
UNIVERSITY OF CALIFORNIA
Santa Barbara

Representation Learning on Unstructured Data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Fangqiu Han

Committee in Charge:

Professor Xifeng Yan, Chair

Professor Subhash Suri

Professor Linda Petzold

Sep 2016

The Dissertation of
Fangqiu Han is approved:

Professor Subhash Suri

Professor Linda Petzold

Professor Xifeng Yan, Committee Chairperson

Sep 2016

Representation Learning on Unstructured Data

Copyright c© 2016

by

Fangqiu Han

iii

To my incredible parents who always encouraged me to pursue everything I

want, who always told me there is a home behind me in my dark time, who always

showed their endless love they have for me.

iv

Acknowledgements

My deepest gratitude goes to my Ph.D. advisor, Professor Xifeng Yan. Without
his guidance, nothing in this thesis can be achieved. I have benefitted tremen-
dously by his vision in our field and his thinking on specific projects, His guiding
transferred me from a student to a researcher, from a people who can learn, to a
people to can think, analysis and solve real problem. Professor Yan also guides
me beyond research. Like said in the old Chinese saying: ”a teacher for one day
equals a father for the whole life”. I have gradually learned to be thorough and
meticulous about not only every detail in my research but every part of my life.

I also owe many thanks to all my collaborators and lab-mates. Their knowledge
and experiences greatly inspired me. I truly enjoy the moment when ideas come
out from our discussions. I will never forget the time we spent together.

v

Curriculum Vitæ

Fangqiu Han

Education
09/2011 - 09/2016 Ph.D. Computer Science

Department of Computer Science
University of California, Santa Barbara
Research Areas: Data Mining, Machine Learning
Advisor: Dr. Xifeng Yan

09/2007 - 07/2011 B.S. Mathematics and Applied Mathematics
Shing-Tung Yau Honors Class
Chu Kochen Honors College
Zhejiang University

Work Experiment
06/2015 - 09/2015 Software Engineer Intern at Facebook

Project: Dynamic Feature in News Feed Ranking
Developed a dynamic feature to improve the Feed Ranker

06/2014 - 09/2014 Research Intern at IBM T.J.Watson
Project: Distributed Expertise Representation
Proposed a distributed representation for expertise mod-
eling

02/2013 - 04/2013 Visiting Scholar at BBN Technologies
Project: Modeling Network Structure
Proposed a hierarchy network model for collaborative net-
works

07/2010 - 08/2010 Research Intern at Microsoft Research Asia
Project: Scheduling and Data Allocation In Cloud
Computing
Proposed resource allocation algorithms in cloud operat-
ing system

vi

Publication

[1] Yang Li, Chi Wang, Fangqiu Han, Jiawei Han, Dan Roth, and Xifeng Yan.

Mining evidences for named entity disambiguation. In Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’13, pages 1070–1078, New York, NY, USA, 2013. ACM.

[2] Yang Li, Pegah Kamousi, Fangqiu Han, Shengqi Yang, Xifeng Yan, and Sub-

hash Suri. Memory efficient minimum substring partitioning. In Proceedings

of the 39th international conference on Very Large Data Bases, PVLDB’13,

pages 169–180. VLDB Endowment, 2013.

[3] Fangqiu Han, Zhiyi Tan, and Yang Yang. On the optimality of list scheduling

for online uniform machines scheduling. Optimization Letters, 6(7):1551–1571,

2012.

[4] Fangqiu Han, Subhash Suri, and Xifeng Yan. Observability of lattice graphs.

Algorithmica, 76(2):474–489, 2016.

vii

[5] Fangqiu Han, Shulong Tan, Huan Sun, Mudhakar Srivatsa, Deng Cai, and

Xifeng Yan. Distributed representations of expertise. 2016.

[6] Yu Su, Fangqiu Han, Richard E Harang, and Xifeng Yan. A fast kernel for

attributed graphs. 2016.

[7] Shengqi Yang, Fangqiu Han, Yinghui Wu, and Xifeng Yan. Fast top-k search

in knowledge graphs. 2016.

[8] Honglei Liu, Fangqiu Han, Hongjun Zhou, Xifeng Yan, and Kenneth S Kosik.

Fast motif discovery in short sequences. 2016.

viii

Abstract

Representation Learning on Unstructured Data

Fangqiu Han

Representation learning, which transfers real world data such as graphs, im-

ages and texts, into representations that can be effectively processed by machine

learning algorithms, has became a new focus in machine learning community.

Traditional machine learning algorithms usually focus on modeling hand-crafted

feature representations manually extracted from the raw data and performance

of the model highly depends on the quality of the data representation. However,

feature engineering is laborious, hardly accurate, and less generalizable. Thus the

weakness of many current learning algorithms is not how well they can model the

data, but how good their input data representation are.

In this thesis, we adopt learning algorithms both on representing and modeling

the graph data in two different applications. In the first work, We first developed

representation on nodes, and later apply a well-known VG kernel on this repre-

sentation. In the second work, we show the power of representation captured by

applying jointly optimization on the nodes representations and the model. The re-

sults of both work show significant improvement over traditional machine learning

methods.

vii

Contents

List of Figures x

1 Introduction 1

2 A Fast Kernel for Attributed Graphs 5
2.1 Introduction . 5
2.2 Related Work . 8
2.3 Preliminaries . 10
2.4 Descriptor Matching Kernel . 12

2.4.1 Local Descriptor. 12
2.4.2 Descriptor Matching Kernel. 15
2.4.3 VG Kernel. 16

2.5 Evaluation . 23
2.5.1 Runtime Analysis on Synthetic Datasets. 25
2.5.2 Classification Performance on Real-world Datasets. 26

2.6 Conclusions . 31

3 Distributed Representations of Expertise 33
3.1 Introduction . 33
3.2 Preliminaries . 38

3.2.1 Task Routing and Resolution Records. 38
3.2.2 Expertise Representation. 40

3.3 Modeling Functional Area Expertise 43
3.4 Modeling All-Round Expertise . 46

3.4.1 ARE for Solved Tasks. 47
3.4.2 ARE for Unsolved Tasks. 48
3.4.3 Objective Function of ARE. 50

3.5 Experiments . 51

viii

3.5.1 Baselines. 52
3.5.2 Datasets. 55
3.5.3 Accuracy. 56
3.5.4 Efficiency. 57

3.6 Related Work . 60
3.7 Communication Frequency and Expertise Closeness 63
3.8 Conclusion . 66

4 Summary 68

ix

List of Figures

2.1 Runtime behavior on synthetic datasets. 24

3.1 A sample collaborative network. Tasks are routed among experts
in a collaborative network until they are resolved. 34
3.2 An intuitive example for Functional Area Expertise when d = 2.
Tasks t1 and t2 are in the first functional area, t3 is in the second func-
tional area of E and can be solved by E. Tasks t4 are out of both
functional areas of expert E and thus cannot be solved by E. 44
3.3 An example for the All-Round Expertise model. Expert E1 can
only solve the tasks covered by the small rectangular. But E2 can solve
all the tasks including those E1 can solve. 46
3.4 An example of applying margin α in the All-Round Expertise
model with d = 2. The expertise of all experts who are capable of
solving t is expected to be located in area 1, while the expertise of all
experts who cannot solve t is expected to be located in area 2. 50
3.5 Classification accuracy versus the number of iterations for FAE
and ARE on the AIX dataset. Both models almost converge after 50
iterations. 59
3.6 An observation in a task resolution dataset. The percentage of
tasks solved increases with communication frequency. WIN and AIX
are the categories of tasks on MS Windows and AIX operating systems. 64

x

Chapter 1

Introduction

The performance of machine learning algorithms usually highly relies on the

quality of their input feature representation. For a long time, these feature rep-

resentations, which utilize understanding or prior knowledge of input data, are

usually manually constructed by researchers and engineers. Taken an image clas-

sification task in which we aim to detect whether there is a car in the given image

as an example, a good feature can be whether there exists any wheel in the image

as the existence of wheels will greatly help to infer the existence of a car. These

representations, though may offer great help in learning tasks, suffer from several

weakness. First, manually constructing feature representations is laborious and

requires rich knowledge and expertise of the task. Only experts are able to identify

important features for a specific task and even for an expert, discovering impor-

1

tant task-related features can be costly. Second, these representations are lack of

generalization as different tasks may need completely different features. Last, the

quality of a manually constructing feature representation is constrained but the

experts who created it. This limits the performance of the algorithm applied on

it, especially when the difficulty of the task is beyond the experts‘ knowledge.

In this thesis, we adopt representation learning, which transfers real world

data structures such as graphs, images and texts into representations that can be

effectively processed by machine learning algorithms. To be specific, we developed

two representations on graph data for two different tasks. Our first task is a clas-

sic graph classification problem in which we predicts labels for attributed graphs.

While traditional methods directly apply classifiers on the graph, we first con-

struct a novel real value representation for each node in the graph which encodes

its attributes as well as its neighborhood information by propagating categori-

cal attributes along edges. Two nodes with similar attributes and neighbors will

have similar vector representations; computing the similarity of two graphs there-

fore resorts to matching the vectors of their nodes. We then adapt well known

Vocabulary-Guided pyramid matching (VG) kernel on the representation in order

on the representation. In the second work we aimed to learn representations on

the nodes together with the modeling algorithm on a social graph called collab-

orative network. In collaborative networks, tasks are routed among a network

2

of experts until they are resolved, and our goal is to predict whether an expert

can solve a task based on his task-solving history. An expert has to meet two

constraints in order to solve a task: (1) Topic Match: the specialized areas of the

expert shall match the topic of the task. (2) Difficulty Level Match: the diffi-

culty level of the task should match the proficiency of the expert. Our idea is to

represent the expertise of an expert by utilizing real valued vector in which each

dimension represents the expertise level of an expert in a specific domain, i.e.,

the difficulty level of tasks in the domain that this expert can solve. By learning

this expertise representation together with tasks representation, we achieve better

performance in prediction whether an expect can solve a task compared to using

standard classifiers.

It is worth to mention that the ideas behind these two representation tasks

are fundamentally different. In the first task, feature learning and modeling are

considered as two different tasks. We first apply unsupervised feather learning

and then apply modeling algorithms on top of the feature representations. In the

second work, we jointly optimize the feature learning and modeling as one task.

The first approach is usually more efficient while the second representation could

benefit from the modeling algorithm of the task.

The dissertation is organized as follows: We introduce a graph classification

method by applying well known VG kernel on a new node representation in Chap-

3

ter 2. In Chapter 3, we propose a joint representation and modeling learning al-

gorithm for expertise learning in a collaborative network. We conclude our work

with Chapter 4.

4

Chapter 2

A Fast Kernel for Attributed

Graphs

2.1 Introduction

Large graph databases are increasingly popular in many domains such as

chemoinformatics [8], bioinformatics [10] and the web [6]. These graph datasets

are characterized by their rich attribute information. For example, in chemoin-

formatics, molecules are often modeled as graphs, with atoms being nodes and

covalent bonds being edges. Rich attributes are associated with both nodes and

edges: categorical attributes on nodes like element types, numerical attributes on

nodes like their partial charges and on edges like the spatial distance between

5

elements. Many interesting questions arise with these graph datasets, e.g., how

to predict the mutagenicity of a chemical compound by comparing its graph rep-

resentation with other chemical compounds having known functionality?

Graph kernels have been successfully applied to various graph problems [10,

36]. A graph kernel is basically a function measuring the similarity of two graphs.

A significant advantage of the kernel method is that it can decouple data rep-

resentation from the learning machines: As long as a graph kernel is provided,

readily-available learning machines like SVM [11] or the kernel PCA [40] become

directly applicable.

The large scale and heterogeneous attributes of modern graph data call for

graph kernels which are (1) efficient to compute and (2) capable of handling

the rich attribute information on nodes and edges. More specifically, we argue

that a linear-time graph kernel that can handle both categorical and numerical

attributes is desired, while being linear-time means the runtime scales linearly

with respect to the graph size n + m, where n is the number of nodes and m

the number of edges. Few graph kernels proposed so far achieve the two goals

simultaneously. Some graph kernels [49, 27, 14] achieve linear-time computation.

However, they are restricted to graphs with only categorical attributes since their

efficiency mainly comes from the sparseness of the feature space resulted from the

mutually orthogonal categorical attributes. A few recent graph kernels [20] try to

6

speed up computation on graphs with numerical attributes. Unfortunately, they

are not linear-time kernels.

In this work, we propose a linear-time kernel for graphs with both categorical

and numerical attributes. The proposed kernel, which we denote as the descriptor

matching (DM) kernel, is based on a simple idea: Map each graph into a set of

vectors (descriptors), and then apply a set-of-vectors matching kernel to measure

graph similarity. We first propose a propagation based algorithm to generate

feature vectors on nodes in linear time. By propagating categorical attributes

along edges, we are able to generate a real vector for each node which encodes

its attributes as well as its neighborhood information. Two nodes with similar

attributes and neighbors will have similar vector representations; computing the

similarity of two graphs therefore resorts to matching the vectors of their nodes.

We then adapt the well-known Vocabulary-Guided pyramid matching (VG) ker-

nel [23] to identify an approximately optimal matching between two vector sets,

which is also done in linear time. We rigorously prove the linear scalability of

the DM kernel. The most related work is the propagation kernel [43], which also

propagate attribute information. It is initially proposed as a linear-time kernel for

graphs with categorical attributes, and is recently extended to handle numerical

attributes [42]. We will discuss about the differences later in the paper and also

empirically compare with it.

7

We empirically experiment on both synthetic datasets and real-world datasets

from chemo- and bioinformatics, and compare DM with several state-of-the-art

graph kernels. Experiments on synthetic datasets confirm the linear scalability

of the DM kernel. On real-world datasets, DM shows competitive performance

in both classification accuracy and efficiency. Particularly, the experiment re-

sults demonstrate that DM can well exploit additional numerical attributes to

improve classification accuracy, as opposed to when only using categorical at-

tributes. Another salient characteristic of DM shown by the experiments is that

its classification performance is very stable across different tasks. Even when its

accuracy is not the best on a dataset, the difference to the best is usually small.

2.2 Related Work

We summarize existing graph kernels with an emphasis on computational com-

plexity. The computation of a graph kernel is often done in two steps: (1) decom-

posing each graph into a set of features, and (2) comparing feature sets. In order

to achieve overall linear scalability, a graph kernel has to be linearly scalable in

both steps.

For the first step, many graph kernels choose to exhaustively enumerate a

certain type of features in a graph, such as random walks [22, 31], paths [1],

shortest paths [9, 20], subtrees [37], etc. Although algorithms have been proposed

8

to reduce the effect of combinatorial explosion, due to their exhaustive nature,

these kernels are still inefficient and hard to be applied to large graphs with

hundreds or more nodes. A few recently proposed graph kernels achieve linear

scalability in the first step by limiting the size of their feature space [49, 27, 14].

Our kernel follows the same strategy: A graph is decomposed into a set of vectors

on nodes. The idea of propagating categorical attributes to get local feature

vectors is also employed by some other kernels [43, 51, 42], where a random walk

based propagation scheme is used. However, as we show in Appendix A, the

random walk based propagation process, if run for enough iterations, will end

up with feature vectors irrelevant to the initial labeling of the nodes and their

neighbors. Our propagation scheme, as we will present soon, generate feature

vectors well encoding the labeling and neighborhood information.

The linear scalability in the second step is harder to achieve. Comparing all

possible feature pairs in two sets results in a quadratic time complexity. Linear-

time comparison becomes possible when graphs have only categorical attributes,

which yields a sparse discrete feature space [49, 27, 14]. Take [49] for example. It

decomposes a graph into a set of size-limited subtrees, hashes each subtree into

a string, and then counts common strings via string equality check. However,

for graphs with numerical features this strategy fails, as we have to take the

similarity of the continuous features into account, other than merely making a

9

binary decision of whether two features are the same. [43, 42] try to tackle this

problem via locality sensitive hashing, which is basically putting feature vectors

into some uniform bins and then count. We employ a different approach. From

a geometric point of view, our method identifies where the feature vectors really

reside in the feature space and divide the space into non-uniform bins based on

the real data distribution.

Our kernel seeks for a one-to-one matching between two sets of features, for

which an efficient solution exists. The graph kernels proposed in [21] and [51]

try to find an optimal one-to-one matching for their specific type of features.

Unfortunately, they are not efficient and are not positive semi-definite kernels [56].

Our kernel efficiently identifies an approximately optimal correspondence between

two feature sets by employing an existing set-of-vectors matching kernel, the VG

kernel [23], whose computational complexity is linear with respect to the set size

with mild adaptation.

2.3 Preliminaries

Following convention, we define an undirected graphG as a 4-tuple (V,E,Lc,Ln),

where V is the set of nodes, E the set of edges, and Lc and Ln the labeling func-

tion for categorical and numerical attributes, respectively. Lc : V → Σ, where

Σ = l1, . . . , lL is the alphabet of categorical attributes. The labeling function for

10

numerical attributes Ln : V → RK assigns K numerical attributes to each node.

For simplicity, we will work on a graph dataset with N graphs, and each graph

has n nodes and m edges. We define graph size as n+m, and call a graph kernel

a linear-time kernel if its runtime complexity is linear to graph size. N (v) is the

neighborhood of node v, which is the set of nodes directly connected to v.

Throughout the paper, we will use the term set to denote a multiset which

allows duplicate elements. Given two sets X and Y where n1 = |X|, n2 =

|Y|, and n1 ≤ n2, a one-to-one correspondence or a matching M(X,Y; π) =

{(xi,yπi)|1 ≤ i ≤ n1} matches every element in X to some unique element in

Y. π = [π1, . . . , πn1], 1 ≤ πi ≤ n2 is a permutation of indices where πi specifies a

match (xi,yπi), for 1 ≤ i ≤ n1. We will use the terms one-to-one correspondence

and matching interchangeably in the rest of the paper. We will also use the terms

attribute and label interchangeably. We follow the kernel foundation in [46].

Definition 2.3.1 (Gram Matrix). Let X be a nonempty set. Given a function

k : X 2 → R and elements x1, . . . , xm ∈ X , the m × m matrix K with elements

Kij = k(xi, xj) is called the gram matrix (or kernel matrix) of k with respect to

x1, . . . , xm. A gram matrix is p.s.d. if it is a positive semi-definite matrix.

Definition 2.3.2 ((Valid) Kernel). Let X be a nonempty set. A function k on

X × X which for all m ∈ N and all x1, . . . , xm ∈ X gives rise to a p.s.d. gram

11

matrix is called a valid kernel, or a p.s.d. kernel. We will simply refer to it as a

kernel.

It is easy to construct new kernels from existing ones. Given two kernels k1

and k2, and α1, α2 ≥ 0, α1k1 + α2k2 is still a kernel, and the pointwise product

k1k2 defined as (k1k2)(x1, x2) = k1(x1, x2)k2(x1, x2) is also a kernel [46].

2.4 Descriptor Matching Kernel

2.4.1 Local Descriptor.

We first introduce a concept, local descriptor. A local descriptor (or simply

descriptor) is a fixed-length real-valued vector associated with a node. It encodes

the labeling information of the node, as well as the topological and labeling in-

formation in its neighborhood, thus serving as the identity of the node: Similar

nodes should have similar descriptors. Descriptor similarity is defined based on

their Euclidean distance, while node similarity is defined in a recursive manner:

Two nodes are more similar if their attributes and neighborhood are more sim-

ilar. With this property, it becomes meaningful to measure graph similarity by

matching their node descriptors. A descriptor generator f is a function mapping

a node v to a descriptor f(v) ∈ RD, where D = ‖f(v)‖. F(G) = {f(v)|v ∈ V (G)}

is the descriptor set of a graph G.

12

Now we define our descriptor generator. The basic idea is to capture the

labeling and neighborhood information about a node by propagating categorical

attributes. The outcome of the propagation process is a series of feature vectors

for each node. The continuous features are the key for incorporating numerical

attributes. Since the features are continuous, numerical attributes can be directly

appended to the feature vectors. The idea is that the numerical attributes of a

node, such as the partial charge value of an atom in a molecule, are a direct part

of the node’s identity. Other linear-time graph kernels like [49, 27, 14] are hard

to incorporate numerical attributes because their features are discrete.

For better presentation, we first leave out numerical attributes. Because of

the recursive nature of the node similarity definition, it is natural to generate

descriptors via an iterative process in which nodes exchange information with

their neighborhood. We therefore define the Stochastic Cascade (SC) descriptor

generator. The SC descriptor of a node v, fsc(v) = (A1(v), . . . , AL(v)), is a vector

of length L, with the ith component Ai(v) indicating the strength of association

between the categorical attribute li and the node. Intuitively, the more nodes

with attribute li there are in N (v), the stronger the association will be. Let

η ∈ [0, 1] be a scalar, h be the number of iterations, we model this intuition via

the following iterative process, which generates a sequence of descriptors f
(r)
sc (v) =

(A
(r)
1 (v), . . . , A

(r)
L (v)), 0 ≤ r ≤ h for v:

13

(1) Initialization:

A
(0)
i (v) =


1 if Lc(v) = li,

0 otherwise;

(2) Updating:

A
(r+1)
i (v) =


1 if A

(r)
i (v) = 1,

1−
∏

u∈N (v)

(1− ηA(r)
i (u)) otherwise,

for i = 1, . . . , L, 0 ≤ r < h.

To understand the above process, let’s focus on the attribute l1. In the be-

ginning of iteration r, the strength of association A
(r)
1 (v) is regarded as the prob-

ability of v propagating l1 to all of its neighbors. Here η is a decay factor, or

can be thought as the loss ratio of propagation. Initially, A
(0)
1 (v) is set to 1 if

l1 is v’s categorical attribute, and otherwise 0. In each iteration k, A
(r+1)
1 (v) is

updated to the probability of the node receiving at least one l1 from its neigh-

borhood: the probability of the neighboring node u not propagating l1 to v in

iteration r is 1− ηA(r)
1 (u), so the probability of v not receiving any l1 from N (v)

is
∏

u∈N (v) (1− ηA(r)
i (u)), therefore we end up with the above updating rule.

A competitor of our SC descriptor generator is a descriptor generator based on

a random walk on graphs, which, although termed differently, has been exploited

in some way in [43, 51, 42]. But we prove in Appendix A that it does not have the

descriptor property, i.e., similar nodes should have similar descriptors. Two nodes

14

in a graph, as long as they have the same degree, will always end up with the same

descriptors irrelevant to the initial labeling of the nodes and their neighborhoods1.

Theorem 2.4.1. The SC descriptors for N graphs can be computed in time

O(NLhm).

Proof. In each iteration, each categorical attribute in Σ will be propagated for at

most 2m times, and each propagation will incur an O(1) number of operations,

so the overall runtime complexity of computing SC descriptors for N graphs and

h iterations is O(NhmL).

Numerical attributes are directly appended to the descriptors defined above.

We normalize each numerical attributes to [0, 1].

2.4.2 Descriptor Matching Kernel.

Definition 2.4.1 (Descriptor Matching Kernel). Given a base kernel k defined

on sets of vectors, if we denote the set of SC descriptors of graph G in the rth

iteration as F (r)(G), the descriptor matching kernel kdm on two graphs G1 and

G2 is defined as:

k
(h)
dm(G1, G2) =

h∑
r=0

k(F (r)(G1),F (r)(G2)).

1[42] suggested that, pragmatically, random walk based propagation can stop early without
getting into the stationary states. We apply this strategy in evaluation.

15

Theorem 2.4.2. For any h ∈ N, k
(h)
dm is positive semi-definite (p.s.d.) if k is

p.s.d.

Proof. This follows directly from the fact that p.s.d. kernels are closed under

addition.

The next step is to find a base kernel defined for two sets of vectors. There

are three requirements for the base kernel: (1) Its computation must be efficient.

More specifically, its time complexity should be linear with respect to graph size.

(2) It should measure the similarity of two sets of vectors in an intuitive manner.

(3) It is able to handle high-dimensional vectors. Putting all these requirements

together, we choose the VG kernel [23] from computer vision. It identifies a one-

to-one correspondence between two sets of vectors via non-uniform quantification,

which makes it suitable for high-dimensional vectors since it can locate where the

vectors really reside in the high-dimensional space and divide the space accord-

ingly. Although the original VG kernel did not claim to be linearly scalable, we

show next that with mild modification, its time complexity becomes linear with

respect to graph size.

2.4.3 VG Kernel.

Given a descriptor generator f and two graphs G1 and G2, we now discuss how

to define a kernel k to efficiently measure the similarity of their corresponding

16

descriptor sets F(G1) and F(G2). Suppose F(G1) = {x1, . . . ,xn1}, F(G2) =

{y1, . . . ,yn2}, n1 ≤ n2 and M(F(G1),F(G2); π) is a matching from F(G1) to

F(G2), a set-of-vectors matching kernel k is defined as follow:

k(F(G1),F(G2)) =

n1∑
i=1

w(‖xi − yπi‖2),

where w(·) is a weighting function. Note that under this definition k is not nec-

essarily p.s.d.

Now the problem boils down to finding an appropriate matching. The most

intuitive way is to find the optimal matching that maximizes k(F(G1),F(G2)),

which can be formulated as the classic maximum weighted bipartite matching

problem and solved by prominent algorithms such as the Hungarian algorithm [21,

51]. However, it is not favorable for two reasons: (1) The computational complex-

ity is rather high (cubic), and (2) it results in a kernel which is not p.s.d. [56].

Another solution is discretization [43]. The idea is to map a vector into a 1-d

histogram, and efficiently match vectors based on whether they fall into the same

bin. It scales linearly, but the main problems are: (1) Bins are unweighted, or in

other word, w is a constant function; (2) bins are orthogonal, so vectors in dif-

ferent bins are never matched. Nevertheless, the linear computational complexity

is appealing. We choose the Vocabulary-Guided (VG) pyramid matching kernel,

which is based on a somewhat similar idea, but in a more sophisticated manner.

It aims to efficiently find an approximately optimal matching, and elegantly solves

17

both of the problems via replacing the 1-d histogram by a data-dependent multi-

resolution histogram with non-uniformly shaped bins. We next reformulate it in

a way suitable for our descriptor sets, and adapt it to ensure its linear scalability.

Pyramid construction. Suppose G is a set of N graphs and F(G) =

{f(v)|v ∈ G,G ∈ G}. The VG kernel starts off by partitioning the descriptor

space into a pyramid of non-uniformly shaped regions/bins, which is built by per-

forming hierarchical clustering on F(G). The pyramid structure is controlled by

two hyper-parameters, the number of levels t, and the branching factor b. The

jth bin at the ith level is denoted as B
(i)
j = (X

(i)
j , c

(i)
j , s

(i)
j), where c

(i)
j is its center,

s
(i)
j its diameter with s

(i)
j = max{‖x1 − x2‖ |x1,x2 ∈ X

(i)
j }, and X

(i)
j ⊆ F(G) the

set of descriptors in the bin. Then the pyramid is denoted as {B(i)
j }0≤i≤t−1,1≤j≤bi ,

and is constructed as in Algorithm 1.

Lines 4, 9, and 10 compute bin diameters, i.e., the maximum distance between

any two descriptors in the bin. The original VG kernel will compute the dis-

tance between each pair of descriptors and find the maximum, which results in a

quadratic time complexity. We approximate it by two upper bounds, the doubled

maximum distance from any descriptor in the bin to the center of the bin, and the

diameter of the parent bin, as shown at line 9 and 10, respectively. This grants

us linear scalability. Bin diameters are critical and will be used to compute bin

weights. Later in §2.5 we empirically demonstrate that the DM kernel built on

18

Algorithm 1 Pyramid construction

1: Initialization:

2: X
(0)
1 ← F(G)

3: c
(0)
1 ← 2× 1

|F(G)|
∑

x∈F(G) x

4: s
(0)
1 ← maxx∈F(G)‖x− c(0)1 ‖

5: for i = 0 to t− 2 do

6: for j = 1 to bi do

7: run k-means clustering to partition B
(i)
j into b child bins

{B(i+1)
k }(j−1)b+1≤k≤jb

8: for k = (j − 1)b+ 1 to jb do

9: s
(i+1)
k ← 2×max

x∈X(i+1)
k
‖x− c(i+1)

k ‖

10: s
(i+1)
k ← min(s

(i+1)
k , s

(i)
j)

19

the approximated VG kernel achieves promising performance in both efficiency

and accuracy.

Multi-resolution histogram construction. Given a graph G and its de-

scriptor set F(G), a multi-resolution histogram is constructed according to the

pyramid structure. The multi-resolution histogram is defined as Ψ(G) = [H(0)(G), . . . , H(t−1)(G)],

where H(i)(G) = [H
(i)
1 , . . . , H

(i)

bi
] is a 1-d histogram with bi bins at the ith level,

0 ≤ i ≤ t − 1. Algorithm 2 shows how to construct Ψ(G) by walking each de-

scriptor through the pyramid and identifying its bin memberships along the way,

where p = (p0, . . . , pt−1) is a vector with pi being the index of the bin where the

descriptor is located at level i, 0 ≤ i ≤ t− 1, 1 ≤ pi ≤ bi.

Algorithm 2 Multi-resolution histogram construction

1: for x ∈ F(G) do

2: p0 ← 1

3: H
(0)
1 ← H

(0)
1 + 1

4: for i = 1 to t− 1 do

5: pi ← argminj‖c
(i)
j − x‖, (pi−1 − 1)b+ 1 ≤ j ≤ pi−1b

6: H
(i)
pi ← H

(i)
pi + 1

Matching multi-resolution histograms. The matching process goes from

the finest level (i = t − 1) to the coarsest level (i = 0). In this way, we will first

consider matching the closest descriptors (at level t− 1), and as we climb to the

20

higher levels in the pyramid, increasingly further descriptors are allowed to be

matched. Given two multi-resolution histograms Ψ(G1) and Ψ(G2), the number

of matches found in B
(i)
j is derived via bin intersection:

I(i)j = min(H
(i)
j (G1), H

(i)
j (G2)).

The number of new matches found in a bin is computed by subtracting the number

of matches found in all its child bins from I(i)j , which is the true number of

descriptors matched in this bin:

J (i)
j =


I(i)j , i = t− 1;

I(i)j −
∑jb

k=(j−1)b+1 I
(i+1)
k , 0 ≤ i ≤ t− 2.

We give an example in Appendix B to illustrate the above process. The VG

kernel is defined as follow, where wij = 1

1+s
(i)
j

is the weight of B
(i)
j measuring how

much a match found in the bin contributes to the overall similarity:

Definition 2.4.2 (VG Kernel). Given two descriptor sets F(G1) and F(G2), and

the corresponding multi-resolution histograms Ψ(G1) and Ψ(G2), the VG kernel

kvg is defined as:

kvg(F(G1),F(G2)) =
t−1∑
i=0

bi∑
j=1

wijJ (i)
j . (2.1)

Theorem 2.4.3. kvg is p.s.d.

Proof. We re-write Eq. (2.1) as kvg(F(G1),F(G2)) =
∑t−1

i=0

∑bi

j=1(wij − pij)I
(i)
j ,

where pij is the weight associated with the parent bin of B
(i)
j , and that for B

(0)
1 is

21

set to 0. Since the bin intersection I is a p.s.d. kernel [44], and since p.s.d. kernels

are closed under addition and scaling by a positive scalar, kvg is a valid kernel

as long as wij >= pij for all bins. This is guaranteed by (1) wij is a monotonic

decreasing function with respect to s
(i)
j , and (2) s

(i)
j is not bigger than the diameter

of its parent bin, which is guaranteed by the line 10 of Algorithm 1.

Theorem 2.4.4. Given N graphs and their corresponding descriptor sets, suppose

the maximum number of iterations for k-means clustering is H, the N-by-N kernel

matrix of kvg can be computed in O(N(Hb+N)tn).

Proof. Let us examine the time complexity of each step.

First, the pyramid can be built in O(HNntb). On one hand, the hierarchical

clustering can be performed in O(HNntb). It takes at most O(Hb) operations to

determine the bin membership for each descriptor at each level, and there are in

total Nn descriptors. On the other hand, determining all of the bin diameters can

be done in O(Nnt), because at each level, each descriptor will be accessed exactly

once. So the pyramid construction takes O(HNntb) time.

Second, the N multi-resolution histograms can be constructed in O(Nntb).

It can be seen from that, for each of the n descriptor, it takes b comparisons to

determine its bin membership at each level.

Finally, matching all pairs of multi-resolution histograms takes O(N2nt) time.

Matching two multi-resolution histograms can be done in O(nt) time via a sparse

22

representation of the multi-resolution histograms which only stores non-empty

entries, and there are N2 pairs to match. For implementation details, see [23].

Therefore, the overall time complexity isO(HNntb+Nntb+N2nt) = O(N(Hb+

N)tn).

Theorem 2.4.4 asserts the linear scalability of the VG kernel, which paves the

way to the proof of the linear scalability of the DM kernel.

Theorem 2.4.5. With kvg as the base kernel, kdm on a pair of graphs can be

computed in a linear time with respect to graph size.

Proof. For N graphs, directly following Theorem 2.4.1 and Theorem 2.4.4, kdm

can be computed in O(NLhm+N(Hb+N)htn) = O(Nh(Lm+Htbn) +N2htn)

time, where h is the number of iterations, and the amortized cost for a pair of

graphs is O(h
N

(Lm+Htbn) + htn) = O(1
N
Lhm+ (1

N
Hb+ 1)htn), which is linear

with respect to graph size.

2.5 Evaluation

Table 2.1: Statistics of the benchmark datasets

Dataset MUTAG ENZYMES D&D FR FM MR MM COX-2 BZR DHFR ER

graphs 188 600 1178 344 351 336 349 303 306 393 446
positive 125 - 691 121 143 152 129 148 157 126 181

categorical attributes 8 3 82 20 19 19 21 7 8 7 10
Avg. # nodes 26.03 32.63 284 25.56 26.08 25.05 25.25 41.56 35.04 41.58 41.96
Max. # nodes 28 126 5748 109 109 109 109 56 57 71 93
Avg. # edges 27.89 62.14 716 25.96 26.53 25.4 25.62 43.8 37.5 43.71 43.96

23

200 400 600 800 1000
0

5

10

15

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

GH

WLSP

SP

CSM

3

(a) Number of nodes n

60 120 180 240 300
0

0.5

1

1.5

2

2.5
x 10

4

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

GH

WLSP

SP

CSM

(b) Number of graphs N

0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

GH

WLSP

SP

(c) Graph density σ

2 4 6 8 10
1

2

3

4

5

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

(d) Number of iterations h

Figure 2.1: Runtime behavior on synthetic datasets.

We compare DM with state-of-the-art graph kernels: the propagation kernel

(PK) [43, 42], the Weisfeiler-Lehman subtree (WL) kernel [49], the Weisfeiler-

Lehman shortest-path (WLSP) kernel [50], the shortest-path (SP) kernel [9], the

connected subgraph matching (CSM) kernel [32], and the GraphHopper (GH)

kernel [20]. DM, PK, WL, SP, WLSP and GH are implemented in Matlab, VG

is implemented in C++, and CSM is implemented in Java. DM, PK and WL

are linearly scalable while others are not. WL can only be applied on graphs

24

with categorical attributes, while DM and PK can handle numerical attributes as

well. In DM, we directly append numerical attributes to descriptors, while in PK,

numerical attribtues are also propagated.

2.5.1 Runtime Analysis on Synthetic Datasets.

In this experiment, we test graph kernels on randomly generated graphs with

both categorical and numerical attributes. The main goal is to confirm the linear

scalability of the DM kernel. The results of WL and PK are similar to DM and

are omitted.

Experiment setup. We randomly generate undirected graphs based on two

parameters: the number of graphs N , and the number of nodes n. The default

values are N = 10 and n = 200. Average node degree is set to 5 so that graph size

increases linearly with respect to n. n nodes are first generated, then edges are

randomly inserted until a certain number is reached. We additionally experiment

on graphs with varying density σ = 2m
n(n−1) , and also evaluate DM with varying

number of iterations h. For DM, the default value of h is 10, and t and b are set to

4 and 10, respectively. For WLSP, the number of iterations h is set to 3. For CSM,

the maximum size of subgraphs k is set to 5. When evaluating one parameter, all

other parameters are fixed to the default values. Node categorical and numerical

25

attributes are randomly generated. The total CPU time to compute the N -by-N

kernel matrix is reported.

Result analysis. The results are presented in Figure 2.1. Figure 2.1(a)

shows the runtime behavior with respect to n. DM scales linearly with a small

increase rate, while the runtime of other kernels increases at least quadratically.

Figure 2.1(b) gives the runtime results with varying N . DM scales nearly linearly,

which shows that the linear term with respect to N in the overall time complexity

is dominating when N is moderate. In Figure 2.1(c), we show how the graph

density, namely the number of edges m when n is fixed, affects the runtime of

DM. As expected, the runtime of DM increases linearly. The result of CSM is not

reported because its extremely high runtime when graphs are dense. We argue

that, on real-world graphs, especially when graph size is large, m can rarely get

up to O(n2), therefore a runtime complexity in O(m + n) usually scales more

elegantly than O(n2). Finally, Figure 2.1(d) shows that DM also scales linearly

with respect to h.

2.5.2 Classification Performance on Real-world Datasets.

We experiment with 11 well-accepted benchmark datasets from chemo- and

bioinformatics. MUTAG [17] is a set of 188 chemical compounds labeled ac-

cording to whether or not they have a mutagenic effect on a bacterium. EN-

26

ZYMES [10] comprises of 600 enzymes represented by their secondary structure

elements (SSEs), and the task is to classify each enzyme into one of the 6 EC

top level classes. D&D is a datasets consisting of 1178 proteins where amino

acids are modeled as nodes. The graphs are therefore much larger. The task

is to predict whether a protein is an enzyme. The PTC [26] dataset contains

chemical compounds labeled according to their carcinogenicity to rodents. Four

datasets, mice (MM), female mice (FM), male rats (MR), and female rats (FR),

are developed according to their effect on different rodents. We acquired the

dataset from ChemDB [13]. We obtained four more chemical compound datasets

from [54]: COX-2 is a dataset of 467 cyclooxygenase-2 inhibitors, BZR a dataset

of 405 ligands for the benzodiazepine receptor, DHFR a dataset of 756 inhibitors

of dihydrofolate reductase, and ER a dataset of 1,009 estrogen receptors. The

task is to predict a chemical compound as active or inactive in a certain reaction.

All datasets have categorical attributes on nodes. MUTAG, MM, FM, MR

and FR have a node numerical attribute, the partial charge of atoms. COX-2,

BZR, DHFR and ER come with the 3D coordinates of atoms, based on which we

compute the spatial distance between atoms, and use it as a numerical attribute

on edges. We choose the 3D-length of the SSEs as a node numerical attribute for

ENZYMES. The dataset statistics are reported in Table 2.1.

27

Evaluation scheme. We perform 10-fold nested cross-validation of C-Support

Vector Machine provided by LIBSVM [11]. In each fold, all hyper-parameters are

optimized by an extra 9-fold cross-validation on the training data only. The whole

process is repeated for 10 times, and the mean and standard deviation of the classi-

fication accuracy over the 10 runs are reported. The reported runtime is obtained

by running each kernel with the hyper-parameters most frequently selected by

the model selection process. The initialization time for each kernel is included.

The “one-against-one” strategy is adopted for the multi-class classification on

ENZYMES. See Appendix C for the detailed configuration.

Graphs with only categorical attributes. We first experiment on graphs

with only categorical attributes. The results are shown in Table 3. A method is

bold-faced in the table if it achieves the highest accuracy, or is not significantly

worse than the highest according to the student t test at p = 0.05. The results

show that our DM kernel achieves comparable accuracy with other kernels. It is

in top 3 on all the datasets except COX-2, and achieves the highest accuracy on

MUTAG and D&D.

In terms of efficiency, among the linear-time kernels, DM is comparable with

WL while in general slower than PK. For the other kernels, GH and CSM are

less efficient than DM. Because WLSP and SP utilize the hash-and-check-equality

strategy (cf. §3.6), they are quite efficient on datasets with small graphs like

28

MUTAG, COX-2, BZR, DHFR, and ER. However, these non-linear-time kernels

are hard to scale to larger graphs, such as those in D&D. As a result, WLSP and

CSM cannot finish within 2 days on D&D, SP takes over 4 hours, and GH takes 3

days. The reason why DM takes more time on D&D than WL is that the runtime

of DM grows linearly with respect to L, the number of categorical attributes,

while the time complexity of WL is not dependent on L, and L = 82 on D&D.

Nevertheless, we can safely draw the conclusion that DM can scale to large graphs

with a moderate number of categorical attributes, which is the common case in

many applications.

Graphs with numerical attributes. We now test on graphs with additional

numerical attributes, which are the main targets of this work. WL is not applicable

in this case. Table 2.3 shows the experiment results. In terms of classification

accuracy, DM is among the best on 9 out of the 10 datasets, and achieves the

highest accuracy on 6 of them. The only kernel which is comparable in terms of

overall classification performance is WLSP. PK, SP and GH are in general less

competitive, while CSM can compete on several datasets. In terms of efficiency,

since the incorporation of numerical attributes fails the hash-and-equality-check

strategy, SP and WLSP become much slower. We compute the average ratio

between the runtime of each method and the runtime of DM over all the datasets.

DM is 29 times faster than SP, 18 times faster than GH, 80 times faster than

29

WLSP, and 53 times faster than CSM. The other linear-time kernel, PK, is more

efficient than DM because of its simplicity. However, it is less competitive in

accuracy, being among the best in only two datasets. If we consider all the 17

datasets in both Table 2.2 and Table 2.3, DM is significantly better than PK on

11 datasets, while PK wins on 2 datasets (under student t test at p = 0.05).

Comparing the results on the 6 common datasets (MUTAG, ENZYMES, COX-

2, BZR, DBFR, and ER) in Table 2.2 and Table 2.3 shows each kernel’s capability

of exploiting numerical attributes. Particularly, we see that the accuracy of DM

increases on each dataset after incorporating numerical attributes. On the con-

trary, on 5 of the 6 datasets, the accuracy of PK actually decreases2. This may

imply that directly appending the numerical attributes to the SC descriptors is

an effective way of exploiting numerical attributes. A more in-depth analysis is

of interest for future study.

Another salient characteristic of DM regarding accuracy is that, while the

accuracy of other kernels vary from dataset to dataset, DM consistently gives

good accuracy. Even on COX-2 and BZR in Table 2.2 where DM seems to fall

short, the difference between the accuracy of DM and the highest is small (3.3%

at most).

2On COX-2, BZR, DHFR and ER, we run two experiments for PK: One uses the the inverse
of the 3D-distance as edge weight; the other uses the 3D coordinates as node attributes. PK
performed much worse in the former. We report the latter.

30

2.6 Conclusions

We introduced a linear-time graph kernel which can handle graphs with both

categorical and numerical attributes. From experiments on both synthetic and

real-world datasets, the proposed kernel showed promising performance in accu-

racy and efficiency. The proposed kernel is a good alternative to existing kernels

for tasks involving small graphs. Moreover, it is among the first kernels applicable

to large graphs with rich attributes.

31

Table 2.2: Experiment results on graphs with only categorical attributes.

Method MUTAG ENZYMES D&D COX-2 BZR DHFR ER

DM
accuracy 87.89±1.88 59.48±0.89 79.69±0.64 73.97±1.80 75.80±1.10 80.54±0.94 83.61±1.17
runtime 4” 27” 1h10’ 29” 31” 27” 1’2”

PK
accuracy 84.22±1.47 46.43±1.26 79.27±0.33 75.33±2.34 76.60±1.77 80.51±1.66 81.91±0.78
runtime 0.2” 2.9” 6’2” 1.5” 0.6” 4.2” 0.5”

WL
accuracy 86.61±1.40 53.22±1.30 79.01±0.43 76.13±1.74 78.17±1.60 81.03±0.82 82.52±0.86
runtime 7” 28” 8’47” 17” 15” 22” 1’10”

SP
accuracy 85.94±1.94 43.20±1.21 78.26±0.76 73.97±2.33 72.83±1.87 75.18±0.97 76.93±1.22
runtime 0.4” 3” 4h27’ 1.4” 1” 2” 2”

GH
accuracy 82.89±1.69 37.98±1.57 75.80±0.46 71.90±2.15 72.93±1.46 74.00±1.40 78.36±1.02
runtime 37” 12’11” 3d20h 4’24” 3’33” 6’50” 9’

WLSP
accuracy 85.72±1.96 60.92±0.90 - 72.47±1.35 77.17±1.51 78.95±1.29 83.80±0.91
runtime 3” 1’26” > 2 days 8” 7” 12” 14”

CSM
accuracy 85.61±1.95 58.68±1.03 - 77.27±0.68 71.43±1.91 78.87±0.82 78.80±0.92
runtime 6’5” 8h24’ > 2 days 5’54” 22’45” 24’31” 4h9’

Table 2.3: Experiment results on graphs with numerical attributes.

Method MUTAG ENZYMES COX-2 BZR DHFR

DM
accuracy 90.09±1.87 70.37±1.57 76.17±2.01 78.83±1.31 80.92±0.94
runtime 11” 44” 19” 52” 32”

PK
accuracy 83.56±1.15 55.38±1.21 74.80±2.55 72.00±2.41 79.67±1.23
runtime 0.2” 3.3” 0.6” 0.9” 3.4”

SP
accuracy 87.11±1.73 70.90±0.83 72.03±1.17 74.60±2.35 77.28±1.14
runtime 2’25” 19’20” 6’25” 4’15” 8’40”

GH
accuracy 85.78±2.50 62.33±1.07 71.27±2.87 73.10±1.76 74.08±1.21
runtime 29” 9’ 4’44” 3’42” 7’14”

WLSP
accuracy 89.06±1.98 71.38±0.36 74.87±2.74 77.70±1.84 78.54±1.07
runtime 7’30” 32’6” 13’ 18’55” 43’

CSM
accuracy 90.61±2.39 68.91±0.92 75.03±1.63 74.37±2.20 79.72±1.66
runtime 6’25” 1’45” 6’41” 19’16” 35’35”

Method ER FR FM MR MM

DM
accuracy 83.77±1.17 66.83±1.26 61.94±1.34 60.79±1.59 65.09±1.74
runtime 1’10” 5” 13” 5” 6”

PK
accuracy 78.57±0.93 65.49±1.54 61.03±2.61 58.71±2.10 66.76±1.36
runtime 3.3” 0.5” 1.1” 0.7” 0.3”

SP
accuracy 80.89±1.08 64.66±1.21 59.85±1.32 60.44±1.38 65.24±1.04
runtime 13’ 5’18” 5’5” 5’ 4’40”

GH
accuracy 78.48±0.84 63.57±1.70 59.68±1.71 58.62±1.29 60.27±1.54
runtime 9’39” 2’52” 2’40” 2’42” 2’33”

WLSP
accuracy 83.73±0.97 66.09±2.19 62.62±2.00 59.88±1.53 67.03±1.41
runtime 49’50” 14’20” 13’46” 13’38” 12’47”

CSM
accuracy 80.16±0.79 66.49±1.49 60.71±1.77 58.24±2.37 65.94±2.45
runtime 41’ 1’53” 2’50” 13’57” 14’20”

32

Chapter 3

Distributed Representations of

Expertise

3.1 Introduction

Collaborative platforms, such as crowdsourcing service providers, community

question answering forums, and customer service centers, are becoming more and

more prevalent. Once managed effectively, the rich online human resources have

shown great potential to solve problems more economically, efficiently, and reliably

[58, 30, 28]. In order to effectively manage and utilize expert resources, an essential

problem is how to correctly understand/represent human expertise and identify

right experts for a certain task [25, 62]. In this paper, we take collaborative

33

networks as an example to derive expertise representation so that multiple experts

can be compared in the same framework.

e1

e3

e2 e4

e5

t1
t1

t1

t2 t2

Figure 3.1: A sample collaborative network. Tasks are routed among experts in a
collaborative network until they are resolved.

In collaborative networks, tasks are routed among a network of experts until

they are resolved. Fig. 3.1 shows a sample collaborative network. Task t1 starts

at expert e1 and is resolved by expert e5; task t2 starts at expert e1 and is resolved

by expert e4. The sequences e1 → e2 → e4 → e5 and e1 → e3 → e4 are called

routing sequences of task t1 and t2 respectively. One fundamental problem in

ticket routing is how to represent experts’ knowledge and employ it to estimate

the probability of solving a task. Once this problem is solved, the final resolver

to a given task can be found quickly.

An expert has to meet two constraints in order to solve a task: (1) Topic Match:

the specialized areas of the expert shall match the topic of the task. For example,

a programmer can possibly solve a programming problem while he is less likely

to solve a physics problem; (2) Difficulty Level Match: the difficulty level of the

34

task should match the proficiency of the expert. A programmer might be capable

of implementing a Binary Search algorithm while he is unable to solve the Eight

Queen Puzzle. These two constraints can be formalized as: (1) Specialization,

i.e., the field an expert is specialized in; (2) Proficiency level: to what degree an

expert is specialized in that field [3].

Previous studies [3, 4] assumed that a list of possible specialized areas for each

expert is given. In real collaborative networks, manually creating these specialized

areas is laborious and hardly accurate. An intuitive solution is to use topic mod-

eling such as Latent Dirichlet Allocation (LDA) [7] to automatically learn human

expertise from the previously solved tasks. This solution has two main problems:

(1) Tasks that an expert has failed to solve cannot be properly modeled to specify

what the expert cannot do. (2) Topic models essentially capture the topic distri-

bution of historical tasks. They do not directly measure proficiency level and its

difference among experts.

To overcome the aforementioned issues and learn better expertise representa-

tions, we propose two expertise models in below:

(Model A) It assumes each expert has one or several specialized functional

areas in a collaborative network. A task falling to one of the functional areas will

be solved by the expert; otherwise it will be transferred to another expert. Based

on this assumption, we define an expertise space in which all experts’ expertise

35

and all tasks will be embedded as numerical vectors. Tasks close to one of the

expertise of an expert will be resolved by the expert whereas those far from his/her

expertise will not. In this model, we combine the two aspects, specialized area

and proficiency level of human expertise. The specialized area of an expert is

characterized as a ball centered at his expertise vector and the radius of the ball

signifies the range of the expert’s duty. The ball is named functional area of the

expert. This model is referred to as Functional Area Expertise (FAE).

(Model B) In some collaborative networks, there is no clear division of experts’

responsibility. Experts solve tasks just based on their true capability. In this

case, experts could deal with tasks in all difficulty levels below his capacity of

solving tasks. Therefore, instead of unifying specialized areas and proficiency

levels as in the FAE, our second model learns a vector representation of expertise

and characterizes the two aspects separately: dimensions of the expertise vector

encode specialized areas and the value in each dimension signifies the proficiency

level of the expert on the corresponding area. Our intuitions in this formulation

are as follows: (1) If an expert can solve a task, his proficiency level should be

greater than or equal to the task difficulty; (2) If an expert cannot solve a task,

there must be some dimensions in his expertise where their values are smaller than

those required by the task. In this way, the specialized areas together with their

36

proficiency levels can be modeled naturally. We refer to this model as All-Round

Expertise (ARE).

FAE and ARE represent two different strategies of assigning task to experts.

FAE is going to reserve the capacity of highly skilled experts for difficult tasks,

while ARE tries to shorten task processing time as much as possible. We pro-

vide a comparison between FAE and ARE w.r.t several properties of collaborative

networks, according to which one can decide the model that shall be used. Ex-

perimental results on real collaborative networks show that expertise learnt from

our models better predict ticket solving than topic model based approaches and

other methods in expertise modeling.

In comparison with previous studies on expertise modeling, to the best of our

knowledge, we make the first attempt to consider all the factors together:

1. Not only do we utilize tasks solved by each expert but also those unsolved

by him, which shall better characterize human expertise.

2. Not only do we characterize the specialized areas of an expert, but also the

proficiency level he has in each area.

The rest of the paper is organized as follows. In Section 3.2, we briefly describe

our problem setting. In Sections 3.3 and 3.4, the two proposed expertise models

37

FAE and ARE will be introduced. Section 3.5 presents our experimental results.

Related work is reviewed in Section 3.6, followed by the conclusion in Section 3.8.

3.2 Preliminaries

In this section, data characteristics based on which we conduct our expertise

models, will be firstly introduced. Then we will depict the big picture of dis-

tributed representations of expertise. At last, two expertise necessary properties

which are based on our observations will be introduced.

In this section, we introduce the notations and discuss the two aspects of

expertise, i.e., specialized areas and proficiency level, that shall be captured by

an expertise representation.

3.2.1 Task Routing and Resolution Records.

In a collaborative network, a set of experts work cooperatively to solve tasks.

Here we use E = {Ei} to represent the set of experts. V = {v1, v2, ..., vk, ..., vV }

is the set of words used to describe the tasks. Let T = {tj} be a set of tasks

resolved in the collaborative network, where each tj is a bag-of-word vector with

each dimension recording the word frequency in the task description.

38

Apart from the textual description, each task is also associated with a routing

sequence starting from an initial expert to the final resolver of the task. Table 3.1

shows one example problem ticket in an IT service department. The ticket with

ID 599 is a problem related to operating system, specifically, the low percentage

of the available file system space. It was assigned to expert IN039, then routed

through expert SAV59, and got resolved by expert SAV4F.

Table 3.1: The Lifetime of A Task.

ID Entry Time Expert
599 New ticket: the available 9/14/06 IN039

space on the var 5:57:16
file system is low

599 ...(operations by IN039)... ... IN039
599 Ticket 599 transferred ... IN039

to SAV59
599 ...(operations by SAV59)... ... SAV59
599 Ticket 599 transferred ... SAV59

to SAV4F
599 ...(operations by SAV4F)... ... SAV4F
599 Problem resolved: free 9/14/06 SAV4F

up disk space 9:57:31
in the file system

In this paper, we propose to learn distributed representations of expertise for

all experts based on their task solving history. For the example above, historical

data which we can utilize is experts IN039 and SAV59 did not solve task 599 but

SAV4F solved it.

39

During task routing, an essential problem is to understand a certain expert’s

knowledge and estimate whether he could solve the current task or not. In this

paper, we propose to automatically learn the expertise of all the experts based on

the task routing and resolution records. Specifically, as shown in Table 3.1, the

fact that expert IN039 and SAV59 did not solve task 599 but SAV4F solved it,

will be leveraged to infer their expertise.

HuanWhen a task is solved by an expert, it satisfies that (1) the topic of the

task matches the specialized topic(s) of the expert. For example, an expert special-

ized in computer science tasks probably could not handle problems in Chemistry.

(2) Furthermore, the difficulty level of the task matches the expert’s ability in

dealing with tasks from the same topic.

3.2.2 Expertise Representation.

How to model the capability or knowledge of an expert is critical in collabo-

rative platforms [41?]. One intuitive idea is using collaborative tags to describe

knowledge areas which the expert is good at [29].

[3] gives a formal definition of expertise, which consists of two aspects: (1)

Specialized areas of an expert; (2) Proficiency level of an expert in each specialized

area. We formalize a distributed representation of expertise as follows:

< level(area1), level(area2), ..., level(aread) >,

40

where level(areai) is the proficiency level of the expert in areai and d is the number

of all possible specialized areas. Previous studies assume that all these specialized

areas are pre-specified [3, 4]. In real collaborative networks, manually creating

these specialized areas is often laborious and hardly accurate. Specialization could

be strongly correlated with each other, as well as hierarchical, i.e., under one

general topic, there could be fine-grained subtopics. Therefore automatic learning

expert knowledge, based on the tasks an expert has solved and failed, will be more

beneficial to efficient task resolution in collaborative networks.

Previous studies try to use topic modeling to automatically learn expertise

areas [41]. The textual descriptions of all the tasks solved by an expert can be

combined together as a document to represent his knowledge. LDA can take such

documents for all the experts and output the topic distribution for each expert as

his expertise. Unfortunately, two main disadvantages lie in this intuitive solution:

(1) An expert’s unsolved tasks tell what he cannot solve, and therefore should be

used together with those solved tasks to characterize his expertise. Topic modeling

models like LDA cannot directly utilize this kind of information. Developing

more advanced and complicated topic models is non-trivial; (2) The learnt topic

distribution does not signify the proficiency level of an expert. According to topic

modeling, higher values in the topic distribution for an expert merely mean more

41

tasks have been solved in the corresponding topics. They do not necessarily denote

higher proficiency level of the expert.

For example, if an expert solved task t multiple times, words in task t’s de-

scription will be counted multiple times, and as a result the topics which this task

t belongs to will be emphasized. However, in this case, the expert’s proficiency

levels in dealing with tasks from such topics is not necessarily high, since t might

be an easy task. Otherwise, if the expert can solve ”more difficult” tasks from

a specific topic but only solved a small number of tasks belonging to topic, the

corresponding topic probability in his topic distribution will not be emphasized,

even with a small value.

Here we introduce a novel distributed representation of expertise by embedding

expertise and task in the same d dimensional space, referred to as the expertise

space. We use eki to represent the kth expertise of expert Ei. Each task tj will be

embedded in the expertise space by a transformation matrix W :

t̃j = Wtj, (3.1)

where t̃j is the representation of the ith task tj in the expertise space. Based

on all the solved and unsolved tasks of each expert, we will learn their expertise

representation ei together with the transformation matrix W .

42

3.3 Modeling Functional Area Expertise

In this section, we introduce our first expertise model called the Functional

Area Expertise (FAE) model. In this model we assume each expert in the col-

laborative network may have one or more specialized functional areas and they

could only solve tasks which belong to one of his functional areas. This assump-

tion holds for many real collaborative networks in which explicit functional areas

represent responsibilities.

Based on this assumption, we define a d dimensional Functional Area Expertise

(FAE) space. Each expert will be assigned to one or several d × 1 vectors, each

represents the center of one functional area in expertise space and a corresponding

radius parameter r which models the proficiency level in this area. In this new

space, as shown in Fig. 3.2, tasks located within one of the functional areas

of an expert E will be resolved by the expert and tasks located outside all the

functional areas of the expert will not be resolved by E. An expert with larger

radius parameter is likely to solve more tasks.

The functional area expertise model can be learned based on historical data.

Intuitively, the learnt expertise should be close to his solved tasks but far from

those tasks he cannot solve. We design the following objective function based on

43

e

r

t1

t2

1

1

Tasks solved by E

Tasks unsolved by E

t

t4 e
2

r2
3

Figure 3.2: An intuitive example for Functional Area Expertise when d = 2. Tasks t1 and t2
are in the first functional area, t3 is in the second functional area of E and can be solved by E.

Tasks t4 are out of both functional areas of expert E and thus cannot be solved by E.

this intuition.

argmin
W,e,re

∑
E solved t

min
k
frke (||ek −Wt||2)

−
∑

E unsolved t

∑
k

frke (||ek −Wt||2) + α||W ||1

+ β
∑

e,1≤k1,k2≤k

max(rk1e + rk2e − ||ek1 − ek2||2, 0),

(3.2)

where rke is the kth radius parameter for expert E, f is a monotonic increasing

function referred later as the radius function, which will be described in detail

later. The first term in the objective minimizes the distance between a solved task

and solver’s closest expertise center while the second term maximizes the distance

between an unsolved task to expert’s all expertise centers. The third term is a

L1 regularization term used to reduce model complexity and avoid overfitting.

Intuitively different functional areas represent different expertise areas and thus

44

should not overlap with each other. The last term in the objective gives penalty

to functional area overlapping: it returns 0 when the distance between any two

expertise centers is greater than the sum of two corresponding radius parameters

and returns a positive penalty otherwise.

Simply setting function f as the identical function leads to a trivial solution.

For example if expert E fails to solve task t, the objective function returns negative

infinity when we embed all expert centers of E to origin and ticket t to infinity.

To avoid this, we set f to be the shifted sigmoid function defined as follows:

fr(x) =
1

1 + exp−(x− r)
,

where r is the radius parameter.

We applied well-established L-BFGS (Limited-memory BFGS) algorithm [34]

to optimize objective function Eq. (3.2). L-BFGS is an optimization algorithm

in the family of quasi-Newton methods. Instead of storing a dense approximation

of the inverse Hessian matrix, L-BFGS algorithm stores only a few vectors that

represent the approximation implicitly. This makes it particularly well suited for

optimization problems with a large number of variables. Based on learnt W , re,

and e, the probability of an expert E solving a task t can be predicted by:

1−min
k
frke (||ek −Wt||2).

45

e1

Tasks can be solved by e1 and e2

Tasks can only be solved by e2

a

b

c

d
e2

Figure 3.3: An example for the All-Round Expertise model. Expert E1 can only solve the
tasks covered by the small rectangular. But E2 can solve all the tasks including those E1 can

solve.

3.4 Modeling All-Round Expertise

In some collaborative networks, the assumption above for the functional area

formulation may not hold. Instead, an expert can solve tasks whose difficulty

level is equal to or below his/her proficiency level. In this section, we propose an

All-Round Expertise (ARE) model to handle this scenario. ARE is based on the

following intuition: (1) If an expert E can solve a task t, its expertise should be

greater than or equal to t in all dimensions. (2) If the expert cannot solve the

task, its expertise should be smaller than the task at least in some dimensions.

An example with d = 2 is shown in Fig. 3.3. e1, (a, b), and e2, (c, d), are expertise

46

of two experts. Tasks lying inside the smaller rectangular can be solved by expert

E1. All tasks lying inside the bigger rectangular can be solved by expert E2. In

this model, dimensions are considered as areas and the value on each dimension

is the proficiency level of an expert in that area. Therefore, we no longer need to

assign several expertise vectors to one expert.

3.4.1 ARE for Solved Tasks.

Let e = (e(1), e(2), . . . , e(d)) be the expertise of expert E and t̃ = (t̃(1), t̃(2), . . . , t̃(d))

be the vector representation of task t in the expertise space. We define a new op-

eration .− in the expertise space as follow:

e .− t̃ =
∑
1≤l≤d

(min(0, e(l) − t̃(l))).

Note that e .− t̃ is always smaller than or equal to 0 and e .− t̃ = 0 if and only

if e(l) ≥ t̃(l), ∀k. We define the objective function of ARE for solved tasks is as

follows:

argmax
W,e

∑
e solved t

(e .− t̃). (3.3)

We denote dimension k as a strong dimension for expert E with respect to task

t if e(l) ≥ t̃(l), and as a weak dimension with respect to t if e(l) < t̃(l). When E

solved t, the objective function in Eq. 3.3 penalizes all weak dimensions and do

not care how ’strong’ the strong dimensions are. If all the dimensions are strong,

47

we have e .− t̃ = 0, which maximizes e .− t̃. The motivation is, if the expert can solve

the task, this expert shall have knowledge deep enough on all the areas required

by t.

Only learning experts’ expertise from the solved tasks will not work well. For

example in order to tell one task tj is more difficult than another task ti, we need

information like some expert E solved ti but not tj. This can also be illustrated

by a trivial solution of the above model which embeds all the tasks to 0 and all

expertise to some positive number. This solution clearly maximizes the above

objective but fails to learn the difficult level for each task. Base on this intuition,

we shall include unsolved tasks in learning expertise.

3.4.2 ARE for Unsolved Tasks.

For unsolved tasks, we believe there must be some weak dimensions for expert

E. For the optimization purpose, we set a margin parameter α ≥ 0 to measure

how weak these dimensions are. To be specific, if expert E fails to solve task t,

the sum of differences between expertise e and t over all weak dimensions should

be smaller than a negative threshold, which is set to be −α. Fig. 3.4 shows

an example of this margin with d = 2. If an expert E could solve task t, the

learnt expertise e should be located in area 1, while if e fails to solve t, the learnt

expertise representation should be located in area 2. We use following formula to

48

measure the penalty for unsolved tasks:

min(−α− (e .− t̃), 0),

where e .− t̃ can be considered as the sum of differences between e and t over all

weak dimensions. If the sum is larger than −α, the formula equals to −α−(e .− t̃),

which is negative. Otherwise, the formula returns 0.

Margin α distinguishes between solved tickets and unsolved tickets of an expert

in the expertise space. Setting margin α to 0 leads to a trivial solution: the

objective function returns a global minimum value 0 for both solved and unsolved

tasks when mapping all expertise and ticket vectors to the origin. We will describe

in detail how to select α later in the experiment section.

We define the objective function of ARE for unsolved tasks as follows:

argmax
W,e

∑
e unsolved t

(min(−α− (e .− t̃), 0)). (3.4)

When E fails to solve t, this objective function penalizes all dimensions when

e .− t̃ is above the margin.

49

α

α
t

area 1

area 2

Figure 3.4: An example of applying margin α in the All-Round Expertise model with d = 2.
The expertise of all experts who are capable of solving t is expected to be located in area 1,

while the expertise of all experts who cannot solve t is expected to be located in area 2.

3.4.3 Objective Function of ARE.

We now combine penalties from both solved and unsolved tasks to the objective

function:

argmin
W,e

−
∑

E solved t

(e .− t̃) (3.5)

−
∑

E unsolved t

(min(−α− (e .− t̃), 0))

+ β||W ||1.

Similar to the FAE model, we add an additional L1 regularization term and apply

L-BFGS algorithm to optimize ARE. Denote the objective function in Eq. 3.5 as

H(W, e). The derivative of H with respect to {W, e} is given by:

50

∂H
∂Wij

=
∑

E solved t

t(j) ∗ I(e(i) < t̃(i)) (3.6)

−
∑

E unsolved t

t(j) ∗ I(E .− t̃ > −α)

+β ∗ sgn(wij),

∂H
∂e(i)

=
∑

E solved t

−1 ∗ I(e(i) < t̃(i))

+
∑

E unsolved t

1 ∗ I(e .− t̃ > −α),

where sgn(x) is the sign function and I(x) is the indicator function which

returns 1 if statement x is true and returns 0 otherwise. Based on W and e

learnt from ARE, whether an expert can or cannot solve a task can be predicted

by e − t̃. The decision boundary is determined using 5-fold cross validation on

training. The scale of e’s each dimension indicates how good the expert is in

the corresponding area. Similarly, the scale of t’s each dimension indicates how

difficult the task is in that dimension.

3.5 Experiments

In this section, we evaluate the proposed two expertise models, FAE and ARE,

on real-life datasets. We test their performance in predicting whether an expert

E can solve a task t.

51

3.5.1 Baselines.

The performance of FAE and ARE is compared with standard classifiers and

other popular methods in expertise modeling.

(1) Logistic Regression (LR). We train a logistic regression model [5] for

each expert. This model takes a bag-of-word vector as input and outputs the

probability that this expert solves the task. This probability, denoted as Pi(t), is

defined as follows:

Pi(t) =
1

1 + exp(−(Wi ∗ t+ bi))
,

where Wi is the weight vector associated with expert Ei which has the same size

as the bag-of-word vector of tasks. Wi can be viewed as an expertise vector learnt

for each expert; Wi ∗ t computes the dot product similarity between Ei and t,

which is used to predict task solving. The parameters in the model are learned

by minimizing the square-loss error, based on the < expert, task > pairs in the

training dataset.

argmin
W,b

=
∑
<ei,t>

(Pi(t)− y<Ei,t>)2,

where y is 1 if Ei solved t and is 0 otherwise.

(2) SVM. We build an SVM classifier for each expert and use it to predict

whether he/she can solve the tasks in the testing set. We tried different kernels in-

52

cluding linear, polynomial, quadratic and multilayer perceptron; their best results

are reported.

(3) Query Likelihood Language Model (QLL). In QLL [41], each doc-

ument is represented as a multinomial distribution over words. The maximum

likelihood estimate of this distribution is the frequency of each word in the docu-

ment divided by the total number of words in the document. We apply Dirichlet

smoothing to the distribution as most of the words in the vocabulary do not show

together in each individual document. The likelihood of a query task t generated

from a document d under a language model with Dirichlet smoothing is defined

as:

p(t|d) =
∏
w∈t

Nd

Nd + µ
p(w|d) +

µ

Nd + µ
p(w),

p(w|d) =
Nd(w)

Nd

,

where Nd is the number of words in d, Nd(w) is the number of word w in d, µ is

a smoothing parameter, and p(w) is the probability of the word w in the entire

corpus. For each expert E we construct two document collections, C+
e , which is a

collection of all his/her solved tasks, and C−e , which is a collection of all his/her

unsolved tasks. Intuitively, for an expert E, if a new task is close to one task

in the solved task collection, then this new task is highly likely to be solved by

E. Similar argument works for the unsolved task collection. Thus we define the

53

likelihood of a query task t obtained from a document collection C as:

p(t|C) = max
d∈C

p(t|d).

For expert E and a new task t, we predict E solve t if p(t|C+
e) > p(t|C−e) and E

cannot solve t otherwise.

(4) Topic Modeling. Topic modeling can be used to learn expertise. Specif-

ically, we first create two documents for each expert by merging task descriptions

in C+
e and C−e , and denote them as d+e and d−e respectively. Latent Dirichlet Al-

location (LDA) [7] is then used to train topic models. For each expert, two topic

distributions θ+e and θ−e are learned corresponding to d+e and d−e . θ+e conveys what

expert E can do and θ−e tells what he/she cannot do. The likelihood of a task t

generated from a topic distribution is defined as:

p(t|θe) =
∏
w∈t

∑
z∈Z

θze × p(w|z),

where z is one of Z topics and p(w|z) is the word probability under topic z which

is output by the topic model. For expert E and a new task t, we predict E solve t

if p(t|θ+e) > p(t|θ−e) and e cannot solve t, otherwise. Advanced topic models, such

as [45], are not chosen as baselines because they do not fit our problem setting.

For example, there is no multiple authors for a task as a scientific paper does.

Since each task description in our dataset typically contain a few words, directly

54

applying complex topic models will not work well due to sparse word co-occurrence

[59].

3.5.2 Datasets.

We use real-world problem ticket data collected from a problem ticketing sys-

tem in an IT service department throughout 2006. Two datasets in different

problem categories are explored: Windows and AIX, which contain problem tick-

ets occurring in the Windows and AIX operating systems. The details of both

datasets are shown in Table 3.2. The data is quite sparse: Only a few tasks were

recorded for each expert and there are a few words in each task description.

Table 3.2: Two Datasets on Task Resolution

Datasets # of tasks # of experts
WIN 32349 1278
AIX 10519 1988

We apply well-established L-BFGS algorithm to optimize the objective func-

tion in FAE, ARE, and LR. All parameters are initialized randomly from [−1, 1]

and updated iteratively using the second order gradients estimated by L-BGFS.

We conduct a 80%− 20% random split on the dataset and generate training and

testing data. 5-fold cross validation is used on the training dataset for hyper pa-

rameters selection on all the methods including FAE and ARE, e.g., α, β in Eq.

55

3.2 and β in Eq. 3.5. The margin parameter α in ARE should not effect the

expertise learning: if W and e are local minimal for Eq. 3.5 with α then 2W and

2e are local minimal for Eq. 3.5 with 2α. We use the 5-fold cross validation to

determine the decision boundary for both FAE and ARE. The whole process is

repeated for 5 times; the mean and standard deviation of the classification accu-

racy over the 5 runs are reported. The bag-of-word representation uses the top

2, 000 most frequent words in all the tickets as used in [53]. The dimensionality

of expertise is set at 20 for both FAE and ARE models. In the FAE model, each

expert is assumed to have 2 specialized areas (k is set at 2 empirically).

3.5.3 Accuracy.

Table 3.3 summarizes the performance of all the methods. As shown, the

proposed two models work significantly better than all the baselines in terms of

prediction accuracy. As the ticket dataset is sparse, LR, SVM and QLL cannot

learn very good classifiers as they learn a classifier for each individual expert.

Our models learn expertise for all the experts together and embed all the tasks

in the same expertise space. The learnt transformation matrix W is shared by

all the tasks and the sparsity issue is overcome in this way. The performance of

our models is better than these three baselines. Not surprisingly, the topic model

method, LDA, works badly in this case. The reason is topic models highly rely on

56

word co-occur information. Tasks in our data are very short (the average number

of words in a task is around 5) and only a few short documents are associated with

each expert. Therefore, topic modeling cannot learn proper topic distributions.

ARE outperforms FAE significantly in the AIX dataset indicating that the WIN

and AIX collaborative networks might adopt different task assignment strategies.

From the results we can see that whether a task can be solved cannot be

accurately predicted using word level model like QLL. In fact, sice each task

contains only a few words (average number of words in a task is round 5) and we

have only limit number of tasks solving history for most experts E, many new

tasks have zero word overlapping with the collections of both solved and unsolved

tasks. This limits the prediction capacity of any word level models. The basic LR

model lack the capacity of learning competency of an expert in multi-topics. In

addition, as we only have limit training examples for each people, the classic LR

and SVM model will likely suffer from overfitting. Thus it is not surprising that

our proposed models outperform LR and SVM in all datasets.

3.5.4 Efficiency.

The time complexity of the FAE and ARE models is determined by the num-

ber of gradient update iterations multiplied by the complexity of computing the

objective derivatives in each iteration. As shown in Eq. 3.6, the complexity of

57

Table 3.3: Accuracy on task resolving prediction

Models WIN(%) AIX(%)
FAE 85.09± 0.49 85.38± 1.06
ARE 86.52± 0.62 88.18± 0.63
LR 81.44± 0.65 79.48± 0.78

SVM 80.14± 0.40 79.17± 0.59
QLL 78.44± 0.47 67.55± 3.92
LDA 65.60± 0.67 74.20± 0.49

the derivatives computation is O((dt + N) ∗ d), where dt is the dimensionality of

ticket bag-of-word representation, d is the dimensionality of the expertise space,

and N is the number of ticket-expert pairs. We did not show the derivative of the

objective function in FAE due to the space limit. However, it is easy to see that

the complexity is the same as ARE. Note that both models may take a long time

to converge. Here we set a limit on iterations and stop the model training after 50

iterations. Figure 3.5 shows how we empirically select this number by plotting the

classification accuracy versus the number of training iterations for both models

on the AIX dataset.

Table 3.4 summarizes the running time for each model. We list the training

time for all the methods. These algorithms are implemented using MATLAB on a

8-core 3.40GHz Intel CPU with 16G memory. The testing time for all the methods

is shorter than 1 second, which means after expertise learning all the methods can

do prediction in a timely manner.

58

10 30 50 70 90

0.5

0.6

0.7

0.8

0.9

Number of iterations

A
c
c
u
ra

c
y

ARE

FAE

Figure 3.5: Classification accuracy versus the number of iterations for FAE and ARE on the
AIX dataset. Both models almost converge after 50 iterations.

Table 3.4: Efficiency on model learning

Models WIN AIX
FAE 5′21′′ 3′38′′

ARE 5′20′′ 3′02′′

LR 27′′ 28′′

SVM 3′23′′ 7′9′′

QLL 1′3′′ 2′31′′

LDA 11′59′′ 18′23′′

59

3.6 Related Work

In this section, we first introduce the background of collaborative platforms

and then review previous methods on expertise modeling and representation.

Collaborative Platforms. Recent years have witnessed blossoms of various

collaborative platforms, such as community question answering forums Quora1

and Stack Overflow2. Collaborative network is a typical example of collaborative

platforms, where a task is routed through the network until being resolved. Studies

have been focused on developing automated routing algorithms to route a task to

its final resolver as fast as possible [48, 38, 61]. Miao et al. [39] studied a network

model and a routing model to jointly simulate the structure and the task routing

procedure in a collaborative network. Sun et al. [53] studied the routing behaviors

of experts in collaborative networks and modeled their decision making process on

where to transfer a task. In this paper, we study a key problem in collaborative

networks: expertise modeling and representation, which serves the central role in

many applications, such as expert search and expertise comparison.

Expert Search. Expert search aims at finding experts who are knowledgable

on a given topic and capable of solving a given problem [15, 2, 47, 19]. Expert

search became an important research area since it started at the TREC enterprise

1http://www.quora.com/
2http://stackoverflow.com/

60

track [15] in 2005. The crucial problem in expert search is how to rank experts

given a query. Many papers in this line consider expertise modeling as a part

of expert ranking. No explicit expertise representations are learned [35, 18]. For

example, Deng et al. formalized expert ranking by statistical language model

and topic-based model [18]. Fang et al. [19] proposed a discriminative learning

framework to directly model the conditional probability of relevance between an

expert and a query. In this paper, we try to learn a vector representation for

each expert, which can be used to compare expertise in a large organization and

optimize expert allocation.

Expertise Modeling. In different application scenarios, various types of data

are used to model expertise, such as project descriptions and professional articles

[2, 41, 47, 19]. For example, Mimno et al. [41] modeled a reviewer’s expertise by

the papers she has written when matching reviewers with submitted papers. Guan

et al. [24] mined the fine-grained knowledge of a Web user, by analyzing their Web

surfing data, to facilitate expert search in collaborative environments. In question

answering, Zhang et al. [62] used language models to compute user expertise

based on the threads a user contributes to, where each thread contains a question

post and a number of reply posts. Li et al. [33] incorporated question category

into question routing, where question category is used to estimate answerers’

expertise. Chang et al. [12] proposed a routing framework that uses compatibility,

61

availability and expertise of the users to recommend answerers and commenters

to a question. Expertise is modeled by using questions an expert has answered

and questions’ tags annotated by askers.

As social media becomes prevalent, studies (e.g., [60, 25, 55]) on using social

media data to derive user expertise, have emerged recently. Yeniterzi et al. [60]

employed authority signals such as votes, comments, and follower/following in-

formation to estimate user expertise. In [25], Guy et al. provided an extensive

study that explores the use of social media to infer user expertise, by evaluating

the data users produced through a large survey. Varshney et al. [55] inferred the

expertise of employees in the IBM corporation through mining social data that

is not specifically generated and collected for expertise inference. Our work on

modeling expertise distinguishes itself from these studies: We not only take into

account tasks that are solved by an expert, but also those unsolved by her, in

order to characterize her expertise.

Expertise Representation. For expertise representation, early approaches

built a knowledge base which contained the descriptions of people’s skills within

an organization [16] or used tags to represent expertise of each expert [29]. More

advanced methods are based on topic modeling [41, 45]. Topic Modeling is a

standard approach to explain the observed data. Latent Dirichlet Allocation

(LDA) [7], which takes a set of documents as input and simultaneously learn

62

the document-topic and topic-word distributions. For each expert, one can com-

bine the set of tasks solved as a single document. LDA takes the documents

of all the experts and outputs the topic distribution for each expert as his/her

expertise representation. However, topic distributions learnt by LDA essentially

capture experts’ historical task distributions but not their true capability on task

solving, such as the proficiency level on a specialized area. In contrast, expertise

learnt by our models conveys both aspects of human expertise: specialization and

proficiency level.

3.7 Communication Frequency and Expertise Close-

ness

Based on observations in cognitive science studies [52] and previous work [53],

we characterize two properties that a good expertise representation should have

in collaborative networks.

(1) Communication Frequency. Expertise recognition, which is critical for

the work efficiency of collaborative platforms, was studied broadly in Transactive

Memory Theory [57]. Previous studies found that social communications help

experts to understand each others’ expertise much better than just reading digital

descriptions of experts [52]. Based on analyzing tasks in an IT department, we

63

1 2 3 4
0.8

0.85

0.9

Communication Frequency

P
e
rc

e
n
ta

g
e
 o

f
T

a
s
k
 S

o
lv

in
g

WIN

AIX

Figure 3.6: An observation in a task resolution dataset. The percentage of tasks solved
increases with communication frequency. WIN and AIX are the categories of tasks on MS

Windows and AIX operating systems.

also found that frequent communications will help experts understand expertise

of each other. As shown in Fig 3.6, with the communication frequency increasing,

the percentage of tasks being solved increases. One possible reason is, after a few

times of communication, an expert will become much clearer about which tasks

his neighbors can or cannot solve.

(2) Expertise Closeness. One observation reported by [53] is that an expert

tends to transfer tasks to other experts whose expertise is quite different from his

own. The reason is obvious as he (with his expertise) has failed to solve the task.

A good expertise representation should meet these constraints. This leads to

a question, can we add them to learn a more accurate expertise representation?

64

In this section we will first describe our tries and then explain why the FAE and

ARE models likely have incorporated these constraints to some degree.

As we mentioned earlier, people who communicate frequently will have better

understanding of each other’s expertise. Therefore if ei has a frequent communi-

cation history with ej then the task routed from ei to ej will be likely closer to ej’s

expertise, thus will be more likely solved by ej. In order to utilize this property,

we vary the key parameters in our two models, the radius parameter r in FAE

and the margin parameter α in ARE, according to the communication frequency

between two experts. For example, for task t transferred from ei to ej, the radius

parameter r exponentially decreases with respect to the communication frequency

fij between ei and ej. To be specific, we keep the same objective formula in Eq.

3.2 but change the boundary function as follows:

f(x) =
1

1 + e−(x−r∗exp(−γfij))
, (3.7)

where γ is the exponentially decreasing rate. We can also apply a similar expo-

nential decreasing factor on the margin parameter α in ARE.

For expertise closeness, we penalize communicated expert pairs by adding the

following regularization to the objective function of both proposed models:

∑
(1− f(||ei − ej||2)), (3.8)

65

where the summation is over all communicated expert pairs ei and ej and function

f is the bounded non-linear function introduced in Eq. 3.7. It is easy to see that

this penalty term returns 1 if ei is closed to ej and returns 0 if ei is far from ej.

Intuitively the above modification shall improve the original models, FAE and

ARE. However, such improvement is not observed. We suspect that these two

properties have already been captured in the tasks transferred between experts.

Take the expertise closeness property and FAE as an example. If expert ei routed

task t to ej and ej solved it, then the expertise of ej will be close to t̃. Since ei

failed to solve t, the expertise of ei will be away from t̃. Therefore the expertise of

ei and ej will not be close and task t carries this information. We will later show

in the experiments that the representation learnt from FAE and ARE indeed have

these two properties.

3.8 Conclusion

Expertise modeling is considered as the core content in improving the efficiency

of collaborative networks. The goal is to represent experts’ abilities in terms of

specialization and proficiency level. In this paper, we developed two models to

learn distributed representations of expertise which can convey both aspects. The

shared insight of these two models is embedding both expertise and tasks that were

solved/unsolved by experts in the same space. The embeddings are optimized over

66

all historical data points: which expert solved which task and which expert failed

to solve which task. The first model assumes that an expert only solves tasks

matching his/her specialization and proficiency level. Alternatively, in the second

model, the expert can solve all the tasks whose difficulty level is equal to or lower

than his/her proficiency level in his/her specialized area. Experimental results

on real datasets demonstrated that the proposed models can learn meaningful

expertise representations and are effective in predicting task resolution.

67

Chapter 4

Summary

The performance of machine learning methods is heavily dependent on feature

representation on which they are applied. As a result, representation learning,

which transfers real world data such as graphs, images and texts, into repre-

sentations that can be effectively processed by machine learning algorithms, has

became a new focus in machine learning community. In this thesis, we apply

representations learning algorithm on two different tasks. In the first work, we

used well-known VG kernel on a newly developed nodes representation. In the

second work, we learn distributed representations of experts’ abilities in terms

of specialization and proficiency level in a collaborative networks. The represen-

tations are optimized over all historical data points: which expert solved which

task and which expert failed to solve which task. Experimental results on real

68

datasets demonstrated that the powerfulness of the proposed representation in

both applications.

69

Bibliography

[1] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, and T. Salakoski.

All-paths graph kernel for protein-protein interaction extraction with evalu-

ation of cross-corpus learning. BMC bioinformatics, 9(Suppl 11):S2, 2008.

[2] Krisztian Balog, Leif Azzopardi, and Maarten De Rijke. Formal models for

expert finding in enterprise corpora. In SIGIR, pages 43–50, 2006.

[3] Krisztian Balog and Maarten De Rijke. Determining expert profiles (with an

application to expert finding). In Proc. of IJCAI-07, pages 2657–2662, 2007.

[4] Krisztian Balog, Yi Fang, Maarten de Rijke, Pavel Serdyukov, and Luo Si.

Expertise retrieval. Foundations and Trends in Information Retrieval, 6(2–

3):127–256, 2012.

[5] C Bishop. Pattern recognition and machine learning, 2007.

[6] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - the story so far, 2009.

70

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet alloca-

tion. JMLR, 3:993–1022, 2003.

[8] D. D. Bonchev and D. H. Rouvray. Chemical graph theory: introduction and

fundamentals, volume 1. 1991.

[9] K. Borgwardt and H. Kriegel. Shortest-path kernels on graphs. In ICDM,

2005.

[10] K. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola,

and H. Kriegel. Protein function prediction via graph kernels. Bioinformatics,

21(suppl 1):i47–i56, 2005.

[11] C. Chang and C. Lin. Libsvm: a library for support vector machines. TIST,

2(3):27, 2011.

[12] Shuo Chang and Aditya Pal. Routing questions for collaborative answering

in community question answering. In ASONAM, pages 494–501, 2013.

[13] J. H. Chen, E. Linstead, S. J. Swamidass, D. Wang, and P. Baldi. ChemDB

update – full-text search and virtual chemical space. Bioinformatics,

23(17):2348–2351, 2007.

[14] F. Costa and K. D. Grave. Fast neighborhood subgraph pairwise distance

kernel. In ICML, 2010.

71

[15] Nick Craswell, Arjen P de Vries, and Ian Soboroff. Overview of the trec 2005

enterprise track. In TREC, volume 5, pages 199–205, 2005.

[16] Thomas H Davenport and Laurence Prusak. Working knowledge: How orga-

nizations manage what they know. Harvard Business Press, 1998.

[17] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,

and C. Hansch. Structure-activity relationship of mutagenic aromatic and

heteroaromatic nitro compounds. correlation with molecular orbital energies

and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786–797, 1991.

[18] Hongbo Deng, Irwin King, and Michael R Lyu. Formal models for expert

finding on dblp bibliography data. In ICDM, pages 163–172, 2008.

[19] Yi Fang, Luo Si, and Aditya P Mathur. Discriminative models of integrating

document evidence and document-candidate associations for expert search.

In SIGIR, pages 683–690, 2010.

[20] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt.

Scalable kernels for graphs with continuous attributes. In NIPS, 2013.

[21] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels

for attributed molecular graphs. In ICML, 2005.

[22] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results

and efficient alternatives. In Learning Theory and Kernel Machines, pages

72

129–143. 2003.

[23] K. Grauman and T. Darrell. Approximate correspondences in high dimen-

sions. In NIPS, 2006.

[24] Ziyu Guan, Shengqi Yang, Huan Sun, Mudhakar Srivatsa, and Xifeng Yan.

Fine-grained knowledge sharing in collaborative environments. TKDE, 2015.

[25] Ido Guy, Uri Avraham, David Carmel, Sigalit Ur, Michal Jacovi, and Inbal

Ronen. Mining expertise and interests from social media. In WWW, pages

515–526, 2013.

[26] C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The predictive toxicol-

ogy challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001.

[27] S. Hido and H. Kashima. A linear-time graph kernel. In ICDM, 2009.

[28] Srikanth Jagabathula, Lakshminarayanan Subramanian, and Ashwin

Venkataraman. Reputation-based worker filtering in crowdsourcing. In NIPS,

pages 2492–2500, 2014.

[29] Ajita John and Dorée Seligmann. Collaborative tagging and expertise in the

enterprise. In WWW, 2006.

[30] David R Karger, Sewoong Oh, and Devavrat Shah. Efficient crowdsourcing

for multi-class labeling. In ACM SIGMETRICS, volume 41, pages 81–92,

2013.

73

[31] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between la-

beled graphs. In ICML, 2003.

[32] N. Kriege and P. Mutzel. Subgraph matching kernels for attributed graphs.

In ICML, 2012.

[33] Baichuan Li, Irwin King, and Michael R Lyu. Question routing in community

question answering: putting category in its place. In CIKM, pages 2041–2044,

2011.

[34] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for

large scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[35] Xiaoyong Liu, W Bruce Croft, and Matthew Koll. Finding experts in

community-based question-answering services. In CIKM, pages 315–316,

2005.

[36] U. Lösch, S. Bloehdorn, and A. Rettinger. Graph kernels for rdf data. In the

Semantic Web: Research and Applications, pages 134–148. Springer, 2012.

[37] P. Mahé and J. Vert. Graph kernels based on tree patterns for molecules.

Machine Learning, 75(1):3–35, 2009.

[38] Gengxin Miao, Louise E Moser, Xifeng Yan, Shu Tao, Yi Chen, and Nikos

Anerousis. Generative models for ticket resolution in expert networks. In

SIGKDD, pages 733–742, 2010.

74

[39] Gengxin Miao, Shu Tao, Winnie Cheng, Randy Moulic, Louise E Moser,

David Lo, and Xifeng Yan. Understanding task-driven information flow in

collaborative networks. In WWW, pages 849–858, 2012.

[40] S. Mika, B. Schölkopf, A. J. Smola, KR Müller, M. Scholz, and G. Rätsch.

Kernel PCA and de-noising in feature spaces. In NIPS, 1998.

[41] David Mimno and Andrew McCallum. Expertise modeling for matching pa-

pers with reviewers. In SIGKDD, pages 500–509, 2007.

[42] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting. Propagation ker-

nels: efficient graph kernels from propagated information. Machine Learning,

pages 1–37, 2015.

[43] M. Neumann, N. Patricia, R. Garnett, and K. Kersting. Efficient graph

kernels by randomization. In Machine Learning and Knowledge Discovery in

Databases, pages 378–393. 2012.

[44] F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for

image matching. IEEE Trans. on Image Processing, 14(2):169–180, 2005.

[45] Michal Rosen-Zvi, Chaitanya Chemudugunta, Thomas Griffiths, Padhraic

Smyth, and Mark Steyvers. Learning author-topic models from text corpora.

TOIS, 28(1):4, 2010.

[46] B. Schölkopf and A. J. Smola. Learning with kernels. The MIT Press, 2002.

75

[47] Pavel Serdyukov, Henning Rode, and Djoerd Hiemstra. Modeling multi-step

relevance propagation for expert finding. In CIKM, pages 1133–1142, 2008.

[48] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. Efficient

ticket routing by resolution sequence mining. In SIGKD, pages 605–613,

2008.

[49] N. Shervashidze and K. Borgwardt. Fast subtree kernels on graphs. In NIPS,

2009.

[50] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and

K. Borgwardt. Weisfeiler-lehman graph kernels. the Journal of Machine

Learning Research, 12:2539–2561, 2011.

[51] A. Smalter, J. Huan, Y. Jia, and G. Lushington. GPD: a graph pattern

diffusion kernel for accurate graph classification with applications in chemin-

formatics. TCBB, 7(2):197–207, 2010.

[52] Chunke Su and Noshir Contractor. A multidimensional network approach to

studying team members’ information seeking from human and digital knowl-

edge sources in consulting firms. JASIST, 62(7):1257–1275, 2011.

[53] Huan Sun, Mudhakar Srivatsa, Shulong Tan, Yang Li, Lance M Kaplan, Shu

Tao, and Xifeng Yan. Analyzing expert behaviors in collaborative networks.

In SIGKDD, pages 1486–1495, 2014.

76

[54] J. J. Sutherland, Lee A. O’Brien, and D. F. Weaver. Spline-fitting with a

genetic algorithm: A method for developing classification structure-activity

relationships. Journal of Chemical Information and Computer Sciences,

43(6):1906–1915, 2003.

[55] Kush R Varshney, Vijil Chenthamarakshan, Scott W Fancher, Jun Wang,

Dongping Fang, and Aleksandra Mojsilović. Predicting employee expertise

for talent management in the enterprise. In SIGKDD, pages 1729–1738, 2014.

[56] J. Vert. The optimal assignment kernel is not positive definite. arXiv preprint

arXiv:0801.4061, 2008.

[57] Daniel M Wegner, Toni Giuliano, and Paula T Hertel. Cognitive interdepen-

dence in close relationships. In Compatible and Incompatible Relationships,

pages 253–276. 1985.

[58] Peter Welinder, Steve Branson, Pietro Perona, and Serge J Belongie. The

multidimensional wisdom of crowds. In NIPS, pages 2424–2432, 2010.

[59] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. A biterm topic

model for short texts. In WWW, pages 1445–1456, 2013.

[60] Reyyan Yeniterzi. Effective approaches to retrieving and using expertise in

social media. In SIGIR, pages 1150–1150, 2013.

77

[61] Haoqi Zhang, Eric Horvitz, Yiling Chen, and David C Parkes. Task routing

for prediction tasks. In AAMS-Volume 2, pages 889–896, 2012.

[62] Yanhong Zhou, Gao Cong, Bin Cui, Christian S Jensen, and Junjie Yao.

Routing questions to the right users in online communities. In ICDE, pages

700–711, 2009.

78

