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Abstract

A Deterministic Annealing Framework for Global

Optimization of Delay-Constrained Communication and

Control Strategies

Mustafa Said Mehmetoglu

This dissertation is concerned with the problem of global optimization of delay

constrained communication and control strategies. Specifically, the objective is to

obtain optimal encoder and decoder functions that map between the source space

and the channel space, to minimize a given cost functional. The cost surfaces

associated with these problems are highly complex and riddled with local min-

ima, rendering gradient descent based methods ineffective. This thesis proposes

and develops a powerful non-convex optimization method based on the concept of

deterministic annealing (DA) – which is derived from information theoretic princi-

ples with analogies to statistical physics, and was successfully employed in several

problems including vector quantization, classification and regression. DA has sev-

eral useful properties including reduced sensitivity to initialization and strong

potential to avoid poor local minima. DA-based optimization methods are devel-

oped here for the following fundamental communication problems: the Wyner-Ziv

setting where only a decoder has access to side information, the distributed setting

where independent encoders transmit over independent channels to a central de-

viii



coder, and analog multiple descriptions setting which is an extension of the well

known source coding problem of multiple descriptions. Comparative numerical

results are presented, which show strict superiority of the proposed method over

gradient descent based optimization methods as well as prior approaches in liter-

ature. Detailed analysis of the highly non-trivial structure of obtained mappings

is provided.

The thesis further studies the related problem of global optimization of con-

troller mappings in decentralized stochastic control problems, including Witsen-

hausen’s celebrated 1968 counter-example. It is well-known that most decentral-

ized control problems do not admit closed-form solutions and require numerical

optimization. An optimization method is developed, based on DA, for a class of

decentralized stochastic control problems. Comparative numerical results are pre-

sented for two test problems that show strict superiority of the proposed method

over prior approaches in literature, and analyze the structure of obtained controller

functions.
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Chapter 1

Introduction

Shannon’s information theory [63], which has paved the way for the modern

communication age, has various shortcomings as we advance to more compli-

cated emerging networks. The classical communication theory usually assumed

point-to-point communications, allowed infinite block length (hence long delay)

and unbounded complexity of source and channel coding. Digital communications

have proliferated due to advanced source compression and error control techniques

despite the aforementioned shortcomings, namely, substantial delay and complex-

ity. On the other hand, various emerging communication applications are complex

networks that have strict delay and complexity constraints. The problem of ob-

taining the optimal coding schemes at finite delay is therefore an important open

problem with considerable practical implications [64, 38, 19, 11, 67, 54, 30].
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As an example practical setting where strict delay and resource constraints are

present, consider neural activity monitoring, where neural sensors implanted into

the body are used as an interface to the nervous system [62]. Neural implants

are employed to explore neuronal networks and the inextricable links between

environmental stimuli and neuronal signaling, behavior and control [62]. The

system can be used for advanced research and treatment of neurodegenerative

diseases. As most practical uses are highly interactive, the communication network

is strictly delay limited. In order to avoid damage to live tissue due to heating, the

power consumption needs to be extremely constrained [50]. Moreover, the sensors

are extremely small, making only relatively simple circuitry feasible [61]. Digital

systems entail long delay and require complex digital circuitry that occupies space

and dissipates heat, and are therefore not suitable for neural activity monitoring.

This type of extreme application strongly motivates the theory and methods for

delay and complexity-constrained networking that we pursue in this work.

1.1 Optimality of Uncoded Transmission

While it is well known that finite-delay coding schemes do not achieve the

asymptotic bounds in general (see, e.g., [63, Theorem 21] or [22]), zero-delay

communication is in fact optimal in some cases. An example would be communi-

cating a binary uniform source over a binary symmetric channel with Hamming
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distortion metric. Direct (uncoded) transmission of the binary sequence over the

channel achieves optimal performance [21]. Similarly, optimal transmission of a

Gaussian source over a channel with additive white Gaussian noise, under a power

constraint and mean squared error distortion measure, can be achieved by simply

transmitting the source values directly, with proper scaling to achieve power con-

straint [26]. In fact, a more general condition of when such uncoded transmission

of a discrete memoryless source over a discrete memoryless channel is optimal

is given in [22]. These results motivate an approach referred to as joint source-

channel coding (JSCC). JSCC is an effective method to address the problems of

long delay and high complexity of the separation strategy. Recently, there has

been growing interest in utilizing zero-delay mappings in network applications,

see, e.g., [16, 39] for coding over multiple access channels, [69, 17, 70] for dis-

tributed coding of correlated sources and [14, 4] for analog multiple description

coding. However, there are no known methods to find optimal low-delay JSCC

strategies for general networks.

1.2 Numerical Optimization

Until recently, there have been two main approaches to numerical optimization

of the mappings: i) Optimization of the parameter set of a structured mapping

[35, 71, 54, 30]. The performance of this approach is limited to the parametric

3



form (structure) assumed. For example, in [9] saw-tooth like structure is assumed

for the mapping in the Wyner-Ziv setting and parameters of such mappings are

optimized. ii) Design based on power constrained channel optimized vector quan-

tization where a discretized version of the problem is tackled using tools developed

for vector quantization [19, 18, 37].

In this thesis, we optimize encoder and decoder mappings to achieve good

zero-delay communication strategies for real-time networking applications. Our

approach builds on recent prior work in our lab [2] where the problem is studied

in the original functional domain, i.e., without any discretization in the problem

formulation and without any assumption of a parametrized mapping. Necessary

conditions for optimality of mappings were derived, noting that while such con-

ditions have theoretical value, they generally identify local optima. They are

practically useless in the case of highly complex cost surfaces. In other words,

simple greedy methods that are based on iterative imposition of necessary con-

ditions of optimality tend to get trapped in poor local minima. In [2], “noisy

channel relaxation” (NCR) [20] was employed to mitigate this problem inherent

to such optimization problems. As we show in this work, while NCR is reasonably

effective for simple settings, using more advanced non-convex optimization tools

improves the performance significantly in sophisticated network scenarios.

4



1.3 Deterministic Annealing

In this dissertation, we propose a method based on a powerful non-convex op-

timization framework, deterministic annealing, to numerically approach globally

optimal zero-delay mappings in network scenarios. Deterministic annealing (DA)

is derived within a probabilistic framework where the main idea is to introduce

controlled randomization into the optimization process, yet deterministically op-

timize the appropriate expectation functionals. The application-specific cost is

minimized at successive stages of decreasing randomness, and a nonrandom so-

lution is ultimately obtained while avoiding many poor local minima. Based on

information theoretic principles with analogies to statistical physics, DA has been

successfully used in non-convex optimization problems including clustering [57],

vector quantization [58], regression [55] and more (see review in [56]).

We note that DA has been traditionally used in discrete settings such as quan-

tizer optimization, and integrating DA within the mapping optimization frame-

work in here poses a significant challenge. There are many important advantages

of the proposed DA-based method compared to gradient descent based methods,

including ability to avoid poor local minima and independence from initialization;

and optimization in the original functional domain without any discretization

or simplifying assumptions. Our approach improves significantly over prior ap-

proaches, some of which are NCR based.

5



1.4 Decentralized Stochastic Control

Decentralized control systems have multiple controllers designed to collabora-

tively achieve a common objective while taking actions based on their individual

observations. No controller, in general, has direct access to the observations of

the other controllers. This makes the design of optimal decentralized control sys-

tems a challenging problem. One of the most studied structures, termed “linear

quadratic Gaussian” (LQG), involves linear dynamics, quadratic cost functions

and Gaussian variables. Since in the case of centralized LQG problems, the opti-

mal mappings are linear, it was naturally conjectured that linear control mappings

remain optimal in decentralized settings. However, Witsenhausen proposed an

example of a decentralized LQG control problem, commonly referred to as Wit-

senhausen’s counter-example (WCE), for which he provided a simple non-linear

control strategy that outperforms all linear strategies [73]. The problem has been

viewed as a benchmark in stochastic networked control, see [81] for a detailed

treatment.

We observe that the problem of finding optimal controller mappings in decen-

tralized control is similar to finding optimum communication techniques in our

zero-delay network settings. Consequently, we develop a general non-convex opti-

mization method, inspired by the approaches we developed in the communication

setting, which is suitable for a class of decentralized control problems. We present

6



comparative numerical results for two test problems that show strict superiority

of the proposed method over prior approaches in literature.
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Chapter 2

Side Information Setting

2.1 Introduction

In this chapter, we focus on what is perhaps the most simple networking

communication problem that we refer to as the side information setting. The

sender wishes to communicate the source over a discrete memoryless channel to a

receiver which decodes the source under a minimum mean squared error (MSE)

distortion measure. The receiver, but not the sender, has access to some side

information that is correlated with the source. This setting has been studied

extensively theoretically [66, 77, 1] and the optimal asymptotically achievable

performance is known [78]. For practical coding approaches for this setting, see,

e.g., [52].

8



We propose an optimization method based on deterministic annealing (DA),

to numerically approach globally optimal zero-delay mappings in this setting.

Having a powerful optimization method at hand, we analyze the structure of

experimentally obtained mappings and investigate some conjectures made in prior

work. For instance, one such claim was on the structure of optimal mappings in the

side information setting, for which our results provide contradictory experimental

evidence.

2.2 Preliminaries

2.2.1 Notations

Let R, N, and R+ denote the respective sets of real numbers, natural numbers,

and positive real numbers. We represent scalars and random variables with low-

ercase and uppercase letters (e.g., x and X), column vectors and random column

vectors with boldface lowercase and uppercase letters (e.g., x and X), respec-

tively. ‖ · ‖ denotes L2 norm operator. Let E(·) and P(·) denote the expectation

and probability operators, respectively. The probability density function of the

random variable X is fX(x). Let ∇ and ∇x denote the gradient and partial

gradient with respect to x, respectively. Let f
′
(x) = df(x)

dx
denote the first-order

derivative of the continuously differentiable function f . The Gaussian density

9



with mean µ and covariance matrix R is denoted as N (µ, R). We use natural

logarithms which, in general, may be complex, and the integrals are, in general,

Lebesgue integrals.

2.2.2 Problem Definition

In the side information setting, given in Figure 2.1, side information Z ∈

Rm2 is available to the decoder, while source X ∈ Rm1 is mapped to a channel

input by the encoding function g : Rm1 → Rp and transmitted over the channel

with additive noise N ∈ Rp. The received channel output Y = g(X) + N

and side information Z are mapped to the estimate X̂ by the decoding function

w : Rp × Rm2 → Rm1 . The problem is to find optimal mappings g,w, where

optimality is in the sense that they minimize MSE

D(g,w) = E{‖X − X̂)‖2}, (2.1)

subject to some power constraint on the encoder

P (g) = E{‖g(X)‖2} ≤ PE (2.2)

where PE > 0 is the specified encoder power level. Simple time-sharing arguments

show that D is a convex functional of P , hence the solution is achieved at P = PE

(see [3] for details.) Converting to Lagrangian formulation, we define the following

10



Figure 2.1: The side information setting.

cost function to be minimized

J = D(g,w) + λP (g) (2.3)

where λ is a Lagrange multiplier corresponding to the power constraint on the

encoder (we suppressed the dependence of J on g and w).

2.2.3 Prior Work: Necessary Conditions of Optimality

and Greedy Descent Algorithms

Here, we summarize the relevant contributions of prior work (see [2] for more

details). Let the encoder g be fixed. Then, the optimal decoder is the MSE

estimator of X given Z = z and Y = y:

w(y, z) = E{X|y, z}. (2.4)

11



Expanding the expressions for expectation and applying Bayes’ rule, the optimal

decoder can be written in terms of known quantities as

w(y, z) =

∫
x fX,Z(x, z) fN (y − g(x)) dx∫
fX,Z(x, z) fN (y − g(x)) dx

, (2.5)

where we used the fact that fY |X(y,x) = fN (y − g(x)). For optimality of g,

assuming the decoder w is fixed, a necessary condition is

∇gJ(g,w) = 0, (2.6)

where

∇gJ(g,w)=λfX(x)g(x)

−E{w′(g(x)+N ,Z)(x−w(g(x)+N ,Z))}, (2.7)

and w′ denotes the Jacobian of w with respect to its first argument.

Remark 2.2.1. Note that in the case of jointly Gaussian sources and Gaussian

channel(s) with matched source-channel dimensions, linear mappings satisfy the

necessary conditions of optimality, however, they are highly suboptimal. As we

will see, careful optimization obtains considerably better mappings that are far

from linear.

Iteratively alternating between the imposition of individual necessary condi-

tions of optimality will successively decrease the Lagrangian cost until a station-

ary point is reached. We refer to this method as “greedy descent”. There is no

12



reason to expect that a greedy descent algorithm will converge to the globally op-

timal solution. In fact, experiments show severe issues of local optima and strong

dependence on initialization of such methods. As a remedy, the noisy channel

relaxation (NCR) method of [20] was embedded in the algorithm in [2], i.e., the

descent method was run at gradually decreasing levels of λ, wherein the result

at each level serves as initialization for the next level of λ (see [20] for details).

While such simple relaxations are effective in simple communication settings, the

networked problem we consider here requires a stronger optimization approach.

2.2.4 Asymptotically Achievable Limits

It is insightful to consider asymptotic bounds, which are obtained at infinite

delay, while keeping in mind that the problem we consider is delay limited. Let

R(D) and C(P ) denote the source rate-distortion function and channel capacity,

respectively. According to Shannon’s source and channel coding theorems, the

source can be compressed to R(D) bits (per source sample) at distortion level D,

and that C(P ) bits can be transmitted over the channel (per channel use) with

arbitrarily low probability of error (see, e.g., [12]). The optimal coding scheme

is the tandem combination of the optimal source and channel coding schemes,

hence, by setting

R(D) = C(P ), (2.8)

13



one obtains a lower bound on the distortion of any source-channel coding scheme.

For simplicity, we derive the expressions for the “optimum performance theoret-

ically attainable” (OPTA) for Gaussian scalar source and noise. The channel

capacity with additive white Gaussian noise is given by

C(P ) =
1

2
log

(
1 +

P

σ2
N

)
, (2.9)

where P is the transmission power and σ2
N is the noise variance.

For our setting, OPTA can be obtained by equating Wyner-Ziv rate distortion

function [78] to the channel capacity. The Wyner-Ziv rate distortion function of

X, when Z serves as side information, and (X,Z) ∼ N (0, RX,Z) where RX,Z =

σ2
X

[
1 ρ
ρ 1

]
and σ2

X , ρ are the variance and correlation coefficient, respectively, with

|ρ| ≤ 1 is:

R(D) = max

(
0,

1

2
log

(1− ρ2)σ2
X

D

)
. (2.10)

We plug (2.10) and (2.9) in (2.8) to obtain

DOPTA =
(1− ρ2)σ2

X(
1 + PT

σ2
N

) . (2.11)
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2.3 Proposed Method

2.3.1 Overview

In this section, we develop the DA based method for the optimization of en-

coder and decoder mappings. Since the decoder is given in closed form, the method

focuses on optimizing the encoder mapping. We first partition the input space of

the encoder into partition cells and assign a local model to each of the cells. Next,

the encoder output is made probabilistic by randomizing the partitions, i.e., input

points are assigned to each local model according to some probability distribu-

tion. We then propose an optimization process where the (random) encoder is

optimized (along with the decoder) while constraining the Shannon entropy. By

gradually reducing the entropy to 0, we obtain the desired mappings.

2.3.2 Derivation of proposed method

We consider piecewise functions which approximate the desired mappings by

partitioning the space and matching a simple local model to each region. Piece-

wise functions consist of two components: a space partition and a parametric

local model per partition cell. First, the source space Rm is partitioned into K

regions (cells) denoted Rm
k . Each cell Rm

k has an associated function gk which is

parametrized (affine, lattice, etc.) and the parameter set is denoted by Λk. Thus,
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the encoding function can be written as

g(x) = gk(x) for x ∈ Rm
k and for k = 1, . . . ,K (2.12)

In (2.12), the selection of local model index k is deterministic for a given

realization of X, i.e., the output of the encoder only depends on X. To derive

a DA based approach, we introduce a random variable, K, that corresponds to

random selection of index k. In other words, let the encoder randomly select

the local model index k when it receives an input x, according to the value of a

random variable that we call K. For a given realization of X, the output of the

encoder is now given in probability as

g(x) = gk(x) with probability pK|X(k|x). (2.13)

The conditional probability pK|X(k|x) is referred to as association probability,

in the sense that it represents the probability of input point x belonging to cell

Rm
k (thus, the source space partition is now random). The probability distribution

that we introduce (and optimize) is pK|X (not the joint pX,K) since the input

distribution is given in the problem statement and is therefore fixed. The MSE

cost and transmission power are still calculated as in (2.1) and (2.2), though the

expectation is now taken over K in addition to what was done before. Let us

rewrite (2.3) accounting for K:
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J =

∫
Rm1

[
K∑
k=1

Jk(x)pK|X(k|x)

]
fX(x)dx, (2.14)

where

Jk(x) = E{‖x−w(gk(x) +N ,Z)‖2}+ λ‖gk(x)‖2. (2.15)

We have the following lemma:

Lemma 2.3.1. The minimum of (2.14) is achieved by hard probabilities, i.e., for

given x, pK|X(k|x) = 1 for k that minimize Jk(x).

Proof. Let us fix Λk and w, and consider optimizing (2.14) with respect to pK|X .

It is clear that the optimal pK|X will implement ’hard’ associations, that is, every

point x will be fully associated with the local model that makes the minimum

contribution to cost.

According to Lemma 2.3.1, the generalized search space of random encoders

have the same global minimum as the original problem. Although this is desirable

eventually, in order to avoid poor local optima we impose and control the level

of randomness, i.e., we introduce a constraint on the randomness of the encoder,

which is measured by the Shannon entropy. The total entropy of the encoder is

given by H(X, K) = H(X) + H(K|X) and since H(X) is constant (predeter-

mined by the source), the entropic quantity of interest is the conditional entropy

H(K|X). This is also intuitively justified in the sense that the randomness we
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introduced into the problem is precisely captured by pK|X , hence can be measured

and controlled by H(K|X). We denote the randomness of the solution by H and

define it as H , H(K|X) where

H(K|X) = −E{log pK|X}. (2.16)

The problem is now recast as minimization of the expected cost with respect to

parameters of local models, association probabilities and decoder, subject to a

constraint on the level of randomness of the system, i.e.,

minimize
Λ1,...,ΛK,p(1|x),...,p(K|x),w

J,

subject to H ≥ H0,

where J is defined in (2.14) and H0 specifies the minimum requirement on the

entropy level. This constrained optimization problem can be reformulated by

introducing Lagrange parameter T ∈ R+ to obtain the Lagrangian

F = J − TH, (2.17)

to be minimized. There are two important extremal points of this Lagrangian.

First, for T →∞, the minimum F is obtained by maximizing the entropy, which

is achieved by uniform association probabilities: pK|X(k|x) = 1/K for all k and

x. Consequently, all local models equally account for all points and are identical

once optimized, or effectively, there is a single distinct local model. Secondly,

in the limit T → 0, minimizing F corresponds to minimizing J directly, which
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produces a deterministic encoder. This intuitive observation can be verified by

the expression for optimal pK|X(k|x) given in Section 2.3.4.

Although DA is derived from information theoretic principles, it is motivated

by and has strong analogies to annealing processes in statistical physics. The

Lagrangian functional in (2.17) can be viewed as the Helmholtz free energy of a

corresponding physical system, where J is the thermodynamic energy and H is

the entropy of the system, and Lagrange parameter T is the “temperature”. This

analogy suggests the possibility of implementing an annealing process, where the

temperature is gradually lowered while the system is kept at thermal equilibrium,

i.e., the free energy is at minimum. The annealing process is started at a high

temperature (highly random mappings) where, in fact, the entropy is maximized

(single local model). This minimum is then tracked at successively lower temper-

atures (which corresponds to lower levels of entropy) as the system undergoes a

sequence of phase transitions through which the model complexity (the number

of distinct local models) grows. As the temperature approaches zero, the physical

system converges to ground state (global minimum of the energy). Similarly, as

T → 0, we obtain a hard (nonrandom) mapping while avoiding poor local min-

ima. We note, however, that DA method does not guarantee to find the globally

optimum solution in general, only when certain continuity conditions are satisfied

by the phase transitions.
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2.3.3 Deterministic Annealing

The optimization method starts at a high value of T and gradually lowers

it while minimizing F at each step. At high temperature, there is effectively a

single distinct local model. As the temperature is decreased, a bifurcation point is

reached where the current solution is no longer a minimum, so that there exists a

better solution with a higher number of distinct local models. Intuitively, at this

temperature, the current solution is a saddle point where multiple local models

are coincident (i.e., their parameters are same) and in order to move to a better

solution, it is necessary to perturb the local models. Such bifurcations are referred

to as “phase transitions” and the corresponding temperatures are called “critical

temperatures”1.

We present an example simulation in Figure 2.2 that illustrates the basics

of the method, including phase transitions. Here the sources and channel are

scalar, i.e.,m = n = 1, gk are selected as affine and K = 2. When T is large,

there is a single distinct local model. As we lower T , the system goes through a

phase transition where the two local models split from each other (after a slight

perturbation). The corresponding value of T is referred to as the first critical

temperature. Note how entropy (H) is traded for reduction in cost (J).

1We omit the derivation of critical temperatures in this thesis, see [56] for phase transition
analysis in the general DA setting.
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(d) T = 0.0001, J = 0.0097, H = 0.0

Figure 2.2: The evolution of the encoder in the algorithm is demonstrated. The two models
are shown by dotted lines and the sizes of dots are relative to the probability association at

that input point. The line in (d) is the deterministic encoder obtained. K = 2.
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Mappings with more than 2 local models can be obtained by starting with

a larger K. However, a computationally more efficient method that we employ

here is as follows: We start with 1 local model and keep only the distinct local

models, but duplicate and perturb them at each temperature. The duplicates will

merge at every iteration until a critical temperature is reached, and will split into

distinct models at a phase transition.

Although our method is derived in the general, continuous source and channel

domain, in practical simulations we sample the source and noise distributions

to allow numerical computation of integrals. The sampling is not “inherent” to

the derived method and, in fact, can be adjusted during the algorithm run. We

emphasize that this is in contrast with prior quantizer design based methods that

are entirely formulated in a discrete setting.

The practical algorithm is initialized with a single local model. Since T must

be set higher than the first critical temperature, we simply choose T large enough

that during the first couple of temperatures, duplicated local models merge back,

i.e., no phase transitions are observed. As the temperature is gradually lowered, we

track the minimum, i.e., find the association probabilities pK|X(k|x), local model

parameters Λk and decoder w that minimize the Lagrangian F . As demonstrated,

the system will go through phase transitions during which the number of local

models, K, increases. We stop when T is near 0 and perform ”zero entropy
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iteration”, i.e., associate every source point with the “best” local model to obtain

deterministic encoder. We accordingly give a brief sketch of the practical method

in Algorithm 1. In Step 6, we employed an exponential cooling schedule. Update

equations for Step 3 are given in the next section.

2.3.4 Update Equations

The central part of the method is the minimization of free energy (F ) by itera-

tively updating the association probabilities, local model parameters and decoders.

The following theorem states the update equations for association probabilities.

Theorem 2.3.2. At any temperature T , minimum free energy F is achieved when

association probabilities are in the form of Gibbs distribution given as:

p(k|x) =
e−Jk(x)/T∑

k′
e−Jk′ (x)/T

∀k, (2.18)

where Jk(x) is given by (2.15).

Proof. We write the Lagrangian cost in (2.17) as

F =

∫
Rm1

[
K∑
k=1

Jk(x)pK|X(k|x)

]
fX(x)dx+ T

∑
k

∫
x

p(k|x) log p(k|x)fX(x)dx,

(2.19)

where Jk(x) is given in (2.15). From (2.19) it can be seen that F is convex in

p(k|x), since first term is linear and second term is convex in p(k|x). To find the
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Algorithm 1 Proposed DA-Based Method

Inputs: Involved distributions, desired local model type, λ, α, ε, ∆F , Tmin, ∆g.

Outputs: Optimized g,w.

Initialization: T = Tmax, K = 1, randomly chosen g1. Jold = Jinitial.

1. Duplication:

For each gi, create an identical local model gj.

p(i|x)← p(i|x)
2

and p(j|x)← p(i|x)
2

.

K ← 2K.

2. Perturbation:

For each parameter φk ∈ Λk, φk ← φk + εR, where R is standard Gaussian

random variable.

3. Thermal Equilibrium:

Compute F and set Fold ← F .

3.1. Compute optimal w using (2.26).

3.2. Compute optimal p(k|x), ∀k using (2.18).

3.3. Optimize Λk, ∀k using (2.24).

3.4. Compute F . If F−Fold

Fold
≤ ∆F , go to Step 4, otherwise Fold ← F and go

to Step 3.1.
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4. Model Size:

If d(Λi,Λj) < ∆g, where d(·, ·) is euclidean distance, remove gj and set

p(i|x)← p(i|x) + p(j|x), ∀i, j.

K ← New model size.

5. Stopping:

Stop if T ≤ Tmin, otherwise go to Step 6.

6. Cooling:

T ← T ∗ α.

Go to Step 1.

minimum, we set ∇p(k|x)F = 0:

Jk(x) + T log p(k|x) + T = 0, (2.20)

which yields

p(k|x) = Ce−(Jk(x)−T )/T . (2.21)

The normalizing factor C is to ensure that

∑
k

p(k|x) = 1. (2.22)

Plugging (2.21) in (2.22), we have

C =
1∑

k′
e−(Jk′ (x)−T )/T

. (2.23)
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Plugging (2.23) in (2.21) yields (2.18).

Remark 2.3.3. Theorem 2.3.2 is analogous to the principle of minimal free energy

in statistical physics. A fundamental principle in statistical physics states that the

minimum free energy is achieved when the system is at thermal equilibrium, at

which point it is governed by Gibbs distribution.

The evolution of association probabilities, p(k|x), during the annealing process

can be observed from how (2.18) is changing with T . The following corollary

confirms the intuitive explanation we provided earlier.

Corollary 2.3.4. As T → ∞ (at a high temperature) the system is governed by

uniform association probabilities and the entropy is maximum. As T → 0, the

associations become deterministic and the entropy is 0.

The optimal local model parameters cannot be obtained in closed form, hence

we perform gradient descent search. A local model parameter φk ∈ Λk is updated

according to

φk ← φk − ϕ
∂F

∂φk
(2.24)

where ϕ is selected by line search and the gradient can be obtained as

∂F

∂φk
=

∂J

∂φk
=

∫
x

fX(x)p(k|x)
∂Jk(x)

∂φk
dx. (2.25)

26



The derivative ∂Jk(x)
∂φk

is calculated numerically. The optimal decoder can be de-

rived similar to (2.5):

w(y, z) =

∫
x fX,Z(x, z)

∑
k

fN (y − gk(x))p(k|x) dx∫
fX,Z(x, z)

∑
k

fN (y − gk(x))p(k|x) dx
. (2.26)

2.3.5 Design Complexity

Due to difficulties in estimating the time required for gradient descent, ex-

act comparison of computational complexity of numerical optimization methods

(including the method presented here and others referred to in Section 2.2.3) is

difficult and depends on the actual source-channel distributions as well as choice of

various algorithm parameters. On the other hand, optimization of parametrized

mappings (e.g., in [17]) is faster, but requires knowing the structure of a good

solution, which can be obtained by methods such as the one presented here. In

our experiments, the time required for DA was on the same order as that of NCR,

albeit with a higher constant. Thus, better performance is obtained at the expense

of slight increase in complexity.

2.4 Experimental Results

While the proposed algorithm is general and directly applicable to any choice

of source and channel dimensions, for conciseness of the results section, we as-
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sume that sources and channels are scalar. In this case, the encoder mapping is

denoted as g : R → R and the local model functions gk are selected as affine. In

principle, the set of gk can be chosen from any parametric model. Choosing a

more complex model, such as a higher order polynomial, can potentially improve

the performance of the algorithm, albeit with increased computational complex-

ity. For the exponential cooling schedule, we set α = 0.95, i.e., T ← T ∗0.95. The

performance of the proposed method is assessed by comparisons to the optimal

affine solution, greedy method and NCR-based method, as well as OPTA (for

reference only, as OPTA requires infinite delay). For the NCR based method, we

decrease λ exponentially as λnew = λold ∗ 0.8 in 50 steps to the desired value.

The noise signals in all examples are chosen as independent zero-mean Gaus-

sians with unit variance, i.e., N ∼ N (0, 1). For numerical computations we impose

bounded support (−5σ to +5σ), i.e., we neglect tails of infinite support distribu-

tions in the examples.

We first give examples for the Gaussian case, where the source and side infor-

mation are jointly Gaussian, distributed according to N (µ, R) where µ = [0, 0],

R =
[

1 ρ
ρ 1

]
, and |ρ| < 1 is the correlation coefficient between source and side

information. We define SNR = 10 log10(1/D) and CSNR = 10 log10(P (g)).

Example mappings are given in Figure 2.3. We first note that the central char-

acteristics observed in digital Wyner-Ziv mappings are captured by the obtained
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(c) SNR=26.0 dB, CSNR=15.0 dB, ρ = 0.99

Figure 2.3: Example encoder mappings, generated by DA, for the decoder side information
setting, jointly Gaussian source and side information.
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mappings as noted before (see, e.g., [2, 37]), in the sense of many-to-one mappings,

where multiple source intervals are mapped to the same channel interval. We refer

to each one-to-one section in these mappings as a “bin”, in Figure 2.3a there are

5 bins in the interval shown (the meaning of bin here is different than in digital

Wyner-Ziv mappings). The uncertainty about the source interval is resolved (sig-

nificantly decreased) by the decoder using the side information. Since all variables

are Gaussian and distortion measure is MSE, it is intuitively intriguing to investi-

gate whether the optimal mappings have any parametric form or structure to be

exploited in the design stage. For example, since in the absence of decoder side

information optimal mappings are well known to be linear, one can expect to see

linear mappings in each bin. In fact, such parametric form was explicitly assumed

in [9], and it was reported the optimized parametric mappings perform very close

to the results obtained via NCR in [2]. Our numerical results demonstrate that

each bin is non-linear as some nonlinearity can be observed especially near the

ends of each bin, as opposed to the conjecture in [2].

From Figure 2.3 we see how the width of bins depends on the correlation be-

tween the source and side information. It can be seen that at higher correlation the

bins are narrower. This is intuitively expected since, as the correlation increases,

so does the benefit of side information in terms of distinguishing different bins.
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Figure 2.4: Two results by NCR for side information setting. In (a) the bins do not have the
optimal shape that was obtained by DA and in (b) the discontinuity points are not optimal.

To exploit this capability, the encoder narrows the bins, which in turn reduces the

power E{g2(X1)}.

To illustrate the improvement of DA over NCR in the encoding mappings

themselves, we present two mappings obtained by NCR in Figure 2.4. We empha-

size that the performance of NCR depends on initial mappings, initial noise level

and the noise-relaxation schedule. This dependence is illustrated in Figure 2.4,

where in one case the shape of bins are different then those in DA and sub-optimal,

and in the other the points of discontinuity are not optimal.

We also give an example with a different source distribution, Gaussian mixture,

in Figure 2.5:

(X1, X2) ∼
(

1

2
N (µ1, R) +

1

2
N (µ2, R)

)
(2.27)
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Figure 2.5: Example encoder mappings, generated by DA, for Gaussian mixture distribution,
side information setting.

where µ1 = [−3,−3], µ2 = [3, 3] and R = [ 1 0.95
0.95 1 ]. This distribution has two

Gaussian “nodes” centered far from each other at x = −3 and x = 3. From an

intuitive point of view, the optimum encoder can be viewed as two Wyner-Ziv like

encoders, occupying the negative and positive halves of real line and both centered

at the node centers. It is clear that for several source and channel distributions,

optimal encoding mappings are many-to-one, i.e., this property is not unique to

the Gaussian distribution.

The comparative performance results for different optimization techniques is

given in Figure 2.6 for correlation coefficient ρ = 0.99. Since NCR performance

depends on the initial conditions, we ran the NCR algorithm several times with

different conditions and pick the mappings with best performance. Results from

the greedy method are also presented in order to illustrate the abundance of locally

optimum points and the difficulty of the optimization problem. Note that the
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Figure 2.6: The performance comparison for the side information setting, the proposed
method versus the noisy relaxation (NCR), greedy optimization and the linear mappings.

ρ = 0.99.

proposed method is independent of the initialization and only run once. We also

present the performance of OPTA as benchmark while noting that it is asymptotic

and may require infinite delay. The performance of linear encoder and decoder is

plotted as well, since it is also a local minimum (see Remark 2.2.1). It is important

to note that the linear solution performs significantly worse than the non-linear

mappings obtained.
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Chapter 3

Distributed Coding

3.1 Introduction

In this chapter, we move to a more involved network setting that we refer to

as the distributed coding. This setting, shown in Figure 3.1, involves distributed

(separate) coding and transmission of two correlated sources to a central decoder

that reconstructs individual sources. As an example practical scenario, consider

a sensor network where sensor measurements are correlated, but sensors encode

and communicate their measurements separately due to physical constraints. The

distributed coding problem has been studied extensively, see, e.g., [66, 72].

The setting can easily be seen as an extension of the side information setting

discussed in the previous chapter, such that each channel’s output is used as side
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information when decoding for the other channel. In fact, if the decoder’s goal

is to reconstruct one of the sources only (say X1), then this problem is referred

to as “coding with a helper” where the second encoder (g2) provides “coded side

information” to the decoder [76, 1].

If the decoder wants to estimate a function of the sources, the setting is referred

to as “function computation problem”. This is of interest for certain applications

such as a wireless sensor network deployed in order to compute a function of the

measurements [27, 23, 51, 47, 49].

We extend the method introduced in the previous chapter to this setting, to ap-

proach optimal encoder and decoder mappings. Our results strictly improve over

recent competing approaches, as well as prior approaches in literature. Several

practically important observations are made regarding the functional properties

of the optimal mappings.

3.2 Preliminaries

3.2.1 Notations

Let R, N, and R+ denote the respective sets of real numbers, natural numbers,

and positive real numbers. We represent scalars and random variables with low-

ercase and uppercase letters (e.g., x and X), column vectors and random column
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Figure 3.1: The distributed coding problem.

vectors with boldface lowercase and uppercase letters (e.g., x and X), respec-

tively. ‖ · ‖ denotes L2 norm operator. Let E(·) and P(·) denote the expectation

and probability operators, respectively. The probability density function of the

random variable X is fX(x). Let ∇ and ∇x denote the gradient and partial

gradient with respect to x, respectively. Let f
′
(x) = df(x)

dx
denote the first-order

derivative of the continuously differentiable function f . The Gaussian density

with mean µ and covariance matrix R is denoted as N (µ, R). We use natural

logarithms which, in general, may be complex, and the integrals are, in general,

Lebesgue integrals.

3.2.2 Problem Definition

The distributed coding setting, given in Figure 3.1, has two sources X1 ∈ Rm1

and X2 ∈ Rm2 mapped to some channel input by the encoding functions gi :
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Rmi → Rpi , and the decoder receives Yi = gi(X i) +N i for i = 1, 2. In general,

the decoder might have two type of objectives. In the first one, the decoder aims

to reconstruct each source with minimum distortion. The decoder is defined as

w : Rp1×Rp2 → Rm1×Rm2 as it maps the received channel outputs to the estimates

X̂ i for i = 1, 2. For this case, we define distortion as

D(g1, g2,w) = E{‖X1 − X̂1‖2 + η‖X2 − X̂2‖2} (3.1)

where η ∈ R+ is a given weight coefficient. The case of η = 0 corresponds to

the “coding with a helper” problem as mentioned in Section 3.1. The second

type of objective is the function computation. Denoting the desired function as

γ(X1,X2) : Rm1× Rm2 → Rr, the decoder is defined as w : Rp1× Rp2 → Rr and

the cost is given by

D(g1, g2,w) = E{‖γ(X1,X2)−w(Y 1,Y 2)‖2}. (3.2)

The problem, for both cases, is to find the mappings g1, g2,w that minimize the

overall distortion (which is given in (3.1) or (3.2) depending on the objective) sub-

ject to power constraints on the encoders, which can be in two forms: Individual

power constraints given by

P (gi) = E{‖gi(X i)‖2} ≤ PT,i for i = 1, 2. (3.3)
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or a total power constraint of the form

2∑
i=1

P (gi) ≤ PT , (3.4)

which offers the additional degree of freedom of optimizing power allocations to the

encoders. For optimization purposes, we similarly define the following Lagrangian

functional as the objective cost to be minimized

J = D +
2∑
i=1

λiP (gi), (3.5)

where λi ∈ R+, i = 1, 2, are Lagrange multipliers to impose the individual power

constraints on the encoders in the first case. The total power constraint case

corresponds to the special case of (3.5) with λ1 = λ2 = λ, i.e., the Lagrangian

cost to minimize is

J = D + λ[P (g1) + P (g2)], (3.6)

where λ controls the total power.

Necessary conditions of optimality can be derived for this problem, see [2].

3.2.3 Asymptotically Achievable Limits

For simplicity, we derive OPTA for quadratic Gaussian distributed source cod-

ing for sources (X1, X2) ∼ N (0, RX1,X2) where RX1,X2 = σ2
X

[
1 ρ
ρ 1

]
with |ρ| ≤ 1.
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The complete rate distortion region satisfies the following inequalities [68]:

R1 ≥
1

2
log+

(
1− ρ2 + ρ22−2R2

D1

)
(3.7)

R2 ≥
1

2
log+

(
1− ρ2 + ρ22−2R1

D2

)
(3.8)

R1+R2 ≥
1

2
log+

(
(1− ρ2)β(D1, D2)

2D1D2

)
(3.9)

where log+ x = max(0, log x) and

β(D1, D2) = 1 +

√
1 +

4ρ2D1D2

(1− ρ2)2
. (3.10)

We set Ri = C(Pi) for i = 1, 2, where C(P ) is given in (2.9) to obtain OPTA.

3.3 Method for Distributed Coding

Although the method described in the previous chapter can be used for opti-

mizing the distributed encoders separately (within separate annealing processes),

we found that such a method fails to avoid poor local minima as it fails to account

for interaction between encoder optimizations. Instead, we develop a method here

that optimizes the (random) encoders and decoders within a single annealing pro-

cess. The resulting annealing method is an extension of the previous one with

higher complexity due to the distributed nature of the problem.

We have two independent sets of partitions of input source space: K1 cells

represented by Rm
k1

and K2 cells represented by Rm
k2

. We define both encoders in
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this setting as

gi(xi) = gki(xi) for xi ∈ Rm
ki

, i = 1, 2. (3.11)

Following the same procedure of randomization, we define random variables K1

and K2 along with association probabilities:

p(ki|xi) , P{xi ∈ Rm
ki
}, ∀ki,xi, for i = 1, 2. (3.12)

The cost is to be minimized subject to the constraint on the joint entropy of the

system. Noting that K1 ↔ X1 ↔ X2 ↔ K2 form a Markov chain by construction,

we express the joint entropy as

H(X1,K1,X2,K2)=H(X1,X2)+H(K1|X1)+H(K2|X2). (3.13)

SinceH(X1,X2) is a constant determined by the sources, we defineH , H(K1|X1)+

H(K2|X2) where

H(Ki|X i) = E{log p(Ki|X i)} for i = 1, 2, (3.14)

and the free energy of the system is, again, given by F = J − TH.

The algorithm sketch is similar to the side information setting and is not

reproduced here in its entirety. Since we optimize both encoders within the same

annealing process, the same operations in Algorithm 1 in Chapter 2 are performed

for both encoders, sequentially.
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The following theorem presents the optimal association probabilities for the

distributed setting. The proof follows similar steps as in the proof of Theorem

2.3.2 and omitted for brevity.

Theorem 3.3.1. At any temperature, minimum free energy (F ) is achieved when

the system is governed by Gibbs distribution given as:

p(ki|xi) =
e−Jki (xi)/T∑
k′i

e
−Jk′

i
(xi)/T

for i = 1, 2 (3.15)

where

Jki(xi)=E{‖X1−X̂1‖2+η‖X2−X̂2‖2|X i=xi,Ki=ki}

+λig
2
ki

(xi) (3.16)

if the cost is defined as in (3.1), and

Jki(xi)=E{‖γ(X1,X2)−w(Y 1,Y 2)‖2|X i=xi,Ki=ki}

+λig
2
ki

(xi) (3.17)

if the cost is defined as in (3.2).

Proof. Proven following the same steps in the proof of Theorem 2.3.2.

The parameters of local models can be optimized through gradient descent

search. Optimal decoding is achieved similarly as X̂ i = E{X i|y1,y2} for i = 1, 2

for first type of objective, and w(y1,y2) = E{γ(X1,X2)|y1,y2} for the second
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type. Both expressions can be written in terms of known quantities similar to

that in (2.26).

3.4 Experimental Results

While the proposed algorithm is general and directly applicable to any choice

of source and channel dimensions, for conciseness of the results section, we assume

that sources and channels are scalar. The details of the simulations are the same

as in Section 2.4.

In these experiments the sources are jointly Gaussian with unit variance and

their correlation coefficient is denoted by ρ. We first analyze the case of individual

reconstructions, where the cost is as defined in (3.1). The weighing coefficient η

in (3.1) is taken as 1.

The encoding mappings observed are many-to-one, where an example is given

in Figure 3.2a to gain intuition into the workings of these coding schemes. From

Figure 3.2a, where both encoders are plotted together, we see that in different

source intervals, one of the mappings is many-to-one while the other one is one-

to-one (usually linear). For instance, in the interval X ∈ [−0.3, 0.5], g1 is approx-

imately linear while g2 is many-to-one. Intuitively, in each of these intervals, one

channel is used as side information to reduce the uncertainty about the interval

of other source.
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Figure 3.2: Example encoding scheme for distributed coding setting with ρ = 0.999. In (a), g1
and g2 are plotted. In (b) we see how the channel space is filled. In (c) the channel space filling

for linear solution is shown. In (d) a typical Archimedean spiral used in literature is shown.

43



In order to gain further intuition into the workings of this non-linear strategy,

we analyze how the channel space is filled, which is illustrated in Figure 3.2b

with some example source pairs shown. For this plot, we consider only practically

relevant source pairs, i.e., for close values of X1 and X2, as otherwise they are

extremely unlikely to occur. This mapping has the same characteristics with that

of Archimedean spirals used in literature (example plotted in Figure 3.2d), in

the sense that more likely source values are mapped closer to the origin and the

mapping continues outwards in a circular fashion, to fill the channel space while

preserving transmission power. In fact, spirals are suggested since they have this

characteristic. Although our mappings have the same characteristic, they are far

different from a spiral. Channel space filling for linear encoders, which satisfies the

necessary conditions of optimality and are therefore a locally optimum solution,

is shown in Figure 3.2c where their inefficient power consumption can be seen as

most low-power channel values are left unused. This helps understand why linear

encoders are sub-optimal.

Spiral-like channel filling as shown in Figure 3.2a may sometimes be sub-

optimal. The channel space can be filled in a different way, especially in case of

unequal transmission powers. In Figure 3.3, we provide such mappings where we

still see the same characteristics mentioned earlier, but the channel space is filled

differently.
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Figure 3.3: An example, obtained by DA, with different transmission power constraints on
encoders. (a) Both encoders are plotted together. (b) Channel space filling is shown. Although

similar characteristics are observed, the channel space is filled differently.

In [17], the authors noted that for 0 < ρ < 0.95, their structured solutions

do not improve over linear solutions at high CSNR. We provide an example of

non-linear scheme in Figure 3.4 for ρ = 0.9 that improves over linear solution. For

lower correlations our method produces linear solutions. This can be explained

by considering the channel space filling. As the correlation is lowered, the strips

shown in Figure 3.2a and Figure 3.3b become wider. Thus, at lower correlations

the strip is too wide to be twisted and bent into the channel space by a non-linear

mapping, making linear as the only possibly option. Based on these experiments,

we reach to a similar conclusion that optimal mappings are non-linear only at

high correlation - albeit our method offers non-linear gains over a larger range of

ρ values.
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Figure 3.4: Non-linear solution that improves over linear for ρ = 0.9. CSNR = 29 dB,
SNR = 29.82 dB. Linear solution at same CSNR achieves SNR = 29.60 dB.

Performance comparison of different numerical optimization techniques (DA,

NCR and greedy descent with random initialization) for total power allocation

case (λ1 = λ2) is provided in Figure 3.5a where we define SNR = 10 log10(2/D)

(average distortion in dB) and CSNR = 10 log10((P (g1) + P (g2))/2) (average

power in dB). We note that since individual powers are not constrained, different

transmission powers are allowed in this comparison for all methods.

We also provide comparison to other coding schemes found in the literature.

In [17], the authors analyze parametric mappings of two types, spirals and saw-

tooth mappings, in distributed coding setting and compare to distributed quan-

tizer scheme analyzed in [69]. In Figure 3.5b, we provide comparison with our

results to the ones reported in [17] for the same setting. In this comparison, the

same power allocation is enforced for both encoders. As expected, mappings op-
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Figure 3.5: (a) Performance comparison of different numerical optimization methods for
distributed coding setting with the constraint on total transmission power. ρ = 0.99. (b)
Performance comparison for distributed coding setting with other approached found in

literature. Optimized S-K refers to performance of structured mappings in [17] (spirals and
sawtooth mappings) and 5-bit DQ is from [69]. 5-bit DQ is optimized for 18 dB CSNR.

ρ = 0.999.

timized in function space perform better than parametric mappings which only

approximately model optimal mappings as demonstrated in Figure 3.2.

We finally take a look at the function computation problem for which the

distortion is defined in (3.2). As a test case, we employed the difference function,

γ = X1 − X2. Encoder mappings optimized with DA are given in Figure 3.6a.

Both sources are mapped in many-to-one fashion with no way to resolve the

uncertainty about the source interval. This is unlike previous mappings, where

the uncertainty about source interval is resolved by side information, i.e., the other

channel would locally act as side information. In the case of difference function,

the actual values are not needed, thus, both sources are mapped in many-to-one
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Table 3.1: Performance of Obtained Mappings for Difference Function

Method CSNR1 (dB) CSNR2 (dB) SNR (dB)
DA 19.9 21.4 27.3

Linear-1 19.9 21.4 17.0
Linear-2 28.9 30.4 27.2

NCR 19.9 21.5 24.0

fashion. Nevertheless, the decoder is able to estimate the difference of sources

accurately.

We give performance comparison in Table 3.1 where CSNRi = 10 log10(P (gi))

for i = 1, 2 and SNR = 10 log10(1/D). DA achieves 10 dB higher SNR than the

linear solution with the same power allocation, whereas the linear solution that

achieves the same SNR requires 9 dB more power for each channel. Although

the improvements depend on the problem parameters, these results nevertheless

demonstrate that there are significant gains in utilizing non-linear encoder func-

tions instead of linear ones. DA performance is better than NCR as well, as the

shape of encoders are better optimized as can be seen in comparison in Figure

3.6.
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Figure 3.6: Example solutions obtained for function computation problem, where
γ = X1 −X2. (a) DA result (b) NCR result. CSNR and SNR values are in Table 3.1.
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Chapter 4

Analog Multiple Descriptions

Coding

4.1 Introduction

The problem of multiple descriptions coding (MDC) - posed by Gersho, Wit-

senhausen, Wolf, Wyner, Ziv and Ozarow at the 1979 IEEE Information Theory

Workshop - is a long standing open problem in source coding. The problem can

be described as follows. Suppose we want to send a description of a stochastic

process to a receiver through a communication network. There is a chance that

the description will be lost. Therefore, we send two descriptions, and hope that

one of them will reach the destination. Each description should be individually
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good, since the description that is received is not known a-priori. If both are

received, we then want to reconstruct the original process with minimum distor-

tion using both descriptions. The difficulty of the problem lies in the fact that for

individually good descriptions, we should make both descriptions close to the orig-

inal process, hence the descriptions must be significantly correlated. However, in

that case, when both descriptions are received, the second description contributes

little to the reconstruction beyond what first description conveys. This tension

yields a tradeoff between the quality of individual descriptions and the central

reconstruction, which is the main subject of the MDC problem.

It is important to note that the MDC problem is not merely an isolated in-

tellectual curiosity. Practical coding solutions, inspired by information-theoretic

MD encoding schemes, have been extensively pursued for image, video and audio

compression and transmission over packet networks, see [28] for an overview of

MDC.

Note, however, that many digital MDC schemes incur long delay and com-

plexity. In the presence of a channel with known statistics and a strict delay

constraint, the MDC problem can be addressed by joint source-channel coding

(JSCC) approaches based on zero-delay analog mappings. The main objective of

this chapter is to design the zero-delay encoding/decoding mappings that mini-

mize a given cost function under channel cost constraints. While the proposed
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method is applicable to more general scenarios, we particularly focus on a setting

that involves a zero-mean Gaussian source, two additive white Gaussian noise

(AWGN) channels, the mean-squared error (MSE) distortion and the transmis-

sion power constraints as channel costs. We obtain the optimal JSCC mappings

for analog MDC problem by numerical optimization. In general, such optimiza-

tion problems pose significant challenges due to highly complex cost surfaces that

render simple descent based methods useless. Here, we adopt the optimization

paradigm we developed earlier for the analog MDC problem. To the best of our

knowledge, this is the first attempt to obtain numerically optimized mappings for

the general analog MDC problem.

The analog MDC problem has recently been considered in [14, 4], where 2-

to-1 encoding functions that map two source symbols to a single channel symbol

(primarily used in 2:1 bandwidth compression in zero-delay JSSC problems [31])

were modified to obtain good numerical performance. An important difference

between our work and this prior work is that our approach is not limited to

any parametric function, or a particular problem setting a priori, and is hence

applicable to any scenario. Prior approaches are limited to very specific settings,

such as 2:1 bandwidth compression, where the bandwidth of each channel is one

half of the source bandwidth. This limitation was indeed recognized in a follow-

up work in [15] where the approach was extended to some other integer valued
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Figure 4.1: Analog multiple descriptions coding.

bandwidth settings (2:M, where M is positive integer), while noting that this

extension is limited to specific bandwidth ratios. A related feature of the approach

we propose here is that it is optimized for a given bandwidth and any channel

SNR, which enables finding solutions for any bandwidth ratio including, of course,

the 2:1 setting considered in prior work.

4.2 Problem Definition

The problem setting we consider is depicted in Figure 4.1. A Gaussian source

X ∼ N(0, 1) is mapped to channel symbols by mappings gi : R→ R for i = 1, 2.

The channel noise variables are Ni ∼ N(0, 1), i = 1, 2 where Ni is statistically

independent of X. The receiver is modeled as three decoders that estimates the

source from the channel outputs Yi = gi(X) + Ni, i = 1, 2. Each side decoder

wi : R → R, i = 1, 2, estimates the source from corresponding Yi, whereas the
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central decoder w0 : R2 → R reconstructs the source using both channel outputs.

We define the individual decoder MSE distortions Di , E{(X− X̂i)
2}, i = 0, 1, 2.

We assume on-off channel model where a channel might fail with probability ε� 1.

The overall distortion to be minimized is then defined as:

D , (1− ε)D0 + ε(D1 +D2). (4.1)

We optimize the encoder and decoder mappings to minimize (4.1) under a con-

straint on transmission powers defined as Pi , E{g2
i (X)}, i = 1, 2. For optimiza-

tion purposes, we follow the procedure in prior chapters and define the following

Lagrangian as objective cost function to be minimized:

J = D + λ(P1 + P2). (4.2)

4.3 Information Theoretic Bounds

The information-theoretic MDC problem has been completely solved for the

case of Gaussian source and MSE distortion (see the references in [28] for details).

Adopting this solution to source-channel coding settings, the optimum perfor-

mance theoretically achievable (OPTA) is given as follows: For D1 and D2 we

have

σ2
X ≥ Di ≥ σ2

X(1 + Pi)
−βi , i = 1, 2, (4.3)
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where βi is the bandwidth ratio on channel i for i = 1, 2, i.e., the number of

channel symbols used per source symbol. Given D1 and D2, the achievable central

distortion is given as

D0 =


ν if D1 +D2 > σ2

X(1 + ν)

νφ otherwise

(4.4)

where

ν = σ2
X(1 + P1)−β1(1 + P2)−β2 , (4.5)

φ =
1

1−
(√(

1− D1

σ2
X

)(
1− D2

σ2
X

)
−
√

D1D2

σ4
X
− ν
)2 . (4.6)

Remark 4.3.1. We re-emphasize that the information theoretic bounds (OPTA)

assume infinite delay encoding and decoding, while the problem here is formulated

in limited-delay setting. Hence, in general OPTA constitutes a loose bound and

may not be achievable by limited-delay schemes.

4.4 Overview of Optimization Method

In Chapter 2 it was shown that even the simple network problem of decoder

with side information has a non-convex cost surface riddled with local minima,

making greedy descent-based techniques suboptimal and highly sensitive to ini-

tialization. Accordingly, a non-convex optimization method was proposed, based
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on the ideas of DA, to mitigate poor local minima. It is reasonable to expect the

challenge due to local minima to be more severe in the more complicated setting

that we consider here. We therefore adapt our optimization method to this prob-

lem to obtain the desired mappings. Consider the setting in Chapter 3 which is

distributed coding of two correlated sources and communicating them over two

independent channels to a central decoder. The method we introduced there can

be adapted to the MDC problem, by considering a single source instead of two

correlated sources and introducing side decoders to be optimized. The adaptation

is a straightforward modification and therefore the details are not included here.

The important advantage of DA-based optimization for analog MDC problem

is that it is applicable to the general problem setting and makes no assumptions

on the distributions or objective cost functions. It is also adaptable to various

network topologies, bandwidth ratios and channel models, as demonstrated in this

chapter. This is in contrast to prior approach [14] which only applies to a very

specific setting. Furthermore, our approach still improves over the results in [14]

as shown in this chapter.
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Figure 4.2: An example of proposed JSCC mappings that achieve zero-delay MD coding. (a)
g1 and g2. In (b), g1 vs. g2 is plotted to show how channel space is filled. Each point on the

curve corresponds to a source value, example points are given.

4.5 Experimental Results

4.5.1 Zero Delay Analog MD Mappings

In [14], since communication channels are assumed 2:1, known bandwidth re-

duction mappings are used. However, such heuristics are not available in general.

Consider, for example, 1:1 setting: the communication channels are point-to-

point, and for the Gaussian case we consider here it is known that the optimal

solution for a single channel is linear encoding [26]. However, as we show in this

section, linear solutions cannot exploit the diversity of parallel channels well, and

nonlinear mappings that significantly improve over linear ones exist.

The mappings we propose are shown in Figure 4.2. We first notice that map-

pings g1 and g2 are not only nonlinear, they are in fact many-to-one, in the sense
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that multiple source points are mapped to the same channel value. This introduces

uncertainty about the source interval at the side decoders. Many-to-one mappings

have been found for analog network problems as shown in prior chapters. In those

examples, the decoder is able to reduce the uncertainty about the source inter-

val by using additional information. However, in our case the side decoders are

unable to do so, and this introduces some distortion. Although counterintuitive,

and perhaps a poor solution for point-to-point setting, these mappings achieve

better performance compared to the linear solution in the MDC setting, and are

currently the best known mappings.

In Figure 4.2b, we map g1 vs. g2 to show how channel space is filled for

communication with the central decoder, which can be considered as bandwidth

expansion case. The channel space is filled in a way that seeks a compromise

between bandwidth expansion mappings and linear mappings, since the overall

distortion in (4.1) is a compromise between distortion at side decoders (where the

best mappings would be linear) and central decoder.

Figure 4.3 demonstrates the behavior of these mappings when channel failure

probability ε is varied. We plot encoders (only g1) and channel curves for three

different ε values under the same transmission power constraints. As ε decreases,

the distortion at the side decoders become less dominant. Consequently, the

uncertainty about source interval increases at each channel since encoders map
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Figure 4.3: We present how mappings change as the channel failure probability ε is changed.
(a) The change in g1 (b) The change in channel space.

bigger source intervals to the same channel values as seen in Figure 4.3a, resulting

in higher distortion at side decoders. On the other hand, the overall system

approaches an analog bandwidth expansion system, resulting in better filling of

channel space as seen in Figure 4.3b.

We present the performance of the proposed mappings in Figure 4.4, where

SNR = 10 log10(1/D), D is defined in (4.1). We use equal transmission power on

both channels, and define CSNR = 10 log10(P1) = 10 log10(P2). The performance

is compared to OPTA as well as the heuristic choice of the linear encoding scheme.

Several observations are made here: First, our mappings are able to follow OPTA

with a relatively constant gap, by trading D0 and D1, D2 as ε changes, whereas

the linear scheme does not offer the same flexibility since it essentially minimizes

D1 and D2 irrespective of D0. Secondly, as ε → 0, the objective becomes that
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approach.
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Figure 4.6: Performance of the proposed 2:1 mappings. Prior approach is reported in [14].

of minimizing D0 directly, which would make the system equivalent to 1:2 band-

width expansion communication. Our mappings approach the performance of

the best-known bandwidth expansion mappings as reported in [31]. The analy-

sis of connections between the mappings obtained in this chapter and bandwidth

expansion problem is left for future research.

4.5.2 2:1 Analog MD Mappings

Although this paper is mainly focused on zero-delay 1:1 mappings as explained

in the previous section, here we provide a preliminary set of results on optimal

mappings for the 2:1 setting that was considered in prior work [14], for comparison
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purposes. Our mappings are as given in Figure 4.5a, where the encoder g1 : R2 →

R is shown (g2 is similar but rotated by π/2).

In [14], two types of mappings are considered, and the somewhat more efficient

one is shown in Figure 4.5b. The “sloped-steps” in this mapping extend through

the X1 direction, which results in suboptimal encoding of X2, in the sense that

its encoding is effectively a 5-level quantization. In our mappings, the sloped-

steps extend diagonally in the X1 = −X2 direction, resulting in both sources

being encoded efficiently. Moreover, the steps merge towards the ends rather

than being separate.

The proposed mappings achieve better performance as can be seen in Figure

4.6, where we have SNR1 = 10 log10(1/D1), SNR0 = 10 log10(1/D0) and CSNR =

10 log10(P1) = 10 log10(P2). For given SNR1, our gains in SNR0 vary from 0.5 dB to

1 dB. Note that, since the prior approach employs mappings with a fixed structure,

its performance is arbitrary and is relatively better at some points. Hence it has

varying performance compared to our approach which optimize mappings without

making assumptions on the structure. Further analysis on the structure of these

mappings is currently under investigation.
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Chapter 5

Decentralized Control

5.1 Introduction

This chapter studies the problem of global optimization of controller map-

pings in decentralized stochastic control problems including Witsenhausen’s cel-

ebrated 1968 counter-example (WCE). It is well known that most decentralized

problems do not admit closed-form solutions and require numerical optimization.

Decentralized control systems such as WCE arise in many practical applications,

and numerous variations on WCE have been studied in the literature (see, e.g.,

[5, 7, 10, 24, 25, 29, 34, 44, 59, 60]). In general, linear control strategies are not

optimal for decentralized control LQG systems, except when the system admits

some specific information structures (see, e.g., [33, 53, 80]). It is well-understood
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that if the information structure in a decentralized control problem is nonclassical,

as in the case of WCE, non-linear strategies may widely outperform optimal linear

strategies. Finding the optimal mappings for such problems is usually a difficult

task unless they admit an explicit (and often as simple as linear) solution, see [5]

for a set of problems that include both tractable and intractable examples.

Recent research efforts have focused on developing efficient numerical methods

for decentralized control problems [8, 13, 32, 40], specifically for WCE [6, 36, 43,

45]. Some of the existing methods rely on simplifying properties of WCE, such

as monotonicity, and are therefore not easily generalizable [13, 32, 42]. Moreover,

methods that require analytical derivation for each particular setting are not fully

automated [40, 42].

In this chapter, we build on our methods introduced in previous chapters and

develop a general optimization method for decentralized stochastic control prob-

lems. Our method does not rely on the simplifying properties of a particular

setting or analytical derivations. We note that deterministic annealing (DA) has

been successfully used in various other problems in control theory including dy-

namic coverage control problems [65, 79, 41] and cluster analysis in control systems

[48], however, the method introduced here is general and applicable for a class of

decentralized control problems.
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We demonstrate the DA-based method on two specific problems. We first

analyze the numerically ”over-mined” WCE problem. We then study a more

involved variation on WCE, introduced in [44], which includes an additional noisy

channel over which the two controllers can communicate. The second controller,

therefore, has access to some side information which is controlled by the first

controller. We refer to this setting as the “side channel problem” motivated by

the class of ”decoder side information” problems as discussed in Chapter 2. It

has been demonstrated in [44] that non-linear strategies may outperform the best

linear strategies, however, the question of how to approach the optimal solution

remains open.

Having a powerful optimization method at hand, we analyze the structure

of experimentally obtained mappings. For instance, Wu and Verdú have shown

[75], using tools from optimal transport and functional properties of estimation

over a Gaussian channel, that the solution of WCE must have real analytic left

inverse. An important practical consequence of this result is that a piecewise

linear function cannot be optimal. Our numerical results demonstrate that the

“steps” in obtained mappings show small deviations from linear, experimentally

confirming this theoretical finding.
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5.2 Problem Definition

5.2.1 Notation

Let R, E(·) and P(·) denote the set of real numbers, the expectation and

probability operators, respectively. We represent random variables and their re-

alizations with uppercase and lowercase letters (e.g., X and x), respectively. Let

Xj
i denote Xi, . . . , Xj. The probability density function of the random variable X

is fX(x). The Gaussian density with mean µ and standard deviation σ is denoted

as N (µ, σ2). We use natural logarithms which, in general, may be complex, and

the integrals are, in general, Lebesgue integrals.

5.2.2 General Problem Definition

Formally, we consider a discrete-time stochastic control problem with non-

classical information pattern involving n controllers, and assume that the or-

der of control actions is fixed in advance, i.e., the system is sequential [74].

Following the problem definition in [74], let (Ω,B,P) be a probability space,

where Ω denotes the random quantities involved in the system such as initial

input, and (Ui,Σi), for i = 1, . . . , n, are measurable spaces with Ui denoting

the set of control actions. Controller mappings (functions) are denoted by gi :

Ω× U1 × U2 . . . Ui−1 → Ui, for i = 1, . . . , n. For convenience, we denote the input
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set of gi by Xi = Ω×U1×U2 . . . Ui−1. The system is then defined by the following

set of equations

ui = gi(xi), i = 1, . . . , n. (5.1)

The sequential property ensures that the controllers are indexed in such a way

that the action of controller gk does not depend on the actions of gnk+1, for all k.

Let f be a real-valued and bounded measurable function of ω, un1 on (Ω,B),

i.e., f is a random variable. The problem objective is to find the set of functions

gn1 that minimize the value of the cost function J :

J = E{f(ω, un1 )}. (5.2)

5.3 Proposed Method

Let us denote the space of controller input xi by Rxi , for i = 1, . . . , n. Assume

there exists a partition of Rxi into Mi > 0 disjoint regions denoted by Ri,mi

(mi = 1, . . . ,Mi):
Mi⋃
mi=1

Ri,mi
= Rxi . (5.3)

Note that each value of xi belongs to exactly one of the partition regions, referred

to as a deterministic (non-random) partition.
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We begin our formulation by imposing a piecewise structure on the controller

mappings. Consider the structured mapping gi, for i = 1, . . . , n, written as

gi(xi) = gi,mi
(xi) for xi ∈ Ri,mi

. (5.4)

Each gi,mi
(xi) is a parametric function referred to as “local model”. Effectively,

each of the mappings gi is defined with a structure determined by two components:

a space partition where regions are denoted by Ri,mi
and a parametric local model

per partition cell, i.e., gi,mi
(xi) for Ri,mi

. The number of local models (partition

regions) for mapping gi is Mi. The local models can take any prescribed form

such as linear, quadratic or Gaussian and we let Λ(gi,mi
) denote the parameter

set for local model gi,mi
.

We follow our approach in prior chapters and introduce controlled random-

ization into the problem formulation. We replace the deterministic partition of

space by a random partition, i.e., we associate every input point (xi) with par-

tition regions in probability. To this end, we introduce random variables Mi, for

i = 1, . . . , n, whose realization is the partition index mi. We define the association

probabilities as conditional distribution on the partition index given the input:

pi(mi|xi) = P{xi ∈ Ri,mi
} = P{gi(xi) = gi,mi

(xi)}, (5.5)

68



for i = 1, . . . , n. Our viewpoint is that we consider Ri,mi
as regular regions, with

the exact membership of an input point to a region being the outcome of a random

experiment.

Consequently, the mappings are now random, in the sense that the output of

controller gi for an input xi is given in probability as

gi(xi) = gi,mi
(xi) with probability pi(mi|xi). (5.6)

By construction, and due to the sequential property, we have that given Xi, Mi

is independent of the random variables M i−1
1 .

The expectation in (5.2) is now taken over Xn
i and Mn

i . Let us rewrite it for

a fixed value of i as follows:

J =

∫
xi

Mi∑
mi=1

E{f(ω, un1 )|mi, xi}pi(mi|xi)fxi(xi)dxi (5.7)

where E{f(ω, un1 )|mi, xi} can be viewed as the cost of associating xi with local

model gi,mi
. As in Lemma 2.3.1, assuming fixed local model parameters, optimiz-

ing (5.7) with respect to pi(mi|xi) would clearly produce deterministic mappings,

since the minimum is achieved by setting pi(mi|xi) = 1 for the pair {mi, xi} for

which E{f(ω, un1 )|mi, xi} is minimum. Therefore, the ultimate objective of ob-

taining optimum deterministic controllers is preserved as the random encoders

share the same global minimum as deterministic ones. However, direct optimiza-

tion of the cost with respect to pi(mi|xi) results in poor local minima. Instead,
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we minimize (5.2) at prescribed levels of randomness, which we measure by the

Shannon entropy. The joint entropy of the system can be written

H(Xn
1 ,M

n
1 ) = H(X1) +

n∑
i=2

H(Xi|M i−1
1 , X i−1

1 )

+H(M1|X1) +
n∑
i=2

H(Mi|Xi,M
i−1
1 , X i−1

1 ). (5.8)

It is easy to see from conditional independence arguments that the conditional

entropies in the second term in the righthand side of (5.8) can be simplified to

H(Xi|X i−1
1 ), and those in the last term to H(Mi|Xi). Thus the first two terms of

(5.8) are fixed and determined by the problem statement (the joint distribution

of Xn
1 ). We therefore discard the first two fixed terms of (5.8), rearrange the

remaining terms, to obtain a conveniently compact measure of randomness defined

as

H ,
n∑
i=1

H(Mi|Xi). (5.9)

The conditional entropy H(Mi|Xi) is given by

H(Mi|Xi) = −
∫
xi

Mi∑
mi=1

p(mi|xi) log p(mi|xi)fXi
(xi)dxi. (5.10)

Accordingly, we construct the Lagrangian

F = J − TH (5.11)

as the objective function to be minimized, where J is given in (5.2), H is given in

(5.9) and T is the Lagrange multiplier associated with the entropy constraint.
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The practical method is similar to Algorithm 1 in Chapter 2, however we

perform the operations in each step for the controllers sequentially, i.e., from g1

to gn.

Remark 5.3.1. Our method is derived without recourse to discretization. Al-

though practical simulations involve sampling of the continuous space during nu-

merical computations of integrals, this is in contrast to methods that are entirely

formulated in discrete settings.

Remark 5.3.2. Critical temperatures can be derived analytically if, for the prob-

lem considered, phase transitions are of “continuous” nature, in the sense that

tracked minimum becomes a saddle point at the exact critical temperature. The

condition for saddle point can be obtained using variational calculus, see [56] for

phase transition analysis in DA. Our experiments indicate that, at least for the

test cases considered in this paper, phase transitions are not continuous. While

pre-calculating the critical temperature may enable a numerical speed up of the

annealing process, it is not necessary to implementing the practical algorithm.

Hence, the derivation and characteristics of phase transitions are kept outside the

scope of this work.
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Theorem 5.3.3. At any temperature T , the optimal pi(mi|xi) that minimize

(5.11) is given by

pi(mi|xi) =
e−E{f(ω,un1 )|mi,xi}/T∑

mi

e−E{f(ω,un1 )|mi,xi}/T
(5.12)

Proof. Proof follows similar steps to those for Theorem 2.3.2.

The optimal pi(mi|xi) that minimize (5.11) can be derived in closed form.

Plugging (5.7) and (5.10) in (5.11), we find the optimal pi(mi|xi) as

pi(mi|xi) =
e−E{f(ω,un1 )|mi,xi}/T∑

mi

e−E{f(ω,un1 )|mi,xi}/T
(5.13)

Optimization of parameters in Λ(gmi
) can be done using any standard method.

Typically, a variant of gradient descent is used when closed form expressions

cannot be obtained.

5.4 Applications of the Proposed Method

5.4.1 Witsenhausen’s Counter-example

Problem Description

Let X0 and W be Gaussian random variables with distributions N (0, σ2
X0

)

and N (0, 1), respectively. WCE is a 2-stage control problem with controllers
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(a)

(b)

Figure 5.1: Settings used for testing the proposed method (a) Witsenhausen’s
counter-example (b) Side channel problem.

g1 : R→ R and g2 : R→ R, defined by the following equations:

U1 = g1(X0), U2 = g2(X1 +W ),

X1 = X0 + U1, X2 = X1 − U2. (5.14)

The schematic representation is given in Figure 5.1a. The objective is to minimize

the cost

J = E{k2U2
1 +X2

2}. (5.15)

For convenience, we define f1(X0) = g1(X0) +X0.

Some properties of f1(·) are known, including the property of symmetry about

the origin (thus, positive half is enough to describe a given solution) [73]. Witsen-

hausen has provided the following solution that outperforms the optimal linear
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solution for a given set of problem parameters (k = 0.2, σX0 = 5):

f1(x0) = σX0 sgn(x0) (5.16)

where sgn(·) is the signum function. Since there is a single “step” in the positive

half of real line, this solution is referred to as a “1-step” solution. Improved

solutions that appeared in literature utilize 2.5, 3, 3.5 and 4-step functions (an x.5

step function has a step that straddles the origin). Moreover, the latter solutions

made improvements by using slightly sloped steps rather than constant ones.

Although in standard application of DA-based method we randomize all con-

trollers, for computational efficiency, we restrict the randomization to only g1 as

g1(x0) = g1,m1(x0) with probability p1(m1|x0) (5.17)

and numerically compute (update) g2 by using the fact that optimal g2 given g1

is

g2(Y2) = E{X1|Y2} (5.18)

where Y2 = X1 +W .

For this particular problem, we use linear local models given by

g1,m1(x0) = a1,m1x0 + b1,m1 . (5.19)

while noting that optimal g1 must have analytic left inverse and hence cannot be

piecewise linear [75]. Nevertheless, the minimal cost can be approached arbitrarily
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closely by piecewise linear functions [75]. Thus, for numerical algorithms, linear

models are sufficient.

Results for WCE

Preliminary results on the application to WCE appeared in [46]. We first

provide results for the standard benchmark case where k = 0.2, σX0 = 5 that

was used in many papers in literature. The annealing process is illustrated in

Figure 5.2, where evolution of the mapping can be seen (only the positive half

is shown thanks to the symmetry property). The obtained mapping is referred

to as a “sloped 5-step” solution. At high temperature, there is only one local

model, thus, the function is 1-step. As the temperature is lowered, the solution

undergoes phase transitions, revealing more steps for the mapping function. In

this work we calculated the solution with 5 steps. Although more steps possibly

exist, improvement to cost is numerically insignificant with additional steps. Some

earlier results from the literature are given in Table 5.1, where it can be seen that

our method produced the minimum cost achieved to date.

Another benchmark case, k = 0.63, was suggested in [29] as potentially being

more relevant for confirming the high gains of optimal non-linear mappings. Our

resulting mapping for k = 0.63, σX0 = 5 is given in Figure 5.3a, which is a 6-step

solution. Our numerical results suggest that the gain over linear solution is smaller
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Figure 5.2: Evolving graph of f1(x0) in WCE during various phases of the annealing process.
We note that mapping is actually random during algorithm run. Here, for demonstration, we

fully associate every x0 with g1,m1
for which p1(m1|x0) is largest.

Table 5.1: Results for WCE

Solution Cost
Optimal linear Solution 0.96

1-step, Witsenhausen [73] 0.404253
2-step,[13] 0.190

Sloped 2.5 - step, [6] 0.1701
Sloped 3.5 - step, [42] 0.1673132
Sloped 3.5 - step, [43] 0.1670790

Sloped 4 - step, [36] 0.16692462
Sloped 5 - step, our result 0.16692291
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Figure 5.3: Numerical result for WCE in the case of k = 0.63, σX0
= 5. (a) 6-step solution.

(b) The deviation of the first step in f1(x0) from a straight line between the end points of the
step.

compared to the standard benchmark case above: J = 0.844 for the solution in

Figure 5.3a whereas cost associated with the optimal linear mapping is J = 0.961.

These numerical results illustrate an important theoretical result as well. In

[75] authors proved that the optimal f1 must have analytic left inverse and there-

fore cannot be piecewise linear, which was believed to be the case due to numerical

results (see, e.g., [42]). Our numerical results indicate that steps are in fact non-

linear, as shown in Figure 5.3b. The steps become non-linear during the final

stages of the algorithm as multiple local models appear to form a single step.

To the best of our knowledge, this is the first numerical result illustrating non-

linearity of the steps.
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5.4.2 Side Channel Problem

Problem Description

Let X0 be a Gaussian random variable with distribution N (0, σ2
X0

), and W1,

W2 be independent Gaussian random variables, both with a distribution N (0, 1).

The system is defined by the following equations:

U1 = g1(X0), U2 = g2(X0), U3 = g3(X1 +W1, U2 +W2),

X1 = X0 + U1, X2 = X1 − U3. (5.20)

The problem is to optimize the cost function

J = E{k2U2
1 +X2

2} (5.21)

for given σX0 and positive parameter k, subject to a power constraint on U2:

bSNR = E{U2
2} (5.22)

where bSNR is the specified power level. We again define f1(X0) = g1(X0) +X0.

This problem setting is illustrated in Figure 5.1b and was introduced in [44]. It

can be seen as a generalization of WCE with an additional communication channel

between the controllers, i.e., a non-linear function of input X0 is communicated by

g2 to the controller denoted by g3 : R2 → R. The non-linear mappings analyzed

in [44], which widely outperform the best linear solution in a large range of bSNR,

are such that both f1 and g2 are staircase functions of x0.
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Figure 5.4: Mappings suggested in [44] for the side channel problem, where both mappings
suggested are staircase functions.

The non-linear mappings analyzed in [44], which widely outperform the best

linear solution in a large range of bSNR, are depicted in Figure 5.4. These are

similar to the mapping g1 in WCE, both g1 and g2 are staircase functions of x0.

Results for Side Channel Problem

The original problem is to minimize (5.21) subject to the constraint in (5.22).

We follow the standard approach in optimization theory and convert this con-

strained problem to unconstrained Lagrangian formulation:

J = E{k2U2
1 +X2

2 + λU2
2} (5.23)

where λ is chosen to satisfy the power constraint (5.22) with equality. In the

experiments, we used the standard benchmark parameters that were used for the
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Table 5.2: Cost Comparison Table for Side Channel Problem

bSNR Linear Cost JM ([44]) J∗ (JM−J∗)/JM
0 0.960 0.185 0.167 0.10

2.6 0.696 0.149 0.079 0.47
4.7 0.432 0.101 0.040 0.60
5.9 0.344 0.081 0.026 0.68
9.0 0.203 0.052 0.012 0.77

original WCE, that is, k = 0.2 and σX0 = 5. We have varied λ to obtain results

at different bSNR.

In Table 5.2 we compare the cost of our solutions (denoted by J∗) to the ones

given in [44] (denoted by JM), and the best linear mappings. Significant cost

reductions can be observed. The relative improvement over the solution of [44] is

listed in the last column.

Remark 5.4.1. When bSNR = 0, the problem degenerates to WCE, thus the cost

is 0.1669, the best known to date.

We present several mappings obtained by our method in Figure 5.5. Some

interesting features of these mappings are observed. The mappings f1 are staircase

functions with constant steps similar to the ones obtained for the original WCE

problem, however, the steps get smaller and increase in number as the side channel

SNR increases; that is, f1(x0) approaches x0. Note that the control cost term in

(5.21), E{k2U2
1}, achieves its minimum when g1 = 0, i.e., f1(x0) = x0. This is,

however, not optimal due to the estimation error at the second stage. Intuitively,
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Figure 5.5: Example mappings we obtained for the side channel variation problem. The first
controller is plotted at various SNR levels.

as the second controller has access to better side information (i.e. at higher SNR),

the estimation error is decreased and as observed in Figure 5.5, f1(x0) approaches

x0. The relative improvement in cost, given in Table 5.2, increases with SNR,

which is consistent with the above observation.

The mappings for the side channel, g2, are irregular and the overall shape

varies with SNR. This observation, together with the above for f1, suggests that

the mappings f1 and g2 are not scale invariant. The discontinuities in f1 and g2

coincide as expected, as the discontinuities in side information signal those in f1

to g3.
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5.5 Advantages of Proposed Method

There are several improvements of the method proposed here over existing

methods in literature.

1. It is derived in the original, continuous domain, without discretization. The

continuous space is sampled during numerical computation of integrals only.

This is in contrast with many prior methods such as those in [32, 36, 43]

that are entirely formulated in a discrete setting.

2. Our method is based on DA, a powerful non-convex optimization frame-

work. DA has been successfully used as a remedy to the problem of poor

local minima in non-convex optimization problems [56], and is shown to out-

perform competing methods such as “noisy channel relaxation” (NCR) (see,

e.g., earlier chapters). Although NCR performs well for the simple setting of

WCE [36], it is susceptible to get trapped in local minima in more involved

settings. We again note that DA has strong potential to avoid poor local

minima but does not guarantee convergence to globally optimum solution.

3. From its DA foundation, our method directly inherits notably useful prop-

erties including reduced sensitivity to initialization. The authors in [6] had

to experiment with a large number of initial weight vectors to obtain the

result included in Table 5.1.
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4. We do not make any assumptions about the controller mappings. Methods

presented in [13, 32, 42] benefit from the monotonicity of optimal mapping

in WCE. The results in Figure 5.5 demonstrate that monotonicity may not

hold for optimal mappings in the general setting.

5. The method is fully automated and does not require analytical derivations or

manual interventions during algorithm run. This is in contrast to the method

presented in [42] which requires analytical work during the procedure.

6. The method is applicable to a broad class of stochastic control problems.

Many prior methods require non-trivial work in order to generalize, for in-

stance, [43] proposes a method that is generalizable, but it requires conver-

sion to a potential game problem.
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Chapter 6

Conclusions

This thesis is mainly concerned with optimal encoding and decoding rules

in emerging communication networks that are characterized by very low delay

requirements and constrained resources. Our general approach is to numerically

optimize encoder and decoder mappings using deterministic annealing (DA) based

optimization. DA has several useful properties, the most critical being a strong

potential to avoid poor local minima. This aspect of DA makes it suitable for these

problems where cost surfaces are riddled with local minima, rendering gradient

based methods insufficient.
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6.1 Main Contributions

In Chapter 2, we studied the problem of finding globally optimal encoder

and decoder pairs in zero delay source-channel coding, focusing on decoder side

information setting. We developed a method based on DA to approach global op-

timality. The numerical results show that, by using carefully optimized non-linear

(and in many cases many-to-one) mappings, significant gains can be obtained over

linear solutions, which are optimal in point-to-point settings (for the specific case

of Gaussians under MSE). Simulation results demonstrate the performance of the

proposed algorithm, which consistently outperform greedy optimization methods

and noisy channel relaxation.

In Chapter 3, we adapted our optimization method introduced in Chapter

2 for optimizing distributed zero-delay codes. Our results are superior to the

more ad hoc method of noisy channel relaxation, as well as prior approaches in

the literature. The obtained mappings exhibit properties that are reminiscent of

digital Wyner-Ziv mappings.

Chapter 4 is concerned with the zero-delay multiple descriptions coding (MDC)

problem. Using an adaptation of our non-convex optimization method, we propose

schemes based on joint source-channel coding that provide good performance for

different configurations of side and central distortions. It is demonstrated that

our approach outperforms its known competitors. Obtained mappings exhibit
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counter-intuitive features such as many-to-one mappings for zero-delay MDC that

outperform the more natural choice of linear mappings.

Finally, in Chapter 5, we proposed a general optimization method for dis-

tributed control problems, whose solutions are known to be non-linear, and demon-

strated its effectiveness on two problems from the literature. The first problem

is the celebrated benchmark problem known as Witsenhausen’s counter-example,

for which our approach obtained the best known cost value. As a second test

case we focused on the side channel setting introduced in [44], where it is mo-

tivated as a two stage noise cancellation problem. The mappings obtained are

highly nontrivial, offer considerably improved performance, and raise interesting

questions about the functional properties of optimal mappings in decentralized

control, which are the focus of ongoing research.

6.2 Future Directions

• Extension to other settings: There are other network settings such as

multiple access channel that are left for future work. Our method can be

extended to such settings and their optimal mappings can be analyzed.
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• Analysis of the structure of obtained mappings: More detailed study

of the structure of obtained mappings, such as analytic expressions that

approximate numerical results, is left as future work.

• Theoretical results on the structure of optimal mappings: Similar

to the results for optimal mappings in WCE, such as symmetry around

origin, theoretical findings about the structure of optimal mappings can

make numerical optimization methods faster as they reduce the search space.

• Fundamental limits: Shannon’s information theoretic bounds are achiev-

able, in general, only by allowing infinite delay and arbitrarily high com-

plexity. They are therefore not applicable to the delay constrained networks

that we considered in this work. One of the challenges of future work is to

calculate achievable limits in constrained delay and complexity.
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