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Abstract

Parameter Estimation for Stable Distributions:

Spacings-based and Indirect Inference

Gaoyuan Tian

Stable distributions are important family of parametric distributions widely

used in signal processing as well as in mathematical finance. Estimation of the

parameters of this model, is not quite straightforward due to the fact that there is

no closed-form expression for their probability density function. Besides the com-

putationally intensive maximum likelihood method where the density has to be

evaluated numerically, there are some existing adhoc methods such as the quantile

method, and a regression based method. These are introduced in Chapter 2. In

this thesis, we introduce two new approaches: One, a spacing based estimation

method introduced in Chapter 3 and two, an indirect inference method considered

in Chapter 4. Simulation studies show that both these methods are very robust

and efficient and do as well or better than the existing methods in most cases. Fi-

nally in Chapter 5, we use indirect inference approach to estimate the best fitting

income distribution based on limited information that is often available.
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Chapter 1

Introduction to Stable
Distributions

Stable distributions are a rich class of probability distributions that allow high

skewness and heavy tails, compared to the most commonly used Normal distribu-

tions, and enjoy many interesting and useful properties. They are introduced by

Lévy (1924) in his study of sums of independently identically distributed random

variables. The lack of closed-form expression for their densities and distribution

functions for all but some special cases viz. the Gaussian, Cauchy and Levy, has

been a major drawback for applications. Stable distributions are found to be use-

ful for many reasons. First, there are some theoretical reasons for using stable

distributions, e.g. hitting times for a Brownian motion yield a Levy distribu-

tion. Secondly, stable distributions turn out to be only possible non-trivial limits

of normalized sums of independently and identically distributed (i.i.d.) random

variables – a property that is considered as one of the main reasons that these

distributions are viewed as suitable for describing stock-returns since a stock price
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may be considered the result of random instantaneous arrival of information. Man-

delbrot (1963) was among the first to apply the stable laws to stock-return data.

Thirdly, stable distributions have four parameters instead of two as in Gaussian,

which makes them much more flexible to adapt to empirical data for calibra-

tion and model testing. Finally, many practical data sets exhibit heavy tails and

skewness which stable distributions are able to capture.

1.1 Definitions

An important property of normal random variables is that the sum of any two

of them is itself a normal random variable. This property nearly characterizes a

stable distribution.

Definition 1. A random variable X is said to have a stable distribution if for any

n ≥ 2 and independent copies X1, · · · , Xn of X, there is a positive real number

Cn and a real number Dn, such that X1 +X2 + · · ·+Xn
D
= CnX +Dn, where

D
=

denotes distributional equivalence.

The word “stable” is used since the type of distribution is unchanged under

sums of independent copies. Two random variables X and Y are said to be of the

same type if there are constants a > 0 and b ∈ R with X
D
= aY + b. Here stable

stands for ”sum stable”, and there are similar notions of max-stable, min-stable,

multiplication stable and geometric stable, etc (Kozubowski et al. 2005).
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The following definition states that stable distributions are the only possible

non-trivial limits of normalized sums of i.i.d. random variables. This result is

sometimes called Generalized Central Limit Theorem (Gnedenko and Kolmogorov

1954).

Definition 2. A random variable X is said to have a stable distribution if it has

a domain of attraction, i.e. if there is a sequence of i.i.d. random variables Y1,

Y2,· · · ,Yn and sequences of positive numbers of dn and real number an, such that

Y1+Y2+...+Yn
dn

+ an
D→ X, where

D→ denotes convergence in distribution.

While the above definition is quite interesting, yet it does not give a concrete

way of describing a stable distribution. The most concrete way to describe a stable

distribution is through its characteristic function.

Definition 3. A random variable X follows stable distribution S(α, β, σ, µ0) if its

characteristic function ϕ0(t) = EeitX has the following form, where 0 < α ≤ 2

measures the tail thickness, −1 ≤ β ≤ 1 determines skewness, and µ0 ∈ R, σ > 0

are location and scale parameters in the sense that X−µ0
σ
∼ S(α, β, 1, 0). ϕ0(t) =

exp(−σα|t|α(1− iβ t

|t|
tan(

πα

2
)) + iµ0t), α 6= 1

exp(−σ|t|α(1 + iβ
2

|π|
ln(t)) + iµ0t), α = 1

(1.1)

1.1.1 A Different Parametrization of Stable Laws

The parametrization in Definition 3 has the advantage that the parameters

are easy to interpret in terms of location and scale. But there is a disadvantage,
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namely that when it comes to numerical or statistical work, it is discontinuous at

α = 1 and β 6= 0. An alternative parametric representation S(α, β, σ, µ1) (denoted

as P1) with the following characteristic function overcomes this problem:

ϕ1(t) = 
exp(−|σt|α + iσtβ(|σt|α−1 − 1) tan(

πα

2
) + iµ1t), α 6= 1

exp(−|σt|+ iσtβ
2

π
ln |σt|+ iµ1t), α = 1

(1.2)

where 0 < α ≤ 2,−1 ≤ β ≤ 1,σ > 0 and µ1 ∈ R.

The relationship between P0 and P1 is given by,

µ1 = 
µ0 + βσ tan(

πα

2
), α 6= 1

µ0 + βσ
2

π
lnσ, α = 1

(1.3)

Another parametrization S(α, β2, σ2, µ) (denoted as P2 ) proposed by Zolotarev

(1986) appears to be more suitable in the derivation of some analytic properties

of stable law

ϕ2(t) =
exp(iµt− σα2 |t|α + exp(−iπβ2

2
sign(t) min(α, 2− α))), α 6= 1

exp(iµt− σ2|t|(1 + iβ2
2

π
sign(t) ln(σ2|t|))), α = 1

(1.4)

The relationship between P0 and P2 is given by,
β = cot

πα

2
tan(

πβ2
2

min(α, 2− α))

σ = σ2(cos(
πβ2
2

min(α, 2− α)))
1
α

(1.5)

and α and µ remain unchanged. Unless it is specifically mentioned otherwise, the

default parameter set will be assumed to be in the form of P0.

4



1.2 Basic Properties

1.2.1 Densities and Distribution Functions

Except for some special cases, say, Normal (α = 2), Cauchy (α = 1, β = 0) and

Levy (α = 1/2, β = 1), the density function and distribution function of α-stable

distributions cannot be written analytically. However, the most basic fact is the

following.

Theorem 1. (Nolan 2005) All (non-degenerate) stable distributions are continu-

ous unimodal distributions with an infinitely differentiable density.

Since all stable distributions are shifts and scales of standard stable S(α, β)

where σ = 1, µ = 0, we will focus on these distributions for simplicity. The

following fact is about the reflection property.

Proposition 1. For any α and β, X ∼ S(α, β), the distribution function F

satisfies F (x|α, β) = 1− F (−x|α,−β).

First consider the symmetric case when β = 0. In this case, the reflection

property simply says the density and distribution function are symmetric around

0. Also notice as α increases, the tails get heavier and the peak gets higher. If

β > 0, then the distribution is skewed with the right tail heavier than the left

tail which means P (X > x) > P (X < −x) for large x > 0. When β = 1, the

stable distribution is totally skewed to the right. By the reflection property, the

5
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behavior of the β < 0 cases are reflections of the β > 0 ones, with the left tail

being heavier (see Figure 1.1).

1.2.2 Tail Probabilities and Moments

The tail of the stable distribution behaves similarly to the tail of the Pareto

distribution. Thus the stable distribution is also called the stable Pareto distribu-

tion. This stable Paretian law (Mandelbrot 1961) is used to distinguish between

the fast decay of Gaussian law and the Pareto like tail behavior in α < 2 case.

Theorem 2. If X ∼ S(α, β, σ, µ), with 0 < α ≤ 2,−1 ≤ β ≤ 1. As x→∞,

P (X > x) ∼ σαCα(1 + β)x−α

where Cα = sin(πα
2

)Γ(α)/π.

By the reflection property, P (X < −x) ∼ σαCα(1−β)(−x)−α for large x. For

all α < 2 and −1 < β < 1, the tails are asymptotically power laws. When β = −1,

the right tail of the distribution is not asymptotically a power law. When β = 1,

the left tail of the distribution is not asymptotically a power law.

One consequence of heavy tails is that not all moments exist. The fractional

absolute moment of X, E|X|p < ∞ for 0 < p < α and E|X|p = ∞ for p ≥ α.

Thus, α-stable random variable does not have finite mean and variance for 0 <

α < 1. It has finite first mean but infinite variance for 1 < α < 2.

7
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1.3 Simulation Methods

The simulation method of stable random variable Y is given by Chambers

et al. (1976).

Step 1 Generate a random variable U uniformly distributed on (−π
2
,
π

2
) and an

independent exponential random variable E with mean 1.

Step 2 For α 6= 1, computeX = Sα,β
sin(α(U +Bα,β))

(cosU)1/α
(
cos(U − α(U +Bα,β))

E
)(1−α)/α,

Where Bα,β =
arctan(β tan(πα/2))

α
, Sα,β = [1 + β2 tan2 πα

2
]1/(2α).

Step 3 for α = 1, compute X =
2

π
[(π/2 + βU)− β log(

E(cosU)

π/2 + βU
)].

Step 4 Set Y = 
σX + µ, α 6= 1

σX +
2

π
βσ log(σ) + µ, α = 1

(1.6)

is S(α, β, σ, µ).

9



Chapter 2

Existing Estimation Methods

The popular parameter estimation techniques for stable distributions fall into

three categories: quantile methods, characteristic function based methods and

maximum likelihood method (MLE). The quantile method of McCulloch (1986)

gives a simple and consistent estimation for all four parameters in stable distri-

bution. However, the quantile method requires a large amount of computation in

the form of some precisely tabulated values. MLE has theoretically the smallest

variance for large samples but at a high computational cost. Careful numerical

implementation is needed for the density function and the searching procedure for

the maximum (See e.g. Nolan (2002)). Parameter estimation based on character-

istic function was originally proposed by Press (1972). Later the iterative weighted

regression method of Koustrouvellis (1980) was shown to have somewhat better

performance. Characteristic function based methods avoid the inversion proce-

dure for evaluating the density function. Nevertheless, no single method is efficient

and/or simple.

10



2.1 Maximum Likelihood Estimation

The method of maximum likelihood is very attractive because of the good

asymptotic properties of the estimates, provided that the likelihood function obeys

certain general conditions. The likelihood function is

L(x1, x2, · · · , xn|θ) =
n∏
k=1

f(xk|θ),

where x1, x2, ..., xn is a sample of i.i.d. observations of a random variable X,

f(x|θ) is the pdf of X and θ is a vector of parameters. In the case of sta-

ble distributions, θ = (α, β, σ, µ). Maximum likelihood estimates are found by

searching for those parameter values which maximize the likelihood function, or

equivalently, the log-likelihood function l(θ) = log(L(x1, x2, ..., xn|θ)). Maximum

likelihood estimation is theoretically the most efficient estimating method when

the sample size is big enough. But it is computationally intensive, the density

function and the maximum searching procedure have to be both carefully numer-

ically evaluated. Zolotarev (1986) gives computational formulae for the density

and distribution function. These formulae are carefully used in a software called

STABLE by Nolan (1997). Another more general method to evaluate the density

is by using Fast fourier transform(FFT), described below.

11



2.1.1 The Integral Representations of Zolotarev

The density and the distribution function of stable laws can be very accu-

rately evaluated with the help of integral representations derived by Zolotarev in

parametrization P1. The density and distribution function of stable laws can be

expressed as, for x > ξ,

f(x;α, β, P1) = c2(x;α, β)

∫ π/2

θ0

g(θ;x, α, β)exp(−g(θ;x, α, β))dθ (2.1)

and

F (x;α, β, P1) = c1(α, β) + c3(α)

∫ π/2

θ0

exp(−g(θ;x, α, β))dθ (2.2)

where for α 6= 1,

• c1(α, β) = 1
π
(π
2
− θ0) for α < 1, and 1 for α > 1

• c2(x;α, β) = α
π|α−1|(x−ξ)

• c3(α) = sign(1−α)
π

• g(θ;x, α, β) = (x− ξ)
α
α−1V (θ;α, β)

• ξ = ξ(α, β) = −β tan(πα
2

)

• θ0 = θ0(α, β) = 1
α
arctan(β tan(πα

2
))

• V (θ;α, β) = (cos(αθ0))
1

1−α ( cos θ
sinα(θ0+θ)

)
α
α−1

cos(αθ0+(α−1)θ)
cos θ ;

for α = 1,

12



• c1(α, β) = 0

• c2(x;α, β) = 1
2|β|

• c3(α) = 1
π

• g(θ;x, α, β) = exp(πx
2β

)V (θ;α, β)

• ξ = 0

• θ0 = π
2

• V (θ;α, β) = 2
π
(
π
2
+βθ

cos θ
)exp( 1

β
(π
2

+ βθ) tan θ).

The case x < ξ can be treated by taking advantage of the relationship

f(x;α, β;P1) = f(−x;α,−β;P1) (2.3)

and

F (x;α, β;P1) = 1− F (−x;α,−β;P1). (2.4)

2.1.2 Fast Fourier Transformation

Mittnik et al. (1999) carefully presented and implemented the Fast Fourier

Transform (FFT) algorithm for calculating the density function of stable distri-

bution. A brief introduction is given below. Recall the inversion formula:

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t)dt. (2.5)

13



For grids of equally spaced x values with xk = (k−1− N
2

)h, where k = 1, 2, · · · , N.

f(xk) =

∫ ∞
−∞

e−i2πw(k−1−
N
2
)hφ(2πw)dw, t = 2πw. (2.6)

Since this integral is convergent, it can be approximated by Riemann sum for N

points with spacing s, where w = s(n− 1− N
2

):

f(xk) ≈ s

N∑
n=1

φ(2πs(n− 1− N

2
))e−i2π(k−1−

N
2
)(n−1−N

2
)sh, k = 1, ..., N. (2.7)

By setting s = (hN)−1, for k = 1, ..., N , we have

f(xk) ≈
1

hN

N∑
n=1

φ(2π
1

hN
(n− 1− N

2
))e−i2π(k−1−

N
2
)(n−1−N

2
) 1
N . (2.8)

Having rearranged the terms in the exponent, finally, for k = 1, ..., N we arrive at

f(xk) ≈
(−1)k−1+

N
2

hN

N∑
n=1

(−1)n−1φ(
2π

hN
(n− 1− N

2
))e

−i2π(n−1)(k−1)
N . (2.9)

The discrete FFT is a numerical method developed for calculation of sequences

such as f(xk) in (2.9) given the sequence (−1)n−1φ( 2π
hN

(n− 1− N
2

)).

It should be noted that the approximation errors may arise from the inter-

change of the infinite integral bounds (2.6) with finite ones, or from the approx-

imation of (2.7) with the Riemann sum. Also, the FFT method does not have a

good performance around the tail of the distribution. Thus density functions (2.5)

are evaluated on an equally spaced grid over a certain interval. For the points

outside the interval, we need to employ integral representations of Zolotarev for

good tail approximation.
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2.2 Quantile Based Estimation

McCulloch (1986) obtained consistent estimators for four parameters in stable

distributions based on five sample quantiles. The main estimating algorithm is

described as follows:

Step 1 Estimating α and β. Xp is the p− th quantile if F (xp) = p, where F (x)

is the distribution function. x̂p is the sample quantile if Fn(x̂p) = p, where

Fn(x) is empirical distribution function. Define two functions of theoretical

quantiles: 
vα =

x0.95 − x0.05
x0.75 − x0.25

= φ1(α, β).

vβ =
(x0.95 − x0.5)− (x0.5 − x0.05)

x0.95 − x0.05
= φ2(α, β).

(2.10)

Replace vα and vβ with their sample counterparts v̂α and v̂β, define ϕ as the

solution to the equation (2.10), we get estimators
α̂ = ϕ1(v̂α, v̂β)

β̂ = ϕ2(v̂α, v̂β)

(2.11)

with v̂α = x̂0.95−x̂0.05
x̂0.75−x̂0.25 and v̂β = (x̂0.95−x̂0.5)−(x̂0.5−x̂0.05)

x̂0.95−x̂0.05

Step 2 Estimating scale parameter σ. Let us first define vσ as vσ = x0.75−x0.25
σ

=

φ3(α, β). The estimator σ̂ is obtained by replacing (α, β) with (α̂, β̂), thus

σ̂ = x̂0.75−x̂0.25
φ3(α̂,β̂)

.
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Step 3 Estimating location parameter µ. Let us define x0.5−µ
σ

= φ4(α, β). The es-

timator µ̂ is obtained by replacing (α, β, σ) with (α̂, β̂, σ̂), thus µ̂ = φ4(α̂, β̂)σ̂+

x̂0.5.

The main idea is to use quantile-differences in order to get rid of the depen-

dence on the location parameter, and then take ratios of these to remove the

scale parameter. Then, two functions on α and β are numerically calculated from

sample quantiles and inverted to get the corresponding parameter estimates. A

tabulated table is needed for equations of (2.11), φ3(α, β) and φ4(α, β).

2.3 Characteristic Function based Estimation

Since there is a closed form of characteristic function, the estimator based

on empirical characteristic function can be developed. The regression -type es-

timation of Koustrouvellis (1980) starts with an initial estimate (in practice, we

usually choose the quantile estimate) and proceeds iteratively until some conver-

gence criterion is satisfied.

Directly from the convenient form of the logarithm of the CF, we have the

following linear equations:

ln(−<(lnφ0(t))) = α lnσ + α ln |t| (2.12)

and

=(lnφ0(t)) = µ1t+ βσt(|σt|α−1 − 1) tan(
πα

2
) (2.13)
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The estimation algorithm is as follows,

Step 1 Given a sample of i.i.d observations x1, x2, ..., xn first we find preliminary

estimates σ0 and µ01 by the quantile method of McCulloch and we normalize

the observations as x′j =
xj−µ̂01
σ̂0

for j = 1, 2, ..., n.

Step 2 Consider the regression equation constructed above yk = b+αωk+εk, k =

0, 1, 2, ..., 9, where yk = ln(−<(ln φ̂0(t))), ωk = ln |tk|, tk = 0.1 + 0.1k and εk

denotes the error term. The empirical CF φ̂0(t) is defined as

φ̂0(t) =
1

n

n∑
j=1

eitxj = (
1

n

n∑
j=1

cos txj) + i(
1

n

n∑
j=1

sin txj), t ∈ R (2.14)

We find α̂ and b̂ according to the method of least squares using the nor-

malized sample x′1, x
′
2, ...x

′
n. The estimator σ̂1 of the scale parameter of the

normalized sample is σ̂ = exp( b̂
α̂

).

Step 3 Estimators β̂ and µ̂11 of the skewness parameter and the modified location

parameter respectively are derived from the second regression equation based

on (2.13): zk = µ11tk + βνk + ηk, where zk = =(ln φ̂(t)), νk = σ̂1tk(|σ̂t|α̂−1 −

1) tan(πα̂
2

), tk = 0.1 + 0.1k and ηk is the error term.

Step 4 Compute the final estimates σ̂ = σ̂0σ̂1 and µ̂1 = µ̂01σ̂0 + µ̂11. If we aim

to estimate the location parameter µ, we need to take advantage of the

connection between the two parametric forms P0 and P1:

µ̂ = µ̂1 − β̂σ̂ tan
πσ̂

2
(2.15)

Repeat Step 1 to Step 4 until the estimator fulfills some convergence criterion.
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Chapter 3

Spacing Based Estimation for
Stable Distributions

The idea of spacing is introduced by Cheng and Amin (1983) and indepen-

dently by Ranneby (1984) to estimate finite dimensional parameters in continuous

univariate distributions. This idea is adopted to estimate parameters in stable dis-

tributions in this chapter which is organized as the following manner. In Section 1,

we briefly introduce Generalized Spacing Estimator, about its flexibility of choos-

ing different measures of information and asymptotic normal property. Also, we

give some cases where this method is better than MLE. In Section 2, spacing

based estimation is applied to estimate (α, β). As an M-estimator, its optimiza-

tion algorithm is verified to have a local minimum for certain selected point at

stable distribution. Also, A Monto Carlo study to compare the mean square errors

of this method under different measures of information is illustrated. Section 3

compares this method with others. Section 4 concludes.
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3.1 Introduction of Spacings Based Estimation

3.1.1 Definition

Given an i.i.d random sample, x1, . . . , xn from a univariate distribution with

distribution function F (x;θ). Let x(1), . . . , x(n) be the corresponding order statis-

tics. Define spacings as the gaps between the values of the distribution function

at adjacent ordered points, Di(θ) = F (x(i);θ) − F (x(i−1);θ), i = 1, . . . , n + 1,

and we denote F (x(0);θ) = 0, F (x(n+1);θ) = 1. Then, for any convex function

h : (0,∞)→ <, minimize the quantity Tn(θ) = 1
n

∑n
i=1 h(nDi(θ)). The resulting

minimizer θ̂ is called the Generalized Spacing Estimator (GSE) of θ.

The choice of different h(x) yields different criterions of spacing estimation.

If h(x) = − log(x) is chosen, Tn(θ) =
∑n+1

i=1 logDi(θ), which is called maximum

product of spacing (criterion 1). If h(x) = (x − 1)2 is chosen, Tn(θ) = Gn(θ) =∑n+1
i=1 (Di(θ) − 1

n
)2, which is called Greenwood statistics (criterion 2). If h(x) =

|x−1| is chosen, Tn(θ) =
∑n+1

i=1 |Di(θ)− 1
n
|, which is called Rao-statistic (criterion

3). Each criterion represents a different measure of information called entropy in

information theory. Criterion 1, the Kullback-Leibler divergence, is the most

popular measure. Unless specifically pointed out, it is the default one used in this

chapter.
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3.1.2 Properties

Similar to MLE, one advantage of spacing based estimator is the asymptotic

normality of the estimator. Ghosh and Jammalamadaka (2001) show, under some

regularity conditions on the density and h(·),

√
n(θ̂ − θ0)

D→ N(0, σ2
h/I(θ0)) (3.1)

where I(θ0) is the Fisher Information in one observation from the true distribution

and

σ2
h =

E(Wh′(W ))2 − 2EWh′(W )Cov{Wh
′
(W ),W}

[EW 2h′′(W )]2
(3.2)

with W ∼ Exp(1). Also, they show that the Cramer-Rao lower bound is only

reached for the GSE under criterion 1.

3.1.3 Examples

The purpose of this section is to give some simple cases where GSE beats

MLE. As mentioned below, GSE has the asymptotic properties closely parallel

to ML estimators. GSE may perform better than MLE in the following cases.

First, there are certain cases where the ML method breaks down, e.g. for three

parameter Weibull distribution or mixtures of continuous distributions (see e.g.

Hinkley (1974) ). Second, when the end points of density are not known, the log-

likelihood is unbounded (see Example 1). Finally, from the robustness perspective,
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GSE may be more efficient than MLE in small sample when the distribution is

skewed or heavy tailed (see Example 2).

Example 1. Suppose x(1), · · · , x(n) is the ordered sample from a uniform dis-

tribution U(a, b) with unknown endpoints a and b. The cumulative distribution

function is F (x) =
x− a
b− a

when x ∼ [a, b]. Therefore spacings are given by

D1 =
x1 − a
b− a

,Di =
xi − xi−1
b− a

, i = 2, · · · , n,Dn+1 =
b− xn
b− a

(3.3)

Then, the GSE estimator maximizes the logarithm of the geometric mean of sample

spacings:

Sn = log[(D1D2 · · ·Dn+1)

1

n+ 1 ] =
1

n+ 1

n+1∑
i=1

logDi (3.4)

Differentiating with respect to parameters a and b and solving the resulting linear

system, the maximum spacing estimators will be

â =
nx(1) − xn
n− 1

, b̂ =
nx(n) − x(1)

n− 1
(3.5)

These are known to be the uniformly minimum variance unbiased estimators for

this continuous uniform distribution. In comparison, the maximum likelihood es-

timates â = x(1) and b̂ = x(n) are biased and have a higher mean-squared error.

In this case, it is possible the log-likelihood is unbounded in MLE but Sn is always

bounded (see Cheng and Amin (1983)).

Example 2. Consider the exponential distribution f(x, λ) = λ exp(−λx) for x ≥

1. Suppose the true value of λ equals 1. Here is the result of MSE of both methods

obtained from 10,000 simulations by different sample size N .
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N=6 N=10 N=20
MLE 0.3852 0.1636 0.0640
GSE 0.2519 0.1200 0.0550

Table 3.1: Mean Square Error: MLE vs GSE

3.2 GSE Applied in Stable Distributions

Here we are interested in estimating tail and skewness parameters (α, β) by

assuming α > 1, which means the distribution has a finite mean. The location

and scale parameters (α, β) are known. And the distribution function of stable

laws will be evaluated by the integral representations derived by Zolotarev (1995).

3.2.1 Estimating Tail and Skewness Parameters

In some cases, the practitioner strongly believes the distribution is symmetric

and thus, only α has to be estimated. Firstly we consider estimating α when β = 0

is known. Sample (x1, . . . , x1000) is simulated from S(α = 1.5, β = 0, σ = 1, µ = 0).

The information measure we used here is criterion 2. As we could see in Figure

3.1, the estimated value of spacing estimator that minimizes Greenwood-statistic

is α̂ = 1.5126.

Then, consider the case where α and β are both unknown. Sample(x1, . . . , x1000)

is simulated from S(α = 1.5, β = 0, σ = 1, µ = 0). Following the similar es-

timating procedure as above, we get this two dimensional estimator (α̂, β̂) =

(1.5158, 0.0572). Figure 3.2 shows that this estimator is the local minimal point.
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N=200, M=500
Criterion1 Criterion2 Criterion3

E(α̂) 1.4639 1.4397 1.4649
MSE of α̂ 0.0110 0.0214 0.0162

N=500, M=500
Criterion1 Criterion2 Criterion3

E(α̂) 1.4786 1.4677 1.4783
MSE of α̂ 0.0051 0.0088 0.0072

N=1000, M=500
Criterion1 Criterion2 Criterion3

E(α̂) 1.4892 1.4824 1.4938
MSE of α̂ 0.0023 0.0038 0.0036

Table 3.2: Mean square error and bias of α̂ with various sample size

3.2.2 Monto Carlo Studies

In this section, we will compare these three information measures of their

performance in estimating parameters in stable distributions by Monto Carlo.

Suppose we have M samples based on the data (x1, . . . , xN) generated from

S(α = 1.5, 0, 1, 0). In each sample i, we have spacing estimator α̂i, i = 1, . . . ,M .

The mean and mean square error of the estimator could be approximated for large

M : E(α̂) = 1
M

∑M
i=1 α̂i, MSE(α̂) = 1

M

∑M
i=1(α̂i − 1.5)2.

As expected, Criterion 1 has the smallest MSE in Table 3.2. Also as sample

size increases, the estimator will converge to the true value with smaller MSE. A

similar conclusion could be drawn for estimating (α, β) from Table 3.3.
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N=1000, M=500
Criterion1 Criterion2 Criterion3

E(α̂, β̂) (1.4861,0.1940) (1.4823,0.1909) (1.4874,0.1989)

MSE of (α̂, β̂) (0.0025,0.0029) (0.0051,0.0066) (0.0037,0.0064)

N=500, M=500
Criterion1 Criterion2 Criterion3

E(α̂, β̂) (1.4816,0.1941) (1.4675,0.1824) (1.4848,0.2071)

MSE of (α̂, β̂) (0.0039,0.0046) (0.0086,0.0117) (0.0062,0.0125)

Table 3.3: Mean square error and bias of (α̂, β̂) with various sample size

3.3 Comparison Between Different Methods

A Monte Carlo evaluation to compare different methods at the point S(α =

1.5, β = 0.2, σ = 1, µ = 0) with α, β unknown is listed in the following Table 3.4.

For large sample size, GSE and MLE are equivalently good as expected, they have

smaller MSE than the other two methods (especially for β) even if the numerical

error of evaluating the density and distribution function occurs.
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N=1000
M=1000

MLE Quantile Regression Spacing
method method method method

(α̂, β̂) (1.5017,0.2045) (1.5049,0.2085) (1.5042,0.2010) (1.4983,0.1998)
MSE (0.0025,0.0092) (0.0045,0.0126) (0.0034,0.0143) (0.0035,0.0058)

N=500
M=1000

MLE Quantile Regression Spacing
method method method method

(α̂, β̂) (1.5016,0.2159) (1.5039,0.2242) (1.5031,0.2058) (1.4951,0.1944)
MSE (0.0138,0.0567) (0.0250,0.0822) (0.0179,0.0833) (0.0173,0.0741)

Table 3.4: Monte Carlo mean and mean square error of (α̂, β̂) with different

methods

3.4 Conclusion

Spacing-based estimation has several advantages compared with other meth-

ods in terms of estimating stable distribution. First, this estimator is equivalently

good as MLE in the large sample estimation. However, it provides more robust-

ness. Second, spacing-based estimation is considerably flexible, namely different

information measures could be selected in specific cases. Finally, the spacing idea

could be used in goodness of fit test and model selection (Jammalamadaka and

Goria 2004).
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Chapter 4

Indirect Inference Method
Applied to Stable Distributions

4.1 Introduction

Stable distributions comprise an entire class of distributions and was first de-

scribed by Lévy (1924) in a study of normalized sums of independently and iden-

tically distributed (i.i.d.) random variables. The Gaussian and Cauchy distribu-

tions are important special cases of stable distributions. This family of distribu-

tions delivers an extensive class of distributions that provide a flexible framework

to consider various features such as skewness and heavy tails. These features make

stable distribution useful under many situations. First, this distribution has four

parameters compared to the two for Gaussian and enable the distribution to be

considerably more flexible when adapting to empirical data for calibration and

model testing. Second, the stable distribution comes from the limit of normalized

sums of iid random variables that constitute one of the main reasons it is suitable
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for describing stock-returns. Stock price can be considered the result of the ran-

dom and instantaneous arrival of information corresponding to the hitting times

for a Brownian motion. Accordingly, Mandelbrot (1963) was among the first to

apply stable distribution to stock-return data where heavy tails and skewness are

frequent and complicated to capture.

Despite the aforementioned flexibility, a stable distribution lacks a closed form

expression for its density, with the exception of the few cases where it takes the

parametric form of the Gaussian, Cauchy and Lévy distributions. This can rep-

resent a major drawback in practice in terms of the estimation of its parameters.

Thus, several methods from different perspectives have been developed. This

chapter discusses the major drawbacks of currently existing methods, and pro-

poses a quantile-based indirect inference method. The rest of this chapter is or-

ganized as follows. Section 1 describes stable distributions in considerable detail

and then discusses the existing estimation methods to underscore their limitations

and motivate the proposal of the new estimation recommended in this chapter.

Section 2 provides an overview of indirect inference estimation and describes how

this method is used using quantiles as the auxiliary parameter to deliver robust,

efficient and easy-to-compute estimations. Section 3 presents a simulation study

that considers different parametric settings, thereby showing that, this method

has the smallest mean square error (MSE), particularly when in the presence of
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heavy tail parametrizations. Section 4 describes an application to the S&P 500

index returns. Section 5 provides some conclusions.

4.2 Existing Estimation Methods

4.2.1 Introduction of the Stable Distribution

As mentioned above, stable distribution is the only possible limit distribution

of sum of normalized iid random variables. This property is also known as gener-

alized central limit theorem which uniquely define stable distribution (Gnedenko

and Kolmogorov 1954).

Definition 4. A random variable X is said to have a stable distribution if it has

a domain of attraction, i.e. if there is a sequence of i.i.d. random variables Y1,

Y2,· · · ,Yn and sequences of positive numbers of dn and real numberan, such that

Y1+Y2+...+Yn
dn

+ an
D→ X, where

D→ denotes convergence in distribution.

Although this definition is quite interesting, it does not include the parameters

of interest. Another definition to overcome this problem is through its character-

istic function:

Definition 5. A random variable X ∼ S(α, β, σ, µ), if its characteristic function

has the following form, where 0 < α ≤ 2 measuring the tail thickness,−1 ≤ β ≤ 1

determining skewness. And µ ∈ R and σ > 0 are location and scale parameters in

the sense that X−µ
σ
∼ S(α, β, 1, 0).
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ϕ(t) = EeitX =
exp(−σα|t|α(1− iβ t

|t|
tan(

πα

2
)) + iµt), α 6= 1

exp(−σ|t|α(1 + iβ
2

|π|
ln(t)) + iµt), α = 1

(4.1)

The non-Gaussian stable distribution is also called stable Pareto since the

asymptotic tail behavior of stable laws is Pareto, namely, for sufficient large x, we

have

P (X > x) ∼ σαCα(1 + β)x−α

where Cα is a function of α. More properties of stable distribution can be found

in Samorodnitsky and Mittnik (1994).

4.2.2 Available Estimation Methods

The currently popular parameter estimation techniques are divided into three

categories, viz. maximum likelihood estimation (MLE), characteristic function

estimation (CFE) and quantile methods (QM). Theoretically, MLE is the most

efficient estimator for large samples but is obtained at a high computational cost

and is quite unstable. MLE requires careful numerical implementation for the

density function and the maximum searching procedure (e.g., Nolan (2002)). The

indirect inference method considered here is based on simulation that would avoid

this problem. CFE was originally proposed by Press (1972) to avoid the inversion

procedure for evaluating the density function. Other methods such as the iter-

ative weighted regression method of Koustrouvellis (1980) were later proposed,
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thereby enabling simpler and more efficient estimation. However, a problem of

these methods is the choice of the grids to evaluate the characteristic function in

the regression. The ideal selection of grid is on a case-by-case basis. QM pro-

posed by McCulloch (1986) gives simple estimators for four parameters in stable

distributions based on five sample quantiles. The main idea is to match the func-

tions of the sample quantiles with their theoretical counterparts using a table.

This method is easy and convenient and avoids optimization. However, theoreti-

cal properties of these estimator are unclear. Moreover, interpolation is necessary

when the sample values are not precisely equal to the tabulated theoretical values.

C.Gourierou and Renault (1993) first introduced indirect inference as a simu-

lation based method for estimating the parameters of an extensive class of models.

It was first applied in this context by Garcia et al. (2011). They suggest using

the skewed-t distribution as an auxiliary model which has four parameters, each

of which plays the same role as one of the parameters in the stable distribution.

However, this setting is limited to the number of parameters in the auxiliary

model, therefore is not flexible. Moreover, this method may not be as robust be-

cause the parameters of skewed-t are estimated by MLE. By setting the auxiliary

parameters to be quantiles, the proposed method could guarantee robustness and

be flexible. This latter idea of using quantiles as auxiliary parameters was first

adopted by Dominicy and Veredas (2012). In their paper, method of simulated

quantile (MSQ) was proposed. By setting the auxiliary parameters to be functions
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of quantiles (same as those used by McCulloch (1986)), MSQ extended the idea of

QM. While QM is based on the tabulated tables, MSQ utilizes simulation. Such

simulation based methods are flexible, and enable one to adjust the functions of

quantiles or add further information to the the auxiliary parameters.

4.3 Indirect Inference in Stable Distributions

4.3.1 Indirect Inference Method

As mentioned earlier C.Gourierou and Renault (1993) first introduced indi-

rect inference as a simulation based method for estimating the parameters of an

extensive class of models. This method is particularly important when, the likeli-

hood function is analytically intractable or considerably difficult to evaluate. The

density of stable distribution does not have a closed form expression, thus has to

be evaluated through characteristic function by Fourier inversion. This difficulty

can be overcome through indirect inference, that greatly simplifies the estimation

problem by only requiring that points could be simulated from the model.

The auxiliary parameter vector, which is denoted as π(θ), is a function of θ,

and has an easy-to-compute empirical estimator π̂. The relationship between π̂

and π(θ) is not required to be explicit, compared with the generalized method of

moment (GMM) proposed by Hansen (1982). In general, an estimator of θ could
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be defined by the solution of the following optimization problem:

argmin
θ∈Θ

(π̂ − π(θ))TΩ(π̂ − π(θ))

where Θ is the parameter space, and Ω is a positive definite weight matrix. The

idea here is to find the parameter vector θ such that π̂ and π∗(θ) are as close as

possible. If π(θ) could be calculated given θ, either by an explicit relationship

or a function in a software, then the estimator could be obtained by the stan-

dard optimization algorithm. Otherwise, the estimator could be approximated by

parametric bootstrap as follows:

Step 1 H samples of sample size N is simulated from Fθ.

Step 2 For each sample h,h = 1, 2, . . . , H, its π∗h(θ) is calculated based on its

empirical distribution function.

Step 3 π(θ) could be approximated by π∗(θ) =
1

H

∑H
h=1 π

∗h(θ)

Thus the indirect inference estimator θ̂ is defined as follows:

θ̂ = argmin
θ∈Θ

(π̂ − π∗(θ))TΩ(π̂ − π∗(θ))

As a simulation based method, the auxiliary parameter π∗(θ) is computed from

the simulated sample. Bootstrap methods (see e.g. Efron (1979)) have been shown

to operate a bias correction, as also in indirect inference (Gourierou et al. 1995).

This feature gives indirect inference an advantage in finite sample estimation.

34



4.3.2 Quanitle-based Indirect Inference

Given the non-existence of moments in stable distribution, quantiles are a nat-

ural option for auxiliary parameters for the following reasons. First, the function

of quantiles can be informative of the tail and skewness parameters in the stable

distribution (McCulloch 1986). Moreover, the properties of quantile are necessary

to derive the theoretical properties of the estimator. The asymptotic property

in Lemma 4 enables us to derive the consistency and asymptotical efficiency of

the estimator. Quantiles have a bounded influence function to ensure that the

estimator is robust (Theorem 6).

For i.i.d. observations X = (X1, X2, · · · , XN)T from the distribution function

F (·), π(θ) can be represented by q(θ) = (Xp1 , Xp2 , · · · , Xpm)T , where F (Xpi) =

pi, 0 < pi < 1, i = 1, 2, · · · ,m. Thus, q̂ and q(θ) represent the m × 1 vectors of

estimated and theoretical quantiles respectively. Given that the stable distribution

is Fθ, with parameter vector θ ∈ Θ ⊂ R4, the proposed estimator is defined as

follows:

θ̂ = argmin
θ∈Θ

(q̂ − q∗(θ))T Ω (q̂ − q∗(θ))

The optimal choice of the weight matrix is given by Ω = (V ar(q̂))−1, thereby

ensuring that the estimator θ̂ is asymptotically efficient. However, (V ar(q̂))−1 is

a function of θ and a consequent manner to obtain an estimate for this matrix is

through a two-step procedure similar to the two-step GMM as follows:
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Step 1 Ω = I is used with I denoting the identity matrix, to solve the optimiza-

tion problem and obtain the initial estimate θ1.

Step 2 The weighting matrix is estimated with Ω̂ = (V ar(q̂(θ1)))
−1.

The expression for V ar(q̂(θ1)) can either be based on the asymptotic form of

the variance of q̂ evaluated at θ1 or can be obtained through parametric bootstrap

with simulations using θ1. This chapter adopts the latter approach.

The optimization algorithm used in this case is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm which is an iterative method that solves non-linear

optimization problems. The quantile based indirect inference could be described

by the genetic algorithm shown in Figure 4.1. π(θ)(q∗(θ) in this case) could

be calculated given a reasonable initial value of θ, which is obtained by QM.

Thereafter an iterative process is triggered to search the optimal θ until some

convergence criterions are satisfied.

Having defined our proposed estimator and described the procedure to obtain

the estimator in practice, the next section studies the asymptotic and robustness

properties of this estimator.
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iteration 

Figure 4.1: Estimation Algorithm

4.3.3 Theoretical Properties

Asymptotic Properties

To study the asymptotic properties we make use of the existing results and

conditions for indirect estimators given in C.Gourierou and Renault (1993). De-

noting θ0 as the true parameter vector, let us first investigate the conditions which

ensure the consistency and asymptotic normality of the proposed estimator in our

case:
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(A1) ξn =
√
n(q̂ − q(θ0))

D→ N(0,V ) where V = limn→∞ V ar(ξn)

(A2) There is a unique θ0 such that sample quantiles equal the theoretical ones:

θ = θ0 if and only if q̂ = q(θ0).

(A3) If Ω is estimated by Ω̂, then Ω̂
P→ Ω, where Ω > 0

(A4) q(θ) is a differentiable function with D (θ) = ∂q(θ)/∂θT .

(A5) The matrix DT (θ) ΩD (θ) is full rank.

(A6) Θ is compact.

(A7) The choice of the initial value of θ is independent of the estimation algo-

rithm.

Theorem 3. (C.Gourierou and Renault 1993) and (Dominicy and Veredas 2012)

Under the conditions of (A1)-(A7) and the other usual regularity conditions, our

indirect estimator is asymptotically normal, when H is fixed and n goes to infinity:

√
n(θ̂ − θ0)

D7−→ N (0,Λ)

with Λ = (1 +
1

H
)ΓVΓT where Γ =

(
DT (θ0) ΩD (θ0)

)−1
DT (θ0) Ω.

This theorem provides the asymptotic normality of the estimator θ̂ by that of

auxiliary statistics q̂. Since the asymptotic normality is obtained, the consistency

property follows. Notice, the factor (1 +
1

H
) distinguish the asymptotic variance

of indirect inference with that of GMM: when H goes to infinity, they have the
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same expression. H is set to be 100 in this chapter. Now let us explain these

conditions (A1) to (A7).

Condition (A1) is satisfied because of the following Lemma 4 and Lemma 5.

Lemma 4. (Cramer 1946, page 369) Let 0 < p1 < · · · < pm < 1. Suppose

that cumulative distribution function F has a density f in neighborhoods of quan-

tiles q = (Xp1 , · · · , Xpm)T and that f is positive and continuous at q. Then the

empirical quantiles q̂ = (X̂p1 , · · · , X̂pm)T has asymptotically normal distribution:

√
n (q̂ − q)

D7−→ N (0,V). where the (i, j)-th element of covariance matrix V is

Vij =
pi(1− pj)

f(Xpi)f(Xpj)
=

pi(1− pj)
f(F−1(pi))f(F−1(pj))

, for 1 ≤ i ≤ j ≤ m.

Lemma 5. (Nolan 2015, page 12) All (non-degenerate) stable distributions are

continuous unimodal distributions with an infinitely differentiable distribution func-

tion.

Condition (A2) is often called the “global identifiability” problem in econo-

metrics and is often hard to prove and such, is assumed in many cases. In indirect

inference framework, the auxiliary parameters π (θ) usually does not have an ex-

plicit expression which makes it even harder to verify. In condition (A3), our

2-step matrix Ω̂ is estimated through the 2-step GMM procedure described above

and thus is consistent (Hansen 1982). The rest of the conditions are standard

conditions for indirect estimators such as the one put forward in this chapter. We

therefore have that the estimator θ̂ proposed here is consistent and asymptotically

normally distributed.
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Robustness Property

The use of quantiles as auxiliary parameters for estimation not only provides

a wide range of auxiliary parameters which can make θ̂ efficient but can also

allow this estimator to be robust. Indeed, Genton and Ronchetti (2003) showed

that if the auxiliary parameter π(θ) in the indirect inference approach has a

bounded influence function, then so does the indirect estimator θ̂. The influence

function is a tool used in robust statistics to study the impact of an infinitesimal

contamination on a statistical functional (i.e. a test-statistic or estimator). If

the latter is bounded, then the statistical functional is robust. Considering these

results, we have the following theorem.

Theorem 6. Our estimator θ̂ has a bounded influence function, and thus is a

robust estimator.

The proof of this theorem together with an introduction of influence function

can be found in Section 4.7. This result allows the proposed estimator to be robust

implying that its bias will be bounded if the sample suffers from a small degree

of contamination. This is especially important when choosing the quantiles to be

used in the proposed indirect inference procedure.

40



4.4 Simulation Study

The estimator is approximated by Monte Carlo with B replications. For each

parameter θ in θ, E(θ̂) ≈ 1

B

∑B
i=1 θ̂i. where each θ̂i is estimated by its individ-

ual sample with sample size N . The mean square error(MSE) is approximated

by MSE(θ̂) = E(θ̂ − θ)2 ≈ 1

B

∑B
i=1(θ̂i − θ)2. Since the MSE is estimated by

simulation, some simulation bias correction techniques may apply (James and

Anthony 1998) when the sample size N is small. However, N is set to be 1000 in

this chapter.

We are interested in estimating parameters in the stable distribution with

finite mean (α > 1). This method is flexible because the auxiliary parameters

could be adjusted on a case by case basis. If α > 1 is known, then the mean could

be added to the auxiliary parameters which may increase estimation efficiency

although a few instances of robustness are lost. Thus for iid observations X

from distribution function F (·), the auxiliary estimator π̂ is set to be quantiles

q̂ = (Xp1 , Xp2 , · · · , Xpm)T plus sample mean X̄: π̂ = (Xp1 , Xp2 , · · · , Xpm , X̄)T ,

where F (Xpi) = pi, 0 < pi < 1, i = 1, 2, · · · ,m. The selected quantiles have equal

space, that is, pi+1 − pi = pi − pi−1, for 1 < i < m− 1, p0 = 0.

4.4.1 Choice of the number of quantiles, m

The number of quantiles m is above or equal to 3. The best choice of m

depends on sample size, parameters of interest and true parameter value. m
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increases the dimension of auxiliary parameters, thereby due to the problem of

collinearity, increasing m may negatively affect the estimation when m is already

above a certain value. In other words, if the auxiliary parameters are already

“sufficient statistics”for θ, adding more information will hurt the estimation. For

select interesting case we could evaluate the best m by Monte Carlo studies. m

is set as odd because the median could be included in the auxiliary parameters.

The weight matrix used is the aforementioned two-step weight matrix.

The MSE of B=1000 Monte Carlo estimate is compared by selecting different

number of quantiles of sample size N=1000 realization of iid random variables

from S(1.5,−0.2, 1, 0). Figure 4.1 to Figure 4.5 show the MSE of different m.

Selecting m = 3 is ideal for location parameter µ, when only the first quantile,

median and third quantile are adopted. If one pays considerable attention to the

tail and skewness parameters, then m = 9, 11 minimize the MSE of α̂, and m = 9

minimizes the MSE of β̂. m = 9 also has smallest sum of MSE, as shown in Figure

4.5. Thus, the auxiliary estimator π̂ = (X0.1, X0.2, · · · , X0.9, X̄)T . Selecting m = 9

may not be the best in every case, but is adopted here for simplicity in the rest

of this chapter without seriously compromising the spirit of indirect inference.
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Figure 4.2: MSE of α̂ by different q

MSE(α̂) =
1

B

∑B
i=1(α̂i − α)2, where the true parameter α = 1.5. B=1000.
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Figure 4.3: MSE of β̂ by different q

MSE(β̂) =
1

B

∑B
i=1(β̂i − β)2, where the true parameter β = −0.2. B=1000.
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Figure 4.4: MSE of scale σ̂ by different q

MSE(σ̂) =
1

B

∑B
i=1(σ̂i − σ)2, where the true parameter σ = 1. B=1000.
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Figure 4.5: MSE of location û by different q

MSE(µ̂) =
1

B

∑B
i=1(µ̂i − µ)2, where the true parameter µ = 0. B=1000.
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Figure 4.6: Sum of MSE

Sum of MSE = MSE(α̂) +MSE(β̂) +MSE(σ̂) +MSE(µ̂)

4.4.2 Weight Matrix

The previously proposed identity matrix and the two-step weight matrix were

compared at certain points of their MSE using Monte Carlo. Table 4.1 shows the

MSE of α at certain points when other parameters are fixed at particular values.

When α is close to 1, the two-step weight matrix performs better than the identity

matrix. By contrast, the identity matrix is good when α is close to 2.

A trade-off is determined between the benefit of using a weight matrix and the

estimation error of the weight matrix. When α is close to 1, less weight given on

the tail makes the two-step weight matrix have considerably small MSE. When α

is close to 2, the estimation error of the weight matrix makes an identity matrix
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N = 1000, B = 1000
β = −0.2, σ = 1, µ = 0

Identity matrix Two-step weight matrix
α = 1.2 0.0092 0.0005
α = 1.3 0.0067 0.0005
α = 1.4 0.0052 0.0009
α = 1.5 0.0047 0.0013
α = 1.6 0.0040 0.0023
α = 1.7 0.0033 0.0037
α = 1.8 0.0023 0.0030
α = 1.9 0.0014 0.0025

N = 1000, B = 1000
α = 1.5, σ = 1, µ = 0

Identity matrix Two-step weight matrix
β = 0 0.0045 0.0057

β = −0.1 0.0050 0.0051
β = −0.2 0.0082 0.0069
β = −0.3 0.0121 0.0103
β = −0.4 0.0235 0.0177
β = −0.5 0.0247 0.0169

Table 4.1: MSE comparison: Identity matrix vs Two-step weight matrix

All parameters are assumed to be unknown and have to be estimated. The true

parameter value is assumed to be known when evaluating the MSE.

better. Overall, identity matrix performs better when the distribution is close

to Gaussian where β is close to 0 and α is close to 2. Two-step weight matrix

performs well when the distribution is heavy-tailed and skewed.
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4.4.3 Comparison Between different Methods

The MSE of B=1000 Monte Carlo estimate of N=1000 realizations of iid ran-

dom variables from S(α,−0.2, 1, 0) and S(1.5, β, 1, 0) by different methods. In in-

direct inference method, two-step weight matrix is selected for α ≤ 1.6, β ≤ −0.2,

otherwise, the identity matrix is chosen. Table 4.2 shows that indirect inference

method has considerably small mean square error compared with other methods

when the distribution is heavy tailed ( i.e., α is close to 1) and close to symmetric

( i.e., β is close to 0).

4.5 Case Study

Mandelbrot (1963) and Fama (1963) proposed that the stable distribution

could be a candidate model to characterize asset returns. A few opinions criticize

the stable distributions without bounded variation. Moreover, the iid assumption

seems naive that it could not model the volatility clustering phenomena of asset

return. The stable distribution remains a robust model that identifies heavy tail

and skewness. McCulloch (1997) analyzed 40 years of monthly stock price data

from the Center for Research in Security Prices and concluded a good fit. Nolan

(2005) analyzed 16 years of monthly return of exchange of British Pound vs.

German Mark and calculated the Value at risk based on the stable distribution.
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β = −0.2
σ = 1
µ = 0

Indirect inference MLE Quantile method Regression method
α = 1.2 0.0005 0.0018 0.0027 0.0029
α = 1.3 0.0005 0.0020 0.0033 0.0031
α = 1.4 0.0009 0.0025 0.0036 0.0034
α = 1.5 0.0013 0.0026 0.0046 0.0035
α = 1.6 0.0023 0.0026 0.0057 0.0036
α = 1.7 0.0033 0.0024 0.0075 0.0030
α = 1.8 0.0023 0.0019 0.0091 0.0027
α = 1.9 0.0014 0.0013 0.0080 0.0018

α = 1.5
σ = 1
µ = 0

Indirect inference MLE Quantile method Regression method
β = 0 0.0045 0.0096 0.0126 0.0161

β = −0.1 0.0050 0.0099 0.0137 0.0147
β = −0.2 0.0069 0.0095 0.0117 0.0158
β = −0.3 0.0103 0.0097 0.0127 0.0144
β = −0.4 0.0177 0.0084 0.0136 0.0153
β = −0.5 0.0169 0.0078 0.0156 0.0144

Table 4.2: MSE of different methods

This table evaluates the MSEs of α̂ and β̂ at different points using different methods.

Although the other parameters are known, they are assumed to be unknown. Thus,

all methods will estimate the four parameters. MLE refers to Nolan (2002), Quan-

tile method refers to McCulloch (1986) and regression method refers to Koustrouvellis

(1980). The 3 methods are carefully implemented by a program called STABLE on

Nolan’s personal website: http://academic2.american.edu/ jpnolan/stable/stable.html.
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The Data used in the current study are the daily return of S&P 500 from

January 1, 2008 to January 1, 2011 (757 trading days). We let Si, i = 1, 2, · · · , 757

be the closing price (index) on that day. The daily return is defined as Ri =

S&P500 index
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Figure 4.7: Plot of index and return

A total of 757 trading days, and thus 756 daily returns. In the x-axis of the index, 0

represents the January 1, 2008, which is the starting day. In the x-axis of the daily

return, 0 represents January 2, 2008.
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log Si
Si−1

. The jump of index shown in Figure 4.6 is due to the financial crisis

fueled by the collapse of subprime mortgage-backed securities. The histogram

and QQ normal plot shows that the data has a serious heavy tail and a possible

negative skewness.
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Figure 4.8: histogram
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50



A central issue in this study is the test of skewness. If no skewness of data is

determined, then the data could be modeled by t-distribution or symmetric stable

distribution which has less parameters. A nonparametric asymptotic test could

be developed based on the following statistic:

S3 =
(X0.75 −X0.5)− (X0.5 −X0.25)

X0.75 −X0.25

(4.2)

This statistics was first proposed by Bowely (1920) and was previously used in

QM. This statistics converges to symmetric normal distribution where the variance

could be quantified under the null. Ekström and Jammalamadaka (2012) extended

this test by adding additional quantiles. They conclude that, a reasonably good

test may rely on five quantiles as follows:

S5 =
(X0.9 −X0.5) + (X0.8 −X0.5)− (X0.5 −X0.2)− (X0.5 −X0.1)

(X0.9 −X0.1) + (X0.8 −X0.2)
(4.3)

Under the null which says the distribution is symmetric, S5 will converge to

N(0, V ) where V is a function of the density function f (Ekström and Jammalamadaka

2012). f would be approximated by the kernel density estimator with normal ker-

nel. If S3 is applied, then the p-value of this test is 0.0161. If S5 is applied, then

the p-value is 0.0060. The distribution is slightly negatively skewed. Hence the

candidate model would be asymmetric stable distribution or skewed-t distribution.

Skewed-t distribution is introduced by Fernandez and Steel (1998). It has four

parameters, each parameter plays the same role as the one in stable distribution.

Table 4.3 shows the estimated value of these two models. The quantile-based indi-
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Parameters Alpha stable Skewed-t
Tail thickness 1.3500 2.233

Skewness -0.1490 0.9121
Location 0.0077 -0.0005

Scale 0.0109 0.0318

Table 4.3: Stable vs Skewed-t

rect inference is applied in the stable distribution and MLE is applied in skewed-t

distribution.

4.6 Conclusion

Quantile-based indirect inference for the stable distributions is studied in this

chapter. Asymptotic and robust properties of these estimators have been shown

when quantiles are chosen as the auxiliary parameters. Quantile-based indirect

inference has several advantages compared with other methods in terms of estimat-

ing stable distribution. First, it only requires that distribution can be simulated,

and thus avoids numerical evaluation of density and/or distribution function. Sec-

ondly, the simulation study shows that this method has a considerably small mean

square error at heavy tailed points compared with other methods. Third, the

method is robust because the quantiles are adapted. Finally, this method is con-

siderably flexible, i.e. the auxiliary parameter could be adjusted, the candidate

distribution could be changed and certain parameters could be fixed easily. This

feature is beneficial for the goodness of fit test and model selection. As a final
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comment, it is acknowledged that parts of the work in this chapter overlap with

that of Dominicy and Veredas (2012), and this was discovered only after all the

work in this chapter was completed.

4.7 Appendix: Influence Function and Robust

Property of Quantiles

Let A be a convex subset of the set of all finite signed measures on Σ. We

want to estimate the parameter θ ∈ Θ of a distribution F inA. Let the functional

T : A→ Γ be the asymptotic value of some estimator sequence (Tn)n∈N. We will

suppose that this functional is Fisher consistent, i.e. ∀θ ∈ Θ,T (Fθ) = θ. This

means that at the model F , the estimator sequence asymptotically measures the

correct quantity. Let x ∈ χ, ∆x is the probability measure which gives mass 1 to

x. The influence function is then defined by

IF (x;T ;F ) := lim
ε→0

[
T ((1− ε)F + ε∆x)− T (F )

ε
]. (4.4)

The influence function describes the effect of an infinitesimal contamination at

the point x on the estimate we are seeking. For a robust estimator, we want a

bounded influence function, that is, one which does not go to infinity as x becomes

arbitrage large.
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Let F be strictly increasing with positive density f , φ = T (F ) = F−1(p) be the

pth quantile. The influence function of quantile could be obtained (Hinkley 1974):

IF (x) =


p− 1

f(φ)
, x < φ

p

f(φ)
, x > φ

(4.5)

As x goes to infinity, IF (x) is bounded by p
f(φ)

. Then the influence function

of our auxiliary parameter π(θ) = (F−1(p1), F
−1(p2), · · · , F−1(pm))T is therefore

bounded by the chain rule as describled by Lemma 7.

Lemma 7. (Hinkley 1974) Suppose statistical functionals take the form T (F ) =

a(T1(F ), · · · , Tm(F )) = a(t1, · · · , tm). IFi(x) is the influence function of Ti(F ),

for i = 1, 2, · · · ,m. By the chain rule,the influence function of T (F ) is

IF (x) =
m∑
i=1

∂a

∂ti
IFi(x) (4.6)
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Chapter 5

Indirect Inference Applied to
Income Distributions

The distribution of income and wealth play an important role in the measure-

ment of inequality and poverty among people as well as nations. Various methods

and different models for income distribution are developed in a number of arti-

cles by many economists— see e.g. Chotikapanich et al. (2007), McDonald and

Xu (1995). This chapter provides an extension of the work in Hajargasht et al.

(2012) and suggests a general method of fitting income distributions. In their

paper, Generalized Method of Moments (GMM) method is applied to estimate

the income distribution which may take several parametric forms. For each para-

metric form, the explicit expressions of the moment conditions are needed. In this

chapter, the indirect inference method allows us to estimate income distribution

without specifying the explicit expression for the moments.

This chapter is organized as follows. In Section 2, we give a brief introduction

to some measures of inequality including the Gini index and the Lorenz Curve
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(LC). Also, some popular parametric income distributions are introduced. In

Section 3, we point out that indirect inference method is a suitable approach for

these types of data sets. Theoretical properties of this estimator and a goodness-

of-fit test are provided. In Section 4, we test the optimization algorithm used in

our method. Also a Monte Carlo study is conducted to compare and evaluate

these estimators. In Section 5, we illustrate our method by comparing the income

distributions and inequality indices for both China and USA over the past 30

years.

5.1 Introduction to Some Inequality Measures

5.1.1 Lorenz curve

Let x1 ≤ x2 ≤ · · · ≤ xn be ordered data, say on incomes. The empirical Lorenz

Curve is defined as

L(i/n) = si/sn (5.1)

where si = x1 + x2 + · · ·+ xi, L(0) = 0, i = 0, · · · , n.

Let xi denote data drawn from the distribution function F (x) with mean µ.

Let zp denote the quantile corresponding to a proportion 0 ≤ p ≤ 1 i.e.

p = F (zp) =

∫ zp

0

f(t) dt (5.2)
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Distribution CDF lorenz curve
Exponential F (x) = 1− exp−λx, x > 0 p+ (1− p) log(1− p)

General Uniform F (x) =
x− a
θ

, a < x < a+ θ
ap+ θp2/2

a+ θ/2
Pareto F (x) = 1− (a/x)a, x > a, a > 1 1− (1− p)(a−1)/a

lognormal F (x) = 1/2 + 1/2 erf[
log x− µ√

2σ
] Φ(Φ−1(p)− σ)

Table 5.1: Lorenz Curve for some distributions

and then the theoretical Lorenz Curve is defined

L(p) = µ−1
∫ z

0

tf(t) dt =

∫ z
0
tf(t) dt∫∞

0
tf(t) dt

(5.3)

The numerator sums the incomes of the bottom p proportion of the population,

while the denominator sums the incomes of all the population.

Assuming that F is continuous, one may write z = F−1(p) and a change of

variable to write the LC in a direct way:

L(p) = µ−1
∫ p

0

F−1(t) dt (5.4)

Table 5.1 shows LC expression for some common distributions. Notice that, for

exponential distributions, LC does not depend on the scale-parameter. This prop-

erty could be used for goodness of fit tests (see Gail and Gastwirth (1978)). Figure

5.1 compares LC for lognormal and exponential.

5.1.2 Gini Index and Other Inequality Measures

Gini index is a number between 0 and 1 which gives information about the

income inequality of a country, and is the most commonly used measure of inequal-
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Figure 5.1: Lorenz Curve of lognormal and exponential

ity. It is also a U-statistic widely used in goodness of fit tests. Jammalamadaka

and Goria (2004) introduced a test of goodness of fit based on Gini index of spac-

ings. Recently, Noughabi (2014) introduced a general test of goodness of fit based

on the Gini index of data. One way to define Gini index is through expected mean

difference.

Definition 6. Gini :=
E|X − Y |
2 · E(X)

where X, Y are two random points drawn in-

dependently from the distribution F .

The sample version could be written in the following way:

Gini(S) =

∑n
i=1

∑n
j=1 |xi − xj|

2(n− 1)
∑n

i=1 xi
(5.5)

It could also be calculated via LC (Gastwirth 1972):

G(t) = 2 ·
∫ 1

0

(t− L(t)) dt (5.6)
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5.1.3 Some Popular Parametric Income Distributions

The income distribution is heavily positively skewed and has a long right tail.

The popular income distribution models include Generalized Beta-2 distribution,

Gamma distribution and the lognormal distribution.

Generalized Beta-2 distribution (5.7) is widely used for modeling income distri-

bution. Beta-2 (a = 1), Singh-Maddala (p = 1), Dagum (q = 1) and Generalized

gamma (q →∞) are special cases of Generalized beta-2 distribution (see McDon-

ald and Xu (1995)).

f(x; a, b, p, q) =
axap−1

bapB(p, q)(1 + (x/b)a)p+q
, x > 0 (5.7)

Lognormal distribution (5.8) is another popular income distribution model, its

pdf could be derived from log(X) = Y which has a normal distribution.

f(x;µ, σ) =
1

xσ
√

2π
e
−

(log(x)− µ)2

2σ2 , x > 0, σ > 0 (5.8)

Many alternate models exist, but as Cowell (1995) says, the more complicated

four parameters densities are not particularly good choices. Their parameters are

hard to interpret and may have an over-fitting problem. He is more in favor of

lognormal and gamma density which has two parameters. Among the distribution

with two parameters, the Pareto density is nice for modeling high incomes while

gamma and lognormal are nice for modeling middle range incomes. In this chapter,

lognormal distribution is chosen for illustrative purposes.
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5.2 Indirect Inference Method

We have described the general methodology of indirect inference and properties

of resulting estimators, in Section 4.3

5.2.1 Indirect inference framework

Remember in Chapter 4, the indirect inference estimator for θ is defined as

θ̂ = argmin
θ∈Θ

(π̂ − π∗(θ))T Ω (π̂ − π∗(θ)) (5.9)

The auxiliary estimator π̂ is set to be the sample mean and 9 points on em-

pirical LC in Table 5.3: π̂ = (X̄, L̂(0.1), · · · , L̂(0.9)). The auxiliary parameters

corresponds to the theoretical mean and 9 points on theoretical LC implied by

lognormal distribution. As opposed to the GMM, π∗(θ) will be calculated by

parametric bootstrap. Ω is estimated by 2-step weight matrix. The details of this

estimation algorithm is already described in Chapter 4.

5.2.2 Theoretical Properties

Compare with the auxiliary parameters in Chapter 4, here we replace quantile

F−1(p) with LC L(p). L(p) and F−1(p) share the same properties: under some

mild conditions, Goldie (1977) proved that the empirical LC Ln(p) converges,

uniformly to the theoretical LC L(p). Also, he derived the weak convergence of

the Lorenz process ln(p) =
√
n[Ln(p) − L(p)], 0 ≤ p ≤ 1, to a Gaussian process
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if L(p) is continuous at the empirical points. Thus the asymptotical property of

our auxiliary parameters L(p,θ) is established. The consistency and asymptotic

normality of our estimator θ̂ could be obtained by Theorem 3 if Conditions (A2)-

(A7) hold.

5.2.3 Goodness of Fit Analysis

Since ln(p) =
√
n[Ln(p)−L(p)], 0 ≤ p ≤ 1 converges to the Gaussian process.

The J-test (Hansen 1982) could be developed through the following theorem:

Theorem 8. (Hayashi 2009) If y ∼ N(0, Ip) and A is an idempotent matrix with

rank R, then yTAy ∼ χ2
R.

Here the Test statistics Jn can be used to test the validity of the assumed

income distribution.

Jn = n
(
L̂(p)− L(p, θ̂)

)T
Ω̂
(
L̂(p)− L(p, θ̂)

)
D→ χ2

M−K (5.10)

In this case, the dimension of auxiliary parameters M = 10, the number of param-

eter in lognormal K = 2. The sample size n is the number of the surveyed citizens

which is unknown. The test results varies for different choices of n. Hajargasht

et al. (2012) assume n = 10000 in their paper.

5.2.4 Data

The data comes from the Website of the World Bank, it takes the form of

summary statistics including mean income, measures of inequality and 9 points
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USA ’s
Income share
by deciles(%)

Year lowest 2nd 3rd 4th 5th 6th 7th 8th 9th highest
2010 1.70 3.40 4.56 5.73 7.00 8.44 10.19 12.52 16.25 30.19

USA’s poverty index
Year mean($/month) pov.line headcount(%) Gini index(%)
2010 1917.38 1.90 1.00 41.06

Table 5.2: Original Data

By deciles(%)
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L̂(p) 1.70 5.10 9.66 15.39 22.39 30.83 41.02 53.54 69.77

Table 5.3: Transformed Data

on the empirical LC. In Table 5.2, the poverty line is the minimum level of income

deemed adequate in a particular country. The head-count ratio is the proportion

of a population lives below the poverty line. The first part of Table 5.2 shows

the data in the following way: the first 10% of the population owns 1.7% of the

total income, the second 10% of the population owns 3.4% of the total income,

etc. Since the sum of these 10 numbers equals 1, only the numbers of the first 9

groups need to be included in the moment conditions. The cumulation of these 9

numbers yields the 9 points on the empirical LC L̂(p) in Table 5.3.

With our indirect inference estimator θ̂, L̂(p) and L(p, θ̂) are compared as

shown at Table 5.4 . This table could be extended for different models to assess

the goodness of fit.
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USA 2010
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L̂(p) 1.70 5.10 9.66 15.39 22.39 30.83 41.02 53.54 69.77

L(p, θ̂) 2.15 5.63 10.14 15.63 22.31 30.59 40.66 52.98 69.17

Table 5.4: Goodness of Fit Assessment

5.3 Simulation Study

5.3.1 Numerical Optimization

The default optimization algorithm used in R is Broyden-Fletcher-Goldfarb-

Shanno(BFGS) algorithm. Similar to Newton’s method, it is a iterative method

solving non-linear optimization problems. In this case, the parameter space of σ is

(0,∞). Since it has a lower bound, sometimes this optimization algorithm breaks

down when searching the nearby points slightly bigger than 0. Instead, we would

estimate the parameters θ = (θ1, θ2), where (µ, σ) = (θ1, exp(θ2)). The estimated

parameter σ̂ approximately equals to log(θ̂2).

Here we want to verify that the estimated point is the local minimum. The

true parameters θ = (4.8276,−0.4963) is obtained from the estimate value of data

in Table 5.2. The data (9 points on lorenz curve and mean) is simulated from

lognormal distribution with above parameters with sample size N = 1000. The

estimated value θ̂ = (4.8381,−0.4515). It has a local minimum as we could see

from Figure 5.2 and Figure 5.3.
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5.3.2 Monte Carlo Study

Suppose we only have the 9 points on the LC, sample median and sample mean.

For lognormal distribution, the mean EX = exp(µ+ σ2/2), Median m = exp(µ).

By setting these equal to their empirical parts, a method of moment estimator

has obtained:

µ̂ = log(m), σ̂ =
√

2(log(x̄)− log(m)) (5.11)

Suppose the true parameters (µ, σ) = (4.8276, exp(−0.4963)). Box-plots to

compare these two estimators are obtained by Monte Carlo study with sample

size N = 1000 and Monte Carlo replication B = 1000 in Figure 5.4 and Figure

5.5. Our indirect inference method has smaller variance especially for σ.

●
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Figure 5.4: Boxplot of µ̂
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5.4 Case Study

USA and China are currently the largest two economies in the world. In 2015,

the nominal GDP of USA is $18,287 billion while the nominal GDP of China is

$11,285 billion. It is known that China keeps a high growing rate in the last 35

years as we could see in Figure 5.6.

Greenwood and Jovanovic (1990) found a positive correlation between growth

and income inequality in a cross-section of international data. Here we are in-

terested to see whether economic growth brings more income inequality in China

and USA. In this section, a comparison of USA and China’s income distribution

and inequality in the last 30 years is illustrated.
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1 represents year 1980, 36 represents year 2015.
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5.4.1 Data

Data is collected every 3 years by the World Bank. It takes the form of

summary statistics as shown at Table 5.5 and Table 5.6.

USA ’s
Income share
by deciles(%)

Year lowest 2nd 3rd 4th 5th 6th 7th 8th 9th highest
2010 1.70 3.40 4.56 5.73 7.00 8.44 10.19 12.52 16.25 30.19
1981 1.81 3.59 5.00 6.23 7.51 8.95 10.69 12.96 16.40 26.86

Poverty Index
Year mean($/month) pov.line($/day) headcount(%) Gini index(%)
2010 1917.38 1.9 1 41.06
1981 1581.81 1 0.67 37.73

Table 5.5: Income inequality of USA: 1981 v.s 2010

China ’s
Income share
by deciles(%)

Year lowest 2nd 3rd 4th 5th 6th 7th 8th 9th highest
2010 1.69 2.98 4.23 5.51 6.88 8.43 10.31 12.88 17.11 29.98
1981 3.72 4.96 6.05 7.08 8.12 9.25 10.58 12.31 15.08 22.86

Poverty Index
Year mean($/month) pov.line($/day) headcount(%) Gini index(%)
2010 218.54 1.9 11.18 42.06
1981 34.64 1 88.32 18.46

Table 5.6: Income inequality of China: 1981 v.s 2010
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5.4.2 Result

With the 9 points on the empirical LC, a smooth empirical LC is estimated by

the non-parametric spline technique in R. The income distributions are assumed to

be lognormal and are estimated by above indirect inference method. The Results

are illustrated from Figure 5.7 to Figure 5.11.
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Figure 5.7: Lorenz curve 2010 USA vs China
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5.4.3 Conclusions

Kuznets (1995) has advanced the conjecture that evolution of income dis-

tribution follows an inverted U-shaped curve: growth results in relatively more

inequality in the initial stage of economic development, and greater equality at

advanced stages. But this statement is controversial: M.Ravallion (1995) among

others, showed that there is no empirical support for this conjecture.

Our analysis of the data we looked at, seems to partially support this con-

jecture. As we could see from our example, the Gini index of China increased

from 18.46% to 42.06%, however the poverty is significantly improved due to the

overall income increase. Compared with China’s big change, inequality indices

and income distribution of USA are stable over the last 30 years. Interestingly,

USA and China’s LC are close in 2010.
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Chapter 6

Conclusions and Discussion

Conclusions

Two new estimation methods are introduced in this thesis in connection with

estimating the parameters of a stable distribution: spacing based estimation and

indirect inference. For spacing based estimation in stable distributions in chapter

3, we showed that it performs as good as the MLE for large samples. Also we

concluded that it is a flexible method as one has the choice of distance measures

that could be used. As for the indirect inference, we developed a general framework

for estimating stable distribution as well as income distribution with limited data.

This simulation based method is very flexible, namely that the parametric model

and/or auxiliary parameters could be adjusted. In Chapter 4, we showed that this

method has the smallest mean square error among the existing popular methods of

estimating stable distribution parameters, at most parameter values. In Chapter

5, we developed a practical estimation framework of analyzing income distribution
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and income equality given the limited data. This analytical tool helps develop

some interesting practical conclusions as we showed in that chapter.

Future Work

Our work could be extended in several directions. For the linear stable distri-

bution we studied, it could be transformed to wrapped stable distribution. After

wrapping, the trigonometric moments and likelihood start to exist. Method of

trigonometric methods is applied by Gatto and Jammalamadaka (2003). Spacing-

based idea could also be applied for wrapped distribution, either for inference or

goodness of fit testing.

Since stable distributions do not have finite variance which is a major draw-

back for their application in finance. Different schemes for the truncation were

proposed. Tempered stable distributions and process proposed by Rosiński (2002)

is a popular one, and has been widely applied in finance (for example, see Kim

and Rachev (2009)). For the calibration, our quantile-based indirect inference

method is applicable if one wants to circumvent this standard, but complicated

analytical methods.

74



Appendix A

Code

A.1 R code of Estimating income distribution

by indirect inference

* Emperical function: 9 points on Emperical lorenz curve and mean

emp.fun = function(x){

mean = mean(x)

x = sort(x)

N = length(x)

q010a=sum(x[1:round(N*0.10)])

q020a=sum(x[1:round(N*0.20)])

q030a=sum(x[1:round(N*0.30)])

q040a=sum(x[1:round(N*0.40)])

q050a=sum(x[1:round(N*0.50)])

q060a=sum(x[1:round(N*0.60)])

q070a=sum(x[1:round(N*0.70)])

q080a=sum(x[1:round(N*0.80)])

q090a=sum(x[1:round(N*0.90)])

q010p=q010a/sum(x)

q020p=q020a/sum(x)

q030p=q030a/sum(x)

q040p=q040a/sum(x)

q050p=q050a/sum(x)

q060p=q060a/sum(x)

q070p=q070a/sum(x)
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q080p=q080a/sum(x)

q090p=q090a/sum(x)

g.x = c(mean,q010p,q020p,q030p,q040p

,q050p,q060p,q070p,q080p,q090p)

return(g.x)

}

***Theoretical function

theo.fun = function(theta){

mu = theta[1]

sigma = exp(theta[2])

g.theta = matrix(NA,H,10)

for (j in 1:H){

set.seed(j + 13212341)

x.star = rlnorm(n, meanlog=mu,sdlog=sigma)

g.theta[j,] = emp.fun(x.star)

}

g.theta = apply(g.theta,2,mean)

return(g.theta)

}

***Objective function

obj.fun = function(theta){

theo = theo.fun(theta)

dif = theo - emp.estim

obj = (t(dif))\%*\%Omega\%*\%dif

return(obj)

}

*** 2-step procedue weight matrix.

Omega=I *set Omega to be identity matrix

thetahat1=optim(theta.start,obj.fun)\$par * initial estimate

boot.Var = function(theta, B = 1000){

emp.boot = matrix(NA,B,10)

for (i in 1:B){

set.seed(i)
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x.star = rlnorm(n,meanlog=theta[1],sdlog=exp(theta[2]))

emp.boot[i,]= emp.fun(x.star)

}

return(cov(emp.boot))

} *Covariance matrix approximation

V=boot.Var(thetahat1)

Omegahat=solve(V) *2-step weight matrix is obtained

***Obtain the final estimate thetahat2 by optimization

Omega=Omegahat *Set Omega to be 2-step weight matrix

thetahat2=optim(theta.start,obj.fun)\$par *final estimate

*** Gini index function

Gini.fun = function(x){

inter = 0

N = length(x)

for (i in 2:N){

for (j in 1:(i-1)){

inter = inter + abs(x[i]-x[j])

}

}

Gini = (1/(N*(N-1)))*inter/mean(x)

return(Gini)

}

*** Headcount ratio caculation

n.pov=which.min(abs(x-pl)) *pl represents poverty line

HC=n.pov/N *HC is headcount ratio

A.2 Matlab code for spacing based estimation

of stable distribution

*Stable random number generator stblrnd(alpha,beta,gamma,delta,N)

if alpha == 2 * Gaussian distribution

r = sqrt(2) * randn(N);

elseif alpha==1 \&\& beta == 0 * Cauchy distribution

r = tan( pi/2 * (2*rand(N) - 1) );
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elseif alpha == .5 \&\& abs(beta) == 1 * Levy distribution

r = beta ./ randn(N).\^2;

elseif beta == 0 * Symmetric alpha-stable

V = pi/2 * (2*rand(N) - 1);

W = -log(rand(N));

r = sin(alpha * V) ./ ( cos(V).\^(1/alpha) ) .* ...

( cos( V.*(1-alpha) ) ./ W ).\^( (1-alpha)/alpha );

elseif alpha ~= 1 * General case, alpha not 1

V = pi/2 * (2*rand(N) - 1);

W = - log( rand(N) );

const = beta * tan(pi*alpha/2);

B = atan( const );

S = (1 + const * const).\^(1/(2*alpha));

r = S * sin( alpha*V + B ) ./ ( cos(V) ).\^(1/alpha) .* ...

( cos( (1-alpha) * V - B ) ./ W ).\^((1-alpha)/alpha);

else * General case, alpha = 1

V = pi/2 * (2*rand(N) - 1);

W = - log( rand(N) );

piover2 = pi/2;

sclshftV = piover2 + beta * V ;

r = 1/piover2 * ( sclshftV .* tan(V) - ...

beta * log( (piover2 * W .* cos(V) ) ./ sclshftV ) );

end

* Scale and shift

if alpha ~= 1

r = gamma * r + delta;

else

r = gamma * r + (2/pi) * beta * gamma * log(gamma) + delta;

end

end

* Spacing estimation for alpha and beta

X = stblrnd(1.5,0,1,0,1000);

gam=1;

delta=0;

y=sort(X);
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F=@(theta)[0,(stblcdf(y,theta(1),theta(2),gam,delta))’];

G=@(theta)[(stblcdf(y,theta(1),theta(2),gam,delta))’,1];

H=@(theta)-(sum(log(G(theta)-F(theta))));

[theta,fval]=fminsearch(H,[1.4,0.1]);

*two dimensional graph

alpha=linspace(1.1,1.9,10);

beta=linspace(-1,1,10);

z=zeros(10,10);

for i=1:10

for j=1:10

z(i,j)=H([alpha(i),beta(j)]);

end

end

subplot(2,2,1)

surf(alpha,beta,z);

title(’Greenwood statistics vs (alpha,beta)’);
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Rosiński, J. (2002). Tempering stable processes, Stochastic Processes and their
Applications 117: 677–707.

Samorodnitsky, G. and Mittnik, S. (1994). Stable Non-Gaussian Random Pro-
cesses, Chapman & Hall.

Zolotarev, V. (1986). One-dimensional stable distributions, American mathemat-
ical Society 65: 284–293.

Zolotarev, V. (1995). On the representations of stable laws by special functions,
Theory Probab. Appl. 39: 354–362.

83


	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction to Stable Distributions
	Definitions
	A Different Parametrization of Stable Laws

	Basic Properties
	Densities and Distribution Functions
	Tail Probabilities and Moments

	Simulation Methods

	Existing Estimation Methods
	Maximum Likelihood Estimation
	The Integral Representations of Zolotarev
	Fast Fourier Transformation

	Quantile Based Estimation
	Characteristic Function based Estimation

	Spacing Based Estimation for Stable Distributions
	Introduction of Spacings Based Estimation
	Definition
	Properties
	Examples

	GSE Applied in Stable Distributions
	Estimating Tail and Skewness Parameters
	Monto Carlo Studies

	Comparison Between Different Methods
	Conclusion

	Indirect Inference Method Applied to Stable Distributions
	 Introduction 
	Existing Estimation Methods
	Introduction of the Stable Distribution
	Available Estimation Methods

	Indirect Inference in Stable Distributions
	Indirect Inference Method
	Quanitle-based Indirect Inference
	Theoretical Properties

	Simulation Study
	Choice of the number of quantiles, m
	Weight Matrix
	Comparison Between different Methods

	Case Study
	Conclusion
	Appendix: Influence Function and Robust Property of Quantiles

	Indirect Inference Applied to Income Distributions
	Introduction to Some Inequality Measures
	Lorenz curve
	Gini Index and Other Inequality Measures
	Some Popular Parametric Income Distributions

	Indirect Inference Method
	Indirect inference framework
	Theoretical Properties
	Goodness of Fit Analysis
	Data

	Simulation Study
	Numerical Optimization
	Monte Carlo Study

	Case Study
	Data
	Result
	Conclusions


	Conclusions and Discussion
	Code
	R code of Estimating income distribution by indirect inference
	Matlab code for spacing based estimation of stable distribution

	Bibliography

