
University of California
Santa Barbara

Efficient Deformations Using Custom Coordinate

Systems

A Dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yun Teng

Committee in charge:

Professor Theodore Kim, Co-Chair
Professor Tobias Höllerer, Co-Chair
Professor Linda Petzold

September 2016

The Dissertation of Yun Teng is approved.

Professor Linda Petzold

Professor Tobias Höllerer, Committee Co-Chair

Professor Theodore Kim, Committee Co-Chair

July 2016

Efficient Deformations Using Custom Coordinate Systems

Copyright c© 2016

by

Yun Teng

iii

Acknowledgements

I owe gratitude to a great many people for making this dissertation possible and for

making my graduate school years such an amazing journey.

My deepest gratitude is to my advisor, Professor Theodore Kim. Your inspiring

classes on various aspects of Computer Graphics has made me fall in love with this field.

You have been guiding me through various stages of research, while allowing me the

freedom to explore on my own. Your encouragement and support helped me overcome

numerous difficulties over the years and led to this dissertation.

I am sincerely grateful to my co-advisor, Professor Tobias Höllerer. Your insightful

comments and constructive suggestions greatly improved the quality of my research work

as well as my understanding of the research field. I am very thankful to you for the fruitful

discussions that helped me build up my research road map, clarify technical details, and

refine presentation quality.

My sincere appreciation to Professor Linda Petzold for serving on my committee.

Your class on numerical simulation prepared a sound theoretical foundation for all my

later work and ignited my research interest in this area. You have been always there to

listen, provide advice and navigate me through various technical difficulties and inspire

my career development.

I have been lucky to have had many excellent collaborators: Professor Miguel A.

Otaduy, Dr. Tony DeRose, Dr. Mark Meyer and Dr. David I.W. Levin. I am constantly

inspired by your brilliant ideas and never-ending enthusiasm for research problems. Spe-

cial thanks to Tony and Mark for two awesome summers at Pixar!

Many thanks to my dearest friends, for the long-time companionship and support.

Finally, I am deeply indebted to my family. To my mom and dad, thank you for all

your unconditional love and support. To my dearest husband, those long distance drives

iv

during the weekends are finally over.

To all of you I dedicate this thesis.

This research was sponsored by the a National Science Foundation CAREER award (IIS-1253948)
and a Google Ph.D. Fellowship.

v

Curriculum Vitæ
Yun Teng

Education

2016 Ph.D. in Computer Science, University of California, Santa Barbara.

2011 B.S. in Computer Science, Xiamen University.

Publications

Yun Teng, David I.W. Levin and Theodore Kim. Eulerian solid-fluid coupling. (Under
review for SIGGRAPH Asia 2016)

Yun Teng, Mark Meyer, Tony DeRose and Theodore Kim. Subspace condensation:
full space adaptivity for subspace deformations. ACM Transactions on Graphics, 34(4)
(2015).

Yun Teng, Miguel A.Otaduy and Theodore Kim. Simulating articulated subspace self-
contact. ACM Transactions on Graphics, 33(4) (2014).

Yun Teng, Rashaad Jones, Laura Marusich, John O’Donovan, Cleotilde Gonzalez and
Tobias Höllerer. Trust and situation awareness in a 3-player diner’s dilemma game.
IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (2013).

John O’Donovan, Rashaad Jones, Laura Marusich, Yun Teng, Cleotilde Gonzalez and
Tobias Höllerer. A model-based evaluation of trust and situation awareness in the diners
dilemma game. Proceedings of the 22th Behavior Representation in Modeling & Simula-
tion (2013).

vi

Abstract

Efficient Deformations Using Custom Coordinate Systems

by

Yun Teng

Physics-based deformable object simulations have been playing an increasingly impor-

tant role in 3D computer graphics. They have been adopted for humanoid character

animations as well as special effects such as fire and explosion. However, simulations of

large, complex systems can consume large amounts of computation and mostly remain

offline, which prohibits their use for interactive applications.

We present several highly efficient schemes for deformable object simulation using

custom spatial coordinate systems. Our choices span the spectrum of subspace to full

space and both Lagrangian and Eulerian viewpoints.

Subspace methods achieve massive speedups over their “full space” counterparts by

drastically reducing the degrees of freedom involved in the simulation. A long standing

difficulty in subspace simulation is incorporating various non-linearities. They introduce

expensive computational bottlenecks and quite often cause novel deformations that are

outside the span of the subspace.

We address these issues in articulated deformable body simulations from a Lagrangian

viewpoint. We remove the computational bottleneck of articulated self-contact handling

by deploying a pose-space cubature scheme, a generalization of the standard “cubature”

approximation. To handle novel deformations caused by arbitrary external collisions,

we introduce a generic approach called subspace condensation, which activates full space

simulation on the fly when an out-of-basis event is encountered. Our proposed framework

efficiently incorporates various non-linearities and allows subspace methods to be used

vii

in cases where they previously would not have been considered.

Deformable solids can interact not only with each other, but also with fluids. We

design a new full space method that achieves a two-way coupling between deformable

solids and an incompressible fluid where the underlying geometric representation is en-

tirely Eulerian. No-slip boundary conditions are automatically satisfied by imposing a

global divergence-free condition. We are able to simulate multiple solids undergoing com-

plex, frictional contact while simultaneously interacting with a fluid. The complexity of

the scenarios we are able to simulate surpasses those that we have seen from any previous

method.

viii

List of Figures

1.1 Novel collisions cause extreme locking in a subspace-only simulation. . . 6

3.1 Key frames from a subspace simulation of a hand mesh. 31
3.2 A self-colliding finger showing the sparsity of our pose-space cubatures. . 40
3.3 A cylinder articulated with a single joint 47
3.4 Without collision handling, extreme penetration occur. Our approach

quickly resolve the contact deformation. 48
3.5 We can quickly simulate subspace dynamics, even if the input data was

quasistatic . 51
3.6 Percentage of time the subspace simulation spends in self-contact detection

and resolution, with and without cubature. 52
3.7 Time spent in self-collision detection and resolution, with and without

cubature. 53

4.1 Snapshots of a character simulation undergoing extreme external collisions. 54
4.2 Novel collisions cause extreme locking in a subspace-only simulation. . . 56
4.3 A 2D illustration of our force evaluation scheme. 63
4.4 A capsule is collided by a pipe. 71
4.5 Comparison between our approach with subspace-only simulation on a

highly novel contact configuration. 72
4.6 The relative error of our approach using different influence radii, plotted

with different colors, compared to the full simulation. Full space regions
start appearing at frame 9. The relative error clearly decreases as the
radius increases. 74

4.7 Dynamic motion caused by collisions. 75
4.8 Simulation time per frame for a fist clenching and unclenching. 76

5.1 Three hyper-elastic and two elasto-plastic objects are squashed into a com-
plex contact configuration, all while fully two-way coupled with the sur-
rounding fluid. 78

5.2 The high-level structure of our data storage and computation scheme. . . 83
5.3 A bunny is initially scaled by half and let to expand freely. 87

ix

5.4 A elastic circle deforms under the influence of two jets. 92
5.5 A plume rises as an elastically deforming ball bounces up from a smoky

floor. 93
5.6 Different solid densities behave differently under buoyant flow. 94
5.7 A high pressure puff of air shoots at Cheb’s head. 97
5.8 The final shapes of party members. 98
5.9 Simulation timestep sizes as the party progresses. 98

6.1 We achieve efficient deformation by sampling 3 points on this 2D spectrum
of coordinate systems. 100

6.2 A lot of empty space still remains on this 2D spectrum. We list a few
possibilities for future research. 104

x

List of Tables

3.1 Algorithm performance compared to full-rank solves. 45
3.2 Performance of our self-contact algorithm compared to a subspace simu-

lation that does not use self-contact cubature. 46

4.1 Performance of full space simulations over the entire mesh, and subspace-
only simulations. 74

4.2 Performance of our subspace condensation algorithm. 75

5.1 Simulation parameters used for each example. 93
5.2 The size of the spatial grid, average / minimum simulation time step sizes

and average per-frame simulation times. 95
5.3 Detailed timing breakdown for our simulation. 95

xi

Contents

Curriculum Vitae vi

Abstract vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Articulated Self-Contact . 4
1.2 Arbitrary External Collisions . 5
1.3 Solid-Fluid Coupling . 6
1.4 Thesis Statement and Main Results . 7
1.5 Organization . 9

2 Background 10
2.1 Full Space Simulation of Hyperelastic Solids 11

2.1.1 Strain Energy and Hyperelasticity 11
2.1.2 Quasistatic Simulation . 12
2.1.3 Dynamic Simulation . 13

2.2 Subspace Simulation . 14
2.2.1 Previous Work on Incorporating Non-linearities 15
2.2.2 Cubature Approximation . 16
2.2.3 Cubature Training Schemes . 18

2.3 Multi-Domain Subspace Deformations 22
2.4 Eulerian Solid Simulation . 26
2.5 Eulerian Incompressible Fluid Simulation 28

3 Articulated Subspace Self-Contact 31
3.1 The Subspace Self-Collision Problem . 32
3.2 A Self-Collision Cubature Scheme . 34

3.2.1 A Direct Cubature Scheme . 34

xii

3.2.2 Analysis of Negative Results . 37
3.2.3 A Pose-Space Cubature Scheme 39

3.3 Implementation and Results . 43
3.3.1 Implementation . 43
3.3.2 Results . 45

3.4 Summary . 49

4 Handling Arbitrary External Collisions with Subspace Condensation 54
4.1 Introduction . 55
4.2 Static Condensation . 57
4.3 Subspace Condensation: Combining Full Space and Subspace Simulations 60
4.4 Physics-Based Skinning . 66

4.4.1 Basis Construction . 66
4.4.2 Contact and Dynamics Oracles 69

4.5 Results . 70
4.6 Summary . 75

5 Eulerian Solid-Fluid Coupling 78
5.1 Introduction . 79
5.2 Related Work . 80
5.3 Coupled Solid–Fluid Simulation . 82

5.3.1 The Continuous Formulation . 82
5.3.2 Spatial Discretization and Constraints 83
5.3.3 Time Integration . 84
5.3.4 Semi-implicit Update . 84
5.3.5 Incompressibility Constraints . 88
5.3.6 Contact and Collision Response for Solids 89

5.4 Implementation and Results . 90
5.4.1 Simulating a Single Solid with a Fluid 91
5.4.2 Simulating Multiple Solids with a Fluid 92

5.5 Summary . 95

6 Conclusion 99
6.1 Summary of Results . 99
6.2 Limitations . 101
6.3 Future Work . 103

6.3.1 Eulerian Subspace Condensation For Fluid Simulation 104
6.3.2 Subspace Eulerian-on-Lagrangian Solids 105

Bibliography 107

xiii

Chapter 1

Introduction

Recent years have seen wide adoption of physics-based deformable object simulation

in 3D computer animations. For example, the contraction of Eret’s biceps in How to

Train your Dragon 2 [1], the stunning snow phenomena in Frozen [2] and the amazing

water effects in The Good Dinosaur [3] are all achieved through physical simulation.

Any deformable object simulation involves a time and space discretization, and a huge

amount of literature exists in the applied mathematics, mechanical engineering, as well as

computer graphics community. This dissertation focuses on the selection of the spatial

coordinate systems for efficient simulations. Based on the simulation domain, space

discretization can be performed from either a Lagrangian or an Eulerian viewpoint. The

Lagrangian viewpoint breaks the continuum itself into a set of particles (material points)

and updates their states (positions, velocities, etc.) in each simulation step. It can be

further categorized to finite element/volume methods, mass-spring systems and mesh-free

particle systems. The Eulerian viewpoint looks at how measurements of the continuum

such as density, velocity, etc. at fixed points in space change over time. The domain of

interest in the world space is usually diced up into regular grid cells. Solids are typically

simulated in a Lagrangian way and Eulerian approaches are more popular for fluids,

1

Introduction Chapter 1

although the opposite is also actively being developed [4, 5]. Excellent surveys [6, 7]

exist to outline the physics-based deformable models in computer graphics and discuss

their pros and cons.

In either viewpoint, a high resolution discretization is required in order to reveal

fine details such as creases around an elbow or complex vorticities in a smoke ring,

which results in numerous variables that need to be accounted for. With advances in

computer hardwares, we are allowed to do bigger simulations than ever before, while at

the same time facing the demand for even higher resolutions. The high non-linearities and

enormous degrees of freedom in a complex system render the simulation very expensive,

and hence prevent its use in interactive applications. This is also a major reason that low-

cost geometric skinning approaches [8, 9] are still very popular in the motion pictures and

gaming industries for character animations, even though they lack flexibility in supporting

contact behaviors or dynamic effects.

A large body of work has been devoted to improving the efficiency of physics based

deformations. Classic spatially adaptive methods [10] or modern GPU implementations

[11] can yield speedups of roughly an order of magnitude, which brings a simulation that

takes 5 minutes per frame down to 30 seconds, but is still far from the 30 Hz requirement

for interactive applications. The complexity of these algorithms depends on the resolution

of the discretization, which inevitably scale poorly for high resolution simulations.

Subspace methods, also known as model reduction, or reduced order methods, pro-

vides a nice alternative to the full space acceleration techniques described above. They

have been recently used to accelerate a variety of simulations in computer graphics, such

as deformable bodies [12], fluids [13] and clothing [14]. These methods detect temporal

redundancies in the simulation during a precomputation stage and use them to construct

efficient, low-dimensional subspaces. Simulations are performed in these subspaces at

runtime, and routinely yield speedups that are orders of magnitude faster than their

2

Introduction Chapter 1

full-rank counterparts.

Until recently, the efficient use of these approaches have been largely restricted to

linear problems [15, 16]. If a quantity involved in the simulation is non-linear (e.g. force

response of a non-linear type of material), it needs to be recomputed in every simulation

frame. A straightforward approach is to compute the non-linear quantity in full space

and then project it into subspace [17, 18], but this re-introduces full-rank computation

complexity and dials back the potential speedups to a single order of magnitude. When

the non-linearities can be expressed as a tensor, projected tensor approaches [12, 13, 19]

are applied to accelerate their computation. Unfortunately, this assumption rarely holds

for general non-linear problems. Alternatively, the cubature scheme [20] can be applied to

approximate arbitrary subspace non-linear quantities through sparse point sampling. It

has been successfully applied to the subspace material forces and Jacobians of a variety

of non-linear materials [20], and used to quickly assemble the subspace velocity field after

the advection step in fluid simulation [21], as well as geometric reduction for material

optimization [22]. However, its efficiency in approximating higher non-linearities is to be

determined.

Additionally, subspace methods share a fundamental limitation: the motions are

nothing but linear combinations of the basis vectors, and thus cannot represent defor-

mations that are not well-captured by the subspace. This problem is usually referred to

as locking. A variety of strategies have been proposed to alleviate this issue, including

basis enrichment [23], adaptive basis construction [14], and falling back to brute force,

full-order computation over the entire mesh [24].

The story gets even more complicated when it comes to multi-phase simulation, i.e. ,

solid-fluid coupling. As mentioned above, solids and fluids are typically simulated in

Lagrangian and Eulerian coordinates, respectively. In such cases, the boundary handling

across different objects requires a negotiation between different coordinate systems, which

3

Introduction Chapter 1

typically involves sophisticated geometry operations [25, 26, 27]. Although subspace

methods exist for both Lagrangian and Eulerian simulations [12, 28], no such work has

been developed for coupled systems. The idea of a unified solver, where the underlying

geometry is either entirely Lagrangian or entirely Eulerian, is certainly appealing. To

date, most attempts at such solver have been Lagrangian [29, 30, 31, 32]. However,

their underlying geometries are either particle systems or topologically-changing meshes,

which are not amenable to subspace adoption either.

The first half of this dissertation tackle the limitations of subspace methods in the con-

text of articulated self-contact and arbitrary external collisions that occur in deformable

character simulations. The second half proposes a unified, Eulerian framework for sim-

ulating fully coupled deformable solids and an incompressible fluid that can potentially

be adopted for subspace simulation. We show that these common non-linear phenomena

in deformable object simulations can be computed efficiently using custom coordinate

systems. The reason that these particular problems are of interest is because they play

a key role in human simulations. Solving them efficiently will get us one step closer to

interactive virtual humans, which is also one of the main challenges of this dissertation.

Next, we give a brief description of each of these problems.

1.1 Articulated Self-Contact

Articulated self-contact refers to skin contact deformations caused by joint movement.

They convey important visual cues for muscle movement, e.g. characteristic bulges that

form as limbs fold or a hand closes into a fist. Dense self-contact routinely arises on

an articulated mesh, and can consume large computation times. This is less an issue

in full space simulation, since even more dominant factors such as formulating the ma-

terial force Jacobians and solving the large linearized system exist. However, it truly

4

Introduction Chapter 1

becomes a bottleneck in subspace simulation. As the other stages are sufficiently accel-

erated, self-contact handling can consume more than 90% of the computation time in

a single simulation frame. Since these contacts are driven by the articulation and not

unpredictable external forces, they display precisely the type of coherent behavior that

subspace methods excel at exploiting. However, we are only aware of subspace techniques

that accelerate the collision detection stage of subspace contact simulation [33, 34]; the

contact resolution stage is still computed in a full-rank manner. In Chapter 3 we present

our pose-space cubature scheme that leverages the coherence of articulated self-contact

to accelerate the entire contact computation in subspace simulation.

1.2 Arbitrary External Collisions

For interactive applications, the motion of the character is less likely to stay in a

prescribed set. For example, external collisions might occur, which in contrast to the

structure of articulated self-contact, are highly unpredictable. If the contact deformation

was not accounted for during subspace construction (i.e. the full space motion lies outside

the span of the subspace), subspace simulation can lock, producing motions that are both

very different from the full space solution and unrealistic in appearance (Figure 1.1). Re-

cent work [23] handles these situations by dynamically updating the basis with analytic,

Boussinesq solutions to approximate the contact shape, but its performance deteriorates

as the deformation region approaches the size of the deformable body. Instead we address

this issue by proposing a generic approach we call subspace condensation [35]. It allows

full space computation to be activated in the neighborhood of novel events while the rest

of body still computes in a subspace. We present the details of subspace condensation

in Chapter 4 and demonstrate its effectiveness in handling novel collisions.

5

Introduction Chapter 1

Figure 1.1: Novel collisions cause extreme locking in a subspace-only simulation.

1.3 Solid-Fluid Coupling

The creation of immersive environments such as virtual flying [36], virtual swimming

[37, 38] and surfing involves real-time simulation of a coupled solid-fluid system. The fluid

dynamics need to take into account the effect of body movement, and the deformable

body needs to react to the pressure from the fluid. Although efficient subspace simulation

algorithms for fluid [KD13] and solid [KJ11] objects have been developed separately over

the last few years, none of them can handle fully coupled effects. This is due to the fact

that fluids and solids are typically simulated in different coordinate systems. Even if we

use separate bases for each object, the sophisticated geometry operations required for

boundary handling [25, 26, 27] will dominate the simulation. Most existing attempts for

a unified solver have been Lagrangian [29, 30, 31, 32]. They either require constantly

remeshing of the fluid geometry or use particle systems, which are difficult to formulate

for subspace simulation. We take the opposite perspective and explore the coupling of

fully Eulerian solids and fluids. This is made possible by the recent work of Eulerian

solid simulation [5], which presents a method for simulating hyperelastic solids within

6

Introduction Chapter 1

an Eulerian framework. In Chapter 5 we present our unified Eulerian framework for

deformable solid-fluid coupling and show complex contact scenarios between multiple

solids and a single-phase fluid.

1.4 Thesis Statement and Main Results

The thesis statement is as follows:

Non-linear phenomena that occur in the simulation of deformable ob-

jects such as articulated self-contact, external collisions and solid-fluid

coupling can be computed efficiently using custom coordinate systems.

In support of this thesis, I have developed three efficient algorithms for deformable

object simulation using different coordinate systems described in Chapter 3 through 5.

The first algorithm specifically targets articulated self-contact computation in a purely

subspace simulation. My main results are:

• I show how to efficiently apply the subspace cubature approach to the problem of

self-contact;

• I identify two general conditions that will cause the standard cubature approach

to fail: sparse training matrices and excessive discontinuities (e.g. Heaviside func-

tions);

• I propose pose-space cubature, which directly addresses these issues and enables

efficient subspace self-contact.

My second approach deals with the more difficult subspace locking problem caused by

novel external collisions. Localized full space computation is adaptively added to the

7

Introduction Chapter 1

underlying subspace simulation. The technique itself is quite generic and can be applied

to general cases where out-of-basis deformations occur. My main results are:

• Subspace condensation, a new method that combines the generality of full space

deformations with the speed of subspace computations.

• The main bottleneck of condensation methods is a large matrix inverse. I design a

solver that sidesteps this problem using subspace coordinates, but still maintains a

two-way coupling between the full space and subspace regions.

• Condensation is usually only applicable to linear materials, but the speed of my

method allows it to be applied to non-linear materials as well.

• I demonstrate my algorithm on a physics-based skinning application. To this end,

I propose several oracles that detect the regions where full space computation is

needed and where the subspace approximation will suffice, and dynamically parti-

tions the mesh into these regions at every frame.

• By exploiting the forces along the boundary of the full space regions, I show that an

efficient, cubature-based method [20, 39] can be obtained for evaluating the forces

inside the subspace regions.

My third development achieves a two-way coupling between deformable solids and an

incompressible fluid where the underlying geometric representation is entirely Eulerian.

My main results are:

• A unified, Eulerian framework for simulating fully coupled fluids and deformable

solids

• A semi-implicit solver for Eulerian Solids

8

Introduction Chapter 1

• A method for satisfying incompressibility for both the solid and fluid regions of the

simulation

• A collision resolution scheme for multibody frictional contact

1.5 Organization

The organization of this dissertation is as follows. Chapter 2 provides an overview of

deformable body simulation and discusses related work on subspace simulation as well

as recent development in Eulerian solid simulation. In Chapter 3 we present a purely

subspace approach for efficient articulate self-contact handling. Chapter 4 introduces

subspace condensation, an adaptive full space - subspace simulation scheme. We show

the effectiveness of this approach by applying it to a variety of articulated character

scenarios. In Chapter 5 we develop a new full space method that achieves a two-way

coupling between deformable solids and an incompressible fluid where the underlying

geometric representation is entirely Eulerian. Chapter 6 presents our conclusions and

suggests several directions for future work.

9

Chapter 2

Background

Simulating deformable objects is a well-studied subject in computer graphics, and excel-

lent articles exist that discuss developments up through the 1990s [6], the 2000s [7] and

approaching the present day [40]. To make this theis relatively self-contained, we lay out

a few fundamentals of 3D elastic solids modeling using Finite Element Method (FEM)

and incompressible fluid simulation. Excellent tutorials are available on each subject

[41, 40, 42, 43].

Notation: Throughout this dissertation, we will denote scalars using unbolded lower

case, e.g. w, vectors using bold lower-case, e.g. f , and matrices and tensors using bold

uppercase, e.g. K. Arbitrary non-linear function will be denoted in script, e.g. F(x).

The reserved symbol N represents the full-order rank of a mesh, i.e. the number of

unconstrained vertices in a tetrahedral mesh. Conversely, the symbol r denotes the

subspace rank. The matrix U ∈ R3N×r then represents the subspace basis that efficient

operations are performed in. Subspace quantities are denoted with a tilde, such as

f̃ = U>f , which is in Rr, and K̃ = U>KU, which is in Rr×r. They are the counterparts

of full space quantities f ∈ R3N and K ∈ R3N×3N respectively. The one exception is the

displacement vector u, whose subspace version is denoted as q = U>u.

10

Background Chapter 2

2.1 Full Space Simulation of Hyperelastic Solids

In this section, we focus on traditional FEM simulation in a Lagrangian point of view.

Recent development on Eulerian formulation is discussed later in Section 2.4.

2.1.1 Strain Energy and Hyperelasticity

Let Ω be the volumetric domain occupied by the solid object at its undeformed

state. This domain is usually referred to as the rest or reference space. We begin by

establishing a relationship φ : R3 → R3 between the rest space and world space, which

maps a material point x to its deformed world-space location x = φ(x). The deformation

gradient F ∈ R3×3 measures how much a infinitesimal line segment in the rest space is

stretched and rotated in the world space and its full expression is:

F =


∂φ1
∂x1

∂φ1
∂x2

∂φ1
∂x3

∂φ2
∂x1

∂φ2
∂x2

∂φ2
∂x3

∂φ3
∂x1

∂φ3
∂x2

∂φ3
∂x3

 . (2.1)

Hyperelastic materials refer to those that deform elastically and deformation process

is dependent only on the rest state and the final, deformed configuration. They are

typically used to model human and animal skin (and flesh) in computer graphics. The

strain energy, i.e. , energy stored by the object undergoing deformation, can be written

as:

E =

∫
Ω

Ψ(x,F(x))dx, (2.2)

where Ψ is the energy density function. We use the notation F(x) to express that the

deformation gradient varies spatially over Ω (except when the body is undergoing pure

rigid motion). One common type of material used in computer animation is co-rotational

11

Background Chapter 2

elasticity [44, 11], for which we have:

Ψ = µ||F−R||2F +
λ

2
tr2(R>F− I), (2.3)

where µ and λ are the Lamé coefficients, || · ||F is the Frobenius norm, I is the 3 × 3

identity matrix, and R is the rotation from the polar decomposition F = RS. We also

use the co-rotational material for all the examples in this dissertation. However, our

proposed techniques can be applied to other types of hyperelastic materials as well.

2.1.2 Quasistatic Simulation

Numerical simulation requires a discretizion of the domain Ω. We focus on the Finite

Element Method (FEM) in this dissertation, but the concepts can also be applied to other

discretization approaches such as the Finite Difference Method, Finite Volume Method

and mass-spring systems. In particular, in Chapter 3 and 4, we use linear tetrahedral

elements, while noting that our algorithms are independent of the choice of element type.

For quasistatic simulation with external forces fext (e.g., body forces), we ask that the

resulting force vanishes at all N unconstrained nodal positions in the discrete setting.

Using a first-order Taylor expansion at the rest state for the material force, we have:

f(x) + fext = f(x + u) + fext (2.4)

≈ f(x)−Ku + fext = 0, (2.5)

In the above equation, f := −∂E
∂x

is the nodal material force vector, K := ∂2E
∂x2

∣∣∣∣
x

is the

3N × 3N Hessian matrix of the strain energy at the rest pose and u ∈ R3N is the

displacement vector of the mesh vertices. K is also referred to as the stiffness matrix.

Note that from now on, x and x no longer represent individual material points and

12

Background Chapter 2

positions, but the concatenated positions of the unconstrained N mesh vertices. For

character animations, the positions of some vertices might be fixed or prescribed (e.g. ,

driven by the skeleton), therefore constrained, so these degrees of freedom are not involved

in the simulation.

In the case of linear materials, the stiffness matrix K is constant and the approxima-

tion in Equation 2.5 becomes exact. Thus we can precompute and factorize K once and

reuse it at run time to solve Ku = fext for u (by definition f(x) = 0). Unfortunately,

linear elastic materials are only suitable for small deformations and otherwise introduce

large distortions.

Any realistic material model must incorporate non-linearities to some certain degree.

Thus, the stiffness matrix K is no longer constant and Equation 2.5 is replaced by a

Newton-Raphson process:

K(xk)uk = f(xk) + fext. (2.6)

Here K(xk) := ∂2E
∂x2

∣∣∣∣
xk

and uk := xk+1−xk. As the demand for high-resolution simulation

grows, the size of the linearized system does as well. Although highly efficient iterative

linear system solvers exist such as preconditioned conjugate gradient [45] and multigrid

methods [46, 47], they cannot achieve real-time performance for large systems involving

hundreds of thousands, or even millions, of degrees of freedom.

2.1.3 Dynamic Simulation

Here we layout the equations of motion (called the Euler-Lagrange equations) for

dynamic simulation:

Mü + Du̇ + Ku = fext. (2.7)

13

Background Chapter 2

In the above equation, M ∈ R3N×3N is the mass matrix. It is often simplified into a

diagonal matrix by lumping the mass in each element onto its vertices. D ∈ R3N×3N

is the damping matrix. One commonly used damping model is the Rayleigh damping

D = αM + βK. The α and β are coefficients that control the amount of damping for

lower frequency and higher structure modes respectively. The values we use are α = 0.01

and β = 0.001.

A time integration scheme is needed to step the simulation forward. Explicit integra-

tion schemes (e.g., forward Euler) are fast, but less stable compared to implicit schemes,

and demand small timesteps. Implicit schemes (e.g., backward Euler) remain stable even

when using large timesteps, at the expense of larger computation cost per simulation

frame. Implicit schemes also suffer from numerical damping. Mixed explicit-implicit

schemes have also been proposed to optimize the trade-off between the two [48]. The

integration scheme used in this dissertation is backward Euler. Note that this choice is

irrelevant to our techniques.

2.2 Subspace Simulation

Subspace methods, also known as reduced-order, reduced coordinate, or model reduc-

tion methods, were first introduced to computer graphics by Pentland and Williams [15]

in 1989 and have recently been used to accelerate a variety of simulations in computer

graphics, such as deformable bodies [12], fluids [13] and clothing [14]. In this section, we

describe the basic concept of subspace methods and discuss its strengths and limitations,

followed by a summary of recent developments on this subject.

To give a concrete example, we will introduce the concept on the deformable solid

simulation described in the previous section. Let us first assume that there is a r-

dimensional subspace that captures the typical deformations of the solid object and the

14

Background Chapter 2

matrix U ∈ R3N×r is an orthonomal basis that spans this subspace. We apply a change

of variable q = UTu and left multiply the linear system of Equation 2.5 by U> and

arrive at:

K̃q = U>fext. (2.8)

in which K̃ = U>KU is the reduced version of K with dimension r × r. The material

properties naturally limit the shapes that a solid model can take on. Thus, it is reasonable

to expect that a broad span of relevant deformations can still be efficiently captured when

r � N . Now we only need to solve a small r × r dense linear system instead of a large

3N × 3N sparse system, gaining large speedups [49].

The subspace basis U can be either obtained via a static analysis of the underlying

deformable body mesh, such as linear modal analysis [15, 50] and modal derivatives [12],

or a data driven process, such as principal component analysis (PCA) of existing full

space simulation snapshots. Analytic approaches do not require any training overhead,

but only give a low-order approximation of the true solution, and produce a rubbery

look for the solid model. Therefore, we prefer PCA based approaches that capture the

realistic appearance of the human flesh.

2.2.1 Previous Work on Incorporating Non-linearities

Equation 2.8 describes a subspace simulation of linear elasticity. The nonlinear version

can be obtained from Equation 2.6 via the same projection:

K̃(x̃k)qk = f̃(x̃k) + U>fext, (2.9)

in which f̃(x̃k) = U>f(xk) is the subspace material force. K̃ and f̃ are no longer constant

and need to be recomputed for every Newton iteration. Strictly following the definitions,

15

Background Chapter 2

we can compute these quantities by first computing their full space counterparts and

then project them into the subspace. We call this process Krysl projection [17]. It re-

introduces O(N) complexity into the subspace simulation and dials the potential speedup

back to a single order of magnitude.

Barbič and James [12] developed a projected tensor approach to quickly compute the

subspace stiffness matrix and material force for St. Venant-Kirchhoff (StVK) materials,

whose energy density function is defined as:

Ψ = µE : E +
λ

2
tr2(E). (2.10)

Here E := 1
2
(F>F− I) is the Green strain tensor.

From Equation 2.10 we can tell that the energy density function for StVK material is

a fourth order multivariate polynomial function in the components of x, thus the material

force is a third-order multivariate polynomial function in x. The analytical solutions for

the the polynomial coefficients are derived in [12]. They can be precomputed and stored

together as a third-order tensor. This tensor is projected once into subspace and reused

at run time for fast evaluation of the reduced material force and stiffness matrix.

2.2.2 Cubature Approximation

Projected tensor approaches are used in subspace fluid simulation as well [13, 19].

However, a variety of non-linear materials cannot be written in this form. Alternatively,

the cubature approach to subspace simulation [20] can be used. Instead of projecting a

tensor, the cubature approach approximates the underlying material force function f̃(x̃)

16

Background Chapter 2

using a carefully weighted set C of C cubature points:

f̃(x̃) ≈
∑
i∈C

wi ·U>i fi(Uix̃). (2.11)

Here, wi is a scalar cubature weight applied to sample i, Ui ∈ R12×r is the rows of U

that correspond to the vertices of tet i, and fi is a point-sampled version of the material

force function that computes the material forces on the vertices of the ith tet. Similarly,

the reduced stiffness matrix K̃(x̃) can be approximated as:

K̃(x̃) ≈
∑
i∈C

wi ·U>i Ki(Uix̃)U>i , (2.12)

with Ki being the 12× 12 stiffness matrix of the ith tet.

Connections between Equation 2.11 and 2.12 and the compressive sensing literature

have been observed [51], and this perspective provides some intuition. Similar to how the

Fourier transform of a Dirac delta yields a function with global support, transforming

a point sample fi(Uix̃) into the subspace U also yields a global function. The question

is whether a global function f̃(x̃) can be approximated by projecting a small number

of samples. The subspace modes of U were constructed by performing PCA, which

succinctly parameterizes all previously seen examples of f(x), so it is reasonable to expect

that within this subspace, some succinct version f̃(x̃) can be discovered.

The cubature approach has been successfully applied to several non-linear material

models [20]. In particular, we have found that it can be applied to the co-rotational

material model [McAdams et al. 2011] used in this dissertation. It has also been general-

ized to other non-linear problems, including evaluating the quadratic term in the inviscid

Euler equations [21], as well as geometric reduction for material optimization [22]. We

also use this approach extensively in our subspace simulations. One detail we have not

17

Background Chapter 2

mentioned so far is how to choose the cubature points and their weights. In fact, several

approaches have been proposed to select the cubature points in the last few years, which

we summarize in the next section.

2.2.3 Cubature Training Schemes

We will start with the common features of the three algorithms covered in this section

and then describe each one individually.

The cubature optimization is modeled as a discrete subset selection problem whose

goal is to select cubature points that, when weights are optimized using non-negative

least squares (NNLS), tends to minimize fitting error of a training set. Given T training

snapshots, {f̃ t}t=1...T where f̃ t is computed using Krysl projection [17] (i.e., f̃ t = U>f t),

the fitting error is chosen as the root mean square (RMS) relative L2-norm error over all

samples, as described by the following error metric:

ε =

√√√√ 1

T

T∑
t=1

||f t − f̃ t||2

||̃f t||2
, (2.13)

where f
t

is the cubature estimation of f̃ t. If we fix a set of n cubature points temporarily,

minimizing the fitting error ε is equivalent to solving the weights w in:



f̃11
||̃f1||

· · · f̃1i
||̃f1||

· · · f̃1n
||̃f1||

...
...

...

f̃ t1
||̃f t||

· · · f̃ ti
||̃f t||

· · · f̃ tn
||̃f t||

...
...

...

f̃T1
||̃fT ||

· · · f̃Ti
||̃fT ||

· · · f̃Tn
||̃fT ||





w1

...

wi
...

wn


=



f̃1

||̃f1||
...

f̃ t

||̃f t||
...

f̃T

||̃fT ||


↔ Aw = b, (2.14)

subject to w ≥ 0. The non-negativity constraints are added to avoid over-fitting and

18

Background Chapter 2

preserve the spectral properties of the stiffness matrices (Equation 2.12). Here, f̃i =

U>i fTi (Uix̃) is the reduced material force on the ith sample point, A is a dense rT by n

matrix, and b is an rT -vector. The relative residual error ||r||/||b|| is equivalent to the

fitting error in Equation 2.13. Highly efficient NNLS implementations exist for solving

such problems. For example, the standard Lawson-Hanson [52] has a complexity of rTn3.

As observed by [21], the Bro and de Jong [53], also known as Fast Non-Negative Least

Squares (FNNLS), yields a significant constant speedup over [52].

The entire optimization is a iterative process where during each iteration, a subset of

cubature candidates are added to the existing cubature set C, and after the NNLS solve,

only the ones with positive weights are kept. The entire process is terminated when the

relative residual is below a certain threshold. The major difference between the three

algorithms we describe next is how the candidates are selected in each iteration.

Greedy Estimation was proposed by An et al. [20] along with the overall cubature

approach. During each iteration, they select candidate e such that f̃e is the most positively

parallel to the current NNLS residual. Their algorithm is outlined in Algorithm 1. In

case the total number of candidates is large, the candidate is picked from a random

subset of the remaining candidates (Line 3-4 in Algorithm 1) to reduce the storage and

computation cost. The total complexity of greedy estimation is O(rTn4) where n is the

number of cubature points.

Importance Sampled Cubature was developed by Kim and Delaney [21] in which

cubature is applied to estimate the fluid velocity after the advection step in fluid simula-

tion. The authors observed that much of the work of the greedy algorithm is redundant,

as the matrix A between two consecutive iterations only differ by one column. They

add C samples each iteration instead of one, which are selected using an importance

sampling approach. The importance probability distribution function for each candidate

19

Background Chapter 2

Algorithm 1 GreedyCubature(A,b, TOL)

1: C← ∅
2: r← b
3: while ||r||/||b|| > TOL do
4: S← SelectCandidatePoints(C)

5: e← arg maxe∈S
f̃er

||̃fe||||r||
6: C← C ∪ {e}
7: w← NNLS(AC,b)
8: r← b−ACw
9: end whilereturn (C,w)

e is defined as:

PDF(e) = R
(|ae · r|

r · r

)
. (2.15)

where R is the number of points that are not yet in the cubature set.

Line 4-6 of Algorithm 1 are replaced with a call to Algorithm 2.

Algorithm 2 ImportanceSampledCubature(C)

1: while C points have not been added to C do
2: Randomly select a candidate e not in C
3: Add e to C with probability PDF(e)
4: end while

The overall complexity of importance-sampled cubature is O(rTn3). Detailed analysis

was given in [21].

Similar ideas were also explored in [54, 23].

Non-Negativity-Constrained Hard Thresholding Pursuit (NN-HTP) [39] is an

extension of the Hard Thresholding Pursuit (HTP) [55], a popular algorithm for best

subset selection problems in the field of compressed sensing. Let g(w) = Tε(w)2 be

the objective function, where ε(w) is the fitting error defined in Equation 2.13. The

optimization problem is defined as:

min
w

g(w) subject to w ≥ 0, |supp(w)| ≤ s, (2.16)

20

Background Chapter 2

where supp(w) refers to those with positive values in w and |supp(w)| denotes its car-

dinality. s denotes the upper bound on the size of the cubature and is given as a user

input.

An iteration of the NN-HTP algorithm is given by:

w(i+1) = H+
s (w(i) − µ(i)∇g(w(i))) (2.17)

where ∇g(w(i)) = 2AT (Aw(i)− b) and H+
s is a combinatorial projection that sets all but

the s largest positive entries of a vector to zero. The step length µ(i) is chosen adaptively

at every iteration to increase stability. Before we can perform this step, the support of

w(i+1) needs to be contained in the 2s-element set

S(i) = supp(w(i)) ∪ supp(H+
s (−∇I\supp(w(i))g(w(i)))) (2.18)

Here ∇Kg denotes the gradient of g with all entries not in the set K set to zero and

I = {1, . . . ,m} with m being the total number of cubature candidates. Based on S(i),

the step length is computed as follows:

µ(i) =
||∇S(i)g(w(i))||2

||A∇S(i)g(w(i))||2
(2.19)

The NN-HTP step is followed by a standard NNLS solve to determine the weights of the

current candidates. The entire algorithm is outlined in Algorithm 3.

Note that there is a typo at Line 10 of Algorithm 1 in the original paper and here we

fix it with Line 7 of Algorithm 3. The lazy evaluation at Line 2 refers to an approximation

of the gradient ∇g(w). The time and storage complexity of evaluation ∇g(w) are both

O(rTm), which can be a huge cost. They instead randomly choose C of the remaining

candidates and calculate only the corresponding columns of A. In practice, they found

21

Background Chapter 2

Algorithm 3 NN-HTP(A,b, s, TOL)

1: Randomly initialize w(1) with s positive entries and set the rest to 0
2: for i = 1, 2, . . . do
3: (Lazy) evaluate ∇g(w(i))
4: if ||∇g(w(i))|| ≤ TOL then return w(i)

5: end if
6: Determine S(i) via Equation 2.18
7: Determine µ(i) via Equation 2.19
8: w(i+1) ← H+

s (w(i) − µ(i)∇g(w(i)))
9: C← supp(w(i+1))

10: if C(i+1) = C(i) then return w(i);
11: end if
12: w(i+1) ← NNLS(AC(i+1) ,b)
13: end for

choosing C ≈ 5s gives the best results. We also observed similar behavior.

The time complexity of Algorithm 3 is O(krTs3) with k being the number of itera-

tions. No theoretical estimation on the convergence rate was given, although comparison

with greedy estimation on a few examples showed that NN-HTP converged to a smaller

fitting error using the same number of cubature points.

Newton-Cotes rule [56] is used to accelerate cubature computation in Yang et al. [57].

Cubature points are sampled uniformly in the solid body while the weights are optimized

inividually and in parallel for each basis vector. They also accelerate training dataset

generation. By incrementally adding training samples that minimizing the expected

error of the subspace simulation, they are able to avoid generating unnecessary training

samples and reduce the precomputation cost.

2.3 Multi-Domain Subspace Deformations

Coupled multibody simulation and substructuring techniques have been well studied

in the engineering literature and excellent survey exists [58]. The intuition for domain

22

Background Chapter 2

decomposition is straightforward: break the original large, complex model into small,

simple ones that are easier to solve, and impose hard or soft constraints on the domain

boundaries to couple the interfaces together. For example, it is inituitive to divide the

body according to bone structure in character animation. In the case of subspace simu-

lation, instead of constructing a large, global basis that captures the entire articulation

motion space, we can assign each sub-domain its own low-rank basis, greatly improving

the efficiency of subspace methods.

Hard constraint methods utilize Lagrange multipliers to ensure that the domain-

interface vertices align. Popular full space integration methods such as Finite Element

Tearing and Interconnect (FETI) and its variants [59], and Balancing Domain Decom-

position by Constraints (BDDC) [60] both fall into this category. Unfortunately, they

cannot be applied directly to subspace simulation, because the actual DOFs required to

satisfy the constraints may be close to or exceed the subspace DOFs, producing lock-

ing artifacts or even worse, singular Jacobians. Yang and colleagues [61] constructed

boundary-aware bases that contain boundary deformation modes, which allow the inter-

face constraints to be handled using Lagrange multipliers. However, the rank of their

subspace grows linearly with the size of the boundary, limiting the potential speedup of

their method.

Due to the above issues, interface coupling in multi-domain subspace deformation is

usually handled using soft constraints such as spring forces [62, 63, 64]. Barbič and Zhao

[63] partition the deformable models into tree-structured subdomains. The interfaces are

small and/or can be treated as rigid bodies. Their model deformed passively accord-

ing to external forces, and is very suitable for plant simulation [65]. Kim and James

[64] apply multi-domain subspace simulation to articulated characters where the mesh

is decomposed into bone-associated domains, and domain articulation is specified via

character pose. In contrast to [63], the inter-domain interfaces in [64] can be both large

23

Background Chapter 2

and have significant deformations. The reduced interface spring forces and Jacobians are

quickly evaluated using a technique called the Fast Sandwich Transform (FST). We also

use their domain decomposition approach and its implementation in the open-source soft-

ware Cubica[66] when simulating articulated characters. Next, we give a brief description

of the FST algorithm.

In Kim and James [64], the mesh is partitioned using a simple nearest-neighbor strat-

egy to associate each each tet with the nearest bone. Each pair of duplicated vertices are

connected by a linear spring. Note that the algorithm itself is agnostic to the partitioning

method, so other methods could be used. The pose is configured by updating the rigid

rotation R and translation t for each domain. The basis for each domain is computed

by first transforming the training data to the bone’s local frame, then perform PCA. For

example, for vertex m belonging to domain i, its world-frame position is

xim = Ri(xm + Ui
mqi) + ti = RiUi

mqi + ti. (2.20)

Here we use superscripts for domain index and subscripts for vertex index. Ui
m ∈ R3×ri

is the rows of Ui that correspond to vertex m. q and U are homogeneous coordinate

notations q = (q>|1)> and U = [U|x].

The full space spring force for interface vertex k coupled between domain i and j is

f ijk = −κ(xik − xjk) (2.21)

= −κ(RiUi
kq

i + ti −RjUj
kq

j − tj) (2.22)

where κ is the spring constant. For simplicity we dropped the area weighted term ak in

24

Background Chapter 2

the original paper. The reduced force transformed back to the local frame of domain i is

f̃ ijk = (Ui
k)
>(Ri)>f ijk (2.23)

= −κ[(Ui
k)
>Ui

kq
i − (Ui

k)
>(Ri)>RjUj

kq
j + (Ui

k)
>(Ri)>(ti − tj)]. (2.24)

The reduced spring force on domain i summed over all n coupled vertices between domain

i and j is

f̃ ij = −κ[(Uij)>Uijqi − (Uij)T (diagn(Ri))>diagn(Rj)Ujiqj + (Uij)>In(Ri)>(ti − tj)].

(2.25)

Here Uij is a submatrix of rows in Ui corresponding to vertices along the i, j interface

and In ∈ R3n×3 is a column vector of n 3-by-3 identity matrices. diagn(R) is the 3n-

by-3n block-diagonalized version of R (R repeating n times). Although (Uij)>Uij and

(Uij)>In can be precomputed, (diagn(Ri))>diagn(Rj) is a time-varying quantity (in red)

sandwiched between the basis matrices (blue), which appears to precludes precomputation

and becomes a computation bottleneck. Fortunately, we can still preprocess away most

of the complexity by using tensor expressions.

The Fast Sandwiched Transform (FST) is based on the observation that terms like

UT (diagn(R))V, where U and V are constant matrices with dimensions 3n-by-r1 and

3n-by-r2 respectively, are linear in the only time-varying parameters: the 9 entries of R.

We can write R as

R =
3∑

µ,ν=1

EµνRµν , (2.26)

25

Background Chapter 2

where Rµν are the elements of R and Eµν are 3× 3 basis matrices:

E =


δµ1δν1 δµ1δν2 δµ1δν3

δµ2δν1 δµ2δν2 δµ2δν3

δµ3δν1 δµ3δν2 δµ3δν3

 .
µ = 1 . . . 3

ν = 1 . . . 3

(2.27)

Thus

UTdiagn(R)V =
3∑

µ,ν=1

UTdiagn(Eµν)RµνV

=
3∑

µ,ν=1

(
UTdiagn(Eµν)V

)
Rµν

=
3∑

µ,ν=1

AµνRµν , (2.28)

which is just a linear superposition of 9 r1-by-r2 precomputed matrices, Aµν . This

reduced the runtime cost of computing the sandwiched term in equation 2.23 from O(r2n)

to O(r2). Kim and James [64] observed that this process can also be viewed in terms of

tensors, A
⊗

r, where A ∈ Rr1×r2×9, r ∈ R9 and
⊗

denotes a mode-3 tensor product.

In section 4.4 we will see that this process can be further simplified by using skinning

correction bases.

2.4 Eulerian Solid Simulation

Lagrangian methods are known to suffer from instability when the mesh elements

(tetrahedral, hexahedral, etc) become near singular under extreme deformations. Remesh-

ing schemes have been developed to remedy this problem [67, 68]. Unfortunately, they

add extra computational cost and can be hard to implement. It is also difficult for

26

Background Chapter 2

the modified mesh to return to the original reference configuration. Mesh-free particle-

based methods such as the Material Point Method (MPM) [69, 70, 71, 72] eliminate the

requirement for an explicit volumetric mesh completely, but they are rarely used for hy-

perelastic deformations. The reason is that the Taylor expansion of F in MPM leads to

drift, therefore allowing artificial plasticity to creep into the simulation.

In order to avoid complicated meshing schemes, simulate elastic objects accurately,

and robustly resolve complicated collisions, Levin et al. developed the Eulerian Solids

methodology [5]. A brief overview is given here, while full details can be found in previous

work [5, 73] and tutorial [42]. Eulerian solids discretize the physical space as a regular grid

and store the material space coordinates x as a field to be advected. Rather than storing

the full material coordinates, we follow Fan et al. [73], and advect the displacement field

u, which improves the robustness of the method under large time steps.

The advected u is the key to the Eulerian solids approach, as it allows the direct

computation of the deformation gradient F using

F =

(
I− ∂u

∂x

)−1

. (2.29)

With this F, we can compute the forces inside a solid using any arbitrary constitutive

model. The original work[5] uses FVM to integrate the material force inside each grid

cell and FEM was used in the follow-up[73]. Crucially, only displacement fields with zero

deformation can yield F = I. This guarantees that an elastic constitutive model will

always generate forces that attempt to return to a zero deformation state, and ensure an

accurate hyper-elastic simulation.

Plastic deformation can be also added if desired. Fan et al. [73] uses the popular

multiplicative plasticity model [70, 67] which decomposes the total deformation gradient

27

Background Chapter 2

into

Ftotal = FeFp, (2.30)

where Fe is the elastic deformation gradient and Fp is the plastic deformation gradient.

Some part of Fe might transfer to Fp according to some yield criterion. The plastic

deformation gradients are stored in a material space grid and initially set to identity.

The full updating process is given by:

Fe = UΣVT , (2.31)

∆Fp = VT

(
Σ

(detΣ)1/3

)γ
V, (2.32)

Ft+1
p = ∆FpF

t
p. (2.33)

Here γ = ν
(
||σ||−||σy ||
||σ||

)
, 0 ≤ γ ≤ 1, σ is the Cauchy stress tensor and ||σy|| is the plastic

yield.

2.5 Eulerian Incompressible Fluid Simulation

The famous incompressible Navier-Stokes equations describe most fluid flow of inter-

est in animation:

∂v

∂t
+ v · ∇v +

1

ρ
∇p = b + ν∇ · ∇v, (2.34)

∇ · v = 0. (2.35)

The first line is the momentum equation and the second line makes the fluid incompress-

ible. Here v is the velocity of the fluid, ρ stands for the density, p stands for pressure, b

accounts for accelerations caused by body forces such as gravity and ν is the kinematic

28

Background Chapter 2

viscosity. Several spatial derivatives are involved: ∇ is the gradient operator, ∇· is the

divergence and ∇ · ∇ is the Laplacian. Due to the ease of deriving these spatial deriva-

tives, as well as numerically approximating them, Eulerian approaches are popular for

simulating fluids. Here, we briefly summarize the steps of a basic fluid solver and refer

interested readers to Bridson’s book [43].

A first-order splitting scheme is often used:

∂v

∂t
+ v · ∇v = 0, (2.36)

∂v

∂t
= b, (2.37)

∂v

∂t
+

1

ρ
∇p = 0 such that ∇ · v = 0. (2.38)

Note that the viscosity term ν∇ · ∇v in Equation 2.34 is dropped here. Equation 2.37

adds the body forces and is often integrated explicitly. Equation 2.38 is usually resolved

by a projection step – we compute a pressure field that can be used to project out the

divergent part of the velocity, thus making the fluid incompressible. This step typically

requires solving a Poisson system.

The advection step, Equation 2.36, requires more attention as it plays a key role in

the stability of the simulation. The pioneering work of Stam [74] first made this step

unconditionally stable in computer graphics. The proposed semi-Lagrangian advection

scheme operates by tracing from each grid position back in time using the grid velocity,

and updates it with the velocity at the traced back position. Since we do not necessarily

land exactly on a grid position, interpolation is required. The linear interpolation used

originally in Stam [74] causes severe numerical dissipation which leads to loss of details.

Less dissipative schemes were developed along this thread [75] but high-frequency details

can still be lost.

The Fluid-Implicit-Particle (FLIP) approach [76] was first applied in computer graph-

29

Background Chapter 2

ics for animating sand [77]. The basic idea is to store fluid particles on a grid. Advection

can be carried out on the particles without loss of information. Velocities (and other

necessary fields) are transferred between the grid and the particles through interpolation

schemes. FLIP owes its popularity to “the ability to represent large variations in data”

even though it is limited to first-order accuracy and can also suffer from dissipation [43].

Variants [72] are actively being developed to remedy these issues.

30

Chapter 3

Articulated Subspace Self-Contact

Note: A large portion of this chapter has previously appeared as [78].

Figure 3.1: A hand mesh composed of 458K tetrahedra, running at 5.8 FPS (171
ms), including both self-contact detection and resolution. Our algorithm accelerates
the computation of complex self-contacts by a factor of 5× to 52× over other subspace
methods and 166× to 391× over full-rank simulations. Our self-contact computation
never dominates the total time, and takes up at most 46% of a single frame.

In this chapter, we present an efficient new subspace method for simulating the self-

contact of articulated deformable bodies, such as characters. Self-contact is highly struc-

tured in this setting, as the limited space of possible articulations produces a predictable

set of coherent collisions. Subspace methods can leverage this coherence, and have been

used in the past to accelerate the collision detection stage of contact simulation [33, 34].

31

Articulated Subspace Self-Contact Chapter 3

We show that these methods can be used to accelerate the entire contact computation,

and allow self-contact to be resolved without looking at all of the contact points. Our

analysis of the problem yields a broader insight into the types of non-linearities that

subspace methods can efficiently approximate, and leads us to design a pose-space cu-

bature scheme. Our algorithm accelerates self-contact by up to an order of magnitude

over other subspace simulations, and accelerates the overall simulation by two orders of

magnitude over full-rank simulations. We demonstrate the simulation of high resolution

(100K – 400K elements) meshes in self-contact at interactive rates (5.8 – 50 FPS). Figure

3.1 shows a few snapshots from a hand animation sequence simulated using our subspace

method.

3.1 The Subspace Self-Collision Problem

The equilibrium state for a deformable object undergoing self-contact and external

loadings is given as follows:

f(x) = −fs(x)− fext. (3.1)

The meaning of f(x) and fext remain the same as the quasistatic formulation of Equation

2.5. fs(x) ∈ R3N denotes forces that arise from self-contact, and is the primary quantity

that we are connected with in this chapter. We will introduce dynamics later (§3.3.2), but

all of the simulation difficulties are already present in this formulation. The linearized

system for Equation 3.1 for one Newton iteration is:

(K(xk) + Ks(x
k))uk = f(xk) + fs(x

k) + fext, (3.2)

32

Articulated Subspace Self-Contact Chapter 3

where Ks := −∂fs
∂x

is the negative self-contact force Jacobian. The reduced version can

be obtained using the same subspace projection described in Section 2.2:

(K̃ + K̃s)q = f̃ + f̃s + U>fext. (3.3)

Here we drop the superscript k and dependence on x for brevity. K̃ and f̃ can be computed

efficiently using cubature approximation (Equation 2.11 and 2.12. The external forces

can be efficiently computed using methods from previous works [79, 80], so the question

we are interested in is: Can we compute f̃s (and subsequently K̃s) efficiently?

Krysl projection (i.e. U>fs and U>KsU) could be applied, but this would discard

much of the knowledge we have of fs. The variety of possible self-contact forces is largely

constrained by the articulation limits on the skeleton, and while extreme self-contact

configurations are possible (e.g. the character being crushed in a trash compactor) the

vast majority of forces will repetitively occur at a predictable set of surface vertices. We

will use this knowledge to design an efficient cubature scheme for U>fs in Section 3.2.

Penalty Force Formulation: Like many recent works [81, 11, 82], we use a penalty

force formulation to resolve contacts. For each penetrating surface triangle and vertex,

(tp,vp), we find the surface point vs on the triangle tp that is closest to vp and apply a

force to vp,

fp = kc · ka ·N(vs − vp), (3.4)

where kc is a constant spring stiffness and ka is the average of the area of tp and the area

of the surface triangles in the one-ring surrounding vp. The N ∈ R3×3 anisotropy term

is from McAdams et al. [11], and defined as

N = (1− α)n · n> + αI, (3.5)

33

Articulated Subspace Self-Contact Chapter 3

where α ∈ [0, 1], I ∈ R3×3 is an identity matrix, and n is the outward unit contact

normal, n = (vs−vp)

|vs−vp| . The force at each ith vertex of the triangle tp is:

fi = −βi · kc · ka ·N(vs − vp), (3.6)

where βi is the barycentric coordinate associated with triangle vertex i and vs. Section

3.3.1 contains further details on collisions.

Domain Decomposition: We use the domain decomposition technique from [64]

described in the previous chapter for our articulated subspace simulations, but our al-

gorithm is agnostic to the partitioning method, so other methods could be used. Each

subdomain has its own subspace basis and the interfaces are coupled using penalty-based

forces.

3.2 A Self-Collision Cubature Scheme

Self-contacts on articulated meshes occur mainly due to the motion of the underlying

skeleton. We still start by directly applying the cubature approach to these self-collisions.

The algorithm will produce unacceptable results, but motivate a more sophisticated

scheme inspired by Pose Space Deformation [83].

3.2.1 A Direct Cubature Scheme

For expository purposes, we will focus on a single domain, x, and

examine the collisions that arise between itself and another domain,

y. We emphasize that these include intra-domain collisions between

the surface of x and itself that arise due to the motion of y, not just

the collisions between x and y. An example of our final algorithm

34

Articulated Subspace Self-Contact Chapter 3

handling such collisions is inset on the left. The hand contains 10 domains, visualized

by different colors. Note that the red domain in the middle of the palm is colliding with

itself. We denote the full-coordinate ranks of x and y as Nx and Ny, and their reduced

ranks as rx and ry. Each domain will have its own basis, Ux and Uy.

The fs self-collision term for domain x is intrinsically a force. Since the cubature

approach was successfully applied to the other force terms such as the f(x) material

force term, it is reasonable to expect that it will be able to generalize to this term as

well. Within this context, a single cubature point p is represented by the self-collision

force, fs(tp,vp) ∈ RNx+Ny , with only 12 non-zero entries arising from the collision of a

single vertex, vp ∈ R3, with a triangle, tp ∈ R9. Note that in this context, a cubature point

no longer corresponds to a literal spatial point or tetrahedron, but rather a geometric

pair. With this definition established, we can compute a self-collision cubature scheme

using the same training algorithm from An et al. [20].

At a high level, the training problem we are trying to solve is as follows. We have a

set of self-collision forces that were generated from a large number of contact pairs, and

would like to approximate these forces by instead using a weighted subset of these pairs.

The primary question of interest is: how many pairs are needed to achieve a desired

accuracy?

We will limit ourselves to training details that will be relevant when later examining

why this direct scheme fails. We have a set of T training snapshots (i.e. example deforma-

tions), which we obtain by running a series of full-rank simulations. Each t-th snapshot

possesses a self-contact force vector, f ts ∈ RNx+Ny . A reduced version of this vector can

be obtained via projection, f̃ ts = S>f ts, where S ∈ R(Nx+Ny)×(rx+ry) and is constructed as

the block matrix:

S =

Ux 0

0 Uy

 . (3.7)

35

Articulated Subspace Self-Contact Chapter 3

The goal of the training stage is to locate a small cubature set C consisting of C collision

pairs that, when evaluated,

f̃ ts ≈
C∑
p=1

wp · S>p fs(t
t
p,v

t
p), (3.8)

approximate all T self-collision forces to some desired degree of accuracy. Here, (ttp,v
t
p)

denotes a collision pair deformed according to the displacement vector from the corre-

sponding snapshot t, and Sp denotes a concatenation of the rows in S that correspond

to vp and the vertices in tp.

As with material forces (Equation 2.11), there is reason to believe that a sparse

approximation exists. For example, imagine that only a single self-collision example

had been observed, and its fs was added as the final column in Ux. A single cubature

point would suffice, provided its projection produced a vector composed entirely of zeros,

except for a final non-zero component. The wp would account for any scalar discrepancy,

and the global force would be effectively represented by a single point.

Promising candidates for C can be located in a variety of ways described in Chapter

2, including a greedy search [20], importance sampling [21, 80], or HTP [51]. We used

importance sampling in this work. Once candidates are located, a Non-Negative Least

Squares (NNLS) solve assigns each candidate a weight (wp in Equation 3.8). First, the

projected self-collision force produced by each p-th candidate at each t-th snapshot is

computed, 

S>p fs(t
1
p,v

1
p)

S>p fs(t
2
p,v

2
p)

. . .

S>p fs(t
T
p ,v

T
p)


= gp. (3.9)

36

Articulated Subspace Self-Contact Chapter 3

These columns are concatenated to form the Aw = b system

[
g1 g2 . . . gC

]
w =

[(
f̃1
s

)> (
f̃2
s

)>
. . .

(
f̃Ts

)>]>
, (3.10)

where w =

[
w1 w2 . . . wC

]>
is the vector of weights that is solved for. This system

can then be sent to any standard NNLS solver [84].

3.2.2 Analysis of Negative Results

We found that the cubature sets discovered by this direct cubature method are not

immediately useful. In order to converge to an acceptable level of relative error of 1%

to 5%, between 30% and 40% of all of the collision pairs in the training snapshots had

to be added to the cubature set. These sets clearly did not have O(r) cardinality, and

did not significantly accelerate self-contact computation. Alternate candidate selection

approaches such as HTP [51] may be able to decrease the cardinality by a small constant,

but the asymptotic performance is unlikely to change.

Infrequent events in the training set were captured poorly.

In the figure on the right for example, the top pad of the finger (left

image, in blue) comes into contact with the bottom third of the finger

(left image, in red) only in the final frames of our training set. Since these

forces do not appear in many snapshots, the NNLS solver treats them as

unimportant, and the final cubature set approximates them poorly. While it might be

possible to re-weight these examples, such an approach would essentially second-guess

the PCA and NNLS solvers, which seems unappealing. Clearly, this näıve application of

the cubature approach is not sufficient.

The intuition from §3.2.1 breaks down because it applied to a single self-collision, f̃ ts,

37

Articulated Subspace Self-Contact Chapter 3

not the set of all self-collisions. While a single approximation may be sparse, the set of

all approximations may be spatially disjoint, since the contact regions can be disjoint for

two radically different poses. The union of the sparse approximations can then be dense

if sparsity structures do not share any commonality. We can quantify this intuition as

follows.

Sparsity of the training matrix A: The training column gp for any collision pair

is likely to contain mostly zeros, since the pair is likely in collision for only a small number

of snapshots. Therefore, many of the O(T) rows in the A matrix (Equation 3.10) will

also consist solely of zeros. Unless a collision pair is added to the cubature set that

specifically introduces non-zero entries into these rows, their relative errors will be 100%.

This explains why the error only became acceptable for cubature sets of size O(N), or

more precisely O(P), where P is the total number of collision pairs in all of the training

snapshots; it is threshold where the number of non-zero rows in A had been sufficiently

increased. We can conclude from this that a sparse training matrix will produce a dense

cubature set.

Difficulty of learning the non-linear function: Equation 3.4, the non-linear force

being learned, appears to be essentially a cubic function. However, the function actually

contains an additional non-linearity. We can write a more general force term,

fp(tp,vp) = H(tp,vp) · kc · ka ·N(vs − vp), (3.11)

where H(tp,vp) is a Heaviside function defined as:

H(tp,vp) =

 1 if tp and vp collide

0 otherwise
. (3.12)

This new term significantly increases the non-linearity, as its dependence on x indirectly

38

Articulated Subspace Self-Contact Chapter 3

introduces the complexity of the material model from Equation 3.1. The binary nature of

the term also shows that while the force is C0 continuous, it contains a C1 discontinuity.

We will need to address the complexity introduced by this term.

3.2.3 A Pose-Space Cubature Scheme

The preceding analysis led us to design a method that leverages the same intuition

that underlies Pose Space Deformation (PSD) [83]. Instead of trying to capture a difficult

non-linearity in its entirety, we interpolate over a sparse set of solutions where the non-

linearity is known to be efficiently resolvable. In the case of PSD, a set of artist-sculpted

examples are interpolated. In our case, we interpolate over a set of per-pose cubature

schemes.

Per-Pose Cubature: Instead of computing a single cubature scheme that fits a

large, sparse training matrix, we compute multiple cubature schemes that each fit small,

dense matrices. At a high level, the primary difference between this training regimen

and the previous one is that we are no longer trying to find a single cubature scheme

that can approximate every self-collision force in the training set. Instead, we compute

one cubature scheme for every example pose in the training set. If a pose is encountered

at runtime that was not in the original training set, we can use a PSD-like process to

interpolate between the nearest schemes.

The simplest training matrix that we can construct that is guaranteed to be dense is

the one for a single training snapshot. For example, if we define the projected force for

the 1st snapshot for the collision pair p as S>p fs(t
1
p,v

1
p) = g1

p, we can write the training

matrix: [
g1

1 g1
2 . . . g1

C

]
w1 = f̃1

s . (3.13)

We abbreviate this system to A1w1 = f̃1
s . Note that the right hand side now contains a

39

Articulated Subspace Self-Contact Chapter 3

single self-contact force sample, and that the training matrix dimensions are A1 ∈ Rr×C

instead of A ∈ RrT×C , essentially making A1 a subset of rows from A. This training

matrix will automatically be dense. All of the cubature selection strategies (greedy,

importance sampled, or HTP) project potential candidates onto the residual vector r =

A1w1 − f̃1
s . A collision pair that produced a zero-valued training column would also

produce a zero-valued projection, and would therefore never be considered promising

enough to be added to the cubature set. As predicted, we found that the training stage

now produced cubature sets with O(r) cardinality for each input snapshot (Figure 3.2).

Figure 3.2: Left: Final frames from Figs. 3.3 and 3.4. Middle: Dense, full-rank
contact points. Right: Our cubature scheme only needs to detect and resolve a sparse
subset of these points.

Cubature Interpolation: We now have T cubature sets to interpolate at runtime.

While the direct cubature scheme contained a difficult-to-learn Heaviside function, we

40

Articulated Subspace Self-Contact Chapter 3

now have the opposite problem that this non-linearity has been aggressively pre-processed

away. At runtime, each cubature set assumes that the Heaviside functions have already

been resolved, and all that remains is for the contact forces (Eqns. 3.4 and 3.6) to be

computed. This is not an issue if the character only takes on poses that are exactly the

same as the training snapshots, but much of the appeal of subspace methods is that they

can generalize to motions that are similar to, but distinct from, those in the training set.

A method is needed for interpolating between cubature sets when a pose is encountered

that was not seen during training. During this interpolation, H(tp,vp) is evaluated at

each cubature point, as it is unknown whether the collision occurs at this intermediate

pose.

We perform the interpolation as follows. At runtime, we locate the closest cubature

set Ct of all T cubature sets, by computing the distance between some feature vector of

the current pose, qc ∈ R6, and the corresponding qi ∈ R6 for each of the cubature sets:

t = arg min
i∈T

(dist(qc,qi)) . (3.14)

where dist denotes a distance function. We have some freedom in designing both dist

and the pose vectors, q. If domains x and y are connected by a joint, quaternions could

be used (q ∈ R4), and a natural distance measure would be 1 − ‖qc · qi‖. However, if

x and y are not adjacent, a translation needs to be added to q. This complicates the

distance measure, because while quaternions are normalized, translations are not, and

a large value can spuriously dominate the distance measurement. Separate weightings

could be added to rotation and translation, but such a scheme would be ad hoc.

We use a PCA method [85] to address this issue. In an offline stage, for each train-

ing snapshot, we transform the surface positions of domain y into x’s local coordinates

system. We perform PCA on these positions and extract the six most significant com-

41

Articulated Subspace Self-Contact Chapter 3

ponents, Ur. For an unconstrained mesh, these components will have principal values of

zero, as they correspond to the zero-energy, infinitesimal rigid transformation modes of

the mesh (see e.g. [86], Appendix D in [12], or §3.1 in [87]). The subspace coordinates

qi for each training snapshot i are computed and stored along with Ur. The distance

between two poses c and i can now be defined as dist(qc,qi) = ||qc − qi||2. At run time,

we again transform the surface positions of y into the local coordinates of x, and project

it using Ur to obtain qc.

We find the two nearest neighbors from Equation 3.14 by using a brute force search.

The subspace forces from the two schemes are then interpolated based on their relative

distances. Because the number of snapshots T is small in all of our examples (see Table

3.1), the brute force search takes a negligible amount of time. If T were larger and created

a bottleneck, more efficient methods [88] could be used.

Discussion: This approach was inspired by Pose Space Deformation, but the result-

ing algorithm is fairly different. We use a linear blend instead of radial basis functions,

as we found they were more appropriate for our non-linearities. Each cubature scheme is

localized to a pair of domains, which is reminiscent of Weighted PSD [89], and suggests

that a non-partitioned algorithm that can be applied to monolithic subspace methods

[90, 91] should also possible. The final outputs of our algorithm are generic subspace

forces and stiffnesses, which do not fundamentally depend on the existence of a spa-

tial decomposition. We leave a more in-depth investigation into these issues and their

relationship with PSD as future work.

42

Articulated Subspace Self-Contact Chapter 3

3.3 Implementation and Results

3.3.1 Implementation

Solvers: All of our simulations used implicit Newmark as the time discretization.

We used the interior point optimizer IPOPT [92, 93] as our non-linear solver, as we found

its wall-clock time to be faster than Newton-Raphson. In the inner loops of the full-rank

and reduced-rank solves, we respectively used the highly tuned HSL solvers MA86 [94] and

MA57 [95]. We found that these were faster than conjugate gradient, and outperformed

even an improved Incomplete Cholesky preconditioner [96].

Hardware: All simulations were run on a 12-core, 2.66 Ghz Mac Pro with 96 GB of

RAM. Our own code and the HSL solvers both leveraged OpenMP for parallelization. All

of the full-rank simulations ran on 12 threads. For each subspace example, we manually

optimized the number of threads to fit the number of domains.

Basis Construction: To obtain meaningful forces, we explicitly enriched the sub-

space basis U with the self-contact forces. We computed the self contact forces for a

variety of training poses, and perform a PCA on the resulting fs vectors. We then con-

catenate the results to U and re-orthogonalize using modified Gram-Schmidt. We found

it necessary to add the self-contact force vectors to the front of U. Otherwise, the locality

of the forces would become entangled with the global support from other columns in U.

Collision Detection: During full-rank simulation, we used DeformCD [97] for colli-

sion detection. This algorithm uses a bounding volume hierarchy, specifically axis-aligned

bounding boxes (AABBs), for the broad phase, and the Representative Triangles during

the narrow phase.

For subspace collision detection, we also used AABBs for the broad phase, and then

brute-force point-tet intersection tests for the narrow phase. We built two bounding

volume hierarchies (BVH) for each domain, one for the cubature vertices and one for

43

Articulated Subspace Self-Contact Chapter 3

the tetrahedra. At each timestep, the cubature vertices from one domain x was tested

against all of the tetrahedra from another domain y (for intra-domain collisions, x = y).

We could have only performed collisions against the triangles tp from the training set,

but we found this to be too conservative for high-resolution meshes, as the cubature

vertex vp could easily penetrate a nearby triangle instead. The cubature weights were

still effective, since nearby triangles generate similar penalty forces. We also attempted

to use BD-Trees [33], but found our BVH was faster. The deformations required many

leaf-level updates, and the Ux̃ multiply at each BD-Tree node update quickly became a

bottleneck. As we were simulating high resolution meshes, we assumed that edge-edge

and vertex-edge contacts are negligible, but our algorithm could be extended to handle

these case as well.

As anticipated, the cardinality of the cubature sets was much smaller than the com-

plete set of contact points, and reduced the number of necessary collision tests consid-

erably (Table 3.2). The cubature schemes sufficiently accelerated the simulation that

collision detection dominated the running time (∼90%). We experimented with dimin-

ishing this bottleneck by using a low-resolution proxy of the tetrahedral mesh for the

broad phase of subspace collision detection. This accelerated the phase significantly, and

as the high-resolution mesh is queried during the narrow phase, the impact on the final

results was minimal. To facilitate comparisons, all of the timings given in Table 3.2

and Figs. 3.6 and 3.7 use this proxy geometry. We did not use the low-resolution proxy

during the full-rank precomputation, as collision detection was not the main bottleneck,

and instead took between 16-27% of the running time. The increase in computational

cost instead appeared in the form of more complex non-linear solves.

Collision Resolution: We called the same collision resolution code for both the

reduced- and full-rank simulations. For each penetrating vertex vp and penetrated tet h,

we used barycentric interpolation to transform vp to its position inside of the rest-pose

44

Articulated Subspace Self-Contact Chapter 3

version of h, vh. We obtained the surface point vs and surface triangle tp closest to vh

using the signed distance field of the rest pose [98, 99]. Barycentric interpolation was

used to obtain the deformed surface position, vs. The resulting vs and vp were then sent

to Eqns. 3.4 and 3.6.

Material Model: In all of our examples, we used the co-rotational material, along

with indefiniteness correction, from McAdams et al. [11]. Our simulations were performed

over tetrahedral meshes instead of hexahedral meshes, so we did not find it necessary to

perform their stabilization step, as the deformation nullspace of a tetrahedron is much

smaller than that of hexahedron (3 instead of 15). The cubature approach successfully

approximated the co-rotational material model with minimal intervention.

Example Full-Rank Time
Per Frame

Reduced-Rank
Time Per Frame

Speedup

Cylinder 7.82 s 20 ms 391×
Finger 15.90 s 53 ms 300×
Arm 20.86 s 77 ms 271×
Hand 28.45 s 171 ms 166×

Table 3.1: Algorithm performance compared to full-rank solves.

3.3.2 Results

In our examples, we sparsely sampled the articulation by computing T samples in

joint space (Table 3.1). For each pose, we ran a full-rank quasistatic simulation with

self-contact detection and resolution, and a pose-space cubature scheme was computed

to within 5% training error. In all cases, the subspace simulations ran two orders of

magnitude faster than full-rank solves (Table 3.1).

Cylinder: We deformed an articulated cylinder containing 118,389 tetrahedra into a

highly colliding state in Figure 3.3. The mesh contained 2 domains, and was trained on

45

Articulated Subspace Self-Contact Chapter 3

Example Using
Reduced
Self-
Contact?

Mean SC
Time Per
Frame

Max SC
Time Per
Frame

Max # of
Collisions

Collision
Complexity
Reduction

Mean
Speedup

Max
Speedup

Cylinder No 114 ms 415 ms 4127
Cylinder Yes 7 ms 8 ms 15 275× 16× 52×
Finger No 168 ms 517 ms 4930
Finger Yes 17 ms 26 ms 81 61× 10× 20×
Arm No 182 ms 407 ms 1264
Arm Yes 26 ms 37 ms 74 17× 7× 11×
Hand No 59 ms 782 ms 3025
Hand Yes 32 ms 155 ms 445 7× 2× 5×

Table 3.2: Performance of our self-contact (SC) algorithm compared to a subspace
simulation that does not use self-contact cubature.

T = 12 examples for a final rank of r = 20. Without cubature, the subspace simulation

spent up to 96% of its frame computation time detecting and resolving collisions. With

it, self-contact computation never exceeded 46% (Figure 3.6). Self-contact in the most

highly colliding frame was accelerated by a factor of 52×.

Finger: We simulated the complex self-collision of a finger containing 248,869 tetra-

hedra in Figure 3.4. The mesh contained 3 domains, and trained on T = 17 examples for

a final rank of r = 60. This example shows our pose-space cubature scheme capturing

infrequent contacts between initially non-adjacent domains; the exact configuration that

defeated the direct cubature scheme (§3.2.2). Without cubature, self-contact consumed

up to 96% of the frame time, but the cubature version never exceeded 44%. The most

highly colliding frame was accelerated by a factor of 20×.

Arm: We simulated the collision of an arm with a body on a mesh composed of

171,492 tetrahedra (Figure 3.5). The mesh contained 5 domains, and trained on T = 27

examples for a final rank of r = 161. All of the initial training data was quasistatic.

Without cubature, self-contact took up to 89% of the time, while our version never

46

Articulated Subspace Self-Contact Chapter 3

Figure 3.3: A cylinder articulated with a single joint. Left in each pair: Without self-
contact. Right in each pair: With self-contact. Penetrations obscure the characteristic
crease along the contact, especially in the subsurface scattering rendering. We accelerate
self-contact by 52× and only take up 46% of the total computation time instead of 96%.

exceeded 43%. The most highly colliding frame was accelerated by 11×.

This example shows self-contacts resolved over a wide spatial extent, and subspace

dynamics added as a post-process. Dynamics were activated using standard methods,

i.e. by adding reduced-order mass and damping terms to the left hand side of Equa-

tion 3.3: M̃˜̈x + C̃˜̇x + f̃(x̃) = −U>fe −U>fs. Newmark integration (see Appendix C of

Barbič and James [12]) was then applied. Other methods could also have been used,

as our method is agnostic to the underlying time integration and domain decomposition

methods.

Hand: We simulated a hand containing 458,071 tetrahedra in a variety of poses. The

mesh contained 10 domains, and was trained on T = 120 examples for a final rank of

r = 300. The self-contacts in this example were sparser and less persistent than those

in the other examples, so the performance is noisier (Figure 3.6). Without cubature,

self-contact took up to 72% of computation, while our computation never exceeded 42%.

The most highly colliding frame was accelerated by 5×. We also show an example of

a collision very different from those seen during cubature training in the video1. As

1http://youtu.be/mjT9ZfIYN-s

47

Articulated Subspace Self-Contact Chapter 3

expected, the collision is missed entirely, and the deformations begin to exhibit subspace

artifacts. However, the simulation remains stable.

Figure 3.4: Left column: Without self-contact. Right column: With self-contact.
A finger is shown with subsurface scattering (top), and with checkerboard texturing
and a highlighted cross-section (bottom). Extreme penetrations occur without our self-
collision cubature; the full extent can be seen in the cross-section. As with Figure 3.3,
the characteristic crease from the contact is far less visible.

Discussion: Predictably, the largest speedups occurred when the largest number of

primitives were in self-collision (Table 3.2). Faster collision detection could improve the

performance of the simulations without cubature, but these methods would apply equally

well to the cubature versions, so we expect that the relative performances would remain

similar.

48

Articulated Subspace Self-Contact Chapter 3

Direct comparisons to other methods are difficult due to implementation and hard-

ware specifics, but rough, order-of-magnitude comparisons are possible. McAdams et

al. [11] perform full-rank simulations of equivalent geometric complexity as ours (∼100K

elements), but our performance is a clear improvement (5 s vs. 53 ms). Their algorithm

is complementary and could be used to accelerate our precomputation. Other, faster

methods use geometries that are orders of magnitude simpler, e.g. 4160 [100] and 8619

[91] elements. Our method offers clear advantages for both computational and geometric

complexity.

3.4 Summary

We have shown that the cubature approach can be used to accelerate self-contact

computation in articulated simulations. The standard approach can fail if the non-

linearity of the underlying function is too severe, so we formulated a pose space variant

to address this limitation. Interestingly, we found that the sparsity of the cubature

training matrix serves as a useful heuristic for determining if the underlying function is

“too non-linear.” Our main results are:

• We show how to efficiently apply the subspace cubature approach to the problem

of self-contact;

• We identify two general conditions that will cause the standard cubature approach

to fail: sparse training matrices and excessive discontinuities (e.g. Heaviside func-

tions);

• We propose pose-space cubature, which directly addresses these issues and enables

efficient subspace self-contact.

49

Articulated Subspace Self-Contact Chapter 3

Our pose-space cubature scheme is based on the observation that articulated self-

contact is highly structured and predictable. This is no longer the case for arbitrary

external collisions, which we will address in the next chapter.

50

Articulated Subspace Self-Contact Chapter 3

Figure 3.5: We can quickly simulate subspace dynamics, even if the input data was
quasistatic. The character’s arm begins outstretched (top left), but later hits the body
(top right), causing it to shake. Please see the video to view the overall dynamics. As in
Figure 3.2, the cubature scheme effectively sparsifies the contact (bottom row).

51

Articulated Subspace Self-Contact Chapter 3

0	

20	

40	

60	

80	

100	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	

Pe
rc
en

ta
ge
	
 o
f	
 T

im
e	

Sp
en

t	

(%

)	

Frames	

Quasista8c	
 Cylinder	

With	
 Cubature	

Without	
 Cubature	

0	

20	

40	

60	

80	

100	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	

Frames	

Finger	

0	

20	

40	

60	

80	

100	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	

Frames	

Arm	

0	

20	

40	

60	

80	

100	

1	
 51	
 101	
 151	
 201	
 251	
 301	
 351	

Frames	

Hand	

Figure 3.6: Percentage of time the subspace simulation spends in self-contact detection
and resolution, with and without cubature. Without cubature, the time spent routinely
exceeds 90%. Our method consumes a maximum of 46%, bringing it to parity with the
rest of the simulation.

52

Articulated Subspace Self-Contact Chapter 3

1	

10	

100	

1000	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	

Ti
m
e	

(m

s)
	

Frames	

Quasista/c	
 Cylinder	

Without	
 Cubature	

With	
 Cubature	

1	

10	

100	

1000	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	

Frames	

Finger	

1	

10	

100	

1000	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	

Frames	

Arm	

10	

100	

1000	

1	
 51	
 101	
 151	
 201	
 251	
 301	
 351	

Frames	

Hand	

Figure 3.7: Time spent in self-collision detection and resolution, with and without
cubature. The lower boundary of each shaded area is the time spent in self-collision
detection, and the upper boundary shows the total time when resolution is added. Note
that we have used a log scale, because otherwise the additional time added by collision
resolution when using cubature would be difficult to see.

53

Chapter 4

Handling Arbitrary External

Collisions with Subspace

Condensation

Note: A large portion of this chapter has previously appeared as [35].

Figure 4.1: (a) The simulation runs at 16 FPS, entirely within the subspace, 67×
faster than a full space simulation over the entire mesh. (b) Novel wall collisions begin,
activating full space tets, shown in red in the inset. The simulation still runs at 2.1 FPS,
a 7.7× speedup. (c) Collisions produce a deformation far outside the basis, and 49% of
the tets are simulated in full space. The step runs at 0.5 FPS; still a 1.9× speedup. (d)
The collisions are removed, and the 67× speedup returns.

The pose-space cubature algorithm described in the previous chapter successfully ac-

54

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

celerates highly structured self-contact for articulated bodies. However, it does not handle

collisions outside the training set. In fact, subspace simulations can behave unrealisti-

cally when behaviors outside the prescribed subspace, such as novel external collisions,

are encountered.

In this chapter, we address this limitation by presenting a fast, flexible new method

that allows full space computation to be activated in the neighborhood of novel events

while the rest of the body still computes in a subspace. We achieve this using a method we

call subspace condensation, a variant on the classic static condensation precomputation.

However, instead of a precomputation, we use the speed of subspace methods to perform

the condensation at every frame. This approach allows the full space regions to be

specified arbitrarily at runtime, and forms a natural two-way coupling with the subspace

regions. While condensation is usually only applicable to linear materials, the speed of

our technique enables its application to non-linear materials as well.

We show the effectiveness of our approach by applying it to a variety of articulated

character scenarios. Figure 4.1 shows a few snapshots from a animation sequence simu-

lated using subspace condensation.

4.1 Introduction

Subspace methods achieve large speedups by constraining the motion to a subspace

spanned by a compact, but expressive, set of basis vectors. Inevitably, deformations that

are not well-captured by the subspace arise. A straightforward example of this is an

external collision, such as a cannonball hitting the mesh in a novel location that was

not accounted for when constructing the subspace. In these cases, subspace methods

can lock, producing motions that are both very different from the full space solution and

unrealistic in appearance (Figure 4.2).

55

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

Figure 4.2: Novel collisions cause extreme locking in a subspace-only simulation.

A variety of strategies have been devised to address this limitation. The basis vectors

usually have global support, so domain decomposition techniques described in Section

2.3 have been used to localize their influence and reduce the likelihood that a novel local

deformation will trigger a non-physical, global artifact [101, 64, 61]. To avoid confusion

with other decompositions of the simulation domain that we use in this chapter, we will

refer to these more specifically as skeletal decomposition techniques.

Many enrichment techniques have also been proposed, such as the use of approximate,

analytic Boussinesq solutions [23], or the construction of a large database that is used to

build a custom subspace model at every frame [14, 102, 103]. While these methods are

successful at making subspace methods more general, they can still be defeated by novel

deformations that are not well-captured by the Boussinesq approximation, or not present

in the database. Our method complements these existing ones; it can be activated at the

moment that they fail.

In this chapter, we present a distinctly different approach. We observe that in many

cases, particularly when dealing with external collisions, subspace methods only diverge

from the full space solution in spatially localized patches. Unfortunately, there is no way

56

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

to know during the precomputation stage where these patches will be, and how their

locations will change over time. Therefore, we propose an approach that activates full

space computation along these patches at run-time, but allows the rest of the model,

where the subspace approximation is still valid, to continue computing efficiently in the

subspace.

We accomplish this using a method we call subspace condensation, which is a vari-

ation on the widely known static condensation method from the domain decomposition

literature [104]. While condensation has traditionally been deployed as a precomputa-

tion for linear materials, we show that it can be efficiently computed at runtime, even

for non-linear materials, by leveraging the reduced dimensionality of the subspace. The

method does not require any constraint mechanisms such as spring forces [64] or Lagrange

multipliers [61], to couple the subspace and full space regions.

Our method allows subspace methods to be used in cases where they previously

would not have been considered. Even if it is known in advance that novel behaviors

will arise, we provide a mechanism that allows the simulation to only “pay for” the novel

components in each frame, while other, more familiar behaviors are solved efficiently.

Our method gracefully degrades, so in the worst case scenario, it merely falls back to

a full space simulation over the entire mesh. We demonstrate the effectiveness of our

algorithm on a variety of character animation examples.

4.2 Static Condensation

Static condensation has been known in structural mechanics and civil engineering

for some time [105, 106, 107] and was originally developed for static vibration analysis,

i.e. the eigenmodes of a structure. For this reason, the procedure is also sometimes

referred to as eigenvalue economization [108]. Practitioners are naturally also interested

57

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

in dynamics, so dynamic condensation was developed to take inertial effects into account

[108, 109]. In graphics, we are by no means the first researchers to leverage this technique,

as it was used successfully by Bro-Nielsen and Cotin [110] for real-time surgery. More

recently, it was leveraged successfully in the context of physically-based skinning [111],

where a very nice connection to the Steklov-Poincaré operator was also drawn, and was

applied in a novel material optimization context by Xu and colleagues [112]

We will first review the basics of static condensation before describing our novel

variant. For consistency, we adhere to the notation of Bro-Nielsen and Cotin [110] where

possible. Let Ku = f be the linearized, quasistatic system that models a solid object. If

we reorder the vertices so that the surfaces vertices (Ve) come before the internal vertices

(Vi), we can rewrite the system as a block structure:

Kee Kei

Kie Kii


 ue

ui

 =

 fe

fi

 (4.1)

Here, e indicates external (i.e. surface) and i indicates internal, where |Ve| + |Vi| = N .

The Kie and Kei blocks represent the couplings between the two. By using 2 × 2 block

Gaussian elimination, we obtain a system that only involves the surface vertices,

K∗eeue = f∗e , (4.2)

where

K∗ee = Kee −KeiK
−1
ii Kie (4.3)

f∗e = fe −KeiK
−1
ii fi. (4.4)

Equation 4.3 is the well-known Schur complement, a widely used expression in domain

58

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

decomposition, and Eqns. 4.3 and 4.4 together form its standard application. After

solving for ue, if ui is desired, it can still be retreived via

ui = K−1
ii (fi −Kieue). (4.5)

However, if only the external surface positions ue are needed, the degrees of freedom

of the internal vertices have been condensed away. In the case of linear materials, both

Equation 4.3 and the KeiK
−1
ii term in f∗e can be precomputed and reused at runtime [110].

The runtime cost is then drastically reduced, as the inverse at runtime now depends

on |Ve|, the number of surface vertices, not N , the number of total vertices. Adding

dynamics is then a straightforward application of the same block reordering to the mass

and damping matrices, M and C (see §2.4.2 in [110]).

Discussion: Static condensation works best in the context of linear materials. In the

non-linear case, K is no longer constant and becomes K(u), and repeatedly computing

the Kii(u)−1 in Eqs. 4.3 and 4.4 can be prohibitively expensive. Some progress has

been made on this limitation, as Gao and colleagues [111] recently formulated an ex-

rotated (extrinsically rotated) material model that is specifically tailored to efficiently

approximate Kii(u)−1.

Our work differs from the two most related graphics works [110, 111] in two key

ways. First, due to the presence of an expensive matrix inverse, they either perform the

condensation as a pre-process or build a special material model whose inverse is easier

to compute. We show that by leveraging fast subspace inverses, condensation can be

performed quickly and dynamically at run-time for an arbitrary material.

Second, they assume that the surface degrees of freedom (DOFs) are the most impor-

tant ones, and use condensation to project away the interior DOFs. Our method allows

any subset of nodes to be designated as important, allows these designates to be changed

59

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

at every frame, and can quickly project away the complexity of their complement. This

distinction is significant, because in the case of local, non-trivial contacts, DOFs on the

interior of the mesh can play a significant role in the appearance of the final deformation,

and should not always be be projected away. Our general approach allows any subset

of interior DOFs to be simulated as necessary, and the surface-only variant becomes a

special case. We elaborate on these distinctions in the next section.

Partition Oracle: The issue of how the vertices are divided into full space and

subspace regions is a separate question that we delegate to an external partition oracle.

We will propose several oracles in §4.4.2, but for now will put this issue aside and describe

a generic condensation technique that is not dependent on the specifics of any particular

oracle.

4.3 Subspace Condensation: Combining Full Space

and Subspace Simulations

The main bottleneck of static condensation is computing the inverse, K−1
ii (u). Sub-

space methods excel at quickly inverting compact approximations to these kinds of ma-

trices, K̃−1
ii (q). Their applicability looks promising, but several non-trivial issues must

be addressed before the algorithm becomes practical.

We define full vertices as those undergoing full space simulation, and denote their set

as Vf . The rest are referred to as subspace vertices and denoted as Vs. Again, we assume

that some external partition oracle has provided these labels. Let us consider quasistatic

deformations without any external forces. Assuming that Vf is not empty, we reorder

60

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

the vertices and write the system Ku = f as,

Kff Kfs

Ksf Kss


 uf

us

 =

 ff

fs

 . (4.6)

The above equation is the linearized system for one Newton iteration, where we have

abbreviated K(u) = K, Kff (u) = Kff , and so on, for brevity. Applying the condensation

technique now requires the inversion of Kss, much like in Eqns. 4.3 and 4.4.

A Matrix Formulation: Fast subspace inverses can be directly, but näıvely, applied

to this problem. For example, an analog to Equation 4.4,

f∗f = ff −KfsK
−1
ss fs, (4.7)

can incorporate the subspace matrix K̃−1
ss (q) thusly,

f∗f ≈ ff −Kfs

(
UsK̃

−1
ss (q)UT

s

)
fs, (4.8)

where Us is a basis matrix composed of the rows of U that correspond to the vertices in

Vs. The inverse is quickly computed in the subspace, expanded into a larger matrix, and

used to compute f∗f . An analogous method can be used for Equation 4.3.

Unfortunately, this formulation is highly inaccurate. If we think of the KfsK
−1
ss fs term

in Equation 4.7 as a corrective force vector to ff , it becomes clear why this occurs. It is

reasonable to expect that the vector K−1
ss fs lies in the span of Us, since that corrective

force, or something similar, was visible to the SVD that constructed the subspace Us.

However, it is too optimistic to expect that UsK̃
−1
ss (q)UT

s , the expanded version of K−1
ss ,

will also be a meaningful approximation. This would imply that K−1
ss is low rank, and that

Us spans its dominant eigenvectors. Simple numerical experiments verify that neither of

61

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

these assumptions are true; if Kss were not full rank, its inverse would not exist.

Instead, it is clear that K̃−1
ss (q) should not be expanded, as it is only a meaningful

Jacobian of f̃s. The basis Us was constructed to approximate fs, but not its full-rank

Jacobian. Therefore, we need to structure our algorithm so that not only the inverse is

computed quickly, but that the result is carried forward in the subspace until a reduced

version of the entire corrective force, K−1
ss fs, is obtained.

A Vector Formulation: We instead examine Equation 4.6 by expanding it from its

block form into

Kffuf + Kfsus = ff

Ksfuf + Kssus = fs.

If we project the entire second equation using UT
s , and perform the substitution us ≈

Usqs on both equations, we obtain

Kffuf + KfsUsqs = ff (4.9)

UT
s Ksfuf + K̃ssqs = f̃s. (4.10)

The subspace regions now communicate with the full space through qs, namely the

KfsUsqs product, not through a rank-deficient expansion of the K̃−1
ss matrix. The system

can be returned to block form: Kff KfsUs

UT
s Ksf K̃ss


 uf

qs

 =

 ff

f̃s

 . (4.11)

Solving this new system (Equation 4.11) yields exactly the subspace-to-full space coupling

that we seek. In order to solve it efficiently, one additional component is needed, which

62

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

we will now describe.

Efficient Force Evaluation: It is not immediately obvious how to efficiently com-

pute f̃s, the internal forces on the subspace vertices. A brute-force method would be to

compute the full space force, fs and then project it [17]. However, this would make its

evaluation O(N), a complexity that we explicitly want to avoid.

One approach would be to compute the force over all vertices using an existing method

[12, 20], and to subtract off the contribution from the full space vertices, f̃s ≈ f̃ −UT
f ff ,

where, Uf denotes the rows of U that correspond to the full vertices, Vf . However,

since the full space force can contain components that are not well-captured by Uf , the

projection produces unusable results.

Figure 4.3: A 2D illustration of Equation 4.12. The f̃s vector is computed by projecting
the force exerted by boundary tets (yellow) onto the subspace region (blue) and adding
the weighted forces from the cubature tets (green) that reside completely in the subspace
region (blue).

Fortunately, we are able to devise an efficient, alternative, cubature-based [20, 39]

method. First, we only evaluate the cubature tets that lie inside the set of subspace

63

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

tets, Ts. Second, we project the forces exerted by the boundary tets onto the subspace

region (i.e. tets on the boundary between the full space and subspace regions), which are

already available from evaluating ff . Unlike in the previous case, these boundary forces

are very likely to be well-captured by the basis, as they have already been partially

constrained to the subspace during previous timesteps. The remainder of the full space

region (Figure 4.3, red), whose out-of-basis projections will likely just produce locking

artifacts, is correctly ignored. More formally:

f̃s ≈
∑
j∈Vb

UT
j fj +

∑
i∈Tc

δ · wi ·UT
i fi(q)

 δ = 1 if i ∈ Ts

δ = 0 if i ∈ Tf
. (4.12)

In the first summation, Vb is the set of subspace vertices on the boundary between

the full space and subspace regions, fj is the internal force on the jth boundary vertex

exerted by its adjacent boundary tets, and Uj is the rows of U that correspond to that

vertex. In the second summation, Tc is the set of cubature tets, wi denotes the weight

on cubature tet i, Ui the rows of U that correspond to the vertices in tet i, and fi is

the internal force function evaluated at tet i. Figure 4.3 shows a 2D illustration of this

process. The total time to evaluate Equation 4.12 is O(|Tc|+ |Vb|), which is proportional

to the complexity of the subspace and the currently activated full vertices. Any O(N)

dependency on the full complexity of the model has been removed.

Solving the System: While it is be possible to apply the traditional Schur com-

plement to Equation 4.11, it is both undesirable and unnecessary. We always want to

solve for qs, as it is needed to update the surface positions in the subspace region. Unlike

the classic static condensation case, qs is very small, so computing it in addition to uf

does not add prohibitive complexity. This also allows us to trivially apply the method

to non-linear materials, as we can quickly solve several Newton iterations of qs.

We use preconditioned conjugate gradients (PCG) to solve Equation 4.11. We use a

64

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

Jacobi preconditioner for the upper diagonal block, and precondition the lower diagonal

block with its explicit inverse (K̃−1
ss). The solver typically converges in fewer than 100

iterations. Using a more sophisticated preconditioner such as Incomplete Cholesky (IC)

is difficult, because each factorization sees limited re-use before Vf changes and it has

to be recomputed. Ideally a multigrid method would be applied to this system, but we

leave this problem as future work.

The entire solution procedure now depends on the rank r of the subspace, and |Vf |,

the number of active full space vertices. The KfsUs product and its transpose in Equa-

tion 4.11 at first appears to be O(N × r), but Kfs is very sparse, and contains O(|Vf |)

non-zero entries. Since Kfs encodes the coupling between O(|Vf |) vertices and the rest

of the mesh, this sparsity is to be expected. The overall solver is outlined in Algorithm

4, and it is clear that no O(N) computation is needed at any stage.

Algorithm 4 Integration using subspace condensation

1: construct active full space region Vf
2: for i := 1 to n do . n = # of Newton iterations
3: if Vf 6= ∅ then
4: initialize qs = 0
5: compute ff ,Kff ,U

T
s Ksf

(
= (KfsUs)

T
)

6: compute f̃s and K̃ss using cubature (Equation 4.12)
7: solve Equation 4.11 for uf and qs.
8: update full space region using uf
9: update subspace region using qs

10: else
11: perform subspace-only Newton step over entire mesh
12: end if
13: end if
14: end for
15: end for

65

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

4.4 Physics-Based Skinning

Our simulation technique is general enough to be applied to any subspace deformable

body simulation. As a proof-of-concept, we have applied it to the problem of novel

external collisions in physics-based skinning. We will describe the features of the skin-

ning technique here, while noting that the subspace condensation technique does not

fundamentally rely on any of them.

4.4.1 Basis Construction

We elected to use a skinning correction basis, similar to that used by EigenSkin [90]

and the kinematic correction employed by Hahn et al. [14]. Keeping the notation similar

to the latter paper where possible, let us use ϕ to denote a skinning function, and express

the final deformed, world-space position x for a single vertex m as

xm = xm + um

= ϕ(p,xm + um) = R(xm + um) + t.

Here, p is the current skeleton configuration, e.g. as expressed by joint angles, xm denotes

the rest pose, um is the world-space displacement, and um is the same displacement prior

to the skinning transformation. R and t together represent the affine transformation

determined by the skinning function. In order to obtain this transform, we used dual-

quaternion skinning [8] and volumetric heat diffusion [113] to propagate the weights

throughout the tetrahedral mesh. One of the nice properties of dual-quaternion skinning

is that R is guaranteed to be a pure rotation matrix. This will later be used to simplify

the skeletal decomposition forces.

In order to build our basis U, we first obtained samples of the global displacement

66

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

vector u using full space simulations over the entire mesh. We then inverted the skinning

transform ϕ−1 to pull each u back to its untransformed version u. Our subspace basis

U is then constructed by performing a truncated PCA over these samples of u. The

world-space, full space position is then computed as:

x = ϕ(p,x + Uq). (4.13)

As observed in previous work, this basis is significantly more flexible than the one ob-

tained by performing PCA directly over u. The skinning transforms have been factored

out, so the correctives that remain can be applied over a wider range of scenarios, not

just to the original skinning transform that produced it.

Skeletal Decomposition: The role of the skinning transform ϕ in the basis could

potentially complicate the use of skeletal decomposition techniques, such as the one from

Kim and James [64]. In that work, penalty springs were inserted between bone-centered

domains to ensure their compatibility. A 3rd-order fast sandwich transform (FST) tensor

had to be introduced to efficiently incorporate each domain’s local rotation into the

subspace computation.

In our work, we found that the choice of a skinning correction basis removes the need

for any special transforms. To see why this is so, we examine the penalty spring energy

Em between two domains, i and j. Let vm be an interface vertex between these two

67

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

domains with respective positions of xmi and xmj . The spring energy is then written as:

Em =
1

2
k (xmi − xmj)T (xmi − xmj) (4.14)

=
1

2
k [ϕ(p,xm + umi)− ϕ(p,xm + umj)]T

[ϕ(p,xm + umi)− ϕ(p,xm + umj)]

(4.15)

=
1

2
k [Rm

j (Um
i qi −Um

j qj)]
T

[Rm
i (Um

i qi −Um
j qj)].

(4.16)

Here k is the spring constant, Um ∈ R3×r is the basis for vertex vm, and Rm
i and Rm

j are

the rotations for the vertex in partitions i and j. The solver then requires the gradient

(i.e. the spring force) and the Hessian of Em with respect to qi:

∂Em

∂qi
= k(Um

i)T (Rm
j)TRm

i (Um
i qi −Um

j qj) (4.17)

∂2Em

∂qi2
= k(Um

i)T (Rm
j)TRm

i Um
i . (4.18)

In the previous work [64], the composition of rotations, (Rm
i)TRm

j , was then fed into

an FST tensor described in section 2.3. However, under the current basis, the skinning

guarantees the two rotations to always be the same, Rm
i = Rm

j , so the composition

(Rm
i)TRm

j is always the identity matrix. The gradient then becomes,

∂Em

∂qi
= k((Um

i)TUm
i qi − (Um

i)TUm
j qj), (4.19)

where everything aside from qi and qj can be precomputed, and the Hessian resolves to

a constant matrix,

∂2Em

∂qi2
= k(Um

i)TUm
i . (4.20)

68

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

Other gradient and Hessian terms can be deduced similarly.

4.4.2 Contact and Dynamics Oracles

We applied subspace condensation to the problem of contact handling in both qua-

sistatic and dynamic simulations, and used the penalty-based collision force model from

McAdams et al. [11] for both external and self-collisions.

Contact Oracle: As mentioned in §4.2, some form of partition oracle is needed to

label the full space and subspace regions. When contacts are the main source of novel

deformations, it is natural to build an oracle that is based on collisions. We labelled the

vertices that are in collision as belonging to the full space region, and additionally applied

a simple, distance-based criterion. Specifically, we conducted a breadth-first search that

started from each colliding vertex and terminated when the vertices within an influence

radius ρ of the starting vertex had been included. All of the vertices encountered during

this search were added to the full space region. Consequently, all collision-related force

and Hessian terms only exist in the ff and Kff terms in Equation 4.11. The radius ρ

provided a speed-quality tradeoff that will be discussed in detail in §4.5.

When the mesh is recovering from a complex contact, we found that it is inadvisable

to deactivate the full space region as soon as no collisions are detected. The subspace

basis has no knowledge of the deformation created by the collision, and can have trouble

generating the detailed, localized, restoring force necessary to untangle a configuration,

e.g. a fold that formed in the palm of a hand. Therefore, the oracle was modified to also

include the vertices discovered by the breadth-first search from the previous frame. After

two frames, the search results time out, which allow the full space region to shrink.

Dynamics Oracle: Our subspace condensation approach can be applied to dynamics

simulation by adding another modification to the oracle. Even if a body is no longer in

69

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

collision, accelerations caused by the contact forces can lead to interesting deformations

that are not captured by the subspace basis. Therefore, when simulating dynamics, the

oracle only folds a full space region back into the subspace if both the average velocity

and acceleration for the full vertices are below a certain threshold. We found this simple

strategy to be effective, though somewhat conservative.

4.5 Results

We use Newton’s method as our non-linear solver and implicit Euler for our time

discretization. Our full rank and subspace condensation solvers use Jacobi-preconditioned

Conjugate Gradients for solving the linearized systems. Dense linear algebra routines,

such as the direct subspace inverse, use the Eigen [114] library. All simulations were

run on a relatively modest 8-core, 2.4 Ghz MacBook Pro with 8 GB of RAM using 8

threads. When possible, we leverage OpenMP for parallelization. All of our results used

the co-rotational material from McAdams et al. [11]. A performance summary of all the

examples is shown in Table 4.1 and 4.2.

Capsule: As an initial test case, we simulated a capsule containing 29,343 vertices

and 160,960 tetrahedra. We rigged the capsule with 2 bones and trained the subspace

using 12 bending poses, producing a basis with rank 11. Figure 4.4(a) shows the full

space simulation of the capsule bending and colliding against a pipe. The subspace-only

simulation cannot resolve the novel contact deformation, so we observe severe locking

(Figure 4.4(d)).

Our subspace condensation method easily handles this situation by adaptively acti-

vating full space vertices near the contact region. With a small influence radius (ρ = 0.08)

we obtain a useful approximation to the full solution with an average speedup of 76×

(Figure 4.4(c)). Increasing the ρ to 0.25 refines the approximation further (Figure 4.4(b))

70

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

(a) Full space solution (b) Subspace Condensation (ρ = .25)

(c) Subspace Condensation (ρ = .08) (d) Subspace-only solution

Figure 4.4: For (b) and (c), activated full space region is shown in red in the inset.
While the deformation in (c) is less pronounced than the ground truth, the contact is
still resolved. (d) Subspace-only simulation cannot resolve the contact. Locking artifacts
are circled in red.

and still maintains an average speedup of nearly an order of magnitude (9.4×). In the

worst case, 50.6% of the vertices are simulated in full space, but we still see a 3.5×

speedup.

Hand: The hand mesh in chap4figs. 4.5 and 4.8 consists of 95,746 vertices and

458,071 tetrahedra, and is rigged with 10 bones. The subspace was constructed using

71

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

(a) Subspace Condensation (b) Subspace-only solution

Figure 4.5: Comparison between our approach with subspace-only simulation on a
highly novel contact configuration. The subspace-only solution produces significant lock-
ing artifacts, circled in red.

a simple, sparse sampling of 53 snapshots obtained by actuating each bone in isolation.

The basis has no knowledge of multiple bones moving in tandem. The total rank of the

subspace bases, summed over all the skeletal domains, is 156. Self-collisions were taken

into account during training, so we used these samples to compute self-collision cubature

(SCC) [103] in order to quickly compute similar joint collisions at runtime. The SCC

was quickly computed using the NN-HTP algorithm [39].

We then put the hand through a quasistatic, calisthenic exercise regimen. The com-

plete sequence is shown in the supplement video1. The subspace-only simulation easily

handled different combinations of individual joint motions as long as there was no novel

contact. However, it immediately failed when novel collisions occurred (Figure 4.5(b)).

1https://youtu.be/rS-DxWyi5z4

72

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

In contrast, our approach was able to resolve arbitrary contact by adaptively activating

full space vertices near the contact areas (Figure 4.5(a)). Collisions seen during train-

ing were handled using self-collision cubature unless they overlapped with the full space

region. In this case, the entire region was treated as a novel contact. On average, our

simulation ran at 0.28 s/frame, accelerating the full space simulation by 48×. Even in

the worst case, the most novel collision-induced deformation was computed 8.1× faster

than a full space simulation over the entire mesh. Figure 4.8 shows the time per frame,

as well as the percentage of vertices being simulated in full space, for a fist clenching

sequence. The simulation time is clearly proportional to the size of the full space region.

To test for convergence of our approach, we compared the simulation errors of using

different influence radii against the full space simulation solution for a subsequence of

the hand motion (Fig. 4.6). We used relative L2 error. It is clear that the error decreases

as the influence radius increases.

Cheb: The “Cheb” mesh [113], shown in Figures 4.1, 4.2 and 4.7, contains 26,652

vertices and 123,464 tetrahedra, and is rigged with 17 bones. We constructed the subspace

using 38 evenly spaced samples of a walk cycle. The total rank of the subspace basis,

summed over all the skeletal domains, is 301. SCC was used to resolve the predictable

collisions between Cheb’s feet.

As an extreme collision test, we had three walls gradually crush Cheb’s head. The

forces caused extreme locking in the subspace-only simulation (Figure 4.2), while our

simulation gracefully handled the deformation by activating full space computation in

half of the vertices (Figure 4.1). A large influence radius was needed in this example

(ρ = 0.39) due to the geometric and material properties of the model: an impulse at

the tip of the ear propagates quickly through the entire ear. On average, this difficult

scenario was accelerated by a factor of 4.8×. Even when half of the mesh was being

simulated in full space, we saw a 1.9× speedup; the other half of the mesh was simulated

73

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

Figure 4.6: The relative error of our approach using different influence radii, plotted
with different colors, compared to the full simulation. Full space regions start appearing
at frame 9. The relative error clearly decreases as the radius increases.

in the subspace for a negligible additional cost.

Dynamics were also enabled in this example, so the accelerations caused by the contact

forces also induced out-of-basis deformations. The dynamics oracle correctly kept the

head in full space until the motion had sufficiently damped out (Figure 4.7).

Example Full Space Time/Frame Subspace Time/Frame Best Case Speedup
Capsule 7.95 s 15 ms 506×
Hand 13.54 s 100 ms 135×
Cheb 3.69 s 55 ms 67×

Table 4.1: Performance of full space simulations over the entire mesh, and subspace-only
simulations.

74

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

Figure 4.7: In reading order, Cheb’s head is simulated in full space (inset, in red) even
after the walls are removed, because accelerations still produce out-of-basis deformations.
Once the dynamics damp out (lower right), the subspace-only simulation re-activates.

Example
Influence
Radius

Average Worst Case
Fullsim
%

Time/Frame Speedup Fullsim
%

Time/Frame Speedup

Capsule
0.25 18.6% 0.84 s 9.4× 50.6% 2.7 s 3.5×
0.08 2.6% 0.11 s 76× 10.2% 0.42 s 22×

Hand 0.046 1.7% 0.28 s 48× 14.3% 1.67 s 8.1×
Cheb 0.39 26% 0.77 s 4.8× 49.4% 1.90 s 1.9×

Table 4.2: Performance of our subspace condensation algorithm. The influence radii
assume that the mesh has been normalized to a unit cube. We report the % of vertices
that were activated in full space (Fullsim %), the time/frame and the speedup averaged
over the entire sequence as well as in the worst, most complex frame.

4.6 Summary

We have presented an efficient algorithm that addresses a key limitation of subspace

simulations. When an out-of-basis event is encountered, we activate full space computa-

tion on-the-fly in the neighborhood of the event. Our method is fast, generic and applies

to non-linear materials. Our main contributions include:

• Subspace condensation, a new method that combines the generality of full space

deformations with the speed of subspace computations.

• The main bottleneck of condensation methods is a large matrix inverse. We design

75

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

Figure 4.8: Simulation time per frame for a fist clenching and unclenching. The fingers
clench in a different sequence from which they unclench, so many novel collision config-
urations that were not seen during training are encountered. The full space regions are
drawn in red in the gray silhouette images. The simulation time is clearly proportional
to the size of the active full space.

a solver that sidesteps this problem using subspace coordinates, but still maintains

a two-way coupling between the full space and subspace regions.

• Condensation is usually only applicable to linear materials, but the speed of our

method allows it to be applied to non-linear materials as well.

• We demonstrate our algorithm on a physics-based skinning application. To this

end, we propose several oracles that detect the regions where full space computa-

tion is needed and where the subspace approximation will suffice, and dynamically

partitions the mesh into these regions at every frame.

• By exploiting the forces along the boundary of the full space regions, we show that

an efficient, cubature-based method [20, 39] can be obtained for evaluating the

forces inside the subspace regions.

Our method allows subspace deformable solids to be interactive rather than just

staying in a prescribe motion space. Actually, deformable solids can interact not only

76

Handling Arbitrary External Collisions with Subspace Condensation Chapter 4

with each other, but also with fluids. In the next chapter, we present an efficient algorithm

for solid-fluid coupling.

77

Chapter 5

Eulerian Solid-Fluid Coupling

Note: A large portion of this chapter has previously appeared as [115].

Figure 5.1: “Party” scene: Three hyper-elastic and two elasto-plastic objects are
squashed into a complex contact configuration, all while fully two-way coupled with the
surrounding fluid. All of the objects and the fluid are represented on a 200× 180× 200
Eulerian grid.

Chapter 3 presents a purely subspace approach for efficient articulated self-contact.

When the contact scenario gets more complex, we observe that subspace alone becomes

insufficient and design an adaptive full space - subspace algorithm (Chapter 4). We now

go to the other extreme to handle even more sophisticated systems. We present a new

full space method that achieves a two-way coupling between deformable solids and an

incompressible fluid where the underlying geometric representation is entirely Eulerian.

78

Eulerian Solid-Fluid Coupling Chapter 5

Using the recently developed Eulerian Solids approach [5], we are able to simulate multiple

solids undergoing complex, frictional contact while simultaneously interacting with a

fluid. The complexity of the scenarios we are able to simulate surpasses those that we

have seen from any previous method (Figure 5.1). Eulerian Solids have previously been

integrated using explicit schemes, but we develop a semi-implicit scheme that allows large

time steps to be taken. The incompressibility condition is satisfied in both the solid and

the fluid, which has the added benefit of simplifying collision handling.

5.1 Introduction

Two-way solid-fluid coupling produces visually and mechanically distinctive behaviors

such as a ball pushing smoke and water away while it simultaneously deforms under the

fluid’s load. The correct handling of this coupling also leads to realistic behavior such

as a bowling ball falling more quickly than a feather due to drag forces. Thus, methods

for simulating complex scenes that couple solids and fluids can be critical for generating

compelling visual effects and accurately simulating the world around us.

Solid simulation, particularly hyperelastic solids, predominantly uses a Lagrangian

representation [116, 117, 118, 119, 120], while single-phase fluids such as smoke are often

simulated on an Eulerian grid [121, 122, 123]. As a result, a variety of methods have been

developed that attempt to couple these two disparate representations [25, 124] using a

suite of numerical techniques and geometric operations.

However, the idea of a unified solver, where the underlying geometry is either entirely

Lagrangian or entirely Eulerian, is an appealing one. It removes the need to negotiate

between different coordinate systems, and promises to simplify both the design and im-

plementation of the overall algorithms. To date, most attempts at such a solver have

been Lagrangian [29, 30, 31, 32], because SPH-like [125, 4] and FLIP-like [72] methods

79

Eulerian Solid-Fluid Coupling Chapter 5

can be used to make the fluid representation Lagrangian as well.

In this chapter, we take the opposing perspective and explore the coupling of fully

Eulerian solids and fluids. This is made possible by the recent work of Levin et al. [5],

which presents a method for simulating hyperelastic solids within an Eulerian framework.

By incorporating this method into an Eulerian fluid solver, we are able to resolve complex

contact scenarios between multiple solids and a single-phase fluid (Figure 5.1). In order

to enable large timesteps in the presence of difficult contact configurations, we present

a semi-implicit method for stepping the system forward in time. As in the cases of

cloth and hair [126, 127], we empirically observe that the incompressibility of the fluid

naturally assists in collision handling. The final algorithm does not require the generation

or maintenance (i.e. remeshing) of a well-conditioned tetrahedral mesh, and maintains

the robustness and ease of use of a purely Eulerian technique. Our method is able to

simulate complex collision scenarios between solids and fluids that we have not seen from

any previous approach.

5.2 Related Work

Beginning with the immersed boundary method [128], simulating the coupled motion

of solids and fluids has a long history in both graphics and engineering. In graphics,

there has been much work coupling fluids to rigid bodies [129, 130, 131, 132], as well as

rigid and deformable shells [133].

Chentanez et al. [25] modeled the deformable solid as an unstructured tetrahedral

mesh and showed how to couple it to an Eulerian fluid, which could be represented as

either a regular grid or another unstructured mesh. This approach requires a mesh gen-

eration stage, and the specific formulation required an asymmetric system to be solved.

This approach has been extended to fully Lagrangian simulations of both the solid and

80

Eulerian Solid-Fluid Coupling Chapter 5

fluid [134, 135, 136], and has incorporated additional phenomena such as phase transi-

tions [31] and porous flow [137]. Other methods have further investigated Eulerian fluid

discretizations and used sophisticated geometric operations [124, 26] as well as overlap-

ping grids [138] to couple the grid velocities to a Lagrangian solid. Fast, approximate,

position-based methods have also been recently developed for real-time applications [32],

which can often need careful parameter tuning to generate realistic results.

Recently, the Material Point Method (MPM) [71, 72] has become popular for sim-

ulating a number of mixed-phase phenomena. It shares some of the same advantages

of our approach, as it avoids the need for complex remeshing schemes and geometric

conversions. However, as mentioned by Jiang et al. [139], these schemes are known to

have issues representing hyperelastic materials, as artificial plasticity can creep into the

simulation. Our scheme naturally handles hyperelastic response, even in the presence of

a fluid, and still allows the user to add plasticity if desired.

In order to avoid complicated meshing schemes, simulate elastic objects accurately,

and robustly resolve complicated collisions, Levin et al. developed the Eulerian Solids

methodology [5]. With this technique in hand, it is natural to ask whether we can now

perform solid-fluid coupling in a purely Eulerian fashion. The closest work to ours in

the engineering literature is Kamrin et al. [140], which showed that a similar “reference

map” method can be used to couple deformable, elastic solids to weakly compressible

fluids. The approach has also been extended to handle non-frictional contact between

two objects [141]. However, this method does not handle incompressible fluids, large

time steps or complex contacts between a multitude of objects. Crucially, their efficacy

has also only been demonstrated on coarse 2D grids. In contrast, we present a fully 3D

Eulerian Solids-based solver that couples an incompressible fluid to multiple deformable

objects undergoing frictional contact. By using an implicit time integration scheme, we

are able to take large timesteps.

81

Eulerian Solid-Fluid Coupling Chapter 5

5.3 Coupled Solid–Fluid Simulation

Notation: Our notation is coherent with the rest of this dissertation. Additionally,

we use a ? superscript to denote intermediate, before-advection state. A superscript to

the left of a variable is used to distinguish solid objects from fluid. Unlabelled vectors

are considered global, i.e. they contain both solid and fluid entries.

5.3.1 The Continuous Formulation

In this work we focus on the coupled simulation of multiple incompressible, hyper-

elastic, and elasto-plastic solids immersed in an incompressible fluid. This requires us to

solve the momentum equation, given by

ρ
dv

dt
= ∇ · σ + f

∇ · v = 0

∀x ∈ Ω

fv = sv ∀x ∈ Γ

(5.1)

where Ω denotes a region in world space, v is the velocity of a particle at x, σ is

the Cauchy stress and f are external forces such as gravity. For each x containing a

solid, we compute σ using a standard hyper-elastic or elasto-plastic constitutive model,

and for each x containing a fluid we set σ = 0. For these cells, the divergence-free

condition, ∇·v = 0, is sufficient. We also enforce a no slip condition along the solid-fluid

boundary Γ, where fluid and solid velocities are respectively denoted fv and sv. We use

the hyper-elastic model of McAdams et al. [11] for the elastic component of all of our

examples.

82

Eulerian Solid-Fluid Coupling Chapter 5

Figure 5.2: The high-level structure of our data storage and computation scheme. To
assist advection and contact handling, we keep separate velocity fields for each solid
object. For efficiency, only values near the solid are updated.

5.3.2 Spatial Discretization and Constraints

Our method relies on fixed discretizations of both x̄ and x. In order to solve Equa-

tion 5.1, we discretize Ω using regular, hexahedral finite elements. Velocity, displacement

and forces are co-located at the grid nodes, while pressure values is stored at grid centers.

In order to incorporate equality constraints we rely on a mixed formulation in which in-

compressibility is applied as a point constraint at the cell center. This can be considered

an under-integrated finite element, which is commonly used to prevent locking [142].

We then compute per-element mass and stiffness matrices, based on whether each cell

contains a solid or a fluid, using an eight-point quadrature rule, and then assemble into

global M and K operators. Our discretized divergence-free constraint is expressed as

83

Eulerian Solid-Fluid Coupling Chapter 5

Jv = 0 where J is the constant constraint gradient. Note that due to the continuity of

the velocity field, the no slip condition on solid-fluid boundaries is implicitly enforced,

and no special spatial coupling terms need to be formulated.

To facilitate velocity advection and collision detection, each solid stores a copy of the

velocity field, but only values near the solid are ever updated. Fig. 5.2 shows our high level

data storage and computation structure. Our algorithm also requires a discretization of

x̄ if plastic deformation is desired. For each plastic solid, we create an auxiliary grid of

that solid’s reference coordinate system lx̄, where l ∈ [1, Ns] indexes each solid in the

simulation.

5.3.3 Time Integration

We use a splitting scheme to advance our system in time. First, we use implicit inte-

gration to compute a divergence-free velocity field for the solid cells, and then perform

an advection that resolves collisions. Algorithm 5 gives an overview of our time integra-

tion scheme. In the next sections, we describe the key components of our algorithm: a

semi-implicit update for Eulerian Solids, pressure projection, and a collision resolution

scheme.

5.3.4 Semi-implicit Update

The original Eulerian Solids scheme [5] used explicit force integration to compute

the velocity field, followed by a first-order finite difference scheme for advection. Both

of these design decisions resulted in small time steps. While Fan et al. [73] introduced

Lagrangian modes on top of the Eulerian motion in order to reduce this restriction, we

seek to ease it in a way that maintains the convenience of a single spatial discretization.

First, we replace the explicit force integration with a semi-implicit scheme that is similar

84

Eulerian Solid-Fluid Coupling Chapter 5

Algorithm 5 Eulerian solids and fluids simulation

1: Compute ∆t based on CFL condition
2: for each solid object, l do
3: Compute mass lM and volume fraction lV on the grid
4: Compute material force lf and stiffness matrix lK
5: . (§5.3.4)
6: end for
7: Compute fluid mass fM
8: Assemble M, K, C and f? . (§5.3.4)
9: v? = G−1f? . (Eqn. 5.3)

10: Compute pressure p . (Eqn. 5.7)
11: Pressure project v? to get pre-advection vn+1 . (Eqn. 5.8)
12: for each solid object, l do
13: Update solid particle velocities using FLIP from lvn+1

14: Add repulsions and frictions to particles in collision
15: . (§5.3.6)
16: end for
17: for each solid object, l do
18: Rasterize particle velocities to get final velocity lvn+1

19: Update displacement lu = lu
n

+ ∆tlvn+1

20: Semi-Lagrangian advect lu to get lun+1

21: end for
22: Semi-Lagrangian advect fluid velocity fvn+1

85

Eulerian Solid-Fluid Coupling Chapter 5

to that of Stomakhin et al. [143].

We denote the change in velocity at each grid node, due to internal forces fint, over

the time interval [t, t+ ∆t] as:

vn+1 = vn + ∆t fint

(
un+1

)
.

A standard Taylor expansion around x yields,

f(un+1) = fint(u
n + ∆tvn+1) ≈ fnint +

∂fnint

∂x
∆t vn+1, (5.2)

which we can further abbreviate to f(un+1) = fnint + K∆tvn+1. By combining this with

a first order discretization of acceleration, a? = (vn+1 − vn)/∆t, and the equations of

motion for a deformable solid, Ma?+Cv?+f?int = fext, we obtain the semi-implicit update

equation:

(M + ∆tC + ∆t2K)v? = Mvn + ∆t(fext − fnint). (5.3)

Here, C is a Rayleigh damping matrix. The external force term fext includes body,

buoyancy and vorticity forces. For fluid-only cells, C and K disappear and only the

diagonal mass matrix M remains. Therefore, the system can be solved efficiently if the

simulation domain is dominated by a fluid.

Note that there is no advective term in the stiffness matrix. In a purely Eulerian sense,

the force arises from a chain of variables: fint (F (u(x(t), t))). The derivative should then

be:

∂fint (F (u(x(t), t)))

∂t
=
∂fint

∂F

∂F

∂u

(
∂u

∂x

∂x

∂t
+
∂u

∂t

)
. (5.4)

The ∂u
∂x

∂x
∂t

= v · ∇u appears to introduce an advective term, but we can observe that(
∂u
∂x

∂x
∂t

+ ∂u
∂t

)
= Du

Dt
, i.e. the total derivative of u. This then reduces to the Lagrangian

86

Eulerian Solid-Fluid Coupling Chapter 5

case,

∂fint (F (u(t)))

∂t
=
∂fint

∂F

∂F

∂u

Du

Dt
, (5.5)

Taking a perspective similar to Stomakhin et al. [143] that the nodes of the Eulerian mesh

are fictitiously deforming in a Lagrangian manner, the Lagrangian K in Equation 5.3

suffices.

Our semi-implicit integration scheme can handle large time steps under severe defor-

mations. In Figure 5.3 we initially squished a bunny by half. We did not respect the

CFL condition and set ∆t = 1
24

. Explicit integration blows up almost immediately, while

semi-implicit integration correctly returns the bunny to its rest shape.

(a) (b)

Figure 5.3: We scale the bunny by half and let it expand. Using ∆t = 1
24

, explicit
integration blew up after 4 frames while our semi-implicit scheme is extremely stable.

87

Eulerian Solid-Fluid Coupling Chapter 5

5.3.5 Incompressibility Constraints

We enforce incompressibility constraints using a primal-dual algorithm. First, we

form the Karush-Kuhn-Tucker (KKT) system prescribed by our semi-implicit scheme

(§5.3.4), G JT

J 0


 vn+1

p

 =

 f?

b

 (5.6)

where G = M + ∆tC + ∆t2K, f? = Mvn + ∆t(fext − fnint) and b contains the boundary

conditions. We first solve Gv? = f? for the unconstrained velocity v? and then solve the

dual problem to eliminate the divergent part of the velocity field. We replace G−1 with

M−1 in the pressure solve to avoid an expensive matrix inversion:

JM−1JTp = Jv? − b. (5.7)

Finally, we correct v? to get the pre-advection velocity field vn+1:

vn+1 = v? −G−1(JTp). (5.8)

The substitution in Eqn. 5.7 is can be interpreted in two ways. First, if all the cells

contain fluid, the Schur complement in Eqn. 5.7 naturally yields M−1. Thus, we can

interpret this substitution as momentarily approximating the solid cells as fluid. Second,

if the solid cells are integrated explicitly, Eqn. 5.7 again yields M−1, as the material

forces still appear on the right hand side. So, we can interpret the substitution as only

integrating the volume terms implicitly, while treating the solid strain energies explicitly.

We also attempted to solve the KKT system (Eqn. 5.6) directly, but initial test

showed that our primal-dual version ran over 3× faster in 2D. The investigation of more

sophisticated solution methods for this problem is left as future work.

88

Eulerian Solid-Fluid Coupling Chapter 5

Complexity compared to explicit integration: In previous work, [5, 73], two

quadratic problems of the same form as Equation 5.6 were solved to determine the time

step size. In our formulation, we instead solve three linear systems (Eqs. 5.3, 5.7 and

5.8). In our experiments, we found that the increase in time step size far outweighed the

cost of this additional linear solve. Thus, we are able to compute a large, implicit step

at a cost that is proportional to a small, explicit step.

5.3.6 Contact and Collision Response for Solids

As noted in previous work [126, 127], the presence of divergence-free constraints help

to maintain a collision-free state. However, some collision handling is still needed to avoid

solids from “sticking” if the advection stage introduces overlaps. In order to address this,

we apply the repulsion forces of Bridson et al. [144] during our advection.

For this stage, it is necessary to employ an auxiliary Lagrangian variable. While

this seems slightly at odds with the goal of a fully Eulerian simulation, our underlying

geometric representation remains Eulerian. Like the Eulerian grid projection stage of

the Lagrangian FLIP method [77], or the semi-Lagrangian particle traces of grid-based

Stable Fluids [74], we leverage the advantages of the other coordinate system during time

integration without fully commiting to the representation.

Collision resolution begins by copying each solid velocity vn+1 from our spatial grid

to the individual solid grids lvn+1, where l indexes each solid in the scene. Next, we

instantiate particles for each solid, using 8-16 particles per cell. In order to avoid collisions

we check the distance between the initial particles of one solid against all of the other

solids. If it is closer than a distance h (typically the grid resolution) the normal velocity

89

Eulerian Solid-Fluid Coupling Chapter 5

of the particle is modified by an impulse r, defined as:

r = −min

(
∆t k d,m

(
0.1d

∆t
− vN

))
. (5.9)

Here, d is the overlap distance, k is a spring stiffness, m is the mass of the particle and

vN is the relative velocity in the direction of the contact normal. The change of the

particle velocity in the normal direction is then defined as ∆vN = r/m. Friction can also

be applied by modifying the relative tangential velocity:

vT = max

(
1− µ∆vN

|vpre
T |

, 0

)
vpre
T , (5.10)

where vpreT is the pre-friction relative tangential velocity. The values of k and µ we used

are listed in Table 5.1.

Computing the contact normal: Each solid object has an embedded surface

mesh and a signed distance field φ defined in its material domain. The mesh is advected

passively in the same way as Fan et al. [73]. When checking for the collision of material

particle s of solid i against solid j, we interpolate the material position field jx̄ and

lookup jφ. A repulsion is added if the overlap d = h − jφ(jx̄(ips)) > 0. We find the

nearest surface element to jx̄(ips) and use its world space normal as the contact normal.

If a surface mesh is not available, the gradient of the background volume grid can be

used to compute the normal [5].

5.4 Implementation and Results

We solved Equation 5.3, 5.7 and 5.8 using Preconditioned Conjugate Residuals (PCR)

with a Jacobi preconditioner because the matrices are semi-definite. Warm starting was

used when solving the pressure (Equation 5.7). We use the Eigen [114] library for linear

90

Eulerian Solid-Fluid Coupling Chapter 5

algebra routines. All simulations were run on a 8-core, 3GHz MacPro with 32 GB of

RAM using 16 threads. An advantage of Eulerian simulation is that most stages can

be embarrassingly parallelized, so OpenMP was used whenever possible. Both our 2D

and 3D examples used the co-rotational material from McAdams et al. [11]. Tables 5.2

and 5.3 shows a performance summary of our 3D examples and Table 5.1 shows their

simulation parameters. We chose a high contact spring stiffness for more bouncy contact

and lower value for dampened contact. We used a PCR threshold of 0.02 for the pressure

solve (Equation 5.7) in all the examples. For the two velocity solves (Eqs. 5.3 and 5.8)

we used a PCR threshold of 1e−4 for Cheb and 1e−3 for the others.

5.4.1 Simulating a Single Solid with a Fluid

In all of the following examples, we found that the linear solves, particularly the pres-

sure solve, consumed the largest fraction of the running time (Table 5.3). The collision

assistance provided by the divergence-free constraint can also be seen in the timings, as

very little time needs to be spent in collision resolution.

Elasticity validation: Figure 5.4a shows two jets compressing an elastic circle.

External forces, including fluid forces, are then removed and the simulation of the circle

continues in isolation. The circle correctly returns to its reference configuration, which

is a hallmark of the Eulerian Solids approach (Figure 5.4b).

Ball: We dropped a heavy elastic ball to a carpet of smoke. The only external forces

applied to the fluids are gravity and vorticity confinement of Fedkiw et al. [145]. The

smoke gets pushed away when the ball hits the flow. As the ball rebounds, a plume of

smoke is drawn up by the low-pressure eddy formed in its wake. The simulation is inside

a box with Dirichlet boundary conditions, so four vortices form along the four quadrants

of the x-z plane (Fig. 5.5).

91

Eulerian Solid-Fluid Coupling Chapter 5

(a) (b)

Figure 5.4: (a) A elastic circle deforms under the influence of two jets. (b) We removed
all external forces and simulated the circle by itself. The circle is able to return to its
rest shape.

Buoyancy: Figure 5.6 illustrates that solids with different densities behave differ-

ently when interacting with the fluid. The heavy bunny falls at the rate of gravity and

the light bunny falls much slower due to drag forces. A buoyant jet is used to push the

light bunny to the ceiling while the heavy bunny remains on the ground.

Cheb’s Glaucoma Test: For plastic deformation, we use a multiplicative plasticity

model [70]. The plastic deformation gradients are stored in a material space grid, initially

set to identity, and updated according to a yield condition (Section 2.4). We take Cheb

to an eye exam where a high pressure puff of air is shot at his head. Figure 5.7c and

5.7d shows the comparison between elastic and plastic deformation. In the supplemental

video1, we show that by varying whether the feet are constrained, different motions are

obtained.

5.4.2 Simulating Multiple Solids with a Fluid

Collision Response: In the supplement video1 we show two 2D circles moving

towards each other. By adding collision response to the solid particles, the circles are

able to separate after collision. Without this response, the circles stick.

1https://youtu.be/jobwwpLriDQ

92

Eulerian Solid-Fluid Coupling Chapter 5

Figure 5.5: A plume rises as an elastically deforming ball bounces up from a smoky
floor.

Example Solid-fluid k spring µ friction
density ratios stiffness coefficient

Ball 1000:1 10000 0.5
Bunny (light) 1.3:1 2000 0.2

Bunny (heavy) 1000:1 2000 0.5
Cheb 1.3:1 2000 0.5
Party 1000:1, 500:1 10000 0.2

Table 5.1: Simulation parameters used for each example.

“Party”: We simulate multiple solids with various densities and material param-

eters interacting with each other and the fluid (Figure 5.1). Figure 5.9 shows the time

steps used throughout the simulation. We use a CFL number of 0.6 when two solids are

less than 2 grid cells apart and 1.8 otherwise. Some small time steps occur after second 6

in order to complete the current render frame, not due to the CFL number. Smoke and

side walls are not rendered so that the solid and fluid motions can be seen more clearly.

Figure 5.8 shows the final shape of each solid. Note the extreme deformations such as

93

Eulerian Solid-Fluid Coupling Chapter 5

Figure 5.6: Different solid densities behave differently under buoyant flow. When the
solid-fluid density ratio is 1.3:1 (left), the smoke plumes causes the bunny to rise like a
balloon. When the ratio is 1000:1 (right), the bunny drops like a rock.

the plastic duck’s wing being compressed to be flush with its body.

Due to the presence of multiple objects, the timing breakdown differs from that of the

other examples. More time is spent in advection and constructing G. This is because a

K matrix must be constructed for each solid, and each must also be converted to FLIP

particles and then re-rasterized to the grid. Our current implementation parallelizes

these operations internally for each solid object; it does not create a separate thread for

each solid. Therefore, many opportunities for further accelerating these operations still

remain.

94

Eulerian Solid-Fluid Coupling Chapter 5

Example Grid Dimensions Avg. Min. Avg.
timestep timestep time/frame

Ball 120 × 140 × 120 0.025 0.0016 6.54s
Light Bunny 144 × 200 × 144 0.0369 0.0064 17.4s
Heavy Bunny 144 × 200 × 144 0.0236 0.00058 16.9s

Cheb 120 × 100 × 80 0.021 0.0023 6.97s
Party 200 × 180 × 200 0.0133 0.00083 54.1s

Table 5.2: For each example, the size of the spatial grid, average / minimum simulation
time step sizes and average per-frame simulation times are reported.

Example Compute Velocity solves Pressure Advection Collision
G (line 8) (lines 9, 11) solve (line 10) (lines 13, 18) (line 14)

Ball 0.84 0.12 2.83 1.12 0.01
Light Bunny 1.32 5.02 6.21 1.72 0.016
Heavy Bunny 1.35 2.47 8.31 1.68 0.016

Cheb 1.55 1.10 1.10 1.37 0.01
Party 13.6 6.72 12.1 14.46 0.25

Table 5.3: The computation times of key stages of Algorithm 5. All timings are reported
in seconds.

5.5 Summary

In this chapter we have shown how to simulate a two-way coupling between solids

and a fluid where the underlying representation is entirely Eulerian. This allows us to

generate simulations that feature large deformations and frictional contact, all the while

capturing visually interesting fluid effects. We believe our method produces examples that

are more complex than previous approaches and avoids the complexities of Lagrangian,

mesh-based simulation. Our work makes the following technical contributions:

• A unified, Eulerian framework for simulating fully coupled fluids and deformable

solids

95

Eulerian Solid-Fluid Coupling Chapter 5

• A semi-implicit solver for Eulerian Solids

• A method for satisfying incompressibility for both the solid and fluid regions of the

simulation

• A collision resolution scheme for multibody frictional contact

96

Eulerian Solid-Fluid Coupling Chapter 5

(a) (b)

(c) (d)

Figure 5.7: (a) Cheb has a high pressure puff of air shot at his head. (b) Same frame,
viewed from the front, with smoke removed to make the deformation more visible. (c)
Final frame, elastic deformation. (d) Final frame, plastic deformation. Note that the
dent in his head persists, as well as the deformations to his ears.

97

Eulerian Solid-Fluid Coupling Chapter 5

Figure 5.8: The final shapes of party members. The duck and penguin on the left are
plastic while the other three are elastic.

Figure 5.9: Simulation timestep sizes as the party progresses. The rendering rate is
fixed at ∆t = 1

24
throughout. The horizontal black line denote the average timestep

during the simulation. Frames from events corresponding to significant changes in the
timestep size are shown. From left to right: the solids are given an initial impulse, they
collide and form complex contacts, they fall to the floor, bounce on the floor, and finally
come to rest.

98

Chapter 6

Conclusion

In this dissertation, we have presented several methods for efficient deformable object

simulation. Options along the 2D spectrum of subspace space to full space and La-

grangian to Eulerian coordinate systems were explored of different levels of complexity

(Figure 6.1). Our proposed techniques have been verified with experimental results in

character animation, articulated self-contact, arbitrary external collisions, and solid-fluid

coupling. These problems are crucial to human simulations. Solving them efficiently will

get us one step closer to real-time applications such as interactive virtual humans.

6.1 Summary of Results

We have presented a pose-space cubature approach in the context of articulated sub-

space self-contact. Collision detection and resolution could easily become a computa-

tional bottleneck, especially in the setting of subspace simulation, where the other stages

have been sufficiently accelerated. Since articulated self-contact is highly structured, it

possesses precisely the type of coherent behavior that subspace methods excel at exploit-

ing. The original cubature approach [20] showed superior performance for approximating

99

Conclusion Chapter 6

Figure 6.1: We achieve efficient deformation by sampling 3 points on this 2D spectrum
of coordinate systems.

subspace non-linear material forces and Jacobians through sparse point sampling. Given

sufficient amount of training data, a single set of cubature points worked well on a wide

range of deformations. Unfortunately, this is no longer the case for contact forces. First,

contact forces are highly non-linear (only C0 continuous). Second, the training matrix

that contains all the data is inevitably sparse, since each collision point is only active in a

few frames. Our analysis shows that the above two conditions make cubature training in-

efficient and a dense cubature set is produced. Based on these observations, we designed

the pose-space cubature scheme that trains cubature points in a more localized fashion

and associates them with a pose-space lookup. Our algorithm accelerates self-contact by

up to an order of magnitude over other subspace simulations, and accelerates the overall

100

Conclusion Chapter 6

simulation by two orders of magnitude over full-rank simulations.

The pose-space cubature approach accelerates the computation of subspace non-linear

terms. But a subspace method itself could fail when the basis become insufficient. This

could happen when, for example, the solid undergoes arbitrary external collisions. For a

basis to include all possible deformations, its rank would approach the original full space

degrees of freedom and there would be no performance gain at all. To overcome this lim-

itation, we proposed subspace condensation, an adaptive full space - subspace simulation

scheme. It allows full space computation to be activated in the neighborhood of novel

events while the rest of body still computes in a subspace. No constraint mechanisms are

required to couple the subspace and full space regions. We designed several oracles to

determine the full space region and provided a control parameter to balance the trade-off

between accuracy and performance.

Finally, we designed a new full space method that achieves a two-way coupling be-

tween deformable solids and an incompressible fluid where the underlying geometric rep-

resentation is entirely Eulerian. Using the recently developed Eulerian Solids approach

[5], we were able to simulate multiple solids undergoing complex, frictional contact while

simultaneously interacting with a fluid. Eulerian Solids have previously been integrated

using explicit schemes. Instead, we developed an semi-implicit scheme that allows large

time steps to be taken. No-slip boundary conditions are automatically satisfied by im-

posing a global divergence-free condition. The complexity of the scenarios we are able to

simulate surpasses those that we have seen from any previous method.

6.2 Limitations

Our pose-space cubature scheme improves upon state-of-the-art subspace simulations

by providing a quick way to approximate highly non-linear quantities. As observed

101

Conclusion Chapter 6

in Harmon and Zorin [80], a comprehensive theory of cubature sampling is still an open

problem. We did not present such a theory here, but we hope our results and observations

can assist in the formation of such a theory in the future.

Although subspace methods enjoy considerable speedup at runtime, the benefit might

potentially be offset by the amount of precomputation. A PCA-based basis typically

requires training data generated through full space simulation. The effort involved in

setting up these examples might make it less appealing. Model analysis-based bases

eliminate this requirement and recent advances [39, 57] improve their ability to handle

non-linear deformations. How to compute our pose-space cubatures without explicit

training data remains a very interesting question.

While our condensation algorithm allows subspace acceleration to be applied to new

scenarios, some of the usual limitations of subspace methods still remain. If there are

global deformations that are not well-captured by the subspace, some artifacts can

appear. For example, collisions that produced near-rigid translations of the capsule

sometimes produced slight swimming in the checkerboard texture if an equivalent quasi-

translation was not captured by the basis. So, while basis construction becomes less

onerous with our method, the subspace must still be constructed with care.

Our method can support any oracle, but the quality of that oracle will directly deter-

mine the amount of acceleration experienced by the simulation. We have proposed two

oracles based on spherical distance and global velocity and acceleration and set their pa-

rameters heuristically. Our experimental results show that the quality of the simulation

improves as the coverage of the full space region expands. A theory on this convergence

property would definitely assist in designing more sophisticated oracles.

We used penalty forces to resolve collisions, but full space adaptivity opens the door

to constraint mechanisms that subspace methods have had trouble with in the past. The

degrees of freedom needed for hard constraints can now be added on the fly, and enable

102

Conclusion Chapter 6

such phenomena as adhesive contact [146].

Currently our Eulerian solid-fluid coupling method is limited to single-phase fluid.

Extending this approach include high-quality, fully Eulerian liquid simulations [147] is

an interesting direction for future work. As the technique is Eulerian, handling features

that are smaller than a single grid cell, e.g. rods and thin shells [133], remains a challenge.

This same difficulty extends to representing detailed fracture patterns, though extended

finite element approaches [148] offer a potential solution.

Furthermore, while we have shown that an implicit integration scheme can be ef-

fective when simulating this coupling problem, other schemes that enable even larger

timesteps [149], or preserve more structure given the same timestep [121], would be wel-

come additions to this work. Finally, it remains to be seen whether a combination of

Eulerian-on-Lagrangian [73] and subspace methods [28, 150] could be used to accelerate

the overall simulation.

6.3 Future Work

The scope of physics-based simulation in computer graphics has expanded tremen-

dously in the past three decades. Simulations of sophisticated natural phenomena come

at a cost of intensive computations. How to improve their efficiency remains an active

research topic. By sampling three points on the 2D spectrum of Lagrangian to Eulerian

and subspace to full space coordinate systems, we are able to accelerate a variety of

deformable object simulations. There are still lots of empty spaces left on this spectrum

that are worth exploring (Figure 6.2).

103

Conclusion Chapter 6

Figure 6.2: A lot of empty space still remains on this 2D spectrum. We list a few
possibilities for future research.

6.3.1 Eulerian Subspace Condensation For Fluid Simulation

The subspace fluid simulation method developed by Kim and Delaney [28] not only

faithfully reproduces the full space training result, but also allows re-simulating novel

variations when small changes in the parameters (e.g. vorticity confinement, buoyancy)

are made. Small, scripted moving obstacles are also supported by this approach. The

questions remains whether we can further generalize it to quickly handle novel solid

motion by adding full space adaptivity. Here we give a brief discussion of our initial

attempt to solve this problem.

We applied subspace condensation to one-way coupling of an Eulerian fluid to a

104

Conclusion Chapter 6

scripted rigid body [132]. We built the subspace basis for the fluid as in Kim and

Delaney [28] and set the full space region to be a narrow band around the solid-fluid

boundary. In Kim and Delaney [28], the reduced matrices (e.g., divergence operator,

Poisson matrix) for different stages can be precomputed and combined as a single reduced

system matrix. Efficient incremental update can be applied to account for small scripted

moving obstacles using the the Iterated Orthogonal Projection (IOP) approach [151].

Unfortunately, this is no longer the case for our scenario where the obstacle is large.

The size of the full space region is significant and recomputing those reduced matrices

for every frame offsets the performance gained in the linear solve. For a 2D simulation

of size 64 × 64, subspace condensation ran 5× slower than its full space counterpart.

Alternatively, we could divide the domain into blocks and at runtime activate relevant

blocks instead of arbitrary full space - subspace partitions. The reduced matrices can

be assembled from the precomputed ones for each block. The problem can hence be

formulated as one of finding the block size that optimizes the performance and accuracy

trade-off.

6.3.2 Subspace Eulerian-on-Lagrangian Solids

An Eulerian-on-Lagrangian simulation (e.g. [73]) allows the Eulerian grid to always

tightly enclose the solid being simulated and therefore can potentially be efficiently rep-

resented by a low-rank basis. One complication lies in that the actual cells containing

the solids varies across different frames and representing the values (e.g. displacements,

velocities) in the empty cells in a meaningful way is crucial to the quality of the resulting

basis. For example, setting the velocities in the empty cells to zero would result in high

discontinuities in the current frame as well as across different training frames. A PCA

basis constructed from such data might be overly sensitive to the boundaries and hard

105

Conclusion Chapter 6

to generalize. Representing the displacements is more difficult, as neither zero-values nor

linear extrapolation seems to be a good choice. Applying subspace condensation should

be straight forward provided that the pure subspace version works.

106

Bibliography

[1] D. DeBlois and C. Cowell, How to train your dragon 2. Fox-Paramount Home
Entertainment, 2014.

[2] C. Buck and J. Lee, Frozen. Walt Disney Studios Motion Pictures, 2013.

[3] P. Sohn, The good dinosaur. Walt Disney Studios Motion Pictures, 2015.

[4] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner, Sph fluids in
computer graphics, in Eurographics: State of the Art Reports, The Eurographics
Association, 2014.

[5] D. I. Levin, J. Litven, G. L. Jones, S. Sueda, and D. K. Pai, Eulerian solid
simulation with contact, in ACM Transactions on Graphics (TOG), vol. 30, p. 36,
ACM, 2011.

[6] S. F. Gibson and B. Mirtich, A Survey of Deformable Models in Computer
Graphics, Tech. Rep. TR-97-19, Mitsubishi Electric Research Laboratories,
Cambridge, MA, November, 1997.

[7] A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M. Carlson, Physically based
deformable models in computer graphics, in Eurographics: State of the Art Report,
The Eurographics Association, 2005.

[8] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan, Skinning with dual quaternions,
in Proceedings of the 2007 symposium on Interactive 3D graphics and games,
pp. 39–46, ACM, 2007.

[9] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine, Bounded biharmonic weights
for real-time deformation., ACM Transactions on Graphics (TOG) 30 (2011),
no. 4 78.

[10] P. Krysl, E. Grinspun, and P. Schrder, Natural hierarchical refinement for finite
element methods, International Journal for Numerical Methods in Engineering 56
(2001) 2003.

107

BIBLIOGRAPHY

[11] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis,
Efficient elasticity for character skinning with contact and collisions, ACM
Transactions on Graphics (TOG) 30 (July, 2011) 37:1–37:12.

[12] J. Barbič and D. L. James, Real-Time Subspace Integration for St.
Venant-Kirchhoff Deformable Models, ACM Trans. on Graphics 24 (Aug., 2005)
982–990.

[13] A. Treuille, A. Lewis, and Z. Popović, Model reduction for real-time fluids, ACM
Transactions on Graphics (TOG) 25 (July, 2006) 826–834.

[14] F. Hahn, B. Thomaszewski, S. Coros, R. W. Sumner, F. Cole, M. Meyer,
T. DeRose, and M. Gross, Subspace clothing simulation using adaptive bases,
ACM Transactions on Graphics (TOG) 33 (July, 2014) 105:1–105:9.

[15] A. Pentland and J. Williams, Good vibrations: Modal dynamics for graphics and
animation, in Proceedings of the 16th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’89, pp. 215–222, ACM, 1989.

[16] M. Shinya and A. Fournier, Stochastic motionmotion under the influence of wind,
in Computer Graphics Forum, vol. 11, pp. 119–128, Wiley Online Library, 1992.

[17] P. Krysl, S. Lall, and J. E. Marsden, Dimensional model reduction in non-linear
finite element dynamics of solids and structures, International Journal for
Numerical Methods in Engineering 51 (2001) 479–504.

[18] M. Meyer and H. G. Matthies, Efficient model reduction in non-linear dynamics
using the karhunen-love expansion and dual-weighted-residual methods,
Computational Mechanics 31 (2003), no. 1-2 179–191.

[19] M. Wicke, M. Stanton, and A. Treuille, Modular bases for fluid dynamics, in
ACM Transactions on Graphics (TOG), vol. 28, p. 39, ACM, 2009.

[20] S. S. An, T. Kim, and D. L. James, Optimizing Cubature for Efficient Integration
of Subspace Deformations, ACM Trans. on Graphics 27 (Dec., 2008) 165.

[21] T. Kim and J. Delaney, Subspace fluid re-simulation, ACM Transactions on
Graphics (TOG) 32 (July, 2013).

[22] S. Li, J. Huang, F. de Goes, X. Jin, H. Bao, and M. Desbrun, Space-time editing
of elastic motion through material optimization and reduction, ACM Transactions
on Graphics 33 (2014), no. 4.

[23] D. Harmon and D. Zorin, Subspace integration with local deformations, ACM
Transactions on Graphics (TOG) 32 (2013), no. 4 107.

108

BIBLIOGRAPHY

[24] T. Kim and D. L. James, Skipping steps in deformable simulation with online
model reduction, ACM Transactions on Graphics 28 (Dec., 2009) 123:1–123:9.

[25] N. Chentanez, T. G. Goktekin, B. E. Feldman, and J. F. O’Brien, Simultaneous
coupling of fluids and deformable bodies, in Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pp. 83–89,
Eurographics Association, 2006.

[26] A. Robinson-Mosher, R. E. English, and R. Fedkiw, Accurate tangential velocities
for solid fluid coupling, in Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’09, (New
York, NY, USA), pp. 227–236, ACM, 2009.

[27] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw, Two-way
coupling of fluids to rigid and deformable solids and shells, ACM Transactions on
Graphics (TOG) 27 (Aug., 2008) 46:1–46:9.

[28] T. Kim and J. Delaney, Subspace fluid re-simulation, ACM Transactions on
Graphics (TOG) 32 (July, 2013) 62:1–62:9.

[29] B. Solenthaler, J. Schläfli, and R. Pajarola, A unified particle model for fluid–solid
interactions, Computer Animation and Virtual Worlds 18 (2007), no. 1 69–82.

[30] N. Akinci, J. Cornelis, G. Akinci, and M. Teschner, Coupling elastic solids with
smoothed particle hydrodynamics fluids, Computer Animation and Virtual Worlds
24 (2013), no. 3-4 195–203.

[31] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien, Simulating liquids and
solid-liquid interactions with lagrangian meshes, ACM Transactions on Graphics
32 (April, 2013) 17:1–15.

[32] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, Unified particle physics for
real-time applications, ACM Transactions on Graphics (TOG) 33 (July, 2014)
153:1–153:12.

[33] D. L. James and D. K. Pai, BD-Tree: Output-sensitive collision detection for
reduced deformable models, ACM Transactions on Graphics 23 (Aug., 2004)
393–398.

[34] J. Barbič and D. L. James, Subspace self-collision culling, ACM Transactions on
Graphics (TOG) 29 (July, 2010) 81:1–81:9.

[35] Y. Teng, M. Meyer, T. DeRose, and T. Kim, Subspace condensation: full space
adaptivity for subspace deformations, ACM Transactions on Graphics (TOG) 34
(2015), no. 4 76.

109

BIBLIOGRAPHY

[36] M. Rheiner, Birdly an attempt to fly, in ACM SIGGRAPH 2014 Emerging
Technologies, p. 3, ACM, 2014.

[37] N. Kwatra, C. Wojtan, M. Carlson, I. Essa, P. J. Mucha, and G. Turk, Fluid
simulation with articulated bodies, Visualization and Computer Graphics, IEEE
Transactions on 16 (2010), no. 1 70–80.

[38] W. Si, S.-H. Lee, E. Sifakis, and D. Terzopoulos, Realistic biomechanical
simulation and control of human swimming, ACM Transactions on Graphics
(TOG) 34 (2014), no. 1 10.

[39] C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt, An efficient
construction of reduced deformable objects, ACM Transactions on Graphics
(TOG) 32 (2013), no. 6 213.

[40] E. Sifakis and J. Barbič, Fem simulation of 3d deformable solids: a practitioner’s
guide to theory, discretization and model reduction, in ACM SIGGRAPH Courses,
pp. 20:1–20:50, 2012.

[41] J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element
Analysis. Cambridge University Press, New York, second ed., 2008.

[42] D. K. Pai, D. I. Levin, and Y. Fan, Eulerian solids for soft tissue and more, in
ACM SIGGRAPH 2014 Courses, p. 22, ACM, 2014.

[43] R. Bridson, Fluid Simulation for Computer Graphics. AK Peters, 2008.

[44] I. Chao, U. Pinkall, P. Sanan, and P. Schröder, A simple geometric model for
elastic deformations, in ACM Transactions on Graphics (TOG), vol. 29, p. 38,
ACM, 2010.

[45] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press, 2012.

[46] W. Briggs, A Multigrid Tutorial. SIAM, 2000.

[47] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid. Academic press,
2000.

[48] U. M. Ascher, S. J. Ruuth, and B. Wetton, Implicit-explicit methods for
time-dependent PDE’s. University of British Columbia, Department of Computer
Science, 1993.

[49] P. G. Kry, D. L. James, and D. K. Pai, Eigenskin: real time large deformation
character skinning in hardware, in Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pp. 153–159,
ACM, 2002.

110

BIBLIOGRAPHY

[50] K. K. Hauser, C. Shen, and J. F. O’Brien, Interactive deformation using modal
analysis with constraints, in Graphics Interface 2003, pp. 247–256, June, 2003.

[51] C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt, An efficient
construction of reduced deformable objects, ACM Transactions on Graphics
(TOG) 32 (Nov., 2013) 213:1–213:10.

[52] C. L. Lawson and R. J. Hanson, Solving Least Square Problems. Prentice Hall,
Englewood Cliffs, NJ, 1974.

[53] R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm,
Journal of Chemometrics 11 (1997), no. 5 393–401.

[54] D. L. James, J. Barbič, and D. K. Pai, Precomputed acoustic transfer:
output-sensitive, accurate sound generation for geometrically complex vibration
sources, ACM Transactions on Graphics (TOG) 25 (2006), no. 3 987–995.

[55] S. Foucart, Hard thresholding pursuit: an algorithm for compressive sensing,
SIAM Journal on Numerical Analysis 49 (2011), no. 6 2543–2563.

[56] K. E. Atkinson, An introduction to numerical analysis. John Wiley & Sons, 2008.

[57] Y. Yang, D. Li, W. Xu, Y. Tian, and C. Zheng, Expediting precomputation for
reduced deformable simulation, ACM Transactions on graphics (TOG) 34 (2015),
no. 6.

[58] T. Wasfy and A. Noor, Computational strategies for flexible multibody systems,
Applied Mechanics Reviews 56 (2003), no. 6.

[59] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, Feti-dp: a
dual–primal unified feti methodpart i: A faster alternative to the two-level feti
method, International journal for numerical methods in engineering 50 (2001),
no. 7 1523–1544.

[60] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy
minimization, SIAM Journal on Scientific Computing 25 (2003), no. 1 246–258.

[61] Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo, Boundary-aware multi-domain
subspace deformation, IEEE Transactions on Visualization and Computer
Graphics (2013).

[62] P. Kaufmann, S. Martin, M. Botsch, and M. Gross, Flexible simulation of
deformable models using discontinuous galerkin fem, Graphical Models 71 (2009),
no. 4 153–167.

[63] J. Barbič and Y. Zhao, Real-time large-deformation substructuring, in ACM
transactions on graphics (TOG), vol. 30, p. 91, ACM, 2011.

111

BIBLIOGRAPHY

[64] T. Kim and D. L. James, Physics-based character skinning using multi-domain
subspace deformations, in ACM SIGGRAPH/Eurographics Sym. on Computer
Animation, pp. 63–72, 2011.

[65] Y. Zhao and J. Barbič, Interactive authoring of simulation-ready plants, ACM
Transactions on Graphics (TOG) 32 (2013), no. 4 84.

[66] T. Kim, “Cubica: a toolkit for subspace deformations.”

[67] M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F.
O’Brien, Dynamic local remeshing for elastoplastic simulation, in ACM
Transactions on graphics (TOG), vol. 29, p. 49, ACM, 2010.

[68] R. Narain, A. Samii, and J. F. O’Brien, Adaptive anisotropic remeshing for cloth
simulation, ACM transactions on graphics (TOG) 31 (2012), no. 6 152.

[69] D. Sulsky, S.-J. Zhou, and H. L. Schreyer, Application of a particle-in-cell method
to solid mechanics, Computer Physics Communications 87 (1995), no. 12 236 –
252. Particle Simulation Methods.

[70] A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk, A finite element method
for animating large viscoplastic flow, ACM Transactions on Graphics (TOG) 26
(2007), no. 3.

[71] A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle, Augmented
mpm for phase-change and varied materials, ACM Transactions on Graphics
(TOG) 33 (July, 2014) 138:1–138:11.

[72] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, The affine
particle-in-cell method, ACM Transactions on Graphics (TOG) 34 (July, 2015)
51:1–51:10.

[73] Y. Fan, J. Litven, D. I. Levin, and D. K. Pai, Eulerian-on-lagrangian simulation,
ACM Transactions on Graphics (TOG) 32 (2013), no. 3 22.

[74] J. Stam, Stable fluids, in SIGGRAPH 1999, pp. 121–128, 1999.

[75] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, An unconditionally stable
maccormack method, J. Sci. Comput. 35 (June, 2008) 350–371.

[76] J. Brackbill and H. Ruppel, Flip: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions, Journal of Computational Physics
65 (1986), no. 2 314–343.

[77] Y. Zhu and R. Bridson, Animating sand as a fluid, ACM Transactions on
Graphics (TOG) 24 (July, 2005) 965–972.

112

BIBLIOGRAPHY

[78] Y. Teng, M. A. Otaduy, and T. Kim, Simulating articulated subspace self-contact,
ACM Transactions on Graphics (TOG) 33 (July, 2014) 106:1–106:9.

[79] J. Barbič and D. L. James, Six-DoF haptic rendering of contact between
geometrically complex reduced deformable models, IEEE Transactions on Haptics
1 (jan.-june, 2008) 39–52.

[80] D. Harmon and D. Zorin, Subspace integration with local deformations, ACM
Transactions on Graphics 32 (July, 2013).

[81] M. Tang, D. Manocha, M. A. Otaduy, and R. Tong, Continuous penalty forces,
ACM Transactions on Graphics (TOG) 31 (2012), no. 4.

[82] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun, Asynchronous
contact mechanics, ACM Transactions on Graphics (TOG) (2009).

[83] J. P. Lewis, M. Cordner, and N. Fong, Pose Space Deformations: A Unified
Approach to Shape Interpolation and Skeleton-Driven Deformation, in Proceedings
of SIGGRAPH, pp. 165–172, July, 2000.

[84] D. Chen and R. Plemmons, Nonnegativity constraints in numerical analysis, in
Symposium on the Birth of Numerical Analysis, 2007.

[85] A. A. Shabana, Theory of Vibration, Volume II: Discrete and Continuous
Systems. Springer–Verlag, NY, 1990.

[86] S. Idelsohn and A. Cardona, A reduction method for nonlinear structural dynamic
analysis, Computer Methods in Applied Mechanics and Engineering 49 (1985)
253–279.

[87] J. F. O’Brien, C. Shen, and C. M. Gatchalian, Synthesizing sounds from
rigid-body simulations, in ACM SIGGRAPH Sym. on Computer Animation,
pp. 175–181, July, 2002.

[88] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd ed., 2008.

[89] T. Kurihara and N. Miyata, Modeling deformable human hands from medical
images, in ACM SIGGRAPH/Eurographics Sym. on Computer Animation,
pp. 357–366, 2004.

[90] P. G. Kry, D. L. James, and D. K. Pai, EigenSkin: Real Time Large Deformation
Character Skinning in Hardware, in ACM SIGGRAPH Sym. on Computer
Animation, pp. 153–160, July, 2002.

[91] J. Kim and N. S. Pollard, Fast simulation of skeleton-driven deformable body
characters, ACM Transactions on Graphics (TOG) 30 (Oct., 2011) 121:1–121:19.

113

BIBLIOGRAPHY

[92] A. Wächter and S. Vigerske, “Interior point optimizer.”
https://projects.coin-or.org/Ipopt, 2005.

[93] A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization
with Applications in Process Engineering. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 2002.

[94] J. Hogg and J. Scott, An indenite sparse direct solver for multicore machines,
Tech. Rep. TR-RAL-2010-011, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, UK, 2010.

[95] I. S. Duff, MA57—a code for the solution of sparse symmetric definite and
indefinite systems, ACM Trans. Math. Softw. 30 (June, 2004) 118–144.

[96] M. T. Jones, P. E. Plassmann, and P. Mcs-p, An improved incomplete cholesky
factorization, ACM Trans. Math. Software 21 (1995) 5–17.

[97] S. Curtis, R. Tamstorf, and D. Manocha, Fast collision detection for deformable
models using representative-triangles, in Proceedings of the Symposium on
Interactive 3D Graphics and Games, pp. 61–69, 2008.

[98] G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs, An implicit finite element
method for elastic solids in contact, in Proceedings of the Fourteenth Conference
on Computer Animation, pp. 136 –254, 2001.

[99] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, Robust quasistatic finite elements
and flesh simulation, in ACM SIGGRAPH Symp. on Computer Animation,
pp. 181–190, 2005.

[100] L. Liu, K. Yin, B. Wang, and B. Guo, Simulation and control of skeleton-driven
soft body characters, ACM Transactions on Graphics (TOG) 32 (Nov., 2013)
215:1–215:8.

[101] J. Barbič and Y. Zhao, Real-time large-deformation substructuring, ACM Trans.
on Graphics 30 (2011).

[102] W. Xu, N. Umentani, Q. Chao, J. Mao, X. Jin, and X. Tong,
Sensitivity-optimized rigging for example-based real-time clothing synthesis, ACM
Transactions on Graphics (TOG) 33 (July, 2014) 107:1–107:11.

[103] Y. Teng, M. A. Otaduy, and T. Kim, Simulating articulated subspace self-contact,
ACM Transactions on Graphics (TOG) 33 (July, 2014) 106:1–106:9.

[104] K.-J. Bathe, Finite Element Procedures. Prentice Hall, third ed., 2007.

[105] R. J. Guyan, Reduction of stiffness and mass matrices, AIAA journal 3 (1965),
no. 2 380–380.

114

BIBLIOGRAPHY

[106] B. Irons, Structural eigenvalue problems-elimination of unwanted variables, AIAA
journal 3 (1965), no. 5 961–962.

[107] E. L. Wilson, The static condensation algorithm, International Journal for
Numerical Methods in Engineering 8 (1974), no. 1 198–203.

[108] A. Y.-T. Leung, An accurate method of dynamic condensation in structural
analysis, International Journal for Numerical Methods in Engineering 12 (1978),
no. 11 1705–1715.

[109] M. Paz, Modified dynamic condensation method, Journal of Structural
Engineering 115 (1989), no. 1 234–238.

[110] M. Bro-Nielsen and S. Cotin, Real-time volumetric deformable models for surgery
simulation using finite elements and condensation, in Computer graphics forum,
vol. 15, pp. 57–66, Wiley Online Library, 1996.

[111] M. Gao, N. Mitchell, and E. Sifakis, Steklov-poincaré skinning, in
Eurographics/ACM SIGGRAPH Symposium on Computer Animation,
pp. 139–148, The Eurographics Association, 2014.

[112] H. Xu, Y. Li, Y. Chen, and J. Barbič, Interactive material design using model
reduction, ACM Trans. on Graphics (2014).

[113] I. Baran and J. Popović, Automatic rigging and animation of 3d characters, in
ACM Transactions on Graphics (TOG), vol. 26, p. 72, ACM, 2007.

[114] G. Guennebaud, B. Jacob, et. al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.

[115] Y. Teng, D. I. Levin, and T. Kim, Eulerian solid-fluid coupling, .

[116] G. Irving, C. Schroeder, and R. Fedkiw, Volume conserving finite element
simulations of deformable models, in ACM Transactions on Graphics (TOG),
vol. 26, 2007.

[117] H. Wang, J. O’Brien, and R. Ramamoorthi, Multi-resolution isotropic strain
limiting, ACM Transactions on Graphics 29 (2010), no. 6 156:1–156:10.

[118] A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran, Energetically consistent
invertible elasticity, in ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 25–32, 2012.

[119] F. S. Sin, D. Schroeder, and J. Barbič, Vega: Non-linear fem deformable object
simulator, Computer Graphics Forum 32 (2013), no. 1 36–48.

[120] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, Projective dynamics:
Fusing constraint projections for fast simulation, ACM Transactions on Graphics
(TOG) 33 (July, 2014) 154:1–154:11.

115

BIBLIOGRAPHY

[121] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun, Energy-preserving
integrators for fluid animation, ACM Transactions on Graphics (TOG) 28 (July,
2009) 38:1–38:8.

[122] B. Zhu, W. Lu, M. Cong, B. Kim, and R. Fedkiw, A new grid structure for
domain extension, ACM Transactions on Graphics (TOG) 32 (2013), no. 4
63:1–63:12.

[123] X. Zhang, R. Bridson, and C. Greif, Restoring the missing vorticity in
advection-projection fluid solvers, ACM Transactions on Graphics (TOG) 34
(2015), no. 4 52:1–52:8.

[124] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw, Two-way
coupling of fluids to rigid and deformable solids and shells, in ACM Transactions
on Graphics (TOG), vol. 27, p. 46, ACM, 2008.

[125] M. Macklin and M. Müller, Position based fluids, ACM Transactions on Graphics
(TOG) 32 (2013), no. 4 104.

[126] E. Sifakis, S. Marino, and J. Teran, Globally coupled collision handling using
volume preserving impulses, in ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 147–153, 2008.

[127] A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran, Detail preserving
continuum simulation of straight hair, ACM Transactions on Graphics (TOG) 28
(2009), no. 3 62:1–62:6.

[128] C. S. Peskin, The immersed boundary method, Acta Numerica 11 (1, 1972)
479–517.

[129] T. Takahashi, H. Ueki, A. Kunimatsu, and H. Fujii, The simulation of fluid-rigid
body interaction, in ACM SIGGRAPH 2002 Conference Abstracts and
Applications, SIGGRAPH ’02, (New York, NY, USA), pp. 266–266, ACM, 2002.

[130] M. Carlson, P. J. Mucha, and G. Turk, Rigid fluid: Animating the interplay
between rigid bodies and fluid, ACM Transactions on Graphics (TOG) 23 (Aug.,
2004) 377–384.

[131] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien, Fluid
animation with dynamic meshes, ACM Transactions on Graphics (TOG) 25
(July, 2006) 820–825.

[132] C. Batty, F. Bertails, and R. Bridson, A fast variational framework for accurate
solid-fluid coupling, ACM Transactions on Graphics (TOG) 26 (2007), no. 3 100.

116

BIBLIOGRAPHY

[133] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw, Coupling water and smoke
to thin deformable and rigid shells, ACM Transactions on Graphics (TOG) 24
(July, 2005) 973–981.

[134] X. He, N. Liu, G. Wang, F. Zhang, S. Li, S. Shao, and H. Wang, Staggered
meshless solid-fluid coupling, ACM Transactions on Graphics (TOG) 31 (Nov.,
2012) 149:1–149:12.

[135] M. Souli and D. J. Benson, Arbitrary Lagrangian Eulerian and Fluid-Structure
Interaction: Numerical Simulation. John Wiley & Sons, 2013.

[136] T. Wick, Coupling of fully eulerian and arbitrary lagrangian–eulerian methods for
fluid-structure interaction computations, Computational Mechanics 52 (2013),
no. 5 1113–1124.

[137] T. Lenaerts, B. Adams, and P. Dutré, Porous flow in particle-based fluid
simulations, in ACM Transactions on Graphics, vol. 27, (New York, NY, USA),
pp. 49:1–49:8, ACM, 2008.

[138] F. P. T. Baaijens, A fictitious domain mortar element method for fluid/structure
interaction, International Journal for Numerical Methods in Fluids 35 (2001),
no. 7 743–761.

[139] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle, The material point
method for simulating continuum materials, in ACM SIGGRAPH Courses, 2016.

[140] K. Kamrin, C. H. Rycroft, and J.-C. Nave, Reference map technique for
finite-strain elasticity and fluid–solid interaction, Journal of the Mechanics and
Physics of Solids 60 (Nov., 2012) 1952–1969.

[141] B. Valkov, C. H. Rycroft, and K. Kamrin, Eulerian method for multiphase
interactions of soft solid bodies in fluids, Journal of Applied Mechanics 82 (2015),
no. 4.

[142] T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlinear finite elements
for continua and structures. John Wiley & Sons, 2013.

[143] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, A material point
method for snow simulation, ACM Transactions on Graphics (TOG) 32 (2013),
no. 4 102.

[144] R. Bridson, R. Fedkiw, and J. Anderson, Robust treatment of collisions, contact
and friction for cloth animation, in ACM Transactions on Graphics (ToG),
vol. 21, pp. 594–603, ACM, 2002.

117

BIBLIOGRAPHY

[145] R. Fedkiw, J. Stam, and H. W. Jensen, Visual simulation of smoke, in
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pp. 15–22, ACM, 2001.

[146] J. Gascón, J. S. Zurdo, and M. A. Otaduy, Constraint-based simulation of
adhesive contact, in Proc. of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, 2010.

[147] N. Heo and H.-S. Ko, Detail-preserving fully-eulerian interface tracking
framework, ACM Transactions on Graphics (TOG) 29 (Dec., 2010).

[148] P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and M. Gross, Enrichment
textures for detailed cutting of shells, ACM Transactions on Graphics (TOG) 28
(July, 2009) 50:1–50:10.

[149] M. Lentine, M. Cong, S. Patkar, and R. Fedkiw, Simulating free surface flow with
very large time steps, in ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 107–116, 2012.

[150] B. Liu, G. Mason, J. Hodgson, Y. Tong, and M. Desbrun, Model-reduced
variational fluid simulation, ACM Transactions on Graphics (TOG) 34 (Oct.,
2015) 244:1–244:12.

[151] J. Molemaker, J. M. Cohen, S. Patel, and J. Noh, Low viscosity flow simulations
for animation, in ACM SIGGRAPH/Eurographics Sym. on Computer Animation,
pp. 9–18, 2008.

118

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Articulated Self-Contact
	Arbitrary External Collisions
	Solid-Fluid Coupling
	Thesis Statement and Main Results
	Organization

	Background
	Full Space Simulation of Hyperelastic Solids
	Strain Energy and Hyperelasticity
	Quasistatic Simulation
	Dynamic Simulation

	Subspace Simulation
	Previous Work on Incorporating Non-linearities
	Cubature Approximation
	Cubature Training Schemes

	Multi-Domain Subspace Deformations
	Eulerian Solid Simulation
	Eulerian Incompressible Fluid Simulation

	Articulated Subspace Self-Contact
	The Subspace Self-Collision Problem
	A Self-Collision Cubature Scheme
	A Direct Cubature Scheme
	Analysis of Negative Results
	A Pose-Space Cubature Scheme

	Implementation and Results
	Implementation
	Results

	Summary

	Handling Arbitrary External Collisions with Subspace Condensation
	Introduction
	Static Condensation
	Subspace Condensation: Combining Full Space and Subspace Simulations
	Physics-Based Skinning
	Basis Construction
	Contact and Dynamics Oracles

	Results
	Summary

	Eulerian Solid-Fluid Coupling
	Introduction
	Related Work
	Coupled Solid–Fluid Simulation
	The Continuous Formulation
	Spatial Discretization and Constraints
	Time Integration
	Semi-implicit Update
	Incompressibility Constraints
	Contact and Collision Response for Solids

	Implementation and Results
	Simulating a Single Solid with a Fluid
	Simulating Multiple Solids with a Fluid

	Summary

	Conclusion
	Summary of Results
	Limitations
	Future Work
	Eulerian Subspace Condensation For Fluid Simulation
	Subspace Eulerian-on-Lagrangian Solids

	Bibliography

