map ρ : Braidn → GLN(R) defined by

the following action (from the right) of the standard braid group generators sij

(with j = i+ 1 and 1 ≤ i < n) on elements of E .

(ekl)ρ(sij) =



tq2ekl i = k, j = l

ekl i, j /∈ {k, l}

ejl i = k, j < l

ekj i = l

t(q2 − q)eij + qeki + (1− q)ekl k < i, j = l

(q2 − q)eij + qeil + (1− q)ekl j = k

(5.1)

We make two remarks about this definition.

Remark 5.1.2 (Left/right Actions). In the literature, this action is written as

an action from the left. Our alteration only has the effect of transposing the

matrices for the standard generators. We make this change in order to match

up the the matrices of the representation with the obviously very similar edge

rescaling matrices discussed in the previous section.

Remark 5.1.3 (The Sign of the t-Variable). The t variable depends on the linear

ordering of the vertices and is associated to the standard presentation of the
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braid group. The presence of t obscures the fundamentally cyclically symmetric

nature of the dependence on q. To highlight this cyclic symmetry, we consider

the specialization of the LKB representation with t = 1. We also note that there

are inconsistencies in the literature regarding the sign of t. The variable t in [14]

corresponds to −t in [4] (with an additional sign correction in [3]) and [12]. We

have written the LKB representation using Krammer’s sign convention. If we had

followed Bigelow’s we would be setting t equal to −1.

In light of our first main theorem, we call the simplified LKB representation

the simplicial representation of the braid group.

Definition 5.1.4 (Simplicial Representation). The simplicial representation of

the braid group is a specialization of the LKB representation with t set equal to

1. Concretely, let q be a nonzero positive real number, E be the set {eij} with

1 ≤ i < j ≤ n in lexicographic order and RN be the N =
(
n
2

)
-dimensional real

vector space with E as its ordered basis. The simplicial representation of the

braid group is defined by the following action (from the right) of the standard

braid group generators sij (with j = i + 1 and 1 ≤ i < n) on elements of E . We

write Sσ for the matrix that represents sσ with respect to the ordered basis E and

we have introduced the notation enew to denote the third side of the triangle when
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eij and ekl have exactly one endpoint in common as in the previous section.

(ekl)Sij =



q2ekl i = k, j = l

ekl i, j /∈ {k, l}

enew i = k, j < l

enew i = l

(q2 − q)eij + qenew + (1− q)ekl k < i, j = l

(q2 − q)eij + qenew + (1− q)ekl j = k

(5.2)

Now that the t variable has been eliminated, some of the rows are identical and

they can be rewritten using the language of Definition 3.1.3.

(ekl)Sij =



q2ekl identical

ekl noncrossing

enew to the left

(q2 − q)eij + qenew + (1− q)ekl to the right

(5.3)

The third representation is obtained by also eliminating the q variable.

Definition 5.1.5 (Permutation representation). The permutation representation

of the braid group that we are interested in is the one obtained from the simplicial

representation by setting q = 1 (or both t = q = 1 in the LKB representation).

This describes the permutation of the edges induced by the corresponding permu-

tation of the vertices. We write Pσ for the matrix corresponding to sσ. Its row
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description is as follows.

(ekl)Pij =


ekl identical, crossing or noncrossing

enew to the left or right

(5.4)

At this point it should be clear that the simplicial representation matrix Sij is

nearly identical to the edge rescaling matrix Rij
rc(ij) given in Example 4.2.10. The

difference is the permutation matrix Pij.

5.2 Braid Groups Act on Euclidean Simplices

In this section, we connect the simplicial representation of the previous section

with the edge rescaling matrices the previous chapter. We begin with an example.

Example 5.2.1 (Geometry of S12). The matrices corresponding to the first stan-

dard generator s12 of the four string braid group in the simplicial representation

and the permutation representation are as follows:

S12 =



q2 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

q2 − q q 0 1− q 0 0

q2 − q 0 q 0 1− q 0

0 0 0 0 0 1



P12 =



1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0



(5.5)
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It is straightforward to check that S12 = P12R
12
234 = R12

134P12. The matrix R12
234 =

R12
rc(12) is listed explicitly in Example 4.2.7 and the row description of R12

134 = R12
lc(12)

is given in Example 4.2.10.

For ease of proving our main results, we state one final definition.

Definition 5.2.2 (Relabeling and Rescaling). Let σ be a noncrossing permutation

in Symn and Sσ the explicit matrix representing sσ in the simplicial representation.

We say that Sσ relabels and rescales if

Sσ = PσR
σ
rc(σ) = Rσ

lc(σ)Pσ

where rc(σ) and lc(σ) are the left and right complements of σ as in Definition 3.2.8.

In light of Definition 4.2.1 and Definition 5.1.5, we can describe Definition 5.2.2

geometrically. The matrix Sσ relabels and rescales if the effect it has on labeled

euclidean simplices is to first rescale the edges by fixing those in the right comple-

ment of σ and multiplying the edges in σ by a factor of q, then relabel the edges

according to the edge relabeling induced by Pσ. Alternatively, the edge relabel-

ing Pσ can be performed first and the edges that are fixed are those in the left

complement as opposed to the right complement. In this language, Example 5.2.1

shows that the matrix S12 in the simplicial representation of Braid4 relabels and

rescales. In fact, the matrix representation under the simplicial representation of

each stanrdard generator of the braid group relabels and rescales.
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Proposition 5.2.3 (Standard generators). For every standard generator sij of the

braid group Braidn, the corresponding matrix Sij in the simplicial representation

relabels and rescales.

Proof. This is essentially immediate once we compare the row descriptions for

the matrix Sij in Definition 5.1.4 with the row descriptions for the edge rescalings

Rij
rc(ij) and Rij

lc(ij) in Example 4.2.10. In particular, we note that multiplying on the

left by Pij switches the rows to the left of eij with the rows to the right of eij while

multiplying by Pij on the right permtues the columns and thus the subscripts on

the edges that occur in the various terms of the row descriptions.

We can now use Proposition 5.2.3 to deduce our first result.

Theorem A (Braids reshape simplices). The simplicial representation of the n-

string braid group preserves the set of
(
n
2

)
-tuples of positive reals that represent the

squared edge lengths of a nondegenerate euclidean simplex with n labeled vertices.

Proof. First note that it suffices to prove that this holds for some generating set of

Braidn. Next, both vertex relabelings and edge rescalings clearly preserve the set

of
(
n
2

)
-tuples that describe the squared edge lengths of a nondegenerate euclidean

simplex with n labeled vertices, so Proposition 5.2.3 completes the proof.
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5.3 Dual Simple Braids Act by Rescaling and

Relabeling

By Theorem A, we know that the dual simple braids as in Definition 3.2.2

corresponding to the standard generators relabel and rescale. In this section,

prove our second main result that all dual simple braids relabel and rescale. First,

we have the following result.

Proposition 5.3.1 (Products). Let σ1 and σ2 be noncrossing permutations in

Symn such that sσ1, sσ2 and sσ1σ2 are dual simple braids. If both Sσ1 and Sσ2

relabel and rescale, then Sσ1σ2 relabels and rescales.

Proof. By Definition 3.2.10, we know that there exist noncrossing permutations

σ3, σ4 and σ5 such that

δ = σ1σ2σ3 = σ1σ4σ2 = σ5σ1σ2.

We then have the following equalities for Sσ1σ2 = Sσ1Sσ2 :

Sσ1Sσ2 = (Pσ1R
σ1
σ4σ2

)(Rσ2
σ1σ4

Pσ2)

= Pσ1R
σ1σ2
σ4

Pσ2

= Pσ1Pσ2R
σ1σ2
σ3

= Rσ1σ2
σ5

Pσ1Pσ2
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The first equality uses the hypotheses that Sσ1 and Sσ2 relabel and rescale.

The second rewrites the product Rσ1
σ4σ2

Rσ2
σ1σ4

as a single edge rescaling. This edge

rescaling can be desribed as follows. The edge rescaling Rσ2
σ1σ4

rescales the edges

in σ2 by a factor of q and holds the edges in the product σ1σ4 fixed. In particular,

the edges in σ4 and σ2 are fixed. The edge rescaling Rσ1
σ4σ2

rescales the edges in

σ1 by a factor of q and holds the edges in the product σ1σ4 fixed. In particular,

the edges in σ1 and σ4 are fixed. The result of the product is then to rescale the

edges in the product σ1σ2 by a factor of q, leaving the edges in σ4 fixed. Hence

the second equality. The third and fourth equalities are a result of conjugating

the points involved by appropriate permutation matrices.

Since Pσ1Pσ2 = Pσ1σ2 and σ3 and σ5 are the left and right complements of σ1σ2,

respectively, this completes the proof.

Note that the above equalities could be arranged to show that if any two of

Sσ1 , Sσ2 and Sσ1σ2 relabel and rescale then so does the third. Propositions 5.2.3

and 5.3.1 do not immediately prove our main result because not all dual simple

braids are a product of two standard generators. We need to extend Proposi-

tion 5.2.3 to the full set of dual generators.
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Proposition 5.3.2 (Dual generators). For every dual generator sij ∈ Genn of the

braid group Braidn, the corresponding matrix Sij in the simplicial representation

relabels and rescales.

Proof. An explicit description of the matrix for sij under the LKB representation

is given in Krammer’s earlier paper [14]. If we set t = 1 in that description, we

find that the matrix Sij has the exact same description as it does when j = i+ 1

as given in Definition 5.1.4 except that a new case must be added that gives

the result of (ekl)Sij when eij and ekl cross. This simplification of the answer

listed in [14] agrees with the corresponding row of PijR
ij
rc(ij), which is the same

as the corresponding row of Rij
lc(ij)Pij obtained by combining Example 4.2.12 and

Definition 5.1.5.

The second main result is an immediate corollary of Proposition 5.3.2.

Theorem B (Dual simple braids relabel and rescale). Under the simplicial rep-

resentation of the braid group, each dual simple braid relabels and rescales. Con-

cretely, for each σ ∈ NCn, we have Sσ = PσR
σ
rc(σ) = Rσ

lc(σ)Pσ.

Proof. Proposition 5.3.2 shows this is true for the dual generators of Braidn.

Proposition 5.3.1 and induction extend this fact to all dual simple braids.
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Chapter 6

Origins and Future Work

In this final chapter we make a few remarks about the origins of these results

as well as some directions for future work.

6.1 Origins

As stated in the Introduction, three papers on linearity of the braid groups

appeared in the early 2000s. The results of these papers were extended to other

types of Artin groups by Cohen-Wales [9], Digne [10] and Paris [21]. Each of these

papers proves linearity of the positive monoid. When the Artin group is spherical,

the group is the group of fractions of the positive monoid and hence linearity of

the monoid implies linearity of the group.
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For general Artin groups, it is known that the monoid generated by the stan-

dard minimal generating set is not large enough for the Artin group to be the

group of fractions. However, the positive monoid generated by the dual generat-

ing set may be large enough. Thus it would be advantageous to be able to prove

linearity of the braid groups using the dual generators, as in Krammer’s proof for

Braid4 [14]. A proof based on the dual generating set, focusing on the q-variable,

may lead to generalizations similar to those of Cohen and Wales [9], Digne [10]

and Paris [21].

We first wrote code in sage to investigate the properties of the LKB matrices

and found, experimentally, nice ways to decompose them and we began to isolate

the changes that each factor was making. The interpretation of the simplified

version as modifications of edge norms of simplices was one of the final steps in

our evolving understanding of these representations. We have included the code

used to aid future invesetigations in the appendix.

6.2 Future Work

We conclude this dissertation with three directions for additional research.

Remark 6.2.1 (Linearity). The simplicial representation is not faithful for n ≥ 5

because it is the symmetric tensor square of the Burau representation [14]. In order
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to establish a new proof of linearity utilizing the q variable, the t variable needs

to remain guitably generic. One project is to extend the geometric interpretation

given in this dissertation so that the t variable can remain generic, and to extend

the interpretation give here as part of a new proof of braid group linearity focused

on the q variable. In particular, one should try to prove that the dual positive

monoid generated by the dual generators acts faithfully by using a ping-pong

argument similar to the one in Krammer’s first paper [14] proving linearity of

Braid4.

Remark 6.2.2 (Dual Garside Length). The dual Garside structure of the braid

group discussed in [5] equips the braid group with a way to define a normal form

for dual braids. One of the facts conjectured by Karmmer in [14] is that the

highest power of q in the LKB representation of a dual positive braid is twice

its dual Garside length. Recently, Tetsuya Ito and Bert Wiest posted an article

proving this fact [12]. An idea is to use the geometric understanding of the q

variable presented in this dissertation to reprove this fact in a more elementary

way.

Remark 6.2.3 (Spherical Artin groups). The set of labeled euclidean simplices,

with dilated simplices identified, is one of the standard parameterizations of the

higher rank symmetric space SL(V )/SO(V ) and the simplicial representation ap-

pears to act on this space by isometries. Once this action is made explicit, it
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should be possible to define a similar construction and to give a similar interpre-

tation for all of the spherical Artin groups once the focus on labeled euclidean

simplices is replaced by linear transformations of root systems.
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Appendix

Here we will present the sage code used to investigate the simplicial represen-

tation, as well as display some examples of what it does. The entirety of the code

is as follows.

#Simplicial Representation

#Elizabeth Leyton Chisholm and Jon McCammond

### helper functions ###

import os # for system(’clear’)

import numpy # for cumsum

import sys # for flush and write

import itertools # for creating ncp_list quickly

flush = sys.stdout.flush

write = sys.stdout.write

def initialize():

os.system(’clear’);

print "Simplicial representation "

print "Start with create_atoms(n)"

print

def nrange(n):

"returns the first n counting numbers"

return range(1,n+1)
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def excess(li):

"used for absolute reflection length"

return sum([len(i)-1 for i in li])

def distinct(li):

"returns True if the set of permutations is distinct"

return all([li.count(i)==1 for i in set(li)])

def cycle(li):

"turns a list into a simple cycle"

return PermutationGroupElement([tuple(li)])

def create_dictionaries():

""" Creates two global dictionaries:

pa_d turns a pair into an atom (2-tuples to transpositions)

ta_d turns a tuple into a set of atoms """

global pa_d,ta_d

pa_d=dict([[tuple(i),cycle(i)] for i in Combinations(strings,2)])

def tup_atoms(tu): return frozenset([pa_d[tuple(i)] for i in

Combinations(tu,2)])

ta_d=dict([[tuple(i),tup_atoms(i)] for i in subsets(strings)

if len(i)>1])

def ar_len(g):

"absolute reflection length of the permutation g"

return excess(g.cycle_tuples())

def ar_atoms(g):

"set of reflections below g"

return set().union(*[ta_d[i] for i in g.cycle_tuples()])

def ar_interval(g):

"ar_interval(g) returns the permutations between id and g

sorted by reflection length as a set of frozen sets"

ans = [frozenset([g])]

for i in range(ar_len(g)):

ans.append(frozenset([g*i for g in ans[-1]

for i in ar_atoms(g)]))

ans.reverse()

return ans
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def create_rc_perm(f):

"returns the right complement of the permutation f"

return f^-1*delta

def create_lc_perm(f):

"returns the left complement of the permutation f"

return delta*f^-1

def create_compl_d():

"creates a dictionary for the right complements and

left complements for all noncrossing permutations"

global rcp_d, lcp_d

rcp_d = dict([[f,create_rc_perm(f)] for f in ncp])

lcp_d = dict([[f,create_lc_perm(f)] for f in ncp])

def lgnf_perm_pair(i,j):

"returns True if the (ncp[i], ncp[j]) forms a normal form pair"

a=ar_atoms(ncp[j])

b=ar_atoms(rcp_d[ncp[i]])

return a.intersection(b)==set([])

def create_perm_nfl():

"creates pairs (i,j) where ncp[i]ncp[j] is in normal form"

global perm_nfl,nfl

perm_nfl= [(i,j) for i in range(1,len(ncp)-1)

for j in range(1,len(ncp)-1) if lgnf_perm_pair(i,j)]

nfl = sorted([(j-1,i-1) for (i,j) in perm_nfl])

def set_strings(sn):

"set the number of strings and do various precomputations"

global strings, n_strings, delta, nc_part, nc_part_l,

ncp, n_simples

strings = nrange(sn)

n_strings = len(strings)

create_dictionaries()

#delta is the noncrossing permutation (1, 2, ... , n):

delta = cycle(strings)

#the noncrossing permutationss between id and delta

ordered by reflection length as type frozenset:
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nc_part = ar_interval(delta)

#the list form of nc_part:

nc_part_l = [list(i) for i in nc_part]

#list of noncrossing permutations:

ncp=list(itertools.chain.from_iterable(nc_part_l))

#creates the left and right complements for the ncp’s:

create_compl_d()

#creates the normal form pairs of length 2 for the ncp’s:

create_perm_nfl()

n_simples = len(ncp)

print " number of strings = {}".format(n_strings)

def poly_coeff(poly,k):

"returns the coefficient of q^k in the polynomial poly"

if poly==0: return 0

c=poly.coeffs()

if k<len(c): return c[k]

return 0

def matrix_coeffs(mat,k):

"returns the matrix coefficient for q^k"

return matrix([[poly_coeff(i,k) for i in j] for j in mat])

def gen_split(mat):

"returns the constant matrix, the coefficient matrix of q,

and the coefficient matrix of q^2 of mat as a list"

return [matrix_coeffs(mat,i) for i in range(3)]

def gen_perm(mat):

"returns the sum of the matrices in gen_split(mat)"

return sum(gen_split(mat))

def perm_l(mat):

"strips the permutation off from the left of mat"

return [gen_perm(mat)^-1*i for i in gen_split(mat)]

def perm_r(mat):

"strips the permutation off from the right of mat"

return [i*gen_perm(mat)^-1 for i in gen_split(mat)]

#defines Rq as the univariate polynomial Ring in q
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over the rationals

Rq.<q>=QQ[]

def next_string(i,sn):

"returns the next puncture clockwise from the puncture i"

j=mod(i+1,sn).lift()

if j==0: j=j+sn

return j

def admissible(i,j,k):

"returns True if an admissible partition"

if not distinct([i,j,k]): return False

return cycle(sorted([i,j,k]))==cycle([j,k])*cycle([i,j])

def std_gen(i,sn):

"output is the simplicial representation matrix r_i,i+1"

#creates the edges

edgs=[cycle([x,y]) for x in nrange(sn) for y in nrange(sn)

if x!=y and x < y]

#number of edges

eN=binomial(sn,2)

#ans is a matrix over Rq of dimension eN by eN:

ans=matrix(Rq,eN)

j=next_string(i,sn)

f=cycle([i,j])

a=edgs.index(f)

#creates the simplicial representation of r_i,i+1:

for k in range(1,sn+1):

if admissible(i,j,k):

b=edgs.index(cycle([j,k]))

c=edgs.index(cycle([k,i]))

ans[a,a]=q^2

ans[b,a]=q^2-q

ans[b,b]=1-q

ans[b,c]=q

ans[c,b]=1

for d in [edgs.index(g) for g in edgs if (f*g==g*f) and (f<>g)]:

ans[d,d]=1

# this line only works between forks cannot cross boundary forks

return ans
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def std_gens(n):

"creates the simplicial representations for the standard

generators"

return [std_gen(i,n) for i in range(1,n)]

def create_std_gens(sn):

"creates the simplicial representation matrices for the

standard generators"

global Id,Z,ao

global StdGen,Delta,D

global edges,eNum,enames,valpha

#creates the edges as tuples:

edges = [(x,y) for x in range(1,sn+1) for y in range(1,sn+1)

if x!=y and x < y]

#creates the edges as cycles - and thus unordered:

edges_c = [cycle([i,j]) for (i,j) in edges]

eNum = len(edges)

Ra.<a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z>=SR[]

alphabet=[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]

valpha=vector(alphabet[:eNum])

enames=[10*i+j for (i,j) in edges]

ao=vector([1 for i in range(eNum)])

Id = matrix.identity(eNum)

Z = matrix.zero(eNum,eNum)

#the set of simplicial representations for the standard

generators:

StdGen = std_gens(sn)

#simplicial representation of delta:

Delta = prod(StdGen)

D = gen_perm(Delta)

def lc(mat):

"Left complement of mat wrt Delta"

[a,b,c]=gen_split(mat)

pt=transpose(sum([a,b,c]))

return D*pt*(q^2*a+q*b+c)*pt

def rc(mat):

"Right complement of mat wrt Delta"
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[a,b,c]=gen_split(mat)

pt=transpose(sum([a,b,c]))

return pt*(q^2*a+q*b+c)*pt*D

def create_boundary_cycles():

"creates a boundary cycle dictionary"

global bcd

bcd=dict([[(i,j),create_bc(i,j)] for (i,j) in edges])

def create_bc(i,j):

"makes the matrix for the boundary cycle r_i..j"

return prod([StdGen[i-1+k] for k in range(j-i)])

def bc(i,j):

"returns the boundary cycle matrix"

if j>i: return bcd[(i,j)]

return Id

def create_atom(i,j):

"returns the atom r_ij by computing left and right

complements of boundary cycles"

return lc(bc(i,j-1)*rc(bc(i,j)))

def create_atom_d():

"creates a dictionary for the cycles of the form (ij)"

global atd

atd=dict([[(i,j),create_atom(i,j)] for (i,j) in edges])

def atom(i,j):

"returns the precomputed atom r_ij"

if j>i: return atd[(i,j)]

return Id

def split_tup(l):

"splits a list into its adjacent pairs"

return [l[i:i+2] for i in range(len(l)-1)]

def tup2mat(l):

"turns a tuple (with ordered entries) into a matrix "

return prod([atom(i,j) for [i,j] in split_tup(l)])
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def perm2mat(p):

"turns a permutation into a matrix"

return prod([tup2mat(c) for c in p.cycle_tuples()])

def tuples_inside(g):

"returns a LIST of the edges inside the simple as a tuple"

return [p.cycle_tuples()[0] for p in ar_atoms(g)]

def ncp_graph_rc(g):

"makes a graph out of the simple g with edges the tuples

inside g and in the right complement"

return Graph(tuples_inside(g)

+ tuples_inside(create_rc_perm(g)))

def ncp_graph_lc(g):

"makes a graph out of the simple g with edges the tuples

inside g and in the left complement"

return Graph(tuples_inside(g)

+ tuples_inside(create_lc_perm(g)))

def check_below(g,(i,j),(k,l)):

"checks if one edge is below another in the hypertree"

if i in g.shortest_path(k,l) and j in g.shortest_path(k,l):

return 1

else:

return 0

def zeta(g):

"makes the zeta matrix for a given hypertree"

ans = matrix(Rq,eNum)

for i in range(0,eNum):

for j in range(0,eNum):

ans[i, j] = check_below(g, edges[j], edges[i])

return ans

def create_zetas():

"makes the zeta functions for the ncps using both right

(zeta_rcs) and left (zeta_lcs) complement"

global zeta_rcs, zeta_lcs
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zeta_rcs = []

for i in range(1, len(nc_part)-1):

zeta_rcs = zeta_rcs + [zeta(ncp_graph_rc(g))

for g in nc_part[i]]

zeta_lcs = []

for i in range(1, len(nc_part)-1):

zeta_lcs = zeta_lcs + [zeta(ncp_graph_lc(g))

for g in nc_part[i]]

def create_atoms(sn):

"""creates the simplicial representation matrices for

the noncrossing partitions, as well as

other matrices that may be useful"""

global rr,ss,cc,pp,cc_pl,cc_pr,vv

set_strings(sn)

create_std_gens(sn)

create_boundary_cycles()

create_atom_d()

print "creating zetas"

create_zetas()

print "creating rr"

#rr is the simplicial representation matrices for the

noncrossing permutations (excluding identity):

rr = []

for i in range(1,len(nc_part)-1):

print " level {} created".format(i)

rr = rr+[perm2mat(r) for r in nc_part[i]]

print "creating ss"

#ss records gen_split(r) for each matrix in rr:

ss = [gen_split(r) for r in rr]

print "creating cc"

cc = [c for [a,b,c] in ss]

print "creating pp"

#pp is the permutation representation matrices for each

noncrossing permutation:

pp = [sum([a,b,c]) for [a,b,c] in ss]

print "creating cc_pr"

#cc_pr is the set of c’s with the permutation part stripped

off from the right:

cc_pr = [cc[i]*transpose(pp[i]) for i in range(len(cc))]
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print "creating cc_pl"

#cc_pl is the set of c’s with the permutation part stripped

off from the left:

cc_pl = [transpose(pp[i])*cc[i] for i in range(len(cc))]

initialize()

We will now demonstrate a few of examples of how this code can be used. The

examples will be computed using Braid4 as this is the first interesting case and

the matrices are a manageable size.

The first use of this code is to generate the matrices for the simplicial represen-

tation. The function create atoms(4) will generate the simplicial representation

matrices for Simp4, as well as other useful matrices.

sage: create_atoms(4)

number of strings = 4

creating zetas

creating rr

level 1 created

level 2 created

creating ss

creating cc

creating pp

creating cc_pr

creating cc_pl

As an example, we will display all of the matrices corresponding to s12. First

we have the simplicial representation S12:
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sage: rr[0]

[ q^2 0 0 0 0 0]

[ 0 0 0 1 0 0]

[ 0 0 0 0 1 0]

[q^2 - q q 0 -q + 1 0 0]

[q^2 - q 0 q 0 -q + 1 0]

[ 0 0 0 0 0 1]

The code also creates a list of matrices for each simple element corresponding

to the permutation representation, the matrix of coefficients of q and the matrix

of coefficients of q2, in that order. For S12 we have

sage: ss[0]

[

[0 0 0 0 0 0] [ 0 0 0 0 0 0] [1 0 0 0 0 0]

[0 0 0 1 0 0] [ 0 0 0 0 0 0] [0 0 0 0 0 0]

[0 0 0 0 1 0] [ 0 0 0 0 0 0] [0 0 0 0 0 0]

[0 0 0 1 0 0] [-1 1 0 -1 0 0] [1 0 0 0 0 0]

[0 0 0 0 1 0] [-1 0 1 0 -1 0] [1 0 0 0 0 0]

[0 0 0 0 0 1], [ 0 0 0 0 0 0], [0 0 0 0 0 0]

]

The lists cc and pp collect the coefficient matrices of q2 and the permutation

parts of the matrices, respectively. The lists cc pr and cc pl remove the permu-

tation part of the cc matrices from the left and right, respectively. So for S12 we

have

sage: cc[0]

[1 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]
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[1 0 0 0 0 0]

[1 0 0 0 0 0]

[0 0 0 0 0 0]

sage: pp[0]

[1 0 0 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 0 0 1]

sage: cc_pl[0]

[1 0 0 0 0 0]

[1 0 0 0 0 0]

[1 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

sage: cc_pr[0]

[1 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[1 0 0 0 0 0]

[1 0 0 0 0 0]

[0 0 0 0 0 0]

The code also creates a vector to represent the squared edge lengths of a

simplex:

sage: valpha.column()

[a]

[b]

[c]

[d]

[e]

[f]
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This allows us to see the effect of S12 on a tetrahedron with squared edge lengths

a, b, c, d, e, f .

sage: rr[0]*valpha.column()

[ q^2*a]

[ d]

[ e]

[((q - 1)*q)*a + q*b + (-q + 1)*d]

[((q - 1)*q)*a + q*c + (-q + 1)*e]

[ f]

Of course, it was not clear initially that the vector valpha should represent the

squared edge lenths of a tetrahedron. However, the investigation of the action of

simplicial representation matrices on valpha led to this discovery.

One property of the simplicial representation that was not addressed in the

dissertation but is interesting and possibly useful concerns the diagonalization of

the simplicial representation matrices. To discuss this, we first need to explain

the construction of the lists zeta rcs and zeta lcs. Given a dual simple sσ, we

can construct a graph of the vertices of a euclidean simpex ∆ by considering the

edges in σ and rc(σ) or lc(σ). The code constructs these graphs using the function

ncp graph lc and ncp graph lc. For s12 we would get

sage: g = ncp[1]

sage: l = ncp_graph_lc(g)

sage: l

Graph on 4 vertices

sage: l.edges()

[(1, 2, None), (2, 3, None), (2, 4, None), (3, 4, None)]

sage: r = ncp_graph_rc(g)

sage: r
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Graph on 4 vertices

sage: r.edges()

[(1, 2, None), (1, 3, None), (1, 4, None), (3, 4, None)]

where l and r are the graphs using the left and right complement, respectively.

The code then constructs the zeta functions for each of these graphs and col-

lects them in the lists zeta lcs ( for graphs using left complements) and zeta rcs

(for graphs using right complements). Given a graph corresponding to a simple

element and its left or right complement, we create a partial order on the edges in

the graph by defining the edge eij ≤ ekl if the unique shortest path connecting the

vertices k and l contains the shortest path connecting i and j. The zeta functions

are then constructing by recording these relationships in a matrix. For s12 we

would have

sage: zeta_lcs[0]

[1 0 0 0 0 0]

[1 1 0 1 0 0]

[1 0 1 0 1 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

sage: zeta_rcs[0]

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[1 1 0 1 0 0]

[1 0 1 0 1 0]

[0 0 0 0 0 1]

The interesting fact about these matrices is that the zeta functions actually

diagonalize the edge rescaling maps corresponding to each simple element. For
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example, if we strip off the permutation from the left of S12 to obtain R12
134 and

conjugate by the zeta function corresponding to the left complement graph of s12,

zeta lcs[0] we have the following:

sage: zeta_lcs[0].inverse()*pp[0].inverse()*rr[0]*zeta_lcs[0]

[q^2 0 0 0 0 0]

[ 0 q 0 0 0 0]

[ 0 0 q 0 0 0]

[ 0 0 0 1 0 0]

[ 0 0 0 0 1 0]

[ 0 0 0 0 0 1]

Similarly, if we strip off the permutation from the right of S12 to obtain R12
234

and conjugate by the zeta function corresponding to the right complement graph

of s12, zeta rcs[0], we have:

sage: zeta_rcs[0].inverse()*rr[0]*pp[0].inverse()*zeta_rcs[0]

[q^2 0 0 0 0 0]

[ 0 1 0 0 0 0]

[ 0 0 1 0 0 0]

[ 0 0 0 q 0 0]

[ 0 0 0 0 q 0]

[ 0 0 0 0 0 1]

This property holds for all of the simple elements. Moreover, even in the

original LKB representation with the t variable included and these matrices still

diagonalize the LKB representations of the simple elements. This may help in

extending the geometric interpretation of the simplicial representation to the LKB

representation.
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