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Abstract

Spectral Properties of the Koopman Operator in the Analysis of Nonstationary

Dynamical Systems

by

Ryan M. Mohr

The dominating methodology used in the study of dynamical systems is the ge-

ometric picture introduced by Poincaré. The focus is on the structure of the state

space and the asymptotic behavior of trajectories. Special solutions such as fixed

points and limit cycles, along with their stable and unstable manifolds, are of interest

due to their ability to organize the trajectories in the surrounding state space.

Another viewpoint that is becoming more prevalent is the operator-theoretic /

functional-analytic one which describes the system in terms of the evolution of func-

tions or measures defined on the state space. Part I of this doctoral dissertation

focuses on the Koopman, or composition, operator that determines how a function

on the state space evolves as the state trajectories evolve. Most current studies involv-

ing the Koopman operator have dealt with its spectral properties that are induced

by dynamical systems that are, in some sense, stationary (in the probabilistic sense).

The dynamical systems studied are either measure-preserving or initial conditions for

trajectories are restricted to an attractor for the system. In these situations, only the
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point spectrum on the unit circle is considered; this part of the spectrum is called the

unimodular spectrum. This work investigates relaxations of these situations in two

different directions. The first is an extension of the spectral analysis of the Koopman

operator to dynamical systems possessing either dissipation or expansion in regions of

their state space. The second is to consider switched, stochastically-driven dynamical

systems and the associated collection of semigroups of Koopman operators.

In the first direction, we develop the Generalized Laplace Analysis (GLA) for

both spectral operators of scalar type (in the sense of Dunford) and non spectral

operators. The GLA is a method of constructing eigenfunctions of the Koopman

operator corresponding to non-unimodular eigenvalues. It represents an extension of

the ergodic theorems proven for ergodic, measure-preserving, on-attractor dynamics

to the case where we have off-attractor dynamics. We also give a general procedure

for constructing an appropriate Banach space of functions on which the Koopman

operator is spectral. We explicitly construct these spaces for attracting fixed points

and limit cycles. The spaces that we introduce and construct are generalizations of

the familiar Hilbert Hardy spaces in the complex unit disc.

In the second direction, we develop the theory of switched semigroups of Koopman

operators. Each semigroup is assumed to be spectral of scalar-type with unimodular

point spectrum, but possibly non-unimodular continuous spectrum. The functions

evolve by applying one semigroup for a period of time, then switching to another

semigroup. We develop an approximation of the vector-valued function evolution by
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a linear approximation in the vector space that the functions map into. A basis for this

linear approximation is constructed from the vector-valued modes that are coefficients

of the projections of the vector-valued observable onto scalar-valued eigenfunctions

of the Koopman operator. The unmodeled modes show up as noisy dynamics in

the output space. We apply this methodology to traffic matrices of an Internet

Service Provider’s (ISP’s) network backbone. Traffic matrices measure the traffic

volume moving between an ingress and egress router for the network’s backbone. It

is shown that on each contiguous interval of time in which a single semigroup acts

the modal dynamics are deterministic and periodic with Gaussian or nearly-Gaussian

noise superimposed.

Part II of the dissertation represents a divergence from the first part in that it does

not deal with the Koopman operator explicitly. In the second part, we consider the

problem of using exponentially mixing dynamical systems to generate trajectories for

an agent to follow in its search for a physical target in a large domain. The domain

is a compact subset of the n-dimensional Euclidean space Rn. It is assumed that

the size of the target is unknown and can take any value in some continuous range.

Furthermore, it is assumed that the target can be located anywhere in the domain

with equal probability.

We cast this problem as one in the field of quantitative recurrence theory, a rel-

atively new sub-branch of ergodic theory. We give constructive proofs for upper

bounds of hitting times of small metric balls in Rn for mixing transformations of
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various speeds. The upper bounds and limit laws we derive say, approximately, that

the hitting time is bounded above by some constant multiple of the inverse of the

measure of the metric ball. From these results, we derive upper bounds for the ex-

pected hitting time, with respect to the range of target sizes [δ, V ), to be of order

O(− ln δ). First order, continuous time dynamics are constructed from discrete time

mixing transformations and upper bounds for these hitting times are shown to be

proportional to the discrete time case.
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Chapter I

Introduction

1A first introduction to nonlinear dynamical systems, such as Wiggins [Wig03],

focuses on differentiable dynamics with an eye towards the asymptotic nature of

trajectories. Special solutions such as fixed points, limit cycles, and periodic orbits

take a primary role due their organization of trajectories in the state space. More

generally, attractors and invariant manifolds help to decompose a system and develop

an understanding of its behavior. Most techniques are local in nature — stability via

linearization or, more generally, perturbation theory; the local coordinate changes

arising from the theory of normal forms; or bifurcation theory, as examples — and

require some regularity of the governing differential equations. Many theorems hold

for Cr-differentiable systems with at least C2 often being required.

The standard techniques allow practitioners to build good intuition about a sys-

1Portions of this chapter are similar to and reprinted with permission from M. Budǐsić, R.
Mohr, and I. Mezić “Applied Koopmanism,” Chaos. 22 (4), 047510-1 – 047510-33 (2012),
doi:10.1063/1.4772195. Copyright 2012.
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tem’s behavior. However, the geometric approach is not always well-suited to the

analysis of systems that arise in practice. Some of this difficulty stems from the low

dimensional nature of many of the standard techniques — Poincaré-Bendixson’s the-

orem being a particularly blatant example whose result only holds in the plane. With

work, some theorems can be extended to higher dimensions. However, the normal

route to analyzing moderate to large dimensional systems is to reduce the complex-

ity in some way. These techniques can include exploiting special symmetries in the

system, finding integrals (or other invariants) of motion to reduce the degrees of free-

dom, or concepts such as center manifold theory. Unfortunately, these techniques are

not always applicable or if they are, finding the object of interest is intractable. In a

generic large-scale, complex system, many of the standard techniques break down or

applying them can be tricky.

Many of the standard, rigorous analysis techniques require explicit access to the

governing differential equations and state space. For example, rigorously proving

stability via linearization or Lyapunov functions requires the vector field to be known.

While simulations can suggest properties such as stability of a fixed point or other

solution, they are not rigorous proofs. As the dimension or complexity of the system

grows, the potential for exotic or unwanted behavior increases and making conclusions

based on simulations becomes a more delicate issue. In short, many of the techniques

of the geometric approach cannot be considered as “data-driven” methods.

Even when the governing equations are known explicitly, the geometric picture’s
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focus on single trajectories may not be the best viewpoint to take. In systems that

exhibit any of the hierarchies of ergodic behavior — ergodicity, mixing, exactness

— there is but a single trajectory that is dense in the state space. More generally,

for a measure preserving dynamical system, the state space can be decomposed into

ergodic components which are regions invariant under the dynamics for which the

dynamics restricted to that region is ergodic. With regards to numerical conclusions,

the exponential divergence of trajectories in a chaotic system makes the focus on a

single trajectory meaningless since any error in the initial conditions — finite machine

precision, for example — quickly grows and the simulated trajectory is nowhere near

the true trajectory. In these cases, focus on the statistics of ensembles of trajectories

gives a more robust analysis. The book by Lasota and Mackey [LM94] gives a good

introduction to the study of such dynamics using densities.

An alternative viewpoint to the geometric one is the functional one, where the

focus is on studying the behavior of elements of some function class whose common

domain is the state space. In general, we refer to elements of the function class as

observables on the system and the function class as the space of observables. For anal-

ysis purposes, we require that the function class have both algebraic and topological

structures; the linear structure of a vector space and some type of complete topology

at the very least. Most commonly, the topological structure is induced by a norm, in

which case the function class is a Banach space, however, locally convex topologies

induced by a family of seminorms arise as well.
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Focus is now on how observables of the function class evolve over time due to the

dynamics of the system and the relation of this function evolution to the behavior of

the trajectories in the state space. The dynamical system induces a linear operator,

the Koopman operator, that drives the evolution of an observable via composition

with the flow map. If f is an observable and Φt (t ≥ 0) is the flow map, the evolution

of observables is formally given via the family of mappings f 7→ f ◦Φt. This mapping

gives the action of the Koopman operator on the space of observables. Obviously, the

space of observables must be large enough so that it is closed under the action of the

operator, i.e., the mapping is a self-map of the space of observables. This is dictated

by the properties of the flow map. For example, if we require that the function

class consist of Cr-differentiable functions, then Φt should also be a Cr-differentiable

family. To be more explicit, if we denote the vector space of observables by F and

it is closed under composition with the flow maps Φt, then we have the family of

Koopman operators Ut : F → F given by

Ut(f) = f ◦ Φt (t ≥ 0). (I.0.1)

Due to the linear structure of the space of observables and the definition of the

Koopman operators, it is immediately clear that the Koopman operator is linear, even

when the dynamical system is nonlinear. Given some mild conditions2 on the space of

observables, the linear dynamics induced by the Koopman operator are able to capture

the full nonlinear behavior of the underlying dynamical system. This is contrasted

2For example, it is necessary that the space of observables be able to separate points.

4



to typical linearization techniques in the state space, such as Taylor expansion about

a fixed point, that discard a lot of information and cannot resolve the nonlinear

contributions of the dynamics. In order to do this, however, the Koopman operator

acts on an infinite dimensional space even when the dynamical system acts in finite

dimensional Euclidean space. Given the linearity of the operator, and the fact that

in many cases the operator is bounded, all the tools of functional analysis can be

readily applied. Furthermore, as in the case of finite dimensional linear systems, such

as when studying linear vibration theory, determining the spectral properties of the

Koopman operator can give a lot of insight into the behavior of the system.

However, given that the Koopman operator is defined in terms of the flow map

— an object that is often difficult or impossible to construct — one may wonder as

to the value of going about things in this manner. First, if we are dealing with a

discrete time dynamical system, T : M→M, the flow map Φn is just the map T n

evolving the state space dynamics, which gives us an explicit functional form for the

Koopman operator. In this case, (I.0.1) becomes

Un(f) ≡ Un(f) = f ◦ T n. (I.0.2)

In the continuous time case and a fixed system of ordinary differential equations, the

flow map just codifies the solutions of initial value problems of the dynamical system.

Therefore, if we generate trajectories in some manner, we can recover the action of

the Koopman operator. All that is really required is some mechanism that takes a

state space point as an input and outputs a trajectory. This represents a certain

5



black-box point of view for the Koopman operator and makes analysis of a system

in this manner suitable when explicit access to the governing dynamical equations

are unavailable; such is the case with legacy codes or time series of numerical or

experimental data. With this viewpoint, analysis with the Koopman operator has a

certain “data-driven” flavor.

Unfortunately, not everything comes up roses. We have already mentioned that

in order to capture the full nonlinear behavior of the dynamical system, the function

space we have to work in is very large. The choice of the finite dimensional ap-

proximation becomes important in numerical computations (for example, see [BM12;

Bud12]). Furthermore, the new functional/algebraic viewpoint, and the results ob-

tained therein, are somewhat divorced from our hard-won intuition from the geomet-

ric setting since the connection of the functional/algebraic results with a geometric

meaning is not always immediate obvious. We do mention, however, that this is not

always true; there are standard characterization of ergodic and mixing dynamics in

terms of the Koopman operator3. In fact, from a dynamical systems perspective,

the strongest connection between properties of the Koopman operator and behavior

of the underlying dynamical system occurs when the dynamics are restricted to an

attractor.

Spectral properties of composition operators have proven useful in analyzing con-

3See Lasota and Mackey [LM94] or Reed and Simon [RS72] for these formulations. Lasota and
Mackey [LM94] focuses on the properties of averages and does not relate the spectrum of the operator
to the various types of ergodic behavior. In addition to the behavior of averages, Reed and Simon
[RS72] gives spectral characterizations of ergodic and mixing dynamics.
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crete systems. By constructing eigenfunctions, either explicitly or implicitly, the

practitioner has gained insight into the behavior of their particular system. Typi-

cally, rather than a full spectral decomposition, a so-called Koopman mode analysis

is pursued [Mez05]. This amounts to considering the spectral decomposition from a

specific initial condition.

The Koopman mode analysis has seen the most application in the fluids commu-

nity. The connection between the Koopman operator and fluid dynamics was worked

out in [Row+09]. This work connected the spectral properties of the Koopman op-

erator with the Dynamic Mode Decomposition (DMD) of P. Schmid — a numerical

algorithm, first introduced in [SS08], to analyze fluid dynamics via snapshots of the

velocity profile. A number of applications in fluid dynamics have followed — see

[DHS12; NME11; Sch+11; Sch10; SS11; TAM+11; Tu+12] or the recent review arti-

cle [Mez13], and the references therein, for a subset for a small subset of the results.

While the bulk of applications have been in the fluids literature via the DMD algo-

rithm and its variants, applications in other areas have also been pursued. Other ap-

plied studies, such as energy efficiency in buildings [Eis+10; GEM12], power-systems

analysis [SM11; SM12], and neurodynamics [MM12] have used spectral properties

and the Koopman mode decomposition of the associated composition operator.

In most of these studies, it is implicitly assumed that the dynamics considered

are on the attractor and, therefore, the eigenfunctions corresponding to unimodular

(unit modulus) eigenvalues are important. A general procedure for constructing such
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eigenfunctions is through the use of infinite Fourier averages

lim
n→∞

n−1

n−1∑
k=0

e−iωkUk
Φ, (ω ∈ R). (I.0.3)

The existence of these limits can be guaranteed in certain situations by various ergodic

theorems, Wiener and Wintner’s extension of Birkhoff’s pointwise ergodic theorem

[Ass03; WW41] and Yosida’s extension of the mean ergodic theorems [Yos78] having

primacy (see ch. II.3.2).

Often though, it is quite useful to know the spectrum and eigenfunctions for

non-measure preserving dynamics. For example, the recent work in neurodynamics

on isochrons and isostables [MMM13] leverage the non-unimodular spectrum of the

Koopman operator. The works of Cowen, MacCluer, and others on the spectra of

composition operators with analytic symbols acting on (weighted) Hardy Hilbert

spaces H2(D) or Bergman spaces Ap(D) in the complex unit disc (or more generally,

the polydisc) can be considered as other examples [AL04; CM94; GGL09; Hyv+13;

Rid73; SM93]. Unfortunately, it is not immediately clear that such dynamical systems

arise naturally when considering applied problems and, additionally, there seems not

to be a clear general procedure on constructing non-unimodular eigenfunctions as

there is for unimodular eigenfunctions through the application of equation (I.0.3).
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I.1 Contributions of this dissertation

Previous work on the theory and application of the Koopman operator has dealt

with dynamics that are stationary in some sense, whether this be because the dynam-

ics are measure-preserving or are restricted to an attractor. In each of these cases

the spectrum of the associated Koopman operator is fixed and unitary. In the first

part of the dissertation, we pursue two different avenues that relax these conditions.

The first deals with allowing the spectrum of the dynamics to be non-unimodular.

This case arises when we have dissipation or expansion in the dynamics. The second

avenue deals with families of Koopman operators, each possessing unimodular point

spectrum, that are switched between as the system evolves. Part of the motivation for

this approach is in the understanding system wide behavior of internet-type network

traffic flows.

In chapters III and IV, we develop the generalized Laplace analysis (GLA) that

can be used to construct eigenfunctions of the Koopman operator for eigevalues off

the unit circle using Laplace averages. This can be regarded as an extension of the

existing Koopman mode analysis, valid for unimodular spectrum, to non-unimodular

spectrum. Chapter III develops this theory for spectral operators of scalar-type. This

is done for arbitrary linear operators satisfying the spectral assumption and not just

for the Koopman operator. A key theorem used in proving a our results is Yosida’s

mean ergodic theorem. Yosida’s mean ergodic theorem can be used to construct

eigenfunctions corresponding to eigenvalues on the unit circle. Our use of the the-
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orem to construct eigenfunctions for off-unit-circle eigenvalues can be regarded, in

some sense, as an extension of the ergodic theorem to dynamics that are more gen-

eral than the normal measure-preserving dynamics or contraction operators that are

considered in ergodic theory. All of these theorems are proven explicitly for discrete

time, but we do give discuss the continuous time case. With a few additional assump-

tions on the semigroup of operators, the continuous time analog of the discrete case

also holds. Chapter IV develops the same type of GLA theorems but for non-spectral

operators. In order to prove the results, we cannot consider the entire observable

space. We construct the absolutely summable subspace for a collection of eigenvalues

possessing certain properties. The subspace consists of absolutely summable series of

eigenfunctions. The GLA theorems are proven for observables in this subspace. We

also develop of GLA-type theorem for when the eigenvalues possess generalized eigen-

functions. Time averages can still be used to construct the generalized eigenfunction

but a different scaling factor has to be used due to an algebraic time dependence in

the evolution of observables.

In chapter V, we specialize to the Koopman operator. We first start off with two

key properties of eigenfunctions of the Koopman operator that deal with their alge-

braic and topological properties. In particular, pointwise products of two eigenfunc-

tions of the Koopman operator is again an eigenfunction if the product still belongs to

the observable space. In short, if the eigenfunctions are closed in the observable space

under pointwise products, they form a semigroup. The second key property relates the
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eigenvalues and eigenfunctions of topologically conjugate dynamical systems. If we

find an eigenfunction of the Koopman operator associated to one dynamical system,

we can immediately construct an eigenfunction for the other Koopman operator by

composing with the conjugacy map. The new eigenfunction has the same eigenvalue

as the original one. This is particular useful for determining the spectrum and eigen-

functions for the Koopman operator associated to a nonlinear dynamical system. We

can find the spectrum and eigenfunctions for the Koopman operator of the linearized

system fairly easily. This gives part of the spectrum for the Koopman operator of

the nonlinear system and we can get the associated eigenfunction as soon as we know

the conjugacy map from the nonlinear system to the linear one. The rest of the

chapter gives a method of constructing a space of observables for a dynamical system

possessing an attractor on which the Koopman operator is spectral and satisfies the

assumptions of chapter III. This space of functions takes the form as a power series

with coefficients taking values in a Banach space of observables. The Banach space

consists of functions supported on the attractor of the dynamical system, whereas the

indeterminates of the power series correspond to stable directions. These functions

can be thought of as a generalization the normal H2 Hardy functions in the unit disc

which is why we call them B-Hardy functions. The construction is accomplished

by first finding a set of formal eigenfunctions of the Koopman operator. This set

of (principle) eigenfunctions is used to generate an algebra which is then completed

under a certain polynomial norm. Construction of a space of observables for any
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topologically conjugate system can be done using a pullback construction which is

just composing any observable in the original space with the conjugacy map between

the two dynamical systems.

In chapter VII, we switch gears. Whereas the previous three chapters dealt with

the case of operators with non-unimodular spectrum, the current chapter deals with

families of Koopman operators all having purely unimodular point spectrum. The

system is evolved by applying an operator from the family for a certain period of time,

then switching to another operator in the family which drives the systems for another

(not necessarily equal) period of time. The contiguous period of time that an operator

acts to drive the system is called a stationary component. We develop a spectral

decomposition for this type of switch and hold dynamics and spectral projections

for the Koopman operator acting on a stationary component are approximated by

finite Fourier averages over the stationary component. We linearly approximate the

dynamics the output space by building a basis from the Koopman modes computed

from the finite time Fourier averages. Since we are trying to approximate the nonlinear

dynamics in the state space by linear dynamics in the output space of the observables,

there will be some “spectral leakage” from other modes and the continuous part of

the spectrum into the Koopman modes forming the basis. We are able to characterize

this contribution to each Koopman mode in the basis by first computing the skew

projection onto a Koopman mode in the basis and then subtracting acting the analytic

prediction of the dynamics that come from the standard Koopman mode analysis.
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This residual time series is the contribution of the other modes and the continuous

part of the spectrum to that particular Koopman basis mode. This framework is

applied to traffic matrices of the Abilene network. We show that the residual time

series for each Koopman mode and stationary component have Gaussian or nearly

Gaussian distribution. Therefore, the traffic matrices can be simply approximated

by a system consisting of deterministic oscillatory components (corresponding to the

point spectrum) superimposed with Gaussian or nearly-Gaussian noise.

Part II of this dissertation represents a divergence from the first part as it does not

explicitly deal with the Koopman operator. The work in this part of the dissertation

deals with searching for (physical) targets when we possess very little information

about them other than they are located in some (large) region. Specifically, we look

at using exponentially mixing transformations to design search dynamics to look for

targets that can be located with uniform probability in the search domain and whose

size is a nearly-uniform random variable in some interval [δ, V ). We are interested

in the search performance when using these mixing transformations. This problem is

formulated abstractly as a problem in the field of quantitative recurrence, a recently

new sub-field of ergodic theory concerned with the distribution of recurrence and

hitting times for various type of sets in the state space and various classes of dynamical

systems. In the course our work, we introduce the concepts of multivalued maps

and B-regularity, the later guaranteeing the existence of time averages of continuous

functions, and develop concepts of ergodicity and mixing for multivalued B-regular
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maps. We prove constructive upper bounds for the hitting times for uniformly and

non-uniformly exponentially mixing maps for targets of a fixed size. Expected search

times for targets taking sizes in [δ, V ) are easily computed from the hitting time

results and have order O(δ−1). Limit laws for the uniformly exponentially mixing

maps are proven for δ going to zero. First order continuous time search dynamics are

generated from the discrete time maps and it is shown that the hitting time results

hold with the same upper bound scaled by some constant the depends on the physical

search domain.
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Chapter II

Mathematical Prerequisites

This short chapter can be skimmed on a first reading and referred back to as

needed. The first two subsections collect some standard definitions and concepts

from dynamical systems and functional analysis that will be needed. Most of this

material of this section can be found in standard references such as [BN00; DS58;

KH97; Lax02; RS72; Yos78], and [Wig03].

Concepts are broken out into their own headings for ease of reference.

II.1 Dynamical systems, flow maps, and observ-

ables

Let M be a metric space. We will call M the state space. A discrete time

dynamical system on M is given by a family of maps Φn : M → M, where n ∈ T
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and T is either Z or N0, where N0 = N ∪ {0}. We assume the family of maps have

the properties

Φn ◦ Φm = Φn+m (∀m,n ∈ T),

Φ0 = IdM,

(II.1.1)

where IdM is the identity map on M. The relations in (II.1.1) defines a semigroup

property of the family. The map Φ : T ×M → M defined by Φ(n, x) = Φn(x) is

called the flow map. Often, the flow map is induced by a single map T : M→M.

Then, Φn := T n = T ◦ · · · ◦ T︸ ︷︷ ︸
n times

. The dynamical system will be written (M,Φ).

A continuous time dynamical system is given by the family of maps Φt :M→M,

where the family is now parameterized by t ∈ T ⊂ R. Usually, T will either be all

of R or the positive semiaxis R+ = [0,∞). When the continuous time dynamical

system is induced by a system of ordinary differential equations (ODE’s), the flow

map {Φt}t∈T codifies solutions of the initial value problems (IVP’s) for the ODE’s;

i.e., Φt(x) is the solution of the IVP

du

dt
= u̇ = F (u)

u(0) = x,

(II.1.2)

at time t ∈ T and where u ∈M and F :M→M is the system of ODE’s.

Let F be a vector space of functions f : M → C. The space F is called

the space of observables whereas an element f of F is called an observable. The

space F is a space of of vector-valued observables if its elements are maps from M

into a Banach space B. Usually, we consider the space of vector-valued observables
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Fm = F × · · · ×F︸ ︷︷ ︸
m times

, so that B = Cm. If F is closed under pointwise products

defined by the bilinear map ∗ : F ×F → F given by (f ∗ g)(x) = f(x) · g(x)1, then

(F ,+, ∗) is an associative, abelian ring. The product f ∗ g will usually be written

fg. If the constant functions are in F , then it is an associative, abelian ring with a

unit.

Example II.1.1. Let F be the space of observables consisting of R-valued functions

on the real line integrable with respect to the Lebesgue measure. Then F has no unit

since the constant functions are not integrable.

II.2 Basic concepts from linear functional analysis

Let X and Y be (real or complex) vector spaces.

Definition II.2.1 (Linear operator, Space of linear operators). A map U : X → Y

is a linear if for all vectors x, y ∈X and scalars α, β, U(αx+ βy) = αU(x) + βU(y).

The set of all linear maps from X to Y is denoted by L(X ,Y ). When Y = X ,

the we write L(X ) instead.

Definition II.2.2 (Linear functional). If Y in the above definition is the scalar field

over which X is defined, then U is called a linear functional. The space of linear

functionals on X is denoted by X ′. Some times it is called the algebraic dual.

1The product on the right hand side is normal multiplication in C.
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Definition II.2.3 (Adjoint). Let U : X → Y be linear and let X ′ be the algebraic

dual of X . The adjoint of U is the linear map U ′ : Y ′ →X ′ is defined for all f ∈ Y ′

and x ∈X by (U ′f)(x) = f(Ux).

II.2.1 Topologies.

Various topologies, on both X and the space of linear operators from X to X

will be useful.

Definition II.2.4 (Normed space, Banach space). Let X be a vector space. A map

‖·‖ : X → R is called a norm if it has the following properties:

(i) for all x ∈X , ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

(ii) for all scalars α and x ∈X , ‖αx‖ = |α| ‖x‖,

(iii) for all x, y ∈X , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We call (X , ‖·‖) a normed space. If the normed space is complete, it is called a

Banach space.

Definition II.2.5 (Normed topology). Fix x ∈ X and ε > 0. Let V (x, ε) =

{y ∈X | ‖x− y‖ < ε}. All sets of this form define a basis for a topology on X .

This topology is called the norm topology on X .

Definition II.2.6 (Seminorms). Let X be a vector space. A function p : X → R

is a called a seminorm if it has the following properties:

(i) p(x) ≥ 0 , (nonnegative)

(ii) p(βx) = |β| p(x), ∀β ∈ C , (homogeneity)
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(iii) p(x+ y) ≤ p(x) + p(y) , (triangle inequality).

The only difference between norms and seminorms is that the seminorm conditions

do not imply that x = 0 if p(x) = 0.

Definition II.2.7 (Separating family). Let A be an index set and

P = {pα : X → R | α ∈ A } a family of seminorms. The family is said to separate

points if for all x 6= 0, there is a γ(x) ∈ A such that pγ(x)(x) 6= 0.

Equivalently, if P is a separating family of seminorms, then pα(x) = 0 for all

α ∈ A implies x = 0.

Definition II.2.8 (Locally convex topology). Assume P = {pα : X → R}α∈A is a

separating family of seminorms. Let I ⊂ A be a finite subset and ε > 0 an arbitrary

number. For x ∈X , define

V (x; I, ε) := {y | y ∈X , pαi(y − x) < ε, i ∈ I} . (II.2.1)

All sets of the form (II.2.1) form a neighborhood base at x. Call a set open if it is

formed from arbitrary unions of sets of the form (II.2.1). This defines a topology on

X called the locally convex topology. A vector space X equipped with this topology

is called a locally convex linear topological (LCLT) space.

The locally convex topology and the norm topology will sometimes be called the

strong topology.
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II.2.2 Continuity and operator norms.

Definition II.2.9 (Operator norm, bounded operator). Let X and Y be two normed

spaces and let U ∈ L(X ,Y ). Then we define a norm for U by

‖U‖ = sup
x 6=0

‖Ux‖
‖x‖ = sup

‖x‖=1

‖Ux‖ . (II.2.2)

The norm in the numerator of the fraction is the norm on Y and the norm in the

denominator is the one on X . An operator U ∈ L(X ,Y ) is called bounded if

‖U‖ <∞.

Definition II.2.10 (Continuous operators and continuous dual in LCLT spaces).

Let X and Y be locally convex linear topological spaces and U : X → Y a linear

operator. Then U is continuous if for every set B ⊂ Y that is open in the topology of

Y , U−1(B) is an open set in the topology of X . The subspace of L(X ,Y ) consisting

of all continuous linear operators is denoted by L (X ,Y ). If Y is the scalar field

for X , then L (X ,Y ) is the space of all continuous linear functionals. This space

is denoted by X ∗ and is called the continuous dual of X .

It is an elementary result that a linear operator between two normed spaces is

bounded if and only if it is continuous with respect to the norm topologies.

It is easy to see that x ∈X defines a linear functional on X ∗. Let `x be the map

from X ∗ to the scalar field defined by `x(f) = f(x). The linearity and continuity of

this map follows from the continuity of f ∈X ∗. The map taking x 7→ `x embeds X

into X ∗∗.
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Definition II.2.11. X is reflexive if X is isometrically isomorphic to X ∗∗ under

the embedding map.

Definition II.2.12 (Weak topology on X ). Let x ∈ X , {fi}i∈I an arbitrary finite

subset of X ∗, and ε > 0. Define the set

V (x, I, ε) = {y | y ∈X , |fi(y − x)| < ε} . (II.2.3)

All sets of this form define a basis for the weak topology on X . This is the weakest

topology such that all f ∈X ∗ are continuous.

The weak topology on X is a locally convex topology defined by taking the

family of seminorms to be pf (x) = |f(x)| where f ∈X ∗. It is weaker than the strong

topology, hence the name.

Definition II.2.13 (Strong convergence). Let X be a LCLT space. A sequence

{xn}n∈N ⊂ X converges to x ∈ X in the locally convex topology if for every neigh-

borhood V (x; I, ε) of x, there is an NI,ε ∈ N such that xn ∈ V (ψ; I, ε) for all n ≥ NI,ε.

This is equivalent to the conditions pα(ψn − ψ)→ 0 as n→∞ for all α ∈ A.

Definition II.2.14 (Weak convergence). Let X be a LCLT space. A sequence

{xn}n∈N ⊂X is said to converge weakly if for every f ∈X ∗, the sequence {f(xn)}n∈N

is convergent. It is said to converge weakly to x ∈X , if for all f ∈X ∗,

limn→∞ |f(xn − x)| = 0.

Definition II.2.15 (Weak sequential compactness). A space LCLT space X is said

to be weakly sequentially compact if every sequence in X has a subsequence weakly
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convergent to an element of X . The space is said to be locally weakly sequentially

compact if every point of X ha a weakly sequentially compact neighborhood.

If X is a separable and reflexive Banach space, it follows from the sequential

version of the Banach-Alaoglu theorem that it is also locally sequentially weakly

compact.

Definition II.2.16 (Strongly continuous semigroup). Let X be a Banach space. For

each t ≥ 0, let U(t) : X → X be a bounded linear operator. Furthermore, assume

this family of operators satisfies

(i) U(t+ s) = U(t)U(s), for all t, s ≥ 0 and

(ii) U(0) = I, where I is the identity operator on X .

Such a family is called a semigroup of operators. If, in addition, it is true that for all

x ∈X , that limt→0 ‖U(t)x− x‖ = 0, then the family is said to be strongly continuous

at 0.

Definition II.2.17 (Equicontinuous family). Consider the family of operators formed

by taking powers of U ∈ L (X ,Y ); T := {Un}n∈N. The family is called equicontin-

uous if for every continuous seminorm p, there is a continuous seminorm p′ such that

for all ψ ∈ F

sup
n≥1

p(Unψ) ≤ p′(ψ).

Example II.2.18. Examples of equicontinuous families.

(i) The topology of F is given by a norm ‖·‖ and U : F → F has ‖U‖ ≤ 1.
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(ii) Let F = `∞(RN). Define Uej = αjej+1, where {αj}∞1 is a real sequence con-

verging to 0. Then ‖Un‖∞ ≤ sup
F⊂N,F finite

∏
j∈F
|αj| < ∞, for all n ∈ N. Note that

if sup |αj| > 1, then ‖U‖∞ > 1.

Example II.2.19. Let {`α : X → C}α∈A be a set of linear functionals on the normed

space X that separates points. Define a family of seminorms by

pα(f) := |`α(f)| .

The locally convex topology induced by the seminorms is exactly the weak topology of

X induced by the linear functionals.

Example II.2.20. Let F be the set of real analytic functions on the real line and

let K be the collection of compact sets of the real line that contain an open interval.

Define a family of seminorms by

pK(ψ) = sup
x∈K
|ψ(x)| , (K ∈ K ). (II.2.4)

This gives an uncountable collection of seminorms. However, the topology generated

by this family of equivalent to the topology generated by {pKi}i∈N where {Ki} is an

increasing family compact intervals such that R = ∪i∈NKi.

Example II.2.21 (Continuation of example II.2.20). Let {ψn}n≥1 be a sequence in

F converging to ψ ∈ F . This means that for every set V (0; I, ε) of the form (II.2.1),
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there is an NI,ε ∈ N such that ψn − ψ ∈ V (0; I, ε) for n ≥ NI,ε. This implies that for

every compact set K ∈ K and every ε > 0, there is an NK,ε ∈ N such that

pK(ψn − ψ) = sup
x∈K
|ψn(x)− ψ(x)| < ε,

for all n ≥ NK,ε. Therefore, a sequence convergent in the locally convex topology

converges uniformly on compact sets. The family of seminorms given by (II.2.4)

specifies the topology of compact convergence.

II.2.3 Operator topologies

The norm defined by (II.2.2) can be used to define a topology on the space of

linear operators.

Definition II.2.22 (Uniform operator topology). Sets of the form

V (U, ε) = {A ∈ L (X ,Y ) | ‖A− U‖ < ε} (ε > 0, U ∈ L (X ,Y )), (II.2.5)

form a basis for the uniform operator topology, where the norm is given by (II.2.2).

Definition II.2.23 (Strong operator topology). Let X be a LCLT space. For each

x ∈X define px : L (X ,Y )→ Y by

px(U) = Ux. (II.2.6)

The strong operator topology is the weakest topology on L (X ,Y ) such that all

maps of the form (II.2.6) are continuous. A neighborhood base at U ∈ L (X ,Y ) is
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given by sets of the form

V (U, ε) = {A | A ∈ L (X ,Y ),∀i ∈ I, ‖pxi(U − A)‖ < ε} (II.2.7)

where ε > 0, and {xi}ni=1 is an arbitrary finite collection of elements of X .

The weak operator topology can also be defined, but we will not have occasion to

use it.

II.2.4 Closed linear operators

Definition II.2.24 (Graph of an operator). Let X be a Banach space and D ⊂X

be a dense subspace of X . Let U : D →X be a linear operator. The set of ordered

pairs

ΓU := {(f, Uf) | f ∈ D} (II.2.8)

is called the graph of U .

The graph is a subset of X ×X . The cartesian product X ×X can naturally

be viewed as a vector space. With this viewpoint, it is the external direct sum of the

two copies of X and will be denoted by X ⊕X . Since U is linear, then ΓU is a

linear subspace of X ⊕X . A norm on X ⊕X can be given by ‖(x, y)‖ = ‖x‖+‖y‖.

Definition II.2.25 (Closed operator). The operator U is closed if ΓU is a closed

subspace of X ⊕X . Equivalently, U is closed if for every sequence {xn} ⊂ D of

points satisfying

(i) xn → x ∈X and
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(ii) Uxn → y ∈X ,

the following two conditions are are true:

(i) x ∈ D and

(ii) y = Ux.

II.2.5 The Koopman operator.

Definition II.2.26 (Observables). Let F = {f :M→ C} be a vector space of func-

tions on M. The set F is called the space of observables on M, while f ∈ F is

called an observable on M.

Definition II.2.27 (Discrete time Koopman operator). Let Φ : N0 × M → M

be a flow map and F a space of observables on M with the property that for all

f ∈ F , f ◦ Φ(n, ·) ∈ F for all n ∈ N0. For each n ∈ N0, define Un : F → F by

(Unf)(x) = f ◦Φ(n, x). This family is called the (discrete time) Koopman semigroup.

When Φ is generated by composing a fixed T :M→M. The we call UTf = f ◦T the

Koopman operator. In this case, T is called the symbol of the Koopman operator.

Definition II.2.28 (Continuous time Koopman operator). Let Φ : [0,∞)×M→M,

be a (continuous time) flow map and F a space of observables onM with the property

that for all f ∈ F , f ◦Φ(t, ·) ∈ F for all t ≥ 0. For each t ∈ N0, define Ut : F → F

by (Utf)(x) = f ◦ Φ(t, x). This family is called the (continuous time) Koopman

semigroup.
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II.3 Resolvent and spectrum.

Let X be a LCLT space and D ⊂ X a dense subspace. Fix a linear operator

U : D →X .

Definition II.3.1 (Resolvent operator). Let λ ∈ C. The linear operator R(U ;λ) :

Im[λI −U ]→ D defined by R(U ;λ) = (λI −U)−1 is called the resolvent (at λ) when

it exists.

This resolvent operator may not exist for all λ ∈ C. The domain of the resolvent

R(U ;λ) is always taken to be Im(λI − U).

Definition II.3.2 (Resolvent set). Let ρ(U) ⊂ C be the set of complex numbers λ

such that Im[λI−U ] is dense in X and R(U ;λ) exists and is continuous is called the

resolvent set.

Definition II.3.3 (Spectrum). The complement of ρ(U), denoted by σ(U), is the

spectrum of U .

The spectrum decomposes into three sets depending on how the definition of the

resolvent set fails.

Definition II.3.4 (Point spectrum). The point spectrum, denoted σp(U), is the set

of λ ∈ C for which the resolvent does not exist on Im[λI − U ].

For λ to be in the point spectrum, there must be a 0 6= x ∈ D such that Ux = λx.

Hence the point spectrum just contains the eigenvalues of U .
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Definition II.3.5 (Continuous spectrum). The continuous spectrum, denoted σc(U),

is the set of λ ∈ C for which the resolvent R(U ;λ) exists, Im[λI − U ] is dense in X ,

but the R(U ;λ) is discontinuous.

Definition II.3.6 (Residual spectrum). The residual spectrum, denoted σr(U), is

the set of λ ∈ C for which the resolvent R(U ;λ) exists, but Im[λI − U ] is not dense

in X .

Definition II.3.7 (Koopman eigenvalue). Let Ut be either a discrete or continuous

time Koopman semigroup. A number λ ∈ C is called an eigenvalue of the semigroup

if there is a nonzero f ∈ F such that Utf = λtf for all times t.

Definition II.3.8 (unimodular spectrum). Let Ut : F → F be a Koopman semi-

group. Let λ ∈ σ(U). The λ is said to be part of the unimodular spectrum if |λ| = 1.

If λ is in the unimodular point spectrum, the associated eigenfunction is called an

unimodular eigenfunction.

Sometimes the unimodular spectrum is called the unitary spectrum; this, however,

does not imply that the associated operator is unitary. Therefore, the unimodular

terminology leads to less confusion and we endeavor to stick to this terminology in

this dissertation.

II.3.1 Koopman mode decomposition

In the analysis of dynamical systems, it is often the case that we only need to

know the behavior from a single (or small set of) initial conditions. In this case,
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it is often advantageous to consider vector-valued observables f ∈ Fm. Such cases

include fluid dynamics or heat flow simulations where the system is simulated from

some fixed initial and boundary conditions. If the initial condition is on (or very

close) to an attractor, then decomposition of the vector-valued observable into uni-

modular eigenfunctions can be accomplished by taking the Fourier averages like in

the previous subsection. Since we are simulating from a single initial condition, the

pointwise ergodic theorems put the analysis on a solid theoretical footing. For a

vector-valued observable f = [f1, . . . , fm]T, fi ∈ F , formed entirely from unimodular

eigenfunctions, we get the so-called Koopman mode decomposition

Unf(x) =
∑
j

eiωjn


c1,j(f)

...

cm,j(f)

ϕj(x) =
∑
j

eiωjncj(f)ϕj(x) (II.3.1)

In this notation, ϕj :M→ C is an eigenfunction of U at the unimodular eigenvalue

λj = eiωj and ci,j(f) is the coefficient of ϕj in the expansion of fi. The complex

m-vector cj(f) = [c1,j(f), . . . , cm,j(f)]T is called the Koopman mode corresponding

to ϕj. Of course, to arrive at this representation, we have implicitly assumed that

N (eiωjI − U) is one-dimensional and, additionally, that none of the fi’s have compo-

nents that are either part of the continuous or residual spectrum or are nonspectral.

The space Cm is called the output space. The cj(·) above can be regarded as a

mapping from the observable space Fm into the output space Cm. Analyzing the

dynamics in the output space allows insight into the dynamics of the system. A
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number of applied studies, mentioned earlier in this chapter, have made extensive use

of the Koopman mode decomposition.

II.3.2 Ergodic theorems and the construction of unimodular

eigenfunctions

We restrict our attention to the case when the dynamical system is generated by

a fixed map T : M → M. One would like a procedure to construct eigenfunctions

of an operator. Eigenfunctions corresponding to unimodular eigenvalues can be ob-

tained via averaging processes. An infinite time average of an observable gives an

eigenfuntion at 1. Arguing formally for a moment, let f ∈ F be a bounded function

and

〈f〉 := lim
n→∞

n−1

n−1∑
0

Unf. (II.3.2)

Then

Um 〈f〉 := Um

[
lim
n→∞

n−1

n−1∑
0

Unf

]
= lim

n→∞
n−1

n−1∑
0

Un+mf = 〈f〉

for any fixed m ≥ 0. To obtain an eigenfunctions at λ = eiω (ω ∈ R), we can compute

the Fourier average

〈f〉ω = lim
n→∞

n−1

n−1∑
0

λ−nUnf = lim
n→∞

n−1

n−1∑
0

e−iωnUnf. (II.3.3)

A similar computation as that for the regular time average shows that indeed 〈f〉ω is

an eigenfunction at λ = eiω. Similar computations hold for continuous time dynami-

cal systems by replacing the sum with the appropriate integrals. When exactly these
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formal averages exist rigorously in a function class and in what sense (almost every-

where, uniformly, in norm, in a locally convex topolology, etc.) and when they define

projection operators form a set of results under the heading of ergodic theorems.

From a purely algebraic viewpoint, there is the ergodic theorem of Birkhoff guaran-

teeing almost everywhere convergence of infinite time averages and the strengthening

of this theorem proved by Wiener and Wintner showing the almost everywhere con-

vergence of Fourier averages with respect to any frequency. Both of these theorems

are proved in the case of measure preserving dynamical systems2 and observables

integrable with respect to the preserved measure.

Theorem II.3.9 (Birkhoff’s pointwise ergodic theorem [Pet83]). Let T :M→M be

a measure preserving dynamical system of the finite measure space (M,Σ, ν). Then

for any f ∈ L1(M, ν),

lim
n→∞

n−1

n−1∑
k=0

f(T n(x)) = E [f | C] ,

exists for ν-almost every x ∈ M, where C ⊂ Σ is the sub-σ-algebra of T -invariant

sets and E [f | C] is the conditional expectation with respect to C. When T is ergodic3,

then

〈f〉 := lim
n→∞

n−1

n−1∑
k=0

f(T n(x)) =

∫
M
f(x)dν(x).

2The quadruple (M,Σ(M), ν, T ), where Σ(M) is a σ-algebra of subsets of M and ν is a finite
measure on the σ-algebra, is a measure preserving dynamical system if ν(T−1A) = ν(A) for all
A ∈ Σ(M). Here T−1(A) is the pre-image of A.

3T is ergodic if all T -invariant sets have trivial measure; ν(C) = 0 or ν(M).
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Theorem II.3.10 (Wiener & Wintner’s ergodic theorem [WW41]). Let T : M →

M be an (essentially) one-to-one, measure preserving dynamical system of the finite

measure space (M,Σ, ν). Then for any f ∈ L1(M, ν)

〈f〉ω (x) := lim
n→∞

(2n+ 1)−1

n∑
k=−n

e−ikωf(T kx)

exists for every −∞ < ω <∞ and ν-almost every x ∈M. The set of points x where

the limit does not exist is independent of ω. The limit vanishes if eiω is not in the

point spectrum.

An easy consequence of these theorems is that the limit functions are unimodular

eigenfunctions of the Koopman operator. For measure preserving dynamical systems,

the associated family of Koopman operators is an equicontinuous family with respect

to the L1-norm. In particular, ‖Uf‖L1 ≤ ‖f‖L1 . The continuity of this family allows

one to interchange limits. This allows one to show

U 〈f〉 (x) = 〈f〉 (x)

and

U 〈f〉ω (x) = eiω 〈f〉ω (x),

respectively, where equality is almost everywhere. Additionally, since we are in a

finite measure space, L2(ν) ⊂ L1(ν), so, in particular, these theorems hold almost

everywhere for the square integrable observables.

From the topological perspective, two basic ergodic theorems are given by von

Neumann and Yosida, respectively, and are usually differentiated from the above
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pointwise ergodic theorems by calling them mean ergodic theorems. The mean ergodic

theorem of von Neumann applies to any unitary operator on a Hilbert space and

not just the Koopman operator. It implies that averages of the operator converge

strongly4 to the orthogonal projection onto the eigenspace at 1.

Theorem II.3.11 (von Neumann’s mean ergodic theorem [RS72]). Let H be a

Hilbert space and U : H →H a unitary operator. Let P be the orthogonal projection

onto {ψ ∈H | Uψ = ψ} =: N (I − U). Then for any f ∈H

lim
n→∞

n−1

n−1∑
k=0

Unf = Pf. (II.3.4)

Yosida’s theorem is more general and deals with equicontinuous families of opera-

tors on locally convex spaces. The weakest form shows that if for some fixed element

of the space the averages have a weakly convergent subsequence, then the averages

converge strongly to the limit function and this limit point is invariant under the

family.

Theorem II.3.12 (Yosida’s mean ergodic theorem [Yos78]). Let F be a locally convex

linear topological space and U : F → F a continuous linear operator. Assume that

the family {Un}n∈N is equicontinuous. Define Anf := n−1
∑n

k=1 U
kf . Assume for

a fixed g ∈ F that there is a subsequence of {Ang}n∈N that is weakly convergent to

g0 ∈ F . Then Ang → g0 in the locally convex topology and Ug0 = g0.

4A sequence of operators An : F → F is said to converge strongly to the operator B : F → F ,
in the Banach space, if ‖Anf −Bf‖ → 0 for all f ∈ F .
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None of these theorems imply that the operator has a spectral decomposition5;

they do not say anything about the structure of the full space. Rather, these theorems

allow one to construct unimodular eigenfunctions from an arbitrary observable. If

the observable we are considering is an infinite linear combination of unimodular

eigenfunctions, then, in principle, that particular observable can be fully decomposed

into its spectral elements and we know everything about its evolution. However, an

arbitrary observable may not be an infinite linear combination of spectral elements.

5Although, this is implied for the von Neumann mean ergodic theorem since U is a unitary
operator on a Hilbert space
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Chapter III

Generalized Laplace Analysis

(GLA) for Spectral Operators of

Scalar-Type

Our main goal is to show that certain averages of an operator construct non-

unimodular eigenfunctions. This chapter and the next look at the problem in the

abstract by considering operators on both a separable Banach space and more gen-

erally a locally convex linear topological (LCLT) space. In this chapter, we deal

exclusively with continuous operators on an LCLT space determined by a spectral

measure. These are the operators that are spectral (in the sense of Dunford) of scalar

type. The results of this chapter follow from applying Yosida’s mean ergodic theorem

(MET) in a setting where the spectrum is non-unimodular and using the machinery of
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spectral measures. Since Yosida’s MET underpins the proofs of the GLA theorems,

a section is devoted to its statement and discussion. In particular, some natural

restrictions on the spectrum arise when one wants to use the MET in an iterative

manner in the case of a non-unimodular spectrum. In the next section, we look at

continuous spectral operators of scalar type on a LCLT space and prove some GLA

theorems there. When reasonable, we will give definitions of objects for the Banach

space case along side those of the locally convex case, since the Banach space setting

is in general more familiar. For the spectral operators, a resolution of the identity

and the functional calculus play a large role. Once the technical machinery is out of

the way, the proofs of the GLA theorems are easy consequences.

III.1 Yosida’s mean ergodic theorem

III.1.1 The ergodic theorem

Let F be a complex vector space. Let Γ be an index set and {pγ : F → R}γ∈Γ a

separating family of seminorms. Recall, that together these mean that for all γ ∈ Γ,

scalars α, and f, g ∈ F that (i) pγ(f) ≥ 0, (ii) pγ(αf) = |α| pγ(f), (iii) pγ(f + g) ≤

pγ(f) + pγ(g), and (iv) for every f 6= 0, there is a pγ(f) ∈ Γ such that pγ(f)(f) 6= 0.

Define on F the locally convex topology (LCT) generated by the seminorms.

Neighborhood bases of the LCT have the form

V (f ; ε) := {g ∈ F | pγi(g − f) < ε,∀i ∈ I} ,
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where I ⊂ Γ is an arbitrary finite subset and ε is an arbitrary positive number.

Note that a sequence {fn} ⊂ F converges to f ∈ F if and only if for all γ ∈ Γ,

pγ(fn − f) → 0 as n → ∞. This topology will be called the strong topology on F

and with this topology F is a locally convex linear topological space (LCLTS).

Denote by L (F ) the set of all linear operators on F continuous with respect

to the strong topology. The set F ∗, the topological dual to F , is the space of

all linear functionals continuous with respect to the locally convex topology. The

weak topology on F , denote by σ(F ,F ∗) is generated by the family of seminorms

{pϕ = |ϕ| | ϕ ∈ F ∗}.

Fix U ∈ L (F ). The resolvent ρ(U) ⊂ C of U is the set of ξ ∈ C such that

Im(ξI − U) is dense in F and (ξI − U)−1 exists and is continuous. The complement

of this set is the spectrum, denoted σ(U). The point spectrum σp(U) is the set of

λ ∈ σ(U) for which (λI − U) does not have an inverse. When the operator U is

understood, it will be dropped from the notation. We denote for Λ ⊂ σ

|Λ| := {|λ| | λ ∈ Λ} (III.1.1)

and the spectral radius of Λ as

‖Λ‖∞ := sup
λ∈Λ
|λ| . (III.1.2)

Definition III.1.1 (Equicontinuous family of linear operators). Consider a fixed

linear operator U ∈ L (F ). The family {Un}n∈N is called equicontinuous if for every

continuous (with respect to the LCT) seminorm p : F → R, there is a continuous
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seminorm p′ : F → R such that

sup
n≥1

p(Unf) ≤ p′(f). (III.1.3)

for every f ∈ F .

Definition III.1.2 (Averaging operators). For each n ∈ N, define the averaging

operator An : L (F )→ L (F ) as

An(U) := n−1

n−1∑
k=0

Uk. (III.1.4)

One of the major tools of this paper is Yosida’s extension of the mean ergodic

theorem.

Theorem III.1.3 (Yosida’s mean ergodic theorem, [Yos78]). Let {Un}n∈N be an

equicontinuous family of linear operators defined on a locally convex linear topological

space F . Fix ψ ∈ F . If there exists as subsequence {ni} ⊂ N and an ψ0 ∈ F such

that lim
i→∞
〈Ani(U)ψ − ψ0, ϕ

∗〉 = 0 for all ϕ∗ ∈ F ∗, then Uψ0 = ψ0 and lim
n→∞

An(U)ψ =

ψ0 exists in the strong topology.

Futhermore, if F is locally sequentially weakly compact, then P := lim
n→∞

An(U),

with the limit taken in the strong operator topology, defines a continuous projection

operator onto N(I − U) commuting with U and giving the direct sum decomposition

F = N(I − U)⊕ Im(I − U).
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III.1.2 Remarks on Yosida’s mean ergodic theorem

(i) The theorem states that if the averages of an element have a weakly convergent

subsequence, this implies that the full average converges strongly to the limit.

(ii) The mean ergodic theorem applies, in particular, to when F is a Banach space

as this is just a specialized example of a LCLTS.

(iii) Note that the first result does not define a projection operator on F since some

ψ may not have a weakly convergent subsequence of averages. To define the

spectral projection and get a direct sum decomposition of the space, every ψ ∈

F must have some subsequence of {An(U)ψ}n∈N that is weakly convergent. This

is guaranteed by F being locally sequentially weakly compact. In particular,

if F is a separable reflexive Banach space, it is locally sequentially weakly

compact. This follows directly from the sequential version of the Banach-Alaoglu

theorem.

(iv) If |λ| = 1 and {Un} is equicontinuous, then {λ−nUn}n∈N is also equicontinuous.

If the sequence {An(λ−1U)ψ}n∈N has a weakly convergent subsequence, then

lim
n→∞

An(λ−1U)ψ = ψλ ∈ F

exists, λ−1Uψλ = ψλ, and hence ψλ is an element of the eigenspace at λ.

(v) Suppose F is a Banach space and suppose {Un}n∈N (U ∈ L (F )) is not equicon-

tinuous in the norm (e.g. 1 < ‖U‖ < ∞). We always have the spectral radius
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as a lower bound on the norm of U :

‖σ(U)‖∞ := sup
λ∈σ(U)

|λ| ≤ ‖U‖ .

To get an element of an eigenspace using the above results, there must be

some µ ∈ σ(U) such that
{

(µ−1U)
n}

is equicontinuous. This happens only

if |µ| = ‖U‖.

In particular, suppose σ(U) has a sequence of eigenvalues {λj}j∈N such that

{|λj|}j∈N is a strictly increasing sequence, |λj| < ‖U‖, and lim
j→∞
|λj| = ‖U‖. For

λj, let ϕ ∈ N(λj+1I − U) and ‖ϕ‖ = 1. Then

∥∥(λ−1
j U

)n∥∥ ≥ ∥∥(λ−1
j U

)n
ϕ
∥∥ =

∣∣∣∣λj+1

λj

∣∣∣∣n
Therefore

{(
λ−1
j U

)n}
cannot be an equicontinuous family.

(vi) Suppose ‖U‖ ≤ 1 and F is a locally sequentially weakly compact Banach space.

Suppose λ1,2 are in the point spectrum σp(U) and satisfy |λ2| < |λ1| = ‖U‖.

Also assume that U has a continuous portion of the spectrum, µ ∈ σc(U), and

|λ2| < |µ| < |λ1| = ‖U‖. The above results can be applied to any f ∈ F using

λ−1
1 U to get a projection onto N(λ1 − U).

We would also like to use the same procedure to get the projections onto N(λ2I−

U). Recall that we had the direct sum decomposition F = Im(λ1I − U) ⊕

N(λ1I −U). Consider elements in Im(λ1I − U) and restrict U to this subspace

(which we will denote as U2). We cannot use the averaging above to get the

projection since the continuous part of the spectrum prevents
{

(λ−1
2 U2)n

}
from
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being equicontinuous. This is because the norm of U2 satisfies |λ2| < |µ| ≤

‖U2‖. Therefore, if we want to apply the averaging procedure to compute the

projections, U must either be restricted to subspaces spanned by eigenspaces

or all elements of the point spectrum must have greater modulus than other

parts of the spectrum. Additionally, if |σp(U)| = {|λ| | λ ∈ σ(U)} is a discrete

set, then we can guarantee that some eigenvalue’s modulus attains the spectral

radius. This condition means that the point spectrum is contained in separated

circles in the complex plane.

Given these remarks, in order to apply the mean ergodic theorem in an iterative

manner, some assumptions on the spectrum must be made. Loosely, the point spec-

trum must be larger than the non-point spectrum and additionally, whenever any set

of eigenvalues is removed from the spectrum, there is an eigenvalue that achieves the

supremum over the remaining set (if the remaining set contains an eigenvalue). To

this end we define the following objects. The first definition is standard.

Definition III.1.4 (Peripheral spectrum). λ ∈ σ(U) is in the peripheral spectrum

of U if the modulus of λ is equal to the spectral radius; |λ| = ‖σ(U)‖∞. If B ⊂ C, then

the peripheral spectrum of σ(U)∩B is defined as {λ ∈ σ(U) ∩B | |λ| = ‖σ(U) ∩B‖∞}.

Definition III.1.5 (Dominating point spectrum). For r > 0, let Dr be the open disc

of radius r centered at 0 in the complex plane and let σ(U ;Dr) := Dr ∩σ(U). If there

exists an R > 0 such that σ(U) \ DR is not empty and for every r > R we have:

(i) if σ(U ;Dr)∩ σp(U) 6= ∅, then the peripheral spectrum of σ(U ;Dr) is not empty,
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and

(ii) the set σ(U) \ Dr consists only of eigenvalues,

then U is said to have dominating point spectrum.

We note that the second condition of this definition implies that the peripheral

spectrum of σ(U ;Dr) consists only of eigenvalues if it is not empty. Basic properties

of a dominating point spectrum are given in the following lemma.

Lemma III.1.6. Assume U ∈ L (F ) has a dominating point spectrum. Then

(i) every pair λ ∈ σp and ξ ∈ σ \ σp with |λ| > R satisfies |ξ| ≤ |λ|,

(ii) no sequence of eigenvalues {λn}n∈N ⊂ σp has both strictly increasing moduli and

satisfies “ lim
n→∞

|λn| exists”, and

(iii) if Λ ⊂ σp is any set of eigenvalues, then σ \ Λ has dominating point spectrum.

Proof. (i) Either |ξ| ≤ |λ| or |ξ| > |λ| > R. In the first case, this is what we

are trying to prove, so assume the second case holds. Then ξ ∈ σ \ D|λ| which

contradicts that this set contains only eigenvalues. This contradiction gives the

result.

(ii) Consider the sequence {λn}n∈N ⊂ σp satisfying |λn| < |λn+1| for all n ∈ N

and lim
n→∞

|λn| = r. Then ‖σ(U ;Dr)‖∞ = r and no eigenvalue having modulus

equal to r is in σ(U ;Dr) since Dr is open. Therefore, the peripheral spectrum

of σ(U ;Dr) contains no eigenvalues. But, σ(U ;Dr) ∩ σp is not empty. This

contradicts the first condition in definition III.1.5.
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(iii) Assume that σp\Λ is not empty, since otherwise the conditions for a dominating

point spectrum are trivially fulfilled. Fix r ∈ R+. If (σ \ Λ) ∩ Dr, contains no

eigenvalues, then we need to do nothing. Suppose, then, that this set does

contain an eigenvalue. Put α = sup |λ|, where the supremum is taken over all

eigenvalues in (σ\Λ)∩Dr, and let {λn}n∈N be an increasing, maximizing sequence

of eigenvalues in this set; i.e. (a) ∀n ∈ N, |λn| ≤ |λn+1| and (b) lim
n→∞

|λn| = α.

Since the sequence of moduli of eigenvalues has a limit, then by result (ii) of

this lemma, this sequence cannot be strictly increasing; there must some point

n ∈ N such that |λn| = |λn+1|. We claim that there is an M ∈ N such that

|λM | = |λM+m| for all m ≥ 1. Assume to the contrary. Put N1 = 1. Then

there exists m1 ≥ 1 such that |λN1| < |λN1+m1|. Put N2 = N1 + m1. Suppose,

we have chosen N1, . . . , Nj in this manner. Then there exists mj ≥ 1 such that∣∣λNj ∣∣ < ∣∣λNj+mj ∣∣. Put Nj+1 = Nj + mj. By induction, we have constructed a

subsequence
{
λNj
}
j∈N that has strictly increasing modulus and lim

j→∞

∣∣λNj ∣∣ = α.

This contradicts (ii). Therefore, some tail of {λn} has constant modulus (namely

α). Therefore, a peripheral eigenvalue exists. Finally, (σ \ Λ) \Dr consists only

of eigenvalues since (σ \ Λ) \ Dr ⊂ σ \ Dr and σ \ Dr only contains eigenvalues.

In particular, assuming that U has a dominating point spectrum guarantees that

situation in remark (vi) on the mean ergodic theorem does not occur. Result (ii) of

lemma III.1.6 rules out the case in remark (v) on the mean ergodic theorem.
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III.2 Spectral measures

The section develops the framework for scalar type spectral operators, where

“spectral” is understood in the sense of Dunford [Dun54]. Resolutions of the identity

and the associated functional calculus will underpin most of the analysis. We develop

them now. This material is adapted from [Dun54], [Sch62], and [Wal65] and theorems

will be stated without proof. We refer the reader to the references for a more detailed

exposition.

III.2.1 Spectral measures in Banach spaces.

Let B(C) be the σ-algebra of Borel sets in the complex plane. Let L (F ) be the

set of bounded linear operators on the complex Banach space F .

Definition III.2.1 (Spectral measure for Banach spaces). A spectral measure E :

B(C)→ L (F ) is a homomorphism from the Borel sets into the projection operators

on F and has the properties [Dun54]

E(A ∩B) = E(A)E(B), E(A ∪B) = E(A) + E(B)− E(A ∩B),

E(Ac) = I − E(A), E(∅) = 0, E(C) = I

‖E(A)‖ ≤ K,

(III.2.1)

for all Borel sets A,B.1

The final property says that the family of projections determined by the spectral

measure is a uniformly bounded family of operators.

1The union of two commuting projections P1 ∪ P2 is understood to mean P1 + P2 − P1P2.
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Definition III.2.2 (Spectral operator). An operator U : F → F is a spectral

operator if there is a spectral measure E : B(C)→ L (F ) such that

UE(A) = E(A)U and σ(U,E(A)F ) ⊂ A (III.2.2)

for all A ∈ B(C) and for every ψ ∈ F and ψ∗ ∈ F ∗, 〈E(A)ψ, ψ∗〉 is a countably

additive C-valued set function on B(C). The notation σ(U,E(A)F ) means the spec-

trum of U when considered as an operator acting on E(A)F . A spectral measure

satisfying these properties is called a resolution of the identity.

To a spectral operator, there is an equibounded family of projection operators

commuting with the operator and if we consider the projection determined by a set

in the complex plane, the spectrum of the operator when restricted to the subspace

determined by the projection must be contained in the original set. These proper-

ties follow intuitively from the finite dimensional case; if you restrict an operator to

an eigenspace, the spectrum of the restricted operator is just the eigenvalue of the

corresponding to the eigenspace.

Example III.2.3. Let A : Cd → Cd be a normal matrix with simple spectrum

{λ1, . . . , λd} and the orthogonal projections Pj : Cd → Cd defined by Pjx = 〈x,vj〉,

where vj is the unit norm eigenvector associated λj. Let D ∈ B(C) and define

E : B(C)→ L (Cd) by

E(·) :=
d∑
j=1

δλj(·)Pj,
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where δλj(·) is the Dirac delta measure supported at λj. For a set D ∈ B(C), this

measure takes the operator value

E(D) :=
∑

{j|λj∈D}

Pj.

This set function defines a spectral measure for A. The spectral measure commutes

with A since each Pj does and the condition σ(A,E(D)Cd) ⊂ D follows from

AE(D)vi = A

 ∑
{j|λj∈D}

Pjvi

 =


λivi λi ∈ D

0 λi /∈ D.

The countable additivity follows from the spectrum being finite and the countable ad-

ditivity of the Dirac measures, which implies that only a finite number of sets from a

countable disjoint collection can contain elements of the spectrum. Any set not con-

taining an element of the spectrum gives, by definition, the zero operator. Since

the operator is normal, the eigenvectors are orthogonal and ‖E(D)‖ ≤ 1 for all

D ∈ B(C)2.

An important result regarding resolutions of the identity is the following theorem

from Dunford [Dun54]. It gives a continuous functional calculus for the resolution of

the identity.

Theorem III.2.4 (Theorem 7, Dunford [Dun54]). Let E be a spectral measure whose

support is a compact set σ. Then, for every scalar function f continuous on σ, the

2If A was merely diagonalizable and not normal, then the upper bound for the projections would
be some constant greater than 1 since skew projections can be norm increasing.
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Riemann integral
∫
σ
f(z)E(dz) exists in the uniform operator topology, and

∥∥∥∥∫
σ

f(z)E(dz)

∥∥∥∥ ≤ sup
z∈σ
|f(z)| ν(E), (III.2.3)

where ν(E) is a constant depending only on E. Additionally, for any two continuous

functions f and g we have the multiplicative identity

[∫
σ

f(z)E(dz)

]
·
[∫

σ

g(z)E(dz)

]
=

∫
σ

f(z)g(z)E(dz). (III.2.4)

We now have a representation of spectral operators.

Theorem III.2.5 (Canonical decomposition of spectral operators, [Dun54]). An op-

erator U is spectral if and only if it is given by the sum U = S + J , where S is an

operator of scalar-type, which by definition, has the form

S =

∫
zES(dz), (III.2.5)

ES is the resolution of the identity for S, and J is a generalized nilpotent operator

commuting with S that, by definition, satisfies ‖Jn‖1/n → 0. This decomposition is

unique, the spectrums of U and S are identical, and the resolutions of the identity for

U and S are the same.

For U : F → F a bounded spectral operator, σ(U) is compact and all the

preceding theorems apply. Finally, we have the analytic functional calculus. For an

function f , analytic and single-valued on σ(U),

f(U) =
∞∑
j=0

J j

j!

∫
z∈σ

f (j)(z)E(dz)
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exists in the uniform operator topology. An operator is said to be of type m if

f(U) =
m∑
j=0

J j

j!

∫
z∈σ

f (j)(z)E(dz)

for all f analytic on σ. Scalar operators are of type 0, so for such operators, these

equations reduce to

f(U) =

∫
z∈σ

f(z)E(dz). (III.2.6)

In fact, by theorem III.2.4, f can be a continuous function rather than just an analytic

one if U is of scalar type.

III.2.2 Spectral measures in locally convex linear topological

spaces

As this paper is concerned with general procedures in constructing eigenfunctions

for spectral operators of scalar type on LCLT spaces, we need the concept of a spectral

measure for these spaces. This machinery is contained in this section. This section

follows [Wal65] and [Sch62] closely. The reader should consult those references for a

more detailed treatment.

Let (F , τ) be a locally convex linear topological space with topology τ , S is a

set, and Σ a σ-algebra of subsets of S .

Definition III.2.6 (Spectral measure triple [Wal65]). A triple (S ,Σ, µ), where µ

is a set function from Σ to L (F ) which is countable additive in the weak operator

topology, that satisfies
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(i) µ(S ) = I ∈ L (F )

(ii) for A1 and A2 in Σ, µ(A1 ∩ A2) = µ(A1) · µ(A2) ∈ L (F )

is called a spectral measure triple.

The spectral measure is said to be equicontinuous if the values in L (F ) that

µ takes on Σ are equicontinuous. If (S ,Σ, µ) is an equicontinuous spectral mea-

sure triple and F is sequentially complete in its topology, the integrals of C-valued,

bounded, Σ-measurable functions can be defined [Wal65]. The integral is multiplica-

tive since for simple f and g,
∫
fgdµ =

∫
fdµ ·

∫
gdµ follows from condition (ii) in the

definition of the spectral measure triple. Hence the map f 7→ Uf from (equivalence

classes) of C-valued, bounded, Σ-measurable functions to L (F ) is a homomorphism.

The integral gives a representation of the bounded C-valued Σ-measurable functions

as an algebra of linear operators on F . This algebra of operators is called the spectral

algebra associated with (S ,Σ, µ) and will be denoted by A . Elements of this algebra

are spectral operators and will be called spectral elements.

By a change of measure E = µ◦f−1, we get the familiar representation of a scalar-

type spectral operator (in the sense of Dunford) as an integral against a spectral

measure with domain in B(C);

U =

∫
S

f(s)dµ(s) =

∫
C
zE(dz). (III.2.7)

The measure E depends only on U and its support is the spectrum of U . The support

of E is contained in a compact set since f is bounded by assumption.

In order to apply the mean ergodic theorem, we will need to guarantee that certain
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families of spectral operators are equicontinuous. The most useful result in this regard

is the following proposition, due to Walsh.

Proposition III.2.7 (Proposition 2.1, [Wal65]). Let F be a locally convex space and

(S ,Σ, µ) an equicontinuous spectral measure triple. Then the set

{∫
S

fdµ

∣∣∣∣ f Σ-measurable, 0 ≤ |f | ≤ 1

}
(III.2.8)

is an equicontinuous family.

Schaefer [Sch62] has given an operational calculus for spectral measures. If A ⊂

L (F ) is a weakly semi-complete locally convex algebra, U =
∫
fdµ a spectral ele-

ment and g : C → C a bounded complex Baire function, the integral
∫

S
(g ◦ f)dµ

defines another spectral element

g(U) =

∫
S

(g ◦ f)dµ =

∫
C
g(z)E(dz) ∈ A . (III.2.9)

This is the operational calculus for spectral elements in locally convex spaces. If g

is continuous on the spectrum of U , we get the spectral mapping theorem σ[g(U)] =

g[σ(U)] [Sch62]. The spectral algebras we will be most concerned about are algebras

of the form

A (f) :=

{∫
S

(g ◦ f)dµ

∣∣∣∣ g : C→ C is a polynomial

}
.

Each polynomial is bounded since Im(f) ⊂ C is bounded.

The reader may wonder what is gained from defining the abstract spectral measure

triple (S ,Σ, µ) in the case of locally convex linear topological spaces, rather than
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the form
∫
σ(U)

zE(dz) that is familiar from scalar-type spectral operators on Banach

spaces. This abstract framework allows, for example, the treatment of products of

commuting operators with random spectrum.

Example III.2.8. Let S = {0, 1}. Let {f1, f2} be a pair of functions from S into

C. The spectral measure µ takes values as a projection operator on F . Assume that

both P0 = µ({0}) and P1 = µ({1}) are projections onto one-dimensional subspaces

and F = Im(P0)⊕ Im(P1).

Let f1(0) = λ0 and f1(1) = λ1 and similarly for f2 but with ω replacing λ. To

this pair of functions is associated a pair of operators U1 and U2 acting on F . Both

of these operators have eigenspaces corresponding to Im(P0) and Im(P1). Consider

a finite length sequence consisting of f1 and f2 with f1 appearing m1 times and f2

appearing m2 times. By the multiplicative property of the spectral integral and the

commutative property of the functions

(Ui1 · · ·Uim1+m2
) =

∫
S

(fi1 · · · fim1+m2
)(s)dµ(s)

=

∫
S

fm1
1 (s) · fm2

2 (s)dµ(s)

=
1∑
s=0

(λm1
s ωm2

s )Ps.

where ij ∈ {1, 2} for j = 1, . . . ,m1 + m2. The operator resulting from the product is

a spectral operator with eigenvalues γ1 = λm1
1 ωm2

1 and γ2 = λm1
2 ωm2

2 . It is straightfor-

ward to take a larger collection of functions so that we can get more possible composite

eigenvalues.
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Projections onto different parts of the spectrum take the form of integrating

against indicator functions.

Lemma III.2.9. Let Γ be a Baire subset of C. Let χΓ : σ(U) → C be the indicator

function for Γ ∩ σ(U). Then PΓ =
∫
σ(U)

χΓ(z)E(dz) =
∫

Γ∩σ(U)
E(dz) is a projection

operator.

Proof. Since χΓ ◦f is an indicator function for f−1(Γ), by the multiplicative property

of the integral

P 2
Γ =

[∫
S

(χΓ ◦ f)dµ

]
·
[∫

S

(χΓ ◦ f)dµ

]
=

∫
S

(χΓ ◦ f)2dµ =

∫
S

(χΓ ◦ f)dµ = PΓ.

III.3 Generalized Laplace Analysis

Let (S ,Σ, µ) be a spectral measure triple, F a separable, locally sequentially

weakly compact, locally convex linear topological space. Fix a bounded C-valued

Σ-measurable function f and denote the associated spectral operator by U

U =

∫
S

f(s)dµ(s) =

∫
z∈σ

zE(dz) ∈ L (F ). (III.3.1)

Since f is bounded, the spectrum of U is contained in a compact set in the complex

plane.
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Definition III.3.1. We say that U has a point spectrum concentrated on isolated

circles if every point of the set

{
r ∈ R

∣∣ ∃s ∈ S , |f(s)| = r, (f(s)I − U)−1 does not exist
}

is an isolated point.

By definition, f(s) in the above definition is an eigenvalue of U . Then |f(s)| is the

modulus of the eigenvalue. The above definition states that the set consisting of the

moduli of all the eigenvalues of the operator forms a discrete set. This definition does

not exclude the situation when eigenvalues are dense on a circle. Such a situation

arises naturally for dynamical systems possessing a limit cycle, as will be seen later.

III.3.1 GLA for dominating point spectrum

Lemma III.3.2. Assume the peripheral spectrum of U contains an eigenvalue λ ∈

σp(U). Let gn : σ(U)→ C be gn(z) = λ−nzn. Then {gn(U)}n∈N = {λ−nUn}n∈N is an

equicontinuous family of operators.

Proof. Since f is bounded, then σ is contained in a compact set in C. For each n,

the support of gn is a compact set, gn is a continuous and, therefore, a bounded Baire

function on σ. Since λ is a peripheral eigenvalue, then |gn(z)| ≤ 1 for all z ∈ σ

since by definition |z| ≤ |λ| for all z ∈ σ. If f : S → C is the function associated

with U , then |(gn ◦ f)(s)| ≤ 1 for all n ∈ N and s ∈ S . By proposition III.2.7,{
gn(U) =

∫
S

(gn ◦ f)dµ
}
n∈N is an equicontinuous family. By the functional calculus,

gn(U) = λ−nUn.
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Proposition III.3.3. Assume the peripheral spectrum of U contains an eigenvalue

λ ∈ σp(U). Then

An(λ−1U) := n−1

n∑
k=1

λ−kUk (III.3.2)

converges to the projection operator Pλ := E({λ}) onto N(λI − U) in the strong

operator topology; that is, for every continuous seminorm p and every element ψ ∈ F

lim
n→∞

p(An(λ−1U)ψ − Pλψ) = 0.

Furthermore, the projection Pλ commutes with U and we have the direct sum decom-

position F = N(λI − U)⊕ Im(λI − U).

Proof. By lemma III.3.2, {(λ−1U)n} is an equicontinuous family of operators on a

locally sequentially weakly compact LCLT space since (λ−1U)n = gn(λ−1U), where

gn is the function in the above lemma. By Yosida’s mean ergodic theorem, the

averages of this family converge to a projection operator onto the λ-eigenspace. Since

projections take the form of indicator functions on subsets of σ ⊂ C (lemma III.2.9),

then this projection takes the form E({λ}).

Remark III.3.4. Proposition III.3.3 is true for any other eigenvalue in the peripheral

spectrum, say λ′ ∈ σp. For this λ′, the proposition can be applied to obtain the pro-

jection onto N(λ′I−U). Additionally, N(λ′I−U) ⊂ Im(λI − U). Since Im(λI − U)

is U-invariant and F is locally sequentially weakly compact, then (λ′)−n(U ′)n is a

equicontinuous family of operators on the locally sequentially weakly compact space

Im(λI − U), where U ′ is a the restriction of U to Im(λI − U). By proposition III.3.3,
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Im(λI − U) = N(λ′I − U ′) ⊕ Im(λI − U ′). Since N(λ′I − U ′) = N(λ′I − U) and

Im(λ′I − U ′) = Im((λ′I − U)(I − Pλ)), then

F = N(λI − U)⊕N(λ′I − U)⊕ Im((λ′I − U)(I − Pλ)).

Corollary III.3.5. Let the peripheral spectrum of U consist of only (at most count-

ably many) eigenvalues. Then

F =

[⊕
j≥1

N(λjI − U)

]
⊕F ′ (III.3.3)

where {λj} is some labeling of the peripheral spectrum and F ′ is the subspace of F

corresponding to the part of the spectrum not in the peripheral spectrum. The subspace

F ′ has the form

F ′ =

(
I −

∑
j≥1

E({λj})
)
. (III.3.4)

The above results can be combined to give a recursive procedure for computing

projections onto eigenspaces for any ψ ∈ F . In order to do this, we must compute

the projection onto eigenspaces corresponding to eigenvalues of largest modulus first,

subtract these from ψ, then compute the projections for eigenvalues of the next largest

modulus.

Theorem III.3.6 (Generalized Laplace Analysis). Let σ(U) have dominating point

spectrum and assume that the point spectrum is concentrated on isolated circles in the

complex plane (def. III.3.1). Let λ be an eigenvalue for U . Denote E({λ}) by Pλ.
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Then

Pλ = lim
n→∞

An

(
λ−1U(I −

∑
µ∈Ω

Pµ)

)
= lim

n→∞
n−1

n−1∑
k=1

λ−nUn

(
I −

∑
µ∈Ω

Pµ

)
(III.3.5)

exists in the strong topology and where Ω := {µ ∈ σp(U) | |µ| > |λ|}. Furthermore, if

Ω is a finite set, then Pλψ can be obtained via a finite recursion processes by computing

Pµψ with (III.3.5) for each µ ∈ Ω and subtracting it from ψ.

Proof. Fix λ ∈ σp(U) and let Ω = {µ ∈ σ(U) | |µ| > |λ|}. Since σ(U) has dominating

point spectrum, Ω consists only of eigenvalues. By property (iii) of lemma III.1.6,

σ(U) \ Ω has dominating point spectrum. Since the point spectrum of U is concen-

trated on isolated circles, h(z) = 1−χΩ(z) is a bounded, continuous function on σ(U)

and h(U) =
∫
σ(U)

h(z)E(dz) = I −E(Ω). By the spectral mapping theorem with the

continuous function z 7→ zh(z), σ(U(I − E(Ω))) = (σ(U) \ Ω) ∪ {0}. Since σ(U) \ Ω

has dominating point spectrum, so does σ(U(I −E(Ω))). Since λ ∈ σ(U(I −E(Ω)))

and ‖U(I − E(Ω))‖∞ ≤ |λ|, then λ is a peripheral eigenvalue for U(I − E(Ω)).

Let gn(z) = λ−nzn(1−χΩ(z)). Then gn is a continuous function satisfying |gn(z)| ≤

1 for all n ∈ N and z ∈ σ since it is 0 on Ω and λ is a peripheral eigenvalue in σ(U)\Ω.

Therefore, gn is a Baire function for every n. If f : S → C is the function associated

with U , then |(gn ◦ f)(s)| ≤ 1 for all n ∈ N and s ∈ S . Therefore, by proposition

III.2.7, {gn(U)}n∈N is an equicontinuous family.
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By the multiplicative property of the spectral integrals

[
λ−1U(I − E(Ω))

]n
=

∫
σ

λ−nzn(1− χΩ(z))nE(dz)

=

(∫
σ

λ−nznE(dz)

)
·
(∫

σ

(1− χΩ(z))E(dz)

)
= λ−nUn (I − E(Ω)) .

Since the point spectrum is at most countable and Ω contains only eigenvalues,

then Ω is a countable union of singleton sets of eigenvalues, Ω =
⋃
µ∈Ω

{µ}. Since

the spectral measure is countably additive, then E(Ω) =
∑
µ∈Ω

E({µ}). Therefore,

λ−nUn (I − E(Ω)) = µ−nUn(I − ∑
µ∈Ω

E({µ}).

By proposition III.3.3, the right side of (III.3.5) converge strongly to a λ−1U(I −∑
µ∈Ω

E({µ}))-invariant function, say ψ0 ∈ F . Then U(I − ∑
µ∈Ω

E({µ}))ψ0 = λψ0. We

claim that ψ0 is in the nullspace of E({µ}) for every µ ∈ Ω. Suppose this was not

the case and ψ0 6= 0. Then there is some µ′ ∈ Ω such that E({µ′})ψ0 = ϕ 6= 0. But

E({µ′}) is the projection onto N(µ′I − U). Therefore, we get U(I − E({µ′}))ψ0 =

Uψ0−µ′ψ0 = λψ0. Then Uψ0 = (µ′+λ)ψ0, which implies that ψ0 ∈ N((µ′+λ)I−U).

But since λ 6= 0, this implies that ψ0 ∈ N((µ′+λ)I−U)∩N(µ′I−U). Consequently,

ψ0 = 0, contrary to assumption. Therefore, ψ0 is in the nullspace of
∑
µ∈Ω

E({µ})

and we get that Uψ0 = λψ0. Consequently, the averages converge strongly to the

projection E({λ}) onto N(λI − U).
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III.3.2 GLA for minimal point spectrum

The above results gave a procedure for constructing eigenfunctions when the point

spectrum dominated the rest of the spectrum. Unfortunately, this situation does

not hold in a number of cases of interest. Consider a dynamical system with an

attractor. In this setting, the spectrum on the unit circle corresponds to the attractor.

Since the system is asymptotically stable, eigenvalues corresponding to eigenfunctions

supported off-attractor are contained strictly inside the unit circle. In this system,

the point spectrum may not dominate the spectrum since there may be parts of the

continuous spectrum contained in the unit circle. If we wish to project onto the off-

attractor, stable eigenspaces, we need to modify the above GLA procedure which was

valid in the presence of a dominating point spectrum. The general idea is to consider

the inverse operator U−1. If U has point spectrum inside the unit circle, then U−1

has point spectrum outside the unit circle via the spectral mapping theorem. The

GLA theorems of the last section can then be applied to U−1 to obtain projections

onto the stable directions of the attractor. Proposition III.3.8 formalizes this.

Definition III.3.7 (Minimal point spectrum). Let U ∈ A . We say that σ(U) has a

minimal point spectrum if σ−1(U) := {λ−1 | λ ∈ σ(U)} ∈ C ∪ {∞} has a dominating

point spectrum.

Proposition III.3.8 (Inverse GLA). Let U =
∫
σ
zE(dz) ∈ A have a minimal point

spectrum. Additionally, assume that the point spectrum is concentrated on isolated
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circles and the spectrum satisfies 0 < C−1 ≤ inf
ξ∈σ(U)

|ξ|. Then for λ ∈ σp(U),

E({λ}) = lim
n→∞

An
(
λU−1(I − E(Ω))

)
(III.3.6)

where Ω = {ξ ∈ σ(U) | |ξ| < |λ|}.

Proof. Since 0 < C−1 ≤ inf
ξ∈σ(U)

|ξ|, then i(z) = z−1 is continuous and bounded on

σ(U). By the multiplicative property of the integral

U · i(U) =

∫
σ(U)

z · i(z)E(dz) = I =

∫
σ(U)

i(z) · zE(dz) = i(U) · U.

Therefore i(U) = U−1. By the spectral mapping theorem σ(U−1) = {ξ−1 | ξ ∈ σ(U)}.

Therefore, U−1 has a bounded, dominating point spectrum that is concentrated on

isolated circles. By the change of measure E1 := E ◦ i−1, we have the representation

of U−1 as the integral

U−1 =

∫
σ(U−1)

wE1(dw).

Fix λ ∈ σp(U) and let Ω′ = {ξ−1 ∈ σ(U−1) | |ξ−1| > |λ−1|}. By proposition III.3.6,

E1(
{
λ−1
}

) = lim
n→∞

An

(λ−1)−1U−1

I − ∑
ξ−1∈Ω′

E1(
{
ξ−1
}

)


with convergence in the strong topology. Since N(λI − U) = N(λ−1I − U−1), then

E({λ}) = E1({λ−1}) for all λ ∈ σp(U). Consequently,

E({λ}) = lim
n→∞

An

(
λU−1

(
I −

∑
ξ∈Ω

E({ξ})
))

= lim
n→∞

An
(
λU−1 (I − E(Ω))

)
where Ω = {ξ ∈ σ(U) | |ξ| < |λ|}.
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Remark III.3.9 (GLA for strongly continuous groups). The GLA theorems can

be extended to hold for strongly continuous groups of spectral operators on locally

sequentially weakly compact Banach spaces. In this setting, the Laplace averages of

the group take the form

Aα(λ−1G(·))f := α−1

∫ α

0

λ−tG(t)f. (III.3.7)

The extension of the GLA theorems in this case rest upon a version of Yosida’s mean

ergodic theorem for strongly continuous semigroups of operators {G(t)}, t ∈ R+, that

roughly says that if n−1G(n)f converges to 0 and the averages of the semigroup do not

behave too badly between integer times, then the limit of the continuous time averages

α−1
∫ α

0
G(t) converges in the strong operator topology as α → ∞ to a projection

operator on the subspace of elements that are fixed points of the semigroup (see ch.

VIII.7, thm. 1 of [DS58], and its corollary). More precisely, if G(t) is a strongly

continuous one-parameter semigroup that is assumed to be strongly integrable on every

finite interval and it additionally satisfies

(i) lim
n→∞

n−1G(n)f = 0, for all f ∈ F ,

(ii) ‖Aα(G(·))‖ ≤ K for all α ≥ 0,

(iii) for each f in a fundamental set in F , the set {Aα(G(·)f)}α>0 is weakly sequen-

tially compact,

then the averages Aα(G(·)) converge as α→∞ in the strong operator topology.

A second result used in the extension is due to Lange and Nagy [LN94] on the

representation of strongly continuous groups of scalar-type operators with spectrums
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contained in the unit circle as a spectral integral over a common spectral measure;

i.e., the group of operators has a representation as G(t) =
∫
R e

itλE(dλ). A sketch of

the continuous time GLA proof is as follows.

If we assume that there is a set of isolated circles in the complex plane and that

each G(t) in the group of operators is spectral with point spectrum restricted to these

circles and furthermore that every operator from the group has a dominating point

spectrum with the same R (see def. III.1.5), then we can scale the family by an eigen-

value λ = ρ1e
iω, where ρ1 is the radius of the largest circle containing the spectrum,

and construct a new family of spectral operators G1(t) := (ρ1e
iω)−tG(t). This new

family will have part of the spectrum contained in the unit circle and the rest strictly

inside. This new group can be split into two groups, the unimodular part U1(t),

with spectrum contained in the unit circle, and the dissipative part D1(t), with spec-

trum contained strictly inside and bounded away from the unit circle uniformly in

t. Then (ρ1e
iω)−tG(t) = G1(t) = U1(t) + D1(t). Lange and Nagy’s representation

of the unitary part allows us to write U1(t) =
∫
R e

itλE1(dλ) and the above extension

of Yosida’s mean ergodic theorem allows us to prove that averages of U1(t) converge

to the projection operators onto the subspace of U1(t)-invariant elements. An av-

erage of the dissipative part converges to zero with order O(α−1) since the norm

of this average has order α−1
∫ α

0
O(e−βt)dt. Here, β > 0 is related to the gap be-

tween the unit circle and the largest circle contained in D on which the spectrum of

D1(t) is concentrated. Combined, the above arguments give that the Laplace averages

62



Aα(e−iωρ−1
1 G(·)) = α−1

∫ α
0

(ρ1e
iω)−tG(t)dt converge in the strong operator topology to

the subspace of elements such that G(t)ψ = (ρ1e
iω)tψ.
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Chapter IV

Generalized Laplace Analysis

(GLA) for Non-Spectral Operators

In this chapter, we consider non-spectral operators. We introduce a subspace of

absolutely summable series of eigenfunctions on which the analysis will proceed. This

subspace will be constructed as an internal (algebraic) direct sum of eigenspaces cor-

responding to a certain subset of the spectrum. Each eigenspace in the construction

can be thought of as “coordinates” for the subspace. Projections from the abso-

lutely summable subspace onto the “coordinates” may not be bounded operators.

However, we will see that the operator restricted to this subspace admits a spectral

decomposition.

Section IV.1 constructs the absolutely summable subspace, defines the projection

operators, and shows that a Laplace average converges strongly to the appropriate
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projection operator on a subspace of the absolutely summable subspace. In section

IV.2, the previous section’s result on the equivalence of an averaging operator and a

projection operator on subspaces of the absolutely summable subspace is extended

to prove the Generalized Laplace Analysis (GLA) theorem (theorem IV.2.1) that

gives a recursive method to compute the spectral decomposition of Banach space

elements that are in the absolutely summable subspace. Section IV.3 extends the

GLA theorems to the situation where the operator has nilpotent components. In

particular, the case of uniformly finite algebraic multiplicity1 is considered. In order

to do this, the definition of the absolutely summable subspace has to be extended.

We also introduce the concepts of algebraic Koopman modes as certain nilpotent

operators in addition to nonvanishing generalized eigenfunctions.

IV.1 Preliminaries

IV.1.1 Absolutely summable subspaces

Let B be a separable Banach space whose norm is denoted by ‖·‖B. Let D(U)

be a dense linear subspace of B and let U : D(U)→ B be a closed, linear operator.

The nullspace of U will be denoted by N (U) := {f ∈ D(U) | Uf = 0} and the range

by Im(U) = {Uf ∈ B | f ∈ D(U)}. Let λ ∈ C be in the point spectrum of U . If

0 < |λ| < 1, N (λI − U) is called a stable eigenspace; if |λ| > 1, N (λI − U) is called

an unstable eigenspace; and if |λ| = 1, N (λI − U) is called the center eigenspace.

1∃m ∈ N,∀λ ∈ Λ, N ((λI − U)m) = N
(
(λI − U)m+1

)
.
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The dimension of an eigenspace will be denoted by d(λ) = dim[N (λI − U)], with

d(λ) =∞ being possible.

Let Λ ⊂ σp, be an at most countable, bounded set of distinct eigenvalues of U not

containing 0 and let

|Λ| = {|λ| | λ ∈ Λ} (IV.1.1)

and

‖Λ‖∞ = sup {|λ| | λ ∈ Λ} . (IV.1.2)

Assume |Λ| \ {0} is a discrete set. Let {ρi | i = 1, . . . , R}, where R ∈ N ∪ {+∞},

denote the distinct values of |Λ|, ordered such that ρi > ρi+1 > 0 for all i. Then

define Λi ⊂ Λ as

Λi = {λ ∈ Λ | |λ| = ρi} . (IV.1.3)

For simplicity, we will denote N (λI − U) by Ei,λ, whenever λ ∈ Λi.

Let Xi be the internal direct sum

Xi :=
⊕
λ∈Λi

Ei,λ =

{
{xλ}λ∈Λi

∣∣∣∣∣ xλ ∈ N (λI − U) ,
∑
λ∈Λi

‖xλ‖B <∞
}

(IV.1.4)

Define a norm ‖·‖i : Xi → R by

∥∥{xλ}λ∈Λi

∥∥
i

:=
∑
λ∈Λi

‖xλ‖B. (IV.1.5)

It is easy to show that (Xi, ‖·‖i) is a Banach space. Let the linear map πi : Xi →

D(U) be defined by

πi({xλ}λ∈Λi
) =

∑
λ∈Λi

xλ (IV.1.6)
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and let Ei,abs = πi(Xi). Since the series is absolutely convergent in the Banach space

B, then it is convergent in B and is contained in the closure Ei,abs ⊂ D(U). The

subspace Ei,abs is an algebraic direct sum, but not necessarily a topological direct sum

since the projections onto each eigenspace forming Ei,abs may not be bounded, as the

next example shows.

Example IV.1.1. Let {Ej}∞j=1 be sequence of eigenspaces for U with the property

that

inf
x∈E1,y∈Ej
‖x‖=‖y‖=1

‖x− y‖ =: δj > 0 and δj → 0.

The second condition implies that the subspace
∑∞

j=2 Ej generated from {Ej}∞2 is

not closed. Let εj → 0. For each j ≥ 2 there exists xj ∈ E1, yj = Ej satisfying

‖xj‖ = ‖yj‖ = 1 and ‖xj − yj‖ < δj + εj. Consider the the projection P1 from the

absolutely summable subspace formed from {Ej}∞1 into E1. For all j ≥ 2, xj − yj is

in the absolutely summable subspace and

‖P1‖ ≥
∥∥∥∥P1

(
xj − yj
‖xj − yj‖

)∥∥∥∥ =
‖xj‖

‖xj − yj‖
>

1

δj + εj
.

Therefore, P1 is an unbounded projection.

A concrete example is for U : D → `1(RN) where Ue2k−1 = e2k−1 and Uxk =

λkxk, for all k ∈ N, where xk = e2k−1 + 2−ke2k and λk 6= 1 and lim
k→∞

= λ1. E1 is the

infinite dimensional subspace with basis {e2k−1}∞k=1 and Ek = {αxk | α ∈ R}, k ≥ 2.

In this case, the separation is δk = 2−k for k ≥ 2. The domain D ⊂ `1 is the space

of sequences expanded in terms of e2k−1 and xk such that their image under U has

finite 1-norm (with respect to the canonical basis).
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The eigenspaces in example IV.1.1 exhibited a property which characterized the

bounded projections. In essence, the closer two subspaces are, the larger the norms

of the corresponding projections.

Definition IV.1.2 (Separated subspaces). Let M and N be two subspaces. M and

N are said to be separated if there exists a δ > 0 such that for all x ∈M and y ∈ N

with ‖x‖B = ‖y‖B = 1, then ‖x− y‖B ≥ δ. M and N are said to be separated with

constant δ.

Definition IV.1.3 (Uniformly separated family of subspaces). Let A be some index

set and V = {Vα | Vα ⊂ B, α ∈ A} be a family of subspaces. The collection V is

said to be a uniformly separated family of subspaces if there is a δ > 0 such that for

all α ∈ A, Vα and lin {Vβ | ∀β ∈ A, β 6= α} are separated subspaces with constant δ.

Each Vα is said to be uniformly separated in V .

It is easy to show that V is a family of subspaces, then Pα is bounded if and only

if V is a uniformly separated family.

Assumption IV.1.4. For the rest of the chapter it will be assumed that the eigenspaces

corresponding to eigenvalues in Λ are a uniformly separated family.

Define

X :=
R⊕
i=1

Xi =

{
{zi}Ri=1

∣∣∣∣∣ zi ∈Xi,

R∑
i=1

‖zi‖i <∞
}

(IV.1.7)

Define a norm �·� : X → R by

�z� =
R∑
i=1

‖zi‖i . (IV.1.8)
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Since each (Xi, ‖·‖i) is a Banach space, it can be shown that (X , �·�) is a Banach

space.

Note that zi ∈ Xi, for each i ∈ {1, . . . , R}, and hence zi is a sequence zi =

{zi,λ}λ∈Λi
. Then (IV.1.8) is equivalently

�z� =
R∑
i=1

∑
λ∈Λi

‖zi,λ‖B. (IV.1.9)

Define the linear map π : X → D(U) by

π(z) =
R∑
i=1

πi(zi) =
R∑
i=1

∑
λ∈Λi

zi,λ, (IV.1.10)

for z ∈X . Finally, let

Eabs := π(X ) =

{
π(z) =

R∑
i=1

∑
λ∈Λi

zi,λ

∣∣∣∣∣ z ∈X

}
. (IV.1.11)

Again, we note that π : X → Eabs is bounded.

Each f ∈ Eabs has a unique expansion of the form f =
∑R

i=1

∑
λ∈Λi

fi,λ, where

fi,λ ∈ Ei,λ and the double series is absolutely summable. Define for

f =
∑R

i=1

∑
λ∈Λi

fi,λ ∈ Eabs the family of linear maps

Pi,λ(f) :=


fi,λ if λ ∈ Λi

0 if λ /∈ Λi

(IV.1.12)

and Pi : Eabs → Ei,abs by

Pi(f) =
∑
λ∈Λi

Pi,λ(f). (IV.1.13)

Furthermore,

f =
R∑
i=1

Pi(f) =
R∑
i=1

∑
λ∈Λi

Pi,λ(f), (IV.1.14)
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for all f ∈ Eabs. Since the expansion of f is unique, the projection operators defined

in (IV.1.12) and (IV.1.13) are well-defined. However, these projections may not be

bounded.

The following proposition shows that, on Eabs, U admits a spectral decomposition.

Proposition IV.1.5. Let f ∈ Eabs. Then since U is closed

U(f) =
R∑
i=1

∑
λ∈Λi

λPi,λ(f). (IV.1.15)

In particular, since ‖Λ‖∞ <∞, then U(f) ∈ Eabs and hence U : Eabs → Eabs.

Proof. Let f =
∑R

i=1 Pi(f) ∈ Eabs. Consider Pi(f) =
∑

λ∈Λi
Pi,λ(f). Let {Ki,n} be

an increasing sequence of finite sets contained in Λi such that

f (i,n) :=
∑
λ∈Ki,n

Pi,λ(f)→
∑
λ∈Λi

Pi,λ(f) = Pi(f)

as n→∞. Applying U to f (i,n) gives,

U(f (i,n)) =
∑
λ∈Ki,n

λPi,λ(f)

and U(f (i,n))→∑
λ∈Λi

λPi,λ(f) as n→∞ since∥∥∥∥∥U(f (i,n))−
∑
λ∈Λi

λPi,λ(f)

∥∥∥∥∥
B

≤ ρi
∑

λ∈Λi\Kn

‖Pi,λ(f)‖B

for all n ∈ N. Since U is closed,

U(Pi(f)) =
∑
λ∈Λi

λPi,λ(f). (IV.1.16)
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Furthermore,

‖U(Pi(f))‖B ≤ ρi
∑
λ∈Λi

‖Pi,λ(f)‖B. (IV.1.17)

For any m ∈ N, m ≤ R, define f (m) =
∑m

i=1 Pi(f). Then lim
m→∞

f (m) = f and

U(f (m)) =
∑m

i=1 U(Pi(f)). Furthermore, lim
m→∞

U(f (m)) =
R∑
i=1

∑
λ∈Λi

λPi,λ(f), since

∥∥∥∥∥U(f (m))−
R∑
i=1

∑
λ∈Λi

λPi,λ(f)

∥∥∥∥∥
B

=

∥∥∥∥∥
R∑

i=m+1

∑
λ∈Λi

λPi,λ(f)

∥∥∥∥∥
B

≤ ‖Λ‖∞
R∑

i=m+1

∑
λ∈Λi

‖Pi,λ(f)‖B.

for all m ∈ N and f ∈ Eabs. Since U is closed,

U(f) = U(
R∑
i=1

∑
λ∈Λi

Pi,λ(f)) =
R∑
i=1

∑
λ∈Λi

λPi,λ(f), (IV.1.18)

completing the proof.

IV.1.2 Averaging operators

For the closed, linear operator UΛ : Eabs → Eabs and any scalar α, define the

family of averaging operators {An(αUΛ)}n∈N, An(αUΛ) : Eabs → Eabs, by

An(αUΛ) =
1

n

n−1∑
k=0

αkUk
Λ. (IV.1.19)

Since UΛ is closed, then An(αUΛ) is also a closed linear operator for each n ∈ N.

The following lemma has the form of a mean ergodic theorem on Ei,abs.
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Lemma IV.1.6. Fix µ ∈ Λi. Then An(µ−1UΛ) converges strongly in Ei,abs to Pi,µ;

i.e., for any f ∈ Ei,abs

Pi,µ(f) = lim
n→∞

An(µ−1UΛ)(f) = lim
n→∞

1

n

n−1∑
k=0

µ−kUk
Λf. (IV.1.20)

Proof. Let f = Ei,abs. Then f =
∑

λ∈Λi
Pi,λ(f) and

∑
λ∈Λi
‖Pi,λ(f)‖B <∞. For any

finite subset F ⊂ Λi containing µ, we have the inequality

∥∥An(µ−1UΛ)(f)− Pi,µ(f)
∥∥

B
≤

∥∥∥∥∥∥ 1

n

n−1∑
k=0

∑
λ∈F\{µ}

λk

µk
Pi,λ(f)

∥∥∥∥∥∥
B

+
1

n

n−1∑
k=0

∑
Λi\F

∥∥∥∥λkµkPi,λ(f)

∥∥∥∥
B

.

Since f ∈ Ei,abs, we can choose, for every ε > 0, a finite F so that
∑

Λi\F ‖Pi,λ(f)‖B ≤

ε.

Since λ and µ are in Λi, then |λ| = |µ| and λ
µ

= eiθλ for some θλ ∈ [0, 2π).

Therefore,

∥∥An(µ−1UΛ)(f)− Pi,µ(f)
∥∥

B
≤

∥∥∥∥∥∥
∑

λ∈F\{µ}

1

n
(
n−1∑
k=0

eiθλk)Pi,λ(f)

∥∥∥∥∥∥
B

+ ε

≤
∑

λ∈F\{µ}

∣∣∣∣∣ 1n(
n−1∑
k=0

eiθλk)

∣∣∣∣∣ ‖Pi,λ(f)‖B + ε.

Therefore,

lim
n→∞

∥∥An(µ−1UΛ)(f)− Pi,µ(f)
∥∥

B
≤

∑
λ∈F\{µ}

lim
n→∞

∣∣∣∣∣ 1n(
n−1∑
k=0

eiθλk)

∣∣∣∣∣ ‖Pi,λ(f)‖B + ε

≤ ε.

Since ε > 0 was arbitrary, this completes the proof.

72



Remark IV.1.7. Lemma IV.1.6 does not exclude the case where µ is an accumulation

point for Λi. However, for the λ’s that are arbitrarily close to µ, the contribution of

Pi,λ(f) to the sum defining f is arbitrarily small.

IV.2 Generalized Laplace Analysis

The following theorem gives the form of the projection operators onto the nonuni-

tary eigenspaces as a type of Laplace average. In essence, we extract the maximally

unstable mode first and subtract it off from the dynamics. A necessary condition for

the averages to be well-defined is that Λ must be a bounded set; otherwise, there

would not be a maximally unstable mode and the construction would fail.

Theorem IV.2.1 (Generalized Laplace Analysis). Let B be a separable Banach space

under the norm ‖·‖B and U : D(U)→ B a closed linear operator such that σp(U) 6=

{0} and is nonempty. Furthermore, let Λ ⊂ σ(U), have dominating point spectrum

(see def. III.1.5) that is concentrated on isolated circles. Let Λi be defined by (IV.1.3).

For any i ∈ {1, . . . , R} and µ ∈ Λi ∩ σp(U), define Ui,µ : Eabs → Eabs by

Ui,µ := µ−1UΛ

(
I −

i−1∑
j=1

Pj

)
, (IV.2.1)

where Pj and UΛ are given by (IV.1.13) and (IV.1.15), respectively. Then An(Ui,µ)

converges strongly to Pi,µ in (Eabs, ‖·‖B), where Pi,µ is given by (IV.1.12); for any

f ∈ Eabs

Pi,µ(f) = lim
n→∞

An(Ui,µ)(f) = lim
n→∞

1

n

n−1∑
k=0

Uk
i,µ(f). (IV.2.2)
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Proof of theorem IV.2.1. Fix i ∈ {1, . . . , R}, µ ∈ Λi, and f ∈ Eabs. f has the unique

representation f =
∑R

j=1 Pj(f) =
∑R

j=1

∑
λ∈Λj

Pj,λ(f). Note that I −∑i−1
j=1 Pj is a

projection onto Eabs ∩ linEj,abs
R
j=i since

(I −
i−1∑
j=1

Pj)
2(f) = (I −

i−1∑
j=1

Pj)(
R∑
j=i

Pj(f)) =
R∑
j=i

Pj(f).

Since linEj,abs
R
j=i is UΛ-invariant,

[UΛ(I −
i−1∑
j=1

Pj)]
k = Uk

Λ(I −
i−1∑
j=1

Pj).

and

µ−kUk
Λ(I −

i−1∑
j=1

Pj)(f) = µ−kUk
Λ(

R∑
j=i

∑
λ∈Λj

Pj,λ(f)) =
R∑
j=i

∑
λ∈Λj

(
λ

µ

)k
Pj,λ(f). (IV.2.3)

Since An(Ui,µ) is a linear operator

An(Ui,µ)(f) = An(µ−1UΛ)(
R∑
j=i

∑
λ∈Λj

Pj,λ(f))

=

[
An(µ−1UΛ)(

∑
λ∈Λi

Pi,λ(f))

]
+

An(µ−1UΛ)(
R∑

j=i+1

∑
λ∈Λj

Pj,λ(f))


(IV.2.4)

Expanding the second term in (IV.2.4) and using (IV.2.3), we get∥∥∥∥∥∥An(µ−1UΛ)(
R∑

j=i+1

∑
λ∈Λj

Pj,λ(f))

∥∥∥∥∥∥
B

≤ 1

n

n−1∑
k=0

R∑
j=i+1

∑
λ∈Λj

∣∣∣∣λµ
∣∣∣∣k ‖Pj,λ(f)‖B

≤
[

1

n

n−1∑
k=0

(
ρi+1

ρi

)k] R∑
j=i+1

∑
λ∈Λj

‖Pj,λ(f)‖B

 .
Since f ∈ Eabs, then

∑R
j=i+1

∑
λ∈Λj
‖Pj,λ(f)‖B = Ci <∞. Since ρi+1 < ρi, then

lim
n→∞

An(µ−1UΛ)(
R∑

j=i+1

∑
λ∈Λj

Pj,λ(f)) = 0. (IV.2.5)
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Consider the first term in (IV.2.4). Since
∑

λ∈Λi
Pi,λ(f) is in Ei,abs, then lemma

IV.1.6 gives that

lim
n→∞

An(Ui,µ)(
∑
λ∈Λi

Pi,λ(f)) = Pi,µ(f) (IV.2.6)

Taking the limit of (IV.2.4) and inserting (IV.2.5) and (IV.2.6) into the resulting

expression gives that

lim
n→∞

An(Ui,µ)(f) = Piµ(f).

This completes the proof.

Remark IV.2.2. These results for closed operators on Banach spaces apply, in par-

ticular, to previously studied cases where U was the Koopman operator associated with

a invertible transformation T : X → X preserving a measure ν. In those settings, the

Koopman operator was a bounded operator of norm 1 acting on L2 = L2(X,µ). The

closed graph theorem then guaranteed that the Koopman operator was closed.

In fact, if Λ is a set of eigenvalues such that |λj| = 1 for all λj ∈ Λ, then Ui,µ can

be taken to be UΛ instead of (IV.2.1) and then (IV.2.2) reduces to a normal Fourier

average.
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IV.3 Generalized Laplace analysis in the presence

of nilpotentcy

This section extends the results of the previous section to include the case when

the eigenvalues have finite algebraic multiplicity. Let

Kλ,m := N ((U − λI)m) . (IV.3.1)

Definition IV.3.1 (Uniformly finite algebraic multiplicity). For each λ ∈ Λ, the

algebraic multiplicity of λ, denoted by a(λ), is the smallest integer k ≥ 1 such that

Kλ,k = Kλ,k+1; i.e,

Kλ,a(λ)−1 ( Kλ,a(λ) = Kλ,a(λ)+1. (IV.3.2)

An operator U : D(U) → B is said to have uniformly finite algebraic multiplicity in

Λ ⊂ σp(U) if

a(Λ) := max {a(λ) | λ ∈ Λ} <∞. (IV.3.3)

If we are thinking in terms of an “infinite matrix” in Jordan block form, then

uniformly finite algebraic multiplicity means that there is some finite size that every

Jordan block is smaller than.

Assumption IV.3.2. For the rest of this section, we assume that U : D(U) → B

has a uniformly finite algebraic multiplicity on Λ and that Λ ⊂ σ(U) has a dominating

point spectrum concentrated on isolated circles.
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Let

Vλ,m :=


Kλ,1, for m = 1

Kλ,m 	Kλ,m−1, for m ∈ {2, . . . , a(λ)}
(IV.3.4)

For each f ∈ Vλ,m, (U − λI)m−1f 6= 0 and (U − λI)mf = 0. Redefine Ei,λ to be

Ei,λ :=

a(λ)⊕
m=1

Vλ,m. (IV.3.5)

Each f ∈ Ei,abs has a unique expansion of the form f =
a(λ)∑
m=1

fλ,m, where fλ,m ∈ Vλ,m.

Define the projection operators Qλ,m : Ei,λ → Vλ,m by

Qλ,m(

a(λ)∑
n=1

fλ,n) = fλ,m. (IV.3.6)

Define Nλ : Ei,λ → Ei,λ by the restriction

Nλ := (U − λI)|Ei,λ, (IV.3.7)

for λ ∈ Λi. Nλ is nilpotent on Ei,λ.

Construct Xi, Ei,abs, X , and Eabs as before (see sec. IV.1.1) using this new

definition of Ei,λ. An element fi ∈ Ei,abs, has an expansion of the form

fi =
∑
λ∈Λi

fi,λ =
∑
λ∈Λi

a(λ)∑
m=1

Qλ,m(fi,λ) (IV.3.8)

where fi,λ ∈ Ei,λ and
∑

λ∈Λi
‖fi,λ‖B < ∞. An element f ∈ Eabs has an expansion of

the form

f =
R∑
i=1

fi =
R∑
i=1

∑
λ∈Λi

fi,λ =
R∑
i=1

∑
λ∈Λi

a(λ)∑
m=1

Qλ,m(fi,λ). (IV.3.9)
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where
R∑
i=1

‖fi‖i =
R∑
i=1

∑
λ∈Λi

‖fi,λ‖B <∞.

Define the family of projection operators Pi,λ : Eabs → Ei,λ by

Pj,µ(
R∑
i=1

∑
λ∈Λi

fi,λ) = fj,µ =

a(µ)∑
m=1

Qµ,m(fj,µ) (IV.3.10)

and Pj : Eabs → Ej,abs by

Pj(
R∑
i=1

fi) = fj =
∑
λ∈Λj

fj,λ =
∑
λ∈Λj

a(λ)∑
m=1

Qλ,m(fj,λ) (IV.3.11)

Definition IV.3.3 (Algebraic Koopman Mode). For i ∈ {1, . . . , R}, λ ∈ Λi, and

p ∈ {0, . . . , a(λ)− 1}, the algebraic Koopman mode is the linear operator Ωi,λ,p :

Eabs →
⊕a(λ)−p

j=1 Vλ,j given by

Ωi,λ,p(f) :=

a(λ)∑
m=p+1

Np
λQλ,m(Pi,λ(f)) (IV.3.12)

where Nλ is given by (IV.3.7) and f ∈ Eabs.

Lemma IV.3.4. For fixed i ∈ {1, . . . , R} and λ ∈ Λi, the algebraic Koopman mode

is a projection for p = 0 and nilpotent for p > 0.

Proof. Let p and q be elements of {0, . . . , a(λ)− 1}. Note that Ωi,λ,p(f) ∈ Ei,λ ⊂ Eabs.
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Then

Ωi,λ,q(Ωi,λ,p(f)) =

a(λ)∑
m=q+1

N q
λQλ,m(Pi,λ(Ωi,λ,p(f)))

=

a(λ)∑
m=q+1

N q
λQλ,m(Ωi,λ,p(f))

=

a(λ)∑
m=q+1

N q
λQλ,m(

a(λ)∑
n=p+1

Np
λQλ,n(Pi,λ(f)))

=

a(λ)∑
m=q+1

N q
λ(

a(λ)∑
n=p+1

Qλ,mN
p
λQλ,n(Pi,λ(f))).

Since Qλ,m is a projection onto Vλ,m, then Qλ,mN
p
λQλ,n 6= 0 if and only if m = n− p

since Np
λQλ,n(Pi,λ(f)) ∈ Vλ,n−p. It is only possible for the operator Qλ,mN

p
λQλ,n to be

nonzero when m ≤ a(λ)− p. When n = m+ p,

Qλ,mN
p
λQλ,n(Pi,λ(f))) = Qλ,mN

p
λQλ,m+p(Pi,λ(f)))

= Np
λQλ,m+p(Pi,λ(f)))

Plugging this back in gives

a(λ)∑
m=q+1

N q
λ(

a(λ)∑
n=p+1

Qλ,mN
p
λQλ,n(Pi,λ(f))) =

a(λ)−p∑
m=q+1

N q
λN

p
λQλ,m+p(Pi,λ(f)).

Therefore,

Ωi,λ,q(Ωi,λ,p(f)) =

a(λ)−p∑
m=q+1

N q+p
λ Qλ,m+p(Pi,λ(f)) ∈

a(λ)−p−q⊕
j=1

Vλ,j.

In particular, putting q = p and proceeding inductively gives

Ωj
i,λ,p(f) =

a(λ)−(j−1)p∑
m=p+1

N jp
λ Qλ,m+(j−1)p(Pi,λ(f))

=

a(λ)−jp∑
m=1

N jp
λ Qλ,m+jp(Pi,λ(f)).
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When p > 0 there is some j ∈ N such that a(λ) ≤ jp and hence Ωj
i,λ,p(f) = 0. When

p = 0, Ωj
i,λ,0(f) =

∑a(λ)
m=1Qλ,m(Pi,λ(f)) =: Ωi,λ,0(f) for all j ∈ N.

Definition IV.3.5. Fix f ∈ Eabs such that Pi,λ(f) 6= 0. Let i ∈ {1, . . . , R} and

λ ∈ Λi. Define Vi,λ(f) ⊂ Ei,abs to be the finite dimensional vector space

Vi,λ(f) := lin {Np
λQλ,m(Pi,λ(f)) | p ∈ {0, . . . , a(λ)− 1} ,m ∈ {1, . . . , a(λ)}} .

The functional ‖·‖Vi,λ(f) : Vi,λ(f)→ R defined by

‖g‖Vi,λ(f) :=

a(λ)−1∑
p=0

a(λ)∑
m=p+1

‖Np
λQλ,m(g)‖B (IV.3.13)

is a norm on Vi,λ(f).

Since Vi,λ(f) is finite-dimensional and ‖·‖B restricted to Vi,λ(f) is a norm on

Vi,λ(f), then there exists a Ci,λ(f) > 0 such that

‖g‖Vi,λ(f) ≤ Ci,λ(f)‖g‖B (IV.3.14)

for all g ∈ Vi,λ(f), where

Ci,λ(f) :=

a(λ)∑
m=1

m−1∑
p=0

‖Np
λQλ,m‖B (IV.3.15)

Definition IV.3.6 (Non-vanishing generalized eigenfunctions). Let f ∈ Eabs. If

sup {Ci,λ(f)} <∞, (IV.3.16)

where the supremum is taken over all i ∈ N satisfying 1 ≤ i ≤ R and over all λ ∈ Λi

such that Pi,λ(f) 6= 0, we say that f has non-vanishing generalized eigenfunctions.

80



Remark IV.3.7. Note that the set {Ci,λ} is uniformly bounded over i ∈ {1, . . . , R}

and λ ∈ Λi if and only if the sets {‖Nλ‖B} and
{
‖Qλ,m‖B

}
are uniformly bounded

over λ ∈ Λ and m ∈ {1, . . . , a(λ)}. The projections {Qλ,m} are bounded if and only

if the all generalized eigenspaces {Vλ,m} are uniformly separated for all λ ∈ Λ and m.

If Nλ is bounded, then ∥∥Nm−1
λ Qλ,m(f)

∥∥
B

‖Qλ,m(f)‖B
≤ Cλ,m

Since Nm−1
λ Qλ,m(f) is an eigenfunction of U and Qλ,m(f) is the generalized eigenfunc-

tion that gets mapped into it, if the above bound is uniform it says that no generalized

eigenfunction has arbitrarily small norm compared to its associated eigenfunction.

This gives rise to the name non-vanishing generalized eigenfunction.

Lemma IV.3.8. Let f ∈ Eabs have non-vanishing generalized eigenfunctions. Then,

R∑
i=1

∑
λ∈Λi

a(λ)−1∑
p=0

‖Ωi,λ,p(f)‖B ≤ C
R∑
i=1

∑
λ∈Λi

‖Pi,λ(f)‖B <∞, (IV.3.17)

where C is the supremum given in (IV.3.16).
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Proof. For convenience, let nλ = min(k, a(λ)− 1). Then for k ≥ 0,

R∑
i=1

∑
λ∈Λi

nλ∑
p=0

‖Ωi,λ,p(f)‖B =
R∑
i=1

∑
λ∈Λi

nλ∑
p=0

∥∥∥∥∥∥
a(λ)∑

m=p+1

Np
λQλ,m(Pi,λ(f))

∥∥∥∥∥∥
B

≤
R∑
i=1

∑
λ∈Λi

 nλ∑
p=0

a(λ)∑
m=p+1

‖Np
λQλ,m(Pi,λ(f))‖B


=

R∑
i=1

∑
λ∈Λi

‖Pi,λ(f)‖Vi,λ(f)

≤
R∑
i=1

∑
λ∈Λi

Ci,λ(f)‖Pi,λ(f)‖B

≤ C
R∑
i=1

∑
λ∈Λi

‖Pi,λ(f)‖B <∞.

Lemma IV.3.9. Let f ∈ Eabs. Then for k ≥ 0,

Uk(f) =
R∑
i=1

∑
λ∈Λi

min(k,a(λ)−1)∑
p=0

(
k

p

)
λk−pΩi,λ,p(f). (IV.3.18)

If f has non-vanishing generalized eigenfunctions, the series converges absolutely for

all k ≥ 0.

Proof. f ∈ Eabs implies that

f ∈
R∑
i=1

∑
λ∈Λi

Pi,λ(f) =
R∑
i=1

∑
λ∈Λi

a(λ)∑
m=1

Qλ,m(Pi,λ(f))

and
R∑
i=1

∑
λ∈Λi

‖Pi,λ(f))‖B <∞.

Then

Uk(f) =
R∑
i=1

∑
λ∈Λi

Uk(Pi,λ(f)) =
R∑
i=1

∑
λ∈Λi

Uk(

a(λ)∑
m=1

Qλ,m(Pi,λ(f)))). (IV.3.19)
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Consider Uk(
∑a(λ)

m=1Qλ,m(Pi,λ(f))):

Uk(

a(λ)∑
m=1

Qλ,m(Pi,λ(f))) = (λI +Nλ)
k(

a(λ)∑
m=1

Qλ,m(Pi,λ(f)))

=
k∑
p=0

(
k

p

)
λk−p

a(λ)∑
m=1

Np
λQλ,m(Pi,λ(f)).

For fixed p, Np
λQλ,m = 0 if m < p+ 1. Then

Uk(

a(λ)∑
m=1

Qλ,m(Pi,λ(f))) =
k∑
p=0

(
k

p

)
λk−p

a(λ)∑
m=p+1

Np
λQλ,m(Pi,λ(f))

Furthermore, the sum
∑a(λ)

m=p+1N
p
λQλ,m(Pi,λ(f)) = 0 if p ≥ a(λ). Theforefore,

Uk(

a(λ)∑
m=1

Qλ,m(Pi,λ(f))) =

min(k,a(λ)−1)∑
p=0

(
k

p

)
λk−p

a(λ)∑
m=p+1

Np
λQλ,m(Pi,λ(f))

=

min(k,a(λ)−1)∑
p=0

(
k

p

)
λk−pΩi,λ,p(f).

Inserting this into (IV.3.19) gives

Uk(f) =
R∑
i=1

∑
λ∈Λi

min(k,a(λ)−1)∑
p=0

(
k

p

)
λk−pΩi,λ,p(f).

For all k ≥ 0, Lk <∞, where

Lk := max

{(
k

p

)
max(‖Λ‖k∞ , 1)

∣∣∣∣ p ∈ {0, . . . ,min(k, a(λ)− 1)}
}

(IV.3.20)

Then, if f ∈ Eabs has non-vanishing generalized eigenfunction, the series converges

by lemma IV.3.8.

The condition that supCi,λ(f) < ∞ is crucial. If this was not true, then for

some f ∈ Eabs, (IV.3.18) would not be convergent. The following example shows

a particular case of this. In this example, a sequence of generalized eigenfunctions
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converging to 0 will allow for an unbounded sequence of coefficients while still main-

taining convergence of the series. However, upon iteration by the operator, these

large coefficients will eventually multiply an eigenfunction having norm one, leading

to a divergent series.

Example IV.3.10. Consider U : `1(CN)→ `1(CN) such that each eigenvalue

{λj | j ∈ N} satisfies λj = eiθj , θj ∈ [0, π/2], and has only one corresponding eigen-

function ϕj,1 = e2j−1 of norm 1 and one generalized eigenfunction ϕj,2 = 2−(2j+1)e2j

with (U −λjI)ϕj,2 = ϕj,1 and where {ei}∞1 are the canonical basis vectors for `1(CN).

In this example, R = 1 and a(λ) = 2.

Let f =
∑∞

j=1

∑2
m=1 Θj,m(f)ϕj,m where Θj,m(f) = 2−(j+1) ‖ϕj,m‖−1

1 for m = 1, 2.

Then

‖f‖1 =
∞∑
j=1

2∑
m=1

|Θj,m(f)| ‖ϕj,m‖1 =
∞∑
j=1

2−j = 1.

We first show that
∥∥∥∑1

p=0

∑2
m=p+1

(
1
p

)
λ1−p
j Np

λj
Qλj ,m(P1,λj(f))

∥∥∥
1

is bounded below

by a divergent series.

∥∥P1,λj(f)
∥∥

1
=

∥∥∥∥∥
1∑
p=0

2∑
m=p+1

(
1

p

)
λ1−p
j Np

λj
Qλj ,m(P1,λj(f))

∥∥∥∥∥
1

=

∥∥∥∥∥
2∑

m=1

m−1∑
p=0

λ1−p
j Np

λQλ,m(P1,λj(f))

∥∥∥∥∥
1

=

∥∥∥∥∥
2∑

m=1

m−1∑
p=0

λ1−p
j Np

λ(Θj,m(f)ϕj,m)

∥∥∥∥∥
1

= ‖λjΘj,1(f)ϕj,1 + λjΘj,2(f)ϕj,2 + Θj,2(f)ϕj,1‖1

≥ |λjΘj,1(f) + Θj,2(f)| ‖ϕj,1‖1 ,
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where we have used
(

1
p

)
= 1 for p = 0, 1, ϕj,1 = e2j−1, and ϕj,2 ∈ lin e2j. Since

Θj,m(f) is real and positive for all j ≥ 1 and m ∈ {1, 2} and λj = eiθj , θj ∈ [0, π/2],

then |λjΘj,1(f) + Θj,2(f)| ≥ |Θj,2(f)|. Therefore,∥∥∥∥∥
1∑
p=0

2∑
m=p+1

(
1

p

)
λ1−p
j Np

λj
Qλj ,m(P1,λj(f))

∥∥∥∥∥
1

≥ |Θj,2(f)| = 2j.

Using this in (IV.3.18), for k = 1, gives

‖U(f)‖1 =
∞∑
j=1

∥∥∥∥∥
1∑
p=0

(
1

p

)
λ1−pΩ1,λ,p(f)

∥∥∥∥∥
1

=
∞∑
j=1

∥∥∥∥∥
1∑
p=0

2∑
m=p+1

(
1

p

)
λ1−p
j Np

λj
Qλj ,m(P1,λj(f))

∥∥∥∥∥
1

≥
∞∑
j=1

2j

Hence, U(f) is a divergent series.

Remark IV.3.11. Note that the time-varying term multiplying the algebraic Koop-

man mode Ωi,λ,p(f) is of order O(λkkp). Hence for fixed i and λ, Ωi,λ,a(λ)−1 has the

largest algebraic growth of its corresponding time-dependent term and Ωi,λ,0 has the

least. In particular, (
k
p

)(
k
q

) = O(kp−q). (IV.3.21)

Moreover, call Ωi,µ,p(f) more unstable than Ωj,λ,q(f) if

lim
k→∞

∣∣∣∣µkkpλkkq

∣∣∣∣ =∞. (IV.3.22)
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Definition IV.3.12. Let Λi be defined by (IV.1.3). Let

a(Λi) := max {a(λ) | λ ∈ Λi} (IV.3.23)

and for p ∈ {0, . . . , a(Λi)− 1}, define

Λi,p := {λ ∈ Λi | a(λ) = p+ 1} . (IV.3.24)

Lemma IV.3.13. Let f ∈ Eabs have non-vanishing generalized eigenfunctions. For

all k ≥ a(Λ)

Uk(f) =
R∑
i=1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k

p

)
λk−pΩi,λ,p(f) (IV.3.25)

is a convergent series and where a(Λ) is given by (IV.3.3).

Proof. From its defintion, Λi,p ∩ Λi,q = ∅ for p 6= q and Λi =
⋃a(Λi)−1
p=0 Λi,p. Then,

formally,

R∑
i=1

∑
λ∈Λi

a(λ)−1∑
p=0

(
k

p

)
λk−pΩi,λ,p(f) =

R∑
i=1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k

p

)
λk−pΩi,λ,p(f).

Convergence of this series still needs to be shown.

Since
R∑
i=1

∑
λ∈Λi

a(λ)−1∑
p=0

(
k

p

)
λk−pΩi,λ,p(f)

is absolutely convergent by lemma IV.3.9, then
∑

λ∈Λi
and

∑a(λ)−1
p=0 commute and the

commuted infinite sum converges to the same limit.

We now come to the main result of this section. The following theorem represents

an extension of theorem IV.2.1 to the current setting.
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Theorem IV.3.14 (Computation of algebraic Koopman modes.). Let f ∈ Eabs and

assume UΛ : Eabs → B has uniformly finite algebraic multiplicity in Λ and f has

non-vanishing generalized eigenfunctions.

Let j ∈ {1, . . . , R}, q ∈ {0, . . . , a(Λj)− 1}, and µ ∈ Λj,q. Define, for k ≥ 0

Uk
j,q(f) = Uk(I −

j−1∑
i=1

Pi)(f)−
a(Λj)−1∑
p=q+1

∑
λ∈Λj,p

(
k

p

)
λk−pΩj,λ,p(f) (IV.3.26)

Then

Ωj,µ,q(f) = lim
n→∞

1

n

n−1∑
k=0

(
k

q

)−1

µ−kUk
j,q(f) (IV.3.27)

Proof. Fix ε > 0. First note that for k ≥ a(Λ) and using (IV.3.25), (IV.3.26) becomes

Uk
j,q(f) =

q∑
p=0

∑
λ∈Λj,p

(
k

p

)
λk−pΩj,λ,p(f) +

R∑
i=j+1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k

p

)
λk−pΩi,λ,p(f)

or equivalently(
k

q

)−1

µ−(k−q)Uk
j,q(f)− Ωj,µ,q =

∑
λ∈Λj,q\{µ}

(
k
q

)(
k
q

) λk−q
µk−q

Ωj,λ,q(f) (IV.3.28)

+

q−1∑
p=0

∑
λ∈Λj,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωj,λ,p(f) (IV.3.29)

+
R∑

i=j+1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωi,λ,p(f) (IV.3.30)

Consider the term on the right side of (IV.3.28). Taking the average of this term

divided by
(
k
q

)−1
µ−(k−q) and starting at k = a(Λ), we get

1

n

n−1∑
k=a(Λ)

∑
λ∈Λj,q\{µ}

(
k
q

)(
k
q

) λk−q
µk−q

Ωj,λ,q(f)

=
n− a(Λ)

n

1

n− a(Λ)

n−1∑
k=a(Λ)

∑
λ∈Λj,q\{µ}

λk−q

µk−q
Ωj,λ,q(f).

(IV.3.31)
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Since
∑

λ∈Λj,q\{µ}Ωj,λ,q(f) is absolutely convergent, by lemma IV.3.8, there is a finite

subset F1 ⊂ Λj,q \ {µ} such that

∑
λ∈(Λj,q\{µ})\F1

‖Ωj,λ,q(f)‖B <
ε

5
.

Then, using the fact that µ ∈ Λj,q so that
(
λ
µ

)k−q
= eiθλ , for all λ ∈ Λj,q, taking the

norm of (IV.3.31) gives∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

∑
λ∈Λj,q\{µ}

(
k
q

)(
k
q

) λk−q
µk−q

Ωj,λ,q(f)

∥∥∥∥∥∥
B

<
n− a(Λ)

n

∑
λ∈F1

∥∥∥∥∥∥
 1

n− a(Λ)

n−1∑
k=a(Λ)

eiθλ(k−q)

Ωj,λ,q(f)

∥∥∥∥∥∥
B

+
ε

5

 .

(IV.3.32)

Since the term in the ‖·‖B on the right side of (IV.3.32) converges to zero, there exists

an N1 ∈ N, such that for all n ≥ N1,∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

∑
λ∈Λj,q\{µ}

(
k
q

)(
k
q

) λk−q
µk−q

Ωj,λ,q(f)

∥∥∥∥∥∥
B

<
2ε

5
(IV.3.33)

Consider the average of the second term, (IV.3.29). We estimate it as follows:∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

q−1∑
p=0

∑
λ∈Λj,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωj,λ,p(f)

∥∥∥∥∥∥
B

≤ n− a(Λ)

n

1

n− a(Λ)

n−1∑
k=a(Λ)

q−1∑
p=0

∑
λ∈Λj,p

∥∥∥∥∥
(
k
p

)(
k
q

) λk−p
µk−q

Ωj,λ,p(f)

∥∥∥∥∥
B

≤ n− a(Λ)

n

1

n− a(Λ)

n−1∑
k=a(Λ)

qρq−pj

(
k
q−1

)(
k
q

)
 ∑
λ∈Λj,p

‖Ωj,λ,p(f)‖B


≤ n− a(Λ)

n

qρq−pj

∑
λ∈Λj,p

‖Ωj,λ,p(f)‖B

 1

n− a(Λ)

n−1∑
k=a(Λ)

(
k
q−1

)(
k
q

)
where we have used that |µ| = |λ| = ρj for all λ ∈ Λj,p, p = 0, . . . , q − 1. Since

( k
q−1)
(kq)

= O(k−1) and
∑

λ∈Λj,p
‖Ωj,λ,p(f)‖B is finite, then there is N2 ∈ N such that for
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all n ≥ N2, ∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

q−1∑
p=0

∑
λ∈Λj,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωj,λ,p(f)

∥∥∥∥∥∥
B

<
ε

5
. (IV.3.34)

Consider the average of the third term, (IV.3.30).∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

R∑
i=j+1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωi,λ,p(f)

∥∥∥∥∥∥
B

≤ 1

n

n−1∑
k=a(Λ)

R∑
i=j+1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k
p

)(
k
q

) |λ|k−p
|µ|k−q

‖Ωi,λ,p(f)‖B

≤ 1

n

n−1∑
k=a(Λ)

R∑
i=j+1

a(Λi)−1∑
p=0

(
k
p

)(
k
q

) ρk−pj+1

ρk−qj

 ∑
λ∈Λi,p

‖Ωi,λ,p(f)‖B


≤ 1

n

n−1∑
k=a(Λ)

(
ρj+1

ρj

)k−q R∑
i=j+1

a(Λi)−1∑
p=0

(
k
p

)(
k
q

)ρq−pj+1

 ∑
λ∈Λi,p

‖Ωi,λ,p(f)‖B

 .

Let t(k) := max

{
(kp)
(kq)
ρq−pj+1

∣∣∣∣ p ∈ {0, . . . , a(Λ)− 1}
}

. Since
(
k
p

)
is a positive integer-

valued polynomial in k for any p, then t(k) is some positive rational function of k.

Since
(
k
q

)
≥ 1 for all k ≥ 1, then t(k) ≤ Ctk

m for some m ∈ N and constant Ct.

Additionally,
∑R

i=j+1

(∑a(Λi)−1
p=0

(∑
λ∈Λi,p

‖Ωi,λ,p(f)‖B
))

=: Cj+1 <∞. Therefore,∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

R∑
i=j+1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωi,λ,p(f)

∥∥∥∥∥∥
B

≤ CtCj+1a(Λ)
n− a(Λ)

n

1

n− a(Λ)

n−1∑
k=a(Λ)

km
(
ρj+1

ρj

)k−q
.

Since ρj+1 < ρj, then km
(
ρj+1

ρj

)k−q
converges exponentially fast to zero as k goes to

∞. Therefore, there exists N3 such that∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

R∑
i=j+1

a(Λi)−1∑
p=0

∑
λ∈Λi,p

(
k
p

)(
k
q

) λk−p
µk−q

Ωi,λ,p(f)

∥∥∥∥∥∥
B

<
ε

5
(IV.3.35)
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for all n ≥ N3.

Taking the average of the left side of (IV.3.28), equations (IV.3.33), (IV.3.34),

and (IV.3.35) can be used to show that∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

(
k

q

)−1

µ−kUk
j,q(f)− Ωj,µ,q(f)

∥∥∥∥∥∥
B

<
4ε

5
(IV.3.36)

for all n ≥ max(N1, N2, N3).

Finally, consider∥∥∥∥∥ 1

n

n−1∑
k=0

(
k

q

)−1

µ−kUk
j,q(f)− Ωj,µ,q(f)

∥∥∥∥∥
B

≤

∥∥∥∥∥∥ 1

n

a(Λ)−1∑
k=0

(
k

q

)−1

µ−kUk
j,q(f)

∥∥∥∥∥∥
B

+

∥∥∥∥∥∥ 1

n

n−1∑
k=a(Λ)

(
k

q

)−1

µ−kUk
j,q(f)− Ωj,µ,q(f)

∥∥∥∥∥∥
B

(IV.3.37)

There exists N4 ≥ max(N1, N2, N3) such that∥∥∥∥∥∥ 1

n

a(Λ)−1∑
k=0

(
k

q

)−1

µ−kUk
j,q(f)

∥∥∥∥∥∥
B

<
ε

5
. (IV.3.38)

for all n ≥ N4. Using (IV.3.36) and (IV.3.38) in (IV.3.37) gives∥∥∥∥∥ 1

n

n−1∑
k=0

(
k

q

)−1

µ−kUk
j,q(f)− Ωj,µ,q(f)

∥∥∥∥∥
B

< ε

for all n ≥ N4.

Remark IV.3.15. The Laplace averages, (IV.3.27), are not projection operators in

general since Uj,q is defined in terms of the nilpotent operators Ωi,λ,p. Furthermore,

the construction of the averaging operators fails if the algebraic eigenspace has infinite

multiplicity.
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IV.4 Some comments on Schauder bases

Bases in finite dimensional vector spaces are a very useful concept. In the finite

dimensional case, the spectral decomposition of an operator is equivalent to finding a

basis of eigenvectors for the space. The concept of basis extends to infinite dimensional

vector spaces as well. These (Hamel) bases are usually uncountable and their existence

depends on Zorn’s lemma. The more useful concept in Banach spaces is that of a

Schauder basis.

Let B be a Banach space. A sequence of elements {en}∞n=1 is called a Schauder

basis if for every x ∈ B there is a unique set of scalars {xn}∞1 such that

x =
∞∑
n=1

xnen. (IV.4.1)

Equivalently, for every ε > 0, there is an M ∈ N such that∥∥∥∥∥x−
N∑
n=1

xnen

∥∥∥∥∥ < ε (IV.4.2)

for all N ≥M . Necessarily, for a Banach space to have a basis, it must be separable.

There are, however, examples of separable reflexive Banach spaces that do not have

a Schauder basis [Enf73]. The convergence implies that ‖x‖0 := supN≥1

∥∥∥∑N
n=1 xnen

∥∥∥
is finite. It is also a norm on B, and it can be shown equivalent to ‖·‖;

‖x‖ ≤ ‖x‖0 ≤ K ‖x‖ .

The smallest K satisfying this relation is called the basis constant and it is a measure

of the “orthogonality” of the basis elements. This orthogonality is in the Banach space
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sense rather than the Hilbert space sense which would depend on an inner product.

The equivalence of these norms shows that the coordinate projections Pn(x) = xnen

are a uniformly bounded family.

In the original formulation of the GLA theorems in the non spectral case, the

constructions relied upon the notion of a Schauder basis. Unfortunately, pursuing

this line of thought leads to problems. We assumed that B had a Schauder basis and

implicitly assumed that every infinite dimensional subspace, and in particular sums

of eigenspaces, had a basis, which unfortunately cannot be guaranteed even in nice

spaces. For example, each `p sequence space (1 ≤ p < ∞) has a basis. However, for

every p 6= 2, the sequence space contains an infinite dimensional subspace that has

no basis [Jam82]. This is in direct contradiction to our intuition in Hilbert spaces.

However, it can be shown that every infinite dimensional Banach space has an infi-

nite dimensional subspace possessing a Schauder basis. This is shown by constructing

an “almost orthogonal” sequence of unit norm vectors in B. These vectors then are

a basis for their closed linear span and are called a basic sequence. The construction

relies on the following result.

Lemma IV.4.1. Let B be an infinite dimensional (not necessarily separable) Banach

space and F a finite dimensional subspace of B. Let ε > 0. Then there exists an

x ∈ B such that

(i) ‖x‖ = 1

(ii) for all y ∈ F and all scalars α, we have ‖y‖ ≤ (1 + ε) ‖y + αx‖.
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Such a vector x ∈ B is called “almost orthogonal” to F . A basic sequence is

constructed by starting with some x1 of unit norm and using the above procedure

lemma to construct an almost orthogonal x2. The process is then repeated to get

{xn}n∈N. Performed with a certain sequence of {εn}n∈N, the resulting sequence can

be constructed to have a basis constant of 2.

While this is a nice result (even if the entire space cannot be recovered in this

way), for the proofs of the GLA theorems we often need to switch the order of the

summation. This is equivalent to permuting the basis. Unfortunately, it can very well

be the case that a permutation of a basis fails to be a basis. Therefore, what we would

really want is what is called an unconditional basis. These are bases that continue

to be bases under any permutation. A slightly stronger property is that expansions

in the basis are absolutely summable. If a space has an absolutely summable basis,

it is isomorphic to an `1-space (compare this with the construction of the absolutely

summable subspace in section IV.1). Thus we are led to the question of whether

every infinite dimensional space has an infinite dimensional subspace with an uncon-

ditional basis; i.e., there always exists an unconditional basic sequence. This was a

long standing conjecture in Banach space theory [Jam82]. It was finally proved in

the negative by Gowers and Maurey [GM93]. Those authors constructed a separable

reflexive Banach space containing no unconditional basis sequences. The space as ex-

hibited the property that was termed hereditarily indecomposable. What this means

is that if X = Y ⊕ Z is a topological direct sum (the projections from X 7→ Y and
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X 7→ Z are bounded), then Y and Z cannot both be infinite dimensional. Stated

in another way, every infinite dimensional subspace is arbitrarily close to every other

infinite dimensional subspace.

It was also shown in [GM93] that the only bounded operators were of the form U =

λI + S, where S is a strictly singular operator. S is strictly singular if its restriction

to any infinite dimensional subspace fails to be an isomorphism; the restriction fails

to injective on its range. The only possible eigenvalue is λ and eigenvectors must be

in the kernel of S. For example, let y and z be points such that Sy = Sz. Then

x = y − z is in the kernel of S and an eigenvector of U ;

Ux = U(y − z) = λx+ S(y − z) = λx+ Sy − Sz = λx.

Therefore, if U is a bounded operator and its point spectrum has more than 1 point in

it, then the sum of its eigenspaces must contain an unconditional basic sequence. On

the other hand, if we allow an unbounded operator, then there are examples where

the eigenspaces do not have an unconditional basis (see example IV.1.1).
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Chapter V

Dynamical Systems and the

Koopman Operator

1This chapter connects the abstract results of the previous section with dynamical

systems. The operator we are interested in is the Koopman operator associated with

a dynamical system (X ,Φ), where Φ : X →X (we have yet to put any structure on

Φ). Recall that the Koopman operator is the composition operator UΦψ = ψ ◦Φ, for

all ψ in some space of functions F . In particular, we will show that the conditions on

the set of eigenvalues Λ (namely, it being a bounded set and concentrated on isolated

circles) are natural and are satisfied for the examples we consider.

For problems on the attractor, it is natural to consider the space L2(ν), where ν

a probability measure supported on the attractor that is preserved by Φ. This case

1Portions of this chapter closely follow and are reprinted with permission from M. Budǐsić,
R. Mohr, and I. Mezić “Applied Koopmanism,” Chaos. 22 (4), 047510-1 – 047510-33 (2012),
doi:10.1063/1.4772195. Copyright 2012.
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has been treated extensively in the literature. However, this space is not particularly

natural for dissipative dynamics. For example, consider a dynamical system on the

real line with the origin as a globally attracting fixed point. The invariant measure

for this system is a delta measure supported at zero, in which case, the associated

Hilbert space of observables, L2(R, δ0), is isomorphic to R; every function agreeing

at zero is equivalent regardless of their values away from zero. The space L2(R, δ0)

cannot give any information about the dynamics away from the attractor. As seen

in example V.1.4 below, natural observables for dissipative dynamics are polynomials

and their completions under certain norms.

The first section of this chapter is devoted to some algebraic and topological prop-

erties of eigenfunctions of the Koopman operator. The first main result (thm. V.1.1)

states basically that eigenfunctions of the Koopman operator form semigroups under

pointwise products (as long as the products belong to F ) and monoids if F contains

the constant functions. The second main result (thm. V.1.8) is a relation between

the eigenfunctions of Koopman operators associated with topologically conjugate sys-

tems. If an eigenfunction is found for one of the systems, then an eigenfunction for

the other system can be obtained by composing with the conjugacy map.

In section V.2, the results of section V.1 are used to construct what we call the B-

Hardy spaces H2
B that arise naturally for dissipative dynamical systems. These spaces

can loosely be considered as generalizations of the familiar Hilbert Hardy spaces in the

disc H2(D). On these B-Hardy spaces, the Koopman operator is a spectral operator
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of scalar-type. First, polynomials over normed commutative rings are defined since

they arise naturally from principle eigenfunctions of the Koopman operator. It is also

shown that under a completion with an `2 polynomial norm that the completed space

is locally sequentially weakly compact as is required to apply the GLA theorems. This

holds true as long as the Banach space in which the ring is dense is separable and

reflexive. This result is contained in proposition V.2.7. Sections V.2.2 and V.2.3 con-

struct eigenfunctions and spaces of observables for attracting hyperbolic fixed points

in Cd and limit cycles in R2, respectively. Topological conjugacies are leveraged to use

eigenfunctions corresponding to the linearized dynamics to construct eigenfunctions

and spaces of observables for the nonlinear system. It is shown that these spaces are

identifiable with spaces of polynomials over normed unital commutative rings. Spec-

tral measures for the systems are constructed that satisfy the properties assumed in

section III.2.1. Additionally, a short remark connects the space of observables of an

attracting fixed point for the d = 1 case with Hardy Hilbert spaces in the unit disc

H2(D) that are often studied in the context of composition operators with analytic

symbols defined in the unit disc. Loosely, the spaces we construct can be viewed as

generalizations of these spaces.
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V.1 Algebraic and topological properties of Koop-

man eigenfunctions.

The first main result of this section states basically that eigenfunctions of the

Koopman operator form semigroups under pointwise products (as long as the products

belong to F ) and monoids if F contains the constant functions. The second main

result is a relation between the eigenfunctions of Koopman operators associated with

topologically conjugate systems. If an eigenfunction is found for one of the systems,

then an eigenfunction for the other system can be obtained by composing with the

conjugacy map.

Theorem V.1.1 (Semigroup of eigenfunctions). Let F be a space of observables

for the dynamical system (M,Φ) and let UΦ : F → F be the associated Koopman

operator.

(i) Let ϕ and ψ be two eigenfunctions of UΦ at eigenvalues λ and µ, respectively. If

the pointwise product ϕ · ψ is in F and nonzero, then ϕ · ψ is an eigenfunction

of UΦ at eigenvalue λµ.

UΦϕ = λϕ and UΦψ = µψ =⇒ UΦ(ϕ · ψ) = λµ(ϕ · ψ). (V.1.1)

(ii) Let G be a set of nonzero eigenpairs (λ, ϕ) of UΦ with the property that any

finite subset {ϕ1, . . . , ϕm} ⊂ G satisfies
∏m

i=1 ϕi = ϕ1 · · ·ϕm 6= 0 and all finite

pointwise products of elements of G are in F . Then G is a generator for a
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semigroup of eigenfunctions of UΦ, which will be denoted by PG. If the constant

functions are in F , then PG is a monoid.

Proof. For any f ∈ F , define Sf = {x ∈ X | |f(x)| > 0}. Let (λ, ϕ) ∈ G. Then

Sϕn = Sϕ for all n ∈ N. Therefore, ϕ 6= 0 if and only if ϕn 6= 0 for all n ∈ N.

To show that (λµ, ϕ · ψ) is an eigenpair of UΦ when both (λ, ϕ) and (µ, ψ) are

elements of G, compute

UΦ(ϕ · ψ)(x) = ϕ(Φ(x)) · ψ(Φ(x)) = λϕ(x)µψ(x) = λµ(ϕ · ψ)(x).

Note that ϕ · ψ 6= 0 by hypothesis on G. Therefore, (λµ, ϕ · ψ) is a nonzero eigenpair

of UΦ and, in particular, (λn, ϕn) is a nonzero eigenpair of U for all n ∈ N.

Now let (λi, ϕi)
m
1 ⊂ G, (n1, . . . , nm) ∈ Nm, and consider h =

∏m
i=1 ϕ

ni
i . We claim

that h is a nonzero eigenfunction of U . That h is nonzero follows from hypothesis

on G; i.e., Sϕnii = Sϕi , any finite product of elements of G are nonzero, and hence

ϕn1
1 · · ·ϕnmm 6= 0. That h is an eigenfunction follows from

Uh(x) = U(
m∏
i=1

ϕnii )(x) =
m∏
i=1

ϕnii (Tx). =
m∏
i=1

λnii ϕ
ni
i (x) = (

m∏
i=1

λnii )h(x).

The semigroup generated by G is given by

PG =

{(
m∏
i=1

λnii ,

m∏
i=1

ϕnii

) ∣∣∣∣∣ (λi, ϕi) ⊂ G,m ∈ N, ni ∈ N

}
.

By the previous work, elements of PG are nonzero eigenfunctions of U .

Corollary V.1.2. Let (λ, ϕ) be a nonzero eigenpair of UΦ such that for any m ∈ N0,

the m-term pointwise product ϕm is in F . Let G = {(λ, ϕ)}. Then, letting Pϕ denote
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the semigroup generated by G,

Pϕ = {(λn, ϕn) | n ∈ N0} . (V.1.2)

We note that if we considered generalized eigenfunctions, then these results do

not hold (see example V.1.6).

Definition V.1.3 (Principle eigenfunctions). Let E be a semigroup of eigenfunctions

of the Koopman operator. Let G be a minimal generator for E. The elements of G

are called principle eigenfunctions of UΦ in E.

The principle eigenfunctions are not necessarily unique. For example, consider a

Koopman operator with eigenvalue λ = ei2πp/q with q ≥ 3 and ϕ 6= 1 the associated

eigenfunction. Then λq+1 = λ and therefore ϕq+1 = ϕ and ϕq ≡ 1. Then Pϕ is a cyclic

group of finite order. It can easily be shown that ϕq−1 = ϕ−1 is also a generator for

Pϕ and, since q ≥ 3 and ϕ 6= 1, ϕq−1 6= ϕ. Therefore, both ϕ and ϕq−1 are principle

eigenfunctions of U in E = {1, ϕ, ϕ2, . . . , ϕq−1}.

Example V.1.4 shows that analytic observables are natural for dissipative systems.

Example V.1.4. Let X = R and T (x) = λx, where 0 < λ < 1. Let FX = C(X)

and ϕ(x) := x. Then

(UTϕ)(x) = ϕ(λx) = λx = λϕ(x).

Hence ϕ is an eigenfunction of UT at eigenvalue λ. By corollary V.1.2, any finite

product ϕm is also an eigenfunction of UT at eigenvalue λm. This can easily be verified
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by the computation

(UTϕ
m)(x) = ϕm(λx) = (λx)m = λmϕm(x).

The eigenfunction ϕ is the principle eigenfunction of the system.

Let f be the analytic function

f(x) =
∞∑
m=0

cm(f)ϕm(x),

where cm(f) = f (m)(0)
m!

. The partial sums fn(x) =
∑n

m=0 cm(f)ϕm converge to f

uniformly on compact sets. Therefore, the natural observables to take for this system

are the analytic functions.

Example V.1.5 (Koopman eigenfunctions corresponding to a finite-dimensional,

diagonalizable linear system). Let Y = Cd with the Euclidean norm and A a d × d

diagonalizable matrix. Define the dynamics as yk+1 = Ayk. Let {v1, . . . ,vd} be a basis

of eigenvectors of A corresponding to nonzero eigenvalues {λj}d1. Then y =
∑d

1 cjvj.

Let {wj}dj=1 be the adjoint basis to {vj}dj=1; then 〈vj,wk〉 = δjk and wj is an

eigenvector of A∗ at eigenvalue λ̄j. Define observables by the linear functionals

ϕj(y) = 〈y,wj〉 (V.1.3)

for all y and j = 1, . . . , d.

The action of the Koopman operator on ϕj is

(UAϕj)(y) = ϕj(Ay) = 〈Ay,wj〉 = 〈y,A∗wj〉 =
〈
y, λ̄jwj

〉
= λjϕj(y).
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Hence ϕj is a nonzero eigenfunction of UA. Additionally, the product (ϕ1 · · ·ϕd) is

not equivalently the zero functional. Therefore, theorem V.1.1 implies that for any

(m1, . . . ,md) ⊂ Nd
0, (

d∏
j=1

λ
mj
j ,

d∏
j=1

ϕ
mj
j

)
(V.1.4)

is an eigenpair for the corresponding Koopman operator.

Example V.1.6 (Koopman eigenfunctions of a finite-dimensional, linear system

having generalized eigenvectors). Let A : Cn → Cn be a linear operator and let

{v1, . . . ,vn} be a basis of generalized eigenvectors satisfying

(A− λI)v1 = 0,

(A− λI)vj = vj−1, (j ≥ 2)

where 0 6= λ ∈ C. Let {w1, . . . ,wn} be the adjoint basis corresponding to {v1, . . . ,vn};

i.e, 〈vi,wj〉 = δi,j. It can easily be shown that

(A∗ − λ̄I)wn = 0,

(A∗ − λ̄I)wj = wj+1, (j < n),

where A∗ is the adjoint to A and (̄·) denotes complex conjugation. Let UA be the

Koopman operator corresponding to A and define ϕj : Cn → C by ϕj(x) = 〈x,wj〉.

Then

UAϕn(x) = ϕn(Ax) = 〈Ax,wn〉 = 〈x,A∗wn〉 =
〈
x, λ̄wn

〉
= λ 〈x,wn〉 = λϕn(x).
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Additionally, for 1 ≤ j < n,

UAϕj(x) = 〈x,A∗wj〉 =
〈
x, λ̄wj +wj+1

〉
= λ 〈x,wj〉+ 〈x,wj+1〉

= λϕj(x) + ϕj+1(x).

Therefore {ϕ1, . . . , ϕn} are generalized eigenfunctions of the Koopman operator sat-

isfying

(U − λI)ϕn = 0,

(U − λI)ϕj = ϕj+1, (1 ≤ j < n).

(V.1.5)

We note that contrary to the case of products of eigenfunctions, products of general-

ized eigenfunctions are not necessarily generalized eigenfunctions. That is, the set of

generalized eigenfunctions is not closed under pointwise products.

Definition V.1.7 (Pullback space of observables). Let M1 and M2 be locally

compact metric spaces and (M1,Φ1) and (M2,Φ2) be continuous dynamical sys-

tems. Assume Φ1 and Φ2 are topologically conjugate under the homeomorphism

h :M1 →M2; i.e., Φ1 = h−1 ◦ Φ2 ◦ h. Assume UΦ2 : FM2 → FM2 . Then

FM1 := FM2 ◦ h = {f ◦ h | f ∈ FM2} (V.1.6)

is called the pullback space of observables.

Theorem V.1.8 (Eigenfunctions of topologically conjugate dynamics). Let M1 and

M2 be locally compact metric spaces. Let Φ1 : M1 → M1 and Φ2 : M2 → M2

be continuous maps that are topologically conjugate under the homeomorphism h :
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M1 M1

M2 M2

//Φ1

//Φ2

��

h

OO

h−1

Figure V.1: The commutative diagram corresponding to the spaces in definition V.1.7 and

theorem V.1.8.

M1 → M2; i.e., Φ1 = h−1 ◦ Φ2 ◦ h. Let UΦ2 : FM2 → FM2 be the Koopman

operator associated with the dynamical system (M2,Φ2), where FM2 ⊂ C(Y,C). Let

FM2 ⊂ C(X,C) and UΦ1 : FM1 → FM1.

Then if λ ∈ C is an eigenvalue of UΦ2 having finite algebraic multiplicity and

ϕ ∈ FM2 is an associated generalized eigenfunction, then ϕ ◦ h is a generalized

eigenfunction of UΦ1 if ϕ ◦ h ∈ FM1 with eigenvalue λ.

Remark V.1.9. The theorem continues to hold if we have continuous dynamical

systems and associated semigroups of Koopman operators.

Proof. By definition λ ∈ C has finite algebraic multiplicity if there is some m < ∞

such that N ((UΦ2 − λI)m) = N ((UΦ2 − λI)m+1). Let ϕ ∈ FM2 be a generalized

eigenfunction of UΦ2 corresponding to λ; i.e., (UΦ2 − λI)mϕ(y) = 0, for all y ∈M2.

Assume ϕ◦h is in FM1 . We claim that (UΦ1−λI)m(ϕ◦h)(x) = 0 for all x ∈M1.
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Fix x ∈M1 and let y = h(x). The claim follows from the chain of equalities:

(UΦ1 − λI)m(ϕ ◦ h)(x) =
m∑
k=0

(
m

k

)
(−λ)m−kUk

S(ϕ ◦ h)(x)

=
m∑
k=0

(
m

k

)
(−λ)m−k(ϕ ◦ h ◦ Φk

1)(x)

=
m∑
k=0

(
m

k

)
(−λ)m−k(ϕ ◦ Φk

2 ◦ h)(x)

=
m∑
k=0

(
m

k

)
(−λ)m−k(ϕ ◦ Φk

2)(y)

=
m∑
k=0

(
m

k

)
(−λ)m−kUk

Φ2
(ϕ)(y)

= (UΦ2 − λI)mϕ(y)

= 0.

Therefore, ϕ ◦ h is a generalized eigenfunction of US.

Example V.1.10. Consider the differential equation

ẋ = −x+ x3

ẏ = −y,

(x, y) ∈ R2. The system has equilibrium points at (x∗, y∗) = (0, 0), (±1, 0), where

(0, 0) is asymptotically stable with basin of attraction D = (−1, 1)× R. The solution

of the nonlinear system is

x(t) =
x0√

(1− x2
0)e2(t−t0) + x2

0

y(t) = y0e
−(t−t0)

(V.1.7)
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and the solution to the linearization about (0, 0) is

u(t) = u0e
−(t−t0)

v(t) = v0e
−(t−t0)

(V.1.8)

Fix a time-step 0 < ∆t � 1 and put λ = e−∆t < 1. Then defining xk := x(k∆t)

(and similarly for y), we obtain the nonlinear map T = (T1, T2) : R2 → R2,

T k1 (x0) = xk =
λkx0√

(1− x2
0) + λ2kx2

0

T k2 (y0) = yk = y0λ
k.

and the linear map A = (A1,A2) : R2 → R2

Ak1u0 = uk = λku0

Ak2v0 = vk = λkv0.

A homeomorphism h : D → R2 that makes the nonlinear and linear maps, T

and A, topologically conjugate can be found using equations (V.1.7) and (V.1.8). Let

h(x, y) = (h1(x, y), h2(x, y)) = (u, v). Note that since the dynamics for y are already

linear we can identity y and v everywhere so that v = h2(x, y) = y. To get h1(x, y),

we identify x0 = u0 = r for 0 < r very close to the origin, find the homeomorphism,

and then let r → 0. For any fixed r > 0, we get the map

u = h1,r(x, y) = x

√
1− r2

1− x2
.

Then

(u, v) = h(x, y) =

(
x√

1− x2
, y

)
(V.1.9)
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makes the dynamics topologically conjugate

According to corollary V.1.2, the eigenfunctions of the linearized Koopman op-

erator are ϕ(u, v) = umvn, with eigenvalues λm+n, for m,n ∈ N0. Therefore, the

eigenfunctions for the nonlinear system are of the form

ψ(x, y) = (ϕ ◦ h)(x, y) = ϕ

(
x√

1− x2
, y

)
=

xmyn

(1− x2)m/2
(V.1.10)

and have the eigenvalues λm+n.

Example V.1.11. This example shows using theorem V.1.8 in the case when the

linearized dynamics posses generalized eigenvectors. Let x = (x1, . . . , x4) ∈ R+ ×

[0, 1)× R+ × [−π, π), and consider the discrete-time dynamical systems given by

S(x) =



f1(x1)

f2(x2)

f3(x3, x4)

f4(x4)


=



x1 + 1
2
(1− x1)

x2 + ω, mod 1

x3[λ2 + 2λ cos(x4) sin(x4) + sin2(x4)]1/2

arctan

(
λ sin(x4)

λ cos(x4) + sin(x4)

)


, (V.1.11)

where ω ∈ (R/Z) \Q and 0 < λ < 1. This system has a globally attracting limit cycle

in the complex plane defined by the first two coordinates (z = x1 exp(i2πx2) ∈ C).

Consider the function

h(x) = h(x1, x2, x3, x4) =



x1

x2

x3 cosx4

x3 sinx4


(V.1.12)
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and the dynamical system

T (y) =



y1 + 1
2
(1− y1)

y2 + ω, mod 1

λy3 + y4

λy4


=


y1 + 1

2
(1− y1)

y2 + ω, mod 1

g(y3, y4)

 (V.1.13)

where y = (y1, . . . , y4) ∈ R +×[0, 1)× R2 and g(y3, y4) =

λ 1

0 λ


y3

y4

. Then

(h ◦ S)(x) = (T ◦ h)(x).

Additionally, v3 = (0, 0, 1, 0) is an eigenvector of T and v4 = (0, 0, 0, 1) is a

generalized eigenvector of T satisfying Tv4 = λv4 + v3. Following example V.1.6,

we form the adjoint basis, which in this case is just the canonical basis (e.g. e3 =

(0, 0, 1, 0)). Then ϕ3(y) := 〈y, e3〉 and ϕ4(y) := 〈y, e4〉 are generalized eigenfunctions

of UT (see example V.1.6). Since S and T are conjugate through h, then theorem V.1.8

guarantees that ϕi ◦h (i = 3, 4) are generalized eigenfunctions of US. Using (V.1.12),

(ϕ3 ◦ h)(x) = 〈h(x), e3〉 =

〈


x1

x2

x3 cosx4

x3 sinx4


, e3

〉
= x3 cosx4

and similarly (ϕ4 ◦ h)(x) = x3 sinx4.
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V.2 Function spaces for dissipative dynamical sys-

tems

Assume that Φ : M → M has ` < ∞ attracting fixed points {xj | j = 1, . . . , `}

and let Dj be the basin of attraction of xj, where the basin of attraction is defined

as the largest open set in X such that Φk(x)→ xj for all x ∈ Dj. Then Di ∩Dj = ∅

for i 6= j and we can consider the new space D = D1 ∪ · · · ∪ D` and the restricted

dynamical system (D,Φ|D). A space of observables on B, can be given by the direct

sum

FB = FB1 ⊕ · · · ⊕FB` ⊂ C(B,C). (V.2.1)

We have yet to specify exactly what the FBj ’s look like.

Remark V.2.1. More generally, M can be decomposed into basins of attraction for

more general compact attractors Aj. A space of observables on B =
⋃`
j=1Bj can be

given like in (V.2.1), where Bj is the basin of attraction for the attractors.

Example V.2.2. This example shows why we must construct the function algebras

as a direct sum on the basins of attraction, rather than defining the observables on all

of X. Let X be the real line and S : R→ R be defined by the continuous map

S(x) =



λ1(x− x1) + x1, (x < x2)

x, (x = x2)

λ2(x− x3) + x3, (x > x2).
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where x1 < x2 < x3 and λ1 6= λ2 are positive real numbers. A candidate eigenfunction

is ϕ1,m(x) = (x− x1)m; for x < x2,

USϕ1,m(x) = ϕ1,m(λ1(x− x1) + x1) = [λ1(x− x1)]m = λm1 ϕ1,m(x).

However,

USϕ1,m(x) =


ϕ1,m(x), (x = x2)

[λ2(x− x2) + x2 − x1]m, (x > x2).

Therefore, if we allow ϕ1,m to be defined on all of R, it cannot be an eigenfunction of

the Koopman operator. In fact, if we define the domain for the observables to be all

of R, the only continuous eigenfunctions of US are the constant functions which are

associated with the eigenvalue 1.

V.2.1 Polynomials over normed commutative rings

Let (R,+, ·) be a normed unital commutative ring with the norm ‖·‖. We addi-

tionally assume that (R,+) has a vector space structure over C. Thus R with the

two binary operations and multiplication by scalars is an associative algebra.

Definition V.2.3. The space of polynomials over the ring R in the indeterminates

x1, . . . , xd is defined by

R[x] :=

∑
|k|≤K

ψk · xk
∣∣∣∣∣∣ K ∈ N0, ψk ∈ R

 , (V.2.2)

where x = (x1, . . . , xd), k = (k1, . . . , kd) ∈ Nd
0, |k| :=

d∑
j=1

|kj|, and xk := xk11 · · ·xkdd .
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These are just regular polynomials with coefficients taking values in R rather

than R or C. The space R[x] is a normed unital commutative ring under the normal

operations of addition and convolution products for polynomials. The space R[x] is

isomorphic to the sequence space

c00(RNd0) =
{
{ψk}k∈Nd0

∣∣∣ ψk ∈ R, F ⊂ Nd
0 finite,∀k ∈ F c, ψk = 0

}
under the ring isomorphism i : R[x]→ c00(RNd

0 ) given by i(
∑

k∈Nd0
ψk·xk) = {ψk}k∈Nd0 .

Only finitely many terms of the sequence are nonzero. The norm ‖·‖ on R induces a

norm on R[x]: ∥∥∥∥∥∥
∑
k∈Nd0

ψkx
k

∥∥∥∥∥∥
R,2

= (
∑
k∈Nd0

‖ψk‖2)1/2. (V.2.3)

Expression (V.2.3) gives a norm for the sequence space as well. Under this norm,

the isomorphism i is an isometric isomorphism. Define the coordinate projections

πm : R[x]→ R by

πm

∑
k∈Nd0

ψkx
k

 = ψm, (∀m ∈ Nd
0). (V.2.4)

Definition V.2.4. Let B be a separable reflexive Banach space under the norm ‖·‖.

Let

`2
(
BNd0

)
:=

{ψk}k∈Nd0
∣∣∣∣∣∣ ψk ∈ B,

∑
k∈Nd0

‖ψk‖2 <∞

 . (V.2.5)

Definition V.2.5 (B-Hardy space). If B a separable reflexive Banach space under

the norm ‖·‖ and (R,+) is a dense subspace of B, denote the completion of R[x]

under the `2 polynomial norm (V.2.3) by H2
B. The completion is

H2
B =

∑
k∈Nd0

ψkx
k

∣∣∣∣∣∣ ψk ∈ B,
∑
k∈Nd0

‖ψk‖2 <∞

 . (V.2.6)
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Lemma V.2.6. Let (R,+) be a dense subspace of a separable reflexive Banach space

B under the norm ‖·‖. Then H2
B is isometrically isomorphic to `2

(
BNd0

)
.

Proof. Let c00(BNd0) be the subspace of `2
(
BNd0

)
consisting of elements having only

finitely many nonzero terms. Since (R,+) is dense in B, then R[x] is isometrically

isomorphic to a subspace dense in c00(BNd0) . Since c00(BNd0) is dense in `2
(
BNd0

)
,

then R[x] is also isometrically isomorphic to a subspace dense in `2
(
BNd0

)
.

Proposition V.2.7. Let (R,+), as a vector space, be a dense subspace of a separable,

reflexive Banach space. Then H2
B is locally sequentially weakly compact.

Proof. Since B is separable and reflexive, so is H2
B ([Woj91], p.44). Fix ψ ∈ H2

B

and consider the closed neighborhood U =
{
ϕ ∈ H2

B

∣∣∣ ‖ϕ− ψ‖R,2 ≤ ε
}

. This is a

bounded neighborhood of ψ. Since H2
B is both a separable and reflexive Banach space,

the sequential version of the Banach-Alaoglu theorem implies that this neighborhood

is sequentially weakly compact. Since this is true for every ψ, then H2
B is locally

sequentially weakly compact.

In this dissertation, B will be a separable reflexive Banach space of functions

whose domain is the attractor of the dynamical system. The normed ring R will be

a dense subspace of B where the ring multiplication is given by pointwise products

of functions.

We should remark that while H2
B is a well-defined Banach space, elements of it are

not necessarily well-defined observables on X even though all polynomials in R[x]
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are. For example, let X = Rd. Consider a point of Rd having at least one coordinate

xi satisfying |xi| > 1. Then there are infinitely many elements of H2
B such that

the infinite series diverges if we substitute the above point in for the indeterminates.

Hence, not all elements of H2
B define finite-valued functions on Rd. On the other

hand, if X is contained strictly in the open unit cube of Rd, then every series in

H2
B is convergent, since |xi| < 1 for every point x = (x1, . . . , xd). If we restrict our

attention to bounded subsets B in Rd containing the origin, by a change of variables

g which maps B into a set g(B) that is contained strictly in the unit cube, we get a

well-defined space of observables H2
B ◦g, where H2

B is defined on the open unit cube.

V.2.2 Asymptotically stable fixed points in Cd

Linear Dynamical System.

Example V.2.8 (Stable diagonalizable linear system). Let Y = Cd with the Eu-

clidean norm and A a d×d diagonalizable matrix. Define the dynamics as yk+1 = Ayk.

Let {v1, . . . ,vd} be a basis of eigenvectors of A corresponding to nonzero eigenvalues

{λj}d1. Then y =
∑d

1 cjvj.

Let {wj}dj=1 be the adjoint basis to {vj}dj=1; then 〈vj,wk〉 = δjk and wj is an

eigenvector of A∗ at eigenvalue λ̄j. Define observables by the linear functionals

ϕj(y) = 〈y,wj〉 (V.2.7)
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for all y and j = 1, . . . , d. The observable ϕj is a nonzero eigenfunction of UA since

(UAϕj)(y) = ϕj(Ay) = 〈Ay,wj〉 = 〈y,A∗wj〉 =
〈
y, λ̄jwj

〉
= λjϕj(y).

Additionally, the product (ϕ1 · · ·ϕd) is not equivalently the zero functional. There-

fore, the semigroup property for eigenfunctions (thm. V.1.1) implies that for any

(m1, . . . ,md) ⊂ Nd
0, (

d∏
j=1

λ
mj
j ,

d∏
j=1

ϕ
mj
j

)
(V.2.8)

is an eigenpair for the corresponding Koopman operator.

Let G = {ϕj : Y → C | ∀j = 1, . . . , d}, be called the principle eigenfunctions of UA

defined in (V.2.7) above. Define the sets of functions

PG :=

{
c : Y → C

∣∣∣∣∣ c(y) =
d∏
j=1

ϕ
mj
j (y), (m1, . . . ,md) ⊂ Nd

0

}

and

R[ŷ] :=

{
n∑
i=1

αici(y)

∣∣∣∣∣ n ∈ N, αi ∈ C, ci ∈PG

}
. (V.2.9)

Then, R[ŷ], where ŷ = (ϕ1(y), . . . , ϕd(y)), is the space of polynomials over the

normed unital commutative ring L2(Cd, δ0), where δ0 is the Dirac measure supported

at y = 0. The ring R[ŷ] is isomorphic to C[ŷ]. Furthermore, R[ŷ] is the space of

finite linear combinations of eigenfunctions of the Koopman operator corresponding

to the dynamical system (Y ,A).

To see this, put V = [v1, · · · ,vd] and W = [w1, · · · ,wd]. Define the new co-

ordinates ŷ = [ŷ1, . . . , ŷd]
T by the mapping ŷ = g(y) = W∗y, so that, in particular,

ŷj = ϕj(y). This is invertible since W is and the inverse is given by y = g−1(ŷ) = Vŷ.
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By definition of the functions ci ∈ PG, ci(y) =
∏d

j=1 ϕ
mj,i
j (y) =

∏d
j=1 ŷ

mj,i
j = ŷmi

for mi ∈ Nd
0. Since L2(Cd, δ0) ∼= C, then every element of R[ŷ] has the form∑n

i=1 αiŷ
mi which is a polynomial in the indeterminates ŷ1, . . . , ŷd with coefficient

in C ∼= L2(Cd, δ). Therefore, R[ŷ] is the space of polynomials over the normed unital

commutative ring L2(δ0) and R[ŷ] ∼= C[ŷ]. The final result follows directly from PG

consisting of eigenfunctions of the Koopman operator and the definition of R[ŷ].

Proposition V.2.9. If R[ŷ] is the ring of polynomials (V.2.9), then the associated

Koopman operator UA leaves RK [ŷ] invariant for all K ∈ N0.

Proof. Recall RK [ŷ] is the space of polynomials having multi-degree modulus no

greater than K. This space has the form

RK [ŷ] =

∑
|k|≤K

ψk(ŷk11 · · · ŷkd)

 =

∑
|k|≤K

ψk

(
ϕk11 · · ·ϕkdd

)
(y)

 ,

where ϕj are the eigenfunctions in (V.2.7) of the Koopman operator and ψk ∈ C.

Then

U

∑
|k|≤K

ψk

(
ϕk11 · · ·ϕkdd

)
(y)

 =
∑
|k|≤K

ψk

(
λk11 · · ·λkdd

)(
ϕk11 · · ·ϕkdd

)
(y)

=
∑
|k|≤K

ψ̂k

(
ϕk11 · · ·ϕkdd

)
(y)

=
∑
|k|≤K

ψ̂k(ŷk11 · · · ŷkd).

where ψ̂k :=
(
λk11 · · ·λkdd

)
· ψk is in C, since ψk ∈ C.

Corollary V.2.10. UA : H2
B → H2

B is spectral, where H2
B is the completion of the

ring (V.2.9) under the norm (V.2.3).
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Nonlinear Dynamical System.

Construction of observables for the nonlinear dynamical system can be constructed

through a conjugacy map and a pullback construction (def. V.1.7). Assume Φ(x) =

Ax + v(x), where A := DΦ(0) is the linearization of Φ around the origin, A is di-

agonalizable and all its eigenvalues are contained strictly inside the unit circle, and

v : Rd → Rd is a C2-function. Then (Rd,Φ) is a nonlinear dynamical system having

an asymptotically stable fixed point at 0. Let D ⊂ Rd be the basin of attraction

for the fixed point; it is possibly unbounded. Let (Rd,A) be the linearization of the

dynamics around the fixed point. Due to a theorem of Lan and Mezić (thm. 2.4,

[LM13]), there is a diffeomorphism h : D → h(D) under which the nonlinear and

linear dynamics are topologically conjugate; h ◦ Φ = A ◦ g. Let B ⊂ X be a simply

connected, bounded, positively invariant open set in X such that h(B) ⊂ Qr ⊂ Y ,

where Qr is a cube in Y . Scaling Qr to the unit cube Q1 via the smooth diffeomor-

phism g : Qr → Q1 gives (g ◦ h)(B) ⊂ Q1. Then if ψ ∈ F is an eigenfunction for

UÂ : F → F at λ, then ψ ◦ g ◦ h is an eigenfunction for UΦ at eigenvalue λ (see thm.

V.1.8). The observable space for UΦ will be given as F ◦ g ◦h = {ϕ ◦ g ◦ h | ϕ ∈ F}.

See figure V.2 to for a schematic.

Let R[ŷ] be the polynomials defined in example V.2.8 with the indeterminates

taking values in D1 := (g ◦ h)(B) ⊂ Q1. Take the completion of this space, as in

lemma V.2.6, and denote it as H2
B(D1). Since all the coordinates have a modulus

strictly smaller than 1, this space can be identified with a well-defined Banach space
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Figure V.2: Chain of topological conjugacies used to construct eigenfunctions in the basin

of attraction B of the fixed point for the Koopman operator corresponding to the nonlinear

system. The existence if h : B → h(B) is guaranteed by a theorem in [LM13].

of functions having domain D1 = (g ◦ h)(B). Using the conjugacies, we can define a

Banach space of observables for the nonlinear dynamical system having domain B;

FΦ := H2
B ◦ g ◦ h :=

{
(ψ ◦ g ◦ h)(x)

∣∣ ψ ∈ H2
B(D1),x ∈ B

}
. (V.2.10)

By proposition V.2.7, this space is locally sequentially weakly compact Banach space

in addition to being separable.

Proposition V.2.11. Let UΦ : FΦ → FΦ be the Koopman operator associated with

Φ. Assume Φ(x) = Ax + v(x), where A is a diagonalizable matrix with eigenvalues

{λ1, . . . , λd} that satisfy |λi| < 1. Then UΦ is a spectral operator of scalar type and

the spectrum of UΦ is

σ(UΦ) =

{
d∏
i=1

λkii

∣∣∣∣∣ ∀i ∈ {1, . . . , d} , ki ∈ N0

}
. (V.2.11)
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Proof. Elements of FΦ are infinite linear combinations of eigenfunctions of UΦ. This

follows from the construction of H2
B as infinite linear combinations of eigenfunctions

of UA, that Φ and A are topologically conjugate in the entire basin of attraction by

theorem 2.4 of [LM13], and theorem V.1.8. The spectral measure E : σ(U)→ L (FΦ)

is given by

E(Λ)ψ =
∑

{k∈Nd0|λk∈Λ}
αk ·

[
(ϕ1 · · ·ϕd)k ◦ g ◦ h

]
, (ψ ∈ FΦ), (V.2.12)

where Λ ∈ B(C), ψ =
∑
k∈Nd0

αk·
[
(ϕ1 · · ·ϕd)k ◦ g ◦ h

]
, and (ϕ1 · · ·ϕd)k = (ϕk11 · · ·ϕkdd ) for

k = (k1, . . . , kd). Since the norm on this space is given by the `2-norm on coefficients,

then its easy to show that ‖E‖ ≤ 1, so that, in particular, the projections defined

by the spectral measure form an equicontinuous family of operators. It is straight

forward to verify all the remaining properties spectral measures.

Since UΦ : FΦ → FΦ is spectral and has dominating point spectrum concentrated

on isolated rings, the GLA theorems can be applied in this space.

Remark V.2.12. Put d = 1 in example V.2.8. It can be shown that ϕ(y) = y is an

eigenfunction of the Koopman operator for λ = A. This implies that ϕk(y) = yk is

also an eigenfunction at eigenvalue λk. Then elements of the completion H2
B of R[ŷ],

identified with a space of observables on D, is

H2
C(D) =

{
∞∑
k=0

αky
k

∣∣∣∣∣ αk ∈ C,
∑
k≥0

|αk|2 <∞, y ∈ D

}
,

since B = C. This is the Hardy Hilbert space of observables H2(D). The spectrum of
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the Koopman operator on this space is

{
λk
∣∣ k = 0, 1, 2, . . .

}
, (V.2.13)

For a nonlinear dynamical system topologically conjugate to this linear one, we get as

the pullback space of observables

F = H2
C(D) ◦ g ◦ h, (V.2.14)

where g and h are the same conjugacy maps from above. The composition operator

on this space is spectral. Furthermore, by Poincaré’s linearization theorem [AL88], if

the nonlinear dynamical system is a holomorphic diffeomorphism with a fixed point

at zero and the linearization of the map at the fixed point has modulus strictly less

than 1, then the conjugacy map g ◦ h is biholomorphic in a neighborhood of zero. As

long as for all n ≥ 0, fn is invertible on its image and the inverse is analytic, the

local conjugacy can be extended biholomorphically to the entire disc [LM13]. Then

the map f 7→ f ◦ g ◦ h defines a composition operator on H2(D) (thm. 3.2.1(i),

[SM93]). Additionally, by part (iii) of the same theorem, this composition operator

is a bijection. Therefore, the pullback space of observables F for the analytic map is

equivalent to H2(D).

Remark V.2.13. In Cowen and MacCluer [CM94], the spectra of composition oper-

ators on weighted Hardy spaces are investigated. In one particular result, the authors

prove that when Φ : D → D is an univalent, holomorphic map that is not an auto-

morphism and satisfies Φ(D) ⊂ D and Φ(0) = 0, then the spectrum of the associated
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Koopman operator on (the classical Hardy space) H2(D) is

σ(UΦ) = {λ | |λ| ≤ ρ̃} ∪
{

Φ′(0)k
∣∣ k = 1, 2, . . .

}
∪ {1} , (V.2.15)

where ρ̃ is the essential spectral radius of Φ and Φ′(0) 6= 0 is the derivative of Φ at

0. Note that Φ′(0) is the eigenvalue of the linearized dynamics around the fixed point

at 0. The conditions put on Φ merely guarantee that 0 is a globally attracting (in the

disc) fixed point.

Clearly, the last two sets of (V.2.15) are equivalent to (V.2.13) and merely come

from the linearized dynamics. The linear dynamics w 7→ Φ′(0)w and the nonlinear

dynamics z 7→ Φ(z) are topologically conjugate in the disc under some diffeomorphism

g : D→ D; i.e., g ◦ Φ = Φ′(0) ◦ g. This paper defines the pullback space (V.2.14), on

which the Koopman operator corresponding to the nonlinear dynamics Φ is spectral,

whereas Cowen and MacCluer consider the composition operator acting on H2(D) and

as a result obtain an additional term in the spectrum, namely {λ | |λ| ≤ ρ̃}. Using

the same argument as in the previous remark, if the conjugacy is biholomorphic in the

disc, then F ≡ H2(D). As we have shown, the composition operator has only point

spectra. This is a sharpening of the result by Cowen and MacCluer when applied to

this specific class of maps.

Even if the conjugacy is not biholomorphic and we consider the composition oper-

ator UΦ on H2(D) rather than the pullback space F = H2
B ◦ g ◦ h, we can apply the

GLA theorems in this paper to construct the eigenfunctions as long as ρ̃ < Φ′(0). In

this case, UΦ has a dominating point spectrum (take R = ρ̃ in def. III.1.5).
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V.2.3 Asymptotically stable limit cycles in R2

Consider a stable limit cycle in the plane, topologically conjugate in a neighbor-

hood of the limit cycle to the linearized system

ẋ = ρ(s)x

ṡ = 1

(V.2.16)

where x ∈ R, s ∈ S1 = Z/2π, and ρ(s) is 2π periodic. Letting Φt : R2 → R2 be the

flow map of the system, the continuous time Koopman semigroup is formally defined

as U(t)f = f ◦ Φt. Eigenfunctions of the semigroup are functions ϕ taking the form

U(t)ϕ = λtϕ. We call λ ∈ C an eigenvalue of the Koopman semigroup.

It was shown in [LM11] that the Koopman semigroup associated with the dynam-

ical system (V.2.16) has eigenfunctions of the form,

gm(x, s) = xme−m
∫ s
0 (ρ(s̄)−ρ∗)ds̄, (m ∈ N0)

hn(x, s) = eins, (n ∈ Z)

(V.2.17)

with eigenvalues

λm = emρ
∗
, and

µn = ein,

respectively, and where ρ∗ = (2π)−1
∫ 2π

0
ρ(s)ds. We have that ρ∗ < 0 since the limit

cycle is asymptotically stable.

By the semigroup property of eigenfunctions, bm,n(x, s) = gm(x, s) · hn(x, s) is an

eigenfunction having eigenvalue e(mρ∗+in). Let V be the subspace given by the linear
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span of elements of the form bm,n = gm · hn;

V :=

{
K∑
k=1

ak(gmk · hnk)
∣∣∣∣∣ K ∈ N, ak ∈ C,mk ∈ N0, nk ∈ Z

}

=

{
K∑
k=0

akx
ke−k

∫ s
0 (ρ(s̄)−ρ∗)ds̄einks

∣∣∣∣∣ K ∈ N0, nk ∈ Z, ak ∈ C

}
.

(V.2.18)

We show that V is contained in a space of polynomials over a normed unital

commutative ring R that is dense in L2(S1, µ), where µ is the normalized Haar

measure dµ = (2π)−1ds. Elements of V can be written in the form

V =


K∑
k=0

xke−k
∫ s
0 (ρ(s̄)−ρ∗)ds̄

∑
|n|≤Nk

ak,ne
ins

∣∣∣∣∣∣ K ∈ N0, ak,n ∈ C, n ∈ Z, Nk ∈ N0

 .

(V.2.19)

Define W as

W :=

e−m ∫ s
0 (ρ(s̄)−ρ∗)ds̄

∑
|n|≤N

ane
ins

∣∣∣∣∣∣ m ∈ N0, N ∈ N0, an ∈ C

 (V.2.20)

and R as

R := lin W =

{
K∑
k=1

bkwk(s)

∣∣∣∣∣ K ∈ N, wk ∈ W , bk ∈ C

}
. (V.2.21)

Lemma V.2.14. R is a normed unital commutative ring under pointwise products

of functions with norm ‖f‖2 = ( 1
2π

∫ 2π

0
|f(s)|2 ds)1/2.

Proof. The unit function 1, taking values 1(s) = 1, is contained in W and has norm

‖1‖2 = 1; take m = 0 and an = 0 for |n| 6= 0 and a0 = 1 in (V.2.20). Similarly,

for any c ∈ C, c1 is in W and has finite norm. This implies that the constant

functions are in R. Clearly, products of elements in W commute. This implies

that products of elements from R commute. We must show that these products are
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also in R and have finite norm. Let wj and wk be in W . It is a straightforward

calculation to show that (ajwj(s))(bkwk(s)) is in W for any aj, bk ∈ C. It follows

that R is closed under pointwise products. Now let g(s) be in R. This function is

a finite linear combinations of elements of W . But elements of W are continuous

functions on the compact interval [0, 2π]. Consequently, g(s) is also a continuous

function on the compact interval. Therefore, there is some constant Cg such that

sup0≤s≤2π |g(s)| ≤ Cg. Thus ‖g‖2 ≤ Cg. Now, let h(s) be another function in R. We

have shown that g(s) · h(s) is in R. Furthermore, g(s)h(s) is a continuous function

on the compact interval [0, 2π]. Therefore, sup |g(s)h(s)| ≤ Cgh for s ∈ [0, 2π] and

the product also has finite norm.

Lemma V.2.15. W is dense in L2(S1, µ). Consequently, R is dense in L2(S1, µ).

Proof. {eins}n∈Z is an orthonormal basis for L2(S1, µ). Put ξ(s) =
∫ s

0
(ρ(s̄)− ρ∗) ds̄,

for s ∈ [0, 2π]. Since ξ(s) is a continuous function on a closed interval, it is bounded;

|ξ(s)| ≤ M for all s. Therefore, 0 < e−kM ≤ e−kξ(s) ≤ ekM , where ck is a constant

depending on k. It follows that ekξ(s) is a positive bounded function bounded away

from 0.

Fix f ∈ L2(S1, µ). Since ekξ(s) is a bounded function, it follows that gk(s) :=

ekξ(s)f(s) is in L2(S1, µ). For each ε > 0, there is a trigonometric polynomial such

that
∥∥∥gk −∑|n|≤N aneins∥∥∥ < ekMε. Therefore,

∥∥∥f − e−kξ(s)∑|n|≤N aneins∥∥∥ < ε.

Lemma V.2.16. V = R[x].

Proof. This follows directly from the definitions of V , W , and R.
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Completing R[x] under the polynomial norm (V.2.3) gives the space consisting

of elements of the form
∑∞

k=0 ψkx
k where ψk ∈ L2(S1, µ), and

∑∞
k=0 ‖ψk‖

2
2 < ∞.

These are well-defined functions for |x| < 1. The completion F := H2
L2 is not a ring.

Furthermore, V is dense in H2
L2 .

Spectrum and spectral measure for the Koopman semigroup on H2
L2.

The linear space V is generated by products of eigenfunctions of the Koopman

semigroup and is dense in H2
L2 . Eigenvalues of these eigenfunctions are of the form

γk,n = e(kρ∗+in), (k ∈ N0, ∀n ∈ Z). (V.2.22)

The set {γk,n} is dense on isolated rings in the complex plane. Since ρ∗ < 1, then

|γk,n| ≤ 1. It is easy to check that ‖U(t)f‖R,2 ≤ ‖f‖R,2 for all f ∈ V and t ≥ 0.

Since V is dense in H2
L2 , we can extend U(t) to H2

L2 by continuity.

Let VK be the subspace of V consisting of all elements for which the degree of x

is at most K. That is, in the definition (V.2.19) of V fix K rather than allowing it

to run over all values of N0.

Lemma V.2.17. The Koopman semigroup leaves VK invariant.

Proof. VK is generated by eigenfunctions of the Koopman operator.

Proposition V.2.18. The Koopman semigroup corresponding to the dynamical sys-

tem (V.2.16) is a spectral operator of scalar type on F = H2
L2.
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Proof. We show this by constructing explicitly the spectral measure E so that U(t)f =∫
C z

tE(dz)f for f ∈ H2
L2 . Let B(C) be the σ-algebra of Borel sets in the complex

plane. Let D ∈ B(C) and define

I(D) := {(k, n) ∈ N0 × Z | γk,n ∈ D} ,

where γk,n is defined in (V.2.22). This is the set of all indices corresponding to the

eigenvalues γk,n that are contained in D. Define the set function E : B(C)→ L (V )

as

E(D)f =
∑

(k,n)∈I(D)
k≤K,|n|≤N

ck,n(f)xke−k
∫ s
0 (ρ(s̄)−ρ∗)ds̄eins, (V.2.23)

where

f(x, s) =
K∑
k=0

∑
|n|≤N

ck,n(f)xke−k
∫ s
0 (ρ(s̄)−ρ∗)ds̄eins

is the unique representation of f ∈ V . The set function E commutes with U(t) for

all t and

‖E(D)f‖2
R,2 :=

∑
(k,n)∈I(D)
k≤K,|n|≤N

|ck,n(f)|2
∥∥∥e−k ∫ s0 (ρ(s̄)−ρ∗)ds̄eins

∥∥∥2

2
≤ ‖f‖2

R,2

Therefore, E is an equibounded set function commuting with U(t). It is easy to show

that E satisfies all the other properties of the spectral measure given in (III.2.6).

Since E(D) is a bounded linear operator on V and V is dense in H2
L2 , it can be

extended by continuity to all of H2
L2 .

Remark V.2.19. The same pullback space of observables corresponding to bounded

open sets in the basin of attraction can be constructed as was done for the attracting
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fixed point. Theorem 2.6 of [LM13] guarantees the existence of the required topological

conjugacy valid in the entire basin of attraction of the limit cycle for appropriately

regular nonlinear maps Φ in R2 possessing a stable limit cycle.
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Chapter VI

Disscussion of the GLA and Future

Work

In the analysis of nonlinear dynamical systems, spectral analysis of the Koopman

operator offers much insight into the system. However, most of the spectral theory

has dealt with the Koopman operator associated with a measure-preserving or non-

dissipative system. Many of the simplest examples of dynamical systems, and many

practical systems, have dissipation or expansion present in them, and the traditional

L2-spectral theory of the measure-preserving case cannot handle these systems. In

order to fill this gap, this paper extended the theory to scalar-type spectral opera-

tors on locally convex linear topological spaces having a point spectrum that is not

restricted to the unit circle. Projections onto these eigenspaces can be recovered by

Laplace averages of the operator. When the point spectrum is contained in the unit
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circle, the Laplace averages of this paper reduce to the well-known Fourier averages

used to compute projections for unitary operators in a Hilbert space.

The results in this paper, however, do not give a full spectral picture. There

are restrictions on the placement of both the eigenvalues and the continuous parts

of the spectrum in the complex plane. For example interleaving of the continuous

and point spectrum cannot be immediately treated with the GLA theorems of this

paper. In particular, we must assume the point spectrum is concentrated on isolated

circles in the complex plane and additionally the operator either has a dominating

or minimal point spectrum. Given some dynamical system, it is not clear a priori

whether the corresponding Koopman operator satisfies these conditions and, if it

does, what exactly a typical observable might look like.

These questions were answered here for finite-dimensional, dynamical systems

possessing hyperbolic attracting fixed points in Cd and attracting limit cycles in R2.

When the dynamics are restricted to some bounded set in a basin of attraction for

a fixed point, a space of observables can be constructed so that the spectrum of the

Koopman operator possesses the properties assumed in this paper, namely that σ(U)

has dominating or minimal point spectrum and eigenvalues are concentrated on iso-

lated circles. Formal eigenfunctions for the linearized system were used to generate

a space of observables. As an algebraic object, this space was a subspace of the

space of polynomials over a normed unital commutative ring. The indeterminates of

these polynomials corresponded to coordinates corresponding to stable directions of
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the attractor while the coefficients took values in a normed ring consisting of observ-

ables supported on the attractor. This polynomial space was completed using an `2

polynomial norm to a Banach space that was identifiable with a space of observables

defined on a bounded subset in the basin of attraction. Observables for the topo-

logically conjugate nonlinear system were merely the result of composing the space

of observable for the Koopman operator of the linearized system with the conjugacy

maps. We conjecture that for any bounded attractor with a basin of attraction that

can be properly “coordinatized”, the natural space of observables for the Koopman

operator will be a space of polynomials (and its completion) over a normed unital

commutative ring, with the ring formed from observables supported on the attractor.

Numerical considerations were not treated in this paper. Efficient numerical al-

gorithms are needed to make the results of this paper useful in applied settings. This

will be the subject of future work. To this end, we mention work that has been

done on discrete Laplace transforms by Rokhlin [Rok88], Strain [Str92], and Ander-

son [And13]. It may be that these algorithms can be leveraged into a package to

compute the projections. Speed and numerical stability will be primary concerns

since these algorithms require good estimates of the eigenvalues. Three other possi-

ble directions to pursue are the development of iterative methods using, for example,

(i) Krylov subspace-type techniques and the methods of matrix-free linear algebra

[Saa11; TD97], (ii) using the conjugacy method to explicitly construct eigenfunctions

and project an observable onto them, or (iii) using polynomial approximations of
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indicator functions on the spectrum. The first technique is conceptually closer to

Laplace averages in the sense that it would extract the most unstable modes first,

whereas the second technique would allow the projection onto a particular eigenfunc-

tion at the cost of additional computational complexity in finding the eigenfunctions.

In general, the eigenfunctions are the roots of a nonlinear operator equation that can

be solved using an operator version of the Newton method [KH97]. Furthermore,

the discrete Laplace transforms and the matrix-free methods could be classified as a

“data-driven” method, since, in principle, all that is required is a sequence of observa-

tions and not an explicit representation of the dynamical system. The third technique

rests on the operational calculus for spectral operators and that spectral projections

are determined by integrating the spectral measure against indicator functions (see

lemma III.2.9). This final possibility, in principle, allows one to extract both the point

spectrum and continuous parts of the spectrum even if the spectrum does not satisfy

the conditions in this paper. Furthermore, this is also a data driven technique as we

only need iterations of an observable to compute this. Questions revolve around best

polynomial approximations to the indicator functions, which polynomial basis allows

for stable and efficient computation of the approximating polynomial in addition to

the parsimony of the approximation; i.e., for a fixed approximation error, which poly-

nomial basis has an approximating polynomial satisfying the error bound with the

polynomial having minimal degree?

In summary, this paper introduced a method for constructing eigenfunctions of a
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spectral operator that can be considered as an extension of mean ergodic theorems

to dissipative or expanding systems; we showed certain basic examples of dynamical

systems and spaces of observables on them that gave rise to spectral Koopman op-

erators on which the GLA theorems could be applied; and, additionally, we showed

that these spaces of observables were each identifiable with a completion of a space

of polynomials over a normed unital commutative ring, with the ring elements being

observables defined on the attractor and the ring being dense in separable, reflexive

Banach space. The observable spaces for the linearized dynamics took the form of a

generalized Hardy space where instead of the coefficients being in C, they took values

in the Banach space. The space of observables for the nonlinear dynamical system

were constructed by composing the space of observables for the linearized system with

the conjugacy map between the nonlinear and linear system. The exact form of this

pullback space is determined by the conjugacy map.
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Chapter VII

Switched Families of Koopman

Operators with Unitary Spectrum

While the previous chapters dealt we spectral analysis of the Koopman operator

having non-unimodular spectrum, the present chapter represents a switch in this

viewpoint. Broadly, the work in this dissertation can be thought of as Koopman mode

analysis for non-ergodic dynamics. One of the methods of getting non-ergodicity is to

introduce some dissipation in the dynamics which results in a portion of the spectrum

of the associated Koopman operator being non-unimodular. This was discussed in

the preceding chapters. Another way to get non-ergodic behavior, and still retain

an unimodular spectrum, is to introduce discontinuous switching between Koopman

operators with unimodular point spectrum. This is pursued in this chapter.

The motivation for this approach is comes from the study of internet-type networks
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and the desire to understand their dynamical behavior from a network-level viewpoint

(rather than the router or individual link level). A network-wide understanding of

the dynamics of traffic in internet service provider (ISP) backbones is important for

a number of reasons. Tasks such as debugging performance problems and capacity

planning [Fel+01] as well as verifying network performance under specific controls

and achieving a target level quality of service [Che07], all require accurate models.

While unproven, most practitioners assume at least wide sense stationarity of

the traffic when developing statistical models. The difficulty in modeling internet

traffic arises, in part, from other characteristics of its statistical nature. Such traffic

exhibits a high degree of variability, or burstiness [Che07]. Additionally, long-range

dependence (LRD) and self-similarity have been claimed for a variety of scenarios,

with long range dependence being characterized by a non-summable autocorrelation

function,
∑∞

k=0 ρ(k) = ∞, with a power law, ρ(k) ∼ Cρk
−α, often assumed (Cρ > 0,

α ∈ (0, 1)) [DC05]. The related concept of self-similarity of the traffic has also been

claimed [CB97; Err+02; Lel+93]. While both LRD and self-similarity are hard to

measure empirically because of sparse sampling in the regimes giving rise to these

phenomena, empirical evidence for LRD have been found in a number of detailed

studies (see [DC05] and the references therein).

In order to capture these types of statistics, a number of models for traffic sources

have been proposed. Briefly, we mention simple ON-OFF models with heavy-tailed

periods, Markov modulated Possion processes, stochastic fluid models and fractional
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Brownian motion, and ARIMA time series models (see [Che07] for a discussion).

It has been shown that self-similarity and LRD can arise from aggregating many

ON-OFF source models with heavy-tailed periods [HRS98; TWS97]. Alternatively,

its been shown that using chaotic maps to drive the behavior of sources also gives

rise to self-similarity [Err+02; ES95].

The use of chaotic dynamical systems gives a connection between network dynam-

ics and the Koopman operator that is used in the analysis of dynamical systems from

a spectral viewpoint. The Koopman operator is an infinite-dimensional linear opera-

tor that acts on some space of observables defined on the state space of a dynamical

system. Formally, the Koopman operator drives the evolution of the observable by

composing it with the dynamical system. Instead of tracking state space trajectories,

we now track trajectories of observables. From a practitioners standpoint, this is

important since the observable can be considered a sensor probe on the system.

Products of level sets of eigenfunctions of the Koopman operator give a structural

decomposition of the state space [Bud12; Mez05]. In many cases though, approxi-

mations of the dynamics in the measurement space are of more interest. In an ISP

backbone, the dynamical system is a stochastically driven networked dynamical sys-

tem in which each node’s (router’s) dynamics consists of the TCP/IP and whatever

other protocols the router is running. The state space is a complicated subset of the

product of buffer lengths, internal routers states, packet round trip times, etc., and

would be unreasonable to write down explicitly for moderately-sized networks. In
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short, a decomposition of the full state space would give little insight into the system.

Alternatively, the Koopman mode analysis of vector-valued observables decomposes

the dynamics in the measurement space into products of vector-valued coefficients of

eigenfunctions of the Koopman operator and their eigenvalues.

The theory behind the Koopman operator is well-developed for the case when the

dynamical system is measure-preserving and the operator is unitary on an L2 space

of observables. In these cases, the operator is spectral and we can get a full resolution

of the dynamics by computing spectral projections. In this paper, we extend the

methodology to the case of a family of operators which the system switches between.

In particular, we assume there is some, finite or countable, family of Koopman oper-

ators driving the evolution of some fixed vector-valued observable. The operators are

assumed to have point spectrum restricted to the unit circle, but the operators are not

assumed to be unitary; in particular, the eigenfunctions are not assumed orthogonal.

Furthermore, the dynamics are assumed to evolve by a switch-and-hold process; the

observable’s dynamics are driven for some amount of time under the actions of one

operator before switching to another in the family, under which, the dynamics evolve

for a possibly different amount of time.

As we are interested in a network-wide view of the dynamics, the vector-valued

observable we consider are traffic matrices of a network. Traffic matrices measure

the amount of traffic flowing between pairs of input and output routers of an ISP’s

backbone. A single element of the traffic matrix corresponds to the amount of data
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flowing between a specific input and output router in a short window of time. Calling

the contiguous time-frame during which a single operator acts a stationary compo-

nent, Koopman mode analysis shows that on stationary components, traffic matrices

of the Abilene network decompose simply into oscillating modes superimposed with

gaussian or nearly gaussian noise. As one would expect, strong peaks in the dynamics

exists at daily and weekly periods. Between stationary components, these periods still

exists, but with varying degrees of intensity. Furthermore, while the noise is nearly

gaussian, its intensity from one stationary component to another varies wildly.

Section VII.1 develops the mathematical theory of the switched Koopman families.

Relevant definitions and the representation of a vector-valued wide-sense stationary

as a spectral integral are given. The useful concept of switch and hold dynamics

for a family of wide-sense stationary stochastic processes is defined. Section VII.1.2

develops the Koopman basis algorithm used for approximating the dynamics in the

output space. In section VII.2, the Koopman mode analysis is applied to a dataset

of traffic matrices for the Abilene network. The final section concludes the chapter

with a few remarks and suggestions for future work.

VII.1 Families of Koopman operators

Let (Ω,A, p) be a probability space. A weaker form of stationarity that does not

require the preservation of a measure is stationarity in the wide sense. It is defined

for sequences L2 functions.
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Definition VII.1.1. For x, y ∈ L2
C(Ω, p) define the expectation

E [x] =

∫
Ω

x(w)p(dw), (VII.1.1)

and the covariance

cov(x, y) = 〈x, y〉 =

∫
Ω

x(w)y(w)p(dw). (VII.1.2)

Definition VII.1.2 (Wide-sense stationary sequence (WSS)). Let xn ∈ L2
C(Ω, p).

The sequence {xn}n∈Z is stationary in the wide-sense if for all n ∈ Z,

(i) E [xn] = E [x0], and

(ii) cov(xk+n, xk) = cov(xn, x0), for all k ∈ Z.

Definition VII.1.3. Let F =
⊗d

i=1 L
2
C(Ω, p). x ∈ F is given by x = x1 ⊗ · · · ⊗ xd

where xi ∈ L2
C(Ω, p) for i = 1, . . . , d. If x,y ∈ F , then

(i) x+ y = (x1 + y1)⊗ · · · ⊗ (xd + yd), and

(ii) αx = αx1 ⊗ · · · ⊗ αxd, for all α ∈ C.

If U : L2
C(Ω, p) → L2

C(Ω, p) is a linear operator, then define U : F → F by

Ux = Ux1 ⊗ · · · ⊗ Uxd.

Let FR be the subspace of F consisting of those x ∈ F such that x(w) ∈ Rd for

every w ∈ Ω.

Definition VII.1.4 (Vector-valued WSS). If xn = x1,n ⊗ · · · ⊗ xd,n ∈ F , n ∈ Z, is

a sequence, we say {xn}z∈Z is wide sense stationary if for each i, {xi,n}n∈Z is WSS in

the sense of definition VII.1.2
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Let {xn}n∈Z ⊂ F be a vector-valued WSS sequence. We assume this sequence is

given by the action of a family of Koopman operators Un on a fixed x ∈ F and that

each Un is spectral:

xn = Unx =

∫
C
λEn(dλ)x, (VII.1.3)

where En : B(C)→ L (F ) is a projection-valued measure (see def. III.2.1). Each En

is assumed to have compact support and {En} is an equibounded family; there is a

K > 0 such that for all ∆ ∈ B(C) and n ∈ Z, ‖En(∆)‖ ≤ K. We decompose C into

the point spectrum for Un and its complement. Then

Unx =

∫
C
λEn(dλ)x =

∑
λ∈σp(Un)

λEn({λ})x+

∫
C\σp(Un)

λEn(dλ)x. (VII.1.4)

If we assume that σp(Un) = σp(Um) for all m,n ∈ Z and furthermore that the

point spectrum is restricted to the unit circle and the eigenspaces for Un and Um

are identical, then we get that (VII.1.4) takes the form

xn = Unx =
∑

ei2πθ∈σp

ei2πθnPθx+

∫
C\σp

λEn(dλ)x, (VII.1.5)

where σp is the common point spectrum and Pθ = En(
{
ei2πθ

}
) is the projection

operator from F onto the eigenspace Vθ corresponding to ei2πθ.

The representation (VII.1.5) allows a cyclic process in Cd superimposed with

“noise”. The cyclic nature comes from the point spectrum restricted to the unit

circle. The “noisy” part comes from the spectral integral over C \ σp. Consider a

one-dimensional eigenspace Vθ corresponding to ei2πθ with ψ ∈ F a corresponding

eigenfunction. For every w ∈ Ω, both lin[ψ(w)] and lin[En(∆)x(w)] are subspaces of
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Cd for each n ∈ Z and ∆ ∈ B(C). Assume for some w ∈ Ω, that for each n ∈ Z

there is a ∆ ∈ B(C) \ σp such that lin[En(∆)x(w)] ⊃ lin[ψ(w)]. Then there are sets

∆n ∈ B(C) \ σp such that ∅ 6= lin[En(∆n)x(w)] ⊂ lin[ψ(w)]. In such a case, for all

n ∈ Z,

ei2πθnPθx(w) +

∫
∆n

λEn(dλ)x(w) ∈ lin[ψ(w)].

The sequence of ∆n’s for which this is true is determined by how En changes with n.

As ∆n varies, we get a process on lin[ψ(w)] that is deterministic plus the contribution

given by the integral over ∆n.

Now if we also assume that {xn} is in the subspace FR of F taking values in Rd,

then the point spectrum occurs in complex conjugate pairs and we can replace the

spectral integral
∫
C\σp λEn(dλ) with a different spectral integral over R. The (VII.1.5)

becomes

xn = Unx =
∑

ei2πθ∈σp

ei2πθnPθx+

∫
R
λFn(dλ)x, (VII.1.6)

where Fn : B(R)→ L (FR) and P−θx = Pθx for all θ. For each Borel set ∆ ∈ B(R),

F (∆) is a projection from FR into FR and, furthermore, ‖Fn(∆)‖ ≤ K for all n ∈ Z

and ∆ ∈ B(R) since {En} is equibounded. Assuming that

F̂ (ϕ)x = lim
n→∞

n−1

n−1∑
k=0

e−i2πϕk
∫
R
λFk(dλ)x (VII.1.7)

exists, the infinite Fourier average gives

Pϕx+ F̂ (ϕ)x = lim
n→∞

n−1

n−1∑
k=0

e−i2πϕkUkx = lim
n→∞

n−1

n−1∑
k=0

e−i2πϕkxk. (VII.1.8)

Also, F̂ (−ϕ) = F̂ (ϕ). For F̂ (ϕ) small, Pϕx ≈ limn→∞ n
−1
∑n−1

k=0 e
−i2πϕkUkx.
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VII.1.1 Switch and hold dynamics

Let A be an index set. For each α ∈ A, let {xn,α}n∈Z be a WSS sequence in F

satisfying all the assumptions above and assume xn,α = Un,αx for some fixed x ∈ FR.

According to (VII.1.6), for each α ∈ A, we have

Un,αx =
∑

ei2πθ∈σp,α

ei2πθnPθ,αx+

∫
R
λFn,α(dλ)x

where σp,α is the common point spectrum of the family of Koopman operators

{Un,α}n∈Z associated with {xn,α}n∈Z, Pθ,α’s are the corresponding eigenprojections,

and Fn,α is the associated real-valued spectral measure.

Definition VII.1.5 (Hold times). Let h = {hi ∈ N}i∈N, be a set of integers called

the hold times. Let t0 = 0 and for j ≥ 1, define tj :=
∑j

i=1 hi. We call [tj, tj+1) a

contiguous block.

Each tj ∈ N0 represents the times at which the dynamics switch. Let {αj}j≥1 be

a sequence from A. We define a switched stochastic process {Xn}n∈N0
⊂ FR by

Xn = Un,αjx =
∑

ei2πθ∈σp,αj

ei2πθnPθ,αjx+

∫
R
λFn,αj(dλ)x, n ∈ [tj−1, tj). (VII.1.9)

Given the finite nature of the contiguous blocks, the infinite average of (VII.1.8) must

be replaced with a finite average:

Pϕ,αjx+ F̂αj(ϕ)x ≈ 1

hj

tj−1∑
k=tj−1

e−i2πϕkUk,αjx

=
1

hj

tj−1∑
k=tj−1

e−i2πϕkXn

(VII.1.10)
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We denote the approximate Koopman mode of a realization (as determined by the

finite Fourier average (VII.1.10)) as pϕ,αj , then

pϕ,αj :=
1

hj

tj−1∑
k=tj−1

e−i2πϕkXn(w), (w ∈ Ω). (VII.1.11)

The error between the projection and the finite average is order O(h−1
j ). Additionally,

a fast fourier transform can be used to compute the finite average in O(hj log hj) time;

in this case ϕ is of the form s
hj

for s = 0, . . . , hj − 1. In this case, denote ϕs = s
hj

and

Pϕs,αj as Ps,j and pϕs,αj as ps,j.

VII.1.2 Linear approximation of the dynamics in the output

space

Note that the Xn given in (VII.1.9) is an Rd-valued process. Our goal is to ap-

proximate realizations of the process in its output space Rd. This is done by building

a basis for Cd on each continuous block [tj−1, tj) from the approximate Koopman

modes of (VII.1.11); that is, to each continuous block there corresponds a basis for

Cd built using the approximate Koopman modes computed on the contiguous block.

Fix j ≥ 1 and consider the contiguous block [tj−1, tj). Let
{
ps,j

∣∣ s = 0, . . . , hj − 1
}

be the approximate Koopman modes defined in (VII.1.11) and computed via a fast

Fourier transform. Let
∥∥ps,j∥∥Cn be its norm. Order the ps,j’s by decreasing norm:

ps1,j < ps2,j < · · · < pshj ,j, where psi,j < psk,j if
∥∥psi,j∥∥Cn ≥ ∥∥psk,j∥∥Cn . Note that hj

gives the number of Koopman modes. The basis is built by iteratively adding ps,j’s

to the basis if they are not a linear combination of the preceding ps,j’s.
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Theorem VII.1.6 (Koopman Basis algorithm). A basis for the output space is com-

puted as follows:

(1) Input:
{
ps`,j

∣∣ ` = 1, . . . , hj
}
⊂ Cd.

(2) Let B0 = ∅, ` = 1.

(3) While ` < hj

(a) Compute

B`+1 =


B` ∪ ps`+1,j

, if rank{B` ∪ ps`+1,j
} > rank{B`},

B`, otherwise

.

(b) `← `+ 1.

(4) If rank{Bhj} < d, complete Bhj to a basis for Cd by choosing an orthonormal

basis Q for the orthogonal complement of linBhj .

(5) Bj := Bhj ∪Q.

(6) Output: Bj.

Projections onto Koopman basis modes. Adjoint bases. Modal dynamics.

Let b`,j ∈ Cd denote the elements of Bj. Approximate (VII.1.9), at w ∈ Ω, by

projecting {X ′n(w)}tj−1
n=tj−1

onto Bj, where X ′n = Xn(w)− 〈Xn(w)〉 and 〈Xn(w)〉 is the

time average (over the variable n) of the realization Xn(w) over the interval [tj−1, tj);

i.e., we wish to represent Xn(w) in the output space as

Xn(w) = 〈Xn(w)〉+
d∑
`=1

c`,j(n)b`,j.
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To project the data {X ′n(w)}n onto Bj, compute an adjoint basis Wj = {w1,j, . . . ,wd,j},

where each w`,j ∈ Cd satisfies 〈bk,j,w`,j〉Cd = δk,` and δk,` is the Dirac delta function.

Project X ′n onto b`,j using the adjoint basis. Letting c`,j(n) denote the value of

this projection, the coefficient can be written as

c`,j(n) := 〈X ′n(w),w`,j〉Cd = ei2πθ`n + ζ`,j(n),

where ζ`,j(n) is the “noise” for the `th Koopman basis mode for the jth contiguous

block and is a combination of the continuous part of the spectrum and any Koopman

modes Pk,jx(w) ∈ Rd having components along w`,j. The complex exponential term

comes from the Koopman mode associated with the eigenvalue λ = ei2πθ` . Let

R`,j =
{
k ∈ {0, . . . , hj − 1}

∣∣ 〈Pk,jx(w),w`,j〉Cd 6= 0
}
, (VII.1.12)

be the set of labels those Koopman modes that have components along p`,j. Then

using (VII.1.9)

ζ`,j(n) =
∑
k∈R`,j

ei2πθkn 〈Pk,`x(w),w`,j〉Cd +

∫
R

λ
〈
Fn,αj(dλ)x(w),w`,j

〉
Cd (VII.1.13)

Note that ζ`,j(n) contains the error between P`,jx(w) and p`,j arising from the finite

time Fourier average.

The modal dynamics for mode b`,j are given by

P`,j[X
′
n(w)] = c`,j(n)b`,j = ei2πθ`nb`,j + ζ`,j(n)b`,j

where

P`,j[·] := 〈·,w`,j〉Cn b`,j
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is the projection operator from Cd onto the jth Koopman basis mode1. The modal

“noise” is computed via

ζ`,j(n)b`,j = c`,j(n)b`,j − ei2πθ`kb`,j.

The first term on the right side is the projection of the dynamics onto the mode and

the second term is the analytic prediction of the evolution.

To get real modal dynamics take the projection

[P`,j + P−`,j](·) = 〈·,w`,j〉Cd b`,j + 〈·,w−`,j〉Cd b−`,j; (VII.1.14)

the projection onto the jth Koopman basis mode and its complex conjugate. Since

the Koopman modes must come in complex conjugate pairs, the real modal “noise”

is then given by

ξ`,j(n) := [P`,j + P−`,j] (X ′k)︸ ︷︷ ︸
computed from data

−
(
ei2πθ`nb`,j + e−i2πθ`nb`,j

)︸ ︷︷ ︸
analytic prediction of modal dynamics

. (VII.1.15)

VII.2 Traffic matrices and the Abilene network

We apply the above model to compute the modal dynamics and modal noise

corresponding to traffic matrices of an ISP network.

A typical internet-type network consists of a collection of routers and links between

them. The routers consist of border routers that connect to other networks and

internal router that form the paths within the domain. In the simplest implementation

1There is an abuse of notation here for P`,j
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of TCP traffic, the router dynamics are deterministic2, whereas the whole system is

stochastically driven by the user page requests.

Let N be a network. Let I be the set of input routers to the network and

O the set of output routers for the network. There can be internal routers that

do not connect to routers outside of the network. Let P = I × O be the set of

source/destination (s/d) pairs.

A traffic matrix captures the amount of traffic flowing between s/d pairs. An

index p corresponds to a single source/destination pair of routers. Then each entry,

Xt(p), of the traffic matrix captures the amount of network traffic entering the input

router and leaving through the paired output router at time t.

Unfortunately, measuring traffic matrices directly is prohibitively expensive and

thus they must be inferred from readily obtained link flow counts (obtained via

SNMP3 measurements [Zha+05]). If Yt are the link counts at time t, then the the

link counts and the traffic matrix are related via the identity [Zha+05]

Yt = AXt.

Here Yt has dimension equal to the number of links in the systems and A is the

routing matrix. A`p = 1 if s/d pair p uses link ` and 0 otherwise. Since Yt can be

measured and A is easily obtained, determining the traffic matrix Xt becomes an

inference problem. Unfortunately, there are generally many more s/d pairs than link

2In some implementations of congestion control, routers can employ randomized strategies such
a Random Early Marking where some packets are randomly assigned a tag that drops them from
the queue [LL99].

3SNMP stands for Simple Network Management Protocol.
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measurements resulting in an ill-posed system. Many different methods for estimating

the traffic matrices have been developed (e.g. Tomogravity or those methods based

on Principal Component Analysis or Kalman filtering; see [Sou+05] for an overview),

each introducing different additional data and assumptions.

In practice, traffic matrices are not instantaneous entities, but the aggregate over

some time frame. This induces a discrete-time process Xn, where Xn(p) is the amount

of traffic flowing between input router ip and output router jp during the kth time

interval. The network has a finite capacity. Therefore, |Xn(p)| ≤ C for some constant

C > 0 and all p, k.

In this section, we will be considering traffic matrices of the Abilene network.

The Abilene network is an Internet2 high-performance backbone network enabling

the development of advanced internet applications. It connects regional network

aggregation points and provides Internet2 access for 200+ universities, corporate,

and affiliated institutions [Int05]. At the time the dataset was collected, there were

12 such aggregation points (see figure VII.1 and table VII.1); the output space for our

model is thus R144. Therefore Xn ∈ R144 for all n ≥ 0. We apply the above switched

Koopman family analysis to a dataset consisting of traffic matrices collected over 24

weeks in 2004. Each sample Xn is the aggregate flow over 5 minutes. The data used

set can be found at [Zha04].
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Figure VII.1: Abilene research network. From [Int05]

VII.2.1 Spectrum of Abilene traffic matrices.

Koopman modes for contiguous time frames of 4 weeks (8064 data sample) were

computed using (VII.1.10). Figure VII.2 shows the results with the traffic mean

(0 cycles/week) removed for the first 4 weeks. The plot shows the intensity of the

Koopman modes corresponding to each frequency. On the horizontal axis, the fre-

quency in cycles per week is plotted, whereas points on the vertical axis correspond

to source/destination pairs. For a fixed frequency on the horizontal axis, the vertical

streak above it is the intensity of the associated Koopman mode. The intensity of

the Koopman is given by taking the modulus of each element of the mode. A strong

vertical streak in this plot means that the network has a significant periodic compo-

nent at that frequency; most of the s/d pairs oscillate at that frequency. As can be
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Table VII.1: Input and Ouput Routers to the Abilene Network

Input Links Link Index Output Links Link Index

*, ATLA-M5 31 ATLA-M5, * 32

*, ATLAng 33 ATLAng, * 34

*, CHINng 35 CHINng, * 36

*, DNVRng 37 DNVRng, * 38

*, HSTNng 39 HSTNng, * 40

*, IPLSng 41 IPLSng, * 42

*, KSCYng 43 KSCYng, * 44

*, LOSAng 45 LOSAng, * 46

*, NYCMng 47 NYCMng, * 48

*, SNVAng 49 SNVAng, * 50

*, STTLng 51 STTLng, * 52

*, WASHng 53 WASHng, * 54

seen, a strong 24 hour cycle can be seen to be embedded in the traffic; this is the

vertical streak plotted at 7 cycles/week in the figure. Figure VII.3, corresponding to

weeks 9 through 12, shows that in addition to a daily cycle, there is a weekly cycle

as exhibited by the vertical streak at 1 cycle/week. Although not shown here, cycles

corresponding to 12 and 8 hour periods (14 and 21 cycles/week, respectively) also
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appear. One would expect this type of behavior as it correlates with human behav-

ior. Strong horizontal streaks in the plot signify the “bursty” behavior of internet

traffic. This “burstiness” phenomena is exhibited in the time trace of the traffic vol-

ume between s/d pairs in figure VII.4. Such a time trace is typical. The horizontal

streaks should not be surprising since we are basically taking a Fourier transform of

something that looks like a delta measure. It can also be seen from figures VII.2 and

VII.3, that the first 12 s/d pairs carry comparatively little traffic as exhibited by weak

color of the plot. These 12 s/d pairs correspond to the input link ATLA-M5 input

link.
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Figure VII.2: Modulus of elements of the Koopman modes for weeks 1 through 4.
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Spectral Density
data index range : [16129 24192]
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Figure VII.3: Modulus of elements of the Koopman modes for weeks 9 through 12.

VII.2.2 Real modal dynamics for the Abilene network. Dis-

tributions of the real modal noise, ξ`,j(n).

A time window of 4 weeks was chosen to compute projections over. This cor-

responded to 8064 samples. The Koopman modes were computed with the Fourier

averages (VII.1.10). For each contiguous time frame, Koopman modes and Koopman

bases were recomputed via the process in theorem VII.1.6 and the data (in that time

window) was projected onto the new basis modes.

Histograms of the real modal noise {ξ`,j(n)}, n = 0, . . . , K are also shown. The
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Figure VII.4: Traffic volume on s/d pair 39.

bin widths of the histogram were chosen to minimize the estimated L2 risk function:

h∗ = arg min
h

2m− v
h2

where m and v are the mean and biased variance of a histogram with bin width h:

m =
1

Ih

Ih∑
i=1

mi and v =
1

Ih

Ih∑
i=1

(mi −m)2,

where mi is the count of bin i and Ih is the number of bins when the bin width is h.

Then h∗ minimizes the discrepancy between the histogram, H, and the true density

function, f , where the discrepancy is E
[∫

(H(x)− f(x))2dx
]

. This obviates the need

to manually select the bin size, at the expense of run-time complexity [FD81].

Let Mn
±f denote the the real modal dynamics at time k corresponding to f cy-
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cles/week:

Mn
±f :=

(
Pf cycle/week + P−f cycle/week

)
[X ′n] .

For each n ∈ N0, Mn
±f ∈ R144;

Mn
±f =


Mn
±f (1)

...

Mn
±f (144)


where Mk

±1(s), s = 1, . . . , 144, corresponds to the real modal dynamics at time k for

s/d pair s.

Figure VII.5a, shows Mn
±1(32) for the first 4 week window for the real modal

dynamics corresponding to ±1 cycle/week. The blue in the figure, corresponds to the

projection of the full dynamics onto the real mode (eq. (VII.1.14)), whereas the red

curve is the analytic prediction of the modal dynamics for s/d pair 32 (the second

term on the right side of (VII.1.15)). One can see that this choice of window was

not the correct one, with a switch in the dynamics occurring just before the two

week mark. The left image of figure VII.5b shows the empirical distribution of the

real modal noise in the blue histogram and a normal distribution with parameters

estimated from the empirical distribution in red. The real modal noise is defined by

(VII.1.15). The right image of figure VII.5b shows is a normality plot. Again the data

is in blue with the red line corresponding to the normal distribution. The more the

blue data points follow the red line, the closer the data is to a normal distribution. As

can be seen the data is approximately normal, being linear between the probabilities
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0.05 and 0.95. Figures VII.6 - VII.10 show the plots analogous to figure VII.5 for

each subsequent four week window. As seen, the real modal noise is approximately

Gaussian. This situation is typical for all source destination pairs and frequencies.

In figure VII.8a, it looks like the analytic prediction (red line) is a flat line with no

periodicity, which would be incorrect. However, this is an artifact of the plot scale.

In the 13 - 16 week window, the order of the magnitude of the noise is ∼ 1010 which

is much greater than the order of magnitude of the analytic prediction, resulting in

the seemingly flat line.

Figure VII.11 show the same modal projections smoothed over a 6 hr window

using a triangular weight function; i.e.,

M̃n
±f = (M±f ∗ Φ)(n) =


∑

j M
j
±f (1)Φ(n− j)

...∑
j M

j
±f (144)Φ(n− j)


where M̃n

±f denotes the smoothed modal projection, Φ is the weight function which

satisfies ‖Φ‖1 = 1, and ∗ denotes convolution. The smoothing kills off part of the

contribution due to the noise and it is clearer that the oscillatory behavior of the

data follows the analytic prediction. The only exception is weeks 13 to 16, where it

looks like the analytic prediction is a flat line. This is due to the difference in scales

between the analytic prediction and the noise and follows directly from the discussion

of figure VII.8a.

Figures VII.12 - VII.17 show the corresponding results for the 7 cycle/week Koop-
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Figure VII.5: Weeks 1 through 4. ±1 cycle/ week mode. S/D pair 32.
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Figure VII.6: Weeks 5 through 8. ±1 cycle/ week mode. S/D pair 32.
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Figure VII.7: Weeks 9 through 12. ±1 cycle/ week mode. S/D pair 32.

156



0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3
x 10

10

weeks

M
o
d
a
l 
d
y
n
a
m

ic
s

Evolution of data projected onto complex conj pairs
+/− 1 cycles per wk

Source/Destination pair : 32
data index range : [24193 32256]

 

 

Data

Analytic

(a) Real modal dynamics. Blue is the projection, Mk
±1(32), of the data onto the Koopman

mode. Red is the analytic prediction of the modal dynamics.

−3 −2 −1 0 1 2 3 4

x 10
10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−10

noise

p
d

f(
x
)

Empirical pdf of (Modal dynamics − Analytic prediction)
+/− 1 cycles per wk

Source/Destination pair : 32
data index range : [24193 32256]

 

 

empirical pdf

normal dist

−2 −1 0 1 2

x 10
10

0.001

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

0.999

Data

P
ro

b
a

b
ili

ty

Normal Probability Plot

(b) Distribution of the noise (see eq. (VII.1.15)).

Figure VII.8: Weeks 13 through 16. ±1 cycle/ week mode. S/D pair 32.
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Figure VII.9: Weeks 17 through 21. ±1 cycle/ week mode. S/D pair 32.
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Figure VII.10: Weeks 21 through 24. ±1 cycle/ week mode. S/D pair 32.
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(b) Weeks 5 - 8.
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(d) Weeks 13 - 16.
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(e) Weeks 17 - 20.
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(f) Weeks 21 - 24.

Figure VII.11: Smoothed real modal dynamics (±1 cycle/wk) for S/D pair 32. The

smoothed dynamics are in blue, the analytic prediction is in red.
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man mode and figure VII.18 shows the smoothed versions. The same qualitative

conclusions can be drawn, the difference being that the noise does not seems to be as

close to Gaussian as for the previous mode.
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(b) Distribution of the noise (see eq. (VII.1.15)).

Figure VII.12: Weeks 1 through 4. ±7 cycle/ week mode. S/D pair 32.
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Figure VII.13: Weeks 5 through 8. ±7 cycle/ week mode. S/D pair 32.
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(b) Distribution of the noise (see eq. (VII.1.15)).

Figure VII.14: Weeks 9 through 12. ±7 cycle/ week mode. S/D pair 32.
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(b) Distribution of the noise (see eq. (VII.1.15)).

Figure VII.15: Weeks 13 through 16. ±7 cycle/ week mode. S/D pair 32.
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(b) Distribution of the noise (see eq. (VII.1.15)).

Figure VII.16: Weeks 17 through 21. ±7 cycle/ week mode. S/D pair 32.
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(b) Distribution of the noise (see eq. (VII.1.15)).

Figure VII.17: Weeks 21 through 24. ±7 cycle/ week mode. S/D pair 32.
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(a) Weeks 1 - 4.
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(b) Weeks 5 - 8.
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(c) Weeks 9 - 12.
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(d) Weeks 13 - 16.
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(e) Weeks 17 - 20.
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(f) Weeks 21 - 24.

Figure VII.18: Smoothed real modal dynamics (±7 cycles/wk) for S/D pair 32. The

smoothed dynamics are in blue, the analytic prediction is in red.
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VII.3 Some remarks on future work

Using the switched Koopman family model, we see that the dynamics over con-

tiguous time blocks can be represented by a superposition of noisy oscillating modes.

The noise is Gaussian or nearly Gaussian in nature. The magnitude depends on

the behavior of the real spectral measure Fn,α (eq. (VII.1.9)), which is not well-

characterized at the moment. More work needs to be done in this area. A possible

approach is the POD modeling of the continuous part of spectrum discussed in the

next paragraph. In this chapter, the contiguous time frame was chosen heuristically.

In figure VII.5a, one can see the problem with choosing the contiguous time frames

in such a way. It behooves us to have a more robust (and automatic) method of

choosing the contiguous time frames. One approach is to implement some type of

statistical hypothesis testing in the numerical code to detect a switch. This approach

would provide confidence bounds on the certainty a switch has occurred.

While the Koopman mode analysis provides a good way to compute the contri-

bution of the point spectrum, representations of the continuous part of the spectrum

have been lacking in the literature. This work has computed the modal noise which

can be thought of as a spectral leakage of the continuous spectrum into the point

spectrum. This “leakage” occurs because we are looking at a linear approximation

in the output space of the nonlinear dynamics. In the future, it may be better to

represent the contribution of the continuous spectral integral in the output space as
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a stochastic process on POD modes. Recall the we had the stochastic process in Rd

Xn(w) = Unx(w) =
∑

ei2πθ∈σp

ei2πθnPθx(w) +

∫
R
λFn(dλ)x(w). (VII.3.1)

The first summation can be computed using a Fourier average. We would like to

approximate the spectral integral against Fn. First compute the residual, data set

Rn(w) = Xn(w)−
∑

ei2πθ∈σp

ei2πθnpθ

where pθ are the approximate Koopman modes of the data computed via a fast Fourier

transform. The residual Rn(w) is a sequence in Rd and represents the contribution

of the continuous part of the spectrum. Compute the POD modes of the sequence

{Rn(w)} ⊂ Rd. Denote them by m1, . . . ,ms, where s ≤ d is the dimension of the

subspace that {Rn(w)} generates. We use these POD modes to generate a stochastic

process. Let Pmj
be the orthogonal projection in Rd onto lin{mj}. Consider the

time-dependent coefficient corresponding to this POD mode.

cn,j = Pmj
(Rn(w)).

This is a real valued sequence. Furthermore, we can compute its cumulative proba-

bility distribution (cdf) ξj : R → [0, 1]. Then we get a stochastic process, ξj(n)mj,

where Cj(n) is an IID random variable drawn from the cdf Cj. Doing this for every

POD mode gives a representation of the dynamics as a stochastic process in Rd as

Yn(w) =
∑

ei2πθ∈σp

ei2πθnPθx(w) +
s∑
j=1

ξj(n)mj,
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where again each ξj(·) is an IID random variable drawn from the cdf Cj. We have

represented the contribution of the spectral integral in Rd by the stochastic process

Zn =
s∑
j=1

ξj(n)mj.
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Part II

Exponentially Mixing

Transformations for Search of

Targets of Nonuniform Size
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Chapter VIII

Introduction

In the context of search for physical objects, path-coverage problems are com-

mon, arising whenever the situation requires a guarantee that the target be found.

Numerous algorithms have been developed to handle path-coverage problems. Most,

however, can be split along two lines: (i) heuristic and random algorithms, and

(ii) complete algorithms.

With heuristic algorithms, the search agent is programmed with a simple set of

local behaviors, for example, repulsion from objects and other search agents or leader

following [PF07]. Random algorithms rely on some type of stochastic mechanism

in the generation of search dynamics such as the selection of a random reflection

angle [Gag03; LR88; LR89] or the use random walks. In either case, such simple

interactions can give rise to quite complicated behavior which is desirable in some

situations such as the presence of a moving, adversarial target. Much work has gone
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into understanding how such simple rules give rise to large scale coordinated motion,

particularly in the context of swarms [BVA07a; BVA07b; Olf06] or consensus [BCM09;

OFM07]. While in practice these algorithms can perform quite well, many times there

is no provable guarantee on full coverage of the space.

Complete algorithms on the other hand do have such guarantees. Most of these

algorithms rely on a full or approximate partition of the search space, termed a cellular

decomposition, in which each cell of the partition is such that it is fully covered by

the sensor footprint or can be covered by simple motion such as a raster scan of the

area by the agent. The cells are then identified as vertices in a graph and the problem

of path planning reduces finding a spanning tree [Cho01]. The space is covered once

all cells have been visited. For shortest path problems, this is equivalent to solving

the Traveling Salesman Problem or the Covering Salesman Problem [Cho01].

While existing algorithms can perform quite well for these types of problems, they

have only dealt with fixed target sizes (or targets with little variation in size) and

there often exists additional assumptions on the distribution for the target location.

In short, there is a fair amount of information available prior to designing the search

dynamics. This work is concerned with path-coverage problems where the target’s

volume varies by orders of magnitude and the target can be located anywhere in the

search domain with equal probability. This type of path-coverage is, in some sense,

at the limits of available information. Our goal is to pursue a detailed investigation

of the expected search time for a target in such a situation, obtaining provable upper
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bounds.

As a simple example of this type, consider the following search problem. Let M

be a closed and bounded set in the plane having large area. Let the target be a circle

whose center is a random variable having a uniform distribution on M and whose

area is a random variable having a uniform distribution on (δ, V ]; it is not assumed

that the exact values of δ and V are known, but δ � V � area(M).

Problems of this type naturally arise in applications such as satellite imagery,

searching for oil or mineral deposits, or detecting structural faults or defects [Kol82].

On the less serious side, the children’s game Battleship is also of this type. Unfortu-

nately, existing algorithms are ill-suited this class of search problems. For heuristic

and random algorithms, upper bounds for the search time are generally difficult or

impossible to prove when targets have a fixed size. This issue is exacerbated when

target sizes are allowed to vary. Complete algorithms based on cellular decompo-

sitions are inherently restricted to a fixed target or sensor size since cell sizes are

chosen so that the sensor radius completely covers the cell. When the target size is

allowed to vary, the choice of a cell size is far from straightforward. In the case when

the minimum target volume approaches zero, cellular decomposition algorithms can

perform arbitrarily poorly. Good performance depends on knowing the target size,

but by definition of the search problem, this is unknown information.

The following search problem will be treated in this part of the dissertation. Let

the search domain be M = Tn, the n-dimensional torus. Let B(M) be the Borel
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σ-algebra. The target is represented by a closed, metric ball B(c, r), where the

center is a random variable c ∼ U(M), where U(M) is the uniform distribution

on M. Fix V > 0 and let δ satisfy 0 < δ < V . Define the family of functions,

νδ : (δ, V ]× (0,∞)→ R, parameterized by δ ∈ (0, V ], by

νδ(u, ξ) =
uξ

V 1+ξ − δ1+ξ
. (VIII.0.2)

For a fixed ξ, each νδ is a probability distribution function (pdf) on the interval

(δ, V ]. Each νδ is called a “nearly” uniform distribution, since, as ξ → 0, the pdf

converges pointwise to the uniform distribution. Let vol denote the Lebesgue measure

on M. The radius of the target is a random variable such that vol(B(c, ·)) ∼ νδ, for

any c ∈ M and any fixed δ and ξ. Finally, to divorce sensor issues from dynamics,

we consider the case of a perfect sensor; the target is assume found the first time the

search trajectory enters the target set.

We approach the above search problem as a problem in the ergodic theory of

dynamical systems. We investigate the expected search time for different classes

of mixing transformations and processes on M. Path-coverage algorithms based

around these transformations will automatically be complete since the dynamics are

ergodic over the domain. Rigorous definitions of these concepts will be given later.

Specifically, results of the paper include the following:

(i) Constructive upper bounds for the hitting time of a target are obtained (the

hitting time will be defined precisely later). These bounds are uniform over

the target locations and uniform for each initial condition in a “good” set of
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initial conditions. The bounds depend on the size of the “good” set, the speed

of mixing, and the size of the target.

(ii) The hitting time upper bounds are used to show that the hitting time behaves

like the inverse of the volume of the target, for small targets. This relation holds

for every target location and almost every initial condition for the searcher.

(iii) Limit laws (as δ → 0) are derived showing that the expected search time behaves

like O(− log δ). These results are proven for the case when the target volume is

distributed against the “nearly” uniform distribution νδ.

In a broader context, the hitting time results of this work belong to a body of

results on quantitative recurrence theory, a relatively new subfield of ergodic theory.

While it has been known since the work of Poincaré, that almost every point of

a positive measure set will return to that set infinitely often under the action of

a measure-preserving transformation, results on return rates for specific classes of

transformations took much longer to be discovered. Modern quantitative recurrence

results include limit laws for specific classes of dynamical systems; which classes

of transformation have properties such as strongly Borel-Cantelli sequences and the

Shrinking Target Property; and the relation of recurrence and hitting times to the

dimension theory of measures (for a subset of results see, e.g., [Aba04; Bos93; BS01;

CK01; Coe97; FMP12; Gal06; GK07]).

In addition to saying something about search times for, say, unmanned aerial

vehicles or robots, the results contained here relate to sampling and Monte Carlo-
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type numerical integration. In Monte Carlo integration, one wants to compute the

definite integral
∫
B
f(x)dµ(x). For some function f and some measure µ over some

some domain B. An approximation can be computed by independently drawing a set

of points {x1, . . . , xN} from the distribution corresponding to µ and approximating

the integral with the finite sum N−1
∑N

n=1 f(xn) [RR04]. A basic question asks how

many samples are needed to give a good approximation to the true integral?

Many times samples are generated by an appropriate Markov chain, but they

can also be generated by a discrete-time mixing map. For the mixing map, a loose

theoretical bound on the number of samples needed to well-approximate the integral

can be computed. If the integration domain B ⊂ Rd is compact, it can be covered

by a finite number of small balls. The results of this paper give a bound on the

hitting time for each of these balls and we can easily get an upper bound on the

time needed to hit all of the balls by multiplying the individual upper bound by the

number of covering balls. Of course for this to work, the measure the map preserves

must match the measure we would like to integrate against. If this is not the case,

an appropriate map must be constructed from the original mixing map. There are a

number of standard methods to do this such as the Metropolis-Hastings algorithm or

the Gibbs sampler (see, e.g., [RR04]).

The rest of the text is organized as follows. We begin, in section IX.1, with the

discrete-time setting and investigate two different processes for the 1D case of the

search problem. The analysis here is simple and is intended to motivate the concepts
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defined later. This investigation leads to the relevant notions needed to generalize

the analysis to higher dimensions. We go on to define the notions of B-regularity,

ergodicity, and mixing in section IX.2 so that both maps and multi-valued processes

can be treated simultaneously. Upper bounds are then proved for a exponentially

mixing transformations and these are used to prove limit laws for infinitely small

targets (sec. IX.3). Asymptotic laws for the expected search time are proved in section

IX.4 for any transformation satisfying the limit laws of section IX.3 for the hitting

time. Finally, in section IX.5, the discrete-time results are pushed to continuous

first-order dynamics.
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Chapter IX

Limit laws and expected search

times for mixing dynamical

systems

IX.1 Preliminary discussion of the problem

We begin by fixing some concepts and notation that will be used throughout the

paper. Let (M,B(M)) be a Borel measurable space. Let T :M→M be some fixed,

discrete-time transformation. As usual N denotes the natural numbers {1, 2, . . . } and

N0 = N ∪ {0}.

Definition IX.1.1 (Hitting time). Let A ∈ B(M). The hitting time of A under T
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when starting from y is denoted by τT [A, y] and defined by

τT [A, y] = inf{k ∈ N0 : T k(y) ∩ A 6= ∅}. (IX.1.1)

When its clear which transformation is being discussed, T is dropped from the nota-

tion and just write τ [A, y]. More properly, τT is called the first hitting time, but for

brevity will stick to the above terminology.

Definition IX.1.2 (Expected hitting time). Let the target be B(c, r), the closed

ball of radius r, centered at c. The expected hitting time, H(c, s, δ), of a target whose

volume is distributed against the “nearly” uniform distribution, νδ, when the searcher

starts from s is defined as

H(c, s, δ) =

∫ V

δ

τ [B(c, r(u)), s] νδ(u, ξ) du. (IX.1.2)

Note that the radius of the target is a function of the volume, the integration variable.

It will be useful in our analysis to define the set of initial conditions that have not

found the target by time t.

Definition IX.1.3 (Exception set). Let

E(c, r, t) = {s ∈M : τ [B(c, r), s] > t} . (IX.1.3)

E(c, r, t) is called the exception set at time t.

Remark IX.1.4. A partial ordering, “4”, can be defined on E(x, r, t) by set inclusion.

Then both E(c, ·, t) and E(c, r, ·) are decreasing functions. So if rk ≥ rk+1, then

E(c, rk, t) 4 E(c, rk+1, t), and in particular
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E(c, r, t) =
⋃
u>r

E(c, u, t), (IX.1.4)

while if tk ≤ tk+1, then E(c, r, tk) < E(c, r, tk+1).

We also remark that if the transformation is continuous, then, since B(c, r) is

closed, E(c, r, t) is an open set.

Remark IX.1.5. Suppose T is Lipschitz continuous with Lipschitz constant α. If

τ [B(c, r), y] = k, and T k(y) is in the interior of B(c, r), then there is a positive

Lebesgue measure set containing y whose points have hitting time equal to k:

Let

ρk := min{
∥∥T j(y)−B(c, r)

∥∥ : 0 ≤ j ≤ k − 1}

and dk :=
∥∥T k(y)− ∂B(c, r)

∥∥, where ∂B(c, r) is the boundary of B(c, r). Set L =

max (1, α). For any ‖z‖ < L−k min {ρk, dk},

∥∥T k(y + z)− T k(y)
∥∥ ≤ Lk ‖z‖ <

∥∥T k(y)− ∂B(c, r)
∥∥ ;

hence T k(y + z) ∈ B(c, r). Additionally, for 0 ≤ j ≤ k − 1,

∥∥T j(y + z)− T j(y)
∥∥ ≤ Lj ‖z‖ < Lj−kρk ≤ ρk.

Hence T j(y + z) /∈ B(c, r) for 0 ≤ j ≤ k − 1. Therefore, for all such z, τ [B(c, r), y +

z] = k.

In this paper, limit laws of the following types are shown:

lim sup
vol(B(c,r))→0

ln τ [B(c, r), s]

− ln vol(B(c, r))
≤ 1 (IX.1.5)
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and

lim
ξ→0

lim sup
δ→0

H(c, s, δ)

− ln δ
≤ const. (IX.1.6)

We first analyze two algorithms for a simple case of the search problem where

M = T, the one-dimensional torus. Without loss of generality, we can identify T

with the unit interval, mod 1. In this setting, a target, B(c, r), will be an interval

of length 2r. We assume the interval length is distributed uniformly in (δ, V ]; i.e.,

vol(B(c, r)) ∼ νδ(·, 0). While the analysis is simple, it nevertheless highlights a few

important points.

IX.1.1 Rational Lawnmower Algorithm

Fix some N ∈ N and let ∆ = N−1. The lawnmower algorithm is given by

the rational shift T k(s) = s + k∆ mod 1, for k ∈ N0. It is so named because its

generalization to the square gives trajectories that mimic the path one takes when

mowing a lawn.

What is a suitable step size to choose? First let us look at the initial conditions

that never find a given target. Fix some c ∈ [0, 1) and some N ∈ N such that δ <

N−1 ≤ V . Assume the target’s volume, vol(B(c, r)), satisfies 0 < vol(B(c, r)) < N−1.

Then in the interval [c−r, c−r+N−1], the measure of the points not in target interval

is N−1 − 2r = N−1 − vol(B(c, r)). Since all points have period N , this implies that

the total measure of the points that never find the target is

vol(E(c, r,∞)) = N · (N−1 − vol(B(c, r))) = 1−N · vol(B(c, r)) > 0.
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Hence, if the searcher’s initial condition is distributed uniformly at random in [0, 1),

there is a positive probability of never finding the target if its size is in the range

(δ,N−1). Furthermore, as vol(B(c, r))) → 0, almost every point never finds the

target.

To guarantee finding the target we must have that N−1 ≤ δ. For simplicity assume

1/δ is an integer and fix N−1 = δ. The expected hitting time of a target is computed

as follows. Without loss of generality, we can assume that the searcher starts at s = 0.

Fix c ∈ [0, 1). Since the volume of the target is 2r, the expected search time becomes

H(c, 0, δ) =
2

V − δ

∫ V/2

δ/2

τ [B(c, r), 0] dr.

Note that for c ≤ δ
2

or c ≥ 1 − δ
2
, 0 ∈ B(c, r) for all r > δ

2
. Therefore, for r > δ

2
,

τ [B(c, r), 0] = 0.

Assume c ∈ ( δ
2
, 1− δ

2
). Then for all r ≥ δ

2
, let k ∈ N0 be the smallest nonnegative

integer such that c− r ≤ kN−1 or equivalently the smallest nonnegative integer such

that N(c− r) ≤ k. Then kN−1 ∈ [c− r, c+ r] mod 1. Therefore, for δ
2
≤ r ≤ c

τ [B(c, r), 0] = k < N(c− r) + 1,

and for r ≥ c, τ [B(c, r), 0] = 0.

Therefore, for any c ∈ [0, 1),

τ [B(c, r), 0] ≤


0, if r ≥ c

N(c− r) + 1, if δ
2
< r < c

. (IX.1.7)
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If A = min{c, V
2
}, then∫ V/2

δ/2

τ [B(c, r), 0] dr =

∫ A

δ/2

τ [B(c, r), 0] dr.

Then

H(c, 0, δ) ≤ 2

V − δ

∫ A

δ/2

(N(c− r) + 1) dr =
2

δ

[
(A− δ

2
)(c+ δ)− 1

2
(A2 − ( δ

2
)2)

V − δ

]
,

for any c ∈ [0, 1). Since the dynamics are shift-invariant and the above is true for any

c ∈ [0, 1), the expected search time, H(c, s, δ), is of order O(1/δ).

The preceding discussion highlighted two important points. First, a suitable choice

of N requires knowledge of the target’s volume, information completely lacking in the

problem formulation. Second, any choice of N gives dynamics that do not densely fill

the domain, leaving gaps that a sufficiently small target can hide in.

IX.1.2 Subdivision Algorithm in 1D

The q-adic subdivision algorithm on [0, 1) is defined in the following way. Let

q ∈ {2, 3, . . .} be called the rank 1 and k the subdivision level. Let P0 = ∅ and ζ0 = ∅.

For each k ∈ N, define

(i) Pk =

{
j

qk

}qk−1

j=0

, and

(ii) ζk = Pk \ Pk−1.

Define

Sk(x) := x+ ζk, mod 1.

1q = 2 corresponds to the dyadic subdivision algorithm.

185



The subdivision algorithm is then S = {S1(x), S2(x), . . .}; i.e. iterate through all

points in S1(x), then all points in S2(x), and so on.

The subdivision protocol creates a regular grid with edge lengths ∆ = q−k. To

guarantee finding a target of radius r, we need to find the smallest k that gives a

2r-net; hence we need to chose k as the smallest integer giving q−k ≤ 2r. An easy

computation shows that k satisfies

logq

(
1

2r

)
≤ k < logq

(
1

2r

)
+ 1.

At the kth subdivision level, #{Pk} = qkn points have been searched. Hence τ [B(c, r), s] ≤

qkn for all c. Using the upper bound for k gives

τ [B(c, r), s] ≤ q

2r
. (IX.1.8)

Since vol(B(c, r)) = 2r, (IX.1.8) becomes

τ [B(c, r), s] ≤ q

vol(B(c, r))
, (IX.1.9)

and

H(c, s, δ) =
1

V − δ

∫ V

δ

τ [B(c, r(u)), s] du

≤ q

V − δ log
V

δ
.

The expected search time H(c, s, δ) is O(− log δ), with the constant only depending

on the rank of the subdivision algorithm. Comparing this with the result from the

lawnmower algorithm shows that the subdivision algorithm performs much better.
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The subdivision algorithm exhibited two different characteristics relevant to the

search problem. The first was that the algorithm came arbitrarily close to any point in

the domain. In fact, the density of the points was uniform in the infinite time limit.

The second was that the algorithm was inherently multi-scale. On average larger

targets are found first, and if targets are not found at a certain size, the partition

size was refined. The multi-scale property of the subdivision algorithm allowed to

speedup versus the lawnmower algorithm.

IX.2 B-regular systems

The subdivision algorithm exhibited two different characteristics that are relevant

to the general search problem. The first was that the algorithm came arbitrarily

close to any point in the domain. The second was that the density of points was

approximated the Lebesgue measure in the limit.

In dynamical systems, the first property is ergodicity. For a map to be ergodic, a

measurable space is required, as well as a map preserving a finite measure and that

any invariant set has trivial measure. Unfortunately, the subdivision algorithm is not

a function strictly speaking; it is a multi-valued process. The traditional definition of

ergodicity does not cover such cases, even though intuitively speaking, the subdivision

map preserves the Lebesgue measure. The definition of ergodicity must be modified

somewhat to cover these exceptional cases. It will, however, reduce to the usual case

for single-valued maps.
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We start by defining multivalued maps and their time averages in a general setting.

Let Fc be the σ-algebra of countable and co-countable sets; every set in Fc is either

countable or its complement is countable. Recall that the counting measure µc :

Fc → [0,∞] is defined by

µc(A) =


∑
x∈A

1, A is a finite set,

∞, otherwise.

(IX.2.1)

Definition IX.2.1 (Multi-valued map). LetM be a compact metric space. A multi-

valued map is a function T : Fc × N0 → Fc with the following properties:

(i) for each x ∈ M, there is a sequence of nonempty finite sets {Ax,k}, such that

T ({x} , k) = Ax,k,

(ii) for every F ∈ Fc and k ∈ N0, T (F, k) =
⋃
x∈F

T ({x} , k).

(iii) for every x ∈M, T ({x} , 0) = Ax,0 = {x}, and

(iv) T ({x} , k) = T (T ({x} , j), k − j) for all 0 ≤ j ≤ k.

A map S :M→M can be treated in this framework since we can define T ({x} , k)

to be just the singleton set
{
Sk(x)

}
. For this reason, we will usually write T k(x) for

T ({x} , k) so that notation is consistent for both maps and multi-valued processes.

The last two conditions in the above definition just require that the multi-valued

process satisfies the semigroup property. In the new notation, the second condition

takes the form T k(x) = T k−j(T j(x)), for any 0 ≤ j ≤ k.
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Definition IX.2.2. Let T : Fc×N0 → Fc be a multi-valued map. Let dF : Fc×Fc

be a pseudo-metic for Fc such that dF (T j(x), T k(y)) = 0 implies T j(x) = T k(y). The

multi-valued process is,

(i) continuous at x ∈ M, if for every ε > 0 and k ∈ N0, there is a δx,k > 0 such

that dF (T k(x), T k(y)) < ε for any y ∈M such that d(x, y) < δx,k.

(ii) continuous if its continuous at all x ∈M.

(iii) uniformly continuous if it is continuous and for each k ∈ N0, δx,k = δy,k = δk for

all x, y ∈M.

(iv) equicontinuous at x ∈ M it is continuous at x ∈ M and δx,j = δx,k = δx for all

j, k ∈ N0.

(v) equicontinuous if it is equicontinuous at every point x ∈M.

If we let C(M) be the space of continuous functions onM, we have the following:

Definition IX.2.3 (B-regularity). Let T be a continuous multi-valued map. Let

µc : Fc → [0,∞] be the counting measure. For each f ∈ C(M), define

E
[
f ◦ T k(x)

]
=

1

µc(T k(x))

∑
y∈Tk(x)

f(y). (IX.2.2)

We call the tuple (T,M) a B-regular system if for each f ∈ C(M), the limit

lim
N→∞

1

N

N−1∑
k=0

E
[
f ◦ T k(x)

]
(IX.2.3)

exists for almost every x ∈ M with respect to the Lebesgue measure. If (T,M) is a

B-regular system, then T is called B-regular for short.
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Since T k(x) is a finite set for all x ∈ M and k ∈ N0 and |f | <∞ for f ∈ C(M),

(IX.2.2) is well-defined.

Remark IX.2.4. If T :M→M is a (single-valued) map and for each f ∈ C(M),

the limit lim 1
N

∑n−1
k=0 f ◦ T k(x) exists for Lebesgue almost every x ∈M, then (T,M)

is a B-regular system and in this case, E
[
f ◦ T k(x)

]
= f ◦T k(x). Systems possessing

an SRB measure satisfy this condition [You02].

Let Σ denote all the points in M where the time average (IX.2.3) does not exist

for at least one f ∈ C(M). If the system is B-regular, Σ has Lebesgue measure

0. The B-regularity of the system allows a family of positive linear functionals,

parameterized by points in M\ Σ, to be defined on C(M) by setting

Λx(f) = lim
n→∞

1

n

n−1∑
k=0

E
[
f ◦ T k(x)

]
. (IX.2.4)

For a fixed x ∈ M \ Σ, the Riesz representation theorem gives a positive, regular

measure, µx, so that

lim
n→∞

1

n

n−1∑
k=0

E
[
f ◦ T k(x)

]
= Λx(f) =

∫
f dµx (IX.2.5)

for all f ∈ C(M). With this measure, L1(M, µx) can be defined and the limit (IX.2.5)

exists for L1(µx)-functions.

Definition IX.2.5 (B-regular, ergodic measure). Let A ⊂M be Borel measurable.

A B-regular system (T,M) is said to be ergodic on A if every x ∈ A \ Σ generates

the same measure µ. T is said to be ergodic if A can be taken to be M and in that

case µ is called an ergodic measure.
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If the system is ergodic on A, then for every x ∈ A\Σ, the time average is identical

to the µ-spatial average over A for f ∈ L1(µ):

lim
n→∞

1

n

n−1∑
k=0

E
[
f ◦ T k(x)

]
=

∫
A

f dµ. (IX.2.6)

Ergodic invariant measures are import because they characterize the residency times

of trajectories in sets; for f = χA,

lim
n→∞

1

n

n−1∑
k=0

E
[
χA(T k(x))

]
= µ(A). (IX.2.7)

The term on the left is the asymptotic relative frequency of the time the trajectory

spends in the set A and the relation says that this relative frequency is equal to the

measure of A.

Given the implication (IX.2.7) of ergodicity and that the target can be located

anywhere in the domain, we would like a search transformation with an ergodic

measure µ such that every nonempty, open set has positive measure. Motivated by

these physical considerations, we make the following assumptions for the rest of the

paper:

Assumption IX.2.6. T :M→M is a B-regular, multi-valued map that is ergodic

on M, and whose ergodic measure µ is absolutely continuous with respect to the

Lebesgue measure. Furthermore, assume that the Radon-Nikodym derivative of µ

satisfies

0 < α ≤ dµ

dx
≤ β <∞, (IX.2.8)

everywhere on M.
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Definition IX.2.7 (Mixing multi-valued map). Let T : M → M be a B-regular

process and µ a measure. Define µ(T−jA ∩ T−kB) as

µ(T−jA ∩ T−kB) =

∫
E
[
χA ◦ T j(x)

]
· E
[
χB ◦ T k(x)

]
dµ. (IX.2.9)

Now let T be an ergodic multi-valued process preserving µ. T is said to be mixing if

lim
n→∞

µ(A ∩ T−kB) = µ(A)µ(B). (IX.2.10)

Mixing dynamical systems asymptotically look like an independent process. Of

course, without knowing the speed at which the limit is approached, little can be said

quantitatively in terms of the hitting times of sets. Therefore, we need to make an

assumption on the rate of approach to the limit. To this end, we introduce the notion

of exponential mixing.

Definition IX.2.8 (Uniform exponential mixing). A transformation is uniformly

exponentially mixing if

∣∣µ(A ∩ T−kB)− µ(A)µ(B)
∣∣ ≤ Cµ(A)µ(B)e−γk . (IX.2.11)

Nonuniform exponential mixing is defined as

∣∣µ(A ∩ T−kB)− µ(A)µ(B)
∣∣ ≤ Cµ(B)e−γk . (IX.2.12)

The positive parameter γ is called the mixing rate.

Uniform exponential mixing must hold for sets of arbitrary measure. We can relax

this by defining a scale parameter, and defining (non-)uniform mixing down to this

scale.
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Definition IX.2.9 (Scale of a set). Fix a Borel measurable set A ⊂ Rn and let

R = R1 × · · · ×Rn denote an n-dimensional rectangle. Define β ∈ R to be a

β = sup
R⊂A

sup {s ≤ 1 : s ≤ Ri for 1 ≤ i ≤ n} (IX.2.13)

where A is the closure of A. A is said to have scale β.

Definition IX.2.10. Let A,B be Borel measurable sets and
{
T k
}

a multi-valued

map. Fix a scale β. T is said to be uniformly exponentially mixing down to scale β if

∣∣µ(A ∩ T−kB)− µ(A)µ(B)
∣∣ ≤ Cβµ(A)µ(B)e−γk . (IX.2.14)

for Borel measurable sets A,B having scales no less than β. Cβ is a constant only

depending on β.

Nonuniform exponential mixing down to scale β is defined similarly.

In general, we can define mixing with an arbitrary rate.

Definition IX.2.11 (Summable mixing). Let Φ : N0 → R+ be a positive, monoton-

ically decreasing sequence such that
∑∞

k=1 Φ(k) < ∞. We obtain uniform summable

mixing and nonuniform summable mixing by replacing Ce−γk with Φ(k) in IX.2.11

and IX.2.12 respectively.

Definition IX.2.12 (n-dimensional, q-adic subdivision algorithm). Let ζ be a par-

tition of [0, 1); i.e, a finite set of distinct points ζ = {p0, . . . , pm} ordered such that

0 ≤ pi < pi+1 < 1 for i = 0, . . . ,m−1. Let Pm be the set of all partitions on R which

have m points and P the space of all finite partitions on R. Let |ζ| be the number
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of points in the partition. For any q ∈ {2, 3, . . .}, define the maps map Iq : P →P,

Eq : P →P, and Sq : P →P by

Iq(ζ) =

|ζ|−1⋃
i=1

q−1⋃
j=0

{
pi−1 + j

(
pi − pi−1

q

)}
, (IX.2.15)

Eq(ζ) =

q−1⋃
j=0

{
pm + j

(
1 + p0 − pm

q

)}
mod 1,

and,

Sq(ζ) = Iq(ζ) ∪ Eq(ζ), (IX.2.16)

respectively.

Define

S0
q (ζ) = ζ. (IX.2.17)

and

Sk+1
q (ζ) = Sq ◦ Skq (ζ) := (Iq ◦ Ikq (ζ)) ∪ (Eq ◦ Ek

q (ζ)) (IX.2.18)

for k ≥ 0.

Fix a dimension n ∈ N. Let (ζ1, . . . , ζn) be a set of partitions of the [0, 1). Define

Sq : Pn →Pn, by

Sq(ζ1 × · · · × ζn) = Sq(ζ1)× · · · × Sq(ζn) (IX.2.19)

With this definition, we define

S0
q(ζ1 × · · · × ζn) = ζ1 × · · · × ζn.

and

Sk+1
q = Sq ◦ Skq = (Sq ◦ Sq(ζ1))× · · · × (Sq ◦ Sq(ζn))
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for k ≥ 0.

For x = (x1, . . . , xn) ∈ [0, 1)n, define the partitions ζi = {xi} and ζ = ζ1×· · ·×ζn.

The n-dimensional subdivision process of rank q is defined for k ≥ 0 by

T kq (x) = Skq(ζ). (IX.2.20)

By construction, the subdivision process Tq has the semigroup property. Addi-

tionally, let ζ ∈ Pm. Then |ζ| = m, and |Sq(ζ)| = qm. Therefore Sq maps Pm into

Pqm. In terms of the subdivision process
∣∣Skq (ζi)

∣∣ = qk, since the initial partition is

an element of P1, and
∣∣Skq(ζ)

∣∣ = qkn.

Example IX.2.13 (n-dimensional, q-adic subdivision algorithm). This example shows

that the generalization of the subdivision algorithm to Tn is a uniformly exponentially

mixing multi-valued process preserving the Lebesgue measure.

Recall µc is the counting measure. Let x = (x1, , . . . , xn). Note that µc(T
k(x)) =

qkn since

Skq ({xi}) =
{
xi, xi + q−k, . . . , xi + (qk − 1)q−k

}
. (IX.2.21)

To ease notation, let ζki = Skq ({xi}); then T k(x) = ζk1 × · · · × ζkn.

For any f ∈ C(Tn),

E
[
f ◦ T k(x)

]
=

1

qkn

∑
y∈Tk(x)

f(y).

Since

lim
k→∞

E
[
f ◦ T k(x)

]
= q−kn

∑
y∈Tk(x)

f(y) =

∫
f(y) dy
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then

1

N

N∑
k=1

E
[
f ◦ T k(x)

]
→
∫
f(y) dy.

as N → ∞. Hence, the subdivision algorithm is a B-regular system. The limit is

independent of the initial condition x, implying that the system is ergodic with respect

to the Lebesgue measure.

Note that E
[
f ◦ T k(x)

]
→ vol(B) by letting f = χB, the indicator function of

B, which implies that vol(A ∩ T−kB) → vol(A)vol(B). Therefore, the subdivision

algorithm is mixing.

We now turn to showing that the subdivision algorithm is uniformly exponentially

mixing for rectangles R = R1×· · ·×Rn such that |Rd| = bd−ad ≥ β, for d = 1, . . . , n,

and where Rd = [ad, bd), ad < bd, and 0 ≤ β ≤ 1. Recall that vol(A∩T−kB) is defined

by (IX.2.9). We will show that for such a rectangle R,

vol(R)(1− Cβe−γk) < E
[
χR ◦ T k(x)

]
< vol(R)(1 + Cβe

−γk).

for large enough k.

Consider, the one-dimensional case first. Let R1 = [a1, b1) where we assume

0 < a1 < b1 < 1. We need to estimate the number of points from ζk1 =
{
jq−k

}qk−1

j=0

belonging to R1. Let nk(R1) :=
∑

p∈ζk1
χR1(p). We estimate nk(R1) as follows. As-

sume k is large enough so that for some point p′ ∈ ζk1 , b1 < p′ < 1 and b1− a1 > q−k.

Define j′ (see fig. IX.1) as the integer satisfying

(j′ − 1)q−k < a1 ≤ j′q−k.
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Then nk(R1) satisfies

(j′ + nk(R1)− 1)q−k < b1 ≤ (j′ + nk(R1))q−k.

Combining these two expressions, it can be shown

|R1| qk − 1 ≤ nk(R1) < |R1| qk + 1 (IX.2.22)

where |R1| = b1 − a1.

Figure IX.1: The number nk(R1) points contained in R1.

Now consider the n-dimensional case. Let R = R1×· · ·×Rn, where Rd = [ad, bd).

Again it is assumed that 0 < ad < bd < 1 and k is large enough that there is a point

of ζkd between bd and 1 and bd − ad > q−k. Let Nk(R) be the number of points of

T k(x) =×n

1
ζkd that are in R. Note that

Nk(R) = nk(R1) · · ·nk(Rn).

Using (IX.2.22), we get

Nk(R) ≥ vol(R)qkn
n∏
d=1

(
1− 1

|Rd| qk
)
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and

Nk(R) < vol(R)qkn
n∏
i=d

(
1 +

1

|Rd| qk
)

Since |Rd| ≥ β,

vol(R)qkn
(
1− β−1q−k

)n ≤ Nk(R) < vol(R)qkn
(
1 + β−1q−k

)n
(IX.2.23)

and

E
[
χR ◦ T k(x)

]
=

1

qkn

∑
y∈Tk(x)

χR(y) =
Nk(R)

qkn
(IX.2.24)

then

vol(R)
(
1− β−1q−k

)n ≤ E
[
χR ◦ T k(x)

]
< vol(R)

(
1 + β−1q−k

)n
(IX.2.25)

There exists Cβ > 0 (depending on β) and γ > 0 such that

1− Cβe−γk ≤
(
1− β−1q−k

)n
and

(
1 + β−1q−k

)n ≤ 1 + Cβe
−γk

Therefore

vol(R)(1− Cβe−γk) ≤ E
[
χR ◦ T k(x)

]
< vol(R)(1 + Cβe

−γk)

and

vol(A)vol(R)(1− Cβe−γk) ≤ vol(A ∩ T−k(R)) < vol(A)vol(R)(1 + Cβe
−γk).

Hence the subdivision map is uniformly exponentially mixing down to scale β on

rectangles and hence Borel sets.
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Example IX.2.14 (q-adic maps of the interval). We use a theorem from [Liv95] to

show that the q-adic map T (x) = qx mod 1, for q ∈ N \ {1}, is exponentially mixing

for targets having scale greater than a fixed number. The theorem is actually a result

for the decay of correlations of a class of functions having some regularity properties.

Unfortunately, it cannot be strengthened to the uniform exponential condition above

because the bound depends on the derivative of one of the observables. It can, however,

give “ε-independence”. More precisely, this means that for any ε > 0, we can show

that

∣∣vol(A ∩ T−kB)− vol(A)vol(B)
∣∣ < ε+ C(ε)vol(A)vol(B)e−γk (IX.2.26)

where C(ε) is a constant depending on ε such that C(ε)→∞ as ε→ 0.

We have

Theorem IX.2.15 ([Liv95]). There exist K, r ∈ R+, Λ ∈ (0, 1), such that, for

f ∈ L1([0, 1)), g ∈ C1([0, 1)) satisfying
∫ 1

0
g(x) dx = 1,∣∣∣∣∫ 1

0

(f ◦ T n(x))g(x) dx−
∫ 1

0

f(x)ϕ∗(x) dx

∣∣∣∣ ≤ K ‖f‖1 (‖g‖1 + r ‖g′‖∞)Λn (IX.2.27)

where ϕ∗(x) is the density, with respect to Lebesgue, of the invariant measure.

To show (IX.2.26), consider the intervals A and B in [0, 1). Let f = χB and

h = χA/vol(A) and define A+ε = [a − ε/2, b + ε/2] where A = [a, b]. Let ϕ ∈ C1 be

defined so that 0 ≤ ϕ ≤ 1, ϕ is strictly monotonic on A+ε \ A, and

ϕ(x) =


1 x ∈ A,

0 x /∈ A+ε

.
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Define g = ϕ/ ‖ϕ‖1. Then∣∣∣∣∫ 1

0

(χB ◦ T k(x))h(x) dx−
∫ 1

0

χB(x)ϕ∗(x) dx

∣∣∣∣
≤
∣∣∣∣∫ 1

0

(χB ◦ T k(x)) (h(x)− g(x)) dx

∣∣∣∣+

∣∣∣∣∫ 1

0

(χB ◦ T k(x)) g(x) dx−
∫ 1

0

χBϕ∗(x) dx

∣∣∣∣
≤ ‖χB‖∞ ‖g − h‖1 +

∣∣∣∣∫ 1

0

(χB ◦ T k(x)) g(x) dx−
∫ 1

0

χBϕ∗(x) dx

∣∣∣∣
By definition of g and A+ε, we have ‖g − h‖1 < ε, while the second term can be

bounded using Theorem 2.5. Therefore∣∣∣∣∫ 1

0

(χB ◦ T k(x))h(x) dx−
∫ 1

0

χB(x)ϕ∗(x) dx

∣∣∣∣ < ε+K ‖χB‖1 (‖g‖1 + r ‖g′‖∞)Λk

Since ‖g‖1 = 1, h = χA/vol(A), and ϕ∗ = 1 for q-adic maps,

∣∣vol(A ∩ T−kB)− vol(A)vol(B)
∣∣ < ε vol(A) +Kvol(A)vol(B)(1 + r ‖g′‖∞)ΛK

< ε+Kvol(A)vol(B)(1 + r ‖g′‖∞)Λk.

Since g = 0 on the complement of A+ε and increases to 1 on A, we can choose g such

that we can bound g′ by a constant depending on ε. Therefore,

∣∣vol(A ∩ T−kB)− vol(A)vol(B)
∣∣ < ε+ C(ε)vol(A)vol(B)e−γk

where γ = − ln Λ and C(ε) bounds K(1 + r ‖g′‖∞). This completes the example.

Finally, the hitting time for discrete-time transformations (def. IX.1.1), needs to

amended for multi-valued processes. To do this, we need a way to order the elements

of each set T k(y). This is straight forward since each set is finite; for each k, put a

subset of T k(y) into one-to-one correspondence with a finite subset of N and use the

normal ordering on N.
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Definition IX.2.16 (Hitting time for multivalued maps). Let (T,M) be a B-regular

system. For each k ∈ N0, let Dy,k ⊂ T k(y) and gy,k : Dy,k → {1, 2, . . . , µc(Dy,k)} be a

bijection. Let A be a measurable set. Define

m := inf {k ∈ N0 : Dy,k ∩ A 6= ∅} (IX.2.28)

and

` := inf
{
j ∈ gy,m(Dy,m) : g−1

y,m({N ≤ j}) ∩ A 6= ∅
}
. (IX.2.29)

The hitting time of A when starting from y is defined as

τ [A, y] =
m−1∑
k=0

µc(Dy,k) + `− 1. (IX.2.30)

Recall that µc is the counting measure (see eq. (IX.2.1)).

Remark IX.2.17. In the context of search, the bijections gy,k tells the searcher the

order that the points of T k(y) should be visited. The domains of the gy,k’s are defined

as (not necessarily strict) subsets of T k(y) so that some points of T k(y) can be ignored

by the searcher.

Remark IX.2.18. In the case of a single-valued, B-regular map T , the above defi-

nition reduces to the standard hitting time definition (IX.1.1).

Remark IX.2.19. For the n-dimensional subdivision process, define Dy,0 = T 0(y) =

{y} and

Dy,k = T k(y) \ T k−1(y)
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for k ≥ 1. Since T k(y) ⊂ T k+1(y) for the subdivision process, then Dy,k ∩ Dy,j = ∅

for j 6= k and

T k(y) = Dy,0 ∪ · · · ∪Dy,k.

The integer m represents the first subdivision level that has points intersecting

the target. The term
∑m−1

k=0 µc(Dy,k) counts all the points searched in the previous

subdivision levels, while the term µc(g
−1
m ({N ≤ `})) counts the number of points of

the mth subdivision level before and including the first point that is an element of the

target. Hence, τ [A, y] ≤ µc(T
m(y)) = qmn.

IX.3 Hitting times for mixing transformations

Our end goal is to show relations of the form (IX.1.6) for mixing transformations.

The first step in exhibiting this is to show

lim sup
µ(B(c,r))→0

ln τ [B(c, r), y]

− lnµ(B(c, r))
≤ 1 (IX.3.1)

for almost all y and where µ an ergodic measure preserved by the transformation.

Later, the equivalence of µ and vol will be used show that (IX.3.1) is equivalent to

the relation (IX.1.5) which is used in proving (IX.1.6).

Before moving on, we remark that the lower bound

lim inf
µ(B(c,r))→0

ln τ [B(c, r), y]

− lnµ(B(c, r))
≥ 1

holds for any measure-preserving dynamical system, not just the ergodic ones. The

proof can be found in [GK07]. This implies that for any measure-preserving dynamical
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system satisfying (IX.3.1), that the limit exists and is equal to 1; i.e., the hitting time

scales like τ [B, y] ∼ µ(B)−1.

Results showing (IX.3.1) already exist in the quantitative recurrence literature for

various types of systems and assumptions on T . However, those results are generally

arrived at by nonconstructive means. Since many classes of transformations have

the above behavior, it becomes important to differentiate them using their multiplier

functions. The function ϕ in the lemma below differentiates transformations satisfying

(IX.3.1) and its form can only be obtained using constructive proofs, which are given

in this work.

Lemma IX.3.1. Assume that µ is a non-atomic measure. For a fixed c, y ∈ M,

(IX.3.1) holds if and only if there is a function ϕ : [0, 1]→ [0,∞) such that

(i) lim
x↓0

lnϕ(x)

− lnx
= 0, and

(ii) τ [B(c, r), y] ≤ ϕ(µ(B(c, r)))µ(B(c, r))−1

hold for µ(B(c, r)) sufficiently small. Furthermore, if (IX.3.1) holds, we can show

that for any ε > 0, there is a U = Uε > 0 such that τ [B(c, r), y] ≤ µ(B(c, r))−(1+ε)

for all µ(B(c, r)) ≤ U .

Proof. Fix c, y ∈ M and let Br = B(c, r). If such a ϕ exists it is easy to see that

(IX.3.1) holds. Conversely, if (IX.3.1) holds, we can construct ϕ with the required

properties as follows. Note that since µ contains no atoms, µ(Br)→ 0 if r → 0. The

lim sup inequality implies that for any n ∈ N, there is an Rn > 0 such that for all

r ≤ Rn,
ln τ [Br, y]

− lnµ(Br)
< 1+

1

n
. Note that we can choose {Rn} such that Rn > Rn+1 and
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Rn ↓ 0. Define ϕ(µ(Br)) as follows. If r > R1, put ϕ(µ(Br)) = µ(Br)
−1. For r ≤ R1,

let n(r) be the largest n ∈ N such that Rn ≥ r. Define ϕ(µ(Br)) = µ(Br)
− 1
n(r) .

Note that as r ↓ 0, n(r) → ∞. Obviously, lim
lnϕ(µ(Br))

− lnµ(Br)
= 0. Additionally, for all

r ≤ R1,
ln τ [Br, y]

− lnµ(Br)
< 1 +

1

n(r)
which implies that for r ≤ R1,

τ [Br, y] < µ(Br)
− 1
n(r)µ(Br)

−1 = ϕ(µ(Br))µ(Br)
−1

as required.

We now show τ [Br, y] ≤ µ(B)−(1+ε). Fix ε > 0 and assume (IX.3.1) holds. Let ϕ

be constructed as above. If we show that ϕ(µ(Br))µ(Br)
ε goes to 0 as r goes to 0, we

will be done since τ [Br, y] ≤ ϕ(µ(Br))µ(B)−1 = ϕ(µ(Br))µ(Br)
εµ(Br)

−(1+ε). Note

that µ(Br)
ε ln 1

µ(Br)
→ 0 as µ(Br)→ 0 by L’Hôpital’s rule. Note that,

ϕ(µ(Br))µ(Br)
ε =

ϕ(µ(Br))

ln 1
µ(Br)

µ(Br)
ε ln

1

µ(Br)
.

By the construction of ϕ and the L’Hôpital argument above, the above expression

limits to 0 as µ(Br) → 0. Hence for µ(Br) sufficiently small, ϕ(µ(Br))µ(Br)
ε < 1.

This completes the proof.

IX.3.1 Uniformly exponentially mixing transformations

We first show (IX.3.1) holds for uniformly exponentially mixing transformations.

The proofs given for this case are templates for the weaker forms of mixing defined

above. The first lemma shows that the size of the exception set, E(c, r, t), decays
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at an exponential rate, suggesting that the process looks almost independent after

a short time period. The rate of decay depends only on the mixing rate γ and the

measure of the target.

Lemma IX.3.2. Assume T : M → M satisfies (IX.2.11) and fix c ∈ M. Then,

there exists an integer p ≥ 1 and a λ > 0, both depending on the radius of the target

r, the measure µ preserved by T , and the mixing rate γ, such that for t > p

µ(E(c, r, t)) ≤ e−λt . (IX.3.2)

Proof. Fix c ∈ M and r > 0 and denote B(c, r) by B. We can write Et := E(c, r, t)

as

Et = (M\B) ∩ T−1(M\B) ∩ · · · ∩ T−t(M\B) .

Let p be a positive integer that will be chosen later. For all t > p,

Et ⊂ A ∩ T−pA ∩ · · · ∩ T−mpA =: Cm (IX.3.3)

where A :=M\B and m = bt/pc, the integer part of t/p. Apply the mixing condition

(IX.2.11) to the p-skeleton (IX.3.3) to get the relation

µ(Cm) = µ(A ∩ T−pA ∩ · · · ∩ T−mpA) ≤ µ(A ∩ T−pCm−1)

≤ (1 + Ce−γ p)µ(A)µ(Cm−1).

Proceeding inductively, we get

µ(Cm) ≤
[
(1 + Ce−γp)µ(A)

]m
µ(C0) ≤ µ(A)m+1(1 + Ce−γp)m

≤ µ(M\B)m+1(1 + Ce−γp)m+1 ,
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where we have used that C0 = A. Since Et ⊂ Cm,

µ(Et) ≤
[
µ(M\B)(1 + Ce−γp)

]m+1
. (IX.3.4)

Since µ(M \ B) = 1 − µ(B) < 1 for all r and e−γk ↓ 0 as k → ∞, then for each r

there will be a p = p(r) that makes µ(M\B)(1 + Ce−γn) < 1.

Accordingly, p can be chosen so that (1−µ(B))(1 +Ce−γp) ≤ 1− 1
2
µ(B). A short

calculation shows that it is sufficient to take p as

p ≥ −1

γ
ln

(
1

2C

µ(B)

1− µ(B)

)
. (IX.3.5)

Since p is defined as a positive integer, take p = 1 if the right side of (IX.3.5) is not

positive.

Let p be chosen as such and put κ := 1 − 1
2
µ(B). Using (IX.3.4), Et can be

bounded above by

µ(Et) ≤ κm+1 ≤ κt/p = e(lnκ)t/p .

Putting

λ = −1

p
lnκ ≡ −1

p
ln

(
1− 1

2
µ(B)

)
(IX.3.6)

gives the desired result.

Remark IX.3.3. We call the integer p defined in the lemma above the gap time and

interpret it as the time the system needs to reach independence. To see this, we note

that p is chosen so that (1 − µ(B))(1 + Ce−γp) ≤ 1 − 1
2
µ(B). A short calculation
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shows that Ce−γp ≤ µ(B)
2(1−µ(B))

which is approximately 1
2
µ(B) for small targets. Using

this with the mixing condition (IX.2.11), we get that

µ(A ∩ T−pB) ≤ µ(A)µ(B)(1 + Ce−γp) . µ(A)µ(B)(1 +
µ(B)

2
) ≈ µ(A)µ(B)

for small µ(B).

Note that the gap time p from (IX.3.5) is a decreasing function of the mixing rate

γ. A large γ corresponds to a fast mixing rate, meaning that the system approaches

independence rapidly. Intuitively, we would expect that the corresponding gap time p

would be small. This relation is made precise by (IX.3.5).

The gap time is also a decreasing function of the measure of the target set. As

the measure decreases to zero, p approaches infinity. Given that p is the time to

reach approximate independence and that it increases as the measure of the target

decreases, we can interpret this to mean that the transformation becomes independent

in a hierarchical fashion. Meaning, if µ(B) is relatively large, p is small and if we

look at only large target sets, the process is almost independent after a short time.

However, if we use the same p and look at smaller sets, the process may not look

independent yet. Looking at it from the other direction, as p increases, the process

looks indepedent at smaller and smaller scales. More precisely, p is approximately

ln 1
µ(B)

for small targets. Thus, if we shrink the target so that its new measure µ(B′)

satisfies µ(B′) = µ(B)2, then p approximately doubles.
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Remark IX.3.4. From (IX.3.5) and (IX.3.6), we get that

λ ≈ γ

(
ln 2

2−µ(B)

ln 2c(1−µ(B))
µ(B)

)
.

For fixed γ, λ goes to 0 as the measure goes to 0. Since λ controls the rate of decrease

of the exception set’s measure, this result says that the measure of the points that have

not found the target by time t decreases very slowly for small targets. This is agrees

with our intuition.

If we let Ht be the set of points that have hitting times less or equal to t, then

Ht+1 = Ht ∪ {y : τ [B, y] = t+ 1}. But {y : τ [B, y] = t+ 1} ⊂ T−(t+1)B, so that

µ(Ht) ≤ µ(Ht+1) ≤ µ(Ht) + µ(B). Therefore, at each time step, the measure of the

exception set E(c, r, t) decreases by a quantity smaller than µ(B). For small µ(B),

this decreases very slowly.

The next result gives a lower bound on the time needed to wait if we want to

guarantee finding a target of a fixed size from a set of initial conditions of a certain

size.

Lemma IX.3.5. Assume T : M →M satisfies (IX.2.11). Fix c ∈ M, r > 0, and

let B = B(c, r). If ε satisfies 0 < ε ≤ 1− 1
2
µ(B), then µ(E(c, r, t)) < ε for

t > p
|ln ε|∣∣ln (1− 1

2
µ(B)

)∣∣ . (IX.3.7)

where p is chosen as in lemma IX.3.2.

Proof. This is a straight forward computation using (IX.3.2) and (IX.3.6).
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A combination of the above two lemmas gives an upper bound for the hitting

time of a target for an appropriately large set of initial conditions for the searcher.

In particular, if we wish to find the target with probability 0.95, set ε = 0.05 and use

(IX.3.8) and (IX.3.9) to find the time needed to wait.

Proposition IX.3.6. Assume T : M →M is uniformly exponentially mixing pre-

serving a measure µ equivalent to the Lebesgue measure. Fix any c ∈ M, r > 0, and

let B = B(c, r) ⊂ M. Then for any 0 < ε < 1 − 1
2
µ(B), there exists a set G (c, r),

with µ(G (c, r)) > 1− ε, such that for y ∈ G (c, r),

τ [B, y] ≤ ϕ(µ(B)) · µ(B)−1 (IX.3.8)

where

ϕ(µ(B)) = 2 |ln ε|
[

1

γ
ln

(
2C(1− µ(B))

µ(B)

)
+ 1

]
+ µ(B). (IX.3.9)

Furthermore,

µ

({
y ∈M : lim sup

µ(B)→0

ln τ [B, y]

− lnµ(B)
≤ 1

})
= 1 . (IX.3.10)

Before starting the proof, we remark that
lnϕ(µ(B))

− lnµ(B)
converges to 0 as µ(B)→ 0.

Proof. Fix c ∈ M and denote B(c, r) as B. Fix ε such that 0 < ε < 1 − 1
2
µ(B).

Choosing

p := inf

{
k ∈ N : k ≥ 1

γ
ln

2C(1− µ(B))

µ(B)

}
, (IX.3.11)

we have that

1

γ
ln

2C(1− µ(B))

µ(B)
≤ p <

1

γ
ln

2C(1− µ(B))

µ(B)
+ 1. (IX.3.12)
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Furthermore, choose t ∈ N such that

t := inf

{
k ∈ N : k >

2 |ln ε|
µ(B)

[
1

γ
ln

[
2C(1− µ(B))

µ(B)

]
+ 1

]}
. (IX.3.13)

Since for all 0 < x < 1, |ln(1− x)| > x, then putting x = µ(B)/2 gives

t >

[
1

γ
ln

[
2C(1− µ(B))

µ(B)

]
+ 1

] |ln ε|
1
2
µ(B)

> p
|ln ε|∣∣ln (1− 1

2
µ(B)

)∣∣ . (IX.3.14)

Given (IX.3.11), (IX.3.14), and lemma IX.3.5, µ(E(c, r, t)) < ε so that

µ(M\ E(c, r, t)) > 1− ε. Put G (c, r) =M\ E(c, r, t). For y ∈ G (c, r), lemma IX.3.5

implies τ [B, y] ≤ t and by (IX.3.13),

t ≤ 2 |ln ε|
µ(B)

[
1

γ
ln

[
2C(1− µ(B))

µ(B)

]
+ 1

]
+ 1.

This is equivalent to (IX.3.8) and (IX.3.9).

We now show that (IX.3.10) holds. We show that,

µ

({
y ∈M : lim sup

µ(B)↓0

ln τ [B, y]

− lnµ(B)
> 1

})
= 0. (IX.3.15)

We first note that

lnϕ(µ(B)) = ln

[
2 |ln ε|

[
1

γ
ln

(
2C(1− µ(B))

µ(B)

)
+ 1

]
+ µ(B)

]
≤ ln(2 |ln ε|) + ln

1

γ
+ ln ln

(
2C ′

µ(B)

)
+ 2

where C ′ ≥ C is a constant chosen so that 1
γ

ln (2C ′) ≥ 1.

Fix i ∈ N. Define the sequence {Bj}∞j=2 as Bj := B(c, rj), where rj is such that

µ(Bj) = 1/j. Define εj = µ(Bj)
2 ≡ 1/j2, so that εj < 1− 1

2
µ(Bj) for all j. Then

ln τ [Bj, y] ≤ ln
(
ϕ(µ(Bj)) · µ(Bj)

−1
)

≤ − lnµ(Bj) + ln(4 |ln j|) + ln
1

γ
+ ln ln

(
2C ′

µ(Bj)

)
+ 2.
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By lemma IX.3.5, this holds on a set of measure greater than 1 − εj = 1 − j−2.

Therefore,

ln τ [Bj, y]

− lnµ(Bj)
≤ 1 +

ln(4 |ln j|)
− lnµ(Bj)

+
ln 1

γ

− lnµ(Bj)
+

ln ln
(

2C
µ(Bj)

)
− lnµ(Bj)

+
2

− lnµ(Bj)
. (IX.3.16)

on a set of measure greater than 1− j−2.

Define

ϕj(y) :=


ln τ [Bj, y]

− lnµ(Bj)
− 1, if

ln τ [Bj ,y]

− lnµ(Bj)
− 1 ≥ 0,

0 otherwise

,

so that {ϕj}∞2 is a sequence of non-negative functions. Let

Fj :=

{
y ∈M : ϕj(y) >

1

i

}

and define

F := lim sup
j→∞

Fj ≡
∞⋂
j=1

∞⋃
k=j

Fk =
∞⋂
j=1

∞⋃
k=j

{
y ∈M : ϕk(y) >

1

i

}
.

Note that it is always true that

{
y ∈M : lim sup

j→∞
ϕj(y) >

1

i

}
⊂ F ,

so we only need to show that µ(F) = 0. Note that
⋃∞
k=j

{
y ∈M : ϕk(y) > 1

i

}
is a

monotonically decreasing sequence of sets in the variable j, and since µ is continuous

on monotonic sequences of sets,

µ(F) = lim
j→∞

µ

(
∞⋃
k=j

Fk
)
≤ lim

j→∞

∞∑
k=j

µ(Fk).
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If we can show that
∑∞

j=1 µ(Fj) <∞, we will be done since then limj→∞
∑∞

k=j µ(Fk) =

0.

Consider (IX.3.16). Since we have chosen µ(Bj) = 1/j, then for large enough j,

the expression on the right side of (IX.3.16) will be less than or equal to 1 + 1/i, and

this will be true on a set of measure greater than 1− 1/j2. This implies that for such

j, ϕj(y) ≤ 1/i on a set of measure greater than 1 − 1/j2. Therefore, for sufficiently

large j, µ(Fj) < 1/j2, and hence {µ(Fj)} is summable, as required. Therefore,

µ

({
y ∈M : lim sup

j→∞
ϕj(y) >

1

i

})
= 0.

Since i ∈ N was arbitrary, the above holds for all i ∈ N. Since{
y ∈M : lim sup

j→∞
ϕj(y) > 0

}
=
∞⋃
i=1

{
y ∈M : lim sup

j→∞
ϕj(y) >

1

i

}
,

then µ
({
y ∈M : lim supj→∞ ϕj(y) > 0

})
= 0.

We have shown that (IX.3.15) holds for a specific decreasing sequence {Bj}. Now

we need to strengthen it to hold for arbitrary µ(B). This is easily done by noting that

for any B(c, r), there is some j such that Bj ⊂ B(c, r) ⊂ Bj−1. Then the following

holds for every y:

ln τ [Bj−1, y]

ln(j − 1)

ln(j − 1)

ln j
<

ln τ [B(c, r), y]

− lnµ(B(c, r))
<

ln τ [Bj, y]

ln j

ln j

ln(j − 1)
.

Both the lower bound and upper bound have the same lim sup and therefore

lim sup
µ(B(c,r))→0

ln τ [B(c, r), y]

− lnµ(B(c, r))
= lim sup

j→∞

ln τ [Bj, y]

− lnµ(Bj)
.

This completes the proof.
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Remark IX.3.7. The results can be restate in the following “confidence” form: For

a fixed B = B(c, r),

µ
({
y ∈M : τ [B, y] ≤ ϕ(µ(B)) · µ(B)−1

})
> 1− ε

Remark IX.3.8. In the above proposition, we fixed an ε > 0 and to this ε there

corresponded a t satisfying (IX.3.7) and a set of initial conditions E(c, r, t) such that

µ(E(c, r, t)) < ε and for y /∈ E(c, r, t), τ [B, y] ≤ t.

Alternatively, for a fixed y ∈ M, ε can be made a function of y. Do this as

follows. Assume the hitting time of B from y is finite. Let n = τ [B, y]. Let G (k) =⋃k
j=0 T

−j(B) and define ζ(y) = µ(G (n)). Note that G (k) is the set of y having hitting

times less than or equal to k. There are two cases: either 1 − ζ(y) > 1 − 1
2
µ(B), or

1− ζ(y) ≤ 1− 1
2
µ(B).

In the first case, take ε = 1− 1
2
µ(B). From lemma IX.3.5, we can take t = p+ 1.

For this t, µ(E(c, r, t)) < ε. Since ε < 1 − ζ(y) = µ(E(c, r, n)), then µ(E(c, r, t)) <

µ(E(c, r, n)). Since E(c, r, ·) is a monotonically decreasing sequence of sets, the previ-

ous inequality implies t > n. Therefore, y /∈ E(c, r, t).

In the second case, define ε = 1 − ζ(y). The conditions of lemma IX.3.5 again

hold. If we let t satisfy (IX.3.7), then µ(E(c, r, t)) < ε = 1− ζ(y) = µ(E(c, r, n)). By

the same argument as above, t > n and y /∈ E(c, r, t).

In either case, (IX.3.8) and (IX.3.9) still hold, only now ε is a function of y. For

fixed y, this is just a constant and we can regard τ [B(c, r), y] as a function of the
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radius r only2. Hence, for any fixed y having a finite hitting time for B, τ [B, y] =

O( 1
µ(B)

ln 1
µ(B)

).

IX.3.2 Nonuniform exponentially mixing transformations

The uniform exponential mixing condition used in the previous sections can be

changed to the weaker form of exponential mixing given by (IX.2.12) and similar

results will hold. In this case, we would get a decay rate for µ(E(c, r, t)) that depends

on (µ(M − B))−1 instead of (IX.3.4). Regardless, p can still be chosen so that

µ(E(c, r, t)) ≤ (1 − 1
2
µ(B))m+1. The following two lemma make this precise and are

analogues to lemma IX.3.2.

Lemma IX.3.9. Assume T : M → M satisfies (IX.2.12) and fix c ∈ M. Then,

there exists an integer p ≥ 1 and a λ > 0, both depending on the radius of the target

r, the measure µ preserved by T , and the mixing rate γ, such that for t > p

µ(E(c, r, t)) ≤ e−λt . (IX.3.17)

Proof. Define B, Et, p, m, and Cm as in lemma IX.3.2. Letting Bc =M\B, we have

µ(Et) ≤ µ(Cm) ≤ µ(Bc)µ(Cm−1) + Cµ(Cm−1)e−γp

=

(
1 +

C

µ(Bc)
e−γp

)
µ(Bc)µ(Cm−1)

2We always assume that the center c of the ball is fixed.
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Proceeding inductively,

µ(Et) ≤
(

1 +
C

µ(Bc)
e−γp

)m
µ(Bc)mµ(C0)

≤
[(

1 +
C

µ(Bc)
e−γp

)
µ(Bc)

]m+1

=

[(
1 +

C

1− µ(B)
e−γp

)
(1− µ(B))

]m+1

By choosing p ∈ N so that

p ≥ 1

γ
ln

2C

µ(B)
(IX.3.18)

we have

[(
1 +

C

1− µ(B)
e−γp

)
(1− µ(B))

]
≤ 1− µ(B)

2
.

Then

µ(Et) ≤
[
1− µ(B)

2

]m+1

≤
(

1− µ(B)

2

)t/p
Putting λ = −1

p
ln(1− µ(B)

2
), gives µ(Et) ≤ e−λt.

Despite this weaker form of mixing, Lemma IX.3.5 remains unchanged and we

still have an analogue of proposition IX.3.6. The difference is that the premultiplier

ϕ will not be given by (IX.3.9), but some other function of µ(B).

Proposition IX.3.10. Assume T : M → M satisfies (IX.2.12) and preserves a

measure µ equivalent to the Lebesgue measure. Fix any c ∈ M, r > 0, and let

B = B(c, r) ⊂ M. Then for any 0 < ε < 1 − 1
2
µ(B), there exists a set G (c, r), with
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µ(G (c, r)) > 1− ε, such that for y ∈ G (c, r),

τ [B, y] ≤ ϕ(µ(B)) · µ(B)−1 (IX.3.19)

where

ϕ(µ(B)) = 2 |ln ε|
[

1

γ
ln

2C

µ(B)
+ 1

]
+ µ(B). (IX.3.20)

Furthermore,

µ

({
y ∈M : lim sup

µ(B)↓0

ln τ [B, y]

− lnµ(B)
≤ 1

})
= 1 . (IX.3.21)

As the proof proceeds exactly the same as for Proposition IX.3.6, except that p

is now given by the infimum of integers satisfying (IX.3.18), rather than (IX.3.11), it

will not be repeated.

IX.3.3 Summable mixing systems

While everything above was derived for an exponentially mixing maps, the same

procedure can be used for uniform summable mixing transformations of the form

∣∣µ(A ∩ T−kB)− µ(A)µ(B)
∣∣ ≤ Cµ(A)µ(B)Φ(k) , (IX.3.22)

where Φ(k) is a summable, monotonically decreasing sequence of positive numbers.

In this case, there will not be a nice expression for the time p we must wait for the

process to look nearly independent as we do in (IX.3.5). We will however have the

condition

µ(E(c, r, t)) ≤ [(1− µ(B))(1 + CΦ(p))]m+1.
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which is analogous to (IX.3.4). As before, p can be chosen so that

(1− µ(B))(1 + CΦ(p)) ≤ 1− 1

2
µ(B).

IX.3.4 Measures equivalent to the Lebesgue measure

Thus far, we have talked about asymptotic laws in terms of the preserved measure

µ or, equivalently, the “µ-size” of the target. However, when one thinks of searching

for a target, it is natural to talk about its size in terms of its volume. The equivalence

of the measures allows us to transform statements in terms of µ, which is natural

for the transformation, into statements in terms of the Lebesgue measure, which is

natural for the problem specification. This is the content of the following proposition.

Proposition IX.3.11. If T : M → M satisfies (IX.3.1) and µ satisfies (IX.2.8),

then

lim sup
vol(B(c,r))→0

τ [B(c, r), y]

− ln vol(B(c, r))
≤ 1 . (IX.3.23)

Proof. Fix c ∈ M. Let B = B(c, r). By lemma IX.3.1 above, there is a ϕ(µ(B))

having the properties
lnϕ(µ(B))

− lnµ(B)
→ 0 as µ(B) → 0, and, for all µ(B) sufficiently

small, τ [B, y] < ϕ(µ(B))µ(B)−1. By the assumption, (IX.2.8), on the ergodic measure

µ, dµ = f dx and 0 < α ≤ f(x) ≤ β for all x ∈ M. Using this to bound µ(B)−1, we

get for µ(B) sufficiently small

τ [B, y] < αϕ(µ(B)) vol(B)−1
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This implies that

ln τ [B, y]

− ln vol(B)
<

lnα

− ln vol(B)
+

lnϕ(µ(B))

− ln vol(B)
+ 1. (IX.3.24)

By (IX.2.8),
− lnµ(B)

− ln vol(B)
is bounded, so that

lnϕ(µ(B))

− ln vol(B)
=

lnϕ(µ(B))

− lnµ(B)

− lnµ(B)

− ln vol(B)
→ 0

and hence

lim sup
vol(B)→0

ln τ [B, y]

− ln vol(B)
≤ 1, (IX.3.25)

which proves the result.

IX.4 Expected search time

In the previous sections, we showed relations of the form

lim sup
vol(B)→0

ln τ [B(c, r), y]

− ln vol(B(c, r))
≤ 1 (IX.4.1)

for every c and almost every y. We now compute the expected search time for these

classes of transformations. The main result states that the expected search time

behaves like H(c, y, δ) = O(ln 1
δ
).

Proposition IX.4.1. If T : M → M is a transformation satisfying (IX.4.1) and

νδ(u; ξ) is the nearly uniform distribution on target sizes given by (VIII.0.2), then for

every c and almost every y

lim
ξ→0

lim sup
δ→0

H(c, y, δ)

− ln δ
≤ 1

V
. (IX.4.2)
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Proof. Fix c ∈ M. Let B = B(c, r). ξ > 0 is the parameter of the nearly uniform

distribution. Per lemma IX.3.1 (where we have replaced µ with m), there is a uξ > 0

such that for almost every y, τ [B, y] ≤ m(B)−(1+ξ) if m(B) ≤ uξ. If r(u) is the radius

needed to make the volume of the ball equal to u, then we write u = m(B(c, r(u)).

Assume that δ satisfies 0 < δ < uξ. We can decompose the definition of H(c, y, δ) as

H(c, y, δ) =

∫ uξ

δ

νδ(u; ξ) τ [B(c, r(u)), y] du+

∫ V

uε

νδ(u; ξ) τ [B(c, r(u)), y] du .

(IX.4.3)

Consider the first integral on the second line.

∫ uξ

δ

νδ(u; ξ) τ [B(c, r(u)), y] du ≤
∫ uξ

δ

Kδu
ξu−(1+ξ) du = Kδ ln

uξ
δ
. (IX.4.4)

where Kδ :=
1 + ξ

V 1+ξ − δ1+ξ
.

Consider the second integral in (IX.4.3). For all u ∈ (uε, V ),

τ [B(c, r(u)), y] ≤ τ [B(c, r(uξ)), y] ≤ u
−(1+ξ)
ξ .

Therefore

∫ V

uε

νδ(u; ξ) τ [B(c, r(u)), y] du ≤
[
V 1+ξ − u1+ξ

ξ

V 1+ξ − δ1+ξ

]
u
−(1+ξ)
ξ . (IX.4.5)

From (IX.4.4) and (IX.4.5)

H(c, y, δ)

− ln δ
≤ Kδ −Kδ

lnuξ
ln δ

+

[
V 1+ξ − u1+ξ

ξ

V 1+ξ − δ1+ξ

]
u−1−ξ
ξ

− ln δ

for all 0 < δ < uξ, and hence

lim sup
δ→0

H(c, y, δ)

− ln δ
≤ (1 + ξ)

V 1+ξ
.
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Since this is true for any ξ > 0,

lim
ξ→0

lim sup
δ→0

H(c, y, δ)

− ln δ
≤ 1

V
,

and the proof is complete.

IX.4.1 Simulations

The first set of simulations are computations of the hitting times for the 1-

dimensional subdivision and q-adic examples above (see IX.1.2 and example IX.2.14,

respectively). For each simulation, a fixed set of M = 100 initial conditions for the

searcher was chosen to be uniformly distributed in [0, 1). For the jth initial condition,

a trajectory {yj,0, yj,1, . . . , yj,N−1} (N = 106) was generated using the appropriate

process. A center c ∈ [0, 1) for the target was fixed. For each k ∈ {0, . . . , N − 1}, rj,k

was defined as

rj,k = min {|yj,i − c| : 0 ≤ i ≤ k} . (IX.4.6)

Each rj,k measures the closest the trajectory came to the target center in the time in-

terval [0, 1, . . . , k]. Note that for any r ≥ rj,k, the hitting time satisfies τ [B(c, r), yj,0] ≤

k. This gave a decreasing sequence rj,0 ≥ rj,1 ≥ · · · ≥ rj,N−1.

Define Rk as

Rk = max {rj,k : 1 ≤ j ≤M} . (IX.4.7)

The variable Rk gave a lower bound for the smallest target size having hitting time

equal to k, uniform over the chosen initial conditions; i.e., for all r ≥ Rk and all
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initial conditions yj,0 (j = 1, . . . ,M), τ [B(c, r), yj,0] ≤ k. If enough initial conditions

are taken, then k is an estimate for an upper bound, uniform over almost all initial

conditions, for the hitting time of a target centered at c with volumes greater than

vol(k) = 2Rk.

Figures IX.2a - IX.2c show the hitting time for the 1-dimensional subdivision

process (ranks 2, 3, 4) defined in IX.1.2. The plots are of k-vs-vol(k) and include

simulations results for 100 different target centers, chosen uniformly at random in

[0, 1). Results of the simulations are plotted in color (lower curve). The upper bound

for the 1D simulations (equation (IX.1.9)) is plotted in black (upper curve). The data

is plotted on a log-log scale and shows the 1/vol(B) order for the hitting time. Note

that the bound is tight since for any subdivision level j, there exists a target B(c, r)

whose hitting time is exactly qj.

The same simulations were performed for the q-adic maps (q = 2, 3, 4). The

difference were the initial conditions used. Since, for an integer q, the q-adic map

will eventually map any rational point to the fixed point at 0, an irrational point

very close to the specified initial conditions was taken instead. This can be done

by representing a number in [0, 1) as a q-ary expansion; y =
∑∞

j=0 akq
−(k+1), where

ak ∈ {0, . . . , q − 1} are called the q-bits. The q-adic map is the shift operator on

the sequence. For a rational y, the first 64 q-bits were computed. The rest of the

sequence was filled with integers taken uniformly at random from {0, . . . , q − 1}. This

guaranteed that the irrational point was within q−64 of the specified initial condition.
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Figures IX.3a - IX.3c show results of the q-adic simulations in color (lower curve).

The analytic upper bound given by (IX.3.8) and (IX.3.9) is plotted in black (upper

curve). The constants in (IX.3.9) were chosen as C = q, γ = ln q, and ε = 0.01.

Note that the mixing rate, γ, was replaced with the Lyapunov exponent of the map.

For topologically mixing piecewise expanding Markov maps with slopes of the same

sign (of which, the q-adic maps are examples), the mixing rate is bounded above by

the Lyapunov exponent; γ ≤ Λ [SBJ13]. Therefore, by replacing the mixing rate,

γ, with the Lyapunov exponent in (IX.3.9) gives a tighter bound. The data is again

plotted on a log-log scale to show the 1
vol(B)

ln( 1
vol(B)

) order for the hitting time. Note

that these bounds are not as tight as for the subdivision map. This is due to having

to estimate the measure of the exception set in the course of the proof of (IX.3.8)

by choosing an appropriate gap time. Many gap times are feasible and it was never

claimed that the one chosen was optimal. A slight increase in the distance of the

data and the upper bound can be seen as we progress to smaller target volumes. This

suggests that the order of the hitting time is actually smaller than the 1
vol(B)

ln( 1
vol(B)

)

of the proof.

Figures IX.4a and IX.4b show the expected hitting time H(c, y, δ) averaged over

target centers and initial conditions for the searcher for the 1-dimensional subdivision

algorithms and q-adic maps, respectively. On the y-axis is plotted an approximation

of

E [H(c, y, δ)] =
1

0.01− δ

∫ 0.01

δ

E [τ(B(u))] du (IX.4.8)
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where the maximum target volume was chosen as V = 10−2 and

E [τ(B(u))] =

∫ 1

0

∫ 1

0

τ [B(c, r(u)), y] dc dy. (IX.4.9)

In simulations, (IX.4.9) was approximated by Monte Carlo integration over pairs

(cp, yp) in the square [0, 1)× [0, 1), so that

E [τ(B(u))] ≈ 1

P

P∑
p=1

τ [B(cp, r(u)), yp], (IX.4.10)

where P = 2× 103. Since τ [B(c, r(u)), y] is piecewise constant with respect to u, the

integral (IX.4.8) was approximated by a Riemann sum. The partition size was chosen

as ∆u =
10−2 − 10−6

104
. Then uj := 10−2 − j∆u, for j = 0, . . . , 104 − 1. For each uk,

E [H(c, y, uk)] ≈
1

V − uk

k∑
j=1

E [τ(B(uj))] ∆u

Note that this is an approximation from above.

Figure IX.4a clearly shows the separation between the subdivision algorithms as

predicted by (IX.1.9). The expected hitting times for the q-adic maps do not share the

same clean separation. Both figures IX.4a and IX.4b, however, show the asymptotic

behavior of the algorithms as O(− ln δ) as predicted by (IX.4.2).
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Figure IX.2: Hitting time of the 1D subdivision algorithms. Hitting time from simulations

for 100 target centers are plotted in color (stair-step, lower curve). The upper bound given

by (IX.1.9) is plotted in black (upper line).
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Figure IX.3: Hitting time of the q-adic maps. Hitting times from simulations for 100 target

centers are plotted in color (lower curve). The upper bound given by (IX.3.8) is plotted in

black (upper curve).
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(a) 1D subdivision algorithms.
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Figure IX.4: The expected hitting time H(c, y, δ) averaged over c and y.
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IX.5 Continuous-time dynamics

In the previous sections, it was assumed the searcher evolved according to a

discrete-time map. In this section, continuous-time search transformations are con-

structed using a discrete-time map. The basic idea is to use the discrete-time map

to generate waypoints that a searcher moves between according to some type of con-

tinuous dynamics. In general, it cannot be guaranteed that the continuous-time

transformation has the same ergodic measure as the discrete-time map. However,

the upper bound on the hitting time in the discrete-time case can be used to de-

rive an upper-bound for the continuous-time case. In passing from discrete-time to

continuous-time, some of the tightness on the upper bound is lost. As we are inter-

ested in the case when V � diamM, it is natural to approximate the dynamics of

the searcher by a first-order differential equation.

IX.5.1 First-order dynamics.

Let T : M → M, M = Tn, be an ergodic discrete time map with a preserved

measure µ absolutely continuous with respect to the Lebesgue measure and having a

strictly positive, bounded Radon-Nikodym derivative. Let the searcher’s position be
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denoted ~s = (s1, . . . , sn) ∈M. The searcher’s dynamics are defined

~̇s(t) = −umin
~s(t)− ~w(t)

‖~s(t)− ~w(t)‖

~w(t) = T k(t)(~y)

k(t)←


k(t), ~s(t) 6= ~w(t)

k(t) + 1, ~s(t) = ~w(t)

(IX.5.1)

where k(0) = 0, ~y ∈ M, and umin > 0. We call ~wk = T k(~y) the kth waypoint. Note

that k(t) is an N0-valued jump-process driven by the transformation T that updates

when the searcher reaches a waypoint.

Let {tk}∞0 be the times at which the searcher arrives at the kth waypoint; i.e.,

~s(tk) = T k(~y) and tk ≥ tk−1. Denoting the hitting time for the discrete-time map T

as τd[B(c, r), ~y] and the hitting time for the continuous-time system as τc[B(c, r), ~s]

allows us to write

τc[B(c, r), ~s] := inf {t ≥ 0 : ‖s(t)− c‖ < r, t ∈ R} ≤ t0 +

τd[B(c,r),~y]∑
k=1

tk − tk−1. (IX.5.2)

This merely says that the first time the continuous trajectory enters the set B(c, r)

must be less than the sum of the inter-arrival times between waypoints, where the

sum is taken up to the hitting time for the discrete-time map T . This is easily seen

since T τd[B(c,r),y](y) ∈ B(c, r) and the right side of (IX.5.2) defines the time the system

has been running. Therefore, if the inter-arrival times {tk − tk−1} can be bounded,

an upper bound for the continuous-time case can be derived from the discrete-time

case.
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The bound on the inter-arrival times can be computed by noting that ‖ṡ(t)‖ = umin

for all t ≥ 0 and

tk − tk−1 ≤
diamM
umin

.

When M = [0, 1]n, (IX.5.2) becomes

τc[B(c, r), y] ≤
√
n

umin

τd[B(c, r), y]. (IX.5.3)

IX.6 Discussion and Conclusions

Our results show, when searching for a target while having almost no prior infor-

mation, that one can do much better than when using a näıve (rational) lawnmower

algorithm. In particular, we investigated the hitting times for discrete-time expo-

nentially mixing transformations, obtaining explicit estimates for systems with expo-

nential mixing rates. The finite-time “confidence” results were extend to show that

asymptotically, the hitting time behaved as τ [B, y] = O(vol(B)−1) and the expected

hitting time H(c, y, δ) = O(− ln δ) for every target center c and almost every initial

condition y for the searcher. These results are very similar to what one finds when

looking at iid processes. In a certain sense, mixing transformation are no different

than iid processes and much of the intuition from the iid case carries over to the

mixing case.

By constructing continuous-time dynamics by using a discrete-time transforma-

tion, the discrete-time results could be pushed to the continuous-time case by looking
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at a finite sum of the inter-arrival times between the “waypoints” generated by the

discrete-time map. For first-order dynamics and bounded domains, the inter-arrival

times could be bounded above so that the hitting time for the continuous dynamics

were just a constant multiplying the hitting time for the discrete-time transformation.

While this work investigated exponentially mixing transformations and used the

lack of ergodicity of the rational lawnmower algorithm to justify this focus, the reader

will notice that a perfectly acceptable modification to the lawnmower algorithm is to

use an irrational shift parameter instead of a rational one. It is well known that irra-

tional shifts on the circle are ergodic, but not mixing (see [LM94] or any standard text

on ergodic theory). Hitting and recurrence times of almost every irrational shift on

the unit interval also satisfy limit laws of the type (IX.1.5) for dyadic intervals [KS03],

even though these transformations have fundamentally different behavior than mix-

ing transformations. Although not shown here, numerical simulations have shown

that irrational rotations on the circle perform better than their mixing counterparts

in terms of the search problem, even though both have the same asymptotic law.

However, much of the analysis for irrational shifts depends on the continued fraction

representation of the shift parameter [Kim06; Kim07; KS03]. Unfortunately, exten-

sions of continued fractions to higher dimensions are difficult. This makes analysis

of irrational shifts in higher dimensions problematic and, at this time, the author

is unaware of any analytic recurrence or hitting time results for irrational shifts in

higher dimensions. This is contrasted with the results in this paper which hold in
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arbitrary dimensions as long as the appropriate mixing conditions are satisfied.

We wish to mention one other point. The results in the paper relied on the fact

that the transformation chosen to generate the search dynamics was exponentially

mixing. A number of simple classes of transformation have been shown to have this

mixing property, usually by showing that the associated Perron-Frobenius operator

has a spectral gap between 1 and the magnitude of the next largest eigenvalue. Sim-

ilar results for higher-dimensional expanding maps have been shown as well (see, for

example, [Liv12]). Given some dynamics in a higher-dimensional space, if one would

like to use the results in this chapter, one would first need to prove that the trans-

formation is exponentially mixing and estimate its mixing rate, tasks that are not

simple for a general system. It would be desirable to have a constructive procedure

for specifying a transformation in arbitrary dimension with a specified mixing rate.

The authors are unaware of any such procedure at this time. This will be the subject

of future work.
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