
UNIVERSITY OF CALIFORNIA

Santa Barbara

Accelerated Algorithms for Stochastic Simulation of

Chemically Reacting Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Jin Fu

Committee in Charge:

Professor Linda Petzold, Chair

Professor John Gilbert

Professor Frank Doyle

December 2014

The dissertation of Jin Fu is approved.

Professor John Gilbert

Professor Frank Doyle

Professor Linda Petzold, Committee Chairperson

December 2014

Accelerated Algorithms for Stochastic Simulation of Chemically Reacting Systems

Copyright © 2014

by

Jin Fu

iii

Acknowledgements

I would like to thank my parents, who give me continuous support during the
years when I was in UCSB.

I would like to thank my academic adviser, Professor Linda Petzold, who
provides me the opportunity to study in her lab and makes the contribution in this
thesis possible.

I would like to thank the other committee members, Professor John Gilbert
and Professor Frank Doyle, who give me valuable suggestions in my major area exam,
thesis proposal and defense.

I will thank my labmates as well. You give me many help for my work. And
more importantly, you give me a good time in UCSB.

iv

致谢

首先，我要感谢我的父母，你们的关心和支持是我攻读博士学位最大的动力。和你们的
视频聊天总是那么开心。让我体验到了家的感觉。看到你们生活的无忧无虑，我真的非
常高兴。

我要感谢我的导师,Linda Petzold 教授。您给了我来实验室攻读博士学位的机
会，也在我的学习和研究工作中给了我非常多的帮助和指导。我非常庆幸能遇到像您这
么好的导师。

我还要感谢我答辩组中的另两位教授，Jhon Gilbert教授和 Frank Doyle教授。
你们给我提出的宝贵建议对我的研究工作帮助非常大。

最后，我要感谢实验室的所有同学。和你们在一起的日子是轻松快乐的。时光
匆匆，如今我们要分开了，希望你们也都能顺利实现自己的目标。

v

Curriculum Vitæ
Jin Fu

EDUCATION

Bachelor of Engineering in Mechanics, Peking University, July 2004
Bachelor of Science in Math, Peking University, July 2004
Master of Engineering in Mechanics, Beihang University, March 2008
Master of Science in Computer Science, University of California, Santa
Barbara, June 2013
Doctor of Philosophy in Computer Science, University of California,
Santa Barbara, December 2014 (expected)

PROFESSIONAL EMPLOYMENT

2006-08: Teaching Assistant, School of Science, Beihang University
2008-14: Research Assistant, Department of Computer Science, Uni-
versity of California, Santa Barbara

PUBLICATIONS

“The Time Dependent Propensity Function for Acceleration of Spa-
tial Stochastic Simulation of Reaction-Diffusion Systems,” Journal of
Computational Physics, 274 (2014), 524–549.
“Time Dependent Solution for Acceleration of Tau-Leaping,” Journal
of Computational Physics, 235 (2013), 446-457.
“Automatic Identification of Model Reductions for Discrete Stochastic
Simulation,” Journal of Chemical. Physics, 137 (2012), 034106.
“StochKit2: Software for Discrete Stochastic Simulation of Biochemical
Systems with Events,” Bioinformatics, 27 (2011), 2457-2458.
“Michaelis-Menten Speeds up Tau-leaping Under a Wide Range of Con-
ditions,” Journal of Chemical Physics, 134 (2011), 134112.

FIELDS OF STUDY

Major Field: Computational Science and Engineering

vi

Abstract

Accelerated Algorithms for Stochastic Simulation of Chemically
Reacting Systems

Jin Fu

Stochastic models are widely used in the simulation of biochemical systems

at a cellular level. For well mixed models, the system state can be represented by the

population of each species. The probabilities for the system to be in each state are

governed by the Chemical Master Equation (CME), which is generally a huge ordinary

differential equation (ODE) system. The cost of solving the CME directly is generally

prohibitive, due to its huge size.

The Stochastic Simulation Algorithm (SSA) provides a kinetic Monte Carlo

approach to obtain the solution to the CME. It does this by simulating every reaction

event in the system. A great many stochastic realizations must be performed, to obtain

accurate probabilities for the states. The SSA can generate a highly accurate result,

however the computation of many SSA realizations may be expensive if there are many

reaction events. Tau-leaping is an approximate algorithm that can speed up the simu-

lation for many systems. It advances the system with a selected stepsize. In each step,

it directly samples the number of reaction events in each reaction channel, which yields

a faster simulation than SSA. The error in tau-leaping is controlled by selecting the

stepsize properly.

vii

We have developed a new, accelerated tau-leaping algorithm for discrete stochas-

tic simulation that make use of the fact that exact (time-dependent) solutions are known

for some of the most common reaction motifs (subgraphs of the network of chemical

species and reactants). This idea can be extended to spatial stochastic simulation, by

treating the diffusion network as a special motif for which there is an exact time de-

pendent solution. We describe the well-mixed and spatial stochastic time dependent

solution algorithms, along with numerical experiments illustrating their effectiveness.

viii

Contents

Acknowledgements iv

Curriculum Vitæ vi

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Time Dependent Solution for Acceleration of Tau-Leaping 8
2.1 Introduction . 8
2.2 Tau-Leaping . 9
2.3 Tau-leaping using the time dependent solution 12

2.3.1 Using the time dependent solution of one species 13
2.3.2 Using the time dependent solution of several species 18

2.4 Numerical simulation . 26
2.4.1 Example 1 . 26
2.4.2 Example 2 . 29
2.4.3 Coagulation model . 31

2.5 Conclusion . 34

3 The Time Dependent Propensity Function for Acceleration of Spatial
Stochastic Simulation of Reaction-Diffusion Systems 36
3.1 Introduction . 36
3.2 Stochastic simulation algorithm . 37
3.3 Spatial stochastic simulation using the time dependent propensity func-
tion (TDPD) . 38

3.3.1 Select the time to the next reaction using the time dependent
propensity . 39

ix

3.3.2 Select the next reaction . 49
3.3.3 Summary of the algorithm . 51
3.3.4 Computational cost of the algorithm 55
3.3.5 Discussion . 60

3.4 Numerical simulation . 61
3.4.1 Example 1 . 62
3.4.2 Example 2 . 71
3.4.3 Example 3: Demonstration of the error behavior of the TDPD
method . 75
3.4.4 Coagulation model . 81

3.5 Conclusion . 86

4 Time dependent propensity for diffusion (TDPD) method on unstruc-
tured mesh 88
4.1 Introduction . 88
4.2 TDPD on unstructured mesh . 89

4.2.1 Difference between regular and unstructured mesh 89
4.2.2 The DFSP algorithm . 90
4.2.3 Time dependent transition matrix on an unstructured mesh . . . 93
4.2.4 Computing the time dependent propensity 94
4.2.5 Diffusion events . 97
4.2.6 Sample the next event time . 98
4.2.7 Sample the next event . 99
4.2.8 Update system state . 102
4.2.9 Sampling the diffusion process at the end of a step 109
4.2.10 Summary of the algorithm . 110

4.3 Numerical simulation . 116
4.3.1 Model description . 116
4.3.2 Simulation results . 116

4.4 Conclusion . 119

5 Conclusion 120
5.1 Summary of the thesis . 120
5.2 Future directions . 121

Bibliography 122

Appendix 125
A.1 Derivation of the time dependent solution 125
A.2 The mean and variance of Y = P (X) 137
A.3 The mean and variance of the number of firings in a reaction channel . . 139
A.4 Sampling a feasible flow in the network 143

x

A.5 Solution to the master equation for a one dimensional discrete diffusion
process . 146
A.6 Derivation of the upper bound of E (p(τ)) 150
A.7 A discussion about the probability that a molecule diffuses to a given
subvolume . 153

xi

List of Figures

2.1 Motif I, I denotes the set of reactions that generate S1, and O denotes
the set of reactions that consume S1. 14
2.2 Motif II, Ii denotes the set of reactions that generate Si without consum-
ing Sj ; Oi denotes the set of reactions that consume Si without generating Sj ;
Rij denotes the set of reactions that consume Si and generate Sj at the same
time, i, j = 1, 2, i ̸= j. 19
2.3 E and ES are within the scope of Motif II, R4 is the input reaction for
E, and R5 and R6 are the output reactions for E and ES respectively. R1

converts E to ES, R2 and R3 convert ES to E. 20
2.4 General motif . 22
2.5 Histograms of each species in Example 1. Comparison of result given by
SSA and tau-leaping using time dependent solution of Motif II. Red is SSA,
blue is tau-leaping using time dependent solution, and purple is the overlap
of the two histograms. 27
2.6 The distribution of S3 if (2.9) is used. It has the correct mean value but
the variance is too small. 28
2.7 Histograms of each species in Example 2. Comparison of result given by
SSA and tau-leaping using time dependent solution of Motif II. Red is SSA,
blue is tau-leaping using time dependent solution, and purple is the overlap
of the two histograms. 30
2.8 Concentration of thrombin (IIa+1.2×mIIa). Blue curve: Tau-leaping
using time dependent solution of Motif I+II. Green curve: ODE. 32

3.1 Histograms of species C. Comparison of results given by ISSA and TDPD.
Red is ISSA, blue is TDPD, and purple is the overlap of the two histograms. 63
3.2 Average population of species C in each voxel at t = 1. The resolution is
50 voxels. 10000 realizations are simulated for each method. 64
3.3 Scaling of computation time with respect to resolution. 65

xii

3.4 Scaling of computation time with respect to the initial population. Val-
ues are averaged over 1000 realizations. 67
3.5 Scaling of computation time with respect to the number of reaction chan-
nels. Values are averaged over 1000 realizations. 70
3.6 Histograms of species S4. Comparison of result given by ISSA and
TDPD. Red is ISSA, blue is TDPD, and purple is the overlap of the two
histograms. 73
3.7 Scaling of computation time with respect to resolution. 74
3.8 (a) Simulation results for Example 3. The blue line is the analytical
solution of a diffusion process with absorbing boundary conditions. The green
line is the analytical solution of a diffusion process with reflecting boundary
conditions. The red stars are from 100,000 realizations with one molecule
initially. The circles are from one realization with 100,000 molecules initially.
(b) Errors for simulations with different initial populations. 77
3.9 Absorbing reaction channels are added in the yellow voxels, whose reac-
tion rates are set to be 3. 80
3.10 The geometry of the control volumes for our simulation. The red surface
at the bottom represents the wounded blood vessel surface which contains TF. 82
3.11 Dynamics of the averaged thrombin concentration for different control
volumes. Here IIa is activated thrombin, and mIIa is meizothrombin which
is an intermediate that is produced during the conversion of prothrombin to
thrombin. 84
3.12 Stochastic realizations and their averaged responses 85

4.1 Demonstration of the FSP . 89
4.2 Time line of the simulation. 91
4.3 Demonstration of a diffusion event . 101
4.4 Geometry of the cylinder . 117
4.5 Simulation results . 118

A.1.1Example system . 126

xiii

List of Tables

2.1 The time used for 100000 realizations of the one second simulation for
Example 1, ϵ = 0.003 . 26
2.2 The time used for 100000 realizations of a one second simulation of Ex-
ample 2 with ϵ = 0.003 . 30
2.3 The time used for one realization of a 700-second simulation of the co-
agulation model, with ϵ = 0.02. The results are averaged over ten realizations. 31

3.1 CPU times for the one second simulation of Example 1. The first three
entries use a resolution of two subvolumes. The last three entries use a reso-
lution of 50 subvolumes. 62
3.2 Computation time for the ten second simulation of Example 2. 72
3.3 Simulation error under different resolutions. Ten realizations are used
for each parameter. 80
3.4 Simulation error with different number of reaction channels. Ten real-
izations are used for each parameter. 81
3.5 The time used for the 700 second simulation of the coagulation model. . 83

xiv

Chapter 1

Introduction

Ordinary differential equation (ODE) models are widely used in the simulation

of chemical systems where all chemical species are present with large population. For

the simulation of biochemical systems inside a living cell, however, the population of

some chemical species may be so small that stochastic fluctuations become important

[1, 2, 3]. For these systems, a discrete stochastic model is more appropriate. In a

discrete stochastic model, the system state is no longer deterministic at a time t > t0,

where t0 is the initial time. Instead, it could be in one of several possible states, with

certain probabilities. The dynamics of the probabilities is governed by the Chemical

Master Equation (CME) [4].

1

The CME is a huge ODE when a system has many possible states. Thus it

is usually extremely expensive to solve. However, Monte Carlo simulation provides a

different way to find the solution of the CME. The stochastic simulation algorithm (SSA)

[5, 4] is commonly used to simulate a stochastic reaction system. The SSA samples when

the next reaction event occurs and which reaction will fire. Then it advances the system

to that time and updates the system state by firing the sampled reaction event.

The SSA is exact, in the sense that each simulation is a realization of the CME.

As the number of stochastic realizations goes to infinity, their statistics approach the

probability density vectors (PDVs) that are the solutions to the CME. Alternative for-

mulations of the SSA include the optimized direct method (ODM) [6], the composition-

rejection method [7], the rejection-based SSA (RSSA) [8] and the next reaction method

(NRM) [9].

Typically, a great many (hundreds of thousands to millions) of simulations are

required to obtain a good approximation to the PDVs. At the same time, each realization

can be quite expensive for exact algorithms. This is because every reaction event in the

system must be sampled. Approximate algorithms have been developed to overcome

this limitation. Tau-leaping [10] is an approximate algorithm that can for many systems

take time steps that are considerably larger than the time to the next reaction (i.e. the

SSA timestep). It accomplishes this by allowing multiple reaction events to fire during

a timestep as long as these reactions do not change the system dramatically, i.e. the

change of each species during a step is small compared with its population. The stepsize

2

for tau-leaping can become constrained, however, for systems with fast reactions that

involve at least one species that is present in very small population [11].

One way to accelerate both SSA and tau-leaping for such stiff systems is to

make use of a stochastic quasi-steady-state assumption. The quasi-steady-state assump-

tion is a widely used strategy to handle systems that have different time scales, for both

ODE [12] and SSA [13, 14, 15]. The essence of this strategy is to divide the system into

fast and slow subsystems. If the fast subsystem can reach a stochastic quasi-steady-state

in a very short time, then we can use the quasi-steady-state as an approximation of the

fast variables during a step of the slow subsystem. One can also apply the quasi-steady-

state assumption in tau-leaping [11]. However, we must be careful when using this

assumption. If the fast subsystem cannot reach a steady distribution rapidly enough,

the quasi-steady-state assumption may introduce too much error into the simulation.

To avoid these errors, we can use the time dependent solution [16] rather than

the quasi-steady-state. The idea of using the time dependent solution to speed up a

discrete stochastic simulation has been applied via a splitting method in [17]. That

method first partitions the reactions into subgroups such that some of them have ana-

lytical solutions, which can be used to directly sample the state of the subsystem at any

given time if reactions outside the subsystem are kept silent. Then the method advances

the system by advancing each subsystem separately in a given order with some stepsize.

Since it can directly sample the state without sampling individual reaction events for

those subsystems that have analytical solutions, it is more efficient than SSA if these

3

subsystems contain many reaction events. However, it does not handle non-catalytic

bimolecular reactions with the time dependent solution, or provide a stepsize selection

strategy. The adaptive tau-leaping method addresses these two issues. It approximates

the number of firings for bimolecular reactions in each step [10] and it also has an

adaptive stepsize selection algorithm [18].

In Chapter 2 of this thesis, we introduce a methodology to apply the time

dependent solution in a tau-leaping framework. Thus the analytical solution can be

used to approximatie the solution of bimolecular reactions such as S1+S2 → something

within a tolerance. The new algorithm inherits the adaptive stepsize selection strategy

of [18] naturally as well. This algorithm has been implemented in the software package

STOCHKIT 2 [19].

Generally speaking, the time dependent solution is not easy to derive for an

arbitrary network motif. However, for some common motifs we do have time dependent

solutions. These solutions can be used to improve the performance of tau-leaping for

some widely used models like the enzyme-substrate model.

The previous methods work for well-mixed models. In a spatially inhomoge-

neous setting, the volume is divided into subvolumes. In each subvolume, the well-mixed

assumption is applied to reactions. Diffusive transfers between adjacent subvolumes are

modeled as monomolecular reactions. The master equation for the inhomogeneous sys-

tem is called the reaction diffusion master equation (RDME) [20]. SSA algorithms can

be applied in the inhomogeneous setting as well (ISSA). The most popular formulation

4

of the ISSA is the next subvolume method (NSM) [21]. The NSM uses a similar idea as

the NRM. It generates the next event’s time for every subvolume. Here an event could

be a reaction event or a diffusion event. In a simulation step, the NSM picks the sub-

volume with the smallest time to the next event, and samples an event in it. Since the

NSM can find the subvolume where the next event occurs in O(logN) time, where N is

the number of subvolumes, it has better performance than the direct method when the

system has many subvolumes. The NSM has been implemented in software packages

such as MesoRD [22] and URDME [23].

Approximation-based methods have been developed for further speeding up the

simulation. The multinomial simulation algorithm (MSA) [24] splits the reaction and

diffusion processes. In each step it samples the next reaction time based on the current

state, then it samples the position of every particle using multinomial distributions,

which no longer need to track every diffusion event as the exact methods do. After the

diffusion process sampling, the MSA updates the system by firing a sampled reaction.

The diffusive finite state projection algorithm (DFSP) [25] employs a similar idea but it

allows multiple reaction events to fire in one step. It uses SSA to simulate the reaction

process in each subvolume independently in each step. The diffusion process is sampled

by solving the diffusion master equation with truncated states. Hybrid methods are

another approach for simplifying the simulation. In a hybrid method, the reactions (both

chemical reactions and diffusive jumps) are partitioned into several parts. Different

parts are treated with different methods. The software package URDME [23] includes

5

an adaptive hybrid method [26] along with NSM and DFSP, for stochastic reaction-

diffusion processes.

In MSA, DFSP and the adaptive hybrid method, the reaction and diffusion

processes are decoupled in every step. These methods sample the next reaction time

based on the current state, i.e. by assuming that the system state does not change

between adjacent chemical reaction events. However, this is an approximation because

molecules will be diffusing during that time. In Chapter 3 of this thesis we present a

method that uses the time dependent propensity function [27] to sample the reaction

events. We will refer to the method as the time dependent propensity for diffusion

method (TDPD).

The idea of of using the time dependent propensity in a simulation has previ-

ously been introduced, in a non-spatial form, in [9], where the NRM was extended for

time varying Markov processes and some examples are provided. A non-Markov process

example was discussed in that paper, where the time dependent propensity, which is a

gamma distribution, yields an efficient algorithm for the simulation. In [28], the idea of

using the time dependent propensity was incorporated into a hybrid method, where the

time dependent propensity of discrete reactions was computed by the values generated

from the continuous reactions.

The basic idea of the TDPD method is that it uses the time between adjacent

reaction events as the simulation stepsize, which is the same as SSA. However, the

time dependent propensity function, which is used for sampling the next reaction time

6

in TDPD, takes into account the change of the propensity values during a stepsize

due to the diffusion process. Thus the method yields a speedup by avoiding the effort

of tracking individual diffusion events, while still enjoying excellent accuracy. This

algorithm has been implemented in the software package STOCHKIT 2 [19] with regular

mesh in rectangular domain and in PyURDME [29] with unstructured mesh in arbitrary

domain.

The remainder of the thesis is organized as follows. In Chapter 2 we introduce

the algorithm that uses the time dependent solution in tau-leaping. In Chapter 3, the

TDPD method is developed. Chapter 4 describes the extension of the TDPD method

to an unstructured mesh.

7

Chapter 2

Time Dependent Solution for

Acceleration of Tau-Leaping

2.1 Introduction

Tau-leaping [10] is an approximate algorithm that is faster than SSA [5, 4]

for many systems. However, its stepsize can become constrained if a system has fast

reactions that involve at least one species with very small population. If the population

of such a species reaches a steady distribution rapidly, the stochastic quasi-steady-state

assumption [13, 14, 15, 11] can be used to handle this situation. If this is not the case,

we can use the time dependent solution [16] instead for many common motifs. In this

chapter we introduce our algorithm that uses the time dependent solution to accelerate

tau-leaping.

8

This chapter is organized as follows. In Section 2.2, we provide a brief introduc-

tion to tau-leaping with adaptive timestep selection. In Section 2.3 we derive the time

dependent solution for some common network motifs. We begin with a simple example

to demonstrate the tau-leaping algorithm using the time dependent solution. Then we

extend the algorithm to more general cases. Numerical experiments are provided in

Section 2.4, including application of the method to a realistic model of blood coagu-

lation, and the algorithm is briefly summarized in Section 2.5. Detailed mathematical

derivations are provided in the Appendix of this thesis. This work was published in

Time dependent solution for acceleration of tau-leaping (Jin Fu, Sheng Wu, and Linda

R. Petzold. J. Comput. Phys., 235:446–457, 2013).

2.2 Tau-Leaping

Consider a system of N species {S1, . . . , SN} and M reactions {R1, . . . , RM}.

The state vector of the system is X = {x1, . . . , xN} which is the population of each

of the species. The probability that reaction Ri fires in an infinitesimal interval dt is

given by ai(X)dt, where ai(X) is the propensity function of Ri. Tau-leaping advances

the system in small steps; it assumes that the state vector X changes so little in each

step that the propensity functions {a1, . . . , aM} can be treated as constants. Thus

the number of firings in each reaction channel Ri is a Poisson random number with

parameter ai(X)τ , where τ is the stepsize. To advance the system, we need only to

sample these Poisson random numbers and update the state vector X.

9

Yang et al. [18] suggest a strategy to determine the stepsize. The idea is that

it should be chosen so that the mean and standard deviation of the change of each

species is small compared to its population. Denoting the population change of species

Si as ∆xi, the stepsize as τ , and the number of firings of each reaction during a step as

r1 (τ) , . . . , rM (τ), tau leaping computes

∆xi =
M∑
j=1

νijrj (τ) ,

where νij is the stoichiometry of species Si in reaction Rj . Assuming that the reaction

firings are independent during a step, the mean and variance of ∆xi are given by

E∆xi =

M∑
j=1

νijE (rj (τ)) , Var (∆xi) =

M∑
j=1

ν2ijVar (rj (τ)) .

Keeping E∆xi and
√
Var∆xi small (relative to the tolerance ϵ) compared with xi requires

[18]

E∆xi ≤ max
(

ϵ

gi
xi, 1

)
,
√

Var (∆xi) ≤ max
(

ϵ

gi
xi, 1

)
, (2.1)

where gi is a constant that depends on the highest order of the reactions which involve

Si as a reactant. Solving the above inequalities yields the upper bound on τ , which

we will denote by τi, for which species Si can be expected to change by less than the

prescribed tolerance. The adaptive tau-leaping algorithm chooses the smallest τi as its

stepsize.

τ = min
1≤i≤N

τi (2.2)

10

Over a step of size τ , tau-leaping approximates the population of every species as a

constant. Thus ri (τ) is a Poisson random variable

ri (τ) ∼ P (aiτ) .

Solving (2.1) for τi gives

τi ≤
max

(
ϵ
gi
xi, 1

)
∑M

j=1 νijaj
, τi ≤

max
(

ϵ2

g2i
x2i , 1

)
∑M

j=1 ν
2
ijaj

⇒ τi = min

max
(

ϵ
gi
xi, 1

)
∑M

j=1 νijaj
,
max

(
ϵ2

g2i
x2i , 1

)
∑M

j=1 ν
2
ijaj

 ,

(2.3)

and substituting this into (2.2) yields the tau-leaping stepsize.

It is easy to see that tau-leaping can be substantially more efficient than SSA.

However, this is only the case when it can use a stepsize over which many reaction firings

would have taken place. However, if some species Si is changing rapidly, then the change

in that species may be constraining the stepsize. On each timestep, the species that is

constraining the stepsize is the one for which τi is smallest. Thus we propose to use the

time dependent solution described in the next section to solve for that species in place

of standard tau-leaping (provided that it occurs in one of the common network motifs

for which we have a time dependent solution).

Using the time dependent solution is a natural way to remove the stepsize

constraint from the limiting species. This idea can also be extended to cases where

several species require a very small stepsize. Though a general solution for arbitrary

motifs may not be easy to find, we do have the solution for some common motifs. The

results will be shown in the next section.

11

2.3 Tau-leaping using the time dependent solution

The time dependent solution makes use of the exact analytical solution of com-

mon reaction motifs to increase the speed of tau-leaping. The splitting method [17] also

uses the analytical solution of monomolecular, catalytic bimolecular, and autocatalytic

reactions. It separates these reactions from the system to form subsystems that can be

simulated using their analytical solutions. The time dependent solution improves on

the splitting method in the following two ways.

• Applicability to non-catalytic bimolecular reactions.

In order to use the analytical solution for a bimolecular reaction, the splitting

method requires that one of its reactants has zero stoichiometry (i.e. catalytic

bimolecular reaction). The time dependent solution removes this requirement by

observing that if one of the reactants of a non-catalytic bimolecular reaction has

a slow relative rate of change, we should be able to allow it to use the analytical

solution to within some tolerance.

This change brings new requirements to the system partitioning strategy. In the

splitting method the subsystems are determined by the stoichiometry. Thus it can

partition the system at the very beginning and use that partitioning throughout

the simulation. However, if we allow the subsystems to include non-catalytic

bimolecular reactions, the stoichiometry matrix will not be sufficient to determine

the partitioning of the system. We also need the information of the dynamically

12

changing reaction rates. Thus the time dependent solution includes a scheme for

dynamic partitioning.

• Adaptive stepsize selection

An operator bounding analysis for the splitting method was given in [17]. For

simulation purposes, it would be ideal if the analysis can generate an algorithm to

adaptively select the stepsize. Here, since our partition will be more complex and

our implementation of the time dependent solution is in the tau-leaping framework,

making use of the adaptive stepsize selection strategy from tau-leaping [18] is a

more natural and easy option for our method.

In this section we will demonstrate the use of the time dependent solution

using the tau-leaping method. We begin with a simple example.

2.3.1 Using the time dependent solution of one species

Let us take a look at one species in particular, say S1. There are reactions

which either generate or consume S1, as shown in Figure 2.1. We will refer to the motif

illustrated in Figure 2.1 as Motif I in the following sections.

If for any reaction in the system, its reactants involve at most one S1 molecule

and its products also involve at most one S1 molecule, then we can find the analytical

solution for the population of S1, under the assumption that the populations of other

species can be considered as constants. This assumption is reasonable as long as we use

a stepsize that can be accepted by those other species.

13

Figure 2.1: Motif I, I denotes the set of reactions that generate S1, and O denotes the
set of reactions that consume S1.

Let I be the set of reactions that generate S1, and O be the set of reactions

that consume S1. Denote the total propensity that an S1 will be generated as

aI
△
=
∑
Ri∈I

ai,

and the total rate that S1 will be consumed as

cO
△
=
∑
Ri∈O

c̃i,

where c̃i = ai/x1.

The time dependent population of S1 can be written as (see Appendix A.1)

x1(t) ∼ B
(
x1(0), e−cOt

)
+ P

(
aI
cO

(
1− e−cOt

))
(2.4)

∼ B
(
x1(0), e−cOt

)
+ B

(
rI ,

1

cOt

(
1− e−cOt

))
, (2.5)

where x1(0) is the initial value of x1 at the beginning of the step, and rI is the input

to S1, i.e. the total number of firings for reactions in I. B(n, p) is a binomial random

number with parameters n, p. P (λ) is a Poisson random number with parameter λ.

The two random variables in (2.4) and (2.5) are independent.

14

The corresponding output from S1, i.e. the total number of firings in O, is

given by

rO(t)
△
=
∑
Ri∈O

ri(t) = x1(0) + rI − x1(t)

∼ B
(
x1(0), 1− e−cOt

)
+ B

(
rI , 1− 1

cOt

(
1− e−cOt

))
. (2.6)

To simulate the number of firings in each reaction channel Ri ∈ O, we distribute rO

using the multinomial distribution according to the rate c̃i of each reaction Ri

{ri : Ri ∈ O} ∼ M
(
rO,

c̃i
cO

: Ri ∈ O

)
(2.7)

or equivalently (see Appendix A.3),

ri(t) ∼ B
(
x1(0),

c̃i
cO

(
1− e−cOt

))
+ P

(
c̃i
cO

(
aIt−

aI
cO

(
1− e−cOt

)))
. (2.8)

HereM (n, p1, . . . , pn) is a multinomial random variable with parameters n and p1, . . . , pn.

Now we apply this time dependent solution to accelerate tau-leaping for the simple ex-

ample.

S0
c1−⇀↽−
c2

S1
c3−→ S2.

When the population of S0 is much greater than the population of S1, S1 will be the

species that limits the tau-leaping stepsize. Using the time dependent solution of S1 we

arrive at the following algorithm.

1. Use (2.3) to compute the acceptable stepsizes τi for every species (in this case S0

and S1. There is no need to compute S2 because it is a pure product and it never

changes any propensity function).

15

2. Find the smallest τi (Here we assume τ1 < τ0 for demonstration purposes, so

I = {R1} , O = {R2, R3}).

3. Recompute the stepsize. In this example we need to recompute τ0 for S0. We do

this because the original τ0 was based on the assumption that x1 is a constant

during the step. Since this is no longer the case, we need to reevaluate τ0. To

do this, we still try to bound the mean and variance of ∆x0 using (1). The

only change is that the number of firings of R2 is no longer a Poisson random

variable. Instead, we have formula (2.8) for r2, so both E (r2) and Var (r2) can be

obtained explicitly and used to compute the new value for τ0. (Here we need to

solve a nonlinear algebraic equation since E (r2) and Var (r2) contain e−cOt terms.

Newton iteration is a good option because the explicit formulas of the equations

are known).

4. Sample the number of firings in all reaction channels except those belonging to

O (Sample r1 (τ) in the example). These reactions do not depend on the species

for which we use the time dependent solution (S1 in the example), so the original

strategy in tau-leaping still works. Reactions in I are sampled in this step so that

we know the value of rI .

5. Sample rO using (2.6) and distribute it into each channel in O using (2.7). (Now

r2 and r3 have been sampled).

16

6. Update the system and start the next step, or terminate if the end time of the

simulation has been reached.

In some reacting systems, there can be reactions that use S1 as a catalyst. For

example, suppose that we add the following reaction R4 to the above system

R4 : S1
c4−→ S1 + S3.

This reaction cannot be sampled using a Poisson random number P (c4x1 (0) τ) in the

previous framework, since S1 may undergo a big change during the step. This reaction

does not belong to O, since it does not consume S1. It needs to be treated as a different

case.

The value of r4 during a step is given by

r4 ∼ P
(∫ τ

0
c4x1 (t) dt

)
.

Since we cannot compute the integral exactly, we will need to make an approximation.

A natural choice is to use the mean value E (x1(t)) instead of the exact random number

xi (t), which yields

r4 ≈ P
(
c4

∫ τ

0
E (x1 (t)) dt

)
. (2.9)

This value is capable of being sampled, since we can derive the formula for E (x1) from

(2.4). Thus we have a formula for the integral expression. This approximation can

capture the mean value of r4 accurately but its variance is smaller than the exact value

of Var (r4) (see Appendix A.2). This is because E (x1(t)) averages x1(t), thus it loses

the specific information of the trajectory. To recover the variance, we need to include

17

this information in the approximation. Since in Step 5 of the algorithm x1(τ) is sampled

(more precisely, we sample rO, however we can get x1 (τ) by x1(τ) = x1(0)+rI−rO(τ)),

it would be advantageous if we could include this information in the approximation. This

yields another approximation formula:

r4 ≈ P
(
c4

∫ τ

0

(
E (x1 (t)) +

t

τ
(x1 (τ)− E (x1 (τ)))

)
dt

)
∼ P

(
c4

(∫ τ

0
E (x1 (t)) dt+

τ

2
(x1 (τ)− E (x1 (τ)))

))
. (2.10)

The interpolation of the difference between x1 (t) and E (x1 (t)) at the end time of the

step has been added into the integrand. Numerical experiments (Section 2.4) demon-

strate that (2.10) gives a much better approximation of the variance Var (r4).

Armed with the strategy of using the time dependent solution for one species,

we can move on to the more general case where we use the time dependent solution of

several species.

2.3.2 Using the time dependent solution of several species

In many cases there are several species that are limiting the stepsize. They

may be linked with each other via the reactions in which they participate. Consider,

for example, the motif shown in Figure 2.2. We will refer to this motif as Motif II in

the following sections.

A popular model that uses this motif is the enzyme substrate system,

E + S
c1�
c2

ES
c3→ E + P,

18

Figure 2.2: Motif II, Ii denotes the set of reactions that generate Si without consuming
Sj ; Oi denotes the set of reactions that consume Si without generating Sj ; Rij denotes
the set of reactions that consume Si and generate Sj at the same time, i, j = 1, 2, i ̸= j.

where S has a huge population while E and ES are present in small populations. Let

τE , τS and τES denote the stepsizes for E, S and ES given by (2.3). It is obvious that

τE , τES ≪ τS . Thus if we want to accelerate the simulation, we need to use the time

dependent solution for both E and ES.

In general, the population of the enzyme is dynamic rather than constant. It

can be produced and consumed by other reactions. For example, consider adding the

following set of reactions into the enzyme substrate system:

R4 : ϕ
a4−→ E, R5 : E

c5−→ ϕ, R6 : ES
c6−→ ϕ.

This model is still within the scope of Motif II (see Figure 2.3). The good news is

that we have the analytical solution for the time dependent solution of E and ES for

the previous system during a stepsize of τS (which implies that S can be treated as

constant).

19

Figure 2.3: E and ES are within the scope of Motif II, R4 is the input reaction for E,
and R5 and R6 are the output reactions for E and ES respectively. R1 converts E to
ES, R2 and R3 convert ES to E.

Before giving the formula, we define some notation. Let IE = {R4} be the

set of reactions that generate E while not consuming ES, OE = {R5} be the set of

reactions that consume E while not producing ES, OES = {R6} be the set of reactions

that consume ES while not producing E, RE,ES = {R1} be the set of reactions that

consume E and generate ES, and RES,E = {R2, R3} be the set of reactions that

consume ES and generate E.

Similar to the previous example, we have

aEI =
∑

Ri∈IE

ai = a4, rEI =
∑

Ri∈IE

ri = r4, cE,ES =
∑

Ri∈RE,ES

c̃i = c1xS

cES,E =
∑

Ri∈RES,E

c̃i = c2 + c3, cEO =
∑

Ri∈OE

c̃i = c5, cES
O =

∑
Ri∈OES

c̃i = c6 (2.11)

and

rEO =
∑

Ri∈OE

ri = r5, rES
O =

∑
Ri∈OES

ri = r6. (2.12)

Here rEO and rES
O are the total number of firings for reactions in OE and OES .

20

Using the notation above, the time dependent solution of this system can be

written as

(
xE(t), xES(t), rEO(t), rES

O (t)
)
∼M

(
xE (0) , pE1 (t), pE2 (t), pEO1(t), pEO2(t)

)
+M

(
xES (0) , pES

1 (t), pES
2 (t), pES

O1 (t), pES
O2 (t)

)
+M

(
rEI ,

λ1(t)

aEI t
,
λ2(t)

aEI t

λO1(t)

aEI t

λO2(t)

aEI t

)
, (2.13)

where the formulas for each parameter are given in Appendix A.1 (see (A.1.28) in

Appendix A.1).

This result can be extended from two species to n species Ŝ = {S1, . . . , Sn}

when the following condition holds:

Condition (∗): For any reaction R that can change the population of a species in Ŝ, one

firing of R consumes at most one molecule in Ŝ, and produces at most one molecule in

Ŝ.

A diagram of this general motif is given in Figure 2.4.

Now the definitions in (2.11) and (2.12) can be extended for any 1 ≤ i ̸= j ≤ n

as follows:

aiI
△
=
∑
Rk∈Ii

ak, riI
△
=
∑
Rk∈Ii

rk, cij
△
=

∑
Rk∈Rij

c̃k, ciO
△
=
∑

Rk∈Oi

c̃k, riO
△
=
∑

Rk∈Oi

rk.

The time dependent solution for this general motif is given by

(x (t) , rO (t)) ∼
n∑

i=1

M
(
xi (0) , pi (t) , pi

O (t)
)
+

n∑
i=1

M
(
riI ,

1

aiIt
λi,

1

aiIt
λi
O

)
. (2.14)

where the formulas for each parameter are given in Appendix A.1. Now that we have

the time dependent solution for our motifs, it is time to outline the steps of employing

21

Figure 2.4: General motif

the time dependent solution in tau-leaping, using the enzyme substrate (E-S) system as

an example.

1. Use (2.3) to compute the acceptable stepsizes τi for every species (in the E-S

example we compute the stepsizes for E, S and ES). For demonstration purposes,

we assume τ1 ≤ τ2 ≤ · · · ≤ τN (and in the E-S example we have τE , τES < τS).

2. Construct the set of species U for which we will use the time dependent solution.

Start from the species with the smallest stepsize, i.e. S1. If S1 satisfies condition

(∗), add it into U to obtain U = {{S1}}. Now go on to the species which has the

second smallest stepsize, i.e. S2. If {S1, S2} does not satisfy condition (∗), end

step 2 with U = {{S1}}. Otherwise, add S2 into U . If S2 is linked to S1, i.e.

c12 ̸= 0 or c21 ̸= 0, add S2 into U to obtain U = {{S1, S2}}. Otherwise add it

into U to obtain U = {{S1} , {S2}}. Continue adding species into U in a similar

22

way until you cannot add any more species that satisfy the condition (∗). Now

each element in U is a set of species for which we can use the time dependent

solution. (In the E-S example we end up with U = {{E, ES}}. We cannot add

S into U since Ŝ = {E, ES, S} does not satisfy condition (∗), as R1 consumes

two molecules in Ŝ).

3. Recompute the stepsize. For species not in U , we need to recompute their stepsizes

with the new value of each ri which may no longer be the original Poisson random

variable (see Appendix A.3 for a more detailed computation. In the E-S example,

we need to recompute the stepsize τS).

4. Sample the number of firings for all reactions that do not involve the species in

U as reactants. For these reactions tau-leaping is appropriate, so sample Poisson

random numbers for them (in the E-S example, r4 is sampled).

5. Sample each element in U using its time dependent solution (2.14). (In the E-S

example, xE(t), xES(t), rEO(t), rES
O (t) are sampled)

6. For each species Si in U , sample reactions in Oi using the multinomial distribution

{rj : Rj ∈ Oi} ∼ M
(
riO,

c̃j
ciO

: Rj ∈ Oi

)
.

(In the E-S example, r5 and r6 are sampled, and the multinomial distribution

yields r5 = rEO , r6 = rES
O).

7. Sample the reactions in Rij . This is not trivial since we have to maintain the flow

conservation of the network, so what we actually sample is an instance of a feasible

23

flow. An algorithm to sample the flow is presented in Appendix A.4. For the E-S

example, this step is very simple. First sample r1 using formula (2.10). Here

E (xE(t)) in the formula has the form (see Appendix A.1 for detailed derivation)

E (xE(t)) = xE(0)p
E
1 (t) + xES(0)p

ES
1 (t) + λ1(t),

where pE1 (t), pES
1 (t) and λ1(t) are the parameters that appeared in (2.13).

The conservation equation

r4 + xE(0) + (r2 + r3) = xE(t) + r1 + r5

gives

(r2 + r3) = xE(t) + r1 + r5 − r4 − xE(0).

Then sample r2 and r3 from their sum using the binomial distribution

r2 = B
(
xE(t) + r1 + r5 − r4 − xE(0),

c2
c2 + c3

)
r3 = xE(t) + r1 + r5 − r4 − xE(0)− r2.

8. If there are reactions involving species in U that are acting as a catalyst, for

example

Si → Si + Sj ,

where Sj is not in U (this is guaranteed by the algorithm, because species in

U satisfy condition (∗)), use formula (2.10) to approximate the number of their

firings. In the E-S example there is no such reaction.

24

9. Update the system and begin the next step, or terminate if the end time of the

simulation has been reached.

This algorithm is adaptive in the sense that it always applies the time depen-

dent solution to the motifs which limit the tau-leaping stepsize, even though the limiting

motifs change during the simulation. We achieve this goal by constructing the limiting

motifs U on the fly in step 2, rather than partitioning the system at the beginning of

the simulation.

In the enzyme substrate example, allowing non-catalytic bimolecular reactions

to be grouped into the motif plays an important role. If such an operation is not allowed,

reaction R1 : E+S → ES will be taken away from the motif and we will have a partition

of the system as I1 = {R1}, I2 = {R2, . . . , R6}. This partition will significantly decrease

the stepsize because I1 takes into account only the reaction that converts E to ES, while

I2 includes the reactions in the opposite direction. Thus if we use a big stepsize, E will

be depleted in subsystem I1 in a short time, as will ES in R2. During the remaining

time of the step, the system will do nothing. This is obviously not the correct physics

of the model. Our method can avoid this partition because we allow R1 to be included

in the motif as shown in Figure 2.3. Thus the motif contains all the reactions in both

directions and it can take a much longer stepsize than the previous partition.

25

Table 2.1: The time used for 100000 realizations of the one second simulation for
Example 1, ϵ = 0.003

Method SSA Tau Leaping Tau Leaping/TDS1 Tau Leaping/TDS2

Time used 5943.97s 1006.84s 8.18854s 1.30296s

1Tau Leaping using time dependent solution of Motif I
2Tau Leaping using time dependent solution of Motif II

2.4 Numerical simulation

In this section we present the results for the numerical simulations of the

examples in Section 2.3. We also demonstrate the time dependent solution for a more

complex real world model of blood coagulation.

2.4.1 Example 1

The first example is the one mentioned in Section 2.3.1:

S0
c1−⇀↽−
c2

S1
c3−→ S2, S1

c4−→ S1 + S3.

The parameters are taken to be c1 = 0.1, c2 = 1, c3 = 1, c4 = 1. The initial

population of each species is given by x0 = 1e + 6, x1 = x2 = x3 = 0. The result of a

one second simulation is shown in Table 2.1.

In this example, the stepsize for S1 is smaller than the stepsize for S0, thus the

stepsize of tau-leaping is constrained by the stepsize for S1. Using the time dependent

solution of S1, we can remove the stepsize requirement of S1 (which tries to keep x1

almost constant during the step) and use the stepsize of S0 for the simulation, which

yields a huge speedup. If we use the time dependent solution of both S1 and S0, we

26

Figure 2.5: Histograms of each species in Example 1. Comparison of result given by
SSA and tau-leaping using time dependent solution of Motif II. Red is SSA, blue is tau-
leaping using time dependent solution, and purple is the overlap of the two histograms.

27

Figure 2.6: The distribution of S3 if (2.9) is used. It has the correct mean value but
the variance is too small.

28

have no stepsize requirement at all! The last method in Table 2.1 simply samples the

population of each species at time t = 1 directly. This explains why it is so fast.

Speed is important, however we don’t want to trade speed at the cost of losing

too much accuracy. The population distributions given by SSA and the last method in

Table 2.1 are compared in Figure 2.5. The result shows that accuracy is not sacrificed.

The distribution of every species is maintained.

Formula (2.10) plays an important role for sampling the population of S3. If

we use only the mean value of x1 to do the sampling, i.e. using (2.9), the distribution

will have a noticeable error. Figure 2.6 shows the distribution of S3 if (2.9) is used. The

distribution has the correct mean but the variance is too small.

2.4.2 Example 2

The second example is the one we used in Section 2.3.2:

E + S
c1

c2

ES
c3→ E + P, ϕ

a4−→ E, E
c5−→ ϕ, ES

c6−→ ϕ.

The parameters were taken to be c1 = 0.0001, c2 = 10, c3 = c5 = c6 = 1, a4 = 100.The

initial population was taken as xS = 1e + 6, xE = 1000, xES = xP = 0.We do a one

second simulation. The results are shown in Table 2.2 and Figure 2.7.

In this example it will not help much if we use the time dependent solution

of only one species (the third method in Table 2.2). This is because both E and ES

require a small stepsize, thus relaxing the stepsize requirement for one of them will not

completely solve our problem. The last method in Table 2.2 uses the time dependent

29

Table 2.2: The time used for 100000 realizations of a one second simulation of Example
2 with ϵ = 0.003

Method SSA Tau Leaping Tau Leaping/TDS1 Tau Leaping/TDS2

Time used 519.708s 787.655s 475.314s 2.57195s

1Tau Leaping using time dependent solution of Motif I
2Tau Leaping using time dependent solution of Motif II

Figure 2.7: Histograms of each species in Example 2. Comparison of result given by
SSA and tau-leaping using time dependent solution of Motif II. Red is SSA, blue is tau-
leaping using time dependent solution, and purple is the overlap of the two histograms.

30

Table 2.3: The time used for one realization of a 700-second simulation of the coagu-
lation model, with ϵ = 0.02. The results are averaged over ten realizations.

Method SSA Tau Leaping Tau Leaping/TDS1

Time used 273.498s 39.2127s 7.61337s

1Tau leaping using time dependent solution of Motif I+II.

solution of both E and ES, thus the stepsize of the method is actually the stepsize of

S, which is much larger than those of E and ES. In the simulation, the stepsize of S is

greater than one second therefore the last method basically samples the population of

each species at t = 1 directly.

2.4.3 Coagulation model

For the final example, we apply our method to a model of blood coagulation [30]

with 43 reactions and 33 species. The coagulation model contains reaction pathways

that form several levels of cascades. Different factors are activated at different time

intervals, which finally leads to the activation of thrombin. Meanwhile, the negative

regulation factor antithrombin III binds to thrombin as well as to some other factors

in order to control the coagulation process. In this model the species which constrain

the stepsize vary as time goes on. However, we do not need to worry about this in the

simulation. Our algorithm does not require any prior knowledge about the system. It

automatically detects the motifs that limit the stepsize and applies the time dependent

solution to them if applicable.

31

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6
x 10

−7

time [s]

co
nc

en
tr

at
io

n
[M

]

concentration evolution of IIa+1.2*mIIa

Tau−Leaping using
time dependent solution
of Motif I+II

ODE

Figure 2.8: Concentration of thrombin (IIa+1.2×mIIa). Blue curve: Tau-leaping using
time dependent solution of Motif I+II. Green curve: ODE.

32

The original model uses concentration for each species rather than population.

We convert the concentration to population by selecting a 1mm long cylinder with

diameter 0.01mm as the control volume. The time used for one realization of a 700

second simulation is shown in Table 2.3.

The last method in Table 2.3 applies the time dependent solution of Motif I

and Motif II. We can see that it already is significantly faster compared to standard

tau-leaping. We can expect that if we fully implement the algorithm and use the time

dependent solution of motifs containing more than two species, it will further accelerate

the speed of the simulation.

According to Table 2.3, if we do a 10000-realization simulation, it takes about

31.7 days for SSA, 4.5 days for tau-leaping, and about 21.1 hours for the time dependent

solution implemented as described above. We have code that can run the simulation

in parallel. Thus the 10000-realization simulation using the third method required only

5.2 hours running on a 4-core workstation. Since it takes too much time to obtain a

complete SSA result of 10000 runs, we do not compare the species distributions for

this model. Instead, we compare the evolution of thrombin’s mean value with the result

given by the ODE model. Here we plot the mean values of IIa+1.2×mIIa given by 10000

tau-leaping runs using the time dependent solution (blue) and the ODE model (green)

in Figure 2.8. The error tolerance of the adaptive tau leaping simulation is 0.02, which

is larger than the previous examples, so the result will not be as accurate. However

Figure 2.8 shows that this result is already able to catch the trend of thrombin.

33

2.5 Conclusion

Tau-leaping using the time dependent solution provides a means to accelerate

the simulation of systems that have rapidly changing species. The key point of the

method is that it uses the time dependent solution for the fast changing species. Thus,

it can use a much larger stepsize than standard tau-leaping, without noticeable loss

of accuracy. The auto detection feature grants the algorithm the ability to handle

systems whose fast changing species vary over time. However, the method still has

some limitations.

1. It can handle only networks that satisfy condition (*). If (*) is violated, we may

not have the formula for the time dependent solution. Actually, it is still possible

to derive PDEs for the generating function, as we do in Appendix A.1. However

the PDEs will be second order and the analytical solution may not be easy to

obtain. Even if we find the solution for the PDEs, we still need to convert the

generating functions into proper random variables that are easy to sample, which

is also nontrivial.

2. For systems that do not have fast-changing species, the method will not benefit

the simulation.

The time-dependent solution for acceleration of tau-leaping is already appli-

cable to many real-world systems. The formulas and hence the implementation are

34

complicated, but we have automated the method so that this is not a limitation. We

have implemented the time-dependent solution into the Stochkit 2 [19] software package.

35

Chapter 3

The Time Dependent Propensity

Function for Acceleration of

Spatial Stochastic Simulation of

Reaction-Diffusion Systems

3.1 Introduction

The NSM [21] is an efficient algorithm for the simulation of the reaction-

diffusion master equation. Approximation-based methods have also been developed for

further speeding up the simulation, such as MSA [24] and DFSP [25], which decouple the

diffusion and reaction processes. When these approximation-based methods simulate

36

the reaction process, they freeze the diffusion process. This is an approximation because

molecules will be diffusing during that time. In this chapter we present a method that

uses the time dependent propensity function [27] to sample the reaction events. The time

dependent propensity function takes into account the change of the propensity values

during a stepsize due to the diffusion process. Thus the method yields a speedup by

avoiding the effort of tracking individual diffusion events, while still enjoying excellent

accuracy.

This chapter is organized as follows. In Section 3.2 we provide a brief introduc-

tion to the SSA. In Section 3.3 we present the new algorithm using the time dependent

propensity function. A simple example is used to illustrate the key ideas. Numerical

experiments are given in Section 3.4, including application of the method to a realistic

model of blood coagulation, and the algorithm is briefly summarized in Section 3.5.

Detailed mathematical derivations are provided in the Appendix of this thesis. The

work described in this chapter was published in The time dependent propensity function

for acceleration of spatial stochastic simulation of reaction-diffusion systems (Jin Fu,

Sheng Wu, Hong Li, and Linda R. Petzold. J. Comput. Phys., 274:524–549, 2014).

3.2 Stochastic simulation algorithm

Consider a homogeneous system of N species S1, . . . , SN and M reactions

R1, . . . , RM . The state vector of the system is denoted by X = {x1, . . . , xN}, where xi

is the population of species i. The SSA is based on the well-mixed assumption. The

37

probability that reaction Ri fires in an infinitesimal interval dt is given by ai(X)dt,

where ai(X) is the propensity function of Ri. In every step, the algorithm advances

the system by sampling the time to the next reaction and the reaction that will fire.

Finally it updates the state of the system.

To sample the next reaction time, the SSA uses the total propensity a0 (X) =∑M
i=1 ai (X) of the system. As the probability that the system will fire a reaction in the

next infinitesimal dt is a0 (X) dt, the time to the next reaction follows an exponential

distribution with parameter a0 (X). This is the distribution that the SSA uses to sample

the next reaction time.

To sample the reaction that the system should fire, the SSA selects the next

reaction with probability proportional to its propensity. Thus the probability of choosing

reaction i is ai (X) /a0 (X). Finally, the SSA updates the system state and repeats these

steps until the simulation is completed.

3.3 Spatial stochastic simulation using the time dependent

propensity function (TDPD)

The SSA performs two tasks in each step: select the time to the next reaction

and select the reaction to be fired. Analogously, TDPD divides each step of the spatial

stochastic simulation into the two tasks described above. In this section we illustrate

how these two tasks are performed in TDPD, using the following simple example. In

38

the spatial stochastic simulation, the state X is given by the number of molecules of

each species in each voxel.

The example system is composed of two voxels and a reaction A + B
c−→ C,

where c is the rate constant of the reaction. An A molecule and a B molecule are able

to react only when they are in the same voxel. Molecules A, B and C can jump between

the two voxels with diffusion propensities κA, κB, κC respectively. Initially, there are

XA
1 A molecules in voxel 1 and XB

2 B molecules in voxel 2.

The first step of our algorithm is to select the next reaction time.

3.3.1 Select the time to the next reaction using the time dependent

propensity

In this section we show how to sample the next reaction time. To achieve this

goal, we must find the distribution of next reaction times. This distribution depends on

the propensity function, which is a function of time.

3.3.1.1 The distribution of next reaction times for TDPD

This section basically restates the procedure that SSA uses to obtain the dis-

tribution of the next reaction time, but in a spatial setting. The conclusion in this

subsection also appeared in [21] and [28] (which can trace back to [31]), where the time

dependent propensity is applied for simulation algorithms in different scenarios.

Let X0 be the initial state of the system and a0 (t,X0) the total propensity of

the system at time t under the condition that no reaction occurs before t. Then the

39

probability Q (t,X0) that no reaction occurs before t satisfies

Q (t+ dt,X0) = Q (t,X0) (1− a0 (t,X0) dt) ,

which yields the ODE

dQ (t,X0)

dt
= −Q (t,X0) a0 (t,X0) ,

whose solution is given by

Q (t,X0) = e−
∫ t
0 a0(s,X0)ds ⇒ P (t,X0) , 1−Q (t,X0) = 1− e−

∫ t
0 a0(s,X0)ds, (3.1)

where P (t,X0) is the probability that the next reaction occurs before time t.

In the SSA, a0 (t,X0) is a constant before the next reaction. However, in the

spatial case it is a function of time t, because the diffusion process changes the system

state over time. Similar to sampling the next reaction time in SSA, the time to the next

reaction can be obtained by solving

r̂ = P (t,X0) , (3.2)

where r̂ is a uniformly distributed random number in (0, 1). Using (3.1) and (3.2) yields

− ln (1− r̂) =

∫ t

0
a0 (s,X0) ds.

Since r , 1 − r̂ is also a uniform random number in (0, 1), it is equivalent to

restate the above as

− ln r =

∫ t

0
a0 (s,X0) ds. (3.3)

Next, we must find a0 (t,X0).

40

3.3.1.2 The time dependent propensity function

As stated above, a0 (t,X0) dt is the probability that a reaction will fire in the

time interval [t, t+ dt], given that no reaction fires before t. This probability is the sum

of the probabilities of every possible reaction event during [t, t+ dt]. Let us look at a

particular A molecule in voxel 1 and a B molecule in voxel 2 in our example. Under

the condition that no reaction fires before time t, the probability that they will react

during [t, t+ dt] is

P (the two molecules react in [t, t+ dt])

=P (they are in voxel 1 at time t and then react in [t, t+ dt])

+ P (they are in voxel 2 at time t and then react in [t, t+ dt])

=P (they are in voxel 1 at time t)× cdt+ P (they are in voxel 2 at time t)× cdt,

(3.4)

where c is the reaction rate.

The probability terms in (3.4) are not trivial. However if we take the assump-

tion that the system is undergoing a pure diffusion process between the reaction events,

it simplifies the problem. Under this assumption, molecules diffuse independently and

their location distribution is the solution of the master equation of the diffusion process.

41

Thus

P (the two molecules are in voxel 1 at time t)

=P (A remains in voxel 1 at time t)× P (B diffuses from voxel 2 to voxel 1 by time t)

,pA11 (t) p
B
21 (t) ,

where pkij(t) (i, j = 1, 2; k = A,B) is the probability that the molecule of species k dif-

fuses from voxel i to voxel j by time t.

Now, under the condition that no reaction occurs before t, (3.4) can be written

as

P (the two molecules react in [t, t+ dt]) = pA11 (t) p
B
21 (t) cdt+ pA12 (t) p

B
22 (t) cdt. (3.5)

Another benefit of assuming that the system is governed by a diffusion process

between the reaction events is that the master equation of the discrete one dimensional

diffusion process with finite voxels and reflecting boundary conditions has a closed form

solution (see Appendix A.5), which also serves as the foundation for constructing the

solutions of higher dimensional diffusion processes. In the example case of two voxels,

pkij (t) (k = A,B) is given bypk11 pk12

pk21 pk22

 =
1

2

1 + e−2κkt 1− e−2κkt

1− e−2κkt 1 + e−2κkt

 , (k = A,B), (3.6)

where κk is the diffusion propensity for species k.

Inserting (3.6) into (3.5) yields the probability for a particular pair of molecules

to react during [t, t+ dt]. Since there are XA
1 ×XB

2 such pairs, the total probability of

42

such events is

P (a reaction occurs in [t, t+ dt] given that no reaction occurs before t)

=XA
1 X

B
2

(
pA11 (t) p

B
21 (t) cdt+ pA12 (t) p

B
22 (t) cdt

)
= a0 (t,X0) dt.

Thus,

a0 (t,X0) = cXA
1 X

B
2

(
pA11 (t) p

B
21 (t) + pA12 (t) p

B
22 (t)

)
=

c

2
XA

1 X
B
2

(
1− e−2(κA+κB)t

)
.

(3.7)

Inserting (3.7) into (3.3) yields the formula for sampling the next reaction time,

− ln r =

∫ t

0
a0 (s,X0) ds =

c

2
XA

1 X
B
2

(
t+

e−2(κA+κB)t − 1

2 (κA + κB)

)
. (3.8)

Here we note that (3.6), which results from the assumption that the system is

undergoing a diffusion process with reflecting boundary conditions, is only an approxi-

mation to the true spatial distribution. To make this point clearer, we denote the true

value of pkij by p̃kij (k = A,B) and take a look at what this value is supposed to be.

3.3.1.3 Error analysis of pkij

Consider a particular A molecule that initially remains in voxel 1. Denote by

R the set of reaction events in which this molecule is involved as a reactant, and by

R the set of all other reaction events. At any time t > 0, under the condition that

no event in R occurs before t, there are only three possible states for the observed A

molecule: it is in voxel 1, it is in voxel 2, or it is already consumed by a reaction event in

R. Denote the probabilities of these three states by p1 (t), p2 (t) and pr (t) respectively.

43

By definition, p̃Aij (t) is the probability that an A molecule diffuses from voxel i to voxel

j at time t, given that no reaction occurs before t. Thus its true value, for example

p̃A1j (t) (j = 1, 2), is given by

p̃A1j (t) =
pj (t)

p1 (t) + p2 (t)
=

pj (t)

p1 (t) + p2 (t)
(p1 (t) + p2 (t) + pr (t))

= pj (t) +
pj (t)

p1 (t) + p2 (t)
pr (t) , pj (t) + r̃j (t) , (j = 1, 2).

Here r̃j(t) is defined as pr(t)pj(t)/(p1(t) + p2(t)). It is clear that r̃j(t) ≤ pr(t), and

r̃1(t) + r̃2(t) = pr(t). (3.9)

Since pA1j (t) is greater than pj (t) (see Appendix A.7 for the proof), it can

also be decomposed into pj (t) plus some positive value, say rj (t). Thus the difference

between the true value p̃A1j (t) and its approximation pA1j (t) can be written as

∣∣pA1j (t)− p̃A1j (t)
∣∣ = |(pj (t) + rj (t))− (pj (t) + r̃j (t))| = |rj (t)− r̃j (t)| .

We can use this equation to bound the difference between p̃A1j (t) and pA1j (t).

A bound for rj (t) can be obtained from

1 =
∑
j

pA1j (t) =
∑
j

(pj (t) + rj (t)) ,

which implies ∑
j

rj (t) = 1−
∑
j

pj (t) = pr (t) . (3.10)

Thus

rj (t) ≤ pr (t) (j = 1, 2),

44

and an upper bound for
∣∣∣pA1j (t)− p̃A1j (t)

∣∣∣ is given by

∣∣pA1j (t)− p̃A1j (t)
∣∣ = |rj (t)− r̃j (t)| ≤ max (rj (t) , r̃j (t)) ≤ pr (t) (j = 1, 2).

The sum of these differences over all voxels is bounded by

∑
j

∣∣pA1j (t)− p̃A1j (t)
∣∣ =∑

j

|rj (t)− r̃j (t)|

≤
∑
j

(rj (t) + r̃j (t)) =
∑
j

rj (t) +
∑
j

r̃j (t) = 2pr (t) .

Here the last equality arises from equations (3.9) and (3.10). Thus the error in pA1j (t)

has an upper bound which is determined by pr (t). But how large can pr (t) be during

a simulation step?

Since pr (t) by definition is the probability of the observed A molecule being

consumed by a reaction before t, given that no reaction events in R occur before t, the

longer the time, the larger that probability will be. As our simulation step size τ is the

time to the next reaction, pr (t) in a simulation step will take its maximum value at

t = τ . Since τ is a random variable, pr (τ) itself is also a random variable. It can be

shown that the expectation of pr (τ) has an upper bound given by (see Appendix A.6)

E (pr (τ)) ≤ max
t

a (t)

a0 (t) + a (t)
, (3.11)

where a (t) is the propensity contributed by the observed A molecule, which is defined

as a (t) = a0(t) − aR̄(t) where a0(t) is the total propensity of the system at time t

given that no reaction occurs before t, i.e. the total propensity of reaction events in

R ∪ R at time t given that no reaction events in R ∪ R occur before t. And aR̄(t)

45

is the total propensity of the reaction events in R at time t given that no event in R

occurs before t. Intuitively, aR̄(t) measures the propensity of reaction events where the

observed molecule is not involved. Thus a0(t)−aR̄(t) can be regarded as the amount of

propensity value that contributed by the observed molecule. When there are many A

molecules, E (pr (τ)) will be small. In this paper we will assume that this condition holds

for the systems we consider. i.e. the propensity contributed by a particular molecule is

much smaller than the total propensity a0 of the overall system.

Besides the error analysis, the computational cost of solving (3.3) is also im-

portant. This topic will be discussed in the next subsection.

3.3.1.4 Complexity of solving (3.3)

In the two-voxel example, the propensity function has the form (3.7), and

equation (3.3) leads to the expression in (3.8). In general if we have L voxels, in voxel

i (i = 1, . . . , L) we initially have XA
i A molecules and XB

i B molecules. Then the total

propensity is given by

a0 (t,X0) = c

L∑
i=1

L∑
j=1

XA
i X

B
j

(
L∑

k=1

pAik (t) p
B
jk (t)

)
= c

(
XA
)T PA(t)

(
PB(t)

)T XB,

(3.12)

where XA is the population vector of species A and PA(t) is the transition matrix of

species A, whose element at row i and column j is pAij(t), and similarly for species B.

From equation (A.5.5) in Appendix A.5, the matrix PA(t) has the form

(
PA(t)

)T
= Vdiag

(
eκ

Aλ0t, . . . , eκ
AλL−1t

)
V−1

(
PA(0)

)T
. (3.13)

46

Here V is the matrix consisting of the eigenvectors of (A.5.4). In the simulation it is

convenient to normalize the eigenvectors, so that V has the properties

V−1 = VT , VTV = I. (3.14)

PA(0) is the initial value of the transition matrix PA(t). In a simulation with given

initial positions, PA(0) = I.

Plugging (3.13) into (3.12), noting properties (3.14) and setting PA(0) = I, we

obtain

a0 (t,X0) = c
(
XA
)T PA(t)

(
PB(t)

)T XB

= c
(
XA
)T Vdiag

(
e(κ

A+κB)λ0t, . . . , e(κ
A+κB)λL−1t

)
VTXB. (3.15)

The integral of a0 (t,X0) can be expressed analytically using (3.15), thus (3.3) becomes,

for this example,

− ln r = c
(
VTXA

)T diag
(
e(κ

A+κB)λ0t − 1

(κA + κB)λ0
, . . . ,

e(κ
A+κB)λL−1t − 1

(κA + κB)λL−1

)
VTXB. (3.16)

It is clear now that the right hand side of (3.15) and (3.16) requires: (a) matrix

– vector multiplications (VTXA and VTXB) and (b) vector – diagonal matrix – vector

multiplication. For (a), The computational cost is O
(
L2
)
. For (b), the computational

cost is O(L). If we have multiple such reaction channels, we need to repeat (a) and (b)

multiple times. However the cost for (a) can be reduced if a species is a reactant for

several reactions, since we need only to perform the matrix – vector multiplication for

this species once and reuse the result whenever needed. During the following Newton

47

iterations, (a) brings no additional cost, as it needs only to be computed once when the

equation is constructed. However, (b) must be recomputed in every iteration.

The computational cost of solving (3.16) does not explicitly depend on the

population of each species. Increasing the population of species A only changes the

elements of vector XA, which does not affect the computational complexity. However

the more molecules in the system, the more reaction events would occur, thus the

more simulation steps are required. Therefore, the molecule population still affects the

simulation cost, but not by making (3.16) harder to solve.

It is worth mentioning that the diffusion propensities κA and κB do not affect

the complexity of (3.16) as well. Unlike the molecule population which may affect the

number of reaction events, diffusion propensities affect the number of diffusion events.

Since we need only to solve (3.16) for reaction events, diffusion events do not add

computational overhead to the simulation. This is an advantage over the algorithms

which track diffusion events. It enables us to simulate systems with large diffusion

propensities without extra computational effort. In the case of increasing resolution,

e.g. divide each voxel into n smaller voxels, the algorithm incurs the overhead due to the

increased value of L. However, algorithms that track diffusion events incur additional

costs due to the large propensities for diffusive transfers. A similar analysis applies to

second order reactions like A+A→ C.

After settling the problem of selecting the next reaction time, our next task is

to select a reaction to fire.

48

3.3.2 Select the next reaction

In the SSA, the probability that a reaction is selected is proportional to its

propensity. For the spatial simulation we will use the same idea. Thus we need first to

specify the set of all possible reaction events, and then select one from the set.

3.3.2.1 The set of reaction events and their propensities

Since we have already sampled the time τ to the next reaction, a typical

reaction event is that the system diffuses from the initial state X0 to a new state Y

at time τ and then fires a reaction in the infinitesimal time interval [τ, τ + dt]. The

probability pY of this event is

pY = P (diffuse from X0 to Y at time τ)× P (fire a reaction in [τ, τ + dt] given state Y) .

(3.17)

Our purpose in this section is to select a possible state Y at time τ , proportional to the

probability pY, and then select a reaction to fire. It is clear from (3.17) that if a state

Y has no possible reaction to fire, e.g. all A molecules in one voxel and all B molecules

in another, then pY will be zero and the probability that this state is selected is zero.

3.3.2.2 The sampling algorithm

Directly using (3.17) to do the sampling work is not easy. Here we will sample

the reaction from another point of view. We sum up the propensities of all potential

reaction events at time τ and select one according to its propensity. In our example, the

49

probability of a particular A molecule from voxel i and a particular B molecule from

voxel j to diffuse to voxel k at time τ and then react during [τ, τ + dt] is pAik(τ)pBjk(τ)cdt,

so the propensity of this particular reaction event at time τ is cpAik(τ)pBjk(τ). Summing

over all such events yields the total propensity

a0(τ) =
2∑

i=1

2∑
j=1

2∑
k=1

XA
i X

B
j cpAik(τ)p

B
jk(τ),

where XA
i and XB

j are the initial populations of A molecules in voxel i and B molecules

in voxel j. In the SSA, the probability of a reaction to be selected is proportional to

its propensity. Here we use the same idea. The probability that we select an event that

an A molecule from voxel i and a B molecule from voxel j react in voxel k at time τ is

XA
i X

B
j cpAik(τ)p

B
jk(τ)

/
a0(τ).

After sampling the reaction event, it is time for us to update the system.

Suppose that the sampled reaction event is that an A molecule from voxel i0 and a B

molecule from voxel j0 react in voxel k0 at time τ . As the sampling result by definition

specifies the voxel location of the two reactant molecules, there is no need to sample

a diffusion process for these two molecules. So we first remove an A molecule from

voxel i0 and a B molecule from voxel j0. Then we sample a diffusion process for the

remaining system up to time τ . Finally, we insert a product molecule C into voxel k0.

This completes the procedure of firing the selected reaction.

Now we have completed a step of the simulation for our simple example. The

next subsection summarizes the algorithm.

50

3.3.3 Summary of the algorithm

In this section we present the algorithm in a more general setting. Suppose

that a one dimensional system has M reactions, N species and L voxels. Assume the

current state of the system is X, and without loss of generality, the current time is 0.

Then the time dependent propensity functions for different types of reactions are

• ϕ
c−→ something

a (t,X) = n× c

where n is the number of voxels that contain the reaction.

• A
c−→ something

a (t,X) = c
L∑
i=1

XA
i

• A+B
c−→ something

a (t,X) = c
L∑

i,j,k=1

XA
i X

B
j pAik (t) p

B
jk (t)

• A+A
c−→ something

a (t,X) = c
∑
i<j

L∑
k=1

XA
i X

A
j p

A
ik (t) p

A
jk (t) +

L∑
i,k=1

c

2
XA

i

(
XA

i − 1
) (

pAik (t)
)2

=
c

2

 L∑
i,j,k=1

XA
i X

A
j p

A
ik (t) p

A
jk (t)−

L∑
i,k=1

XA
i

(
pAik (t)

)2 ,

and the total propensity is given by

a0 (t,X) =

M∑
i=1

ai (t,X) ,

51

where ai (t,X) is the propensity function of reaction i at time t given that no reaction

occurs before t. Here “→ something” could be “→ ϕ” which denotes a reaction that

only consumes molecules.

The simulation steps of the TDPD algorithm are listed below

0. Compute the eigenvalues and eigenvectors using (A.5.3) and (A.5.4) (These values

need only to be computed once).

For each realization, do the following:

1. Initialize the time t = t0 and the system state X = X0.

2. With the system in state X at time t, generate a uniform random number r ∼

U (0, 1) and solve the following equation to obtain a sample τ of the time to the

next reaction,

− ln r =

∫ τ

0
a0 (s,X) ds. (3.18)

3. Compute the transition matrix pij(τ) for each diffusive species using equation

(A.5.5).

4. Sample the reaction Rl to fire. Its index l is an integer random variable between

1 to M with point probabilities

P (l) =
al (τ,X)

a0 (τ,X)
.

5. Sample where the reactant molecules come from and where the product is gener-

ated.

52

• If in step 4 the sampled reaction Rl is ϕ
c−→ something, suppose that there

are n voxels which contain the reaction, and the reaction occurs in voxel k.

Then k is a random variable with point probability

P (k) =


1/n if voxel k contains the reaction

0 if voxel k does not contain the reaction

.

• If in step 4 the sampled reaction Rl is A
c−→ something, suppose that the

reactant originates in voxel i and the product is produced in voxel k. Then

(i, k) is a random variable with point probability (Note that voxel i and voxel

k are not necessarily adjacent).

P (i, k) =
cXA

i p
A
ik (τ)

al (τ,X)
, i, k = 1, . . . , L.

• If in step 4 the sampled reaction Rl is A+ B
c−→ something, supposing that

reactant A originates in voxel i, reactant B originates in voxel j, and the

product is produced in voxel k, then (i, j, k) is a random variable with point

probability

P (i, j, k) =
cXA

i X
B
j pAik (τ) p

B
jk (τ)

al (τ,X)
, i, j, k = 1, . . . , L.

• If in step 4 the sampled reaction Rl is A+A
c−→ something, supposing that the

two molecules originate in voxel i and voxel j, and the product is produced

in voxel k, then without loss of generality, we assume i ≤ j. (i, j, k) is a

53

random variable with point probability

P (i, j, k) =


cXA

i XA
j pAik(τ)p

A
jk(τ)

al(τ,X) i < j

c
2
XA

i (XA
i −1)(pAik(τ))

2

al(τ,X) i = j

, i, j, k = 1, . . . , L.

6. Remove the reactant molecules from the current state X.

• If in step 4 the sampled reaction Rl is ϕ
c−→ something, skip this step.

• If in step 4 the sampled reaction Rl is A
c−→ something and in step 5 the

sampled voxel where the reactant originates is i, then decrease XA
i by one.

• If in step 4 the sampled reaction Rl is A + B
c−→ something and in step 5

the sampled voxels where the reactants A, B originate are (i, j) respectively,

then decrease XA
i and XB

j by one.

• If in step 4 the sampled reaction Rl is A+A
c−→ something and in step 5 the

sampled voxels where the two reactants originate are (i, j), decrease XA
i by

one, then decrease XA
j by one.

7. Sample a diffusion process with reflecting boundary conditions up to time t + τ .

For example, for species A, sample a multinomial random variable for each voxel

i (i = 1, . . . , L),

Ŷi =M
(
XA

i , p
A
i1 (τ) , . . . , p

A
iL (τ)

)
.

Here Ŷi =
(
Ŷi1, . . . , ŶiL

)
is a vector of size L. Ŷij (j = 1, . . . , L) is the sampled

value of the number of A molecules that originated in voxel i at time t and went

54

to voxel j after a time interval τ . Then

Y =

L∑
i=1

Ŷi (3.19)

is a sample of the distribution of A molecules after the diffusion process. Set the

population of species A to be Y. Repeat this procedure for each diffusive species.

8. Put the product molecules of the sampled reaction (in step 4) into the sampled

voxel (in step 5) where they are produced. Set t← t+ τ .

9. Return to Step 2, or else stop the realization.

3.3.4 Computational cost of the algorithm

As shown in the algorithm, the majority of the computational cost arises from

a. Compute the stepsize τ (step (2)).

This has been discussed in Section 3.3.1.4, where we found that the computational

cost is O
(
ML2

)
.

b. Compute the transition matrix P (τ) (step (3)).

From equation (A.5.5), the transition matrix is given by

P (t)T = Vdiag
(
eκλ0t, . . . , eκλL−1t

)
VTP (0)T , (3.20)

where V and λ0, . . . , λL−1 are the normalized eigenvector matrix and eigenvalues

of the coefficient matrix in Equation (A.5.1). In the simulation, P (0)T = I,

thus the computation requires a matrix – diagonal matrix multiplication (cost of

55

O
(
L2
)
) and a matrix – matrix multiplication (cost of O

(
L3
)
). Although we can

reduce the cost by using symmetry properties such as pij = pji = pL+1−i,L+1−j =

pL+1−j,L+1−i, the O
(
L3
)
complexity still holds.

One way to decrease the complexity is to set a cut-off tolerance for the computa-

tion. For example, when we compute p1i (i = 1, . . . , L), we also record the partial

sum of the values that we already computed, i.e. psumk = p11 + p12 + · · · + p1k

(k ≤ L). If the value psumk passes some threshold 1− ϵ, then we stop computing

and set the remaining variables p1,k+1, . . . , p1,L to zero. The computed values are

then normalized by p1i /psumk (i = 1, . . . , k), so that they sum up to one. Here

ϵ is a tolerance chosen small enough so that it does not make a noticeable change

to the distribution. This strategy can protect us from computing the huge num-

ber of very small probabilities when the space is large and the stepsize is small.

In our current code, which is used in Section 4 for the numerical experiments,

this tolerance is set to be 0 as the default value. However, we still terminate the

computation of p1i in two cases: (1). p1i < 0; (2). p1i > p1,i−1. When these

cases occur, it is clear that the numerical precision is no longer reliable, hence the

remaining values of p1k (i < k ≤ L) may be meaningless.

The time spent in (b) increases linearly with respect to the number of diffusive

species, because we need to compute the matrix for each of them. It does not

explicitly depend on the number of reaction channels or the molecule populations.

However, if these result in an increment in the number of reaction events, the

56

computational cost will increase since we will need to compute the transition

matrix more times.

c. Sample a reaction event (steps (4) and (5)).

Step (4) samples the reaction to fire from the total of M reactions. It requires the

time dependent propensity values of the reactions. For example, the propensity

of reaction A + B
c−→ C can be computed from (3.15). Since we have already

computed VTXA and VTXB in step (2), computing (3.15) requires only a vector

– diagnal matrix – vector multiplication, which is O(L). Since we may, in the

worst case, need to compute all of the reaction propensities, the complexity of

step (4) is O(ML).

Step (5) samples the original positions of the reactant molecules at the beginning

of the step and the location where the reaction occurs. This operation can be

done with O
(
L2
)
cost if the algorithm is carefully designed.

Let us use reaction A + B
c−→ C as an example. First we need to sample where

the reactant A molecule originates. From the propensity function (3.15), the

propensity contributed by the A molecules in voxel 1 is given by

aA = c
(
XA

1 , 0, . . . , 0
)

Vdiag
(
e(κ

A+κB)λ0τ , . . . , e(κ
A+κB)λL−1τ

)
VTXB

= cXA
1 vT

1 diag
(
e(κ

A+κB)λ0τ , . . . , e(κ
A+κB)λL−1τ

)
VTXB,

where vT
1 is the first row of the matrix V. Thus the probability that the A

molecule originates in voxel 1 is aA /al (τ,X) , where al (τ,X) is the time dependent

57

propensity of the reaction A+B
c−→ C, which has already been computed in step

(4). Since we have already computed VTXB in step (2), the computation of

aA basically requires a vector – diagonal matrix – vector multiplication, which

is O(L). As the procedure samples over all the voxels in the worst case, it has

O
(
L2
)
complexity, to locate the voxel from which the A molecule originates.

The next task is to locate the voxel from which the B molecule originates. Without

loss of generality, let us assume that the A molecule originates in voxel 1. Then

among aA, the propensity value contributed by the B molecules from voxel 1 is

given by

aAB = cXA
1 vT

1 diag
(
e(κ

A+κB)λ0τ , . . . , e(κ
A+κB)λL−1τ

)
VT

(
XB

1 0 . . . 0
)T

= cXA
1 X

B
1 vT

1 diag
(
e(κ

A+κB)λ0τ , . . . , e(κ
A+κB)λL−1τ

)
v1.

The probability that the B molecule originates in voxel 1 is aAB
/
aA. The compu-

tation of aAB requires a vector – diagonal matrix – vector multiplication, which is

O(L). As the algorithm loops over all the voxels in the worst case, the complexity

of sampling the B molecule’s position is O
(
L2
)
.

The last task in this step is to sample where the reaction event occurs. Without

loss of generality, suppose that both the A molecule and the B molecule originate

in voxel 1. Then the probability that the reaction event occurs in voxel k is

cXA
1 X

B
1 pA1k (τ) p

B
1k (τ)

aAB
.

58

Since we must loop over all the voxels in the worst case, the complexity of this

task is O(L).

Putting everything together, step (5) can be implemented with complexity O
(
L2
)
.

d. Sample the diffusion process (step (7)).

As shown in step (7), to redistribute A molecules originating in voxel i, we must

sample a multinomial random variable, which requires the computation of L − 1

binomial random variables. Thus, to sample the diffusion process for A molecules

originating in every voxel, we must generate O
(
L2
)
binomial random variables.

Once the L multinomial random variables have been generated, we must sum

them up as shown in (3.19), which is an O
(
L2
)
operation. As we need to repeat

the procedure for every diffusive species, the complexity of step (7) is O
(
NL2

)
,

where N is the number of species. This cost can be reduced if the binomial

random variables are sampled in a proper order. For example, to redistribute the

A molecules in voxel i, we can first sample the number of molecules that will stay

in voxel i, then the number of molecules that will move to voxel i− 1, i+1, i− 2,

i+ 2,..., until all of the molecules have been redistributed. Thus if the molecules

are all distributed in a few voxels near voxel i, which is usually the case when the

time stepsize is small, the computational complexity of the redistribution can be

substantially reduced.

59

3.3.5 Discussion

The solution of Equation (3.18)

Newton iteration could be employed to solve Equation (3.18). However, the iteration

may fail to converge occasionally due to a bad initial guess. Changing the initial guess

is one way to deal with this problem, but it still does not guarantee that we can find a

good initial guess in the following trials. Actually, Equation (3.18) has some interesting

properties that can help us to find its root. f(t) = ln r +
∫ t
0 a0 (s,X) ds is a continuous

increasing function of t, and f(0) = ln r < 0 since r is a uniform random number in

(0, 1). Our purpose is to find the root in (0, T], where T is the simulation end time. If

f(T) < 0, as f(t) is an increasing function, it implies that the root, which is the time

to the next reaction event, is not in (0, T]. In this case, we can just sample a diffusion

process up to time T and finish the simulation. If f(T) > 0, then the root is between 0

and T . In this case, we first try Newton iteration. If that fails, we use bisection to find

the root with a given tolerance ϵ. We first evaluate f(T/2). If f(T/2) > ϵ, we search for

the root in (0, T/2). If f(T/2) < −ϵ, we search (T/2, T]. If −ϵ ≤ f(T/2) ≤ ϵ, we stop

the iteration and set T/2 to be the root. Since f(t) is continuously increasing, bisection

search guarantees that we can find the root.

Boundary conditions

In the algorithm as described in this paper, we use reflecting boundary conditions.

However, it also works with other boundary conditions as long as one has the closed

60

form transition probabilities for the corresponding diffusion process. For example, it

can be applied with periodic boundary conditions (See Appendix A.5 for the solution

of discrete diffusion process with periodic boundary conditions).

Extension to higher dimension space

It is straightforward to extend the method to work with a 2D rectangular domain or a

3D cubic domain. For example, on a 2D rectangular domain, the diffusion process in

the ‘x’ direction is independent of the diffusion process in the ‘y’ direction. Thus the

probability for a molecule to jump from voxel (i0, j0) to voxel (i1, j1) is the probability

that it jumps from column i0 to i1 in the ‘x’ direction times the probability that it

jumps from row j0 to j1 in the ‘y’ direction.

3.4 Numerical simulation

In this section we present some simulation results generated by our new TDPD

algorithm and compare with ISSA and NSM simulation results. Computation times

of the three methods were obtained on processor Intel(R) Core(TM) i7-2600 CPU @

3.40GHz with OS windows 7. Here the ISSA method has been implemented with the

dependency graph, thus it updates the propensity functions only when necessary. For

NSM the dependency graph for reactions has been implemented, as well as the strategy

to reuse the random number for voxels that receive molecules from the neighbours

61

Method Realizations Resolution Average time per realization
ISSA 100000 2 voxels 0.02756s
TDPD 100000 2 voxels 0.00121s
NSM 100000 2 voxels 0.02979s
ISSA 10000 50 voxels 51.3864s
TDPD 10000 50 voxels 0.13936s
NSM 10000 50 voxels 41.388s

Table 3.1: CPU times for the one second simulation of Example 1. The first three
entries use a resolution of two subvolumes. The last three entries use a resolution of 50
subvolumes.

[32]. In addition, the software package MesoRD is used in Example 2 for comparison

purposes.

3.4.1 Example 1

This example is from Section 3.3. It consists of two voxels and one reaction

A+B
c−→ C. The initial values used for the simulation were: 10000 A molecules in the

first voxel; 10000 B molecules in the second voxel; no C molecules. The reaction rate

constant is 10−5. The diffusion rates for species A, B and C are 10, 1, 0.1 respectively.

The simulation time is 1 second. The first three entries in Table 3.1 show the CPU time

used for the simulation, where it is apparent that the TDPD method achieves an order

of magnitude speedup over ISSA and NSM.

Histograms of species C in the two voxels at time t = 1s are shown in Fig. 3.1,

and reveal that the new TDPD algorithm is quite accurate. At the top of each figure

we provide two values to measure the difference of the histograms. The definitions of

the two measures are as follows. Let X = (x1, . . . , xn) be a vector that corresponds

62

(a) C molecules in the first voxel (b) C molecules in the second voxel

Figure 3.1: Histograms of species C. Comparison of results given by ISSA and TDPD.
Red is ISSA, blue is TDPD, and purple is the overlap of the two histograms.

to a histogram where xi is the count in bin i, and x = X /
∑n

i=1Xi is the normalized

X. Then for two histograms, we have two normalized vectors x and y. The Euclidean

distance in the histogram figures is defined as the 2-norm of x−y, i.e.
√∑n

i=1 (xi − yi)
2.

The Manhattan distance is defined as the 1-norm of x− y, i.e.
∑n

i=1 |xi − yi|.

For the next test, we increased the resolution of the one dimensional model from

2 voxels to 50 voxels. The diffusion and reaction rates also changed due to the change

of the subvolume size (i.e. the diffusion rates increased 252 times, and the reaction rate

increased 25 times). Initially the A and B molecules were located in the two boundary

voxels of the one dimensional geometry respectively. The last three entries in Table 3.1

show the CPU times used for the simulations. Figure 3.2 shows the average population

of species C in each voxel. The TDPD and NSM methods generate nearly identical

results.

63

0 10 20 30 40 50
4

6

8

10

12

14

16

voxel index

sa
m

pl
e

m
ea

n

TDPD
NSM

Figure 3.2: Average population of species C in each voxel at t = 1. The resolution is 50
voxels. 10000 realizations are simulated for each method.

In addition to the accuracy, we are interested in the computation time of the

algorithm. In the next subsection we will demonstrate how the simulation time scales

with the resolution, the species population and the number of reaction channels for this

example.

3.4.1.1 Scaling of simulation time with respect to resolution

In the previous experiments, we have run the simulation with resolution of 2

and of 50 voxels. In order to show how the simulation time scales with respect to the

64

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Resolution

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

TDPD
NSM
ISSA

(a) CPU time used for one realization of Ex-
ample 1 under different resolutions.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Log scale resolution

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

TDPD, slope=2.0354
NSM, slope=2.0485
ISSA, slope=2.7137
cut line

(b) Log-log plot of Figure 3.3a. The slopes are
computed from the points on the right hand
side of the cut line.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Resolution

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

Computing next reaction time
Computing transition matrix
Sampling diffusion process
Sampling fired reaction
Total time

(c) CPU time used by the four operations in
the TDPD algorithm in one realization under
different resolutions.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Log scale resolution

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

Computing next reaction time, slope=1.8042
Computing transition matrix, slope=2.5573
Sampling diffusion process, slope=1.7148
Sampling fired reaction, slope=1.8594
Total time, slope=2.0354
cut line

(d) Log-log plot of Figure 3.3c. The slopes are
computed from the points on the right hand
side of the cut line.

Figure 3.3: Scaling of computation time with respect to resolution.

65

resolution, we also ran the simulation with resolutions of 10, 20, 30, ..., 100 voxels. For

each resolution, there are initially 10000 A and B molecules in the two boundary voxels

respectively, and 1000 realizations are run with TDPD and with ISSA and NSM for

comparison. Figure 3.3 shows the average CPU time used for one realization. Figure

3.3a shows that TDPD enjoys an orders of magnitude performance increase over ISSA

and NSM. Figure 3.3b is the log scale plot of Figure 3.3a. It shows that the TDPD and

NSM have similar slopes, which are better than the ISSA’s slope. As we have discussed

in Section 3.3.4, there are four operations in the TDPD algorithm that occupy the

majority of computation time. Figure 3.3c plots the time used by the four operations

in each realization under different resolutions. It reveals that sampling the diffusion

process (step (7) in the algorithm) is the most expensive operation. The next expensive

operation is computing the transition matrix (step (3) in the algorithm). Computing

the next reaction time (step (2)) and sampling a reaction event (step (4) (5)) are much

cheaper than the previous two operations (they are overlapped in Figure 3.3c). Figure

3.3d shows the log scale plot of Figure 3.3c. Note that even though computing the

transition matrix is cheaper than sampling the diffusion process in Figure 3.3c, it has a

larger slope in the log-log plot; thus it may be the most expensive operation when the

resolution is very high.

66

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45

50

Initial population of A and B species

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

TDPD
NSM
ISSA

(a) CPU time used for one realization of Ex-
ample 1 with different initial populations.

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Initial population of A and B species in log scale

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

TDPD, slope=1.683
NSM, slope=0.98778
ISSA, slope=0.99669

(b) Log-log plot of Figure 3.4a.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Initial population of A and B species

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

Computing next reaction time
Computing transition matrix
Sampling diffusion process
Sampling fired reaction
Total time

(c) CPU time used by the four operations in
the TDPD algorithm in one realization with
different initial populations.

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Initial population of A and B species in log scale

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

Computing next reaction time, slope=1.7423
Computing transition matrix, slope=1.6278
Sampling diffusion process, slope=1.7038
Sampling fired reaction, slope=1.9006
Total time, slope=1.683

(d) Log-log plot of Figure 3.4c.

Figure 3.4: Scaling of computation time with respect to the initial population. Values
are averaged over 1000 realizations.

67

3.4.1.2 Scaling of simulation time with respect to species’ population

In the previous experiments, we initially have 10000 A molecules and 10000

B molecules in the two boundary voxels respectively. In this subsection, we run a set

of simulations with initially 1000, 2000, 3000, ..., 10000 A and B molecules in the two

boundary voxels respectively. The resolution is set to be 50 voxels. Figure 3.4 shows the

computation times. Figure 3.4a plots the CPU time used by ISSA, NSM, and TDPD,

for one realization with different initial populations. TDPD performs the best of the

three. Figure 3.4b is the log-log plot of Figure 3.4a. It shows that ISSA and NSM have

a slope near one while TDPD has a slope greater than one. This result can be explained

as follows: In a system where the number of diffusion events overwhelms the number

of reaction events, when the population of A and B molecules increases k times, the

number of diffusion events in the system will also increase roughly k times. Thus ISSA

and NSM must take roughly k times more steps to run the simulation, which explains

why Figure 3.4a and 3.4b shows a linear relationship between ISSA, NSM and the initial

population. In contrast, the computation time of TDPD is immune from the impact of

diffusion. It filters the massive linear increment of diffusion events. However, it must

still deal with the increment from reaction events. As the populations of both A and

B increase by k times, the time dependent reaction propensity increases k2 times at

the beginning the simulation, which explains why the computation time of TDPD has

a slope larger than one in Figure 3.4b. Figures 3.4c and 3.4d show the time used by the

68

four main operations in TDPD. Figure 3.4d shows that the four operations have similar

slopes.

3.4.1.3 Scaling of simulation time with respect to the number of reaction

channels

In this subsection we ran a set of simulations with the reaction channel copied

k (k = 1, 2, 5, 10) times. For example, when k = 2, the system has two reactions, both

of which have the form A + B
ck−→ C. We set the reaction rate ck = c/k for all the

reaction channels, where c = 10−5 is the original reaction rate. All of the simulations

should have a similar number of reaction events; thus the number of reaction channels

will be responsible for the change of computation times. For all the simulations we set

the resolution to be 50 voxels, with initially 10000 A molecules at one end, and 10000 B

molecules at the other end. The computation times are shown in Figure 3.5. Figure 3.5a

shows that the computation time for ISSA and NSM increases significantly with respect

to the number of reaction channels. The log-log plot of Figure 3.5b shows that the slope

of the computation time of TDPD is much smaller than one, which means that the

increase in the number of reaction channels has little influence on the simulation cost of

TDPD. Further decomposition of the computation time in TDPD are shown in Figures

3.5c and 3.5d. As the number of species is the same for all the simulations, computing

the transition matrices and sampling the diffusion processes take a similar amount of

time for each simulation. The time spent in sampling the reaction events (steps 4 and

69

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Number of reactions

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

TDPD
NSM
ISSA

(a) CPU time used for one realization of Ex-
ample 1 with different numbers of reaction
channels.

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

Number of reactions

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

TDPD, slope=0.033526
NSM, slope=0.72211
ISSA, slope=0.56703

(b) Log-log plot of Figure 3.5a.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of reactions

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

Computing next reaction time
Computing transition matrix
Sampling diffusion process
Sampling fired reaction
Total time

(c) CPU time used by the four operations in
the TDPD algorithm in one realization with
different numbers of reaction channels.

10
0

10
1

10
−3

10
−2

10
−1

10
0

Number of reactions

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

 Computing next reaction time, slope=0.57244
Computing transition matrix, slope=0.01135
Sampling diffusion process, slope=0.004379
Sampling fired reaction, slope=0.015979
Total time, slope=0.033526

(d) Log-log plot of Figure 3.5c.

Figure 3.5: Scaling of computation time with respect to the number of reaction channels.
Values are averaged over 1000 realizations.

70

5 in the algorithm) is influenced by the number of reaction channels. In step 4 the

index of the reaction channel is sampled, and in step 5 the locations where the reactant

molecules originate and where the reaction event occurs are sampled. As analyzed in

Section 3.3.4, the leading term of the complexity comes from step 5, which does not

depend on the number of reaction channels. Thus the corresponding curve in Figure

3.5c looks almost flat. The time spent on computing the next reaction time, however,

has a strong relationship with the number of reaction channels. This is because when

we solve (3.18), we need to compute the time dependent propensity for every reaction

channel; thus the more channels we have, the more values we need to compute. Figure

3.5c shows that this part is responsible for almost all of the increase in computation

time in the TDPD simulation.

3.4.2 Example 2

Example 2 is a two dimensional problem with 3 × 3 voxels. The chemistry

consists of the following first and second order reactions:

S0 + S0
c1−→ S1, S1

c2−→ S0 + S0, S0 + S1
c3−→ S2, S2 + S3

c4−→ S3 + S4

To make the example spatially inhomogeneous, we begin with one S3 molecule,

which is fixed in the bottom right corner. Thus an S2 molecule can be converted to S4

only when it travels to the bottom right voxel and reacts with the S3 molecule.

71

Method Realizations Average time per realization
ISSA 100000 8.65476s
NSM 100000 8.13928s
TDPD 100000 0.09501s

Table 3.2: Computation time for the ten second simulation of Example 2.

Initially we have 10000 S0 molecules in the top left corner. The rate parameters

used in the simulation are given by

c1 = 10−4, c2 = 0.1, c3 = 0.01, c4 = 0.1,

and the diffusion rates for the species are given by

S0 : 100, S1 : 10, S2 : 5, S3 : 0, S4 : 1.

The time used for a ten second simulation is shown in Table 3.2. The new

algorithm has a significant speedup over ISSA and NSM.

To demonstrate the accuracy of our algorithm, we plotted the histograms of

the product S4 in voxels (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) (Here voxel (i, j) means the

voxel at row i and column j), together with the distribution given by ISSA, in Figure

3.6. It is evident that our algorithm can produce very accurate results.

For this model we have also increased the resolution to compare the perfor-

mance of different methods. Figure 3.7 shows the CPU times used by different methods

for one realization of Example 2. It is evident that TDPD enjoys substantially better

performance than the other methods. Figure 3.7c is the log scale plot of the CPU times.

72

(a) S4 molecules in the voxel (1,1) (b) S4 molecules in the voxel (1,2)

(c) S4 molecules in the voxel (1,3) (d) S4 molecules in the voxel (2,2)

(e) S4 molecules in the voxel (2,3) (f) S4 molecules in the voxel (3,3)

Figure 3.6: Histograms of species S4. Comparison of result given by ISSA and TDPD.
Red is ISSA, blue is TDPD, and purple is the overlap of the two histograms.

73

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Resolution (number of voxels in x and y directions)

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

TDPD
NSM
ISSA
MesoRD

(a) CPU times used by TDPD, NSM, ISSA
and MesoRD for one realization of Example 2
under different resolutions.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Resolution (number of voxels in x and y directions)

C
P

U
 ti

m
e

pe
r

re
al

iz
at

io
n

(s
ec

on
d)

TDPD
NSM

(b) Zoom in on the TDPD and NSM curves
from Figure 3.7a.

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Resolution (number of voxels in x and y directions)

Lo
g

sc
al

e
C

P
U

 ti
m

e
pe

r
re

al
iz

at
io

n
(s

ec
on

d)

TDPD, slope=2.2472
NSM, slope=2.1928
ISSA, slope=3.8678
MesoRD, slope=2.1783

(c) Log-log plot of Figure 3.7a

Figure 3.7: Scaling of computation time with respect to resolution.

74

It shows that the computation time of the TDPD method has a similar slope as the

NSM and MesoRD, which is smaller than the ISSA’s slope.

3.4.3 Example 3: Demonstration of the error behavior of the TDPD

method

In Section 3.3.1.3 we noted that the error of the simulation might be large

when E (pr (τ)) is large, where E (pr (τ)) is bounded by (3.11). It is evident that when

the total propensity of the system a0(t) is much larger than the propensity contributed

by a single molecule a(t), the right hand side of (3.11) will be small, thus the simulation

will have good accuracy. In this section we will use an example to demonstrate this

point.

Suppose that we have a one dimensional system with absorbing boundary

conditions, with a population of A molecules that are initially in the central voxel.

There are 50 voxels on both sides of the central voxel. The diffusion coefficient is set to

be 300 for the simulation. The simulation time is one second.

In order to perform the simulation with our algorithm, we modified the sys-

tem slightly by replacing the escaping diffusion events in the two boundary voxels by

absorbing reaction events A + B
c−→ B, where we put one non-diffusive B molecule in

each boundary voxel and the reaction rate is also set to be c = 300. It is obvious that

the modified system is virtually equivalent to the previous diffusion system with ab-

sorbing boundary condition (since species A is governed by the same reaction-diffusion

75

master equation in the two systems), and the “B molecules” are actually the holes in

the boundary that allow molecules to escape. Now we have a diffusion system with

reflecting boundary conditions, plus an absorbing reaction in the two boundary voxels.

We chose this example in part because its analytical solution is available (See

Appendix A.5). Thus, it is convenient for us to compare the numerical solution with

its true solution for error analysis purposes. In this section, we will discuss how the

number of molecules, geometry resolution, and number of reaction channels affect the

accuracy.

3.4.3.1 Accuracy with respect to the number of molecules

Equation (3.11) indicates that the simulation may incur a large error when the

total propensity a0(t) is not large compared with the propensity contributed by a single

molecule. We can maximize this error by pushing it to an extreme in which the system

involves only one molecule initially, thus a0(t) = a(t). In this case, the algorithm will

directly sample the time of the absorbing reaction. If it is larger than the terminating

time, the molecule survives and its location will be sampled according to a diffusion

process with reflecting boundary conditions, as stated in the algorithm. Thus after

100,000 realizations we obtain a distribution of results (shown in Figure 3.8a) which

suggests that the location of the surviving molecules are that of a diffusion process

with reflecting boundary conditions. However, this is obviously not correct, since we

76

0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

voxel index

pr
ob

ab
ili

ty

absorbing BC
reflecting BC
1 molecule ×
100000 realizations
100000 molecules
× 1 realization

(a)

1 10 100 1000 10000 100000
2

4

6

8

10

12

14

16
x 10

−3

Initial population in each realization

E
rr

or

(b)

Figure 3.8: (a) Simulation results for Example 3. The blue line is the analytical solu-
tion of a diffusion process with absorbing boundary conditions. The green line is the
analytical solution of a diffusion process with reflecting boundary conditions. The red
stars are from 100,000 realizations with one molecule initially. The circles are from one
realization with 100,000 molecules initially. (b) Errors for simulations with different
initial populations.

know that the solution should be that of a diffusion process with absorbing boundary

conditions.

Next we created another simulation for comparison. We initially put 100,000

molecules in the central voxel and performed only one realization. This time the total

propensity of the system is much larger than the propensity contributed by a single

molecule. The analysis in Section 3.3.1.3 predicts that the simulation should give us

a much better result. Figure 3.8a verifies that this simulation generates a distribution

which is quite close to the diffusion process with absorbing boundary condition.

In order to quantitatively show how the error changes with respect to the num-

ber of molecules in the simulation, the following simulations were also performed: 10,000

realizations with initial population 10 molecules; 1000 realizations with initial popula-

77

tion 100 molecules; 100 realizations with initial population 1000 molecules; and 10 real-

izations with initial population 10,000 molecules. Each experiment has the same number

of molecule samples and generates a probability distribution psimulate = (p1, . . . , pL),

where pi is the probability that a survived molecule is observed in voxel i. Comparing

this result with the analytical solution panalytical computed from (A.5.12), we can obtain

the error of the simulation as

Error = ∥psimulate − panalytical∥2 . (3.21)

Figure 3.8b shows the errors in each simulation. As expected, the error decreases as the

initial population increases.

This result can also be explained from another point of view. In each step of the

simulation, the algorithm uses the diffusion process with reflecting boundary conditions

to approximate the true distribution, which in this example is the diffusion process with

absorbing boundary conditions. The true distribution and our approximation start from

the same initial condition and diverge as time goes on. Thus the error increases as the

stepsize increases. This is quite like using the explicit Euler method for solving ODEs,

which uses a straight line to approximate the true solution curve in each step. In the

simulation with one molecule in the system, a realization involves at most one reaction

event, thus it needs only one step to finish the simulation. As a result, the stepsize is

very large and the error will be significant. On the other hand, in the simulation with

100,000 molecules, 7375 reaction events occur. Thus the average stepsize is roughly

1.36× 10−4s, which significantly reduces the error of the simulation.

78

3.4.3.2 Accuracy with respect to the resolution

In the previous simulations, we have 50 voxels on each side of the central voxel,

i.e. 101 voxels in total. In order to explore how the accuracy changes with respect to

the resolution, we ran another set of simulations with resolution of 21 voxels, 41 voxels,

..., 101 voxels. For each simulation we put 100,000 A molecules in the central voxel

initially. The absorbing reactions that occur in the two boundary voxels have a reaction

rate that has been set equal to the diffusion rate, which is updated for each simulation

due to the change of resolution. Ten realizations are run for each parameter (so there are

1,000,000 molecule samples in total for each simulation). The error of each simulation is

computed as in (3.21). Here the analytical solution is computed with L = 21, 41, . . . , 101

respectively. Table 3.3 shows the error under different resolutions. The table suggests

that the error does not change much when the resolution changes. As far as (3.11)

is concerned, it means that the ratio between the propensity contributed by a single

molecule and the total propensity of the system is similar for each simulation. In this

simple system, it implies that in each simulation the total number of molecules that

remain in the system is at the same level. The last entry in Table 3.3 shows the number

of survived molecules in each simulation. As we expected, the number of molecules

that survived the one second experiment is similar for each simulation with different

resolutions. This result agrees with our intuition: the number of molecules that escape

the one dimensional channel is a property of the system, which should not depend on

the resolution used by a simulation.

79

Resolution 21 41 61 81 101
Error

(
×10−4

)
9.4304 8.3135 9.1124 9.8801 10.724

Survived molecules 93654.8 92969.4 92696.4 92608.2 92454.2

Table 3.3: Simulation error under different resolutions. Ten realizations are used for
each parameter.

Figure 3.9: Absorbing reaction channels are added in the yellow voxels, whose reaction
rates are set to be 3.

3.4.3.3 Accuracy with respect to the number of reaction channels

In the previous experiments, molecules can only escape the system from the

boundary voxels. In order to show how the error changes with respect to the number

of reaction channels, we will run simulations with more and more voxels that have

absorbing reaction channels in them. I.e. we drill holes on more and more voxels in the

channel. Figure 3.9 shows how the experiments are designed. For all the simulations we

use 101 voxels as the resolution. The initial population in the central voxel is 100,000

molecules. The diffusion rate is 300. The yellow voxels in the figure have absorbing

reaction channles in them, whose reaction rates are set to be 3. We will set more and

more voxels to be yellow from the two ends of the channel, thus the simulations will

have 10, 20, 30, 40, 50 voxels on each end having absoring reactions (including the red

voxel at the boundary). Ten realizations are used for each parameter.

80

Number of absorbing 20 40 60 80 100reaction channels
Error

(
×10−3

)
1.0277 1.1830 1.3467 1.9767 4.1608

Survived molecules 90657.6 82230.9 63224.1 30961.2 5152.4

Table 3.4: Simulation error with different number of reaction channels. Ten realizations
are used for each parameter.

Since for this example the analytical solution is no longer easy to compute,

we use the simulation result from exact methods (here we use NSM) instead. Table

3.4 shows the errors of the simulations. It reveals that the error has an increasing

trend as the number of absorbing channels increases. This trend can also be explained

by equation (3.11). The more absorbing channels the system has, the fewer molecules

remain in the system. Thus the ratio between the propensity contributed by a single

molecule and the total propensity of the system will increase, which implies that the

error of the simulation will increase as well. The last entry in Table 3.4 supports

our reasoning: the number of molecules survived the one second simulation decreases

significantly as the number of absorbing reaction channel increases.

3.4.4 Coagulation model

The final example is a widely used model of blood coagulation [30] with 43

reactions and 33 species. When a blood vessel is wounded, it exposes Tissue Factor (TF)

on the wounded vessel surface. TF initializes the extrinsic pathway of the coagulation

cascade, which generates thrombin in the vessel. Thrombin then activates platelets,

which form clots to prevent the loss of blood (the latter process is not modeled here).

81

(a) A control volume of 15× 30× 30 (µm)
3. (b) A control volume of 60 × 30 × 30 (µm)

3,
which is four times the volume in (3.10a).

Figure 3.10: The geometry of the control volumes for our simulation. The red surface
at the bottom represents the wounded blood vessel surface which contains TF.

The original ODE model has for its state variables the concentration of each

species as opposed to population, which is tracked in discrete stochastic simulation.

We converted the concentration to population by selecting a control volume as shown in

Figure 3.10. The bottom surface (the red surface in Figure 3.10) represents the wounded

blood vessel. We begin with a control volume of 30µm× 30µm× 15µm (Figure 3.10a),

where the 30µm × 30µm area is of the same level as the cross section of a capillary.

The diffusion rates are set to be 50µm2/s for every species. Since the workload of the

simulation is very heavy, it is important for us to reduce the complexity of the model.

As the spatial inhomogeneities arise mainly from the species and reactions that belong

to the wounded surface, we assume that the system is homogeneous in the ’x’ and ’y’

directions but inhomogeneous in the ’z’ direction. Thus we discretize space in the z

82

Method Control volume Realizations Average time
length× width2 (µm3) per realization

TDPD 15× 302 60 3745s
ISSA 15× 302 1 56403s
NSM 15× 302 1 51519s
TDPD 60× 302 30 84420s

Table 3.5: The time used for the 700 second simulation of the coagulation model.

direction, yielding a 1D model. In the simulation, we divide the space into five voxels

along the z axis. Since TF appears only on the wounded vessel surface, we assume

that TF and any compound involving TF exists only in the bottom voxel, and does not

diffuse upward. In this example the ISSA simulation is extremely slow (Table 3.5 shows

the ISSA speed). Thus we will compare the results of our method to a PDE simulation

(i.e. we compare the dynamics of mean thrombin concentration from the stochastic

simulation to the PDE result). Both stochastic and PDE models use the same height

of 30µm for the control volume. However, intuition tells us that the larger the control

volume, the less the stochastic effect will be. Thus we show the results for another

stochastic simulation which increases the length of the control volume (Figure 3.10b).

We expect that the stochastic simulation result should approach the PDE result, as the

control volume gets larger.

The times required for the 700 second simulation are shown in Table 3.5. Due

to the huge number of molecules, the simulation of diffusion events makes ISSA slow for

this model. However, by using the time dependent propensity function in the simulation

83

to avoid sampling of individual diffusion events, we can obtain simulation results at a

greatly reduced computational cost.

Figure 3.11 shows the mean values (over space and over all realizations) of the

thrombin concentration given by the stochastic simulations and the concentration given

by the PDE solution.

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6
x 10

−7

time [s]

co
nc

en
tr

at
io

n
[M

]

Evolution of averaged concentration of IIa+1.2*mIIa

Volume=15×302(um3)

Volume=60×302(um3)
PDE

Figure 3.11: Dynamics of the averaged thrombin concentration for different control
volumes. Here IIa is activated thrombin, and mIIa is meizothrombin which is an inter-
mediate that is produced during the conversion of prothrombin to thrombin.

The trend of the curves follows our expectations. It is evident from the figure

that when the control volume is small, the peak value of the average thrombin response

84

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7
x 10

−7

time [s]

co
nc

en
tr

at
io

n
[M

]

concentration evolution of IIa+1.2*mIIa

Stochastic realizations
Mean value of the realizations
PDE

(a) 60 stochastic realizations with control vol-
ume 15× 302(µm3).

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6
x 10

−7

time [s]

co
nc

en
tr

at
io

n
[M

]

concentration evolution of IIa+1.2*mIIa

stochastic realizations
Mean value of the realizations
PDE

(b) 30 stochastic realizations with control vol-
ume 60× 302(µm3).

Figure 3.12: Stochastic realizations and their averaged responses

is low. As the control volume increases, the averaged response is approaching that of

the PDE solution. An explanation of the result is the self-propagation of thrombin.

Thrombin can accelerate its formation by activating other factors which can form cata-

lysts for thrombin generation. This can also be observed from the PDE curve in Figure

3.11. (Initially the curve has a small slope; as the concentration of thrombin increases,

the slope of the curve increases dramatically). However, in the stochastic model, the

situation is more complex.

Due to stochastic effects, the initialization time of thrombin response differs

among realizations. This can be easily observed if we plot all the trajectory curves.

Figure 3.12a shows that when the control volume is small (15× 302µm3), the variation

between different realizations can be significant. This variation leads to the fact that

the average of the realization curves has a wider bell shape with a lower peak value (the

blue curve in Figure 3.12a) compared with the PDE solution (the red curve in Figure

85

3.12a). When we increase the control volume (60× 302µm3), as shown in Figure 3.12b,

the variation between realizations becomes smaller. As a result, the bell shape mean

response curve becomes narrower and higher (the blue curve in Figure 3.12b), which

more closely matches the PDE curve.

3.5 Conclusion

Spatial stochastic simulation using the time dependent propensity provides a

means to accelerate the simulation of systems whose diffusion events overwhelm reaction

events. The key point of the method is that it uses the time between adjacent reaction

events as the simulation stepsize; individual diffusion events during the step are not

tracked. However the effect of the diffusion process is still accounted for by using the time

dependent propensity functions for each reaction. Thus the method yields a speedup by

avoiding the sampling of the individual diffusion events, while still maintaining excellent

accuracy. The idea of the method can also be easily extended for simulations of 2D

rectangular regions and 3D cuboid regions.

However, the method still has some limitations.

1. It accelerates the simulation only when the number of diffusion events is much

larger than that of the reaction events. When this condition does not hold, the

overhead of computing time dependent propensity functions will slow down the

simulation compared to an exact method.

86

2. In the algorithm, a molecule is allowed to diffuse to any subvolume in one step.

However in some cases, it is more likely that a molecule walks in a local region as

opposed to traversing the whole space during a stepsize. Thus, keeping track of

the molecule in a truncated space may greatly decrease the computational cost.

As future work, we have designed an algorithm that implements this idea and a

general purpose code is now under development.

3. For arbitrary geometry or unstructured meshes, the closed form solution of the

probabilities that one molecule jumps from one voxel to another voxel may not be

easy to obtain. We may need to use approximation functions (e.g. compute the

value at some time points and then do interpolation) in these cases. It might be

helpful to store these values so that they can be reused in the simulation.

87

Chapter 4

Time dependent propensity for

diffusion (TDPD) method on

unstructured mesh

4.1 Introduction

In Chapter 3, the TDPD algorithm on a regular mesh in rectangular domains

was presented. In this chapter, we extend the algorithm to unstructured mesh.

88

(a) Region of the space that a molecule can
diffuse to in one step (the yellow voxels).

(b) Two molecules can react if both of them
diffuse to the same orange voxel.

Figure 4.1: Demonstration of the FSP

4.2 TDPD on unstructured mesh

This section demonstrates how to apply the TDPD algorithm on an unstruc-

tured mesh. We begin with the difference between an unstructured mesh and a regular

mesh.

4.2.1 Difference between regular and unstructured mesh

In Chapter 3, a regular mesh was used for the TDPD algorithm. One advantage

of the regular mesh in a rectangular domain is that the transition probability from one

voxel to another has a closed form solution, which simplifies the computation of the time

dependent propensity. However, on an unstructured mesh we lose such convenience. In

order to decrease the computational cost, we need to restrict the space into which a

molecule can diffuse in one step (as shown in the yellow region in Figure 4.1a). In

simulations, this region may not necessarily to be a circle.

89

Suppose the system has only one reaction channel A+B → ϕ, and the current

time is 0. As shown in Figure 4.1b, a molecule of species A in voxel i and a molecule of

species B in voxel j can diffuse to the nearby yellow voxels in one step with stepsize τ .

The overlap of the two regions is shown in orange. If both of the two molecules diffuse

to the same voxel in the orange region, they have a chance to fire a reaction. Denote

by aij(t) the propensity function of the reaction at time t ≤ τ . Then aij(t)dt is the

probability that the two molecules will react in the infinitesimal time interval [t, t+ dt],

given that they still survive at time t. Under the restriction that the molecules can

diffuse only within the yellow region, aij(t)dt can be represented as

aij(t)dt = P(the two molecules react in [t, t+ dt])

=P(they are in the same voxel with orange color at t)×P(they react in [t, t+ dt])

=
∑

k∈orange region
PA
ik(t)P

B
jk(t)ckdt, (4.1)

where PA
ik(t) and PB

jk(t) are the probabilities of the A and B molecules to diffuse to voxel

k at time t, given that they are restricted to their yellow regions. ck is the reaction rate

in voxel k.

The next question is: how to compute PA
ik(t) and PB

jk(t)?

4.2.2 The DFSP algorithm

The computation of PA
ik(t) and PB

jk(t) requires some of the results from [25],

the paper which introduces the Diffusive Finite State Projection (DFSP) method. Thus

we will briefly introduce the DFSP algorithm.

90

Figure 4.2: Time line of the simulation.

The purpose of DFSP is to avoid tracking the diffusion events. To reach this

goal, the algorithm splits the reaction and diffusion processes in each step, and simulates

them in turn. Figure 4.2 illustrates the time line for DFSP. It advances the system with

a stepsize τ . In each step, e.g. the first step, it does the following:

(i) Simulate the reaction process. e.g. using SSA to simulate the system up to time

τ with no diffusion events. The τi, τj , τk in Figure 4.2 indicate the reaction event

times.

(ii) At the end of the step, i.e. at time τ , sample a diffusion process to redistribute

the molecules in each voxel to their FSPs using the transition matrices.

Computing the transition matrix is expensive. Thus DFSP assumes that a

molecule can diffuse only in a finite region in one step, which is called the finite state

projection (FSP) in the algorithm. This name has previously appeared in [33] for solving

chemical master equations. DFSP needs only to compute the transition matrix over the

FSP. i.e. the probabilities pAij that an A molecule diffuses from voxel i to voxel j at time

τ , where τ is the simulation stepsize and voxel j is inside the FSP (the yellow region in

Figure 4.1a). The probabilities are normalized so that pAij sum up to one over the voxels

91

in the FSP. ∑
j∈yellow region

pAij = 1.

DFSP computes the transition matrix by solving the diffusion master equation over the

FSP.

TDPD uses a similar simulation procedure as DFSP, except that it differs from

DFSP in two points. The first is that TDPD does not completely split the reaction and

diffusion processes. In DFSP, reactants in different voxels cannot react in one step, even

though they may be in neighboring voxels. In TDPD, diffusion is taken into account

when sampling the reaction process. Thus, reactants originating in different voxels have

a chance to react with each other in one step, as long as they diffuse to the same voxel.

The other difference between TDPD and DFSP is that TDPD allows a molecule to

diffuse outside its FSP in one step, which is reasonable since a molecule has a positive

probability to diffuse anywhere in one step, even though the probabilities could be small

for far away voxels. Diffusing out of the FSP is forbidden in DFSP.

The first difference implies that TDPD should use NSM [21] to sample the

reaction events rather than SSA in step (i). This is because in DFSP, voxels are isolated

in step (i). Thus DFSP can use SSA to simulate the reaction process for each voxel

independently. However, in TDPD the voxels are coupled due to the consideration

of diffusion. Thus the order of the events matters since one event may change the

propensities of several voxels. Using NSM enables the algorithm to effectively simulate

the events according to their time order.

92

The second difference implies that TDPD could have both reaction events and

“diffusion events” in step (i). A diffusion event indicates that a molecule passes the

boundary of its FSP. This never happens in DFSP since it does not allow a molecule to

diffuse out of its FSP in one step.

Now we can outline the TDPD procedure in a similar way as for the DFSP.

As shown in Figure 4.2, TDPD runs the simulation with a stepsize τ . In each step, e.g.

the first step, it does the following:

(I) Simulate the reaction and “diffusion” events using NSM. Here a “diffusion” event

means that a molecule diffuses out of its FSP.

(II) At the end of the step, i.e. at time τ , sample a diffusion process to redistribute

the molecules in each voxel to their FSPs, using the transition matrices.

Here the diffusion process in step (II) is different from the “diffusion” events in step

(I). In a “diffusion” event in step (I), a molecule will escape its FSP. However in the

diffusion process in step (II), a molecule will diffuse to a voxel inside its FSP.

4.2.3 Time dependent transition matrix on an unstructured mesh

Next we return to the question of computing PA
ik(t) and PB

jk(t). Applying the

matrix exponential technique from DFSP, we can compute the transition matrix pAik

with stepsize τ . However, here we need PA
ik(t) for any time t ≤ τ . A natural way to

compute this is by linear interpolation:

PA
ik(t) =

pAik
τ

t = rAikt. k ̸= i. (4.2)

93

Here rAik = pAik/τ can be considered to be the probability change rate. In the case of

k = i, the probability PA
ii (t) is actually decreasing over time. The interpolation for this

voxel is formulated as

PA
ii (t) = 1− 1− pAii

τ
t = 1 + rAii t. (4.3)

We note that rAii = −
(
1− pAii

)
/τ is also a probability change rate, which is negative in

this case.

Combining the probability pAik from the DFSP and the interpolation formulas

(4.2) and (4.3), we obtain the transition matrix for any species originating in any voxel.

As mentioned in subsection 4.2.2, one of the differences between TDPD and

DFSP is that TDPD considers the effect of diffusion when simulating the reaction

process. Thus, reactants originating in different voxels may contribute to the propensity

function as well. In the next subsection, we demonstrate how the propensity function

is constructed in TDPD.

4.2.4 Computing the time dependent propensity

As mentioned in step (I) in section 4.2.2, TDPD uses NSM to simulate the

reaction and “diffusion” events in each step. Thus we must compute the time dependent

propensity and then generate the next event time, for each voxel. In this subsection we

show how to compute the reaction propensity ai(t) for a given voxel i. The diffusion

propensity will be developed in the next subsection.

94

In the original NSM algorithm in [21], only reactants in the same voxel can

contribute propensity in each step. However, in a TDPD simulation step, reactants

originating in different voxels may also contribute propensity, as shown in Equation

(4.1) for the example in Figure 4.1b. Thus in TDPD, we count the propensity ai(t)

for voxel i as follows: for a reaction event whose reactants all originate in voxel i, its

propensity contributes to ai(t). If one of the reactants originates in voxel i and the other

reactant originates in voxel j, half of its propensity contributes to ai(t). The other half

contributes to aj(t), the propensity for voxel j.

Let us continue with the example in Figure 4.1b. Equation (4.1) gives the

time dependent propensity aij(t) for a single pair of A and B molecules. Here PA
ik(t)

and PB
jk(t) use the linear interpolation (4.2) or (4.3). Thus aij(t) is a polynomial in t of

up to second order.

Suppose there are XA
i (0) A molecules in voxel i, and XB

j (0) B molecules in

voxel j at time 0. Then the total propensity of these molecules at time t ≤ τ is

XA
i (0)X

B
j (0)aij(t), since there are XA

i (0)X
B
j (0) A–B molecule pairs.

Since XA
i (0)X

B
j (0)aij(t) is contributed to by reactants from both voxel i and

voxel j, only half of its value, i.e.

aA,B
ij (t) =

1

2
XA

i (0)X
B
j (0)aij(t), (4.4)

is counted in ai(t). Here the order of the superscript matters. aA,B
ij means A originates

in voxel i and B originates in voxel j, while aB,A
ij means B originates in voxel i and A

originates in voxel j.

95

Summing up aA,B
ij (t) over j yields the total propensity aAi (t) that species A,

originating in voxel i, contributed to ai(t),

aAi (t) =

N∑
j=1

aA,B
ij (t), (4.5)

where N is the total number of voxels. In simulation we do not need to go over j from

1 to N . We need only add up the voxels whose FSP of species B overlap with the FSP

of species A originating in voxel i. Similarly, the propensity contributed to ai(t) by the

B molecules originating in voxel i is given by

aBi (t) =

N∑
j=1

aB,A
ij (t). (4.6)

Since we have only one reaction channel A+B → ϕ in the system, the reaction

propensity ai(t) is the sum of aAi (t) and aBi (t),

ai(t) = aAi (t) + aBi (t). (4.7)

If A and B are the same species, i.e. the reaction is actually A + A → ϕ,

Equation (4.7) becomes

ai(t) = aAi (t). (4.8)

The term aA,A
ii (t) in this case has a different form from (4.4):

aA,A
ii (t) =

1

2
XA

i (0)(X
A
i (0)− 1)aii(t), (4.9)

because if both of the two A molecules originate in voxel i, there areXA
i (0)(X

A
i (0)−1)/2

possible pairs.

96

Now we have obtained the reaction propensity ai(t) for voxel i. In order to

compute the total propensity of voxel i, as in the NSM, we also need to compute the

diffusion propensity for voxel i.

4.2.5 Diffusion events

As mentioned in subsection 4.2.2, a difference between TDPD and DFSP is

that TDPD allows a molecule to diffuse out of its FSP in one step, which triggers a

“diffusion event” in the simulation. This feature compensates the cutoff error of DFSP,

thus it makes it possible to use a small FSP with larger stepsize when necessary. In NSM,

a molecule is associated with a diffusion coefficient κ, where κdt gives the probability

that the molecule jumps out of the voxel in the infinitesimal dt. We approximate the

diffusion events in TDPD in the same way. We define a “diffusion coefficient” κAi for

species A in voxel i, where κAi dt denotes the probability that an A molecule diffuses

out of its FSP in the next infinitesimal dt. In this subsection, we describe how κAi is

estimated.

A simple modification of DFSP enables it to compute the probability ϵAi that

an A molecule which originates in voxel i appears outside of its FSP after a stepsize τ

(which is called “error” in DFSP):

ϵAi = 1−P(an A molecule which originates in voxel i stays in its FSP at time τ).

Since we assume that the A molecule has a “diffusion propensity” κAi , it fol-

lows that the probability that the A molecule remains in its FSP after a stepsize τ is

97

exp(−κAi τ), which follows an exponential distribution. Taking

ϵAi ≈ 1− exp(−κAi τ),

we can estimate κAi as

κAi ≈ −
ln
(
1− ϵAi

)
τ

, (4.10)

and the diffusion propensity of species A originating in voxel i at time t is XA
i (t)κ

A
i .

With this “diffusion propensity”, we can simulate the “diffusion events” as we do in the

NSM.

Now we have computed both the reaction propensity and diffusion propensity

for voxel i. Similar to the procedure used in NSM, we sum them up to obtain the total

propensity, and then sample the next event time for the voxel.

4.2.6 Sample the next event time

Combining the reaction and diffusion propensities described in the previous

two subsections, the total propensity of voxel i is given by

a0,i(t) = ai(t) +XA
i (t)κ

A
i +XB

i (t)κBi . (4.11)

Applying Equation (3.3) in Chapter 3, the time to the next event τi for voxel

i can be obtained by solving

− ln ri =
∫ τi

0
a0,i(s)ds, (4.12)

where ri is a uniform random number in (0, 1).

98

For every voxel we can compute the next event time τi, i = 1, . . . , N . This

enables us to use a priority queue to find the voxel with the smallest τi, as is done in the

NSM. After the voxel with the smallest τi has been found, the next step is to sample

an event for the voxel.

4.2.7 Sample the next event

Picking the first element from the priority queue gives us the voxel i with the

smallest τi. The next event should occur at time τi due to at least one of the molecules

originating in voxel i. According to Equation (4.11), the next event could be a reaction

event with probability ai(τi)/a0,i(τi), or a diffusion event of species A with probability

XA
i (t)κ

A
i /a0,i(τi), or a diffusion event of species B with probability XB

i (t)κBi /a0,i(τi).

4.2.7.1 Reaction event

If the event is a reaction event, we must sample where the two reactant

molecules originate and where the reaction event occurs. Equation (4.7) shows that

the reaction propensity ai(t) is the sum of aAi (t) and aBi (t), where aAi (t) is the reaction

propensity that species A originating in voxel i contributed to ai(t), and similarly for

aBi (t). Thus the probability that the reactant A (B) of the event originates in voxel i is

aAi (t)

ai(t)
,

(
aBi (t)

ai(t)

)
(4.13)

respectively.

99

Without loss of generality, assume that the reactant A originates in voxel i.

The next step is to determine where the other reactant molecule originates. According

to Equation (4.5), the probability that the B molecule originates in voxel j is

aA,B
ij (t)/aAi (t). (4.14)

To simplify the computation, we need only to search over the voxels whose FSP of

species B overlap with the FSP of species A originating in voxel i.

Suppose that the B molecule is selected from voxel j. Then the last step is to

sample where the reaction event occurs. From Equation (4.1), the reaction event occurs

in voxel k with probability

PA
ik(t)P

B
jk(t)ck/aij(t), (4.15)

where voxel k is in the overlapped region of the two molecules’ FSPs.

The previous procedure completes the reaction event sampling. The next sub-

section describes how to sample a diffusion event.

4.2.7.2 Diffusion event

If the event is a diffusion event, we need to determine where the molecule

transfers to. Suppose that an A molecule triggers a diffusion event at time τi. This

molecule should be in one of the boundary voxels of its FSP at τi, as shown by the

voxels with empty dots in Figure 4.3a, and is about to jump out of the FSP. Let B be

the set of voxels with empty dots. The probability that the molecule is in a boundary

100

(a) Boundary voxels of the FSP (the voxels
with empty dots.)

(b) Jump from a boundary voxel to a voxel
outside the FSP.

Figure 4.3: Demonstration of a diffusion event

voxel j is given by
PA
ij (τi)∑

k∈B PA
ik(τi)

,

where PA
ij (τi) is given by (4.2) or (4.3).

Suppose that the A molecule is in voxel j at time τi (the voxel with a solid

black dot in Figure 4.3b). Next we pick an outbound direction for the molecule. Here

we use the diffusion coefficient between adjacent voxels (which is also used in NSM for

computing diffusion propensities). Let O be the set of voxels adjacent to voxel j and

outside the FSP. For any voxel l adjacent to voxel j and outside the FSP, the probability

that the A molecule jumps to it is given by

DA
jl∑

k∈O DA
jk

,

where DA
jl is the diffusion coefficient of species A from voxel j to voxel l.

101

Suppose the voxel with the yellow dot in Figure 4.3b is the destination that

is sampled for the diffusion event. We update the system state and finish the diffusion

step.

4.2.8 Update system state

After sampling an event, we need to update the system state. We must update

not only the species population in each voxel, but also the time dependent propensities.

4.2.8.1 Updating the propensity when the species population increases

Suppose an event at time τi added n A molecules to voxel i. These molecules

can react with B molecules in the future. Thus to update the propensity, we need to

add the propensity contributed by the new A molecules to ai(t).

Similarly to Equation (4.1), as shown in Figure 4.1b, the propensity that the

new A molecules react in an orange voxel k with B molecules originating in voxel j at

time τi ≤ t ≤ τ is given by

∆aAijk(t) = nXB
j (t)PA

ik(t− τi)P
B
jk(t)ck. (4.16)

Here, PA
ik(t − τi) implies that a new A molecule added to voxel i at time τi begins its

diffusion process from time τi.

In Equation (4.16), we assume that no event occurring during [0, τi] places B

molecules in voxel j. However, if there exists an event that places m B molecules in

voxel j at some time s ≤ τi, i.e. XB
j (t) = XB

j (0) +m for s ≤ t ≤ τi, the propensity of

102

the new A molecules to react in an orange voxel k with the B molecules originating in

voxel j is given by

∆aAijk(t) =
(
nXB

j (0)PA
ik(t− τi)P

B
jk(t) + nmPA

ik(t− τi)P
B
jk(t− s)

)
ck

=nPA
ik(t− τi)

(
XB

j (0)PB
jk(t) +mPB

jk(t− s)
)
ck

=nPA
ik(t− τi)

(
XB

j (t)PB
jk(t)−msrBjk

)
ck. (4.17)

Here the scecond equality uses Equation (4.2) or (4.3). Comparing Equation (4.16) and

(4.17), we can see that (4.17) has an extra term −msrBjk (highlighted with green color

in (4.17)). Actually this result can be extended to the case of several events. If there

are l events adding m1, . . . ,ml B molecules to voxel j at times s1, . . . , sl, the extra term

turns out to be -
∑l

u=1musur
B
jk. Thus in the simulation, we can define a variable dBj

that is initialized to 0. If an event occurs at time s that places m B molecules in voxel

j, we update dBj by

dBj ← dBj +ms. (4.18)

Thus ∆aAijk(t) can be represented by

∆aAijk(t) = nPA
ik(t− τi)

(
XB

j (t)PB
jk(t)− dBj (t)r

B
jk

)
ck. (4.19)

Equation (4.19) gives the propensity that the new A molecules and the B

molecules originating in voxel j react in an orange voxel k. Summing ∆aAijk(t) over k

for the orange region yields the total propensity for the new A molecules to react with

103

the B molecules originating in voxel j. Using (4.2) and (4.3), we obtain

∆aAij(t) =
∑

k∈orange region
∆aAijk(t) = n(t− τi)

(
XB

j (t)t− dBj (t)
) ∑
k∈orange region

rAikr
B
jkck

+ nPA
ij (t− τi)X

B
j (t)cj +


n
(
XB

j (t)PB
ji (t)− dBj (t)r

B
ji

)
ci j ̸= i

n
(
XB

j (t)t− dBj (t)
)
rBjici j = i.

(4.20)

In the case of “B=A”, the n new A molecules can react with each other as

well, thus the ∆aAiik(t) should have an extra term (highlighted with green color),

∆aAiik(t) = nPA
ik(t− τi)

(
XA

i (t)P
A
ik(t)− dAi (t)r

A
ik

)
ck+

1

2
n(n− 1)

(
PA
ik(t− τi)

)2
ck,

and ∆aAii(t) becomes

∆aAii(t) =n(t− τi)
(
XA

i (t)t− dAi (t)
)∑

k

(
rAik
)2

ck

+ nPA
ii (t− τi)X

A
i (t)ci + n

(
XA

i (t)t− dAi (t)
)
rAiici

+
1

2
n(n− 1) (t− τi)

2
∑
k

(
rAik
)2

ck +
1

2
n(n− 1)

(
1 + 2 (t− τi) r

A
ii

)
ci. (4.21)

We note that ∆aAij(t) is the propensity for the new A molecules to react with the

B molecules originating in voxel j. To update the system propensity, ∆aAij(t) should

be added to aA,B
ij (t), which is the propensity contributed by the “old” A molecules

originating in voxel i and the B molecules originating in voxel j.

aA,B
ij (t)← aA,B

ij (t) + ∆aAij(t). (4.22)

After updating aA,B
ij (t), we update aAi (t), ai(t) and a0,i(t) using (4.5), (4.7) or

(4.8) and (4.11) respectively.

104

4.2.8.2 Updating the propensity when the species population decreases

Suppose an event which occurs at time τi ≤ τ decreases the population of

species A originating from voxel i by n, i.e. XA
i (τi+) = XA

i (τi−) − n. To update the

system propensity, we need to compute the propensity loss due to the loss of the n A

molecules.

According to Equation (4.4), the propensity contributed by the A molecules

originating in voxel i and the B molecules originating in voxel j is aA,B
ij (t) + aB,A

ji (t).

This propensity loses part of its value ∆aAij(t) after the event:

∆aAij(t) = −
n

XA
i (τi−)

(
aA,B
ij (t) + aB,A

ji (t)
)
. (4.23)

Since aA,B
ij (t) + aB,A

ji (t) is the propensity without consideration of the event,

(4.23) implies that the propensity loss is proportional to the ratio n/XA
i (τi−), which

is the ratio of molecules lost. (4.23) is exact if no event occurring before τi places A

molecules into voxel i. However if some of the A molecules are generated by earlier

events, Equation (4.23) is only an approximation. For example, suppose that one event

occurs earlier than τi, and generatesm Amolecules in voxel i at time s < τi, i.e. XA
i (t) =

XA
i (0) + m for s ≤ t < τi, and then a new event at time τi consumes n A molecules.

We cannot tell how many of the n molecules came from the original XA
i (0) molecules

and how many of them came from the m molecules that were generated later. Equation

(4.23) in this case specifies that we divide it proportionally, i.e. n ·XA
i (0)/(X

A
i (0)+m)

original molecules and n ·m/(XA
i (0) +m) generated molecules are consumed. This is

105

shown below:

n
XA

i (0)

XA
i (0) +m

PA
ik(t)X

B
j (t)PB

jk(t) + n
m

XA
i (0) +m

PA
ik(t− s)XB

j (t)PB
jk(t)

=
n

XA
i (0) +m

(
XA

i (0)P
A
ik(t) +mPA

ik(t− s)
)
XB

j (t)PB
jk(t), (4.24)

where
(
XA

i (0)P
A
ik(t) +mPA

ik(t− s)
)
XB

j (t)PB
jk(t) is the propensity without consideration

of the event that consumes n A molecules. In this example, dAi is also changed in the

event. According to Equation (4.18), dAi = ms before the event at time τi, where m is

the number of A molecules placed in voxel i at time s. After the event, n·m/(XA
i (0)+m)

of the m molecules are lost, thus the value of dAi is updated by

dAi =

(
m− n

m

XA
i (0) +m

)
s = ms

(
1− n

XA
i (τi−)

)
.

In other words, we update dAi after the event as follows:

dAi ← dAi

(
1− n

XA
i (τi−)

)
. (4.25)

In the case of B = A and i = j, both of the two reactant A molecules originate

in voxel i. When n A molecules are removed, the number of A–A pairs changes from

XA
i (τi−)(XA

i (τi−)− 1)/2 to XA
i (τi+)(XA

i (τi+)− 1)/2, where XA
i (τi+) = XA

i (τi−)−n.

Thus we approximate ∆aAii(t) by

∆aAii(t) = −
(
1− XA

i (τi+)(XA
i (τi+)− 1)

XA
i (τi−)(XA

i (τi−)− 1)

)
aA,A
ii (t). (4.26)

Similarly to the procedure in the last subsection, to update the system propen-

sity, ∆aAij(t) is applied to aA,B
ij using (4.22). Then aAi (t), ai(t) and a0,i(t) are updated

using (4.5), (4.7) or (4.8) and (4.11) respectively.

106

Now we have finished the step of updating the propensity for a voxel. In the

NSM, when the propensity of a voxel is updated, its next event time also needs to be

updated. Here we use the same procedure. After updating the propensity of a voxel,

we need to update its next event time.

4.2.8.3 Update the next event time

After updating the event at time τi for voxel i, we need to sample a new time

τnew for the next event. Here we need to sample a new uniform random number ri in

(0, 1) and solve Equation (4.12) again. The only difference is that the integration begins

from time τi,

− ln ri =
∫ τnew

τi

a0,i(s)ds.

Sometimes an event may change the propensity of several voxels. For example,

if the event at time τi is a diffusion event where an A molecule diffuses from voxel i to

voxel k, we must sample τnew for voxel i, and also must update τk for voxel k, since

a new molecule has arrived. Without loss of generality, suppose the event at τi is the

first event that changes the propensity of voxel k, whose value is changed from a0,k(t)

to anew
0,k (t). Originally, τk is computed by solving Equation (4.12). Now the integration

must be updated for the time interval between τi and τk, since its propensity is updated.

Thus Equation (4.12) becomes

− ln rk =

∫ τi

0
a0,k(s)ds+

∫ τk

τi

anew
0,k (s)ds. (4.27)

107

Solving this equation yields the updated τk. Here a0,k(s) and anew
0,k (s) are

polynomials of s of at most second order. Thus we use their integrals Fk(s) =
∫
a0,k(s)ds

and F new
k (s) =

∫
anew
0,k (s)ds in (4.27), yielding

− ln rk + Fk(0)− Fk (τi) + F new
k (τi) = F new

k (τk) .

The previous deduction can be extended to the situation of multiple events.

If l events occur at times s1, . . . , sl that update the propensity of voxel k from Fk(t) to

F 1
k (t), . . . , F

l
k(t), then we can define a variable f that begins with f = − ln rk + Fk(0),

and updates its value after each event by

f ← f − F u−1
k (su) + F u

k (su) , u = 1, . . . , l.

Then the next event time τk can be updated by solving

f = F l
k (τk) .

After updating the next event time, we update the priority queue. Now we are

at time τi in the time line shown in Figure 4.2. We go on sampling the next event and

repeat this procedure until we reach time τ , the simulation stepsize. Then we are at

time τ and have finished the step (I) in subsection 4.2.2. We are next going to outline

step (II), i.e. sample a diffusion process that redistributes the molecules within their

FSP.

108

4.2.9 Sampling the diffusion process at the end of a step

When the simulation time reaches the stepsize τ , we must redistribute the

molecules within their FSP due to the diffusion. This step is the same as the corre-

sponding step in Chapter 3. The distribution of the initial A molecules originating in

voxel i follows a multinomial distribution. The probability that a molecule diffuses to

voxel j at time τ , which is within the FSP, is pAij according to Equation (4.2) and (4.3).

For molecules generated by events during the step, the multinomial should

have different parameters. For example, suppose that n A molecules are generated in

voxel i at time τi. The probability for one of these molecules to diffuse to voxel j at time

τ is PA
ij (τ − τi), as shown by Equation (4.2) or (4.3). To distribute the n molecules at

the end of the step we need to keep a record of (τi, n). This can be potentially expensive

if the system has many events in a step.

In our code, we made a compromise. An approximation is used for the dis-

tribution which does not require the storage of the events’ information. Following the

example in the last paragraph, suppose that there are XA
i (t) = XA

i (0) + n A molecules

at time τi ≤ t ≤ τ . We approximate their distribution in the FSP by a multinomial

distribution. The probability QA
ij(t) that a molecule is distributed to voxel j satisfies

XA
i (t)Q

A
ij(t) = XA

i (0)P
A
ij (t) + nPA

ij (t− τi)

=⇒ QA
ij(t) = PA

ij (t)−
1

XA
i (t)

rAijd
A
i (t). (4.28)

109

This approximation conserves the expected number of molecules which are diffused to

each voxel in the FSP.

In the simulation, it is more convenient to first sample the number of molecules

staying in voxel i. The molecules that are not staying are then distributed to other voxels

in the FSP. Since PA
ij (t) in (4.2) is linear with respect to t, the probability that an A

molecule diffuses to voxel j, given that it does not stay in voxel i, is pAij/(1− pAii). This

is a convenient property since we no longer need to compute (4.28).

After redistributing the molecules, we have completed one step of the simula-

tion. We go on simulating the next step from τ to 2τ , as shown in Figure 4.2. This

procedure is repeated until the end time is reached. In the next subsection, we will

summarize the procedure of the algorithm.

4.2.10 Summary of the algorithm

In this section we present the algorithm in a more general setting. Suppose

the system has M reactions R1, . . . , RM , and N species S1, . . . , SN . Assume that the

current state of the system is X, and without loss of generality, the current time is 0. In

the previous sections we have introduced the time dependent propensity ai(t) of second

order reactions, which is given by (4.7) or (4.8). For zeroth and first order reactions,

the time dependent propensity functions for voxel i are

• ϕ
ci−→ something

ai(t) = ci. (4.29)

110

• A
c−→ something

ai(t) = cXA
i (t). (4.30)

The total propensity contributed by voxel i is given by

a0,i(t) =

M∑
l=1

ali(t) +

N∑
r=1

Xr
i (t)κ

r
i , (4.31)

where ali(t) is the propensity function of reaction l at time t. Xr
i (t) is the population

of species Sr originating from voxel i at time t. Its diffusion propensity is κri , which is

given by Equation (4.10).

The steps of the TDPD algorithm are listed below

0. Compute the transition matrix and diffusion propensities using DFSP. For every

second order reaction, find the overlapped voxels of the FSPs (the orange voxels

in Figure 4.1b). For each voxel, compute the zeroth order reaction propensities

using (4.29) (These values need only be computed once).

For each realization, do the following:

1. Initialize the time t = t0 and the system state X = X0.

2. For each voxel i and second order reaction A+B → something, compute aA,B
ij (t)

and aB,A
ij (t) using (4.4). Then compute aAi (t) and aBi (t) using (4.5) and (4.6).

Finally compute ai(t) using (4.7). In the case of “B=A”, Equation (4.9) and (4.8)

should be used.

111

3. For each voxel i, set dAi = 0 for every species A. Compute the propensity for

first order reactions using (4.30). Compute a0,i(t) using (4.31). Sample a uniform

random number ri ∈ (0, 1). Set fi = − ln ri + Fi(0). Here Fi(t) =
∫
a0,i(t)dt.

Generate the next event time τi by solving fi = Fi (τi). Store the voxel indices in

a priority queue according to their next event time.

4. Pick the first element in the priority queue to get the voxel i for the next event.

If τi > τ , go to step 11.

5. Sample the event type. According to Equation (4.31), the event could be firing a

reaction l with probability ali(τi)/a0,i(τi), l = 1, . . . ,M , or it could be a diffusion

event of species Sr with probability Xr
i (τi)κ

r
i /a0,i(τi), r = 1, . . . , N .

6. Sample where the reactant molecules come from and where the product is gener-

ated.

• If in step 5 the sampled event is a reaction: ϕ → something, the products

are produced in voxel i.

• If in step 5 the sampled event is a reaction: A → something, the reactant

originates in voxel i. Suppose the product is produced in voxel k. Then k is

a random variable with point probability QA
ik(τi) given by Equation (4.28).

• If in step 5 the sampled event is a reaction: A+ B → something, according

to Equation (4.13), the probability that reactant A originates in voxel i is

aAi (t)/ai(t). If reactant A originates in voxel i, sample the voxel j from which

112

reactant B originates with probability aA,B
ij (t)/aAi (t), according to (4.14).

Then sample the voxel k where the reaction event occurs with probability

QA
ik (τi)Q

B
jk (τi)∑

sQ
A
is (τi)Q

B
js (τi)

.

A similar procedure works for the case where reactant B originates in voxel

i.

• If in step 5 the sampled event is a reaction: A+A→ something, then one of

the reactant molecules should originate in voxel i. Sample the voxel j from

which the other reactant originates with probability aA,A
ij (t)/aAi (t). Then

sample the voxel k where the reaction event occurs with probability

QA
ik (τi)Q

A
jk (τi)∑

sQ
A
is (τi)Q

A
js (τi)

.

• If in step 5 the sampled event is a diffusion event of species A, as in Figure

4.3a, the A molecules should be in one of the empty-dot-voxels at time τi, and

about to jump outside the FSP. The probability that the molecule is in voxel

j is QA
ij(τi)/

∑
sQ

A
is(τi). Here the sum is taken over the interior boundary

subvolumes of the yellow region. Suppose voxel j is selected (the voxel that

has a solid black dot in Figure 4.3b). The molecule should jump to a voxel

adjacent to voxel j and outside the yellow region. The A molecule jumps

to voxel k (as shown by the voxel with a yellow dot in Figure 4.3b) with

probability Djk/
∑

sDjs. Here the sum is taken over the voxels adjacent to

voxel j and outside the FSP.

113

7. Update the system state. For every voxel s, if the event in step 6 changes the

population of species A originating in it, do the following:

• If the event increases the population of species A originating in voxel s by

n, then for any second order reaction A+B → something, compute ∆aAs,j(t)

using (4.20) for every voxel j whose FSP of species B overlaps with the FSP

of species A originating in voxel s. In the case of “B=A”, Equation (4.21)

should be used. Update the following variables,

dAs ← dAs + nτi, XA
s ← XA

s + n.

• If the event decreases the population of species A originating in voxel s by n,

for any second order reaction A + B → something, compute ∆aAs,j(t) using

(4.23) for every voxel j whose FSP of species B overlaps with the FSP of

species A originating in voxel s. In the case of “B=A”, Equation (4.26)

should be used. Update the following variables,

dAs ← dAs (1− n/XA
s), XA

s ← XA
s − n.

• Update the following polynomials.

aA,B
sj (t)← aA,B

sj (t) + ∆aAs,j(t)

aAs (t)← aAs (t) +
∑
j

∆aAs,j(t)

as(t)← as(t) +
∑
j

∆aAs,j(t)

Here we need to store a copy of the old as(t) for step 8.

114

• For any first order reaction A
c−→ something, update as(t) using (4.30).

8. For any voxel s whose propensity has changed, do the following:

• Update a0,s(t) using (4.31).

• Update fs as follows:

– If voxel s is the voxel chosen in step 4, sample a new random number

rs ∈ (0, 1). Set fs = − ln rs + Fs(τi).

– If voxel s is not the voxel chosen in step 4, update fs by fs ← fs −

F old
s (τi)+Fs(τi). Here the F old

s (t) is the integral of the old copy of as(t)

we saved in step 7.

• Update the next event time by solving fs = Fs(τs).

9. Update the priority queue.

10. Return to step 4.

11. Sample a diffusion process with stepsize τ . For example, for species A in voxel

s, sample a multinomial random variable to distribute the XA
s A molecules in its

FSP. The probability that a molecule is distributed to voxel j is QA
s,j(τ), given by

(4.28). Repeat this procedure for each diffusive species in each voxel.

12. Advance t← t+ τ . If t < T , return to Step 2, else stop the realization. Here T is

the total simulation time.

This algorithm has been implemented in the software package PyURDME [29].

115

4.3 Numerical simulation

In this section we present the simulation results generated by our new TDPD

algorithm on a cylinder neutralization model.

4.3.1 Model description

In this example, we use the constructive solid geometry method [34] to create a

spatial domain in the shape of a cylinder, as shown in Figure 4.4. The length dimension

(x-axis) of the cylinder ranges from -5 to 5, and the circular dimension has diameter 1.

Species A is created at the left circular edge, and B is created at the right circular edge.

These two species diffuse through the volume of the cylinder and react to neutralize

each other when they meet. Thus the reaction produces two neutral particles C. i.e.

the reaction is A + B → 2C. The time-averaged concentration of the species A and B

should form a gradient away from their creation edge. The molecular creation rates are

10000 per unit volume per second, for both A and B. The neutralization reaction rate

is 0.00001 unit volume per second. The diffusion rates for the three species are 0.1 unit

length square per second. The simulation time was taken to be 200 seconds.

4.3.2 Simulation results

Figure 4.5a and 4.5b show the distribution of the two species over the x axis.

Figure 4.5a was generated by TDPD with FSP size no greater than 100 voxels. Figure

4.5b was generated by NSM. The results are averaged over ten realizations. TDPD

116

Figure 4.4: Geometry of the cylinder

and NSM generate nearly identical results. Figure 4.5c shows the CPU times used by

the TDPD with different FSP sizes. It can be seen that the TDPD runs faster as the

FSP size increases. This is because a larger FSP size decreases the number of diffusion

events. The horizontal line indicates the CPU time used by the NSM. TDPD has better

performance than NSM when the FSP size is large. Figure 4.5d shows the CPU times

used by TDPD and NSM with different molecular creation rates. Here the maximum

FSP size of TDPD is 100. It shows that TDPD performance has a better slope than

NSM with respect to the molecular creation rates. This is because the more molecules

in the system, the more diffusion events for NSM. However for TDPD, the diffusion

events can be greatly avoided by a proper selection of the FSP.

117

−6 −4 −2 0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e−17

A
B

(a) Distribution of the two species over the x
axis. Value is averaged over ten TDPD real-
izations with maximum FSP size of 100.

−6 −4 −2 0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e−17

A
B

(b) Distribution of the two species over the x
axis. Value is averaged over ten NSM realiza-
tions.

0 20 40 60 80 100 120 140
100

200

300

400

500

600

700

800

FSP size

C
P

U
 ti

m
e

(s
ec

on
d)

TDPD
NSM

(c) CPU time used by TDPD with different
FSP sizes. The horizontal line is the CPU time
used by NSM.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

Molecular creation rates

C
P

U
 ti

m
e

(s
ec

on
d)

TDPD
NSM

(d) CPU time used by TDPD and NSM with
different molecular creation rates. The maxi-
mum FSP size is 100.

Figure 4.5: Simulation results

118

4.4 Conclusion

TDPD on an unstructured mesh provides a means to accelerate the NSM for

systems with many diffusive molecules. The key point of the method is that it uses

the interpolation of the fixed stepsize transition matrix to compute the time dependent

propensity. It also uses diffusion events to compensate the probability loss from the

finite state projection, which helps the algorithm to maintain a good accuracy.

However, the method is not universally better than NSM. The computation

of the time dependent propensity for reactants originating from two voxels is not easy.

If there are only a few reactant pairs in the voxels, it may not be worth the cost to

compute the time dependent propensity for them. NSM is cheaper in this case. TDPD

can reduce the computation time only when there are many reactant pairs in the two

voxels, where they can share the same time dependent propensity.

119

Chapter 5

Conclusion

5.1 Summary of the thesis

In this thesis we have developed algorithms to accelerate the stochastic sim-

ulation of chemical reaction systems. In Chapter 2, we showed how to use the time

dependent solution to improve the performance of tau-leaping. In Chapter 3, we showed

how to apply the time dependent propensity function to spatial stochastic simulation

with a regular mesh in a rectangular domain, which yields a speed up over NSM for

systems with many diffusion events. This idea was extended to unstructured mesh in

Chapter 4, which enables it to simulate systems with complex geometries. We have

implemented the algorithms in the software packages Stochkit 2 [19] and PyURDME

[29].

120

5.2 Future directions

Figure 4.5c in Chapter 4 shows that the performance of TDPD depends on the

FSP size. The algorithm could be more efficient if it could automatically pick the best

FSP size for the simulation.

In Chapter 4 we interpolated the transition matrix linearly. Actually we could

have used higher order interpolation. For example, suppose Pij(t) is the transition

probability that a molecule diffuses from subvolume i to subvolume j at time t. We can

use DFSP to compute its value at time τ and τ/2. Then we can apply a second order

interpolation to obtain

Pij(t) =


2
(
Pij(τ)− 2Pij

(
τ
2

))
t2

τ2
+
(
4Pij

(
τ
2

)
− Pij(τ)

)
t
τ i ̸= j

−2
(
2Pij

(
τ
2

)
− Pij(τ)− 1

)
t2

τ2
+
(
4Pij

(
τ
2

)
− Pij(τ)− 3

)
t
τ + 1 i = j

.

121

Bibliography

[1] Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expression.
Proc. Natl. Acad. Sci. USA, 94:814–819, 1997.

[2] Adam Arkin, John Ross, and Harley H. McAdams. Stochastic kinetic analysis
of developmental pathway bifurcation in phage λ-infected escherichia coli cells.
Genetics, 149:1633–1648, 1998.

[3] Nina Fedoroff and Walter Fontana. Small numbers of big molecules. Science,
297:1129–1131, 2002.

[4] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81:2340–2361, 1977.

[5] Daniel T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys., 22:403–434, 1976.

[6] Yang Cao, Hong Li, and Linda R. Petzold. Efficient formulation of the stochas-
tic simulation algorithm for chemically reacting systems. J. Chem. Phys.,
121(9):4059–4067, 2004.

[7] Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimpton. A constant-time
kinetic monte carlo algorithm for simulation of large biochemical reaction networks.
J. Chem. Phys., 128:205101, 2008.

[8] Vo Hong Thanh, Corrado Priami, and Roberto Zunino. Efficient rejection-based
simulation of biochemical reactions with stochastic noise and delays. J. Chem.
Phys., 141:134116, 2014.

[9] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation
of chemical systems with many species and many channels. J. Phys. Chem. A,
104:1876–1889, 2000.

[10] Daniel T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. J. Chem. Phys., 115(4):1716–1733, 2001.

122

[11] Yang. Cao and Linda. R. Petzold. Slow-scale tau-leaping method. Comput. Methods
Appl. Mech. Engrg., 197:3472–3479, 2008.

[12] Lee A. Segel and Marshall Slemrod. The quasi-steady-state assumption: a case
study in perturbation. SIAM Review, 31:446–477, 1989.

[13] Christopher. V. Rao and Adam. P. Arkin. Stochastic chemical kinetics and the
quasi-steady-state assumption: Application to the gillespie algorithm. J. Chem.
Phys., 118(11):4999–5010, 2003.

[14] Yang. Cao, Daniel. T. Gillespie, and Linda. R. Petzold. The slow-scale stochastic
simulation algorithm. J. Chem. Phys., 122:014116, 2005.

[15] Ethan A. Mastny, Eric L. Haseltine, and James B. Rawlings. Two classes of quasi-
steady-state model reductions for stochastic kinetics. J. Chem. Phys., 127:094106,
2007.

[16] Jin Fu, Sheng Wu, and Linda R. Petzold. Time dependent solution for acceleration
of tau-leaping. J. Comput. Phys., 235:446–457, 2013.

[17] Tobias Jahnke and Derya Altintan. Efficient simulation of discrete stochastic re-
action systems with a splitting method. BIT Numer. Math., 50:797–822, 2010.

[18] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step size selection
for the tau-leaping simulation method. J. Chem. Phys., 124:044109, 2006.

[19] Kevin R. Sanft, Sheng Wu, Min Roh, Jin Fu, Rone Kwei Lim, and Linda R. Petzold.
Stochkit2: software for discrete stochastic simulation of biochemical systems with
events. Bioinformatics, 27(17):2457–2458, 2011.

[20] C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson. Correlations in
stochastic theories of chemical reactions. J. Stat. Phys., 14:307–331, 1976.

[21] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical systems
into spatial domains of opposite phases. IEE P. Syst. Biol., 1:230–236, 2004.

[22] Johan Hattne, David Fange, and Johan Elf. Stochastic reaction-diffusion simulation
with mesord. Bioinformatics, 21:2923–2924, 2005.

[23] Brian Drawert, Stefan Engblom, and Andreas Hellander. A modular framework for
stochastic simulation of reaction-transport processes in complex geometries. BMC
Syst. Biol., 6:76, 2012.

[24] Sotiria Lampoudi, Daniel T. Gillespie, and Linda R. Petzold. The multinomial
simulation algorithm for discrete stochastic simulation of reaction-diffusion systems.
J. Chem. Phys., 130(9):094104, 2009.

123

[25] Brian Drawert, Michael J. Lawson, Linda R. Petzold, and Mustafa Khammash. The
diffusive finite state projection algorithm for efficient simulation of the stochastic
reaction-diffusion master equation. J. Chem. Phys., 132(7):074101, 2010.

[26] Lars Ferm, Andreas Hellander, and Per Lötstedt. An adaptive algorithm for sim-
ulation of stochastic reaction-diffusion processes. Technical Report 2009-010, De-
partment of Information Technology, Uppsala University, April 2009.

[27] Jin Fu, Sheng Wu, Hong Li, and Linda R. Petzold. The time dependent propen-
sity function for acceleration of spatial stochastic simulation of reaction-diffusion
systems. J. Comput. Phys., 274:524–549, 2014.

[28] Mark Griffith, Tod Courtney, Jean Peccoud, and William H. S. Dynamic parti-
tioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioin-
formatics, 22:2782–2789, 2006.

[29] Brian Drawert and Andreas Hellander. Pyurdme github repository. https://
github.com/briandrawert/pyurdme/.

[30] M. F. Hockin, K. C. Jones, S. J. Everse, and K. G. Mann. A model for the
stoichiometric regulation of blood coagulation. J. Biol. Chem., 277:18322–18333,
2002.

[31] Daniel T. Gillespie. Markov Processes: An Introduction for Physical Scientists.
Academic Press, Inc., San Diego, 1992.

[32] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation
of chemical systems with many species and many channels. J. Phys. Chem.,
104:1876–1889, 2000.

[33] Brian Munsky and Mustafa Khammash. The finite state projection algorithm for
the solution of the chemical master equation. J. Chem. Phys., 124:044104, 2006.

[34] James D. Foley. Computer Graphics: Principles and Practice, chapter 12.7, pages
557––558. Addison-Wesley Professional, 1996.

[35] Geoffery R. Grimmett and David R. Stirzaker. Probabiliy and Random Processes,
chapter 5, page 154. Oxford University Press Inc., New York, third edition, 2001.

124

Appendix

A.1 Derivation of the time dependent solution

We use the probability generating function to derive the formula. For a non-

negative discrete random variable X, its probability generating function is defined as

GX (s) =

∞∑
i=0

sip (X = i) ,

where p (X = i) is the probability that X takes the value of i. The generating function

of a Poisson random variable X ∼ P (λ) is given by

GX (s) =

∞∑
i=0

sip (X = i) =

∞∑
i=0

si
λi

i!
e−λ = e−λ

∞∑
i=0

(sλ)i

i!
= e−λesλ = e(s−1)λ. (A.1.1)

The joint generating function of multiple random variables (X1, . . . , Xn) is defined as

GX1,...,Xn (s1, . . . , sn) =
∑

i1,...,in

si11 . . . sinn p (X1 = i1, . . . , Xn = in) . (A.1.2)

It is convenient to compute the generating function of every variable from their joint

generating function. For example, if we want the generating function of Xj , we can

125

Figure A.1.1: Example system

simply plug si = 1, i ̸= j into (A.1.2). This is because

GX1,...,Xn (1, . . . , sj , . . . , 1) =
∑

i1,...,in

s
ij
j p (X1 = i1, . . . , Xn = in)

=
∑
ij

s
ij
j

∑
ik,k ̸=j

p (X1 = i1, . . . , Xn = in) =
∑
ij

s
ij
j p (Xj = ij) = GXj (sj) . (A.1.3)

A useful property of the joint generating function is given by

Theorem 1: Random variables (X1, . . . , Xn) are independent if and only if

GX1,...,Xn (s1, . . . , sn) =

n∏
i=1

GXi (si) .

The proof can be found in any probability textbook (see Theorem (29) for two variable

case in [35]).

Now let us look at the time dependent population of multiple species. Suppose

that we have n species Ŝ = {S1, . . . , Sn}. As shown in Figure A.1.1, for each Si there

126

is an input from outside the system that increases the population of Si with propensity

aiI , i.e. a reaction Ri
I : ϕ→ Si. There is also an output from Si with rate constant ciO,

i.e. a reaction Ri
O : Si → ϕ. In addition, one Si molecule can become a Sj molecule

due to a reaction Rij : Si → Sj with rate constant cij .

Denote by xi the population of species Si, riO the number of firings of reaction

Ri
O, riI the number of firings of reaction Ri

I , and pi1,...,in,j1,...,jn (t) the probability that

x1 = i1, . . . , xn = in, r1O = j1, . . . , r
n
O = jn. Then the master equation can be written

as

dpi1,...,in,j1,...,jn (t)

dt
=

n∑
k=1

pi1,...,ik−1,...,in,j1,...,jn(t)a
k
I

+
∑
k ̸=l

pi1,...,ik+1,...,il−1,...,in,j1,...,jn(t)ckl(ik + 1) +

n∑
k=1

pi1,...,ik+1,...,in,j1,...,jk−1,...,jn(t)c
k
O(ik + 1)

− pi1,...,in,j1,...,jn(t)

 n∑
k=1

akI +
∑
k ̸=l

cklik +

n∑
k=1

ckOik

 . (A.1.4)

To simplify the notation we will use pik+1,jl−1 to refer to pi1,...,ik+1,...,in,j1,...,jl−1,...,jn .

Multiplying si11 . . . sinn uj11 . . . ujnn on both sides of the master equation (A.1.4) gives

∂si11 . . . sinn uj11 . . . ujnn pi1,...,in,j1,...,jn(t)

∂t
=

n∑
k=1

si11 . . . sik−1
k . . . sinn uj11 . . . ujnn pik−1ska

k
I

+
∑
k ̸=l

cklsl
∂

∂sk

(
. . . sik+1

k . . . sil−1
l . . . pik+1,il−1

)
+

n∑
k=1

ckOuk
∂

∂sk

(
. . . sik+1

k . . . ujk−1
k . . . pik+1,jk−1

)

− si11 . . . sinn uj11 . . . ujnn pi1,...,in,j1,...,jn

n∑
k=1

akI −
∑
k ̸=l

cklsk
∂

∂sk

(
si11 . . . sinn uj11 . . . ujnn pi1,...,in,j1,...,jn

)

−
n∑

k=1

ckOsk
∂

∂sk

(
si11 . . . sinn uj11 . . . ujnn pi1,...,in,j1,...,jn

)
.

127

Summing both sides over i1, . . . , in, j1, . . . , jn and using the definition of generating

function (A.1.2), we have

∂G (s1, . . . , sn, u1, . . . , un, t)

∂t

=

n∑
k=1

Gska
k
I +

∑
k ̸=l

cklsl
∂G

∂sk
+

n∑
k=1

ckOuk
∂G

∂sk
−G

(
n∑

k=1

akI

)
−
∑
k ̸=l

cklsk
∂G

∂sk
−

n∑
k=1

ckOsk
∂G

∂sk

=

n∑
k=1

∑
l ̸=k

ckl (sl − sk) + ckO (uk − sk)

 ∂G

∂sk
+G

n∑
k=1

akI (sk − 1)

=

(
∂G

∂s

)T

(−A (s− 1) + diag (cO) (u− 1)) +GaT
I (s− 1) , (A.1.5)

where

A =



∑
j ̸=1

c1j + c1O −c12 . . . −c1n

−c21
∑
j ̸=2

c2j + c2O . . . −c2n

...

−cn1 −cn2 . . .
∑
j ̸=n

cnj + cnO



and

(s− 1)T = (s1 − 1, . . . , sn − 1) , (u− 1)T = (u1 − 1, . . . , un − 1)(
∂G

∂s

)T

=

(
∂G

∂s1
, . . . ,

∂G

∂sn

)
, aT

I =
(
a1I , . . . , a

n
I

)
, cTO =

(
c1O, . . . , c

n
O

)
.

Here, diag (cO) is the diagonal matrix with diagonal elements
(
c1O, . . . , c

n
O

)
.

This is a PDE for G (s1, . . . , sn, u1, . . . , un, t). To determine the solution, we

also need an initial condition. Let us begin with the simple case that the system is

128

initially empty, i.e. all of the molecules come from the input channels R1
I , . . . , R

n
I . Thus

at t = 0 we have x1 = · · · = xn = r1O = · · · = rnO = 0. The initial condition is given by

G (s1, . . . , sn, u1, . . . , un, 0) =
∑

i1,...,in,j1,...,jn

si11 . . . sinn uj11 . . . ujnn pi1,...,in,j1,...,jn (0)

= s01 . . . s
0
nu

0
1 . . . u

0
n × 1 = 1. (A.1.6)

The solution for (A.1.5), (A.1.6) can be written as

G = eλ
T (s−1)+λT

O(u−1) =
n∏

k=1

eλk(sk−1)
n∏

k=1

eλOk(uk−1), (A.1.7)

where

λT △
= (λ1, . . . , λn) = aT

I

(∫ t

0
eAxdx

)
e−At (A.1.8)

λT
O

△
= (λO1, . . . , λOn) = aT

I

(∫ t

0
eAx

∫ t

x
e−Aydydx

)
diag (cO) . (A.1.9)

In particular, if A is invertible and has n linearly independent eigenvectors

vA
1 , . . . ,v

A
n , with the corresponding eigenvalues λA

1 , . . . , λ
A
n , then (A.1.8) and (A.1.9)

can be replaced by

λT = aT
I VAdiag

(
1− e−λA

i t

λA
i

)
V −1
A (A.1.10)

λT
O =

(
aT
I t− λT

)
A−1diag (cO) , (A.1.11)

where VA =
(
vA
1 , . . . ,v

A
n

)
is the matrix composed of the eigenvectors of A. diag (xi)

△
=

diag(x) where xT = (x1, . . . , xn).

129

We can easily obtain the generating function of xi, i = 1, . . . , n and riO, i =

1, . . . , n from their joint generating function (A.1.7) using (A.1.3):

Gxi = G (1, . . . , si, . . . , 1) = eλi(si−1), GriO
= G (1, . . . , ui, . . . , 1) = eλOi(ui−1).

Comparing with (A.1.1), we can see that xi is a Poisson random variable with parameter

λi, and riO is a Poisson random variable with parameter λOi. According to Theorem 1,

(A.1.7) implies that x1, . . . , xn, r1O, . . . , rnO are independent Poisson random variables

xi ∼ P (λi) , riO ∼ P (λOi) , i = 1, . . . , n. (A.1.12)

The next problem is to find a way to sample those random variables in the simulation.

The inputs r1I , . . . , r
n
I are just independent Poisson random variables with parameters

a1It, . . . , a
n
I t, so they are easy to sample. However when the inputs are sampled, we

should not sample xi and riO directly from P (λi) and P (λOi). For example if we

accidentally sampled a very large value for xi that it is even greater than the sum of

all the inputs we sampled, then the result does not make sense. Instead we need to

sample x = (x1, . . . , xn) and rO =
(
r1O, . . . , r

n
O

)
conditioned on rI =

(
r1I , . . . , r

n
I

)
. In

other words, we need to sample x and rO using their conditional distribution when rI

is given.

Since the molecules coming from an input channel Ri
I behave independently

from molecules coming from other input channels, we can first focus on the molecules

from Ri
I and switch off Rj

I , j ̸= i. Now we have only one input channel, and (A.1.8),

(A.1.9) become (we have added the index i to the notation to indicate that the values

130

are contributed by input channel Ri
I)

(
λi
)T

=
(
λi
1, . . . , λ

i
n

)
= aiIe

T
i

(∫ t

0
eAxdx

)
e−At (A.1.13)

(
λi
O

)T
=
(
λi
O1, . . . , λ

i
On

)
= aiIe

T
i

(∫ t

0
eAx

∫ t

x
e−Aydydx

)
diag (cO) , (A.1.14)

where eTi is the unit vector with the ith element being 1.

Now our purpose is to find the distributions of x and rO when riI is given. The

following theorem answers this question directly.

Theorem 2: If Xi ∼ P (λi) (i = 1, . . . , n) are independent Poisson random variables,

then

Xi

∣∣∣∣∣∣
n∑

j=1

Xj ∼ B

 n∑
j=1

Xj ,
λi∑n
j=1 λj

 .

Proof. We show the proof for n = 2. For n > 2, the problem can be converted to the

n = 2 case using the fact that the sum of independent Poisson random variables is still

a Poisson random variable.

As X1 and X2 are independent Poisson random variables

X1 +X2 ∼ P (λ1 + λ2)⇒ P (X1 +X2 = n) =
(λ1 + λ2)

n

n!
e−(λ1+λ2)

P (X1 = i |X1 +X2 = n) =
P (X1 = i)P (X2 = n− i)

P (X1 +X2 = n)

=
λi
1

i!
e−λ1

λn−i
2

(n− i)!
e−λ2

/(
(λ1 + λ2)

n

n!
e−(λ1+λ2)

)
=

n!

i! (n− i)!

(
λ1

λ1 + λ2

)i(λ2

λ1 + λ2

)n−i

= P (Y = i) ,

where

Y ∼ B
(
n,

λ1

λ1 + λ2

)
.

131

According to this theorem, the conditional distribution of x
∣∣riI and rO

∣∣riI is

actually a multinomial distribution:

(
x1, . . . , xn, r

1
O, . . . , r

n
O

) ∣∣riI ∼M(
riI ,

λi
1

aiIt
, . . . ,

λi
n

aiIt
,
λi
O1

aiIt
, . . . ,

λi
On

aiIt

)
.

Here

aiIt =
n∑

i=1

λi
i +

n∑
i=1

λi
Oi

because the sum of all of the Poisson random variables should be equal to the total

input. This can also be verified in the following way. From (A.1.8) and (A.1.9), we have

d

dt

(
λT1+ λT

O1
)
= aT

I

(
I −

(∫ t

0
eAxdx

)
e−AtA

)
1+ aT

I

(∫ t

0
eAxe−Atdx

)
diag (cO)1

= aT
I

(
1−

(∫ t

0
eAxdx

)
e−AtcO

)
+ aT

I

(∫ t

0
eAxdx

)
e−AtcO = aT

I 1.

Together with the initial condition λ(0) = 0, λO(0) = 0, this yields

λT1+ λT
O1 =

(
aT
I 1
)
t

Now we can extend the result by switching on the other input channels. Since the

molecules from different input channels do not interrupt each other, the result in this

situation should be the sum all the multinomial random variables produced by each

input channel,

(
x1, . . . , xn, r

1
O, . . . , r

n
O

)
|rI ∼

n∑
i=1

M
(
riI ,

λi
1

aiIt
, . . . ,

λi
n

aiIt
,
λi
O1

aiIt
, . . . ,

λi
On

aiIt

)
. (A.1.15)

Now let us remove the assumption that the system is initially empty. We also start

from a simple case, assuming at time t = 0 that we have xi (0) ̸= 0, xj (0) = 0 (j ̸= i).

132

Since these molecules have nothing to do with those coming from the input chan-

nels, we can switch off all the input channels and just look at the behavior of these

molecules. Consider one such molecule. At any time t > 0, there is a probabil-

ity pij (t) that the molecule stays at the state Sj . There is also a probability piOj (t)

that the molecule has already left the system through channel Rj
O. More impor-

tantly, these probabilities should be the same for every molecule that initially stays

in Si. Thus (x1 (t) , . . . , xn (t) , r1 (t) , . . . , rn (t)) should have a multinomial distribu-

tion. To determine the parameters for this distribution, we need to compute pi (t)
△
=(

pi1 (t) , . . . , p
i
n (t)

)
and pi

O (t)
△
=
(
piO1 (t) , . . . , p

i
On (t)

)
.

The master equation for a single molecule is given by

dpij (t)

dt
=
∑
k ̸=j

pik (t) ckj − pij (t)

∑
k ̸=j

cjk + cOj

 (A.1.16)

dpiOj (t)

dt
= pij (t) cOj , j = 1, . . . , n, (A.1.17)

with initial condition

pii (0) = 1, pij (0) = 0, j ̸= i (A.1.18)

piOj (0) = 0, j = 1 . . . , n. (A.1.19)

The solution to (A.1.16) and (A.1.18) is given by

pi (t) = eBtei, (A.1.20)

and from (A.1.17) and (A.1.19) we have

pi
O (t) =

∫ t

0
diag (cO) eBxeidx (A.1.21)

133

where

B = −AT .

If B has n linearly independent eigenvectors vB
1 , . . . ,v

B
n , with the corresponding eigen-

values λB
1 , . . . , λ

B
n , then (A.1.20) and (A.1.21) can be replaced by

pi (t) = VBdiag
(
eλ

B
j t
)
V −1
B ei (A.1.22)

pi
O (t) = diag (cO)VBdiag

(
eλ

B
j t − 1

λB
j

)
V −1
B ei, (A.1.23)

where VB =
(
vB
1 , . . . ,v

B
n

)
is the matrix composed of the independent eigenvectors of

B.

Putting all the molecules together, the distribution of x (t) and rO (t) should

be a multinomial distribution

(x (t) , rO (t)) ∼M
(
xi (0) ,p

i (t) ,pi
O (t)

)
.

Now we can let every species have a nonzero initial population. Since they do not

influence each other, the result in this case should be the sum of all the multinomial

random variables

(x (t) , rO (t)) ∼
n∑

i=1

M
(
xi (0) ,p

i (t) ,pi
O (t)

)
. (A.1.24)

Having obtained the solution for the initial molecules, it is time to put everything

together by switching on the input channels. The result in this case is the sum of

134

(A.1.15) and (A.1.24)

(x (t) , rO (t)) ∼
n∑

i=1

M
(
xi (0) , pi (t) , pi

O (t)
)
+

n∑
i=1

M
(
riI ,

1

aiIt
λi,

1

aiIt
λi
O

)
.

(A.1.25)

This is the time dependent solution for x (t) and rO (t)

For the simulations in Section III in the main paper, the mean and variance of

x (t) have also been used. It would be convenient to have formulas for these values. It

seems that we can compute them from (A.1.25), however (A.1.25) is the formula when

rI has already been sampled. If we need the mean and variance before rI has been

sampled, we must replace (A.1.15) by the Poisson random variables (A.1.12), yielding

E (xi (t)) =

n∑
j=1

xj (0) p
j
i (t) + λi (A.1.26)

Var (xi (t)) =
n∑

j=1

xj (0) p
j
i (t)

(
1− pji (t)

)
+ λi. (A.1.27)

In section III we also need to use the solutions for n = 1 and n = 2. The

solutions for these two cases are given below.

n = 1: In this case, A = −B = cO, and λA = −λB = cO. Equations (A.1.10) and

(A.1.11) give

λ =
aI
cO

(
1− e−cOt

)
, λO = aIt− λ,

and (A.1.22) and (A.1.23) yield

p (t) = e−cOt, pO (t) = 1− e−cOt.

135

Thus the time dependent solution of x (t) and rO (t) given by (A.1.25) is

(x (t) , rO (t)) ∼M
(
x (0) , e−cOt, 1− e−cOt

)
+M

(
rI ,

1− e−cOt

cOt
, 1− 1− e−cOt

cOt

)
.

n = 2: Assume the two species are E (enzyme) and ES (enzyme-substrate com-

pound) as shown in Figure 2.3. The population of S (substrate) is very large (xS(0)≫

xE(0), xES(0)). The reactions in the system are

R1 : E + S
c1−→ ES, R2 : ES

c2−→ E + S, R3 : ES
c3−→ E + P

R4 : ϕ
a4−→ E, R5 : E

c5−→ ϕ, R6 : ES
c6−→ ϕ.

During a stepsize of S, equation (A.1.25) in this case has the form

(
xE(t), xES(t), rEO(t), rES

O (t)
)
∼M

(
xE (0) , pE1 (t), pE2 (t), pEO1(t), pEO2(t)

)
+M

(
xES (0) , pES

1 (t), pES
2 (t), pES

O1 (t), pES
O2 (t)

)
+M

(
rEI ,

λ1(t)

aEI t
,
λ2(t)

aEI t
,
λO1(t)

aEI t
,
λO2(t)

aEI t

)
,

(A.1.28)

where

(λ1 λ2) =
(
aEI aES

I

) (
vA
+ vA

−
)
diag

(
1− e−λA

+t

λA
+

,
1− e−λA

−t

λA
−

)(
vA
+ vA

−
)−1

(λO1 λO2) =
((
aEI aES

I

)
t− (λ1 λ2)

)
A−1diag

(
cEO, cES

O

)

136

pE1

pE2

 =
(
vB
+ vB

−
)
diag

(
eλ

B
+t, eλ

B
−t
) (

vB
+ vB

−
)−1

1

0


pEO1

pEO2

 = diag
(
cEO, cES

O

) (
vB
+ vB

−
)
diag

(
eλ

B
+t − 1

λB
+

,
eλ

B
−t − 1

λB
−

)(
vB
+ vB

−
)−1

1

0


pES

1

pES
2

 =
(
vB
+ vB

−
)
diag

(
eλ

B
+t, eλ

B
−t
) (

vB
+ vB

−
)−1

0

1


pES

O1

pES
O2

 = diag
(
cEO, cES

O

) (
vB
+ vB

−
)
diag

(
eλ

B
+t − 1

λB
+

,
eλ

B
−t − 1

λB
−

)(
vB
+ vB

−
)−1

0

1

 .

Here,

aEI = a4, aES
I = 0, cEO = c5, cES

O = c6, cE,ES = c1xS(0), cES,E = c2 + c3

A = −BT =

cE,ES + cEO −cE,ES

−cES,E cES,S + cES
O

 , (A.1.29)

where λA
+, λA

−, vA
+, vA

− are the eigenvalues and corresponding eigenvectors of A, and λB
+,

λB
−, vB

+ , vB
− are the eigenvalues and corresponding eigenvectors of B.

A.2 The mean and variance of Y = P (X)

Suppose that we sample two random variables X and Y . Y depends on X in

such a way that after we have sampled the value x of X, we will sample Y as a Poisson

random variable with parameter x, i.e. Y = P (x). The purpose of this section is to

compute the mean and variance of Y , and show that if we approximate Y by P (EX),

137

the approximation will give us the correct mean value but a smaller variance than the

true Var (Y).

Let us begin with the expectation of Y . Using the conditional expectation, we

have

EY = E (E (Y |X)) .

When X is given, Y is a Poisson random number with parameter X, so the conditional

expectation E (Y |X) is actually the expectation of a Poisson random variable with the

given parameter X. Thus,

E (Y |X) = X

and

EY = E (E (Y |X)) = EX. (A.2.1)

For the variance of Y , we have

Var (Y) = E
(
Y 2
)
− (EY)2 . (A.2.2)

For E
(
Y 2
)
we also use the conditional expectation

E
(
Y 2
)
= E

(
E
(
Y 2 |X

))
. (A.2.3)

Here

E
(
Y 2 |X

)
= Var (Y |X) + (E (Y |X))2 = X +X2. (A.2.4)

The last step in the previous equation uses the fact that when X is given, Y is a Poisson

random variable with parameter X so both the mean and the variance of Y are equal

138

to X. Inserting (A.2.4) in (A.2.3) yields

E
(
Y 2
)
= E

(
E
(
Y 2 |X

))
= E

(
X +X2

)
= EX + E

(
X2
)
.

Inserting this into (A.2.2) and using (A.2.1), we obtain the variance of Y ,

Var (Y) = EX + E
(
X2
)
− (EY)2 = EX + E

(
X2
)
− (EX)2 = EX +Var (X) . (A.2.5)

Now we can compare this with the approximation Y ′ = P (EX). As EX is a real

number, Y ′ is actually a Poisson random variable with

E
(
Y ′) = Var

(
Y ′) = EX.

Comparing this with (A.2.1) and (A.2.5), we can see that the approximation has the

same mean value but a smaller variance.

A.3 The mean and variance of the number of firings in a

reaction channel

Consider the Example System from Appendix A.1. For any species in Ŝ, we

know its time dependent solution. Thus there is no stepsize requirement associated with

this species, as long as the species not belonging to Ŝ can be considered as constant. In

another words, we need only to compute the stepsize for species not in Ŝ.

We use the following inequalities to bound the change of a species.

E∆xi ≤ max
(

ϵ

gi
xi, 1

)
,
√

Var (∆xi) ≤ max
(

ϵ

gi
xi, 1

)
,

139

where gi is a constant that depends on the highest order of the reactions which involve

Si as a reactant. In the current situation ri may no longer be a Poisson random variable.

The purpose of this section is to find the mean and variance for such reactions.

For the system in Appendix A.1, we can partition the reactions into three

groups:

1. Reactions whose reactants do not belong to Ŝ (e.g. all the input channels). As

the reactants for these reactions can be considered constant during the step, these

reactions can be sampled by Poisson random variables as in tau leaping.

2. Reactions corresponding to output channels. In the Example System of Appendix

A.1, the output reactions are Ri
O, i = 1, . . . , n, however, generally speaking a

species Si ∈ Ŝ could have several output reactions, i.e. Ri
O in not just one reaction

but a set of reactions. These reactions should compete with each other for a share

of riO. Now the rate constant ciO for Ri
O is the sum of all the rate constants for

reactions in Ri
O. Supposing that Rk : Si → ϕ is in Ri

O with reaction rate ck. Then

the probability that Rk is responsible for a firing of Ri
O is ck/ciO.

Now let us compute the mean and variance of rk. In the Example System of

Appendix A.1, there are riO molecules consumed by Ri
O. These molecules come

from either the input channels (denoted by riP) or the initial molecules of species

in Ŝ (denoted by riB). Thus

riO = riP + riB.

140

It is shown in Appendix A.1 that riP is a Poisson random number with parameter

λOi (see (A.1.12)),

riP ∼ P (λOi) .

riB is the sum of n binomial random variables with parameters
(
xj (0) , pjOi

)
,

j = 1, . . . , n. (see (A.1.24)),

riB ∼
n∑

j=1

B
(
xj (0) , pjOi

)
.

We want to distribute these molecules to the output channels in Ri
O. The prob-

ability that a molecule goes through reaction channel Rk is ck/ciO. To distribute

the first part, we make use of the following theorem.

Theorem 3. Let N be a Poisson random number with parameter λ. Then the sum

of N i.i.d Bernoulli variables with parameter p is also a Poisson random variable

with parameter λp.

The proof can be found in a probability textbook (see example (27) in [35]).

In our case, riP ∼ P (λOi), and each molecule in riP has a probability ck/c
i
O to go

through channel Rk. By Theorem 3, the number of molecules that choose Rk is a

Poisson random number

P
(
ck
ciO

λOi

)
.

Now let us distribute the second part riB. riB is the sum of n independent binomial

random numbers. Each molecule in riB also has a probability ck/c
i
O to choose

channel Rk, so in this case the number of molecules Rk consumed is also the sum

141

of n binomial random variables
n∑

j=1

B
(
xj (0) ,

ck
ciO

pjOi

)
.

Adding the two parts together, we obtain

rk ∼ P
(
ck
ciO

λOi

)
+

n∑
j=1

B
(
xj (0) ,

ck
ciO

pjOi

)
.

The mean and variance of rk can be calculated by

Erk =
ck
ciO

λOi +

n∑
j=1

xj (0) p
j
Oi

 ,Var (rk) =
ck
ciO

λOi +

n∑
j=1

xj (0) p
j
Oi

(
1− ck

ciO
pjOi

) .

3. Reactions which convert one species in Ŝ to another species in Ŝ. In Appendix

A.1, the Rij , i, j = 1, . . . , n are of this type. In a more general case, Rij can

contain several reactions as well. Suppose that Rk : Si → Sj is one of them, with

rate constant ck.

Now we want to compute the mean and variance of rk. Since we use species Si as

the reactant and its population is a random variable during the step, we may not

have an exact formula for rk. Here we use the following approximation,

rk ≈ P
(
ck

(∫ τ

0
Exi (t) dt+

τ

2
(xi (τ)− E (xi (τ)))

))
. (A.3.1)

The mean and variance of rk can be computed using (A.2.1) and (A.2.5) as follows:

Erk ≈ E
(
ck

(∫ τ

0
Exi (t) dt+

τ

2
(xi (τ)− E (xi (τ)))

))
= ck

∫ τ

0
E (xk (t)) dt

Var (rk) ≈ ck

∫ τ

0
E (xi (t)) dt+Var

(
ck

(∫ τ

0
Exi (t) dt+

τ

2
(xi (τ)− E (xi (τ)))

))
= ck

∫ τ

0
E (xi (t)) dt+

τ2

4
Var (xi (τ)) .

Here the formulas for E (xi (t)) and Var (xi (t)) are given by (A.1.26) and (A.1.27).

142

A.4 Sampling a feasible flow in the network

Consider each species in Ŝ as a vertex. Vertices i and j are connected if there

are reactions which convert species Si to Sj or Sj to Si. On each edge we define the

flow

fij = rij − rji, (A.4.1)

where fij indicates the number of molecules that go from Si to Sj . If its value is negative,

there are more firings of Rji than Rij .

Using the result in Appendix A.1, we can sample all the input reactions Ri
I , all

the output reactions Ri
O and the population vector x. However sometimes we also need

to sample the reactions Rij . If we do this, we should make sure that we only sample the

flow for a proper set of edges. Here ‘a proper set’ means that after sampling the flow

values for this set, the flow values of other edges can be uniquely determined by mass

conservation equations.

For each vertex i, the mass conservation equation is given by,

riI + xi (0) = xi (t) + riO +
∑
j ̸=i

fij . (A.4.2)

Consider a connected subgraph G = (V, E), where V is the set of vertices in G and E is

the set of edges in G. Each vertex provides a mass conservation equation and each edge

provides an unknown. If the subgraph contains no loop, then the number of vertices is

one more than the number of edges, which means that the number of equations is one

more than the number of unknowns. However, these equations are not independent.

143

Summing (A.4.2) up over all vertices in V , we obtain

∑
i∈V

(
riI + xi (0)

)
=
∑
i∈V

(
xi (t) + riO

)
.

Here the flows completely cancel out. This equation simply shows the total mass con-

servation of the system and it is automatically satisfied by (A.1.25). Thus the number

of independent equations is one less than the total number of vertices in V . For the

connected subgraph G we have the same number of equations and unknowns, thus the

flow can be determined.

After obtaining a flow value fij from the mass conservation equation, we can

go on sampling rij and rij in the following manner such that (A.4.1) is satisfied:

If fij ≥ 0, sample rji using (A.3.1) and compute rij as rij = rji+fij . If fij < 0,

sample rij using (A.3.1) and compute rji as rji = rij − fij .

If G has loops, the number of unknowns will be more than the number of

equations. In this case, we need to sample the flow value (by sampling rij and rji

using (A.3.1) and computing fij using (A.4.1)) of some edges to decrease the number

of unknown. The following is a simple algorithm to determine the edges we are going

to sample.

1. Create an empty list L. Arbitrarily pick a start vertex i in V and push it into

L. Create a pointer and let it point to the first element in the list, which at the

beginning is i.

2. Push all the vertices connected to i into the list.

144

3. Move the pointer to the next element in the list (suppose the second element is

j).

4. Collect all the vertices connected to j except the one that caused j to have been

pushed into the list, i.e. the vertex i. Denote these vertices by Vj .

5. Compare every vertex in Vj with the elements in the list. If a vertex k ∈ Vj is

not in the list, push it into the list. If it is already in the list, this implies that

there is a loop in the system. This is because we already have a path from i to k

and now we have found another one. It is obvious that edge ejk is in the loop, so

we sample the value of fjk and cut the edge ejk. Now we have removed the loop.

Continue comparing other vertices until all the vertices in Vj are treated as we do

for vertex k.

6. Move the pointer to the next element in the list and do the same as we did for

vertex j. Stop the process when the pointer has walked through the whole list.

After applying the above algorithm to the graph G, the unsampled edges con-

tain no loops. Thus we have the same number of independent equations and unknowns,

and the flow in the graph can be uniquely determined.

145

A.5 Solution to the master equation for a one dimensional

discrete diffusion process

In this section we derive the probability that a molecule jumps from one voxel

to another in a 1D domain. Suppose we discretize a 1D domain into L voxels with

reflecting boundary conditions, and that there is a single molecule in the domain. The

probability that the molecule jumps to a particular neighbor voxel in the next infinites-

imal dt is κdt. Define pi,j (t) as the probability that the molecule jumps from voxel i to

voxel j after a time interval t. Then pi,j (t) satisfies the following equation

pi,j (t+ dt) = pi,j−1 (t)κdt+ pi,j+1 (t)κdt+ pi,j (t) (1− 2κdt)

=⇒ d

dt
pi,j (t) = κ (pi,j−1 (t) + pi,j+1 (t)− 2pi,j (t)) , j = 2, . . . , L− 1

For j = 1 or j = L we have

d

dt
pi,1 (t) = κ (pi,2 (t)− pi,1) ,

d

dt
pi,L (t) = κ (pi,L−1 (t)− pi,L) .

Rewriting in a more compact form yields

d

dt



pi,1 (t)

pi,2 (t)

...

pi,L−1 (t)

pi,L (t)


= κ



−1 1

1 −2 1

.

1 −2 1

1 −1





pi,1 (t)

pi,2 (t)

...

pi,L−1 (t)

pi,L (t)


, (A.5.1)

146

with initial condition

pi,j (0) =


1 i = j

0 i ̸= j

. (A.5.2)

The eigenvalues of the coefficient matrix in (A.5.1) are

λi = 2

(
cos iπ

L
− 1

)
, i = 0, . . . , L− 1 (A.5.3)

and the corresponding eigenvectors vi = (vi1, . . . , viL)
T have elements

vij = cos
(
iπ

2L
− ijπ

L

)
, i = 0, . . . , L− 1; j = 1, . . . , L. (A.5.4)

The solution of the ODE (A.5.1) has the form
pi,1 (t)

...

pi,L (t)

 = V


eκλ0t

. . .

eκλL−1t

V−1


pi,1 (0)

...

pi,L (0)

 , (A.5.5)

where

V = (v0, . . . ,vL−1) (A.5.6)

is the matrix consisting of the eigenvectors. In the simulation it is convenient to nor-

malize the eigenvectors, in which case V becomes a unit orthogonal matrix and the

inverse operation in (A.5.5) can be replaced by a transpose operation.

Equation (A.5.5) gives the probability that a molecule jumps from voxel i to

voxel j after a time interval t with reflecting boundary conditions. For some other com-

mon boundary conditions, the jump probabilities can be expressed similarly. Consider,

147

for example, the case of periodic boundary conditions. Since the first and the last voxels

are adjacent, the ODE system for pij (t) becomes

d

dt



pi,1 (t)

pi,2 (t)

...

pi,L−1 (t)

pi,L (t)


= κ



−2 1 1

1 −2 1

.

1 −2 1

1 1 −2





pi,1 (t)

pi,2 (t)

...

pi,L−1 (t)

pi,L (t)


. (A.5.7)

The eigenvalues of the coefficient matrix are

λi = 2

(
cos
(
2iπ

L

)
− 1

)
, i = 0, . . . ,

⌊
L

2

⌋
, (A.5.8)

and the corresponding eigenvectors ui = (ui1, . . . , uiL)
T , vi = (vi1, . . . , viL)

T for λi are

uij = sin
(
2ijπ

L

)
, i = 1, . . . ,

⌈
L

2

⌉
− 1, j = 1, . . . , L,

vij = cos
(
2ijπ

L

)
, i = 0, . . . ,

⌊
L

2

⌋
, j = 1, . . . , L. (A.5.9)

Thus the solution to (A.5.7) is given by


pi,1 (t)

...

pi,L (t)

 = V



eκλ0t

eκλ1t

eκλ1t

eκλ2t

eκλ2t

. . .



V−1


pi,1 (0)

...

pi,L (0)

 , (A.5.10)

148

where

V = (v0,u1,v1,u2,v2, . . .) .

In Section 3.4.3 we need the solution of a diffusion process with absorbing

boundary conditions. The ODE system is given by

d

dt



pi,1 (t)

pi,2 (t)

...

pi,L−1 (t)

pi,L (t)


= κ



−2 1

1 −2 1

.

1 −2 1

1 −2





pi,1 (t)

pi,2 (t)

...

pi,L−1 (t)

pi,L (t)


. (A.5.11)

The eigenvalues of the coefficient matrix are

λi = 2

(
cos
(

iπ

L+ 1

)
− 1

)
, i = 1, . . . , L,

and the corresponding eigenvectors vi = (vi1, . . . , viL)
T for λi are

vij = sin
(

ijπ

L+ 1

)
, i = 1, . . . , L, j = 1, . . . , L.

The solution to (A.5.11) is given by
pi,1 (t)

...

pi,L (t)

 = V


eκλ1t

. . .

eκλLt

V−1


pi,1 (0)

...

pi,L (0)

 , (A.5.12)

where

V = (v1, . . . ,vL) .

149

A.6 Derivation of the upper bound of E (p(τ))

Let us look at a particular molecule that is a reactant in one or more reactions

in the system. We can divide all possible reaction events into two groups R and R,

where R is the set of possible reaction events in which the observed molecule is involved

as a reactant and R the set of possible reaction events that the observed molecule is not

involved. Denote by pr (t) the probability that a reaction event in R occurs before time

t, given that no events in R occur before t. We seek an upper bound on the expectation

of pr (τ), where τ is also a random variable which is defined as the time when the first

reaction event of the system occurs. In another words, we seek an upper bound for

E (pr (τ)).

Denote by qr (t) = 1−pr (t) the probability that no reaction event in R occurs

before t, i.e. the observed molecule does not react before time t, given that no events

in R occur before t. To simplify the notation, we denote (U , [t0, t1]) as the event that

no reaction in U occurs during [t0, t1] (U could be R, R, etc), thus qr(t) is equivalent

150

to P
(
(R, [0, t])

∣∣(R, [0, t])), and we have

qr (t+ dt)P
((
R, [t, t+ dt]

) ∣∣(R, [0, t]))P ((R, [0, t]))
=P

(
(R, [0, t+ dt])

∣∣(R, [0, t+ dt]
))

P
((
R, [0, t+ dt]

))
=P

((
R∪R, [0, t+ dt]

))
=P

((
R∪R, [0, t]

))
P
((
R∪R, [t, t+ dt]

) ∣∣(R∪R, [0, t]))
=P

(
(R, [0, t])

∣∣(R, [0, t]))P ((R, [0, t]))P ((R∪R, [t, t+ dt]
) ∣∣(R∪R, [0, t]))

=qr(t)P
((
R, [0, t]

))
P
((
R∪R, [t, t+ dt]

) ∣∣(R∪R, [0, t])) ,
which implies

qr (t+ dt) = qr(t)
P
((
R∪R, [t, t+ dt]

) ∣∣(R∪R, [0, t]))
P
((
R, [t, t+ dt]

) ∣∣(R, [0, t])) . (A.6.1)

Here the numerator on the right hand side is the probability that no reaction

event occurs during [t, t + dt], given that no reaction occurs before t. Thus it equals

1 − a0(t)dt where a0(t) is the total propensity of the system at time t given that no

reaction occurs before t. Similarly, the denominator equals 1 − aR̄(t)dt where aR̄(t) is

defined as the propensity of events in R at time t given that no events in R occur before

t. Thus (A.6.1) can be reduced to

qr (t+ dt) = qr(t)
P
((
R∪R, [t, t+ dt]

) ∣∣(R∪R, [0, t]))
P
((
R, [t, t+ dt]

) ∣∣(R, [0, t]))
=qr(t)

1− a0(t)dt

1− aR̄(t)dt
= qr(t) (1− a0(t)dt)

(
1 + aR̄(t)dt+O(dt2)

)
=qr(t) (1− (a0(t)− aR̄(t))dt) +O(dt2) , qr(t) (1− a(t)dt) +O(dt2). (A.6.2)

151

Here a(t) = a0(t) − aR̄(t) is the difference between the total propensity and

the propensity of the reaction events involving only molecules other than the observed

one. Thus it can be considered as the contribution that the observed molecule gives to

the total propensity. (A.6.2) yields an ODE

d

dt
qr(t) = −qr(t)a(t)

whose solution is

qr(t) = e−
∫ t
0 a(s)ds.

Thus the probability for the observed molecule to be involved in a reaction event before

time t, under the condition that no other reaction event occurs before t, is given by

pr(t) , 1− qr(t) = 1− e−
∫ t
0 a(s)ds. (A.6.3)

To estimate E (pr (τ)), it is necessary to find the distribution of τ . Define q (t)

to be the probability that the system does not fire a reaction before time t. As a0 (t) dt

is the probability that the system fires a reaction in the infinitesimal [t, t+ dt] given

that no reaction occurs before t, then we obtain

q (t+ dt) = q (t) (1− a0 (t) dt) =⇒ q (t) = e−
∫ t
0 a0(s)ds

p (t) , 1− q (t) = 1− e−
∫ t
0 a0(s)ds,

where p (t) is the probability that the system fires the first reaction before t.

152

Now we can estimate E (pr (τ)) as

E (pr (τ)) =

∫ ∞

0
pr (t) dp(t) = pr (0) +

∫ ∞

0
p′r (t) (1− p (t)) dt

=

∫ ∞

0
a (t) e−

∫ t
0 (a(s)+a0(s))dsdt =

∫ ∞

0

a (t)

a (t) + a0 (t)
(a (t) + a0 (t)) e

−
∫ t
0 (a(s)+a0(s))dsdt

≤ max
t>0

a (t)

a (t) + a0 (t)

∫ ∞

0
e−

∫ t
0 (a(s)+a0(s))ds (a (t) + a0 (t)) dt

= max
t>0

a (t)

a (t) + a0 (t)
e−

∫ t
0 (a(s)+a0(s))ds

∣∣∣0
∞

= max
t>0

a (t)

a (t) + a0 (t)
=

1

1 +mint>0
a0(t)
a(t)

.

(A.6.4)

Here the second equality uses integration by parts. Equation (A.6.4) shows that an

upper bound of E (pr (τ)) is determined by the ratio of the total propensity of the

system and the propensity contributed by the observed molecule. E (pr (τ)) will be a

small value when the ratio is large. It is worth mentioning that this value cannot be

controlled by decreasing the “stepsize”. This is because the stepsize of this simulation

is the time to the next chemical reaction event, which is determined by the behavior of

the system rather than a value that can be manipulated at will.

A.7 A discussion about the probability that a molecule

diffuses to a given subvolume

Suppose we have two one dimensional systems, system 1 and system 2, with

reflecting boundary conditions. The two systems are initially identical except that

molecules in system 2 are inert, thus that system is simply governed by a diffusion

process. Let us look at two molecules of the same species that initially are at the same

153

position but in the different systems. For the observed molecule in system 1, let R

be the set of possible reaction events in which the observed molecule is involved as a

reactant and R be the set of possible reaction events in which the observed molecule

is not involved. Suppose the two molecules are initially in voxel i. Define p̂i,j (t) as

the probability that the molecule in system 1 diffuses to voxel j at time t, under the

condition that no event inR occurs before t, and pi,j (t) the probability of the same event

for the molecule in system 2. The purpose of this section is to show that p̂i,j (t) ≤ pi,j (t).

Intuitively it is obvious that p̂i,j (t) ≤ pi,j (t) because in system 1 the fact that

the molecule been observed in voxel j at time t means that it not only has diffused to

voxel j but also survived (from reaction) up to time t, thus the probability should be

smaller that the value given by system 2 in which the molecules always survive. Here

we provide a more rigorous proof of that fact.

Denote the probability that the molecule jumps to a particular neighbor voxel

in a infinitesimal dt by κdt. Then in system 2, the diffusion process gives the equation

(A.5.1) with initial condition (A.5.2). However for system 1 which includes reactions,

p̂i,j (t) satisfies

p̂i,j (t+ dt) = p̂i,j−1 (t)κdt+ p̂i,j+1 (t)κdt+ p̂i,j (t) (1− 2κdt− aj (t) dt)

=⇒ d

dt
p̂i,j (t) = κ (p̂i,j−1 (t) + p̂i,j+1 (t)− 2p̂i,j (t))− aj (t) p̂i,j (t) ,

where aj (t) is the propensity contributed by the molecule, which is defined as aj (t) =

a0(j, t)− aR̄(t) where a0(j, t) is the total propensity of the system at time t given that

no reaction occurs before t and the observed molecule is in voxel j at time t, and aR̄(t)

154

is the total propensity of events in R at time t given that no event in R occurs before

t. Denoting bj (t) = aj (t) p̂i,j (t), then p̂i,j (t) satisfies

d

dt



p̂i,1 (t)

p̂i,2 (t)

...

p̂i,L−1 (t)

p̂i,L (t)


= κ



−1 1

1 −2 1

.

1 −2 1

1 −1





p̂i,1 (t)

p̂i,2 (t)

...

p̂i,L−1 (t)

p̂i,L (t)


−



b1 (t)

b2 (t)

...

bL−1 (t)

bL (t)


(A.7.1)

with the same initial condition as in (A.5.2)

p̂i,j (0) =


1 i = j

0 i ̸= j

.

Let ∆pi,j (t) = pi,j (t)− p̂i,j (t). From (A.5.1) and (A.7.1) we obtain

d

dt



∆pi,1

∆pi,2

...

∆pi,L−1

∆pi,L


= κ



−1 1

1 −2 1

.

1 −2 1

1 −1





∆pi,1

∆pi,2

...

∆pi,L−1

∆pi,L


+



b1 (t)

b2 (t)

...

bL−1 (t)

bL (t)


, (A.7.2)

with initial condition ∆pi,j = 0, j = 1, . . . , L.

The solution of (A.7.2) has the form
∆pi,1 (t)

...

∆pi,L (t)

 =

∫ t

0
V


eκλ0(t−s)

. . .

eκλL−1(t−s)

V−1


b1 (s)

...

bL (s)

 ds, (A.7.3)

155

where λi is defined as (A.5.3) and V is defined as (A.5.6).

From (A.5.5) we can see that for any vector p (0) = (p1(0), . . . , pL(0)) whose

elements are nonnegative, the following operation:

V


eκλ0t

. . .

eκλL−1t

V−1


p1 (0)

...

pL (0)


returns a vector (p1 (t) , . . . , pL (t))T which is also non-negative (every element in the

vector is a probability value thus it should be non-negative). Now apply this observation

to (A.7.3). Since bj (s) = aj (s) p̂i,j (s) ≥ 0, it is evident that the overall expression in

the integral in (A.7.3) is also nonnegative. Therefore the result (∆pi,1, . . . ,∆pi,L)
T is

nonnegative as well, which implies ∆pi,j (t) = pi,j (t)− p̂i,j (t) ≥ 0.

156

