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Abstract

A New Method for Measuring Black Hole Masses in Active Galaxies: Modeling the

Broad Line Region Using Reverberation Mapping Data

by

Anna K. Pancoast

Measuring the masses of supermassive black holes in active galactic nuclei (AGN)

allows us to trace their evolution over cosmic time and understand how black holes

coevolve with their host galaxies. We present a new technique to measure black hole

masses and constrain the structure of the broad line region in AGN using reverberation

mapping data. We begin by developing a simply parameterized phenomenological model

of the broad line region geometry and dynamics and apply this model to high-quality

reverberation mapping data for six AGN from the Lick AGN Monitoring Project 2008

and 2011 datasets. The results of this analysis provide the most precise AGN black

hole masses from reverberation mapping to date and the first detailed constraints on the

geometry and dynamics of the broad line region emission. Specifically, we find that the

shape of the broad line region is generally a close to face-on thick disk with preferential

emission from the far side, and that the dynamics range from inflow to near-circular

orbits. In addition, we present photometric AGN light curves using image subtraction

for the Lick AGN Monitoring Project 2011 dataset as a first step towards modeling the

broad line region in a larger sample of AGN.
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Chapter 1

Introduction: Measuring black hole masses in active

galactic nuclei

1.1 Active galactic nuclei

The immense luminosities observed in active galactic nuclei (AGN), or quasars, are

thought to be powered by accretion onto supermassive (MBH ∼ 106 − 1010) black holes

residing at the center of most galaxies (Lynden-Bell & Rees 1971). We describe the

evidence for astrophysical supermassive black holes in Section 1.1.1, we discuss the role

of AGN in galaxy evolution in Section 1.1.2, and we summarize the standard model for

the structure of AGN in Section 1.1.3.

1.1.1 Supermassive black holes

Black holes are singularities in space-time where the mass is concentrated at a single

point, causing physical quantities, such as the density, to diverge there. However, diver-

gence at the singularity is shielded from view because at some radius light is unable to

escape from the black hole and thus we cannot observe the behavior of a test particle

as it reaches the point of divergence. Since a full treatment of the general relativity

1



of black holes is beyond the scope of this introduction, we will focus only on the two

characteristics of black holes that influence the work presented in Chapter 4: the size

of the event horizon and the gravitational redshift of photons traveling out of the black

hole gravitational potential well.

For the simple case of a nonrotating time-steady black hole, we work in the Schwarzschild

metric to calculate the effects of the black hole’s gravity on photons or test particles. The

natural unit of length in this picture is the gravitational radius rg = GM/c2, where G is

the gravitational constant, c is the speed of light, and M is the black hole mass. The grr

element of the Schwarzschild metric diverges at the radius:

rschw =
2GM

c2
= 2rg (1.1)

called the Schwarzschild radius, although physical quantities measured in the local frame

do not diverge until the location of the singularity is reached at r = 0. The Schwarzschild

radius marks a special point at which photons, even when directed radially outward away

from the black hole, cannot escape. This defines the event horizon of the black hole.

The second characteristic of black holes that we make use of is the gravitational red-

shift of photons emitted from near the black hole. If a photon is emitted at a wavelength

λemit near a black hole and observed at a point less deep in the gravitational potential

well of the black hole, r, the observed wavelength λobs will be greater by the factor:

λobs = λemit
1√

1− rschw
r

. (1.2)

This means that events happening closer to the black hole appear to take longer when

observed from further away, and thus the frequency of light is also reduced.
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While the theory of Schwarzschild black holes has existed since the early 1900s

(Schwarzschild 1916), it took another fifty years before supermassive black holes were

invoked to explain the first bright, high-redshift (for the time), quasars (Salpeter 1964;

Lynden-Bell 1969; Lynden-Bell & Rees 1971). The next step was looking for the dy-

namical signatures of quiescent supermassive black holes in local galaxies, where those

signatures could possibly be resolved (see the reviews by Kormendy & Richstone 1995;

Kormendy & Ho 2013). Nowhere did this work as successfully as the Galactic center,

where ground-based high-resolution images track the orbits of individual stars around

our Galaxy’s supermassive black hole, Sgr A∗ (for a review see Genzel et al. 2010).

1.1.2 Active galactic nuclei and galaxy evolution

With the ability to outshine their host galaxy, AGN can be observed at high redshifts

as luminous quasars. While rare (see the review by Brandt & Alexander 2015), with

the active accretion phase lasting only ∼ 108 years (e.g. Kelly et al. 2010), these lumi-

nous beacons provide the means to study the evolution of black holes and the largest

gravitationally bound structures, galaxies and clusters, over cosmic time.

In the early Universe, the discovery of AGN at high redshifts with large black hole

masses (e.g. Volonteri & Bellovary 2012; De Rosa et al. 2014) constrains the mechanisms

by which primordial gas fragments to form the first stars and black holes. At later times,

the masses of black holes and their host galaxies are found to be tightly correlated, sug-

gesting some form of feedback where black hole growth influences the star formation rate.

In the local Universe, where black hole masses can be measured by spatially resolving
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the kinematics of gas or stars within the black hole’s gravitational sphere of influence

(see the review by Ferrarese & Ford 2005), the black hole mass is found to correlate with

many properties of the host galaxy, including the velocity dispersion of the host galaxy

bulge (the M − σ∗ relation, Ferrarese & Merritt 2000; Gebhardt et al. 2000). Black hole

feedback also plays an important role in galaxy groups and clusters, where powerful ra-

dio emission from AGN jets prevents the intra-cluster gas from forming expected, yet

unobserved, cooling flows (see the review by Fabian 2012).

Due to the strong influence of black holes on galaxy evolution, much work has focused

on measuring their masses and accretion rates from the early Universe to the present (e.g.

Kelly & Shen 2013). The closest, generally non-active, black holes (with the exception

of NGC 3227 and NGC 4151, Davies et al. 2006; Hicks & Malkan 2008; Onken et al.

2014), where the gravitational sphere of influence can still be spatially resolved, provide

black hole masses without accretion rates. At greater distances, however, black holes

are identified by active accretion as AGN and both their masses and accretion rates can

be measured. Since the black hole gravitational sphere of influence cannot be spatially

resolved, the kinematics of gas around the black hole are resolved in the time domain

using the reverberation mapping technique (Blandford & McKee 1982; Peterson 1993)

described in Section 1.2.

1.1.3 The standard model of active galactic nuclei

The basic structure of AGN is described by the standard model that explains the

range of AGN observational signatures as arising from differences in viewing angle of the

4



Figure 1.1: Illustration of the standard model of AGN from Urry & Padovani (1995).
Copyright PASP, reprinted with permission of the author.

observer and whether the AGN hosts a jet (Antonucci 1993; Urry & Padovani 1995; Netzer

2015). In the standard model, the black hole is surrounded by an accretion disk that is

the source of ionizing continuum photons, as illustrated in Figure 1.1. Possibly coincident

and outside the accretion disk is the broad line region (BLR), at a distance from the black

hole of ∼ 1014−1016 m or ∼ 104 gravitational radii (Wandel et al. 1999; Kaspi et al. 2000;

Bentz et al. 2006, 2013), from which broad lines with widths of 1000 − 25, 000 km s−1

are emitted. The emission lines are broadened due to the high velocities of the emitting

gas orbiting around the black hole. Starting at the dust sublimation radius, the BLR

turns into the dusty obscuring torus that hides the BLR from observers behind the torus.

The narrow line region, at greater distances from the black hole and lower gas densities,

is the source of narrow emission lines. In this model, AGN with both broad and narrow

emission lines are viewed at a face-on inclination angle with respect to the dusty torus
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and AGN with only narrow emission lines are viewed through the dusty torus, blocking

the broad line region from sight.

Despite this general picture of AGN structure, the detailed properties of gas in the

different regions are not well understood. Of particular interest are the geometry and

dynamics of gas in the BLR, since the broad emission lines are used to measure the

black hole mass. Analysis of the broad emission lines in the optical and ultraviolet (UV)

suggests that the temperature of the gas in the BLR is ∼ 104 K and the gas is fairly

dense, with an electron density greater than 109cm−3 (for a review on BLR physics see

Peterson 2006). However, whether the gas is distributed in clumps or smooth filaments

is still unknown, since confinement and creation of discreet BLR clouds are still open

questions (e.g. Laor et al. 2006, and references therein). The best constraints on the

geometry and dynamics of the BLR come from reverberation mapping studies, described

in Section 1.2, including the typical radius of BLR gas from the central source of ionizing

photons (e.g. Peterson et al. 2004), radial stratification of the emission from different

broad lines (e.g. Bentz et al. 2010a), and signatures of both inflowing and outflowing gas

(e.g. Grier et al. 2013b).

1.2 Reverberation mapping

Outside the local Universe, black hole masses in AGN are measured using the rever-

beration mapping technique (Blandford & McKee 1982; Peterson 1993; Peterson et al.

2004; Peterson 2014). Reverberation mapping works by monitoring the response of broad

line emission to changes in the AGN ionizing photon flux from the accretion disk. The
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time lag, τ , between changes in the ionizing photon flux and the echo of these changes in

the broad line flux provides a measurement of the size of the BLR, assuming the ionizing

photons come from close to the black hole. The velocity of gas in the BLR, v, is measured

from the width of the doppler-broadened broad emission lines, which, together with the

time lag, gives the black hole mass:

MBH = f
cτv2

G
. (1.3)

G is the gravitational constant and c is the speed of light, which converts the time lag

into a distance. The dimensionless factor f of order unity, called the virial coefficient,

incorporates the information about the geometry and dynamics of the BLR. Currently an

average value of f is used for the full reverberation mapped sample of ∼ 60 AGN (Bentz

& Katz 2015), where the average value is measured by aligning the M − σ∗ relation for

reverberation mapped AGN with the M − σ∗ relation for local quiescent galaxies with

black hole masses measured by resolving the gravitational sphere of influence (Onken

et al. 2004; Collin et al. 2006; Woo et al. 2010; Greene et al. 2010a; Graham et al.

2011; Park et al. 2012a; Woo et al. 2013; Grier et al. 2013a). Using an average value of f

introduces the largest source of uncertainty in individual reverberation mapped black hole

mass measurements on the order of ∼ 0.4 dex (e.g. Park et al. 2012a). This uncertainty

can only be reduced by measuring the value of f for individual AGN by constraining the

geometry and dynamics of the BLR gas.

Most reverberation mapping campaigns have focused on the rest-frame optical spec-

trum of AGN, using the optical AGN continuum as a proxy for the true ionizing photon

flux and the Balmer broad emission lines, specifically Hα and Hβ (e.g. Peterson et al.
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2004; Bentz et al. 2009b; Denney et al. 2010; Barth et al. 2011a; Grier et al. 2012; Barth

et al. 2015). The Hβ line is especially robust for measuring black hole masses because

of its proximity to the narrow [O iii] λλ4959, 5007 doublet, which allows for robust flux

inter-calibration of the spectra. However, in high redshift AGN, the rest-frame UV is

shifted into the observed optical with a different set of broad emission lines, where the

two most widely used are Mg ii λ2798 and C iv λ1549. A handful of studies have focused

on low-redshift AGN in the rest-frame UV using the International Ultraviolet Explorer

and the Hubble Space Telescope (HST) to monitor the Mg ii λ2798 and C iv λ1549 lines

along with the AGN UV continuum (see De Rosa et al. 2015, and references therein).

The black hole mass is measured consistently between different emission lines, suggesting

that the BLR gas is a robust tracer of the black hole gravitational potential over a range

in radius, since more highly ionized broad emission lines are emitted from closer to the

black hole (e.g. Peterson & Wandel 2000; Kollatschny et al. 2001; Bentz et al. 2010a).

One of the most useful results to come from reverberation mapping of local AGN in

the optical is the relation between the BLR radius, r, for the Hβ broad emission line and

the AGN optical luminosity, L (the r − L relation, e.g. Bentz et al. 2006, 2009a, 2013).

Using the r − L relation, the black hole mass can be measured from a single spectrum

or ‘single epoch’, since the AGN luminosity gives the size of the BLR in place of a full

reverberation mapping dataset and the broad line width gives the velocity of the BLR

gas (e.g. Vestergaard & Peterson 2006). Single epoch black hole mass measurements

have made it possible to quickly and cheaply measure black hole masses for AGN at any

redshift, although the uncertainties from applying an r−L relation derived for Hβ at low

redshift to AGN at high redshift using different broad emission lines are not completely
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understood (e.g. Richards et al. 2011; Shen & Liu 2012; Denney et al. 2013). A better

understanding of BLR structure and how it might change with different emission lines,

AGN luminosity, and black hole mass is needed to fully address this issue.

New high-quality datasets have allowed for more detailed analysis of reverberation

mapping data that, in addition to providing a black hole mass measurement, also con-

strains the structure of the BLR (Bentz et al. 2010b; Brewer et al. 2011a; Pancoast et al.

2012; Grier et al. 2013b; Pancoast et al. 2014b; Skielboe et al. 2015). Much of this anal-

ysis has focused on recovering the shape of the transfer function that maps response of

the broad line flux to changes in the AGN continuum as a function of wavelength, λ,

and time lag. In terms of the transfer function Ψ(τ, λ), the emission line flux, fline, as a

function of time, t, and wavelength is given by:

fline(t, λ) ∝
∫

Ψ(τ, λ)fcont(t− τ)dτ (1.4)

where fcont is the AGN continuum flux. Many methods have been developed for recover-

ing the transfer function, including deconvolution using Fourier transforms (Blandford &

McKee 1982), regularized linear inversion (Vio et al. 1994; Krolik & Done 1995; Done &

Krolik 1996; Skielboe et al. 2015), and inversion of the integral equation using maximum

entropy techniques (Skilling & Bryan 1984; Krolik et al. 1991; Horne et al. 1991; Horne

1994). Recently, the use of maximum entropy techniques has seen the most application

and suggests a diversity in BLR structure (Bentz et al. 2010a; Grier et al. 2013b). Un-

fortunately, the transfer function must still be interpreted using a model for the BLR,

motivating the development of a direct modeling approach for reverberation mapping

data as described in Chapter 2.
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Another recent improvement in reverberation mapping analysis is the treatment of

the AGN continuum light curve in the UV or optical. Traditional reverberation mapping

analysis involves calculating the cross-correlation function between the broad emission

line flux and the AGN continuum light curves, which assumes minimal information about

the AGN system (Peterson et al. 2004). However, studies of AGN variability in large

samples show that, on the timescales of reverberation mapping data of daily cadence

or longer, AGN variability can be modeled as a damped random walk or continuous-

time first-order autoregressive process (CAR(1), Kelly et al. 2009; Koz lowski et al. 2010;

MacLeod et al. 2010; Zu et al. 2013). On shorter timescales, recent Kepler monitoring

of AGN shows that the power spectrum steepens, reducing variability compared to a

CAR(1) model (Mushotzky et al. 2011; Carini & Ryle 2012; Edelson et al. 2014; Kasliwal

et al. 2015). Zu et al. (2011) use a CAR(1) model for AGN continuum variability and

a top-hat transfer function to calculate time lags for reverberation mapping data, signif-

icantly decreasing the uncertainties in the inferred time lags. Similarly, Skielboe et al.

(2015) improve upon the method of regularized linear inversion to infer the BLR transfer

function by incorporating a model for AGN continuum variability that is equivalent to

the CAR(1) model. As described in Chapter 2, a model equivalent to CAR(1) is also at

the heart of the the direct BLR modeling approach.

The structure of this thesis is as follows. In Chapter 2, we present a new method

to analyze high-quality reverberation mapping data by modeling the data directly using

a geometric and dynamical model for the BLR. In Chapter 3, we apply this new BLR

modeling method to data for Mrk 50 from the Lick AGN Monitoring Project 2011 dataset.

In Chapter 4, we improve upon the BLR modeling technique, adding more flexibility to
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the model of the BLR, and comparing the inferred BLR sizes to the results from standard

cross-correlation function analysis using simulated data. In Chapter 5, we apply the

improved BLR model to five AGN from the LAMP 2008 dataset. Finally, in Chapter 6,

we present photometry using image subtraction for the LAMP 2011 sample as a first step

towards BLR modeling.
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Chapter 2

Modeling the broad line region I: Method

This chapter was published as Pancoast, A.; Brewer, B. J.; Treu, T. “Geometric and

Dynamical Models of Reverberation Mapping Data”, The Astrophysical Journal, 730, 139

(2011) and is included here with minor formatting adjustments.

Our method of analyzing reverberation mapping data simplifies the process of ob-

taining a transfer function and then interpreting the result using different models. We

compare reverberation mapping data directly with models of the broad line region, ob-

taining uncertainty estimates as well as allowing for model selection. Once we have found

models and model parameters that fit the data, we can easily compute the transfer func-

tion and average time-lag. Our goal is to constrain the geometry and kinematics of the

BLR and provide an internally consistent factor for the black hole mass. We note that

the traditionally determined average time-lag is exactly equivalent to a model where the

BLR is a face-on ring of a given radius (response = δ-function) or a spherical shell (re-

sponse = step function). This implicit assumption drives the inference on the average

lag and its result, as we will show in this chapter.

We consider two types of reverberation mapping data sets: velocity-unresolved, where

there is a time series of the continuum flux and a time series of the integrated line flux,

12



Figure 2.1: BLR clouds around the central ionizing source (central engine). The extra
path length the light must travel from the central engine to the BLR cloud and then to
the observer is the cause of the delayed response of the line flux.

and velocity-resolved, where the data consist of a continuum flux time series, and a series

of entire line spectra as a function of time.

This chapter is organized as follows. In § 2.1 we define and describe the physical

problem. In § 2.2 we outline our methods in the formalism of Bayesian probability theory

and describe the algorithms we use to compare reverberation mapping data to mock data

created from a model of the BLR. In § 2.3 we test our method using simple models of

the BLR and show that we are able to recover the parameter values of our test systems.

Finally, in § 2.4, we summarize our conclusions. Flux units throughout the chapter are

arbitrary, but computed consistently within our method.

2.1 The physical picture

Throughout this chapter, we assume a simple model for the BLR, described as follows.

The AGN is defined to be at (0, 0, 0), and the observer is at (d, 0, 0). We model the

13



Figure 2.2: Simulated continuum emission datapoints with examples of the continuum
interpolated using gaussian processes. The dispersion of the lines represents the uncer-
tainty of the recovered light curve. As expected the uncertanty is greatest where there are
no data points. The top panel shows the simulated data used throughout this chapter,
whereas the bottom panel shows an example with gaps in the data. Our procedure takes
into account the amount of information available and therefore the recovered light curve
suffers from a larger uncertainty during the gaps.
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distribution of BLR gas by defining the gas density profile ρ(x, y, z), assumed to be

normalized such that ∫
V

ρ(x, y, z) dV = 1 (2.1)

where dV = dx dy dz and V is all of space. We assume that the gas absorbs the ionizing

radiation, but is not self-shielding, so that gas at larger radii is still illuminated. It should

be noted that our approach is fully general and can support more complex models of the

optical properties of the BLR, as well as its geometry and dynamics.

2.1.1 Velocity-unresolved reverberation mapping

If the continuum flux varies with time according to fcont(t), then the total line flux

as a function of time is given by

fline(t) = A

∫
V

fcont(t− l(x, y, z))ρ(x, y, z) dV (2.2)

where l(x, y, z) is the lag, or time delay, associated with BLR gas at position (x, y, z),

and A is a response coefficient. The lag l for each position is simply the excess light

travel time from taking a path starting at (0, 0, 0) that travels to some gas at (x, y, z),

where the light is absorbed and reemitted as line emission, and that finally travels to the

observer, relative to a direct path straight from the AGN to the observer:

l(x, y, z) =
(√

x2 + y2 + z2 (2.3)

+
√

(x− d)2 + y2 + z2 − d
)
/c (2.4)

For any case of interest, d�
√
x2 + y2 + z2, and therefore this is well approximated by:

l(x, y, z) ≈
(√

x2 + y2 + z2 − x
)
/c (2.5)
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which is the formula adopted throughout this chapter. See Figure 2.1 for an illustration

of this model.

Note that Equation 2.2 is a special case of the general equation

fline(t) = A

∫
Ψ(τ)fcont(t− τ) dτ (2.6)

where Ψ(t) is the so-called transfer function, which gives the response of the line flux

to a delta-function pulse in the continuum flux1. Thus, for any particular system, if we

can infer the density of BLR clouds throughout space, we can automatically deduce the

corresponding transfer function:

Ψ(τ) =

∫
V

δ (τ − l(x, y, z)) ρ(x, y, z) dV (2.7)

The meaning of this equation is that each location in space contributes to the trans-

fer function at the value of the location’s lag, with the size of the contribution being

proportional to the amount of gas at that location.

2.1.2 Velocity-resolved reverberation mapping

Now suppose that the BLR gas is in motion, such that the system can be described by

a time-invariant distribution function g defined over the phase space of a single particle:

g(x, y, z, vx, vy, vz) = ρ(x, y, z)g(vx, vy, vz|x, y, z) (2.8)

The motion of the gas along the line of sight is assumed to affect the wavelength of

reemitted light, but its distribution function is assumed to be time invariant and therefore

1For readers more familiar with image analysis, the transfer function is analogous to a PSF.
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does not vary during the observing campaign. Then the emission line profile at time t

will be a function of the line of sight velocity, vlos:

fline(vlos, t) = A

∫
vy ,vz

∫
V

fcont(t− l(x, y, z)) (2.9)

×g(x, y, z, vx, vy, vz) dx dy dz dvy dvz (2.10)

where vlos is in the x direction. This is the velocity-resolved equivalent of Equation 2.2.

2.2 Method

Our method for constraining the geometry and kinematics of the BLR is an applica-

tion of Bayesian Inference (Sivia & Skilling 2006). In general, to infer parameters θ from

data D, we begin by assigning a prior probability distribution p(θ) describing our initial

uncertainty about the parameters. Sampling distributions p(D|θ) are also assigned to

describe our uncertainty about how the data are related to the parameters. Once specific

data D = D∗ are obtained, our updated state of knowledge about the parameters is

described by the posterior distribution, given by Bayes’ rule:

p(θ|D = D∗, I) ∝ p(θ|I)p(D|θ, I)|D=D∗ (2.11)

Here I is any background information we have about the problem. In complex problems,

where θ consists of a large number of parameters, Monte Carlo methods are used to

produce random samples from the posterior distribution for θ. Methods such as Nested

Sampling (Brewer et al. 2011a) can also provide the normalization constant for the pos-

terior, known as the evidence, which is the key quantity for comparing the entire model

with an alternative (Sivia & Skilling 2006).
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In our method, the parameters θ to be inferred are those describing the spatial profile

of the BLR gas, and the continuous continuum flux, fcont(t). Since it is impossible

to represent a continuum in a computer, we instead infer fcont(t) evaluated at 500 time

points, covering a time interval larger than the continuum data. The continuum modeling

technique is described in detail in the next section.

Throughout this chapter, both the continuum flux and line flux timeseries are con-

sidered part of the dataset D:

D = {yline,ycontinuum} (2.12)

The prior information consists of the times at which the line flux and continuum flux are

measured, t and the error bars on the line flux and continuum flux measurements, σ:

I = {(t,σ)line , (t,σ)continuum} (2.13)

The likelihood function is chosen to be Gaussian, centered around the model-predicted

line flux timeseries:

p(D|θ) =
n∏
i=1

exp

[
−1

2

(
yi,line−mi(θ)

(κσi)

)2
]

(κσi)
√

2π
(2.14)

where κ is a “noise boost” parameter to account for the presence of unknown systematic

effects not included in the reported error bars, such as those due to flux calibration,

wavelength calibration, and continuum subtraction.

Once the posterior distribution is obtained, many different algorithms are available

for exploring it and computing summaries such as marginal distributions for parameters.

We have implemented our model with two methods, the first is Metropolis-Hastings, a

Markov-Chain Monte Carlo (MCMC) algorithm, which provides samples from the pos-

terior PDF for the model parameters. The second is Diffusive Nested Sampling (Brewer
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et al. 2011a), which provides samples from the posterior PDF and an estimate of the evi-

dence value for the model. Although the evidence calculation makes the second algorithm

significantly slower than the first, Diffusive Nested Sampling is much faster than alter-

native MCMC-based implementations of Nested Sampling (Brewer et al. 2011a). The

results presented here to test the method use the MCMC algorithm, while the Diffusive

Nested Sampling algorithm is used to apply the method to real reverberation mapping

data (Brewer et al. 2011b).

2.2.1 Continuum interpolation

In order to create a mock line flux time series to compare with the data, it is necessary

to interpolate between the continuum flux datapoints. Linear interpolation is the simplest

approach, but it does not provide an estimate of the uncertainty in the interpolation,

suggesting that we know precisely the value of the continuum f(t) at all times between

the measured datapoints. If we want to obtain reliable uncertainties in our results, we

should acknowledge the uncertainty introduced by the interpolation process.

To account for this, we consider the entire continuum function fcont(t) to be an un-

known parameter to be inferred from the data. The prior distribution for fcont(t) is a

Gaussian Process (MacKay 2003; Rasmussen & Williams 2006), which is a convenient

class of probability distributions over function space. Given a mean function µ(t) and a

covariance function C(t1, t2), the probability distribution for the function value f at any

finite set of times is a multivariate Gaussian:

p(f |µ,C) =
1√

(2π)ndetC
exp

(
−1

2
(f − µ)TC−1(f − µ)

)
(2.15)
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where µ is a vector of means at the relevant time-points, and C is the covariance matrix,

obtained by evaluating the covariance function at the relevant times. In the reverberation

mapping problem, fcont(t) is constrained by two data sets: the continuum measurements,

and the line measurements. We parameterize the covariance function and mean function

with four hyperparameters: µ (the long-term mean), σ (the long-term standard devia-

tion), τ (typical timescale of variations) and α (a smoothness parameter between 1 and

2), such that the mean function is a constant µ(t) = µ and the covariance function is

C(t1, t2) = σ2 exp

[
−
( |t2 − t1|

τ

)α]
(2.16)

The posterior distribution function for f(t) given some continuum data (but not the

line data) is shown in Figure 2.2. Note that outside the areas where we have data, the

uncertainty gets large, but in areas where the data are well sampled, the uncertainty in

the interpolation is small. We keep track of f(t) at 500 times, both slightly preceding

and following the data. Further interpolation between these 500 points is linear. 500

continuum parameters is sufficient to render the distance between continuum flux points

much smaller than the maximum monitoring cadence, allowing us to resort to linear in-

terpolation only on scales not probed by the data. We change the 500 parameters in the

same way as the model parameters, with every new proposal for the continuum function

related to the one before. The function f(t) can be parameterized by 500 variables with

standard normal priors, which are converted to f(t) values by multiplication with the

Cholesky decomposition of C. We note that our Gaussian Process method for interpola-

tion, in the special case α = 1, is equivalent to the method of Zu et al. (2011), apart from

computational details. α = 1 has also been used in detailed studies of quasar variability
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(e.g. MacLeod et al. 2010).

2.2.2 Creating mock and simulated data

Given the phase-space density for the BLR gas and the continuous continuum light

curve, we can easily create a mock line flux timeseries by adding together the line flux

from all the gas, which is proportional to the continuum flux at the respective lag of the

gas. The resulting mock line flux timeseries can then be compared to the reverberation

mapping data and does not depend on the kinematics of the gas. If we include the

velocity information of the gas, we can create a mock spectrum for each point in the

timeseries. In order to create a mock spectrum, we make a histogram weighted on flux of

the amount of gas with a given velocity using the same velocity resolution as the data. We

then convolve the histogram with a gaussian whose width is defined by a combination

of thermal broadening and instrumental resolution. The mock spectrum can then be

compared to the reverberation mapping spectral data and depends on the kinematics of

the gas.

2.3 Illustration and tests using simple models

In order to illustrate our method, we have developed simple models of the BLR

region geometry and dynamics. As this method is fully general, it is also possible to

implement more complex models within the framework described so far. We showcase

these simple models by creating simulated data with known true parameter values in our

models. This allows us to test our code as well as to explore the accuracy and precision of
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Figure 2.3: Example spatial distributions of the broad line emitting gas that can be
recovered by our generic geometric model. They include a ring/disk (top panel), a
spherical shell (middle panel), and a spherical gaussian distribution (bottom panel).

the results obtainable by this method of reverberation mapping analysis. Such tests on

simulated data also allow us to ascertain the data quality needed to perform inferences

regarding increasingly complicated model parameters. We showcase both geometry-only

and geometry plus kinematics models, where the latter are the same as the first with the
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addition of velocity information given to the BLR gas. We show transfer functions for

the geometry models and velocity-resolved transfer functions for the kinematics models.

To ensure that in our method the true parameter values are recovered, we save in-

stances of each model and use them as simulated reverberation mapping data, adding

noise and varying the timeseries characteristics to match reverberation mapping cam-

paigns of varying quality. A simulated dataset consists of line flux and continuum flux

measurements. Given a BLR model, the continuous continuum light curve is all that we

need to create, since the mock line flux measurements can be obtained from the model

and continuous continuum light curve. We create continuous continuum light curves by

using the hyperparameters of the Gaussian Processes continuum interpolation. The hy-

perparameters contain information about the timescales and levels of variability in an

AGN continuum timeseries. We use values for the hyperparameters from interpolation

of the Lick AGN Monitoring Project (LAMP; Walsh et al. 2009; Bentz et al. 2009b)

continuum timeseries of Arp 151, one of the most variable AGN in the LAMP sample.

The values used for the hyperparameters were µ = 75 (arbitrary units), σ = 30 (same

units as µ), τ = 6× 106 seconds and α = 1.5 (dimensionless).

2.3.1 Geometry model: Ring/disk/shell

Model definition

We use a flexible geometry model of the BLR gas density to test our method when

only integrated line flux measurements are used instead of the full spectral shape. The

model is that of a spherical shell centered on the central engine with parameters allowing
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partial, axisymmetric illumination of the shell and varying inclination of the resulting

ring/disk. Examples of possible configurations, ranging from a complete shell to a thin

ring/disk, are shown in Figure 2.3. The parameters of the model are the mean radius of

the disk, r0, the thickness of the disk in the radial direction, σr, the illumination angle

of the shell, and the inclination of the shell. The illumination angle is defined so that

values approaching 0 define an increasingly thin ring/disk and a value of π/2 defines a

spherical shell. The inclination angle is defined so that values approaching 0 define a face-

on ring/disk and a value of π/2 is an edge-on ring/disk. We use a normal distribution to

define the radial thickness of the shell, so that r0 and σr are the average and 1σ width

of a normal distribution. The normal distribution is created in the x, y, and z cartesian

coordinates.

It is important to set appropriate prior probability distributions for each model pa-

rameter. For parameters where we know the order of magnitude of the parameter value

we use a flat prior in the parameter. Examples of parameters with flat priors in the

parameter include the inclination angle and the illumination angle, which may only vary

between 0 and π/2. For parameters where we do not know the order of magnitude of

the parameter value we need a prior that treats many orders of magnitude equally, so

we use a flat prior in the log of the parameter. Examples of parameters with flat priors

in the log of the parameter include r0 and σr. These choices of prior probability express

complete ignorance in the value of a parameter within some reasonable range, but it is

necessary to make the distinction between whether or not the order of magnitude of a

parameter value is known. In the cases considered in the remainder of this chapter, the

posterior is much narrower than the prior, and therefore the inference is dominated by
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the likelihood, i.e. the information contained in the data.

The underlying spherical symmetry of these models and the angular dependence of

the ring/disk model allow us to use spherical coordinates. In order to sample the gas

phase-space density at a finite number of points, we use a grid in log(r), φ, and cos(θ).

Using equal steps in cos(θ) instead of θ means that the volume of each grid point depends

only on the radius, r. The density is then multiplied by the volume of the grid point

to find the total mass of gas in each grid point. The emissivity of each grid point also

depends on the radius r because the continuum ionizing radiation flux falls off as r−2,

requiring more gas mass at larger radii to have the same line flux contribution as less

gas mass at smaller radii. In general, the illumination parameter allows us to model any

axisymmetric ionizing flux.

We test our method to recover the BLR model parameters by creating simulated

data, the true parameter values of which are given in Table 2.1. The continous continuum

function is obtained using the hyperparameters from the Gaussian Processes interpolation

of Arp 151 reverberation mapping data, as described in Section 2.2.1, and evaluated at

120 consecutive “observations” one day apart. The line flux timeseries for each model are

generated using this continuous continuum function and a given set of model parameters.

The line flux timeseries contain 60 “observations” one day apart, starting 60 days after

the start of the continuum flux “observations”. These simulated data are meant to

represent excellent reverberation mapping data, with an observation campaign of similar

length to recent campaigns (see e.g. Bentz et al. 2009b), but without gaps due to difficult

weather conditions. Additional noise has also been added to the simulated data. Most

simulated datasets have line flux errors of 1.5%, which represents very favorable observing
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conditions, but we have also tested simulated data with errors of 5% to reflect the current

typical error of reverberation mapping line flux measurements.
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Figure 2.4: Posterior probability distributions for face-on disk geometry model parame-
ters of simulated data 4 (see Table 2.1) with 1.5% line flux uncertainty. Top to bottom:
r0, σr, inclination angle, and illumination angle. The inclination angle and illumination
angle both have a resolution given by the grid in cos θ. The true value for each param-
eter in this model is shown by the vertical red line and the grid in cos θ is shown along
the x-axis with green crosses for the angular parameters. The grid used to create these
posterior distributions is 60 steps in log(r), 40 steps in φ, and 60 steps in cos θ.

Testing the geometry model

The first test is whether we can recover the parameter values of the simulated data

using the MCMC algorithm described in Section 2.2. Since our one flexible geometry

model encompasses a number of different geometries, such as a shell, thin or thick ring
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Figure 2.5: Posterior probability distributions for shell geometry model parameters of
simulated data 5 (see Table 2.1) with 1.5% line flux uncertainty. Top to bottom: r0, σr,
inclination angle, and illumination angle. The true values for the parameters and the
grid points are shown as in Figure 2.4. Note that since the simulated data is spherically
symmetric, it should not strongly prefer an inclination angle, and thus no true parameter
value is shown in the inclination angle pdf.

or disk, we do not have to consider model selection at this point. We test the many

possible geometries of this model by creating five simulated datasets, whose true param-

eter values are given in Table 2.1. The simulated datasets include an inclined disk with

line flux errors of 1.5% and 5% and an edge-on disk, a face-on disk, and a shell with

line flux errors of 1.5%. The MCMC algorithm is typically run for 150,000 iterations

and all parameter values are recovered to within two standard deviations of the posterior

probability distributions of the parameters, with 10/13 recovered to within one standard

deviation. This is as expected, since we should find the true parameter value to lie within
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Figure 2.6: Joint posterior probability distributions for inclination and illumination an-
gles for face-on disk with 1.5% line flux uncertainty (simulated data 4) and shell with
1.5% line flux uncertainty (simulated data 5). The true parameter values are shown by
(top) the black cross and (bottom) the black dashed line.

1σ about ∼ 68% of the time and to lie within 2σ about ∼ 95% of the time. The mean

and standard deviation of the posterior distributions are given in Table 2.2, with the

exception of many of the angular parameters, where the quoted 1σ uncertainty does not

adequately describe the posterior distribution. Part of the reason for the standard devia-

tion of the angular parameters not describing the posterior is due to the uneven step size

in θ, so that values of the illumination angle close to π/2 and values of the inclination
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Figure 2.7: Timeseries for face-on disk (simulated data 4, top panel) and shell (simulated
data 5, bottom panel), both with 1.5% line flux uncertainty. Simulated data are shown in
blue with error bars and the mock data from a random set of parameter values sampled
from the posterior is shown in red. The continuum light curve used to create these line
light curves is shown in Figure 2.2.

angle close to 0 radians have much poorer angular resolution. This might lead to an

angular parameter being quoted as having a mean of 1.22 radians and a 1σ uncertainty

of 0.29, as for the illumination angle of the Shell model simulated data, but while this

uncertainty may seem large, it corresponds to an uncertainty of only 1-2 grid points in

θ. The posterior distributions for the face-on disk and shell simulated data are shown in

Figures 2.4 and 2.5. Select joint probability distributions between the inclination and il-
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Figure 2.8: Velocity-unresolved transfer functions for face-on disk (simulated data 4)
and shell (simulated data 5), both with 1.5% line flux uncertainty. The same grid was
used to make these transfer functions as was used to obtain the posterior probability
distributions shown in Figures 2.4 and 2.5.

lumination angles are also shown in Figure 2.6 in order to show the degeneracies between

different models. In particular, for the shell model, the inclination is not constrained

unless the illumination angle is small, or rather, unless the sphere of BLR gas is not

entirely illuminated.

The posterior pdfs for the five simulated datasets show that the edge-on disk, face-

on disk, and shell geometries allow for excellent recovery of the parameter values with
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estimates of the uncertainty. For the two inclined disk simulated datasets, there is some

degeneracy in the angular parameters, leading to large uncertainties in their average

values. The MCMC algorithm finds a more likely geometry configuration than the true

configuration for the inclined disk datasets, although the true configuration is still a

valid possibility with posterior local maxima at the true parameter values. With the

increased simulated line flux error from 1.5% to 5% however, it becomes increasingly

difficult to recover the angular parameters, and only the mean radius is recovered with

a small enough uncertainty as to be useful in describing the BLR. This emphasizes the

importance of obtaining high quality line flux data in reverberation mapping campaigns.

The timeseries and transfer functions for the face-on disk and shell MCMC geometry

model tests are shown in Figures 2.7 and 2.8, respectively. The timeseries show the

simulated data overlaid with mock data created with parameters sampled randomly from

the posterior probability distributions. The fit of the mock data to the simulated data is

excellent for all five models. The variety in the shape of the simulated data timeseries, all

well-fit by their respective models, shows that the MCMC algorithm for model parameter

value recovery is robust for a wide range of models. The transfer functions also show a

variety of shapes. For a thin shell geometry, thinner than the shell of simulated dataset

5, our resulting transfer function agrees with the analytic form of a tophat function (see

Peterson 1993).
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Figure 2.9: Sketch of the dynamical model. The angular momentum vector L defines the
plane of the orbits. Owing to cylindrical symmetry, for each value of θ0 we consider the
entire family of L generated by rotation around the z-axis. The observer is assumed to
be in the x-z plane, at angle θi from the z-axis.
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Figure 2.10: Illustration of the combined constraints given by the illumination function
and by the dynamical model. The red line shows an example of the distribution of
illuminated BLR gas mass assuming a uniform underlying density. The blue line shows
the actual underlying mass distribution as constrained by the dynamical model. The
resulting effective distribution of illuminated mass, consistent with both the geometry
and dynamical constraints is given by the product of the two functions, shown in black.
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Figure 2.11: Example spectra from three simulated datasets: (top) face-on disk with
orbits confined to the disk, (middle) face-on disk with isotropic distribution of orbit
orientations, and (bottom) spherical distribution with isotropic distribution of orbit ori-
entations. The instrumental resolution of the simulated spectra is FWHM ∼ 800 km s−1.
The bottom spectrum for a spherical distribution of orbits is wider than for a face-on
disk because the spherical distribution allows for orbits to move directly along the line of
sight, while the face-on disk only results in a small component of the BLR gas velocity
lying parallel to the line of sight. The width of the spectral line is thus directly connected
to both the opening angle of the disk and the inclination angle.

2.3.2 Dynamical model

Model definition

In order to constrain the kinematics of the BLR and the mass of the central black

hole, we must model the velocity distribution of the BLR gas in the context of a dy-33



0

0.05

0.1

0 .15

0.2

0 .25

6.92 6.96 7 7.04

P
o
s
te
ri
o
r

Log [M bh/(so la r m asses)]

0

0.05

0.1

0 .15

0.2

0 .25

13.96 14 14.04 14.08

P
o
s
te
ri
o
r

Log [M ean rad ius/m ]

0

0.05

0.1

0 .15

0.2

0 .25

13.5 13.6 13.7

P
o
s
te
ri
o
r

Log [M ean w id th /m ]

Figure 2.12: Posterior pdfs for the first dynamical simulated dataset: face-on disk with
the orbits confined to the disk. (Top) black hole mass, (middle) the average radius of
the BLR gas mass, and (bottom) the average width of the BLR gas mass.

namical model. For simplicity of illustration and speed of computation, we consider here

a cylindrically symmetric model where the BLR gas is considered to be made of test

particles in bound orbits within the spherical Keplerian potential of the black hole. We

parameterize the model in terms of energy and angular momentum, constants of the BLR

gas motion, so we are guaranteed velocity and geometry distributions that do not evolve

in time, and are therefore stationary during the monitoring campaign. In future chapters

we will generalize the model to include unbound orbits to describe inflows and outflows,

and also other physical mechanisms, such as radiation pressure or winds (Marconi et al.
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2008; Netzer & Marziani 2010).

The model is illustrated in Figure 2.9. For any choice of angular momentum L, energy

E and black hole mass MBH, the motion of the BLR test particles is then described by the

standard conservation equation resulting in elliptical orbits in the plane perpendicular

to the angular momentum. Given our cylindrical symmetry we will consider families of

angular momenta obtained by rotation around the z-axis and defined by the polar angle

θ0 (see Figure 2.9). The spatial density of the BLR is then given by

P (r, θ, φ|E,L, θ0) ∝ 1

v
× 1

|
√

sin2 θ0 − cos2 θ|
, (2.17)

where the angular term comes from integrating over the uniform distribution of azimuthal

angle φ0 of the angular momentum vector, and v is the total magnitude of the velocity

vector:

v =

√
2E +

2GMBH

r
. (2.18)

Owing to the symmetry of our model we can consider only θ0 < π/2 (i.e. Lz > 0),

obtaining the following limits on the allowed θ coordinate for the BLR:

π

2
− θ0 < θ <

π

2
+ θ0. (2.19)

As θ0 approaches zero, the model represents a thin disk, while as θ0 approaches π/2 the

model covers the whole sphere. Conservation of energy and angular momentum limits

the radial coordinate to the range:

r > −GMBH

2E
− 1

2

√(
GMBH

E

)2

+
2L2

E
, (2.20)

r < −GMBH

2E
+

1

2

√(
GMBH

E

)2

+
2L2

E
. (2.21)
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Finally, E and L are connected by the usual condition:

|L| ≤ GMBH√
−2E

. (2.22)

For every allowed value of r, θ, and φ, the component of the velocity vector along the line

of sight can be computed in the standard manner, resulting in two solutions per position,

in general (outbound and inbound; four if one considers Lz < 0 as well). More complex

geometries and kinematics can be obtained by superpositions of multiple sets of E, L,

and θ0 values within the same potential given by MBH. However, this further increases

the dimensionality of parameter space and computing time. Therefore in this example

we will only use one such set.

We apply prior probability distributions to the model parameters as described for the

geometry model. The priors for the extra parameters in the dynamical model not part

of the geometry model are as follows. The parameter θ0 has a flat prior in the parameter

ranging from 0 to π/2. The parameters MBH, E, and L have flat priors in the log of the

parameter.

In addition, in order to impose a BLR gas geometry, we model the distribution of

illuminated gas, as the product of the spatial distribution given by the dynamical model

with that imposed by one of our geometrical models, representing in this case the il-

lumination function. This results in a broad range of geometries, giving the model a

considerable flexibility (for example, in the future one could think of an anisotropic illu-

mination function to model dust obscuration). The procedure is illustrated in Figure 2.10.

Note that the radial distribution of the illuminated gas is not gaussian anymore, as in

the ring/disk/shell geometry model. The mean radius then is not the r0 parameter of
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the geometry model, but must be computed numerically for each set of geometric and

dynamical parameters. Similarly, the mean width is no longer σr and must be computed

numerically.

A model spectrum at a given time is obtained by summing all the line of sight veloci-

ties, weighted by the spatial density of illuminated gas multiplied by the continuum flux

at an epoch corresponding to the appropriate lag-time. In order to compare with real

data, the model spectrum is then convolved with a gaussian to represent instrumental

broadening. Since we do not expect real data to match our model perfectly, we introduce

a relatively large uncertainty in the form of the spectral line by adding gaussian noise

with a variance of σ2(F ) = αF + β, where α = 0.00018 and β = 0.025. This model for

the variance assumes both a dependence on spectral line flux F through the α parameter

and a dependence on the continuum uncertainty through the β parameter. The units

of α are flux and the units of β are flux2. The specific values of α and β are related

to the arbitrary flux units of our simulated spectra and result in a signal to noise of

∼ 4. Conservatively this signal-to-noise ratio is lower than typically achieved in state of

the art spectral monitoring campaigns. Examples of synthetic spectra at a resolution of

FWHM= 13.1 Å, or ∼ 800 km s−1 at the wavelength of Hβ, are shown in Figure 2.11.

The face-on disk systems (top and middle panel of Figure 2.11 have velocity bins of

∼120 km s−1 while the sphere system (bottom panel) has velocity bins of ∼20 km s−1.

Notice how the line shapes are clearly different even for models with the same black hole

mass. This is a clear illustration of the power of velocity resolved reverberation mapping

as a diagnostic of the BLR geometry as well as kinematics.
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Figure 2.13: Posterior pdfs for the first dynamical simulated dataset: face-on disk with
the orbits confined to the disk. (Top) inclination angle, (middle) θ0, and (bottom) the
joint pdf of θ0 and the illumination angle. Notice in the joint pdf that θ0 may only be
larger than ∼ 0.3 radians when the illumination angle is ∼ 0.3 radians, so the angular
extent of the disk is well determined.

Testing the dynamical model

We test our dynamical model by creating simulated data-sets consisting of timeseries

of the continuum flux and of the line profiles of a broad line. The line profiles of the

simulated datasets are shown in Figure 2.11. The kinematics parameters E and L are

initially chosen to satisfy nearly circular orbits of the BLR gas at the mean radius given

by the illumination function. A disk of broad line emitting material can be constrained
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Figure 2.14: Posterior pdfs for the second dynamical simulated dataset: face-on disk with
the orbits in the entire sphere. (Top) black hole mass, (middle) the average radius of the
BLR gas mass, and (bottom) the average width of the BLR gas mass.

by either the illumination function or the value of θ0.

The first simulated dataset is a thin disk viewed nearly face-on, with dynamics im-

posed by a single value of energy and angular momentum. The thin disk is constrained

by the value of θ0, while the illumination function describes the whole sphere being il-

luminated. This means that all allowed orbits lie in the disk and that the rest of the

sphere does not contain broad line emitting gas. The second simulated dataset is also a

thin disk viewed nearly face-on with a single value of energy and angular momentum, but

for this case the illumination function constrains the disk. We choose a value of θ0 close
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Figure 2.15: Posterior pdfs for the third dynamical simulated dataset: sphere configura-
tion with orbits allowed in the entire sphere. (Top) black hole mass, (middle) the average
radius of the BLR gas mass, and (bottom) the average width of the BLR gas mass.

to π/2 so that orbits are allowed in the entire sphere. The third simulated dataset is a

fully illuminated sphere with orbits that are also allowed in the entire sphere, so again

θ0 is close to π/2. This is still an axisymmetric configuration, as the BLR gas density

imposed by the kinematics depends upon the θ-coordinate. The true parameter values of

the three simulated datasets used to test the kinematics model are shown in Table 2.3.

We test each of the three simulated datasets assuming only one set of kinematics

parameters. The parameter values inferred using our method are shown in Table 2.4,

while the full posterior pdfs are shown for all parameters of interest for the first simulated
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Figure 2.16: Velocity-resolved transfer functions for the three dynamical simulated
datasets: (top) face-on disk with orbits confined to the disk, (middle) face-on disk with
orbits allowed in entire sphere, and (bottom) sphere configuration with orbits allowed in
entire sphere. The red crosses show the response weighted mean lag in 10 velocity bins
across the spectra.

dataset in Figures 2.12 and 2.13. The posterior pdfs for the black hole mass, average

radius of BLR gas mass, and average width of the BLR gas mass are also shown for the

second and third simulated datasets in Figures 2.14 and 2.15. They show that the black

hole mass, average radius, and average width of the BLR are well determined for all three

simulated datasets. The angular parameters are also well determined when physically
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possible. For example, for the first dynamics simulated dataset of a face-on disk with

orbits confined to the disk, the inclination angle and θ0 are determined to within one or

two grid points, while the illumination angle is only constrained to be & 0.3 radians. The

illumination angle cannot be determined more accurately because the BLR gas emission

only comes from the disk, so as long as the entire disk is illuminated the spectrum is not

sensitive to further changes in the illumination angle.

Finally, we also compute the velocity-resolved transfer functions for the three simu-

lated datasets, shown in Figure 2.16. As expected, the transfer functions for the face-on

disk configurations show little response at very small lags, while the sphere configura-

tion shows the highest intensity of response at small lags. The transfer functions for the

face-on disk configurations are similar, but clearly lead to different line profiles, again

illustrating the power of modeling the full dataset rather than just trying to model the

transfer function.

2.4 Summary and conclusions

We introduce and test a new method for analyzing reverberation mapping data of

AGN by directly modeling the BLR. We illustrate our method by creating simple geome-

try and dynamical models of the BLR. Using a model of the BLR geometry to reproduce

the integrated line flux timeseries from reverberation mapping data allows us to estimate

the average radius of the BLR, as well as the mean width, illumination function, and

inclination angle to the line of sight. Models of the BLR that include geometry and

dynamical information allow us to additionally estimate the black hole mass and obtain
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an estimate of the extent to which the BLR gas orbits are confined to a disk or the whole

sphere.

Our method of analysis provides several advantages over previous methods. First,

previous methods rely upon cross-correlation to obtain a mean radius for the BLR and

a virial relation with unknown virial coefficient to obtain an estimate of the black hole

mass. Our method estimates the black hole mass self-consistently, without the need for

a virial coefficient. Second, work modeling reverberation mapping data has previously

focused on modeling the velocity-resolved or unresolved transfer function. However the

implications for the geometry and kinematics of the BLR are not clear for such analysis,

as the transfer function is a function of the lag between the continuum and line emission.

Instead of modeling the transfer function and then interpreting the transfer function in

terms of a geometrical or dynamical model of the BLR, we focus on modeling the BLR

directly. This allows us to extract more information and thus constrain the models more

tightly. Finally, our fast method provides estimates of the uncertainty in the model

parameter values and can be used with numerical algorithms such as Nested Sampling

that allow for model selection. Our main results can be summarized as follows:

1. We create simulated datasets using the geometry model with known true parame-

ter values and find that we can recover these values with uncertainties that depend

upon the random uncertainty of the reverberation mapping data. We can recover

the mean radius of the BLR to within ∼ 0.1 dex and the mean width of the BLR

to within ∼ 0.2 dex for simulated data with an integrated line flux uncertainty of

1.5%. We can also place constraints on the inclination and illumination with un-
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certainties of ∼ 0.2 radians for simulated data with face-on and spherical geometry

configurations and 1.5% integrated line flux uncertainty. Current integrated line

flux uncertainties of about ∼ 5% are on the edge of what would allow for successful

recovery of more than just a mean radius for the BLR.

2. We create simulated datasets using the dynamical model that consist of timeseries

of a broad line profile and we compare them to mock spectra made using our model.

Despite the larger number of free parameters in our dynamical model, we find that

we can recover all the parameters physically possible because the line profile is a

stronger constraint on the model than the integrated line flux. We can recover the

black hole mass and the mean radius of the BLR to within ∼ 0.05 dex, for simulated

data with a line profile signal to noise ratio of ∼ 4 per spectral pixel. We can also

recover the mean width of the BLR to within ∼ 0.1 dex and the inclination angle

and illumination angle to within ∼ 2 grid spacings over which the BLR density is

defined.

The small random uncertainties obtained in our tests of the simple geometry and

dynamical models are partly due to the inherent assumption that our simulated data is

drawn directly from the set of possible model configurations. In order to simulate the

expected systematic error in applying simple models to complicated real BLR systems,

we have added substantial Gaussian noise to instances of the model in order to create our

simulated datasets. The timeseries of line profiles, in the case of the dynamical model, is

very constraining, and leads to the reduced random uncertainty in the mean radius and

mean width of the BLR by a factor of two for the dynamical model, as compared to the
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Table 2.1: Simulated geometry data true parameter values. Each simulated dataset
consists of 60 line emission datapoints and the same 120 continuum emission datapoints,
where the line emission timeseries start half-way through the continuum timeseries. The
value of σr = 1.5 corresponds to 0.3 rmean = 1.5. ∗Line flux uncertainty of the simulated
dataset.

Data Model Uncertainty∗ ro σr Inclination Illumination
Angle Angle

[1014m] [1014m] [rad] [rad]
1 Inclined Disk 1.5% 5 1.5 0.79 0.22
2 Inclined Disk 5% 5 1.5 0.79 0.22
3 Edge-On Disk 1.5% 5 1.5 π/2 0.22
4 Face-On Disk 1.5% 5 1.5 0.0 0.22
5 Shell 1.5% 5 1.5 – π/2

geometry model. When applying the method to real data we expect larger uncertainties,

owing to modelling errors. The uncertainties quoted here should therefore be considered

as lower limits to the overall precision of the method for data of comparable quality. This

emphasizes the importance of good quality data and increasingly more realistic models,

for recovering detailed information about the BLR from reverberation mapping data.

While we have created and tested both simple geometry and dynamical models, our

method is more general, allowing for use of any geometry or dynamical model that can be

simply parameterized. We plan to expand our library of models to include inflowing or

outflowing BLR gas, which may be needed to explain some of the line profile asymmetries

of current reverberation mapping data.
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Table 2.2: Simulated geometry data recovered parameter values. Results for 150,000
iterations using an MCMC algorithm. See Section 2.3 for a discussion of why average
values for the angular parameters are not quoted for most simulated geometry data-sets.

Data Model ro σr Inclination Illumination
Angle Angle

[1014m] [1014m] [rad] [rad]
1 Inclined Disk 4.53± 0.47 2.93± 0.78 – –
2 Inclined Disk 4.81± 1.10 2.24± 1.56 – –
3 Edge-On Disk 4.76± 0.65 1.83± 0.60 – –
4 Face-On Disk 4.93± 0.67 3.10± 1.31 0.23± 0.13 0.29± 0.10
5 Shell 4.48± 0.52 1.85± 0.45 – 1.22± 0.29

Table 2.3: Simulated dynamics data true parameter values. ∗Average signal to noise of
the line flux profile. Each simulated dataset consists of 60 line emission profiles and the
same 120 continuum emission datapoints, where the line emission timeseries start half-
way through the continuum timeseries. The simulated line emission profiles are created
by taking the true model and adding gaussian noise with a variance of v = α×Flux+β,
where α = 0.00018 and β = 0.025.

Data Model 〈S/N〉∗ MBH Mean Mean Inclination Illumination θo
Radius Width Angle Angle

[107M�] [1014m] [1014m] [rad] [rad] [rad]
1 Face-on 4.6 1 1.132 4.484 0.1 π/2 0.3

Disk
2 Face-on 4.4 1 1.195 4.022 0.1 0.3 π/2

Disk
3 Sphere 3.5 1 1.195 4.022 0.1 π/2 π/2
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Table 2.4: Simulated dynamics data recovered parameter values. Results for 470 × 103

(data 1), 330×103 (data 2), and 110×103 (data 3) iterations using an MCMC algorithm.
See Section 2.3 for a discussion of why average values for the angular parameters are not
quoted for the illumination angle of data 1.

Data Model MBH Mean Radius Mean Width
[107M�] [1014m] [1014m]

1 Face-on Disk 0.95± 0.05 1.04± 0.04 4.27± 0.05
2 Face-on Disk 1.10± 0.13 1.12± 0.04 3.80± 0.03
3 Sphere 1.00± 0.04 1.21± 0.08 3.95± 0.04

Data Model Inclination Angle Illumination Angle θo
[rad] [rad] [rad]

1 Face-on Disk 0.11± 0.07 – 0.31± 0.02
2 Face-on Disk 0.12± 0.06 0.31± 0.02 1.40± 0.13
3 Sphere 0.12± 0.07 1.46± 0.06 1.50± 0.05
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Chapter 3

Modeling the broad line region II: Application to

Mrk 50

This chapter was published as Pancoast, A. et al. (36 co-authors), “The Lick AGN

Monitoring Project 2011: Dynamical Modeling of the Broad-line Region in Mrk 50”,

The Astrophysical Journal, 754, 49 (2012) and is included here with minor formatting

adjustments.

Members of our team have developed a method for determining the geometry and

dynamics of the BLR by directly modeling reverberation mapping data (Pancoast et al.

2011; Brewer et al. 2011a, hereafter P11 and B11 respectively), estimating the uncer-

tainties in the framework of Bayesian statistics. Our modeling method constrains MBH

without requiring a normalization constant f . We also constrain the geometry of the

BLR, its orientation with respect to the line of sight, and the possibility of net inflowing

or outflowing gas in the BLR. We have previously demonstrated our method on LAMP

2008 data for Arp 151 and estimated MBH with smaller uncertainties than traditional

reverberation mapping analysis (B11).

What is now needed to make further progress is large samples of high quality velocity

resolved reverberation mapping data. For this purpose we carried out an 11-week spectro-

48



scopic observing campaign at Lick Observatory, the Lick AGN Monitoring Project 2011.

The project focused on nearby AGNs with bright Hβ lines, which are good candidates

for dynamical modeling. Here we present the first results of dynamical modeling for the

project, focusing on one of the most variable objects in the sample, Mrk 50. The average

time lag and virial MBH estimates from traditional reverberation mapping analysis are

presented by Barth et al. (2011b). Here we present an alternative analysis based on our

direct modeling technique. The Hβ and V-band continuum light curve data are briefly

described in Section 2, the dynamical model for the BLR is described in Section 3, and

our results and conclusions are given in Section 4.

Figure 3.1: The integrated Hβ broad line and V-band continuum light curves. The Hβ
light curve has flux units of 10−15 erg cm−2 s−1. The V-band light curve is in arbitrary
flux units.
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Figure 3.2: Top: Hβ spectra in velocity units for each epoch in the light curve for data,
left panel, and model, right panel. Dark red corresponds to the highest levels of flux and
dark blue corresponds to the lowest levels, where the same color scale is used for the data
and model. Middle: integrated Hβ flux for each epoch in the light curve for the data,
blue solid line with errorbars, and model, red dashed line. As an illustration of the range
of solutions, we show light curves for five acceptable models as dotted gray lines. For the
correct time separation between light curve epochs, see Figure 3.1. The model is able to
reproduce the major features of the data. Bottom: two examples of Hβ spectra fit by the
model, with data shown by blue and green errorbars and model fits shown by red lines.

3.1 Data

We observed Mrk 50 in Spring 2011. The data, shown in Figure 3.1 and the top left

panel of Figure 3.2, include a light curve of V-band continuum flux and a time series of
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Figure 3.3: Geometry of the BLR for three models, with the x, y, and z axis scales in light
days and the observer’s line of sight along the x-axis. The top panel BLR distribution is
a close to face-on torus of clouds, the middle BLR distribution is a close to face-on disk
of clouds similar to the geometry inferred for Mrk 50, and the bottom BLR distribution
is a dense sphere of clouds.

the broad Hβ line spectral profile. More observational details, as well as details about

the measurement of V-band and Hβ light curves, are described by Barth et al. (2011b).

We model all 156 epochs of the V-band light curve and 55 of the 59 epochs of the Hβ

line profile, ignoring those epochs with low S/N or other problems. The median S/N for
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Figure 3.4: Inferred posterior PDFs for model parameters, including MBH, inclination
angle (0 degrees is face-on), and opening angle of the BLR disk. Joint posterior PDFs
are also shown to illustrate the major degeneracies.
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Figure 3.5: Inferred posterior PDFs for model parameters, including the mean radius of
the BLR, radial width of the BLR, and the inflow fraction of BLR gas.

the Hβ line profile throughout the campaign is 75 per pixel.

AGN and stellar continuum lines can significantly alter the measured broad line

widths in AGNs, affecting single epoch MBH estimates (Denney et al. 2009; Park et al.

2012b). In order to reduce contamination from other lines when modeling the Hβ line

profiles, the Mrk 50 spectra have been fit with AGN and stellar continuum components

and the He ii λ4686 line just blueward of Hβ, and then these components were subtracted
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Figure 3.6: Examples of acceptable transfer functions for Mrk 50. The top two and middle
left panels show examples of VRTFs drawn from the model parameter posterior PDFs,
illustrating the range in inferred transfer function shape. In the color-code of the VRTFs,
red corresponds to the highest levels of response and dark blue corresponds to the lowest
levels. The middle right panel shows the mean lag for each of the VRTFs. The mean lag
in seven velocity bins from Barth et al. (2011b) are shown by red errorbars, which were
measured by cross-correlation analysis. We calculate the mean lag in the seven velocity
bins of Barth et al. (2011b) for ∼ 200 VRTFs made using model parameters drawn
randomly from their posterior PDFs, shown in light blue. The bottom panel shows the
velocity-integrated transfer functions for the VRTFs shown in the first three panels.
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to yield the “pure” Hβ profile (Barth et al. 2011b).

3.2 The dynamical model of the BLR

We now give a brief description of our method for directly modeling reverberation

mapping data. The motivation for our approach is developed in P11 and further im-

plementation details are described in B11. We model the BLR as a large number of

point-like clouds, each with a given position and velocity. Several parameters describe

the overall spatial distribution of the clouds and the prescription for assigning velocities

to the clouds, given their positions. Our goal is to estimate these parameters.

The continuum emission from the central ionizing source is absorbed by these clouds

and re-emitted as broad line emission, allowing us to predict the line flux and shape as

a function of time, i.e. to produce mock data sets of the form shown in Figure 3.2.

The full set of model parameters includes the geometry and dynamics parameters for

the BLR clouds corrected to the rest frame of Mrk 50, as well as a continuous version of

the continuum light curve, since the continuum light curve must be evaluated at arbitrary

times in order to compute mock data for comparison with the actual data. The observed

continuum light curve is interpolated using Gaussian Processes to create a continuous

light curve and to account for the uncertainty in the interpolation. Gaussian Processes

have been found to be a good model for larger samples of AGN light curves (Kelly et al.

2009; Koz lowski et al. 2010; MacLeod et al. 2010; Zu et al. 2011, 2013).

The model for the BLR geometry is simple yet flexible, allowing for disk-like or

spherical geometries with asymmetric illumination of the gas. Examples of possible BLR
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geometries are shown in Figure 3.3. The model for the spatial distribution of the BLR

gas is first generated from an axisymmetric 2-D configuration in the x-y plane, with a

parameterized radial profile. The radius r of a cloud from the origin is generated as

follows. First, a variable g is drawn from a Gamma distribution with shape parameter α

and scale parameter 1:

g ∼ Γ (α, 1) (3.1)

Then, the radius r of the cloud is computed by applying the following linear transforma-

tion to g:

r = Fµ+
µ (1− F )

α
g (3.2)

The parameters {µ, F, α} control the radial profile of the BLR. µ is the overall mean radius

of the BLR (this can be verified by taking the expectation value of r in Equation 3.2). The

parameter F ∈ [0, 1] allows for the possible existence of a hard lower limit Fµ on radius,

because there may be some radius interior to which the BLR gas would all be ionized and

thus unable to respond to changes in the continuum emission (Korista & Goad 2004).

α controls the shape of the gamma distribution: a value of α close to 1 imposes an

exponential distribution (allowing for disk or ball configurations) , whereas large values

of α create a narrow normal distribution (allowing for shell or ring configurations). In the

implementation, and in the description of the same model in B11, we parameterise the

shape by β = 1/
√
α instead of α because β has a simple interpretation as the standard

deviation of g in units of its mean. The radial width of the BLR can be defined as the

standard deviation of r:

σr = µβ(1− F ). (3.3)
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In order to assign velocities to the BLR gas clouds, the model uses probabilistic

perturbations about circular orbits. The solution for the radial velocity of a BLR cloud

given its position r, energy E, and angular momentum L is:

vr = ±
√

2

(
E +

GMBH

r

)
− L2

r2
. (3.4)

If we wished to impose circular orbits, the values for E and L would be fully determined

by the radius r of the cloud:

Ecirc = −1

2

GMBH

r
(3.5)

Lcirc = ±r
√

2

(
E +

GMBH

r

)
. (3.6)

To obtain elliptical orbits, we generate values for E and L probabilistically, given r. The

probability distributions for energy and angular momentum are parameterized by the

parameter λ and are given by:

E =

(
1

1 + exp(−χ)

)
Ecirc (3.7)

p(L) ∝ exp

( |L|
λ

)
(3.8)

where χ ∼ N (0, λ2) and |L| < |Lcirc|. For λ→ 0 we recover circular orbits and increasing

λ creates more elliptical orbits. Since there are two solutions for the sign of vr, the

model also includes a parameter for the fraction of outflowing vs inflowing gas. The

inflowing and outflowing gas is bound to the gravitational potential of the black hole,

but an inequality in the fraction of inflowing and outflowing gas has the desired effect of

modeling asymmetries in the Hβ spectral line profile as observed in Arp 151 (B11) when

an asymmetric illumination model is included.
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Once a 2-D configuration of clouds in the x-y plane has been generated, and velocities

have been assigned to the clouds, rotations are applied to “puff up” the 2-D configuration

into a 3-D configuration. We first rotate the cloud positions about the y axis by a small

random angle; the typical size of these angles determines the opening angle of the cloud

distribution. The opening angle is defined as the angle above the midplane of the disk or

sphere. We then rotate around the z axis by random angles to restore the axisymmetry

of the model. Finally, we rotate again about the y axis, by the inclination angle (common

to all of the clouds) to model the inclination of the system with respect to the line of

sight. The inclination angle is defined so that zero degrees corresponds to a face-on

configuration and 90 degrees corresponds to an edge-on configuration.

In order to produce asymmetric broad line profiles, we include a simple prescription

for asymmetric illumination of the BLR clouds. We assign a weight w to each cloud,

given by w = 0.5 + κ cosφ, where φ is the azimuthal position of the cloud in spherical

polar coordinates. The parameter κ ranges from 0.5, corresponding to illuminating the

near side of the BLR, to −0.5, corresponding to illuminating the far side of the BLR.

Physically, the near side of the BLR could be preferentially illuminated if the far side

of the BLR were obscured by gas, and the far side of the BLR could be preferentially

illuminated if the BLR clouds only reradiate the continuum emission towards the central

ionizing source due to self-shielding within the cloud. Inflowing gas with the near side of

the BLR illuminated can, in principle, be distinguished from outflowing gas with the far

side of the BLR illuminated by the VRTF, since the lags for these two cases are different.

In addition, we allow for a scaling factor to describe the percentage variability of the

emission line compared to that of the continuum. While for Arp 151 the variability of
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the continuum was approximately equal to that of the Hβ flux, in the case of Mrk 50 we

find that the continuum variability is less than that of the line. This is consistent with

the amplitude of variability of the ionizing continuum responsible for Hβ being larger

than that of the V-band (Meusinger et al. 2011, and references therein).

Once the dynamical model has been defined, we are able to compute simulated data

that are then blurred with a Gaussian kernel to model the instrumental resolution. The

simulated data are then compared with the actual data. For the likelihood function, we

use the standard Gaussian assumption:

P (data|model) ∝ exp

[
−1

2
χ2(model, data)

]
(3.9)

With the likelihood function defined, the modeling problem is reduced to computing

the inferences on all of the model parameters. The likelihood function, P (data|model),

is combined with the prior distribution for the parameters using Bayes’ Theorem:

P (model|data) ∝ P (model)× P (data|model). (3.10)

The posterior probability distribution for the parameters is sampled using the Diffusive

Nested Sampling algorithm (Brewer et al. 2011a). Nested Sampling algorithms initially

sample the prior distribution, and subsequently create and sample more constrained dis-

tributions, climbing higher in likelihood. In the specific case of Diffusive Nested Sampling,

uphill and downhill moves are allowed, allowing the exploring particles to return to the

prior, take large steps, and then climb the likelihood function again. We assigned uniform

priors to most parameters except for the mean radius and MBH, which have log uniform

priors to describe initial uncertainty about the order of magnitude of the parameter.
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By computational necessity, our model is relatively simple. While it is still rather

flexible and can reproduce the large scale features of the reverberation mapping data,

it is unable to model every detail of the Hβ light curve. The large scale features of the

variability in the Hβ light curve are well-modeled, for example, but the small epoch-to-

epoch fluctuations in the light curve are not (see Figure 3.2). In addition, the errorbars

reported on the data are very small, and our model is not able to fit the data set to

within these small error bars (i.e. we cannot achieve reduced χ2 ∼ 1). If we did not take

this into account our uncertainties would be unrealistically small. This issue is a generic

feature of the fitting of simply parameterized models to informative data sets, and will be

discussed in depth in a forthcoming contribution (Brewer et al, in preparation). In order

to account for this effect and to obtain realistic and conservative uncertainties, we explore

the effect of inflating the errorbars on the spectrum data by a factor H, or equivalently,

choosing to form the posterior distribution from different chunks of the Nested Sampling

run (i.e. different ranges of allowed likelihood values). For each value of H tested, we

inspect the posterior distribution over simulated data (top right panel in Figure 3.2) to

ensure that the major features of the data are reproduced. We find that, as long as H

is low enough that the models fit the major features in the data, the resulting posterior

distributions on the parameters are insensitive to the exact choice of the value for H.

3.3 Results and conclusions

Our inferred geometry and dynamics parameters of the BLR in Mrk 50 are shown in

Figures 3.4 and 3.5. The shape of the BLR gas radial profile is constrained to be closer
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to exponential (α . 1), with a mean radius of µ = 9.6+1.2
−0.9 light days and a width of

σr = 6.9+1.2
−1.1 light days (the uncertainties quoted are symmetric 68% confidence limits).

Even though the mean radius is not simply c times the mean lag in the general asymmetric

case, we expect our mean radius to roughly correspond to the lag measurements using

cross-correlation analysis by Barth et al. (2011b), which are τpeak = 9.75+0.50
−1.00 and τcen =

10.64+0.82
−0.93 light days. Our mean radius agrees more closely with τpeak, although τcen is

more commonly used for black hole mass estimation. We infer the inner radius of the BLR

distribution to be Fµ = 2.0+1.3
−1.1 light days. The opening angle of the BLR disk, defined

between 0-90 degrees, is 25 ± 10 degrees, closer to a thin disk than to a sphere. The

inclination angle of the thick BLR disk with respect to the line of sight is constrained to

be 9+7
−5 degrees, closer to face-on, consistent with the standard model of broad line AGNs

(Antonucci 1993; Urry & Padovani 1995).

The dynamical modeling results constrain Mrk 50 to have 39% probability of net

inflowing gas and 61% probability of net outflowing gas, with equal amounts of inflowing

and outflowing gas ruled out (inflow fraction = 0.5), as shown in Figure 3.5. This result

suggests only a slight preference for outflow while the need for either outflow or inflow is

quite robust, suggesting that a more physical model for inflow and outflow is needed in

order to distinguish between them for the case of Mrk 50. Equal amounts of inflowing

and outflowing gas are ruled out because net inflowing or outflowing gas, along with the

illumination model, creates the asymmetry in the Hβ line profile observed in the data.

In addition to constraining the geometry of the BLR, our dynamical model also places

an independent estimate on MBH, inferred to be log10(MBH/M�) = 7.57+0.44
−0.27. Part of the

uncertainty in this estimate comes from the range in possible MBH values at nearly face-on
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inclinations (close to zero degrees), as shown in Figure 3.4. Recent cross-correlation re-

verberation mapping results quote statistical uncertainties of the order of 0.15 dex (Bentz

et al. 2009b; Denney et al. 2010; Barth et al. 2011a,b), but this neglects the uncertainty

in the normalization factor, f , that is believed to have an object to object scatter of 0.44

dex (Woo et al. 2010; Greene et al. 2010a). Thus, our uncertainty in MBH for Mrk 50 is

smaller that achieved by traditional reverberation mapping estimates. Our independent

measurement of MBH can be used to estimate the appropriate value of f for Mrk 50 by

comparing it to the virial estimate by Barth et al. (2011b), Mvir = f v2 c τ/G, where τ and

v are obtained from the cross-correlation of the continuum and broad line light curves and

from the width of the broad line, respectively. We find log10 f = 0.78+0.44
−0.27, which agrees

to within the errors with the commonly used mean values of log10 〈f〉 = 0.74+0.12
−0.17 from

Onken et al. (2004), log10 〈f〉 = 0.72+0.09
−0.10 from Woo et al. (2010), and log10 〈f〉 = 0.45+0.09

−0.09

from Graham et al. (2011). We have used 〈f〉 to denote a normalization factor derived

from large samples of reverberation mapped AGN MBH estimates as distinct from the f

value we measure individually for Mrk 50. A sample of 10 independent black hole mass

and f measurements with comparable uncertainties to Mrk 50 and Arp 151 would allow

us to calculate a mean f value to ∼ 0.3/
√

10 ' 0.1 dex uncertainty and to distinguish

between these commonly used mean values.

An additional interesting feature of Figure 3.4 is the complex structure in the joint

posterior distribution for the inclination angle and opening angle, a feature that was not

seen in Arp 151. The joint posterior appears to have two distinct families of solutions,

although one has almost four times as much weight as the other. In an attempt to

understand the origin of this structure, we separated the posterior samples in the two
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modes in order to test whether they are correlated with any other parameters (such

as the inflow fraction), however we were unable to find any such correlations. Future

improvements to the flexibility and realism of the model may enable us to rule out one

of these modes, and hence constrain the parameters more tightly and further reduce the

uncertainties.

While MBH is well constrained, there are many ways to successfully model the large-

scale structure of the reverberation mapping data. This is illustrated by the degeneracies

in the posterior distributions plotted in Figure 3.4. The quality of the model fits to the

data are illustrated in Figure 3.2, including six model integrated Hβ flux light curves, an

example of a model dataset of spectra for each epoch in the light curve, and two data

spectra with the model spectra overplotted. The smoothness of the models compared

to the data is illustrated in the spectral datasets of the data and model shown in the

top panels of Figure 3.2. The Mrk 50 Hβ spectral profile did not change in shape

drastically over the course of the LAMP 2011 reverberation mapping campaign, and the

model spectral profile is likewise very similar for all epochs. Even though the shape of

the individual spectral profiles can be well-modeled, more sophisticated models will be

required to match the detail of the small-scale variability of the integrated Hβ data light

curve.

Note that the uncertainties quoted throughout this chapter are determined from a

Monte Carlo method, and are therefore subject to error themselves. As we are interested

in reducing the uncertainties on black hole mass estimates from reverberation mapping

data, it is important to quantify the uncertainty on the uncertainty. To investigate this,

we estimated the effective number of independent samples produced by our Diffusive
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Nested Sampling runs, by counting the number of times the exploring particles returned

to the prior (allowing large steps to be taken) before climbing the likelihood peak again.

Our effective number of independent samples was found to be ∼ 180. We then generated

samples of size 180 from our full posterior sample, and determined the scatter in the

resulting log10(MBH) uncertainties to be 0.02. Thus, the uncertainty on the black hole

mass for Mrk50 is +0.44
−0.27 ± 0.02 dex.

Previous attempts to understand the geometry and dynamics of the BLR have focused

on reconstructing the VRTF (Kollatschny & Bischoff 2002; Bentz et al. 2010b; Denney

et al. 2010). In the interests of comparing future transfer function studies to our physically

motivated model of the BLR, we show three inferred VRTFs for Mrk 50 in Figure 3.6.

These three transfer functions were chosen out of the many inferred possible models for

Mrk 50 to show some of the variety in allowed transfer function shapes. The top left

VRTF has a fairly typical shape and level of asymmetry, while the top right VRTF is

more asymmetric than average. One measurement of the VRTF asymmetry is to compare

the integral of the mean lag per velocity bin on either side of line center, corresponding

to the zero velocity point in the middle right panel of Figure 3.6. By this measurement

of asymmetry, 43% of the possible models inferred for Mrk 50 have VRTFs that are less

asymmetric than the top left VRTF, while only 8% of the possible models have VRTFs

that are more asymmetric than the top right VRTF. The middle left transfer function

illustrates the extent to which our inferred model for Mrk 50 can agree with the velocity-

resolved cross-correlation measurements by Barth et al. (2011b), shown by red errorbars

in the middle right panel of Figure 3.6. This VRTF has the smallest χ2 distance from

the cross-correlation measurements by Barth et al. (2011b) and models with this level
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of agreement (or better) have a probability of ∼ 0.3%. The average shape of the VRTF

is also shown in Figure 3.6, with the same velocity bins as used by Barth et al. (2011b)

for their cross-correlation based measurement. This average VRTF is fairly symmetric,

but the higher velocity bins have larger errorbars as a result of averaging over transfer

functions that have asymmetries from either net inflowing or outflowing gas (see the

dashed line in the middle right panel of Figure 3.6).

Note that the average VRTF we infer and the results obtained from cross-correlation

measurements by Barth et al. (2011b) do not all agree to within the 1-σ error bars. In

order to understand the differences between the time-lags as measured in our dynamical

model and those measured through the cross-correlation procedure, we consider the ideal

continuous noise-free case. In this case, the cross-correlation function (CCF) between the

line and continuum light curves is the transfer function convolved with the autocorrelation

function (ACF) of the continuum light curve, which is the CCF of the light curve with

itself. While the ACF is symmetric, the transfer function may be asymmetric, as we

find for Mrk 50, so the CCF may also be asymmetric. One measurement of the cross-

correlation time-lag often used to measure black hole mass is the CCF-weighted mean

lag, τcen, which is by definition affected by the asymmetry in the CCF. Therefore, in

the case of asymmetric transfer functions, τcen may not correspond to the mean lag of

our dynamical model of the BLR. For the non-ideal case, a direct comparison between

cross-correlation measurements and the results of our dynamical modeling approach is

not straightforward, since the peak (or mean) of the CCF does not measure the true

mean lag but only a noisy version of the convolution between the ACF and the transfer

function.
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We explored this issue by running the cross-correlation technique as implemented by

Barth et al. (2011a) on light curves generated by models drawn from the posterior PDF for

Mrk 50. For simplicity we considered noise-free light curves sampled in the same way as

our data. We find that the peak and CCF-weighted mean (τpeak and τcen) of the CCF can

be systematically off by ∼ 1−2 light days with respect to the true mean lag of the model.

The amount of the offset varies as a function of the actual shape of the transfer function

as well as the details of the implementation of the cross-correlation algorithm. Thus, it is

not surprising that we find systematic differences of this order between our estimates of

the mean lag and τcen. Clarifying and quantifying systematically the relationship between

these two approaches as a function of BLR structure and data quality is an important

topic that goes beyond the scope of this chapter and is left for future work.

In conclusion, the analysis presented here provides new and unique insights into the

geometry and kinematics of the BLR, and a MBH estimate that is competitive with the

most accurate methods. However, since our modeling uncertainties are greater than

data uncertainties, more physical models that take into account the complex processes

occurring in the BLR should allow for even better constraints. In the future, we plan to

develop such models and apply them to large samples of reverberation mapping data.
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Chapter 4

Modeling the broad line region III: Improved

method and comparison with cross-correlation

This chapter was published as Pancoast, A.; Brewer, B. J.; Treu, T. “Modeling re-

verberation mapping data I: improved geometric and dynamical models and comparison

with cross-correlation results”, Monthly Notices of the Royal Astronomical Society, 445,

3055 (2014) and is included here with minor formatting adjustments.

In this chapter, we introduce an improved and expanded version of our simply pa-

rameterized phenomenological model of the BLR to be used with the direct modeling

approach. We demonstrate the capabilities of this new model using simulated data and

by placing constraints on the uncertainties in traditional cross-correlation function (CCF)

analysis. In Chapter 5 of this series (Pancoast et al. 2014b), we apply the improved BLR

model to five AGNs in the LAMP 2008 dataset. The additional model flexibility and in-

creased algorithm efficiency of this new implementation are demonstrated by comparing

the results for Arp 151 by Brewer et al. (2011a) to the new results described in Chapter 5;

in the latter case the uncertainty in black hole mass is decreased by more than 0.1 dex

and it is possible to differentiate between inflow and outflow kinematics.

We begin by presenting a detailed description of the improved BLR model in Sec-

67



tion 5.2. Tests to recover the model parameters using simulated data are presented in

Section 4.2. Comparison of direct modeling results to CCF analysis and constraints on

CCF lag uncertainties are given in Section 4.3. Finally, we give an overview of the main

conclusions in Section 5.4. Throughout this chapter, all BLR model parameter values

are given in the rest frame of the AGN.

4.1 The model

In this section we describe our model of the BLR and the numerical methods we use

to explore its parameter space. Our model of the BLR can be applied to any broad

emission line, although it has so far only been applied to the Hβ broad emission line in

six AGNs (Brewer et al. 2011a; Pancoast et al. 2012, 2014b). The basic methodology

of our model is also completely generalizable to any model in which the geometry and

dynamics of the BLR gas can be computed quickly enough to enable a full exploration

of the parameter space when comparing with the data.

4.1.1 Overview

Our goal is to reconstruct the physical structure of the BLR and to measure the mass

of the central black hole from reverberation mapping measurements. To achieve this, we

describe the possible structure of the BLR by a large number of parameters whose values

we infer from the data.

In our model, the BLR is represented by a set of point particles whose positions

represent the spatial distribution of broad line emission. If the BLR is really made up of
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distinct clouds, then each particle could be associated with emission from a BLR cloud,

however if the BLR is made up of a smoother distribution of gas, then the particles

are just a Monte Carlo approximation of the density field of emission. Each particle in

our model is also associated with a velocity that depends upon the mass of the black

hole. Our model parameters for the BLR describe the spatial distribution of the particles

as well as their individual positions. Additional parameters describe the rule by which

velocities are assigned to the particles, as well as the individual velocities themselves. In

the present implementation we ignore gravitational interactions or fluid viscosity between

particles, and other non-gravitational forces like radiation pressure.

Given a distribution of particles with associated velocities, we can immediately calcu-

late how the BLR would process an input continuum light curve, resulting in an emitted

broad line spectrum (e.g. Hβ) that changes (in both total flux and shape) over time.

Apart from the conversion from continuum to line flux, we assume that the particles act

as mirrors, reflecting the continuum flux towards the observer, where the velocity of the

particle determines how far the emission line flux is shifted in wavelength space away

from the systematic emission line wavelength at rest with respect to the black hole.

There are three parts to our model of the BLR, which is formulated as an application

of Bayesian inference as described in Section 4.1.2. The first part of the model is the

AGN continuum light curve model described in Section 4.1.3. It is necessary to model

the AGN continuum light curve because we need to be able to evaluate the continuum

light curve at arbitrary times in order to calculate the broad line spectrum variations

predicted by the model. The second part is the “geometry model” (spatial distribution)

of the BLR described in Section 4.1.4, which describes the spatial distribution of the

69



particles that make up the BLR emission. The positions of the particles determine their

time lags, which tells us how delayed features in the broad emission line light curve are

compared to the continuum light curve. The third part is the “dynamical model” of the

BLR described in Section 4.1.5. This describes the rule by which velocities are assigned to

the particles, and allows for scenarios such as near-circular orbits, inflow, or outflow. The

component of a particle’s velocity along the line of sight determines which wavelength it

affects in the model-predicted broad line spectrum. Once the three parts of our model

of the BLR have been specified, we must explore the model parameter space in order to

constrain the properties of the BLR given a specific reverberation mapping dataset, as

described in Section 4.1.6. Finally, we enumerate the limitations of our current model of

the BLR and future improvements in Section 4.1.7.

4.1.2 Bayesian inference framework

We use the formalism of Bayesian statistics to infer the values of our model parameters

θ given a reverberation mapping dataset D. We begin by defining the prior probability

distributions of the model parameters, p(θ|I), which incorporate our initial assumptions

about the range of allowed parameter values and depend upon any information I that we

have about the problem before we begin. We then assign the probability distribution of

the data given a specific set of parameter values p(D|θ, I) which tells us how the data and

model parameters are related. This term is often called the “sampling distribution”, or,

once the data is known, the likelihood. Finally, we can combine the prior and likelihood

using Bayes’ theorem to obtain the posterior distribution of the model parameters given
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the data:

p(θ|D, I) ∝ p(θ|I) p(D|θ, I). (4.1)

The normalization constant of the posterior in Equation 4.1, called the evidence or

the marginal likelihood, is given by

p(D|I) =

∫
p(θ|I) p(D|θ, I) dnθ (4.2)

and is useful for model comparison.

For models with many parameters and in which the posterior distribution is not of a

known standard form, it is common to calculate properties of the posterior probability

density function (PDF) by generating samples using an algorithm such as Markov Chain

Monte Carlo (MCMC). As the number of parameters becomes large and the likelihood

function potentially multimodal, however, it can be more efficient to use a more com-

plex algorithm such as Diffusive Nested Sampling (DNS), as described in Section 4.1.6.

DNS has the added benefit that it computes the marginal likelihood, allowing for model

selection, unlike most standard MCMC algorithms that only generate posterior samples.

In our inference problem of modeling the BLR, the data consist of two time series.

The first is the AGN continuum light curve {Yi} and its corresponding timestamps and

measurement error variances. The second time series is the spectrum of the broad line

measured over time, which we will denote by {Dij} (the index i represents the epoch and

j the wavelength bin). The overall dataset that enters into Bayes’ theorem is both of

these:

D = {{Yi}, {Dij}}. (4.3)

We can split the likelihood function into two parts. The likelihood for the continuum
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data {Yi} will be discussed in Section 4.1.3. For the broad line data, we use the model

parameters θ to construct a time series of mock broad emission line spectra mij(θ) to

compare to the data using a Gaussian likelihood function:

p(D|θ, I) =
∏
i,j

1

σij
√

2π
exp

[
− 1

2σ2
ij

(Dij −mij(θ))2

]
(4.4)

4.1.3 Continuum light curve model

Ground-based reverberation mapping campaigns use optical AGN continuum light

curves (e.g. in the V or B bands) to track the variability of photons leading to BLR

emission, since the true ionizing photons are in the ultraviolet (UV). While it is expected

that the UV photons are created in the accretion disk closer to the black hole than

the optical photons, the time lag between variability features in the UV and optical is

unresolved (Peterson et al. 1991; Korista et al. 1995) or on the order of a day (Collier et al.

1998). For this reason, we do not distinguish between a UV or optical light curve in our

model of the BLR, assuming that either light curve is emitted from a point source at the

position of the black hole. While the true UV and optical emitting regions in the accretion

disk are certainly not point-like, their distance from the black hole is significantly smaller

than that of the BLR compared to the uncertainties in the mean BLR radius (e.g. Morgan

et al. 2010), suggesting that detailed modeling of the optical or UV emitting region would

not be well-constrained by current reverberation mapping datasets. Since our model of

the BLR is many particles each reflecting the continuum light curve to the observer with a

time lag given by the particle’s distance from the continuum point source, the continuum

flux must be computed at arbitrary times within the light curve. Generally, reverberation
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mapping AGN continuum light curves are too sparsely sampled to resolve intra-day

variability using simple linear interpolation between data points. Linear interpolation

also incorrectly assumes that there is no uncertainty associated with the interpolation

process or the measurements. For these reasons, we model the AGN continuum light

curve using a stochastic model of AGN variability, allowing us to evaluate the light

curve at arbitrarily small timescales and also to include the continuum light curve model

uncertainty into our inference on the properties of the BLR.

We model the continuous AGN continuum light curve y(t) using Gaussian processes

(GPs), which allow us to treat the interpolated and extrapolated light curve points as

additional parameters in our model, constrained by the data D. Most of the information

about y(t) is, as one would expect, provided by the continuum light curve data {Yi}.

With the GP assumption, the prior distribution for any finite set of interpolated flux

values is a multivariate Gaussian:

p(y|µcont,C) =
1√

(2π)n det C
exp

[
−1

2
(y − µcont)

TC−1(y − µcont)

]
(4.5)

where y are the interpolated continuum light curve points (i.e. evaluations of the function

y(t)), µcont is the long-term mean flux value of the light curve, and C is the covariance

matrix. The covariance between any two points in the interpolated continuum light curve

depends on the time difference between them, as given by:

C(t1, t2) = σ2
cont exp

[
−
( |t2 − t1|

τcont

)αcont
]

(4.6)

where σcont is the long term standard deviation of the continuum light curve, τcont is

the typical timescale for variations, and αcont is a smoothness parameter between 1 and

2. Larger values of αcont lead to more covariance between points in the continuum light
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curve, corresponding to less fluctuations on small timescales. Setting αcont = 1 improves

the speed with which the densely sampled continuum light curve can be calculated, as

well as increasing the performance of the MCMC1. For these reasons, we generally set

αcont = 1, in which case our Gaussian process model is equivalent to a continuous time

first-order autoregressive process (CAR(1)). The CAR(1) model has been found to be a

good fit to AGN variability data on similar timescales to those probed by reverberation

mapping campaigns (Kelly et al. 2009; Koz lowski et al. 2010; MacLeod et al. 2010; Zu

et al. 2011, 2013), although a model that further reduces AGN variability on very short

timescales provides a better fit to higher-cadence Kepler data (Mushotzky et al. 2011).

We interpolate and extrapolate the AGN continuum light curve data using 1000 points,

where the range of points starts before the continuum data (usually by 50% the continuum

data range) and extends past the end of both the continuum and line data, whichever is

later. Points extrapolated past the ends of the continuum data are only constrained by

the general behavior of the interpolated points and thus have very high uncertainty.

4.1.4 Geometry model

Once we have a model for the continuum light curve we need a model for the spatial

distribution of the particles, which we call the “geometry model”. The geometry model

has flexibility in the radial distribution of the particles as well as the angular distribution.

In particular we include an opening angle parameter that describes whether the BLR is

a disk or sphere and an inclination angle parameter that determines from what angle the

observer sees any asymmetries of the BLR. Although this is a purely phenomenological

1Performance is also increased by parameterising in terms of σcont/
√
τcont rather than σcont itself.
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Figure 4.1: Examples of possible radial profiles for the BLR emission given by the Gamma
distribution with µ = 6, F = 0, and various values for β. The distributions range from
a narrow Gaussian (β < 1) to an exponential profile (β = 1) or steeper (β > 1).

model, it is flexible enough that it should allow us to capture a wide variety of realistic

geometries with a moderate number of parameters.

We define the geometry model in two stages. First we consider the radial distribution

of the particles, and secondly we define the angular structure.

Radial BLR distribution

The radial distribution of BLR emission density is described by a shifted gamma

distribution. The gamma distribution for a positive variable x is usually written

p(x|α, θ) ∝ xα−1 exp
(
−x
θ

)
(4.7)

where α is the shape parameter and θ is a scale parameter. Our radial distribution

is based on a shifted gamma distribution where the lower limit is r0 instead of zero.

Rather than parameterizing the distribution by (α, θ, r0), whose interpretations are not

straightforward (making priors difficult to assign), we use a different parameterisation in
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terms of three parameters (µ, β, F ), defined as follows.

µ = r0 + αθ (4.8)

β =
1√
α

(4.9)

F =
r0

r0 + αθ
. (4.10)

The parameter µ is the mean value of the shifted gamma distribution, β is the stan-

dard deviation of the gamma distribution in units of the mean µ when r0 = 0, and F is

the fraction of µ from the origin at which the gamma distribution begins (i.e. F is r0

measured in units of µ). For arbitrary r0, the standard deviation of the shifted gamma

distribution is:

σr = µβ(1− F ). (4.11)

Finally, we also offset the radial distribution by the Schwarzschild radius, Rs = 2GM/c2,

to provide a hard limit to how close a point particle can be to the black hole. For a

107M� black hole, Rs = 0.001 light days, much smaller than the typical size of the BLR,

which is on the order of light days.

The three parameters (µ, β, F ) control the radial profile of the particles. To param-

eterise the actual distances of the particles from the black hole, instead of using the

physical distance r, we use a variable g (one for each particle) with a Gamma(β−2, 1)

prior. Then the actual distance r of the particle is computed by:

r = Rs + µF + µβ2(1− F )g. (4.12)

The reason for parameterizing in terms of g rather than F is that Metropolis proposals

are simpler. For example, a Metropolis move that changes the parameters (µ, β, F ) but
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leaves g fixed will automatically move all of the particles appropriately.

Opening and inclination angles

The radial BLR distribution discussed in the previous section is spherically symmetric,

however we can break spherical symmetry by introducing a disk opening angle of the

BLR. The opening angle is defined as half the angular thickness of the BLR in the

angular spherical polar coordinate perpendicular to the plane of the disk. If the BLR is a

sphere then the opening angle is π/2, and if the BLR is a thin disk then the opening angle

approaches zero. Once spherical symmetry has been broken, it is necessary to consider at

what angle an observer will view the BLR. The inclination angle is defined as the angle

between a face-on BLR geometry and the observer’s line of sight, so an edge-on disk

would have an inclination angle of π/2 while a face-on disk would have an inclination

angle approaching zero.

To construct a specific BLR geometry, we begin by drawing the radial position for

each particle in a flat disk in the x-y plane with the observer located at the positive end of

the x-axis. In plane polar coordinates, the radial coordinates r of the point particles are

calculated using Equation 4.12, and the angular coordinates are drawn from a uniform

distribution between 0 and 2π. We then puff up this flat disk by the opening angle, first

by rotating each particle around the y-axis by some angle between 0 and the opening

angle and then by rotating the particle around the z-axis by some angle between 0 and

2π to restore axisymmetry. Next, we rotate all point particles around the y-axis by 90

degrees minus the inclination angle so that an inclination angle of zero corresponds to a

face-on BLR geometry. All of the angles used in this process are extra model parameters.

77



Angular BLR distribution

We can further add asymmetry by controlling the strength of emission from a given

particle using three separate effects:

1. The particles are assigned non-uniform weights, depending upon the angle between

the observer’s line of sight to the central source and a particle’s line of sight to the

central source. The strength of this effect is controlled by a parameter κ.

2. The parameter γ controls the extent to which the emission is concentrated near the

outer edges of the BLR disk at the opening angle.

3. The parameter ξ determines the transparency of the plane of the BLR disk.

The first effect represents anisotropic emission from the point particles. We use first

order spherical harmonics to define a weight, W , for each particle that ranges from 0

to 1 and determines what fraction of the continuum flux is reemitted as line flux in the

direction of the observer:

W (φ) =
1

2
+ κ cosφ. (4.13)

The one free parameter is κ, which ranges from −0.5 to 0.5. Negative values of κ corre-

spond to preferential emission from the far side of the BLR from the observer and positive

values correspond to preferential emission from the near side of the BLR. Preferential

emission from the far side of the BLR could be physically caused by BLR gas only re-

emitting continuum emission back towards the central source due to self-shielding, while

preferential emission from the near side of the BLR could be physically caused by the

closer BLR gas blocking gas farther away. The angle φ is defined to be the angle between
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the observer’s line of sight to the central source and the particle’s line of sight to the

central source. For κ = −0.5 and a model where the BLR is made up of spherical balls

of gas, this model is equivalent to considering broad line emission from the area of the

spheres illuminated by the central source as viewed by the observer, like lunar phases.

The second effect is parameterized by γ and controls the extent to which BLR emission

is concentrated near the outer faces of a disk. This could arise for example if the parts

of the BLR closer to the plane of the accretion disk are optically thick. The parameter

γ controls preferential emission from the outer faces of the BLR disk by affecting how

much the particle positions are moved from an initial flat disk to between zero and the

opening angle of a thick disk. The angle for a particle’s displacement from a flat to thick

disk is given by:

θ = acos (cos θo + (1− cos θo)× Uγ) (4.14)

where θo is the opening angle and U is a random number drawn uniformly between 0 and

1. Larger values of U lead to θ values closer to θo, so using Uγ with γ between 1 and 5

concentrates more particles close to the opening angle for γ > 1.

The third effect represents the possibility for an obscuring medium in the plane of the

BLR to partly or completely obscure broad line emission from the back side of the BLR

and is parameterized by ξ. Unlike the first effect that depends upon the inclination angle

at which an observer views the BLR, ξ is roughly defined as the fraction of particles on

the far side of the BLR midplane. In the limit of ξ → 0, the entire back half of the BLR

is obscured, and the BLR geometry could range from half a disk or sphere when γ ∼ 1

to a single cone when γ ∼ 5. In the limit of ξ → 1, the back half of the BLR is not
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obscured. Since it is computationally inefficient to throw out particles on the back side

of the BLR, we actually just invert their position with respect to the plane of BLR when

ξ < 1, making the true definition of ξ be the fraction of particles in the back side of the

BLR that have not been moved to the front side.

4.1.5 Dynamics models

In order to make a model spectrum from our geometry of the BLR we must also assign

velocities to the particles. We consider three different kinematic components, including

bound elliptical orbits and a combination of both bound and unbound inflow or outflow.

Elliptical orbits

Consider a particle orbiting a point mass at a distance r with velocity |v| =
√
v2
r + v2

φ,

where vr is the radial velocity and vφ is the tangential velocity in the plane of the orbit

and perpendicular to vr. The tangential velocity in terms of the angular momentum per

unit mass of the particle L is given by vφ = L/r, and the radial velocity can be obtained

by considering the energy per unit mass of the particle:

E =
1

2

(
v2
r +

L2

r2

)
− GMBH

r
. (4.15)

Solving for vr we obtain:

vr = ±
√

2

(
E +

GMBH

r

)
− L2

r2
. (4.16)

For circular orbits, we have the additional constraint that vr = 0 so that the centripetal

force of circular motion must equal the gravitational force, giving v2
φ = GMBH/r or

80



Figure 4.2: Distributions of radial and tangential velocities, vr and vφ for the dynamical
model. Blue points are particle velocities drawn from Gaussian distributions centered
around the point for circular orbits (vr, vφ) = (0, vcirc) shown as the upper filled red circle
and centered around the points for outflowing and inflowing escape velocity (vr, vφ) =
(±
√

2 vcirc, 0) shown as filled red stars. The red dotted line denotes the ellipse with semi-
minor axis (vr, vφ) = (0, vcirc) and semi-major axis (vr, vφ) = (

√
2 vcirc, 0) along which

the radial and tangential velocities are drawn. The outer solid red circle at a radius
of |v| =

√
2GMBH/r denotes the velocity beyond which orbits are unbound. The red

dashed circle at a radius of |v| =
√
GMBH/r denotes velocities with magnitude of the

circular velocity.
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vcirc =
√
GMBH/r. Thus, the circular orbit solutions are two special points in the vr−vφ

plane at (vr, vφ) = (0,±vcirc).

We consider generalizations of circular orbits to elliptical orbits by considering distri-

butions in vr and vφ centered around the circular orbit solutions. Such a model allows

us to recover circular orbits when the distributions are narrow, but also allows for highly

elliptical orbits when the distributions are on the order of vcirc. We draw the velocities

of the particles from the ellipse in the vr and vφ plane that has semi-minor axis vcirc at

vr = 0 and semi-major axis equal to the escape velocity
√

2vcirc at vφ = 0, as shown in

Figure 4.2. The reason for drawing velocities from around this ellipse instead of a circle

with radius vcirc is that the parameter space naturally includes the points at vr = ±
√

2vcirc

that correspond to the radial outflowing and inflowing escape velocities. We will discuss

these inflowing and outflowing velocity solutions in more detail in Section 4.1.5. Since

reverberation mapping measurements cannot distinguish between rotations of the BLR

around the line of sight axis, it is only necessary to define the positive vφ side of the vr−vφ

plane. The radial and tangential velocities are thus drawn from Gaussian distributions

centered at (vr, vφ) = (0, vcirc) with standard deviations given by σρ, circ and σΘ, circ, where

ρ is the radial coordinate in the vr − vφ plane and Θ is the angular coordinate. Cir-

cular orbits are recovered when σρ, circ → 0 and σΘ, circ → 0, whereas highly elliptical

orbits approaching the escape velocity |v| =
√

2vcirc are obtained when σρ, circ → 0.1 and

σΘ, circ → 1.0, the upper limits of their priors.
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Inflow and outflow

In order to include the possibility of substantial unbound outflowing or inflowing gas

in the BLR, we allow a variable fraction of the point particles to have elliptical, inflowing,

and outflowing orbits. Since we do not expect to find both inflowing and outflowing gas in

the BLR in the same spatial location, especially at the velocities assumed by our model,

we only allow for inflowing or outflowing particles in addition to elliptical orbits for a

specific instance of our model. The fraction of particles with elliptical orbits is given by

fellip, where 1 − fellip is thus the fraction of particles in either inflowing or outflowing

orbits. Whether the orbits are inflowing or outflowing is given by fflow, where values

between 0 and 1 and less than 0.5 denote inflow and values greater than 0.5 denote

outflow. Inflowing orbits are obtained around values of (vr, vφ) = (−
√

2 vcirc, 0) while

outflowing orbits are obtained around values of (vr, vφ) = (
√

2 vcirc, 0).

As for elliptical orbits, we draw the radial and tangential velocities of inflowing or

outflowing particles from Gaussian distributions for ρ and Θ, the radial and angular

coordinates of the vr−vφ plane. The width of the Gaussian distributions is similarly given

by σρ, radial and σΘ, radial, where the widths are the same for both inflowing and outflowing

orbits. Since the Gaussian distributions are centered on the points vr = ±
√

2 vcirc, about

half of the inflowing and outflowing particles will actually have bound orbits. In order

to allow for completely bound inflowing and outflowing trajectories, we also allow the

distributions centered around vr = ±
√

2 vcirc to be rotated by an angle θe along the ellipse

connecting vr = ±
√

2 vcirc to the circular orbit velocities vφ = ±vcirc. When θe = 0, the

inflowing or outflowing orbits are centered around the escape velocities at vr = ±
√

2 vcirc,

83



while θe → π/2 recovers bound elliptical orbits centered around circular orbits. When

θe ∼ π/4, we obtain mostly bound inflowing or outflowing gas.

Macroturbulent velocities

We also consider macroturbulent velocities of the particles in addition to the veloc-

ities from elliptical, inflowing, or outflowing orbits. For each particle, we calculate the

magnitude of the turbulent velocity along the observer’s line of sight, given by:

vturb = N (0, σturb)|vcirc| (4.17)

where N (0, σturb) is a normal distribution centered on zero and with standard deviation

σturb. The magnitude of the turbulent velocity is relative to the magnitude of the velocity

of the particle’s circular orbit described in Section 4.1.5, given by vcirc. We can recover

the case with no additional turbulent velocities when σturb → 0. We apply the additional

macroturbulent velocity to a point particle first by calculating the elliptical, inflowing,

or outflowing velocity and then adding vturb. This model for macroturbulent velocities is

similar to the one presented by Goad et al. (2012) for the case of a disk with constant

opening angle.

Relativistic effects

As highlighted in Goad et al. (2012), relativistic effects can have a strong influence

on the shape of emission line profiles if the BLR gas is sufficiently close to the black hole.

We include two simple relativistic effects in the calculation of particle velocities. The

first effect is the full relativistic expression for the doppler shift of the broad emission
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line due to the line of sight velocity of the emitting BLR gas. The second relativistic

effect is that of gravitational redshift, which is caused by a photon being emitted from

deeper in a gravitational potential well than the observer of the photon. The wavelength

shift caused by gravitational redshift depends upon the ratio of the Schwarzschild radius,

Rs = 2GM/c2, to the radial distance of the emitting source. Together, the full relativistic

expression for doppler shift and the expression for gravitational redshift act to shift the

emitted wavelength λemit of line emission from a particle to the observed wavelength λobs

given by:

λobs = λemit

√
1+ v

c

1− v
c√

1− Rs

r

(4.18)

where the particle has velocity v and radial distance from the black hole r. Since we

compare our model broad emission line spectra to the data in wavelength space, we can

include the relativistic doppler shift and gravitational redshift in the simulated data by

converting the simulated data from velocity to wavelength space using Equation 4.18.

Narrow line emission

In addition to a model of the broad emission line, we must also consider the su-

perimposed narrow emission line from the narrow line region (NLR). Since the NLR is

farther from the black hole, the narrow emission line is not expected to reverberate on

timescales as short as those for the BLR (e.g. Peterson et al. 2013). We therefore assume

that the narrow emission line flux is constant over the duration of a reverberation map-

ping dataset. We model the narrow emission line component using a Gaussian with line

dispersion given by another more isolated narrow emission line profile. For example, to

model the narrow component of the Hβ emission line we use the line dispersion of the nar-
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row [O iii]λ5007 emission line, just red-ward of Hβ. Since the width of [O iii]λ5007 in a

given reverberation mapping dataset is due to both intrinsic line width and instrumental

resolution, we use measurements of the intrinsic line width to calculate the instrumental

resolution, which is needed to smooth the model spectra. Differences in observing condi-

tions can also change the instrumental resolution as a function of time, so we calculate

the line dispersion of the narrow [O iii]λ5007 line for each spectrum individually and

include the measurements of the line dispersion as free parameters with Gaussian priors

given by the line width measurement uncertainties. The intrinsic narrow line width of

[O iii]λ5007 is also treated as a free parameter with a Gaussian prior given by the line

width measurement uncertainties. For objects where the NLR is not resolved and thus

there is no intrinsic line width to the narrow line profile, the width of the narrow emis-

sion line directly gives a measurement of the instrumental resolution. Since subtracting

narrow emission lines from broad emission lines can introduce significant uncertainty into

the spectrum, we model spectra that have not had the narrow emission line subtracted

and we include the total flux of the narrow line as an additional free parameter to be

constrained by the data.

4.1.6 Exploring parameter space

Once our model of the BLR has been defined, we can explore this high-dimensional

parameter space to constrain which parameter values best fit a specific reverberation

mapping dataset by measuring the posterior PDFs and correlations between parameters.

The full list of all parameters in our BLR model is given in Table 4.1 along with all of the
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Table 4.1: BLR model parameters and their prior probability distributions. Equation
numbers refer to the first equation in which the parameter is used and section numbers
refer to those subsections where the parameter is defined. ∆tdata is the time span between
the first and last data point in the reverberation mapping dataset. The prior is designated
by the scale in which a parameter is sampled uniformly and by the range (minimum value,
maximum value). Uniform(0, 1) denotes a uniform prior distribution between 0 and 1.
LogUniform(1, 100) denotes a uniform prior for the log of the parameter, or alternatively,
a prior density p(x) ∝ 1/x, between the parameter values 1 and 100. A log-uniform prior
is used for positive parameters whose order of magnitude is unknown.

Parameter Definition Prior
µ Mean radius of the BLR LogUniform(1.02× 10−3,

radial profile Eq. 5.3 ∆tdata light days)
β Unit standard deviation Uniform(0, 2)

of BLR radial profile Eq. 5.4
F Beginning radius in units of Uniform(0, 1)

µ of BLR radial profile Eq. 5.5
θi Inclination angle § 4.1.4 Uniform(cos θi(0, π/2))
θo Opening angle § 4.1.4 Uniform(0, π/2)
κ Cosine illumination function Uniform(−0.5, 0.5)

parameter Eq. 5.6
γ Disk edge illumination Uniform(1, 5)

parameter Eq. 5.7
ξ Plane transparency fraction § 4.1.4 Uniform(0, 1)

MBH Black hole mass Eq. 4.15 LogUniform(2.78× 104,
1.67× 109M�)

fellip Fraction of elliptical orbits § 4.1.5 Uniform(0, 1)
fflow Flag determining inflowing Uniform(0, 1)

or outflowing orbits § 4.1.5
σρ, circ Radial standard deviation LogUniform(0.001, 0.1)

around circular orbits § 4.1.5
σΘ, circ Angular standard deviation LogUniform(0.001, 1.0)

around circular orbits § 4.1.5
σρ, radial Radial standard deviation LogUniform(0.001, 0.1)

around radial orbits § 4.1.5
σΘ, radial Angular standard deviation LogUniform(0.001, 1.0)

around radial orbits § 4.1.5
σturb Standard deviation of turbulent LogUniform(0.001, 0.1)

velocities § 4.1.5
θe Angle in the vφ − vr plane § 4.1.5 Uniform(0, π/2)
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Figure 4.3: A probabilistic graphical model of the parameters and their influence on
simulated reverberation data created by the BLR model. Each unshaded node represents
a parameter (e.g. MBH) or continuum hyperparameter (e.g. θcont) in the model and each
shaded node represents a data value (e.g. Dij). Arrays of parameters are represented with
a box, which can be thought of as a for loop. The arrows represent dependence between
two nodes, where the arrow between MBH and xi corresponds to a weak dependency
due to the minimum BLR radius being set by the Schwarzschild radius. The geometry
model parameters, which determine the positions of the particles xi, include κ and θpos, a
vector of the remaining geometry model parameters given in Table 4.1: µ, β, F , θi, θo, γ,
and ξ. The dynamics model parameters, which determine the velocities of the particles
vij, include MBH and θvel, a vector of the remaining dynamics model parameters given
in Table 4.1: fellip, fflow, σρ, circ, σΘ, circ, σρ, radial, σΘ, radial, σturb, and θe. The continuum
hyperparameters in vector θcont include µcont, σcont, τcont, and αcont. This figure was made
using daft-pgm.org.
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random numbers used to assign the point particle positions and velocities in Section 5.2.

A probalistic graphical model (PGM) of the interdependence of the parameters is shown

in Figure 4.3. One way to interpret Figure 4.3 is as a recipe for making simulated

reverberation mapping data:

1. Generate a model continuum light curve using Gaussian processes and then

2. sample it to create a realistic continuum light curve.

3. Use BLR geometry and dynamics parameters to generate the positions and veloci-

ties of all the particles in the BLR.

4. Finally, use those positions and velocities along with the model continuum light

curve to make a simulated time series of broad emission line spectra or integrated

broad line fluxes.

As described in Section 4.1.2, we can explore high-dimensional parameter spaces using

an MCMC algorithm. We use the diffusive nested sampling code DNest (Brewer et al.

2011b) due to its ability to explore correlations between parameters efficiently in high

dimensional spaces, and because it calculates the Bayesian evidence and thus allows for

model selection. DNest works by using multiple walkers to explore parameter space,

starting from the prior and gradually adding hard likelihood constraints.

One of the inherent difficulties of fitting real data with a simplified model is that the

model is unlikely to match the data perfectly, especially if the error bars on the data

are very small. In practice, one often obtains unrealistically precise inferences of the

model parameters because the model contains simplifications. However we still expect
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the model to capture the main features of the structure of the BLR. We account for

the systematic uncertainty from using a simple model by inflating the errorbars of the

data until only the macroscopic fluctuations in the data are fit by the model. Since we

use a Gaussian likelihood function, as discussed in Section 4.1.2, we can rephrase the

inflation of errorbars as an increased weighting of the prior probability compared to the

likelihood when calculating the posterior probability. The weighting term is called a

“temperature” T , such that log(posterior) ∝ log(prior) + log(likelihood)/T and hence

the inflated errorbars are
√
T larger than the original errorbars for a Gaussian likelihood

function. Generally higher quality datasets require larger values of T . Another advantage

of using nested sampling for the computation is that we can vary the temperature and

check the sensitivity of the results without having to repeat the MCMC run.

4.1.7 Limitations of the model and future improvements

Finally, we discuss some of the limitations of our model of the BLR and discuss

improvements to be made in the future. One of the main limitations of our model is the

simplified dynamics of the point particles. We ignore the effects of radiation pressure, a

force that has a 1/r2 dependence like gravity, making it difficult to disentangle from the

black hole mass. Unfortunately, this degeneracy of radiation pressure with black hole

mass means that black hole masses could be significantly underestimated, and that the

degeneracy can only be broken by including external information about the BLR gas

density in the model (Marconi et al. 2008, 2009; Netzer 2009; Netzer & Marziani 2010).

We also ignore the self-gravity and viscosity of the BLR gas and any interaction it has
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with the gas in the accretion disk. Finally, we assume that the gas in elliptical orbits is

the same gas that could be inflowing or outflowing, when in reality the BLR could have

multiple components with different geometries and dynamics.

Another limitation to our model of the BLR is the simplified treatment of radiative

transfer, both for the ionizing and broad line photons. We ignore any asymmetry of

the ionizing photons except for an optional preference for photons away from the BLR

midplane. We also ignore detailed radiative transfer of line photons within the BLR gas,

both locally and globally. While we have included two additional obscuration effects in

this new version of the BLR model, transparency of the disk midplane to line photons

(ξ) and asymmetry of the ionizing photons away from the disk midplane (γ), these are

simplifications of what is most likely an inherently complicated problem.

Some of these limitations can be at least partially solved in future models of the

BLR. For example, CLOUDY models constrain the direction in which line photons are

emitted from individual clouds of BLR gas, as well as the emissivity and responsivity of

line emission as a function of radius (e.g. Ferland et al. 1998, 2013). Using a table of

pre-computed values from CLOUDY would not only provide a more physically-detailed

local opacity to our model, but would also constrain the radial distribution of broad line

emitting gas. By modeling the BLR using multiple broad emission lines simultaneously,

we can also start to place constraints on the underlying distribution of gas density.

Recently Li et al. (2013) developed an independent code to model reverberation map-

ping data using a geometry model of the BLR based on the model of Pancoast et al.

(2011). They include additional flexibility in their model by allowing for non-linear re-

sponse of the broad emission lines to incident continuum radiation. While the average
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emission line response of their sample is close to linear, they find that individual AGNs

can have non-linear response, suggesting that this effect may be important to include in

future implementations of our modeling code.

Another improvement that could be made to our model is better treatment of the

dynamics. One option could be to include separate geometries for each dynamical com-

ponent, for example a thin disk of gas in elliptical orbits with a cone of outflowing gas.

We could also improve our treatment of outflows to include the detailed dynamics found

in simulations of disk winds or complex models of outflows. For example, instead of as-

suming that outflowing gas has mainly radial trajectories at or near the escape velocity

of its present position, we could consider the more complicated case where the gas is

accelerated to velocities on the order of the escape velocity and where the escape velocity

is defined at an initial wind launching radius instead of the current position of the gas

(e.g. Castor et al. 1975; Proga 1999).

Finally, breathing of the BLR may play an important role in determining the response

of emission line flux as a function of time (see Korista & Goad 2004, and references

therein). Breathing of the BLR is where BLR emission comes from gas farther from or

closer to the central engine based on increases or decreases in the ionizing luminosity,

respectively. If the mean radius of the BLR changes substantially over the course of a

reverberation mapping campaign, then this could have a noticeable effect on the measured

time lag and the results from direct modeling analysis.
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Figure 4.4: Simulated spectral time series 1 (top row) and 2 (bottom row). First (left-
most) column shows the integrated line light curve in green and the continuum light
curve in blue. Second column shows the spectral time series over the wavelength range
of the emission line as a function of time series epoch. Third column shows the transfer
function as a function of time lag and wavelength. Fourth and fifth columns show the
edge-on and face-on views, respectively, of the BLR geometries for each simulated dataset
(the observer views the origin from the positive x-axis).

4.2 Tests with simulated data and Arp 151

We demonstrate the capabilities of our improved model of the BLR and direct mod-

eling code by recovering the model parameters for two simulated reverberation mapping

datasets. By modeling the time series of emission line profiles using a geometry and

dynamical model of the BLR as well as modeling the integrated emission line light curve

using a geometry model of the BLR, we illustrate the benefits of a full spectroscopic

dataset.

4.2.1 The simulated datasets

In order to generate realistic simulated reverberation mapping datasets, we use the

LAMP 2008 dataset of Hβ emission for Arp 151 (Walsh et al. 2009; Bentz et al. 2009b) to
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Table 4.2: Geometry and dynamics true parameter values of simulated spectral datasets
and inferred geometry and dynamics posterior median parameter values and 68% confi-
dence intervals. The columns with (True) give the true parameter values for the simu-
lated datasets and the columns with (Inf) give the inferred parameter values and their
uncertainties. True parameter values with – are unimportant for that specific simulated
dataset.

Geometry Model Simulated Simulated Simulated Simulated
Parameter Data 1 (True) Data 1 (Inf) Data 2 (True) Data 2 (Inf)

rmean (light days) 4.0 4.19+0.21
−0.21 4.0 3.54+0.44

−0.35

rmin (light days) 1.0 0.85+0.18
−0.26 1.0 0.89+0.22

−0.19

σr (light days) 3.0 3.23+0.30
−0.25 2.4 2.39+0.40

−0.24

τmean (days) 3.62 3.59+0.15
−0.15 3.39 3.30+0.18

−0.15

β 1.0 0.97+0.09
−0.09 0.8 0.92+0.09

−0.11

θo (degrees) 40 49.0+8.4
−7.6 30 27.3+11.0

−8.6

θi (degrees) 20 20.2+2.7
−3.3 20 22.8+10.0

−6.7

κ −0.4 −0.31+0.09
−0.09 −0.4 −0.16+0.31

−0.24

γ 5.0 2.73+1.29
−1.19 5.0 3.50+1.02

−1.86

ξ 0.3 0.31+0.10
−0.08 0.1 0.53+0.37

−0.32

Dynamical Model Simulated Simulated Simulated Simulated
Parameter Data 1 (True) Data 1 (Inf) Data 2 (True) Data 2 (Inf)

log10(MBH/M�) 6.5 6.42+0.06
−0.05 6.5 6.48+0.08

−0.26

fellip 0.0 0.07+0.05
−0.04 1.0 0.84+0.12

−0.50

fflow 0.0 0.25+0.18
−0.17 – 0.32+0.28

−0.22

θe (degrees) 0.0 7.9+7.1
−5.0 – 70.2+16.7

−38.6

σturb 0.0 0.024+0.055
−0.021 0.0 0.009+0.026

−0.007
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determine the sampling cadence, flux errors, instrumental smoothing, and approximate

scale of the BLR. The Arp 151 dataset includes a B-band continuum light curve and a time

series of Hβ emission line profiles, where the broad and narrow Hβ flux is isolated from

the spectrum using spectral decomposition techniques as described by Park et al. (2012b).

As described in Section 4.1.6, the simulated datasets are created by first generating a

model of the Arp 151 continuum light curve using Gaussian processes and sampling

that model continuum light curve with the same cadence as for Arp 151. We then add

Gaussian noise to the continuum light curve using the error vector of the Arp 151 light

curve. Next we set fixed the BLR geometry and dynamics model parameters to the

values found in Table 4.2 and sample the Hβ emission line profile at the times given

by the Arp 151 spectral dataset. Finally, we add Gaussian noise to the model spectra

based on the spectral errors in the Arp 151 dataset. In order to account for the fact

that real reverberation mapping datasets are likely more complicated than our model

of the BLR assumes, we inflate the spectral errors and added Gaussian noise on the

simulated dataset by a factor of three compared to the Arp 151 dataset, to obtain more

realistic uncertainties on the inferred model parameters. To reduce numerical noise in

the simulated spectra to less than the uncertainty in the spectral fluxes, we use 2000

particles and assign each one ten independent velocity values. The width of the narrow

line component of Hβ is modeled using the line dispersion of the narrow [O iii]λ5007

emission line from the Arp 151 dataset, calculated for each epoch of spectroscopy. The

instrumental resolution is then measured by comparing the measured line dispersion for

[O iii]λ5007 with its intrinsic line width as calculated by Whittle (1992).

The simulated datasets are based on the geometry and dynamics inferred for the
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LAMP 2008 dataset in Chapter 5 as shown in Table 4.2, with small mean radii for the

BLR of 4 light days, close to exponential radial profiles with β ∼ 1, substantial width

to the BLR of ∼ 2 − 3 light days, thick disks with opening angles of 30 − 40 degrees,

close to face-on inclination angles of 20 degrees, preferential emission from the far side

of the BLR (κ = −0.4) and the edges of the disk (γ = 5), and mostly opaque mid-planes

(ξ = 0.1− 0.3). The black hole masses are also chosen to be similar to the LAMP 2008

sample with MBH = 106.5M� and each of the simulated datasets is dominated by either

elliptical orbits or inflowing orbits. The differences between the simulated datasets can

also be easily seen in Figure 4.4, which shows not only the continuum, line, and spectral

timeseries, but also the transfer functions and geometries of the BLR. The simulated

spectral datasets consist of the following:

1. A thick, wide disk with an exponential profile and dynamics dominated by inflowing

orbits.

2. A thinner, narrower disk, with a radial profile between a Gaussian and exponential

and dynamics dominated by elliptical orbits.

The continuum light curve interpolation using Gaussian processes is also held constant

for all three simulated datasets, although the random noise added to each realistically

sampled continuum light curve is different.

While not an issue for simulated emission line profiles, real reverberation mapping

data must contend with ambiguity in multiple spectral components overlying the broad

emission line profile. For example, with Hβ we not only have possible overlap of the red

wing with the narrow [O iii] emission lines and the blue wing with He ii, but there may
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also be substantial overlap with Fe ii broad line emission. Blending between multiple

broad components is especially important to disentangle because the different broad

emission lines will be generated in BLR gas at different radii from the black hole and

blending could confuse the dynamical modeling results. In order to isolate any single

broad emission line profile, it is necessary to apply a method of spectral decomposition

that will remove most of the ambiguity in overlapping spectral components.

4.2.2 Recovery of model parameters: spectral datasets

As a first test of our direct modeling code and BLR model, we attempt to recover the

true parameter values of the two simulated spectral datasets described in Section 4.2.1.

We assume the same instrumental resolutions as a function of time that are used to

generate the simulated datasets and use 2000 particles and assign ten independent ve-

locities to each one. Since we add Gaussian noise to the simulated datasets, we do not

expect to recover every parameter of the BLR exactly. In addition, certain BLR geome-

tries and dynamics make it difficult to constrain certain parameters. For example, when

the majority of particles are in elliptical orbits, the fraction of particles in inflowing or

outflowing orbits may not be well constrained. Or, a nearly face-on very thin disk will

make it difficult to constrain the parameters κ, γ, and ξ since these parameters affect the

relative line emission throughout the height of the very thin disk in this case.

The inferred posterior PDFs for the BLR geometry and dynamics model parameters

are shown in Figures 4.5 and 4.6 for simulated datasets 1 and 2, respectively. The true

parameter values for the simulated datasets are shown by vertical red dashed lines for
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Figure 4.5: Inferred model parameters for simulated spectral dataset 1. The true param-
eter values are given by the vertical dashed red lines for those cases where the true value
affects the shape of the simulated spectral dataset.
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Figure 4.6: The same as Figure 4.5 for simulated spectral dataset 2.
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Figure 4.7: Marginal posterior PDFs and correlations between parameters for simulated
dataset 2, including the fraction of elliptical orbits (fellip), the flag determining inflowing
or outflowing orbits (fflow), and the angle in the vφ − vr plane (θe).
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comparison, and in the cases where the true parameter value does not matter (e.g. when

the dynamics are entirely dominated by elliptical orbits so there is no true value of fflow)

no red line is given. Overall, the modeling code is able to recover the true parameter

values to within reasonable uncertainties, as listed in Table 4.2. Specifically, we constrain

the mean radius of the BLR to within 0.5 light days uncertainty, the mean time lag to

within 0.2 days uncertainty, and the inclination and opening angles to within ∼ 10

degrees. The geometry parameters that add asymmetry to the BLR are more difficult to

constrain, with κ and ξ well constrained for simulated dataset 1 while neither κ, γ, nor

ξ are well-determined for simulated dataset 2.

We also constrain log10(MBH/M�) to 0.05 − 0.25 dex uncertainty, where the varia-

tion comes mainly from larger correlated uncertainties with the inclination and opening

angles for simulated dataset 2. The dynamics are also well-recovered for both simulated

datasets, with a clear preference for inflow in simulated dataset 1 and for elliptical or-

bits centered around the circular orbit values in simulated dataset 2. A clearer picture

of the preference for elliptical orbits for simulated dataset 2 can be seen in Figure 4.7,

which shows the correlations between fellip, fflow, and θe. Specifically, for values of θe

approaching 90 degrees, the distribution of inflowing or outflowing orbits becomes iden-

tical to the distribution for elliptical orbits centered around the circular orbit value in

the vφ − vr plane. This means that when θe ∼ 90 degrees, although fellip and fflow are

mostly unconstrained, the velocity distribution for the particles is very similar to that of

fellip ∼ 1.

In general, these two simulated spectral datasets show that we can expect to obtain

substantial constraints on the geometry and dynamics of the BLR for reverberation
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mapping datasets similar in quality to LAMP 2008. The potential constraints on the

black hole mass are also promising, although they depend upon the geometry of the

BLR, specifically the precision with which we can measure the inclination and opening

angles.

4.2.3 Recovery of model parameters: integrated line datasets

For those cases where a full spectroscopic reverberation mapping dataset is not avail-

able, we can apply a geometry-only model of the BLR and reproduce integrated emission

line flux light curves. We test whether this approach provides constraints on the ge-

ometry of the BLR that are comparable to the full geometry plus dynamical modeling

problem using the simulated datasets described in Section 4.2.1 and shown in the left

panel of Figure 4.4.

We find that the mean time lag and mean radius are well constrained with geometry-

only modeling. The mean and median time lag inferred for each simulated dataset

are given in Table 4.3, along with the true mean and median lag values and the value

measured by CCF analysis. The inferred mean time lag is not only accurate, but the

inferred uncertainty in the mean time lag through geometry-only modeling of ∼ 0.25 days

is almost half as large as for the CCF time lag. This shows that geometry-only modeling

is a promising tool for measuring time lags. The mean radius is inferred with slightly

larger uncertainties to be 3.58+1.18
−0.97 light days for simulated dataset 1 and 2.90+0.97

−0.24 for

simulated dataset 2, while the true mean radius is 4 light days.

Unfortunately the other geometry model parameters are not as well constrained. The
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Table 4.3: Comparison of BLR geometry modeling, JAVELIN, and CCF lag measure-
ments. τmean and τmedian are the mean and median time lags inferred from BLR geometry
modeling, τJAVELIN is the time lag measured by JAVELIN, and τcen is the center-of-mass
lag measured from the CCF.

Lag (days) Sim Data 1 Sim Data 2
True mean lag 3.62 3.39

True median lag 2.56 2.77
τmean 3.36+0.20

−0.15 3.29+0.23
−0.17

τmedian 2.61+0.25
−0.21 3.10+0.17

−0.18

τJAVELIN 2.94+0.13
−0.12 3.21+0.13

−0.14

τcen 3.70+0.50
−0.48 3.62+0.56

−0.40

parameters γ and ξ are completely unconstrained for both of the simulated datasets, and

θo, θi, β, F , and κ are mostly unconstrained. Generally there is a slight preference for

a specific value of θo, θi, β, F , and κ, but none or almost none of the parameter space

is ruled out. These results for geometry-only modeling suggest that a full spectroscopic

reverberation mapping dataset is needed to constrain the geometry of the BLR, since

otherwise there are too many degeneracies between model parameters to infer anything

other than the mean time lag and mean radius consistently.

4.2.4 Comparison with JAVELIN

Recently another method has been developed for measuring the time lag in rever-

beration mapping data using integrated emission line light curves by Zu et al. (2011).

This method has been implemented in an open-source code called JAVELIN written in

Python.2 JAVELIN works by using a top-hat transfer function with two parameters, a

mean lag and a width of the top hat. The continuum light curve in JAVELN is interpo-

lated using a CAR(1) model, which is equivalent to the continuum model implemented

2Download JAVELIN here: https://bitbucket.org/nye17/javelin
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here. The parameter space of the continuum light curve and transfer function models is

sampled using MCMC, providing posterior PDFs for the model parameter values.

We can compare recovery of the time lag using BLR geometry modeling of integrated

emission line light curves to the results from JAVELIN. For simulated dataset 1, we

measure a mean lag of τJAVELIN = 2.94+0.13
−0.12 days and a mean width of the top-hat

transfer function of w = 7.33+0.26
−0.30 days using JAVELIN. This can be compared to the

true mean lag of 3.62 days and the true median lag of 2.56 days for simulated dataset 1

to see that the mean lag measured by JAVELIN is between the true mean and median

lags. For simulated dataset 2, we measure τJAVELIN = 3.21+0.13
−0.14 days and w = 5.26+0.82

−0.63

days. Again, the mean lag measured by JAVELIN is between the true mean lag of 3.39

days and the true median time lag of 2.77 days, although closer to the mean lag. The

tendency for the time lag measured by JAVELIN to fall closer to the true mean or median

lag is due to the shape of the transfer function; in very asymmetric transfer functions,

the mean and median time lag are increasingly discrepant, with JAVELIN more sensitive

to the true median time lag for very asymmetric transfer functions.

While the tendency of JAVELIN to measure a time lag ranging between the true

mean and median time lags may appear to complicate its interpretation, an uncertainty

of ∼ 1 day from the difference between the true mean and median lags is comparable to

the uncertainty introduced by additional assumptions, as discussed in Section 4.3, when

using time lag measurements to estimate the mean radius of the BLR or to measure

the black hole mass. These comparisons suggests that JAVELIN is a excellent resource

for measuring the time lag even if the JAVELIN lag uncertainties do not reflect the

uncertainty introduced by asymmetric transfer functions. However, to constrain more

104



than the time lag, more flexible modeling of the transfer function must be done.

In comparison, the CCF lag measurements for the two simulated datasets agree with

the true mean lag values due to larger uncertainties. The CCF lag measurements do not

agree more closely with the true median lag values than with the true mean lag values

for more asymmetric transfer functions, as for JAVELIN lags. The quoted error bars

on the CCF lag values, τcen, in Table 4.3 are calculated by drawing a random subset of

the line and continuum light curves points, with the same number of random draws as

the original light curves. For points in the light curves that are drawn N times, the flux

error is reduced by
√
N . Finally, the randomly drawn light curve fluxes are modified

by adding random Gaussian noise given by the flux errors. This is similar to the “flux

randomization”/“random subset selection” (FR/RSS) approach described in Peterson

et al. (1998) except the FR/RSS approach throws out any redundant points in the light

curve instead of reducing the flux errors by
√
N , resulting in slightly larger uncertainties

in the CCF lag. The CCF time lag is measured for 1000 iterations of this sequence and

we quote the median and 68% confidence intervals of the CCF time lag distributions.

For the two simulated datasets tested here with data quality comparable to the LAMP

2008 dataset for Arp 151 (Bentz et al. 2009b), the error bars are ∼ 0.5 days, or ∼ 14%

the value of τcen. This comparison suggests that while CCF analysis may not give the

most precise measurement of the mean or median time lag, the CCF lag uncertainties

likely include much of the systematic uncertainties from an unknown transfer function.

Finally, we also consider the effects of detrending the light curves before calculating

the CCF lag. Detrending can improve the shape of the CCF when there are strong long-

term trends that can be removed by subtracting a linear fit to the light curves (Welsh
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1999). Since our simulated data do not contain strong long-term trends, detrending the

light curves should have minimal impact on the measured CCF lags. We confirm this by

subtracting a linear fit to the simulated continuum light curves from both the continuum

and line light curves. Due to the difference in length between the continuum and line light

curves, fitting the continuum and line light curves with linear fits separately destroys the

correlation between the light curves. When we use a linear fit to the continuum light

curve to detrend both light curves we obtain CCF lag measurements for simulated dataset

1 of τcen = 3.37+0.48
−0.37 days and for simulated dataset 2 of τcen = 3.38+0.47

−0.37 days, which agree

to within the uncertainties with the un-detrended CCF lag values.

4.2.5 Dynamical modeling without a full spectral dataset

As shown in Section 4.2.3, a spectroscopic dataset offers substantially more informa-

tion about the BLR for direct modeling. Here we explore an intermediate case, where

the available data consist of the usual continuum light curve, an integrated emission line

light curve, and a mean spectrum. Since the mean spectrum contains some information

about the kinematics of the BLR, we can model this dataset using the fully dynamical

model of the BLR. However, with only the mean spectrum, this dataset cannot constrain

the time lag as a function of velocity or wavelength, as possible for a full spectroscopic

dataset.

In order to provide a test of this intermediate dataset case that is as realistic as

possible, we use the LAMP 2008 dataset for Arp 151. A description of the dataset can

be found in Chapter 5. In the analysis of this test, we focus on the differences in inferred
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parameter values between this test and the full dynamical modeling results presented in

Chapter 5. In general, the modeling results for the full spectroscopic dataset and for

the intermediate dataset are fully consistent, but the uncertainty on the inferred model

parameter values is much larger for the intermediate dataset. For example, the black

hole mass is inferred to have a posterior PDF with a long tail at high masses, giving

log10(MBH/M�) = 6.74+0.66
−0.13 compared to the value from Chapter 5 of log10(MBH/M�) =

6.62+0.10
−0.13. Similarly, the uncertainty in θi, θo, and κ is larger by at least a factor of 3, the

uncertainty in ξ is larger by at least a factor of two, and γ is completely undetermined

for the intermediate dataset. The two marginally consistent results are the mean radius

and mean lag, which are both substantially larger for the intermediate dataset and have

uncertainties at least 10 times larger than for the full spectroscopic dataset. This is due

to a preference for β → 2, corresponding to heavy-tailed radial distributions where the

median radius and median lag are more consistent measurements of the characteristic

size of the BLR. Overall, this test suggests that considerable information about the BLR

can be inferred from the mean line profile, but the constraints on BLR geometry and

dynamics parameters are significantly better when the full spectroscopic dataset is used.

Finally, while this intermediate dataset allows for measurement of the black hole mass,

it cannot be constrained to less than the ∼ 0.4 dex scatter in the f factor due to a tail

in the posterior PDF at high masses.
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4.3 Comparison with cross-correlation analysis

We can compare the results of direct modeling to the standard reverberation mapping

analysis of using the cross-correlation function (CCF) to measure time lags and the

dispersion or FWHM of the broad emission line to measure a characteristic velocity

of the BLR. In addition to providing a sanity check on our direct modeling results,

such a comparison allows us to explore some of the uncertainties involved in standard

reverberation mapping analysis. First, we consider the time lag traditionally measured

using the CCF, how it compares to a measurement of the mean radius and how sampling

of the line light curve and variability of the continuum light curve affect its measurement.

Second, we consider the combination of the CCF lag with measurements of the emission

line width to explore the uncertainty in black hole masses measured using the virial

product.

4.3.1 Comparing the time lag and mean radius

One of the main assumptions in the traditional analysis is that the time lag measured

from CCF analysis is related to some characteristic radius of the BLR. We explore the

validity of this assumption by comparing the mean radius and the mean time lag in our

geometry model of the BLR. We hold the mean radius fixed at µ = 4 light days and allow

the other geometry model parameter values to sample their priors as listed in Table 4.1,

with the exception of the inclination angle, which we constrain to vary between zero

(face-on) and 45 degrees. The results of this comparison are shown in Figure 4.8 for

200,000 samples. The difference between the mean radius, rmean, and the mean lag, τ , is
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Figure 4.8: Difference between the mean radius and mean lag for BLR models drawn
randomly from the prior with µ = 4 light days. The distribution is asymmetric because
the parameter ξ, the BLR plane transparency fraction, only shortens the mean lag com-
pared to the mean radius, creating an excess of models where the mean radius is larger
than the mean lag.

generally greater than one, meaning that the mean lag (in days) is usually shorter than

the mean radius (in light days). This is due to the geometry parameter ξ that allows

the midplane of the BLR to be transparent or opaque, since a BLR midplane that is

not transparent will result in fewer particles with longer lags and hence a tendency for

the mean lag to be smaller than the mean radius. The mean of rmean − τ is 0.53 light

days and the standard deviation of the distribution is 0.80 light days. This suggests that

the uncertainty in using the time lag as a measurement of the mean radius is relatively

small, on the order of the CCF time lag uncertainty typically quoted for high-quality

reverberation mapping data of ∼ 1 day.
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Table 4.4: Geometry model parameter values of simulated emission line light curves used
in the comparison of direct modeling with the cross-correlation analysis approach. All
simulated datasets were created with a mean radius, µ, of 4 light days and with γ = 1.

Mock τmean θi θo κ β F ξ
Line (days) (deg) (deg)

1 3.69 10 25 -0.25 1.0 0.2 0.5
2 3.77 10 25 0.5 0.11 0.5 1
3 4.01 10 90 0.0 0.11 0.99 1
4 5.34 10 90 -0.5 0.11 0.99 1
5 4.00 0 0.5 0.0 0.11 0.99 1

Figure 4.9: Simulated integrated emission line datasets including the AGN continuum
light curve in solid blue and integrated Hβ line light curves in solid red, green, cyan,
black, and dashed red. The continuum light curve is based on the LAMP 2008 light
curve of Arp 151 (Walsh et al. 2009). The simulated Hβ line light curves correspond to
five different BLR geometries, as shown in Figure 4.10.
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Figure 4.10: Geometries of the BLR (left panels) and corresponding transfer functions
(right panels) of the simulated reverberation mapping datasets shown in Figure 4.9. Top
to bottom BLR geometries: face-on wide disk, face-on donut, spherical shell, spherical
shell with preferential emission from the back of the sphere, and a face-on thin ring.
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Figure 4.11: The CCF lag τcen as a function of the ratio of σnoise to the RMS variability
of the line light curve and versus the cadence as given by the sampling fraction of the
mean radius. Top to bottom: simulated line dataset 1, 2, 3, 4, and 5. The horizontal
blue lines show the true mean time lags for each simulated line dataset. The vertical
dotted lines show the values of the x-axis for which each cluster of points correspond,
where the clusters of points are spread out along the x-axis to show their spread. These
results are for the case where 3/4 of the epochs are not lost to weather.
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4.3.2 The effects of line light curve sampling

Next we explore the dependence of the measured CCF lag on the geometry of the

BLR and on the sampling characteristics of the emission line light curve. We focus on

four very simple BLR geometries and one more realistic one, as shown in Figure 4.10,

including

1. A nearly face-on wide disk with preferential emission from the far side and a disk

midplane that is more than half opaque.

2. A nearly face-on ring with preferential emission from the near side.

3. A spherical shell (making a top-hat transfer function).

4. A spherical shell with preferential emission from the far side.

5. A perfectly face-on thin ring (making a δ-function transfer function).

We use these five geometries of the BLR to create simulated emission line light curves,

as shown in Figure 4.9 using the same input continuum light curve and with very fine

sampling of 0.1 days for both the line and continuum light curves. The geometry model

parameter values are given in Table 4.4. In order to test how the quality of integrated

emission line light curves affects measurement of the CCF lag, we degraded the quality

of the simulated data by adding random Gaussian noise to the line light curve and by

reducing the sampling cadence. For each simulated dataset degraded by adding σnoise

of random Gaussian noise, by sampling the line light curve at some fraction of the true

mean radius of the BLR, and by losing a fraction of that sampled line light curve to

weather, we computed the CCF lags τcen and τpeak for 1000 realizations of assigning the
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random noise and losing a fraction of the light curve to weather. The simulated line light

curves were degraded by:

1. Reducing the sampling cadence to 1/10, 1/5, 1/3, or 1/2 of the true mean radius

value of the geometry model of 4 light days. This means that the highest cadence

is about half a day.

2. Adding random Gaussian noise, σnoise, at the level of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, or 1.0 times the RMS variability of the simulated line light curve.

3. Including only a fraction of the total number of line light curve data points randomly

from the light curve to simulate observations lost to weather. The fractions are 1,

3/4, 2/3, and 1/2.

Some illustrative results of this comparison are shown in Figure 4.11, with the lefthand

column showing the CCF lag τcen versus the ratio of σnoise over the RMS variability and

with the righthand column showing the CCF lag τcen versus the cadence as a sampling

fraction of rmean. Figure 4.11 shows the results for when 3/4 of the line light curve is

not lost to weather. The trend continues for larger fractions of the light curve lost to

weather: the uncertainties on the measured CCF lag τcen increase while the mean lag

measurement stays the same. For the case where no observations are lost to weather,

the error bars become comparable to the size of the points in Figure 4.11. Overall, these

results suggest that for different geometries of the BLR τcen can be offset from the true

lag value by as much as a quarter of a light day (for a true mean lag of ∼ 4 light days, see

Table 4.4 for the exact values), which is well within typical uncertainties on CCF time

lags quoted in the literature. For light curves with larger flux errors and lower cadence,
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Figure 4.12: Histogram of the CCF center-of-mass time lag τcen for 1000 random contin-
uum light curve model realizations. The true mean lag is 3.74 days. The vertical solid
red line denotes the median value of 3.33 days and the dotted vertical red lines give the
68% confidence interval around the median at 2.66 and 4.66 days.

this offset is easily within the error bars. In addition to a possible offset from the true lag

values, these results show the importance of sampling the light curve at smaller fractions

of the mean lag, even when the signal to noise quality of the light curve is high. As the

fraction of the light curve lost to weather increases, this effect becomes more important.

Detrending of the simulated light curves does not change these results.

4.3.3 The effects of continuum variability

In addition to light curve sampling effects, there is also the possibility that variability

features in the AGN continuum light curve could affect measurement of CCF lags. We

explore this source of uncertainty by generating 1000 random realizations of AGN con-

tinuum light curves, keeping the continuum hyper-parameters fixed to values similar to
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those inferred for Arp 151 and the BLR geometry model fixed to the values for simulated

integrated line dataset 1 given in Table 4.4. Given each realization of the AGN contin-

uum light curve and the fixed BLR geometry model, we generate an integrated emission

line light curve. We use the sampling cadence of the LAMP 2008 dataset for Arp 151,

described in Section 4.2.1, for each realization of the continuum and line light curves. We

then calculate the CCF center-of-mass lag τcen for each of the 1000 realizations, obtaining

successful CCF lag measurements for over 90% of the random continuum realizations.

The results are shown in Figure 4.12 as a histogram of τcen values, where we have

truncated the histogram to between zero and fifteen days for clarity. The median and

68% confidence interval for all measurements of τcen is 3.33+1.33
−0.67 days, and considering

only values of τcen between zero and fifteen days reduces the uncertainties by less than

0.1 days. Detrending of the simulated light curves results in a similar median value

for τcen of 3.23+0.97
−0.61 days. These inferred median values for τcen agree to within the

uncertainties with each other and the true value of the mean lag of 3.74 days. This test

demonstrates that the main consequence of continuum variability is to add additional

scatter to measurements of τcen on the order of ∼ 1 day, without shifting the median

measurement of τcen away from the true value.

4.3.4 Comparing the black hole mass and virial product

Other than the mean lag from CCF analysis, the black hole mass measured from the

virial product is the key measurement of reverberation mapping studies. However the use

of the virial product, Mvir = cτ∆v2/G, to measure black hole mass involves making many
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Figure 4.13: Distributions of f factor values for a fixed value of black hole mass and
mean radius, with the other BLR model parameters allowed to vary. fσ and fFWHM are
calculated using the CCF lag τcen and the line dispersion of the RMS emission line profile
or the FWHM of the mean emission line profile respectively. The top left panel shows
the correlation between fσ and fFWHM.
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assumptions, including that the mean lag is a good measure of the physical scale of the

BLR and that the width of the broad emission line is a good measure of the velocity field

of the BLR. We attempt to quantify the uncertainty introduced by these assumptions by

calculating the virial product from instances of our geometry and dynamics BLR model.

We hold the black hole mass fixed at M = 106.5M� and the mean radius fixed at µ = 4

light days while allowing all other geometry and dynamics model parameters to vary

within their prior bounds, except for the inclination angle, which is limited to within

zero (face-on) and 45 degrees. For each sample of a BLR model, we calculate the CCF

lag τcen, the line dispersion of the RMS emission line profile, and the full width at half

maximum (FWHM) of the mean line profile. Using these three values we can calculate

the virial product either using the line dispersion or FWHM line width measurement.

By further dividing the true black hole mass by the virial product we can work in terms

of the virial coefficient f , where fσ is calculated from the virial product using the line

dispersion and fFWHM is calculated from the virial product using the FWHM.

The results for the comparison of true black hole mass to virial product are shown in

Figure 4.13 for 1000 samples of the BLR model parameters (other than M and µ, which

are held fixed). The cadence of the continuum light curve and spectral time series were

based on the cadence of the LAMP 2008 dataset for Arp 151, as described by Bentz et al.

(2009b). The values of log10(fσ) and log10(fFWHM) are clearly correlated, but there is

significant scatter in the relation. More importantly, the dispersion in the f factors is

encouragingly small: the mean value of log10(fσ) is 0.43, with a standard deviation of

0.22, and the mean value of log10(fFWHM) is −0.39 with a standard deviation of 0.26,

where the dispersion in the f factors does not depend on whether the light curves have
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been detrended. This means that if the BLR is well described by our phenomenological

model, we should not be surprised that the MBH − σ∗ relation based on reverberation

mapping black hole mass measurements does not have much larger scatter than the

canonical ∼ 0.4 dex found for galaxies with dynamical mass measurements.

4.4 Conclusions

In this chapter we present an improved and expanded simply parameterized phe-

nomenological model of the BLR for direct modeling of reverberation mapping data. In

addition to describing the model in detail, we test the performance of the direct modeling

approach using simulated reverberation mapping datasets with and without full spectral

information. We also use this model of the BLR to explore sources of uncertainty in the

traditional cross-correlation analysis used to measure time lags in reverberation mapped

AGNs as well as sources of uncertainty in traditional measurements of the black hole

mass using the virial product. Our main conclusions are as follows:

1. For simulated data with the same properties as the LAMP 2008 spectroscopic

dataset for Arp 151, we can recover the black hole mass to within 0.05-0.25 dex

uncertainty and distinguish between elliptical orbits and inflow. We recover the

mean radius and mean lag with 5− 12% uncertainties and the opening angle of the

disk and inclination angle to within 5− 10 degrees.

2. For the same simulated datasets, but where integrated emission line fluxes are used

instead of the full spectroscopic information, we can use a BLR geometry model

to constrain the mean radius and mean lag with 5− 35% uncertainties and obtain
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only minimal constraints on the geometry of the BLR.

3. Using a combination of an integrated emission line light curve and a mean emis-

sion line profile for direct modeling allows for some constraints on the geometry

of the BLR, but with greater uncertainty than from using the full spectroscopic

dataset. The uncertainty in log10(MBH/M�) is also greater compared to using the

full spectroscopic dataset.

4. Comparison of BLR geometry modeling results to those from JAVELIN (Zu et al.

2011) and CCF analysis shows that JAVELIN recovers a time lag between the true

mean and median lag, while CCF analysis recovers a time lag closer to the true

mean lag. While the larger lag uncertainties from CCF analysis may reflect the

unknown shape of the transfer function, the lag uncertainties from JAVELIN are

smaller than the difference between the true mean and median time lag.

5. By considering the range in possible BLR geometries of our model, we estimate the

uncertainty in converting a mean lag into a mean radius to be ∼ 25%.

6. The CCF lag τcen can be offset from the true lag of a BLR model depending on

the geometry. Both signal-to-noise of the flux light curve and sampling rate affect

the dispersion in how far the CCF lag is relative to the true lag. Gaps in the light

curve due to weather also introduce more uncertainty in the CCF lag.

7. For a given BLR geometry, changes in the variability features of the AGN continuum

light curve introduces an uncertainty of ∼ 25% into measurements of the CCF lag

τcen.
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8. By considering the range in possible BLR geometries and dynamics of our model, we

estimate the uncertainty in measuring the black hole mass using the virial product

to be smaller than the spread in the MBH− σ∗ relation. We find that the standard

deviation of f = MBH/Mvir is only ∼ 0.25 dex, i.e. smaller than the uncertainty

typically quoted for virial mass estimates.

The tests presented here demonstrate the unique capabilities of dynamical modeling

of reverberation mapping data to constrain the geometric and kinematic properties of the

BLR. While we can use hybrid datasets consisting of integrated line flux measurements

and a mean emission line profile, considerably more information is available from model-

ing the reverberations across the emission line profile. The improvements we have made

to this simply parameterized phenomenological model of the BLR have increased the

flexibility of the method to fit a wider variety of emission line profiles. Future improve-

ments will add a deeper connection to photoionization physics, relating the distribution

of broad line emission to the distribution of underlying gas, and explore the effects of

non-gravitational forces, important for inferring the correct black hole mass.

These tests also confirm that the uncertainties inherent in the traditional analysis of

measuring lags using the cross-correlation function and black hole masses using the virial

product are relatively small, although larger than the formal uncertainties. The simplified

problem of modeling integrated emission line light curves using a geometry-only model

for the BLR presents an alternative approach for measuring time lags and mean radii of

the BLR compared to the traditional analysis. One advantage to measuring time lags

and mean radii with geometry modeling of the BLR is that the final uncertainties reflect
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the unknown underlying transfer function.

4.5 Appendix: Comparison of dynamics model to

previous work

In previous versions of our geometric and dynamical model of the BLR, we used a less

general dynamical model in which point particle velocities were drawn from distributions

of energy E and angular momentum L centered around the circular orbit energy and

angular momentum values Ecirc and Lcirc (e.g. Pancoast et al. 2011; Brewer et al. 2011a;

Pancoast et al. 2012). We can solve for Ecirc by evaluating Equation 4.15 when vr = 0

and vφ = vcirc:

Ecirc = −1

2

GM

r
. (4.19)

Similarly, we can solve Equation 4.15 for L, setting vr = 0 and plugging in Ecirc to find

an expression for the angular momentum of a particle in a circular orbit:

Lcirc =
√
rGM. (4.20)

This previous E/L model incorporated inflow and outflow in the BLR gas through the

fraction of elliptical orbits with positive or negative radial velocity component solutions.

The inflowing and outflowing gas in the E/L model is thus always bound to the black

hole.

For comparison to the current more general dynamical model in Figure 4.14, we

show the distributions of energy and angular momentum in the vr − vφ plane for direct

comparison with Figure 4.2. The radial and tangential velocity distributions for the
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E/L model are centered around the red dashed ring of radius vcirc and constrained to lie

within the solid red circle, corresponding to orbits that are bound to the black hole. The

velocity at which a particle becomes unbound is given by setting E = 0 and solving for

|v| =
√
v2
r + v2

φ =
√

2GM/r, which is
√

2vcirc. Unfortunately, while the distributions of

E and L are centered around their circular orbit values, the chance of having a particle

draw a close to circular orbit is vanishingly small, as shown by the lack of points in

Figure 4.14 at (vr, vφ) = (0, vcirc). This suggests a better way of including the circular

orbit solution: draw point particle velocities directly from distributions in radial and

tangential velocity space instead of in E and L space.
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Figure 4.14: Distributions of radial and tangential velocities, vr and vφ for the previous
E/L model. Blue points are particle velocities drawn from distributions in energy and
angular momentum centered around the point for circular orbits (vr, vφ) = (0, vcirc).
Outflow corresponds to positive vr. The outer solid red circle at a radius of |v| =√

2GM/r denotes the velocity beyond which orbits are unbound. The red dashed circle

at a radius of |v| =
√
GM/r denotes velocities with magnitude of the circular velocity

and the circle around which bound elliptical orbits were distributed in the E/L model.
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Chapter 5

Modeling the broad line region IV: Application to

LAMP 2008

This chapter was published as Pancoast, A.; Brewer, B. J.; Treu, T.; Park, D.; Barth,

A. J.; Bentz, M. C.; Woo, J.-H. “Modeling reverberation mapping data II: dynamical

modeling of the Lick AGN Monitoring Project 2008 dataset”, Monthly Notices of the

Royal Astronomical Society, 445, 3073 (2014) and is included here with minor formatting

adjustments.

In this chapter we apply the direct modeling method to the Lick AGN Monitoring

Project (LAMP) 2008 reverberation mapping dataset (Walsh et al. 2009; Bentz et al.

2009b).1 The LAMP 2008 campaign observed 13 AGNs using spectroscopy from the

Shane Telescope at Lick Observatory and Johnson V and B broad-band photometry

from a number of ground-based telescopes. We focused our direct modeling on the

Hβ line of the 9 objects with measurable time lags, using the broad and narrow Hβ

emission line components isolated from the stellar continuum and Fe ii lines using spectral

decomposition techniques by Park et al. (2012b). Out of the 9 objects to which we

1The LAMP 2008 spectroscopic dataset is available for download here:
http://www.physics.uci.edu/∼barth/lamp.html
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applied our direct modeling method, only 5 objects showed sufficient continuum and line

variability to allow for constraints on the geometry and dynamics of the BLR. Of the five

objects with successful direct modeling of the Hβ line presented here, one of the objects,

Arp 151, has previous direct modeling results as described by Brewer et al. (2011a).

There are two main differences between the direct modeling of Brewer et al. (2011a) and

this work: the first is that we use the spectral decompositions from Park et al. (2012b)

instead of Bentz et al. (2009b), and the second is that the model of the BLR has since

been substantially improved. Improvements to the BLR model include a new dynamics

model and two additional geometry model parameters that add flexibility to the shape of

the BLR. In addition, we now model the narrow emission line component of Hβ using the

width of the [O iii]λ5007 narrow emission line and calculate the instrumental resolution

for each epoch of spectroscopy separately.

Our focus in this chapter is to apply the direct modeling method to the remainder

of the LAMP 2008 sample, including reanalysis of Arp 151. In Section 5.1 we describe

the LAMP 2008 data used in our analysis. In Section 5.2 we briefly review our model

for the BLR with further details to be found in Chapter 4 (Pancoast et al. 2014a). In

Section 6.4 we present the results of our analysis for the five successfully modeled AGNs

in the LAMP 2008 sample. Finally, in Section 5.4 we summarize our results and discuss

their implications for future direct modeling work. All quantities related to properties of

the BLR are given in the rest frame of the system.
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5.1 Data

Our sample of AGNs was observed in the LAMP reverberation mapping campaign in

2008. The first part of the data consists of Johnson B and V broad-band AGN continuum

light curves measured using standard aperture photometry techniques, as described by

Walsh et al. (2009). The B and V band images were taken at a number of telescopes,

including the 30-inch Katzman Automatic Imaging Telescope (KAIT), the 2-m Multicolor

Active Galactic Nuclei Monitoring telescope, the Palomar 60-inch telescope, and the 32-

inch Tenagra II telescope. For direct modeling of each AGN, we choose to use either the

B or V band light curve depending on which has more data points, better sampling of

variability features, and higher overall variability. In general, the choice of B or V-band

AGN continuum light curve does not change our results.

The second part of the data comprises light curves of broad and narrow Hβ line

profiles. Measurement of the Hβ line profiles was done in two ways: Bentz et al. (2009b)

isolated the Hβ flux by fitting a local linear continuum underneath the Hβ and O iii

lines, while Park et al. (2012b) applied a multi-component fit to isolate the Hβ line

from the AGN continuum, stellar continuum, and Fe ii emission lines. Due to the non-

negligible contribution of the stellar continuum and Fe emission lines to the five LAMP

2008 objects considered here, we performed direct modeling on the Hβ emission line

profiles as measured by Park et al. (2012b). The final spectra we use here for modeling

include the broad and narrow Hβ line profiles, as well as the spectral decomposition

residuals, equivalent to subtracting off all other components from the original spectrum.

The details of the final spectra, including wavelength range used for direct modeling, are
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given in Table 5.1.

One other important parameter of the spectral dataset is the instrumental resolution,

which is used to smooth the simulated emission line profiles. The instrumental resolution

was measured by Bentz et al. (2009b, see their Table 11) for four of the five objects

by comparing the [O iii]λ5007 line widths to the values measured by Whittle (1992).

However, there were variations in the [O iii]λ5007 line width over the duration of the

reverberation mapping campaign due to small changes in the observing and instrumental

conditions. For this reason, we calculate the instrumental resolution, ∆λdis, for each night

independently using the width of the [O iii]λ5007 line from the spectral decomposition by

Park et al. (2012b), ∆λobs, and the intrinsic line width as measured by Whittle (1992),

∆λtrue, by subtracting them in quadrature:

∆λ2
dis ≈ ∆λ2

obs −∆λ2
true. (5.1)

In order to include the uncertainties in these line width measurements, we consider

both the measured and intrinsic widths of the [O iii]λ5007 line to be free parameters

with Gaussian priors centered on the measured values and with dispersions given by

the quoted measurement uncertainties. For the one object, SBS 1116+583A, without a

comparison line width by Whittle (1992), we use a value in the middle of the range of

the values of the other four objects. The values of the intrinsic [O iii]λ5007 line width

used in this analysis are given in the last column of Table 5.1 as the line dispersion in Å,

converted from the FWHM of the line widths in units of km s−1 listed in Whittle (1992)

assuming the Gaussian conversion of 2.35, for all objects except SBS 1116+583A.
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Table 5.1: Properties of the LAMP 2008 spectra and photometry. Band is the Johnson
broad-band filter. Nc is the number of data points in the AGN continuum light curve in
the band given by column 2. Ns is the number of spectra in the broad emission line time
series. Np is the number of pixels in the Hβ spectrum between the wavelength ranges
given in the next column. Wavelengths are in the rest frame. Intrinsic [O iii]λ5007
Width is the intrinsic line dispersion σ of the narrow [O iii]λ5007 emission line used for
calculating the instrumental resolution. a These values are converted from measurements
by Whittle (1992) assuming an uncertainty of 10 km/s.

Object Band Nc Ns Np Wavelength Range Intrinsic [O iii]λ5007
(Å) Width (Å)

Arp 151 B 84 43 73 4792.3− 4933.4 1.562± 0.071a

Mrk 1310 B 50 47 51 4815.5− 4913.6 0.852± 0.071a

NGC 5548 V 57 51 171 4706.5− 5040.9 2.910± 0.071a

NGC 6814 V 46 45 81 4776.7− 4935.8 0.888± 0.071a

SBS 1116+583A B 56 50 67 4797.3− 4925.7 1.4± 0.3

5.2 The dynamical model of the broad line region

In this section we give a brief overview of our simply parameterized phenomenological

model of the BLR geometry and dynamics, with full model details given in Chapter 4. We

model the distribution of broad line flux emission by the density of many point particles

that instantaneously and linearly reprocess the AGN continuum flux and reemit some

fraction of it back towards the observer with time lags that depend upon the point

particles’ positions. The velocities of the point particles then determine how redshifted

or blueshifted the broad line flux from the point particles is relative to the systemic

velocity of the BLR system. This means that in addition to a model describing the

distribution of point particles in position and velocity space, we must also model the

AGN continuum flux in order to evaluate it at arbitrary times.

For our model of the AGN continuum light curve we use Gaussian processes, which

allows us to sample the AGN continuum variability on scales much smaller than the
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typical one day cadence between datapoints. This AGN continuum variability model

allows us to include the uncertainty from interpolation in our final uncertainties in the

BLR model parameters, as well as allowing us to extrapolate beyond the ends of the light

curve in order to evaluate long time lags (for an illustration see Pancoast et al. 2011).

We model the BLR geometry by defining the physical distribution of point particles.

The radial distribution is given by a shifted Gamma distribution, which can reproduce

Gaussian, exponential or heavy-tailed radial distributions depending on the value of its

shape parameter. The point particles are also constrained to be within an (unknown)

opening angle, which allows for spherical geometries ranging to thin disk geometries.

The BLR is then viewed by an observer with an inclination angle ranging from face-on

to edge-on. Finally, there are a number of non-axisymmetric effects that allow for more

flexibility in the BLR geometry. These include preferential emission of the point particles

from the near or far side of the BLR along the observer’s line of sight, a transparent to

opaque mid-plane, and the possibility of increased emission from the edges of the BLR

disk, relative to the inner portion.

Similarly, we model the BLR dynamics by defining the velocity distribution of point

particles as a function of position and black hole mass. We draw the point particles’ ve-

locities from distributions in the space of radial and tangential velocities, centered around

the circular orbit values or from around the radial escape velocity values for inflowing

or outflowing orbits. We allow for a combination of elliptical orbits centered around the

circular orbit values plus either inflow or outflow centered around their respective radial

escape velocities. To allow for mostly bound inflowing or outflowing orbits, we also al-

low the distributions of inflowing and outflowing orbits to be centered anywhere along
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an ellipse between the radial escape velocity and the circular orbit velocity. In order

to add more flexibility, we also allow for additional macroturbulent velocities. Finally,

we include gravitational redshift and the full expression for doppler shift when moving

between the velocities of the point particles and the wavelengths of broad line flux emis-

sion. The exact definitions of the geometry and dynamics model parameters are given in

Appendix 5.5, with more detailed descriptions given in Chapter 4.

In addition to modeling the broad emission line component using a model for the BLR,

we also model the narrow emission line component using the width of the [O iii]λ5007

narrow emission line. Since the width of the [O iii]λ5007 line is a combination of intrinsic

line width and instrumental resolution, we use measurements of the intrinsic line width to

constrain the instrumental resolution for smoothing of the broad emission line component.

We explore the parameter space of the BLR model and AGN continuum variability

model using Diffusive Nested Sampling (Brewer et al. 2011b). This algorithm samples

the posterior distribution for the parameters, and provides the “evidence” value which

can be used to compare distinct models. We use a Gaussian likelihood function that

compares the time series of broad emission line profiles of the data to the simulated

versions generated by our BLR model. Since the model is of finite flexibility and the

spectral data have high signal to noise and a large number of data points, it is necessary

to soften the likelihood function. We do this by defining a temperature T by which the log

of the likelihood is divided, where T ≥ 1. Temperatures greater than one can be thought

of as an additional source of uncertainty in the likelihood due to the model not providing

a perfect fit to the data, either because the error bars of the data are underestimated

or because the model does not contain enough complexity to reproduce all features of
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the data. The use of a temperature can be thought of as a computationally inexpensive

approximation to a correlated noise model. Since we use Nested Sampling, the choice of

temperature T can be made in post-processing and does not require multiple runs.

5.3 Results

We now present the results of direct modeling of five AGNs in the LAMP 2008 sample,

including Arp 151, Mrk 1310, NGC 5548, NGC 6814, and SBS 1116+583A. First, the

modeling results are presented in detail for each AGN, including key posterior PDFs

and correlations, the model fit to the data, and the transfer function. Examples of the

inferred geometry of the BLR for each AGN are also shown in Figure 5.1 and the AGN

continuum light curves with Gaussian process interpolations drawn from the posterior

are shown in Figure 5.2. The posterior median and central 68% credible intervals for the

main BLR model parameters are given in Table 5.2. Second, we present an overview of

the BLR modeling results to emphasize the similarities and differences in the sample.

Finally, we calculate the mean f factor for this sample of five AGNs.

5.3.1 Individual modeling results

Arp 151 (Mrk 40)

Both the AGN continuum and broad Hβ line showed strong variability over the du-

ration of the LAMP 2008 campaign, leading to the clearest velocity-resolved lag mea-

surements of the LAMP 2008 sample (Bentz et al. 2009b) and the most detailed transfer

function recovered at the time using MEMECHO (Bentz et al. 2010b). It is therefore

132



Figure 5.1: Geometries of the BLR for the five objects in our sample. The left panels
show the BLR from along the y axis (the edge-on view), while the right panels show the
BLR from along the positive x axis (the observer’s point of view). Top to bottom: Arp
151, Mrk 1310, NGC 5548, NGC 6814, and SBS 1116+583A. Each point corresponds
to a point particle in our BLR model and the size of the points is proportional to the
relative amount of Hβ emission coming from each point particle, given the same incident
continuum flux.
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Figure 5.2: AGN continuum light curves for the five objects in our sample. The data
are shown by black points with error bars and the Gaussian process interpolations drawn
from the posterior PDF are shown by the colored lines. Top to bottom: Arp 151, Mrk
1310, NGC 5548, NGC 6814, and SBS 1116+583A.

134



Figure 5.3: Model fit to the broad and narrow Hβ line dataset for Arp 151. Top panel:
the Hβ spectral time series of data from Park et al. (2012b). Top middle panel: an
example of a simulated Hβ spectral time series for a model drawn randomly from the
posterior PDF. Bottom middle panel: the integrated Hβ line light curve with data from
Park et al. (2012b) given by the blue points with error bars, the model in the top middle
panel shown with the red dashed line, and additional models drawn from the posterior
shown with the dotted grey lines. Bottom panel: two examples of the Hβ line profile
shown with blue and green error bars with the model fits over-plotted with red lines.
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Figure 5.4: Marginal posterior PDFs and correlations between parameters for Arp 151,
including black hole mass (MBH), inclination angle (θi), and opening angle (θo).
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Figure 5.5: Transfer functions for Arp 151. The top two panels and the middle left panel
are all examples of transfer functions drawn from the posterior PDF of the model fit.
The middle right panel shows the mean lag as a function of velocity for each of the three
transfer functions from the posterior. Also shown in this panel are the velocity-resolved
cross-correlation lag measurements from Bentz et al. (2009b) as red error bars, where
the horizontal error bars show the wavelength ranges used in the integrated light curves.
Our mean lag values in these same bins are shown by the blue error bars, except for the
longest wavelength bin which does not extend as far to the red as the one by Bentz et al.
(2009b). The bottom panel shows the velocity-integrated transfer function for each of
the three transfer functions from the posterior.
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unsurprising that the direct modeling results for Arp 151 also have the highest quality

of the LAMP 2008 sample.

Comparison of the spectral time series and time series of simulated spectra, as illus-

trated in Figure 5.3, suggests that the model is able to fit the overall variability structure

of the Hβ line profile very well. In addition, the integrated model Hβ emission line

and individual model spectra show excellent agreement. The model is unable to cap-

ture very short timescale variations that are either due to noise or processes with much

faster response times than the overall variability of the BLR would suggest. Fortunately,

such short timescale variations are infrequent and do not appear to substantially affect

inference of the model parameters.

The geometry of the BLR in Arp 151 as traced by Hβ emission is inferred to be

a wide thick disk, inclined by θi = 25.2+3.3
−3.4 degrees relative to the observer (0 = face-

on). The radial distribution of Hβ emission has heavier tails than an exponential profile,

with a Gamma distribution shape parameter of β = 1.25+0.15
−0.16, mean radius rmean =

3.44+0.26
−0.24 light days, and dispersion or radial width of σr = 3.72+0.45

−0.43 light days. The

radial distribution is offset from the origin, the source of the ionizing photons and visible

continuum emission, by rmin = 0.44+0.13
−0.20 light days. The mean radius equals to within the

uncertainties the mean lag of τmean = 3.07+0.25
−0.20 days, which in turn is consistent with the

cross-correlation measured central lag of τcent = 3.99+0.49
−0.68 days by Bentz et al. (2009b)

to within the uncertainties. Due to the heavy tails of the radial profile, the median lag

of τmedian = 1.75+0.28
−0.23 days is significantly shorter. The opening angle of the disk is well

constrained to be θo = 25.6+3.7
−4.0 degrees, however more emission is found to come from the

outer faces of the disk (γ = 4.27+0.54
−0.80), making the geometry closer to a cone. There is
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also preferential emission from the far side of the BLR from the observer (κ = −0.36+0.08
−0.08)

and the mid-plane of the BLR disk is found to be mostly opaque (ξ = 0.09+0.08
−0.05). An

example of the BLR geometry in Arp 151 for a set of model parameters drawn from the

posterior is shown in Figure 5.1.

The dynamics of the BLR in Arp 151 are inferred to be dominated by inflowing orbits,

with the fraction of point particles in elliptical orbits only fellip = 0.06+0.09
−0.05, or 1− 15%.

The majority of the point particles are in inflowing orbits as given by the inflow/outflow

parameter fflow = 0.24+0.20
−0.17, where values of fflow between 0 and 0.5 indicate inflow and

values between 0.5 and 1 indicate outflow. Comparing the probability for values of fflow

between 0 and 0.5 with the probability for values between 0.5 and 1 indicates a 100%

preference for inflow compared to outflow. Furthermore, the inferred inflowing orbits are

not strictly radial or drawn from a velocity distribution centered on the radial escape

velocity, but can be distributed closer to the circular orbit value, leading to more bound

inflowing orbits. The value of θe = 12.0+10.7
−8.3 that we infer for Arp 151 indicates that

the inflow orbit velocity distribution is rotated about a seventh of the way towards the

circular-orbit-centered distribution and that more than half of the inflowing orbits are

bound. Finally, we find a negligible contribution to the dynamics of the BLR from

macroturbulent velocities, with the dispersion of additional macroturbulent velocities

drawn from a Gaussian distribution of only σturb = 0.008+0.028
−0.007 times the circular orbit

velocity.

We measure a black hole mass for Arp 151 of log10(MBH/M�) = 6.62+0.10
−0.13. As illus-

trated in Figure 5.4, there is strong degeneracy between the black hole mass, inclination

angle, and opening angle, preventing us from measuring the black hole mass with greater
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precision. The correlation between these parameters is easy to understand if one consid-

ers that the BLR model parameters are constrained such that the line-of-sight velocity

matches the width of the emission line: for thin disks, the more face-on the BLR, the

higher the black hole mass must be to produce the same line-of-sight velocities. The

opening angle is also strongly correlated, since a thicker disk allows for larger line-of-

sight velocities for a given black hole mass.

With an independent measurement of the black hole mass we can use the virial

product Mvir from traditional reverberation mapping analysis to measure the f factor

for Arp 151. We use the time lags τcent from cross-correlation analysis from Bentz et al.

(2009b) and measurements of the Hβ line width after spectral decomposition from Park

et al. (2012b) to construct two sets of virial products. The first type of virial product

uses the line dispersion measured from the RMS line profile as the Hβ line width and

the second uses the FWHM of the mean line profile as the Hβ line width. Values of

the f factor calculated using the first type of virial product will be referred to as fσ,

while values calculated using the second type of virial product will be referred to as

fFWHM. We obtain the distribution of f for each AGN by subtracting the virial product

from the normalized posterior PDF of black hole mass. The inferred f factors for the

five AGNs in our sample are listed in Table 5.3. For Arp 151, we measure f factors of

log10(fσ) = 0.51+0.10
−0.13 and log10(fFWHM) = −0.24+0.10

−0.13.

Previous direct modeling results for Arp 151 constrained the black hole mass to be

106.51±0.28M� and the geometry to be a wide thick disk with an opening angle of θo =

34.5+10.7
−8.6 degrees, inclined with respect to the observer by θi = 22.2±7.8 degrees (Brewer

et al. 2011a). Our improved modeling results for Arp 151 are completely consistent to
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within the uncertainties with these previous modeling results, and clarify the previous

ambiguity in whether the dynamics of Hβ in Arp 151 are dominated by inflow or outflow.

For comparison with work focused on recovering the velocity-resolved transfer func-

tion, we show three transfer functions created from models drawn randomly from the

multi-dimensional posterior PDF in Figure 5.5. While the three transfer functions show

slightly different detailed structure, the mean lag as a function of velocity is very sim-

ilar for all three, as is the velocity-integrated transfer function. In addition, all three

velocity-resolved transfer functions show at least some preference for prompt response on

the red side of the line profile, indicative of inflow kinematics. The same inflow signatures

were found in the transfer function recovered using MEMECHO (Bentz et al. 2010b), as

well as the velocity-resolved lag measurements, shown in red in the middle right panel

of Figure 5.5. The discrepancy in the blue wing of the line between the velocity-resolved

lag measurements from CCF analysis (in red in Figure 5.5) and dynamical modeling (in

blue) is due to a combination of data preprocessing and systematics from measurement of

the time lag. Recalculating the velocity-resolved time lags from CCF analysis using the

same datasets as in the dynamical modeling decreased the discrepancy in the bluest lag

bin by ∼ 1.5 days while remaining consistent with the values from Bentz et al. (2009b).

The remaining discrepancy is due to the difference between the true mean time delay and

the time delay proxy estimated by CCF analysis. We confirm this by creating velocity-

resolved light curves using the inferred models of the BLR for Arp 151, calculating and

showing that the CCF time lag from those model light curves and the time lags from

dynamical modeling are consistent with the values from Bentz et al. (2009b). However

there are residual differences between the transfer functions from direct modeling and
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MEMECHO, including response in the blue wing of the line, where direct modeling finds

significantly shorter lags, and prompt response of the line emission at line center, where

the MEMECHO solution finds no prompt response.

Mrk 1310

With the narrowest Hβ line profile in our sample, the dataset for Mrk 1310 provides

fewer constraints on the BLR model due to a smaller number of pixels per spectrum

and reduced variability compared to Arp 151. Despite these issues, the model is able

to match the overall variability of the emission line profile, as well as the detailed line

profile shape, as shown in Figure 5.6.

The geometry of the Hβ BLR for Mrk 1310 is constrained to be a thick disk, inclined

by θi = 6.6+5.0
−2.5 degrees with respect to the observer, although inclination angles up

to 35 degrees are not completely ruled out. The radial distribution of Hβ emission is

constrained to be between exponential and Gaussian (β = 0.89+0.10
−0.10), with a mean radius

of rmean = 3.13+0.42
−0.40 light days, a minimum radius away from the central source of ionizing

photons of rmin = 0.12+0.19
−0.08 light days, and a radial dispersion or width of σr = 2.59+0.42

−0.35

light days. The mean time lag of τmean = 2.96+0.42
−0.35 days is very similar to the mean

radius and median time lag of τmedian = 2.26+0.35
−0.31, and agrees to within the uncertainties

with the cross-correlation lag of τcent = 3.66+0.59
−0.61 days measured by Bentz et al. (2009b).

The opening angle of the disk is inferred to be θo = 8.6+3.5
−2.1 degrees, although opening

angles up to 35 degrees are not completely ruled out. There is no preference for Hβ

emission from the outer faces of the BLR disk (γ = 2.97+1.38
−1.43), for emission from the far

or near side of the BLR (κ = −0.04+0.38
−0.35) or for the transparency of the BLR midplane
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Figure 5.6: Same as Figure 5.3, but for Mrk 1310.
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Figure 5.7: Same as Figure 5.4, but for Mrk 1310.
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Figure 5.8: Same as Figure 5.5, but for Mrk 1310.
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(ξ = 0.40+0.38
−0.29). An illustration of the BLR geometry for Mrk 1310 is shown in Figure 5.1

for one sample from the posterior PDF.

The dynamics of the BLR for Mrk 1310 are unclear. There is a slight preference

for elliptical orbits (fellip = 0.56+0.34
−0.39) and placement of the inflowing/outflowing velocity

distribution closer to the distribution centered on the circular orbit value (θe = 57.2+24.9
−41.0

degrees), but also a preference for the remaining orbits to be outflowing when θe → 90

degrees (fflow = 0.65+0.24
−0.38, probability of inflow/outflow is 31%/69%). This shows that

radial outflowing orbits are not actually strongly preferred compared to radial inflowing

orbits and the dynamics of the BLR are not well-constrained in this case. We also find

no preference for substantial macroturbulent velocities (σturb = 0.004+0.010
−0.003).

The black hole mass for Mrk 1310 is inferred to be log10(MBH/M�) = 7.42+0.26
−0.27. The

uncertainty in the black hole mass is due in large part to degeneracy with the inclination

angle and opening angle, as shown in Figure 5.7, since at very small inclination and

opening angles large changes in black hole mass are needed to maintain the line-of-sight

velocity of the point particles for even small changes in inclination or opening angle.

Comparing our measurement of the black hole mass to the virial products calculated

from cross-correlation time lags from Bentz et al. (2009b) and line widths from Park

et al. (2012b), we measure the f factors for Mrk 1310 to be log10(fσ) = 1.63+0.26
−0.27 and

log10(fFWHM) = 0.79+0.26
−0.27 (see Section 5.3.1).

The velocity-resolved transfer functions for Mrk 1310, drawn randomly from the pos-

terior PDF, show very similar structure as illustrated in Figure 5.8, despite ambiguity in

the dynamics of the BLR. The mean velocity-resolved transfer functions and the velocity-

integrated transfer functions also show very similar features, and agree to within the
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Figure 5.9: Same as Figure 5.3, but for NGC 5548.

uncertainties with the cross-correlation velocity-resolved lag measurements from Bentz

et al. (2009b).

NGC 5548

While not as variable as Arp 151 over the duration of the LAMP 2008 campaign, the

NGC 5548 Hβ line profile is the widest in the sample, providing an informative dataset
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Figure 5.10: Same as Figure 5.4, but for NGC 5548.
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Figure 5.11: Same as Figure 5.5, but for NGC 5548.
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with which to constrain the BLR model. The model is able to fit the overall variability

of the Hβ line profile as well as the detailed emission line shape, as shown in Figure 5.9.

The geometry of the Hβ BLR in NGC 5548 is constrained to be a narrow thick

disk, with an inclination angle of θi = 38.8+12.1
−11.4 degrees. The radial distribution of

Hβ emission is between exponential and Gaussian (β = 0.80+0.60
−0.31), with a mean radius

of rmean = 3.31+0.66
−0.61 light days, a minimum radius from the central ionizing source of

rmin = 1.39+0.80
−1.01 light days, and a dispersion or width of the BLR of σr = 1.50+0.73

−0.60 light

days. The mean lag is very similar to the mean radius, with τmean = 3.22+0.66
−0.54 days,

and consistent to within the uncertainties with the cross-correlation lag measurement of

τcent = 4.17+0.90
−1.33 by Bentz et al. (2009b). The median lag is smaller with τmedian = 2.77+0.63

−0.42

days. The opening angle of the disk is inferred to be θo = 27.4+10.6
−8.4 degrees with opening

angles near 90 degrees not completely ruled out and with a slight preference for emission

equally concentrated throughout the disk (γ = 2.01+1.78
−0.71). The Hβ emission is also found

to preferentially emit from the far side of the BLR (κ = −0.24+0.06
−0.13) and the midplane

of the BLR is found to be not fully transparent (ξ = 0.34+0.11
−0.18). An example of the BLR

geometry in NGC 5548 is shown in Figure 5.1 for a single posterior sample.

The dynamics of the BLR in NGC 5548 are found to be mostly inflow. The fraction of

point particles with elliptical orbits is ∼ 10− 40% (fellip = 0.23+0.15
−0.15), with the rest of the

point particles favoring inflowing orbits (fflow = 0.25+0.21
−0.16, probability of inflow/outflow

is 94%/6%). Like in the case of Arp 151, the inferred inflowing orbits are mostly bound,

with the inflow velocity distribution rotated towards the elliptical orbit distribution by

θe = 21.3+21.4
−14.7 degrees in the radial and tangential velocities plane. There is also minimal

contribution from additional macroturbulent velocities (σturb = 0.016+0.044
−0.013).
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We measure the black hole mass in NGC 5548 to be log10(MBH/M�) = 7.51+0.23
−0.14.

Similar to Arp 151 and Mrk 1310, there are strong correlations between the black hole

mass, inclination angle, and opening angle that contribute to the uncertainty in black

hole mass, as shown in Figure 5.10. By comparing our measurement of the black hole

mass to the virial products calculated from cross-correlation time lags from Bentz et al.

(2009b) and line widths from Park et al. (2012b), we measure the f factors for NGC 5548

to be log10(fσ) = 0.42+0.23
−0.14 and log10(fFWHM) = −0.58+0.23

−0.14 (see Section 5.3.1).

The velocity-resolved transfer functions randomly chosen from the posterior show a

variety of structures consistent with inflow, as shown in Figure 5.11. However, the mean

lags for the velocity-resolved transfer functions and the velocity-integrated transfer func-

tions are not completely consistent. Despite this, the velocity-resolved lag measurements

by Bentz et al. (2009b) are consistent to within the uncertainties with our mean lag esti-

mates, suggesting that we are able to constrain the general shape of the transfer function

if not the detailed structure.

NGC 6814

While the model is able to capture the detailed line profile shape for NGC 6814, it

has more difficulty matching the overall variability of the Hβ emission, as illustrated in

Figure 5.12. The integrated Hβ light curves show some discrepancy, especially at early

times, and the second bright peak in the spectra is not as strong in the model.

For this object, the BLR as traced by Hβ emission is constrained to be a wide thick

disk, inclined by θi = 49.4+20.4
−22.2 degrees with respect to the line of sight, where inclination

angles approaching 90 degrees are not ruled out. The radial distribution of Hβ emission
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Figure 5.12: Same as Figure 5.3, but for NGC 6814.
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Figure 5.13: Same as Figure 5.4, but for NGC 6814.
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Figure 5.14: Same as Figure 5.5, but for NGC 6814.
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is close to exponential (β = 1.07+0.08
−0.09), with a mean radius of rmean = 3.76+1.15

−0.77 light

days, a minimum radius from the central ionizing source of rmin = 0.15+0.19
−0.11 light days,

and a dispersion or width of the BLR of σr = 3.75+1.05
−0.69 light days. The mean radius is

close to the mean time lag of τmean = 4.43+0.72
−0.83 days, which is marginally consistent with

the cross-correlation lag of τcent = 6.46+0.94
−0.96 by Bentz et al. (2009b). The median lag is

considerably shorter, with τmedian = 2.67+0.60
−0.61. The opening angle of the disk is inferred

to be θo = 50.2+22.0
−18.6 degrees, and a spherical geometry is not ruled out. While there is

no preference for concentrated Hβ emission from the edges of the disk (γ = 2.91+1.37
−1.31),

there is a slight preference for the disk midplane to be transparent (ξ = 0.71+0.22
−0.33 )

and a strong preference for concentration of Hβ emission from the far side of the BLR

(κ = −0.44+0.10
−0.05), although more emission from the near side is not completely ruled out.

The BLR geometry for NGC 6814 from one posterior sample is illustrated in Figure 5.1.

The dynamics of the BLR for NGC 6814 are inferred to be a combination of elliptical

and inflowing orbits. The fraction of elliptical orbits ranges between 0 − 70% (fellip =

0.32+0.17
−0.22), with the remainder of the orbits mostly inflowing (fflow = 0.29+0.25

−0.19, probability

for inflow/outflow is 83%/17%). For the inflowing/outflowing orbits where the fraction of

elliptical orbits is small, the distribution of inflowing/outflowing velocities is rotated by

∼ 60 degrees towards the elliptical orbit distribution in the radial and tangential velocity

plane (θe ∼ 60). This means that in the majority of inferred model solutions with low

fractions of elliptical orbits, the inflowing orbits are bound and more similar to circular

orbits in terms of tangential versus radial velocity component magnitudes. For the full

set of posterior model solutions, θe = 47.0+16.7
−26.5. Finally, there is minimal contribution

from additional macroturbulent velocities (σturb = 0.013+0.036
−0.011).
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We measure the black hole mass in NGC 6814 to be log10(MBH/M�) = 6.42+0.24
−0.18. The

correlations of inclination angle and opening angle with black hole mass are not as tight

for this object, adding less uncertainty to the inference of black hole mass, as shown in

Figure 5.13. By comparing our measurement of the black hole mass to the virial products

calculated from cross-correlation time lags from Bentz et al. (2009b) and line widths from

Park et al. (2012b), we measure the f factors for NGC 6814 to be log10(fσ) = −0.14+0.24
−0.18

and log10(fFWHM) = −0.68+0.24
−0.18 (see Section 5.3.1).

The velocity-resolved transfer functions drawn randomly from the posterior show

similar overall structure, as shown in Figure 5.14, although an excess of response in the

blue wing, red wing, or center of the line changes between samples. The line wings also

generally have shorter lags than suggested by the velocity-resolved lag measurements

by Bentz et al. (2009b). As for Arp 151, this discrepancy is due to the method of

measuring the time lag. Again, we confirm this by creating velocity-resolved light curves

using the inferred models of the BLR for NGC 6814 and comparing the CCF time lag

measured from these model light curves to the CCF time lags from Bentz et al. (2009b).

In this case, the comparison is not conclusive. Owing to the low signal-to-noise ratio of

the data in the wings of the line, the cross-correlation results are very uncertain, and

depend significantly upon the details of the CCF calculation, such as the interval over

which the CCF is calculated. Despite this, the velocity-integrated transfer functions are

consistent, suggesting that the general shape of the velocity resolved transfer function is

well constrained.
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Figure 5.15: Same as Figure 5.3, but for SBS 1116+583A.
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Figure 5.16: Same as Figure 5.4, but for SBS 1116+583A.
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Figure 5.17: Same as Figure 5.5, but for SBS 1116+583A.
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SBS 1116+583A

The model fits to SBS 1116+583A capture the overall variability of the data and

successfully match the Hβ line profile shape, as shown in Figure 5.15. We infer the

geometry for the BLR in this object to be a wide, thick disk inclined by θi = 18.2+8.4
−5.9

degrees with respect to the line of sight, although inclination angles approaching 90

degrees are not ruled out. The radial distribution of Hβ emission is constrained to

be close to exponential (β = 1.00+0.27
−0.21). The mean radius is rmean = 4.07+0.79

−0.65 light

days, the minimum radius from the central ionizing source is rmin = 0.93+0.50
−0.49 light days,

and the radial dispersion or width of the BLR is σr = 3.14+0.81
−0.66 light days. The mean

radius agrees well with the mean lag of τmean = 3.78+0.57
−0.52 days, which is marginally

consistent to within the uncertainties with the cross-correlation lag of τcent = 2.31+0.62
−0.49

days (Bentz et al. 2009b). In this case the cross-correlation lag is closer to the median

time lag of τmedian = 2.71+0.40
−0.37 days. The opening angle of the disk is inferred to be

θo = 21.7+11.0
−7.5 degrees, and opening angles approaching 90 degrees, corresponding to

spherical geometries, are not ruled out. The other parameters of the BLR geometry

model are unconstrained, including emission from the front or back side of the BLR

(κ = −0.03+0.31
−0.34), preferential emission from the faces of the disk (γ = 3.19+1.21

−1.37), and the

transparency of the disk mid-plane (ξ = 0.61+0.28
−0.37).

The dynamics of the BLR are inferred to be dominated by elliptical orbits. The

elliptical orbit fraction is fellip = 0.66+0.21
−0.27. The remaining orbits are mostly inflowing

(fflow = 0.31+0.31
−0.22, probability of inflow/outflow is 79%/21%). When the elliptical orbit

fraction drops below ∼ 50% then the majority of inflow or outflow solutions have θe > 50
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degrees, so the inflow or outflow velocity distributions are rotated in the radial and

tangential velocity plane towards the elliptical orbit distribution. This is compared to

θe = 49.7+28.8
−32.1 degrees for the full posterior. This means that even posterior samples with a

majority of point particle velocities drawn from the inflow or outflow velocity distributions

have mainly elliptical-like orbits. Finally, the dynamics in SBS 1116+583A is inferred

to have minimal contribution from macroturbulent velocities with σturb = 0.011+0.033
−0.009 in

units of the circular velocity.

We measure the black hole mass in SBS 1116+583A to be log10(MBH/M�) = 6.99+0.32
−0.25.

There is a strong correlation between black hole mass and inclination angle and opening

angle, as shown in Figure 5.16. Comparing our measurement of the black hole mass to

the virial products calculated from cross-correlation time lags from Bentz et al. (2009b)

and line widths from Park et al. (2012b), we measure the f factors for SBS 1116+583A

to be log10(fσ) = 0.96+0.32
−0.25 and log10(fFWHM) = 0.34+0.32

−0.25 (see Section 5.3.1).

Three velocity-resolved transfer functions drawn randomly from the posterior and

shown in Figure 5.17 show similar detailed structure. However, the strength of the

prompt emission in the red wing varies between the velocity-resolved transfer functions,

most prominent in the middle left panel of Figure 5.17 and least prominent in the top

left panel. This is due to the variation in fellip and a preference for the remaining orbits

to be inflowing. The velocity-integrated transfer functions also show consistent results,

although the peakiness of the transfer function at lags of ∼ 1 day varies.
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Figure 5.18: Individual f factors versus black hole mass as inferred by direct modeling.
The blue circles show the values of log10(fσ), while the red squares show the values of
log10(fFWHM). The values of 〈log10(fσ)〉 and 〈log10(fFWHM)〉 for the sample are shown by
the top blue and bottom red dashed lines, respectively.
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Figure 5.19: Individual f factors versus Eddington ratio (top panel) and AGN continuum
luminosity, L5100 (bottom panel). The AGN luminosities at 5100Å are corrected for host
galaxy contamination as described by Bentz et al. (2013) and the bolometric luminosities
are calculated using a bolometric correction factor of nine. The blue circles show the
values of log10(fσ), while the red squares show the values of log10(fFWHM). The values
of 〈log10(fσ)〉 and 〈log10(fFWHM)〉 for the sample are shown by the top blue and bottom
red dashed lines, respectively.
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Figure 5.20: Individual f factors versus inclination angle as inferred by direct modeling.
The values of 〈log10(fσ)〉 and 〈log10(fFWHM)〉 for the sample are shown by the blue dashed
line in the top panel and the red dashed line in the bottom panel, respectively. Also shown
as horizontal dotted, dot-dashed, and dashed lines are the mean f values by Park et al.
(2012b), Woo et al. (2013), and Grier et al. (2013a) in the top panel, and values by Collin
et al. (2006) and Yoon et al. (in preparation) in the bottom panel.
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Figure 5.21: Inclination angle, f , and black hole mass as a function of the ratio of the
FWHM to the line dispersion σ of the Hβ line. Line width measurements are from Park
et al. (2012b). For a Gaussian distribution, log10(FWHM/σ) = 0.37. In the middle panel,
the values of 〈log10(fσ)〉 and 〈log10(fFWHM)〉 for the sample are shown by the top blue
and bottom red dashed lines, respectively. In the bottom panel the black hole masses
from cross-correlation function analysis and assuming log10〈fσ〉 = 0.71 are plotted as
light blue squares for comparison.
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Figure 5.22: Black hole masses from our direct modeling approach and their host-galaxy
stellar velocity dispersions, compared to the MBH − σ∗ relationship for black holes with
masses from spatially-resolved stellar and gas dynamical modeling (as compiled by Woo
et al. 2013). Measurements of the host-galaxy velocity dispersion for our sample of five
LAMP 2008 objects are by Woo et al. (2010). Our sample is shown by the large blue
circles with error bars. The dynamical mass sample is shown by the small green points.
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Figure 5.23: Comparison of the black hole mass estimates from our direct model-
ing approach on the y-axis versus the values measured using cross-correlation function
analysis. The blue circles denote the sample using cross-correlation masses assuming
log10〈fσ〉 = 0.71, where the points corresponding to individual AGNs have been labeled.
The single green square is for NGC 6814 for the case where the cross-correlation mass
has been calculated using the time lag from our dynamical modeling instead of the time
lag from cross-correlation. The red dashed line shows a slope of unity through the origin.

167



5.3.2 Overview of modeling results

We will now give an overview of the similarities between the inferred BLR model

parameters for the five objects in our sample. To begin with, the Hβ BLR geometry

is consistent with a thick disk with preferential emission from the far side. While the

minimum radius of the BLR from the central ionizing source and the dispersion or width

of the BLR vary within our sample, the radial distribution shape is generally inferred to

be exponential or between Gaussian and exponential.

For the dynamics, we generally infer either elliptical orbits, inflowing orbits, or a

combination of the two. Both Arp 151 and NGC 5548 show clear signatures of inflow,

while SBS 1116+583A shows clear signatures of elliptical orbits and NGC 6814 shows

evidence for both inflow and elliptical orbits. In addition, both Arp 151 and NGC 5548

prefer bound inflowing orbits, a solution that is closer to the elliptical orbit solution.

The absence of strong outflow dynamics in our sample is reassuring, since reverberation

mapping relies on BLR gas dynamics being dominated by the gravitational potential of

the black hole, although this is unsurprising given the low Eddington ratios of the objects

in our sample.

We can also examine whether there are common degeneracies between the model

parameters. The correlations between black hole mass, inclination angle, and opening

angle are typically quite pronounced in our sample (see Figures 5.4, 5.7, 5.10, 5.13, and

5.16), and often the correlation between black hole mass and inclination angle is the

strongest. This degeneracy is very important for BLRs viewed close to face-on, where

the uncertainty in black hole mass becomes larger as the inclination angle approaches
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zero. Smaller opening angles accentuate the degeneracy, leading to strong correlations as

for Mrk 1310 (see Figure 5.7). An interesting consequence of these degeneracies is what

they predict for correlations of model parameters with individual values of the f factor.

As shown in Figure 5.18, there is no strong correlation between the f factor and

black hole mass, as one might expect if the BLR geometry and dynamics are somehow

correlated with the size of the black hole. There is also no strong correlation between

the f factor and the Eddington ratio, Lbol/LEdd, or the AGN continuum luminosity at

5100Å, L5100, as shown in Figure 5.19. The AGN luminosities are corrected for host

galaxy contamination by Bentz et al. (2013) and the Eddington ratios are calculated

assuming a bolometric correction factor for L(5100Å) of nine. A correlation between f

and the Eddington ratio might be expected if the BLR geometry or dynamics changed

substantially with accretion rate, for example with contributions to the dynamics from

radiation pressure. Since both f and the Eddington ratio are calculated using the values

of MBH inferred from dynamical modeling, the errors are correlated. For this reason

we also plot f versus L5100, as shown in the bottom panel of Figure 5.19, which does

not have correlated errors, although it is not as closely related to accretion rate as the

Eddington ratio since it has not been normalized by MBH. However, there does appear to

be a correlation between the f factor and inclination angle, as illustrated in Figure 5.20.

Such a correlation was predicted by Goad et al. (2012) for a general class of BLR models

similar to the ones used in our direct modeling analysis. Since the errors in black hole

mass and f are the same, and since black hole mass correlates so strongly with inclination

angle, one might expect to see at least a small trend between the f factor and inclination

angle based only on correlated errors. Direct modeling on a larger sample of AGNs will
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allow us to quantify the contribution of correlated errors to the strength of the correlation

between inclination angle and f .

On a related note, it has been suggested that the ratio of the FWHM to the line

dispersion of broad emission lines is related to the inclination angle of the BLR to our

line of sight (Collin et al. 2006; Goad et al. 2012). We use the FWHM and line dispersion

measurements for the objects in our sample from Park et al. (2012b) to investigate the

possibility of such trends, as shown in Figure 5.21. We find no strong correlation between

log10(FWHM/σ) and the inclination angle or the f factors for individual AGNs, but we do

find a tentative correlation between log10(FWHM/σ) and black hole mass. The trend of

log10(FWHM/σ) with black hole mass is not seen for the virial product. A larger sample

of AGNs with direct modeling analysis could clarify the strength of these correlations.

There are few independently measured quantities to compare with our direct modeling

results. One of these is measurements of the time lag from cross-correlation function

analysis, where we find good agreement within the uncertainties. Recently, Li et al.

(2013) used our direct modeling formalism to develop an independent code to model

the geometry of the BLR. Their geometry model includes a Gamma distribution for the

radial profile of gas, as well as an opening angle and inclination angle. In addition,

their model includes non-linear response of the broad emission lines to changes in the

continuum light curve. They measure the mean radius of the BLR for our sample of five

AGNs using their geometry modeling code and obtain results that are mostly consistent

with the results presented here. The one object for which our values of mean radius are

inconsistent is NGC 6814, for which we measure a smaller value than both the mean lag

by Bentz et al. (2009b) of τcent = 6.46+0.94
−0.96 days and the mean radius by Li et al. (2013) of
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rmean = 6.9± 0.7 light days. The inconsistency between direct modeling results for NGC

6814 for the geometry model of Li et al. (2013) and the dynamical model implemented

here could be caused by using the integrated line profiles versus the full spectral dataset,

since for the full spectral dataset the model must fit not only the mean time lag but also

the response as a function of velocity, placing more stringent constraints on the value of

the mean radius. There are also a number of differences between the geometry model

used here and the one used by Li et al. (2013), the most important being that we do not

include non-linear response of the emission line flux, while Li et al. (2013) do not include

asymmetry parameters such as κ, γ, or ξ in their model.

We can also compare our independent measurements of the black hole mass to those

of quiescent and active galaxies with dynamical mass estimates. Using host galaxy ve-

locity dispersion measurements by Woo et al. (2010), we overlay our five AGNs onto

the dynamical mass sample from Woo et al. (2013) on the MBH − σ∗ relation, as shown

in Figure 5.22. The five objects in our sample are consistent with the distribution of

masses and stellar velocity dispersions in the dynamical sample, confirming that Seyfert

1 galaxies appear to lie on the same MBH−σ∗ as Seyfert 2 galaxies with black hole mass

measurements from maser kinematics. With a larger sample of Seyfert 1 galaxies with

direct modeling, we can test whether the agreement holds across the entire relation.

Another independently measured quantity is the mean f factor, 〈f〉, measured by

aligning the MBH − σ∗ relations for quiescent and active galaxies. We will denote mean

f factors that have been calculated using the dispersion of the RMS emission line profile

by 〈fσ〉 and those that have been calculated using the FWHM of the mean emission

line profile by 〈fFWHM〉. Values of 〈fσ〉 from the literature include log10〈fσ〉 = 0.74+0.12
−0.17

171



(Onken et al. 2004), log10〈fσ〉 = 0.72+0.09
−0.10 (Woo et al. 2010), log10〈fσ〉 = 0.45 ± 0.09

(Graham et al. 2011), log10〈fσ〉 = 0.71± 0.11 (Park et al. 2012a), log10〈fσ〉 = 0.77± 0.13

(Woo et al. 2013), and log10〈fσ〉 = 0.64+0.10
−0.12 (Grier et al. 2013a). These values agree

to within the uncertainties except for the value by Graham et al. (2011), for which the

discrepancy is explained by sample selection and choice of the independent variable when

fitting for f . We choose to adopt the Park et al. (2012a) value of log10〈fσ〉 = 0.71 for

calculations of the black hole mass using the virial product, since it is midway between

the two most recent values of log10〈fσ〉 by Woo et al. (2013) and Grier et al. (2013a) and

the difference between either measurement and the Park et al. (2012a) value is within

the quoted error bars.

The fσ factors measured individually for the five objects in our sample and listed in

Table 5.3 are generally consistent to within the uncertainties with all of these values,

although the low value of fσ for NGC 6814 is only marginally consistent with the higher

〈fσ〉 values (Onken et al. 2004; Woo et al. 2010; Park et al. 2012a; Woo et al. 2013; Grier

et al. 2013a). Part of the discrepancy for NGC 6814 may be due to the difference in time

lags between the value measured from the cross-correlation function of τcent = 6.46+0.94
−0.96

days (Bentz et al. 2009b) and the value we infer from direct modeling of τmean = 4.43+0.72
−0.83

days. Using our measurement of the time lag to calculate the virial mass increases the

value of fσ by 0.16 dex to log10(fσ) = 0.02+0.24
−0.18 for NGC 6814. To better illustrate

this issue, a comparison of our independent measurements of black hole mass to those

measured using cross-correlation function analysis and assuming log10〈fσ〉 = 0.71 (Park

et al. 2012a) is shown in Figure 5.23. NGC 6814 has one of the most discrepant measure-

ments of the black hole mass, and the discrepancy is reduced when the cross-correlation
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mass is calculated using the smaller time lag we infer from direct modeling. However,

since the posterior PDF for the black hole mass in NGC 6814 extends up to values of

log10(MBH/M�) ∼ 7.3, this means the posterior PDF for fσ also extends up to values con-

sistent with the higher 〈fσ〉 values. While the high posterior median value of fσ for Mrk

1310 is also only marginally consistent with the higher 〈fσ〉 values, the posterior PDF for

black hole mass for Mrk 1310 extends down to values below log10(MBH/M�) ∼ 6.5 and

hence the posterior PDF for fσ also extends down to values consistent with the higher

〈fσ〉 values.

There are fewer measurements of fFWHM in the literature. Collin et al. (2006) find

log10〈fFWHM〉 = 0.07+0.15
−0.24, in good agreement with the more recently calculated value of

log10〈fFWHM〉 = 0.08± 0.12 from Yoon et al. (in preparation). While three of the AGNs

in our sample have values of fFWHM consistent with the mean value of Yoon et al., Mrk

1310 and NGC 6814 have values that are only marginally consistent.

5.3.3 The mean f factor for LAMP 2008

With five independent black hole mass measurements we can now calculate the mean

f factors for our AGN sample, called 〈fσ〉 and 〈fFWHM〉. We use the full posterior distri-

butions of f for each AGN to measure the mean and the dispersion of the distribution

of f factors for the whole sample, as described in Appendix 5.6. We measure a value

for 〈log10(fσ)〉 of 0.68 ± 0.40 and a dispersion for log10(fσ) of 0.75 ± 0.40, while we

measure a value for 〈log10 fFWHM)〉 of −0.07 ± 0.40 and a dispersion for log10(fFWHM)

of 0.77 ± 0.38. The posterior distributions for 〈log10(fσ)〉 and 〈log10(fFWHM)〉 and the
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Figure 5.24: Top: The posterior distribution for 〈log10(fσ)〉, the mean of the fσ factor
distribution for our sample of five AGNs, is shown by the solid blue line. The predictive
distribution for new measurements of log10(fσ) is shown by the dashed red line. Bottom:
The posterior distribution for 〈log10(fFWHM)〉, the mean of the fFWHM factor distribution
for our sample of five AGNs, is shown by the solid blue line. The predictive distribution
for new measurements of log10(fFWHM) is shown by the dashed red line.
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predictive distributions for new measurements of log10(fσ) and log10(fFWHM) are illus-

trated in Figure 5.24. The predictive distribution is the distribution from which new

measurements of f are drawn and is wider than the posterior for the mean value due to

the large scatter in individual f posterior distributions. Both our values of 〈fσ〉 and its

dispersion are consistent to within the uncertainties with the values for 〈fσ〉 measured

by aligning the MBH − σ∗ relation for active galaxies with the relation for galaxies with

dynamical mass estimates (e.g. Onken et al. 2004; Woo et al. 2010; Graham et al. 2011;

Park et al. 2012a; Woo et al. 2013; Grier et al. 2013a). Similarly, our values of 〈fFWHM〉

and its dispersion are consistent to within the uncertainties with the values measured by

Collin et al. (2006) and Yoon et al. (in preparation). The mean f factors derived here

are meant to illustrate the capabilities of the direct modeling approach and should not be

used to normalize the black hole masses of reverberation mapped AGNs until the direct

modeling sample is both larger and more representative of the overall AGN population.

5.4 Conclusions

We have applied direct modeling techniques to a sample of five AGNs from the LAMP

2008 reverberation mapping campaign in order to constrain the geometry and dynamics

of the Hβ BLR. Direct modeling also allows us to measure the black hole mass indepen-

dently and, by comparison with the virial product from traditional reverberation mapping

analysis, to measure the virial coefficient or f factor for individual AGNs. We have also

measured the mean f factor for our sample, a number that determines the absolute mass

scaling for the whole reverberation mapping sample. Our main results are as follows:
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Table 5.2: Inferred posterior median parameter values and central 68% credible intervals
for direct modeling of five LAMP 2008 AGNs. The definitions of the geometry and
dynamical model parameters can be found in Appendix 5.5.

Geometry Model Arp 151 Mrk 1310 NGC 5548 NGC 6814 SBS 1116+583A
Parameter

rmean (light days) 3.44+0.26
−0.24 3.13+0.42

−0.40 3.31+0.66
−0.61 3.76+1.15

−0.77 4.07+0.79
−0.65

rmin (light days) 0.44+0.13
−0.20 0.12+0.19

−0.08 1.39+0.80
−1.01 0.15+0.19

−0.11 0.93+0.50
−0.49

σr (light days) 3.72+0.45
−0.43 2.59+0.42

−0.35 1.50+0.73
−0.60 3.75+1.05

−0.69 3.14+0.81
−0.66

τmean (days) 3.07+0.25
−0.20 2.96+0.42

−0.35 3.22+0.66
−0.54 4.43+0.72

−0.83 3.78+0.57
−0.52

τmedian (days) 1.75+0.28
−0.23 2.26+0.35

−0.31 2.77+0.63
−0.42 2.67+0.60

−0.61 2.71+0.40
−0.37

β 1.25+0.15
−0.16 0.89+0.10

−0.10 0.80+0.60
−0.31 1.07+0.08

−0.09 1.00+0.27
−0.21

θo (degrees) 25.6+3.7
−4.0 8.6+3.5

−2.1 27.4+10.6
−8.4 50.2+22.0

−18.6 21.7+11.0
−7.5

θi (degrees) 25.2+3.3
−3.4 6.6+5.0

−2.5 38.8+12.1
−11.4 49.4+20.4

−22.2 18.2+8.4
−5.9

κ −0.36+0.08
−0.08 −0.04+0.38

−0.35 −0.24+0.06
−0.13 −0.44+0.10

−0.05 −0.03+0.31
−0.34

γ 4.27+0.54
−0.80 2.97+1.38

−1.43 2.01+1.78
−0.71 2.91+1.37

−1.31 3.19+1.21
−1.37

ξ 0.09+0.08
−0.05 0.40+0.38

−0.29 0.34+0.11
−0.18 0.71+0.22

−0.33 0.61+0.28
−0.37

Dynamical Model Arp 151 Mrk 1310 NGC 5548 NGC 6814 SBS 1116+583A
Parameter

log10(MBH/M�) 6.62+0.10
−0.13 7.42+0.26

−0.27 7.51+0.23
−0.14 6.42+0.24

−0.18 6.99+0.32
−0.25

fellip 0.06+0.09
−0.05 0.56+0.34

−0.39 0.23+0.15
−0.15 0.32+0.17

−0.22 0.66+0.21
−0.27

fflow 0.24+0.20
−0.17 0.65+0.24

−0.38 0.25+0.21
−0.16 0.29+0.25

−0.19 0.31+0.31
−0.22

θe (degrees) 12.0+10.7
−8.3 57.2+24.9

−41.0 21.3+21.4
−14.7 47.0+16.7

−26.5 49.7+28.8
−32.1

σturb 0.008+0.028
−0.007 0.004+0.010

−0.003 0.016+0.044
−0.013 0.013+0.036

−0.011 0.011+0.033
−0.009

Table 5.3: Inferred posterior median parameter values and central 68% credible intervals
for f factors of five LAMP 2008 AGNs. The f factor corresponding to the difference
between black hole mass and the virial product measured using the dispersion of the
RMS line profile is given as fσ, while the one corresponding to a virial product measured
using the FWHM of the mean line profile is given as fFWHM.

Object log10(fσ) log10(fFWHM)
Arp 151 0.51+0.10

−0.13 −0.24+0.10
−0.13

Mrk 1310 1.63+0.26
−0.27 0.79+0.26

−0.27

NGC 5548 0.42+0.23
−0.14 −0.58+0.23

−0.14

NGC 6814 −0.14+0.24
−0.18 −0.68+0.24

−0.18

SBS 1116+583A 0.96+0.32
−0.25 0.34+0.32

−0.25
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1. The geometry of the BLR is consistent with a thick disk. The radial distribution

of Hβ emitting gas is closer to exponential than Gaussian and is viewed closer to

face-on than edge-on. For Arp 151 we find a more detailed geometry of a half-cone,

where the Hβ emission is concentrated towards the outer faces of the disk and the

disk mid-plane is mostly opaque, similar to the bowl BLR geometry proposed by

Goad et al. (2012).

2. There is preferential Hβ emission from the far side of the BLR with respect to the

observer, consistent with models where the BLR gas is self-shielding.

3. The dynamics of the BLR are consistent with inflowing motions, elliptical orbits,

or a combination of both. Specifically, the dynamics of Arp 151 are inferred to be

inflowing motions, in agreement with velocity-resolved cross-correlation lag mea-

surements (Bentz et al. 2009b) and reconstruction of the transfer function using

maximum entropy techniques (Bentz et al. 2010b).

4. The black hole masses for the five objects in our sample are log10(MBH/M�) =

6.62+0.10
−0.13 for Arp 151, 7.42+0.26

−0.27 for Mrk 1310, 7.51+0.23
−0.14 for NGC 5548, 6.42+0.24

−0.18 for

NGC 6814, and 6.99+0.32
−0.25 for SBS 1116+583A.

5. Using our measurements of the black hole mass and virial products based on the

dispersion of the RMS line profile, we measure the f factors for the AGNs in our

sample to be log10(fσ) = 0.51+0.10
−0.13 for Arp 151, 1.63+0.26

−0.27 for Mrk 1310, 0.42+0.23
−0.14

for NGC 5548, −0.14+0.24
−0.18 for NGC 6814, and 0.96+0.32

−0.25 for SBS 1116+583A. Using

instead the virial products based on the FWHM of the mean line profile, we find
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that log10(fFWHM) = −0.24+0.10
−0.13 for Arp 151, 0.79+0.26

−0.27 for Mrk 1310, −0.58+0.23
−0.14 for

NGC 5548, −0.68+0.24
−0.18 for NGC 6814, and 0.34+0.32

−0.25 for SBS 1116+583A.

6. The f factors for individual AGNs are correlated with inclination angle, but not

with black hole mass, AGN optical luminosity, or Eddington ratio.

7. Neither the f factors nor the inclination angles for individual AGNs are strongly

correlated with the ratio of the FWHM to the line dispersion in the mean Hβ

spectrum, as would be expected if line shape correlated strongly with viewing angle

of the BLR. However, we do find a tentative correlation between the ratio of the

FWHM to the line dispersion and black hole mass.

8. By combining the posterior distributions of f for each AGN, we measure mean

values of f for the sample. With virial products based on the dispersion of the RMS

line profile, we measure a mean value of log10(fσ) of 0.68± 0.40 with a dispersion

in log10(fσ) of 0.75 ± 0.40, and using virial products based on the FWHM of the

mean line profile we measure a mean log10(fFWHM) value of −0.07 ± 0.40 with a

dispersion in log10(fFWHM) of 0.77 ± 0.38. These values of the mean f factor are

meant to illustrate the capabilities of the direct modeling approach and should not

be used to calibrate black hole masses from reverberation mapping until the sample

size is larger and more representative of the overall AGN population.

The modeling results presented here demonstrate the capabilities of the direct mod-

eling approach and show that significant information about the BLR geometry and dy-

namics is encoded in high-quality reverberation mapping datasets. We find that the five

AGNs in our sample have similar geometric and kinematic features, suggesting that the
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BLR may also be similar in other Seyfert 1 galaxies with low luminosities, black hole

masses of 106.5−7.5M�, and small Eddington ratios. By applying the direct modeling

approach to a larger sample of AGNs, we can determine if and how the properties of the

BLR might change with increasing luminosity, accretion rate, and black hole mass.

Our results also demonstrate the feasibility of measuring black hole masses indepen-

dently of the f factor in Seyfert 1 galaxies. For the reverberation mapping datasets shown

here, black hole masses can be constrained to 0.15− 0.3 dex uncertainty depending upon

data quality and degeneracy of the black hole mass with the geometrical properties of the

BLR, such as inclination angle of the observer and opening angle of the disk. In addition,

the BLR kinematics inferred for our sample are consistent with bound orbits, suggesting

that the Hβ-emitting BLR is not significantly affected by disk winds or outflows. This

is an important consistency check for reverberation mapped black hole masses because

they are measured by assuming the BLR gas orbits are dominated by the gravity of the

black hole. Future versions of our BLR model will explore the issue of non-gravitational

forces further and relate broad line emission to the properties of the emitting gas by

incorporating the results of photoionization physics.
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5.5 Appendix: Definition of model parameters

5.5.1 Geometry model parameters

We use a Gamma distribution to model the radial distribution of point particles in

the BLR:

p(x|α, θ) ∝ xα−1 exp
(
−x
θ

)
. (5.2)

We then allow the Gamma distribution to be offset from the origin by an amount rmin

plus the Schwarzschild radius, Rs = 2GM/c2, and perform a change of variables between

(α, θ) and (µ, β, F ) such that

µ = Rs + rmin + αθ (5.3)

β =
1√
α

(5.4)

F =
rmin

rmin + αθ
(5.5)

where µ is the mean radius, β determines the shape of the Gamma distribution, and F

is the fraction of µ corresponding to rmin. The prior on µ is uniform in the log of the

parameter between 1.02 × 10−3 light days and the time span between the first and last

measurement of the continuum or line flux, while the prior on β is uniform between 0 and

2 and the prior on F is uniform between 0 and 1. The standard deviation for the radial

distribution is given by σr = µβ(1−F ). We can also calculate the numerical mean radius

rmean, the numerical mean time lag τmean, and the numerical median time lag τmedian for

a specific realization of point particle positions. The direct modeling results in Table 5.2

include values for rmean, rmin, σr, τ , and β. The geometry of the BLR is further defined
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by θo, the half-opening angle of the BLR disk. Values of θo → 0 (90) degrees correspond

to thin disk (spherical) geometries and the prior is uniform between 0 and 90 degrees.

The inclination angle, θi, is the angle by which an observer views the BLR. Values of

θi → 0 (90) degrees correspond to face-on (edge-on) geometries and the prior is uniform

in the cosine of the inclination angle between 0 and 90 degrees. We weight the emission

from each point particle by a cosine function:

W (φ) =
1

2
+ κ cosφ. (5.6)

where W is the weight (between 0 and 1) given to each point particle, φ is the angle

between the observer’s line of sight to the central source and the point particle’s line of

sight to the central source, and κ is a parameter with uniform prior between −0.5 and

0.5. Values of κ → −0.5 (0.5) correspond to the far (near) side of the BLR producing

more line emission. We also include the option for preferential emission from the faces

of the BLR disk by changing the angle θ for a point particle’s displacement from a flat

to thick disk, given by

θ = acos (cos θo + (1− cos θo)× Uγ) (5.7)

where U is a random number drawn uniformly between the values of 0 and 1. Values

of γ → 1 (5) correspond to uniform concentrations of point particles in the disk (more

point particles along the faces of the disk), where γ has a uniform prior between 1 and

5. Finally, we allow the midplane of the BLR to range between opaque and transparent,

where ξ is the fraction of the point particles below the midplane that are not moved to

the top half. For ξ → 1 (0) the midplane is transparent (opaque), where ξ has a uniform

prior between 0 and 1.
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5.5.2 Dynamical model parameters

The dynamics of the BLR are determined by the black hole mass, MBH, which has

a uniform prior in the log of the parameter between 2.78 × 104 and 1.67 × 109M�. We

draw the velocities for the point particles from two distributions in the plane of radial

and tangential velocities. The fraction of point particles with velocities drawn from

the distribution centered around the circular orbit value is given by fellip, which has a

uniform prior between 0 and 1. The remaining point particles have velocities drawn from

the distribution centered around either the radial inflowing or outflowing escape velocity

values, where 0 < fflow < 0.5 corresponds to the inflowing distribution and 0.5 < fflow < 1

corresponds to the outflowing distribution, and where fflow has a uniform prior between

0 and 1. The inflow/outflow-centered distributions can also be rotated by an angle θe

towards the circular orbit-centered distribution, where θe has a uniform prior between 0

and 90 degrees. Finally, we include additional macroturbulent velocities given by:

vturb = N (0, σturb)|vcirc| (5.8)

where vcirc is the circular orbit velocity and σturb is the standard deviation of the Gaussian

distribution from which a random macroturbulent velocity component is drawn. σturb

has a uniform prior in the log of the parameter between 0.001 and 0.1.

5.6 Appendix: Calculating the mean f factor

For each of the five AGNs in our sample, we can compute the posterior distribution

for the f factor that relates the black hole mass to either the velocity dispersion or the
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FWHM of the broad emission line. Here we describe the method used to constrain the

distribution of f values from the modelling results (see Hogg et al. 2010; Brewer & Elliott

2014, for examples using the same approach). Consider a collection of N objects, each

of which has a property θ which we infer from data D. Modelling each object yields a

posterior distribution

p(θi|Di) ∝ π(θi)p(Di|θi) (5.9)

where π(θi) is the prior used in the modelling, which is the same for each object. In

practice, since we are using MCMC, the posterior distributions p(θi|Di) are represented

computationally by samples. In our particular application, θ ≡ log10(f).

Unfortunately, the use of the π(θi) prior for each object implies we do not expect the

objects to be clustered around a typical θ value. If we did expect such clustering, we

should have used a different prior for the {θi}, such as a normal distribution:

p({θi}|µθ, σθ) =
N∏
i=1

1

σθ
√

2π
exp

[
− 1

2σ2
θ

(θi − µθ)2

]
(5.10)

This is the prior, conditional on two new hyperparameters describing the typical value

µθ that the objects are clustered around, and the scatter σθ. To complete the inference

we also need to assign a prior to µθ and σθ, which we take to be vague. Using this model,

we can summarise our uncertainty about the properties of the sample by calculating the

posterior distribution for µθ and σθ. Alternatively the posterior distribution for the actual

mean 1
N

∑N
i=1 θi could be calculated, but the former approach allows for generalisation

beyond the current sample.
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The posterior distribution for the hyperparameters is

p(µθ, σθ|{Di}) ∝ p(µθ, σθ)p({Di}|µθ, σθ) (5.11)

∝ p(µθ, σθ)

∫ N∏
i=1

p(θi, Di|µθ, σθ) dNθi (5.12)

∝ p(µθ, σθ)

∫ N∏
i=1

p(θi|µθ, σθ)p(Di|θi, µθ, σθ) dNθi (5.13)

∝ p(µθ, σθ)

∫ N∏
i=1

p(θi|µθ, σθ)p(Di|θi) dNθi (5.14)

∝ p(µθ, σθ)

∫ N∏
i=1

p(θi|µθ, σθ)
π(θi)

π(θi)
p(Di|θi) dNθi (5.15)

∝ p(µθ, σθ)
N∏
i=1

〈
p(θi|µθ, σθ)
π(θi)

〉
. (5.16)

where the expectation is taken with respect to the posterior distributions we have actually

sampled, and can be computed straightforwardly. Essentially, Eq 5.16 favors (µθ, σθ)

values that place a lot of probability in regions that overlap with the posteriors that we

found.
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Chapter 6

Photometric light curves for the LAMP 2011

reverberation mapping dataset

This chapter is taken from Pancoast, A. et al. (37 co-authors), “The Lick AGN

Monitoring Project 2011: Photometric Light Curves”, in preparation, and is included

here with minor formatting adjustments and a section on future work.

The Lick AGN Monitoring Project 2008 (LAMP; Walsh et al. 2009; Bentz et al.

2009b), a reverberation mapping campaign with spectroscopy taken at Lick Observatory

and V and B-band imaging taken at a number of ground-based observatories, provided

a sample with sufficient quality to develop the direct modeling approach to constrain

the geometry and dynamics of the BLR (Pancoast et al. 2011, 2014a). The LAMP

2008 sample was chosen to measure black hole masses of ∼ 106 − 107 M�, filling in the

lower-mass regime of the MBH− σ∗ relation and providing a measurement of the average

value of the f factor (Woo et al. 2010), allowing for improved constraints on the BLR

size-luminosity relation (Greene et al. 2010b), and providing a recalibration of single-

epoch AGN black hole masses (Park et al. 2012b). For the most variable object in the

sample, Arp 151, the data allowed for reverberation mapping of multiple Balmer lines

(Bentz et al. 2010a), constraints on the form of the velocity-resolved transfer function
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using the maximum-entropy MEMECHO software (Bentz et al. 2010b), and, along with

four other LAMP 2008 targets, dynamical modeling of the BLR to obtain independent

measurements of the black hole mass and f factor (Brewer et al. 2011a; Pancoast et al.

2014b).

In order to obtain additional high-quality reverberation mapping data using spec-

troscopy from Lick Observatory, the LAMP team undertook a second reverberation map-

ping campaign in the Spring of 2011, the Lick AGN Monitoring Project 2011. In addition

to spectroscopy in the optical covering Hα through Hδ taken with the Kast Spectrograph

on the Shane Telescope at Lick Observatory, V -band AGN continuum images were taken

by six different telescopes: the West Mountain Observatory, the Faulks telescopes North

and South, the Katzman Automatic Imaging Telescope, Super-LOTIS at Kitt Peak, and

the Palomar 60 inch telescope. The resulting reverberation mapping dataset from the

LAMP 2011 campaign provides an ideal target for detailed analysis such as spectral de-

composition to isolate broad lines with lower fluxes and constraints on the geometry and

dynamics of the BLR through recovery of the transfer function or dynamical modeling of

the BLR. Preliminary results for LAMP 2011 focused on the most variable AGN in the

sample, Mrk 50, including both a black hole mass measurement using cross-correlation

(Barth et al. 2011a) and a black hole mass measurement from dynamical modeling of

the BLR (Pancoast et al. 2012). Additional preliminary results for NGC 4593 and Mrk

1511 focused on reverberation of the Fe II broad line complexes close to Hβ (Barth et al.

2013). Here we analyze the V -band AGN continuum light curves for the entire LAMP

2011 sample. The Hβ light curves are analyzed in a companion paper by Barth et al.

(2015).
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In this chapter, we describe the analysis of V -band AGN continuum images for

reverberation mapping. The resulting V -band light curves are measured using image

subtraction software for the higher-quality targets and traditional aperture photometry

techniques for those showing less V -band or broad emission line variability. We align

the light curves for each telescope by modeling the AGN continuum variability using

Gaussian processes. In Section 6.1 we describe the LAMP 2011 sample of AGNs and in

Section 6.2 we list the observations from the six telescopes. In Section 6.3 we describe

the data reduction and photometry, including the Gaussian process model for aligning

the different telescope light curves. In Section 6.4 we present the V -band continuum light

curves and in Section 6.5 we discuss future work.

6.1 Sample selection

The sample selection for this project was motivated by recent advances in measuring

high quality AGN light curves and analyzing velocity-resolved reverberation mapping

data (Bentz et al. 2009b; Denney et al. 2010; Pancoast et al. 2011; Brewer et al. 2011a)

to obtain constraints on the geometry and dynamics of the BLR. Since velocity-resolved

reverberation mapping data requires a high signal-to-noise ratio (SNR) across the broad

emission line profile, this sample focused on AGN with V . 17 so that exposure times

would not exceed 40 minutes. The LAMP 2011 sample includes 15 Seyfert 1 galaxies

within z < 0.042, listed in Table 6.1. These objects were chosen from the Sloan Digital

Sky Survey (SDSS) Data Release 7 archive (Abazajian et al. 2009) and other AGN

catalogs for strong broad Hβ emission. The time lag between the continuum and Hβ line
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Table 6.1: Details of the AGN sample. Coordinates are given in hours, minutes, seconds
for right ascension (α) and degrees, arcminutes, and arcseconds for declination (δ). Red-
shifts are from the NASA Extragalactic Database (NED). Galactic extinctions (AV ) are
taken from NED values from Schlafly & Finkbeiner (2011) with RV = 3.1.

Object α(J2000.0) δ(J2000.0) z AV (mag) Alternate Name
Mrk 40 11 25 36.2 +54 22 57 0.0211 0.039 Arp 151
Mrk 50 12 23 24.1 +02 40 45 0.0234 0.044
Mrk 141 10 19 12.5 +63 58 03 0.0417 0.028
Mrk 279 13 53 03.4 +69 18 30 0.0305 0.044 PG 1351+695
Mrk 486 15 36 38.3 +54 33 33 0.0389 0.040 PG 1535+547
Mrk 493 15 59 09.6 +35 01 47 0.0313 0.068
Mrk 504 17 01 07.7 +29 24 25 0.0359 0.135 PG 1659+294
Mrk 704 09 18 26.0 +16 18 19 0.0292 0.079
Mrk 817 14 36 22.1 +58 47 39 0.0315 0.019 PG 1434+590
Mrk 841 15 04 01.2 +10 26 16 0.0364 0.082 PG 1501+106
Mrk 1392 15 05 56.5 +03 42 26 0.0361 0.125
Mrk 1511 15 31 18.1 +07 27 28 0.0339 0.112 NGC 5940
NGC 4593 12 39 39.4 -05 20 39 0.0090 0.068 Mrk 1330

PG 1310-108 13 13 05.8 -11 07 42 0.0343 0.143 II SZ 10
Zw229-015 19 05 25.9 +42 27 40 0.0279 0.198

flux was chosen to be < 25 light days from the radius-luminosity relation by Bentz et al.

(2009a) or previous reverberation mapping studies, ensuring that the campaign cadence

would be smaller than the time lag for all objects and that the longest time lag could still

be well-constrained within the duration of the campaign. The full details of the LAMP

2011 sample selection are given in Barth et al. (2015).

6.2 Observations

We obtained V -band images of our sample of AGNs using six telescopes including the

West Mountain Observatory (WMO), the Faulks Telescopes North and South (FTN/S),

the Katzman Automatic Imaging Telescope (KAIT), Super-LOTIS at Kitt Peak, and the

Palomar 60 inch telescope (P60). Telescope details are listed in Table 6.2. All AGNs in
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Table 6.2: Telescope properties. FOV is field of view. The gain and read noise are
parameters in the IRAF photometry procedure.

Telescope Mirror diameter FOV Pixel scale Gain Read noise
(m) ′′/pixel e−/ADU e−

WMO 0.91 25 ′.2× 25 ′.2 0.49 1.53 13.2
FTN 2 10 ′.5× 10 ′.5 0.304 8.09 11.31
FTS 2 10 ′.5× 10 ′.5 0.304 5.2 8.2

KAIT 0.76 6 ′.7× 6 ′.7 0.8 4.5 12.0
Super-LOTIS 0.6 17 ′×17 ′ 0.5 3.93 11.59

P60 1.5 12 ′.9× 12 ′.9 0.378 2.2 5.72

the sample were observed with WMO, FTN or FTS, and P60, while most AGNs were also

observed with KAIT and Super-LOTIS. The AGNs were monitored from early March

through mid-June, 2011. The exceptions were Mrk 50, for which spectroscopy was taken

before the main observing campaign, and Mrk 817 and Zw 229, for which Spitzer data

was taken during and after the campaign. Exposure times were generally 180-300 s.

6.2.1 West Mountain Observatory

The 0.91 m telescope at West Mountain Observatory (WMO) is the largest of five

telescopes operated by Brigham Young University. The telescope uses a 3056 × 3056

pixel Finger Lakes PL-09000 CCD with a pixel scale of 0. ′′49/pixel and field of view

of 25 ′.2×25 ′.2. All AGNs in our sample were observed with WMO and photometric

observations of each AGN will be calibrated using Landolt fields.

6.2.2 Faulks Telescopes North and South

The 2 m Faulkes Telescope North (FTN) and Faulkes Telescope South (FTS) are part

of the Los Cumbres Observatory Global Telescope Network (LCOGT). FTN is at Mt.
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Haleakala Hawaii and FTS is at Siding Spring Australia, providing coverage of both

the northern and southern hemispheres. For both telescopes we used the 4097 × 4096

pixel Spectral cameras with Fairchild CCD486 BI CCDs. The pixel scale of the Spectral

cameras is 0. ′′304/pixel, providing a field of view of 10 ′.5×10 ′.5. We used FTN to observe

Mrk 704, Mrk 141, Mrk 279, Mrk 817, Mrk 486, Mrk 504, Mrk 493, and Arp 151 and

used FTS to observe Mrk 50, NGC 4593, IISZ10, Mrk 841, Mrk 1392, and Mrk 1511.

6.2.3 Katzman Automatic Imaging Telescope

The 0.76 m Katzman Automatic Imaging Telescope (KAIT) is a robotic telescope at

Lick Observatory (Filippenko et al. 2001). The telescope uses a 500× 500 pixel Apogee

Instruments Peltier cooled CCD with a pixel scale of 0. ′′8/pixel giving a field of view of

6 ′.7×6 ′.7. KAIT was used to observe all objects in the sample except Arp 151, NGC

4593, IISZ10, Mrk 841, and Mrk 486.

6.2.4 Super-LOTIS

The 0.6 m Super-LOTIS telescope is a robotic telescope at the Steward Observatory,

Kitt Peak. The telescope uses a 2048× 2048 pixel SpectralInst. 800 Series CCD Camera

with a pixel scale of 0. ′′5/pixel giving a field of view of 17 ′×17 ′. Super-LOTIS was used

to observe all objects in the sample except for Zw229-015. Due to a filter wheel problem,

images before March 26 were excluded from the light curve analysis.
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6.2.5 P60

The 1.5 m Palomar 60 inch (P60) telescope is a robotic telescope at the Palomar

Observatory operated by the California Institute of Technology (Cenko et al. 2006). The

telescope has a 2048 × 2048 pixel SITe CCD with a pixel scale of 0. ′′378/pixel giving a

field of view of 12 ′.9×12 ′.9. All objects in the sample were observed nightly.

6.3 Data reduction and photometry

Initial reduction of the data was performed by the automated pipeline for each tele-

scope. The data then underwent additional reductions to ensure that the images from

each telescope were flat-fielded, bias subtracted, and cosmic-ray cleaned using the LA-

COSMIC routine (van Dokkum 2001). The preprocessed data for the nine AGN targets

with significant Hβ variability were then analyzed using image subtraction software in

order to isolate the variable AGN flux from the constant flux of the host galaxy. We

performed photometry on the data with the constant flux sources removed using point-

source IRAF photometry routines. The details of the photometry and image subtraction

process are described in Section 6.3.1. Since we created separate light curves for each

telescope for a given AGN, we had to align the multiple light curves for each AGN as

described in Section 6.3.2. For the remaining six AGN targets without image subtrac-

tion photometry, we performed standard aperture photometry techniques as described

in Section 6.3.4. Finally, a discussion of how the photometry flux errors are calculated is

given in Section 6.3.3.
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6.3.1 Image subtraction photometry

The goal of the V -band imaging campaign is to measure differential photometry

light curves for each AGN in the LAMP 2011 sample. Without a flux calibration, the

differential photometry light curves have units of relative flux, which is sufficient for

reverberation mapping analysis. What is crucial, however, is isolation of the variable

AGN flux from the constant host galaxy flux. The added constant host galaxy flux has

the effect of diluting the AGN variability, leading to less stringent constraints on the

black hole mass and lag measurements.

The traditional approach of creating differential photometry light curves for reverber-

ation mapping involves doing photometry on extended source images of the host galaxy

plus AGN. In the traditional approach, a single aperture size is required for the photome-

try in each image of the light curve in order to minimize the effect of including a variable

amount of host galaxy light. However, variable seeing conditions over the course of the

observing campaign can lead to more or less host galaxy light being inside the fixed-size

aperture. Choosing the best aperture size to use is then an optimization problem of

including as small a fraction of host galaxy light as possible in order to not dilute the

AGN signal while using an aperture wide enough to not suffer from the effects of variable

seeing conditions.

One way to circumvent these problems is to subtract the constant flux sources in an

image before photometry. Image subtraction software is made especially for this purpose

and is what we use to create relative flux light curves for the majority of AGNs in the

LAMP 2011 sample. Once the variable AGN continuum has been isolated, we create
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V -band light curves using point-source photometry of the AGN. Since most of the AGNs

in the LAMP 2011 sample have extended host galaxies, isolating the point-source AGN

continuum is crucial for creating light curves whose variability is not diluted with the

constant host galaxy light. Isolating the AGN point-source also solves the problem of

aperture effects on extended sources.

Applying image subtraction to a set of images is done by: 1) astrometrically aligning

the images, 2) creating a template image that has the best seeing and lowest background

and is typically a combination of the best couple of images, 3) creating individualized

templates for each image by solving for the space-varying convolution kernal that matches

the point-spread-functions of the image and template, and 4) subtracting the template

from each image. After subtracting the template from an image, only the variable com-

ponents are left, including the AGN point-source. Non-variable comparison stars in the

field of view are used to properly combine the different images into a light curve.

We use the HOTPANTS image subtraction package by A. Becker1 based on the

algorithm by Alard (2000) and a version of the ISIS image subtraction code (Alard &

Lupton 1998) modified by the High-z Supernova Search Team (Tonry et al. 2003) and W.

Li. For the highest quality images, the HOTPANTS and Highz software packages provide

consistent results. However, for lower quality images, one software package may provide a

better image subtraction than the other, in which case only one software package is used

for that light curve or individual image. Once the image subtraction has been completed,

we perform point-source photometry on the image-subtracted images using the IRAF

task PHOT in the DAOPHOT package to calculate the flux and flux uncertainty of the

1http://www.astro.washington.edu/users/becker/v2.0/hotpants.html
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AGN and comparison stars. The photometry analysis consists of measuring the flux in

a circular aperture centered on an object (AGN or comparison star) and then using a

circular ring of flux outside the aperture to measure and subtract the background flux.

After point-source photometry, the light curve is in relative flux units.

We use a different template image for each telescope for a given AGN so that there

are multiple light curves for each AGN, one from each telescope. The comparison stars

for a given AGN field do not have to be the same for the different telescopes, making

it easier to deal with fields of view of varying size. In order to combine the different

telescope light curves for an AGN, we model the light curves using Gaussian Processes,

as described in Section 6.3.2.

6.3.2 Image subtraction light curve alignment

After applying image subtraction and point-source photometry techniques to the V -

band images, we are left with multiple relative flux light curves for each AGN, one for

each telescope. In order to align the different light curves for each AGN, we model the

light curve using Gaussian Processes (MacKay 2003; Rasmussen & Williams 2006), which

has been found to be a good model for AGN variability for large samples of AGN (Kelly

et al. 2009; Koz lowski et al. 2010; MacLeod et al. 2010; Zu et al. 2013). The model takes

an arbitrary number of light curves and aligns them to a primary light curve. We use

the WMO light curves as the primary light curves for our sample, since the WMO light

curves will be flux-calibrated, as described in Section 6.5.

The model we use for the AGN light curves has a probability distribution for the
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fluxes f in the light curve given by a multivariate Gaussian:

p(f |µ,C) =
1√

(2π)ndetC
× exp

(
−1

2
(f − µ)TC−1(f − µ)

)
(6.1)

where µ(t) is the mean function, and C(t1, t2) is the covariance function. The covari-

ance function is parametrized by four hyperparameters: µ (the long-term mean), σ (the

long-term standard deviation), τ (typical timescale of variations) and α (a smoothness

parameter between 1 and 2), so that the mean function is a constant µ(t) = µ and the

covariance function is given by:

C(t1, t2) = σ2 exp

[
−
( |t2 − t1|

τ

)α]
(6.2)

We illustrate the light curve alignment model using two light curves (true, complete,

and noise-free), y1(t) and y2(t). There is a scaling A and a shift B that relates the two

light curves, given by:

y2(t) = Ay1(t) +B (6.3)

Suppose our knowledge of y1(t) is a Gaussian Process (GP) with mean µ1 (a constant,

for our purposes) and covariance function C1(τ). By the linearity of Equation 6.3, our

knowledge of y2(t) is also a GP, and indeed so is our joint knowledge of y1(t) and y2(t).

The expectation value of y2(t) is:

µ2 = 〈y2(t)〉 = A 〈y1(t)〉+B (6.4)

= Aµ1 +B (6.5)
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and the covariance function for y2(t) is:

C2(τ) = 〈(y2(t)− µ2) (y2(t+ τ)− µ2)〉 (6.6)

= 〈(Ay1(t) +B − (Aµ1 +B)) (6.7)

× (Ay1(t+ τ) +B − (Aµ1 +B))〉

= 〈(Ay1(t)− Aµ1) (Ay1(t+ τ)− Aµ1)〉 (6.8)

= A2C1(τ). (6.9)

We also need the “cross-terms”, the covariance between y1(t1) and y2(t2). This is

given by:

Cov(y1(t1), y2(t2)) = 〈(y1(t1)− µ1) (y2(t2)− µ2)〉 (6.10)

= 〈(y1(t1)− µ1) (Ay1(t2)

+B − (Aµ1 +B))〉 (6.11)

= A 〈(y1(t1)− µ1)

× (y1(t2)− µ1)〉 (6.12)

= AC1(t2 − t1). (6.13)

We use a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm to

explore the parameter space of A, B, and the parameters of the GP that include τ , σ,

α, and µ. The MCMC algorithm returns an inference on the parameter values in the

form of the posterior probability density function (PDF);we use the mean values of the

posterior PDFs for A and B for the final alignment of the light curves. Since there is

some uncertainty in the inferred values for the A and B alignment constants, one could

use the uncertainty values to explore the range in allowed light curve alignments.
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6.3.3 Image subtraction light curve error estimation

The relative flux uncertainties from image subtraction analysis are measured from

the IRAF photometry procedure PHOT in the DAOPHOT package. In many cases the

flux uncertainties are very low for the high-quality images, due to the image subtraction

process isolating only the variable AGN point source from the extended host galaxy.

In order to obtain reasonable errorbars on photometry measurements after image

subtraction, there are two steps that must be taken. First, in order to properly account

for the level of background flux in an image when using image subtraction and performing

subsequent photometry, the background flux is not removed prior to performing image

subtraction. Second, the aperture size for point-source photometry is only slightly larger

than the typical point-spread-function width of the light curve. This second steps ensures

that the AGN variability is not diluted by the noise of the background in the image

subtraction-processed image.

The telescope quality also has an effect on the final flux uncertainties through the

quality of the camera, observing conditions, and integration time of the exposure or

number of exposures. These affects lead to each of the individual telescope light curves

for an AGN having different typical flux uncertainties.

We tested whether an example of the Super-LOTIS light curve having significantly

larger errorbars than the WMO and LCOGT datapoints was also true when doing pho-

tometry on the images before image subtraction. We used data for PG 1310-108 and

performed extended source photometry on the AGN and three comparison stars for two

images in the Super-LOTIS light curve for which the flux difference should be greatest
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based on higher signal-to-noise data. We found that the difference in flux, ∆F , be-

tween these two points F1 and F2 divided by the error in this difference measurement(
σ∆F =

√
σ2

F1
+ σ2

F2

)
was greater for image subtraction than for the extended source

photometry. This shows that image subtraction is able to isolate the variable AGN flux

with greater precision than extended source photometry. As a final test, we checked that

the value ∆F/σ∆F is conserved during realignment of each telescope light curve to that

of WMO.

One source of systematic uncertainty that is not accounted for in the final light

curve fluxes is the uncertainty from aligning the light curves from different telescopes.

As described in Section 6.3.2, we use an MCMC algorithm to constrain the values and

uncertainties of the additive and multiplicative constants that align each telescope light

curve to the WMO light curve. The uncertainty in the light curve alignment is difficult to

incorporate into the final light curve values because it is a correlated error for all points

in each telescope light curve. For analysis that easily works with a sample of light curves

instead of a single light curve, such as cross-correlation analysis, it is possible to use the

posterior sample of light curve alignments instead.

6.3.4 Standard aperture photometry

For objects that were comparatively less variable, we chose to use aperture photometry

instead of image subtraction to construct the AGN light curves. After the images were

reduced, we used the Astrometry.net software (Lang et al. 2010) to register celestial

coordinates onto the images. We then performed aperture photometry in IDL using
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an aperture radius of 4 ′′and sky annulus radii of 10 ′′−20 ′′and obtained instrumental

magnitudes for all AGNs and several comparison stars in each field. The comparison

stars were chosen to have similar or slightly brighter instrumental magnitudes compared

to the AGN in the field. For nights where multiple exposures were taken at the same

telescope, the magnitude measurements for each object were averaged into a single value.

For each AGN, employing the comparison stars as constant-flux references, we ob-

tained a separate light curve for images from each telescope. The uncertainties from

aperture photometry photon counting errors underestimate the true photometric error

budget. Additional sources of error include inconsistencies in flat-field corrections and

poor comparison-star magnitude measurements due to imperfections on the detector. We

estimated the magnitude of these errors by calculating the excess variance, defined as

σ2
x =

1

N

N∑
i=1

[(Xi − µ)2 − σ2
i ], (6.14)

of the scaled comparison-star light curves. Here, N is the number of measurements in the

sample, µ is the mean magnitude, and Xi and σi are the individual measurements and

their associated uncertainties, respectively. We took the mean scatter of all comparison

stars in each field and added this in quadrature to the uncertainties from aperture pho-

tometry to produce the final AGN light curve for each telescope. Finally, to combine the

different telescope light curves, we scaled each light curve so that the mean comparison-

star magnitudes for each telescope matched those from WMO, which had the highest

SNR.

199



6.4 Results

The AGN V -band continuum light curves from image subtraction and standard aper-

ture photometry are shown in Figures 6.1 and 6.2, respectively. As expected for rever-

beration mapping datasets, there is a range in variability within the sample. In addition,

variability can be observed on a variety of timescales, as illustrated by the low-frequency

variations for Mrk 50 compared to the high-frequency variations for NGC 4593. These

differences demonstrate why a reverberation mapping campaign with high cadence over

a long period of time is necessary to characterize the variability of an AGN sample.

The light curves for each telescope are indicated with different colors in Figures 6.1

and 6.2 to show the range in data quality. Generally, the WMO and FTN/FTS (labeled

as LCOGT) light curves are of the highest quality, but suffer from uneven or sparse

sampling in the case of FTN/FTS or a delay in the start of observations for WMO with

respect to the beginning of the monitoring campaign. The KAIT and Super-LOTIS data

are required to fill in many gaps, especially before the start of WMO monitoring. On

the other hand, the P60 data suffer from rows of bad pixels, making it challenging to

find comparison stars that do not fall on a bad row in any of the images. The P60 data

typically have the largest errors and have only been included for the Mrk 50 light curve,

since it has the densest sampling of any of the AGNs, ensuring that the P60 data agree

with the other data. There is less agreement between P60 data and data from other

telescopes in the other objects. Finally, at this time we include datapoints with very

large errors that have no obvious reason to be discarded based on image quality; once

the light curves have been flux calibrated, we will make a cut based on absolute flux
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uncertainty, discarding many of the points with the largest errors.

While the light curves from image subtraction for different telescopes agree very

well, there is some discrepancy between telescopes for the standard aperture photometry

light curves, most noticeably for Mrk 817. These light curves are not aligned using the

Gaussian process model for AGN variability used for the image subtraction light curves, so

the difference may be due to variations in telescope or filter properties. Despite this issue,

the standard aperture photometry procedure has two main advantages compared to the

image subtraction procedure. First, the standard aperture photometry is fast, requiring

less parameter fine-tuning and inspection of images at different stages of the analysis.

Second, because the light curves for different telescopes are aligned independently, they

do not need to have datapoints that overlap, as is required for the Gaussian process

model used with the image subtraction procedure. The dataset for Mrk 486 is a good

example of one for which the Gaussian process alignment would not be well-constrained.

For these reasons, standard aperture photometry is an ideal method for measuring light

curves for AGN that will not undergo detailed analysis such as dynamical modeling of

the BLR.

6.5 Summary and future work

In this chapter, we present V -band continuum light curves in relative-flux units for

the fifteen AGN in the LAMP 2011 reverberation mapping dataset. For the AGNs with

high levels of Hβ variability (see Barth et al. 2015), the AGN continuum light curves were

measured using image subtraction software in order to create high-quality reverberation
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Figure 6.1: Image subtraction light curves for LAMP 2011. The different colors corre-
spond to data from different telescopes, as indicated in the legend. LCOGT data consists
of either FTN or FTS. Mrk 50 has additional monitoring before the beginning of the main
LAMP 2011 campaign and Zw 229-015 has additional monitoring at the end of the main
campaign.
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Figure 6.2: Same as for Figure 6.1, but for standard aperture photometry light curves.

mapping data for dynamical modeling of the BLR (e.g. Brewer et al. 2011a; Pancoast

et al. 2012, 2014b). For the AGNs with lower levels of Hβ variability, the AGN continuum

light curves were measured using standard aperture photometry techniques.

While AGN continuum light curves in relative-flux units are sufficient for reverbera-

tion mapping analysis such as calculation of the cross-correlation function or BLR model-

ing, future work with this dataset will include flux calibration of the AGN continuum light

curves using Landolt (1992) standard stars observed at WMO. Since we only have data
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for the V band, we will not attempt to perform color-dependent Landolt calibrations.

Flux calibration will allow us to probe the variability characteristics of the light curves,

measure the AGN V -band luminosity, and measure absolute light curve flux errors.
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Chapter 7

Conclusions and future directions

This thesis develops a new method to analyze reverberation mapping data that pro-

vides an independent measurement of the black hole mass and constraints on the geom-

etry and dynamics of the broad line region (BLR) in active galactic nuclei (AGN). In

Chapter 2, we present the formalism of this method and demonstrate its utility using

simulated reverberation mapping datasets, including promising predictions for reduced

uncertainties in reverberation mapped black hole mass measurements. In Chapter 3, we

apply this method to the highest-quality dataset from the Lick AGN Monitoring Project

(LAMP) 2011 reverberation mapping campaign for the AGN Mrk 50, constraining the

BLR geometry to be a nearly face-on thick disk. In Chapter 4, we present major im-

provements to the method and BLR model and compare the results for simulated data

from the BLR modeling approach to the standard cross-correlation function analysis.

In Chapter 5, we apply the improved BLR models to five AGN from the LAMP 2008

campaign, measuring the black holes masses more precisely than the standard analysis

and providing detailed constraints on the geometry and dynamics of the BLR. Finally,

in Chapter 6, we present the measurement of AGN continuum light curves using image

subtraction as part of the LAMP 2011 dataset.
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The results of this thesis demonstrate the unique constraining power of high-quality

reverberation mapping data in studies of AGN structure and the measurement of black

hole masses. While standard reverberation mapping analysis provides black hole mass

measurements using an average value of the normalization factor f and uncertainties on

the order of ∼ 0.4 dex, analysis for the six AGN from LAMP 2008 and 2011 using BLR

modeling provides black hole masses with uncertainties of only 0.15 − 0.35 dex. This is

possible because, instead of assuming an average value of f , the BLR modeling approach

provides the first direct measurements of f for individual AGN from constraints on BLR

structure. The individual values of f are consistent to within the uncertainties with the

average f value measured using the MBH − σ∗ relation and are found to be a function of

inclination angle of the BLR. Since the BLR cannot be spatially resolved with even the

largest current telescopes, BLR modeling is the only method capable of simultaneously

constraining the shape, inclination, and dynamics of the BLR. For the six AGN in the

LAMP 2008 and 2011 sample, we find that the Hβ-emitting BLR geometry is generally a

thick disk viewed close to face-on, with preferential emission from the far side, while the

BLR dynamics range from near-circular to inflowing orbits. Preferential emission from

the far side of the BLR is consistent with models where the BLR gas is self-shielding. The

constraints on the inclination angle provide the first verification of the AGN standard

model for the BLR, where AGN with broad emission lines should be observed close to

face-on (Antonucci 1993; Urry & Padovani 1995). As a whole, these results represent the

most comprehensive information about BLR structure and the smallest uncertainties in

reverberation mapped black hole mass measurements to date.

Having demonstrated the unique contributions made by the BLR modeling approach,
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the next steps in this work involve 1) applying BLR modeling to a larger sample of AGN

with high-quality reverberation mapping data and 2) developing more physical models

of the BLR to use in the analysis. We discuss these future directions in the remainder of

this chapter.

7.1 Increasing the sample of AGN with broad line

region modeling

While the BLR modeling approach has provided the first detailed contraints on the

geometry and dynamics of BLR emission in a small handful of reverberation mapped

AGN, many important questions remain unanswered, including: 1) What is the range

in BLR geometries and dynamics in the larger reverberation mapped AGN sample and

do the properties depend upon black hole mass, accretion rate, or AGN luminosity? 2)

How is the BLR structure related to that of the accretion disk, jet, or dusty torus?

and 3) How can constraints on BLR structure reduce black hole mass measurement

uncertainties for AGN without BLR modeling of reverberation mapping data? The key

to answering these questions is to apply the BLR modeling technique to a larger sample

of reverberation mapped AGN that 1) span a range of black hole mass, accretion rate,

and AGN luminosity, 2) have constraints on the structure of the accretion disk, jet, or

dusty torus from other studies, and 3) span the range of possible BLR structure found

at both low and high redshifts.

The BLR modeling approach has been applied to six AGN so far, including the
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five highest-quality datasets from LAMP 2008 (Walsh et al. 2009; Bentz et al. 2009b)

and the highest-quality dataset from LAMP 2011 (Barth et al. 2015). Analysis is also

underway for four AGN from the 2010 reverberation mapping campaign by the Ohio

State University (OSU) collaboration (Grier et al. 2012, Grier et al. in preparation). In

addition, there are ∼ 5 more high-quality datasets from LAMP 2011 as well as a handful

of promising candidates from the 2012 and 2014 OSU campaign datasets that can be

analysed using the BLR modeling technique. Analysis of these data will quadruple the

number of AGN with BLR modeling and allow us to begin answering the important

questions outlined above.

In addition, there are now multiple reverberation mapping campaigns aimed at higher

redshift AGN using mainly the Mg ii λ2798 and C iv λ1549 broad emission lines (e.g.

Shen et al. 2015; King et al. 2015). With sufficient data quality, these datasets will allow

us to constrain the properties of the BLR outside the local Universe, expanding the range

of AGN luminosity, black hole mass, and accretion rate in the BLR modeling sample.

7.2 Photoionization modeling

As the data quality of reverberation mapping campaigns continues to increase, it

will be possible to constrain additional information about BLR physics through the BLR

modeling approach. Photoionization modeling codes (e.g. CLOUDY, Ferland et al. 2013)

relate the BLR emission to the underlying BLR gas properties and give predictions for the

response of different broad emission lines to changes in the ionizing photon flux from the

accretion disk. Most importantly, including the results from photoionization modeling

208



in the BLR modeling approach will allow us to move from modeling the geometry of

BLR emission to modeling the geometry of BLR gas. Also, for a select few AGN with

reverberation mapping data for multiple broad emission lines, we can model the lines

simultaneously using their different response functions from photoionization modeling,

making it possible to constrain the distribution of BLR gas densities and test the ‘locally

optimally emitting cloud’ model (Baldwin et al. 1995).

Recently, an intensive reverberation mapping campaign has been carried out for one

of the best studied reverberation mapping targets, NGC 5548, with data spanning the

x-rays through infrared and including UV spectroscopy with HST (De Rosa et al. 2015;

Edelson et al. 2015). While only for a single AGN, this is the highest-quality reverberation

mapping dataset currently in existence and the first to provide a good candidate for

detailed BLR modeling using photoionization physics.

7.3 Outflows in the broad line region

While the culprit driving feedback between black holes and their host galaxies is most

likely AGN outflows, the launching radius and driving mechanism of the outflows remain

unknown. This is due, in part, to the challenging nature of outflow simulations; detailed

models of radiation-driven outflows (e.g. Proga & Kallman 2004) are highly sensitive to

radiative transfer calculations that determine where the gas is ionized (Higginbottom

et al. 2014) and that provide predictions for observational outflow signatures such as

blue-shifted emission or absorption features. The outflow driving mechanism may be line

opacity (Castor et al. 1975), dust opacity (Dorodnitsyn & Kallman 2012), or magnetic
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fields (Blandford & Payne 1982), each of which provides predictions for the dynamics of

outflowing gas.

One way to constrain the properties of AGN outflows is to look for their influence in

the BLR. We can constrain whether outflow dynamics are at work at the radii probed

by reverberation mapping by testing different models for AGN outflows within a dy-

namics model of the BLR. If evidence for outflows is found, it could provide the first

robust constraints on the launching radius and driving mechanism. Considering the full

range of AGN outflow models is critical, however, since degeneracies between geometry,

orientation, and dynamics can generate similar features in the data (e.g. Bottorff et al.

1997).
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