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ABSTRACT 

The Contact-Dependent Growth Inhibition Pathways of 

Burkholderia pseudomallei 1026b and Escherichia coli EC93 

 

by 

 

Natasha Ilyana Edman 

 

Bacteria engage in social behavior by communicating through a variety of mechanisms. 

One method of communication is contact-dependent growth inhibition (CDI), a 

phenomenon in which one bacterium binds and delivers a toxin to a closely related target 

cell, using the proteins CdiB and CdiA. This toxin blocks cell growth unless the target cell 

contains an immunity protein, CdiI. The CDI pathway is the process by which toxins are 

delivered and activated, using distinct target-cell proteins such as outer membrane receptors 

and inner membrane transporters. The first chapter of this thesis focuses on the CDI system 

from Burkholderia pseudomallei 1026b. We identify three genes whose products appear to 

be necessary for growth inhibition, and describe a potential CDI pathway for this system. 

The second chapter discusses the mechanism by which Escherichia coli EC93 binds target 

cells. Mutations in BamA, the CdiAEC93 receptor, are described. These mutations confer 

resistance to CDI and block cell-cell binding. Both chapters demonstrate the variety and 

species specificity of CDI growth inhibition pathways. 
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Abstract 

Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition 

mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to 

receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-

terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-

inhibition pathways, whereby different systems exploit distinct target-cell proteins to 

deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the 

CDIII
Bp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a 

model. We took a genetic approach and selected Burkholderia thailandensis E264 

mutants that are resistant to growth inhibition by CDIII
Bp1026b.  We identified mutations in 

three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers 

resistance to CDIII
Bp1026b.  BTH_I0359 encodes a small peptide of unknown function, 

whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major 

facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it 

may facilitate translocation of CdiA-CTII
Bp1026b toxin from the periplasm into the 

cytoplasm of target cells.  BTH_I0986 encodes a putative transglycosylase involved in 

lipopolysaccharide (LPS) synthesis.  ∆BTH_I0986 mutants have altered LPS structure 

and do not interact with CDI+ inhibitor cells to the same extent as BTH_I0986+ cells, 

suggesting that LPS could function as a receptor for CdiAII
Bp1026b. Although 

∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to 

CDIII
Bp1026b, they provide no protection against the CDIE264 system deployed by B. 

thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition 

pathways are distinct and can differ significantly even between closely related species.  



 3 

Introduction 

Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition 

used by some Gram-negative species to inhibit the growth of neighboring bacteria [1-3]. 

CDI is mediated by the CdiB/CdiA family of two-partner secretion proteins, which are 

distributed through α-, β- and γ-proteobacteria [4]. CdiB is an outer-membrane β-barrel 

protein that exports the CdiA toxic effector. CdiA proteins are very large (180 – 650 kDa 

depending on the species) and are predicted to form long β-helical filaments that extend 

from the surface of inhibitor cells [2,5]. During CDI, CdiA binds to specific receptors on 

susceptible bacteria and delivers a toxin domain derived from its C-terminal region 

(CdiA-CT). CdiA-CT sequences are highly variable between bacterial species and strains, 

but the N-terminal boundary of this region is typically delineated by a highly conserved 

VENN peptide motif [1,6]. CdiA-CT sequence diversity suggests a variety of toxin 

activities, and indeed most characterized CDI toxins are nucleases with different cleavage 

specificities for DNA, tRNA or rRNA [1,7-9]. Additionally, CdiA-CTEC93 from 

Escherichia coli EC93 appears to form pores in target-cell membranes [10], and sequence 

analysis suggests that other CDI toxins may have RNA deaminase and protease/peptidase 

activities [11]. CDI+ bacteria protect themselves from auto-inhibition by producing CdiI 

immunity proteins, which bind to CdiA-CT toxins and neutralize their activities. 

 

CDI has been characterized most extensively in γ-proteobacteria, with E. coli EC93 and 

uropathogenic E. coli 536 (UPEC 536) serving as model systems. Studies with those 

systems have revealed that CDI exploits specific target-cell proteins to deliver growth 

inhibitory toxins [12,13]. Selections for mutants that are resistant to the E. coli EC93 
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system (CDIEC93) identified bamA and acrB mutations that protect target cells from 

growth inhibition [12]. BamA is an essential outer-membrane protein required for the 

assembly of all β-barrel proteins [14-17], and is specifically recognized as a target-cell 

receptor by CdiAEC93 [12,18]. AcrB is a trimeric integral membrane protein that functions 

together with AcrA and TolC as a multi-drug efflux pump [19]. However, the efflux 

function of AcrB is not required for CDIEC93 because ∆acrA and ∆tolC mutants are both 

fully sensitive to CDIEC93 [12]. Though the role of AcrB during CDIEC93 is not known, its 

localization suggests that it could facilitate assembly of the CdiA-CTEC93 pore-forming 

toxin into the target-cell inner membrane. Biochemical studies on CdiA-CT536 from 

UPEC 536 have shown that this toxin is a latent tRNase that only exhibits nuclease 

activity when bound to the cysteine synthase, CysK [13]. In accord with in vitro studies, 

E. coli ∆cysK mutants are completely resistant to inhibition by CDIUPEC536. Collectively, 

these findings indicate that CDI pathways can encompass at least three distinct steps: i) 

receptor-binding to identify target bacteria, ii) translocation of CdiA-CT toxin across the 

target-cell envelope, and iii) activation of the toxin in the target-cell cytoplasm. Notably, 

the protective effects of cysK and acrB mutations are specific to the CDIUPEC536 and 

CDIEC93 pathways, respectively [13]. These findings raise the possibility that each CDI 

system/toxin exploits a unique set of proteins to inhibit target-cell growth. 

 

CdiB and CdiA share significant homology across the proteobacteria, but the CDI 

systems of Burkholderiales exhibit a number of differences compared to other bacteria. 

Firstly, the variable toxin region in Burkholderia CdiA is typically demarcated by the 

(E/Q)LYN peptide motif rather than the VENN sequence found in most other bacteria 
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[9,20]. Burkholderia toxins are modular and can be exchanged readily between 

Burkholderia CdiA proteins [9], but chimeric E. coli CdiA proteins carrying 

Burkholderia CdiA-CTs fused at the VENN sequence are not functional in CDI [1]. 

Secondly, CDI genes are arranged as cdiAIB clusters in Burkholderia, Variovorax and 

Cupriavidus species rather than the cdiBAI order found in other bacteria. This alternative 

gene arrangement is also correlated with a lack of "orphan" cdiA-CT/cdiI gene pairs. 

Orphan modules resemble the displaced 3´-fragments of full-length cdiA genes together 

with their cognate cdiI immunity genes [3,21]. Tandem arrays of orphan cdiA-CT/cdiI 

gene pairs are commonly found downstream of cdiBAI loci in γ-proteobacteria, and all 

strains of Neisseria meningitidis also carry well-defined orphan toxin/immunity clusters 

[21,22]. Finally, many Burkholderia CDI systems encode a small predicted lipoprotein, 

BcpO, between the cdiI and cdiB genes [20]. The function of BcpO is not understood 

completely, but it is required for CdiA secretion in Burkholderia thailandensis E264 [20]. 

Collectively, these observations suggest that the mechanisms of CDI in Burkholderia 

species are fundamentally distinct from other bacteria.  

 

Here, we begin exploring Burkholderia CDI pathways using the CDIII
Bp1026b system 

encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a 

genetic approach and isolated transposon mutants of B. thailandensis E264 that are 

resistant to inhibition by the CDIII
Bp1026b system. Independent selections identified 

multiple transposon insertions in three genes – BTH_I0359, BTH_II0599 , and 

BTH_I0986, each of which confers resistance to CDIII
Bp1026b.  BTH_I0359 encodes a 

small cytosolic protein of unknown function, BTH_II0599 encodes an integral membrane 
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protein from the major facilitator superfamily (MFS), and BTH_I0986 encodes a 

predicted lipopolysaccharide (LPS) transglycosylase.  We find that LPS structure is 

altered in BTH_I0986 mutants, suggesting that LPS may function as a receptor or co-

receptor for CdiAII
Bp1026b.  These results demonstrate that the CDIII

Bp1026b is distinct from 

previously described E. coli pathways, suggesting that multiple pathways exist to 

translocate CDI toxins into target bacteria. 

 

Materials and Methods 

 

Bacterial strains and growth conditions 

Bacterial strains were derived from Burkholderia thailandensis E264 and are listed in 

Table 1.1. Bacteria were routinely cultured in LB media supplemented with the following 

antibiotics where appropriate: kanamycin (Kan) 500 µg/mL; tetracycline (Tet) 25 µg/mL; 

trimethoprim (Tp) 100 µg/mL; chloramphenicol (Cam) 34 µg/mL; and polymyxin B (PB) 

100 µg/mL. CDIII
Bp1026b competitions used Bt81 inhibitors, which are B. thailandensis 

E264 cells that express cdiAIBII
Bp1026b from plasmid pJSW1-6 (Table 1.2) [9]. Bt81 

inhibitors and target cells were grown individually for at least 48 h (to OD600 > 0.6) in 

M9-minimal media supplemented with 0.2% L-arabinose. Approximately 109 colony-

forming units (cfu) of Bt81 inhibitors and 108 cfu of target cells were mixed in 150 µL of 

M9-minimal medium supplemented with 0.2% arabinose, 1 µg/mL thiamine and 0.3 

µg/mL ferric citrate, and aliquots plated onto LB agar supplemented with Tet or Kan to 

enumerate viable inhibitors and targets (respectively) at time 0 h. The remaining cell 
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mixture (100 µL) was spread onto M9-minimal medium agar supplemented with 0.2% L-

arabinose, 1 µg/mL thiamine and 0.3 µg/mL ferric citrate and incubated for 24 h at 30 °C. 

Cells were then harvested from the agar surface, and viable inhibitor and target cell counts 

were determined as total cfu on Tet and Kan (respectively) supplemented LB agar. The 

competitive index (C.I.) was calculated as the ratio of target cells to inhibitor cells at 24 h 

divided by the target to inhibitor ratio at time 0 h. CDIE264 competitions were conducted in 

a similar manner, except inhibitor and target cells were co-cultured on tryptone broth agar. 

For these latter competitions, the target cells were derived from strain Bt36, which carries 

a deletion of the entire cdiAIBE264 gene cluster [9]. CdiA-CTII
Bp1026b toxicity was tested by 

expressing the toxin domain inside B. thailandensis cells. Plasmid pSCBAD-CTII1026b 

was introduced into E. coli DH5α and the resulting strain used in a four-parent mating 

with SM10λpir/pTNS3 [23,24], HB101 (pRK2013) [25] and B. thailandensis E264. 

Conjugation mixtures were split into two equal portions and plated on LB agar 

supplemented with PB, Tp and 0.2% D-glucose and LB agar supplemented with PB, Tp 

and 0.2% L-arabinose. The presence of exconjugants on plates supplemented with D-

glucose and the simultaneous absence of exconjugant colonies after incubation at 37 °C 

for 48 h on the L-arabinose containing plates was indicative of toxicity. 

 

Selection of CDIR mutants 

A library of random T23-TpR transposon-insertion mutants (>38,000 unique insertions) 

[26] was co-cultured with B. thailandensis Bt81 inhibitor cells [9]. Inhibitors and mutant 

target cells were mixed at a 10:1 ratio and plated onto M9 minimal agar medium 

supplemented with 0.2% L-arabinose 1 µg/mL thiamine and 0.3 µg/mL ferric citrate. 
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After 24 h co-culture at 37 °C, cells were harvested from the agar surface and surviving 

target cells isolated on Tp-supplemented LB agar. The target cells were pooled and 

subjected to two additional rounds of selection against CDIII
Bp1026b expressing inhibitor 

cells. After enrichment, individual clones were selected and tested for CDI-resistance in 

competition co-cultures with Bt81 inhibitor cells. Transposon-insertion junctions were 

amplified by arbitrary PCR using primers LacZ-124L2, LacZ-148 and CEKG 2E/K/L 

(Table 1.3). The resulting products were sequenced with primers LacZ211 and CEKG4 to 

identify insertion sites (Table 1.3). 

 

Construction of plasmids and chromosomal deletions 

Plasmid pSCBAD is a derivative of pSCRhaB2 [27]. The araC gene and araBAD 

promoter were excised from plasmid pCH450 [28] by NsiI/NcoI digestion and ligated to 

plasmid pSCRhaB2. This sub-cloning step replaces the original rhamnose-inducible 

promoter with an arabinose-inducible promoter. Plasmid pCH450 was amplified with 

primers CH1730/CH2799 and the resulting product cloned into pSCRhaB2 using 

NsiI/NcoI restriction sites to generate plasmid pSCBAD-KX. The BTH_II0599 and 

BTH_I0986 genes were amplified from chromosomal DNA using primers 3258/2725 and 

3259/2729 (respectively), and the resulting products ligated to plasmid pSCBAD using 

EcoRI and XmaI restriction sites. BTH_I0359 was amplified using primers 

CH2059/CH2800 and ligated into pSCBAD-KX using KpnI and PstI restriction sites. The 

region encoding CdiA-CTII
Bp1026b (residues Met2821 – Asn3122 of full-length 

CdiAII
Bp1026b) was subcloned from plasmid pCH450-CTII

1026b [9] into pSCBAD using 
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NcoI and PstI restriction sites. The DsRed coding sequence was subcloned from plasmid 

pTrc-DsRed [8] into pSCBAD using NcoI and PstI restriction sites. 

 

Gene deletions were constructed by allelic exchange as described previously [29]. DNA 

sequences upstream and downstream of the target gene were amplified and the two PCR 

products combined into one fragment using overlapping end PCR (OE-PCR) [30]. The 

OE-PCR products were ligated to plasmid pEX18-Tp (Table 1.2) using HindIII and 

KpnI/XbaI restriction sites. The BTH_I0359 deletion construct was generated using 

primer pairs 3296/3297 and 3298/3299; the BTH_II0599 deletion construct was 

generated using primer pairs 3182/3183 and 3184/3185; and the BTH_I0986 deletion 

construct generated using primer pairs 3103/3104 and 3105/3106 (Table 1.3). 

 

Cell-cell adhesion 

GFP-labeled B. thailandensis E264 [24] carrying plasmid pJSW1-6 (Bt121) or pJSW2 

(Bt5) were grown overnight in tryptone broth, then diluted 1:50 in fresh tryptone broth 

and grown to OD600 ~0.5. DsRed-labeled target strains (Bt101, Bt123, Bt124 and Bt143) 

were grown in minimal M9-media supplemented with 0.2% L-arabinose for at least 48 h 

to OD600 ~ 0.5. Inhibitor and target cells were mixed at a 1:1 ratio and incubated for 30 

min at room temperature to allow cell-cell binding. Cell suspensions were then diluted 

1:50 into sterile filtered 1X phosphate buffered saline and  analyzed by flow cytometry. 

Samples were run on an Accuri C6 flow cytometer using FL1 (533/30nm, GFP) and FL2 

(585/40nm, DsRed) fluorophore filters. Cell-cell binding was measured as the percent of 

target cells in aggregates with inhibitor cells divided by the total number of target cells. 
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Binding data were normalized to the level of cell-cell binding between wild-type target 

cells (Bt101) and CDIII
Bp1026b expressing inhibitors (Bt121). 

 

Lipopolysaccharide (LPS) analysis 

Bacteria were grown to OD600  > 0.6 in M9-minimal medium supplemented with 0.2% L-

arabinose and LPS was harvested from an equivalent of 10 mL of OD600 = 1 culture using 

the LPS Extraction Kit (Boca Scientific, USA). Purified LPS was resolved on a 4-20% 

polyacrylamide Tris-glycine SDS gel (Thermo Scientific) and visualized using ProQ 300 

Emerald LPS stain (Molecular Probes, USA).  

Results 

 

Isolation of CDIR mutants 

To gain insight into the CDI pathways in Burkholderia species, we used a genetic 

approach to identify target-cell genes that are required for growth inhibition. We 

reasoned that mutants with disruptions in the genes encoding the CDI receptor, toxin 

translocators and toxin activators would be CDI-resistant (CDIR). B. thailandensis E264 

cells were subjected to random mutagenesis using a Tn5-based T23 transposon. Two 

independent T23 mutant pools were then co-cultured on solid media with B. 

thailandensis inhibitor cells that express the B. pseudomallei CDIII
Bp1026 system from a 

plasmid vector (Bt81, Table 1.1). CDIR mutants were enriched through three cycles of co-

culture with inhibitor bacteria, and 20 clones were selected for the identification of 

transposon insertion sites. Each mutant contained a T23 insertion within BTH_I0359, 
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BTH_II0599 or BTH_I0986; corresponding to eleven unique insertion sites (Fig. 1.1A & 

Table 1.1). BTH_I0359 is located upstream of the genes for methionine biosynthesis and 

encodes a hypothetical protein of 85 amino acid residues (Fig. 1.1A). BTH_II0599 

encodes a predicted major facilitator superfamily (MFS) protein and is likely to be an 

inner-membrane localized transporter. BTH_I0986 is annotated as lipooligosaccharide 

(LOS) glycosyl-transferase G and is located within an LPS biosynthesis operon on 

chromosome I (Fig. 1.1A). We picked two mutants for each disrupted gene and 

confirmed that each was 10- to 100-fold more resistant to the CDIII
1026b system than wild-

type B. thailandensis (Fig. 1.1B).    

 

Because multiple independent insertions were identified for each gene, it is likely that 

these mutations are directly responsible for the CDIR phenotype. However, it is possible 

that the mutant strains carry additional unidentified mutations that contribute to 

resistance. To ascertain the roles of BTH_I0359, BTH_I0986 and BTH_II0599 in CDI, 

we constructed in-frame deletions of each gene and tested the resulting mutants for CDIR. 

As expected, the deletion mutants each had CDIR phenotypes that were very similar to 

the originally isolated transposon-insertion mutants (Figs. 1.1B & 1.2). ∆BTH_I0986 and 

∆BTH_II0599 mutants were fully resistant to CDIII
Bp1026b, whereas the ∆BTH_I0359 

mutant was only partially protected from inhibition (Fig. 1.2). These results strongly 

suggest that each gene is required for the CDIII
Bp1026b inhibition pathway. We also 

showed that each deletion mutant was rendered sensitive to CDIII
Bp1026b when 

complemented with a plasmid-borne copy of the appropriate gene (Fig. 1.2). These latter 
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data exclude effects from transcriptional polarity and indicate that BTH_I0359, 

BTH_II0599 and BTH_I0986 are required for full sensitivity to the CDIII
Bp1026b system. 

 

Resistance mutations are specific for the CDIII
Bp1026b system 

B. thailandensis E264 carries its own CDI system (CDIE264) and the CdiAE264 protein 

shares approximately 53% sequence identity with CdiAII
Bp1026b. However, the CdiA-

CTE264 and CdiA-CTII
Bp1026b toxins are not homologous and have different nuclease 

activities [9], suggesting that the two toxin-delivery pathways could be distinct. 

Therefore, we asked whether mutations in BTH_I0359, BTH_II0599 and BTH_I0986 

also provide resistance to CDIE264. We first confirmed that ∆cdiAIBE264 mutants, which 

lack immunity to CDIE264, are inhibited by wild-type CDI+ B. thailandensis cells as 

reported previously [9,20]. B. thailandensis ∆cdiAIBE264 targets were inhibited 

approximately 105-fold during co-culture with CDI+ cells (Fig. 1.3). This growth 

inhibition is attributable to CDIE264, because the target cells were fully protected when 

complemented with the cdiIE264 gene on a Tn7-based vector (Fig. 1.3). We then 

introduced ∆BTH_I0359, ∆BTH_II0599 and ∆BTH_I0986 mutations into the 

∆cdiAIBE264 background and found that each of the resulting strains was still sensitive to 

CDIE264 (Fig. 1.3). These results demonstrate mutations in BTH_I0359, BTH_II0599 and 

BTH_I0986 specifically confer resistance to the CDIII
Bp1026b system. 

 

CDIR genes are not required to activate the CdiA-CTII
Bp1026b toxin 

Work with the CDI536 system from UPEC 536 has shown that some CDI toxins must be 

activated by so-called "permissive" factors. CdiA-CT536 only has tRNase activity when 
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bound to CysK, and therefore E. coli ∆cysK mutants are completely resistant to the toxin, 

even when produced at high levels inside the cell [13,31]. Based on the CDI536 paradigm, 

we asked whether any of the Burkholderia CDIR genes encode proteins with permissive 

factor function. We placed the cdiA-CTII
Bp1026b coding sequence under control of an 

arabinose-inducible PBAD promoter and moved the construct onto a mobilizable plasmid. 

This plasmid can be stably maintained in E. coli cells under conditions that repress 

transcription from PBAD [9]. We then tested whether the cdiA-CTII
Bp1026b plasmid could be 

introduced into B. thailandensis cells through tri-parental mating. No exconjugants were 

produced from matings to introduce the toxin plasmid into wild-type cells, but dozens of 

exconjugants were obtained when recipient cells expressed the cognate cdiIII
Bp1026b 

immunity gene (Fig. 1.4). These results indicate that CdiA-CTII
Bp1026b is toxic when 

expressed inside B. thailandensis cells and that CdiIII
Bp1026b neutralizes the toxin to allow 

cell growth. We next performed matings with ∆BTH_I0359, ∆BTH_II0599 and 

∆BTH_I0986 recipient strains, each of which produced no exconjugants (Fig. 1.4). 

Together, these results show that none of the CDIR mutations protect the cell from 

intracellular CdiA-CTII
Bp1026b, indicating that the corresponding gene products do not 

function as CDI permissive factors. 

 

BTH_I0986 influences the binding of inhibitor and target cells 

We next considered the possibility that the CDIR genes may influence the recognition of 

target cells. The BTH_I0986 mutation is of particular interest because this gene belongs 

to the GT1 family of glycosyltransferases and is predicted to function in 

lipopolysaccharide (LPS) biosynthesis. Thus, the BTH_I0986 mutation could alter LPS 
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structure, thereby preventing CDIII
Bp1026b inhibitor cells from recognizing and/or binding 

to target bacteria. To determine whether BTH_I0986 influences LPS structure, we used 

SDS-PAGE to analyze LPS isolated from wild-type and ∆BTH_I0986 cells. Surprisingly, 

we found that LPS isolated from wild-type B. thailandensis E264 cells lacked polymeric 

O antigen (Fig. 1.5), in contrast to previous reports [32,33]. The LPS from ∆BTH_I0986 

mutants also lacked an O-antigen ladder, but migrated more rapidly during 

electrophoresis than LPS from BTH_I0986+ cells (Fig. 1.5). Complementation with 

plasmid-borne BTH_I0968 restored mutant LPS to the wild-type mobility (Fig. 1.5). 

Therefore, disruption of BTH_I0986 alters the target-cell surface by changing LPS 

structure.  

 

In the E. coli EC93 system, inhibitor cells bind stably to target bacteria and the resulting 

cell aggregates can be detected and quantified using flow cytometry [12,18]. Therefore, 

we used the same approach to examine the binding of CDIII
Bp1026b inhibitors to different 

target cell strains. We mixed GFP-labeled CDIII
Bp1026b inhibitors at a 1:1 ratio with 

DsRed-labeled target cells and analyzed the suspensions by flow cytometry to detect 

events with both green and red fluorescence, which correspond to aggregates containing 

both inhibitor and target cells. This analysis showed that approximately 40% more target 

cells bind to CDIII
Bp1026b inhibitors compared to CDI– mock inhibitors (Fig. 1.6). 

Discussion 

The results presented here show that at least three genes, BTH_I0359, BTH_I0986 and 

BTH_II0599, are required for B. thailandensis cells to be fully inhibited by the 
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CDIII
Bp1026b system. We identified each gene in two independent selection experiments, 

suggesting that they represent the major non-essential genes required for the CDIII
Bp1026b 

pathway. Indeed, BTH_II0599 and BTH_I0986 are particularly critical because deletion 

of either gene provides full resistance to target bacteria. Notably, the three B. 

thailandensis genes identified here are distinct from those previously identified in E. coli 

within the CDIEC93 growth inhibition pathway [12]. These results suggest that the 

CDIII
Bp1026b and CDIEC93 systems deliver toxins through different pathways. CDI is 

initiated through direct binding interactions between CdiA and receptors on the surface of 

target bacteria. CdiAEC93 uses the E. coli BamA protein as a receptor and appears to bind 

specific epitopes within extracellular loops eL6 and eL7 [12,18].  Our results here 

suggest that B. pseudomallei CdiAII
Bp1026b may exploit LPS as a target-cell receptor. 

BTH_I0986 is a predicted transglycosylase and mutants lacking this enzyme have altered 

LPS structure (Fig. 1.5). Moreover, the ∆BTH_I0986 mutant shows defects in binding to 

CDIII
Bp1026b inhibitor cells (Fig. 1.6), consistent with a role in receptor function. 

Surprisingly, we also found that our B. thailandensis E264 isolate lacks a detectable O-

antigen ladder. This could account for the fact that we did not identify any additional LPS 

biosynthesis genes in independent selections. It is unclear whether the rough LPS 

phenotype reflects phase variation [34-36], or whether a rough-strain mutant was selected 

through laboratory passage. In either event, it will be important to determine how O-

antigen influences CDI susceptibility in Burkholderia species. Although our results do 

not support a role for BamA in Burkholderia CDI, we acknowledge that CDIR alleles of 

the essential bamA gene would be difficult to isolate using a transposon mutagenesis 

approach. If Burkholderia BamA does function as a CDI receptor, then the interactions 
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must be distinct from the CDIEC93 system, because BamA loops eL6 and eL7 loops differ 

significantly between E. coli and Burkholderia species (Fig. 1.7) [37].  

  

Because CdiA-CTII
Bp1026b is a tRNase, this toxin must be transported into the target-cell 

cytoplasm to reach its substrate. CDI toxin translocation is poorly understood, but our 

recent work with E. coli indicates that transport across the target-cell outer membrane is 

energy-independent, whereas translocation into the cytoplasm requires the proton-motive 

force [38]. These findings raise the possibility that BTH_II0599, a predicted MFS 

transporter, is co-opted to translocate the tRNase domain across the target-cell inner 

membrane. In this model, periplasmic toxin would bind to BTH_II0599 and be driven 

into the cytoplasm by either the chemical or electrical potential of the pmf. These 

interactions are specific because the ∆BTH_II0599 mutation provides no protection 

against the B. thailandensis CDIE264 system, suggesting that the CdiA-CTE264 toxin must 

exploit another entry pathway. Although MFS proteins harness chemiosmotic gradients 

to transport a variety of metabolites [39,40], it seems unlikely that the transporter could 

translocate a folded nuclease domain in the same manner as small solutes. One possibility 

is that CdiA-CTII
Bp1026 has an autonomous membrane translocation activity, but requires 

BTH_II0599 as a receptor to facilitate insertion into the inner membrane. This model is 

similar to that proposed by Kleanthous and colleagues for the translocation of colicin 

nuclease domains, some of which interact with phospholipids and form pores in 

membranes [41-43]. 
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The role of BTH_I0359 in the CDIII
Bp1026b pathway remains enigmatic, in part because 

the function of this gene is unknown. BTH_I0359 encodes a DUF3567 family member 

(PF12091, http://pfam.xfam.org/family/PF12091), which is only found within the order 

Burkholderiales. The gene neighborhood of BTH_I0359 includes the downstream metHa 

and metHb (which encode a split methionine synthase) and an upstream DUF3108 family 

member. DUF3567 and DUF3108 genes are linked throughout all the Burkholderiales, 

whereas linkage to metH is limited to Burkholderia, Ralstonia and Cupriavidus species. 

DUF3108 genes encode outer-membrane β-barrel proteins with a characteristic YmcC 

fold (PDB: 3FZX). Although strong genetic linkage is often indicative of a functional 

relationship, we did not isolate BTH_I0360 mutations in our CDIR selections, even 

though this gene is not essential for B. thailandensis growth [26]. We have also excluded 

a "permissive" factor function for BTH_I0359. Permissive factors are target-cell proteins 

that are required to activate CdiA-CT toxins in the target-cell cytoplasm [13]. This 

conclusion is also supported by previous studies showing that purified CdiA-CTII
Bp1026b 

has tRNase activity in vitro, and therefore does not require an additional factor for 

activation [8].  

 

All B. pseudomallei strains contain at least one CDI system, and some isolates carry up to 

three loci [9]. Each system can be placed into one of 10 different toxin/immunity groups 

[9,20], suggesting that CDI mediates competition between different B. pseudomallei 

strains. Using B. thailandensis as a model, Cotter and colleagues have recently 

demonstrated that such competition does in fact occur in mixed-strain biofilms, and that 

CDI influences the composition of these communities [20,44]. Additionally, there are 
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indications that B. pseudomallei and B. thailandensis do not co-inhabit the same 

environmental niches [45], again suggesting that anti-bacterial competition systems shape 

their environmental distributions. If Burkholderia species do in fact directly antagonize 

one another in the environment, then type VI secretion systems (T6SS) are more likely to 

effect this competition. B. thailandensis and B. pseudomallei strains all carry multiple 

T6SS, which have been shown to deploy toxins against both bacteria and eukaryotic 

targets [46-49]. Moreover, a given T6SS is capable of killing many different species of 

Gram-negative bacteria [50-52]. In contrast, CDI is a receptor-mediated process, and 

therefore variations in the cell-surface receptor epitopes restrict inhibition activity to a 

subset of bacteria [18]. In accord with this general model, data presented here show that 

CDIE264 is significantly more effective against B. thailandensis targets than CDIII
Bp1026b. 

Together, these observations indicate that CDI is used primarily to differentiate sibling 

cells from other closely related bacteria.  
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Figure 1.1. Selection of CDIR mutants of B. thailandensis E264. (A) T23 transposon insertion 
sites were identified by semi-arbitrary PCR as described in Methods. Orange arrows indicate T23 
insertions in the same transcriptional orientation of the disrupted gene and blue arrows indicate 
insertions in the opposite orientation. The corresponding CDIR mutant strain number is given 
above each arrow. Automated gene annotations are given below each ordered locus designation. 
GT-1, GT-2 and GT-9 indicate predicted glycosyltransferase families and DUF designations 
indicate domains of unknown function. (B) The indicated B. thailandensis strains were co-
cultured with Bt81 inhibitors (Table 1.1) that express the CDIII

Bp1026b system for 24 h on solid 
medium, and the competitive index was calculated as described in Materials and Methods. The 
strain labeled cdiI1026b expresses the cognate CdiIII

Bp1026b immunity protein. Data represent the 
mean ± SEM for three independent experiments.  
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Figure 1.2. Complementation of CDIR mutations. The indicated B. thailandensis strains were 
co-cultured with Bt81 inhibitors (Table 1.1) that express the CDIII

Bp1026b system for 24 h on solid 
medium, and the competitive index was calculated as described in Materials and Methods. The 
strain labeled cdiI1026b expresses the cognate CdiIII

Bp1026b immunity protein. Plasmid-borne copies 
of BTH_I0359, BTH_I0986 and BTH_II0599 genes were expressed from an L-arabinose 
inducible promoter. Data represent the mean ± SEM for three independent experiments. 
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Figure 1.3. The CDIR phenotype is specific for CDIII
Bp1026b. The indicated B. thailandensis 

strains were co-cultured with wild-type (cdiAIB+) B. thailandensis E264 cells for 24 h on solid 
medium, and the competitive index was calculated as described in Materials and Methods The 
strain labeled cdiIE264 expresses the cognate CdiIE264 immunity protein. Data represent the mean ± 
SEM for three independent experiments. 
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Figure 1.4. Toxicity of CdiA-CTII

Bp1026b expressed inside B. thailandensis cells. Plasmids 
pSCBAD and pSCBAD::cdiA-CTII

Bp1026b were introduced into the indicated B. thailandensis 
strains by conjugation as described in Materials and Methods. The mating mixtures were plated 
onto LB agar supplemented with L-arabinose and trimethoprim. The strain labeled cdiIII

Bp1026b 
expresses the cognate CdiIII

Bp1026b immunity protein. 
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Figure 1.5. Lipopolysaccharide (LPS) analysis. LPS was isolated from the indicated B. 
thailandensis strains and analyzed by SDS-PAGE using fluorescent detection. The LPS standard 
is from Escherichia coli serotype 055:B5. 
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Figure 1.6. Cell-cell binding. CDI+ (Bt81) and CDI– (wild-type B. thailandensis) cells were 
labeled with GFP and mixed with the indicated DsRed-labeled target cells, then analyzed by flow 
cytometry to detect and quantify cell-cell aggregates. Binding was normalized to 1.0 for the 
interaction between Bt81 and wild-type B. thailandensis cells. 
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Figure 1.7. Alignment of BamA proteins. The β-barrel portion of BamA proteins from E. coli 
K-12 (Uniprot: P0A940), Enterobacter cloacae ATCC 13047 (D5CHY0), Vibrio cholerae ATCC 
39315 (Q9KPW0), B. thailandensis E264 (Q2SWZ0) and B. pseudomallei 1026b (I1WHZ2). 
Sequences that correspond to extracellular loops (eL) are indicated above the alignment and are 
based on the crystal structures of BamA from Neisseria gonorrhoeae and Haemophilus ducreyi 
[37]. The alignment was rendered using Jalview 2.8 [55] at 30% sequence identity. 
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Table 1.1. Bacterial strains used in this study. 

Strains Description Source or 
Reference 

B. thailandensis 
E264 wild-type isolate [54] 

Bt5 B. thailandensis E264 (pJSW2) This study 

Bt6 glmS1::Tn7-Kan, KanR [9] 

Bt7 glmS1::Tn7-cdiI1026b-Kan, KanR [9] 

Bt28 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 557 of coding sequence, 
TpR 

This study 

Bt29 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 611 of coding sequence, 
TpR 

This study 

Bt30 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 720 of coding sequence, 
TpR 

This study 

Bt32 BTH_I0359::T23(ISlacZ-PrhaBo-FRT-Tp); T23 transposon 
inserted after nucleotide 226 of coding sequence, TpR This study 

Bt33 BTH_I0986::T23(ISlacZ-PrhaBo-FRT-Tp); T23 transposon 
inserted after nucleotide 514 of coding sequence, TpR This study 

Bt35 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 524 of coding sequence, 
TpR 

This study 

Bt36 ΔcdiAIB glmS1::Tn7-kan, KanR [9] 

Bt45 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 664 of coding sequence, 
TpR 

This study 

Bt47 BTH_I0359::T23(ISlacZ-PrhaBo-FRT-Tp); T23 transposon 
inserted after nucleotide 49 of coding sequence, TpR This study 

Bt49 BTH_I0986::T23(ISlacZ-PrhaBo-FRT-Tp); T23 transposon 
inserted after nucleotide 207 of coding sequence, TpR This study 

Bt50 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 371 of coding sequence, 
TpR 

This study 

Bt51 
BTH_II0599::T23(ISlacZ-PrhaBo-FRT-Tp); T23 
transposon inserted after nucleotide 521 of coding sequence, 
TpR 

This study 
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Bt56 ΔcdiAIB glmS1::Tn7-PrpsL-cdiIE264-kan, KanR [9] 

Bt79 glmS1::Tn7-PrpsL-gfp-kan, KanR T. Hoang 

Bt81 pJSW1-6, TetR [9] 

Bt83 ΔcdiAIB glmS1::Tn7-kan ΔBTH_I0986, KanR This study 

Bt87 glmS1::Tn7-kan ΔBTH_II0599, KanR This study 

Bt101 glmS1::Tn7-kan pSCBAD::DsRed, KanR TpR This study 

Bt103 glmS1::Tn7-kan ΔBTH_I0986, KanR  This study 

Bt104 ΔcdiAIB glmS1::Tn7-kan ΔBTH_II0599, KanR This study 

Bt111 glmS1::Tn7-kan ΔBTH_I0986 pSCBAD::I0986, KanR TpR This study 

Bt121 glmS1::Tn7-PrpsL-gfp-kan pJSW1-6, KanR TetR This study 

Bt123 glmS1::Tn7-kan ΔBTH_I0986 pSCBAD::DsRed, KanR TpR This study 

Bt124 glmS1::Tn7-kan ΔBTH_II0599 pSCBAD::DsRed, KanR TpR This study 

Bt132 glmS1::Tn7-kan ΔBTH_I0359, KanR This study 

Bt134 ΔcdiAIB glmS1::Tn7-kan ΔBTH_I0359, KanR This study 

Bt137 glmS1::Tn7-kan ΔBTH_II0599 pSCBAD::II0599, KanR TpR This study 

Bt138 glmS1::Tn7-kan ΔBTH_I0359 pSCBAD::I0359, KanR TpR This study 

Bt143 glmS1::Tn7-kan ΔBTH_I0359 pSCBAD::DsRed, KanR TpR This study 

Abbreviations: KanR, kanamycin-resistant; TetR, tetracycline-resistant; TpR, trimethoprim-
resistant 
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Table 1.2. Plasmids used in this study. 

Plasmid Description Source or 
Reference 

pEX18-Tp 
Suicide vector containing pheS* gene for o-
chlorophenylalanine counter-selection, TpR [55] 

pSCRhaB2 Rhamnose-inducible promoter, TpR [27] 

pSCBAD 
Derivative of pSCRhaB2 with E. coli araC and PBAD 
promoter, TpR This study 

pSCBAD-KX 
Derivative of pSCRhaB2 with E. coli araC and PBAD 
promoter, TpR This study 

pJSW2 
Shuttle vector carrying oriVpVS1 oriVp15A oriT araC-PBAD, 
TetR [9] 

pJSW1-6 
pJSW2-cdiAIBII

1026b, expresses the Bp 1026b CDIII system 
under control of the arabinose-inducible PBAD promoter, TetR [9] 

pEX18-Tp:: 
ΔBTH_I0359 BTH_I0359 deletion construct, TpR This study 

pEX18-Tp:: 
ΔBTH_II0599 

BTH_I0599 deletion construct, TpR This study 

pEX18-Tp:: 
ΔBTH_I0986 

BTH_I0986 deletion construct, TpR This study 

pSCBAD-
KX::0359 

Arabinose-inducible expression of BTH_I0359, TpR This study 

pSCBAD::0599 Arabinose-inducible expression of BTH_I0599, TpR This study 

pSCBAD::0986 Arabinose-inducible expression of BTH_I0986, TpR This study 

pCH450-CTII
1026b 

Arabinose-inducible expression of residues Met2821 – 
Asn3122 of CdiAII

Bp1026b, TetR [9] 

pSCBAD- 
CTII

1026b 
Arabinose-inducible expression of residues Met2821 – 
Asn3122 of CdiAII

Bp1026b, TpR This study 

pTrc-DsRed IPTG-inducible expression of DsRed, AmpR [8] 

pSCBAD::DsRed Arabinose-inducible expression of DsRed, TpR This study 

Abbreviations: KanR, kanamycin-resistant; TetR, tetracycline-resistant; TpR, trimethoprim-
resistant 
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Table 1.3. Oligonucleotides used in this study. 

Oligonucleotide 
Sequence  

(Restriction endonuclease sites are in lowercase; N indicates equal 
mixture of all four deoxyribonucleotides) 

Reference 

2725 5´ - ATA Tcc cgg gTC ATC GAT CGG AGG TGT TCG This study 

2729 5´ - ATA Tcc cgg gTC ATC GCC CTC CGT TAC G This study 

3103 5´ - CAA CAA aag ctt CAT CGA CAC GCT CGT GGG AGA This study 

3104 5´ - GAT CGT ACT GGA TCG CTGC ACG CCA AAA ACC 
AAC GGC CGG ACC C This study 

3105 5´ - GCG TGC AGC GAT CCA GTA CGA TC This study 

3106 5´ - CAA CAA ggt acc CGT GTC GCC GAG CAA CAG ATG 
A This study 

3182 5´ - CAA CAA aag ctt CAT CAG CCG AAC CTG CGC AGC This study 

3183 5´ - GAT CGG AGG TGT TCG GCA GCT TCG CGG AAC 
CAC ACG TAG CCG G This study 

3184  5´ - GAA GCT GCC GAA CAC CTC CGA TC This study 
3185 5´ - CAA CAA ggt acc GAG CAG CGG CTT GTA CGC CTT This study 
3258 5´ - GCG Cga att cCG AGA CCC ACG CAT GCA AC This study 
3259 5´ - GCG Cga att cCA GGG CGC CAT TCG ATG AC This study 
3296 5´ - ATA Taa gct tCT GCG TGA TCG ACA AGA GC This study 

3297 5´ - CCG CCA TGC AAA TGA TCT ACA ACC CGT CGT 
TCT CCA CTG This study 

3298 5´ - CAG TGG AGA ACG ACG GGT TGT AGA TCA TTT 
GCA TGG CGG This study 

3299 5´ - GCG Ctc tag aGA TCG GCG ACG AAA CGA TCT This study 
CH1730 5´ - GTA cca tgg TAC CTT CCT CCT GCT AGC This study 
CH2059 5´ - AGT ggt acc ATG CAA ATG ATC TAC AAC AGC This study 
CH2799 5´ - GAT atg cat AAT GTG CCT GTC AAA TGG This study 

CH2800 5´ - TAC TGC AGC CCT CGA GTC AGT GGA GAA CGA 
CG This study 

LacZ-124L2 5´ - CAG TCA CGA CGT TGT AAA ACG ACG This study 
LacZ-148 5´ - GGG TAA CGC CAG GTT TTT CC This study 
LacZ-211 5´ - TGC GGG CCT CTT CGC TAT TA This study 

CEKG 2E 5´ - GGC CAC GCT CGA CTA GTA CNN NNN NNN NNA 
TGT A This study 

CEKG 2K 5´ - GGC CAC GCG TCG ACT AGT ACN NNN NNN NNN 
AGT GC This study 

CEKG 2L 5´ - GGC CAC GCG TCG ACT ACN NNN NNN NNN CTG 
AG This study 

CEKG 4 5´ - GGC CAC GCG TCG ACT AGT AC This study 
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Chapter 2 

 

Identification of BamA residues 
critical for interaction with CdiAEC93 
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Abstract 

Contact-dependent growth inhibition (CDI) was initially discovered in a rat intestinal 

isolate, Escherichia coli EC93, that inhibited the growth of other E. coli strains. The CDI 

system of EC93 uses the outer membrane β-barrel protein BamA as an outer membrane 

receptor to recognize and bind target cells. CdiAEC93 interacts with the extracellular loops 

4, 6, and 7 of BamA, but the mechanism by which CdiA-CT toxins enter the cell has 

remained unclear. I have identified specific amino acids in BamA loops 4 and 6 that are 

necessary for binding and inhibition by CdiAEC93. I isolated mutations in these loops that 

affect residues in a small pocket-like surface-exposed region of BamA. The mutations 

confer full resistance to CDIEC93 and prevent inhibitors expressing CdiAEC93 from 

binding, but do not result in any growth defects. By narrowing down the BamA-CdiAEC93 

interaction to a key binding pocket, these findings further our understanding of the 

molecular mechanisms underlying toxin delivery to sibling cells. 

Introduction 

Contact-dependent growth inhibition (CDI) is a mechanism by which Gram-negative 

bacteria touch and then deliver toxins into neighboring cells [1-3].  Sibling cells are 

immune to the toxin due to expression of a small immunity protein known as CdiI, 

whereas growth of “non-self” cells is blocked by activity of the toxins, which include 

DNases, RNases, and pore-formers [1,7-9]. CDI has been most extensively characterized 

in Escherichia coli EC93 [2,10,12,18,21,56]. The outer membrane protein BamA was 

identified as the receptor for CdiAEC93 based on the finding that a transposon insertion 
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immediately upstream of bamA conferred partial resistance to CDIEC93 by decreasing 

BamA surface levels about five-fold [12].  

 

BamA is an essential outer membrane protein (OMP) of the Omp85 superfamily, and the 

core member of the β-barrel assembly machinery (BAM) complex, which is required for 

proper folding and membrane insertion of almost all β-barrel OMPs [14-17,57-58]. In 

addition to BamA, the BAM complex contains the accessory lipoproteins BamB, BamC, 

BamD, and BamE, which are anchored in the inner leaflet of the outer membrane [59]; 

none of these lipoproteins appear to participate in the CDIEC93 pathway [12]. 

 

Crystal structures of BamA and the related protein FhaC indicate that it consists of a 16-

stranded transmembrane β-barrel domain, 5 periplasmic polypeptide translocation-

associated (POTRA) domains, and a series of variable extracellular loops [37,59-62]. 

Loops 4, 6, and 7 together form a cap or dome over the barrel that is stabilized by a salt 

bridge interaction between residues R547 (loop 4), E645 (loop 6), and D746 (loop 7) 

[57,60]. Loop 4 contains a structurally conserved α-helix that sits parallel to the 

membrane and is essential for cell survival [37,60]. Loop 6 forms a hairpin tucked inside 

the β-barrel, with a highly conserved (V/I)RG(F/Y) motif at the tip which is critical for 

assembly of substrate OMPs [57,65-67]. 

 

BamA is also the outer membrane receptor for Shiga toxin-encoding bacteriophages (Stx 

phages), which are responsible for the evolution of Shiga toxin-encoding E. coli 

pathogens, including serotype O157:H7 [63]. Stx phage also use regions of loops 4, 6, 
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and 7 for adsorption, which may explain their limited host range [63]. It was recently 

reported that the envelope stress response triggered by Stx phage adsorption leads to 

decreased bamA expression, presumably as a defense mechanism against further invasion 

[64]. Interestingly, CDIEC93 also induces the pspA (phage shock) transcription response, 

though this response is not necessary for inhibition [10]. 

 

The high sequence variability of the extracellular loops restricts the target range of CDI 

systems to closely related cells (Fig. 1.7). We have previously reported that CDIEC93 

requires BamAEcoli extracellular loops 4, 6, and 7 for inhibition [18]. Mutations in loops 6 

and 7 abolish inhibitor-target binding and are presumed to be necessary for target cell 

recognition. Deletion of a polymorphic region of loop 4 (not containing the α-helix) 

confers partial resistance to CDIEC93 and has a minor impact on cell-cell binding, leaving 

the role of loop 4 in CDI delivery unclear [18]. 

 

We have previously characterized several CDI systems by constructing cosmid-borne 

chimeric CDI systems, which consist of the N-terminal region of CdiAEC93 fused at the 

VENN motif to the CdiA-CT/CdiI toxin/immunity modules from other strains [7-9,21,68-

69]. This facilitates use of E. coli as a model system, as the N-terminal region of 

CdiAEC93 contains the binding site for BamA and ensures that the toxin is delivered [1]. 

In an attempt to investigate the CDI pathway of Enterobacter cloacae (ECL), we used an 

EC93-ECL chimeric CDI system to select for targets resistant to CdiA-CTECL [7]. We did 

not successfully identify any target cell factors specific to E. cloacae, which may be 
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explained by the fact that CdiA-CTECL interacts with ribosomal RNA [7]. However, we 

did identify several mutations in the coding sequence of bamA.   

 

Here, I further explore the interactions between CdiAEC93 and BamAEcoli in order to better 

understand binding and delivery of CDI toxins. I isolated a series of deletion and point 

mutations that confer resistance to the EC93-ECL chimeric CDI system. These mutations 

affected the conserved α-helix in loop 4 and the unconserved Phe675 of loop 6, but did not 

cause any observable growth defects. Strikingly, point mutations in both loops 

completely abolished inhibitor-target binding. These results, when compared to recent 

crystal structures of BamA, suggest that a unique CdiAEC93 binding site is shaped by both 

polymorphic and conserved features of BamA extracellular loops. 

Materials and Methods 

 

Bacterial strains and growth conditions 

Strains are listed in Table 2.1; plasmids are listed in Table 2.2; and oligonucleotides are 

listed in Table 2.3. Strains were grown in Luria Broth (LB) or Tryptone Broth (TB) 

media.  Antibiotics were used at the following concentrations: ampicillin (Amp) 

100µg/ml; chloramphenicol (Cm) 34 µg/ml; kanamycin (Kan) 40µg/ml. Cultures were 

incubated at 37˚C in an environmental shaker apparatus at 226rpm unless otherwise 

indicated. 
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Ultraviolet light (UV) mutagenesis 

Overnight bacterial cultures were diluted 1:100 in 100 mL LB agar supplemented with 

Kan and grown to OD600 = 0.4.   Cells were harvested by centrifugation in 50mL Falcon 

tubes at 3500 rpm for 15 minutes, resuspended in 50 mL 0.1M MgSO4, and incubated on 

ice for 5 minutes. Cells were irradiated with 32 mJ/m2 of UV using the Stratalinker 1800, 

immediately transferred to light-blocking 50mL Falcon tubes to prevent 

photoreactivation, and centrifuged at 3500rpm for 15 minutes at 4˚C. The cell pellet was 

resuspended in 25ml LB supplemented with Kan, transferred to 250ml baffled flasks 

wrapped in aluminum foil, and incubated overnight. Mutant pools were subjected to three 

rounds of growth competition as described below against E. coli  strain DL8680 to enrich 

for CDI resistance. 

 

Growth competition assays 

Overnight cultures of CDI+ inhibitor cells were diluted 1:100 in LB and grown to 0.4-

0.45 OD600 in a baffled flask. Inhibitors and targets were mixed at a 1:1 ratio and 

incubated in 5ml LB in a baffled flask at 37˚C for 3 hours. Serial dilutions were plated at 

0 hours and 3 hours on LB with relevant antibiotics to distinguish inhibitors from targets 

(Figure 2.3A). 

 

Selection of CDIR mutants 

Pools of UV mutants were prepared as described above from E. coli DL5562 (Table 2.2). 

Each bacterial pool was subjected to a growth competition assay against DL8680 

inhibitor cells and surviving target cells were isolated on LB agar supplemented with 
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Kan. The target cells were pooled and subjected to two additional rounds of selection 

against DL8680. Individual clones were then tested for CDI-resistance in a competition 

assay against DL8680. To establish whether bamA mutations were responsible for the 

CDI-resistance phenotype, mutants were transformed with the complementation vector 

pZS21-bamA-amp and tested for CDI-sensitivity against DL8680. The bamA sequence of 

bamA mutant strains was determined following PCR and sequencing with a series of 

three oligonucleotide pairs that together gave full coverage of the bamA gene. 

Oligonucleotides 1157 and 3939 were used to amplify the bamA regulatory region and 

first 1000bp of bamA, sequenced using oligonucleotide 1168.  Oligonucleotides 3691 and 

3938 were used to amplify the central 1000bp of bamA, sequenced using oligonucleotide 

3937.   Oligonucleotides 2586 and 2587 were used to amplify the terminal 1000bp of 

bamA, sequenced using oligonucleotide 2462 (Table 2.4). 

 

Quick transformation 

Quick transformation was performed as previously described [70]. Cells were grown to 

OD600 ~0.4 and mixed with 50µl ice cold LB broth and and 50µl 2x TSS (1x TSS: LB 

broth, 10% wt/vol polyethylene glycol, 51% vol/vol dimethylsulfoxide, and 50mM Mg2+, 

pH 6.5). ~100ng of plasmid prep was added and the mixture was incubated on ice for 30-

60 minutes. Following ice incubation, 0.9mL 1x TSS 20mM glucose was added and cells 

were incubated for 1-2 hours at 37˚C with shaking, then plated on LB agar supplemented 

with appropriate antibiotics. 
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Preparation of electrocompetent cells 

Overnight cultures were diluted 1:100 in 50ml LB, grown to OD600 ~0.4 in a baffled flask 

and placed on ice for 5 minutes, then transferred to a chilled 50ml Falcon tube and 

centrifuged at 6000rpm for 10 minutes at 4˚C. Cells were resuspended in 50ml ice cold 

sterile water and centrifuged again at 6000rpm for 10 minutes at 4˚C. This step was 

repeated, then cells were resuspended in 5ml ice cold 10% glycerol and centrifuged at 

10000rpm for 5 minutes at 4˚C. Cells were resuspended in 0.75ml ice cold 10% glycerol, 

and 50µl aliquoted into Eppendorf tubes and stored at -80˚C until electroporation. 

 

Introducing bamA mutations into pZS21-bamA 

To excise the wild-type bamA allele from pZS21-bamA-kan, the plasmid was digested 

with restriction enzymes EcoRI and XbaI and analyzed on a 1% agarose gel containing 

GelStar™ Nucleic Acid Gel Stain (Lonza) to resolve bamA from the vector backbone. 

The vector backbone DNA (3.6kb) was purified by QIAex Gel Extraction Kit 

(QIAGEN). Mutant bamA alleles were amplified from mutant genomic DNA using 

oligonucleotides 3953 and 3954, digested with EcoRI and XbaI in CutSmart® buffer, and 

ligated with the pZS21-kan gel extraction product using T4 ligase. The ligation was 

electroporated into EPI100 electrocompetent cells, plated on LB supplemented with Kan, 

and incubated overnight. Plasmid DNA of resulting transformants were checked for 

presence of insert by running a double restriction digest (EcoRI and XbaI) of the plasmid 

prep on an ethidium bromide 1% agarose gel. The presence of loop 4 mutations was 

verified by sequencing plasmid DNA with oligonucleotide 3937; the presence of loop 6 
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mutations was verified by sequencing plasmid DNA with oligonucleotide 2462 (Table 

2.4). 

 

Plasmid exchange 

Plasmid exchange of pZS21-bamA was performed as previously described [18]. Briefly, 

DL6917 containing plasmid pZS21-bamA-amp was prepared for electroporation as 

described above. Electrocompetent cells were transformed with pZS21-bamA-kan 

derivatives carrying mutant bamA alleles, plated on LB agar supplemented with Kan, and 

incubated overnight. KanR colonies were patched onto LB agar plates supplemented with 

Amp or Kan and incubated overnight to ensure Amp sensitivity and Kan resistance. 

 

Growth curves 

Overnight cultures were back-diluted to OD600 0.025 in LB in a baffled flask and 

incubated at 37˚C for 4 hours. 1mL of culture was removed every 30 minutes to measure 

OD600. 

 

Binding assays 

Cell-cell binding assays were performed essentially as previously described [18] Briefly, 

overnight cultures of CDI+ inhibitors (DL4905 and DL4906, Table 2.2) were grown in 

TB supplemented with Amp at 30˚C with shaking, and overnight cultures of target cells 

containing pZS21-bamA and pDsRedExpress2 (Table 2.3) were grown in LB 

supplemented with Amp and Kan at 37˚C with shaking. CDI+ inhibitor cells were diluted 

1:100 in filtered TB supplemented with Amp and Kan in a non-baffled flask and grown 
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to OD600 ~0.5 at 30˚C with shaking. Inhibitors and targets were mixed at a 4:1 ratio in 

filtered TB for a final OD600 0.2, grown for 15 minutes at 30˚C with shaking, and diluted 

1:100 in PBS. Cell-cell binding was analyzed with the Accuri C6 flow cytometer using 

FL1 (533/30 nm, GFP) and FL2 (585/40 nm, DS-Red) fluorophore filters (Becton 

Dickinson). 

 

Results 

 

Isolation of bamA CDIR mutants 

The initial goal of this project was to identify the target-cell genes necessary for growth 

inhibition by CDIECL. I constructed a pool of mariner-transposon insertion mutants [71] 

from DL5564 to use in a growth competition assay (Fig. 2.3A) against CDI+ E. coli 

inhibitor cells expressing the EC93-ECL chimeric CDI system (DL8680, Table 2.2). 

CDIR mutants were enriched through three rounds of selection against DL8680. Only one 

of the pools enriched through all three rounds, and 10 clones from this pool were selected 

for the identification of transposon insertion sites. The mutants contained an insertion 

upstream of the uncharacterized gene yjfY, but when the mutation was transduced into a 

fresh background, cells were no longer resistant to DL8680 (data not shown). This 

suggested that another mutation conferring resistance to DL8680 was present, and that 

the transposon insertion in yjfY was not linked to the CDIR phenotype. I theorized that the 

mutation may lie in bamA because the EC93-ECL chimeric CdiA contains the BamA 

binding site and targets BamA as its outer membrane receptor. To determine whether 
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CDI resistance was due to a mutation in bamA, cells were transformed with the plasmid 

pZS21-bamA-amp, which expresses wild-type bamAEcoli (Table 2.3). Complementation 

with wild-type bamAEcoli restored sensitivity to DL8680, and the bamA gene of the 10 

clones was sequenced. All were found to contain ΔA672_N681, a 10-residue deletion in 

the surface-exposed region of loop 6 (Figs. 2.1 & 2.2, Table 2.1).  

 

CdiA-CTECL is a ribosomal RNase, and may interact with essential proteins, making it 

difficult to isolate CDIR mutants by transposon mutagenesis, which generally ablates 

gene function. Therefore we simultaneously took a UV mutagenesis approach to induce 

point mutations in the E. coli genome. DL5562 target cells were mutagenized by UV, and 

CDIR mutants were enriched through three rounds of selection against DL8680. 7 

independent mutant pools enriched, and individual clones from each pool were quick-

transformed with pZS21-bamA-amp to determine whether CDI resistance was linked to 

bamA mutations. All 7 clones tested became sensitive to DL8680 when complemented 

with pZS21-bamA-amp, and the bamA gene from each clone was sequenced. 4 additional 

mutations were identified in the surface-exposed region of loop 6, all affecting the same 

phenylalanine residue: ΔF675 (isolated twice), F675C, F675C/P676L, and F675Y/P676S. 

2 mutations were identified in the α-helical region of loop 4: V543N/W546C and 

ΔR547/Y548H (Figs. 2.1 & 2.2, Table 2.1). All mutations conferred full resistance to 

CDI (Figs. 2.3B & C, 2.4B & C).  

 

I selected 3 CDIR mutants to study further: V543N/W546C, ΔA672_N681, and ΔF675. 

The mutant bamA alleles were moved into an E. coli bamA::cat background to facilitate 
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cell-cell binding assays. The bamA alleles from each mutant were amplified from 

genomic DNA and used to replace the wild-type bamA allele in pZS21-bamA-kan (Fig. 

2.5A, Table 2.3). The plasmids carrying mutant bamA alleles were transferred by plasmid 

exchange into an E. coli bamA::cat background, generating the strains DL8807, DL8804, 

and DL8805, which express only the V543N/W546C, ΔA672_N681, and ΔF675 mutant 

bamA alleles respectively (Table 2.2). These strains also exhibited full resistance to 

DL8680 inhibitors (Fig. 2.5B). 

 

The bamA CDIR mutants do not exhibit growth rate defects 

Although BamA is an essential protein, we have previously shown that portions of loops 

4 and 6 can be deleted with no detectable growth defects [18]. However, the region of 

loop 4 that was deleted did not contain the structurally conserved α-helix [18]. It has 

recently been reported that an R547A mutation in the α-helix of loop 4 is lethal, 

presumably by disrupting a stabilizing salt-bridge interaction with residues E645 in loop 

6 and D746 in loop 7 [60]. We isolated a nonlethal mutation affecting the same arginine 

residue (ΔR547/Y548H), but wondered whether the mutant exhibited growth defects. I 

assessed cell viability through log phase by performing growth curves over a period of 4 

hours. The ΔR547/Y548H mutant grew normally, suggesting that, unlike alanine, the 

slightly basic side chain of histidine can still form a functional salt bridge (Fig. 2.6A). 

The only mutant with a distinct growth defect was DL8738, or ΔF675 (I) (Fig. 2.6B). 

However, because the other ΔF675 mutant (DL8830) grew normally, DL8738 is 

presumed to have an additional mutation elsewhere in the chromosome that is responsible 

for the growth rate phenotype. This is supported by the fact that E. coli bamA::cat 
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pZS21-bamAΔF675-kan cells also grew normally. Therefore, the loop 4 and loop 6 

mutations isolated in our screen do not appear to have a discernable effect on cell 

viability or growth rate. 

 

The bamA CDIR mutations block binding between targets and inhibitors 

Previous work has shown that mutations in loops 4, 6, and 7 of BamA confer CDIEC93 

resistance and disrupt binding between targets and inhibitors. Specifically, a ΔF675_S702 

mutation in loop 6 and an HA tag in loop 7 both confer full CDIEC93 resistance and 

completely abrogate binding, while a ΔP556_S564 mutation in loop 4 leads to a modest 

decrease in binding and increase in resistance [18]. This deletion does not overlap with 

the mutations we found in the loop 4 α-helix (Fig. 2.1, Table 2.1). I sought to determine 

whether the bamA mutations isolated in this screen conferred CDI resistance by blocking 

cell-cell binding. GFP-labeled E. coli inhibitors expressing the full EC93 system were 

mixed with DsRed-labeled targets expressing bamA from the plasmid pZS21-bamA-kan 

(Tables 2.2 & 2.3). After a short co-culturing period, the cell mixtures were analyzed by 

flow cytometry to detect inhibitor-target aggregates, which emit both a green and red 

fluorescent signal (Fig. 2.7A). The ΔA672_N681, ΔF675, and V543N/W546C mutants 

all failed to aggregate with inhibitor cells, at a rate similar to targets expressing bamAECL, 

which cannot bind CdiAEC93 (Fig. 2.7B) [18]. These data indicate that single point 

mutations in loops 4 and 6 are sufficient to abrogate cell-cell binding. 
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Discussion 

The results presented here show that BamA in E. coli contains several specific residues 

necessary for binding by CdiAEC93. We identified mutations in extracellular loops 4 and 6 

which confer full resistance to CDI by blocking cell-cell binding, yet have no effect on 

cell growth. Five unique mutations affected F675 in loop 6, among them a single amino 

acid deletion and a single substitution (Table 2.1). F675 is not conserved in other species, 

which agrees with previous findings that CdiAEC93 only interacts with BamAEcoli (Fig. 

1.7) [18]. The two mutations found in the loop 4 α-helix are more enigmatic. The loop 4 

α-helix is structurally conserved in BamA homologs, and the amino acid sequence of the 

helix is nearly identical between E. coli and Enterobacter cloacae [37]. However, 

CdiAEC93 is unable to bind BamAECL, suggesting that the loop 4 α-helix itself is 

insufficient for cell-cell binding and inhibition [18]. Together, these discoveries indicate 

that loops 4 and 6 help to form a binding epitope for CdiAEC93. 

 

BamA was initially identified as the outer membrane receptor for CdiAEC93 based on the 

analysis of a transposon-induced mutation in the bamA regulatory region that rendered 

cells resistant to CDI [2]. Because this mutation (bamA101) did not affect the structure of 

BamA, but instead decreased BamA surface levels, bamA101 mutants did not exhibit the 

degree of CDI resistance observed in cells provided with bamA alleles from other species 

[18]. The mutations isolated in this study permit a closer look at the precise molecular 

interactions between BamA and CdiAEC93. 
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According to a recent crystal structure of BamA, F675 and the loop 4 α-helix are located 

in immediate proximity to one another (Fig. 2.2) [60]. These and several nearby residues 

from loops 4, 6, and 7 appear to form a small indentation or pocket in the dome over the 

barrel (Fig. 2.2). Work from our lab has shown that a 7-HA tag that replaces Y754_S755 

with an HA epitope completely abrogates binding and confers CDI resistance [18]. 

Examination of the crystal structure of BamA shows that Y754 is immediately adjacent 

to F675 and the loop 4 α-helix (Fig. 2.2), supporting the hypothesis that this pocket on the 

surface of BamA acts as the CdiAEC93 binding epitope. Before the publication of the 

BamA crystal structure discussed above, it was found that deleting P556_S564 of loop 4 

results in a modest increase in resistance and decrease in binding [18]; a possible 

mechanism for this phenotype is that shortening loop 4 adjusts the position of the α-helix 

and alters the conformation of the binding pocket. Performing a mutant screen of other 

residues in the binding pocket, as well as other members of the α-helix, would be a key 

component of future studies. This would also facilitate the identification of the BamA 

binding site on CdiA, perhaps by performing a screen for cdiA mutations that suppress 

the bamA mutations from this study. 

 

The mechanism(s) by which CDI toxins cross the outer membrane is not yet understood. 

Current knowledge of BamA structure and function suggests a few potential mechanisms 

of toxin entry. Colicins bind first to one outer membrane receptor and then enter through 

another [72] though if this were the case for CdiAEC93, a second receptor would 

presumably have been discovered in previous screens for CDIR mutants. The β-barrel 

domain of BamA is sufficient to cause local membrane destabilization [73], and it is 
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possible that CDI toxins utilize the destabilized membrane region surrounding BamA to 

“sneak” through the outer membrane.  

 

Analysis using engineered disulfide bridges revealed that the β-barrel also contains a 

lateral opening and exit pore through which substrate OMPs are predicted to move into 

the outer membrane [66]; this is another potential site for CdiA-CT entry. The 

crosslinked BamA mutants engineered by Noinaj and colleagues [66] could be used to 

test whether CDI requires either pore opening or lateral β-barrel opening for delivery. 

Although these crosslinked mutants are lethal, we can circumvent this by supplying cells 

with another bamA allele which does not bind CdiAEC93, such as bamAECL or one of the 

mutants isolated in this study. 

 

In summary, the CDI pathway of Escherichia coli EC93 depends on CdiA binding to a 

few specific residues in loops 4, 6, and 7 on the extracellular face of BamA. These 

residues do not appear to be important for individual cell viability, and yet BamA 

extracellular loops are highly conserved in E. coli subspecies. This supports the 

hypothesis that CDI plays a broader ecological role, such as kin selection during the 

formation of bacterial communities. 
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MAMKKLLIASLLFSSATVYGAEGFVVKDIHFEGLQRVAVGAALLSMPVRTGDTVNDEDISNTIRAL 
 
 
FATGNFEDVRVLRDGDTLLVQVKERPTIASITFSGNKSVKDDMLKQNLEASGVRVGESLDRTTIA 
 
 
DIEKGLEDFYYSVGKYSASVKAVVTPLPRNRVDLKLVFQEGVSAEIQQINIVGNHAFTTDELISHF 
 
 
QLRDEVPWWNVVGDRKYQKQKLAGDLETLRSYYLDRGYARFNIDSTQVSLTPDKKGIYVTVNIT 
 
 
EGDQYKLSGVEVSGNLAGHSAEIEQLTKIEPGELYNGTKVTKMEDDIKKLLGRYGYAYPRVQSM 
 
 
PEINDADKTVKLRVNVDAGNRFYVRKIRFEGNDTSKDAVLRREMRQMEGAWLGSDLVDQGKER 
 
            L1 
LNRLGFFETVDTDTQRVPGSPDQVDVVYKVKERNTGSFNFGIGYGTESGVSFQAGVQQDNWL 
 
               L2          L3 
GTGYAVGINGTKNDYQTYAELSVTNPYFTVDGVSLGGRLFYNDFQADDADLSDYTNKSYGTDVT 
 
                                   L4           
LGFPINEYNSLRAGLGYVHNSLSNMQPQVAMWRYLYSMGEHPSTSDQDNSFKTDDFTFNYGW 
 
        L5 
TYNKLDRGYFPTDGSRVNLTGKVTIPGSDNEYYKVTLDTATYVPIDDDHKWVVLGRTRWGYGD 
 
L6 
GLGGKEMPFYENFYAGGSSTVRGFQSNTIGPKAVYFPHQASNYDPDYDYECATQDGAKDLCKS 
 
           L7 
DDAVGGNAMAVASLEFITPTPFISDKYANSVRTSFFWDMGTVWDTNWDSSQYSGYPDYSDPSN 
 
              L8 
IRMSAGIALQWMSPLGPL VFSYAQPFKKYDGDKAEQFQFNIGKTW 
 
 
Figure 2.1. Sequence of BamA from Escherichia coli. Loop 4 (L4), cyan; Loop 6 (L6), red;  
Loop 7 (L7), purple; other extracellular loops, grey. Mutated residues are bolded in dark blue; 10-
residue deletion ΔA672_N681 is underlined. The α-helix of L4 is annotated.  
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Figure 2.2. Location of mutations in BamA. Images were generated in PyMol using a 
previously published structure of BamA (PDB: 4N75). Left column: side view, with lateral pore 
in background and extracellular loops on top. Right column: top view, with extracellular loops in 
foreground. Loop 4, cyan; Loop 6, red; Loop 7, purple; mutated residues, dark blue.  



 48 

A 

 
 

B 

 

C 

 
Figure 2.3. bamA loop 4 mutations confer resistance to EC93-ECL chimeric CDI system. (A) 
Diagram of growth-competition assay. O/N, overnight. (B) Competitions between E. coli carrying 
either plasmid-borne EC93-ECL chimeric CDI system (+) or empty vector (-), and E. coli bamA 
loop 4 mutants. (C) Complementation with pZS21-bamA (+) restores sensitivity of bamA loop 4 
mutants to CDI. Competitions between E. coli carrying EC93-ECL chimeric CDI system and E. 
coli bamA loop 6 mutants +/- complementation vector pZS21-bamA-amp (Table 2.3). Data 
represent the mean ± SEM for two independent experiments.  
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Figure 2.4. bamA loop 6 mutations confer resistance to EC93-ECL chimeric CDI system. (A) 
Competitions between E. coli carrying either plasmid-borne EC93-ECL chimeric CDI system (+) 
or empty vector (-), and E. coli bamA loop 6 mutants. (B) Complementation with pZS21-bamA 
(+) restores sensitivity of bamA loop 6 mutants to CDI. Competitions between E. coli carrying 
EC93-ECL chimeric CDI system and E. coli bamA loop 6 mutants +/- complementation vector 
pZS21-bamA-amp (Table 2.3). Data represent the mean ± SEM for two independent experiments.  
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Figure 2.5. Introducing bamA mutations into pZS21. (A) Diagram of pZS21-bamA-kan. kanR, 
kanamycin resistance gene; in pZS21-bamA-amp, this is replaced by an ampicillin resistance 
gene. The plasmid was cut at the EcoRI and XbaI sites to excise the wild-type bamA allele and 
ligate in mutant bamA alleles. (B) Competitions between E. coli carrying either plasmid-borne 
CDIEC93 (+) or empty vector (-), and E. coli bamA::cat targets expressing mutant bamA alleles 
from pZS21. Loop 4 mutant, cyan; loop 6 mutants, red. Data represent the mean ± SEM for two 
independent experiments.  



 51 

A 
 

B 
 

C 

 

 

Figure 2.6. Growth curves of bamA mutants. OD600 was measured every 30 minutes. (A) Loop 
4 mutants, cyan. (B) Loop 6 mutants, red. (C) bamA alleles expressed from pZS21 in an E. coli 
bamA::cat background (Table 2.2).   
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Figure 2.7. Mutations in bamA block cell-cell binding. (A) Diagram of binding assays. DL4905 
and DL4906 inhibitor cells express gfp constitutively from the chromosome (Table 2.2). Target 
cells were transformed with pDsRedExpress2, and overnight cultures were inoculated from red 
colonies. Inhibitors were co-cultured in 4-fold excess with targets and analyzed by flow 
cytometry. (B) Adhesion between inhibitors and targets. Percent targets aggregated denotes the 
percentage of red-fluorescent cells aggregated with green-fluorescent inhibitors. Loop 4 mutant, 
cyan; loop 6 mutants, red. Data represent the mean ± SEM for three independent experiments. 
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Mutation Source Location 

V543N/W546C UV loop 4 helix 

ΔR547/Y548H or R547H/ΔY548 UV loop 4 helix 

ΔA672_N681 spontaneous loop 6 

ΔF675 UV loop 6 

F675C spontaneous loop 6 

F675C/P676L UV loop 6 

F675Y/P676S UV loop 6 
 

 

Table 2.1. Mutations in bamA. ΔF675 appeared in two independent mutagenesis experiments. 
All mutations isolated from mutant pools exposed to UV, except for ΔA672_N681 and F675C, 
which are presumed to be spontaneous. ΔA672_N681 was isolated during a transposon 
mutagenesis experiment and has an insertion upstream of yjfY that is not linked to CDI resistance. 
F675C was isolated from a control pool not exposed to UV. 
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Table 2.2. Bacterial strains used in this study. 

Strains Descriptiona Source or 
Reference 

EPI100 F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 recA1 
endA1 araD139 Δ(ara, leu)7697 galU galK λ- rpsL (StrR) nupG Epicentre 

MC4100 F– araD139 ∆lacU169 rpsL150 relA1 flb5301 deoC1 ptsF25 rbsR [74] 

CH9702 EPI100 ∆bamA::cat pZS21-bamAEcoli pDsRedExpress2, KanR AmpR
 [18] 

CH9703 EPI100 ∆bamA::cat pZS21-bamAECL pDsRedExpress2, KanR AmpR [18] 

DL4527 EPI100 pWEB-TNC, CmR [2] 

DL4905 MC4100 λ640-13 PpapBA-gfp-mut3 pDAL660Δ1-39 [12,18] 

DL4906 MC4100 λ640-13 PpapBA-gfp-mut3, pWEB::TNC, AmpR KanR [18] 

DL5562 JCM158 wzb::kan, KanR [12] 

DL5564 JCM158 Δwzb [12] 

DL6815 MC4100 bamA::cat pZS21-bamAECL-kan, KanR [18] 

DL6916 MC4100 bamA::cat pZS21-bamAEcoli-kan, KanR [18] 

DL6917 MC4100 bamA::cat pZS21-bamAEcoli-amp, AmpR [18] 

DL8680 EPI100 pCH10445, CmR [7] 

DL8686 EPI100 pTrc99a::cdiIECL, AmpR [7] 

DL8690 DL5562 bamAΔA672_681, KanR This study 

DL8738 DL5562 bamAΔF675 (i), KanR This study 

DL8751 DL5562 bamAF675C/P676L, KanR This study 

DL8753 DL5562 bamAV543N/W546C, KanR This study 

DL8763 DL5562 bamAΔR547/Y548H, KanR This study 

DL8804 MC4100 bamA::cat pZS21-bamAΔA672_681-kan, KanR This study 

DL8805 MC4100 bamA::cat pZS21-bamAΔF675-kan, KanR This study 

DL8807 MC4100 bamA::cat pZS21-bamAV543N/W546C-kan, KanR This study 

DL8830 DL5562 bamAΔF675 (ii), KanR This study 

DL8831 DL5562 bamAF676Y/P676S, KanR This study 

DL8832 DL5562 bamAF675C, KanR This study 
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Table 2.3. Plasmids used in this study. 

Plasmid Descriptiona Source or 
Reference 

pCH10445 Constitutive expression of chimeric cdiAEC93-CTECL and 
cdiIECL genes, CmR [7] 

pDsRedExpress2 Constitutive expression of DsRed, AmpR [18] 

pTrc99a::cdiIECL IPTG-inducible expression of cdiIECL, AmpR [7] 

pZS21-bamA-amp pZS21 expressing BamA, AmpR [12] 

pZS21-bamAEcoli-kan pZS21 expressing BamA from Escherichia coli, KanR [59] 

pZS21-bamAECL-kan pZS21 expressing BamA from Enterobacter cloacae, 
KanR [18] 

 
 

Table 2.4. Oligonucleotides used in this study. 

Oligonucleotide Sequenceb Source or 
Reference 

1157 5’ CAT CTG CTG TTC CTT GCG 3’ This study 

1168 5' ATC GCA TTG GCT CGA TTC TGC TG 3’ This study 

2462 5’ GCA CCT CTG ATC AGG ATA AC 3’ This study 

2586 5’ AGG TTG CGA TGT GGC GTT AT 3’ This study 

2587 5’ AGA TCG GTT TCC ATA CGC TG 3’ This study 

3691 5’ GTT TCA ACA TCG ACT CTA CC 3’ This study  

3937 5’ GGT GAA CAT CAC CGA AGG CGA T 3’ This study 

3938 5’ CGT TAT CCG ATC CAG GAA TGG 3’ This study 

3939 5’ GGT CAC TTT GGT GCC GTT AT 3’ This study 

3953 5’ AAA gaattc TAG TTA GGA AGA ACG 3’  This study 

3954 5’AAA tctaga CTA AAG TCA TCG CTA CA 3’  This study 
 

aAbbreviations: AmpR, ampicillin-resistant; KanR, kanamycin-resistant; CmR, chloramphenicol-
resistant. 

bRestriction endonuclease sites are in lowercase. 
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