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Abstract

Thermalization and its breakdown in isolated quantum systems

by

James Robert Garrison

A very fundamental problem in quantum statistical mechanics involves whether—

and how—an isolated quantum system will reach thermal equilibrium after waiting a

long time. In quantum systems that do thermalize, the long-time expectation value of

any “reasonable” operator will match its predicted value in the canonical ensemble. The

Eigenstate Thermalization Hypothesis (ETH) posits that this thermalization occurs at

the level of each individual energy eigenstate; in fact, any single eigenstate in a micro-

canonical energy window will predict the expectation values of such operators exactly.

In the first part of this dissertation, we identify, for a generic model system, precisely

which operators satisfy ETH, as well as limits to the information contained in a single

eigenstate. Remarkably, our results strongly suggest that a single eigenstate can con-

tain information about energy densities—and therefore temperatures—far away from the

energy density of the eigenstate.

Additionally, we study the possible breakdown of quantum thermalization in a model

of itinerant electrons on a one-dimensional chain, with both spin and charge degrees of

freedom. This model exhibits peculiar properties in the entanglement entropy, the appar-

ent scaling of which is modified from a “volume law” to an “area law” after performing a

xiv



partial, site-wise measurement on the system. These properties and others suggest that

this model realizes a new, non-thermal phase of matter, known as a Quantum Disentan-

gled Liquid (QDL). The putative existence of this phase has striking implications for the

foundations of quantum statistical mechanics.
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2.7 Scaling of the Rényi entropy deviation ∆S2 with 1/L for constant ratio

LA/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.8 Comparison of eigenvalue spectra for L = 21, LA = 4, and β = 0.3. . . . . 57
2.9 Eigenvector overlaps between canonical and reduced density matrices. . . 58
2.10 Scaling of trace norm distance between canonical and reduced density

matrices, for constant LA. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.11 Subsystem energy variance with respect to subsystem size LA for both the

canonical ensemble and a single eigenstate |ψ〉β. . . . . . . . . . . . . . . 62
2.12 Scaling of trace norm distance between canonical and reduced density

matrices, for constant ratio LA/L. . . . . . . . . . . . . . . . . . . . . . . 66
2.13 Comparison of eigenvalue spectra for L = 21, LA = 7, and various values

of β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.14 Decomposition of the energy density corresponding to an eigenstate amongst

three terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.15 Equal time correlators plotted against inverse temperature β. . . . . . . . 70

3.1 L = 12 doublon occupancy results. . . . . . . . . . . . . . . . . . . . . . 89
3.2 Putative sketch of doublon occupancy for large U . . . . . . . . . . . . . . 90
3.3 L = 14 doublon occupancy results for large U in the non-integrable model. 93
3.4 Putative sketch of doublon occupancy for small U . . . . . . . . . . . . . . 94

xviii



3.5 Entanglement entropy and QDL diagnostic density for all eigenstates in
the large-U non-integrable model at L = 12. . . . . . . . . . . . . . . . . 96

3.6 Proposed sketches of the entanglement entropy and QDL diagnostic den-
sity for singlets in the large-U non-integrable model. . . . . . . . . . . . . 97

3.7 Entanglement entropy and QDL diagnostic density in the large-U non-
integrable model at L = 14. . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.8 Scaling of the entanglement entropy and QDL diagnostics with subsystem
size for the ground state, an excited state in the charge band, and an
excited state in the spin band. . . . . . . . . . . . . . . . . . . . . . . . . 99

xix



Chapter 1

Introduction

Condensed matter physics involves the study of macroscopic systems composed of a very

large number of interacting, microscopic particles1. With so many degrees of freedom,

understanding the behavior of such a system can at first appear to be a daunting task.

Remarkably, it is often possible to simplify a problem, identifying the most important

degrees of freedom as well as their excitations (such as the collective modes of vibration

in a solid). With this, one can understand emergent, macroscopic properties, including

the speed of sound in a metal, or its electrical conductivity and color.

At its core, the study of condensed matter physics involves understanding phases of

matter, as well as transitions between those phases as one varies macroscopic parameters

(such as temperature, pressure, or an applied magnetic field). One of the most familiar

phase transitions is the transformation of liquid water to solid ice as its temperature is

1In theory, we typically assume the number of particles is infinite (N →∞, otherwise known as the
“thermodynamic limit”), even though any physically realistic system will have a finite particle count
(say, of order 1023).
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Introduction Chapter 1

decreased below 0◦C. While the molecules of a liquid are arranged without pattern, the

H2O molecules of ice spontaneously arrange themselves into a hexagonal crystal lattice

structure. This phenomenon is known as spontaneous symmetry breaking—in this case,

the breaking of translational symmetry. Symmetry breaking is what distinguishes phases

from one another in the traditional paradigm of condensed matter physics, due primarily

to the remarkable insight of the late Russian physicist Lev Landau.

While gas, liquid, and solid are the most commonly discussed phases in everyday

life, the concept of phases and phase transitions is actually far more general. A less

familiar phase transition, perhaps, is one exhibited by iron. At room temperature, iron

is a ferromagnet: microscopically, nearby electron spins align with one other to point in

the same direction (thus spontaneously breaking rotational symmetry). If the domains

of aligned spins are large enough, a sample of iron will act as a permanent magnet. As

the existence of broken symmetry suggests, ferromagnetism itself is a phase of matter.

If heated far above room temperature to its “Curie temperature” of 1043 K, iron will

transition to become a paramagnet. In this phase, rotational symmetry is restored,

and the properties we associate with a permanent magnet will be lost due to thermal

fluctuations.

Overall, there are two main branches of condensed matter physics. Quantum con-

densed matter physics is the study of condensed matter systems where quantum effects

are important—that is, the system cannot be accurately described by classical physics.

Typically these will be materials with structural rigidity (such as metals), hence the al-

2
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ternative term, “hard” condensed matter physics. By contrast, soft condensed matter

physics studies systems in which quantum effects are unimportant, including polymers

and many biological materials.

Typically, quantum effects are relevant at low temperatures; however, what is a “low”

temperature depends upon the relevant energy scales. For copper, the relevant energy

scale (the Fermi energy) is 7.00 eV ≈ 80000 K, which is an order of magnitude hotter

than the surface of the sun! Hence, room temperature (300 K) is by comparison quite

low, and the properties of metals are governed by quantum mechanics.

Quantum condensed matter physics is a wide field, accounting for a variety of phe-

nomena, including superfluid helium-3 and -4 [1,2], the band theory of metals (explained

by Landau’s Fermi liquid theory [3]), semiconductors, magnetism (which can in fact only

be explained within quantum mechanics [4, 5]), and conventional superconductivity [6].

Active areas of research include frustrated magnetism [7], unconventional superconduc-

tivity (such as the “high temperature” superconductors made of cuprates [8] and iron

pnictides [9]), strange metals and non-Fermi liquids [10], topological phases of matter

(such as the fractional quantum Hall effect) [11], and symmetry protected topological

phases (e.g. topological insulators) [12, 13]. Each of these are low temperature phenom-

ena, and understanding each one involves identifying the nature of the quantum ground

state and its low-lying excitations2.

In explaining each of the above phenomena—as well as many in soft condensed matter

2One of the most basic questions about a phase is whether there exists an energy gap between the
ground state and its excitations. A superconductor, for instance, has a gap, while a normal metal does
not.
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physics—we generally assume the validity of canonical statistical mechanics; that is, we

consider a system to be in (or near) thermal equilibrium, its state described by the

canonical ensemble

ρ =
e−βH

Tr (e−βH)
, (1.1)

where H is the Hamiltonian describing the system and β ≡ 1/kBT is its inverse tempera-

ture. Of course, it is also possible to consider high-energy or non-equilibrium phenomena,

but doing so is generally much more challenging.

Unlike much of the historical research on condensed matter physics, we will not use

Eq. 1.1 as a starting point. Instead, we will primarily focus on how and under what

conditions Eq. 1.1 (and thus the concept of temperature) results from the evolution of

an isolated quantum system with finite energy density. The Schrödinger equation is

thought to accurately describe the universe, and if it is to be consistent with observation,

it ought to be possible to understand equilibration and thermalization (i.e. the relaxing

of a system to a uniform temperature) within this framework. Because the Schrödinger

equation is linear, the typical classical explanations of the validity of statistical mechanics

are not valid, as they rely on the dynamical chaos of non-linear systems. As we will soon

detail, not only can the evolution of an isolated quantum system result in the thermal

behavior exhibited in Eq. 1.1, but there also exist non-thermalizing phases of matter in

which quantum statistical mechanics breaks down.

Before diving into quantum thermalization, we will first take two brief detours. First,

we will give a brief introduction to some simple model systems studied in condensed

4



Introduction Chapter 1

matter physics and within this dissertation. Second, we will provide background on the

importance of quantum entanglement in condensed matter, as it is key to understanding

quantum thermalization.

1.1 Model systems

Generally, the goal in constructing a model system is to identify the microscopic

degrees of freedom of a system that are relevant to the phenomenon of interest. The

atomic nuclei of a metal are arranged in a crystal lattice, and for electronic properties we

can typically take the positions of the nuclei to be fixed (since neutrons and protons are

much heavier than electrons). We can generally ignore the motion of all but the valence

electrons. Thus, a simple model of a metal will consist of electrons hopping on a lattice

from site to site, and to simplify things further we will allow at most one spin-up and

one spin-down electron per site. The remaining ingredient is the electrostatic repulsion

between the negatively-charged electrons. If we consider only an on-site interaction

(assuming screening effects at larger distances), we get the simplest possible model of

interacting, itinerant electrons, known as the Hubbard model [14],

HHubbard = −t
∑
〈ij〉σ

(
c†iσcjσ + H.c.

)
+ U

∑
i

ni↑ni↓, (1.2)

where
∑
〈ij〉 denotes a sum over neighboring sites i and j of the lattice, niσ = c†iσciσ,

ni = ni↑ + ni↓, and σ represents the two possible values of spin, ↑ and ↓. The first

5
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term represents kinetic energy due to hopping, and the second term adds an energy

penalty U when two electrons occupy the same site. This model can account for a

great deal of physical behavior, and it is possible to construct variations (for instance,

further-neighbor couplings, anisotropic hopping, or even ring-exchange terms). Despite

its apparent simplicity, the 2D Hubbard model may even contain the essential physics

relevant to understanding high-temperature superconductivity in the cuprates [15]. In

this dissertation, the 1D Hubbard model, supplemented with a nearest-neighbor repulsion

term, will form the basis of Chapter 3.

Let us now consider two limits of the Hubbard model. When U � t, interactions are

weak, and the model is in a conducting, Fermi liquid phase (assuming dimension greater

than one), representative of a normal metal and qualitatively similar to non-interacting

electrons [3]. In the strong-coupling limit (U � t), let us for simplicity assume that

the system is at half-filling—that is, there is an equal number of spin-up and spin-down

electrons, the sum of which equals the number of sites on the lattice. In this limit,

charge fluctuations are greatly suppressed, and the most important low-energy degrees

of freedom involve spin fluctuations, leading to the spin-1/2 Heisenberg model,

HHeisenberg = J
∑
〈ij〉

Si · Sj, (1.3)

where J = 4t2/U +O(t3/U2) and Si represents the spin on site i [16].

The Heisenberg model is an important model of quantum magnetism. Another model

6
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of quantum magnetism is given by the spin-1/2 transverse-field Ising model,

HIsing = J
∑
〈ij〉

σzi σ
z
j + h

∑
i

σxi . (1.4)

The one-dimensional version of this model is well understood, and in fact describes the

physics of the material CoNb2O6 [17]. This model, supplemented with a longitudinal

field, will be used extensively in this dissertation for demonstrations of thermalization in

Chapter 2.

Simple models such as these can be used to realize many different phases. In fact, the

relevant physics often does not depend on the precise details of the model. This concept

of universality is fundamental to condensed matter physics. One notable example of

this is the universal quantitative behavior of many models near a second order phase

transition, which can be understood in terms of Wilson’s renormalization group [18].

Historically, condensed matter physicists have been interested in simple model sys-

tems because they represent the low-energy properties of real materials. However, quite

recently it has become possible to implement these models nearly exactly in experiments

on cold atomic gases [19, 20]. In fact, even the aforementioned lattice models can be

realized by constructing an optical lattice from laser beams, and interactions between

atoms can be controlled by tuning a Feshbach resonance [21, 22]. With this, experimen-

talists are now able to construct synthetic quantum matter and simulate the dynamics

of certain classes of Hamiltonians. These systems evolve according to the Schrödinger

equation, as they are nearly isolated from the remainder of the universe.

7
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One of the most notable uses of cold atomic gases in an optical lattice is to simulate

the Bose Hubbard model [23–25], which is similar to the Hubbard model but with bosonic

particles instead of fermions. In these experiments it is possible to witness the transition

between a superfluid and Mott insulator by changing the depth of the optical lattice,

which results in precise tuning of U/t. It is also possible to implement the standard,

fermionic Hubbard model in experiment [20, 26], and in principle it is even possible to

include additional terms, such as ring exchange [27].

Although models of quantum magnetism were historically of interest because they

represent the low-energy (i.e. low-temperature) microscopic models of certain materials,

they also provide a simple context in which to understand quantum thermalization.

However, it is important to wonder whether simple models with only one species are rich

enough to exhibit the full range of possible thermalization behaviors. In Chapter 3 we

will revisit this question, finding evidence for the partial breakdown of thermalization in

a two-component, Hubbard-like model.

1.2 Entanglement

One of the most fascinating aspects of quantum mechanics is entanglement, a phe-

nomenon in which spatially separated portions of a quantum system must be described

by a shared state. Because the only complete description is one of the full system, an

entangled system cannot accurately be described as a sum of its parts. Entanglement is

a distinctly quantum effect, arguably the essential ingredient of quantum mechanics.

8
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In 1935, Einstein, Podolsky, and Rosen (EPR) proposed that quantum mechanics is

an incomplete theory, and that our perception of entanglement is actually the result of

local, “hidden” variables which completely describe the state of a system [28]. Nearly

three decades later, John S. Bell published a landmark theorem which demonstrated

that EPR’s assumption of local hidden variables leads to probabilistic predictions that

are in contradiction with quantum mechanics [29]. Since then, Bell test experiments

have consistently demonstrated that quantum mechanics prevails, entanglement truly

exists, and any theory of “local realism” cannot describe our physical world [30–32].

Further research, including into so-called Greenberger-Horne-Zeilinger (GHZ) states, has

provided a non-probabilistic demonstration of quantum entanglement [33,34]. Recently,

three groups have demonstrated the first loophole-free violations of Bell’s theorem, thus

putting entanglement on an incredibly firm foundation [35–37].

The theoretical study of entanglement has had implications in many fields of physics.

Over the past two decades, our growing understanding of entanglement has in many ways

revolutionized quantum condensed matter physics [38]. Given a many-body ground state

|ψ〉, a basic quantification of its entanglement structure is given by the entanglement

Figure 1.1: An entanglement cut between subregion A and its complement A.
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entropy of a spatial subregion A. Given such an entanglement cut (see Figure 1.1), the

von Neumann entanglement entropy is given by

S(ρA) = −Tr (ρA ln ρA) , (1.5)

where ρA ≡ TrA |ψ〉 〈ψ| is the reduced density matrix describing the system in subre-

gion A and A is the complement of A. Remarkably, the entanglement entropy of a

gapped ground state typically satisfies an “area law,” meaning it scales as the area of the

boundary (Ld−1
A ), where LA is the linear dimension of subregion A and d is the number

of dimensions [38–40]. (This is in contrast with a typical or random state in Hilbert

space which satisfies a “volume law,” S(ρA) ∼ LdA [41, 42].) Gapless systems can exhibit

a multiplicative logarithmic correction to the area law, including 1D gapless systems

described by a conformal field theory [43], as well as systems which contain a Fermi

surface [44]. Subleading corrections to the entanglement scaling can provide additional

insights into the state (for instance, in the case of topological phases [45–47]). Even

more can be learned by considering the full entanglement spectrum (i.e. the eigenval-

ues of ρA) [48], which remarkably provides deep insights even when the subsystem A is

non-contiguous [49].

An alternative method for quantifying the entanglement of a subregion is in terms of

the Rényi entropies, given by

Sα(ρA) =
1

1− α
ln [Tr (ραA)] , (1.6)

10
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which reduces to the von Neumann entropy (Eq. 1.5) in the limit α → 1. In many

cases, the Rényi entropy for integer α ≥ 2 is easier to compute or measure than the von

Neumann entropy. The Rényi entropies are related by the inequality Sn ≥ Sm when

n < m. In particular, S2 serves as a lower bound on the von Neumann entropy S1.

In fact, given multiple Rényi entropies it is possible to derive more stringent bounds,

including S1 ≥ 2S2 − S3 [50].

Calculation of Rényi entropies for integer α ≥ 2 typically involves what is known

as a “replica trick,” in which α copies of the system are considered on an α-sheeted

Riemann surface, with branch cuts placed at the boundary of subregion A. This trick

can be implemented analytically, for instance in conformal field theory [43,51–53], where

often it is possible to find an analytic continuation of S(α) and use it to determine the

von Neumann entropy. It is also possible to measure Rényi entropies numerically in

quantum Monte Carlo, where one considers α copies of the system and measures the

expectation value of a “swap” operator, which permutes the configurations of the copies

within subregion A [54]. The swap operator can also be measured in variational Monte

Carlo [55], and similar tricks exist for measuring Rényi entropies of interacting fermions

in determinantal Monte Carlo [56,57].

There are a variety of ways to experimentally detect entanglement in many-body sys-

tems. One is through the use of special observables called entanglement witnesses, which

can be constructed to experimentally detect a specific entangled state [58–61]. Experi-

mentally measuring entanglement entropies, the holy grail of which would be to measure

11
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the von Neumann entropy, is unfortunately much more difficult than entanglement de-

tection. Currently, the only known method for measuring the von Neumann entropy is

to first perform full tomography on a subregion A to determine the density matrix ρA,

but this is costly and works only for the smallest of systems. However, if one has access

to a coherent quantum network of controlled-SWAP gates (e.g. on a universal quantum

computer), it is in principle possible to estimate non-linear functionals of a quantum

state, including the von Neumann entropy [62].

Although direct measurement of the von Neumann entropy is experimentally out of

reach, it is now possible to measure Rényi entropies Sα for integer α ≥ 2 by physically

implementing a version of the “swap” operator mentioned above [63, 64]. A recent ex-

periment measured the Rényi entropy S2 by performing controlled interference between

two identical copies of a bosonic quantum state [65] and measuring the resulting particle

number parity on each site using a quantum gas microscope [66]. In principle, the exper-

imental tools exist for measuring Rényi entropies in fermionic systems as well [67–70].

Sadly, whether one is measuring bosons or fermions, the protocol for measuring Rényi

entropy has a “sign problem” in that the number of measurements needed scales exponen-

tially with Sα. This is because the protocol involves estimating a quantity exponentially

close to zero (〈Tr (ραA)〉 = e−(α−1)Sα) from repeated measurement outcomes of +1 or −1,

similar to a quantum Monte Carlo program which measures the swap operator. Never-

theless, it should be possible to measure Rényi entropies for arbitrarily large 1D systems

which exhibit an area law. The scaling of entanglement entropy, long considered to be a

12
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purely theoretical notion, has now entered the experimental realm.

Having provided background about entanglement, we now turn to the central topic

of this dissertation, quantum thermalization.

1.3 Quantum thermalization and its breakdown

An isolated quantum system exhibits unitary time evolution according to the Schrödinger

equation,

H |Ψ〉 = i~
d

dt
|Ψ〉 . (1.7)

The main question in studying quantum thermalization is whether (and under what

conditions) such an isolated system will eventually reach thermal equilibrium, without

assuming contact with any external “bath” or measuring apparatus. In other words, can

a system’s interactions with itself be sufficient for thermalization to occur?

At first, the answer appears to be no, for a simple reason. If an isolated system is

prepared in (or near) a pure state, it will remain so at all times3. However, a “thermal”

system is described by a highly mixed state, given above by Eq. 1.1. Since a pure state

can never evolve to a mixed state, an arbitrary initial state cannot reach the canonical

ensemble in the long-time limit.

However, there is a simple escape from this apparent paradox. Given a full system

in a pure state |Ψ〉, the reduced density matrix ρA ≡ TrA |Ψ〉 〈Ψ| of a subregion A will

generally be in a mixed state. Thus, it is possible a system to be appear locally thermal

3In particular, unitary time evolution implies information must be conserved.
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within subregion A, even if the full system is in a pure state.

The mention of subsystems is reminiscent of the discussion of entanglement in the

previous section. In fact, it has been realized that the spreading of entanglement is itself

the mechanism for thermalization in an isolated quantum system [71]. As a thermalizing

system evolves, information that was once local to a region of the system becomes encoded

into global operators. The quantum system itself acts as its own reservoir, and over time

each subsystem becomes increasingly entangled with the remainder of the system. Once

thermal equilibrium is reached, essentially no information about the initial state remains

within a subsystem, other than the system’s initial energy density (which determines

its equilibrium temperature). A sufficiently small subsystem is then in a mixed state

described by the canonical ensemble, and its entanglement entropy is equal to its thermal

entropy. This equality implies that the entanglement entropy scales as a volume law

with subsystem size, just as thermal entropy is an extensive quantity. We will discuss

thermalization from the perspective of entanglement in detail in Chapter 2.

1.3.1 The Eigenstate Thermalization Hypothesis

A breakthrough in understanding quantum thermalization occurred in the early 1990s,

as a result of work done independently by Josh Deutsch and Mark Srednicki. Their result,

now known as the “Eigenstate Thermalization Hypothesis” (ETH), postulates that the

ultimate fate of a quantum system rests on whether (or not) the eigenstates of the

system themselves predict the correct thermal equilibrium values for simple operators [72–
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75]. Within this framework, thermalization is not a property of the detailed quantum

dynamics of a system, but rather a property of its eigenstates—particularly those of finite

energy density. Over time, numerical studies have continued to provide support for the

validity of ETH in several non-integrable quantum systems [76–80].

In previous literature, it has often been claimed that ETH holds only for simple or

“few body” operators [76,81,82]. In Chapter 2, we introduce and provide evidence for a

strong form of ETH in which a single eigenstate correctly predicts thermal values for all

operators within a subregion A, as long as the volume of region A is a vanishing fraction

of the total system size in the thermodynamic limit. Remarkably, this result allows one

to predict properties of a system at all temperatures given knowledge of just a single

eigenstate.

There also exist systems for which ETH does not hold—that is, the finite energy

density eigenstates do not appear thermal, and as such these systems fail to thermalize.

Let us now turn to consider the breakdown of thermalization.

1.3.2 Integrable systems

One notable class of systems which fail to thermalize to the canonical ensemble are

those which are integrable. Integrable systems have an infinite sequence of extensive

conserved quantities, given by sums of local operators. These conserved quantities often

allow such systems to be solvable (e.g. in the case of the 1D nearest-neighbor Heisenberg

and Hubbard chains); however, they also prevent these systems from thermalizing. It
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has been conjectured that integrable systems relax to a “generalized Gibbs ensemble,”

meaning that they thermalize to the extent consistent with all conserved quantities [83–

86].

In Ref. [87], Kinoshita et al. performed an experiment on a trapped 1D gas of 87Rb

bosons with a point-like collisional interaction. The physics of this system is described by

the Lieb-Liniger model, which is itself integrable [88]. Kinoshita et al. found that, even

after thousands of collisions, the bosons do not move toward thermal equilibrium. This

provides an interesting counterpoint to quantum thermalization, as well as a testament

to the extent to which cold atomic systems are almost completely isolated from the

remainder of the universe.

Interestingly, a version of ETH is typically satisfied even in integrable systems [81].

Although there exist eigenstates that are non-thermal, the fraction of non-thermal eigen-

states vanishes in the thermodynamic limit. These non-thermal eigenstates are both

infinite in quantity yet very rare.

1.3.3 Many-body localization

Another class of systems which fail to thermalize are those which are localized. In

a 1958 paper, Philip Anderson considered localization in the context of non-interacting

models, demonstrating that the eigenstates of certain strongly disordered systems fall

off exponentially outside a region of localization [89]. In 2006, Basko et al. argued per-

turbatively that localization can persist even in the context of weak interactions [90].
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Since then, numerical work has provided mounting evidence for the existence of a local-

ized phase in systems with strong disorder [91–94], a phenomenon that now goes by the

name “many-body localization” (MBL). These systems are characterized by vanishing

DC conductivity, and they retain some local memory of the initial state at all times. The

MBL phase has recently been realized in experiments on cold atomic gases [95–97] and

trapped ions [98].

The lack of thermalization in MBL systems can also be understood in terms of entan-

glement. Over time, entanglement grows only logarithmically in these systems, unlike

in thermal systems [99]. Additionally, eigenstates in the MBL phase typically exhibit

an area law scaling of the entanglement entropy [93]. This is reminiscent of a quan-

tum ground state, and is in dramatic contrast with highly-excited thermal states (which

exhibit volume law scaling).

Let us briefly consider systems in which the entire many-body spectrum is localized.

It has been demonstrated that these “fully-MBL” (fMBL) systems themselves contain

infinitely many quasi-local integrals of motion [100–104]. Thus, the breakdown of ther-

malization can be understood in terms of an integrability which emerges in the presence

of strong disorder.

1.3.4 Quantum Disentangled Liquids

Is a strong, classical disorder potential the only way for thermalization to fail in a non-

integrable quantum system? In Ref. [105], Grover and Fisher considered multi-component
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quantum liquids with both heavy and light particles, and conjectured that there can exist

a phase of matter in which the light particles are bound to the heavy particles and fail to

thermalize independently of them. This phase, named a “Quantum Disentangled Liquid”

(QDL), breaks ergodicity and is not thermal. In Chapter 3 we will investigate the QDL

phase in the context of a Hubbard-like model. We provide a qualitative diagnostic—

phrased in terms of entanglement entropy after partial measurement—that can identify

eigenstates in this phase.

1.4 Numerical methods

In this dissertation, we will study the thermalization properties of exact, finite energy

density eigenstates. Because the systems we study are non-integrable, the eigenstates

cannot be constructed analytically and instead must be determined numerically.

The most straightforward way to determine exact eigenstates is to diagonalize the

full Hamiltonian matrix on a computer. Sadly, full exact diagonalization is limited to

small lattice systems, as the Hilbert space size M scales exponentially with system size,

and the Hamiltonian is an M ×M matrix. Still, there are a few tricks we can use to

help scale to slightly larger system sizes. In a translationally invariant system, one can

represent the Hamiltonian such that it is block diagonal in the momentum basis, which

reduces the Hilbert space size by a factor of the system size L. It is also simple to take

advantage of other abelian symmetries to further reduce the size of the Hilbert space.

We detail these methods in Appendix A.
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Additionally, it is possible to diagonalize not the full spectrum, but only a portion of

it. Specifically, shift-invert and Krylov space methods allow one to obtain highly excited

eigenstates of a Hamiltonian without diagonalizing it in full [94,106,107]. However, even

with symmetries and Krylov space methods, the known algorithms for finding eigenstates

still scale exponentially with system size.

Let us briefly consider an important class of states that can easily be represented on

a computer. The density matrix renormalization group (DMRG), introduced in 1992,

has become an incredibly powerful computational tool for low-energy, one-dimensional

quantum physics problems [108, 109]. A few years after its introduction, it was realized

that DMRG is effective because it represents quantum states as matrix product states

(MPS) [110, 111], which are a special class of states with low entanglement. Because

MBL states have area law entanglement scaling, there has been progress in studying MBL

systems with matrix product states [112–115]. In principle, this should allow physicists to

study MBL at much larger system sizes. On the other hand, non-localized states exhibit a

volume law scaling of entanglement entropy, and thus cannot be efficiently represented as

matrix product states. As such, the thermalization studies in this dissertation are beyond

the reach of matrix product states, and we rely on numerical exact diagonalization to

determine eigenstates in Chapters 2 and 3.
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1.5 Outline

This dissertation is organized as follows. In Chapter 2, we introduce and provide

numerical evidence for a strong form of ETH in which the reduced density matrix of a

subsystem corresponding to a single eigenstate approaches the thermal density matrix as

long as the subsystem size is much less than the total system size. This work is under

review, and a preprint is available at Ref. [78]. In Chapter 3, we provide numerical ev-

idence for the breakdown of ETH in a translationally invariant, two component system

with both spin and charge degrees of freedom. Chapter 4 concludes this dissertation

and provides an outlook for the future. Finally, Appendix A contains a brief introduc-

tion to performing numerical exact diagonalization calculations on systems with abelian

symmetries.
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Chapter 2

Which operators satisfy the

Eigenstate Thermalization

Hypothesis?

The Eigenstate Thermalization Hypothesis (ETH) posits that the reduced density matrix

for a subsystem corresponding to an excited eigenstate is “thermal.” In this chapter, we

expound on this hypothesis by asking: for which class of operators, local or non-local, is

ETH satisfied? We show that this question is directly related to a seemingly unrelated

question: is the Hamiltonian of a system encoded within a single eigenstate? We formu-

late a strong form of ETH where in the thermodynamic limit, the reduced density matrix

of a subsystem corresponding to a pure, finite energy density eigenstate asymptotically

becomes equal to the thermal reduced density matrix, as long as the subsystem size is
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much less than the total system size, irrespective of how large the subsystem is compared

to any intrinsic length scale of the system. This allows one to access the properties of the

underlying Hamiltonian at arbitrary energy densities/temperatures using just a single

eigenstate. We provide support for our conjecture by performing an exact diagonaliza-

tion study of a non-integrable 1D lattice quantum model with only energy conservation.

In addition, we examine the case in which the subsystem size is a finite fraction of the

total system size, and find that even in this case, a large class of operators continue to

match their canonical expectation values. Specifically, the von Neumann entanglement

entropy equals the thermal entropy as long as the subsystem is less than half the total

system. We also study, both analytically and numerically, a particle number conserving

model at infinite temperature which substantiates our conjectures.

2.1 Introduction

Given a local Hamiltonian, what information about the system is encoded in a single

eigenstate? If the eigenstate happens to be a ground state of the Hamiltonian, tremendous

amount of progress can be made on this question for Lorentz invariant systems [116–118],

especially conformal field theories (CFTs) [43, 51, 52, 119], and for topological phases

[45, 46, 48]. For example, one can read off the central charge of a CFT from the ground

state entanglement [43, 51, 52], while for topological phases, essentially all ‘topological

data’ such as braiding statistics of anyons can be extracted from the degenerate ground

states [45, 47, 48]. In this chapter we argue that a single finite energy density eigenstate
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of an ergodic quantum many-body Hamiltonian is sufficient to determine the properties

of the system at all temperatures.

It is not very surprising that the ground states of quantum many-body systems con-

tain some information about their excitations. This is because an entanglement cut often

mimics an actual physical cut through the system, thus exposing the underlying excita-

tions along the entangling boundary [48]. The same intuition is tied to the fact that the

ground state entanglement satisfies a “boundary law” of entanglement entropy [39,120],

that is, the von Neumann entanglement entropy S1 = −TrA (ρA ln(ρA)) of the ground

state corresponding to a subsystem A scales with the size of the boundary of subsystem

A.

How does the nature of information encoded evolve as one goes from the ground state

to an excited eigenstate? Typically, there always exist eigenstates with energy E just

above the ground state which continue to satisfy an area law of entanglement. These are

the eigenstates which have zero energy density, i.e. limV→∞
E−E0

V
= 0 where E0 is the

ground state energy and V is the total volume of the system. These eigenstates can often

be interpreted as the action of a sum of local operators acting on the ground state; for

example, in a system with spontaneous symmetry breaking one can construct an eigen-

state consisting of a few magnons by a superposition of spin-flips acting on the ground

state. Furthermore, the level spacing between two contiguous low-lying excitations scales

as δE ∼ 1/Lα where α > 0 depends on dimensionality and the phase of matter under

consideration. In this chapter, we will instead be concerned with excited eigenstates that
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have a finite energy density, i.e. limV→∞
E−E0

V
6= 0. For notational convenience, we will

set E0 = 0 for the remainder of this chapter.

As argued by Srednicki [73–75], a typical finite energy density state (i.e. a typical

state in the Hilbert space that satisfies 〈ψ|H|ψ〉 = V e where e is the energy density)

when time-evolved with the Hamiltonian H for sufficient time is expected to lead to pre-

dictions dictated by the basic tenets of equilibrium statistical mechanics, if the system

thermalizes. Such an expectation leads to the “Eigenstate Thermalization Hypothesis”

(ETH) [72–75], which stipulates that the thermalization occurs at the level of each indi-

vidual eigenstate. An alternative approach by Deutsch [72], which is based on perturbing

an integrable system by a small integrability breaking term, leads to the same sugges-

tion. If ETH holds true, then in the thermodynamic limit the equal-time correlators of

an operator with respect to a finite energy density eigenstate |ψ〉 are precisely equal to

those derived from a thermal ensemble, i.e.

〈ψ|O|ψ〉 =
Tr
(
Oe−βH

)
Tr ( e−βH)

(2.1)

where β is chosen such that the Eq. 2.1 holds true when O = H, the Hamiltonian.

Henceforth we will use the notation |ψ〉β to denote an eigenstate whose energy density

corresponds to temperature β−1. A notable exception to ETH is a many-body localized

system in the context of strongly disordered interacting quantum systems, [71, 90, 91,

93, 102, 121, 122] which fails to thermalize and does not satisfy Eq. 2.1. The possibility

[105, 123–128], or impossibility [129–132], of the violation of ETH without disorder has
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also been discussed recently.

In this chapter, we restrict ourselves to systems where ETH, as defined by Eq. 2.1,

holds. However, Eq. 2.1 alone is incomplete unless one also specifies the class of operators

for which it holds. For example, one simple non-local operator for which Eq. 2.1 breaks

down is the projection operator |ψ〉〈ψ| onto the eigenstate |ψ〉 that enters Eq. 2.1; the left

hand side of Eq. 2.1 yields unity for this operator, while the right hand side is exponen-

tially small in the volume, a clear disagreement. On that note, it is often mentioned that

in systems where Eq. 2.1 does hold, it does so only for “few body” operators [76, 81, 82]

where, to our knowledge, the precise meaning of few-body operator has not been clar-

ified (see Ref. [133] for related discussion). In this chapter, we conjecture and provide

numerical evidence that Eq. 2.1 holds for all operators within a subsystem A when the

volume VA of subsystem A satisfies VA � V (or, more precisely, when VA/V → 0 as

V →∞). We also explore the more general case where subsystem A spans a finite frac-

tion f ≡ VA/V > 0 of the total system size. We provide some evidence that when the

fraction is less than a critical O(1) number f ∗, then all operators not explicitly involving

energy conservation take their thermal values. We also explore the more general condi-

tion VA < V/2 and show that even in this case, Eq. 2.1 holds for a large class of operators.

On that note, we should mention that the questions such as which Hamiltonians (and

which operators) satisfy ETH is now entering the realm of experimental physics (see e.g.

Ref. [96]) due to advances in high resolution imaging techniques [66].

The satisfaction of Eq. 2.1 for all operators in a subsystem A is equivalent to the
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statement that the reduced density matrix ρA(|ψ〉β) = TrA |ψ〉ββ〈ψ| corresponding to an

eigenstate |ψ〉β is given by

ρA(|ψ〉β) = ρA,th(β) (2a)

where

ρA,th(β) =
TrA

(
e−βH

)
Tr (e−βH)

,

A being the complement of A. Note that the trace in the denominator is over the whole

Hilbert space. When VA is held constant, the equality in Eq. 2a means the density

matrices become elementwise equal in any basis as V →∞.

One immediate consequence of Eq. 2a is that the thermodynamical properties of a sys-

tem at arbitrary temperatures can be calculated using a single eigenstate. For example,

Eq. 2a implies that to the leading order, the Rényi entropies Sα (= − 1
α−1

ln [TrA(ραA)])

for an eigenstate |ψ〉β corresponding to a subsystem A with VA � V are given by

Sα =
α

α− 1
VAβ (f(αβ)− f(β)) , (2.3)

where f(β) is the free energy density at temperature β−1. The above equation allows

one to access the free energy density f at an arbitrary temperature by varying α. Note

that Eq. 2.3 holds only to the leading order because Rényi entropies Sα receive addi-

tional subleading contributions due to the conical singularity induced at the boundary

of subsystem A [43, 51, 52]. In the limit α → 1, one recovers the equality between the
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von Neumann entanglement entropy S1 and the thermal entropy Sth = VAsth(β), where

sth(β) is the thermal entropy density at temperature β−1, a result which was argued

to hold in Ref. [134] for the special case of two weakly coupled ergodic systems. We

emphasize that these results cannot be derived from Eq. 2.1 alone were it to hold only

for local operators, since entanglement entropies do not correspond to the expectation

value of any local operator. We also note that Refs. [135, 136] simulated the thermal

Rényi entropy Sα (starting with the expression on the right hand side of Eq. 2a) using

Quantum Monte Carlo to access the properties of the system at temperature (αβ)−1. Of

course, Quantum Monte Carlo methods are not well suited to verifying ETH since they

cannot access properties of a single eigenstate (the left hand side of Eq. 2a).

We will also discuss an approximate, but more intuitive form of ETH, given by

ρA(|ψ〉β) ≈ e−βHA

TrA (e−βHA)
(2b)

where HA is the projection of the original Hamiltonian onto subsystem A. This form is

approximate compared to Eq. 2a because generically, it does not capture the correlations

near the boundary correctly due to the somewhat arbitrary truncation scheme used to

obtain HA. Nevertheless, equations 2a and 2b both yield the same results for all bulk

quantities such as the Rényi entropy densities, as well as correlation functions of operators

that have support only far from the boundary.

A central task of this chapter is to check the validity of Eqs. 2a and 2b and their

consequences for model non-integrable systems. As already mentioned, we will argue
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that ETH allows one to calculate thermodynamical quantities as well as correlators at all

temperatures/energy densities using only a single eigenstate. We will demonstrate this

explicitly by studying a quantum 1D model numerically.

As mentioned above, we find evidence that Eq. 2.1 holds for many operators even

when VA/V is held constant with VA/V less than some number f ∗ > 0. In particular,

as we discuss later, our results strongly indicate that f < 1/2 is sufficient to guarantee

equivalence between the von Neumann entropy density of a pure eigenstate, and the

thermal entropy density at the corresponding temperature. This is in contrast to Ref.

[137] where it was argued that such an equivalence holds only in the limit f ∗ → 0.

Recently [138,139], the requirement f ∗ → 0 was substantiated using analytical and large

scale numerical calculations for free fermions, an integrable system. Our results indicate

that the f ∗ → 0 requirement is likely a consequence of the integrable nature of the models

in Refs. [138,139].

The chapter is organized as follows. Section 2.2 discusses general considerations for

the validity of ETH, and introduces a division of all operators in a given subsystem

into two distinct classes, which have different requirements for ETH to hold. Section 2.3

illustrates some general features of ETH by studying properties of a hardcore boson model

with global particle number conservation for infinite temperature eigenstates. Section 2.4

introduces the model we study in the remainder of the chapter, the transverse field Ising

model with longitudinal field. Section 2.5 focuses on the entanglement entropies at finite

temperature. Section 2.6 studies the validity of ETH when VA � V by providing a close
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look into the entanglement Hamiltonian, focusing on its spectrum and Schmidt vectors.

This section also demonstrates the validity of Eq. 2a when VA � V by considering

the trace norm distance between both sides. Section 2.7 explores the validity of ETH

when VA/V is taken to be finite as V → ∞. Section 2.8 provides an application, by

using the reduced density matrix from a single eigenstate to predict correlators at all

(finite) temperatures. Section 2.9 summarizes our results and provides thoughts for

future discussion.

2.2 General considerations

2.2.1 Determining the Hamiltonian from microstates in classi-

cal statistical mechanics

Suppose, for an isolated system described by classical statistical mechanics in a total

volume V , we are given access to all classical microstates in a small energy window

[E,E + ∆E], where ∆E ∼
√
V is on the order of the energy fluctuations in the total

system were the system coupled to a thermal bath, and thus all microstates correspond to

the same energy density. We pose the question: does this information suffice to determine

the underlying Hamiltonian, assuming that the Hamiltonian is local? The answer is

indeed yes, following the standard procedure of obtaining the canonical ensemble from a

microcanonical ensemble. In particular, let us make a fictitious division of the system into

A and A such that VA � VA, and count the number of times a particular configuration
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CA appears in subsystem A. This determines the probability distribution for finding a

given configuration, P (CA). If all microstates are equally likely, then [140]

P (CA) =
e−βE(CA)∑
{CA} e

−βE(CA)
(2.4)

where E(CA) is the energy in subsystem A. One may now invert this equation to obtain

the energy E(CA) = − 1
β

ln(P (CA)), up to an irrelevant constant shift of energy. In a

classical statistical mechanical system E(CA) is the Hamiltonian for subsystem A. In

particular, knowing E(CA), one may now calculate any thermodynamic property at any

temperature. Here it is crucial to note that Eq. 2.4 does not assume that the energy

density E(CA)/VA equals the energy density E/V of the microstates being sampled.

As discussed in the introduction, we will provide evidence that the quantum mechan-

ical analog of Eq. 2.4 is given by Eqs. 2a, 2b. We now proceed to discuss the conditions

under which Eqs. 2a, 2b are valid.

2.2.2 Two classes of operators

For reasons soon to be discussed, we find it useful to separate operators in a given

Hilbert space into two classes:

Class I (“Equithermal Operators”): If the reduced density matrix takes the ther-

mal form (i.e. the right hand side of Eq. 2b), then in the limit VA →∞, the expectation

value of equithermal operators receives contribution only from the eigenstates of HA at

an energy density corresponding to the temperature β−1. One might have thought that
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this is true for all operators, however, there exist operators such as e−nβHA , whose expec-

tation value includes contribution from eigenstates of HA at temperature [(n+ 1)β]−1 in

addition to the temperature β−1. Clearly, local operators fall into this class, as do sums

of local operators. Several non-local operators, including the von Neumann entropy S1,

also fall into this class.

Class II (“Non-equithermal Operators”): We dub all operators not in Class I

as “non-equithermal operators”, or Class II operators. All Rényi entropies Sα (for α 6= 1)

fall into this class [141].

2.2.3 ETH: Class I vs. Class II operators

Let us first consider the relationship between Eq. 2.1 and Eqs. 2a, 2b. Eq. 1 may be

rewritten as,

TrA (ρAO) =
TrA

(
O TrA

(
e−βH

))
Tr ( e−βH)

(2.5)

If this equation holds for all operators in a subsystem A, hermitian as well as non-

hermitian, then one obtains Eq. 2a, ρA(|ψ〉β) = ρA,th(β). This is because one may

expand both the ρA and ρA,th in terms of the complete set of operators in subsystem

A, and by choosing appropriate O prove that they are equal to each other element-by-

element. One of the most important consequences of this equality is that it allows one to

extract properties of the Hamiltonian at arbitrary temperatures using a single eigenstate,

which is one of the central points of this chapter.
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We will now discuss ETH for both Class I and Class II operators. For each class, we

consider separately two cases: (i) when VA � V ; and (ii) when the ratio f ≡ VA/V is

taken to be fixed and finite as VA, V →∞.

ETH for Class I operators

Let us first briefly discuss ETH for Class I operators when VA � V . This includes

both the case where VA is held fixed as V → ∞, as well as the case where the limits

VA, V → ∞ are taken such that VA/V → 0. In fact, this is the traditional definition of

ETH—that all local, “few-body” operators match their values in the canonical ensemble

in this case.

Let us now consider the validity of ETH for Class I operators in the fixed-ratio limit

where 0 < f < 1
2

is finite. In contrast to classical statistical mechanics, we expect that

quantum mechanically, one does not require the constraint VA � VA for ETH to hold

for a large class of Class I operators. Indeed, as discussed below, several known results

already point to the conclusion that Eq. 2.1 holds for at least some operators in Class I,

as long as VA < VA with both VA, VA →∞.

One piece of evidence that suggests that Eq. 2.1 might hold for Class I operators as

long as VA < VA comes from the study of quantum quenches in conformal field theories

(CFTs). As shown in Ref. [142], the time-dependent reduced density matrix ρA(t) of a sys-

tem initially prepared in a low-entanglement state, and evolved with a CFT Hamiltonian,

approaches the thermal density matrix, as long as VA < V/2, with VA, V →∞. Ref. [142]
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characterized the closeness between ρA(t) and the thermal density matrix ρA,th (Eq. 2a)

in terms of the operator overlap I(t) =
Tr(ρA(t)ρA,th)

(Tr(ρ2A(t)) Tr(ρ2A,th))
1/2 , which is exponentially close

to unity for VA/2 < t < VA/2. It is important to note that in the thermodynamic limit,

I only receives contribution from eigenstates at temperature β−1, so this only guarantees

that operators in Class I will satisfy Eq. 2.1.

Another piece of evidence comes from the recent studies of large central charge con-

formal field theories [143–145]. In particular, Refs. [143, 145] studied the entanglement

entropy of pure eigenstates in finite temperature conformal field theories with large cen-

tral charge. In the limit VA, V � 1/T , while keeping VA/V fixed, it was found that the

entanglement entropy becomes equal to the thermal entropy at all non-zero temperatures

as long as VA < VA.

Lastly, the entanglement entropy for a random pure state is given by [42,146–150]:

S = − ln
(
|HA|−1 + |HA|

−1 − |H|−1) (2.6)

where |HA|, |HA|, |H| are the sizes of the Hilbert spaces of subsystems A, A and the total

system (= A ∪ A) respectively. Thus, as soon as VA < VA, one obtains S = − ln(|HA|),

which is indeed the thermal entropy for subsystem A at infinite temperature. Since

random pure states mimic eigenstates at infinite temperature (i.e. |ψ〉β=0), this again

suggests that the condition VA < VA is perhaps sufficient, at least for some operators.

On the other hand, there is a well-known Class I operator for which ETH fails when
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the ratio of subsystem to total system size f = VA/V is finite 1. When f is finite, the

energy variance of the reduced density matrix ρA(|ψ〉β) will be suppressed by a factor

of (1 − f) compared with the value the variance would have taken in the canonical

ensemble. Ultimately, this is due to the fact that a single eigenstate has precisely zero

energy variance 〈(H − 〈H〉)2〉 in the full system, unlike the canonical ensemble, where

the variance scales proportionally with system size. This relationship can be expressed

as

Tr[ρA(|ψ〉β)OA,β] =
VA
V

Tr[ρA,th(β)OA,β], (2.7)

whereOA,β = (HA−〈HA〉β)2 is the energy variance operator. We will explore implications

of the subsystem energy variance mismatch more carefully in Section 2.7.

It is worth noting that for the case of time-evolved states, the full system variance is

independent of time. For a given initial state, this variance may indeed be different from

the energy variance expected in the canonical ensemble, which implies that the energy

variance for any subsystem that is a finite fraction of the total system will disagree,

even at long times [151]. However, we expect that for “typical” initial states (which are

typically inaccessible from an experimental point of view), the overall energy variance will

match its result in the canonical ensemble, and so the energy variance for any subsystem

will also match after thermalization (“canonical typicality” [41,152,153]).

Overall, while we expect that ETH is obeyed by many Class I operators when f > 0

is finite, it cannot be satisfied by all such operators, since the subsystem energy variance

1We are grateful to David Huse to pointing this out to us.
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provides an important counterexample. Nonetheless, we expect that all Class I operators

not related to energy conservation (or another conserved quantity) should satisfy ETH as

given in Eq. 2.1. A more precise conjecture along these lines is that the set of operators

spanned by Hn
A where n ranges between unity and the size of the Hilbert space do

not satisfy ETH in the sense of Eq. 2.7 above. The number of such operators is still

exponentially smaller than the total number of independent operators in a subsystem

(e.g. in a spin-1/2 spin system, the total number of operators in a region A is 4VA , while

the number of operators of the form Hn
A is 2VA , the size of the Hilbert space in region A).

ETH for Class II operators

The extra ingredient introduced by Class II operators is that if ETH holds for

them, then taking such an operator’s expectation value with respect to a state |ψ〉β al-

lows one to access the properties of the Hamiltonian at a temperature different than

β−1. For example, the Rényi entropy Sα corresponding to ρA(|ψ〉β) satisfies Sα =

α
α−1

VAβ (f(αβ)− f(β)), thus allowing one to access the free energy density at tempera-

ture (αβ)−1.

Let us first consider the validity of ETH for Class II operators when VA � V . Re-

markably, the results presented in the remainder of this chapter demonstrate that ETH

is valid for all Class II operators in this limit. Thus, a single eigenstate of finite energy

density contains knowledge of the properties of the system at all temperatures.

Now let us turn to the case in which VA/V is finite, which turns out to be much
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more subtle. As mentioned in the previous subsection, there is already a Class I operator

for which ETH fails in this limit, namely the subsystem energy variance. Thus, we do

not expect that ETH will hold for all Class II operators either when f is finite. In

addition, for a given ratio VA/V with both VA, V → ∞, there is a physical constraint

on the range of energy densities for which the spectrum of |ψ〉β in principle can match

that of ρA,th(β). To appreciate this, let us consider a slightly different problem—an

arbitrary Hamiltonian of hardcore bosons with particle number conservation, at infinite

temperature. We will consider an explicit example of such a system in the next section.

Since the total particle number operator N̂ commutes with the Hamiltonian and satisfies

the equation N̂ = N̂A + N̂A, the reduced density matrix ρA for a wavefunction |ψ〉β=0

is block diagonal in the number of particles NA in subsystem A. Furthermore, if ETH

holds (as given by a generalization of Eqs. 2a and 2b), then the Schmidt decomposition

is given by

|ψ〉β=0 =
N∑

NA=0

√
λNA

∑
i

|ui〉NA ⊗ |vi〉N−NA (2.8)

where λNA are the Schmidt coefficients in the sector NA, and |ui〉NA , |vi〉N−NA are the

corresponding eigenvectors. The label i captures fluctuations of particles within a fixed

sector NA. Note that there is no index i on λNA because we are at infinite temperature

and all Schmidt states within a sector NA are equally likely.

The decomposition in Eq. 2.8 allows one to calculate properties of subsystem A at

infinite temperature even away from filling N/V since the reduced density matrix ρA will
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contain sectors with various densities NA/VA. However, there is both an upper limit and

a lower limit on the density in subsystem A, since

max [N − (V − VA), 0] ≤ NA ≤ min [N, VA] (2.9)

And thus the particle density NA/VA in subsystem A satisfies

max [1− (1− n)/f, 0] ≤ NA

VA
≤ min [n/f, 1] (2.10)

where n ≡ N/V is the overall particle density and f ≡ VA/V . Thus, a necessary condition

for the wavefunction in Eq. 2.8 to encode properties of the system at all fillings is

f ≤ min [n, 1− n] (2.11)

The above discussion, with some modifications, carries to systems with (only) energy

conservation, at an arbitrary temperature. The Schmidt decomposition of an eigenstate

|ψ〉β with eigenvalue E may now be written as:

|ψ〉β =
∑
i

√
λi|ui〉 ⊗ |vi〉 (2.12)

The physical content of ETH, as approximated in Eq. 2b, is that λi ∝ e−βEA,i where

EA,i is the i’th energy eigenvalue of HA (the projection of the Hamiltonian to subsystem

A) while |ui〉 is the corresponding eigenstate of HA. Denoting the ground state energy
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to be zero, one naively expects that 〈ui|HA|ui〉 ≤ E ∀ |ui〉 since the energy density in

the subsystem A cannot be less than the ground state energy density. However, this

argument has a loophole since in contrast to the particle number operator N̂ , the total

Hamiltonian is not separable into subsystems A and A: H = HA + HA + HAA, which

actually allows 〈ui|HA|ui〉 to exceed E as we will see in Section 2.7 in the context of

the model Hamiltonian in Eq. 2.30 below. To understand the constraint on 〈ui|HA|ui〉

precisely, let us derive an expression which encapsulates the classical notion that the sum

of energies in subsystem A and A equals E.

We first note:

〈ui0| ⊗ 〈vi0|H|ψ〉β = E 〈ui0| ⊗ 〈vi0|ψ〉β (2.13)

= E
√
λi0 (2.14)

The above expression can be re-evaluated using the decomposition H = HA + HA +

HAA:

〈ui0| ⊗ 〈vi0|H|ψ〉β (2.15)

= 〈ui0| ⊗ 〈vi0|HA +HA +HAA|ψ〉β

=
√
λi0〈ui0|HA|ui0〉+

√
λi0〈vi0|HA|vi0〉+∑

j

√
λj〈ui0| ⊗ 〈vi0|HAA|uj〉 ⊗ |vj〉 (2.16)
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Equating the two ways to calculate the same expression, one finds:

〈vi0|HA|vi0〉+
∑
j

√
λj
λi0
〈ui0| ⊗ 〈vi0|HAA|uj〉 ⊗ |vj〉

= E − 〈ui0|HA|ui0〉 (2.17)

Due to the variational principle for the ground state, 〈vi0|HA|vi0〉 ≥ −cLd−1 where c is

a constant (recall that in our convention, the ground state energy for the full Hamiltonian

is set to zero). Since both E and 〈ui0|HA|ui0〉 scale as Ld, the only way for 〈ui0|HA|ui0〉

to exceed E is that the second term on the left hand side of Eq. 2.17, viz. Eboundary
def
=∑

j

√
λj
λi0
〈ui0| ⊗ 〈vi0|HAA|uj〉 ⊗ |vj〉, is negative and scales as Ld. When that happens,

ETH no longer holds, as we now argue on general grounds, and will also demonstrate

numerically for a lattice Hamiltonian in Section 2.7. To see this, we reiterate that ETH

requires that (i) |ui〉’s are approximate eigenstates of HA, and (ii) λi ∝ e−β〈ui|HA|ui〉 =

e−βEA,i . Firstly, when 〈ui0|HA|ui0〉 < E so that ETH could in principle hold, the Eboundary

term can be neglected because the ‘diagonal term’ in Eboundary (i.e. the term corresponding

to j = i0) scales as the boundary (∝ Ld−1) and is thus subleading, while the off diagonal

terms scale as e−L
d

and thus vanish in the thermodynamic limit (recall that VA > VA).

On the other hand, when 〈ui0|HA|ui0〉 > E, the |vi0〉’s now correspond to states of zero

energy density, and the aforementioned argument for neglecting off-diagonal terms is no

longer valid. So, let us assume that 〈ui0|HA|ui0〉 > E and each |ui0〉 continues to be an
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eigenstate of HA. Thus, one requires that

∫
de′

√
λ(e′)

λ(e)
M(e, e′)eS(e′) ∝ g(e)/Ld−1, (2.18)

where we have taken the continuum limit and λ(e) denotes the Schmidt eigenvalue

corresponding to an eigenvector |u〉 at energy density e, while M(e, e′) = 〈u(e)| ⊗

〈v(e)|HAA|u(e′)〉 ⊗ |v(e′)〉 and g(e) = e − 〈u(e)|HA|u(e)〉/Ld. It is obvious from Eq.

2.18 that λ(e) ∝ e−βEA = e−βefL
d

is no longer the solution. In fact, the only way for

the integral on the left hand side of Eq. 2.18 not to have any exponential dependence

on L (as required by the right hand side) is that the integrand itself does not have

such dependence, i.e.
√

λ(e′)
λ(e)
∝ 1

M(e,e′)
e−S(e′). This implies a breakdown of ETH when

〈ui0|HA|ui0〉 > E.

The above discussion implies that for a given wavefunction and bipartition, the max-

imum energy density that is potentially accessible in a subsystem A, such that the cor-

responding Schmidt weight satisfies ETH is,

e∗ = min(E/VA, emax) = min(e/f, emax) (2.19)

where e = E/V is the energy density corresponding to the wavefunction and emax is the

maximum energy density for the Hamiltonian H (recall that emax can be finite for lattice-

regularized quantum systems, e.g. for models of fermions or spins/hardcore bosons).

Above, we have assumed that e < emax/2. In the case when e > emax/2, the range of
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available energies is instead bounded from below by max [0, emax(1− 1/f)− e/f ]. If our

goal is to capture the fluctuations in the system for all energy densities so that all Class

II operators not related to energy conservation satisfy ETH, we obtain an analog of Eq.

2.11 for the energy: E/VA ≥ emax, and, (emaxV − E)/VA ≥ emax. Expressed in terms of

the fraction VA/V , and the energy density of the eigenstate e = E/V , this constraint is

f ≤ f ∗ ≡ min

[
e

emax

, 1− e

emax

]
. (2.20)

Let us emphasize that the above constraint is a necessary condition for ETH to hold

for all Class II operators, not a sufficient one. Just as some Class I operators cannot

satisfy ETH when f is finite, we expect that there also exist Class II operators for which

ETH fails when f is finite, even when the above condition holds. Even so, significant

deviation in the eigenvalue spectrum begins where this constraint breaks down, as our

numerical results will demonstrate in Section 2.7.

2.2.4 Summary

Let us summarize the discussion in this section.

1. We conjecture that ETH holds for all local and non-local Class I oper-

ators as long as VA � V . This implies that ETH is not restricted only to few-body

operators (as can be seen in the limit VA/V → 0 as VA, V → ∞). When the subsystem

is taken to be a finite fraction f < 1
2

of the total system size, we provide some evidence

in Section 2.7 that all operators not involving energy conservation satisfy ETH as well.
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2. We conjecture that ETH also holds for all Class II operators when

VA � V . It follows that a single eigenstate contains information about all energy densities

available to the system. When f is finite, we suspect that ETH also holds for all operators

that probe the system below an energy density e∗ (given by Eq. 2.19) and that do not

involve energy conservation; however, we leave this as an open question.

3. Determining the full Hamiltonian from a single eigenstate is equiva-

lent to the satisfaction of Eq. 2.1 for both Class I and Class II operators.

Our results provide strong evidence that this is true when VA � V . Therefore, one

should be able to extract information about the full Hamiltonian at arbitrary energy

densities/temperatures using a single eigenstate.

2.3 A warmup: eigenstates at infinite T

2.3.1 Von Neumann and Rényi entropy

By definition, the thermal entropy reaches a maximum at infinite temperature. To-

gether with Eq. 2.35, this implies that when ETH holds, eigenstates at “infinite tem-

perature” are ones where the entanglement entropy is at its maximum. Consider a 1D

transverse field Ising model with longitudinal field, H =
∑L

i=1

(
σzi σ

z
i+1 + hxσ

x
i + hzσ

z
i

)
.

Here the von Neumann entropy S1 takes its maximum possible value when the eigenval-

ues of the reduced density matrix are all equivalent to one another. Thus, from counting

the basis size of the reduced Hilbert space, we expect for infinite temperature eigenstates
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Figure 2.1: Entanglement entropies S1 through S4 for a model with no conservation
law (left panel, given by Eq. 2.30 at L = 21), and a model with particle number
conservation (right panel, given by Eq. 2.22 at L = 27 with filling N = 6). We use the
parameters mentioned in the text to place each model at a nonintegrable point. In
each case we consider eigenstates in the k = 1 sector, with subsystem size LA = 4. The
grey vertical line denotes infinite temperature (point of maximum S1), and the black
circles mark the theoretical predictions for the entanglement entropies there. The
brown markers denote the theoretical values of the entropies in the limit LA, L→∞
while LA/L→ 0, as given by Eqs. 2.26 and 2.27. Notice that the Rényi entropies all
match at infinite temperature if and only if there are no additional conservation laws
besides energy.

43



Which operators satisfy the Eigenstate Thermalization Hypothesis? Chapter 2

that each eigenvalue of the reduced density matrix will approach 2−LA in the thermo-

dynamic limit when f = LA/L < 1
2
. From this, it follows that the Rényi entropies at

infinite temperature satisfy

Sα = LA ln 2, (2.21)

that is, they are independent of Rényi index α. The left panel of Figure 2.1 shows how the

entropies S1 through S4 together match this predicted value at the infinite temperature

point for a L = 21 system with periodic boundary conditions and subsystem size LA = 4.

In general, as L→∞ the T =∞ entropy density is given by Sα/LA = ln 2.

Now let us instead consider a model with an additional conservation law, namely

particle number conservation. Consider a 1D chain of hardcore bosons

H =−
∑
i

(
tb†ibi+1 + t′b†ibi+2 + H.c.

)
+
∑
i

(V nini+1 + V ′nini+2)

(2.22)

where ni ≡ b†ibi. We focus on this system with periodic boundary conditions at the

non-integrable point t = V = 1 and t′ = V ′ = 0.96. This model was previously studied

and shown to exhibit ETH in Refs. [154,155].

Due to particle number conservation, the reduced density matrix from any pure state

is block diagonal, with each block corresponding to some filling number NA of the sub-

system A. The block of the reduced density matrix ρ
(NA)
A corresponding to filling NA is

a dNA × dNA matrix, where dNA ≡
(
LA
NA

)
. At infinite temperature and for LA/L < 1

2
, the
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Figure 2.2: Eigenvalue spectrum of the reduced density matrix of an infinite tem-
perature eigenstate, ρA(|ψ〉β=0) for the hardcore boson model Eq. 2.22 with L = 27,
LA = 4, and filling N = 6. The red lines plot the theoretical value of each eigenvalue
in the thermodynamic limit, determined from the filling NA of the sector in which it
lies.

eigenvalues of ρA must be equal to one another within a given block, but the eigenvalues

in different blocks will be different: they are in fact proportional to
(
L−LA
N−NA

)
, the number

of microstates consistent with such a configuration in subsystem A. Taking into account

that Tr(ρA) = 1, one finds that each of the dNA =
(
LA
NA

)
eigenvalues of ρ

(NA)
A are given

by λNA ≡
(
L−LA
N−NA

)
/
(
L
N

)
. The spectrum of ρA we find for a single eigenstate (as shown in

Figure 2.2) is in agreement with that of the thermal reduced density matrix ρA,th(β = 0)

studied in Ref. [135], consistent with ETH.

With this, the von Neumann entropy at infinite temperature becomes

S1 = −
∑
NA

dNAλNA lnλNA (2.23)
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and the Rényi entropies are given by

Sα = − 1

α− 1
ln

(∑
NA

dNAλ
α
NA

)
, (2.24)

where the sums over NA are restricted to subsystem particle fillings NA that satisfy the

constraint in Eq. 2.9. The above expressions are valid when LA/L <
1
2
.

Because the eigenvalues are non-uniform, the Rényi entropies Sα at infinite temper-

ature depend on the Rényi index α, in contrast to an energy-only conserving model.

The right panel of Figure 2.1 shows how the actual values of S1 through S4 match those

predicted by the above counting argument.

For comparison, we also calculate Sα analytically in the thermodynamic limit. For

simplicity, we consider the limits, L,N,LA → ∞ such that n = N/L is held constant,

while LA/L → 0. In these limits, one can evaluate the expressions in Eq. 2.24 using

Stirling’s approximation ln(x!) ≈ x ln(x)−x. One finds that in the limits considered, Sα

receives contribution only from NA given by

N∗A =
LA

1 +
(

1
n
− 1
)α (2.25)

Thus, Sα probes the system at filling N∗A/LA = 1

1+( 1
n
−1)

α , which is different than the

actual filling n, unless α = 1 (which corresponds to the von Neumann entanglement

entropy). This also immediately leads to expressions for Rényi and von Neumann entan-

46



Which operators satisfy the Eigenstate Thermalization Hypothesis? Chapter 2

glement entropies in the thermodynamic limit:

Sα/LA = − 1

α− 1
ln [nα + (1− n)α] (2.26)

and

S1/LA = − [n ln(n) + (1− n) ln(1− n)] . (2.27)

We plot these values in Figure 2.1 for comparison. Remarkably, even with the small

system sizes we can access, the difference between the exact finite size result (obtained

by counting over all sectors) and the result valid in the thermodynamic limit is quite

small.

In the above derivation, it is also possible to relax the restriction LA/L → 0 as

LA, L→∞. We then find that N∗A is given by the solution to

N∗A =
LA

1 +
(

1−f
n−fN∗A/LA

− 1
)α , (2.28)

which reduces to Eq. 2.25 when f → 0.

Let us note a few things about this equation:

1. When α = 1, the solution is N∗A = nLA, regardless of f . Thus, the von Neumann

entropy always probes the system at its given filling, even when f is finite. Further

analysis shows that Eq. 2.27 holds generally when f < 1
2
.
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2. When the system is at half filling (n = 1
2
), the solution is N∗A = 1

2
LA, regardless of

f or α.

3. When α > 1, 0 < f < 1
2
, and n 6= 1

2
, the filling fraction N∗A/LA probed by the Rényi

entropy Sα actually depends on f . As a result, the Rényi entropies for a given LA

depend on f . This can be contrasted with the von Neumann entropy, which is

independent of f as long as f < 1
2
. The right panel of Figure 2.1 illustrates this

nicely: the analytical f → 0 prediction for the von Neumann entropy (Eq. 2.27)

matches the corresponding numerical result quite well, but the Rényi entropies

differ significantly because f = 4/27 is finite.

We expect that analogous features hold true also for the model that conserves only energy,

which we will discuss in the later sections.

2.3.2 Subsystem energy variance

Let us also consider the average subsystem filling variance of the particle-number

conserving system given by Eq. 2.22 at infinite temperature. While the average subsystem

filling is given by 〈NA〉 = nLA = Nf , the variance in this quantity for a single eigenstate

with f ≡ LA/L <
1
2

is given by

〈
(NA − 〈NA〉)2

〉
= LA(1− f)(1− n)

L

L− 1
. (2.29)
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Although both the filling and its variance are proportional to LA as expected, the variance

includes an additional factor (1 − f), which causes it to be suppressed compared with

the grand canonical ensemble when f is finite. In Section 2.7 we will witness a similar

suppression of the subsystem energy variance when the condition LA/L→ 0 is relaxed.

2.4 Model Hamiltonian with only energy conserva-

tion

To develop some understanding of the questions posed in the introduction, we study

a finite 1D quantum spin-1/2 chain with the following Hamiltonian:

H =
L∑
i=1

(
σzi σ

z
i+1 + hxσ

x
i + hzσ

z
i

)
(2.30)

We set hx = 0.9045 and hz = 0.8090 such that the model is far away from any integrable

point, and is expected to satisfy ETH in the sense of Eq. 2.1 as shown in Ref. [77]. We

use periodic boundary conditions throughout.

We diagonalized the Hamiltonian in Eq. 2.30 for system sizes up to L = 21, obtain-

ing all eigenvalues and eigenstates. As hinted earlier, to each eigenstate we assigned a

temperature β−1 by finding the value β for which the energy expectation value in the

canonical ensemble matches the energy of the eigenstate:

〈ψ|H|ψ〉
〈ψ|ψ〉

=
Tr
(
He−βH

)
Tr (e−βH)

. (2.31)
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By definition, β = +∞ for the ground state and β = −∞ for the highest excited state.

In practice, the range of available β values on a finite size system is much smaller. With

L = 21, for instance, the first excited state has β ≈ 4.0, and the second-to-highest excited

state has β ≈ −0.6 (as determined from Eq. 2.31). It follows that eigenstates outside the

range 4.0 & β & −0.6 will not appear fully thermal due to the large thermal correlation

length expected at low temperatures. (This can be seen for instance in Figure 2.3, where

the finite size corrections to the linear scaling of the entanglement entropy become more

prominent as temperature decreases.) Another thing to consider is that the infinite

temperature eigenstate |ψ〉β=0 is completely random and contains no information about

the Hamiltonian. In a finite size system, states near infinite temperature will also contain

little information about the Hamiltonian and will therefore be unable to predict properties

of the system at other energy densities. As a result of these finite size considerations, we

typically study values of β between 0.2 and 0.5 in the remainder of this chapter.

2.5 Von Neumann and Rényi entropy of eigenstates

at finite T

2.5.1 ETH prediction for von Neumann and Rényi entropies

Let us consider the Rényi Entropy Sα = − 1
α−1

ln(Tr ραA(|ψ〉β)) corresponding to an

eigenstate |ψ〉β at inverse temperature β. Assuming that ETH, as encoded in Eq. 2a,
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Figure 2.3: Scaling of the von Neumann entanglement entropy S1 with subsystem size
for the L = 20 system given in Eq. 2.30. Up to β = 0.5, the scaling is linear for small
LA, suggesting that the states are volume-law and are thus likely to satisfy ETH. The
β = 1.0 eigenstate, on the other hand, is clearly not linear, and is too close to the
ground state at this system size to exhibit ETH.

holds, Sα may be reexpressed as:

Sα = − 1

α− 1
ln

(
Z(A,α, β)

Z(1, β)α

)
(2.32)

where Z(A,α, β) is the partition function of the system on an α-sheeted Riemann surface,

such that subsystem A has an effective temperature (αβ)−1 while subsystem A has an

effective temperature β−1. Z(1, β) is the regular partition function of the system [43,51,

52]. Therefore, keeping terms only to the leading order in the subsystem size, the above

expression leads to Eq. 2.3 advertised in the Introduction,

Sα = − 1

α− 1
ln

(
e−αβVAf(αβ)−αβVAf(β)

e−αβVAf(β)−αβVAf(β)

)
(2.33)

=
α

α− 1
VAβ (f(αβ)− f(β)) (2.34)
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where f is the free energy density. Therefore, the wavefunction at temperature β−1 can

be used to calculate the free energy at temperature (αβ)−1. Indeed, the same result

also follows using the approximate form in Eq. 2b. Taking the limit α → 1 leads to the

conclusion that the von Neumann entanglement entropy S1 satisfies

S1 = VAsth(β) (2.35)

where sth(β) = S1(ρA,th(β))/LA is the thermal entropy density at temperature β−1.

2.5.2 Numerical Results for von Neumann and Rényi entropies

Figure 2.3 shows the scaling of von Neumann entropy S1 as a function of subsystem

size LA for the eigenstates |ψ〉β of our model (Eq. 2.30). As discussed in Section 2.2.3,

we expect Eq. 2.35 to hold as long as VA < VA, in the limit VA, VA → ∞. This implies

that in the thermodynamic limit, the function S1(VA) is expected to form an inverted

triangle shape, similar to the behavior of a random pure state (Eq. 2.6). However, in a

finite total system at any non-infinite temperature, S1 is an analytic function of the ratio

VA/V with a negative sign for d2S1

dV 2
A

, as shown in Figure 2.3 (note that the sign of the

curvature is fixed by the strong subadditivity of entanglement). However, even in finite

system, the volume law does hold to a good accuracy when VA . V/2, and the finite size

scaling, discussed below, indicates that the inverted triangle shape is recovered in the

thermodynamic limit.

Figure 2.4 shows the comparison of S1, S2, S3, and S4 calculated for each individual
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Figure 2.4: The von Neumann entropy S1 and Rényi entropies S2, S3, and S4 for the
system given in Eq. 2.30 with L = 21 and LA = 4. Here, ZA = TrA(e−βHA). The
entropies of the reduced density matrix at each energy density agree remarkably with
the the entropies calculated from the canonical ensemble, given by Eqs. 2a and 2b.

eigenstate for a subsystem size LA = 4 in a L = 21 system, with their ETH predicted

canonical counterparts, Eqs. 2.35 and 2.3. We use two different canonical counterparts

corresponding to Eqs. 2a and 2b, the latter version being susceptible to boundary errors,

which nevertheless are expected to vanish as VA, VA → ∞. The agreement for each

entropy is remarkable. It is worth re-iterating that the Rényi entropies for an eigenstate

|ψ〉β encode the free energy densities at temperatures different than β−1 (Eq. 2.3), and

these results provide an instance of non-local Class II operators satisfying ETH. Also
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Figure 2.5: Scaling of the entropy deviation ∆Sα ≡ Sα(ρA,th(β))−Sα(ρA(|ψ〉β)) with
1/L for constant LA averaged over all eigenstates in the range 0.28 < β < 0.32,
for S1 (top panel) and S2 (bottom panel). The error bars represent one standard
deviation away from the mean. For S1 this deviation is strictly non-negative, but for
higher Rényi entropies it can oscillate and become negative before tending to zero as
L→∞.

note that as α becomes larger, finite size effects become more pronounced because Sα

probes the system at lower temperatures (αβ)−1.

We also studied finite-size scaling of the von Neumann entropy and Rényi entropies

by keeping LA constant and varying the total system size. The top panel of Figure 2.5

shows the deviation ∆S1

LA
=

S1(|ψ〉β)

LA
− sth(β) for eigenstates in a range of temperatures.

The difference ∆S1/LA seemingly goes to zero faster than any inverse power of L, and
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Figure 2.6: Scaling of the von Neumann entropy deviation ∆S1 with 1/L for constant
ratio LA/L averaged over all eigenstates in the range 0.28 < β < 0.32. As in Figure 2.5,
the error bars represent one standard deviation away from the mean. Even though
this plot considers the case where the subsystem size LA becomes infinite as L→∞,
the entropy deviations are going to zero rapidly as L becomes larger.

is consistent with an exponential dependence ∆S1/LA ∼ e−L, or at the very least, a

power-law decay ∆S1/LA ∼ 1/Lx with x� 1 (although we should caution that inferring

the precise asymptotic finite size scaling behavior using exact diagonalization studies is

an inherently difficult task). The bottom panel shows a similar plot for the deviation of

Rényi entropy S2 from its ETH predicted value, Eq. 2.3. The finite size scaling of ∆S2

is relatively difficult because unlike S1, S2 shows oscillations as a function of LA (see

e.g. [135,156]). Despite this, ∆S2 is less than a few percent of S2 itself.

Figure 2.6 plots the entropy deviation ∆S1/LA for constant ratio LA/L at all available

system sizes. Although it is difficult to do a detailed scaling analysis with so few points,

the data strongly suggests that ∆S1/LA vanishes in the thermodynamic limit.

The finite size scaling of Rényi entropies at constant ratio LA/L is less conclusive, as

can be seen in Figure 2.7. The analytical argument for the particle number conserving
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Figure 2.7: Scaling of the Rényi entropy deviation ∆S2 with 1/L for constant ratio
LA/L averaged over all eigenstates in the range 0.28 < β < 0.32. As in Figure 2.5,
the error bars represent one standard deviation away from the mean.

model suggests that the Rényi entropies Sα for α 6= 1 do not match their canonical

counterparts when VA/V is held fixed. Ref. [157] arrived at similar conclusions using a

different approach.

2.6 Extracting the Hamiltonian from a single eigen-

state

In this section we will present numerical results that substantiate our conjecture that

ETH is valid for all Class I and Class II operators when VA � V as V → ∞. Our

numerical results consider the case where VA is held constant as V →∞. We expect that

all results in this section also hold true when the limits are taken such that f ≡ VA/V → 0

as VA, V → ∞. In Section 2.7 we will explore more carefully the case when f < 1
2

is

finite.
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Figure 2.8: Comparison of the four quantities defined in the inset for an LA = 4
subsystem at L = 21 and β = 0.3. Each quantity has been normalized so that
the y-axis has units of energy density. The blue markers show the spectrum of
the canonical (i.e. thermal) reduced density matrix while the red diamond mark-
ers correspond to the eigenvalues of a reduced density matrix ρA(|ψ〉β) for a sin-
gle eigenstate at temperature β; the grey markers show the eigenvalues of HA with
a shift cA ≡ 1

β lnZA = 1
β ln TrA(e−βHA) so that it can be directly compared with

− 1
β ln[ρA(|ψ〉β)] in accordance with Eq. 2b (note also that the combination HA+cA is

independent of the shift of the spectrum of HA by an arbitrary uniform constant). Fi-
nally, the orange markers represent the expectation value of HA, again with a shift cA,
with respect to the Schmidt eigenvector |ui〉 of ρA(|ψ〉β). In each case, the eigenval-
ues/eigenvectors are ordered from smallest to largest energy density. The horizontal
lines plot the energy density e (dashed, grey) and the critical energy density e∗ = eL

LA
(solid, brown) of the original eigenstate |ψ〉β, with respect to the ground state energy
density of HA + cA (dotted, black).

We begin by probing in detail the entanglement spectra of individual eigenstates

as well as the corresponding Schmidt states. Specifically, we compare four different

quantities, as shown in Figure 2.8, which test the validity of Eqs. 2a and 2b. The

agreement of the spectrum of −1
β

ln[ρA(|ψ〉β)] with that of −1
β

ln[ρA,th(β)] as well as with

the actual Hamiltonian HA in region A implies that essentially, the Schmidt eigenvalues

λi satisfy λi ∝ e−βEA,i where EA,i are the eigenvalues of HA. Similarly, the agreement

with the expectation value 〈ui|HA|ui〉 shows that the Schmidt eigenvectors |ui〉 have the

same character as the eigenvectors of the thermal density matrix.
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Figure 2.9: Overlap between the Schmidt eigenvectors |uj〉 and the eigenvectors |ϕi〉
of the canonical density matrix, for an L = 21 system with β = 0.3, and subsystem
sizes LA = 2, 3, 4, 5. In each case, the eigenvectors are ordered from most significant
(largest eigenvalue) to least significant (smallest eigenvalue).
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To probe the Schmidt eigenvectors further, we directly calculated the overlaps between

the eigenvectors of the reduced density matrix ρA(|ψ〉β) and the eigenvectors of the

thermal density matrix ρA,th(β) (see Figure 2.9). Again, we find excellent agreement.

To quantify the extent to which Eq. 2a is valid, we calculate the trace norm distance

||ρA(|ψ〉β) − ρA,th(β)||1 between the reduced and canonical density matrices at various

system sizes. The trace norm distance, defined as

||ρA(|ψ〉β)− ρA,th(β)||1 ≡
1

2
Tr

[√
(ρA(|ψ〉β)− ρA,th(β))2

]
(2.36)

places an upper bound on the probability difference that could result from any quantum

measurement on the two density matrices [158]. As such, it provides an excellent measure

of how distinguishable the two density matrices are. If the trace norm distance between

two finite sized density matrices is zero, they are equal to each other element by element.

If ETH holds for all operators in subsystem A, then the results of Ref. [75] imply

that the trace norm distance should go to zero as 1/L. The suggestion that the trace

norm distance between the pure state and thermal reduced density matrices with fixed

subsystem size would tend to zero was also made in Ref. [159]. We restrict ourselves to

states in a β range given by 0.28 < β < 0.32. In the left panel of Figure 2.10, we plot the

trace norm distance of every eigenstate in this β range at LA = 5 for a few select system

sizes. For each system size, the distribution of the trace norm distance is nearly constant

throughout the given β range. The right panel then takes this data for each pair of L

and LA and plots the mean and standard deviation of the trace norm distance against
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Figure 2.10: Trace norm distance between the canonical density matrix ρA,th(β)
and the reduced density matrix ρA(|ψ〉β) for all eigenstates |ψ〉β in the range
0.28 < β < 0.32. The left panel plots the trace norm distance for all such eigen-
states with system sizes L = 12, 15, and 20, and subsystem size LA = 5. The right
panel plots the mean and standard deviation of the trace norm distance in this β
range for values of L up to 21 and LA up to 5.

1/L. The trace norm distance is tending toward zero at least linearly with 1/L, perhaps

even faster.

These results, taken together, strongly support the conjecture that ETH, as given by

Eq. 2.1 holds for all operators when VA � V . The Schmidt eigenvalues and eigenvectors

match at all energy densities, not just the energy density of the eigenstate. Our results

also imply that when VA � V , ETH as specified by Eq. 2a holds. One consequence of this

is that if VA is held fixed, the density matrices ρA(|ψ〉β) and ρA,th(β) become elementwise

equal in any basis as V →∞.
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2.7 ETH with finite ratio VA/V

In this section we will consider to what extent ETH is valid when the ratio f ≡

VA/V < 1
2

is held fixed and finite as VA, V →∞. As demonstrated in Section 2.5.2, the

von Neumann entropy of ρA(|ψ〉β) matches the thermal entropy in the thermodynamic

limit even for finite f < 1
2
. In the current section we consider the extent to which other

quantities match between a single eigenstate and the canonical ensemble.

There is one notable Class I operator for which ETH (in the sense of Eq. 2.1) fails when

f is finite. As mentioned in Section 2.2.3 (see Eq. 2.7), the subsystem energy variance

taken from a single eigenstate is suppressed by a factor of (1−f) compared with its value

in the canonical ensemble. To understand this, consider first the expectation value of

the operator H2
A − 〈HA〉2 with respect to the thermal density matrix. This will be given

by [140]:

〈H2
A − 〈HA〉2〉ρA,th(β) =

∫
d(δEA) (δEA)2 e

−δE2
A

cVA∫
d(δEA) e

−δE2
A

cVA

(2.37)

where c is the specific heat. Note that the probability distribution is Gaussian because it

is obtained by expanding the Boltzmann factor around its maximum. On the other hand,

in an eigenstate, the probability distribution will acquire an extra multiplicative factor

of e
−δE2

A
cV
A because a fluctuation δEA of energy in region A is necessarily accompanied by

a fluctuation −δEA in the region A since for an eigenstate, there are no fluctuations of

energy in the total system. Thus the expectation value of H2
A − 〈HA〉2 with respect to
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Figure 2.11: (Top panel) Subsystem energy variance with respect to subsystem size LA
for both the canonical ensemble (blue circular markers) and a single eigenstate |ψ〉β
(red diamond markers), at L = 18 and β = 0.3. The inset shows the ratio between
the energy variances at each subsystem size, which is expected to fit 1 − LA/L in
the thermodynamic limit (Eq. 2.7). (Bottom panel) The variance of an operator

JA ≡
∑LA

i=1(h
(i)
x σxi + h

(i)
z σzi ) +

∑LA−1
i=1 J

(i)
z σzi σ

z
i+1, which includes the same terms as

HA but does not relate to energy conservation, is plotted for comparison. Here, the

quantities h
(i)
x , h

(i)
x , and J

(i)
z are each taken from the uniform distribution [−1, 1].
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eigenstate |ψ〉β is given by:

〈H2
A − 〈HA〉2〉ρA(|ψ〉β) =

∫
d(δEA) (δEA)2 e

−δE2
A

cVA e
−δE2

A
cV
A∫

d(δEA) e
−δE2

A
cVA e

−δE2
A

cV
A

(2.38)

Eqs. 2.37 and 2.38 imply

〈H2
A − 〈HA〉2〉ρA(|ψ〉β)

〈H2
A − 〈HA〉2〉ρA,th(β)

= 1− VA/V (2.39)

To demonstrate this relationship, the top panel of Figure 2.11 shows scaling of the

subsystem energy variance with subsystem size LA for both a single eigenstate and the

canonical ensemble. While the energy variance grows linearly for LA � L in both cases,

the single eigenstate energy variance has an additional term that is negative and quadratic

in the subsystem size, and which precisely matches the result in Eq. 2.39.

The bottom panel of Figure 2.11 shows, for comparison, the variance of a different

operator JA between a single eigenstate and the canonical ensemble. The operator JA

(defined in the figure’s caption) is chosen to span the length of subsystem A and to include

the same terms as HA; however, the coefficient of each term is different. The fact that the

variance of JA matches between a single eigenstate and the thermal ensemble strongly

suggests that all Class I operators that do not explicitly involve energy conservation will

satisfy ETH in the sense of Eq. 2.1, even when VA/V is finite.

Let us now consider an implication of the difference in subsystem energy variance

between ρA(|ψ〉β) and ρA,th(β). This difference, which occurs only when f is finite,
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suggests that the trace norm distance between the two density matrices vanishes only

when f → 0. To explore this more carefully, note that the trace norm distance places a

bound on the difference in expectation value of any operator Λ that is bounded between

zero and one as

|Tr(ρΛ)− Tr(σΛ)| ≤ ||ρ− σ||1. (2.40)

In order to calculate a lower bound on trace norm distance due to the variance differ-

ence, we must write the energy variance as a bounded operator that maximally differs

between the two density matrices. Naively one might be tempted to consider the operator

OA,β/∆2 ≡ (HA−〈HA〉β)2/∆2, where for the operator to be bounded, ∆ must be chosen

to be the largest energy available to the system. Since both OA,β and ∆ scale linearly

with V , the expectation value of this operator is actually zero in the thermodynamic

limit for both ρA(|ψ〉β) and ρA,th(β). Thus, no bound can be placed on the trace norm

distance due to this particular operator.

Let us instead now consider a modified energy variance operator,

ΛA,β,∆ ≡ PA,β,∆
OA,β
∆2

PA,β,∆, (2.41)

where ∆ is an arbitrary energy scale and PA,β,∆ projects onto the subspace whereOA,β/∆2

has eigenvalues in the range [0, 1], thus making ΛA,β,∆ a bounded operator. This operator

considers the energy variance within a restricted window of width 2∆ about the mean

energy.
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To arrive at an approximate bound due to this operator, let us assume that the energy

histograms of ρA,th(β) and ρA(|ψ〉β) are given by normal distributions with variance σ2
th

and σ2
ψ = (1 − f)σ2

th, respectively. Since both distributions have the same mean, the

difference in expectation values is expected to be

D ≡ Tr[ρA,th(β)ΛA,β,∆]− Tr[ρA(|ψ〉β)ΛA,β,∆]

=
1

∆2

∫ ∆

−∆

[
e−E

2/2σ2
th

σth

√
2π
− e−E

2/2σ2
ψ

σψ
√

2π

]
E2 dE. (2.42)

Given σth and f , it is possible to find ∆ numerically such that D is maximized. Although

∆ is proportional to
√
V , the value of D itself is independent of V as V → ∞, since

σth also scales with
√
V . The maximum quantity D then provides a lower bound on the

trace norm distance between ρA,th(β) and ρA(|ψ〉β) in the thermodynamic limit 2.

Let us now turn to our results on the scaling of trace norm distance with system size

when the ratio f = LA/L is held fixed as L,LA → ∞, which are shown in Figure 2.12.

Although there are few points available for each ratio, the trend is clearly for the trace

norm distance to decrease as L increases. The horizontal, dotted lines denote the theo-

retical minimum each trace norm distance can taken, given by Eq. 2.42. Remarkably, for

each subsystem ratio, the trace norm distance rapidly approaches this lower bound, sug-

gesting that the bound may actually provide the result in the thermodynamic limit. This

in turn implies that other operators which do not involve energy conservation are likely

2One could also consider bounds on the trace norm distance due to higher moments 〈(HA −
〈HA〉)nangle, but the most stringent bound comes from n = 2.
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Figure 2.12: Trace norm distance between the canonical density matrix and reduced
density matrix for constant ratio LA/L and 0.28 < β < 0.32. As in Figure 2.10, the
error bars represent one standard deviation away from the mean. The horizontal lines
indicate the approximate theoretical minimum each trace norm distance can take,
based on the suppressed energy variance given by maximizing Eq. 2.42.

to have equal expectation values for a single eigenstate and for the canonical ensemble.

We now turn to results on the entanglement spectrum when f is a significant fraction

of the total system size. As discussed in Section 2.2.3, if the constraint in Eq. 2.20

is violated, the entanglement spectrum cannot match above a critical energy density

e∗ = e/f (see Eq. 2.19), where e is the energy density of the state |ψ〉β. Figure 2.13

shows the comparison of spectra of four different quantities considered in Section 2.6 for

several different energy densities of the reference state |ψ〉β with f = 1/3, at four different

values of β. With f = 1/3, the energy constraint Eq. 2.20 is violated, and therefore we

expect that the entanglement spectrum should deviate from the actual spectrum of the

Hamiltonian at least beyond the critical energy density e∗ = e/f . We find for each value

of β that significant deviation starts to occur essentially right at this critical energy

density.
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Figure 2.13: Comparison of the four quantities defined in the inset of Figure 2.8 for
eigenstates of an L = 21 system with LA = 7 at β = 0.2, 0.3, 0.4, and 0.5. Each
inset plots a 12-bin histogram of the log of the density of states versus the energy
density: the solid blue curve from a single eigenstate ρA(|ψ〉β) and the dotted cyan
curve from the canonical ensemble ρA,th(β). We notice that in each of the four plots,
the eigenvalues of the reduced density matrix corresponding to a single eigenstate (red
diamond markers) begin to deviate significantly from the other markers (in particular,
the eigenvalues of the thermal reduced density matrix i.e. the blue markers), as the
energy density reaches the critical value e∗ (denoted by the solid brown line), indicating
breakdown of ETH beyond e∗.
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Figure 2.14: Decomposition of the energy density corresponding to an eigenstate
amongst the three terms in Eq. 2.17 for β = 0.2 (left panel) and β = 0.5 (right panel)
at L = 21 and LA = 7. The dotted magenta line marks the ground state of HA. As in
Figure 2.8, the solid brown line denotes the critical energy density e∗ for subsystem
A.

Surprisingly, even though the entanglement spectrum does not match the actual spec-

trum beyond the energy density e∗, the expectation values 〈ui|HA|ui〉/LA continue to

match the energy eigenvalues of the actual Hamiltonian! To understand this phenomenon

better, we analyze the different terms in Eq. 2.17. As argued in Section 2.2.3, the only

way 〈ui|HA|ui〉 can exceed the total energy E of the eigenstate is, if the Eboundary term,

Eboundary ≡
∑
j

√
λj
λi0
〈ui0| ⊗ 〈vi0|HAA|uj〉 ⊗ |vj〉, (2.43)

scales with the total system size. We find that this is indeed the case, as shown in

Figure 2.14. In agreement with the general considerations in Section 2.2.3, the Schmidt

eigenvalues deviate from their ETH predicted values beyond e∗ (Figure 2.13) and become

considerably smaller.

To summarize the results of this section, we provided evidence that ETH holds for

all Class I operators not related to energy conservation. For Class II operators, there is
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a critical energy density e∗ beyond which ETH definitely fails, even though, surprisingly,

the eigenvectors still seem to be correct. (We leave the understanding of this result for

future studies.)

2.8 An application: equal-time correlators as a func-

tion of temperature from a single eigenstate

In the previous sections we provided evidence that a single eigenstate encodes the full

Hamiltonian. As an application of this result, we now calculate correlation functions at

arbitrary temperatures using a single eigenstate |ψ〉β. The basic idea is similar to the

relation between the Rényi entropies and the free energy densities (Eq. 2.3).

In particular, consider the correlation function,

〈O(x)O(y)〉β,n =
TrA (ρnA(|ψ〉β)O(x)O(y))

TrA (ρnA(|ψ〉β))
(2.44)

where x, y are located in subsystem A, away from the boundary. Using Eqs. 2a, 2b to

leading order in the subsystem size, 〈O(x)O(y)〉β,n equals the expectation value of the

operator O(x)O(y) at a temperature (nβ)−1.

Figure 2.15 shows the expectation values of local operators within subsystem A as a

function of β, as predicted from a single eigenstate at inverse temperature β0 (indicated

by a yellow dot on the red curve). We choose operators that are as far away from the

subsystem boundary as possible so as to minimize the finite size corrections. Even though
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Figure 2.15: Equal time correlators for an L = 21 system plotted against inverse
temperature β. The blue dots denote the expectation value with respect to each
eigenstate, the dashed cyan curve plots the expectation value in the canonical ensem-
ble, and the red curve plots the expectation value predicted from a single eigenstate
at β0 = 0.3 (yellow dot) by raising the LA = 4 density matrix to the power β/β0 and
rescaling it to have unit trace.
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the agreement with the canonical ensemble is not perfect, the qualitative trends and the

numerical values match incredibly well, given the modest total system sizes to which

we are restricted. These predicted correlators also undoubtedly suffer from corrections

expected due to the conical singularity at the boundary of A in Eq. 2.44.

2.9 Summary and discussion

In this chapter, we analyzed the structure of reduced density matrices corresponding

to the eigenstates of generic, non-integrable quantum systems. We argued that given an

eigenstate |ψ〉β with energy density e and a corresponding temperature β−1, the reduced

density matrix for a subsystem A is given by

ρA(|ψ〉β) = ρA,th(β)

where

ρA,th(β) =
TrA

(
e−βH

)
Tr (e−βH)

if the condition VA � V is satisfied. This means that for a fixed eigenstate |ψ〉β, one

can always extract the properties of the corresponding Hamiltonian at arbitrary energy

densities by taking VA/V → 0 as the limits VA, V → ∞ are taken. Remarkably, even

when VA/V (< 1/2) is taken to be fixed and finite, one can still access many properties

of the underlying Hamiltonian for a range of energy densities in the interval described in
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Eq. 2.19.

We also introduced the notion of “equithermal” (Class I) and “non-equithermal”

(Class II) operators. In a canonical ensemble at temperature T , the expectation value

of Class I operators depends only on the properties of the underlying Hamiltonian at

temperature T , while the same is not true for Class II operators. Our results strongly

suggest that all Class I operators not involving energy conservation satisfy Eq. 2.1 as

long as VA < V/2. For Class II operators not related to energy conservation, Eq. 2.1 is

seemingly again satisfied as long as the constraint in Eq. 2.20 holds.

We also provided analytical results for the Rényi and von Neumann entropies of

infinite temperature eigenstates of a particle number conserving model. These results

substantiate our numerical results for the energy-only conserving model. In particular,

we find that the von Neumann entanglement entropy for a subsystem of size VA equals

the thermal entropy for that subsystem as long as VA < V/2, and therefore follows the

so called ‘Page curve’ [42, 148–150] at all non-zero temperatures, thus generalizing the

original work of Page and others [42, 148–150], and in agreement with the recent work

on large central charge CFTs [143–145].

In this chapter we only considered contiguous subsystems. It seems reasonable to

conjecture that Eq. 2a continues to hold as long as the support of operator O can be

chosen to lie in a subsystem which is not necessarily contiguous and whose volume satisfies

VA � V . This encompasses the expectation values of local operators such as 〈O(~x)O(0)〉,

where O(~x) is localized at point ~x and |~x| can be greater than L/2 (where L is the linear
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dimension of the total system).

Let us mention some of the practical implications of our results. Firstly, the fact

that a single eigenstate encodes properties of the full Hamiltonian could potentially be a

useful numerical tool. For example, one could imagine targeting a finite energy density

eigenstate of a Hamiltonian H by variationally minimizing the energy of the Hamiltonian

(H −E)2 with respect to trial wavefunctions. The techniques in this chapter would then

allow one to access thermal properties of the Hamiltonian without directly calculating

the partition function, which could be extremely helpful for Hamiltonians that suffer

from the sign problem.

Secondly, owing to the recent progress in single atom imaging techniques in cold

atomic systems [66], one can now access non-local operators experimentally [64, 65, 96,

160]. This potentially allows one to check some of our predictions pertaining to the

violation of ETH in cold atomic systems. For example, one can perform a quantum

quench on a low entanglement state which would at sufficiently long times lead to a

thermal state in the same sense as Eq. 2a. This in principle allows one to determine

the underlying Hamiltonian of a cold atomic system by performing tomography on a

small subsystem to obtain the corresponding reduced density matrix, and then taking its

logarithm.

We conclude by posing a few questions and future directions.

In this chapter we extracted equal-time correlators at different temperatures using a

single eigenstate. It will be interesting to see if a similar method also works for unequal
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time correlators at arbitrary temperatures. The main difference is that this requires

calculating expressions such as Eq. 2.44 at an imaginary exponent, and estimating the

effects due to the conical singularity in this case requires further study.

As mentioned above, we expect that all our discussion carries over to time-evolved

states as well since such states are expected to also have thermal behavior at long times

in the same sense as a single finite energy density eigenstate. If so, does the time scale

for thermalization for a given operator (i.e. the time it takes for the expectation value of

the operator to become equal to its canonical expectation value) depend on whether the

operator is Class I (equithermal) or Class II (non-equithermal)?

Another question concerns the subleading corrections to the entanglement entropy.

One expects that there always exist subleading area-law contributions to the entangle-

ment entropy (either von Neumann or Rényi) of a single eigenstate. Are these contri-

butions also captured correctly in the entanglement entropies calculated via a thermal

reduced density matrix? Perhaps a more interesting question is whether the mutual infor-

mation of two disjoint intervals (which cancels out both the volume law contribution and

the area law contribution) takes the same value for a single eigenstate and its canonical

counterpart.
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Chapter 3

Partial breakdown of quantum

thermalization in a Hubbard-like

model

3.1 Introduction

In recent years, physicists have made great strides toward better understanding the

equilibration and thermalization of isolated, many-body quantum systems. Already, two

distinct phases are well known: there exist systems that thermalize completely, such

that for an arbitrary initial pure state any sufficiently small subregion will eventually

approach the Gibbs ensemble; and, by contrast, there are systems that exhibit many-

body localization (MBL) due to a strong disorder potential, failing to thermalize at any

76



Partial breakdown of quantum thermalization in a Hubbard-like model Chapter 3

time despite weak interactions.

In a system that does approach thermal equilibrium, energy, particles, and other

conserved quantities propagate throughout such that the system acts as its own bath.

After equilibration, any sufficiently small subregion will approximate the thermal density

matrix (Gibbs ensemble), and all observables within any small subregion will match their

values in the canonical ensemble. One of the most important steps toward understand-

ing quantum thermalization occurred in the early 1990s, when Deutsch and Srednicki

independently proposed that thermalization, when it occurs, happens at the level of each

individual eigenstate of finite energy density [72, 73]. This result is generally known as

the “eigenstate thermalization hypothesis” (ETH) [74–76,161]. Within the framework of

ETH, the ultimate fate of a system can be determined by examining the properties of

its finite energy density eigenstates, without needing to consider the detailed quantum

dynamics. In fact, a single eigenstate of such a system directly reproduces the thermal

ensemble in an arbitrarily-large subregion A as long as the ratio of the subsystem to

system size VA/V approaches zero as V →∞, as was demonstrated in Chapter 2. Also,

the von Neumann entanglement entropy SA within the subsystem will match the thermal

entropy, scaling as the volume of the subsystem, SA ∼ LdA as long as VA < V/2. This is in

contrast with typical ground states, which scale as an “area law,” SA ∼ Ld−1
A . In fact, the

mechanism of thermalization can be thought of as the spreading of entanglement: each

subsystem becomes maximally entangled with the remainder of the system over time, to

the extent allowed by conservation laws (such as the conservation of energy).
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One well-known counterexample to quantum thermalization is given by integrable

systems, such as the one-dimensional Hubbard model (which is solvable via Bethe ansatz

[162,163]). Integrable systems typically have an infinite number of conserved quantities,

which scales with total system size. While these conserved quantities can (in some

cases) permit analytic solution, they also prohibit full thermalization. Instead of relaxing

to a Gibbs ensemble, these systems relax to a “generalized Gibbs ensemble,” which

takes into account the additional conservation laws [83, 85]. It is perhaps surprising

that integrable systems exhibit a “weak” form of ETH: nearly all states appear locally

thermal, but there exist rare, non-thermal states which are responsible for the breakdown

of thermalization [81]. While integrable systems are interesting examples of systems that

do not fully thermalize, they are tuned to special (solvable) points in parameter space,

and are therefore non-generic.

As mentioned above, there also exist non-integrable, interacting many-body quantum

systems which do not thermalize and instead exhibit many-body localization (MBL)

[89–93, 102, 122]. These systems have a strong disorder potential and sufficiently weak

interactions, and are characterized by zero DC conductivity and partial memory of the

initial state at all times. Remarkably, the strong disorder potential leads to an “emer-

gent” integrability, with resulting local integrals of motion [100–102]. Due to these ad-

ditional conservation laws, eigenstates in an energy window ∆E are very different from

one another, and there are no avoided crossings between neighboring eigenstates when

a parameter in the Hamiltonian is varied. This results in energy-level spacings obeying
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Poisson statistics, in contrast to Wigner-Dyson statistics in a thermal system [91]. Addi-

tionally, the finite energy density eigenstates of these systems typically exhibit area law

scaling of entanglement entropy (SA ∼ Ld−1
A ), similar to a quantum ground state but in

contrast to thermal systems (which instead exhibit volume law scaling) [93]. Recently,

MBL has been demonstrated in experiments on cold atomic gases [95–97], thus putting

a vast amount of theoretical and numerical work on an experimental footing. Concep-

tually, the existence of many-body localization provides an example of a system with a

complete breakdown of thermalization, thus calling into question the general validity of

quantum statistical mechanics.

It is tempting to wonder whether a phase of matter could exist between the extremes

of full thermalization and MBL in a generic (i.e. non-integrable), isolated, many-body

quantum system. Many-body localization can be viewed as a situation in which infinitely

massive (i.e. stationary) particles cause a classical disorder potential. Given this line of

thinking, one might be tempted to ask: what if the particles are quantum mechanical,

allowed to move with a very large (but finite) mass? Could a phase similar to MBL

exist in such a translationally invariant, fully quantum mechanical system? Guided by

this question, Ref. [105] proposed a new phase of matter in multi-component liquids

with two species of indistinguishable particles with a large mass ratio. This phase, the

“quantum disentangled liquid” (QDL), is characterized by heavy particles which are fully

thermalized, but light particles which have not thermalized independently of the heavy

particles. Other work has also considered the possibility that thermalization can break
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down in translationally invariant systems [123–132,164–166].

In addition to proposing the QDL phase, Ref. [105] provided a qualitative diagnostic

to identify eigenstates in the phase. This diagnostic can be phrased in terms of entan-

glement entropy after a partial measurement. As mentioned above, systems that fully

thermalize exhibit volume law scaling for their entanglement entropy, while many-body

localized systems exhibit an area law. The QDL phase, like the fully ergodic phase,

is characterized by eigenstates that are in an overall volume law for the entanglement

entropy. However, after a partial measurement of the locations of the heavy particles,

the resulting wavefunction of the light particles is instead characterized by an area law

in the QDL phase. This suggests that the light particles are “localized” by the heavy

particles, and is in contrast to a fully ergodic system, where the entanglement entropy

of the light particles would scale as a volume law even after the measurement of the

heavy particles’ positions. The phase is called a “quantum disentangled liquid” because

a partial measurement results in a “disentangled” wavefunction, a smoking gun for the

breakdown of full thermalization.

The diagnostic given in Ref. [105] is very general and can be applied to any multi-

component system. In this chapter, we will focus on 1D itinerant electron models with

two species of fermions (spin-up and spin-down) on a lattice, specifically the Hubbard

model with an additional nearest-neighbor repulsion term, which breaks integrability.

Instead of considering light and heavy particles, we will consider to what degree the spin

and charge degrees of freedom thermalize independently from one another.
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The chapter is organized as follows. In Section 3.2, we introduce the QDL diagnostic

for a lattice system with spin-half particles. In Section 3.3, we introduce the Hubbard

model with an additional nearest-neighbor repulsion term, which forms the basis for the

remainder of the chapter. Section 3.4 describes in detail our method for performing

numerical exact diagonalization on this model. In Section 3.5, we study each eigenstate’s

average doublon occupation, an observable which appears to violate ETH in the large-U

limit of the non-integrable model. In Section 3.6, we study the entanglement entropy

properties of eigenstates, both before and after a partial measurement on each site. In

Section 3.7, we discuss implications for cold atom experiment and for the foundations of

quantum statistical mechanics.

3.2 Entanglement entropy diagnostic

In this section we review and expound the diagnostic introduced in Ref. [105] for

identifying quantum disentangled eigenstates, which is applicable to multi-component

quantum systems on a lattice or in the continuum. While Ref. [105] focused on sys-

tems with mass-imbalanced particles, here we will instead consider lattice systems with

two species of fermions (spin-up and spin-down), with both spin and charge degrees

of freedom. The single-site Hilbert space consists of empty, spin-up, spin-down, and

doubly-occupied states, which are denoted by |−〉, |↑〉, |↓〉, and |↑↓〉 respectively.

Let us first review the standard formulation of entanglement entropy. Given a pure

state |ψ〉 and a spatial subregion A of size LdA (where d is the number of dimensions),
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the reduced density matrix in region A is given by ρA(|ψ〉) = TrA |ψ〉 〈ψ|, where A is the

spatial complement of region A. The von Neumann entanglement entropy in subregion A

is then given by SA(|ψ〉) = −TrA [ρA(|ψ〉) ln ρA(|ψ〉)]. In a thermal system this quantity

scales extensively with the subsystem size (S(|ψ〉) ∼ LdA), but in a many-body localized

system it scales as the size of its boundary, S(|ψ〉) ∼ Ld−1
A . These two possibilities are

commonly known as “volume law” and “area law,” respectively. The scaling of the overall

entanglement entropy thus provides insight into whether a system is localized or not [93].

The goal of the QDL diagnostic is to identify volume law states in which spin and

charge have not thermalized independently of each other, despite the degrees of freedom

having entangled with one another. Guided by this intuition, the diagnostic considers

the entanglement entropy after a partial measurement, e.g. of the spin on each site. If

performing the partial measurement transforms a state from a volume law to an area law

state, then the remaining degrees of freedom in the wavefunction have not thermalized

independently of the measured degrees of freedom. The remainder of this section explains

this diagnostic in detail.

Consider a finite energy density eigenstate |ψ〉 of a system with overall volume law

scaling of the entanglement entropy (SA ∼ LdA). Given |ψ〉, we can perform a partial

projective (von Neumann) measurement to determine the spin on each site along the

z-axis, which results in a collapsed wavefunction

|φ{σ}〉 =
P{σ} |ψ〉√
〈ψ|P{σ} |ψ〉

(3.1)
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corresponding to some overall spin configuration {σ}. Here, P{σ} is the projector onto the

subspace consistent with the measurement outcome {σ}, and the probability of outcome

{σ} is given by the Born rule: Prob({σ}) = 〈ψ|P{σ} |ψ〉. Note that in our notation |φ{σ}〉

has been rescaled to have unit norm.

The state |φ{σ}〉 after the spin measurement is a wavefunction in which only charge

degrees of freedom remain. If a site has spin +1
2

or −1
2

along the z-axis, the charge on

that site is one; however, if a site has overall spin zero, then it is possible that the site has

either charge 0 or charge 2. The wavefunction |φ{σ}〉 is thus a partially-collapsed state

in which sites with spin zero can be in a superposition of two different charge states. As

a concrete example, let us consider a wavefunction |ψ〉 on a system with length L = 4

and N↑ = N↓ = 2. Say, for instance, that a partial measurement of the spins along

the z-axis gives [0,−1
2
, 0,+1

2
]. Then the charge on sites 2 and 4 is known, but sites 1

and 3 can be in a superposition of charge 0 and 2. The resulting wavefunction is thus

|φ{σ}〉 = α (|−〉 ⊗ |↓〉 ⊗ |↑↓〉 ⊗ |↑〉) + β (|↑↓〉 ⊗ |↓〉 ⊗ |−〉 ⊗ |↑〉), where the values α and β

can be calculated given full knowledge of the original state |ψ〉.

In order to quantify the remaining amount of entanglement in the partially-collapsed

state |φ{σ}〉, we consider the scaling of its entanglement entropy. Given a subsystem A

of size LdA and a measurement outcome {σ}, the reduced density matrix in region A

is given by ρA(|φ{σ}〉) = TrA |φ{σ}〉 〈φ{σ}| and the entanglement entropy is SA(|φ{σ}〉) =

−TrA
[
ρA(|φ{σ}〉) ln ρA(|φ{σ}〉)

]
. By averaging over all possible measurement outcomes

with their associated Born-rule probabilities, we can calculate the average post-measurement
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entanglement entropy,

S
c/s
A ≡

∑
{σ}

Prob({σ})SA(|φ{σ}〉), (3.2)

where c/s denotes the entropy of the resulting charge wavefunction after a measurement

of the spin on each site. It is instructive to consider the scaling of this entanglement

entropy taken after the partial measurement. In a fully ergodic system, it should scale as

a volume law for any partial measurement which does not fully collapse the wavefunction.

If the post-measurement entanglement entropy instead scales as an area law, then the

charge has not thermalized independently of the spin, and the system is non-ergodic.

It is also possible to consider a diagnostic which reverses the roles of spin and charge

(i.e. a partial measurement of the charge, with a resulting spin wavefunction). We will

denote this quantity as S
s/c
A . If an eigenstate |ψ〉 is in an area law after the partial

measurement of either the spin or the charge on each site, then we refer to |ψ〉 as a

“quantum disentangled eigenstate.”

Let us now summarize the procedure for performing the diagnostic. Given a subre-

gion A and a finite energy density eigenstate |ψ〉 (which we assume exhibits an overall

volume law for the entanglement entropy), the QDL diagnostic is as follows. (i) Perform

a partial measurement of the system, by measuring the spin on each site, which gives

some spin configuration {σ}. (ii) Consider the post-measurement wavefunction, |φ{σ}〉.

(iii) Calculate the post-measurement entanglement entropy, SA(|φ{σ}〉). (iv) Average this

quantity over all possible measurement outcomes, weighted by their Born rule probabil-

ities, to obtain S
c/s
A . (v) Consider the scaling of S

c/s
A with subsystem size LdA to identify
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whether it scales with the boundary size or the volume of region A. If it scales with the

boundary, then |ψ〉 is a quantum disentangled eigenstate.

The partial measurements considered can be implemented in experiments on cold

atomic gases, and it has recently become possible to measure the Rényi entanglement

entropy (a close cousin of the von Neumann entropy) in cold atomic systems [63–65]. We

will further discuss these connections in Section 3.7.

Having introduced the entanglement entropy diagnostic for quantum disentangled

eigenstates, we now turn to the model on which we will focus for the remainder of the

chapter.

3.3 Model

We consider the 1D Hubbard chain with an additional nearest-neighbor repulsion

term:

H = HHubbard +HV (3.3)

HHubbard = −t
∑
〈ij〉σ

(
c†iσcjσ + H.c.

)
+ U

∑
i

ni↑ni↓

HV = V
∑
〈ij〉

ninj

where niσ = c†iσciσ, ni = ni↑ + ni↓, and
∑
〈ij〉 denotes a sum over nearest neighbors.

The spin label σ takes the values {↑, ↓}. The 1D Hubbard chain is solvable exactly

by Bethe ansatz and is therefore not expected to exhibit eigenstate thermalization due
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to its integrability. Hence we add the nearest-neighbor repulsion term, which breaks

integrability when V 6= 0. We will consider periodic boundary conditions throughout.

We choose an overall energy scale by setting t = 1.

The model in Eq. 3.3 has a number of symmetries. It conserves total particle number

N ≡ N↑+N↓, where Nσ ≡
∑

i nσ. Momentum is conserved due to translation invariance.

The system also conserves total Sz ≡
∑

i S
z
i and total spin

∑
ij Si · Sj.

If the lattice is bipartite (in 1D, if the number of sites L is even), there is an addi-

tional symmetry in the Hubbard model, which can be seen by considering a particle-hole

transformation on the down spin species: cj↓ → (−)jc†j↓. This transformation leaves the

kinetic term invariant but maps the U term to −U in HHubbard. It also implements the

transformation nj → σzj + 1 and σzj → nj − 1, thus mapping the spin sector to charge

sector and vice-versa. Because of this duality, it is apparent that the Hubbard model

has a “hidden” charge SU(2) symmetry in addition to its spin SU(2) symmetry, resulting

in an enlarged symmetry group, SO(4) [167, 168]. This transformation also maps the

nearest-neighbor repulsion term HV to a nearest-neighbor spin term, 4V
∑
〈ij〉 S

z
i S

z
j . As

a result, the V term breaks the charge SU(2) symmetry.

In this chapter we will focus on the above Hamiltonian with positive U , and consider

the entanglement entropy after a partial measurement of the spin. Because of the above

duality transformation, this is equivalent to considering a negative-U Hubbard model

with a nearest-neighbor Szi S
z
j exchange term, and the entanglement entropy after a partial

measurement of the charge degrees of freedom. Although we will focus on the positive-U
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model, we will not hesitate to discuss the equivalent physics in negative-U model when

doing so can guide intuition.

3.4 Numerical details

To investigate the properties of eigenstates of the Hamiltonian (Eq. 3.3), we perform

numerical exact diagonalization calculations. When performing exact diagonalization, it

is advantageous to represent the Hamiltonian in block-diagonal form, taking advantage of

as many symmetries as possible. This allows one to perform the numerical diagonalization

separately in each symmetry sector, each of which has a reduced basis size. The model

conserves both spin-up and spin-down particle number separately. We focus on half filling

(N↑ = N↓ = L/2), in which case the model also has spin-flip and particle-hole symmetries.

Due to periodic boundary conditions, the model also conserves momentum, allowing the

physics to be considered in each momentum sector independently. We exploit each of

these abelian symmetries.

The non-abelian SU(2) spin symmetry of the model leads to additional conserved

quantities. Because it is it much more difficult to take advantage of non-abelian symme-

tries in exact diagonalization, we explicitly break the degeneracy due to the SU(2) spin

symmetry by adding a total spin term
∑

ij Si ·Sj to the Hamiltonian with large, irrational

coefficient. This does not change the physics in any given sector, but does allow us to

obtain eigenstates of the Hamiltonian that are also eigenstates of the SU(2) total spin

operator. As discussed in Section 3.3, the pure Hubbard model (V = 0) on a bipartite
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lattice has a second SU(2) “pseudo-spin” symmetry, which is due to the symmetry be-

tween the charge and spin sectors. For this reason, we also add a total pseudo-spin term

to the model when V = 0 to break the degeneracies arising from this symmetry.

At system sizes where computational resources permit, we perform a full diagonal-

ization of the system in each momentum sector independently. For larger system sizes,

we use ARPACK [106] to obtain several hundred eigenvalue/eigenvector pairs that are

lowest in energy. In each case, we study the system at half filling and focus on total spin

singlets.

3.5 Doublon expectation value results

In this section we examine the expectation value of the doublon density 〈ni↑ni↓〉

for each eigenstate in the many-body spectrum. (Because the system is translationally

invariant, this quantity is independent of site i.)

3.5.1 Large U

Let us begin by considering each eigenstate of the large-U Hubbard model (V = 0),

as shown in Figure 3.1a. As mentioned in Section 3.3, the highest excited state of this

model is the ground state of the model with U → −U , due to the duality resulting from

the particle-hole transformation on the down spin species. This symmetry is apparent in

the plot, as it is symmetric under a combined horizontal and vertical reflection. (Note

that under this duality, total spin singlets are mapped to states with total pseudo-spin
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Figure 3.1: Doublon occupancy of the itinerant electron model (Eq. 3.3) obtained from
exact diagonalization at system size L = 12. Plotted are all eigenstates at half-filling
(N↑ = N↓ = L/2), with total spin singlets emphasized in red. The top panels show
the pure Hubbard model (V = 0), while the bottoms panels show the model with an
additional nearest-neighbor repulsion term (V = 3/4), which breaks integrability. The
left panels show a “large” value of U , while the right panels show results for “small”
U .

zero, which need not be spin singlets.)

At a given finite energy density in the pure Hubbard model, there exist eigenstates

with a range of doublon expectation values. This is expected for an integrable model, as

the plot of a generic expectation value with respect to energy density should fill an area in

the thermodynamic limit. (By contrast, a system which obeys ETH must take a unique

expectation value at each energy density.) In Figure 3.1a, it is clear that the results are

for a finite size system, as one can easily recognize the bands due to each overall possible
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(a)

(b)

Figure 3.2: Putative sketch of the doublon occupancy versus eigenstate energy density
for large U , for both (a) the Hubbard model (V = 0) and (b) the non-integrable
model (V 6= 0). In each case, eigenstates at half-filling which are total spin singlets
are considered.

doublon count (from 0 to L/2), each offset in energy density by approximately U/L. The

band lowest in energy density includes states with low charge fluctuations, the spectrum

of which is governed entirely by spin excitations. In fact, there are
(
L
L/2

)
states in this

“spin band,” each of which maps to a state in the Heisenberg model restricted to Sz = 0.

In the thermodynamic limit, the bands will become indistinguishable, resulting in the

eigenstates filling a large area of the plot in the shape of a parallelogram. A sketch of

this plot in the thermodynamic limit is given in Figure 3.2a.
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The plot’s area is bordered on the bottom left by the states in the Heisenberg spin

band. These states can be identified by performing a canonical transformation in powers

of t/U [16, 169], resulting in the effective spin-only Hamiltonian

H
(2)
spin =

4t2

U

∑
〈ij〉

(
Si · Sj −

1

4

)
, (3.4)

which is equivalent to the Heisenberg model with J = 4t2/U . From Bethe ansatz, the 1D

ground state is known to have 〈Si · Si+1〉 = 1
4
− ln 2; thus, the ground state energy density

is − (4t2/U) ln 2 up to corrections of order t3/U2. The ground state doublon expectation

value in the anti-ferromagnetic ground state can also be determined to be

〈ni↑ni↓〉 =
1

L

∂

∂U
〈H(2)

spin〉

= 4 ln 2

(
t

U

)2

, (3.5)

up to corrections of order (t/U)3.

The Heisenberg ferromagnet, which consists in the Sz = 0 sector of all spins pointing

in the x-direction, has doublon expectation value and energy density of precisely zero.

The Heisenberg ferromagnet is itself not a singlet, but it is clear from Figure 3.1a that

there are overall spin singlet states arbitrarily close to this point. Note that under the

spin-charge duality introduced in Section 3.3, the Heisenberg ferromagnet maps to the

“η-paired” state (first introduced in Ref. [167]), which itself has doublon occupancy 1
2
.

Let us now break integrability by setting V = 3/4. Here, common wisdom dictates
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that full thermalization ought to occur, since the system is non-integrable and contains

no disorder. Figure 3.1c shows the doublon expectation value results for large U in this

model. Remarkably, the “spin band” of states corresponding to the Heisenberg model

remains distinct from the remaining states (which we dub the “charge band”), even

though they overlap in energy density. In this range of energy densities, the doublon

expectation value takes two distinct values, an apparent violation of ETH. The highest

excited state in the spin band is the Heisenberg ferromagnetic, which remains an eigen-

state when V 6= 0. This state appears to play a special role, “pinning” Heisenberg-like

states into the spin band. Figure 3.2b provides a putative sketch of this plot in the

thermodynamic limit. We will provide evidence in Section 3.6 that the states in the spin

band are quantum disentangled eigenstates according to the definition in Section 3.2.

The spin band remains intact for all system sizes accessible to our numerics. Fig-

ure 3.3a shows the doublon expectation value for L = 14 calculated using ARPACK’s

iterative eigensolver in the range of energy densities where the spin and charge bands

overlap. Note that both this figure and Figure 3.1a show avoided crossings between the

spin and charge bands; these are expected at any finite system size. The ultimate ques-

tion is whether these bands remain distinct in the thermodynamic limit. Figure 3.3b

shows a 2D histogram of the same quantity, plotted on a logarithmic scale. Although

there are many states in the charge band with which the spin band states could mix, the

spin band appears to remain robustly distinct from the charge band, thus supporting the

claim that this model violates ETH.
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It is important to note that the regime we are considering in numerics (U = 4,

V = 3/4, and t = 1) consists of all parameters of order unity. Finite size effects are

most relevant when the ratio of parameters is of order (or greater than) the total system

size [132]. In the case considered here, the ratio of any two parameters is significantly

less than the largest accessible system size, L = 14. This suggests that the apparent

ETH violation may indeed be robust in the thermodynamic limit.
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Figure 3.3: (a) Doublon occupancy for U = 4, V = 3/4 at system size L = 14,
as calculated using ARPACK’s iterative eigensolver, which returns a portion of the
spectrum. Included are all eigenstates that are total spin singlets at half filling. The
“spin band” states are emphasized in blue. States in all momentum, spin-flip, and
particle-hole sectors are combined in this plot. (b) Logarithmic histogram plot of
same quantity.

Counting both singlets and non-singlets, there are [
(
L
L/2

)
]2 total states in the half-

filled sector we are considering. Of these states,
(
L
L/2

)
are in the spin band. The number

of states in the spin band is exponential in system size; however, there are exponentially

more states in the charge band. The continued existence of the spin band is therefore a

violation of the strongest form of ETH, where non-thermal states vanish in the thermo-

dynamic limit [81]. Such a violation was previously only expected in integrable models.
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In principle, the existence of states for which ETH fails implies that there exist initial

states that will fail to thermalize at any time [77].

3.5.2 Transition to small U

(a)

(b)

Figure 3.4: Putative sketch of the doublon occupancy versus eigenstate energy density
for small U , for both (a) the Hubbard model (V = 0) and (b) the non-integrable
model (V 6= 0). In each case, eigenstates at half-filling which are total spin singlets
are considered.

Let us now turn to the physics for small U , as shown in the right panels of Figure 3.1.

We start with the pure Hubbard model (Figure 3.1b). As expected for an integrable

model, the eigenstates in this plot fill an area in the doublon–energy-density plane. One

94



Partial breakdown of quantum thermalization in a Hubbard-like model Chapter 3

particularly striking feature of this plot is that there no longer exist total spin singlet

states which are arbitrarily close to the Heisenberg ferromagnet. As one decreases U ,

the singlet states appear to “lift off” the x-axis around U/t ' 1, regardless of system

size. A proposed sketch of the resulting plot for singlets is shown in Figure 3.4a. It is

an interesting open question whether there exists a critical Uc, below which there are

no longer singlet states arbitrarily close to the Heisenberg ferromagnet. The question of

whether such an eigenstate phase transition exists in the Hubbard model is expected to

be analytically tractable using Bethe ansatz, and we leave this for future work.

Figure 3.1d shows the doublon expectation value results for small U in the non-

integrable model (V 6= 0). In this parameter regime, the model exhibits strong ETH,

although each total spin sector thermalizes to a different value. Figure 3.4b sketches the

expected shape of this plot for singlets only in the thermodynamic limit.

3.6 Entanglement entropy diagnostic results

Now that we have provided numerical evidence for the existence of two bands (a

“charge band” and “spin band”) in the large-U limit of the non-integrable model (as

sketched in Figure 3.2b), we turn toward considering the entanglement entropy and QDL

diagnostics, as introduced in Section 3.2.

Figure 3.5a plots the half-cut entanglement entropy density for each eigenstate that

is a total spin singlet, with respect to its energy density. The states identified from

Figure 3.1c to be in the spin band are colored in blue, while the remaining charge band
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Figure 3.5: Numerical half-cut (a) entanglement entropy density SL/2/L and (b) QDL

diagnostic density S
c/s
L/2/L for the model in Eq. 3.3 at L = 12, U = 4, V = 3/4, and

t = 1, the same non-integrable parameters as Figs. 3.1a and 3.3. Here, all eigenstates
that are total spin singlets are plotted, and the states identified to be in the spin band
are colored in blue, while charge band states are in red. The QDL diagnostic shown
is the average entanglement entropy after a partial measurement of the spin on each
site, as detailed in Section 3.2. Starred are three states that are explored in detail in
Figure 3.8.

states are in red. It appears from this plot that the spin and charge bands form two

distinct entropy curves, which overlap in energy density. In both cases, the entanglement

entropy scales linearly with total system size for states with finite energy density, although

the states in the spin band have a smaller volume-law coefficient. Figure 3.6a provides

a proposed sketch of this plot in the thermodynamic limit. Results at L = 14 further

support the existence of two overlapping entropy curves (see Figure 3.7).
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(a)

(b)

Figure 3.6: Proposed sketches of (a) the entanglement entropy density and (b) the
QDL diagnostic density in the thermodynamic limit, for singlets in the large-U non-in-
tegrable model, as based on Figs. 3.5 and 3.8.

The apparent existence of two distinct, overlapping entropy curves calls into question

the basic tenets of quantum statistical mechanics. Within the context of ETH, entangle-

ment entropy is equal to thermal entropy, and it is possible to assign a “temperature”

to an eigenstate by identifying 1/T to be the slope of the energy-entropy curve1. Thus,

all states where the entropy has a positive slope are at positive temperatures, the states

with maximum entropy are at infinite temperature, and the states where the entropy

slope is negative are at negative temperatures. If we assume Figure 3.6a is correct in

the thermodynamic limit, it implies that there are energy densities that contain “hot”

spin-band states alongside much cooler charge-band states. If these states are indeed ro-

1In general, defining temperature this way will be equivalent to the temperature obtained by match-
ing an eigenstate’s energy density to the system’s energy density in the canonical ensemble at some
temperature.
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Figure 3.7: Numerical half-cut entanglement entropy density results for system size
L = 14 at the non-integrable point U = 4, V = 3/4. The “spin band” states, as
identified in Figure 3.3a, are plotted in blue.

bust as L→∞, an isolated quantum system governed by this model will not thermalize

according to canonical statistical mechanics.

Let us now consider the QDL diagnostic after a partial measurement of the spin

on each site, the half-cut of which is shown in Figure 3.5b. The spin-band states have

greatly reduced entropy after such a partial measurement, as knowledge of the spin state

provides nearly all information in these states with very little charge fluctuation. To

further explore the entropy and QDL diagnostic properties of this system, we focus in

detail on three states: (i) the ground state; (ii) a highly excited state in the charge band;

and (iii) a highly excited state in the spin band. These three states are represented by

stars in Figure 3.5, and are explored in detail in Figure 3.8. Plotted in this figure is

the scaling of the entanglement entropy of each state, as well as the scaling of the QDL

diagnostics after a partial measurement of the charge or spin on each site.

The scaling properties of the ground state are plotted in the top row of Figure 3.8
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Figure 3.8: Scaling of the entanglement entropy and QDL diagnostics with subsystem
cut size x, for the three starred states in Figure 3.5. The left column is the overall
entanglement entropy. The middle and right columns plot the QDL diagnostic en-
tanglement entropy after a partial measurement of the charge and spin on each site,
respectively. The top row (in black) shows each quantity plotted for the ground state,
each of which scales sub-thermally. The middle row (in red) shows the quantities for
a highly excited state in the charge band, each of which appears to scale as a volume
law. Finally, the bottom row (in blue) shows the three quantities for a highly excited
state in the spin band. Here, S and Ss/c both scale as a volume law, but the entan-
glement entropy after a spin measurement Sc/s scales as an area law, thus fulfilling
the criteria for a quantum disentangled eigenstate as defined in Section 3.2.
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(in black). Because the model is gapless, the ground state’s entanglement entropy scales

as log x [43]. As expected, this sub-thermal entanglement scaling remains after a partial

measurement of the charge or spin on each site, as can be seen in the center and right

panels of the top row.

The middle row (in red) shows the scaling properties of a high entropy excited state

from the charge band. As expected, the overall entanglement entropy of this state scales

extensively with system size, which is consistent with the state being in a volume law. It

remains in a volume law after a partial measurement of the charge or spin on each site

(middle and right panels). As such, this highly excited state in the charge band appears

to be fully ergodic.

In the bottom row, we examine the scaling properties of a high entropy state from the

spin band (in blue). As can be seen in the left panel, the overall entanglement entropy of

this state scales as a volume law, as is expected for a state with finite energy density. The

middle panel considers the QDL diagnostic Ss/c which measures the entropy remaining

after a partial measurement of the charge on each site. Because spin-band states have

little charge fluctuations, such a measurement obtains very little information about the

state, and the post-measurement state is still in a highly-entangled, volume law state.

The bottom right panel of Figure 3.8 shows the QDL diagnostic Sc/s, the entanglement

entropy after a partial measurement of the spin on each site. Remarkably, this plot

saturates to a constant and scales as an area law, thus fulfilling the criteria of a quantum

disentangled liquid. The partial measurement of the spin degrees of freedom disentangles
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the charge degrees of freedom in the state, transforming the wavefunction from a volume

law to an area law. This result is consistent with the states breaking ergodicity.

Having established that the states in the spin band are in an area law for the QDL

diagnostic Sc/s, we can form a sketch of the half-cut QDL diagnostic density, which is

provided in Figure 3.6b. The QDL diagnostic for the charge band states scales extensively

with system size, so this quantity takes a finite value at each finite energy density in the

thermodynamic limit. On the other hand, the spin band states have vanishing QDL

diagnostic density in the thermodynamic limit since Sc/s scales only with the size of the

boundary between subregions.

The QDL diagnostic thus acts as a tool for identifying the breakdown of full ther-

malization. It provides a qualitative distinction between states in the charge band and

those in the spin band—in other words, volume law states which are fully thermal and

those which are not.

3.7 Discussion

In this chapter, we have provided numerical evidence for the violation of ETH in

a non-integrable system without disorder. The model, given by Eq. 3.3, supports two

qualitatively distinct bands of eigenstates which overlap in energy density, thus calling

into question the general validity of quantum statistical mechanics in translationally

invariant systems.

While the model has exponentially many “spin band” states, they are nonetheless
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exponentially rare compared with the more common “charge band” states. This is remi-

niscent of an integrable system, where ETH is satisfied for all but a vanishing fraction of

eigenstates [81,170]. In both cases, the existence of non-thermal eigenstates implies that

there exist initial states that will fail to thermalize. In principle, any initial state that has

non-vanishing overlap with the spin band will never reach thermal equilibrium. It will

be interesting to identify experimentally preparable states that fall in this class. Could

an initial product state—for instance with one fermion of arbitrary spin per site—be

sufficient in demonstrating the failure of thermalization? Other initial states to con-

sider include quenched states, or states that result from adding a finite density of spin

excitations to the quantum ground state of Eq. 3.3.

Once non-thermalizing initial states have been identified, it will be fascinating to

study the system’s time evolution from these states numerically. What observables fail

to relax at long times? Can this provide any additional clues to the mechanism behind

the breakdown of ETH? It would also be particularly interesting to attempt to realize a

quantum disentangled liquid experimentally by implementing the model in a cold atomic

gas of fermions, similar to recent experiments on many-body localization [95–97]. While a

nearest-neighbor repulsion term is beyond the reach of current technology, an alternative

method would involve realizing the SzSz term in the equivalent dual model, which was

discussed in Section 3.3. In any case, an experiment in an optical lattice should allow

access to much larger system sizes than can be simulated numerically.

The definitive distinguishing feature of the putative QDL phase is the area law scal-
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ing of the entanglement entropy after a partial measurement of the spin on each site,

as introduced in Section 3.2. Remarkably, a recent experiment has measured the Rényi

entanglement entropy S2 in a cold atomic gas of bosons by performing controlled inter-

ference between identical copies of the system [63–65]. In principle, it is also possible to

measure Rényi entanglement entropies in cold fermionic gases [67–70]. Suppose we have

a reliable experimental protocol for preparing a state in the QDL phase. We could then

identically prepare two copies of the system and perform a partial measurement on each.

Unfortunately, it is very unlikely that the two copies would exhibit the same measure-

ment outcome, and it follows that the quantum states of the two systems will almost

certainly be different. Because the Rényi measurement protocol relies on identical copies

of a state, it thus cannot be implemented after a partial measurement. In the end, mea-

suring the average post-measurement entanglement entropy may require performing full

quantum tomography on the state resulting after each possible measurement outcome,

which is a daunting task. Let us emphasize that while this diagnostic is unlikely to be

implemented in experiment, the mere demonstration of the breakdown of thermalization

is likely to be a much easier task. Along these lines, existing experiments on realizing

MBL phases have focused on observables that fail to thermalize, not on demonstrating

the area-law scaling of entanglement entropy.

It is worth considering what role symmetries play in the breakdown of ETH in a

translationally invariant system. In this chapter we considered the itinerant fermion

model only at half filling, but it would be interesting to investigate whether QDL states

103



Partial breakdown of quantum thermalization in a Hubbard-like model Chapter 3

exist at other filling fractions as well. Likewise, to what degree is the observed ETH

violation dependent on symmetries? The spin band states only exist in certain sectors of

total spin, particle-hole parity, and spin-flip parity. What is special about these sectors

which harbor QDL behavior? Interestingly, breaking both the charge and spin SU(2)

symmetries seems to eliminate the spin band. One is tempted to wonder: is a non-

abelian symmetry necessary for realizing the QDL phase?

On the other hand, with so many symmetries one must be wary of finite size effects,

as each sector contains fewer states with which to mix. In Ref. [77] it was found that

sectors with additional symmetries typically have more pronounced outlier states at a

given system size. Still, each sector we consider has a Hilbert space size comparable to,

if not larger than, the best ETH studies to date. As we have shown above, numerical

results up to system sizes of L = 14 support the existence of the spin band and thus the

violation of ETH. The ultimate question, of course, is whether the spin band continues

to exist in the thermodynamic limit. One method for determining the fate of the spin

band is to examine the level spacing statistics between the spin band and charge band

as the system size is increased, similar to studies of MBL [91]. Unfortunately, because

there is no disorder over which to average, it is very difficult to get good statistics. Even

if one averages over all possible twists of boundary conditions, the energy level spacings

are still highly correlated with each other among samples.

The spin band states exist only in the large-U limit of Eq. 3.3, and another interesting

task would involve constructing a canonical transformation in powers of t/U , transform-
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ing Heisenberg eigenstates into eigenstates of Eq. 3.3 in the spirit of Refs. [16] and [169].

This would in principle allow access to larger system sizes, and such a transformation

may provide insight into (or a technique for perturbatively proving) the breakdown of

thermalization.

Finally, it should be emphasized that ETH violation in a translationally invariant sys-

tem has implications beyond condensed matter physics. In particular, it was recently ar-

gued that ETH is itself analogous to the “no-hair theorem” for classical black holes [107].

In other words, the statement of ETH parallels the idea that the metric is completely

determined by the energy density of a black hole. The existence of a featureless model

that violates ETH may thus have implications for quantum gravity.

In conclusion, using state-of-the-art numerics we have provided evidence for the viola-

tion of ETH in a non-integrable model of itinerant electrons. Our results suggest that this

model realizes two distinct bands of energy eigenstates, which overlap in energy density

and can be distinguished by a universal, qualitative diagnostic based on the entanglement

entropy after a partial measurement. Because the number of ETH-violating states scales

extensively with the system size, there exist initial states that will never reach thermal

equilibrium, thus calling into question the validity of quantum statistical mechanics.
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Chapter 4

Concluding remarks

The phenomenon of quantum thermalization can be understood in terms of the Eigenstate

Thermalization Hypothesis (ETH), which posits that an arbitrary initial state of an iso-

lated, interacting, many-body quantum system will eventually reach thermal equilibrium,

provided the eigenstates of the Hamiltonian themselves appear thermal. In Chapter 2,

we provided numerical evidence for a strong form of ETH where in the thermodynamic

limit, the reduced density matrix due to a single eigenstate precisely matches the corre-

sponding density matrix in the canonical ensemble, as long as the subsystem considered

is a vanishing fraction of the total system size. This statement has the remarkable impli-

cation that the Hamiltonian itself is encoded in a single finite energy density eigenstate.

Using this fact, we predicted approximate correlation functions at all temperatures from

a single eigenstate of a finite system. Additionally, we considered operators than span a

finite fraction of the system, and found that many (but not all) of these operators satisfy
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ETH as well.

In addition to systems which satisfy ETH and thus thermalize at long times, there also

exist interacting, quantum systems which, due to a strong disorder potential, will never

reach thermal equilibrium. This phenomenon goes by the name “many-body localization”

(MBL). One open question is whether thermalization can break down (in a way similar

to MBL) in a system lacking disorder and far from an integrable point. In Chapter 3, we

provided numerical evidence for the breakdown of ETH in a non-integrable, Hubbard-

like chain with both charge and spin degrees of freedom. We introduced a qualitative

diagnostic, based on the scaling of entanglement entropy after a partial measurement,

that can be used to identify eigenstates in this “Quantum Disentangled Liquid” (QDL)

phase. The putative existence of this phase has wide-ranging implications; most notably,

it calls into question the general validity of quantum statistical mechanics.

4.1 Outlook

Theoretical physicists are continually making progress toward better understanding

quantum thermalization and its breakdown in isolated, many-body systems. It is an

exciting time for the field, yet many interesting and fundamental questions remain. One

of the most important questions is the one addressed in Chapter 3, namely whether

thermalization can fail in a non-integrable system lacking disorder. Although we provide

numerical evidence for such a breakdown of ETH, this dissertation is far from the final

word on the subject. Indeed, the largest currently accessible system size (L = 14) is
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still far from the thermodynamic limit, and it remains a mystery precisely what criteria

must hold for ETH to fail given an arbitrary model. Ultimately, it would be wonderful

to have a full theoretical framework for predicting when thermalization will occur (and

when it will fail) in multi-component systems.

Our understanding of quantum thermalization will remain incomplete until we are

able to conclusively identify what phases (if any) exist besides many-body localization

and full ergodicity. The nature of the transition (as one decreases the disorder strength)

from MBL to ergodic has received much attention, but there has been limited theoretical

progress to date. One of the most important qualitative questions is whether there is

a single transition, or whether there exist other, intermediate phases between MBL and

full ergodicity. Similarly, if (as discussed in Section 3.1) we consider the “disorder”

in a localized Hamiltonian to be caused by infinitely-massive, quantum particles, what

additional phases exist when one allows the particles to have large but finite mass? Are

there multiple, qualitatively distinct phases within the framework of QDL?

One broad observation is that the field of quantum thermalization is currently stymied

by the lack of powerful theoretical and numerical methods. Much of the existing knowl-

edge about ETH and MBL has relied on full numerical exact diagonalization studies,

which are by their nature limited to small system sizes. There has been a fair amount

of theoretical progress on the MBL side, but certain questions remain controversial, such

as whether a many-body mobility edge can even exist [171]. Also, many of the theoreti-

cal techniques available for studying MBL are relevant only deep within the phase, and
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provide no insight into the nature of the transition. Volume law phases, such as the fully

ergodic phase or the QDL phase, are also beyond the reach of these techniques. Random

matrix theory has provided some insight into the ergodic phase, but local Hamiltonians

hardly qualify as “random” matrices. As can be seen in Chapter 2, exact diagonalization

can teach us a great deal about ETH, but it is still desirable to find a method that will

work well in dimensions greater than one, or is able to detect the presence or failure

of ETH in multi-component systems. Perhaps experiments on cold atomic gases can

help us simulate systems we would be unable to model on a computer (such as MBL in

2D [97], or the potential realization of a QDL). Still, the ability to realize such phases in

experiment does not imply theoretical understanding of them.

In this dissertation, we focused mainly on the question of whether or not a system

thermalizes by considering its eigenstates within the framework of ETH. Of course,

knowledge of the properties of finite energy density eigenstates tells us only about the

long-time behavior, and is completely blind to short and intermediate times. It will

be interesting to investigate how the thermalization time for a given operator depends

upon properties of the operator, of the system size, of the Hamiltonian, and of the initial

state (such as whether the energy is uniformly distributed at t = 0). There exist “Lieb-

Robinson” speed limits on the propagation of entanglement in quantum systems [172–

174], as well as a recent bound on the scrambling time [175]. Can one explicitly construct

a model that reaches thermal equilibrium so quickly that it saturates these bounds?

If not, it should be possible to prove tighter bounds. Luckily, many questions about
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thermalization time scales can be examined with further exact diagonalization studies.

On a practical level, it is worth considering how one might leverage the breakdown

of thermalization in an effort toward building long-time quantum memories. Is it exper-

imentally possible to control coherent qubits in a many-body localized system (following

recent proposals [176,177]), or even in the QDL phase? Such technology would have clear

applications to quantum computing.

Finally, an understanding of thermalization within the framework of the Schrödinger

equation implies that unitary time evolution is sufficient for explaining thermal behavior

in the world around us; we need not rely on an additional dynamical mechanism, such as

the “collapse” of a wavefunction. Still, our understanding of thermal behavior does not

explain the origin of the Born rule; it does not fully resolve the quantum measurement

problem; and it provides few clues about how quantum mechanics and gravity fit together

in a unified framework. Overall, it is an exciting time to be studying physics.
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Appendix A

Exact diagonalization of lattice

system with abelian symmetries

This appendix gives a brief introduction to performing numerical exact diagonalization

in a way that exploits abelian symmetries. A complementary treatment of this subject

can be found in Ref. [178].

In exact diagonalization, the goal is to numerically determine one or more eigenstates

of the Hamiltonian Ĥ. When Ĥ is translationally invariant, we can change basis such

that Ĥ is diagonal in each momentum sector. This allows us then to diagonalize each

sector independently, or to diagonalize only the sector(s) in which we are interested. As

a result, eigenstates can be determined using both less processor time and less memory,

allowing access to larger system sizes. As a bonus, the energy eigenstates returned will

simultaneously be eigenstates of the symmetry operators, thus resolving degeneracies due
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to symmetry in a predictable way.

A.1 Translationally invariant systems

Given a translationally invariant Hamiltonian Ĥ, how can one diagonalize each mo-

mentum sector separately?

Let
∑

r denote a sum over all sites of the Bravais lattice. Consider the projection

operator

P̂k ≡
1

N

∑
r

eik·r
d∏
i=1

T̂ rii , (A.1)

where N is the number of sites, ri is defined by r =
∑d

i=1 riai (ai are the primitive vectors

of the lattice), T̂i is the operator that translates by distance ai, and k is some allowed

momentum of the system. (In a one dimensional spin-1/2 system of length L with periodic

boundary conditions, the translation operator is defined such that T̂1 |σ1 · · ·σL−1σL〉 =

|σLσ1 · · ·σL−1〉, and k = 2πkidx/L where kidx ∈ ZL.)

Since [Ĥ, T̂i] = 0, it follows that [Ĥ, P̂k] = 0. It can also be shown that P̂ †k = P̂k =

P̂ 2
k . In other words, P̂k is a Hermitian projection operator that commutes with the

Hamiltonian.

We can use this operator to project an arbitrary “representative” state in the position

basis |r〉 to a momentum state P̂k |r〉. If P̂k |r〉 = 0, there is no state at momentum k
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represented by |r〉. However, if P̂k |r〉 6= 0, we can define a normalized state

|rk〉 ≡
1

Nrk
P̂k |r〉 , (A.2)

where Nrk ≡
√
〈r|P̂k|r〉 such that 〈rk|rk〉 = 1. Note that |rk〉 is an eigenstate of T̂j with

eigenvalue e−ikj . Here, k =
∑d

i=1 kibi, where bi are the reciprocal vectors of the lattice,

satisfying ai · bj = 2πδij.

As a concrete example, consider a one dimensional system with length L = 4 and

periodic boundary conditions. The representative state |↑↓↓↓〉 can exist at any available

momentum in the system. For instance, at k = π/2, the corresponding momentum state

is

|↑↓↓↓ π/2〉 ≡
1

2
[|↑↓↓↓〉+ i |↓↑↓↓〉 − |↓↓↑↓〉 − i |↓↓↓↑〉] . (A.3)

The representative state |↑↓↑↓〉, on the other hand, does not exist at momentum π/2,

since P̂π/2 |↑↓↑↓〉 = 0. However, there are such states at momenta 0 and π:

|↑↓↑↓ 0〉 ≡
1√
2

[|↑↓↑↓〉+ |↓↑↓↑〉] ; (A.4a)

|↑↓↑↓ π〉 ≡
1√
2

[|↑↓↑↓〉 − |↓↑↓↑〉] . (A.4b)

With this in mind we generally act as follows. We choose a unique representative state

|r〉 for each class of states that are connected to each other by translation. Then, given

a momentum k, we go through each representative state and calculate its normalization
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Nrk . We consider each state |rk〉 where Nrk 6= 0 to be part of our basis in this momentum

sector. We can then evaluate the matrix elements of the Hamiltonian in the momentum

basis, given by

〈r′k|Ĥ|rk〉 =
1

Nr′kNrk
〈r′|P̂kĤP̂k|r〉 =

1

Nr′kNrk
〈r′|P̂kĤ|r〉 , (A.5)

where the final manipulation uses [Ĥ, P̂k] = 0 and P̂ 2
k = P̂k. We then diagonalize the

matrix given by elements 〈r′k|Ĥ|rk〉. Given the eigenstates in this basis, we can recover our

eigenstates in the original (position space) basis by evaluating 〈s|rk〉 using the definition

of |rk〉 above.

Note that by taking advantage of translation invariance, one can reduce the Hilbert

space size under consideration by approximately a factor of N .

A.2 Other abelian symmetries

It is possible to take advantage of abelian symmetries other than momentum, such

as spin-flip or particle-hole symmetry. Each of these symmetries can be implemented

following a procedure similar to the one in the previous section. Instead of Ti being

a translation operator, let it be the operator that implements the relevant symmetry.

Because spin-flip and particle-hole are each Z2 symmetries, the allowed “momenta” are

then 0 and π, corresponding to even and odd under the given symmetry.

These additional symmetries can be considered simultaneously with momentum. The
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Hamiltonian in Chapter 3 (Eq. 3.3) is invariant under spin-flip, particle-hole, and mo-

mentum symmetries at half-filling. When implemented together, these symmetries reduce

the Hilbert space size in a given sector by a factor of 4L, thus allowing access to a large

portion of the spectrum even at L = 14. At this system size, the full Hilbert space in

the half-filled Hubbard model is of size [
(

14
7

)
]2 = 11778624. Storing a dense matrix of all

eigenstates in this basis would require over a petabyte of data, clearly beyond the reach

of any single machine. However, by taking advantage of the aforementioned abelian sym-

metries, the dense eigenstates can be represented in a few hundred gigabytes per sector,

and diagonalization is feasible.

116



Bibliography

[1] D. ter Haar, Collected Papers of L.D. Landau (Elsevier Science, 2013).

[2] A. J. Leggett, “A theoretical description of the new phases of liquid 3He,” Rev.

Mod. Phys. 47, 331 (1975).

[3] D. Pines and P. Nozières, The Theory of Quantum Liquids: Normal Fermi liquids

(W.A. Benjamin, 1966).

[4] “II. The Doctor’s Dissertation (Text and Translation),” in Early Work (1905–

1911), edited by L. Rosenfeld and J. R. Nielsen, volume 1 of Niels Bohr Collected

Works, pp. 163–393 (Elsevier, 1972).
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L. Mazza, M. C. Bañuls, L. Pollet, I. Bloch, and S. Kuhr, “Observation of Corre-

137



lated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators,”

Science 334, 200 (2011) 1108.3317.

[161] G. De Palma, A. Serafini, V. Giovannetti, and M. Cramer, “Necessity of Eigenstate

Thermalization,” Phys. Rev. Lett. 115, 220401 (2015) 1506.07265.

[162] E. H. Lieb and F. Y. Wu, “Absence of Mott Transition in an Exact Solution of

the Short-Range, One-Band Model in One Dimension,” Phys. Rev. Lett. 21, 192

(1968).

[163] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The

One-Dimensional Hubbard Model (Cambridge University Press, 2005).
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