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Abstract 

Urban forest ecosystem analysis using fused airborne hyperspectral and 
lidar data 

 
by Michael G Alonzo 

 

Urban trees are strategically important in a city's effort to mitigate their carbon 

footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most 

common method for quantifying urban forest structure and ecosystem function is 

through field plot sampling. However, taking intensive structural measurements on 

private properties throughout a city is difficult, and the outputs from sample 

inventories are not spatially explicit. The overarching goal of this dissertation is to 

develop methods for mapping urban forest structure and function using fused 

hyperspectral imagery and waveform lidar data at the individual tree crown scale.  

Urban forest ecosystem services estimated using the USDA Forest Service’s i-

Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index 

(LAI). Accordingly, tree species were mapped in my Santa Barbara, California study 

area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis 

methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry 

(AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) 

to maximize classification accuracy in a complex environment. AVIRIS imagery was 

critical to achieving an overall species-level accuracy of 83.4% while lidar data was 

most useful for improving the discrimination of small and morphologically unique 

species. LAI was estimated at both the field-plot scale using laser penetration metrics 

and at the crown scale using allometry. Agreement of the former with photographic 
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estimates of gap fraction and the latter with allometric estimates based on field 

measurements was examined. Results indicate that lidar may be used reasonably to 

measure LAI in an urban environment lacking in continuous canopy and characterized 

by high species diversity. Finally, urban ecosystem services such as carbon storage and 

building energy-use modification were analyzed through combination of 

aforementioned methods and the i-Tree Eco modeling framework. The remote sensing 

methods developed in this dissertation will allow researchers to more precisely 

constrain urban ecosystem spatial analyses and equip cities to better manage their 

urban forest resource.  
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Chapter 1 
 

Introduction 
 

1.1 Motivation and summary of chapters 

More than 50% of all humans live in cities (UN-DESA, 2014). Urban areas, while 

representing less than 3% of the earth's land area, have a disproportionate impact on 

global climate change (Grimm et al., 2008). Conversely, cities are susceptible to the 

impacts of climate change such as storm surges associated with sea level rise and more 

intense heat waves, which can also exacerbate already poor air quality (Grimm et al., 

2008; Nicholls & Cazenave, 2010). Unmitigated impacts will, given the densely settled 

nature of cities, be magnified and potentially lead to negative human health outcomes, 

property damage, and generally decreased livability (Georgi & Dimitriou, 2010; 

Kalkstein & Greene, 1997). The drivers of undesirable environmental conditions in 

cities can be linked to current urban morphology which is dominated by dark, 

manmade materials that reduce albedo, urban canyons that trap longwave radiation at 

night, and impervious surfaces that intensify stormwater runoff (Grimm et al., 2008; 

Oke, 1982). In response, many cities are working to augment and optimally arrange 

green infrastructure to lower temperatures, reduce air pollution, dampen and delay 

runoff from precipitation events, and even sequester carbon (McPherson et al., 2011; 

Myint et al., 2010). 
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Urban trees in particular are strategically important in a city's effort to both 

reduce their carbon footprint and improve mitigation of heat island effects, air 

pollution, and stormwater runoff (Myint et al., 2010; Nowak et al., 2014). Trees 

sequester carbon and, through shading and evapotranspiration, reduce power plant 

emissions associated with mechanized cooling (Akbari, 2002; McPherson & Simpson, 

1999b). Lowered urban temperatures also improve air quality with further gains 

brought about by contaminant deposition on and absorption by leaves (Nowak et al., 

2006a). Finally, peak flow of stormwater runoff is delayed due to tree canopy 

interception of precipitation (Xiao et al., 2000). This increases the likelihood of properly 

functioning gray infrastructure and reduces physical damage from flooding and 

contamination of downstream water bodies.  

Currently, the most common method for quantifying urban forest structure and 

ecosystem function is through implementation of the USDA Forest Service’s i-Tree Eco 

(formerly Urban Forest Effects or UFORE) model (www.itreetools.org; Nowak et al., 

2008a). The i-Tree Eco model requires intensive tree and ground measurements from 

200+ sample plots as inputs. Key model outputs leveraged by cities in their planning 

processes include estimates of stem counts by species, air pollution removal, carbon 

sequestration, and building energy-use modification. However, field sampling methods 

come with potential drawbacks: (1) they are labor and time intensive, generally taking 

a trained, 2-person field crew ~14 weeks to sample about 200 one-tenth acre plots 

(Nowak et al., 2008b); (2) they can be expensive, depending upon local costs; (3) 

permission to access plots may be limited in some areas; (4) the magnitudes of 

fundamental outputs such as species and tree size distributions are subject to sampling 
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error that is dependent upon sample size and forest variability; (5) the results are 

averages or totals within classes and not spatially explicit across the city.   

The goal of the research presented in this dissertation was to create a citywide, 

spatially explicit urban forest inventory through fusion of hyperspectral imagery with 

high point-density lidar data. To achieve this goal, I completed three projects leading to 

actionable maps of urban forest structure and function in my study area of Santa 

Barbara, California. First, I classified each tree in Santa Barbara’s urban forest to either 

the species or leaf type level. Second, I developed methods for mapping urban leaf area 

index (LAI) using allometry and laser penetration metrics. Third, I produced spatially 

explicit models of the urban forest’s potential for air pollution removal and carbon 

storage. The uncertainties associated with remotely estimated urban forest structure 

and function were also evaluated and compared to current, field-based methods. 

In Chapter 2, I assess the extent to which species can be identified using fused 

3.7 m resolution Airborne Visible/Infrared Imaging Spectrometer (Green et al., 1998) 

imagery and 22 pulses m-2 waveform lidar data. Here, I focus on discriminating 29 

species representing approximately 80% of Santa Barbara’s canopy cover at the 

individual tree crown scale (hereafter “crown scale”). From crowns that were isolated 

using watershed segmentation, I developed methods to extract 28 lidar structural 

metrics (e.g., tree height, crown porosity) directly from the 3-D point cloud. These 

measurements were concatenated to spectral information from all available crown 

pixels to form the input dataset to a canonical discriminant analysis (CDA) classification 

algorithm. Beyond developing a method for accurately mapping a high number of 
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species, this portion of the research yielded an improved understanding of the 

biochemical and biophysical determinants of species separability.  

Leaf area index (LAI) plays a key role in mediating urban forest ecosystem 

functions such as air pollution removal and urban cooling. In Chapter 3, I explore the 

utility of lidar data at both the crown and field-plot scales for estimating LAI. For plot-

scale estimates, validated against hemispherical photography, I developed lidar 

penetration metrics (LPM) essentially using the passage of lidar returns through 

canopy to ground as a proxy for gap fraction. Crown scale estimates were based on 

structural measurements (tree height, crown base height, crown diameter) available 

from the segmented lidar dataset and allometric scaling. These estimates were 

validated against LAI outputs using i-Tree Eco allometric equations and field-measured 

inputs. Additional contributions of this chapter include an improved understanding of 

the impact of leaf angle distribution on LPMs (particularly in diverse forests) and 

methods for maintaining accuracy under conditions of discontinuous canopy cover and 

high scan-angle lidar data.  

In Chapter 4, I apply the species identification and LAI estimation methods 

developed in Chapters 2 and 3 to create wall-to-wall maps at the crown scale of each 

quantity. The species map was further validated against a City of Santa Barbara street 

tree dataset and broad spatial patterns were examined. Classification uncertainties in 

the species map were compared against sampling uncertainties that are a byproduct of 

field plot methods. The LAI map was used to demonstrate potential for better 

constraining estimates of building energy-use reduction. Finally, dry-weight carbon 
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stock was estimated from lidar structural measurements using three scaling equations, 

one for each leaf type present in the study area: broadleaf, needleleaf, and palm. 

1.2 The urban forest 

Defined broadly, the urban forest is said to include all ecosystem elements 

within a city or an urbanized area. According the UDSA Forest Service1: 

Urban forests broadly include urban parks, street trees, landscaped boulevards, public 

gardens, river and coastal promenades, greenways, river corridors, wetlands, nature 

preserves, natural areas, shelter belts of trees and working trees at industrial brownfield 

sites. 

 

Effectively, an urban forest is not delineated in terms of a natural ecotone but with 

respect to management jurisdiction. While perhaps odd from an ecological perspective, 

matching the urban forest edge to the extents of a political boundary allow for good 

alignment of forest variables with existing socioeconomic and demographic data 

collection units such as U.S. Census tracts (Sanders, 1984). In this dissertation, the 

urban forest is more narrowly considered and includes only trees but all trees 

regardless of specific planting location. That is, a tree is part of an the urban forest 

whether it is part of a “natural” stand, introduced to a landscaped lawn, or amidst a sea 

of pavement in a supermarket parking lot (Fig. 1.1).  

 

 

 

 

                                                           
1
 USDA Forest Service Urban and Community Forestry: http://www.fs.fed.us/ucf/program.shtml 
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Urban forest structure refers to plant characteristics such as species, species 

mix, age/size classes, leaf area, biomass, and health status (Sanders, 1984). This 

structure, with respect to tree species, crown dimensions, leaf area, and biomass, is 

highly variable across the United States and results from the interaction of natural 

(climate, soils) and anthropogenic (development, management practices) forces 

(Jenerette et al., in prep). For instance, Washington, DC is a temperate city located 

within a natural forest matrix. The set of species comprising more than 50% of its 

canopy are all native to the region (e.g., Fagus grandifolia, Liriodendron tulipifera; 

www.itreetools.org/resources/reports). By contrast, Santa Barbara is situated in a 

Mediterranean climate characterized by lower natural canopy cover. The canopy 

dominant in Santa Barbara is the native, Quercus agrifolia but many of the other 

common urban trees are introduced and frequently irrigated. Given the intensity of 

planning and development in urban areas, most urban forest attributes are strongly 

influenced by humans. The following are examples of common controls on urban forest 

structure: 

 Historical planting patterns and management priorities (Dwyer et al., 2000) 

 Utility management including planting small stature species under wires, 

utility pruning, and hazardous tree removal (Goodfellow, 1995). 

Figure 1.1: Examples of urban forest scenes in the Santa Barbara area. All trees within a 
management unit generally comprise the urban forest. 

 

file:///C:/Dropbox/Research/Dissertation/www.itreetools.org/resources/reports
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 Land use intensity and land value (i.e., fewer trees downtown, Hutyra et al., 

2011)  

 Matching tree species with appropriate planting sites considering the 

planting space size/shape, water retention, traffic flow, shade, acceptability 

of litterfall, infrastructure conflicts, etc. (Manning, 2008; Urban, 1992) 

 Ordinances prohibiting the removal of large/heritage trees (Schroeder et al., 

2003) 

 Community and personal preference (Fraser & Kenney, 2000) 

1.3 Urban forest ecosystem services and disservices 

 Urban trees provide a broad array of ecosystem services that are governed by tree 

species, canopy structure, and locational context (Escobedo & Nowak, 2009; Manning, 2008; 

McCarthy & Pataki, 2010; McPherson et al., 2011; Simpson, 2002; Urban, 1992). Commonly 

quantified services include air pollution removal, carbon storage and sequestration, cooling, 

windbreak, and stormwater runoff reduction. Additional relationships have been established 

between the presence of tree canopy and increase in home value (Sander et al., 2010), 

improved health outcomes (Tzoulas et al., 2007; Ulrich, 1984), reduced crime (Kuo & Sullivan, 

2001), and increased retail activity (Wolf, 2005). While the second set of more socially-oriented 

functions are important, there is, when compared to the first set, less direct physical basis for 

relating canopy amounts to the magnitude of the service. In this dissertation, given my choice to 

focus on the i-Tree Eco model, I will only examine the ecophysiological functions relating to CO2, 

heat, water, and momentum fluxes. 
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Tree canopy can at least temporarily remove the pollutants O3,NO2,SO2, CO, and PM-102 

from the air via dry depositional uptake and intercellular suspension (Baldocchi et al., 1987; 

Hirabayashi et al., 2011). The magnitude of the removal is governed by leaf area, pollution 

concentrations, and meteorological conditions (Hirabayashi et al., 2011; Nowak et al., 2006a). 

Increased canopy leaf area, especially over paved surfaces, delays stormwater peak flow 

through interception of precipitation (Xiao & McPherson, 2002). Trees fix atmospheric CO2 as 

woody biomass through the process of photosynthesis. Net carbon sequestration by the urban 

forest is a function current carbon storage, the carbon sequestration rate (i.e., the average 

growth rate), and the carbon loss from mortality and decay (Nowak et al., 2013a). Trees can 

lower urban surface and air temperatures through direct shading and evapotranspiration 

(Simpson, 2002). This effect has been shown on  a broad spatial scale as a function of increased 

fractional cover and LAI and has further been shown to reduce summertime building cooling 

costs (Akbari, 2002; Georgi & Zafiriadis, 2006; Lu & Weng, 2006; Oke, 1989). 

 There is a relatively limited amount of literature associated with ecosystem disservices 

because, as Lyytimäki and Sipilä (2009) mentions, it’s easier to spark enthusiasm among 

“bystanders” (the public) with talk of ecosystem “goods” rather than “bads”. Lyytimäki and 

Sipilä (2009) notes some commonplace disservices from a Scandinavian perspective. They 

include: invasive species, nuisance species, pollen, and other health risks. Lyytimäki et al. 

(2008) note that many disservices are person specific and may result from differing viewpoints 

on what constitutes the ideal urban landscape. For example, families might view the ideal park 

as one that is big and open to facilitate ball playing. Yet, the authors note that compared to a 

recovering brownfield (perhaps on the neglected outskirts of town) this park is “barren green” 

while the brownfield may be home to significant biodiversity. Additionally, tree cover has been 

                                                           
2
 Refers to all particulate matter 10 microns or less. 
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linked to disservices ranging from pollen allergies and blocked views, to sidewalk damage and 

the production of litterfall (Roy et al., 2012). 

1.4 Santa Barbara’s urban forest 

My study area is the land area of downtown Santa Barbara centered at 34° 25' 4”N 

and 119° 41' 48”W and stretching 6.8 km in the east-west direction and 5 km in the 

north-south direction (Fig. 1.2). Santa Barbara is situated on a coastal plain, located 

between the Pacific Ocean to the south and Santa Ynez Range to the north. It benefits 

from year-round mild temperatures associated with its Mediterranean climate.  

The growing season begins following rains in November and dry-down occurs by 

the mid-summer. Summer mean minimum and maximum monthly temperatures are 

14° C and 24° C respectively. Winter highs are near 18° C with lows of 7° C (US Climate 

Data, 2015). Precipitation is highest in the winter months with a monthly average of 10 

Figure 1.2:  Study area with field plots shown inside border of the City of Santa Barbara. 
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cm of rain and lowest in the summer with less than 2 cm. However, over the last 4 rainy 

seasons (2011-2012 to 2014-2015), the average monthly precipitation has been ~6 cm 

(US Climate Data, 2015). Summer fog (June to September) also plays a role in mediating 

temperature and moisture availability along the coast and into some of the valleys. 

 The study area is 27.3 km2, 97% of which lies within the city boundaries of Santa 

Barbara. Fifty four percent of the city of Santa Barbara's land area is contained by the 

study area. The downtown commercial districts of Santa Barbara are situated on the 

coastal plain and exhibit minimal topographic variation. The study-area range of 

elevation values is from 0 m at the beach to approximately 240 m in the foothills at 

study area's northernmost extent. Near the southwestern corner of the study area is 

The Mesa neighborhood, which lies atop one the coastal plain's anticlinal hills (Gurrola 

et al., 2014). The Mesa has a high point of about 120 m above sea level. The areas of 

Santa Barbara with greater topographic relief generally coincide with large single-

family residential homes.  

 

Table 1.1: Study area land uses (LU) in square km and by percent. Right column is the percent field 
plot area in each land use. Nat-Ag-Rec stands for Natural-Agricultural-Recreation. 

 

LU class Study area (km2) Study area (% total) Plot area (%)

Civic 1.50 6.6 9.7

Commercial 1.64 7.3 7.5

Industrial 0.86 3.8 6.4

Multifamily 3.10 13.7 9.4

Nat-Ag-Rec 2.40 10.6 12.1

Single Family 8.02 35.5 29.2

Transportation 5.05 22.4 25.7



 

11 
 

 Santa Barbara is considered an “urbanized area” based on U.S. Census definitions 

since, with 89,000 residents, it is a place with greater than 50,000 people and has a 

population density of greater than 1,000 persons per square mile. Based on census 

block group data from 2010, the study area houses approximately 71,000 of Santa 

Barbara's residents. Table 1.1 shows the distribution of land uses throughout the study 

area. It is clear that the landscape is dominated by single family residential 

development but that multi-family housing and commercial areas also play an 

important role in the spatial composition of the area. 

Fractional canopy cover (fCov) was estimated in 2012 at 25.4% for the entire 

municipality of Santa Barbara using high-resolution digital imagery (City of Santa 

Barbara Urban Forest Management Plan, 2014, www.santabarbaraca. gov).  In my more 

densely developed downtown study area, we estimated tree cover at about 23.7% using 

lidar data. The Santa Barbara area supports a wide variety of native, introduced, and 

invasive tree species. The number of species within the study area is unknown, 

however, 118 unique species were detected during our i-Tree Eco field campaign (105, 

0.04 hectare plots). Also, the City of Santa Barbara maintains a geospatial dataset 

tracking approximately 36,000 publically managed trees. This dataset references more 

than 450 unique species. While this indicates very high diversity, many of these species 

are very rare and may even be specimens with only one local example. According to the 

i-Tree Eco output, the ten most common species  account for just over half of the total 

trees in the study area and the top 25 species account for >80% of canopy cover (Fig. 

1.3).  
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1.5 Monitoring and measuring the urban forest 

In the United States, since the year 2000, most large scale efforts to analyze the 

urban forest ecosystem have made use of the USDA Forest Service’s i-Tree Tools  

software suite. Many cities have specifically employed the i-Tree Eco application to 

broadly estimate citywide structure and function based on a set measurements taken at 

several hundred field plots (see i-Tree Eco reports at: 

www.itreetools.org/resources/reports).  

The sampling and measurement methods employed in an Eco study are adapted 

from Forest Inventory and Analysis (FIA) protocols. Cities generally establish at least 

200 field plots stratified by land use classes. Plots are ideally permanent, meaning that 

annual change in growth and yield can be quantified. This sampling design has 

generally led to a standard error of the estimate of citywide stem count of 

approximately 12% (Nowak et al., 2008a). However, the standard error of particular 

Figure 1.3: The most common species by canopy cover contribution in Santa Barbara compared to 
Washington, DC (Casey Trees, 2010) and Los Angeles (Nowak et al., 2010). The dotted lines indicate 
how many species are needed to reach 80% canopy cover. In L.A. there is no native canopy dominant 
species.   

 

file:///C:/Dropbox/Research/Dissertation/www.itreetools.org/resources/reports
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species stocking levels can vary widely depending on the city’s overall biodiversity as 

well as between-plot heterogeneity. In order to eliminate bias, plots, within each land 

use, are randomly distributed and all effort is made to gain permission to take 

measurements on private property. Each plot has a radius of 11.4 m and an area of 0.04 

ha. 

Within the boundaries of each plot the core tree measurements include species 

identification, diameter at breast height (dbh), crown dimensions, and tree health. 

Additional contextual measurements include ground cover, land use, and impervious 

surface fractions as well as proximity of trees to climate-controlled buildings (Nowak et 

al., 2008a). LAI is modeled from the crown dimension and species data using a log-

linear formula specified for open-grown deciduous trees (Nowak, 1996). Details on the 

estimation of the ecosystem functions discussed in Section 1.3 can be found in the 

following publications: 1) Carbon storage and sequestration (Nowak et al., 2013a); 2) 

Air pollution reduction (Hirabayashi et al., 2011; Nowak et al., 2006a); 3) Stormwater 

runoff reduction (Wang et al., 2008); and 4) Building energy modification (McPherson 

& Simpson, 1999a).  

1.6 Remote sensing of the urban forest 

In contrast to extensive field sampling, remote sensing can provide spatially 

extensive data, potentially with higher temporal resolution and lower cost. However, 

remote sensing has seen limited use in the development of urban forest inventories due 

to the spatial and spectral complexity of urban landscapes (Herold et al., 2004). For 

example, Landsat, a space-borne, multispectral sensor is not well suited to this problem 
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because of its 30 m ground instantaneous field of view, which is much larger than the 

characteristic scale of spatial variation found in urban areas (~5-10 m; Jensen & Cowen, 

1999; Welch, 1982; Woodcock & Strahler, 1987). High spatial resolution (< 3 m), 

multispectral platforms such as IKONOS and GeoEye have allowed for precise mapping 

of urban forest canopy extents (MacFaden et al., 2012; Richardson & Moskal, 2014b) 

but limited spectral information largely precludes species identification or structural 

quantification.  

1.6.1 Species identification using spectral information 

Researchers using imaging spectrometry have successfully classified forest and 

urban tree species using both in-situ and airborne spectral data. At the leaf scale the 

primary controls on reflectance are leaf biochemical properties and leaf anatomy 

(Asner, 1998; Gates et al., 1965; Roberts et al., 2004). At the crown scale, volumetric 

structure and the spatial arrangement of foliage drive multiple scattering of photons in 

the near-infrared (NIR) and reflectance attenuation in the visible (VIS) wavelengths of 

light (Asner, 1998). Inclusion of non-photosynthetic vegetation (NPV) in the reflected 

signal will vary based on LAI, leaf angle distribution, and phenology (Roberts et al., 

2006; Toomey et al., 2009). Asner and Martin (2008) found that if one prescreens for 

high LAI conditions – using the Normalized Difference Vegetation Index (NDVI: Rouse et 

al., 1973) as a proxy – and has a consistent illumination geometry, airborne imaging 

spectrometry data can be used to assess leaf-level chemical properties at the crown 

scale.  

Pu (2009) examined spectral features of 11 urban tree species in Tampa, Florida 

using in-situ spectra. He used pair-wise analysis of variance to track which vegetation 
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indices and narrow-band spectral features were most frequently useful in 

discriminating pairs of species. He found that indices sensitive to water content (e.g. 

normalized difference water index), along with positional and derivative spectral 

features related to pigment status, were most often distinct among species. Cochrane 

(2000) examined 11 tropical tree species with in-situ VIS and NIR spectra to determine 

how well they could be separated from mahogany by capitalizing on interspecies 

variation in spectral brightness and shape. He concluded that while discrimination is 

possible, significant error driven by within-class variability at both the leaf and crown 

level remains.  

Clark et al. (2005) found that canopy structure led to relatively high separability of 

tropical rain forest species at the individual tree crown (ITC) level based on variable 

NIR and shortwave infrared region 2 (SWIR2) reflectance. They were able to 

discriminate among seven emergent tree species with 92% accuracy using 

Hyperspectral Digital Imagery Collection Experiment (HYDICE) imagery and manually 

delineated crowns. Following a previous field study, in which they classified 6 pine and 

hardwood species using spectrometer data, van Aardt and Wynne (2007) evaluated the 

classification of 3 of those species using airborne hyperspectral data at both the pixel 

and 3 x 3-smoothed pixel level. They achieved accuracies of 65% at the pixel level and 

up to 85% after median filtering. Xiao et al. (2004) used spectral mixture analysis 

applied to AVIRIS data to map 22 urban tree species in Modesto, CA with 70% accuracy 

at the species level and 94% division-level accuracy. Zhang and Qiu (2012) created 

crown objects from a lidar point cloud and identified tree-top pixels for 40 species in 
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Dallas, Texas. They used a neural network approach and achieved 69% classification 

accuracy.  

Recent advances in chemometric techniques at the leaf and crown scale (e.g., Asner 

& Martin, 2008) have allowed for spectroscopic quantification of a greater number of 

leaf chemicals than was previously thought possible (Price, 1994). Precise accounting 

for leaf-level chemicals, in turn, improves our ability to classify at the species level given 

more physical variables. Still, in biodiverse environments where there can be hundreds 

of tree species, additional variables that exhibit low correlation with spectral data are 

needed. Structural variability can be accounted for with lidar range and intensity 

metrics (e.g. crown surface mean intensity, relative 90th height percentile). These have 

been used in urban settings to discriminate between coniferous and broadleaf trees and 

for classification at the genus level (Kim et al., 2011, 2009). 

1.6.2 Species identification using lidar 

Holmgren and Persson (2004) sought  to discriminate between pine and spruce 

species using discrete return lidar with a footprint diameter of 0.26m. They delineated 

the ITCs automatically based on fitting a parabolic surface to the rasterized digital 

canopy model.  Using this technique, they detected 91% of the stem volume. This level 

of tree delineation accuracy is less likely in a mixed or deciduous forest due to 

overlapping crowns with indistinct tree tops. Within each crown segment the authors 

computed range-based statistics on the lidar points belonging to that ITC. The features 

can be summarized as:  height central tendency metrics; height percentile metrics; 

height standard deviation metrics; and proportions of first, single, and vegetated 

returns. Given a high degree of correlation among many of these variables, eight 
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groupings that retained some degree of orthogonality were created. When appropriate, 

the variables were normalized by maximum tree height to decrease sensitivity to 

changing laser scanners or seasonality. Linear discriminant analysis (LDA) was 

employed to classify the species and determine the most contributory variables. They 

achieved an overall accuracy of 95% with a set of six variables. The most valuable single 

variable (OA = 88.3%) was pveg (proportion of vegetation returns).  

 Kim et al. (2009) used lidar intensity metrics to discriminate among seven 

coniferous and eight broadleaf species grown in a mostly open (i.e. minimal crown 

overlap) park setting in Seattle, Washington using both leaf-on and leaf-off data. After 

isolating individual crowns the authors compiled nine intensity metrics for the points 

within each crown segment. The most effective individual variables as judged by 

classification accuracy using a linear discriminant function were entire_all (mean 

intensity for all crown returns) for the leaf-on dataset and upper_all (mean intensity 

values for the top 1m of crown returns) for the leaf-off dataset. Ultimately after a 

principal components rotation was applied an overall accuracy of 91% was achieved 

using both datasets in tandem. An interesting point to note was that in overlapping 

crowns, the intensities in the sections of overlap were almost double the values in the 

non-overlapping portion of the crown. Overlapping sections were excluded from 

analysis. Kim et al. (2011) also used three dimensional point-cloud homogeneity 

criteria to separate genera at the same park in Seattle. They used an unsupervised 

cluster analysis method called k-medoid clustering. This method is similar to k-means 

clustering in that it seeks to group similar features but since it’s based on median values 

it is less sensitive to outliers. Clusters of leaf-off data were formed such that evergreen 
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and deciduous trees were separated. Accuracy declined when leaf-on data were 

classified. 

1.6.3 Estimating LAI using lidar 

There has been significant effort in the last decade to quantify forest LAI using 

airborne lidar. The utility of lidar in this context is manifold: First, appropriately high 

point density facilitates characterization of tree crowns in three dimensions. Second, 

modeling the attenuation of lidar beams through canopies is conceptually similar to 

modeling the extinction of sunlight. The latter, using Beer-Lambert’s law is the basis for 

gap-fraction inversion methods of calculating LAI. Thus, model alignment between 

ground data in the form of hemispherical photos is not overly complex theoretically. 

Third, as an active sensor, lidar estimates are not adversely impacted by uneven 

illumination conditions.  

Solberg et al. (2009a) successfully applied airborne laser scanning (ALS) for LAI 

estimation in a homogeneous forest. To create the relationship with LAI-2000 data and 

hemiphotos, they developed regression models based on the log-transformed inverse of 

the ratio of last to first echoes. The form of their equation relating LAI to ALS 

penetration rate is typical of many studies in that it is based on inversion of the Beer-

Lambert law. They reached an r2 of greater than 0.9. They note that in the case of 

relatively homogenous leaf angle distribution, gap fraction can be estimated from a 

vertical angle. Thus, lidar penetration rate may be used to estimate gap fraction 

assuming the beam divergence is generally smaller than the gaps. 
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Zhao and Popescu (2009) estimated the LAI of a pine-dominated forest in East 

Texas. In their study, they highlighted the many places one may encounter issues with 

respect to hemiphoto analysis, algorithm choice, lidar metric choice, and spatial 

alignment of photos with lidar data. For instance, gap fraction results were dependent 

on both the analyst and the algorithm. LAI estimates from one example photo differed 

by 0.28 when different algorithms were compared. Further, they list five impediments 

to developing regression models for LAI using lidar metrics:  

1. One doesn’t know the appropriate height threshold for separating ground 

and canopy 

2. One doesn’t know the field of view of the hemiphotos 

3. Many effective lidar metrics remain site specific 

4. Still lacking exact functional form of relationship between various lidar 

metrics and LAI 

5. Differing forest types will influence relationships between LAI and lidar 

metrics 

Perhaps the most consistently problematic of the above issues is the difficulty relating 

the field of view of hemiphotos to a certain lidar data trap size. Studies that take place 

under homogeneous canopy are less impacted by this issue as it is assumed that LAI 

will be consistent regardless of field of view. In heterogeneous stands this issue is most 

often addressed through correlation analysis in which the zenith angle of the 

hemiphoto and the radius of the lidar data trap are simultaneously varied until optimal 

correspondence is achieved (Morsdorf et al., 2006; Richardson et al., 2009a; Zhao & 

Popescu, 2009). 
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 Of the previous work estimating LAI from discrete return lidar, the studies by 

Morsdorf et al. (2006) and Richardson et al. (2009a) come the closest to addressing the 

issues one will face taking these measurements in an urban setting. Morsdorf et al. 

(2006) introduced a method whereby LAI of a scene (i.e. the field of view of a 

hemiphoto) is estimated with lidar for canopy only and then rescaled based on the 

scene’s fractional vegetation cover. This is applicable to urban areas where, within any 

given plot, there may be extreme heterogeneity in vegetation cover, ranging from 0 to 

100%. This rescaling allows the researcher to exclude all areas of zero vegetation cover 

from the analysis. Richardson et al. (2009a) built on this work in the semi-urban setting 

of Washington Park Arboretum in Seattle. In the Washington Park Arboretum there is a 

wide variety of tree species and high variability in fractional cover. The authors tested 

the capacity of four different models to estimate LAI as measured by the LAI-2000 and 

hemiphotos. They found that the model formulation most closely matching Beer-

Lambert’s law of light attenuation yielded the highest r2 values (0.78). They applied this 

model to map LAI throughout their study area. While they sought a spatial resolution of 

3m for their map, they found that, many cases they did not have any ground returns 

within this small rectangle and could not, thus apply the logarithmic transformation in 

their selected model. The final map product was created with a 14 m spatial resolution 

which is not optimal for an urban setting. Finer resolution mapping will be possible 

with higher point density lidar datasets. 
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2.1 Abstract 

In this study we fused high-spatial resolution (3.7 m) hyperspectral imagery with 22 

pulse/m2 lidar data at the individual crown object scale to map 29 common tree species 

in Santa Barbara, California, USA. We first adapted and parallelized a watershed 

segmentation algorithm to delineate individual crowns from a gridded canopy maxima 

model. From each segment, we extracted all spectra exceeding a Normalized Difference 

Vegetation Index (NDVI) threshold and a suite of crown structural metrics computed 

directly from the three-dimensional lidar point cloud. The variables were fused and 

crowns were classified using canonical discriminant analysis. The full complement of 

spectral bands along with 7 lidar-derived structural metrics were reduced to 28 

canonical variates and classified. Species-level and leaf-type level maps were produced 

with respective overall accuracies of 83.4% (kappa = 82.6) and 93.5%. The addition of 

lidar data resulted in an increase in classification accuracy of 4.2 percentage points over 

spectral data alone. The value of the lidar structural metrics for urban species 

discrimination became particularly evident when mapping crowns that were either 

small or morphologically unique. For instance, the accuracy with which we mapped the 

tall palm species Washingtonia robusta increased from 29% using spectral bands to 

71% with the fused dataset. Additionally, we evaluated the role that automated 

segmentation plays in classification error and the prospects for mapping urban forest 

species not included in a training sample. The ability to accurately map urban forest 

species is an important step towards spatially explicit urban forest ecosystem 

assessment.  
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2.2 Introduction 

As of 2011, more than 50% of all humans live in cities (UN-Habitat, 2011). Cities 

play an outsized role in driving global climate change (Schneider et al., 2010) and are 

uniquely susceptible to climate change impacts. Urban areas suffer from higher 

temperatures, poorer air quality, and increased peak flow of stormwater runoff, when 

compared to their rural neighbors (Voogt, 2002; Escobedo & Nowak, 2009; Lee & Bang, 

2000). Optimally arranged green infrastructure in cities can reduce impacts by 

facilitating reduced urban temperatures, improving air quality, and dampening peak 

flow (Bolund & Hunhammar, 1999; Myint et al., 2010). Urban trees in particular provide 

a range of ecosystem services, along with some disservices (e.g., Lyytimäki et al., 2008), 

but the magnitude of service depends on tree species, structure, and locational context 

(Escobedo & Nowak, 2009; Manning, 2008; McCarthy & Pataki, 2010; Simpson, 2002; 

Urban, 1992; Xiao & McPherson, 2011). Presently, the Urban Forest Effects model (i-

Tree Eco Nowak & Crane, 2000) is commonly implemented in urban areas worldwide to 

produce citywide estimates of urban forest structure, species diversity, and ecosystem 

function. However, urban forest inventory, particularly on private properties, is labor 

intensive and the results are not spatially explicit.  

Mapping the extents of urban tree canopy using aerial or satellite imagery is 

currently operational (MacFaden et al., 2012; McGee et al., 2012). However, these maps 

rarely provide information on tree species, age class, or leaf area index (LAI) , which are 

common prerequisites to estimates of ecosystem function. Mapping tree species is 

challenging in urban environments due to the fine characteristic scale of spatial 

variation (Welch, 1982) and potentially very high species diversity. While some space-
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borne, broadband sensors (e.g., IKONOS, GeoEye) are capable of achieving < 3 m 

multispectral spatial resolution, they lack the spectral range and resolution required to 

resolve the subtle chemical and structural signatures upon which species 

discrimination relies (Clark et al., 2005). Hyperspectral imagery has proven useful in 

mapping tree species at the pixel level based on variability in spectral reflectance at leaf 

to crown scales (Martin et al., 1998; Dennison and Roberts, 2003; Clark et al., 2005; van 

Aardt and Wynne, 2007; Boschetti et al., 2007; Franke et al., 2009; Yang et al., 2009; 

Youngentob et al., 2011). In an urban setting, Xiao et al. (2004) mapped 22 common 

species in Modesto, California with 70% accuracy at the species level and 94% accuracy 

at the leaf-type (i.e. broadleaf, conifer, palm) level.  

Classification accuracies for pixel-based algorithms in highly mixed urban 

landscapes are limited by extreme spectral variation over small spatial extents. In 

response there has been increased use of object-based image analysis (OBIA), which 

relies on image segmentation routines to group spectrally similar and spatially 

proximate pixels into objects to reduce undesirable noise common in pixel-level results 

(Benz et al., 2004; Blaschke, 2010; Myint et al., 2011). This technique has been applied 

with some success to tree species identification using hyperspectral imagery either 

through crown-level spectral averaging or pixel-majority classification (Clark et al., 

2005; van Aardt and Wynne, 2007; Zhang and Qiu, 2012; Alonzo et al., 2013). In a 

suburban setting north of Dallas, Texas, Zhang and Qiu (2012) achieved a classification 

accuracy of 69% for 40 tree species using a “treetop-based” approach. They selected the 

single highest pixel per crown object in order to ensure sunlit spectra whenever 

possible. Alonzo et al. (2013) showed that for manually delineated urban tree crowns in 
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Santa Barbara, the pixel majority approach using all crown pixels exceeding a 

Normalized Difference Vegetation Index (NDVI) threshold was effective, especially with 

limited training data. Their classification of 15 urban species with Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS)  data resulted in an overall accuracy of 

86%. Nevertheless, Castro-Esau et al. (2006), while producing strong species 

classification results using leaf-level spectra, show a linear decline in classification 

accuracies with increasing numbers of species. This suggests that 1) it may not be 

currently possible to map all species simultaneously in biodiverse forests and 2) that 

significantly expanding the classification feature space with non-spectral data may be 

required for significant advances. 

 Lidar data allow for the generation of a set of crown structural variables based 

on either the ranges and intensities of individual pulse returns or characterization of 

the full waveform. Lidar data have been employed frequently to measure forest 

parameters such as tree height (e.g., Lim et al., 2003; Anderson et al., 2006; Edson and 

Wing, 2011), biomass (e.g., Popescu et al, 2003; Næsset and Gobakken, 2008; Asner et 

al, 2011; Mascaro et al, 2011; Shrestha and Wynne, 2012), and LAI (e.g., Morsdorf et al., 

2006; Solberg et al., 2009; Zhao and Popescu, 2009; Tang et al., 2012). Classification of 

trees using pulse range and intensity metrics has been undertaken at the leaf type (e.g., 

Kim et al., 2009; Ørka et al., 2009; Yao et al., 2012), genus (e.g., Kim et al., 2011), and 

species levels (e.g., Holmgren and Persson, 2004; Brandtberg, 2006). Other work has 

shown that retaining the full lidar waveform can provide a set of discriminatory 

variables derived from, for example, echo width and amplitude (Heinzel and Koch, 

2011; Vaughn et al., 2012). Suites of canopy structural variables (e.g. tree height, crown 
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base height, vertical intensity profiles) extracted from the lidar point cloud at the 

individual tree level offer complementary information to the biochemical and 

biophysical data garnered from optical data. However, it has thus far not been 

demonstrated that lidar-variables alone are sufficient for discriminating among large 

numbers of species in biodiverse environments. 

 “Fusion” is a ubiquitous term in the remote sensing literature that generally 

refers to the combination of multisensor spatial data, at either the pixel, feature, or 

decision level (Pohl and Van Genderen, 1998). Increasingly, lidar and either 

multispectral (e.g., Holmgren et al., 2008; Ørka et al., 2012) or hyperspectral (e.g., Asner 

et al., 2008; Voss and Sugumaran, 2008; Dalponte et al., 2008; Jones et al., 2010; Liu et 

al., 2011; Dalponte et al., 2012; Dalponte et al., 2014) data are fused together at the 

pixel or feature level for tree species classification and quantification of forest inventory 

parameters (e.g., Lucas et al., 2008; Swatantran et al., 2011; Clark et al., 2011; Anderson, 

et al., 2008; Latifi et al., 2012). In some cases the value of fusion has come from the 

addition of structural variables (e.g., height, standard deviation of all height points 

within a pixel) that are minimally correlated with spectral bands (Dalponte, et al., 2008; 

Voss and Sugumaran, 2008; Jones et al., 2010; Dalponte et al., 2012). In others, fusion 

has added value indirectly through improved image segmentation and crown-object 

creation (Voss and Sugumaran, 2008; Zhang and Qiu, 2012; Alonzo et al., 2013; 

Dalponte et al., 2014). However, to the authors’ knowledge, there has been minimal 

research focused on improving tree species classification using crown-object level 

fusion of hyperspectral imagery and structural metrics extracted directly from the 3-D 

lidar point cloud. Moreover, the prospects for mapping an entire, biodiverse urban 
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forest to the leaf-type level with hyperspectral-lidar data fusion, have not been 

evaluated. Finally, there is limited knowledge of how automated image segmentation 

impacts the accuracy of classification results in a highly complex urban environment. 

The goal of this study is to improve the accuracy of tree species mapping in the 

biodiverse city of Santa Barbara, California, through crown-object level fusion of AVIRIS 

(Green et al., 1998) imagery and high point-density lidar data. This paper builds 

significantly on the work by Alonzo et al. (2013) which focused on classifying manually-

delineated tree crowns using hyperspectral imagery. In particular, we now include 

lidar-derived structural metrics in classification algorithms and delineate crowns using 

watershed segmentation. The specific aims of this paper are:  

1) For our urban study area, within crown objects delineated using watershed 

segmentation, classify 29 common tree species using crown-level fusion of 

hyperspectral imagery and lidar data.  

2) Test the extent to which all of the urban forest’s canopy can be classified to the leaf 

type level using classification functions developed for the 29 common species. Leaf-

type level classification is frequently sufficient for parameterizing estimates of 

urban ecosystem function that are largely mediated by crown structure 

measurements and total leaf area. 

3) Evaluate the impact of segmentation error on classification accuracy through 

comparison of results from automatically delineated and manually delineated 

crowns. 

4) Isolate particular spectral regions and lidar-derived structural variables that hold 

promise for improving discrimination among urban tree species and leaf types.  
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Our study helps cities move closer to a spatially explicit accounting of the common 

species in their urban forest. Further, it facilitates better understanding of the spectral 

and structural contributions to species discrimination as well as the benefits and errors 

associated with object-oriented approaches. 

2.3 Data and Methods 

2.3.1 Study area and sample 

 This study was conducted in downtown Santa Barbara, California (34.42° N, 

119.69° W) (Fig. 2.1). Santa Barbara is a city of about 90,000 residents located on a 

coastal plain between the Pacific Ocean to the south and the Santa Ynez mountains to 

the north. It has a Mediterranean climate and supports a diverse mix of native, 

Figure 2.1: Study area of downtown Santa Barbara with the locations of all trees used for 
classification model calibration and validation. 
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introduced, and invasive urban forest species. A spatial database maintained by the City 

of Santa Barbara contains one or more specimens from >450 species. In a Fall 2012 

inventory following i-Tree Eco protocols, 105 plots were sampled and 108 species 

recorded. Despite this diversity, far fewer species provide the bulk of the city’s canopy 

cover: In Santa Barbara, based on i-Tree Eco and municipal data, we estimate that 

approximately 70% of the study area's trees represent over 80% of the city's canopy 

area yet comprise fewer than 30 species. 

 This study’s first objective was to map approximately 80% of Santa Barbara’s 

canopy to the species level by training a classifier on 29 common species. The 80% 

canopy cover threshold was chosen based on analysis of i-Tree Eco-derived cumulative 

canopy cover distributions in the cities of Santa Barbara, Washington, DC (Casey Trees, 

2010) and Los Angeles, California (Fig. 1.3; Clarke et al., 2013). Twenty nine species 

(Table 2.1) were ultimately chosen for their large contributions to canopy cover and 

our ability to isolate training crowns (further details in Appendix A.1). The other 20% 

of the canopy (hereafter “less common” species) were modeled as one of the trained 

species (hereafter “common” species) and thus classified only to the leaf-type level. The 

tree crowns included in this study’s training set (Fig. 2.1) were selected from: 1) The 

city’s geospatial database (1,679 stems); 2) i-Tree Eco plots (286 stems);and 3) one 

additional park (Alameda Park) spanning two city blocks (339 stems). The species of 

each crown selected from the city’s database was confirmed using Google Street View. 

The 2nd set was collected by the authors and included species identification and all i-

Tree Eco-prescribed stem, crown, and positional measurements (Field methods in 

detail:  
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Species Scientific Tree Stem Canopy 

Code Name Type Count Area (m
2
) 

ARCU 
Archontophoenix 
cunninghamiana P 62 756 

CICA Cinnamomum camphora B 57 5290 

CUMA Cupressus macrocarpa C 55 4857 

EUFI Eucalyptus ficifolia B 50 4596 

EUGL Eucalyptus globulus B 58 9401 

FIMI Ficus microcarpa B 56 9006 

GEPA Geijera parviflora B 58 2777 

JAMI Jacaranda mimosifolia B 76 6609 

LIST Liquidambar styraciflua B 65 5081 

LOCO Lophestemon confertus B 66 3465 

MAGR Magnolia grandiflora B 63 7425 

MEEX Metrosideros excelsa B 62 1581 

OLEU Olea europaea B 81 6042 

PHCA Phoenix canariensis P 99 5294 

PICA Pinus canariensis C 73 4675 

PIPI2 Pinus pinea C 76 11387 

PIUN Pittosporum undulatum B 96 6166 

PLRA Platanus racemosa B 71 6933 

POGR Podocarpus gracilior B 62 6214 

PYKA Pyrus kawakamii B 55 3404 

QUAG Quercus agrifolia B 108 8895 

SCMO Schinus molle B 53 1971 

SCTE Schinus terebinthifolius B 71 5863 

STSI Stenocarpus sinuatus B 51 1112 

SYAU Syzygium australe B 67 3982 

SYRO Syagarus romanzoffiana P 130 2705 

TISP Tipuana tipu B 58 7874 

ULPA Ulmus parvifolia B 50 6370 

WARO Washingtonia robusta P 87 1220 
          

 

https://sites.google.com/site/ucsbviperlab/i-Tree Ecomethods). The third set was also 

collected by the authors and each tree was identified to the leaf-type level with stem 

position precisely recorded using differential GPS and a total station. The primary 

Table 2.1: The 29 species included in model training.  Tree type: B = Broadleaf, C = Coniferous, P = 
Palm. Canopy area refers to total canopy area by species. 

 

https://sites.google.com/site/ucsbviperlab/uforemethods
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utility of this final set was to offer a complex set of overlapping crowns on which to 

validate watershed segmentation algorithms. The total number of stems included in this 

analysis is 2,304, comprising approximately 100 species. This number is approximate 

because not all species in Alameda Park were identified beyond their leaf type. Common 

species make up 2,016 of the 2,304 total crowns in the sample and 91% of the total 

crown area (165,887 m2). 

2.3.2 Data 

2.3.2.1 Lidar data and processing 

 Waveform lidar data were collected in August of 2010 with a helicopter-

mounted Riegl Q560 laser scanner. The lidar data were georeferenced with two local 

differential GPS stations and stored in the UTM coordinate system (Zone 11N, NAD83). 

The waveform was discretized using standard Riegl processing procedures to an 

average last-return point density of 22 points/m2 across the study area with additional 

returns available in high vegetation. Height values on flat surfaces were evaluated to be 

precise to within 2 cm (Appendix A.2). The point cloud was classified to ground, 

building, and vegetation using LAStools (LAStools  v111216, http://lastools.org) with 

minimal adjustments to default settings. Buildings were discriminated from trees with 

98% accuracy and there was no confusion between vegetation taller than 2 m and 

ground. A bare earth digital terrain model (DTM), and two canopy height models 

(CHM), one for buildings and the other for vegetation, were generated at 0.25 m pixel 

resolution. In this research we use the term “canopy height model” to refer to height 

above bare ground. 

 

http://lastools.org/
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2.3.2.2 AVIRIS imagery and processing 

 Two AVIRIS flight lines spanning the study area were acquired from a Twin Otter 

aircraft flying at approximately 4000 m above sea level on November 1, 2010. The 

scene acquisition times were centered on 11:50 and 14:20 Pacific Standard Time with 

solar zenith angles of 50.5° and 54.1°, respectively. The 224-channel AVIRIS instrument 

samples upwelling radiance between 365 and 2500 nm with a field of view of 34° and 

instantaneous field of view of 1 mrad (Green et al., 1998). The resultant ground 

instantaneous field of view was 3.7 and 3.4 m for the two flight lines, respectively. 

 AVIRIS products are delivered after correction for aircraft motion and 

orthorectification using digital terrain. Surface reflectance was retrieved on each flight-

line using ATCOR-4 (Richter and Schlaepfer, 2002). Bands within the following spectral 

regions were discarded due to water vapor contamination or low signal-to-noise ratios:  

365—385 nm, 1323—1432 nm, 1811—2007 nm, and 2446 2496 nm. After confirming 

negligible reflectance bias between the two images, a mosaic was created (3.7 m) and 

registered to the gridded lidar data (0.25 m). The AVIRIS data were warped using 

Delaunay triangulation based on 137 ground control points and resampled using 

nearest neighbor resampling. The average root mean square error (RMSE) in the 

alignment cannot be calculated automatically when Delaunay triangulation is 

employed. Visual assessment suggests that the error was less than one AVIRIS pixel. 

2.3.3 Crown segmentation 

 A general overview of the segmentation process along with the full methods 

workflow employed for this study is shown in figure 2.2. In short, tree canopy was 

isolated from abiotic scene components and low vegetation primarily based on the 
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point cloud classification completed in LAStools. Additional refinement was conducted 

using morphological opening, closing, thickening, and majority filtering on the gridded 

DTM and CHMs. This allowed for removal of most power lines, isolated vegetation 

canopies < 1 m2, and other image noise and resulted in a 0.25 m binary canopy image.  

Building on the methods of Chen et al. (2006), marker-controlled watershed 

segmentation (Digabel and Lantuéjoul, 1978) was chosen to isolate individual tree 

crowns on the CHM. The watershed algorithm was originally proposed as a mean to 

segment grayscale images (Digabel and Lantuéjoul , 1978). In the creation of watershed 

segments, one considers the brightness values of an image essentially as topography 

that can be divided into catchment basins surrounding local minima. The lines that 

divide one catchment area from its neighbors define the boundaries of the segments. 

This segmentation algorithm is not robust to image noise and spurious local minima 

frequently lead to oversegmentation. Suppressing all but those local minima relating to 

Figure 2.2: Workflow diagram for data preprocessing, crown delineation via watershed 
segmentation, data fusion, and classification. White boxes are processes and gray boxes are data 
products. AVIRIS = Airborne Visible Infrared Imaging Spectrometer, CSM = Canopy Surface Model , 
DTM = Digital Terrain Model, CMM = Canopy Maxima Model, NDVI = Normalized Difference 
Vegetation Index, CDA = Canonical Discriminant Analysis. 
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the image objects in question yields a better result (Chen et al., 2006). Marking only 

appropriate minima can be challenging in itself: many images, including CSMs, contain 

overlapping distributions of appropriate and extraneous local minima values making it 

difficult to simultaneously minimize omission and commission error.  

For this project, we combined two watershed segmentation routines. The first 

was executed on an inverse distance transformed, binary canopy image, where local 

minima were marked at crown locations furthest from canopy edges. The second was 

executed on an inverted canopy maxima model (CMM) where markers were imposed in 

locations corresponding with maximum tree height. The second routine was enacted on 

each segment produced by the first routine thus further subdividing the initial 

segments. To create a CMM we used i-Tree Eco data to establish a local, empirical 

relationship between tree height and canopy width (see Fig. A.2 in Appendix A for 

detail). This linear model was used to establish a variable search window size for local 

crown maxima based on the modeled tree width. As an input to watershed 

segmentation, this method is considered an improvement over use of a CHM because it 

is more likely that only legitimate tree tops will be marked (Chen et al., 2006). However, 

the relationship between tree height and width in Santa Barbara’s urban forest, 

irrespective of species was relatively weak (r2 = 0.38).  

Segmentation accuracy was estimated by calculating the ratio of field-measured 

stems contained in exactly one segment to the sum of the total number of stems and the 

number of segments containing zero stems. It was beyond the scope of this study to 

evaluate the areal accuracy of the segmentation. For further processing details and 
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associated Matlab code relating to the watershed segmentation and CMM generation we 

refer the reader to Appendix A.3.  

2.3.4 Spectral and structural feature extraction  

The following sections describe how the spectral and structural variables were 

generated from crown-level segments overlaid on the AVIRIS imagery and the lidar 

point cloud (Fig. 2.3). These variables were then fused and used to generate the 

classification models. Multiple AVIRIS spectra were extracted for each crown and a 

single set of 28 structural metrics were computed from each watershed-crown clipped 

point cloud. Section 2.3.5 on data fusion will discuss how these variables were 

combined for input into classification algorithms. 

 

 

 

 

 

Figure 2.3: Top row: Multiple AVIRIS spectra extracted from each of three typical watershed crowns. 
The green mask highlights pixels with NDVI > 0.6. The three example crowns are:  a) PHCA (Phoenix 
canariensis), a palm; b) LOCO (Lophostemon confertus) a broadleaf evergreen; and c) PICA (Pinus 
canariensis), a conifer. Bottom row: Watershed crown point-cloud extraction with selected structural 
metrics. Black lines indicate crown base and max heights. Red line is mean crown height. Dark blue is 
median height of returns in crown. Orange and violet show 75th and 90th percentile heights as well 
as widths at those heights 
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2.3.4.1 Extraction of spectra from AVIRIS imagery  

 Prior to extraction of spectra, the AVIRIS image was resampled from 3.7 m to 1 

m resolution using nearest neighbor resampling. While this created redundant spectra, 

it was necessary to ensure that spectral information from valid 3.7 m canopy pixels 

located on segment edges was included in the analysis. Spectra were extracted from 

each crown segment (Fig. 2.3) using a variable NDVI (Rouse et al., 1973) threshold to 

reduce contamination by impervious surface, soil, or non-photosynthetic vegetation 

spectral information. The average NDVI for all crowns was 0.61. Therefore, the initial 

extraction threshold was set to 0.6. If no pixels in a given crown met that criterion, all 

pixels above an NDVI of 0.5 were extracted. If no pixels met this second threshold, the 

single pixel with the maximum NDVI value was selected (Alonzo et al., 2013). All 

redundant spectra in a given crown segment were eliminated prior to classification. For 

our sample of 2,304 crowns, 13,611 spectra were extracted with a median of 4 unique 

spectra per crown. Many of the species included in this study have small crowns that 

fully contain only one or two 3.7 m pixels. As such, 23% of crowns were represented in 

the classification stage by only one unique spectrum. 

2.3.4.2 Extraction of structural metrics from lidar data 

 The lidar point-cloud subset associated with each tree crown was extracted from 

the scene tiles so that each crown could be processed individually (Fig. 2.3). This 

strategy allows for arbitrarily large tree crown datasets to be processed either in serial 

or with simple parallelization. Building upon previous work (e.g., Holmgren and 

Persson, 2004; Kim et al., 2009), we created 28 structural variables (Table 2.2). These 

metrics can be roughly categorized as relating to crown height (h), crown widths at  
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Variable Description 

h_1 Max crown height 

h_2 Median height of returns in crown 

h_3 Crown surface height: 0.25 m spatial resolution 

h_4 Crown surface height: 1 m spatial resolution 

h_5 Crown base height 

w_1 Crown width at median height of returns in crown 

w_2 Crown width at 50th percentile height 

w_3 Crown width at 75th percentile height 

w_4 Crown width at 90th percentile height 

hw_rat_1 Ratio of crown length to tree height 

hw_rat_2 Ratio of crown height to width: median height 

hw_rat_3 Ratio of crown height to width: 90th percentile height 

hw_rat_4 Ratio of crown height to width: 75th percentile height 

hw_rat_5 Ratio of width at 90th percentile height to mean height 

hw_rat_6 Ratio of N-S width to E-W width 

int_1 Average intensity above median height 

int_2 Average intensity below median height 

int_3 Crown surface intensity: 0.25 m spatial resolution 

int_4 Crown surface intensity: 1 m spatial resolution 

int_dist_1 Crown surface intensity /overall average crown intensity 

int_dist_2 Skewness of intensity distribution through crown 

int_dist_3 Surface intensity (0.25 m) /  surface intensity (1 m) 

int_dist_4 Return intensity above median crown height / below 

cp_1 Surface heights (0.25 m ) / surface heights (1 m) 

cp_2 (Mean crown height - median height of returns) / crown 
height 

cp_3 Count of returns in 0.5 m vertical slice at 90th 
percentile height divided by width at that height 

cp_4 Count of returns in 0.5 m vertical slice at mean crown 
height divided by width at that height 

cp_5 Count of returns in 0.5 m vertical slice at median height 
of crown returns divided by width at that height 

    

    

selected heights (w), ratios of crown heights to widths at selected heights (hw_rat), 

direct measures of return intensity through the crown (int), distributions of intensity 

through the crown (int_dist) and crown porosity measured by return penetration into 

Table 2.2: Lidar-derived structural variables. Bold entries were selected for inclusion in classification 
models for watershed crowns. 
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the crown (cp). Details and Matlab code relating to the computation of these variables 

can be found in Appendix A.4. While overall correlation among variables was limited, 

there were several groupings exhibiting Pearson’s Product Moment Coefficients (r) 

greater than 0.80 (see Table A.1 in Appendix A). In order to exclude correlated 

variables and to choose the most effective variables for species separability, forward 

feature selection (FFS) was employed. 

2.3.4.3 Forward feature selection (FFS)  

 FFS is a method used to reduce a high-dimensional dataset that may contain 

redundant discriminating variables (Hoffbeck and Landgrebe, 1996). The one variable 

that best discriminates among classes is first added to the classification model based on 

its ability to minimize the model’s misclassification rate (MCR). Each remaining variable 

is sequentially tested to assess which will, when combined with those already included, 

offer the greatest marginal decrease in MCR. Alonzo et al. (2013) previously showed 

that a reduced set of spectral variables did not yield classification accuracies higher 

than the full complement of 178 bands and performed no better computationally than a 

reduced set of canonical variates. Thus, for purposes of improving model classification 

accuracy, only lidar variables were winnowed for further use using FFS. However, it is 

also an objective of this research (aim #4) to explore the contributions of different 

spectral regions to species separability in an urban forest. As such, each spectral band’s 

unique contribution to separability was evaluated based in-part on frequency of that 

band’s selection. A more general measure of separability, assessed as the ratio of among 

class sums of squares to within class sums of squares (F-ratio; Clark et al., 2005), was 
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also employed to isolate useful spectral regions and categories of structural metrics 

(e.g. all variables related to height).  

To explore the sensitivity of the structural variables to crown segmentation error, 

FFS was run on both manually delineated crowns (hereafter manual crowns) and 

watershed segments (hereafter watershed crowns). FFS was run on each set 100 times 

with crowns randomly partitioned each run into training and validation sets to mitigate 

the impact of crown variability in the sample. The seven structural metrics that were 

chosen using manual crowns in more than 30% of the runs and that demonstrated 

minimal intercorrelation were retained for further use. Accordingly, the 7 most-

frequently selected metrics exhibiting low correlation were chosen for the watershed 

crowns (Table 2.2).  

2.3.5 Data fusion and classification 

2.3.5.1 Fusing spectral and structural data at the crown level 

 In this study, the majority of tree crowns contained multiple, unique spectra 

meeting the 0.6 NDVI threshold. However, there was only one set of structural metrics 

extracted per crown (Fig. 2.3). Alonzo et al. (2013) demonstrated that retaining 

multiple pixels per crown and assigning a class to the crown object using a pixel 

majority (“winner-take-all”) approach was more accurate than classification using a 

single, crown-mean spectrum. As such, for each crown, we chose to replicate the set 

structural metrics to correspond with the number of extracted spectra. The resulting 

data matrix for manual crowns contained 12,773 rows and 206 columns, where each 

row represents a unique spectrum and each column contains either one of 178 spectral 
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bands or one of 28 structural metrics. The same structure was created for the 

watershed crowns but with 13,317 rows. 

2.3.5.2 Canonical discriminant analysis (CDA) 

 All classifications in this study were conducted using canonical variates in a 

linear discriminant analysis (LDA) classifier. LDA has proven useful previously in 

remote sensing research for separating highly overlapping classes in (e.g., Yu et al., 

1999; Clark et al., 2005; Pu, 2009). In LDA, classification equations are formulated 

based on the pooled within-class covariance matrix of the set of independent variables. 

An observation is assigned to the class with the highest classification function score 

(Duda and Hart, 1973). In canonical discriminant analysis one replaces p original 

variables with up to g-1 derived canonical variates, where g is the number of classes 

(i.e. 29 tree species; Klecka, 1980). Whereas principal components analysis (PCA) and 

minimum noise fraction (MNF) summarize the total variability among the set of 

independent variables, the canonical rotation summarizes the between class variance 

among g classes. The derived canonical discriminant functions are linear combinations 

of the original variables where the coefficients maximize the between-group separation. 

Data reduction with this technique has been successfully applied to remote sensing 

classification problems including urban tree species discrimination (Zhao and Maclean, 

2000; Pu and Liu, 2011; Alonzo et al., 2013). Compared to LDA on p original variables, 

CDA dramatically improves computational performance and, in the case of limited 

training data, can avoid the ill-posed problem where the number of variables is greater 

than the number of observations. 
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2.3.5.3 Classification candidate sets 

The primary goal of this research was to assess the accuracy with which we could 

map tree species in a heterogeneous urban forest using fused hyperspectral and lidar 

data. We attempt to map 29 common species that comprise much of Santa Barbara’s 

canopy area and provide the majority of urban-forest derived ecosystem services. We 

acknowledge that it is currently impossible to train a classification algorithm on all 

species present in an urban area. Thus, we trained our CDA classifier to label all crowns 

as one of the 29 common species. At the leaf-type level, the classification was deemed 

successful when a crown was labeled as a common species with a matching leaf type. 

For example, if a Quercus suber (less common species) was classified as Quercus 

agrifolia (common species) then the leaf-type classification was correct.  

In order to assess classification accuracy separately for the 29 common species and 

the ~70 less common species, we subdivided the 2,304 total crowns into the four 

overlapping sets listed below (each corresponding research aim from the introduction 

is also noted): 

1) Accuracy for mapping 29 common species (2,016 crowns) to the species level  

(aims #1 & #3) 

2) Accuracy for mapping same 29 common species to the leaf-type level (aims #2 & 

#3) 

3) Accuracy for mapping ~70 less common species (288 crowns) to the leaf-type 

level (aims #2 & #3) 

4) Accuracy for mapping ~100 total species (2,304 crowns) to the leaf-type level 

(aims #2 & #3) 
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2.3.5.4 Variable combinations 

Each candidate set listed in section 2.3.5.3 was classified using four different 

variable subsets. The purpose of adding and holding out variables links with research 

aim #1: we seek to assess the respective values of hyperspectral data, lidar data, and 

object-level fusion of both in classification accuracy at the species and leaf-type levels. 

Prior to classification, for the sake of computational efficiency and methodological 

consistency, each variable combination was reduced to the maximum number of 

canonical variates with significant discriminating power (α=0.05). The rotated variable 

sets used to generate classification equations were thus: 

1) All hyperspectral bands (178) and all lidar-based structure variables (28) reduced 

to 28 canonical variates (hereafter: CDA-full).  

2) All spectral bands and the subset of 7 lidar variables selected using FFS, reduced to 

28 canonical variates (CDA-7fuse).  

3) All hyperspectral bands (178) reduced to 28 canonical variates (CDA-spec).  

4) Seven FFS-selected lidar bands reduced to 5 significant canonical variates (CDA-lid).  

 

2.3.5.5 Classification approach 

 Of the 2,304 crowns included in this study, 25 manually delineated crowns from 

each of the 29 common species, 725 in total, were randomly selected and permanently 

set aside for model training, leaving 1,579 for testing at the leaf-type level and 1,291 for 

testing at the species level. It is necessary to train an object-level classification model 

using manually delineated crowns in order to assure that the full segment area is 

composed of one and only one known species (Dalponte et al., 2014). The set of 
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watershed crowns that spatially aligned with the 725 manual crowns were also 

excluded from the testing to ensure disjoint training and test sets. Ultimately, the 1,579 

manual crowns and the spatially coincident set of watershed crowns were each 

classified. The manual crowns were classified in order to evaluate the potential 

classification errors associated with automatic segmentation (aim #3). 

To accommodate the dataset’s high within-species structural and spectral 

variation and so to minimize the impact of outlier crowns on discriminant function 

generation, the 725 training crowns were subsampled with replacement for each of 50 

model runs (mr). That is, for each model run, the discriminant functions were 

generated using (29 species) x (20 crowns/species) x (an average of 4 spectra per 

crown) = 2,320 fused spectra. Bootstrapping over more model runs (mr = 100) was also 

investigated but model stability was deemed adequate with mr = 50.  

In each model run, discriminant functions were generated based on the current 

subset of training pixels. This set of 28 (g-1) functions was, in turn, multiplied through 

the run’s training and testing datasets to produce the canonical variates. Pixel level LDA 

classification was carried out on the test set of canonical variates. Upon completion of 

each model run, a species label was assigned to each crown based on the pixel majority 

classification. After completion of all 50 runs, the mode crown-level result was 

calculated and retained for final map creation and accuracy assessment. Pixel-level 

classifications were also retained for comparison with results from object-oriented 

approaches. 

The final classifications for the 1,579 manual crowns and the spatially coincident 

watershed segments were mapped in a GIS. A manually delineated ground-reference 
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map with species information for the 29 common species and leaf-type information for 

the less common species was used for spatial validation. Watershed crown accuracy 

was assessed only on a canopy-area basis by spatially intersecting the validation map 

with the classified segments. Percent correctly classified canopy area has been chosen 

in lieu of the number of correctly classified stems as the primary method for reporting 

results for two reasons: First, from an urban forest and ecosystem services 

management perspective it is more important to gather detailed information on species 

dominant in the local canopy. Second, it is not feasible to conduct stem-count accuracy 

assessment when the unit of analysis is the potentially-misaligned crown segment. Still, 

to better understand the utility of lidar for classifying smaller crowns stem count 

accuracy was assessed for manual crowns. 

2.4 Results 

2.4.1 Crown segmentation accuracy 

Assessed against field observations, 83% of the watershed segments contained a 

single tree stem indicating overall good agreement (Table 2.3). However, the 

segmentation accuracy when evaluating only trees from i-Tree Eco plots or from 

Alameda Park decreased to 55%. This is because Alameda Park, in particular, is a highly 

complex urban forest setting, with significant crown overlap among trees of all sizes 

and species (Fig. 4). In this type of environment, as evident in figure 4, there is clear 

omission error. This is likely because the window size of the CMM was determined 

based on a weak relationship between tree height and width. It is particularly 

noticeable in this figure that the widths of tall but slender palm trees were not modeled 
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well leading to inclusion of neighboring stems in their segments. Still, evaluated against 

segmentation using the CHM, there was a small overall improvement in segmentation 

accuracy (1%). The improvement may be more pronounced in densely forested areas 

but this was not evaluated. 

 

2.4.2 Forward feature selection of structural variables and spectral bands 

Using the cross-validated misclassification rate, 7 variables were selected for 

classifying manual crowns. The same number was selected for watershed crowns. Six of 

those variables appear in both selection sets, perhaps indicating that watershed crowns 

and manual crowns can be classified using the same set of structural metrics (Fig. 2.5). 

Stems in segment 0 1 2 3 4 5 6 7 8 

Segment count 85 1960 75 27 10 5 1 1 1 

Table 2.3: Segmentation accuracy. In bold: 1960 stems were appropriately placed in one watershed 
crown. Eighty-five  segments were without stems. 
 

Figure 2.4: Subset of Alameda Park lidar canopy height model shaded by height. Watershed segments 
and field-measured stems. Note the undersegmentation in the densely vegetated southwest corner 
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The only variables differing between the two sets were h_1 (max crown height) and h_2 

(median height of returns in crown). For simplicity, and given strong intercorrelation, 

all further analysis was conducted using h_2 and the six structural variables selected for 

both manual and watershed crowns. Overall, variables related to tree height and return 

intensity stand out with respect to their high between-class to within-class variance as 

quantified by the normalized F-ratio. When taking variable intercorrelation into 

account, one height metric (h_2), one width metric (w_1), one height-to-width ratio 

metric (hw_rat_2), two intensity metrics (int_2 and int_3) and two crown porosity 

metrics (cp_1 and cp_3) were selected in more than 30% of the watershed crown model 

runs (Fig. 2.6). That the set of variables selected for each set of objects is nearly 

identical may highlight the success of segmenting an image largely comprising street 

trees. It may also indicate that the selected variables are robust to minor aberrations in 

morphology.  

Spectral bands were chosen most consistently from the visible region of the 

spectrum (VIS, 394—734 nm; Fig. 2.6). This corresponds with an F-ratio that is 

Figure 2.5: Column data show the number of times (out of 100 model runs) that each structural 
variable was selected using forward feature selection (FFS). The black diamonds represent the 
normalized F-ratio for each variable. The dark gray vertical stripes indicate that a variable was 
selected for use in classification of watershed crowns. 
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relatively high from 400 nm until the red edge at approximately 700 nm. In particular, 

bands were selected surrounding the green peak between 520 and 590 nm. Selection 

frequency in that region was driven by discriminatory power but also by relatively low 

correlation with neighboring bands in the VIS as well as with bands in the shortwave 

infrared 2 (SWIR2, 2018—2425 nm; Appendix A.5). The near infrared region (NIR, 

744—1313 nm) displayed low F-ratios and yielded one band selected with particular 

frequency in the liquid water absorption feature centered on 1197 nm. The shortwave 

infrared 1 region (SWIR1, 1443—1802 nm) and SWIR2 regions yielded high F-ratios 

but only SWIR1 held bands selected in more than 30% of model runs. The lack of band 

selection from SWIR2 may be a result of high overall correlation with the VIS (r = 0.84) 

and the SWIR1 (r = 0.83). 

 

Figure 2.6: Column data show the number of times (out of 100 model runs) that each spectral 
band was selected using forward feature selection (FFS). The black line is the normalized grand 
mean spectrum for all pixels from trained (29) species. The dashed line is the normalized F-ratio 
for each band. 
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2.4.3 Classification results 

2.4.3.1 Classification of the 29 common species 

 The CDA-7fuse variable combination yielded the highest overall species-level 

classification accuracy (83.4% of canopy area, kappa = 82.6) for watershed crowns 

containing common species (Fig. 2.7a). Species-level classification accuracy with only 

hyperspectral data (CDA-spec) was 79.2%. Lidar data only (CDA-lid) yielded an accuracy 

of 32.9%. The best fused result using the manual crowns was 85.4%, suggesting 

minimal impact on classification accuracy by segmentation error (Fig. 2.8). These 

object-level results compare favorably to 68% pixel-level accuracy in which a single 

crown could contain several differently classified pixels. The species map accuracy 

provided by the best fused model (CDA-7fuse) was only 4.2 percentage points (pp) 

better than the spectral-only model (CDA-spec), but there was significant variation 

when considering the accuracies of individual species (Table 2.4, Fig. 2.9).  

 

Figure 2.7: Canopy area mapping accuracy. Light gray bars show classification accuracy for 
watershed crowns while darker bars show the improvement when using manual crowns. (a) 
Species-level accuracy by model for classifying the 29 common species. (b) Leaf-type level 
accuracy by model for the 29 common species. (c) Leaf-type level accuracy for mapping all 
(~100) species. (d) Leaf-type level accuracy for mapping the ~70 less common species 
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 Large, dense crowned species such as Ficus microcarpa (FIMI) were classified 

well by spectral data alone with an averaged user’s and producer’s accuracy of 97% 

(Table 2.4). Small broadleaf crowns like Stenocarpus sinuatus and Metrosideros excelsa 

were poorly classified by spectral data with average accuracies of 24% and 29% 

respectively. Small crowned species overall were poorly classified by CDA-spec and 

better classified by CDA-7fuse (Fig. 2.9). The classification accuracy of species with the 

7 smallest crown sizes increased by an average of 17 pp with incorporation of lidar 

data. Palm species (ARCU, PHCA, SYRO, WARO) were classified using CDA-spec with 

43% accuracy and by CDA-7fuse to 63%. Conifer species (CUMA, PICA, PIPI2) were 

classified with 84% accuracy using CDA-spec and 85% accuracy with CDA-7fuse. The  

Figure 2.8: Subsets of lidar canopy height model showing: (a) Sample of segmentation results 
in Alameda Park with significant crown overlap. (b) Classification results in Alameda Park. 
Trees with no color were in the training set and thus not mapped. (c) Sample of street tree 
segmentation results. (d) Classification of street trees. Trees with no color were either in the 
training set or not part of the study.  
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Species Scientific Tree Stem Canopy 
Fused 
(CDA-7fuse) 

Spectral only 
(CDA-spec) 

Code Name Type Count Area (m2) 
Prod. 
%) 

User 
(%) 

Prod. 
(%) 

User 
(%) 

ARCU Archon. cunninghamiana P 62 756 65 35 16 34 

CICA Cinnamomum camphora B 57 5290 84 83 82 74 

CUMA Cupressus macrocarpa C 55 4857 90 91 94 81 

EUFI Eucalyptus ficifolia B 50 4596 89 61 58 94 

EUGL Eucalyptus globulus B 58 9401 93 98 96 91 

FIMI Ficus microcarpa B 56 9006 92 100 98 96 

GEPA Geijera parviflora B 58 2777 82 69 39 55 

JAMI Jacaranda mimosifolia B 76 6609 95 95 95 93 

LIST Liquidambar styraciflua B 65 5081 87 93 90 77 

LOCO Lophestemon confertus B 66 3465 61 75 82 66 

MAGR Magnolia grandiflora B 63 7425 92 86 89 89 

MEEX Metrosideros excelsa B 62 1581 42 46 26 32 

OLEU Olea europaea B 81 6042 83 94 94 88 

PHCA Phoenix canariensis P 99 5294 64 84 72 80 

PICA Pinus canariensis C 73 4675 85 58 84 69 

PIPI2 Pinus pinea C 76 11387 97 89 84 93 

PIUN Pittosporum undulatum B 96 6166 72 95 91 73 

PLRA Platanus racemosa B 71 6933 83 97 86 86 

POGR Podocarpus gracilior B 62 6214 92 86 62 82 

PYKA Pyrus kawakamii B 55 3404 76 58 34 50 

QUAG Quercus agrifolia B 108 8895 89 77 80 87 

SCMO Schinus molle B 53 1971 32 43 40 41 

SCTE Schinus terebinthifolius B 71 5863 93 94 93 85 

STSI Stenocarpus sinuatus B 51 1112 19 18 17 30 

SYAU Syzygium australe B 67 3982 87 80 87 69 

SYRO Syagarus romanzoffiana P 130 2705 36 80 64 17 

TISP Tipuana tipu B 58 7874 99 87 84 88 

ULPA Ulmus parvifolia B 50 6370 69 84 78 51 

WARO Washingtonia robusta P 87 1220 66 76 31 27 

 
                

remaining 22 broadleaf species were classified with 73% accuracy with CDA-spec and 

improved to 78% accuracy with CDA-7fuse. Several species were classified worse using 

Table 2.4:  Producer and User accuracies for CDA on the fused dataset compared to CDA on spectral 
data only. Refer to Fig. 2.9 for a graphical depiction of the differences in accuracy. 
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the CDA-7fuse model. Species whose accuracies declined by more than 1 pp included: 

OLEU, PICA, PHCA, LOCO, SCMO, and STSI. 

 To further determine the value of adding structural metrics to species 

classification, we evaluated the success of each variable combination in terms of stem 

count accuracy. This implies a result that is equally weighted across all species 

regardless of crown size and could relate to a goal of better understanding the diversity 

and spatial arrangement of species throughout a city. Stem count accuracy could only 

be assessed using manual crowns. The stem accuracy with the CDA-spec model was 

63.0% and increased to a maximum of 71.5% with the CDA-7fuse model.  

2.4.3.2 Classification to the leaf-type level 

 Given the 29 common species, the CDA-7fuse model reached 93.5% leaf-type 

accuracy on watershed crowns and 95.7% accuracy on manual crowns (Fig. 2.7b). For 

the same crowns, lidar alone was much more effective at the leaf-type level than at the 

species level reaching 78.1% accuracy on watershed crowns. Across all (~100) species, 

CDA-full achieved a mapping accuracy of 87.9% to the leaf-type level (Fig. 2.7c). When 

Figure 2.9: Classification accuracy by species for spectral bands only (CDA-spec) and lidar-
hyperspectral fusion (CDA-7fuse). Horizontal bars illustrate cases where fusion with lidar 
reduced accuracy. For species botanical names refer to table 1. Species are sorted by average 
crown size with the largest species at left. 
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mapping just the set of ~70 less common species, the accuracies decreased 

substantially (Fig. 2.7d). CDA-full mapped watershed segments containing less common 

species with 59.1% accuracy.  

2.5 Discussion 

2.5.1 Object oriented approach 

Within a single tree crown, leaf-level spectral reflectance may vary considerably 

as a function of biochemistry and water content (Cochrane, 2000; Ustin et al., 2009). In 

a given AVIRIS pixel there is further within-class spectral variability driven by canopy 

architecture, exposure of woody biomass, and exposure of underlying substrate 

(Roberts et al., 2004; Clark et al., 2005; Asner et al., 2008). This variability potentially 

manifests in a classification result as a single tree crown containing pixels labeled as 

multiple species. The problem is exacerbated at fine-spatial resolutions since a given 

pixel’s spectral response may deviate significantly from the crown mean spectrum. Our 

study reaffirms the utility of object-level analysis for relatively fine resolution (3.7 m) 

hyperspectral imagery. The overall accuracy for mapping the 29 common species using 

pixels was 68% and increased to 79% using only spectral information but with pixel 

majority aggregation at the crown-object level. This increase in accuracy at the object 

level is in line with previous research: van Aardt and Wynne (2007), classifying 3 pine 

species from AVIRIS imagery, improved their single pixel results by 20 pp (from 65% to 

85%) using a 3x3 window to compute average spectra prior to classification. Clark et al. 

(2005) found that, on average, 10% of pixels in each correctly labeled crown were 

misclassified.  
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2.5.2 Contribution to classification: spectral regions and features 

 In correspondence with previous research, the hyperspectral imagery in our 

fusion study was the primary driver of classification accuracy (Fig. 2.7; Voss and 

Sugumaran, 2008; Jones et al., 2010; Dalponte et al., 2012). Alonzo et al. (2013) showed 

that AVIRIS bands spanning the entire solar reflected region (394 to 2425 nm) are 

required for accurate classification of urban tree species but that the VIS is particularly 

important. With 29 urban species, this study reconfirms previous research highlighting 

the discriminatory power and relatively unique spectral information contributed by 

green peak bands surrounding 560 nm (Fig. 6; Castro-Esau et al., 2006; Pu, 2009, 

Alonzo et al., 2013). Bands in the green peak region are commonly related to the 

expression of xanthophyll cycle pigments (Ustin et al., 2009). Chlorophyll absorption 

regions near 430 and 642 nm were also repeatedly included. We note a continuation of 

bands selected in >30% of runs (though a diminution of the F-ratio’s value) along the 

red edge where spectral slope and relative spectral reflectance have been previously 

employed to discriminate tropical rain forest (Cochrane, 2000) and urban (Pu, 2009; Pu 

and Landry, 2012) tree species. In contrast to the results of Clark et al. (2005), we find 

limited discriminatory value in the near infrared (NIR, 744 to 1313 nm) range. It is 

possible that in their tropical rainforest study area they encountered greater between-

class diversity with respect to phenology, LAI, and water status. Our results do 

correspond to those of Dalponte et al. (2012) who found that the NIR region was poorly 

suited for discrimination due to very high within-class variance. In our study, the one 

frequently selected band in the NIR was the prominent liquid water absorption band at 

1197 nm. The two most frequently selected bands overall (1672 and 1722 nm) were in 
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the shortwave infrared (SWIR1) region spanning 1443 to 1802 nm. This likely 

corresponds to species separability driven by variable lignin and cellulose content 

found in foliar and non-photosynthetic plant matter (Kokaly et al., 2009). The 

shortwave infrared region (SWIR2) from 2018 to 2425 nm offered little in terms of 

marginal separability here. A high F-ratio indicates potential utility in discrimination 

but no bands were selected using FFS more than 30% of the time. This may be a 

product of consistently high sample LAI and leaf water content dampening the viability 

of lignin-cellulose absorption features (Kokaly et al, 2009). It may also be a product of 

high correlation among SWIR2, SWIR1, and VIS bands. 

2.5.3 Contribution to classification: structural metrics  

The selection of particular structural metrics improved classification accuracy 

compared to retention of all lidar variables by 2.6 pp, though this difference was not 

tested for statistical significance (Fig. 2.7a). Tree height is the single most common 

lidar variable used in tandem with spectral information as a means to improve 

classification results (Jones et al., 2010; Dalponte et al., 2008; Koetz et al., 2008). This is 

due in part to its clear utility in facilitating differentiation among spectrally similar tree 

species but also because it is simple to measure at either the pixel or crown-object scale 

and perhaps because it is robust to imperfect image segmentation. Our study also found 

height metrics to be the most important structural variables based on normalized F-

ratio (Fig. 2.5). By the same measure, the second most important variable category 

contained return intensity metrics. In particular int_2 (average intensity below median 

height of returns in crown) likely describes the arrangement of leaves and branches in a 

crown’s interior while int_3 (crown surface intensity: 0.25 m spatial resolution) may 
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characterize leaf reflectance values along the crown surface (Kim et al., 2009). A 

previous study found standard deviation of crown intensity values to be the 2nd most 

valuable variable (Holmgren et al., 2004). They postulated that this metric 

differentiates densely foliated crowns from those with larger internal gaps. A third 

grouping of unique variables were those related to crown widths at various heights. 

Variable w_1 (crown width at median height of returns in crown) may describe crown 

morphology in a manner useful for separating upright growth forms from spreading 

forms. Holmgren et al. (2004) also found that growth form gave rise to important 

discriminatory variables. They included segp, a summary statistic relating to the shape 

of a parabola fit to the surface of their study crowns, in their final, successful, 

classification of two conifer species. Finally, we speculate that cp_1 (surface heights in 

0.25 m grid divided by surface heights in 1 m grid) and cp_3 (count of returns in 0.5 m 

vertical slice at 90th percentile height divided by width at that height) are two ways to 

measure crown porosity.  

It has been shown previously that structural metrics that are ratios of absolute 

metrics (e.g. hw_rat_3: ratio of crown height to width: 90th percentile height) are useful 

for species discrimination because they are more invariant to life stage and can capture 

between-species variability in crown morphology (Holmgren et al, 2004; Kim et al., 

2011). Our urban forest study did not corroborate these findings. The derived 

structural variables in the set hw_rat were purposed to crown form description. 

However, they offered very limited value to species separability compared to their 

absolute crown-width analogs. Similarly, the int_dist family of variables was created out 

of the supposed need to normalize for uncalibrated intensity values but also offered 
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minimal discriminatory power. We suggest that ratio metrics were less valuable to this 

study because the sample set of tree crowns was mostly mature and within-class 

variance for absolute metrics such as heights and widths may have been kept 

sufficiently low through proactive urban forest management (e.g. pruning, training). 

2.5.4 The impact of segmentation on classification accuracy 

 The impact of imperfect segmentation on classification accuracy was minimal. 

The decrease in accuracy of the CDA-7fuse classifier when moving from manual crowns 

to watershed crowns was only 2.0 pp. This is likely the case for several reasons: 1) In 

this urban study area, the segmentation algorithm successfully isolated 83% of the 

trees. This is, in part, due to a sample set dominated by street trees, which are easier to 

delineate than heavily-overlapping private property or park trees. Dalponte et al., 

(2014) showed a 13 pp reduction in accuracy when classifying three tree species in a 

more complex boreal forest using automatically-delineated lidar segments compared to 

manual crowns. 2) The basis on which accuracy was evaluated in this study was canopy 

area (i.e. not stem count) correctly classified. In this scenario, large crowns could, for 

example, be oversegmented yet classified correctly due to the classifier’s heavy reliance 

on pixel-level spectral information. 3) Both the resultant classification map and the 

initial manual delineation of crowns exist only as 2-dimensional overlays on a gridded 

CHM. As such, even manual crowns are not perfect representations of 3-D crown 

morphology and exhibit, in a sense, “segmentation errors” in their own right. Three 

dimensional segmentation of the lidar point cloud itself, where crown assignment takes 

place via point clustering at the individual return level, is currently possible (e.g., 
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Reitberger et al., 2009; Ferraz et al., 2012) and may be useful to implement in future 

classification projects. 

2.5.5 The utility of lidar data 

 The overall increase in classification accuracy of 29 common species from the 

inclusion of lidar structural metrics was 4.2 pp. Previous work in complex forested 

settings has shown improvements from the addition of lidar to hyperspectral data of 1.1 

pp for 23 classes (Dalponte et al., 2008), 1.2 pp for 11 species (Jones et al., 2010), and 6 

pp for 6 tree species (Dalponte et al., 2012). There are likely several reasons why the 

addition of lidar data does not dramatically increase overall accuracy. First and 

foremost, the structural metrics do not drive species separability as much as spectral 

bands. In this study, only the height metrics surpassed the VIS spectral bands with 

respect to their relative F-statistics. Additionally, classification accuracy in this study 

was assessed in terms of canopy area. Species with large canopies can already be well 

characterized with only hyperspectral information and an object-oriented approach 

(e.g. Alonzo et al., 2013). Finally, extraction of accurate structural information is likely 

most difficult for large crowned species due to frequent intermingling with neighboring 

crowns, irregular crown shapes, and segmentation error (Chen et al., 2006; Kim et al, 

2009). Despite minor increases in overall classification accuracy, each of the projects 

referenced above did demonstrate significant improvements in classification accuracy 

for certain species. 

The value of lidar data is evident for small crowned species (Fig. 2.9). Of the 8 

species whose classification accuracy improved by > 10 pp, 6 (ARCU, GEPA, MEEX, 

PYKA, SYRO, and WARO) were in the bottom half of the sample set in terms of average 
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crown area. The aggregated average crown size for those seven species was 30.4 m2 

compared to an overall average of 78.0 m2. A particularly notable jump in accuracy (+42 

pp) was made when the fused data were used to classify Washingtonia robusta (Fig. 

2.10). WARO had the 2nd smallest average crown size and the 2nd highest total tree 

height.  These attributes, on one hand, made WARO difficult to classify using 

coregistered hyperspectral data both due to its small crown area and because of 

horizontal crown displacement caused by differing view geometries. On the other hand, 

these same attributes made WARO structurally unique, and relatively easy to classify 

upon inclusion of lidar data. This example highlights three key ways in which lidar 

likely improves classification accuracies. First, with a lidar point density of 22 

pulses/m2 we have the ability to map much smaller discrete objects than with the 

hyperspectral data alone. Secondly, since the crown objects were generated using the 

Figure 2.10: Washingtonia robusta (Mexican fan palm)  
 

 



 

59 
 

gridded lidar dataset, there is no image registration error. Third, unique crown 

structural characteristics (e.g., height, crown length, crown shape) are not measureable 

with optical data alone. With increased availability of fine-spatial resolution 

hyperspectral data (< 1 m) such as AVIRIS Next Generation (Hamlin et al., 2011) or the 

Carnegie Airborne Observatory (Asner et al., 2007), it will be interesting to see how 

much classification accuracies can improve even without lidar data. 

 Some larger crowns were also classified more accurately with CDA-7fuse than 

with spectral data alone. There is evidence that higher crown porosity (possibly 

relating to lower LAI) may lead to a reduced capacity for accurate classification using 

spectral data alone. It has been shown that higher LAI strengthens spectral signals in 

the NIR and portions of the VIS (Asner, 1998). In this study one of the metrics relating 

to crown porosity was cp_2. This metric compares the position of the mean crown 

height (as a function of tree height and crown base height) to the median height of 

returns in the crown. Higher numbers suggest a dense upper crown that skews the 

vertical distribution of lidar returns upwards. Large crowns with the least crown 

porosity by this measure were FIMI and EUGL. FIMI and EUGL were both classified well 

with spectral data alone (97% and 93% average accuracies respectively) but they were 

also ranked 3rd and 1st respectively in terms of average crown size. Large and medium 

crowns with the highest porosity were PLRA, PYKA, PICA and ULPA. From the addition 

of lidar data they gained  4, 25, -6, and 12 pp, respectively. We assume that PICA was 

ranked highly by this metric more from a combination of upright crown geometry and 

off-nadir lidar pulses than actual high porosity. 
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2.5.6 Classification of less common species 

 The original choice to map 30 species was made because 80% of Santa 

Barbara’s canopy cover comprises roughly 30 species and there appeared to be 

diminishing increases in canopy for each additional species added after this point (Fig. 

1.3). In Santa Barbara, 23% of the total canopy cover sampled in the i-Tree Eco field 

collection was from two species: the native Quercus agrifolia (Coast live oak) and the 

introduced Syagrus romanzoffiana (Queen palm). This relationship between species mix 

and canopy cover may hold in other parts of the country as well. For instance, based on 

a 2009 i-Tree Eco study in Washington, DC (Casey Trees, 2010), roughly the same 

relationship was established with 25% of canopy comprised of two native species: 

Fagus grandifolia (American beech) and Liriodendron tulipifera (Tulip tree). In Los 

Angeles, with a very arid climate and a lack of native canopy dominants, the 

relationship shifts somewhat but 30 species would still equate to roughly 70% of 

canopy cover. Given an increase in availability of lidar and hyperspectral datasets, these 

species-canopy relationships indicate the transferability of the methods established in 

this paper to conduct similar assessments for the canopy dominants in other, larger 

cities. 

In large cities, with established urban forest management programs, it is feasible 

to collect training data for and map ~30 species to the species level. However, for those, 

potentially, hundreds of species with low stem counts representing the remaining 20 or 

30% of canopy area, it will be pragmatic to classify only to the leaf-type level. In this 

study, mapping to the leaf-type level meant modeling the less common species as one of 

the common species and checking for leaf-type agreement. Over the entire dataset of 
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2,304 crowns (~100 species), leaf-type mapping reached 87.9% accuracy using CDA-

full. However, when only classifying the ~70 less common species the accuracy declined 

to 59.1%. We surmise that the low accuracy with which these species were classified is 

a product of our choice to use a CDA classifier. The classification functions generated 

were specifically tailored to maximize separability among the input training classes, 

which did not include the less common species. This leads to a well-tuned classifier for 

the common species but one that may not be able to capture the variation in the dataset 

comprising the less common species. Other classification methods may ultimately prove 

superior for hierarchical classification schemes wherein all trees are classified first to 

the leaf-type level and then common species are further classified to the species level. 

For example, Multiple Endmember Spectral Mixture Analysis (MESMA: Roberts et al., 

1998) allows for constrained classification based on a target spectrum’s similarity to 

reference spectra such that species not represented in a spectral library would rightly 

remain unclassified. 

2.6 Conclusions 

This research sought to improve species and leaf-type level mapping in the 

urban forest. We first selected 29 common species that dominate the canopy in Santa 

Barbara, California and classified them using CDA on combined hyperspectral and high 

point-density lidar data. We achieved a species-level accuracy among trained species of 

83.4%. We mapped the entire set of sample crowns, including ~70 less common 

species, to the leaf-type level with 87.9% accuracy. We believe this study demonstrates 

the potential for separating highly overlapping species classes using data fusion at the 
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crown-object level. In an immediate, operational sense, the techniques described in this 

paper are likely applicable with high accuracy (and perhaps with lower point density 

lidar data) for discriminating among urban vegetation growth forms (e.g. herbs, shrubs, 

trees) where simple structural metrics could vastly improve separability when 

combined with either multi- or hyperspectral data. The data to accomplish this sort of 

classification are available in many cities today and the results even at this generalized 

level could yield actionable results relating to the spatial distribution of urban 

ecosystem structure and function.  

In line with previous research, classification accuracies in this study were 

bolstered by lidar variables pertaining to tree height, crown morphology, and perhaps 

the internal arrangement of leaves and branches. In particular, we showed that small 

crowns and crowns with unique morphological characteristics were more apt to be 

correctly labeled with the inclusion of structural data. Further, we showed that 

classification following automated crown segmentation was more accurate than a pixel-

level result and the diminution in accuracy introduced from segmentation error was 

quite small. As many cities have gained access to high-accuracy canopy coverage maps 

it is a reasonable next step to implement simple crown segmentation algorithms to 

generate serviceable crown objects for further analysis. Ultimately, the ability to both 

map dominant canopy species and inventory common but smaller species is important 

if we’re to operationalize remotely sensed urban forest inventory.  
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3.1 Abstract 

In urban areas, leaf area index (LAI) is a key ecosystem structural attribute with 

implications for energy and water balance, gas exchange, and anthropogenic energy 

use. In this study, we estimated LAI spatially using airborne lidar in downtown Santa 

Barbara, California, USA. We implemented two different modeling approaches. First, we 

directly estimated effective LAI (LAIe) using scan angle- and clump-corrected lidar laser 

penetration metrics (LPM). Second, we adapted existing allometric equations to 

estimate crown structural metrics including tree height and crown base height using 

lidar. The latter approach allowed for LAI estimates at the individual tree-crown scale. 

The LPM method, at both high and decimated point densities, resulted in good linear 

agreement with estimates from ground-based hemispherical photography (r2 = 0.82, y 

= 0.99x) using a model that assumed a spherical leaf angle distribution. Within 

individual tree crown segments, the lidar estimates of crown structure closely 

paralleled field measurements (e.g., r2=0.87 for crown length). LAI estimates based on 

the lidar crown measurements corresponded well with estimates from field 

measurements (r2 = 0.84, y = 0.97x+0.10). Consistency of the LPM and allometric lidar 

methods was also strong at 71 validation plots (r2 = 0.88) and at 450 additional sample 

locations across the entire study area (r2 = 0.72). This level of correspondence exceeded 

that of the canopy hemispherical photography and allometric, ground-based estimates 

(r2 = 0.53). The first-order alignment of these two disparate methods may indicate that 

the error bounds for mapping LAI in cities are small enough to pursue large scale, 

spatially explicit estimation. 
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3.2 Introduction 

Urban trees provide a broad array of ecosystem services that are governed by 

tree species, canopy structure, and locational context (Escobedo & Nowak, 2009; 

Manning, 2008; McCarthy & Pataki, 2010; McPherson et al., 2011; Simpson, 2002; 

Urban, 1992). Leaf Area Index (LAI), commonly defined as one half of the total green 

leaf area per unit ground area (Chen & Black, 1992), is a critical structural attribute that 

has implications for urban energy balance, gas exchange, hydrological throughput, and 

anthropogenic energy use. It is an ecophysiological measure of leaf surface available for 

photosynthesis and transpiration (Chen et al., 1997). In addition, dry depositional 

uptake and intercellular suspension of air pollutants such as O3, NO2, SO2, CO, and PMx is 

partly mediated by effective leaf surface area (Baldocchi et al., 1987; Hirabayashi et al., 

2011). In urban areas, this process has been related to spatial variation in air pollution 

reduction (e.g.,Escobedo & Nowak, 2009). Increased canopy leaf area, especially over 

paved surfaces, delays stormwater peak flow through interception of precipitation 

(Xiao & McPherson, 2002). Higher urban vegetation fractional cover (Lu & Weng, 2006; 

Myint et al., 2010) and higher LAI (Georgi & Zafiriadis, 2006; Hardin & Jensen, 2007; 

Oke, 1989; Peters & McFadden, 2010) have been correlated with lowered urban 

temperatures and reduced summertime building cooling costs. At the same time, tree 

cover has also been linked to ecosystem disservices ranging from pollen allergies to 

sidewalk damage and the production of litterfall (Roy et al., 2012). 

 Many cities have estimated urban LAI using the USDA Forest Service’s i-Tree 

Eco model (Nowak et al., 2008a). The i-Tree Eco model produces estimates of urban 

forest structure, including LAI, and ecosystem function using field measurements of 
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tree species and crown dimensions acquired on ≥200 stratified random inventory plots 

across a city (Nowak et al., 2008a). The resulting estimates of ecosystem function are 

used by cities for urban forest management and planning (e.g., Million Trees LA: 

McPherson et al., 2011). However, the data collection process is labor intensive, and the 

results are only available at very coarse spatial resolution. Further, the LAI estimates 

become increasingly uncertain in regions where the model’s allometric equations have 

not been parameterized by locally-evaluated, species-specific coefficients (Gower et al., 

1999; Peper & McPherson, 2003). By contrast, the estimation of effective LAI (LAIe) in 

an urban area from hemispherical photography (hereafter “hemiphotos”) may be more 

robust to the varying mixtures of tree species than allometric methods. LAIe differs 

from true LAI in that it does not account for the non-random distribution of foliage 

throughout the canopy and does not differentiate between foliar and woody plant 

components (Chen & Black, 1991). However, measurement challenges such as 

discontinuous canopy cover, variability in canopy height, occlusion of foliage by 

buildings and other structures, and difficulty of accessing private property at times 

when sky conditions are appropriate for the method have limited the use of this 

technique in cities (Jensen et al., 2009, 2012; Osmond, 2009; Peper & McPherson, 2003; 

Richardson et al., 2009b). Importantly, both allometry and hemispherical photography 

are field-sampling techniques that generate only point estimates of LAI that cannot 

easily be extended to a citywide map. Remote sensing data can be used to estimate and 

map urban LAI and LAIe over large areas at fine spatial scales, possibly at significant 

cost savings compared to field campaigns (Nowak  et al., 2008b).  
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Maps of LAIe in natural forest settings are frequently produced using laser 

penetration metrics (LPM) calculated from airborne lidar (e.g.,Hopkinson et al., 2013; 

Korhonen et al., 2011; Solberg et al., 2009; Zhao & Popescu, 2009). LPMs, which report 

the penetration ratios of laser pulses through canopy, are favored in part due to the 

theoretical reliance on Beer-Lambert’s law of light attenuation that they share with gap 

fraction calculated from hemiphotos. However, issues related to multi-scale clumping of 

foliage, the variable relationship between sensor scan angle and canopy path length, 

and the wide range of possible leaf angle distributions due to species diversity have 

largely precluded lidar mapping of LAIe in heterogeneous areas (Holmgren et al., 2003; 

Morsdorf et al., 2008; van Gardingen et al., 1999). Despite these limitations, Richardson 

et al. (2009) showed that mapping LAIe was possible in a biodiverse urban park and 

that the assumption of a spherical leaf angle distribution may be acceptable.  

In this study we sought to improve LAI mapping capabilities in heterogeneous 

urban environments. We used two theoretically distinct modeling approaches and 

multiple types of validation evidence. It is important to acknowledge that indirect, 

ground-based measurements of LAI or LAIe are problematic, exhibiting variability and 

bias with respect to true LAI and each other (Bréda, 2003; Peper & McPherson, 2003). 

We first examined the relationship between lidar estimates of LAIe using a Beer-

Lambert style approach and estimates from hemiphotos acquired at 71 field plots. 

Second, we adapted the allometric equations used in the i-Tree Eco model for use with 

crown dimension measurements (e.g., height, diameter) taken at the individual tree 

crown scale (hereafter “crown scale”) using lidar. The specific objectives of this study 

were: 
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1. Map LAIe in a heterogeneous, urban landscape at the field-plot scale through 

correlation of LPM derived LAIe and hemiphoto gap fraction inversion.  

2. Introduce methods for mitigating the effects of off-nadir lidar pulse angles 

and non-random foliage distribution on estimates of LAIe in discontinuous 

canopy. 

3. Map LAI of individual trees using automatically delineated crown objects, 

lidar-measured crown dimensions, and an allometric approach. 

4. Compare plot-aggregated allometric LAI outputs with the plot-level outputs 

from the LPM method to characterize the covariation. 

We anticipated that the plot-level metrics based on Beer-Lambert’s law would offer a 

site-transferable means to estimate LAIe with minimal model calibration from field 

data. This output could be useful for broad assessment and modeling of urban surface 

energy balance in terms of heat, moisture, and momentum fluxes (Grimmond et al., 

2010) However, the resultant map resolution will not allow for estimates of urban tree 

ecosystem service provision in the manner desired by many cities (i.e., services that 

depend on crown location relative to buildings and impervious surfaces). Crown scale 

estimates of LAI validated against i-Tree Eco allometry offer a more direct path towards 

a spatially explicit urban forest inventory albeit one that internalizes the uncertainties 

of the i-Tree Eco model. 
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3.3 Materials and Methods 

3.3.1 Study area and field plots 

This study was conducted in downtown Santa Barbara, California (34.42° N, 

119.69° W) (Fig. 3.1). Santa Barbara is a city of about 90,000 residents, encompassing 

51 km2, located on a coastal plain between the Pacific Ocean to the south and the Santa 

Ynez mountains to the north. It has a Mediterranean climate and supports a diverse mix 

of native, introduced, and invasive urban forest species. Fractional canopy cover (fCov) 

was estimated in 2012 at 25.4% for the entire municipality of Santa Barbara using high-

resolution digital imagery (City of Santa Barbara Urban Forest Management Plan, 2014, 

www.santabarbaraca.gov). Our study area was situated in the most densely built 

portion of the city and, according to i-Tree Eco estimates in 2012, fCov was 

approximately 20%.  

Figure 3.1: Study area located in downtown Santa Barbara, California. Green dots show grid-
randomized distribution of 71 field plots. The shaded topographic relief background shows that 
most plots are on flat ground but some, in the northeast and southwest are on steep slopes. At 
right, oblique angle aerial imagery courtesy of Bing Maps showing 4 representative 11. 4 m radius 
plots. 
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In the fall of 2012, we inventoried vegetation within 105 plots, recording 108 

unique species. The most commonly sampled species were the broadleaf persistent 

native Quercus agrifolia (Coast live oak) and the introduced Syagrus romanzoffiana 

(Queen palm). Each plot (Fig. 3.1) had a radius of 11.4 m in accordance with i-Tree Eco 

data collection protocols (i-Tree Eco User’s Manual v. 4.1.0, www.itreetools.org). 

Species composition and structure in the plots was extremely heterogeneous: Thirty-

eight plots had LAI values of < 1 and 10 plots had values >3 (mean = 1.39). Average 

canopy height was also highly variable, ranging between 2 and 23 meters with 

significant internal variation as well. The number of trees per plot ranged between 1 

and 57 with a median stem count of 4 trees. Plot centers were geolocated using 

differentially corrected GPS and were positionally accurate to 30 cm with respect to the 

lidar data. The distance and direction of each stem was measured from plot center with 

an Opti-Logic laser range finder and a compass. Of the 105 sampled plots, 71, with 

colocated field measurements, hemiphotos, and lidar data were retained for analysis. 

3.3.2 LAIe estimates from hemispherical photography 

To characterize the extreme heterogeneity in urban forest gap fraction, one 

hemiphoto was acquired at plot center along with four additional photos 5.5 m from the 

center in each cardinal direction. Plots where only one photo site was accessible 

represented 16% of the total. While best practice dictates that hemiphotos are acquired 

under diffuse light conditions, this was not always possible. Southern California autumn 

days are frequently cloudless and the high likelihood of a field plot falling on private 

property limited our flexibility in acquisition time. The photos were taken at 1 m above 

ground using a Nikon Coolpix 5400 digital camera retrofitted by removing the 

http://www.itreetools.org/
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manufacturer’s infrared-blocking filter and replacing it with a filter that blocked 

wavelengths <590 nm such that it could record red and infrared light. The modified 

camera was used because hemiphotos acquired with near infrared (NIR) wavelengths 

can lead to more efficient and accurate image binarization of foliage (Chapman, 2007). 

This advantage is important in urban settings where hemiphotos frequently contain 

structures interspersed with foliage (Osmond, 2009). 

At each hemiphoto location, we acquired images at three exposure settings: 1-stop 

underexposed, automatic exposure, and 1-stop overexposed. We combined these 

multiple exposures into a single high-dynamic range (HDR) image to enhance contrast 

between foliage and sky (Jonckheere et al., 2005; Zhang et al., 2005) and mitigate pixel 

saturation caused by direct beam radiation (Korhonen et al., 2011). HDR processing 

was completed with minimal changes to default settings in Dynamic-Photo HDR 5 (v 

5.2.0). Foliage, plant stems, and branches were distinguished from all other scene 

components through an image segmentation rule-set applied to the hemiphotos using 

Trimble’s eCognition software (v. 6.4, Munich, Germany). Multi-resolution 

segmentation and locally-thresholded classification allowed us to address variability in 

scene illumination and the complex mix of biotic and abiotic scene elements 

(Jonckheere et al., 2004). Nevertheless, as these photos were used for validation of 

remotely sensed estimates, some manual editing was required.  

Gap fraction was calculated from the binary images at zenith bin midpoints (7°, 

23°, 38°, 53°, and 68°) that, for compatibility with previous research (e.g., Korhonen et 

al., 2011; Solberg et al., 2009) , correspond with the concentric detector rings of the 

LAI-2000 Plant Canopy Analyzer (Li-Cor, Lincoln, Nebraska, USA). LAIe can be 
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calculated from gap fraction using a discrete approximation of Miller’s integral (Miller, 

1967; Korhonen et al., 2011): 

𝐿𝐴𝐼𝑒 = 2∑ −ln⁡(𝑛
𝑖=1 𝑃𝑖) cos(𝜃𝑖)𝑤𝑖       (3.1) 

where 𝑃i are ring-wise gap fractions as functions of zenith angle (𝜃) averaged across all 

photo sites at a given plot (Ryu et al., 2010a) and wi are weights corresponding to 

sin(Θ)dΘ of the midpoint angle of each zenith bin (Solberg et al., 2006). 

3.3.3 LAI estimates from i-Tree Eco allometry 

At the full set of 105 plots we identified and measured 612 trees following 

standard i-Tree Eco protocols. The crown measurements used by the i-Tree Eco model 

for estimation of leaf area include height of live top, crown base height, and average 

crown diameter. The log-linear allometric equation, initially created for full-crowned, 

deciduous, open-grown trees (Nowak, 1996) is: 

 ln( 𝐿𝐴) = ⁡−4.3309 + 0.2942𝐿 + 0.7312𝐷 + 5.7217𝑆 − 0.0148𝐶 + ⁡𝜖  (3.2) 

where LA is leaf area, L (crown length) is equal to the height of crown live top minus 

crown base height, D is the average crown diameter, S is a species-specific average 

shading factor, C is the crown’s outer surface area represented by: πD(L+D)/2 and 𝜖 is 

an error term. Following back-transformation and correction for logarithmic bias, 

further adjustments may be made in cases of crowns with dimensions beyond the limits 

for which the equations were developed and for crowns that exhibit leaf loss due to 

factors such as dieback, defoliation and pruning (D.J. Nowak, pers. comm., 2014). Plot 

level LAI estimates were computed by summing leaf area for all trees measured on the 

plot and then dividing by the total plot area of 408 m2.  
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3.3.4 Lidar data acquisition and processing 

 Waveform lidar data were collected in August of 2010 aboard a helicopter with a 

front-mounted Riegl Q560 laser scanner (Riegl USA, Orlando, Florida). The lidar data 

were georeferenced with two local differential GPS stations and stored in the UTM 

coordinate system (Zone 11N, NAD83). The waveform was discretized using standard 

Riegl processing procedures to an average last-return point density of 22 points m-2 

across the study area with additional returns (maximum of 4) available in tall 

vegetation. Height values on flat surfaces were evaluated to be precise to within 2 cm. 

Nominal scan angles ranged between 0 and 30° but the front-mounted sensor 

configuration resulted in a minimum pulse angle of 10° and a maximum of 30°. In this 

research the term pulse angle refers to the three dimensional, angular deviation from a 

theoretical pulse traveling perpendicularly to the ground. This is measured by 

constructing the 3-D line between a last return and a first return connected by their 

shared GPS time (Zhao & Popescu, 2009).  

Each of the 71 plots was entirely sampled by at least two lidar flight lines and 

thus, in most cases, by multiple pulse angle distributions. Pulse angle was assigned to 

single echo pulses from multi-return neighbors in the same flight line or, in the absence 

of multiple returns, directly from the nominal scan angle. The point cloud was classified 

to ground, building, and vegetation using LAStools (LAStools v111216, 

http://lastools.org) with minimal adjustments to default settings and an overall 

classification accuracy, validated via manual image interpretation, exceeding 97%. 
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3.3.5 Plot-level estimates of LAIe from lidar 

We extracted 2.5, 5, 10, 11.4, 15, 20, and 25 m radius cylindrical subsets of the 

lidar point cloud centered at each hemiphoto site (n = 243) acquired across our set of 

71 plots (methods workflow: Fig. 3.2). Hemiphotos and lidar pulses do not sample the 

same canopy (Morsdorf et al., 2006; Richardson et al., 2009b). The former is upward 

Figure 3.2: Workflow diagram for both mapping approaches described in detail in the text. Please 
refer to Table 3.1 for full expansion of the acronyms in this figure. 
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looking with a conical field-of-view while the latter is downward looking and results in 

a cylindrical extrusion of the field plot boundary. In an urban setting with highly 

variable canopy height, the ideal angular restriction of hemiphoto view zenith and 

optimal sizing of the lidar cylinder radius is not known a priori. Thus, we extracted data 

at multiple radii in order to determine, on average, which cylinder size maximized the 

correlation between estimated LAIe and the hemiphoto LAIe estimates that were 

produced from each of the five aforementioned zenith angle ranges. 

 

Notation Explanation 

LPM Laser Penetration Metric 

LAI Refers to "true" Leaf Area Index or Leaf Area Index from allometry 

LAIe Effective Leaf Area Index 

LPMfirsts LPM gap fraction formulated only using first returns (all pulses on plot) 

LPMlasts LPM  gap fraction formulated with inclusion of last returns (all pulses on plot) 

LPMcan 
LPM  gap fraction for canopy only (only includes pulses intersecting with 
canopy) 

fCov Plot canopy fractional cover 

LdirF Plot-level, direct LAIe using LPMfirsts  

LdirL Plot-level, direct LAIe using LPMlasts  

LfCov Plot-level LAIe using LPMcan multiplied by fCov (used for clumping correction) 

eplCor Expected path length correction 

  

3.3.5.1 Gap fraction from Laser Penetration Metrics 

Accurate gap fraction estimation from LPMs is dependent on canopy gap size and 

arrangement, acquisition parameters such as beam footprint and scan angle, and the 

specific formulation of the LPM (Hopkinson et al., 2013; Morsdorf et al., 2008; Zhao & 

Popescu, 2009). We implemented three frequency-based LPMs as proxy measures of 

gap fraction (Table 3.1). The first two were calculated using all pulses extracted from a 

given plot (hereafter: “direct” method) and are adaptations of an LPM applied in a 

Table 3.1: Key notation used throughout study. 
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natural forest setting by Solberg et al. (2006) and a managed park setting by Richardson 

et al. (2009). Prior to correction for clumping (discussed in the following section), the 

direct method will yield significant overestimates of gap fraction whenever foliage is 

clumped among spatially disaggregated trees. However, this is likely similar to the 

overestimation produced from hemiphoto analysis. We formulated the first LPM, simply 

as the inverse of fractional cover, only counting first returns, as follows: 

𝐿𝑃𝑀𝑓𝑖𝑟𝑠𝑡𝑠 = ⁡⁡1 − 𝑓𝐶𝑜𝑣        (3.3) 

Where: 

𝑓𝐶𝑜𝑣 = ⁡
𝐹𝑐

𝐹𝑔+𝐹𝑐
          (3.4) 

 In this model description, F denotes first and only returns, the subscript g is for ground, 

and subscript c is for canopy. When referring to lidar measurement from near 

overhead, there is no universally accepted differentiation between 1 − 𝑓𝐶𝑜𝑣⁡and gap 

fraction. They may be considered equivalent (Hopkinson & Chasmer, 2009) or they may 

be distinguished in terms of the size of the gaps in question (Carlson & Ripley, 1997). To 

increase sensitivity to smaller gaps, gap fraction retaining last ground returns was 

calculated as the sum of first and last returns at ground level (Lg + Fg) divided by first 

ground, last ground, and first canopy returns:  

𝐿𝑃𝑀𝑙𝑎𝑠𝑡𝑠 =⁡
𝐿𝑔⁡+⁡𝐹𝑔

𝐿𝑔⁡+𝐹𝑔+𝐹𝑐
         (3.5) 

A third LPM was calculated only in and under canopies as the ratio of ground last returns 

to the sum of ground last returns and first canopy returns: 

𝐿𝑃𝑀𝑐𝑎𝑛 =⁡
𝐿𝑔⁡

𝐿𝑔⁡+𝐹𝑐
         (3.6) 
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This formulation does not include single returns that have penetrated through the 

canopy via larger gaps as these were accounted for in equation 3.4 for fractional cover. 

Logarithmic inversion of the direct measures, LPMfirsts and LPMlasts will result in direct 

estimates of plot-level LAIe. The same inversion of LPMcan will result in an estimate only 

of canopy LAIe. This result must be rescaled by fCov in order to yield a comparable, plot-

level result. In this study LAIe from 𝐿𝑃𝑀𝑐𝑎𝑛 was only used to correct the two direct 

estimates, as well as hemiphoto-estimated LAIe, for plot-scale clumping. To evaluate 

whether these metrics may be implemented with more commonly available lidar 

datasets, each LPM was additionally calculated for decimated pulse densities of 5 pts m-

2 and 2 pts m-2. 

3.3.5.2 Pulse interception simulation for path length and clumping correction 

Gap fraction estimates from LPMs will vary as a function of path length through 

the canopy. This component of variability is commonly mitigated through retention 

only of pulses with near-nadir scan angles (e.g., Morsdorf et al., 2008) but has also been 

accounted for using a cosine correction, which effectively normalizes path length by 

pulse angle (e.g., Zhao & Popescu, 2009). Relying on narrow swaths of data in cities is 

problematic if we hope to operationalize spatially extensive LAIe measurements at 

reasonable cost. However, the application of a simple cosine correction (e.g., 1/cos(Θ) 

where Θ = pulse angle) may be inappropriate in areas of discontinuous canopy and 

variable crown morphology (Holmgren et al., 2003). Pulse angles in this study’s lidar 

dataset were never less than 10 degrees off-nadir. Thus, in furtherance of objective #2, 

we simulated canopy pulse interception through a range of pulse angles and crown 

geometries to develop a more precise method for correction called expected path length 
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correction (eplCor). Simulator detail and code are available in Appendix B Portions of 

this MATLAB-based (vR2013b, The MathWorks, Inc. ) simulator code were also used for 

the “on-the-fly” simulation using the lidar data referenced in the following section.   

eplCor is the ratio of the expected pulse path length through the crown at a given 

pulse angle and crown geometry compared to the hypothetical, simulated nadir path 

length. eplCor is assessed at the canopy level by comparing the path lengths only of 

pulses intersecting the crown’s alpha hull. Alpha hulls differ from convex hulls in that 

the requirement of convexity is relaxed when the user-defined alpha scale parameter is 

finite. Use of alpha hulls allows for more precise wrapping of a set of spatially 

disaggregated crowns. At the plot level, all plot pulses are included to account for the 

fact that, with upright crown geometry, as pulse angle increases, more pulses will pass 

through the crown. We examined the relationship between pulse angle and LAIe for 

upright, intermediate, and spreading geometries based, respectively, on 75th, 50th, and 

25th percentile height-to-diameter ratios of our 612 field-measured trees. Results are 

reported as “simulated LAIe (sLAIe)” and produced from equations following the form of 

Eq. 3.7 for plot-level estimates and Eq. 3.9 for canopy-level estimates rescaled by fCov 

(see Section 3.3.5.3).  

The extent to which estimates of LAIe will underestimate true LAI due to 

clumping is also partially determined by urban forest stand configuration. In an urban 

setting characterized by isolated trees, clumping of foliage occurs at the shoot, branch, 

and plot scales. While the error from clumping is presumed to be the same for both 

lidar and hemiphoto estimates, we believe that tree spacing in our urban study area will 

lead to underestimates that may be too large to ignore. Here, we again used pulse 
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interception simulation to examine how the distribution of foliage throughout a plot, 

from highly clumped (e.g., aggregated in a single, dense palm) to fully random, drives 

underestimates of direct LAIe measures. To accomplish this, we set true plot LAI to 

values ranging from 0.11 to 1.67. At each value we varied the radius of a simulated tree, 

and thus the foliage density, from 3 m to 15 m. To produce a clumping ratio we divided 

simulated LAIe calculated using Eq. 3.9 by simulated LAIe calculated using Eq. 3.7 (See 

Section 3.3.5.3) . This ratio presumes that a plot-level estimate of LAIe made by first 

measuring only canopy LAIe and then rescaling by fCov will not be impacted by the 

spacing / arrangement of the plot’s trees (Ryu et al., 2010a).  

3.3.5.3 Estimating LAIe from lidar data 

For each cylinder radius, at each hemiphoto site, for each flight line, LAIe was 

calculated from lidar data directly at the plot level using only first returns (LdirF, where 

the subscript F indicates first returns) and including last returns (LdirL where the 

subscript L indicates last returns) as well as indirectly from canopy LAIe multiplied by 

fCov (LfCov). Formulations: 

𝐿𝑑𝑖𝑟𝐹 =
−ln⁡(𝐿𝑃𝑀𝑓𝑖𝑟𝑠𝑡𝑠⁡)

𝑘⁡∙⁡𝑒𝑝𝑙𝐶𝑜𝑟
         (3.7) 

𝐿𝑑𝑖𝑟𝐿 =
−ln⁡(𝐿𝑃𝑀𝑙𝑎𝑠𝑡𝑠⁡)

𝑘⁡∙⁡𝑒𝑝𝑙𝐶𝑜𝑟
         (3.8) 

𝐿𝑓𝐶𝑜𝑣 =
−ln⁡(𝐿𝑃𝑀𝑐𝑎𝑛⁡)

𝑘⁡∙⁡𝑒𝑝𝑙𝐶𝑜𝑟
⁡ ∙ ⁡𝑓𝐶𝑜𝑣        (3.9) 

where LPMx is the relevant gap fraction generated using the LPM equations 3.3, 3.5 

and 3.6. We set k = 0.5 to correspond with the commonly reported spherical leaf angle 

distribution for leaves of any size (Chen et al., 1997). Given the high species diversity in 

our study area there was little basis on which to choose any LAD other than spherical. 
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We also report k as estimated using weighted linear regression and a no-intercept 

model to evaluate the deviation from this expected value (e.g., Solberg et al., 2006). 

Linear regression weighted by lidar-estimated LAIe was selected in order to account for 

increasing error variance at higher values of LAIe. Coefficients of determination were 

calculated based on sums of squared error and total sums of squares for the 

untransformed data relative to the weighted least squares fit. For the airborne lidar 

data, eplCor was estimated using on-the-fly simulation. That is, for each of the 243 

subplots, an alpha hull was generated for canopy returns and expected path lengths 

were calculated based on median pulse angle, median pulse azimuth, and crown 

geometry. The flight line results, weighted by number of pulses, were averaged back to 

the full plot (n = 71) level. Clumping ratios were calculated and multiplied through 

𝐿𝑑𝑖𝑟𝐹 , 𝐿𝑑𝑖𝑟𝐿⁡and the hemiphoto LAIe results to account for plot-scale clumping. 

3.3.6 Crown scale estimates of LAI using lidar-measured crown dimensions 

Objective #3 of this study was to map LAI at the crown scale using allometric 

methods. Note: This study does not use LAIe and LAI interchangeably. The latter metric 

represents an estimate of “true” LAI that is neither impacted by foliar clumping nor 

commingling of woody and leafy plant materials. The choice to forgo LPM methods in 

favor of allometry for mapping LAI at the crown scale is warranted for several reasons: 

1) Currently, allometric estimation using the i-Tree Eco model is the most common 

means for estimating LAI in US cities; 2) LPMs can only be used when it is possible to 

tally the full set of ground-reflected pulses that have passed through a given tree crown. 

This is difficult with highly off-nadir pulse angles where the (X,Y) positions of ground 

returns are displaced significantly with respect to the (X,Y) positions of canopy returns; 
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3) Even with high-point density and low flight altitude, individual tree crowns with high 

LAI may not allow passage of any pulses, resulting in numerical overflow of the gap 

fraction inversion computation; 4) Objective #4 of this study was to compare the results 

of mapping methods with distinct theoretical underpinnings.  

The following sections describe in detail how we used lidar to estimate the same 

structural inputs that are used in the i-Tree Eco allometric equation (Eq. 3.2) and then 

how we applied the results to all crowns in our study area (Fig. 3.2). 

3.3.6.1 Crown segmentation and leaf type classification  

The allometric equation (3.2) used in i-Tree Eco to estimate leaf area from 

crown dimensions also incorporates a species-specific shading factor. This factor is 

included to account for the large species-driven variation in leaf size, shape, and 

arrangement that may be encountered within any measured crown volume. In this 

study it was not feasible to develop coefficients for each species due to limited training 

data. Instead we classified each tree to the leaf-type level (i.e., broadleaf, needle leaf, 

palm). Segmentation of canopy into individual crowns and leaf-type classification was 

undertaken prior to beginning this study. The process is detailed in Alonzo et al. (2014). 

A brief synopsis follows: 

Canopy segmentation made use of the marker-controlled watershed algorithm 

on a gridded lidar canopy height model in the manner originally proposed by (Chen et 

al., 2006). Spectral data from the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS, Green et al., 1998) and structural metrics (e.g., height, height-to-width ratios, 

porosity) were extracted from each crown and fused. Classification of 29 common 

species was carried out on the fused dataset using canonical discriminant analysis to 
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83.4% overall accuracy. Classification of all crown segments to the leaf-type level was 

carried out with 93.5% accuracy. This classification information was used in Section 

3.3.6.3 to facilitate the formulation of separate leaf area models, one for each leaf type. 

3.3.6.2 Measurement of crown dimensions from the lidar point cloud 

In this study, tree height and crown base height were estimated directly from the 

3-D lidar point cloud by first finding the vertical midpoint between the highest and 

lowest return in a given segment that was classified as canopy. From the midpoint, a 

0.25 m window was moved vertically up and down the tree, stopping when the slice 

contained fewer than a predetermined minimum number of returns. This method 

proved superior to a quantile-based method because of the significant presence of 

cultivated shrubbery below the crown (Fig. 3.3a) and power lines or branches of 

neighboring trees above (Fig. 3.3b). Average crown diameter was calculated from 

watershed crown area after abstracting each segment to its circle of equivalent area. 

These measurements served as the raw inputs to Eq. 3.2. 

3.3.6.3 Model formulation using crown measurements from manually delineated 

crowns 

As in the i-Tree Eco model, total leaf area was estimated as a precursor to LAI. 

We trained the lidar model to predict leaf area using 109 manually delineated crowns 

with known leaf type and leaf area. We used a log-log adaption of Eq. 2 due to the 

lognormal frequency distributions of each independent variable, the lognormal 

distribution of leaf area, and clear non-linear, bivariate relationships between each 

predictor and response: 

ln(𝐿𝐴) = ln(𝑏0 + 𝑏1 ∙ 𝐿 + 𝑏2 ∙ 𝐷 + 𝑏3 ∙ 𝐶)⁡      (3.10) 
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where 𝐿𝐴 is leaf area, 𝐿 is crown length, 𝐷 is average crown diameter, 𝐶 is crown 

surface area, and bx are empirically determined coefficients. Coefficient estimation was 

carried out on both the pooled set of 109 crowns and the sets separated by leaf type 

using weighted least squares regression.  

3.3.6.4 Model application on watershed crowns 

The models formulated using manual crowns were applied to all watershed 

segments in the study area after estimating the crown dimensions for each segment. 

Following segment-level estimates of leaf area, LAI was calculated at the field-plot level 

to allow for accuracy assessment against aggregated i-Tree Eco values. To clarify: it is 

not possible to validate individual crown results for watershed segments because it is 

not known whether a segment contains only a part of one, exactly one, or more than 

one tree. Thus, the leaf area estimates for the 1584 watershed crowns that intersected 

Figure 3.3: Two example crowns based on airborne lidar data collected during August 2010 with 
automatically estimated height and crown base height (red lines). Green dots indicate returns 
classified as canopy. (a) Presence of understory shrubbery. (b) Crown is overhung by power lines. 
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71 i-Tree Eco plots were summed by plot and divided by the plot area (408 m2) to yield 

plot-level LAI.  

3.3.6.5 Map making and model intercomparison 

A study-area wide map of LAIe was generated at 10 m pixel resolution using the 

best performing of the LdirF and LdirL models. Finer resolution was not considered 

because it has been previously shown in an urban setting that, even with high pulse 

density, pixel sizes of 3 m led to data gaps due to lack of ground returns (Richardson et 

al., 2009). Moreover, given our study’s mean pulse angle (20°) and mean canopy height 

(10 m) the horizontal displacement of ground returns relative to canopy returns was 

expected to exceed 50% of all pulses if 5 m pixels were generated.  No such limitation 

existed for the allometric outputs which were mapped at the crown scale. The crown 

scale map was subsequently gridded to 10 m pixels through intersection and 

reapportionment operations in a GIS to allow for spatially explicit comparison with the 

selected LAIe result. We compared the model results for the 71 study plots and also 

throughout a spatial subset of the study area using 450 randomly distributed sample 

points. Additionally, we compared all possible pairwise relationships (n = 12 when each 

ground and each lidar method is used as an independent and a dependent variable) to 

establish rough error bounds on LAI mapping in cities. For purposes of 

intercomparison, we report root-mean squared error (RMSE) and slope coefficient 

values from weighted least squares regression with inclusion of an intercept term in all 

cases. 
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3.4 Results 

3.4.1 Comparison of ground-based estimates 

Hemiphoto LAIe and allometrically determined LAI from i-Tree Eco field 

measurements have different theoretical underpinnings. Nevertheless, there was a 

significant linear relationship between Hemiphoto LAIe and i-Tree Eco allometric LAI 

(r2 = 0.53), although the slope of 0.34 indicated that hemiphoto LAIe was generally 

lower than allometric LAI (Fig. 3.4). This relationship and all other linear relationships 

reported in this research were significant at the p = 0.001 level.  

3.4.2 Plot fractional cover 

Fractional cover was calculated for each plot using Eq. 3.4 and it was compared to 

field estimates made using i-Tree Eco protocols. There was a significant linear 

relationship between the two estimates of fractional cover (r2 of 0.85, y = 0.86x-0.92, 

data not shown), with lidar estimates generally resulting in 5-10% more fractional 

Figure 3.4: The relationship between UFORE allometric LAI from field measurements and 
hemiphoto derived LAIe. Grey shading in this and all similar plots indicates the 95% confidence 
interval of the regression equation. 
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cover. The lidar results may be more accurate than the i-Tree Eco measurements 

because the latter produce relatively coarse estimates by dividing the sky into 4 

quadrants and estimating the canopy cover in each visually.  

Figure 3.5: Adjustments to simulated LAIe( sLAIe) using expected path length: (a) Canopy-level 
adjustment including only pulses intersecting the alpha hulls. (b) Plot level adjustments including all 
plot pulses in eplCor calculation. sLdir uses the “direct” method (Eq. 3.8), sLfCov uses the “canopy 
method” (Eq. 3.9). Upright, intermediate, and spreading crowns defined as 75th, 50th, and 25th 
percentile height-to-diameter ratios of field-measured trees 
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3.4.3 Correcting for path length and plot-scale clumping using simulation 

The expected path length correction method was evaluated in our simulation 

environment to determine its robustness with respect to crown geometry and 

distribution of foliage (Fig. 3.5). LAIe was underestimated for all crown geometries at 

both the canopy and plot levels with underestimation exacerbated by increased pulse 

angle, particularly for the upright and intermediate crowns. At the canopy level, for 

upright crowns, eplCor strongly compensated for the underestimation at pulse angles 

>5°. At 30° off nadir, the LAI estimate was corrected from 1.65 to 2.48. For the 

intermediate crown, the correction at 30° raised the LAI estimate from 1.98 to 2.38. Due 

to minimal change in pulse-angle dependent path length in the spreading crown, eplCor 

had negligible impact. Simulated plot level results based on rescaled canopy LAIe 

mimicked the patterns produced in the canopy level results as they only differ by the 

scalar, fCov. In the case of the direct, plot-level results however, the net effect of eplCor 

(with non-canopy pulses now included) was to lower the estimated LAIe by implicitly 

compensating for the higher number of pulses making contact with canopy at higher 

pulse angles.  

Simulation of plot-scale clumping showed that underestimates of true plot LAI 

varied as a function of foliage density (the ratio of crown projection area to plot area) 

and LAI (Fig. 3.6). Underestimates were most severe when true plot LAI was highest 

(1.67) and the foliage density was highest (canopy radius = 3 m, plot radius = 15 m). In 

this case the measured LAI value was only 5% of true LAI. As foliage became more 

evenly distributed, estimates improved, following a logarithmic trajectory whose 

coefficients varied with true plot LAI. For instance, for a true plot LAI of 0.66, with all 
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canopy clumped into a tree with a radius of 7 m, measurement yielded an LAI value that 

was 45% of true LAI. At a true plot LAI of 0.22 with foliage fully distributed throughout 

the 15 m radius plot, the measured LAI value was 90% of true LAI.  

3.4.4 Plot LAIe estimates from lidar data 

On the assumption that view geometry alignment does not depend on LPM 

formulation, LAIe was directly estimated using only 𝐿𝑑𝑖𝑟𝐿 at all plot radii and all 

hemiphoto zenith bins with Eq. 3.8. The coefficient of determination was maximized 

for⁡𝐿𝑑𝑖𝑟𝐿 using the range of hemiphoto zenith angles from 0 to 45° and a cylinder radius 

of 10 m (Fig. 3.7). This correlation theoretically indicates a mean canopy height 

between 10 and 20 m, which indeed bounds the mean height of field-measured canopy: 

12 m. This optimal zenith bin and lidar data cylinder radius was used in all further 

analyses.  

Figure 3.6: The impact of canopy clumping to deviation from true LAI on simulated 15 m plots. A 
ratio value of “1” indicates that measured LAI = true LAI. Each series represents one “tree” whose 
radius increases until it equals the plot radius. This plot highlights the difficulty of measuring plot-
level LAI when foliage is densely clumped into trees with small canopy projection areas (CPA). 
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Model performance of LdirF (first returns only) and LdirL (inclusion of ground last 

returns) was assessed by simultaneous minimization of bias and maximization of the 

coefficient of determination with respect to hemiphoto LAIe. After multiplication by the 

clumping ratio, the best model performance was exhibited by 𝐿𝑑𝑖𝑟𝐿 with a no-intercept 

linear relationship of y = 0.99x, r2 = 0.82, and RMSE = 0.41 (Fig. 3.8). Examination of 

𝐿𝑑𝑖𝑟𝐹  (y = 0.73x, r2 = 0.73, RMSE = 0.40) showed a linear relationship with hemiphoto 

LAIe at lower values. At higher hemiphoto LAIe values, significant overestimates were 

present. For simplicity, only LdirL was considered for subsequent analyses. Changes to 

slope, r2, and RMSE values after decimation to 5 pts m-2 were each within 1% of the full 

point-cloud values reported above. After decimation to 2 pts m-2, the LdirL slope 

decreased to 0.98, RMSE increased from 0.41 to 0.42 and the r2 value decreased from 

0.82 to 0.80. LdirF slope decreased from 0.73 to 0.72, RMSE increased from 0.40 to 0.42 

and r2 decreased from 0.73 to 0.69. 

Figure 3.7: Coefficient of determination (r2) matrix for the relationship between LAIe from 
hemiphotos and LAIe using lidar and the LdirL model. Theoretical lines of maximum correlation for 10 
m and 20 m canopy height are also displayed. 
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Canopy-level eplCor was applied to correct the LfCov model, while the plot-level 

analog was applied to correct the estimates from LdirL (Fig. 3.9).These plot-level 

corrections resulted in an 8% reduction in bias and a change in slope from 0.92 to 0.99. 

The canopy level correction, after conversion to a comparable plot-level result, resulted 

Figure 3.8: Weighted, no-intercept, linear relationships between hemiphoto LAIe and LAIe predicted 
using model LdirL (a) and LdirF (b). Clump-corrected results shown in blue and uncorrected result 
shown in gray. Results only displayed for full point cloud without decimation. 

Figure 3.9: Demonstration of expected path length correction (eplCor) at plot and canopy levels. (a) 
Plot level correction compared to cosine correction. (b) Canopy-level correction compared to cosine 
correction. (c) Example of alpha hull wrapping a clump of upright palm trees. (d) An alpha hull 
wrapping a closed canopy of spreading oak trees. 
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in a 1% increase in bias with a decrease in slope from 0.74 to 0.73. This latter result is 

merely presented to show the effect of eplCor. We do not believe that the hemiphoto 

dataset offers comparability with LfCov results due to different sensitivities to clumping. 

The mean value of the clumping ratio (𝐿𝑓𝐶𝑜𝑣/𝐿𝑑𝑖𝑟𝐿) was 1.4 (standard deviation = 0.26), 

which indicates similarity to the simulated values of 1.43, 1.42, and 1.49 for the upright, 

intermediate, and spreading crowns, respectively.  

3.4.5 LAI estimates using lidar-measured crown dimensions and allometry 

There was strong agreement between crown diameter, crown length, and crown-

surface area calculated from lidar and their field-measured analogs, with r2 values of 

0.95, 0.87, and 0.94 respectively (Fig. 3.10). Log-log fits by leaf type were established 

between the lidar structural measurements and the i-Tree Eco measurements: 

ln(𝐿𝐴𝑏) = ln(1.76 + 0.60𝐿𝑏 + 2.32𝐷𝑏 − 0.44𝐶𝑏)⁡     (3.11) 

ln(𝐿𝐴𝑐) = ln(−5.05 − 2.06𝐿𝑐 − 5.38𝐷𝑐 + 4.90𝐶𝑐)⁡    (3.12) 

ln(𝐿𝐴𝑝) = ln(7.02 + 2.11𝐿𝑝 + 11.09𝐷𝑝 − 5.33𝐶𝑝)⁡    (3.13) 

where the subscripts b, c, and p denote broadleaf, needle leaf, and palm leaf types 

respectively. Formulation of separate log models for each leaf type resulted in an r2 

value of 0.87 (RMSE = 0.39) compared to r2 = 0.78 (RMSE = 0.48) for a combined model. 

Application of the above models to the set of watershed segments intersecting 

our i-Tree Eco field plots (nsegs = 1584) resulted in an overall r2 of 0.84 and a slight 

overall underestimate (y = 0.97x+0.10, RMSE = 0.53) compared to LAI estimated from 

field data using the native i-Tree Eco model equations (Fig. 3.11). At the watershed-

crown level, combined model r2 = 0.81 (RMSE = 0.57, data not shown). 
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3.4.5.1 Comparing the lidar models and mapping the estimates 

There was strong agreement (r2 = 0.86, y=0.05+1.22x, RMSE = 0.59) between the 

LAIe results from the LdirL model and LAI measured allometrically using lidar-extracted 

crown measurements. Allometric LAI was underestimated slightly by LdirL possibly, in 

part, because the latter does not account for shoot/branch scale clumping and because 

penetration metrics are prone to saturation at high LAI. All ground-based and lidar 

models were related with root-mean squared errors ranging between 0.39 and 0.93 and 

slope values between 0.45 and 1.21 (Table 3.2). 

Figure 3.10: (a)-(c) Relationship between field-measured crown dimensions and the same 
measurements made using airborne lidar on 109 manually-delineated crowns. (d) Log-log fit of lidar-
predicted leaf area and leaf area estimated from crown measurements in the field. 
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Maps were generated using each of the models and are displayed here, for the 

purposes of visual clarity, as spatially corresponding subsets of the full study area (Fig. 

3.12). While produced initially at different spatial resolutions (10 m pixels for LAIe 

versus crown scale for lidar allometry), the broad scale similarities are visually 

apparent. After resampling the crown-level map to 10 m resolution, we assessed the 

patterns of disagreement between the two methods (Fig. 3.12c). As anticipated based  

    Dependent variable 
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   UFORE hemiphoto lidar LPM lidar allom. 

UFORE -- 0.42 (0.45) 0.57 (0.53) 0.48 (0.87) 

hemiphoto 0.93 (0.95) -- 0.39 (0.89) 0.74 (0.94) 

lidar LPM 0.86 (0.89) 0.4 (1.10) -- 0.59 (1.21) 

lidar allm. 0.53 (0.97) 0.56 (0.69) 0.44 (0.71) -- 

Figure 3.11: Allometric LAI from field measurements predicted by allometric LAI from lidar 
structural measurements using separate models for each leaf type (Eqs. 11-13). Aggregation of 
individual crown estimates to the field plot scale 

Table 3.2: Weighted Least Squares root mean squared error (bold) and slope coefficients (in 
parentheses) for all combinations of field and lidar-estimated LAI or LAIe. For comparability, all table 
entries are based on WLS regression with inclusion of an intercept term. 
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Figure 3.12: (a) Map of LAIe using the LdirL model at 10 m pixel size for downtown Santa Barbara (see 
map inset for location). (b) Map of LAI from lidar extracted structural metrics and allometry at 
individual crown scale. (c) The LdirL map subtracted from the allometric map after the latter was 
resampled to 10 m resolution. All legends are numbered with the class’ highest value. 
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on plot-level results, the allometric model generally produced higher estimates. The 

LdirL model produced higher LAIe values mostly under large broadleaf canopies as 

illustrated in the inset map. To compare the maps more rigorously, we extracted pixel 

values from each 10 m map at 450 points. Map agreement between the two models 

yielded a coefficient of determination of 0.72. Interestingly, the bias in the map was the 

opposite of the bias in the plot-level comparison (0.78 instead of 1.22). In the map, at 

high LAI, LdirL produced higher values. This may be due to the higher likelihood of 10 m 

pixels being under closed, broadleaf canopy compared to the 20 m diameter sample 

plots.  

3.5 Discussion 

3.5.1 Mapping LAIe with laser penetration metrics (objective #1) 

We found strong agreement between LAIe estimated from hemiphoto gap-fraction 

inversion and LAIe estimated using LPMs, as has been previously reported for natural 

forests (Hopkinson & Chasmer, 2009; Richardson et al., 2009b; Solberg et al., 2009b, 

2006; Zhao & Popescu, 2009). Our best result (r2 = 0.82, y = 0.99x, RMSE = 0.41) 

comparing LPM methods to hemiphotos was produced with the LdirL model. We found 

that the inclusion of ground last returns (LPMlasts) in our LPM formulation was 

necessary to retain model sensitivity at LAIe >2 (Fig. 3.8a). This was due to the fact 

that, at LAI >2, LPMfirsts was insensitive to change in gap fraction because the beam 

footprint was larger than the typical gap size (Lovell et al., 2003; Solberg et al., 2009b). 

For low canopy cover plots either metric is likely sufficient because LAIe is largely 

governed by fractional cover. In regions of partial vegetation cover specifying LAI may 
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be redundant if fractional cover is already known (Carlson & Ripley, 1997). Still, it is 

unclear whether LdirF leads to under- or overestimation of LAIe as it is unknown 

whether we are more likely to digitize canopy returns where the pulse did not fully 

intersect with canopy or ground returns where part of the pulse did intersect with 

canopy (Hopkinson & Chasmer, 2009). The addition of last returns, beyond allowing for 

greater sensitivity to smaller gap sizes, increases the effective pulse density, which 

raises the likelihood that under- and overestimates at gap margins will cancel out.  

In LfCov only last returns on the ground were accounted for in the numerator. Thus, 

in dense canopy, the penetration rate may be zero, resulting in an LAIe of infinity. This 

did not occur on our 71 plots because their 20 m diameter and relatively sparse canopy 

always allowed for some ground returns. However, on 73 out of 41,134 (0.2%) of our 

10 m grid squares this numerical overflow forced exclusion of the Lfcov values. While 

this failure rate was low, it would increase at smaller pixel sizes and when applying a 

penetration metric to dense, individual crowns. Canopy density is only one cause of this 

error: For either individual crowns or small pixels, ground returns from non-nadir 

pulses will exhibit horizontal displacement with respect to associated canopy hits. The 

number of ground returns that should be associated with the pixel in question, but are 

actually counted in an adjacent pixel, will vary as a function of pixel size, canopy height, 

and pulse angle. 

While it was necessary to include last returns in order to maintain model 

sensitivity at higher LAIe, sensitivity was not impacted significantly through reduction 

in pulse density. The full point-cloud relationships depicted in Figure 3.8a, differed 

negligibly in terms of r2 and bias from those generated at 2 pts m-2. The only 
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noteworthy deviation occurred with 2 pts m-2 sampling density in plots with very low 

fractional cover. In several of these cases higher pulse density was required in order to 

detect the presence of small patches of vegetation. In high cover plots, the low pulse 

density was still sufficient, at least at 10 m radius plot scale, to produce similar ratios of 

ground returns to all returns. The fact that this method may be successful at lower 

pulse densities allows cities to consider similar analyses with existing lidar datasets. 

3.5.1.1 Correcting for off-nadir pulse angles and clumping (objective #2) 

Assessment of LAIe using Beer-Lambert’s law assumes that attenuation of light 

through the canopy is partially a product of its passage through N statistically 

independent horizontal layers of canopy (Jonckheere et al., 2004). When the N layers 

are sufficiently thin and foliage is distributed randomly, the probability of light 

interception in a given layer follows a Poisson distribution. For measurement of LAIe 

from overhead lidar, we assume that this passage follows a near vertical path from 

sensor to ground. If, however, the pulse angle deviates significantly from 0°, we must 

consider how this change affects the path length of the pulse through the canopy. All 

else being equal, an increase in path length due to sensor positioning relative to a crown 

will lead to a spurious reduction in gap fraction. Given a continuous, uniform extent of 

canopy, it is reasonable to assume that path length correction can be applied in the form 

of 1/cos(Θ) where Θ is the angular deviation from nadir.  

Our urban study area, however, was characterized by heterogeneous canopy such 

that path length was additionally dependent on crown geometry and pulse azimuth. We 

found that, at the canopy level, a simple cosine correction had little relationship with 

eplCor and, under most circumstances, prescribed an adjustment that erroneously 
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lowered the LAIe estimate (Fig. 3.9b). This effect can be seen clearly with the cluster of 

highly upright palms shown in Figure 3.9c. At the plot level, however, the utility of the 

cosine correction remained largely intact (Fig. 3.9a). On plots dominated by spreading 

crowns (Fig. 3.9d) the distinction between plot and canopy-level correction is less 

pronounced. At the plot level there is a coherent linear relationship between eplCor and 

simple cosine correction (Fig. 3.9a). Thus, it is not surprising that this use of eplCor 

only resulted in a 2% improvement over 1/cos (Θ). The true value of eplCor will more 

likely be realized should measurement of LAIe become feasible at the individual crown 

scale. 

 Estimation of true LAI from hemiphotos requires a horizontally continuous, 

random distribution of foliage across all view zenith and azimuth angles as well as the 

ability to separate woody plant matter from photosynthetic material (Jonckheere et al., 

2004). The same requirements apply to plot-level estimation using lidar. While difficult 

to discern from the literature, there appear to be a number of studies that utilize 

hemiphotos under discontinuous canopy conditions (e.g., Richardson et al., 2009; 

Solberg et al., 2006; Zhao & Popescu, 2009). Under these conditions, estimating LAIe is 

still possible (and technically valid) but the magnitude of the departure from true LAI 

may become extreme due to significant spatial separation among clumps of foliage. 

Given the extremely discontinuous canopy in a semi-arid, urban environment, we 

attempted to account for clumping attributable to tree spacing.  

We measured clumping as the ratio of LAIe estimated using LfCov to LdirL and 

produced an average clump ratio value of 1.4 for our study area. We multiplied both the 

hemiphoto LAIe estimates and the LdirL estimates by the plot-specific clump ratio. This 
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result cannot be validated directly but we did find increased agreement with allometric 

results, which could indicate that the correction for plot-scale clumping shifts LAIe 

values somewhat closer to true LAI. It may behoove future researchers to experiment 

with ground-based methods that allow for indirect LAIe estimation of individual trees 

or coherent canopy clumps. Methods of this type that have been used in sparse canopy 

conditions include non-hemispherical digital canopy photography (Pekin & Macfarlane, 

2009; Peper & McPherson, 2003; Ryu et al., 2010b) and the LAI-2000 with restrictions 

placed on the view zenith and azimuth (Peters & McFadden, 2010). 

3.5.1.2 Leaf angle distribution 

We used a fixed value of k = 0.5 for all LAIe models because it represents the 

extinction coefficient for the spherical leaf angle distribution (LAD). In the least squares 

fit between LdirL and hemiphoto LAIe, our estimated slope coefficient was 0.99. This 

equates to a modeled k value of 0.495, suggesting that in a highly mixed urban forest, an 

initial k value of 0.5 is reasonable. This is consistent with Richardson et al. (2009), who 

estimated k = 0.485 in a semi-urban park setting with a mix of broadleaf and needle leaf 

species. Falster & Westoby (2003) digitized the LADs in three dimensions of 38 

perennial species in sclerophyll woodland qualitatively similar to the oak / eucalypt 

assemblages common in southern California. They found that each species had a 

unimodal LAD with mean leaf angles ranging from 27° (planophile) to 74° (erectophile). 

Across their entire sample, the cross-species mean leaf angle was 52° which is 

approximately equidistant from the expected means for uniform random and spherical 

LADs. While 0.5 may be an appropriate theoretical value for k in mixed forests, it must 

be noted that the value additionally depends on lidar acquisition parameters such as 
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LPM formulation. Solberg et al. (2009) showed, using first returns only, that their 

regression’s slope coefficient (equivalent to 1/k in this context) was stable across 

Norway spruce development classes (1.83 – 1.98). However, when using both first and 

last returns the slope coefficient mean across development classes increased to 2.47 

with a range from 1.83 to 2.69. 

3.5.2 Estimating LAI with lidar-derived structural metrics and allometry 

(objective #3) 

Our urban study adds to the larger body of work in natural forests suggesting that 

lidar is effective for measuring basic crown structural attributes (Fig. 3.10) such as 

height (e.g., Andersen et al., 2006; Edson & Wing, 2011) and crown base height 

(e.g.,Popescu & Zhao, 2008; Reitberger et al., 2009). This is consistent with research 

suggesting laser return height distributions are less susceptible to increased scan angle 

than penetration metrics (Holmgren et al., 2003; Morsdorf et al., 2008). It is likely that 

metrics such as crown base height are best assessed with off-nadir data and in an urban 

forest characterized by open-grown trees. Allometric model formulation was improved 

by the incorporation of leaf type information (from r2 = 0.78 and RMSE = 0.48 to r2 = 

0.87 and RMSE = 0.39). However, the model, when applied to the watershed segments 

improved by a smaller margin with this increased specificity (r2 = 0.81 and RMSE = 0.57 

to r2 = 0.84 and RMSE = 0.53). This is possibly attributable to inaccuracies in the leaf-

type classification of the watershed segments. Improvement was also likely limited due 

to aggregation of the results to the i-Tree Eco-plot level for validation purposes. 

Implementation of the crown-scale allometric method produces fine-spatial scale 

results that are useful for calculation of urban forest ecosystem services such as 
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building energy-use reduction and stormwater runoff mitigation. However, a key 

limitation of this method, and a large source of uncertainty, is that shading coefficients 

have been directly estimated only for a small number of species and regions. While this 

coefficient is not included in Eq. 3.11-3.13, it is introduced implicitly when training the 

model against i-Tree Eco results. Of the 108 species sampled in the field, species-

specific coefficients were only available for 17, and those coefficients were not likely 

estimated in Southern California. The remaining species were assigned coefficients 

corresponding to other trees of the same genus or leaf type. We expect the empirical 

scaling coefficients would need to be determined for other regions and forest types in 

order to obtain a similar degree of accuracy. Further error may have been introduced to 

the models generated in this study because they do not account for variation in tree 

condition or crown transparency. Future gains could likely be made by combining 

structural measurement of crown dimensions with a lidar penetration metric 

correlated with crown porosity. 

3.5.3 Comparison of models and maps (objective #4) 

In this study we made field measurements of LAI using crown structural 

measurements plus allometry and LAIe using gap fraction inversion of hemispherical 

photos. We developed lidar models that roughly mimicked each method and then 

validated each model against its field analog. The final objective of this study was to 

compare the results from each method (Table 2). We did this to estimate the error 

bounds on urban LAI estimates. This is not a statistically-based error bound and caution 

must be taken in comparing LAI and LAIe. Nevertheless, we believe that the first-order 

similarity of these results indicates potential for wider application of lidar remote 
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sensing for mapping urban LAI. Notably, it was the comparison of the two ground-based 

methods, which resulted in the weakest relationship in terms of RMSE and bias. 

The maps (Fig. 3.12) illustrate the broad similarities between the methods but 

also highlight the key difference in spatial scale of the output. In theory, the LPM map 

can be generated at smaller pixel sizes. However, as pixel size decreases, the number of 

pixels with infinite LAIe due to numerical overflow and the percentage of ground points 

actually associated with neighboring pixels will increase. Richardson et al. (2009) found 

that, with their lidar point density and LPM formulation, they could produce an LAI map 

at 14 m but not at 3 m, due to the lack of ground returns in many canopy-filled pixels. 

These issues make the prospect of mapping individual tree LAIe using penetration 

metrics difficult at the present time.  

The patterns of map disagreement (Fig. 3.12c) clearly reflect the differences in 

model formulation and may shed light on which model is most appropriate for a 

particular application. Where canopy cover is low and clumped in isolated trees (see 

Fig. 3.12c inset) the allometric method may be better suited to capture the fine scale 

variability in LAI. In this scenario a pixel-level inversion of an LPM would be unduly 

influenced by extremely high gap fraction due to small crown size and clumped foliage. 

On the other hand, in areas with higher overall and relatively homogeneously 

distributed canopy cover, pixel-level LPMs are quite sensitive to small changes in leaf 

surface due to the nature of the logarithmic inversion. Further, in those areas, 

segmentation algorithms preceding the allometric approach are less likely to properly 

delineate overlapping crowns so the utility of leaf type classification is diminished. 
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3.6 Conclusions 

This study demonstrated the potential for mapping Leaf Area Index (LAI) in a 

heterogeneous urban environment using two theoretically distinct methods. We first 

showed strong agreement between effective LAI (LAIe) estimated from a laser 

penetration metric (LPM) and LAIe measured in the field using hemispherical 

photography (r2 = 0.82). In order to quantify the relationship between the two methods, 

we developed novel methods to correct for off-nadir pulse angles and plot-level 

clumping in a structurally diverse and discontinuous canopy. While we initially made 

use of a lidar dataset with very high point density (22 pts m-2), we found that the results 

could be reproduced at decimated point densities down to 2 pts m-2. This indicates that 

cities may have success implementing LPM methodology for calculating LAIe using 

existing data. 

Secondly, we showed that lidar-derived structural metrics such as height, crown 

base height, and crown segment area can be used as inputs to existing allometric 

equations for prediction of LAI. This result was compared against LAI allometrically 

estimated from field measurements of individual trees and yielded an r2 of 0.84 when 

formulating separate models for each leaf type. A key difference in the mapped outputs 

between the methods was the spatial resolution. We found that a map produced using 

LPMs must have a pixel size large enough to allow for lidar beam penetration to ground, 

even under dense canopy. An allometric map has no theoretical lower bound on the size 

of the output crown object. However, maps generated using allometric equations are 

subject to an unknown amount of error associated with use of coefficients not 

developed for the trees or site in question. Thus, while this work demonstrates that LAI 
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can be mapped at citywide scales, it is still important that the practitioner be aware of 

the trade-offs inherent in each of the methods. The ability to map LAI across large urban 

areas offers new potential to constrain estimates from hydrological and atmospheric 

models and better understand the spatial distribution of urban ecosystem services at 

increasingly fine scale. 
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4.1 Abstract 

Cities measure the structure and function of their urban forest resource to optimize 

forest management and the provision of ecosystem services. Measurements made using 

plot sampling methods yield useful results including citywide or land-use level 

estimates of species counts, leaf area, biomass, and air pollution reduction. However, 

these quantities are statistical estimates made over large areas and thus are not 

spatially explicit. Maps of forest structure and function at the individual tree crown 

scale can enhance management decision-making and improve understanding of the 

spatial distribution of ecosystem services relative to humans and infrastructure. In this 

research we used hyperspectral imagery and waveform lidar data to directly map urban 

forest species, leaf area index (LAI), and carbon storage in downtown Santa Barbara, 

California. We compared these results with a field-plot study using the i-Tree Eco 

model. Remote sensing methods generally reduced uncertainty in species-level canopy 

cover estimates compared to field-plot methods. This was due to high classification 

accuracy for large canopy species (e.g., Platanus racemosa with ~90% average accuracy, 

Pinus pinea at ~93%, Quercus agrifolia at ~83%) and high standard error of the plot-

based estimates due to the uneven distribution of canopy throughout the city. Average 

LAI in canopy based on lidar measurements was 4.47 while field measurements and 

allometry resulted in an LAI of 5.57. When accounting for fractional cover, citywide 

lidar-based LAI was 1.15 and field-based LAI was 1.29. Citywide carbon based on lidar 

measurements and allometry was estimated at 50,991 metric tons (t) and 55,900 t from 

plot-sampling. As others have noted, carbon density varied substantially by 

development intensity based largely on differences in fractional cover but less so when 
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only evaluating canopy. Using separate biomass equations for each leaf type (broadleaf, 

needleleaf, palm) resulted in a more accurate carbon map but a less accurate citywide 

estimate. 

4.2 Introduction 

Measurement of urban forest structure is a prerequisite to estimating urban forest 

ecological functions such as urban heat island mitigation, air pollution removal, carbon 

storage, building energy-use modification, and stormwater runoff reduction. 

Measurements of structure are generally based on a limited set of random field plots 

given the impracticality of a complete urban tree inventory (Nowak et al., 2008a). 

Estimates of urban forest function are commonly made using the USDA Forest Service’s 

i-Tree Eco (formerly Urban Forest Effects or UFORE) model (www.itreetools.org; 

Nowak et al., 2008a). Many cities use the model outputs to improve urban forest 

management and inform environmental policy (e.g., McPherson et al., 2011). However, 

field sampling methods come with potential drawbacks: (1) they are labor and time 

intensive, generally taking a trained, 2-person field crew ~14 weeks to sample about 

200 0.04-ha plots (Nowak et al., 2008b); (2) they can be expensive, depending upon 

local transportation and labor costs (3) permission to access plots may be limited in 

some areas; (4) the magnitudes of fundamental outputs such as species and tree size 

distributions are subject to sampling error that are dependent upon sample size and 

forest variability; (5) the results are averages or totals within classes and not spatially 

explicit across the city. 
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Generation of spatially explicit outputs is important for several reasons: First, it is 

critical for urban forest managers to know the specific locations of common species so 

they can prepare for threats from pests, fire, and blight (Laćan & McBride, 2008; 

Santamour, 1990; White & Zipperer, 2010). Second, the magnitudes of ecosystem 

functions vary spatially throughout the city in relation to historical tree planting 

patterns, natural regeneration, tree site suitability, water availability, infrastructure 

conflicts, maintenance, street traffic, etc. (Escobedo & Nowak, 2009; Manning, 2008; 

McCarthy & Pataki, 2010; McPherson et al., 2011; Nowak, 2012; Simpson, 2002; Urban, 

1992). Third, ecosystem services may not be distributed fairly with respect to class and 

race: Communities that would benefit the most from improved air quality, cooler 

temperature and even reduced crime (Kuo & Sullivan, 2001) are frequently those with 

the least access to canopy (Heynen et al., 2006; Schwarz et al., 2015).  

In contrast to extensive field sampling, remote sensing can provide spatially 

extensive data, potentially with higher temporal resolution and lower cost. However, 

the use of remote sensing in the development of urban forest inventories has been 

limited due to the spatial and spectral complexity of urban landscapes (Herold et al., 

2004). For example, Landsat, a space-borne, multispectral sensor is not well suited to 

this problem because of its 30 m ground instantaneous field of view, which is much 

larger than the characteristic scale of spatial variation found in urban areas (~5-10 m; 

Jensen & Cowen, 1999; Welch, 1982; Woodcock & Strahler, 1987). High spatial 

resolution (< 3 m), multispectral platforms such as IKONOS and GeoEye have allowed 

for precise mapping of urban forest canopy extents (MacFaden et al., 2012; Richardson 

& Moskal, 2014a) but limited spectral information largely precludes species 
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identification or structural quantification. However, successful discrimination of urban 

forest tree species has been shown possible using either only hyperspectral imagery 

(Alonzo et al., 2013; Xiao et al., 2004) or hyperspectral imagery fused with light 

detection and ranging (lidar) data (Alonzo et al., 2014; Zhang & Qiu, 2012). Leaf area 

index (LAI) has also been accurately estimated at fine spatial scale using both lidar 

penetration ratios as a proxy for gap fraction and allometric estimates based on 

individual crown structural measurements (Alonzo et al., 2015).  

While the ability to map urban forest structure at high spatial resolution has been 

demonstrated, citywide maps of structure and attendant functions have not yet been 

produced. The primary goal of this paper is to examine the capability of hyperspectral 

imagery and lidar data to produce citywide maps of key structural attributes: tree 

species, LAI, and carbon storage. Our secondary goal is to evaluate the statistical 

uncertainty of the maps and to assess how they may be used with other types of spatial 

data to address urban ecological questions. The specific objectives of this paper are as 

follows: 

1. Scale the species identification methods developed by Alonzo et al. (2014) 

and the LAI estimation methods from Alonzo et al. (2015) into citywide 

maps. 

2. Create a citywide map, at the individual tree crown scale, of dry-weight 

carbon storage using lidar crown measurements and allometric scaling. 

3. Analyze the spatial patterns of each map to demonstrate the utility of 

spatially explicit representation and to characterize the uncertainties of the 

remote sensing methods. 
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4. Compare the remote sensing outputs with i-Tree Eco outputs generated 

using traditional plot-sampling methods 

 

4.3 Methods 

4.3.1 Study site description 

This study was conducted in downtown Santa Barbara, California (34.42° N, 

119.69° W) as discussed in Chapter 1 and illustrated in Fig 1.1. Santa Barbara is a city 

of about 90,000 residents located on a coastal plain between the Pacific Ocean to the 

south and the Santa Ynez mountains to the north. It has a Mediterranean climate and 

supports a diverse mix of native, introduced, and invasive urban forest species. The 

study area represented 45% of the total area of the city. We chose the specific 

boundaries in order to focus on the most characteristically urban parts of the city and 

based on availability of contemporaneous lidar and hyperspectral data. The city of 

Santa Barbara maintains a spatial database that contains one or more specimens from 

>450 tree species. While collecting i-Tree inputs at 105 plots, 108 unique species were 

recorded. Despite this diversity, based on i-Tree and municipal data, we estimate that 

only 25 species represent approximately 80% of the city's canopy cover. The most 

common and canopy dominant native species is Quercus agrifolia (Coast live oak). The 

most common introduced species in terms of stem count is the Syagrus romanzoffiana 

(Queen palm). 
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4.3.2 Field data collection and the i-Tree Eco model 

In the Fall of 2012, we took measurements at 105, 11.4 m radius field plots that 

were randomly distributed in 105 grid cells subdividing the study area. In this study, 

we screened out 16 of the northernmost plots because they fell within the boundaries 

of a flight line that was unusable due to errors in reflectance retrieval. Thus, 89 plots 

were retained for further analysis. At the time of data collection we were unable to gain 

permission to take measurements at 9 private property plots. For each access denial, a 

new plot location was randomly generated in the same grid square. Plots were not 

stratified by land use in this study but nonetheless were distributed roughly in 

proportion to the major land use classes as noted in Chapter 1 and Table 1.1. The land 

use classes chosen for this study are common urban classes that are similar to those 

defined in other i-Tree Eco studies such as Los Angeles (Nowak et al., 2010) and 

Washington, DC (Nowak et al., 2006b). The aggregated class, Natural-Agricultural-

Recreation includes open, undeveloped lands and some parks which house most of the 

area’s native stands of Quercus and Platanus. 

 At each plot, we identified and measured all trees with diameter at breast height 

(dbh) > 2.5 cm (1 in) and a height of at least 1.83 m (6 ft). Tree measurements included 

dbh of all stems, tree height, height-to-live-top, crown diameter (North – South), crown 

diameter (East – West), crown base height, crown missing, and dieback. We also 

measured the distance and direction of each tree from each building that was less than 

18 m (60 ft) away. At the plot level, we estimated percent canopy cover, ground cover 

class percentages, and land-use class percentages (i-Tree Eco User’s Manual v. 4.1.0, 

www.itreetools.org). At each plot in which one or more trees were present, we took up 

http://www.itreetools.org/
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to 5 near infrared, hemispherical photographs to measure plot-level gap fraction and 

LAI (Alonzo et al., 2015). 

 We used the i-Tree Eco software application to generate a statistically based 

estimate of urban forest structure and function. In i-Tree, primary estimates of 

structure include stem counts by species, size class distributions, and LAI. While species 

and size class distributions are directly estimated from field sampling, LAI is 

allometrically estimated using an equation specifically developed for open-grown trees 

(Nowak, 1996). Ecosystem functions such as air pollution reduction, carbon storage, 

building energy modification, and stormwater runoff reduction are estimated from tree 

measurements and ancillary, contextual variables. Reduction of airborne CO, O3, NO2, 

SO2, and PM2.5 is modeled as a function of tree LAI, hourly meteorological data, and local 

hourly pollution concentrations. The economic value of the associated human health 

benefit additionally requires population density information (Nowak et al., 2014). Fresh 

weight carbon is estimated using measurements of dbh and height input into species, 

genus, or leaf-type specific equations from the literature (McHale et al., 2009; Nowak & 

Crane, 2002). Fresh weight is converted to total dry-weight carbon using literature 

values (Nowak & Crane, 2002). Trees modify building energy use through direct 

shading, evapotranspiration, and windbreak effects. These building energy benefits and 

avoided carbon emissions from associated power production are estimated from tree 

size, distance and direction to buildings, climate region, leaf type, canopy cover, 

regional energy production information, and building construction information 
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(McPherson & Simpson, 1999b). Stormwater runoff reduction can be estimated from 

canopy cover, LAI, land cover, and local weather data (Wang et al., 2008)1.  

The i-Tree Eco model is subject to the following uncertainties: 1) measurement 

error in the field data collection, which is assumed to be zero; 2) sampling error that 

can be characterized by the standard error of the estimate; and 3) model error (e.g., 

error in applying allometric equations, conversion factors, pollution removal models) 

that is generally of unknown magnitude (Nowak et al., 2008a), but have been shown to 

provide reasonable estimates compared with field measurements (Morani et al., 2014; 

Peper & McPherson, 2003) or other standardized field/model estimates (Nowak et al., 

2013a).  

4.3.3 Remote sensing data and processing 

Full waveform lidar data were collected in August of 2010 with a helicopter-

mounted Riegl Q560 scanner. The waveform was discretized to an average, last-return 

pulse density of 22 pts m-2 with additional returns available in tree canopy. The lidar 

returns were classified as ground, building, or tree canopy using LASTools (LAStools 

v111216, http://lastools.org) with minimal adjustments to default settings. Finally, a 

gridded (0.25 m) canopy height model was exported for use in crown segmentation 

algorithms. 

Hyperspectral imagery was collected using the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS; Green et al., 1998). The two radiance images used in this study 

were acquired on November 1, 2010 at approximately 11:50 and 14:20 Pacific Standard 

Time (PST). AVIRIS is a 224 channel system that samples radiance at 10 nm intervals 

                                                           
1
 Stormwater runoff was not estimated in the i-Tree eco implementation discussed in this article. 

http://lastools.org/
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across the solar-reflected spectrum from 365 nm to 2500 nm. This spectral range and 

resolution allows for identification of leaf pigment absorption features such as 

chlorophyll in the visible wavelengths of light (Ustin et al., 2009), characterization of 

leaf abundance and structure using the near infrared wavelengths (Roberts et al., 2004) 

and assessment of water status and lignin-cellulose features in the shortwave infrared 

(Kokaly et al., 2009). The radiance images were converted to surface reflectance using 

ATCOR-4 (Richter & Schlaepfer, 2002) and 178 bands with adequate signal-to-noise 

ratios and minimal water vapor contamination were retained for analysis. The two 

AVIRIS images were mosaicked together at a final pixel resolution of 3.7 m. The 

hyperspectral mosaic was co-registered to the lidar data based on 137 ground control 

points and Delaunay triangulation. 

For analysis at the individual tree crown scale (hereafter “crown scale”), the 

remote sensing imagery must be segmented into crowns. Crown segmentation is 

difficult and frequently inaccurate particularly in forests characterized by overlapping, 

broadleaf crowns (Ferraz et al., 2012). However, urban areas contain many isolated 

trees that make automated segmentation more straightforward. The marker-controlled 

watershed segmentation algorithm used in this study is described in detail in Alonzo et 

al. (2014). In brief: Tree tops are isolated (“marked”) on the gridded canopy height 

model and crowns are “grown” from each tree top until a local minimum is reached. 

This minimum ideally corresponds with the end of one crown and the beginning of 

another. This method was 83% accurate in the Santa Barbara study area with success 

defined as a watershed segment containing one-and-only-one tree stem. Areas of 
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inaccuracy primarily corresponded to natural forest stands which were relatively 

homogeneous with respect to species. 

4.3.4 Species mapping 

It is currently not possible to distinguish all species in a species diverse urban 

forest using either field sampling or remote sensing methods. Thus, in this study we 

used cumulative canopy cover distributions calculated from i-Tree data and the city’s 

public tree database to choose 29 common species that accounted for the greatest 

proportion of the canopy cover (Table 4.1 col A). We chose to quantify canopy cover 

instead of stem counts because there is a more direct relationship between canopy area 

and the magnitude of ecosystem function and it is a more straightforward quantity to 

measure from an airborne platform. Alonzo et al. (2014) developed a method for 

classifying the common species in the Santa Barbara study area using fusion of lidar 

measurements and hyperspectral data at the crown scale. In brief, this method fused 

the information from 178 AVIRIS bands with 7 lidar-derived structural metrics (e.g., 

tree height, width-to-height ratios, crown porosity) for each segmented tree crown and 

classified that crown using canonical discriminant analysis (Fig 4.1). Crowns that were 

not one of the 29 common species were classified as one of the common species and 

their classification was deemed correct when leaf type (e.g., broadleaf, needleleaf, palm)  

Table 4.1 (on following page): Comparison of i-Tree and remotely sensed citywide estimates of 
species composition including indicators of uncertainty. Column D is Relative Standard Error. Column 
K is weighted by the i-Tree-estimated canopy area. Remote sensing metrics (Quantity disagreement, 
Producer’s/User accuracy) are based on a validation sample of 2,304 crowns. Quantity disagreement 
is the difference between the amount of canopy classified as a certain species and the actual amount 
of that species’ canopy; location agreement is not considered. Producer’s accuracy quantifies 
classification accuracy (quantity and location) in terms of error of omission. User accuracy is the 
same as Producer’s but for errors of commission. 
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agreement was achieved. For example, if a less common, persistent broadleaf, Quercus 

virginiana, was modeled as Quercus agrifolia or as Magnolia grandiflora, leaf type 

agreement was successful. In Alonzo et al. (2014) this method was tested on 2,304 

crowns which represents approximately 1% of the total stems in the study area. In the 

current paper, we scale the method to map 290,000 stems (i-Tree estimate) or 179,043 

segments generated from the canopy height model. This map allows for analysis of 

spatial patterns throughout the city and direct comparison to i-Tree estimates. 

With the final map we offer additional analyses including: (1) error assessment 

based on comparison with the city of Santa Barbara’s point dataset containing >450 

species; (2) comparison of citywide canopy by species with i-Tree Eco estimates; (3) 

quantification of uncertainties in the remote sensing result due to segmentation and 

Figure 4.1 (a) Phoenix canariensis photo, AVIRIS spectra extracted from one crown, and set of crown-
level structural measurements. Black lines indicate crown base and max heights. Red line is mean 
crown height. Dark blue is median height of returns in crown. Orange and violet show 75th and 90th 
percentile heights as well as widths at those heights. (b) Same set of information but for the broadleaf 
evergreen, Lophostemon confertus. 
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classification error and the uncertainties in the i-Tree Eco result stemming from 

sampling error of species and crown size distributions; and (4) analysis of how the 

classification algorithm mapped the uncommon species (i.e., whether leaf type 

agreement was achieved) 

For canopy area, the i-Tree standard error of the estimate (σe) can be calculated 

based on the mean and standard deviation of canopy area (per species) across the 89 

plots. The more evenly spread a species’ canopy area is among 89 plots, the lower the 

σe. The error is driven by both the geographic distribution of a given species 

(presence/absence), and the sampling distribution of the species canopy area. It should 

be noted that in a standard i-Tree project, data are typically collected on 200+ plots 

which has yielded an average relative standard error in the stem count estimate of 12% 

(Nowak et al., 2008b). In this study, across 89 plots, for total stem count, σe = 19.3%. 

Thus, we expect that errors reported from the field-plot analysis are higher than 

normal. The most directly comparable estimate of remote sensing uncertainty is 

quantity disagreement. This metric is formulated for each species as (mapped canopy – 

actual canopy)/actual canopy. Like the i-Tree estimates, it does not take into account 

location disagreement, which is instead conveyed by the Producer’s (error of omission) 

and User (error of commission) accuracies (Table 4.1, cols F-H, Congalton, 1991). 

4.3.5 Leaf area index mapping 

Leaf area index can be defined as the one-sided total leaf area per unit ground 

area (Chen & Black, 1992). It is an important ecophysiological quantity that, in urban 

areas, strongly mediates air pollution removal (e.g., Hirabayashi et al., 2011), 

dampening and delay of stormwater runoff (e.g., Xiao & McPherson, 2002), and cooling 
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through shading and evapotranspiration (e.g., Peters & McFadden, 2010). In i-Tree, LAI 

is measured allometrically using a formula initially created for deciduous, open-grown 

trees (Nowak, 1996): 

ln( LA) =  −4.3309 + 0.2942L + 0.7312D + 5.7217S − 0.0148C +  ϵ (3.1) 

where LA is leaf area, L (crown length) is equal to the height of crown live top minus 

crown base height, D is the average crown diameter, S is a species-specific average 

shading factor, C is the crown’s outer surface area represented by: πD(L+D)/2 and ϵ is 

an error term. LAI is computed for each sample tree by dividing LA by the crown 

projection area. 

This study followed the method developed in Alonzo et al. (2015) for estimating 

LAI at the crown scale allometrically. In brief: From each segment, tree height and 

crown base height were estimated from the lidar point cloud. Average crown diameter 

was calculated from watershed crown area after abstracting each segment to its circle 

of equivalent area. The derived input variables were calculated with high accuracy: 

Crown diameter root mean squared error (RMSE) = 0.77 m (r2 = 0.95), crown length 

RMSE = 1.72 m (r2 = 0.87), and crown surface area RMSE = 47.1 m2 (r2 = 0.94). In place 

of a species-specific shading factor, one scaling equation was developed for each leaf 

type using weighted linear regression on the log-transformed predictor and response 

variables. The final equations were as follows: 

ln(LAb) = ln(1.76 + 0.60Lb + 2.32Db − 0.44Cb)     (3.2) 

ln(LAn) = ln(−5.05 − 2.06Ln − 5.38Dn + 4.90Cn)     (3.3) 

ln(LAp) = ln(7.02 + 2.11Lp + 11.09Dp − 5.33Cp)     (3.4) 
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where the subscripts b, n, and p denote broadleaf, needleleaf, and palm leaf types 

respectively. When applied to the segments intersecting with i-Tree field plots and 

validated against plot-aggregated values, the plot-level equation was y = 0.10 + 0.97x 

(RMSE = 0.53, r2 = 0.84, where x is the lidar estimate and y is the field estimate) 

indicating good linear agreement. 

 In the present study, we (1) produce a citywide, crown-scale map of LAI; (2) sum 

total leaf area by distance and direction from single family homes as a first step to 

producing a citywide energy benefit map; (3) discuss errors and uncertainties of the 

remotely sensed map product compared to the i-Tree output. 

4.3.6 Carbon mapping 

Generally, inputs to allometric equations to predict carbon storage are either 

based on dbh alone, or dbh and tree height, and equations are specific for a given 

species when possible or matched by genus or leaf type otherwise (Pillsbury et al., 

1998). It is difficult to estimate dbh accurately from airborne remote sensing platforms 

(Popescu, 2007). Instead, we relied on the same set of 28 structural metrics extracted 

from each crown segment by Alonzo et al. (2014). These metrics can be generally 

grouped as relating to tree height, tree width at various heights, crown porosity, 

vertical distribution of woody and foliar elements, and several derived ratio metrics. 

Using subsets of these structural measurements, we developed three equations, one for 

each leaf type, to directly predict dry-weight carbon storage. The general form of our 

scaling equation was: 

𝐶 =  𝑏0 (𝑉𝑎𝑟1)𝑏1(𝑉𝑎𝑟2)𝑏2          (3.5) 
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where C is dry-weight carbon (used synonymously with biomass) from field estimates, 

Var1 and Var2 are the best performing structural metrics and b0,1,2 are empirically-

determined coefficients. We also developed a single, pooled equation for the purpose of 

comparison. We hypothesized that the separate equations would predict biomass more 

accurately because they can more closely align with the species- or genus-specific 

equations found in i-Tree. Moreover, relationships between structure and biomass 

clearly vary by leaf type. For example, height has been shown to predict biomass well in 

a setting dominated by broadleaf trees (Raciti et al., 2014) but using only height to 

estimate palm tree biomass will likely lead to large overestimates. 

 Stepwise regression was used with a goal of minimizing the median of absolute 

deviation (MAD) of carbon estimates from remote sensing compared to 109 field 

measured crowns (70 broadleaf, 13 needleleaf, 26 palms). Two variables for each leaf 

type were selected. MAD was used instead of RMSE because it deemphasizes outlier 

error and should lead to higher map accuracy albeit at the cost of reducing the accuracy 

of the citywide estimate. For each leaf type and for the pooled model, the selected 

variables were used to determine coefficients for equation 5 and, following correction 

for logarithmic bias (Sprugel, 1983) applied to the entire study area where the leaf type 

information was available from the species classification result. The mapped result was 

validated by aggregating the crown level carbon estimates from lidar to the field-plot 

level and comparing with aggregated estimates from field measurements. 



 

123 
 

4.4 Results and discussion 

4.4.1 Tree species mapping 

A species map for the full study area was generated at crown scale and also, for 

visual clarity resampled to a 10 m grid (Fig 4.2). As previously reported in Alonzo et al. 

(2014) the sample overall accuracy of the map for the canopy area of the 29 common 

species is 83.4%. The individual species accuracies ranged between 37% for the small, 

broadleaf Metrosideros excelsa, and 96% for the large broadleaved Eucalyptus globulus 

and Ficus microcarpa. This number is reported as the average of the Producer’s and 

User accuracies which are broken out in Table 4.1 columns G and H.  

We conducted further error analysis on the citywide map (assessed against City of 

Santa Barbara street tree data) to confirm the stability of the sample results for the ten 

species with the most canopy area. It is not as straightforward to assess error for the 

full map because of the significant number of less common species that were mapped as 

one of the 29 common species. However, it is also interesting to note which uncommon 

species were most likely classified as one of the ten most common species (Table 4.2). 

This information can begin to address questions about plant functional similarities that 

manifest both spectrally and structurally. The Producer’s accuracies for the street tree 

sample were consistent with the sample accuracies from Alonzo et al. (2014). In lieu of 

User accuracies, we show here the percent of canopy mapped as a common species that 

is actually an uncommon species. For example, the uncommon species mapped more 

than any other as Eucalyptus globulus was Eucalyptus cornuta, and overall, 42% of 

street trees mapped as Eucalyptus globulus were actually uncommon species. Likewise, 

20% of canopy mapped as Quercus agrifolia was actually an uncommon species, most  
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Figure 4.2: Species maps. The main map shows the species with the most canopy in each 10 m grid 
square. (A) Riparian corridor; (B) Linear street tree planting; (C) Distribution of E. Globulus; (D) 
Distribution of S. terebinthifolius that is partly an artifact of illumination and sensor geometry. See 
table 2 for species code key. 
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frequently Quercus ilex. In all cases but one (Cupressus macrocarpa mapping Melaleuca 

quinquinervia) leaf type agreement was achieved.  

In certain cases, the degree to which a common species tended to be over-mapped 

relative to either other common species or uncommon species was flight-line 

dependent. Schinus terebinthifolius was much more frequently selected to map 

uncommon species, particularly Cupaniopsis anacardioides, in the southernmost flight 

line (Fig 4.2d). City tree planting data does indicate that more Schinus terebinthifolius 

were planted in this topographically distinct part of the city but the additional spatial 

correspondence with the flight line is indisputable. This outco11me can be attributed to 

poor lighting geometry: the solar zenith angle for this flight line was 54° which likely 

resulted in signal attenuation, especially in a forward scattering sensor view 

Common species Producers Mapped Most frequently mapped Leaf type

botanical name accuracy uncommon uncommon species agreement?

Cupressus macrocarpa 98% 40% Melaleuca quinquinervia No

Eucalyptus globulus 98% 42% Eucalyptus cornuta Yes

Jacaranda mimosifolia 87% 10% Maytenus boaria Yes

Pinus canariensis 57% 33% Pinus torreyana Yes

Pinus pinea 97% 19% Pinus halepensis Yes

Pittosporum undulatum 47% 34% Brachychiton discolor Yes

Platanus racemosa 82% 32% Koelreuteria bipinnata Yes

Quercus agrifolia 76% 20% Quercus ilex Yes

Schinus terebinthifolius 83% 33% Cupaniopsis anacardioides Yes

Syagrus romanzoffianum 26% 13% Trachycarpus fortunei Yes

Table 4.2: Secondary accuracy assessment for ten most important species in terms of canopy area 
using City of Santa Barbara street trees as validation dataset. Instead of User accuracy we show the 
extent to which uncommon species were mapped as one of these common species. For example, 40% 
of trees that were labeled on the map as C. macrocarpa were actually an uncommon species. The 
uncommon species that was most frequently labeled as C. macrocarpa was M. quinquinervia. The 
former is needleleaf while the latter is broadleaf so leaf type agreement, in this case, was not 
achieved. 
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configuration. That Cupaniopsis anacardioides, in particular, was most frequently 

mapped as Schinus terebinthifolius, is not surprising: They are quite similar in terms of 

crown structure, leaf size, and leaf color. 

More often, species distributions were scattered throughout the city with 

locations more dependent on land use and ecological niches than any remote sensing 

artifact. In a natural setting, our map showed the interspersion of the common riparian 

species, Platanus racemosa among the Quercus agrifolia stands following a stream 

channel (Fig 4.2a). Our map also characterized the linear planting patterns along city 

streets well: Note the preferential planting of Magnolia grandiflora, Jacaranda 

mimosifolia, and Eucalyptus ficifolia in a single-family residential neighborhood (Fig 

4.2b). Finally, on a citywide scale, one can see the locally-clumped yet globally 

distributed pattern of Eucalyptus globulus (Fig 4.2c). The clumps are likely naturally 

regenerating Eucalyptus stands frequently colocated with oak woodlands, while the 

linear patterns (most notably along Highway 101) likely represent intentional planting 

for aesthetic purposes and noise abatement. 

4.4.2 Comparing remote sensing and i-Tree species results 

Total canopy area for the 25 common species1 that were sampled by both remote 

sensing and i-Tree was estimated as 5,584,589 m2 based on field sampling and 

5,288,304 m2 based on remote sensing classification (5% difference). Before comparing 

species estimates and associated error metrics, the limitations of this analysis must be 

stated: (1) i-Tree canopy is multi-layered, therefore the canopy totaled across all 

                                                           
1
 Four of the 29 common species (Cinnamomum camphora, Eucalyptus ficifolia, Geijera parviflora, and 

Stenocarpus sinuatus) were considered “common” based on City of Santa Barbara data but were not recorded 
in any UFORE plots. 
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species includes understory trees. The remote sensing estimate is single-layered, 

meaning that the sum of all canopy cover equals the citywide total canopy cover. That 

said, the median crown light exposure for the 612 i-Tree trees was 4 (meaning 4 out of 

5 “sides” of the tree are exposed to significant light), so understory trees are not 

prevalent. (2) The remote sensing estimates include uncommon species that were 

mapped as one of the common species. It is unknown whether the final remote sensing 

result over- or under- estimates the actual canopy of the common species. 

The remote sensing estimates were checked for deviation from the i-Tree 

estimate (Table 4.1, col I) and also for area-weighted deviation based on the i-Tree 

canopy estimates (Table 4.1, col J). To allow for this exercise, the i-Tree estimates were 

considered to be “ground truth”. Quercus agrifolia i-Tree estimates and remote sensing 

outputs were within 3% of one another, and within 1% when weighted by area. Other 

common, large canopy species, such as Jacaranda mimosifolia and Pinus canariensis 

were quantified similarly with both methods. The largest area-weighted discrepancies 

were found for the palm, Syagarus romanzoffiana and Eucalyptus globulus. 

The methods we used do not permit definitive assertions about which result is 

more accurate, due in part to inflated i-Tree Eco species σe because of the low field plot 

count (n=89). Nevertheless, some inferences can be made based on measures of 

uncertainty. For all but two feather palm species (Archontophoenix cunninghamia and 

Syagarus romanzoffiana) the remote sensing quantity disagreement (Table 4.1, col F) 

was less than the i-Tree σe (Table 4.1, col D), frequently by a substantial amount. The 

largest discrepancies in uncertainties are found in species that were infrequently 

sampled in our field plots (e.g., Platanus racemosa, Jacaranda mimosifolia, Magnolia 
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grandiflora) but have generally large canopies which both increases the i-Tree σe and 

facilitates accurate classification using hyperspectral imagery. For example, there was 

only one Platanus racemosa sampled in the field but its crown projection area at 450 m2 

was more than twice as large as the next-largest species’ average crown size. For a 

species like Magnolia grandiflora, remote sensing methods are likely more accurate 

because of the non-spatially random manner in which it is planted. Many of the city’s 

Magnolia grandiflora’s are planted as street trees on dedicated Magnolia street 

segments. This can lead to uneven presence-absence data from field sampling but 

adequate characterization from remote sensing due to large crowns and perhaps due to 

unique leaf properties. On the other hand, the small but common feather palms, 

Archontophoenix cunninghamia and Syagarus romanzoffiana are better estimated using 

field methods. This is especially true for Syagarus romanzoffiana because it was very 

common, relatively evenly distributed across land use classes, and is difficult to 

distinguish from Archontophoenix cunninghamia using remote sensing.  

 

4.4.3 Leaf area index mapping 

Using the lidar-based allometric method, the average LAI of the entire study area 

was estimated to be 1.15 with LAI within canopy of 4.47 (Fig 4.3). This was 11% less 

than the field-based estimate of 1.29 (canopy LAI = 5.57). The model uncertainties 

associated with lidar-based and field-based estimates of LAI are unknown. However, 

Alonzo et al. (2015) showed that the crown-scale, lidar-derived LAI values closely 

matched effective LAI estimates made using laser penetration metrics, which are lidar 

proxies for gap fraction. That two methods relying on different theoretical 
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underpinnings could produce similar results increases confidence that the final map has 

low model-driven error. The most likely source of error in the map is due to 

extrapolation of the regression models beyond the parameters of the field sampled 

data. The model was trained on a relatively small set of well-defined crowns but applied 

Figure 4.3: The main map shows LAI calculated using allometric methods at the crown scale. (A) 
Example of fine scale spatial relationship between buildings and canopy. (B) Example of canopy 
overhanging impervious surface. 
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to automatically-delineated crown segments whose dimensions were frequently more 

varied and irregular. Measurement error was deemed negligible for both field estimates 

and lidar estimates. In the field, the mean absolute error of height measurements was 

estimated to be <1m through a series of re-measurements. For the lidar data on flat 

ground, the vertical measurement uncertainty was 0.02 m and Alonzo et al. (2015) 

showed a strong relationship between field-measured and lidar-measured tree crown 

length (height minus crown base height). 

Leaf area index is the primary biophysical control on the magnitude of ecosystem 

services provided by trees in urban areas. However, the ultimate social value of benefits 

such as air pollution reduction, avoided stormwater runoff, and building energy-use 

modification are highly dependent on the location and context within the urban 

environment. With a mapped result we are able to report on, for example, LAI by land 

use (Fig 4.4) and LAI relative to climate-controlled structures (Fig 4.5 and Fig 4.3a). In 

the Santa Barbara study area, we used the “transportation” land-use class to represent 

roads and parking lots. The LAI of this class is 0.99, which derives from a fractional 

cover of 0.22 and an average canopy LAI of 4.48.  

Figure 4.4: Leaf area index (LAI) and canopy fractional cover by land use 
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Canopy overhanging roads and parking lots is particularly relevant from both an 

air pollution reduction and stormwater runoff management perspectives (Nowak et al., 

2014; Wang et al., 2008). Air pollution removal can be high along roadways due to high 

pollution, however it should also be noted that canopy can trap ground-level emissions 

thus producing a net increase in local concentrations (Gromke & Ruck, 2009; Wania et 

al., 2012) Canopy located optimally near buildings can, through direct shading and 

evapotranspirative cooling, reduce energy use and consequently, CO2 emissions from 

power plants. In the summertime, to maximize the cooling benefits of trees, the 

preferred locations are the east, south, and west sides of buildings in order to shade 

structures (Simpson, 2002). In this study, we found that the most canopy was found to 

the northeast side of buildings (14.3%), but very similar amounts were found to the 

NW, SW, and SE (Fig 4.5). It is likely that these directions are more heavily planted 

compared to the cardinal directions because of the predominant NW-SE layout of Santa 

Barbara’s street grid. The latter set of results could be combined with lidar-extracted 

Figure 4.5: Average distance and direction of canopy from buildings as a percentage of all canopy 
within 18 m of buildings (Simpson et al. 2002). 
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building information and perhaps utility data to more completely model the spatial 

variation in energy use throughout a city.  

4.4.4 Carbon storage mapping 

We developed two models for dry-weight carbon (kg), one with separate 

equations for each leaf type and one for all leaf types pooled together. Using stepwise 

regression on all possible combinations of the 28 lidar structural measurements the leaf 

type equations were as follows: 

ln(Cb) = ln⁡(0.10 + 1.31Hb + 1.63Wb)     (3.6) 

ln(Cn) = ln⁡(−1.30 + 3.36Hn − 2.55Wn)     (3.7) 

ln(Cp) = ln⁡(−2.27 + 2.82Hp − 0.58Wp)     (3.8) 

The subscripts b, n, and p denote broadleaf, needleleaf, and palm leaf types 

respectively. H represents a height variable and W represents a width variable (both in 

meters). Different specific height and width variables maximized the predictive power 

of the models for each leaf type. Hb was the median height of lidar returns within a 

crown while Hn and Hp were both represented by the simple maximum tree height. Wb 

was the width of the tree at mean canopy height, Wn was the ratio of crown width to 

height at 75th percentile height, and Wp was the ratio of crown height to width and the 

median height of the lidar returns within the crown. The pooled equation took the form 

of: 

ln(Cpool) = ln⁡(0.09 + 1.12Hpool + 1.86Wpool)    (3.9) 

where Hpool and Wpool were represented by the same height and width variables as the 

broadleaf model, thus, the two equations only differ in their coefficients. 
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 In model formulation, the separated model yielded a better explanatory 

relationship between the lidar predictors and the i-Tree response (R2sep = 0.74, 

R2pool=0.69) as well as lower mean absolute deviation in kilograms (MADsep= 30 kg C, 

MADpool= 60 kg C). However, the R2 values became roughly equal when tested using 

holdout cross-validation. This suggests that the separated models were overfit, perhaps 

due to limited training data for palms and needleleaf species. Both models were then 

applied to all crown segments that intersected with one of the 89 i-Tree plots. Neither 

was clearly superior with respect to all of R2, bias, MAD, and RMSE (Fig 4.7). The 

separated model resulted in a MAD (240 kg C) which was 18% lower than the pooled 

MAD (290 kg C) and a slope of 1.03 compared with a pooled model slope of 0.91. 

However, the pooled model resulted in an RMSE (1020 kg C) which was 13% lower 

than the separated model RMSE (1170 kg C) and an R2 of 0.75 compared to a separated 

Figure 4.7: Predicting field-measured dry-weight carbon using lidar. (a) The plot-level result using 
one allometric equation for each leaf type (broadleaf, needleleaf, palm). (b) The same but with only 
one allometric equation for all trees. Dashed line is 1:1 and blue line is best linear fit. 
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model R2 of 0.65. We believe these results suggest that the separated model was more 

accurate at more of the lower fractional cover plots, while the pooled model was more 

accurate at high cover, high biomass plots.  

 The variables and coefficients selected for each leaf type model and the pooled 

model shed light on the difficulty of constructing a universal, urban-tree biomass 

equation. For example, palms and needleleaf trees were best characterized by simple 

maximum height measurements but broadleaf height was represented by the median 

height of lidar returns in the crown. This possibly indicates that variability in broadleaf 

crown biomass is related to variability in the internal density of leaves and branches. 

Also, bole dimensions (e.g., dbh) are also important variables in estimating tree biomass 

and carbon. Previous studies have used a similar lidar metrics (e.g., height of median 

energy), to successfully estimate biomass in tropical (Drake et al., 2002) and temperate 

(Muss et al., 2011) forest settings. Palm trees, on the other hand, can be assumed more 

homogeneous in terms of their internal structure. It is also clear that palm biomass 

cannot be based strictly on height (e.g., consider the tall, spindly Washingtonia robusta). 

This is evidenced in the log-form equation by a complex compensation for height 

contribution to biomass by reduction in biomass with increased width and a negative 

intercept term.  

The relative performance of the pooled and the separated models can also be 

examined vis-à-vis variables and coefficients. The variables in the pooled model were 

the same as those chosen for the broadleaf model confirming the dominance of 

broadleaf trees such as Quercus agrifolia and Platanus racemosa in the Southern 

California landscape. The coefficients differed mainly in that the pooled model placed 
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greater emphasis on width (βpool=1.86, βb=1.63) than height (βpool=1.12, βb=1.31). This 

difference likely occurs because, at least, palm trees require a model emphasizing 

crown width. This difference likely results in the better performance of the pooled 

model on plots with very large broadleaf trees. The biomass of these trees (e.g., a 25 m 

wide Platanus racemosa) was underestimated using the broadleaf model that was more 

driven by height. This example highlights a situation where a pixel-based biomass 

estimate may prove superior to a crown-based estimate. Raciti et al. (2014) successfully 

estimated carbon storage in Boston, Massachusetts’ broadleaf-dominated urban forest 

using only lidar data gridded into a canopy height model. Nevertheless, there is clear 

degradation of the pooled model performance on plots with palm and needleleaf trees. 

This is most evident on plots with tall, Washingtonia robusta, whose biomass is vastly 

overestimated by the pooled model. Given the goal of creating a carbon storage map 

that maximizes accuracy at the most locations (rather than total carbon storage for the 

city), all further analysis was conducted using the model separated by leaf type. 

The total amount of carbon stored in the study area’s trees is 50,991 metric tons 

(t), based on aggregated crown-scale lidar estimates. The modeled carbon storage 

based on field sampling was 55,900 t. The most carbon per unit area and per unit 

canopy area was stored in Natural-Agricultural-Recreation land uses (Fig 4.8b). This 

pattern was expected because these areas are less developed and have coherent stands 

of large-canopy native species such as Quercus agrifolia and Platanus racemosa (Fig 

4.8a). The least carbon per unit area was found in the industrial zone due to a 

combination of low stem counts and preferential planting of small canopy trees. 

However, in industrial zones the amount of carbon per unit canopy area remained high. 
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This may be driven by high modeled carbon density for palm trees which are more 

prevalent in these zones. 

Citywide, the lidar estimate equates to a carbon storage density of 22.4 t C ha-1. 

This value is below the national average urban value of 25.1 t C ha-1 reported in Nowak 

Figure 4.8: Main map shows dry-weight carbon per m2 at the crown scale. (a) Zoom in on riparian 
corridor. (b) Carbon by land use 
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and Crane (2002), as would be expected given Santa Barbara’s semi-arid climate. In our 

study area, the single family residential land-use class had a carbon storage density of 

24.9 t C ha-1 aligning it more closely with the national estimate. However, this 

residential estimate is well below the 32.8 t C ha-1 estimate for residential land use in 

the naturally-forested setting of Boston (Raciti et al., 2014). Hutyra et al. (2011) 

estimated terrestrial carbon stocks along an urban to rural gradient in Seattle, 

Washington, creating a map of biomass based on a regional land cover map and mean 

biomass values for the grouped cover classes of heavy, medium, and low urban, and 

mixed and coniferous forest. They noted a clear trend of increased biomass per hectare 

with decreased urbanization intensity. We obtained similar results albeit at finer spatial 

resolution and thematic specificity: Carbon storage is lowest in industrial areas, and 

increases through commercial, multi-family residential, single family residential, to a 

high value in Natural-Agricultural-Recreation land uses (Fig 4.8b).  

The above results are largely a function of simple variation in canopy cover and 

are not good indicators of carbon density per unit canopy area. When translated to this 

carbon density metric, Hutyra et al. (2011), for example, found 3.3, 7.1, and 11.6 kg C m-

2 tree canopy on high, medium, and low intensity urban land uses respectively. Nowak 

et al. (2013b) aggregated carbon density rates from throughout the United States 

finding a mean of 7.69 kg C m-2 and a range of 3.14 to 14.1 kg C m-2. They note that there 

is less variability among cities in this metric than a C-per-unit-land-area metric that is 

heavily influenced by fractional cover. In the downtown Santa Barbara study area the 

mean carbon density was 8.94 kg C m-2 , ranging narrowly from single family residential 
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on the low end (7.88 kg C m-2) to Natural-Agricultural-Recreation on the high end (11.0 

kg C m-2, Fig 4.8b).  

The citywide standard error of the plot-based estimate was 9,899 t (17.7%). This 

value represented sampling error only and did not account for the uncertainty of the 

biomass equations. The uncertainty associated with applying various biomass 

equations has been shown to have a variability up to 60 percent for population 

estimates (McHale et al., 2009). The lidar estimates have no sampling error but they do 

internalize the uncertainties of the i-Tree model related to application of biomass 

equations (i.e., the lidar models assume no error in the carbon estimates from i-Tree).  

Additional uncertainty was introduced to the lidar estimates through generation 

of leaf-type models using linear regression. First, misclassification of crowns to the leaf-

type level led to selection of the incorrect allometric equation. For example, the carbon 

storage of one correctly segmented juniper that was misclassified as a broadleaf was 

estimated by i-Tree to be 180 kg but only 20 kg in the lidar model. Second, 

generalization to the leaf-type level reduced sensitivity to species-level biomass 

variation. The carbon storage of the most prevalent species, Quercus agrifolia was 

consistently underestimated by the lidar model because the leaf type equation was 

trained on many broadleaf species whose crown heights and widths related to lower 

biomass. Nevertheless, it was shown above that the pooled model was likely adequate 

for large-scale estimation of biomass, especially in areas with high broadleaf fractional 

cover. This result opens the door for future accounting of urban biomass even where 

hyperspectral data for leaf type classification are not available. 
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4.5 Summary and Conclusions 

Remote sensing methods can provide detailed information about the spatial 

variation in urban forest structure and function across the city. The resultant maps 

enhance our ability to understand spatially varying ecological, public health, social, 

economic, and management processes. The primary goal of this research was to 

estimate urban forest structure and function at the individual tree crown scale for every 

tree in an urban area using airborne remote sensing. Building on the results of Alonzo 

et al. (2014), we created a species map that included every tree in our 22 km2 

downtown Santa Barbara study area. Sampling error was eliminated from this product 

and the quantity disagreement born of classification error was substantially less than 

the standard error from plot-based estimates. Moreover, we showed that the spatial 

patterns of native species found in natural stands and introduced species planted in 

highly managed areas could be well represented. Visualization of these species 

distribution patterns at fine spatial resolution will be of immediate use to managers 

seeking to prepare for pests, target invasive species, or maximize their urban forest’s 

ecosystem services (Alberti, 1999, 2005; Manning, 2008).  

Second, we mapped leaf area index for each tree in the study area using lidar 

measurements of crowns and an allometric approach, following the methods in Alonzo 

et al. (2015). The uncertainty of the lidar-based estimate for each plot was considered 

to be on par with the field-based approach based on good alignment with both field-

based results and results using a lidar proxy for gap fraction inversion. Again, sampling 

error is not present in the final, citywide map. We believe that, in the future, this spatial 

product will allow for refined modeling of stormwater runoff reduction and building 
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energy-use modification. Spatially explicit LAI facilitated mapping of air pollution 

reduction benefits at a very fine resolution compared to what has previously been 

available. Future research incorporating distributed measurements of pollution 

emissions would greatly improve the utility of the maps presented in this research. 

Finally, we mapped urban tree carbon storage using lidar measurements of crown 

structure such as height and width, with allometric models. Results from lidar models 

separated by leaf type corresponded well to field-based estimates on the more urban 

plots (i.e., low fractional cover, low biomass) while results from the pooled model 

proved superior for plots in naturally-occurring, high biomass stands. While our remote 

sensing based maps do not have the sampling error of a field inventory, they do have 

uncertainties stemming from the application of the biomass equations used in i-Tree, 

remote sensing classification to the leaf type level, and extrapolation of the stepwise 

regression model beyond the values encountered in the field-measured training data. 

Still, the final, spatially explicit product offers finer grain insight into the capacity for 

urban areas to store carbon and how urbanization patterns mediate this process. A map 

like this could also be of immediate use for emergency managers: knowing the spatial 

distribution of tree biomass can improve planning for clean-up after storm events. 

This research demonstrates the capability for wall-to-wall, spatial estimation of 

the urban forest structure and function using airborne remote sensing. Maps of urban 

forest structure extend plot sampling results significantly by allowing for (1) 

measurement of difficult-to-access areas (e.g., private property, steep slopes); (2) 

analysis of the spatial relationships between tree canopy and other spatial urban 

variables such as population, economic activity, or health; (3) more frequent repetition 



 

141 
 

of measurement and finer-grain (spatial and temporal) capacity for change detection; 

and (4) data consistency that is minimally dependent on field personnel. While there 

will always be a need for field-based urban ecosystem analysis, remote sensing data 

products greatly increase the breadth of scientific questions that can be asked as well as 

the specificity, reliability, and extensiveness with which those questions might be 

answered. 
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Chapter 5 
 

Conclusions 
 

5.1 Summary of research 

The overall goal of this dissertation was to create a spatially explicit urban forest 

inventory using advanced, airborne remote sensing data and techniques. A suite of 

maps showing such structural attributes as tree species, leaf area index, and carbon 

storage will allow for more targeted urban forest management as well as improved 

ability to spatially match forest ecosystem services to the humans who will benefit. I 

have shown in three chapters how we can use hyperspectral imagery and lidar to 

identify tree species at the individual crown scale, how we can use lidar to measure LAI 

in two theoretically distinct ways, and how these techniques can be scaled for citywide 

analysis. The following paragraphs will review the key findings of each of these 

chapters and the subsequent sections will provide thoughts on future directions and 

applications of this research. 

In Chapter 2 I sought to improve species and leaf-type mapping in the urban 

forest. I selected 29 common species that dominate the canopy in Santa Barbara, 

California and classified them using canonical discriminant analysis (CDA) on combined 

hyperspectral and high point-density lidar data. I achieved a species-level accuracy 

among trained species of 83.4%. I mapped the entire set of sample crowns, including 

~70 less common species, to the leaf-type level with 87.9% accuracy. I believe this 

study demonstrates the potential for separating highly overlapping species classes 
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using data fusion at the crown-object level. In an immediate, operational sense, the 

techniques described in this chapter are likely applicable with high accuracy for 

discriminating among urban vegetation growth forms (e.g. herbs, shrubs, trees) where 

simple structural metrics could vastly improve separability when combined with either 

multi- or hyperspectral data.  

AVIRIS data were most important for species classification and lidar data only 

improved overall classification accuracy by 4.2 pp. However, I showed that small 

crowns and crowns with unique morphological characteristics were more apt to be 

correctly labeled with the inclusion of structural data. In line with previous research, 

species discrimination in this study was bolstered by lidar variables pertaining to tree 

height, crown morphology, and perhaps the internal arrangement of leaves and 

branches. Further, I showed that classification following automated crown 

segmentation was more accurate than a pixel-level result and the diminution in 

accuracy introduced from segmentation error was quite small.  

In Chapter 3, I demonstrated the potential for mapping Leaf Area Index (LAI) in a 

heterogeneous urban environment using two theoretically distinct methods. I first 

showed strong agreement between effective LAI (LAIe) estimated from a laser 

penetration metric (LPM) and LAIe measured in the field using hemispherical 

photography (r2 = 0.82). In order to quantify the relationship between the two methods, 

I developed novel methods to correct for off-nadir pulse angles and plot-level clumping 

in a structurally diverse and discontinuous canopy. While I initially made use of a lidar 

dataset with very high point density (22 pts m-2), I found that the results could be 

reproduced at decimated point densities down to 2 pts m-2. This indicates that cities 



 

144 
 

may have success implementing LPM methodology for calculating LAIe using existing 

data. 

Secondly, I showed that lidar-derived structural metrics such as height, crown base 

height, and crown segment area can be used as inputs to existing allometric equations 

for prediction of LAI. This result was compared against LAI allometrically estimated 

from field measurements of individual trees and yielded an r2 of 0.84 when formulating 

separate models for each leaf type. A key difference in the mapped outputs between the 

methods was the spatial resolution. I found that a map produced using LPMs must have 

a pixel size large enough to allow for lidar beam penetration to ground, even under 

dense canopy. An allometric map has no theoretical lower bound on the size of the 

output crown object. However, maps generated using allometric equations are subject 

to an unknown amount of error associated with use of coefficients not developed for 

the trees or site in question. Thus, while this work demonstrates that LAI can be 

mapped at citywide scales, it is still important that the practitioner be aware of the 

trade-offs inherent in each of the methods. The ability to map LAI across large urban 

areas offers new potential to constrain estimates from hydrological and atmospheric 

models and better understand the spatial distribution of urban ecosystem services at 

increasingly fine scale. 

The primary goal of the research communicated in Chapter 4 was to scale the 

methods developed in the previous chapters such that they could be applied and 

evaluated for the entire Santa Barbara study area. Building on the results from Chapter 

2, I created a wall-to-wall species map for 22 km2 of downtown Santa Barbara, 

California. Sampling error was eliminated from this product and the quantity 
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disagreement born of classification error was substantially less than the standard error 

from plot-based estimates. Moreover, I showed that the spatial patterns of native 

species found in natural stands and introduced species planted in the urban core could 

be well represented. Visualization of these species distribution patterns at fine spatial 

resolution will be of immediate use to managers seeking to prepare for pests, target 

invasive species, or maximize their urban forest’s ecosystem services. 

Second, I mapped leaf area index for each tree in the study area using lidar 

measurements of crowns and an allometric approach, following the methods 

demonstrated in Chapter 3. The uncertainty of the lidar-based estimate for each plot 

was considered to be on par with the field-based approach based on good alignment 

with both field-based results and results using a lidar proxy for gap fraction inversion. 

Again, sampling error is not present in the final, citywide map. I believe that, in the 

future, this spatial product will allow for refined modeling of stormwater runoff 

reduction and building energy-use modification. Spatially explicit LAI plus block-level 

population information facilitated mapping of air pollution reduction benefits at a very 

fine resolution compared to what has previously been available. Future research 

incorporating distributed measurements of pollution emissions would greatly improve 

the utility of the maps presented in this research. 

Finally, I mapped urban tree carbon storage using lidar measurements of crown 

structure such as height and width, with allometric models. Results from lidar models 

separated by leaf type corresponded well to field-based estimates on the more urban 

plots (i.e., low fractional cover, low biomass) while results from a pooled model proved 

superior for plots in naturally-occurring, high biomass stands. While my remote sensing 
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based maps do not have the sampling error of a field inventory, they do have 

uncertainties stemming from the application of the biomass equations used in i-Tree 

Eco, remote sensing classification to the leaf type level, and extrapolation of the 

stepwise regression model beyond the values encountered in the field-measured 

training data. Still, the final, spatially explicit product offers finer grain insight into the 

capacity for urban areas to sequester carbon and how urbanization patterns mediate 

this process. 

5.2 Applications and future directions 

This research demonstrates the capability for wall-to-wall, spatial expression of the 

urban forest structure and function using airborne remote sensing. Maps of urban 

forest structure extend plot sampling results significantly by allowing for (1) 

measurement of difficult-to-access areas (e.g., private property, steep slopes); (2) 

analysis of the spatial relationships between tree canopy and other spatial urban 

variables such as population, economic activity, or health; (3) more frequent repetition 

of measurement and finer-grain (spatial and temporal) capacity for change detection; 

and (4) data consistency that is minimally dependent on field personnel. It was always 

my intent with this dissertation to stay on the “applied side” of remote sensing science. 

Thus, it is not difficult to envision specific uses of the methods I have produced. The 

following paragraphs will highlight several research areas that may benefit from the 

use of these tools as well as ways in which these methods, that have thus far only been 

tested in Santa Barbara, could become more widely available.   
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5.2.1 Improved characterization of city-scale ecosystem processes 

A host of satellite-based studies have evaluated the spatial distribution of the urban 

heat island relative to biophysical descriptors such as fractional cover of green 

vegetation or leaf area index (Gillies & Temesgen, 2004; Lu & Weng, 2006; Weng, 2009). 

These studies largely use moderate resolution imagery and spectral and temperature 

unmixing approaches to model the correlations between impervious surface and higher 

LSTs and vegetation and lower LSTs. Some have postulated that the uncertainty in the 

vegetation-LST relationship is due to either canopy stress or the presence of differing 

underlying substrate materials (Deng & Wu, 2013; Roberts et al., 2012).  

Trees alter the local thermal environment through a combination of structural 

shading and evapotranspiration (ET). Conversely, canopy temperatures are mediated 

by the temperature of the underlying substrate and surrounding, vertical structures. 

The scale over which tree-driven cooling takes place varies as a function of time of day, 

season, canopy water status, canopy structure, and meteorological variables. The 

distance decay of the green-space cooling effect has been shown to be on the order of 

several hundred meters for large, wooded parks (e.g., Hamada & Ohta, 2010) with the 

directionality partially determined by advection (Oke, 1989). To date, there is little 

research at the fine scale coinciding with the manner in which trees are arranged in 

densely-populated settings. 

In order to deconstruct the urban heat island, we need to characterize the fine scale 

variation in surface composition and 3-D structure across the urban realm. The 

methods developed in this dissertation allow for creation of these maps using 

hyperspectral imagery and lidar data. Future work could leverage the Goddard LiDAR, 
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Hyperspectral, and Thermal Airborne Imager(G-LiHT) sensor package which provides 

the ability to simultaneously capture not only hyperspectral and lidar data but ~1 m 

scale directional brightness temperature data (Cook et al., 2013).  With this co-acquired 

dataset, one could potentially characterize the directional anisotropy of the thermal 

emissions based on surface microstructure and macro-scale facet (e.g., building wall) 

orientation. 

Disaggregating urban temperatures will also improve the specificity with which we 

can model urban air pollution removal.  Pollutant dry deposition on leaves is a function 

of LAI, meteorological conditions (e.g., temperature), and pollution concentrations 

(Nowak et al., 2014). However, the air pollution reduction results from plot-based 

studies and from the research presented in this dissertation rely largely on limited 

point measurements of pollution and weather. Thus, the potential reductions in NO2, O3, 

CO, SO2, and PM2.5 can be mapped but the map correlates exactly with the map of LAI. 

In order to introduce appropriate variation based on actual pollution concentrations, 

disaggregated modeled, or measured emissions datasets are needed. Distributed 

emissions modeling has been undertaken in urban areas based on either land use 

regression (Hoek et al., 2008) or traffic intensity information (Beelen et al., 2008). 

These outputs could be combined with models of pollution dispersion along roadways 

(e.g., Gromke & Ruck, 2009), distributed temperature, and the relevant canopy 

information at the crown scale to greatly enhance the utility of this product. 



 

149 
 

5.2.2 Urban surface dynamics and larger scale atmospheric and hydrological 

modeling 

Fine-scale variation in urban surface composition and 3-D vegetation structure can 

play an important role in the larger scale climate and hydrological models (Oleson et al., 

2008; Tague & Band, 2004; Yang et al., 2013). At a watershed scale, the Physically Based 

Analytical Spatial Air Temperature and Humidity (PASATH) model distributes air 

temperature and humidity estimates based on gridded partitioning of surface energy 

fluxes (Yang et al., 2013). Tests of this model have shown high accuracy over 

impervious surfaces but divergence from measured air temperature over vegetation. 

There are potential gains through incorporation of high resolution maps of LAI and 

other urban surface parameters (e.g., albedo, emissivity) to constrain flux partitioning 

based on more precise characterization of urban surface composition. This should lead 

to improved estimates of urban temperature especially over areas with higher 

vegetation cover. Also at the watershed scale there is a call to better constrain the 

spatial relationships between canopy leaf type, leaf area, and the nature of the 

underlying surface. It has been shown that increased canopy in cities can reduce 

stormwater runoff but these relationships could be significantly refined with better 

inputs of deciduousness, leaf morphology, and substrate material (Xiao & McPherson, 

2002). 

On a global scale, climate models are beginning to include urban parameterizations 

for their land surface sub-models. For example in the Community Land Model (Oleson 

et al., 2008) there is now an urban component that allows for subgrid surface 

heterogeneity though only in the form of a simple canyon model (Oleson et al., 2010). 
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Using fused hyperspectral and lidar classification and structural estimation methods at 

an object scale has enormous potential to better constrain key surface parameters such 

as albedo (currently averaged by facet type) and to add vegetation function to the 

currently barren model landscape. Incorporation of VNIR-SWIR hyperspectral along 

with LST data has been explored as a constraint to urban surface energy balance 

schemes but thus far the use of lidar to characterize, for example, the heat trapping 

capacity of urban canyons, has been minimal (Xu et al., 2008).   

5.2.3 Thoughts on the future of ecosystem structure measurements 

 The research published in this dissertation can immediately be employed in the 

modeling contexts discussed above. However, to take a step back, there is still 

considerable room for growth in urban vegetation characterization using either fused 

hyperspectral imagery and lidar, or more widely-available, less expensive datasets. 

 There is work in progress that expands some of the methods in this dissertation 

to apply to a broader typology of urban green infrastructure2. Whereas I only 

discriminated among 29 tree species, it is hoped that we can soon segment the urban 

landscape further based on simple object (spectral, structural) properties as well as 

compound object spatial context. Examples of simple object typologies that await 

detailed characterization in urban areas include: hedges, extensive green roofs, and 

lawn. Examples of compound objects whose spatial context may drive variation in 

ecosystem service provision include tree rows along median strips, trees with 

understory shrubs, or intensively cultivated green roofs. While the simple objects may 

                                                           
2
 Funding source for research in progress: Department of Earth and Environmental Science Division Forest, 

Nature and Landscapes, University KU Leuven, Belgium (Belspo), Urban Ecosystem Analysis supported by 
Remote Sensing UrbanEARS 
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be largely delineated using spectral information, the compound object delineation will 

require a set of rules also incorporating shape parameters and spatial relationships 

with neighbors. This multilevel object-oriented approach will represent an important 

step forward in linking high dimension, historically lower spatial resolution spectral 

information with object-oriented approaches originally developed for low dimension, 

hyperspatial data (e.g., IKONOS, GeoEYE). 

 It is also critical, in terms of broadening the impact of this work, that we explore 

the value of more widely available remote sensing datasets. While it is the case that 

cities like New York and Los Angeles have been imaged by both hyperspectral and lidar 

sensors, updates to the hyperspectral coverage is irregular at best. And smaller cities 

may have only lidar or no access to either dataset. I believe that some applied 

contributions of my work do not necessitate hyperspectral data but they do require at 

least, lidar and high resolution multispectral imagery. For instance, I showed that lidar 

pulse densities decimated to 2 pts m-2 can still lead to serviceable estimates of urban 

LAI. While species identification at an actionable accuracy is not yet possible with only 

multispectral data (e.g., WorldView-2; Pu & Landry, 2012), classification to the leaf-type 

level could be feasible with the inclusion of lidar measurements. At present, this level of 

classification is sufficient to parameterize some ecosystem models (e.g., i-Tree Eco).  

 The number of airborne sensors that can simultaneously acquire hyperspectral, 

lidar, and even thermal data is on the rise (Asner et al., 2007; Cook et al., 2013; Kampe, 

2010). However, they are predominately tasked with collecting data over natural 

ecological study sites. Given that >80% of all Americans and >50% of all humans live in 
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cities (US Census Bureau, 2010; UN-DESA, 2014), it is my hope that a platform with 

multiple, high resolution sensors can be dedicated to urban inquiry in the near future. 
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Appendix A  
 

Supplementary material for the publication  “Urban tree species 

mapping using hyperspectral and lidar data fusion” 

 
Authors:  Michael Alonzo, Bodo Bookhagen, and Dar A. Roberts 

The following items offer additional information and clarification beyond what could be 

included in the printed manuscript. All sections are referred to explicitly from the main 

document. 

 

Matlab code: Code (*.m files) may be accessed via the links but is also available in 

printed form at the end of this appendix. 

 

A.1 Cumulative canopy distributions as a function of species in three cities 

· We aim to map 29 of the Santa Barbara species that contribute heavily to 

citywide canopy cover based on a combination of i-Tree Eco data collected from 

105 plots and a geospatial database of publically managed trees from the City of 

Santa Barbara. 

· We originally proposed to map 30 species. This number was based on visual 

analysis of Fig. A.1 below (and Fig. 1.3 in the main text) which shows the 

marginal increase in canopy cover by species. For instance, in Santa Barbara, 

Quercus agrifolia is estimated to be the largest single contributor of canopy 

cover with a 16% contribution to the total. It seemed that the gains in total 

canopy mapped  for each species after the 30th would be small.  

· Ultimately we chose to map 29 species, 20 of which were in the top 30 based on 

i-Tree Eco estimates. We excluded some species from the top 30 (e.g. Grevillea 

robusta, Quercus suber) because they are not actually common citywide. We 

excluded others (e.g. Heteromeles arbutifolia, Myoporum laetum, Gleditsia 

triacanthos) because they were generally understory trees. 

· This project could be structured similarly in a place like Washington, DC given 

similar species-to-canopy-cover relationships. In a desert city like Los Angeles 

though, there are no ubiquitous, dominant canopy species. The two largest 

contributors, Jacaranda mimosifolia and Magnolia grandiflora, together only 

contribute 14% of total canopy.  Thus, more species must be identified to arrive 

at the same 80% threshold. 
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A.2: Lidar precision assessment and Matlab code 

· The Matlab code (Ground_precision_DR.m) calculates the vertical precision of 

lidar returns. Lidar returns were sampled from smooth (but not necessarily flat) 

locations such as tennis courts, streets, and parking lots. Multivariate regression 

was run using UTM northings and eastings as the independent variables and 

elevation as the dependent variable. A plane was fit to the results and the root 

mean square error (RMSE) of the residuals (in meters) was calculated.  

· Results are reported by sample polygon (which may include multiple flight lines) 

and by flight line (which may include multiple sample polygons) 

o Mean vertical error by polygon = 0.028 m 

o Standard deviation of vertical error by polygon  = 0.016 m 

o Mean vertical error by flight line = 0.034 m 

o Standard deviation of vertical error by polygon = 0.023 m 

 

A.3: Segmentation details and Matlab code 

· We have linked to a Matlab script (watershed_for_full_scene.m) that acts as a 

control file for the watershed segmentation and canopy maxima model (CMM) 

calculations underpinning this research For more background on watershed 

segmentation for tree delineation, see Chen et al. (2006). 

· The watershed_for_full_scene.m script calls several other custom functions used 

to: 

Figure A.1: Marginal contribution to overall canopy cover by species based on i-Tree Eco studies in Santa 

Barbara (2012), Washington, DC (Casey Trees, 2010), and Los Angeles (Clarke et al., 2013). The dotted 

lines indicate the number of species required to reach 80% canopy cover.  
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o Execute watershed segmentation on a distance transformed binary 

canopy image (watershedshape.m) 

o Generate a CMM using a window size that varies based on the empirical 

relationship shown below in figure A.2. (cmmWrap.m, 

max_filter_variable_window.m) 

o Execute watershed segmentation on the CMM (watershedsurface1.m) 

 

  

 

 

 

 

A.4: Structural variable computation and Matlab code (G = Goal, M = method) 

· Maximum tree height (h_1) 

o G: Record the height above ground of the highest lidar return in the tree 

crown  

o M: Record height at 95th percentile height of returns in segment. This 

slightly underestimates height in unobstructed cases but filters out 

intruding returns from power lines or other overlapping trees. 

· Median height of returns in crown (h_2) 

o G: This should be an indication of crown structure and porosity. One can 

envision a porous crown (e.g. PLRA) where many returns penetrate 

deeply having a lower h_2 value than a crown of similar height with a 

very dense upper canopy (e.g. FIMI). Could be related to LAI. 

o M: Index all returns falling below h_1 and above h_5. Calculate median 

height. 

Figure A.2: Relationship between field-measured tree heights and crown widths. N = 612 

trees from 105 randomly distributed plots in downtown Santa Barbara. 
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· Crown surface heights (h_3, h_4) 

o G: Assess height along surface of crown only. Height values will be lower 

than max tree height values as a function of crown closure and grid size 

selected for analysis. 

o M: Create grids of user-determined pixel sizes and overlay on top of 

crowns. In each grid square extract the height of highest return. This 

method was inspired by Kim et al. (2009). Matlab code: surfacecalcs.m 

· Crown base height (h_5): 

o G: Record the height above ground of the lowest branches containing 

foliage. 

o M: First, a window was moved vertically through the crown from median 

height downward. When an empirically-defined lower bound on the 

number of points in the window was crossed, an initial CBH was 

established. If this CBH estimate was merely an area of low point density 

in the crown, the CBH was relocated downward to the 5th percentile 

height of returns. The percentile portion of the algorithm was inspired by 

Reitberger et al. (2009) though they were operating under leaf-off 

conditions. 

· Crown width at various heights in crown (w_1, w_2, w_3, w_4) 

o G: Estimate widths at various heights as a measure of crown morphology. 

o M: The various percentile heights will already have been calculated. At 

each height determine a vertical crown slice size that is appropriate for 

your lidar dataset’s point density (e.g. 1 m ) and search outward, 

computing average radius of that slice in the x,y domain. Refer to the 

linked Matlab code: widthatheight.m 

· Ratio of crown length to tree height (hw_rat_1) 

o G: Account for correlation between crown length and tree height. 

Separate species with different crown sizes (e.g. WARO and EUGL are 

similarly tall but have very different crown base heights) 

o M: Simple ratio: (h_1 – h_5) / (h_1) 

· Ratios of crown height to width at selected heights in the crown (hw_rat_2, 

hw_rat _3, hw_rat_4, hw_rat _5) 

o G: Offer a normalized version of (w_1, w_2,w_3, w_4) 

o M: Simple ratios. For example, hw_rat_2 = h_2 / w_1 

· Ratio of N-S width to E-W width (hw_rat_6) 

o G: Measurement of shape of crown projection area 

o M: Extents of each individual segment in the N-S and E-W directions.  

· Average intensity above median height (int_1) 
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o G: Measure uncalibrated return intensity in portion of crown above h_2. 

This may relate to internal crown structure in terms of distribution of 

woody vs. foliar surfaces.  

o M: Index pulse intensity values above h_2 and take simple mean. 

· Average intensity below median height (int_2) 

o G: Measure uncalibrated return intensity in portion of crown below h_2. 

This may relate to internal crown structure in terms of distribution of 

woody vs. foliar surfaces.  

o M: Index pulse intensity values below h_2 and take simple mean. 

· Crown surface intensities (int_3, int_4) 

o G: Assess intensity values along surface of crown only. Surface intensity 

values may more directly relate to foliage reflectance.  

o M: Create grids of user-determined pixel sizes and overlay on top of 

crowns. In each grid square extract intensity of highest return. This 

method was inspired by Kim et al. (2009). Matlab code: surfacecalcs.m 

· Crown surface intensity / overall average crown intensity (int_dist_1) 

o G: Crown surface returns are likely functions of foliage reflectance. 

Normalize these values by overall intensity in the crown. 

o M: See above for crown surface calculations  

· Skewness of intensity distribution through crown (int_dist_2) 

o G: Evaluate shape of distribution of intensity values throughout crown as 

indicator of internal crown structure. 

o M: Index all points in crown and compute skewness on their uncalibrated 

intensity values. 

· Surface intensity (0.25 m) /  surface intensity (1 m) (int_dist_3) 

o G: In dense upper crowns this ratio may be close to 1. In sparse crowns 

the 0.25 m grid may access returns somewhat lower in the crown. 

o M: Simple ratio: int_3 = int_1 / int_2 

· Return intensity above median crown height / below median crown height 

(int_dist_4) 

o G: Normalize the above intensity metrics to account for larger spatial 

scale variability in the uncalibrated return intensities. 

o M: See above for crown surface calculations. 

· Surface heights (0.25 m ) / surface heights (1 m) (cp_1) 

o G: In dense upper crowns this ratio may be close to 1. In sparse crowns 

the 0.25 m grid may access returns somewhat lower in the crown. 

o M: See above for crown surface calculations. 

· Mean crown height - median height of returns) / crown height (cp_2) 
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o G: Measure the distribution of foliar and woody elements in the crown. If 

the median height of points is higher than the mean height, it may 

indicate a dense upper crown. 

o M:  [(h_1+h_5)/2 – h_3] / h_1 

· Counts of returns at various heights in crowns divided by the width at each 

height (cp_3, cp_4, cp_5) 

o G: Assess crown porosity by counting the number of points at different 

heights in the crown and normalizing by crown width at that height. 

o M: Use pre-established height percentiles and width calculations: simple 

count of points in a 0.5 m vertical disc. 
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Table A.1: Correlation matrix for all 28 structural metrics. The FFS-selected metrics for the watershed 

segments are in bold. Their correlations are outlined. Lower correlations are in green and higher 

correlations are in red. 
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A.5: Spectral Band Correlation structure 

 

Figure A.3:  Correlation among 178 AVIRIS bands. 

Higher correlation is in red and lower correlation is 

in green. VIS = Visible bands (395—734 nm), NIR = 

Near Infrared (744—1313 nm), SWIR1 = Shortwave 

Infrared 1 (1443—1802 nm), SWIR2 = Shortwave 

Infrared 2 (2018—2425 nm) 

 

 

 

 

 

· Note the generally high correlation among bands in the same spectral region but 

lower correlation among green peak bands (the middle of the VIS box in Fig S7) 

and the rest of the VIS and the SWIR2. 

· Note that there is generally high correlation among the VIS, SWIR1, and SWIR2 

regions. This may provide partial explanation as to why there were many bands 

selected from the VIS region but fewer from either of the shortwave infrared 

regions.
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The following pages contain printed Matlab code related to Chapter 2: 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Validation script for ground precision by flightline and by 

polygon

%Inputs: A text file for las pts extracted from each validation 

polygon

%with xyzpc attributes

%

%Ouput: RMSE by flight line and RMSE by polygon

%

%Parameters to set: The percentage of points to sample (in large 

datasets the

%regression will not work). Default = 20% (0.2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% percent of dataset to include in precision calculation

subsample = 0.4;

%storage location of text files containing lidar point info in 5 

xyzpc

%format

base_path = '..\ground_precision_val\';

%get list of text files in the base dir

dir_txt = dir(strcat(base_path,'*.txt'));

%construct an error matrix where there is one row for each 

flightline represented in

%each polygon. Compute mean squared error using multivariate 

regression.

full_error_mat = [];

%loop through each text file (polygon)

for i = 1:size(dir_txt,1)

fileName = dir_txt(i).name;

%check if text file has data

if dir_txt(i).bytes > 0

M_full = dlmread(strcat(base_path,fileName));

%need to subsample to maintain full rank matrix

M_rand = rand(length(M_full),1);

rand_idx = find(M_rand < subsample); %keep x% of data

M = M_full(rand_idx,:);

%find unique flight lines in this polygon

lines = unique(M(:,4));

%loop through each flight line represented within each 
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polygon

for j=1:length(lines)

line_idx = find(M(:,4)==lines(j));

constants = ones(length(line_idx),1);

X=horzcat(constants, M(line_idx,1:2));

z=M(line_idx,3);

[b,bint,r] = regress(z,X); %r is vector of residuals

error_mat(j,1) = i;

error_mat(j,2) = lines(j);

%need this count to weight average polygon error

error_mat(j,3) = length(line_idx);

%calculate RMSE

error_mat(j,4) = sqrt(mean(r.^2));

error_mat(j,5) = std(r);

end

full_error_mat = vertcat(full_error_mat,error_mat);

clear error_mat

end

end

%error aggregated by flightline (across polygons)

f_lines = unique(full_error_mat(:,2));

for i = 1:length(f_lines);

line_idx = find(full_error_mat(:,2)==f_lines(i));

poly_line_count = full_error_mat(line_idx,3);

poly_line_err = full_error_mat(line_idx,4);

%average error weighted by number of points per flight line 

(using inner

%product)

line_err(i,2) = (poly_line_count'*poly_line_err)/sum(

poly_line_count);

line_err(i,1) = f_lines(i);

end

%error aggregated by polygon (across flightlines)

polys = unique(full_error_mat(:,1));

for i = 1:length(polys);

poly_idx = find(full_error_mat(:,1)==polys(i));

poly_line_count = full_error_mat(poly_idx,3);

poly_line_err = full_error_mat(poly_idx,4);

%average error weighted by number of points per flight line 

(using

%inner product)

poly_err(i,2) = (poly_line_count'*poly_line_err)/sum(

poly_line_count);

poly_err(i,1) = polys(i);
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end

%report line and poly error

line_err

poly_err

%visualize the fit between the points and a fit plane

scatter3(X(:,2),X(:,3),z,30,'filled')

hold on

x1fit = min(X(:,2)):0.1:max(X(:,2));

x2fit = min(X(:,3)):0.1:max(X(:,3));

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);

YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT;

mesh(X1FIT,X2FIT,YFIT)
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Control file for all watershed-segmentation related processes

%

%NOTE:  This code is for reference purposes only. You should not 

assume

%that this will work for your specific imagery. Feel free to edit 

as

%needed. Please cite Alonzo et al. (2014).

%

%Required functions (beyond standard Matlab image processing 

functionality)

%watershedshape.m

%cmmWrap.m

%max_filter_variable_window.m

%watershedsurface1.m

%multicore suite: 

http://www.mathworks.com/matlabcentral/fileexchange/13775-multi

core-parallel-processing-on-multiple-cores

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%Input imagery:  Assumes gridded layers with some previous 

classification

%(for instance: point cloud classification with gridded export from

%lastools)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%High vegetation geotiff with spatial reference

addpath('..\surface_models');

[veg_high,R_veg] = geotiffread(

'..\surface_models\veg_high_fill_sev_full.tif');

veg_high = double(veg_high);

%High unclassified imagery (along with separate tfw worldfile)

file_data= '..\surface_models\uncl_high_full_scene.tif';

uncl_high = double(imread(file_data));

worldFileName = getworldfilename(file_data);

uncl_high_tfw = worldfileread(worldFileName, 'planar', size(

uncl_high));

%Read in building data with separate tfw worldfile

file_data= '..\surface_models\bldg_elev_full_scene.tif';
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bldg_elev = double(imread(file_data));

worldFileName = getworldfilename(file_data);

bldg_elev_tfw = worldfileread(worldFileName, 'planar', size(

bldg_elev));

%pad the building layer b/c the size is not the same as the 

others (though

%the alignment is fine)

bldg_elev_pad = zeros(size(veg_high));

bldg_elev_pad(1:size(bldg_elev,1),1:size(bldg_elev,2)) = bldg_elev;

bldg_elev = bldg_elev_pad;

%bring in canopy class (binary image) with worldfile

file_data= '..\surface_models\canopy_class_full.tif';

canopy_class = logical(imread(file_data));

worldFileName = getworldfilename(file_data);

canopy_class_tfw = worldfileread(worldFileName, 'planar', size(

canopy_class));

%This section logically combines high veg, unclassified imagery, 

and buildings that

%exist within the existing canopy classification. Purpose: use 

the binary

%canopy layer as the gold standard and reclassify all layers 

based on it.

veg_high_log = logical(veg_high);

veg_high_canopy_log = veg_high_log.*canopy_class;

uncl_high_log = logical(uncl_high);

bldg_elev_log = logical(bldg_elev);

bldg_elev_canopy_log = bldg_elev_log.*canopy_class;

bldg_elev_canopy = bldg_elev.*bldg_elev_canopy_log;

just_uncl_log = ~veg_high_log.*(uncl_high_log.*canopy_class);

just_uncl = just_uncl_log.*uncl_high;

just_bldg_log = ~(veg_high_log | uncl_high_log).*

bldg_elev_canopy_log;

just_bldg = just_bldg_log.*bldg_elev;

veg_high_canopy = veg_high.*veg_high_canopy_log;

veg_high = veg_high_canopy + just_uncl + just_bldg; %final canopy 

layer

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%

%basic morphological operations to clean binary canopy layer

% (took about 2 min to run on Santa Barbara scene)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%

%convert to binary image
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veg_high_bw = im2bw(veg_high,0.05);

%morphological opening and closing 

veg_high_O = bwmorph(veg_high_bw,'open');

veg_high_C = bwmorph(veg_high_O,'close');

%further cleaning

veg_high_T = bwmorph(veg_high_C,'thicken',1);

veg_high_F = bwmorph(veg_high_T,'fill');

veg_high_F = bwmorph(veg_high_F,'majority');

%a final elimination of canopy less than 16 px (=1sq meter at 

0.25 m res)

veg_high_O2 = bwareaopen(veg_high_F,16);

%Thickening required because both watershed-shape and

%watershed-surf progressively thin segments because segment 

boundaries have

%1-pixel thickness

veg_high_O2 = bwmorph(veg_high_O2,'thicken',2);

%cleaned up canopy height model (CHM)

veg_high_clean = medfilt2((veg_high_O2.*veg_high),[3 3]);

%binary image (for use in watershedshape and future cleaning)

veg_high_bin = veg_high_O2;

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%Watershed segmentation baed on distance transform

%Required functions:

%   watershedshape.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%

%w-shape (took about 13 min to run on Santa Barbara scene)

[w_shape,w_shape_lines] = watershedshape(...

veg_high_bin,50);

%Display results

% shape_over = imoverlay(mat2gray(veg_high), w_shape_lines,[.3 1 

.3]);

% imtool(shape_over);

%clear stuff because memory starts to get tight

clear veg_high_FULL

clear veg_high_C

clear veg_high_T
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clear veg_high_O

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%

%Prepare segments for processing to CMM and watershed seg

%The main purpose of this code block is to put every segment (as 

created

%from watershedshape) into its own cell so that it can be 

processed to CMM

%indpendent of the rest of the image. This allows for a vast 

reduction in

%processing time for two reasons:  1. CMM generation is only 

happening

%where canopy exists (<40% of most urban scenes) and 2. 

Parallelization

%using multicore.m is now easy to implement and allows for an 

arbitrary

%decrease in processing time depending on how many cores are at 

your

%disposal.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%

%pad the entire output of watershedshape to avoid border issues

w_shape_pad = padarray(w_shape, [10 10]);

w_shape_pad = bwlabel(w_shape_pad); %ensure this is label-style

veg_high_clean_pad = padarray(veg_high_clean, [10 10]);

%sort and count all of the watershedshape segments as labeled by 

bwlabel

seg_ids = sortrows(unique(w_shape_pad));

seg_ids = seg_ids(2:end); %exclude zero

n = length(seg_ids); %-1 to exclude zero

%access area, bounding box extents, and bb ul corner coords

seg_props = regionprops(w_shape_pad,'Area','BoundingBox');

%This loop does two things: 

%1. Clip segments from the full image based on bounding box, 

%2. eliminate vegetation from other segments that has leaked

%   into the bounding box of the segment of interest, 

for i = 1:n

%extract image subset

m_ul(i) = floor(seg_props(seg_ids(i)).BoundingBox(2)) - 3;

%"-3" = segment padding
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n_ul(i) = floor(seg_props(seg_ids(i)).BoundingBox(1)) - 3;

m_ll(i) = m_ul(i) + seg_props(seg_ids(i)).BoundingBox(4) +

6; %"+6" = segment padding

n_ll(i) = n_ul(i) + seg_props(seg_ids(i)).BoundingBox(3) +

6;

%cut out the clean image and the logical sub to exclude 

any other

%segments that are leaking into the bounding box. Veg 

from other

%segments leaking in will cause problems when calculating 

CMM.

veg_high_clean_pad_logical_sub{i} = w_shape_pad(m_ul(i):

m_ll(i),n_ul(i):n_ll(i))==seg_ids(i);

veg_high_clean_pad_sub{i} = veg_high_clean_pad(m_ul(i):

m_ll(i),n_ul(i):n_ll(i)).*...

veg_high_clean_pad_logical_sub{i};

end

%This loop fills the parameterCell in preparation for parallel

%processing of CMM generation. The nested loop holds each 

segment while

%the outer loop holds groups of segments (number of groups = 

subdiv).

%Purpose: CMM parallelization works much better via multicore 

if the

%packets sent out to slaves are large.

count = 0;

subdiv = 36; %number of packets that will be divvied to 

slaves

sub_size = floor(length(veg_high_clean_pad_sub)/subdiv);

sub_remainder = length(veg_high_clean_pad_sub)-(sub_size *

subdiv);

for i = 1:subdiv

for j = 1:length(veg_high_clean_pad_sub)/subdiv

chm_sub{j} = veg_high_clean_pad_sub{count+j};

end

count = count + j;

parameterCell{i} = {chm_sub};

clear chm_sub

end

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%

%Run the parallel process for creating the per-segment CMM

%Parallelization needs:

% Open an additional matlab window for each additional slave 

process up to

% number-of-available-cores - 1

% run startmulticoreslave.m on each

%Required functions:

%   cmmWrap.m (if you're grouping segments in larger sets)

%   max_filter_variable_window.m

%   the suite of multicoremaster functions

%DO NOT RUN THIS BLOCK IF YOU ALREADY HAVE A CMM CREATED

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%parallelize the processing of the CMM  

%fprintf('About to start CMM for: %u\n',plots) 

tic

cmm_out = startmulticoremaster(@cmmWrap,...

parameterCell);

toc_cmm = toc;

%fprintf('Completed CMM for: %u\n',plots)

%cell storing packages of processed CMMs

cmm_storage = cmm_out;

%IF YOU USED cmmWrap: NEED TO BREAK SEGS OUT OF THEIR packages

cmm_break = [];

for i = 1:length(cmm_out)

cmm_break = vertcat(cmm_break, cmm_out{i});

end

cmm_out = cmm_break; %reassign for downstream processing

%define output images

w_surf_plot_pad = zeros(size(veg_high_clean_pad));

cmm_plot_pad = zeros(size(veg_high_clean_pad));

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%Run the CMM-based watershed segmentation

%Required functions:

%   watershedsurface1.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%
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%gather data about segments to check to see whether further 

segmentation should occur

stats_bw = regionprops(logical(w_shape_pad),'eccentricity','area');

stats_veg_high = regionprops(logical(w_shape_pad), ...

veg_high_clean_pad,'MeanIntensity');

%Run the CMM-based watershed segmentation and restitch CMM and 

final

%segments back into full images

for i=1:n

%SWAP COMMENTS WHEN ACCESSING PRE-CREATED CMM

%reduce speckle of cmm with median filter

cmm_med3 = medfilt2(cmm_out{i}, [3 3]);

%cmm_med3 = medfilt2(cmm_storage{i}, [3 3]);

%output should not have grown due to max filtering; 

re-constrain 

cmm_constrained{i} = cmm_med3.*veg_high_clean_pad_logical_sub{

i};

%only send segment for further segmentation if it's large and 

not very

%circular. These particular values were determined empirically 

based on 

%a sampling of validation segments.

if stats_bw(i).Area < 1000 && stats_bw(i).Eccentricity < 0.7

%more_seg(i) = 0;

w_surf{i} = logical(cmm_constrained{i});

else

more_seg(i) = 1;

[w_surf{i},w_surf_lines{i},w_surf_maxes{i}] = ...

watershedsurface1(cmm_constrained{i},more_seg(i));

end

%more_seg(i) = 1;

%iteratively restitch the segments into the full scene

w_surf_plot_pad(m_ul(i):m_ll(i),n_ul(i):n_ll(i)) = ...

w_surf_plot_pad(m_ul(i):m_ll(i),n_ul(i):n_ll(i)) + ...

double(w_surf{i});

cmm_plot_pad(m_ul(i):m_ll(i),n_ul(i):n_ll(i)) = ...

cmm_plot_pad(m_ul(i):m_ll(i),n_ul(i):n_ll(i)) + ...

cmm_constrained{i};

end
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%ditch padding on image

cmm_plot = cmm_plot_pad(11:size(cmm_plot_pad,1)-10,...

11:size(cmm_plot_pad,2)-10);

%ditch padding on image

w_surf_plot = w_surf_plot_pad(11:size(w_surf_plot_pad,1)-10,...

11:size(w_surf_plot_pad,2)-10);

%%

%export segments

export_dir = '..\full_scene\';

%w-shape output

%NOTE: export the solid polygon and NOT the outline

fileName = horzcat('w-shape_full_scene_130812.tif');

geotiffwrite(horzcat(export_dir,fileName),logical(w_shape),R_veg,

...

'CoordRefSysCode','EPSG:26911');

%w-surf output

%NOTE: export the solid polygon and NOT the outline

fileName = horzcat('w-surf_full_scene_130812.tif');

geotiffwrite(horzcat(export_dir,fileName),logical(w_surf_plot),

R_veg,...

'CoordRefSysCode','EPSG:26911');

%cmm output

fileName = horzcat('cmm_lin_130812.tif');

geotiffwrite(horzcat(export_dir,fileName),cmm_plot,R_veg,...

'CoordRefSysCode','EPSG:26911');

%output the veg_high_clean layer

fileName = horzcat('veg_high_clean_130812.tif');

geotiffwrite(horzcat(export_dir,fileName),veg_high_clean,R_veg,...

'CoordRefSysCode','EPSG:26911');

%output the veg_high_bin binary layer

fileName = horzcat('veg_high_bin_130812.tif');

geotiffwrite(horzcat(export_dir,fileName),veg_high_bin,R_veg,...

'CoordRefSysCode','EPSG:26911');
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function [L_fore, L_lines] = watershedshape(bw_image,

exclusion_param)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%Purpose: Segment a binary image based on inverse distance 

transform

%Inputs: a binary image and an exclusion parameter to mask out 

areas that are too far 

%from any edges to be reliably segmented. 

%   For example: If there are large swaths of closed-canopy 

forest, there

%   is no basis on which to conduct shape-based segmentation. 

Allowing the

%   process to run in these areas frequently results in meaningless

%   segments.

%   Values:  I use "50" which means that areas >50 pixels from an 

edge will

%   be masked out of this analysis. This number is based on image

%   resolution and the scale of vegetated areas in the study area.

%Outputs: 

%   L_fore: foreground watershed segments

%   L_lines: the watershed boundary lines

%NOTE:  This code is for reference purposes only. You should not 

assume

%that this will work for your specific imagery. Feel free to edit 

as

%needed. Please cite Alonzo et al. (2014).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%check input arguments

if nargin < 2

exclusion_param = 50;

elseif nargin < 1

error('Too few arguments for watershedshape.');

end

%shape-based watershed

D = -bwdist(~bw_image);

include = D > -exclusion_param; %don't use watershedshape on 

forested stands

%find mins of the complemented inverse dist image and mark them

D_min = imextendedmin(D,1).*include;

D_imp = imimposemin(D,D_min);
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%watershed transform

D_imp(D==0)=-Inf;

L = watershed(D_imp);

%cut out the background segments and clean tiny segments

L_fore = immultiply(L,bw_image);

L_fore_bw_clean = bwareaopen(L_fore,16);

L_fore = immultiply(L_fore,L_fore_bw_clean);

%generate outlines from L (for display purposes)

L_lines = L==0;

return
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function cmm_wrapper = cmmWrap(chm_package)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code allows for large groups of segments to be sent in bulk 

to

%available cores using multicore parallelization. 

%Input format: an mx1 cell each containing a segment (double)

%This code calls max_filter_variable_window.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cmm_wrapper = cell(length(chm_package),1);

num = length(chm_package);

for seg_prog = 1:length(chm_package)

%each segment is sent for CMM processing here

cmm_wrapper{seg_prog} = max_filter_variable_window(

chm_package{seg_prog});

%status updates printed

fprintf('Seg per: %u\n',(seg_prog/num)*100)

end

return
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function cmm = max_filter_variable_window(chm,seg_prog)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code accepts a canopy height model of any size as input (and

%optionally a parameter to indicate computation progress).

%It is recommended that the input chm here is relatively small 

(i.e. run on

%individual segments rather than a full scene). Performance, 

partly because

%this needs to run on every pixel and partly because of the use of

%imdilate, is not optimal.

%Output: a canopy maxima model of the same dims as the input CHM.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%get dimensions of incoming chm

m_dim = size(chm,1);

n_dim = size(chm,2);

bw_im = zeros(size(chm));

cmm = zeros(size(chm));

%set the model image upon which to base the variable window

%user needs to determine the way in which this will be 

calculated. Below I

%show a linear example and a 2nd degree polynomial based the 

relationship

%between tree height and crown width in Santa Barbara using field 

data.

win = 0.56 * chm + 1.82; %linear

%win = -0.0062*(chm.^2) + 0.9171*chm + 0.159; %poly2

%convert to a "radius image". Each pixel in win_rad contains the 

value of

%the search radius to be used to create the variable window.

win_rad = (round(win./2)).*4;

%Purpose of this loop:

%Iterate through image using linear indexing (outperformed 

coordinate

%indexing significantly). Create a variably sized mask based on 

the radius

%image at that address. Use the mask to grab the neighborhood max 

value

%and assign to CMM at the address.

for j = 1:m_dim

for k=1:n_dim
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%find linear position of seed px

lin_idx = sub2ind(size(chm),j,k);

bw_im(lin_idx) = 1;

%set the window size using a structured element

%Note: setting SE using "ones()" is much faster than 

creating a

%true disc shape using strel but probably less accurate

if win_rad(lin_idx) > 0

SE = ones(win_rad(lin_idx),win_rad(lin_idx));

else

SE = ones(1,1);

end

%dilate to create a search neighborhood within which the 

maximum

%value will be found

bw_th = imdilate(bw_im,SE);

%grab the max chm value that is within the SE and assign

%it to the CMM at the address in question

cmm(lin_idx) = max(chm(bw_th==1));

%reset bw_im

bw_im(lin_idx)=0;

end

end

%print progress if input parameter provided

if nargin == 2

fprintf('Seg: %u\n',seg_prog)

end

return
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function [w_surf, w_surf_lines] = ...

watershedsurface1(image,more_seg, shape_result)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%

%Purpose:

%This function takes a surface model and optionally 

boundaries that

%have already been defined by a previous segmentation (e.g. 

shape-based

%watershed) and computes the 2.5D watershed transformation. 

It returns

%the label matrix (w_surf),and the combined lines from this 

watershed 

%and the input segments (w_surf_lines).

%Inputs:

%image = the surface model to be segmented

%more_seg = flag. 0 = do not actually run segmentation

%shape_result = lines from previous segmentation. Not really 

relevant

%when running this code on individual segments but this code 

can be run

%on larger images too. Then shape_result will allow for 

retention of

%original boundaries in addition to the new boundaries.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%

%adaptive smoothing

image = wiener2(image,[3 3],1);

%%set up outlines and layers

veg_high_bw = im2bw(image,0.05);

%set defaults for optional arguments    

if nargin < 3

%if no previous segments supplied the boundary of the 

binary image

%will be considered the shape segment

shape_result = ~bwperim(veg_high_bw,8);

elseif nargin < 1

error('Too few arguments for watershedsurface1.');

end

%if more_seg flag is 0 then this segmentation will not occur

if more_seg == 0;

w_surf = bwlabel(veg_high_bw);
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w_surf_lines = ~shape_result;

return

end

%place boundaries from shape-based watershed on image

L_0 = shape_result == 0;

image(L_0) = 0;

%find mins 

veg_comp = imcomplement(image);

veg_min = imregionalmin(veg_comp);

%clean up the mins

veg_min_F = imfill(veg_min,'holes');

veg_min_O = bwareaopen(veg_min_F,2);

veg_min_S = bwmorph(veg_min_O,'shrink',Inf);

%impose mins

veg_imp = imimposemin(veg_comp,veg_min_S);

veg_imp(~shape_result) = Inf;

%set the background stuff to neg inf

veg_imp(veg_imp>0 & veg_imp < 10000)=-Inf;

%only find mins where -Inf has been imposed

veg_imp = imhmin(veg_imp,100);

%compute watershed

veg_L = watershed(veg_imp,8);

%     figure, imagesc(veg_L);

%cut out the background segments and clean tiny segments

w_surf = immultiply(veg_L,veg_high_bw);

L_fore_bw_clean = bwareaopen(w_surf,16);

w_surf = immultiply(w_surf,L_fore_bw_clean);

%segment boundaries

w_surf_lines = veg_L == 0;

return
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function [surf_int_mean, surf_ht_mean, surf_E, surf_N, surf_H,

surf_I] = surfacecalcs(tree_E,tree_N,tree_H, ...

tree_I,max_crown_ht, cbh, grid_sz)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%Purpose:

%This function takes descriptions of extents of point-cloud 

subset

%(generally a tree crown or crown segment) and returns the 

height and

%intensity of the highest points along the crown surface in a 

user-defined grid size.

%This is useful for understanding the crown closure of a 

canopy.

% Required arguments:

% tree_E = (m,1) vector of eastings

% tree_N = (m,1) vector of northings (of same points)

% tree_H = (m,1) vector of heights (of same points)

% tree_I = (m,1) vector of intensities (of same points)

% max_crown_ht = max height of crown in question

% cbh = crown base height of crown in question

% 

% Optional args:

% grid_sz = size of grid over which to extract ht/int info. 

Default

%           size is 0.5 m.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

%set defaults for optional arguments    

if nargin < 7

grid_sz = 0.5;

elseif nargin < 6

error('Too few arguments for surfacecalcs. Shameful.');

end

%establish grid

bins_EW = min(tree_E):grid_sz:max(tree_E);

bins_NS = min(tree_N):grid_sz:max(tree_N);

%iterate through bins

for j=1:length(bins_EW)-1 %E-W slices

easting_range = bins_EW(j:j+1);
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idx_EW = find(tree_E >= easting_range(1) & tree_E <

easting_range(2));

for k=1:length(bins_NS)-1 %N-S bins in each E-W slice

northing_range = bins_NS(k:k+1);

idx_NS_EW = find(tree_N(idx_EW) >= northing_range(1) &

tree_N(idx_EW)...

< northing_range(2));

%finds the highest point in the northing by easting bin 

that is

%inside the crown max and min

idx_z = find(tree_H(idx_EW(idx_NS_EW))<= max_crown_ht &

tree_H(idx_EW(idx_NS_EW))>= ...

cbh & tree_H(idx_EW(idx_NS_EW))== max(tree_H(idx_EW(

idx_NS_EW))));

%if the idx_z is not empty then grab the intensity 

value(s) for

%the highest point(s)

if ~isempty(idx_z)

surf_holder(k,j) = mean(tree_I(idx_EW(idx_NS_EW(idx_z

)))); %needs "mean" b/c there can be several same max 

heights

surf_holder_max(k,j) = max(tree_I(idx_EW(idx_NS_EW(

idx_z))));

surf_H_holder(k,j) = mean(tree_H(idx_EW(idx_NS_EW(

idx_z))));

%COULD ADD IN SIMILAR VARIABLES TO HOLD HEIGHT 

VARIATION

%store northings and eastings of highest point

surf_E_holder(k,j) = mean(tree_E(idx_EW(idx_NS_EW(

idx_z))));

surf_N_holder(k,j) = mean(tree_N(idx_EW(idx_NS_EW(

idx_z))));

else

surf_holder(k,j) = 0;

surf_H_holder(k,j) = 0;

surf_E_holder(k,j) = 0;

surf_N_holder(k,j) = 0;

end

%b=b+1;

end

end
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surf_idx = find(surf_holder>0);

%surf_int_pattern{i} = surf_holder; %saving for texture 

analysis

surf_int_mean = mean2(surf_holder(surf_idx));

surf_ht_mean = mean2(surf_H_holder(surf_idx));

%report out location of high points

dimE = size(surf_E_holder,1);

dimN = size(surf_E_holder,2);

surf_E = reshape(surf_E_holder,(dimE*dimN),1);

surf_N = reshape(surf_N_holder,(dimE*dimN),1);

surf_H = reshape(surf_H_holder,(dimE*dimN),1);

surf_I = reshape(surf_holder,(dimE*dimN),1);

end
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function [N,S,E,W, diam, count] = widthatheight(tree_E,tree_N,

tree_H, ht_in_crown, slice_sz, ...

bin_size)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%

%Purpose:

%This function takes a the northings, eastings, and height 

triplets for

%a crown or crown segment and computes the width of the crown 

at

%user-defined heights. 

%This is helpful in quantifying tree form.

% Required arguments:

% tree_E = (m,1) vector of eastings

% tree_N = (m,1) vector of northings (of same points)

% tree_H = (m,1) vector of heights (of same points)

% ht_in_crown = height at which you want to find width

% 

% Optional args:

% slice_sz = slice size (half the total up-down search 

distance in which to 

%     locate points (above and below ht_in_crown), default = 

0.5 m

% bin_size = bin size over which to aggregate points, default 

= 0.25 m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%

%set defaults for optional arguments    

if nargin <=5

bin_size = 0.25;

elseif nargin <= 4

slice_sz = 0.5;

elseif nargin <=3

error('Too few arguments for widthatheight.');

end

%  index points within slice_sz of the ht_in_crown

idx_height = find(tree_H > ht_in_crown-slice_sz & tree_H <

ht_in_crown+slice_sz);

count = length(idx_height);

if ~isempty(idx_height)

%subsets of points near median height    

tree_E_sub = tree_E(idx_height);
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tree_N_sub = tree_N(idx_height);

%binning EW

bins_EW = min(tree_E_sub):bin_size:max(tree_E_sub);

if length(bins_EW) >= 3

[avg,num,std]=bindata(tree_E_sub,tree_N_sub,bins_EW);

nan_idx = find(isnan(num));

EW_num = num; EW_num(nan_idx) = 0;

%find the east and west extents of crown at ht_in_crown

furthest_east_idx = find(cumsum(EW_num)>(0.99*sum(

EW_num)),1,'first');

E = (bin_size * furthest_east_idx) + min(tree_E_sub);

furthest_west_idx = find(cumsum(EW_num)>(0.01*sum(

EW_num)),1,'first');

W = (bin_size * furthest_west_idx) + min(tree_E_sub);

else

warning('Cannot create viable EW line from number of 

points');

E = min(bins_EW);

W = max(bins_EW);

end

%binning NS

bins_NS = min(tree_N_sub):bin_size:max(tree_N_sub);

if length(bins_NS) >=3

[avg,num,std]=bindata(tree_N_sub,tree_N_sub,bins_NS);

nan_idx = find(isnan(num));

NS_num = num; NS_num(nan_idx) = 0; %#ok<FNDSB>

%NS_avg = avg; NS_avg(nan_idx) = 0;

%NS_std = std; NS_std(nan_idx) = 0;

%find the north and south extents of crown at 

ht_in_crown

furthest_north_idx = find(cumsum(NS_num)>(0.99*sum(

NS_num)),1,'first');

N = (bin_size * furthest_north_idx) + min(tree_N_sub);

furthest_south_idx = find(cumsum(NS_num)>(0.01*sum(

NS_num)),1,'first');

S = (bin_size * furthest_south_idx) + min(tree_N_sub);

else

warning('Cannot create viable NS line from number of 

points');

N = min(bins_NS);

S = max(bins_NS);
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end

else

%if there are no points in this slice assign a zero length

%line to the midpoint of the segment

warning('Cannot create viable NS line from number of 

points');

N = (min(tree_N)+max(tree_N))/2;

S = N;

E = (min(tree_E)+max(tree_E))/2;

W = E;

end

%compute average diam at the given height

diam = ((N-S)+(E-W))/2;
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Appendix B  
 
Matlab code for the publication: “Mapping urban forest leaf area index 
with airborne lidar using penetration metrics and allometry” 
 
Authors:  Michael Alonzo, Bodo Bookhagen, Joseph P. McFadden, Alex Sun and Dar A. 
Roberts 

 
Explanation of the purpose and functionality of the code can be found within each file printed on the 
following pages.  



%%

%PURPOSE:

%This script should be use to evaluate the effects of changes in 

lidar

%pulse angle on estimates of single-tree effective LAI. The user 

may

%control a number of parameters in the following cell. LAIe 

estimates are

%produced using a ratio of pulses that pass through canopy to 

total number

%of pulses intersecting canopy. A correction factor is introduced 

that is

%based on the ratio of the expected path length of pulses through 

canopy at a give pulse

%angle to the expected path length of hypothetical nadir-view 

pulses.

%Secondarily, this simulator outputs a "clumping ratio" which 

sheds light 

%on how much plot-level gap fraction estimates will be impacted 

by clumping 

%of foliage into spatially disaggregated trees. The clumping 

ratio will be 

%close to 1 when the leaf area for a tree on a plot is 

distributed homogeneously 

%across the entire plot.

%Please contact Mike Alonzo (mike.alonzo@geog.ucsb.edu) with 

questions

%about this code or citation information.

%must have access to functions in:

%geom2d, geom3d, and kdtree2 (these are all available at:

%http://geog.ucsb.edu/~malonzo/matlab_code.html)

%%

%USER INPUTS

%Enter parameters for tree and study plot

numLeaves = 10000; %number of leaves

leafrad = 0.03; %leaf radius in meters (circular leaves)

tree_ht = 12; %tree height

tree_r = 3; %crown radius

cbh = 2; %crown base height

plot_rad = 15; %plot radius

ext_coef=0.5; %extinction coefficient (default at 0.5 to coincide 

with spherical LAD)
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%sensor parameters

%scan angle set must ALWAYS include 0.

scan_angles = [0 5 10 15 20 25 30 35]; %in degrees from nadir.

pointSpace = 0.25; %beam spacing on ground (m)

sensorAGL = 1000; %sensor altitude (m above ground)

%Azimuth. There is no reason to favor one azimuth over another 

but with any given

%randomization of leaves, running the model at different azimuths 

can lead

%to significantly different estimates due to clumping.

az = 180;

%%

%Parameterize tree and ground from user inputs

%Define height of cylindrical component of tree

if (tree_ht-tree_r-cbh)>0

cyl_ht = tree_ht-tree_r-cbh;

else

cyl_ht = 0;

end

%construct two random distributions for leaves to give trees a 

%reasonable shape: 1. A hemispherical hat, 2. A cylindrical base

%Partition the respective areas of the hemisphere and cylinder so 

that

%leaves can be distributed appropriately

hemi_vol = ((4/3)*pi*tree_r^3)*0.5;

cyl_vol = (pi*tree_r^2)*cyl_ht;

hemi_rat = hemi_vol/(hemi_vol+cyl_vol);

cyl_rat = 1-hemi_rat;

hemi_leaves = round(numLeaves*hemi_rat);

cyl_leaves = numLeaves - hemi_leaves;

%construct the rounded crown to sit on top of the cylinder

R_hemi = tree_r*sqrt(rand(hemi_leaves,1));

Az_hemi = 2*pi*rand(hemi_leaves,1);

El_hemi = (pi/2)*rand(hemi_leaves,1);

[Xsph, Ysph, Zsph] = sph2cart(Az_hemi,El_hemi,R_hemi);

Zsph = Zsph + (cyl_ht + cbh);

%construct the cylinder

R_cyl = tree_r*sqrt(rand(cyl_leaves,1));

Az_cyl = 2*pi*rand(cyl_leaves,1);

[Xcyl, Ycyl] = pol2cart(Az_cyl,R_cyl);

Zcyl =(rand(cyl_leaves,1)*cyl_ht)+cbh;

%full tree construction (cap the cylinder with the hemisphere)

X=[];Y=[]; Z=[];
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X = vertcat(Xsph,Xcyl);

Y = vertcat(Ysph,Ycyl);

Z = vertcat(Zsph,Zcyl);

%show tree

figure, hold on, grid on

plot3(X,Y,Z,'.r')

axis equal

view(32,32)

%spherical leaf angle distribution with mean at around 57 deg

leaf_angle1 = 90-rad2deg(asin(rand(numLeaves,1)));

%azimuthal distribution between 0 and 360 (uniform)

leaf_az = rad2deg(rand(numLeaves,1)*(2*pi()));

%calculate tree and plot LAI based on input params

tree_cpa = sum(pi()*(tree_r^2)) %tree crown projection area

plot_cpa = pi()*(plot_rad^2) %plot area

LA = ((leafrad^2)*pi())*numLeaves; %total tree leaf area

LAI = LA/plot_cpa %LAI distributed across entire plot

tree_LAI = LA/tree_cpa %LAI just of tree

%Prepare beam locations on ground based on point spacing

X_g_vec = -1*plot_rad:pointSpace:plot_rad*1;

Y_g_vec = X_g_vec;

[X_g, Y_g] = meshgrid(X_g_vec, Y_g_vec); %ground returns (or: 

possible ground returns)

Z_g = zeros(size(X_g,1),size(X_g,2));

%%

%Generate leaves (aka circles cut out of planes)

%generate three points for each leaf to define plane

tic

leaf_points = []; leaf_planes = []; leaf_circle = [];

for i = 1:numLeaves

leaf_circle{i} = [X(i) Y(i) Z(i) leafrad leaf_angle1(i)

leaf_az(i) leaf_az(i)];

%get three points on circle to define plane (set apart by 115

%degrees -- number doesn't really matter)

for k = 1:3

circ_pts(k,:) = circle3dPoint(leaf_circle{i}, k*115);

end

%three points for each leaf and create plane

leaf_points{i} = circ_pts;

leaf_planes{i} = createPlane(leaf_points{i});

190



end

toc_leaf_circs = toc

%%

%this loop runs through the LAI calculations for the tree by scan 

angle. A

%scan angle of 0 must always be included for calculation of nadir 

expected

%path length.

for theta = 1:length(scan_angles)

%%  

%construct a new kd tree for spatial indexing of leaves

clear tree

tree = kdtree_build([X Y Z]);

%sensor parameters 

scanAngle = scan_angles(theta)

%r is the radial displacement of the sensor with respect to 

the center of

%the tree (0,0)

r = tan(deg2rad(scanAngle))*sensorAGL;

[x_sens, y_sens] = pol2cart(deg2rad(az),r); %x,y sensor 

position

sensCoord = [x_sens y_sens sensorAGL];

%generate convex hull for the set of leaf points

dt_leaves = DelaunayTri([X Y Z]);

leaves_ch = convexHull(dt_leaves);

%check for intersection with crown by each pulse. 

%There is likely significant room for performance improvement 

here.

counter = 1; epl = []; pulse_line = []; plR1 = [];

parameterCell = [];

int_holder = [];

for i = 1:numel(X_g) %number of pulses hitting ground

%create line from each point on ground to sensor

check_line = createLine3d([X_g(i) Y_g(i) Z_g(i)],sensCoord

);

%check if check_line intersects the convex hull of leaves

[intersect_true, ~, ~ ] = intersectLineMesh3d(check_line,[

X Y Z], leaves_ch);

%only proceed if check_line intersects the convex hull

if not(isempty(intersect_true))
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%top intersection is always 2nd point after sorting

int_points{counter} = sortrows(intersect_true,3);

%discretize the beam into some number of points 

(default = 100)

%this is necessary for a kd ball query

dx = linspace(int_points{counter}(1,1),int_points{

counter}(2,1),100);

dy = linspace(int_points{counter}(1,2),int_points{

counter}(2,2),100);

dz = linspace(int_points{counter}(1,3),int_points{

counter}(2,3),100);

sample_line{i} = [dx' dy' dz'];

%prepare for kd tree ball query

max_path = sqrt(tree_ht^2 + (2*tree_r)^2);

ball_space = max_path / 100;

%ball_rad needs to be large enough so the cylinder 

sampled

%from ANY point along the pulse never has a radius 

less than

%leafrad.

ball_rad = max(2*ball_space,2*leafrad);

include_leaves_idx = [];

%run kd ball query for each point along beam (dx,dy,dz)

%index leaves that are captured by ball of given radius

for kd = 1:length(dx)

qpoint = sample_line{i}(kd,:);

[idxs, dists] = kdtree_ball_query( tree, qpoint,

ball_rad);

include_leaves_idx = vertcat(include_leaves_idx,

idxs);

end

%needs to be unique leaves!

leaves_in_question = leaf_planes(unique(

include_leaves_idx));

numLeaves_in_bins = length(leaves_in_question);

%check for and return intersections with each leaf

pulse_line{counter} = check_line;

[int_holder{counter}] = leafContacts(pulse_line{

counter},...

leaves_in_question, numLeaves_in_bins, X(unique(

include_leaves_idx)),...

Y(unique(include_leaves_idx)), Z(unique(

include_leaves_idx)), leafrad);
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counter = counter +1;

end

end

%number of beams that intersected convex hull

beams(theta) = counter-1;

%setting up loop to calculate expected path length and actual 

path

%length of beam through crown (convex hull)

contacts_per_beam=[]; pulse_death_pt =[];

for counter = 1:beams(theta) %num beams intersecting convex 

hull

%find the highest leaf intersection and log that as the 

initial leaf

%contact

max_ht_leaf = max(int_holder{counter}(:,3));

if max_ht_leaf>0

high_leaf_idx = find(int_holder{counter}(:,3)==

max_ht_leaf);

pulse_death_pt{counter} = int_holder{counter}(

high_leaf_idx,:);

else

pulse_death_pt{counter} = [];

end

%compute path length and expected path length

if size(int_points{counter},1)>1

%compute the expected path length (epl = top 

intersection to bottom intersection)

epl(counter) = distancePoints3d(int_points{counter}(

end,:),int_points{counter}(1,:));

%if we know that the pulse "died" in the crown 

calculate actual

%path length. This is more useful for future crown 

density

%simulation.

if not(isempty(pulse_death_pt{counter}))

plR1(counter) = distancePoints3d(int_points{

counter}(end,:), pulse_death_pt{counter});

else

plR1(counter) = epl(counter);

end

else

%fill in zeros if there weren't two points of 

intersection with the solid
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epl(counter) = 0; %expected path length through crown

plR1(counter) = 0; %actual distance traveled prior to 

leaf intersection

end

end

%store epl and plR1 values for each theta

epl_stor{theta} = epl;

plR1_stor{theta} = plR1;

%calc nadir_epl from epl at scan angle of 0

if scan_angles(theta) == 0

nadir_epl = median(epl);

nadir_epl_count = length(epl);

end

%generate secant correction (no correction for nadir view)

%this correction is for canopy only (doesn't account for number

%of pulses intersecting canopy)

sec_cor(theta) = median(epl)/nadir_epl

%this correction is for direct plot method (accounts for 

number of intersections)

num_pulses_in_plot = plot_cpa*(1/pointSpace)^2;

epl_dir(theta) = mean(vertcat(epl',zeros(int64(

num_pulses_in_plot-length(epl)),1)))

if scan_angles(theta) == 0

nad_epl_dir = epl_dir(theta);

end

sec_cor_dir(theta) = epl_dir(theta)/nad_epl_dir;

%count of beams with an expected path length

epl_count(theta) = length(epl);

%median epl

epl_med(theta) = median(epl);

%number of times there is a leaf contact / no contact in the 

canopy

contacts(theta) = length(find(epl>plR1));

no_contacts(theta) = length(find(epl<=plR1));

%gap fraction based on number of no contacts

gap_frac(theta) = (no_contacts(theta)/length(epl))

%compute gap frac for plot LAI (direct method)

gap_frac_dir(theta) = (num_pulses_in_plot-contacts(theta))/...

num_pulses_in_plot;

%estimate of canopy LAI uncorrected
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LAI_est(theta) = -log(gap_frac(theta))/ext_coef;

%apply secant correction

LAI_est_cor_lai(theta) = -log(gap_frac(theta))/(sec_cor(theta

)*ext_coef);

%outputs by scan angle

%corrected plot LAI by fCov method (canopy LAI modified by 

plot fractional cover)

plot_LAI_est_using_fCov_corr(theta) = LAI_est_cor_lai(theta) *

(tree_cpa/plot_cpa)

%uncorrected version of fcov method estimate

plot_LAI_est_using_fCov_Uncorr(theta) = LAI_est(theta) * (

tree_cpa/plot_cpa)

%corrected plot LAI using direct method (grap frac from all 

plot

%pulses)

plot_LAI_direct_cor(theta) = -log(gap_frac_dir(theta))/(

ext_coef*sec_cor_dir(theta))

%uncorrected direct plot method estimate

plot_LAI_direct_Uncor(theta) = -log(gap_frac_dir(theta))/(

ext_coef)

%how evenly are leaves spread across plot?

point_spread_ratio(theta) = tree_cpa/plot_cpa

%true plot LAI based on user-entered params

true_plot_LAI(theta) = LAI

%correction for clumping fCov method output divided by direct 

method

%output

clmp_mult(theta) = plot_LAI_est_using_fCov_corr(theta) /

plot_LAI_direct_cor(theta)

end

%%

%graphical display of the most recent simulation

figure, hold on, grid on, box on

for i = 1:200:length(X)

drawCircle3d([X(i) Y(i) Z(i) leafrad leaf_angle1(i)

leaf_az(i)], 'LineWidth', 2, 'Color', 'g');

end

ground_plot_idx = find(rand(numel(X_g),1)>0.85);

plot3(X_g(ground_plot_idx), Y_g(ground_plot_idx), Z_g(

ground_plot_idx),'.r')

trisurf(leaves_ch,X, Y, Z, 'FaceColor', 'yellow')

alpha(0.2)
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rand_lines_idx = find(rand(length(pulse_line),1)>0.98);

for j = 1:length(rand_lines_idx)

drawLine3d(pulse_line{rand_lines_idx(j)},'LineWidth',1.5)

end

%add plot circle    

numPoints=100; %Number of points making up the circle

%Define circle in polar coordinates (angle and radius)

theta=linspace(0,2*pi,numPoints); %100 evenly spaced points 

between 0 and 2pi

rho=ones(1,numPoints)*plot_rad; %Radius should be 1 for all 

100 points

%Convert polar coordinates to Cartesian for plotting

[Xc,Yc] = pol2cart(theta,rho);

%Plot a red circle

plot(Xc,Yc,'g-','linewidth',3);

axis equal
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function [int_holder] = leafContacts(pulse_line, leaf_planes,

numLeaves, X, Y, Z, leafrad)

%PURPOSE: Check for intersections between a beam (3d line) and a 

leaf plane

%in 3d. Store number of intersections.

%REQUIRED INPUTS: pulse_line (equation of 3d line representing 

beam in

%question), leaf_planes (the leaf planes selected by ball query), 

numLeaves

%(number of selected leaves), XYZ (position of each selected 

leaf), leafrad

%(leaf radius)

if nargin < 7

error('You need all 7 variables to run leafContacts')

end

%holder for leaf intersections

int_holder=zeros(numLeaves,3);

%loop through each leaf testing for beam intersection

for j = 1:numLeaves

%first, where does the beam intersect the infinite leaf plane

line_plane_int = intersectLinePlane(pulse_line,leaf_planes{j});

%check if point on the plane is in the circle by checking

%whether distance between the points is less that radius of

%leaf

if distancePoints3d([X(j) Y(j) Z(j)], line_plane_int)<leafrad

int_holder(j,:) = line_plane_int;

end

end
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