
University of California
Santa Barbara

Modeling and Calibrating the Distributed Camera

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Christopher M. Sweeney

Committee in charge:

Professor Tobias Höllerer, Co-Chair
Professor Matthew Turk, Co-Chair,
Professor Pradeep Sen
Professor Noah Snavely

March 2016

The Dissertation of Christopher M. Sweeney is approved.

Professor Pradeep Sen

Professor Noah Snavely

Professor Tobias Höllerer, Committee Co-Chair

Professor Matthew Turk, Committee Co-Chair

January 2016

Modeling and Calibrating the Distributed Camera

Copyright c© 2016

by

Christopher M. Sweeney

iii

Acknowledgements

I wish to thank my parents and my siblings for their constant love and support. My

accomplishments simply would not have been possible without them.

I thank my advisors, Matthew Turk and Tobias Höllerer, for their incredible guidance,

patience, and mentoring throughout my graduate studies. I have learned a great deal

about computer vision, geometry, and how to conduct research from them. They have

consistently put me in a position to achieve my goals, and I sincerely appreciate the all

of the conversations and time spent together.

I would also like to thank Marc Pollefeys for inviting me to visit the Computer Vision

and Geometry group at ETH Zürich, and to my friend and colleague Torsten Sattler for

arranging my visit and for being a constant resource for me. I thank my lab mates at

the Four Eyes Lab and at ETH for an uncountable number of brainstorming sessions,

conversations, and debugging sessions over the past several years, especially Jonathan,

Steffen, Victor, Ben, Bernhard, Laurent, and Matthias. I also want to thank John Flynn,

James Philbin, and Sameer Agarwal for their excellent mentorship.

Finally, I would like to thank all of my friends in Santa Barbara, Matt, Mike R.,

Ed, Mike Z., Michelle, Mary Claire, Whitney, Steve, and most importantly Julia, for

all of their support and understanding throughout my studies. They are a major rea-

son why my time in Santa Barbara has been so special and a time that I will forever

cherish.

iv

Chris Sweeney
(571) 334-6185

cmsweeney@cs.ucsb.edu
1546 Shoreline Drive

Santa Barbara, CA 93109

EDUCATION

Doctor of Philosophy, Computer Science, Conferred March 2016
University of California, Santa Barbara, Santa Barbara, CA
Dissertation: Modeling and Calibrating the Distributed Camera
Advisors: Tobias Höllerer and Matthew Turk

Visiting PhD Student, Computer Vision and Geometry Lab, October 2014 – April 2015
Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
Hosted by: Professor Marc Pollefeys, Dr. Torsten Sattler

Bachelor of Science (with High Distinction), Computer Science
Bachelor of Arts, Mathematics
May 2011, University of Virginia, Charlottesville, VA

RESEARCH AND PROFESSIONAL EXPERIENCE

Graduate Research Assistant, 4 Eyes Research Lab, Department of Computer Science,
University of California, Santa Barbara
Santa Barbara, CA, Sept 2011 – 2016

Research Intern, Lightfield Group, Google, Inc, Seattle, WA
Summer 2014, Under the supervision of Sameer Agarwal

Research Intern, Visual Search Team, Google, Inc, Los Angeles, CA
Summer 2012, Summer 2013

Undergraduate Research Assistant, Department of Computer Science, University of
Virginia, Charlottesville, VA
August 2009 - May 2011

HONORS/AWARDS

ISMAR 2015 Best Short Paper
Winner of ACM Open Source Software Competition (2015)
National Science Foundation (NSF) Graduation Research Fellowship, 2013 - 2016
ISMAR 2012 Best Paper Award
Graduate Opportunity Fellowship (University of California, Santa Barbara), 2011-2012
Louis T. Radar Award for Research (University of Virginia), 2011
Voted Best Internship Project (Google, Inc), 2010, 2012
Google Outstanding Undergraduate Engineering Scholarship, 2010-2011
Member of Raven Society (University of Virginia)
Computing Research Association Outstanding Undergraduate Research Award, 2011
NSF PAGES Fellowship, 2007-2011

SMITH-RR
Typewritten Text

SMITH-RR
Typewritten Text

SMITH-RR
Typewritten Text
v

SMITH-RR
Typewritten Text

PUBLICATIONS

L. Kneip, C. Sweeney, R. Hartley, “The Generalized Relative Pose-and-Scale Problem: View-
Graph Fusion via 2D-2D registration”. Winter Conference on Applications of Computer Vision
(WACV). 2016.

C. Sweeney, T. Sattler, T. Höllerer, M. Turk, M. Pollefeys, “Optimizing the Viewing Graph for
Structure-from-Motion”, Proceedings of the International Conference on Computer Vision
(ICCV), 2015.

C. Sweeney, T. Höllerer, M. Turk, “Theia: A Fast and Scalable Structure-from-Motion Library”,
ACM Open Source Software Competition. 2015. [Competition Winner]

C. Sweeney, J. Flynn, B. Nuernberger, M. Turk, T. Höllerer, “Efficient Computation of Absolute
Pose for Gravity-Aware Augmented Reality”, Proceedings of the IEEE Symposium on Mixed and
Augmented Reality (ISMAR), 2015. [Best Short Paper Award]

C. Sweeney, L. Kneip, T. Höllerer, M. Turk, “Computing Similarity Transformations from Only
Image Correspondences”, Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

C. Sweeney, J. Flynn, M. Turk, “Solving for Relative Pose with Partially Known Rotation is a
Quadratic Eigenvalue Problem”, Proceedings of the International Conference on 3D Vision
(3DV), 2014.

C. Sweeney, V. Fragoso, T. Höllerer, M. Turk, “gDLS: A Scalable Solution to the Generalized
Pose and Scale Problem”, Proceedings of the European Conference on Computer Vision (ECCV),
2014.

T. Sattler, C. Sweeney, M. Pollefeys, “On Sampling Focal Length Values to Solve the Absolute
Pose Problem”, Proceedings of the European Conference on Computer Vision (ECCV), 2014.

S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, T. Höllerer, “Model Estimation and Selection
towards Unconstrained Real-time Tracking and Mapping”, IEEE Transactions on Visualization
and Computer Graphics (TVCG), vol. 20, no. 6, pp. 825-838, June 2014

C. Sweeney, M. Turk, T. Höllerer, “Improved Outdoor Augmented Reality through
‘Globalization’”, Doctoral Consortium at the International Symposium on Mixed and Augmented
Reality (ISMAR), 2013

S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, T. Höllerer, “Live Tracking and Mapping from
Both General and Rotation-Only Camera Motion”, International Symposium on Mixed and
Augmented Reality (ISMAR), 2012 [Best Paper Award]

C. Sweeney, L. Liu, S. Arietta, J. Lawrence, “HIPI: A Hadoop Image Processing Interface
for Image-based MapReduce Tasks”, Undergraduate Senior Thesis, School of Engineering and
Applied Sciences, University of Virginia, 2011

TEACHING EXPERIENCE

Graduate Reader, Mixed and Augmented Reality (CS 290I), Department of Computer
Science, University of California, Santa Barbara, Santa Barbara, CA
Winter 2012

SMITH-RR
Typewritten Text

SMITH-RR
Typewritten Text

SMITH-RR
Typewritten Text

SMITH-RR
Typewritten Text

SMITH-RR
Typewritten Text
vi

• Responsible for creating and grading all homework assignments
• Gave several lectures on mobile augmented reality

Teaching Assistant, Program and Data Representations (CS 216), Department of Computer
Science, University of Virginia, Charlottesville, VA
Spring 2010
• Ran 2 hour lab lecture once per week
• Held weekly office hours, met with students one-on-one
• Responsible for grading homework assignments and exams

OPEN SOURCE CONTRIBUTIONS

Theia: an open source library for structure-from-motion
URL: http://www.theia-sfm.org
• 2015 ACM MM Open Source Software Competition Winner
• Primary developer, maintainer
• Provides a flexible, efficient end to end system for researchers and users in Computer Vision

HIPI: Hadoop Image Processing Library
URL: http://hipi.cs.virginia.edu/
• Primary developer, maintainer
• Created custom distributed file storage for large-scale images
• Designed a research tool customized for image processing and computer vision applications

Libjpeg Turbo
• Created bit-operative Huffman encoding with parity aware recovery

PROFESSIONAL ACTIVITIES
 Invited Lectures

• Carnegie Mellon VASC Seminar Series, September 2015
• University of Washington, July 2015
• Microsoft Research, July 2015
• TU Graz, March 2015
• University of Virginia, September 2014

 Invited Reviewer

• IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
• IEEE International Conference on Computer Vision (ICCV)
• European Conference on Computer Vision (ECCV)
• ACM Special Interest Group on Computer Graphics (SIGGRAPH)
• IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
• IEEE Transactions on Visualization and Computer Graphics (TVCG)
• IEEE Virtual Reality (VR)
• Journal of Image and Vision Computing

ACADEMIC ACTIVITIES

University Services
• Madison House Alumni Council, Vice Chair (2012 – present)
• University of Virginia Young Alumni Council (2012 – 2014)
• Graduate Student Association Department Representative (2012 – 2014)

SMITH-RR
Typewritten Text
vii

Abstract

Modeling and Calibrating the Distributed Camera

by

Christopher M. Sweeney

Structure-from-Motion (SfM) is a powerful tool for computing 3D reconstructions

from images of a scene and has wide applications in computer vision, scene recognition,

and augmented and virtual reality. Standard SfM pipelines make strict assumptions

about the capturing devices in order to simplify the process for estimating camera ge-

ometry and 3D structure. Specifically, most methods require monocular cameras with

known focal length calibration. When considering large-scale SfM from internet photo

collections, EXIF calibrations cannot be used reliably. Further, the requirement of single

camera systems limits the scalability of SfM.

This thesis proposes to remove these constraints by instead considering the collection

of cameras as a distributed camera that encapsulates the image and geometric information

of all cameras simultaneously. First, I provide full generalizations to the relative camera

pose and absolute camera pose problems. These generalizations are more expressive

and extend the traditional single-camera problems to distributed cameras, forming the

basis for a novel hierarchical SfM pipeline that exhibits state-of-the-art performance on

large-scale datasets. Second, I describe two efficient methods for estimating camera focal

lengths for the distributed camera when calibration is not available. Finally, I show how

removing these constraints enables a simpler, more scalable SfM pipeline that is capable

of handling uncalibrated cameras at scale.

viii

SMITH-RR
Typewritten Text

Contents

Abstract viii

1 Introduction 1
1.1 Overview of Contributions . 8
1.2 Thesis Organization . 9

2 Foundations 11
2.1 The Pinhole Camera Model . 11
2.2 Structure-from-Motion . 15

Part I Modeling the Distributed Camera 25

3 A Full Generalization of the Relative Pose Problem 26
3.1 A Quadratic Eigenvalue Formulation . 28
3.2 Generalization to 7 d.o.f. 32
3.3 Experimental Evaluation . 35
3.4 Discussion . 42

4 A Full Generalization of the Absolute Pose Problem 45
4.1 Generalization to 7 d.o.f. 47
4.2 An L2 Optimal Solution . 49
4.3 Experimental Evaluation . 56
4.4 A Hierachical SfM Pipeline . 65
4.5 Discussion . 68

Part II Calibrating the Distributed Camera 70

5 Computing the Focal Length of a Single Camera 71
5.1 Problem Formulation . 73
5.2 Probabilistic Focal Length Sampling . 76

ix

5.3 Image-based Localization Evaluation . 84
5.4 Discussion . 88

6 Computing Camera Focal Lengths at Scale 91
6.1 Focal Lengths from a Fundamental Matrix 92
6.2 Focal Lengths from the Viewing Graph 94
6.3 The Viewing Graph . 95
6.4 Creating a Consistent Viewing Graph . 96
6.5 Estimating Structure and Motion . 100
6.6 Experimental Evaluation . 105
6.7 Discussion . 109

Part III Open Source Contributions and Conclusions 112

7 Theia: A Fast and Scalable Structure-from-Motion Library 113
7.1 Overview of Features . 114
7.2 SfM Pipeline . 120
7.3 Impact . 123

8 Conclusion 124
8.1 Future Work . 126

A Computing Matrices U, S, and V for Depth, Scale, and Translation 129

B Triplet Projection Error 132

Bibliography 134

x

Chapter 1

Introduction

The world around us is rich with visual content. There are countless objects, shapes,

light sources, materials, and textures that our eyes continuously observe as we move

about the world. Recreating the rich, continuous stream of visual information that our

eyes provide is a difficult task. Cameras have the ability to capture a particular place at

a particular moment in time and in this way provide a snapshot into the world that we

observe. A photograph can invoke a wide variety of emotions and memories, and viewers

can be transported to the instant that the photograph was originally taken. Since the

advent of film in the late 19th century, cameras have been used as a cheap and simple

way to capture memorable moments and places. We capture moments such as birthday

parties, sporting events, wildlife, and natural landscapes and are able to revisit them at

any time through photographs. Before the digital revolution of the past 20 years, the

number of photos that one could capture was limited by the capacity of the film roll.

With the advent of the digital camera and continually decreasing storage costs we are

now able to capture large quantities of images at a low cost. But with our ever-growing

digital catalog of images comes the question: are we actually gaining a better experience

with all these new images?

When considered on its own an image provides only a tiny glimpse of the scene in

front of the photographer. This experience can be quite powerful but it is inherently

1

Introduction Chapter 1

Figure 1.1: Structure-from-Motion is able to recover a 3D models of world landmarks
such as the Taj Mahal and Mount Rushmore. Viewers are able to freely explore
these 3D models to oberve the scene from any angle and position to gain a better
understanding of the scale and structure. This enables viewers to observe the scene
from novel viewpoints that may not be easily accessible in the real world.

limited by the pixels that comprise the image, and we lack the ability to explore the

scene or moment captured beyond those pixels. In contrast, the real world is rich with

visual information because we experience depth, perspective, and freedom of motion to

explore areas of interest. To fully appreciate a world landmark such as the Taj Mahal (cf .

Figure 1.1), we would like to walk around its gardens, stroll past the reflection pools, and

view the detail of the marble construction up close. Can the beauty of landmarks such

as the Taj Mahal really be captured in a single image? If we truly seek to explore the

snapshot of space and time captured by a photograph, more information is needed. This

is especially true for large, complex spaces such as Mount Rushmore where the scale or

structure may be exceedingly difficult to understand from images alone (see Figure 1.1).

Given the proliferation of images on the internet through websites such as Flickr,

Google Photos, and Facebook, we now have access to an unprecedented number of rich

and diverse images of many cities and landmarks around the world. If we seek to explore

2

Introduction Chapter 1

Figure 1.2: Flickr allows landmarks such as Notre Dame may be explored as scrollable
image grids with hundred of thousands of user-submitted photos. While the range
of images is diverse, navigating large quantities of images is both unfulfilling and
unfeasible for users interested in experiencing what it is like to be present at Notre
Dame.

the Notre Dame Cathedral in Paris, for instance, we can simply search “Notre Dame”

on Flickr and are provided with hundreds of thousands of free, publicly available images

of Notre Dame (cf . Figure 1.2). These images include a wide range of positions and

viewpoints captured in varying seasons, times of day, and weather patterns that provide

a detailed visual catalogue of the scene. This variety and diversity provides contextual

clues for understanding a scene beyond what a single image would allow.

While additional images can help our understanding of a scene, they do not neces-

sarily improve the feeling of actually experiencing a place. Worse, navigating a large

collection of images is a difficult task since the number of images that can be viewed at

one time is limited by the size of the display (cf . Figure 1.2). By considering the entire

collection of images, however, we are able to obtain a better understand the full size,

structure, and detail of scenes such as the Notre Dame Cathedral. By using omnidirec-

tional cameras, Google Street View allows for virtual “walk-throughs” along streets to

3

Introduction Chapter 1

Figure 1.3: Google Street View provides virtual “walk-throughs” that allow the user
to click on arrows to move throughout the scene.

simulate the experience of being there (cf . Figure 1.3); however, this requires expensive,

specialized camera rigs, a laborous capture process, and time-consuming post-processing.

Similarly, multi-camera rigs such as Google Jump and Nokia Ozo capture high resolution

360◦ video that can be used for playback in virtual reality. These camera rigs provide

excellent immersion for viewers, but cost tens of thousands of dollars, making them

infeasible for every-day consumers.

What if instead of viewing the collection of images as many individual snapshots we

consider each image to be a new observation from a distributed camera that observes

the scene from many perspectives simultaneously? This distributed camera may contain

many observations taken at many different locations that provide unique snapshots of

the scene. If we knew the location of these observations then we could use the observa-

tions to understand and explore the scene better. Fortunately, computers excel at a task

that humans cannot easily perform: recovering precise 3D geometry from images alone.

4

Introduction Chapter 1

Research in the field of multiple view geometry has allowed for automatic recovery of

camera and 3D scene geometry through a process called Structure-from-Motion (SfM)

[33, 81]. The output of SfM is a 3D point cloud with correspondence information describ-

ing which 3D points are observed in which images along with the position and orientation

of images used to create the 3D reconstruction. In this way, the output of SfM can be

thought of as the distributed camera along with 3D points, and the 3D reconstruction

process can be thought of as recovering the configuration of the distributed camera. This

3D representation is not only more compact than image information, it is also rich with

visual information about the entire scene as the 3D point clouds contain local and global

appearance information in addition to 3D structure. By recovering 3D geometry, large

and complex scenes may be viewed in a more natural manner with 3D visualization tools

such as Meshlab that allow for unconstrained visualization and exploration. This the-

sis focuses on 3D modeling with SfM so that we may better understand scenes through

geometry.

By utilizing the rich source of visual data from websites such as Flickr, Facebook,

and Google Photos, we are able to apply SfM to photo collections of popular landmarks

around the world to create visually rich 3D models that can be readily explored. Perform-

ing SfM on internet photo collections was first proposed in the seminal Photo Tourism

work [73], and has since been incorporated into products such as Microsoft’s Photosynth

and Google’s Photo Tours. To create 3D models with SfM, correspondences between im-

ages are established by matching salient regions called features within the images. Then,

two images with a large number of feature correspondences are used to create an initial

3D reconstruction by computing their. The initial relative position and orientation of

the two images is determined by the location of their feature correspondences (i.e., the

relative camera pose problem). Matching features in each image pair are used to triangu-

late 3D points, producing an initial 3D point cloud. Images that observe these 3D points

5

Introduction Chapter 1

are incrementally localized to this initial model (i.e., the absolute camera pose problem)

and more 3D points are triangulated until all possible images have been added to the 3D

model. This process is called incremental SfM and has proven to be robust and accurate

for a wide variety of scenes; however, the sequential nature of incremental SfM does not

scale well, limiting the size of the 3D models that can be created.

Whereas incremental SfM methods consider one image at a time, global SfM methods

consider all images simultaneously when creating a 3D model. Considering all images

simultaneously allows for each image to be weighed equally when creating the 3D model,

unlike incremental SfM where the order in which images are added to the growing re-

construction affects the final quality of the reconstruction (i.e., images added earlier are

given more weight). Efficient linear and nonlinear solvers exist for global SfM [20] [22]

[29] [38] and, as a result, these methods are more readily parallelized with existing opti-

mization libraries and can be orders of magnitude more efficient than incremental SfM

methods on large-scale datasets. While global SfM methods are promising for large-scale

SfM, their use is limited because they utilize Euclidean motion averaging algorithms and

thus require accurate camera calibration information of each camera’s focal length. For

internet photo collections, camera calibration is often unavailable or inaccurate and as a

result global SfM methods can be less accurate and robust than incremental methods on

these datasets.

Ideally, we would like to have the robustness of incremental SfM methods and the

efficiency and scalability of global SfM methods when creating 3D models. Incremental

and global SfM methods, however, are limited in scope because of two strong assumptions.

First, both global and incremental SfM methods assume that images were taken with

individual cameras. This limits the scalability of both methods, especially incremental

SfM where current camera localization methods only allow for one image to be added to

the reconstruction at a time. If we utilize the distributed camera as a building block for

6

Introduction Chapter 1

Figure 1.4: Virtual reality displays such as Google Cardboard and Oculus Rift
can provide users with stereoscopic views of Notre Dame, allowing users to freely
look around the scene while experiencing important visual cues such as depth and
occlusion.

SfM instead of merely an output, we can dramatically improve the scalability of SfM by

localizing all images within the distributed camera at once. Second, global SfM requires

very accurate knowledge of camera intrinsic parameters such as focal length and principal

point. Without accurate camera intrinsics the accuracy of global SfM methods suffers

dramatically, limiting the usability of such methods on internet photo collections where

camera intrinsic information may be inaccurate or unavailable.

In this thesis, I focus on how to remove these assumptions so that SfM may be

more readily used to obtain high-quality large-scale 3D models. In particular, I focus

on scalable and efficient methods that must also be accurate and robust. By crowd-

sourcing the creation of accurate 3D models through internet photo collections, viewers

may experience large and complex scenes in a compelling way that images alone would

not allow. Such large scenes would be especially interesting to visualize and explore in

virtual reality viewers such as Oculus Rift1 or Google Cardboard2. Removing assumptions

1https://www.oculus.com
2https://www.google.com/get/cardboard/

7

https://www.oculus.com
https://www.google.com/get/cardboard/

Introduction Chapter 1

of single-camera models and intrinsic calibration from SfM allows for a complete and

general expression of the distributed camera, leading to simple and scalable methods for

recovering camera motion and 3D structure from calibrated or uncalibrated image sets.

1.1 Overview of Contributions

I address two key limitations of current large-scale SfM algorithms in this thesis:

the assumption that each image was taken with a single perspective camera, and the

assumption that accurate camera calibration information is available.

Modeling the distributed camera. I remove the assumption of single perspective

cameras by presenting complete mathematical generalizations to two fundamental prob-

lems in SfM: the relative camera pose problem and the absolute camera pose problem.

These generalizations extend the standard single-camera and multi-camera relative and

absolute pose problems to 7 degrees-of-freedom (d.o.f.) similarity transformations, and I

show that the single-camera and multi-camera relative and absolute pose problems are

special cases of this general formulation. This formulation is capable of considering many

cameras at once in addition to scale changes and thus can be used directly on distributed

cameras. Further, these novel formulations provide new insights into model merging,

including estimating 7 degrees-of-freedom similarity transformations that minimize re-

projection error.

Calibrating the distributed camera. Accurate camera calibration is of great

importance to SfM. For global SfM, obtaining accurate calibration of camera intrinsic

parameters is essential to obtain high quality 3D models. Unfortunately, camera calibra-

tion is often unavailable or inaccurate when utilizing internet photo collections as input

for SfM, and few methods exist to accurately calibrate images. To this end, I propose

two efficient methods for estimating camera focal lengths. The first method estimates

8

Introduction Chapter 1

camera focal lengths along with the camera pose using only 3D geometry from an exist-

ing SfM reconstruction. The second method utilizes a network of cameras to calibrate

many cameras simultaneously from the 2-view matches between images. This calibration

method is then combined with a viewing graph optimization that is able to dramatically

improve the quality of the relative geometries used for SfM, leading to a simple global SfM

pipeline that is able to operate on uncalibrated image sets and improves the efficiency of

global SfM up to one order of magnitude.

Open source software contributions. Few open-source software libraries for SfM

exist, and most of the available libraries only implement incremental SfM. When I began

my graduate studies, no libraries implementing global SfM existed. To address this, I

created the Theia Structure-from-Motion library that implements highly customize-able

end-to-end SfM pipelines. The library was designed with code that is clean, modular,

and extendable with thorough unit-testing. Further, the library was designed to handle

large-scale SfM and is optimized for memory efficiency and parallelism. With Theia,

researchers may easily tweak and experiment with specific parts of global or incremental

SfM pipelines without having to worry about implementing an entire SfM pipeline from

scratch.

1.2 Thesis Organization

The remainder of this thesis is divided into three parts. First, Chapter 2 introduces

fundamental concepts of multiple view geometry including the pinhole camera model and

an overview of incremental and global SfM pipelines. Part I considers how to remove the

assumption that every image in SfM is taken with a single-perspective camera in order

to model the distributed camera. We view this limitation through the lens of two classic

problems: the relative camera pose problem (Chapter 3) and the absolute camera pose

9

Introduction Chapter 1

problem (Chapter 4). Part II discusses effective methods for calibrating camera intrinsic

parameters for SfM and thus the distributed camera. Chapter 5 discusses an efficient

and accurate method for calibrating an image from an existing 3D model. In Chapter 6

I present techniques for estimating focal lengths at scale from a network of cameras.

This technique, when combined with a pre-SfM optimization, allows for global SfM to

be performed on uncalibrated image sets. Finally, in Part III, I discuss my open-source

SfM library, Theia (Chapter 7), and review the contributions of this thesis and provide

concluding notes (Chapter 8).

10

Chapter 2

Foundations

This chapter reviews some of the core concepts and fundamental theories for multiple view

geometry and SfM that are relevant to this thesis. In Section 2.1, we review the pinhole

camera model which describes a mathematical representation for cameras in geometric

computer vision. In particular, this model maps points in 3D space to pixels in image

space and is a core construct for SfM. Since Part I of this thesis discusses new methods for

3D modeling, Section 2.2 provides an overview of incremental and global SfM procedures

used to create 3D models from sets of images.

2.1 The Pinhole Camera Model

The pinhole camera model is a widely used mathematical model to describe how

cameras observe the 3D space captured in images. Formally, it provides a geometric

relationship between a 3D point and its projection onto the image plane of a camera [33].

The mathematics utilize an ideal pinhole camera, assuming the camera aperture is an

infinitely small point and no lenses are used to focus light. Because it does not account

for lens distortion artifacts such as radial or tangential distortion, the pinhole camera

model is only an approximation of a real camera and the accuracy of this approximation

descreases from the center of the image outwards as lens distortion increases [33]; how-

11

Foundations Chapter 2

Figure 2.1: The pinhole camera model corresponds a pixel x to the location where
the ray from the center of projection C to the 3D point X intersects the imaging
plane. This dissertation uses a right-handed coordinate system where the camera is
looking down the positive Z-axis with the positive X-axis pointing to the right.

ever, for cameras of sufficient quality (such as those commonly used in internet photo

collections) this model is a reasonable approximation. For this thesis it is assumed that

the effects of lens distortion are negligible or have been previously removed.

2.1.1 Camera Intrinsic Parameters

The pinhole camera model defines a projection function that maps 3D points in a

scene to 2D pixel positions in an image. This projection function is modelled as rays

that extend from the 3D points in the scene through a center of projection [33] (i.e.,

the pinhole) and intersects with the image plane (cf . Figure 2.1). The point at which

the ray intersects the image plane corresponds to a pixel location where that 3D point is

observed in the image. Note that this model allows for continuous pixel values, whereas

real image sensors have discrete pixel locations. The distance from the image plane to

the center of projection is called the focal length of the image, and the point projecting

the center of projection onto the image plane is the principal point. These values, along

with pixel skew and pixel aspect ratio, define the intrinsic camera calibration matrix. In

12

Foundations Chapter 2

+x

+y

+z

+x

+y

+x

+y

+z

OC

OW

OIM

Figure 2.2: Camera intrinsic parameters transform points from the camera coordinate
system OC to the image coordinate system OIM , whereas the extrinsic parameters
transform points in the world coordinate system OW to the camera coordinate system
OC .

its most general form, the intrinsic camera calibration matrix encompasses focal length

f , principal point (px, py), aspect ratio a, and skew s such that the projection of a 3D

point in the camera coordinate system to the 2D pixel location in the image coordinate

system (cf . Figure 2.2) is defined by the matrix

K =

f s px

0 a · f py

0 0 1

 . (2.1)

Nearly all modern cameras have square pixels with no skew, so we assume that s = 0 and

a = 1 for all cameras. We additionally assume that the principal point is at the center

of the image, a reasonable assumption for modern cameras[81]. Thus, in this thesis a

13

Foundations Chapter 2

reduced intrinsic camera calibration matrix is used:

K =

f 0 0

0 f 0

0 0 1

 . (2.2)

This matrix may be applied to map a 3D point Xcam = (X, Y, Z)> to a 2D pixel

location xim = (x, y)> such that the homogeneous pixel location of the image is:

xhomog =

x′

y′

w′

 = K ·Xcam =

f 0 0

0 f 0

0 0 1

 ·

X

Y

Z

 =

f ·X

f · Y

Z

 (2.3)

assuming the position of Xcam is given in the camera’s coordinate system. A division

by the third entry converts homogeneous coordinates to pixel coordinates, resulting in

xim = (f ·X/Z, f · Y/Z)>.

2.1.2 Camera Extrisic Parameters

To this point, the 3D point X has been provided in the same coordinate system as

the camera. Yet, it is often the case that the location 3D points are provided in reference

to a world coordinate system (cf . Figure 2.2) such as a landmark. The transformation

from a world coordinate system to a camera coordinate system may be defined by a

rotation and a translation. This rotation and translation comprise the camera extrinsic

parameters and this transformation may be written linearly as

Xcam = [R | t] ·Xworld (2.4)

14

Foundations Chapter 2

where R is the 3 × 3 rotation matrix and t is the translation that transforms a point

in the world coordinate system to the camera coordinate system. The rotation R is

referred to as the camera orientation and the camera position may be easily recovered

as C = −R> · t.

In order to transform a 3D point in world coordinates to a 2D pixel observation

in image coordinates, we must apply the extrinsic and intrinsic camera paramters to

transform the point:

xim = K ·Xcam = K · [R | t] ·Xworld. (2.5)

This defines the full projection from a 3D point in world coordinates to pixel locations

in image coordinates.

2.2 Structure-from-Motion

The techniques presented in this thesis are centered around recovering 3D geometry

of a scene. Structure-from-Motion (SfM) is the process of recovering this 3D geometry

from image observations. When SfM is applied to large, complex scenes it can produce

beautiful, intricate 3D models that reveal detail, structure, and scale that is not other-

wise possible to observe from images alone. In this section, I briefly describe the the

fundamental building blocks of SfM and the general procedure for the two most common

types of SfM pipelines: incremental SfM, and global SfM.

2.2.1 Epipolar Geometry

In order to recover 3D structure from a set of images, we must first determine the

epipolar geometry between pairs of cameras. Epipolar geometry describes the geometric

15

Foundations Chapter 2

C0

X

Relative	pose	R,	t

p0

x0 x1

p1
epipolar lines

epipolar plane

l0 l1

Figure 2.3: Epipolar geometry defines the relationship between two cameras with
centers C0 and C1 with a known relative pose R, and t. The fundamental or essential
matrix maps the image observation p0 in the left image to the line l1 in the right
image as the intersection of the image plane with the epipolar plane formed by C0,
C1, and X.

relationship between a pair of images, and can be used to compute the relative pose

comprised of a relative rotation R and relative translation direction t. Since we are de-

termining the relative pose between the cameras, the first camera is generally considered

to be fixed at the origin with an identity rotation so the relative pose is equivalent to the

extrinsic parameters of the second camera. Note that due to scale ambiguity, the trans-

lation direction may be stretched to any length without altering the epipolar geometry.

Figure 2.3 demonstrates the epipolar geometry between two cameras in a scene.

The epipolar geometry may be derived directly from the projection constraints. In

C0’s coordinate system, the point X may be represented in terms of the unit-norm ray

x0 (corresponding to the pixel p0) and the depth of the point α0 such that X = α0x0.

Similarly, X may be represented in C1’s coordinate system as:

α1x1 = R(α0x0) + t (2.6)

16

Foundations Chapter 2

By taking the cross product of t with both sides we obtain:

t× α1x1 = [t]×R(α0x0), (2.7)

where [t]× is the skew-symmetric cross product matrix:

[t]× =

0 −tz ty

tz 0 −tx

−ty tx 0

 (2.8)

We may eliminate the left-hand side of the equation by taking the dot product with x1:

0 = x>1 ([t]×R)(α0x0). (2.9)

Finally, we may drop the scalar α0 (as it does not effect the constraint) to obtain the

epipolar point constraint :

0 = x>1 ([t]×R)x0 = x>1 Ex0. (2.10)

The 3 × 3 rank-2 matrix E is called the essential matrix, and encapsulates the relative

pose between the two cameras. This matrix maps a point in the first image to the epipolar

line in the second image l1 = Ex0 by projecting the ray x0 from the first image onto

the line l1 in the second image. Additionally, the epipolar line is the intersection of the

epipolar plane formed by C0, C1, and X with the image plane of the second view. The

same procedure may be applied to derive the epipolar constraints from the second image

to the first image.

If five correspondences between points are known, the essential matrix may be re-

17

Foundations Chapter 2

Least	Squares

RANSAC 0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
8

10
10

Outlier Ratio
#

 R
e

q
u

ir
e

d
 S

a
m

p
le

s

n=3
n=4
n=5
n=6

Figure 2.4: Left: RANSAC is able to robustly estimate the line of best fit from
inliers (green dots) despite the presence of outliers (red dots) in the data. Right:
The number of iterations required to obtain an all-inlier ratio with 99% confidence
increases exponentially as the number of data points per sample n increases.

covered from the correspondences and epipolar constraints of Eq. 2.10 alone [59]. The

essential matrix may then be decomposed using Singular Value Decomposition (SVD) to

determine the relative rotation and translation [59]. Similar to the essential matrix is the

fundamental matrix, which describes the epipolar geometry when calibration is unknown.

The relationship between the essential and fundamental relationships is described by the

intrinsic camera calibration matrices: F = K−>1 EK−1
0 . If calibration is unknown and

only the 2D-2D pixel correspondences are avilable then the fundamental matrix may be

computed from seven or more correspondences [33, 32].

2.2.2 Robust Estimation With RANSAC

When estimating the relative pose between two images with the five-point [59] or

seven-point algorithms [33], outliers in feature correspondences and noise in the esti-

mation process can deteriorate the quality of the reconstruction process. To overcome

these sources of error, two techniques are employed. First, Random Sample Consensus

18

Foundations Chapter 2

(RANSAC) [25] estimation is used to determine camera geometry. RANSAC is a robust

estimation procedure used to compute a model given data contaminated from outliers.

Hypotheses are estimated from random subsets of the input data, and each data point

is labelled an “inlier” or and “outlier” depending on if the data point agrees with the

hypothesis (e.g ., if the residual error is sufficiently small). Thus, the probability of com-

puting a high-quality model in the presence of outliers is approximately reduced to the

probability of randomly sampling an all-inlier subset. If the ratio of inliers to outliers in

the data is ε, and n points are required to estimate a model, then 1−εn is the probability

that at least one of the n points chosen is an outlier (implying that a bad hypothesis

will result). After choosing k random subsets, the probability that at least one of the k

subsamples contains only inliers is

p = 1− (1− εn)k. (2.11)

Conversely, if we wish to determine the number of samples required in order to compute

a high quality model with a given confidence (e.g ., 99% confidence), we can use the

equation above to solve for k:

k =
log(1− p)
log(1− wn)

. (2.12)

Figure 2.4 demonstrates how the number of required samples increases as the number

of points used to compute a model, n, increase. The number of required iterations

increases exponentially as n increases and, as a result, n is typically set to the minimal

number of data points required to compute a hypothesis. RANSAC may be applied

to any model estimation procedure to robustly estimate a model hypothesis and has

been shown to produce high quality results efficiently in practice. This has created a

great interest in creating so-called “minimal solvers” in computer vision that compute

19

Foundations Chapter 2

Figure 2.5: Incremental SfM begins with two cameras then adds new camera obser-
vations and 3D points one at a time to gradually build a 3D model.

hypotheses efficiently from a minimal sample [33, 59, 34, 45, 47, 46]. Similarly, many

RANSAC variants have been proposed that optimize the sampling strategy, residual

evalaution, and model quality [16] [19] [17] [18] [26] [66] [83].

2.2.3 Incremental SfM

In incremental SfM, a 3D reconstruction is gradually grown by beginning with 2

cameras and adding additional cameras and 3D points sequentially to determine the

camera poses and positions of 3D points in a global reference frame. To begin this

process, we choose a pair of images as our initial seed for the reconstruction. This pair is

typically chosen as the pair that contains the largest number of correspondences with care

to avoid pairs observing degenerate structures such as planes [73]. After the initial 3D

reconstruction is created, new images are successively added to grow the reconstruction.

The camera pose of new cameras is determined from the 2D-3D correspondences between

20

Foundations Chapter 2

image points in the new image and existing 3D points in the current reconstruction. New

3D points are triangulated based on observations from the new camera. This process is

repeated, adding the images that observe the highest number of 3D points currently in

the scene and triangulating new 3D points until all possible images have been added to

the reconstruction.

To handle outliers in feature correspondences and noise in the geometry estimation

process, two techniques are employed. First, RANSAC is used to robustly compute the

poses of cameras from 2D-3D correspondences using the P3P algorithm [45]. This allows

for efficient and accurate computation of the camera pose in the presence of outliers.

Still, small inaccuracies exist in the pose estimation process due to noise. To avoid

accumulating this error, bundle adjustment is used to refine the camera poses and 3D

point locations[85]. This nonlinear optimization procedure refines the 3D reconstruction

by minimizing the sum of squared reprojection errors to minimize the pixel-distance

between 2D observations and the projection of their corresponding 3D point into the

image:

arg min
Ki,Ri,ti,Xj

∑
i

∑
j

δi,j||xij − Π(Ki(RiXj + tj))||2 (2.13)

where Π is the projection function Π(x, y, z) = Π(x/z, y/z) and δi,j is a binary value

equal to 1 when camera i observes point j and 0 when it does not. xi,j and Xj are 2D

image observations and 3D points in the scene respectively.

This joint refinement of camera and point parameters is extremely expensive, es-

pecially as the size of the scene grows. Much effort has gone towards improving the

efficiency and quality of bundle adjustment through various minimization strategies [23]

[53] [85] [84] [5], preconditioners [48] [37], and parallel algorithms [90], and useful open-

source software such as SBA [54] and Ceres Solver [4] enable bundle adjustment to be

21

Foundations Chapter 2

Figure 2.6: In contrast to incremental SfM, global SfM solves for all camera poses si-
multaneously by first determining the camera orientations, then the camera positions.
Global SfM is more efficient and scalable than incremental SfM because the expensive
nonlinear optimization of bundle adjustment is only required once.

performed efficiently. In incremental SfM, bundle adjustment is repeatedly applied as the

model grows to overcome the effects of noise during the reconstruction process. While

this typically results in high-quality reconstructions, the repeated use of bundle adjust-

ment is the main source of inefficiency in incremental SfM and limits the scale of the

3D reconstructions that may be computed with incremental methods without the use of

computing clusters [2]. Alternatively, global SfM methods only require a single bundle

adjustment at the end of the model estimation resulting in a significant improvement in

efficiency over incremental methods.

2.2.4 Global SfM

While incremental SfM can compute small to medium-sized reconstructions (several

hundred images or fewer) efficienctly, the repeated use of bundle adjustment limits the

22

Foundations Chapter 2

scalability of such approaches. Further, the sequential nature of incremental methods

inherently weighs images added earlier in the reconstruction process more heavily [74].

These images are not inherently “more important” than images added later, and more

natural approach would weigh all images equally.

Global SfM methods overcome these limitations by considering all cameras at the

same time and computing the pose of all cameras simultaneously with motion averaging

algorithms [29] [30]. As such, all images are weighted equally and order does not affect

the final outcome. To estimate camera poses, the relative poses between pairs of images

are utilized to compute estimates of the poses in a global reference frame (cf . Figure 2.6).

Only images pairs that have a sufficient number of inliers after epipolar geometry esti-

mation are considered. First, the rotations of camera are estimated from the relative

rotations by noting that:

Ri,j = RjR
>
i (2.14)

where Ri,j is the relative rotation from camera i to camera j, and Ri, Rj are the world-to-

camera rotations of camera i and j (i.e., the extrinsic camera parameters for rotation).

Due to noise and outliers, Eq. (2.14) generally does not hold; however, we may use this

equation to form a cost function in terms of the relative and absolute rotations. When all

relative rotation constraints are considered simultaneously, the minimization of this cost

function produces estimates for the camera rotation of all cameras in a global coordinate

system.

arg min
Ri

=
∑
i,j

Ri,jRi −Rj. (2.15)

This constraint may be used to compute camera rotations using efficient solvers [6, 14].

After camera rotations have been computed, camera positions may be computed using

23

Foundations Chapter 2

a similar constraint to Eq. 2.14 for relative translations:

ti,j = Ri
cj − ci
||cj − ci||

(2.16)

where ti,j is the unit-norm relative translation between cameras i and j, ci and cj are

the camera positions in a global coordinate system, and Ri is the rotation of camera

i computed in the previous step. In contrast to the rotation estimation step, Eq. 2.16

is nonlinear and a globally optimal solution is difficult to compute. Several position

estimation methods exist to compute the position from linear cost function [29] [60] [57]

[38] [22] or with robust estimation techniques [88] [20] [61].

After computing the camera positions in a global coordinate system, the 3D points

are triangulated and bundle adjustment is performed to refine the 3D points and camera

poses. Notice that triangulation and bundle adjustment are performed only once, leading

to dramatic efficiency increases for global SfM in large-scale datasets. The accuracy of

these methods, particularly the position estimation methods, is worse than incremental

SfM because no image observations are used to compute camera poses. This is in di-

rect contrast with incremental methods that repeatedly refine camera poses with bundle

adjustment throughout the reconstruction process to minimize reprojection error of the

image observations. Indeed, there is a tradeoff between the accuracy and robustness of

incremental SfM methods and the scalability of the global methods. One focus of this

thesis is to remove the gap by designing new robust, accurate, and scalable SfM methods.

24

Part I

Modeling the Distributed Camera

25

Chapter 3

A Full Generalization of the Relative
Pose Problem

When two images observe the same scene, the relative pose problem aims to compute the

relative geometry between two cameras from image correspondences alone. This relative

pose is defined by the epipolar geometry between the two images (see Chapter 2.2.1

for more details). The relative pose is a core building block for many real-time SLAM

system such as PTAM [42], and is the first step in incremental SfM [73]. Given the

relative camera pose, 3D points may be triangulated to obtain a full 3D reconstruction

of cameras and structure.

In a projective setting (i.e., calibration is not known), the Fundamental Matrix is a

3× 3 matrix that encapsulates the relative pose between two cameras such that:

x′>Fx = 0 (3.1)

where x is in the first view and x′ is in the second view. Similarly, when calibration is

known the 3× 3 Essential Matrix E describes the relative camera geometry such that:

x′>Ex = 0. (3.2)

26

A Full Generalization of the Relative Pose Problem Chapter 3

R	

t	

Figure 3.1: The relative camera pose problem determines a camera’s position and
orientation with respect to a second camera using 5 image-to-image correspondences.

The relative pose may be recovered from the essential matrix by noting the E = [t]xR

where t is the relative translation (up to scale) and R is the relative rotation between

the two cameras.

In this chapter, we focus on the calibrated relative pose problem to directly recover

relative translations and rotations between cameras. This particular problem is a funda-

mental building block for SfM, as it is the starting point for incremental SfM algorithms

and is the input for global SfM algorithms. We extend the standard relative pose problem

first to multi-camera systems (i.e., generalized cameras) then additionally incorporate

scale changes. Incorporating scale changes between generalized cameras is equivalent

to recovering a 7 degrees-of-freedom (d.o.f.) similarity transformation and allows for a

much broader use of generalized cameras. In particular, similarity transformations can

be used for loop closure in SLAM (where scale drift occurs) and for merging multiple

Structure-from-Motion (SfM) reconstructions when the scale between the reconstructions

27

A Full Generalization of the Relative Pose Problem Chapter 3

is unknown. This problem arises frequently because scale cannot be explicitly recovered

from images alone without metric calibration, so developing accurate, efficient, and ro-

bust methods to solve this problem is of great importance. We show that this generalizing

the relative pose problem in this way leads to a single solution method for all relative

pose problems and enables efficient model-merging.

3.1 A Quadratic Eigenvalue Formulation

We will first consider the problem of determining the relative pose between two cam-

eras, and will then extend this formulation to the general case. In order to eventually

derive a general formulation for the relative pose problem, we do not consider Essen-

tial/Fundamental Matrices but instead work directly with the relative motion. Thus,

computing the relative pose between two cameras requires solving for the relative rota-

tion and translation that satisfies:

x′>[t]xRx = 0. (3.3)

Using the scalar triple product rule, this constraint may be rewritten as:

(xi ×Rxi′) · t = 0 (3.4)

If we collect this constraint for all correspondences, we have:

mi(R)> · t = 0 mi(R) = Rxi × x′i, i = 1 . . . n (3.5)

[m1(R) . . .mn(R)]> · t = 0 (3.6)

M(R)> · t = 0 (3.7)

28

A Full Generalization of the Relative Pose Problem Chapter 3

where M(R) is a 3× n matrix that is a function of the unknown rotation R and known

pixel observations. In the minimal case, only 5 correspondences are needed to estimate

the relative pose. The expression in Eq. (3.7) is very powerful, as it indicates that the

solution for the relative translation lies in the null space of M . In other words, we know

that the expression M is rank deficient and, specifically, is rank 2. We use this knowledge

to help solve for the unknown rotation.

To solve for the relative pose, let us consider the quaternion rotation parameterization

q = (x, y, z, α)> such that the rotation matrix

R = 2(vv> + α[v]×) + (α2 − 1)I, (3.8)

where v = (x, y, z)> and [v]x is the skew-symmetric cross product matrix of v. Thus,

M is quadratic in the quaternion parameters and the generalized epipolar constraint of

Eq. (3.7) is a 4-parameter Quadratic Eigenvalue Problem (QEP) of the form:

(M0x
2 +M1y

2 +M2z
2 +M3α

2

+M4xy +M5xz +M6xα +M7yz +M8yα +M9zα

+M10x+M11y +M12z +M13α +M14) · t = 0

(3.9)

No methods currently exist to directly solve a 4-parameter QEP and it should be noted

that a non-iterative solution to Multiparameter Eigenvalue Problems with more than

two parameters is an open problem in mathematics. However, an iterative optimization

similar to [43] may be used to minimize the smallest eigenvalue of M and determine the

unknowns if a good initialization is available.

Since the 4-parameter QEP of Eq. (3.9) is intractable, we instead solve the problem

in two steps to make the problem tractable. First, we align the vertical directions of the

29

A Full Generalization of the Relative Pose Problem Chapter 3

cameras. This may be done by utilizing IMU data, detecting vertical vanishing points,

or with the robust alignment method described in [80]. Then we utilize the knowledge of

the vertical direction to formulate the relative pose problem as a Quadratic Eigenvalue

Problem which is simple to construct and efficient to solve.

3.1.1 Solving the Quadratic Eigenvalue Problem

By assuming the vertical direction between the two cameras has been aligned we

remove 2 d.o.f. from the unknown rotation. The only remaining d.o.f. of the relative

rotation corresponds to determining an angle of rotation about the vertical axis. By

removing 2 d.o.f. from the problem, it is clear to see that the minimum number of

correspondences required to solve for the relative pose is reduced from 5 correspondences

to 3.

In terms of the quaternion parameterization of Eq. 3.8, v = [xyz]> corresponds to

the vertical axis, and so R is quadratic in terms of only the unknown variable α. Thus,

our 4-parameter QEP of Eq. 3.9 now becomes a 1-parameters QEP of the form:

(α2A+ αB + C) · t = 0, (3.10)

where A, B, and C are 3× 3 matrices formed from matrix M in Eq. (3.7). We now have

a standard 1-parameter QEP which has been thoroughly examined in linear algebra [82].

To solve this QEP, we first convert it to a Generalized Eigenvalue Problem of the form:

 B C

−I 0

 z = s

−A 0

0 −I

 z, (3.11)

where z =
[
αt > t >

]>
is the eigenvector and s is the eigenvalue. This can be converted

30

A Full Generalization of the Relative Pose Problem Chapter 3

to a standard eigenvalue problem by inverting the right-hand matrix of Eq. (3.11). The

inverse is particularly simple and efficient in this case:

−A 0

0 −I

−1

=

−A−1 0

0 −I

 .
The Generalized Eigenvalue Problem of Eq. (3.11) may now be reduced to a standard

eigenvalue problem, −A−1B −A−1C

I 0

 z = sz,

which can be solved with standard methods. The solution to this produces 6 candidate

solutions where the eigenvalues correspond to α and the translation and scale may be

extracted from the eigenvector z. We may eliminate some of the candidate solutions by

only considering real eigenvalues and the eigenvectors where the first 5 entries are equal

to the last 5 entries scaled by α to ensure our solution is consistent with the construction

of vector z. In general, 2 of the 6 solutions correspond to imaginary eigenvalues and can

be immediately removed from consideration.

3.1.2 A Closed Form Solution

An alternative method for solving Eq. (3.10) arises by examining the determinant.

Since M from Eq. (3.22) will be rank-deficient in non-degenerate cases, so it must hold

that:

det(α2A+ αB + C) = 0. (3.12)

This leads to a degree 10 univariate polynomial in α such that the roots correspond to

valid solutions to α. Further, it can be shown that this polynomial is always divisible by

31

A Full Generalization of the Relative Pose Problem Chapter 3

α2 + 1, leading to at most 4 real solutions. This result also verify that our QEP method

will have at most 4 real solutions since the roots of this polynomial correspond to the

eigenvalues of our QEP. In practice this polynomial is often ill-conditioned and solutions

may be unstable. The loss in numerical precision and accuracy is not worth the 10-20%

speed increase so in practice we only consider the QEP method.

3.2 Generalization to 7 d.o.f.

A generalization of the relative pose problem is to compute the relative pose between

two sets of multiple cameras. Each set of multiple cameras may be described by the

generalized camera model which allows a set of image rays that do not necessarily have

the same ray origin to be represented in a uniform expression. Generalized cameras are

extremely useful for many practical applications such as omni-directional camera systems

and vehicle-mounted multi-camera systems. Solutions exist for computing relative pose

between generalized cameras [43, 50, 76]; however, these methods require that the internal

scale of the multi-camera system (i.e., the distance between all camera centers within

the multi-camera system) is known. This limits the use of generalized cameras to cases

where scale calibration can be easily captured. In this section, we provide a further

generalization of the relative pose problem and remove the requirement of known scale

to solve a new problem: the generalized relative pose and scale problem.

The generalized relative pose and scale problem is a direct generalization of the gen-

eralized relative pose problem. The generalized relative pose problem uses ray correspon-

dences to compute the rotation and translation that will transform one set of rays so that

they intersect with the second set of rays. Let xi and xi
′ be corresponding unit vectors

that intersect in 3D space with ray origins ci and c′i. These rays can be represented in

32

A Full Generalization of the Relative Pose Problem Chapter 3

Figure 3.2: We present a method to solve the generalized relative pose and scale
problem. We first align the generalized cameras to a common vertical direction then
use image rays obtained from 5 2D-2D correspondences to solve for the remaining
degrees of freedom. Solving this problem is equivalent to computing a similarity
transformation

Plücker coordinates [64] such that:

li =

 xi

ci × xi

 and l′i =

 xi
′

c′i × xi′

 . (3.13)

The generalized epipolar constraint [63] that describes the intersection of two Plücker

coordinates may then be written as:

(xi ×Rxi′)>t+ xi
>([ci]×R−R[c′i]×)xi

′ = 0, (3.14)

where R and t are the rotation and translation that transform xi
′ and c′i such that the

ray correspondences intersect in 3D space. This problem has been solved previously with

minimal [76], linear [50], and nonlinear approaches [43]. Further, the generalized relative

33

A Full Generalization of the Relative Pose Problem Chapter 3

pose problem can be represented by our QEP formulation:

mi(R)> · t′ = 0,where (3.15)

mi(R) =

 xi ×Rxi′

xi
>([ci]×R−R[c′i]×)xi

′

 and t′ =

t
1

 (3.16)

M(R)>t̃ = (m1(R) . . . mn(R))>t̃ = 0. (3.17)

The rank-deficient matrix M(R) is a function of R and thus the QEP method described

in Section 3.1 may be used to solve for the relative pose between the generalized cameras.

A limitation of this formulation is that it assumes the scale between the two generalized

cameras has been reconciled yet in many cases the scale is not available or may be

inherently ambiguous without metric calibration (e.g ., in SfM reconstructions). Thus,

we are interested in additionally solving for the unknown scale transformation between

the two generalized camera.

To solve the generalized relative pose and scale problem we must additionally recover

the unknown scale s that stretches the ray origins c′i. Thus, the generalized epipolar

constraint becomes:

(xi ×Rxi′)>t+ xi
>([ci]×R−Rs[c′i]×)xi

′ = 0 (3.18)

(xi ×Rxi′)>t− sxi>R[c′i]×xi
′ + xi

>[ci]×Rxi
′ = 0. (3.19)

34

A Full Generalization of the Relative Pose Problem Chapter 3

−16 −14 −12 −10
0

1000

2000

Log
10

 translation error
−16 −14 −12 −10

0

1000

2000

Log
10

 scale error

Figure 3.3: We measured the numerical stability of our algorithm with zero pixel
noise and a perfect known axis of rotation. The translation and scale errors are very
small, and the rotation error cannot be displayed because it was within the machine
precision.

As before, this equation may be rewritten as:

mi(R)> · t̃ = 0,where (3.20)

mi(R) =

xi ×Rxi′

−xi>R[c′i]×xi
′

xi
>[ci]×Rxi

′)

 and t̃ =

t

s

1

 (3.21)

M(R)>t̃ = (m1(R) . . . mn(R))>t̃ = 0. (3.22)

The generalized relative pose and scale problem has 7 d.o.f. and thus requires 7 corre-

spondences in the minimal case. Once again, we may utilize knowledge of the vertical

direction to reduce the 4-parameter QEP to a 1-parameter QEP. This allows us to solve

the generalized relative pose and scale problem from 5 image-to-image correspondences.

3.3 Experimental Evaluation

3.3.1 Numerical stability

We tested the numerical stability of our QEP method over 105 random trials. We

generated random camera configurations that placed cameras (i.e., ray origins) in the

35

A Full Generalization of the Relative Pose Problem Chapter 3

cube [−1, 1]× [−1, 1]× [−1, 1] around the origin. 3D points were randomly placed in the

cube [−1, 1]×[−1, 1]×[4, 6] and ray directions were computed as unit vectors from camera

origins to 3D points. Correspondences were computed from image rays that observed the

same 3D points. An identity similarity transformation was used (i.e., R = I, t = 0,

s = 1). For each trial, we computed solutions using the minimal 5 correspondences. We

calculated the angular rotation error, the translation error, and the scale error for each

trial, and plot the results in Figure 3.3. The errors are very stable, with 99% of all errors

less than 10−12.

3.3.2 Image noise experiment

We performed experiments on synthetic data to determine the effect of image noise

on our algorithm. We compared our algorithm to three alternative algorithms: the gDLS

algorithm [79], the gP+s algorithm [87], and the Absolute Orientation algorithm [86].

For our synthetic setup we generated two generalized cameras that each consist of 5

cameras randomly placed in the 2×2×2 cube centered at the origin. 3D points were then

randomly generated with a mean distance of 5 units from the origin, and correspondences

were established as rays that observed the same 3D points such that each camera observes

a single 3D point. We then applied a similarity transformation with a random rotation, a

translation in a random direction with a random baseline in the range of [0.1, 100], and a

random scale in the range of [0.1, 100] to the second generalized camera. Image noise is

added to the second generalized camera and the similarity transformation is estimated.

We report the angular rotation error, absolute translation error, and the normalized scale

error |s− ŝ|/s.

For all synthetic experiments we used the ground truth vertical direction and added

0.5 degrees of Gaussian noise to simulate the real accuracy of vertical direction esti-

36

A Full Generalization of the Relative Pose Problem Chapter 3

Image Noise Std Dev
0 1 2 3 4 5

M
e
a
n
 r

o
ta

ti
o
n
 e

rr
o
r

(d
e
g
)

0

0.2

0.4

0.6

0.8
Our 5pt.
gDLS
gP+s
Abs. Ori.

Image Noise Std Dev
0 1 2 3 4 5

M
e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

0

0.1

0.2

0.3

0.4

Image Noise Std Dev
0 1 2 3 4 5

M
e
a
n
 s

c
a
le

 e
rr

o
r

0

0.01

0.02

0.03

0.04

Depth
0 200 400 600 800 1000M

e
a
n
 r

o
ta

ti
o
n
 e

rr
o
r

(d
e
g
)

0

2

4

6

8

10

Depth
0 200 400 600 800 1000

M
e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

0

5

10

15

20

25

30

Depth
0 200 400 600 800 1000

M
e
a
n
 s

c
a
le

 e
rr

o
r

0

0.5

1

1.5

2

2.5

Figure 3.4: We measured the error in the computed similarity transformation as
the amount pixel noise increased and plot the mean rotation, translation and scale
error. All cameras were randomly generated within a 2 × 2 × 2 cube centered at the
origin. Top row: we generated random 3d points with an average depth of 5 units
away from the orign. Our algorithm is the most accurate at computing the rotation
and translation but is not as accurate at computing scale, however, the scale errors
are very small for all algorithms. Bottom row: we kept the image noise at 1.0
pixels standard deviation while increasing the average depth of hte 3D points used
to establish correspondences. Our algorithm is least affected by the change in scene
depth meaning that it is robust to uncertainty in 3D point positions.

mation for our algorithm. For the Absolute Orientation algorithm, we created 3D-3D

matches by triangulating 3D points in the second generalized camera from the noisy im-

age rays and used these 3D points to establish correspondences. Additionally, we used 5

correspondences for each algorithm for a fair comparison.

Using the setup described, we ran 1000 trials testing the accuracy of each algorithm as

increasing levels of image pixel noise were added (Figure 3.4 top). Scenes were randomly

generated for each trial, and all algorithms used the same scene configuration for a given

trial. Our algorithm performed best at estimating the rotation and translation of the

similarity transformation but is less accurate than the gDLS and Absolute Orientation

37

A Full Generalization of the Relative Pose Problem Chapter 3

algorithms for estimating scale. It should noted that the scale errors are very small for

all algorithms. Our algorithm is robust to image noise because ray intersection in 3D

space is a very tight constraint that is independent of the depth of the 3D point.

3.3.3 Scene depth experiment

In SLAM and SfM it is common to have 3D points with large and varying scene depth.

It is especially important in the case of urban and large-scale SfM to be robust to large

scene depths when computing a similarity transformation to align models. To examine

our algorithm’s robustness to scene depth, we ran an experiment using the same setup

as above while increasing the mean scene depth from 5 units to 200 units. We used an

image noise of 1 pixel for all depth levels and executed 1000 trials at each depth level.

The results of our experiment are shown in the bottom row of Figure 3.4. It is clear to see

that our algorithm is least affected by scene depth. The Absolute Orientation and gP+s

algorithms completely degrade as the scene depth increases. The gDLS algorithm has

comparable depth robustness to our algorithm in terms of the rotation and translation

but is not as accurate at computing scale.

Conceptually, our algorithm has an advantage over gDLS [79], gP+s [87], and the

Absolute Orientation algorithm [86] because it does not use 3D points and thus is not

subject to uncertainty in the 3D position. It is well known that the uncertainty of a

triangulated 3D point increases as the depth of the point relative to the baseline of the

cameras observing it increases. Therefore, our algorithm should produce more accu-

rate similarity transformations as the scene depth increase. Indeed, the results of this

experiment support this notion.

38

A Full Generalization of the Relative Pose Problem Chapter 3

3.3.4 IMU noise experiment

We performed experiments on synthetic data to determine how the accuracy of the

estimated vertical direction affects our algorithm. To simulate noise in the estimated

vertical direction we added gaussian noise to a synthetic IMU ranging from 0 to 1 degree

of standard deviation.

Using the same scene setup as the image noise experiment, we ran 1000 trials testing

the similarity transformation accuracy as increasing levels of IMU noise were added

(Figure 3.5). Standard mobile devices have less than 0.5 degree of IMU noise with high

quality sensors often having less than 0.01 degrees of noise. Our algorithm demonstrates

good accuracy in the presence of IMU noise within this range, verifying its robustness to

potentially inaccurate vertical direction estimations.

3.3.5 Time Complexity

A major benefit of our method is that the QEP solution is simple to construct and

very efficient. The most costly operations involved in our method are inversion of a 5×5

matrix and computing the eigenvectors and eigenvalues of a 10×10 matrix. Both of these

operations are highly efficient on small matrices in standard linear algebra packages. Over

10,000 trials our algorithm ran with a mean execution time of 44µs. In comparison, the

gDLS [79] method had a mean execution time of 606µs and the gP+s [87] method had

a mean execution time of 118 µs. All timing experiments were run on a 2011 Macbook

Pro with a 2GHz Intel Core i7 processor. While the Absolute Orientation algorithm is

more efficient at 3µs, it is not as accurate or as robust to image noise and depth variance

as our algorithm (cf . Figure 3.4). Our algorithm has comparable accuracy to gDLS in

the presence of image noise and is more robust to depth variance, yet it has a speedup

of over 10×. This makes our algorithm more desirable for real-time use in a RANSAC

39

A Full Generalization of the Relative Pose Problem Chapter 3

IMU Noise Std Dev
0 0.2 0.4 0.6 0.8 1M

e
a
n
 r

o
ta

ti
o
n
 e

rr
o
r

(d
e
g
)

0

0.4

0.8

1.2

1.6
Our 5pt.

IMU Noise Std Dev

0 0.2 0.4 0.6 0.8 1

M
e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

0

0.1

0.2

0.3

0.4

IMU Noise Std Dev

0 0.2 0.4 0.6 0.8 1

M
e
a
n
 s

c
a
le

 e
rr

o
r

0

0.03

0.06

0.09

0.12

Figure 3.5: Using the same scene configuration as the image noise experiment, we
measured the similarity transformation error as noise was added to the synthetic IMU
to perturb the vertical direction. We only show our algorithm since it is the only one
that depends on knowledge of the vertical direction. We used 1 pixel of image noise
for all experiments. For levels of IMU noise expected on mobile devices (less than
0.5 degrees) our algorithm still maintains good accuracy, demonstrating robustness to
noise in the vertical direction estimation.

scheme because of speed gains that will be realized.

3.3.6 Real-data experiments

Our method’s robustness to 3D point and depth variance makes it well-suited for

real-world applications. We tested the performance of our solver using the SLAM dataset

from [87] that has highly accurate ground truth poses obtained with an ART-2 optical

tracker for measuring the error of our similarity transformation registration method.

Example images from this dataset are provided in Figure 3.6. For our experiment, we

created an SfM reconstruction (using the ground truth poses) from one image sequence

40

A Full Generalization of the Relative Pose Problem Chapter 3

Table 3.1: Average position error in centimeters for aligning a SLAM sequence to a
pre-existing SfM reconstruction. An ART-2 tracker was used to provide highly accu-
rate ground truth measurements for error analysis. Camera positions were computed
using the respective similarity transformations and the mean camera position error of
each sequence is listed below. Our method is has comparable or better accuracy than
the state-of-the-art method, gDLS, but does not require any 3D points.

Sequence # Images Abs. Ori. [86] gP+s[87] gDLS [79] Our 5 pt.
office1 9 6.37 6.12 3.97 4.30
office2 9 8.09 9.32 5.89 4.17
office3 33 8.29 6.78 6.08 5.10
office4 9 4.76 4.00 3.81 2.61
office5 15 3.63 4.75 3.39 3.41
office6 24 5.15 5.91 4.51 4.81
office7 9 6.33 7.07 4.65 4.06
office8 11 4.72 4.59 2.85 3.12
office9 7 8.41 6.65 3.19 2.62
office10 23 5.88 5.88 4.94 3.55
office11 58 5.19 6.74 4.77 5.03
office12 67 5.53 4.86 4.81 4.12

to use as our reference image sequence and point cloud. We then run 12 image sequences

through a keyframe-based SLAM system to obtain a local tracking sequence that can be

registered with respect to the reference sequence with a similarity transformation (see

Figure 3.7). We then compute a similarity transformation in the following manner:

Our 5 pt.: 2D-2D feature correspondences are established between the reference and

query image sequences using an approximate nearest neighbor search (ANN), and the

vertical directions are aligned using ground plane detection and computing the normal.

These correspondences are then used in a RANSAC loop with the 5 pt. method described

in this paper to determine a similarity transformation.

gDLS:We obtain 2D-3D correspondences with an ANN search between the 3D points

in the point cloud generated by the reference sequence and the 2D image features in the

query sequences. These correspondences are then used in a RANSAC loop using the

41

A Full Generalization of the Relative Pose Problem Chapter 3

minimal number of 4 correspondences with the gDLS algorithm of Sweeney et al . [79].

gP+s:We obtain 2D-3D correspondences in the same way as the gDLS method and

use these correspondences in a RANSAC loop with the algorithm of Ventura et al . [87]

to estimate the similarity transformation. This method requires 4 correspondences in the

minimal case.

Absolute Orientation: The absolute orientation method of Umeyama [25] is used

to align the 3D points from the reference point cloud to 3D points triangulated from

2D correspondences in the query point cloud. Correspondences are determined from an

ANN search of the mean descriptor of the triangulated point and the 3D points in the

reference point cloud. We use 4 correspondences for this method.

After applying the computed similarity transformation directly from RANSAC (i.e.,

no refinement is performed), we compute the average position error of all keyframes with

respect to the ground truth data. We report the mean position error of all keyframes in

the image sequence (in centimeters) over 1000 trials in Table 3.1. Our method performs

better than all other methods in most of the scenes. The globally optimal gDLS algo-

rithm [79] is the only method that is competitive with our algorithm. We expect that our

algorithm will perform even better for large-scale SfM applications. However, acquiring

ground truth datasets for large-scale SfM is difficult and we leave the incorporation and

evaluation of our algorithm into a large-scale hierarchical SfM pipeline for future work.

3.4 Discussion

In this chapter, we have examined a fundamental computer vision problem, the rel-

ative pose problem, and viewed it in the context of a distributed camera. Using the

standard single-camera relative pose constraints, we provide a mathematical generaliza-

tion that naturally extends to multiple cameras and scale changes thus making it useful

42

A Full Generalization of the Relative Pose Problem Chapter 3

Figure 3.6: Example images from our real data experiments. The images created a
SLAM sequence that was then aligned to a reference sequence with our method to
estimate a similarity transformation.

for determining the relative pose between two distributed cameras. This generalization

leads to a new problem called the generalized relative pose and scale problem and to our

knowledge we have provided the first solution to this problem. The generalized relative

pose and scale problem is equivalent to estimating a 7 d.o.f. similarity transformation and

so this work is useful for loop closure in visual odometry and merging SfM reconstruc-

tions. We showed that the standard generalized relative pose and scale problem leads to

an intractable 4-parameter QEP and instead provide a two step solution to the problem

where we first align the vertical directions of all cameras then reduce the problem to a

1-parameter QEP that can be solved with standard linear algebra. Our method is sim-

ple, efficient, and robust to image noise and scene depth. We show on synthetic and real

data experiments that our method has comparable or better performance to alternative

algorithms. In future work, we hope to remove the necessity for vertical alignment to

43

A Full Generalization of the Relative Pose Problem Chapter 3

Figure 3.7: We compare our method with several alternative methods for computing
similarity transformation using a dataset comprised of SLAM sequences that contain
highly accurate ground truth poses. Each method is used to align 12 image sequences
and the camera position errors are reported in Table 3.1. Green represents the ground
truth SLAM sequence and blue SLAM sequence after applying the similarity trans-
formation with our method in a RANSAC scheme.

allow additional flexibility to our algorithm, and would like to incorporate this method

into a large scale multi-camera SfM pipeline where the scale of reconstructions may be

ambiguous.

44

Chapter 4

A Full Generalization of the
Absolute Pose Problem

The problem of determining camera position and orientation given a set of correspon-

dences between 2D image observations and known 3D points is a fundamental problem

in computer vision known as the absolute camera pose problem (cf . Figure 4.1 left) or

the Perspective n-Point (PnP) problem. This problem has a wide range of applications

in computer vision, including camera calibration, object tracking, simultaneous localiza-

tion and mapping (SLAM), structure-from-motion (SfM), and augmented reality. In the

minimal case, only three 2D-3D correspondences are required to compute the absolute

camera pose [25, 34, 45]. These methods utilize the reprojection constraint such that 3D

points Xi align with unit-norm pixel rays xi when rotated and translated:

αixi = RXi + t, i = 1, 2, 3 (4.1)

where R and t rotate and translate 3D points into the camera coordinate system. The

scalar αi stretches the unit-norm ray xi such that αi = ||RXi + t||. In order to determine

the camera’s pose, we would like to solve for the unknown rotation R and translation t

45

A Full Generalization of the Absolute Pose Problem Chapter 4

t
R

Z

X

Y

O

Single	 Camera	 Absolute	 Pose

t

R

Z

X

Y

O
Z

X

Y

OC

Generalized	 Absolute	 Pose

t

R

Z

X

Y

O
Z

X

Y

OC

s

Generalized	 Absolute	 Pose	 and	 Scale

Figure 4.1: The absolute camera pose problem determines a camera’s position and
orientation with respect to a coordinate system with an origin O from correspondences
between 2D image points and 3D points. In this chapter, we present a formulation of
the absolute pose problem that recovers the pose for single-cameras (top-left), pose
of multi-camera rigs (top-right), and pose and scale change for multi-camera rigs
(bottom).

that minimize the reprojection error:

C(R, t) =
3∑
i=1

||xi −
1

αi
(RXi + t)||2 (4.2)

In the case of a calibrated camera, several minimal methods exist to efficiently solve

the P3P problem [25, 34, 45]. The efficiency of these methods makes P3P vital to

applications such as SfM and visual odometry where noise and outliers exist and P3P

may be used within a RANSAC scheme to robustly and efficiently determine the camera

pose.

46

A Full Generalization of the Absolute Pose Problem Chapter 4

4.1 Generalization to 7 d.o.f.

When information from multiple images is available, PnP methods are no longer

suitable and few methods exist that are able to jointly utilize information from many

cameras simultaneously. As illustrated in Figure 4.1 (center), multiple cameras (or mul-

tiple images from a single moving camera) can be described with the generalized camera

model [63]. The generalized camera model represents a set of observations by the viewing

ray origins and directions. For multi-camera systems, these values may be determined

from the positions and orientations of cameras within the rig. The generalized camera

model considers the viewing rays as static with respect to a common coordinate system

(cf . OC in Figure 4.1 center, right). Using the generalized camera model, we may extend

the reprojection constraint of Eq. (4.1) to multiple cameras:

ci + αixi = RXi + t, i = 1, . . . , n (4.3)

where ci is the origin of the feature ray xi within the generalized camera model. This

representation assumes that the scale of the generalized camera is equal to the scale of

the 3D points (e.g ., that both have metric scale). In general, the internal scale of each

generalized camera is not guaranteed to be consistent with the scale of the 3D points.

Consider a multi-camera system on a car that we want to localize to a point cloud

created from Google Street View images. While we may know the metric scale of the

car’s multi-camera rig, it is unlikely we have accurate scale calibration for the Google

Street View point cloud, and so we must recover the scale transformation between the

rig and the point cloud in addition to the rotation and translation. This leads to the

following reprojection constraint:

sci + αixi = RXi + t, i = 1, . . . , n (4.4)

47

A Full Generalization of the Absolute Pose Problem Chapter 4

where αi is a scalar which stretches the image ray such that it meets the world point Xi

such that αi = ||RXi + t − sci||. It is trivial to see that the generalized pose problem

occurs when s = 1 and the single-camera absolute pose problem occurs when ci = 0 ∀i.

In this way, it is a complete generalization of the absolute pose problem.

By extending Eq (4.1) to multi-camera systems and scale transformations, we have

generalized the PnP problem to the generalized pose-and-scale (gPnP+s) problem in

Eq (4.4) shown in Figure 4.1 (right). The goal of the gPnP+s problem is to determine

the pose and internal scale of a generalized camera with respect to n known 3D points.

This is equivalent to aligning the two coordinate systems that define the generalized

camera and the 3D points, and thus the solution to the gPnP+s problem is a 7 d.o.f.

similarity transformation.

The generalized pose-and-scale problem is one that frequently arises in SLAM and

SfM. It is impossible to recover scale from images alone. Scale may be recovered in special

cases, for instance, when observing an object with known metric dimensions or with the

aid of sensor measurements, but these cases are not common. As a result, the relative

scale must be reconciled, for example, during loop closure for SLAM or when register-

ing multiple reconstructions from SfM. The generalized pose-and-scale problem aims to

compute a similarity transformation that will align two coordinate systems such that it

minimizes reprojection error from 2D-3D correspondences. By minimizing reprojection

error, gPnP+s is well-suited for multi-view geometry tasks such as model-merging.

The solution proposed in this chapter solves the generalized pose-and-scale problem,

estimating rotation, translation, and scale directly given n 2D-3D observations. The so-

lution is general in that the technique may be used to solve the single camera absolute

pose problem, the generalized (multi-camera) absolute pose problem, or the generalized

pose-and-scale problem without modification. Our approach is O(n) in the number of ob-

servations, making it useful for real-time applications, and does not require initialization.

48

A Full Generalization of the Absolute Pose Problem Chapter 4

Additionally, we solve for all minima of our least squares cost function simultaneously

instead of a single local minimum. Experiments on synthetic and real data show that

our method is more accurate and scalable than other alignment methods.

4.2 An L2 Optimal Solution

We use the unit-norm quaternion parameterization of the rotation matrix such that

R can be formed with four unknowns representing the quaternion q = [q0, q1, q2, q3]>.

The rotation matrix R may be written as:

R =

q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 . (4.5)

Unlike the Cayley-Gibbs-Rodriguez rotation parameterization used in [79], the unit-norm

quaternion does not have any singularities. As shown in Section 4.3, this leads to more

accurate results. When considering all n correspondences, there exists 8+n unknown vari-

ables (4 for rotation, 3 for translation, 1 for scale, and 1 unknown depth per observation).

The gPnP+s problem can be formulated from Eq. (4.4) as a non-linear least-squares min-

imization such that the sum of squared measurement errors is minimized. Thus, we aim

to minimize the cost function:

C(R, t, s) =
n∑
i=1

||xi −
1

αi
(RXi + t− sci)||2. (4.6)

This non-linear least squares problem can be solved with iterative methods such as

Gauss-Newton; however, these techniques are sensitive to initialization and only converge

to a single local minimum. In this section, we describe our method for directly solving

49

A Full Generalization of the Absolute Pose Problem Chapter 4

for all minima of a slightly modified cost function without the need for initialization.

The geometric constraint equation of Eq. (4.4) leads to a non-linear system of equa-

tions that can be minimized by a least squares solver that minimizes Eq. (4.6). We would

instead like to rewrite this system of equations in terms of fewer unknowns. Specifically,

we can rewrite this equation solely in terms of the unknown rotation, R. When we relax

the constraint that αi = ||RXi + t− sci|| and treat each αi as a free variable, αi, s, and

t appear linearly and can be easily reduced from Eq. (4.6). Note that this relaxation

is reasonable since solving the optimality conditions results in α∗i = z>i (RXi + t − sci)

where zi is xi corrupted by measurement noise.

We begin by rewriting our system of equations from Eq. (4.4) in matrix-vector form:

x1 c1 −I

. . .
...

...

xn cn −I

︸ ︷︷ ︸

A

α1

...

αn

s

t

︸ ︷︷ ︸

x

=

R

. . .

R

︸ ︷︷ ︸

W

X1

...

Xn

︸ ︷︷ ︸

b

(4.7)

⇔ Ax = Wb, (4.8)

where A and b consist of known and observed values, x is the vector of unknown variables

we will eliminate from the system of equations, and W is the block-diagonal matrix of

the unknown rotation matrix. From Eq. (4.7), we can create a simple expression for x:

x = (A>A)−1A>Wb =

U

S

V

Wb. (4.9)

50

A Full Generalization of the Absolute Pose Problem Chapter 4

We have partitioned (A>A)−1A> into constant matrices U , S, and V such that the depth,

scale, and translation parameters are functions of U , S, and V respectively. Matrices U ,

S, and V can be efficiently computed in closed form by exploiting the sparse structure of

the block matrices (see Appendix A for the full derivation). Note that αi, s, and t may

now be written concisely as linear functions of the rotation:

αi = u>i Wb (4.10)

s = SWb (4.11)

t = VWb, (4.12)

where u>i is the i-th row of U . Through substitution, the geometric constraint equa-

tion (4.4) can be rewritten as:

SWb︸ ︷︷ ︸
s

ci + u>i Wb︸ ︷︷ ︸
αi

xi = RXi + VWb︸ ︷︷ ︸
t

. (4.13)

This new constraint is quadratic in the four unknown rotation variables given by the

unit-norm quaternion representation.

4.2.1 A New Least Squares Cost Function

The new geometric constraint equation (4.13) assumes noise-free observations. We

assume that each observation is noisy, with zero mean noise ηi. We can denote our noisy

observations as zi = xi + ηi. We can rewrite our measurement constraint in terms of our

51

A Full Generalization of the Absolute Pose Problem Chapter 4

noisy observation:

SWbci + u>i Wb(zi − ηi) = RXi + VWb (4.14)

⇒ η′i = SWbci + u>i Wbzi −RXi − VWB, (4.15)

where η′i is a zero-mean noise term that is a function of ηi (but whose covariance depends

on the system parameters, as noted by Hesch and Roumeliotis [34]). We evaluate ui,

S, and V at xi = zi without loss of generality. Observe that ui can be eliminated from

Eq. 4.15 by noting that:

UWb =

zi
>

. . .

zn
>

Wb−

z1
>c1

...

zn
>cn

SWb+

z1
>

...

zn
>

VWb (4.16)

⇒ u>i Wb = zi
>RXi − zi>ciSWbci + zi

>VWb. (4.17)

Through substitution, Eq. (4.15) can be refactored such that:

η′i = (zizi
> − I3)(RXi − SWbci + VWb). (4.18)

Eq. (4.18) allows the gPnP+s problem to be formulated as an unconstrained least-

squares minimization in 4 unknown rotation parameters. We formulate our new least

squares cost function, C ′, as the sum of the squared constraint errors from Eq. (4.18):

C ′(R) =
n∑
i=1

||(zizi> − I3)(RXi − SWbci + VWb)||2 (4.19)

=
n∑
i=1

η′>i η
′
i. (4.20)

52

A Full Generalization of the Absolute Pose Problem Chapter 4

Thus, we have reduced the number of unknowns in our system from 8 + n to 4. This is

an important part of our formulation, as it allows the size of the system we solve to be

independent of the number of observations and thus scalable.

4.2.2 Macaulay Matrix Solution

We have reduced our original geometric constraint of Eq. (4.4) to a least-squares

minimization as a function of only the four unknown rotation parameters in Eq. (4.19).

That is, we wish to find the unknown rotation parameters q0, q1, q2, q3 such that C ′ is

minimized. This polynomial is of a similar form to the DLS PnP algorithm [34], but uses

a singularity-free rotation parameterization. Thus, we can solve our least squares system

of Eq. (4.19) with the same technique on our modified equations.

We employ the Macaulay matrix [56] to determine the solution to our polynomial

system. This matrix is formed from the partial derivatives of our cost function C ′ with

respect to the four unknown rotation parameters. These equations each equal zero when

C ′ is minimal, so the roots of these polynomials produce the solution to our system. We

consider one additional equation to constrain the quaternion to have a unit norm so it is

a valid rotation:

q>q = 1 (4.21)

The Macaulay matrix, M , formed from the four partial derivatives and the additional

linear equation, forms an extended polynomial system as a 200×200 matrix that contains

coefficients to 200 monomials of the polynomial system.

Using the Schur complement trick, the Macaulay resultant matrix can be reduced

to a 40 × 40 matrix whose eigenvectors correspond to the monomials of our cost func-

tion. The unknown rotation variables appear in these monomials, and can be directly

extracted from the eigenvectors. This leads to 40 real and imaginary critical points,

53

A Full Generalization of the Absolute Pose Problem Chapter 4

though the number of solutions can be reduced by considering only real solutions that

place points in front of cameras. In practice, when using n ≥ 6 points there exists only

one valid minimum. After obtaining all minima, we evaluate the cost function Eq. (4.19)

to determine the best orientation and compute the corresponding scale and translation

through back substitution.

4.2.3 Gröbner Basis Solution

An alternative method for solving polynomial systems is the Gröbner basis tech-

nique [47]. The Gröbner basis method operates by solving the polynomial system in a

finite prime field Zp where exact zero calculations may take place. Typically Zp is the

field of integers modulo a very large prime number [44]. A so-called ”elimination tem-

plate” is constructed such that LU decomposition (or Gauss-Jordan) reveals an action

matrix whose set of eigenvectors contains the solution set. Often the most expensive

part of this operation is the eigen-decomposition, so reducing the number of candidate

solutions is vital to designing an efficient Gröbner basis solver1.

We created a Gröbner basis solver with an automatic generator similar to [47] while

taking advantage of several additional forms of improvement. Following the solver of

Kneip et al . [44], we reduce the size of the Gröbner basis by only choosing random

values in Zp that correspond to valid configurations for the generalized pose-and-scale

problem. Next, we eliminate double-roots by exploiting the 2-fold symmetry technique

used in [7, 44, 92]. This technique requires that all polynomials contain only even or only

odd-degree monomials. The first order optimality constraints (formed from the partial

derivitives of C ′; see Section 4.2.2) contain only uneven monomials; however, the unit-

norm quaternion constraint of Eq. (4.21) contains even monomials. By modifying the

1See [47] for more details about Gröbner basis techniques.

54

A Full Generalization of the Absolute Pose Problem Chapter 4

unit-norm quaternion constraint of Eq. (4.21) to the squared norm:

(q>q − 1)2 = 0 (4.22)

we obtain equations with only odd monomials when considering the first order derivitives

of the squared unit-norm constraint. Our final polynomial system is then:

∂C ′

∂qi
= 0 i = 0, 1, 2, 3 (4.23)

(q>q − 1)qi = 0 i = 0, 1, 2, 3. (4.24)

These eight third-order polynomials contain only uneven degree monomials, and so we

can apply the 2-fold symmetry technique proposed by Ask et al . [7]. As with the UPnP

method [44], applying these techniques to our Gröbner basis solver creates a 141 × 149

elimination template with an action matrix that is 8 × 8. Both the elimination template

and the action matrix are dramatically smaller than with the Macaulay Matrix solution,

resulting in a significant speedup (see Section 4.3.4).

It is interesting to note that this formulation implicitly solves an equivalent La-

grangian formulation:

L(q, λ) = C ′ + λ(q>q − 1)2 (4.25)

q, λ = arg min
q

arg max
λ

L (4.26)

When formulating the problem this way, we additionally need to compute the gradient

of L with respect to λ:

∂L

∂λ
= (q>q − 1)2 = 0. (4.27)

Eq. (4.24) implies that either (q>q−1)2 = 0 or all qi = 0. Since all quaternion parameters

55

A Full Generalization of the Absolute Pose Problem Chapter 4

−16 −14 −12 −10 −8 −6
0

1

2
x 10

4

Log
10

 rotation error (rad)
−16 −14 −12 −10 −8 −6

0

1

2
x 10

4

Log
10

 translation error

−16 −14 −12 −10 −8 −6
0

1

2
x 10

4

Log
10

 scale error

Figure 4.2: Histograms of numerical errors in the computed similarity transforms
based on 105 random trials with the minimal 4 correspondences. Our algorithm
demonstrates excellent numeric stability.

may never simultaneously be zero, (q>q − 1)2 must be equal to zero and thus
∂L

∂λ
= 0,

implying that the Lagrange multiplier does not matter. This is because Eq. (4.24) implies

that Eq. (4.27) will be solved.

4.3 Experimental Evaluation

4.3.1 Numerical Stability

We tested the numerical stability of our solution over 105 random trials. We generated

uniformly random camera configurations that placed cameras (i.e., ray origins) in the

cube [−1, 1] × [−1, 1] × [−1, 1] around the origin. 3D points were randomly placed in

the volume [−1, 1]× [−1, 1]× [2, 4]. Ray directions were computed as unit vectors from

camera origins to 3D points. An identity similarity transformation was used (i.e., R = I,

t = 0, s = 1). For each trial, we computed solutions using the minimal 4 correspondences.

We calculated the angular rotation error, the translation error, and the scale error for

56

A Full Generalization of the Absolute Pose Problem Chapter 4

Image Noise Std Dev
0 2 4 6 8 10

M
e
a
n
 r

o
ta

ti
o
n
 e

rr
o
r

(r
a
d
)

0

0.05

0.1

0.15

0.2
Rotation Error

Abs. Or.

P3P+s

PnP+s

gP+s

gDLS

gDLS+++

Image Noise Std Dev
0 2 4 6 8 10

M
e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

0

0.05

0.1

0.15

0.2
Translation Error

Image Noise Std Dev
0 2 4 6 8 10

M
e
a
n
 s

c
a
le

 e
rr

o
r

0

0.05

0.1

0.15

0.2
Scale Error

Figure 4.3: We compared similarity transform algorithms with increasing levels of
image noise to measure the pose error performance: the absolute orientation algo-
rithm of Umeyama [86], P3P+s, PnP+s, gP+s[87], and our algorithm, gDLS. Each
algorithm was run with the same camera and point configuration for 1000 trials per
noise level. Our algorithm has mean better rotation, translation, and scale errors for
all levels of image noise.

each trial, and plot the results in Figure 4.2. The errors are very stable, with 98% of all

errors less than 10−12.

4.3.2 Simulations With Noisy Synthetic Data

We performed two experiments with synthetic data to analyze the performance of our

algorithm as the amount of image noise increases and as the number of correspondences

increases. For both experiments we use a focal length of 800 and [640, 480] resolution.

Two cameras are placed randomly in the cube [−1, 1]× [−1, 1]× [−1, 1] around the origin

57

A Full Generalization of the Absolute Pose Problem Chapter 4

with three 3D points randomly placed in the volume [−1, 1]×[−1, 1]×[2, 4]. Both cameras

observe each 3D point, so there are six total 2D-3D observations. Using the known 2D-

3D correspondences, we apply a similarity transformation with a random rotation in the

range of [−30, 30] degrees about each of the x, y, and z axes, a random translation with

a distance between 0.5 and 10, and a random scale change between 0.1 and 10. We

measure the performance of the following similarity transform algorithms:

• Absolute Orientation: The absolute orientation method of Umeyama [86] is

used to align the known 3D points to 3D points triangulated from 2D correspon-

dences. This algorithm is only an alignment method and does not utilize any 2D

correspondences.

• P3P+s: The P3P algorithm of Kneip et al . [45] is used to localize the first camera

and the corresponding rotation and translation is used for the similarity transfor-

mation. The scale is then estimated from the median estimate from triangulated

point matches. This process is repeated for all cameras, and the camera localiza-

tion and scale estimation that yields the largest number of inliers is used as the

similarity transformation.

• PnP+s: The similarity transformation is computed the same way as P3P+s, but

the DLS PnP algorithm of Hesch and Roumeliotis [34] is used to localize each

camera instead of P3P2. PnP+s uses n ≥ 3 2D-3D correspondences, whereas P3P+s

can only use 3.

• gP+s: The minimal solver of Ventura et al . [87] is used with 2D-3D correspon-

dences from all cameras. While the algorithm is intended for the minimal case

2We found that DLS [34] performed comparably to alternatively algorithms such as OPnP [92] in the
context of PnP+s.

58

A Full Generalization of the Absolute Pose Problem Chapter 4

of n = 4 correspondences, it can compute an overdetermined solution for n ≥ 4

correspondences.

• gDLS: The algorithm presented in [79], which uses n ≥ 4 2D-3D correspondences

from all cameras.

• gDLS+++: The algorithm presented in this chapter, which is an extension of

the gDLS algorithm [79]. This method uses n ≥ 4 2D-3D correspondences from all

cameras.

After running each algorithm on the same camera and point configuration, we cal-

culate the rotation, translation, and scale errors with respect to the known similarity

transformation.

Image noise experiment: For our first experiment, we evaluated the similarity

transformation algorithms under increased levels of image noise. Using the configuration

described above, we increased the image noise from 0 to 10 pixels standard deviation,

and ran 1000 trials at each level. Our algorithm outperforms each of the other similarity

transformation algorithms for all levels of image noise, as shown in Figure 4.3. The

fact that our algorithm returns all minima of our modified cost function is advantageous

under high levels of noise, as we are not susceptible to getting stuck in a bad local

minimum. This allows our algorithm to be very robust to image noise as compared to

other algorithms.

Scalability experiment: For the second experiment, we evaluate the rotation,

translation, and scale error as the number of 2D-3D correspondences increases. We

use the same camera configuration described above, but vary the number of 3D points

used to compute the similarity transformation from 4 to 1000. Each 3D point is observed

by both cameras. We ran 1000 trials for each number of correspondences used with a

Gaussian noise level of 0.5 pixels standard deviation for all trials. We did not use the

59

A Full Generalization of the Absolute Pose Problem Chapter 4

Number of Correspondences
0 200 400 600 800 1000L

o
g
 m

e
a
n

 r
o

ta
ti
o

n
 e

rr
o
r

(r
a

d
)

-11

-10

-9

-8

-7

-6

-5

-4
Rotation Error

Abs. Or.

PnP+s

gP+s

gDLS

gDLS+++

Number of Correspondences
0 200 400 600 800 1000

L
o
g

 m
e

a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

-11

-10

-9

-8

-7

-6

-5

-4
Translation Error

Number of Correspondences
0 200 400 600 800 1000

L
o

g
 m

e
a

n
 s

c
a

le
 e

rr
o

r

-12

-10

-8

-6

-4
Scale Error

Figure 4.4: We measured the accuracy of similarity transformation estimations as
the number of correspondences increased. The mean of the log rotation, translation,
and scale errors are plotted from 1000 trials at each level of correspondences used. A
Gaussian image noise of 0.5 pixels was used for all trials. We did not use P3P+s in
this experiment because P3P only uses 3 correspondences. Our algorithm has better
accuracy for all number of correspondences used and a runtime complexity of O(n),
making it ideal for use at scale.

P3P+s algorithm for this experiment since P3P is a minimal solver and cannot utilize

the additional correspondences. Although gP+s is a minimal solver, it can utilize all n

correspondences in an overdetermined solution. The accuracy of each similarity transfor-

mation algorithm as the number of correspondences increases is shown in Figure 4.4. Our

algorithm performs very well as the number of correspondences increases, and is more

accurate than alternative algorithms for all numbers of correspondences tested. Further,

our algorithm is O(n) so the performance cost of using additional correspondences is

favorable compared to the alternative algorithms (see Section 4.3.4 for a full runtime

analysis).

4.3.3 SLAM Registration With Real Images

We tested our new solver for registration of a SLAM reconstruction with respect to

an existing SfM reconstruction using the indoor dataset from [87]. This dataset con-

sists of an indoor reconstruction with precise 3D and camera position data obtained

with an ART-2 optical tracker. Several image sequences in this environment were run

60

A Full Generalization of the Absolute Pose Problem Chapter 4

Figure 4.5: In our real data experiments we compute the similarity transformation
that aligns cameras from a SLAM system (blue) to a preexisting SfM reconstruction
using 2D-3D correspondences. The ground truth positions (green) were recorded with
a high-accuracy ART-2 tracker.

through a real-time keyframe-based SLAM system to obtain a local tracking sequence

that can be registered to the ground-truth environment via a similarity transform (see

Figure 4.5). SIFT keypoints were used to establish 2D-3D correspondences using approx-

imate nearest-neighbor techniques and a ratio test. We compare our method to several

other techniques for registering SLAM maps to a global point cloud: the absolute orienta-

tion algorithm [86], P3P+s, PnP+s (using 4 correspondences), gP+s [87], and gDLS [79]

as described in Section 4.3.2. All algorithms are used in a PROSAC loop except for the

absolute orientation algorithm which is used in a RANSAC loop. The absolute orienta-

tion algorithm does not use feature matches (it only aligns 3D point clouds) and thus

cannot utilize matching scores in a PROSAC loop. We compare these algorithms to our

gDLS+++ algorithm when no refinement is performed after RANSAC/PROSAC for any

of the algorithms.

We compute the average position error of all keyframes with respect to the ground

61

A Full Generalization of the Absolute Pose Problem Chapter 4

Table 4.1: Average position error in centimeters for aligning a SLAM sequence to a
pre-existing SfM reconstruction. An ART-2 tracker was used to provide highly accu-
rate ground truth measurements for error analysis. Camera positions were computed
using the respective similarity transformations and the mean camera position error of
each sequence is listed below. Both the minimal version of our solver, gDLS4, and the
nonminimal gDLS10 (both shown in bold below) outperform the alternative methods.

Sequence # Images Abs. Ori. [86] P3P+s PnP+s gP+s[87] gDLS [79] gDLS+++ After BA
office1 9 6.37 6.14 4.38 6.12 3.97 3.68 3.61
office2 9 8.09 7.81 6.90 9.32 5.89 5.59 5.57
office3 33 8.29 9.31 8.89 6.78 6.08 4.91 4.86
office4 9 4.76 4.48 3.98 4.00 3.81 3.09 3.04
office5 15 3.63 3.42 3.39 4.75 3.39 3.17 3.14
office6 24 5.15 5.23 5.01 5.91 4.51 4.35 4.31
office7 9 6.33 7.08 7.16 7.07 4.65 2.99 2.72
office8 11 4.72 4.85 3.62 4.59 2.85 2.30 2.12
office9 7 8.41 8.44 4.08 6.65 3.19 2.25 2.25
office10 23 5.88 6.60 5.73 5.88 4.94 4.68 4.61
office11 58 5.19 4.85 4.80 6.74 4.77 4.66 4.57
office12 67 5.53 5.20 4.97 4.86 4.81 4.45 4.44

truth data. The position errors, reported in centimeters, are shown in Table 4.1. Our

gDLS+++ solver give higher accuracy results for every image sequence tested compared

to alternative algorithms. By using the generalized camera model, we are able to exploit

2D-3D constraints from multiple cameras at the same time as opposed to considering

only one camera (such as P3P+s and PnP+s). This allows the similarity transformation

to be optimized for all cameras and observations simultaneously, leading to high-accuracy

results.

We additionally show the results of gDLS+++ with bundle adjustment applied after

estimation (labeled “After BA” in Table 4.1). In all datasets, our results are very close to

the optimal results after bundle adjustment, and typically bundle adjustment converges

after only one or two iterations. This indicates that the gDLS+++ algorithm is very

close to the geometrically optimal solution in terms of reprojection error. Further, our

singularity-free rotation parameterization prevents numerical instabilities that arise as

the computed rotation approaches a singularity, leading to more accurate results than

62

A Full Generalization of the Absolute Pose Problem Chapter 4

Number of Correspondences Used
0 200 400 600 800 1000

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

0

5

10

15
Execution Time at Scale

Abs. Or.

P3P+s

PnP+s

gP+s

gDLS

gDLS+++

Number of Cameras Used

5 10 15 20

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

10
-1

10
0

10
1

10
2

Execution Time at Scale

Figure 4.6: Top: We plot the mean execution time while increasing the number of
2D-3D correspondences used and keeping the number of cameras constant at 2. Our
gDLS+++ method is slightly slower than gP+s [87] in the minimal case, though our
method scales favorably and is much more accurate at scale. Bottom: The number of
cameras was increased while using the 100 2D-3D correspondences (each point is seen
in every camera). The runtimes of the absolute orientation method [86], gP+s [87],
gDLS [79] and our gDLS+++ method are independent of the number of cameras.

the gDLS [79] algorithm.

4.3.4 Runtime Analysis

In this section we present a runtime analysis of each similarity transformation al-

gorithm when registering n points and m cameras. The absolute orientation algorithm

requires aligning sets of 3D points, making it O(n). In theory, the covariance matrix used

to compute the least-squares solution has a lower bound of O(n); however, in practice

it is often slower. The P3P+s algorithm relies on the extremely efficient P3P algorithm

(which can be considered to run in constant time); however, in order to recover scale it

must triangulate points across all cameras, leading to O(n) complexity. Further, P3P+s

computes the similarity transformation by localizing each camera and estimating scale.

Thus, for m cameras the expected runtime is O(mn). The PnP+s algorithm operates

the same way as P3P, though the PnP algorithm is at best O(n), resulting in an overall

runtime of O(mn2). In practice, the PnP+s algorithm outperforms the P3P+s algorithm

as the number of points increases. This is because the P3P algorithm returns four solu-

63

A Full Generalization of the Absolute Pose Problem Chapter 4

Table 4.2: Results of our Hierarchical SfM pipeline on several large scale datasets.
Our method is extremely efficient and is able to reconstruct more cameras than the
Divide-and-Conquer method of Bhowmick et al . [9].

Dataset Ncam
Incremental SfM [89] DISCO [20] Hierarchical SfM [9] Ours
Ncam Time (min) Ncam Time (min) Ncam Time (min) Ncam BA Its Time (min)

Colosseum 1164 1157 9.85 N/A N/A 1032 3 1097 1 2.6
St Peter’s Basilica 1275 1267 9.71 N/A N/A 1236 4 1256 1 3.7
Dubrovnik 6845 6781 16.8 6532 275 N/A N/A 6677 2 8.9
Rome 15242 15065 100.17 14754 792 10534 27 12329 2 22

tions, while the DLS PnP algorithm returns only one solution in most cases. All n points

must be triangulated for each solution, leading to an increased runtime for PnP+s. The

gP+s algorithm requires computing the null space of a matrix that is of size 2n, which is

O(n) in theory though efficient in practice even for large n. The gP+s algorithm is only

slightly more efficient than the gDLS+++ algorithm; however, as shown in Sections 4.3.2

and 4.3.3 it is less accurate than our algorithm.

As described in Section 4.2.1, our algorithm is O(n) in the number of points, making

the runtime favorable as the number of points increases (cf . Figure 4.6). Additionally,

our algorithm’s runtime is independent of the number of cameras. In our experiments

conducted on a 3.6 GHz Intel i7, we observed a mean runtime of roughly 151 µs over

105 trials when using four points. When using 10 points, the mean runtime increased to

roughly 166 µs. This is nearly six times faster than the original gDLS algorithm [79] which

has a similar runtime to the Macaulay Matrix solution proposed in Section 4.2.2. This

efficiency allows our method to be used in real-time within a RANSAC loop. Additionally,

the fact that our method can be used with only four correspondences allows for the

theoretical convergence rate of RANSAC to remain low compared to algorithms that

require more correspondences.

64

A Full Generalization of the Absolute Pose Problem Chapter 4

Merged	reconstruction:
Piazza	del	Duomo

+

Tower	of	Pisa

Pisa	Cathedral

Figure 4.7: We present a novel hierarchical SfM pipeline that merges reconstructions
accurately and efficiently. Our model-merging method computes a similarity trans-
formation that minimizes reprojection error and is used to align SfM reconstructions
that have scene overlap.

4.4 A Hierachical SfM Pipeline

We demonstrate the viability of our method for SfM model-merging in a novel hierar-

chical SfM pipeline. In contrast to incremental or global SfM methods, hierarchical SfM

operates by first partitioning the input data into subsets that can be individually recon-

structed (cf . Figure 4.7). After these subsets are reconstructed, they are merged together

in a tree-like fashion as shown in Figure 4.8. The subset reconstructions can be built

and merged in parallel making hierarchical SfM typically much faster than incremental

SfM.

Our hierarchical SfM pipeline draws inspiration from the Divide-and-Conquer method

of Bhowmick et al . [9]. We begin by partitioning the input dataset into subsets using nor-

malized graph cuts [70]. Each of the subsets is then individually reconstructed in parallel

with VisualSfM [89]. We merge subset reconstructions using the gDLS+++ algorithm

to align the reconstructions with a similarity transformation. No bundle adjustment is

performed after subsets are merged. This merging process is repeated until a single re-

65

A Full Generalization of the Absolute Pose Problem Chapter 4

R0#

R1# R2#

R5# R6#R3# R4#

Figure 4.8: Hierarchical SfM splits the input set of cameras into subsets that are
individually reconstructed and successively merged in a tree-like procedure. Our hi-
erarchical SfM pipeline uses the gDLS+++ algorithm for model-merging.

construction remains (or no more reconstructions can be successfully merged). As a final

step, we run bundle adjustment on the entire reconstruction.

Another way to view this hierarchical method is to consider each of the partitioned

subsets as distributed cameras. Each distributed camera is recovered individually using

VisualSfM [89], then the we localize one distributed camera to the 3D points of another

using gDLS+++ to solve the generalized absolute pose-and-scale problem. This is anal-

ogous to localizing a single camera to a reconstruction in incremental SfM by using P3P

to solve the absolute pose problem. Our hierarchical SfM pipeline repeats this process,

localizing all of the other distributed cameras. In this way, we are able to use the dis-

tributed camera as a building block for this SfM pipeline. As a final step, we perform a

single bundle adjustment on the entire reconstruction.

We compare our hierarchical SfM pipeline to Incremental SfM (VisualSfM [89]), the

DISCO pipeline of Crandall et al . [20], and the hierarchical SfM pipeline of Bhowmick

et al . [9] run on several large-scale SfM datasets and show the results in Table 4.2. It

is clear both DISCO and incremental SfM are slower than hierarchical SfM, though they

are often able to reconstruct more cameras. The efficiency of hierarchical SfM is due of

the parallel nature of the reconstruction and merging procedure.

66

A Full Generalization of the Absolute Pose Problem Chapter 4

Figure 4.9: Final reconstructions of the Dubrovnik (top-left), Central Rome
(top-right), St Peters (bottom-left), and Colosseum (bottom-right) datasets computed
with our hierarchical SfM pipeline. Our pipeline produces high quality visual results
at state-of-the-art efficiency (cf . Table 4.8).

When compared to the hierarchical SfM pipeline of Bhowmick et al . [9], our method

is typically 7-20% faster. Both methods use the same normalized graph cut procedure

to determine image subsets and use Visual SfM [89] to reconstruct the subsets. Thus,

the only difference between the methods is in the technique used for model-merging.

By using gDLS+++ for model-merging, our method produces high quality models more

efficiently than the hierarchical pipeline of Bhowmick et al . [9]. As shown in Table 4.8,

the final bundle adjustment for our pipeline requires no more than 2 iterations, indicating

that the gDLS+++ method is able to merge reconstructions extremely accurately. We

show the high quality visual results of our hierarchical SfM pipeline in Figure 4.9.

67

A Full Generalization of the Absolute Pose Problem Chapter 4

4.5 Discussion

In this chapter, we have provided a full generalization of the absolute camera pose

problem and provided an efficient and accurate solution method. This generalization ex-

tends the standard reprojection of Eq. (4.1) to handle multiple cameras and scale changes

simultaneously (Eq. (4.4)) and thus is suitable for use with the distributed camera. We

provide a technique for solving the generalized pose-and-scale problem such that 7 d.o.f.

similarity transformations that minimize reprojection error may be efficiently computed.

Our method, gDLS+++, is general, accurate, and efficient. It can handle the mini-

mal case of n = 4, as well as the overdetermined case of n > 4. We formulate a least

squares cost function that can be solved efficiently as a system of third degree polyno-

mials, resulting in a system that is O(n) in the number of correspondences. This makes

it applicable for real-time frameworks and is useful, for example, for loop closure with

SLAM and visual odometry. We have evaluated our method on synthetic data to show

the numerical stability, accuracy under image noise, and scalability of our method. We

validated our method with experiments using real data which shows that our method

is more accurate than other methods when computing the similarity transformation for

registering reconstructions. Finally, we presented a hierarchical SfM pipeline that uti-

lizes gDLS+++ to solve large-scale SfM problems extremely efficiently. This pipeline is

extremely scalable, and is able to reconstruct a dataset of over 15,000 images of Rome

in just over 20 minutes.

Experiments have shown our method to be extremely accurate and efficient even at

scale. Our method can be used on thousands of correspondences when the ground truth

correspondences are known, or as a refinement step on inliers from a minimal estimation.

However, as with all non-minimal pose solvers, it is difficult to make use of a large number

of correspondences because of the likelihood of false features matches when using many

68

A Full Generalization of the Absolute Pose Problem Chapter 4

correspondences. For future work, we plan to explore ways to increase robustness to

false correspondences by incorporating feature distances into the similarity transform

estimation process so that our method can be more readily used with thousands of

correspondences.

69

Part II

Calibrating the Distributed Camera

70

Chapter 5

Computing the Focal Length of a
Single Camera

As discussed in Chapter 4, estimating the absolute camera pose from a set of 2D-3D

correspondences, also known as the n-point pose (PnP) problem, is an important step in

many Computer Vision applications such as Structure-from-Motion (SfM) [73], [89] and

image-based localization [35, 52, 51, 69]. Especially for SfM, photo-community collections

such as Flickr or Panoramio represent a vast and easily accessible source of data and truly

enable large-scale 3D reconstructions [27]. Unfortunately, the EXIF data required to

obtain the intrinsic camera calibration of the images is often missing for images obtained

from photo sharing websites or is incorrect due to image editing operations applied before

uploading the photos [10]. Thus, it is important to estimate both the camera pose and

its internal calibration. For the latter, it is often sufficient to estimate only the focal

length [12], [84].

Computing the camera pose for a calibrated camera is a well-understood problem

that has been studied extensively [25], [31], [45], [49]. Given three correspondences

between features in an image and points in the 3D model, the camera pose relative to

the model can be computed very efficiently by solving a fourth degree polynomial [25],

resulting in 3-point pose (P3P) solvers that require only about 2µs on a modern computer

71

Computing the Focal Length of a Single Camera Chapter 5

SfM Reconstruction

from Internet Photos

??

Camera with Unknown Focal Length

Prior Probabilities

for Focal Lengths

Select Focal Length Compute Pose

from 3 Matches

Evaluate Pose &

Update Probabilities

P3P(f)-RANSAC

Figure 5.1: Illustration of the pose estimation strategy proposed in this chapter.

[45]. However, estimating the focal length together with the pose is a significantly harder

problem. While special configurations such as planar scenes can be handled efficiently [1],

computing both quantities generally requires solving a system of multivariate polynomials

obtained from four or more 2D-3D correspondences [12], [84]. The bottleneck of such

approaches is usually the Eigenvalue decomposition of the so-called action matrix [11],

the resulting pose solvers require 46µs or more for a single instance. Consequently, using

such methods inside a RANSAC-loop [25] results in prohibitively long run-times for all

but high inlier ratios. In practice, it is thus common to employ pose solvers that achieve

similar run-times as P3P [45] but require five or more 2D-3D correspondences [33],[46].

As the number of RANSAC iterations grows with both the percentage of false matches

and the number of matches required to compute a pose, using such approaches results in a

significantly larger number of RANSAC iterations, and thus higher run-times, compared

to pose solvers using only three or four points for low inlier ratios (cf . Fig. 5.2(a)).

In this chapter, we consider the problem of estimating the camera pose for a camera

with unknown focal length. Inspired by the brute-force approach of Irschara et al . [35],

we propose to estimate the focal length by sampling from a discrete set of possible values,

followed by computing the pose using the selected focal length instead of simultaneously

estimating both quantities. As our main contribution, we propose a novel RANSAC

72

Computing the Focal Length of a Single Camera Chapter 5

variant, called P3P(f)-RANSAC (cf . Fig. 5.1), that in each iteration randomly selects

the focal length value based on the probability of finding a better model for it. In

contrast to [35], which iteratively tests all possible focal length values, we re-estimate the

probabilities of each possible focal length value after each RANSAC step using a recursive

Bayesian filter. This enables our algorithm to quickly converge towards the focal length

closest to the correct value. Consequently, our approach does not necessarily need to

evaluate all focal length values, resulting in an average speed-up of more than one order

of magnitude compared to [35]. We observe a distribution of focal lengths from photos

obtained from photo-sharing websites that allow us to estimate the prior probabilities of

the different focal length values, enabling our approach to use importance sampling to

find a good pose more quickly. Through experiments on both large-scale SfM datasets and

image-based localization tasks, we show that our proposed approach is significantly faster

than the state-of-the-art minimal solver [12] while achieving a similar pose accuracy. At

the same time, P3P(f)-RANSAC is faster than a recently published non-minimal solver

[46] for low inlier ratios while achieving a higher localization accuracy1.

The rest of the chapter is structured as follows. Sec. 5.1 discusses the problem solved

in this chapter in more detail. We present our novel RANSAC variant combining proba-

bilistic focal length sampling and pose estimation in Sec. 5.2. Sec. 5.3 then evaluates the

resulting approach.

5.1 Problem Formulation

In this chapter, we want to solve the problem of estimating the pose for a camera

with an unknown focal length from a given setM = {(x,X | x ∈ R2,X ∈ R3} of 2D-3D

matches. Assuming that the principal point coincides with the center of the image, we

1We make our source code available at http://people.inf.ethz.ch/sattlert

73

http://people.inf.ethz.ch/sattlert

Computing the Focal Length of a Single Camera Chapter 5

are thus trying to determine the focal length f ∈ R and the rotation R ∈ R3×3 and

translation t ∈ R3 such that

α ·

x

1

 =

f 0 0

0 f 0

0 0 1

 [R|t] ·

X

1

 for some scalar α > 0 (5.1)

holds for all matches (x,X) ∈ M, i.e., that each 3D point X is projected onto its

corresponding image position x. In practice, some of the matches will be wrong due to

imperfections in the matching process. The most common strategy to robustly handle

wrong matches is to apply the PnP solver that computes the pose from n matches

inside a RANSAC-loop [25] (cf . Section 2.2.2). Recall that assuming that each all-inlier

sample allows us to estimate a high quality pose, the probability η of selecting an sample

contaminated with at least one outlier (and thus a low quality pose) may be expressed

as

(1− ε∗n)k < η , (5.2)

where k is the number of samples generated so far and ε∗ is the inlier ratio, i.e., the ratio

of inliers among all matches, for the current best model. Thus, the maximal number of

iterations required for a given inlier ratio ε is

kmax = log η/ log (1− εn) . (5.3)

The probability of selecting an all-inlier sample is maximized by minimizing n. How-

ever, the minimal 4-point solver (P4Pf) [11] for the problem of estimating both the pose

and the focal length requires 46µs, which is prohibitively expensive for low inlier ratios

where many RANSAC iterations are required. Faster pose solvers such as the P5Pfr

74

Computing the Focal Length of a Single Camera Chapter 5

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaling of True Focal Length

M
ea
n
In
lie
r
R
at
io
ov
er
20

R
ep
et
iti
on
s (b)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Opening Angle [°]

F
ra
ct
io
n
of
Im
ag
es

Distribution of Opening Angles

Dubrovnik
Landmarks 1k
Rome

(c)(c)

Figure 5.2: (a) The focal length accuracy required to recover most of the inliers
strongly varies between different cameras. Yet, the inlier ratio decreases monotonically
on both sides of the optimal focal length value. (b) Histograms of opening angles from
images in the Dubrovnik [50], Landmarks 1k [51], and Rome [52] datasets.

method [46] that estimates the pose, focal length, and radial distortion of the camera

from five matches exist. However, using a non-minimal n reduces the probability of se-

lecting an all-inlier sample exponentially, resulting in a significant increase in the number

of required iterations for low inlier ratios (cf . Fig. 2.4 right). Instead of using a non-

minimal solver, we propose to use a 3-point solver that estimates the pose for a given

focal length f [45] and select f from a pre-defined set F of focal length values. This

strategy offers the possible advantage of requiring fewer iterations than RANSAC with

P4Pf and faster pose computation times by using the P3P solver.

Evaluating all focal length values in F independently from each other as proposed by

[35] will require at least |F| ·kmax(fgt) iterations in total, where kmax(fgt) is the maximum

number of iterations required to confidently compute the pose when using the ground

truth focal length. Consequently, the approach from [35] will only be more efficient than

using RANSAC with P4Pf or P5Pfr if |F| is smaller than the difference in the pose solver

time or the difference in the number of required iterations, respectively. Notice that using

quantized focal length values will invariably result in a lower pose accuracy. Regardless,

as long as we are able to recover most of the inliers we will be able to obtain a better pose

75

Computing the Focal Length of a Single Camera Chapter 5

Algorithm 1 P3P(f)-RANSAC
Given: SetM of 2D-3D matches, confidence threshold η, set F of focal length values with

prior probabilities Pprior(f) for all f ∈ F
1: initialize sampling probability Psample(f) = Pprior(f) for all f ∈ F
2: while probability of having missed all-inlier sample ≥ η do
3: randomly select focal length f ∈ F according to Psample

4: draw random sample s ⊂M of size 3
5: estimate pose [R|t] from s with a P3P solver using f
6: evaluate pose hypothesis θ = (f, [R|t]) on F
7: if new best model found then
8: θ∗ = (f, [R|t])
9: Update probabilities Psample

10: Re-estimate probability of having missed an all-inlier sample
Return: θ∗

by applying P4Pf on the resulting inliers with only a small run-time overhead as very few

sampling steps will be needed. Unfortunately, the sampling density required to guarantee

that we can select a focal length value close enough to fgt to recover most of the inliers

strongly depends on the depth-variation of the scene observed by the camera. This can

be seen in Fig. 5.2(a), as we observe different sensitivities on the focal length accuracy for

different cameras. Thus, we need a rather dense sampling in order to handle all types of

scenes, resulting in a large set F . In order to maintain fast run-times when using a large

set of values, we model the dependencies between the different focal lengths, enabling us

to avoid evaluating all focal length values for at least kmax(εgt) steps. This can be done

by exploiting a key observation that can be made from Fig. 5.2(a): The maximal inlier

ratio obtained by RANSAC for each focal length value decreases monotonically with the

distance to fgt. Given the focal length used to generate the current pose estimation with

the highest inlier count, f ∗, this observation allows us to model the probability of finding

a pose with a higher inlier ratio using another focal length f as a function of |f − f ∗|.

5.2 Probabilistic Focal Length Sampling

76

Computing the Focal Length of a Single Camera Chapter 5

The main idea of our novel pose estimation approach is to use focal length sampling

and a P3P solver [45] in order to estimate a hypothesis for the camera pose from n= 3

2D-3D correspondences instead of computing the pose and focal length simultaneously

from four matches or more. Once we have found a good pose with a high inlier ratio

for a focal length f ∗, it becomes very unlikely that focal length values f far away from

f ∗ can be used to estimate a better pose (cf . Fig 5.2(a)). The central idea behind

our approach is thus to preferably select focal length values that have a high likelihood

of yielding a pose with a larger number of inliers than the current best estimate. This

naturally leads to a probabilistic formulation of the problem of selecting good focal length

values. This probabilistic formulation in turn enables us to exploit the fact that certain

focal length values are much more likely to be correct than others. Alg. 1 outlines the

resulting RANSAC variant, where differences to the classical RANSAC algorithm [25]

are highlighted. Besides the 2D-3D matches and a confidence threshold, our approach

requires a set F of focal length values with associated prior probabilities as an additional

input. These priors are then used to initialize the probability distribution that we use for

selecting the focal length value f in Line 3 of Alg. 1. After using P3P to generate a pose

hypothesis from f and three randomly selected matches, the hypothesis is evaluated on

all matches and the current best pose estimate is updated if necessary. Finally, we use a

recursive bayesian filter to re-estimate the probability distribution used for sampling the

focal length to reflect the fact that the current iteration might influence the likelihood of

finding a better pose for all other focal length values.

In the following, we will refer to our algorithm as P3P(f)-RANSAC, as it uses a

P3P solver inside of a RANSAC loop, where the focal length value f is obtained via

parameter sampling. Similarly, we will refer to RANSAC-loops using any other PnP

solver as PnP-RANSAC.

In Sec. 5.2.1, we briefly explain how to obtain the prior probabilities for the focal

77

Computing the Focal Length of a Single Camera Chapter 5

length values from F . As the main contribution of this chapter, Sec. 5.2.2 derives the

probability distribution used for sampling the focal length values and our strategy for

re-estimating the sampling probabilities. Finally, Sec. 5.2.3 argues that using early model

rejection techniques [16], [18] is crucial for our RANSAC variant in order to offer faster

run-times than P4Pf and P5Pfr.

5.2.1 Obtaining the Prior Probabilities

The focal length of a camera mainly depends on the type of camera and the zoom-level

used to take the picture. In this chapter, we consider pose estimation scenarios in which

a large variety of camera types is used, as is the case in large-scale SfM reconstructions

from images downloaded from Flickr [27], [73]. Since some camera types are much more

popular than others2, not all focal length values are equally likely to occur. The cameras

contained in a large-scale SfM reconstruction of community collection photos thus give us

an approximation to the probability distribution of focal length values. However, notice

that obtaining prior probabilities for focal length values is an ill-posed problem as the

focal length depends on the image resolution. In contrast, the maximal opening angle

αmax of a camera with focal length f , width w, and height h, related by

tan (αmax/2) =
max (w, h)

2 · f
, (5.4)

is independent of the image resolution. Thus, we predetermine a set of opening angle

values from cameras contained in large-scale SfM reconstructions of unordered image

collections [52],[51]. We transform the opening angles to focal length values via Eqn. 5.4

before applying P3P(f)-RANSAC based on the resolution of the image being localized.

Fig. 5.2(b) shows the distribution of opening angles for three such datasets, Dubronik

2https://www.flickr.com/cameras

78

https://www.flickr.com/cameras

Computing the Focal Length of a Single Camera Chapter 5

(6k images) [52], Rome (15k images) [52], and the Landmarks 1k dataset (205k images)

[51]. The distribution of opening angles is consistent across all datasets, indicating that

the resulting distributions are a good representation of images taken in the real world.

However, we will show in Sec. 5.3.2 that the choice of priors is not a crucial parameter.

5.2.2 Obtaining and Re-estimating the Sampling Probabilities

Ideally, the probability Psample(f) of selecting a focal length f should be proportional

to the likelihood of obtaining a pose estimate with an inlier ratio ε(f) that is larger

than the inlier ratio ε∗ of the current best pose estimate θ∗ obtained for focal length f ∗.

Consequently, we model the sampling probability as

Psampling(f) =
P (ε(f) > ε∗ | f) · Pprior(f)∑

f ′∈F P (ε(f ′) > ε∗ | f ′) · Pprior(f ′)
, (5.5)

where P (ε(f) > ε∗ | f) is the probability of finding a better model for f . As is common

in practice [52], [69], we assume that we can obtain an inlier ratio of at least ε0 in order

to limit the maximal number of RANSAC iterations, i.e., we assume ε∗ = ε0 until we

find a pose with an inlier ratio > ε0.

In the following, we first derive P (ε(f) > ε0 | f) for the case that all models found so

far were computed from samples containing at least one outlier. In this case, we haven’t

found a good model so far and thus have to treat all focal length values independently.

We then show that the case of having found a good model with ε∗ > ε0, in which case

P (ε(f) > ε∗ | f) depends on the current best pose θ∗, seamlessly integrates into our

definition of the probabilities.

Case 1: ε∗ = ε0. Using RANSAC’s termination criterion from Eqn. 5.2, we can express

the maximal inlier ratio εmax(f) that we can find with certainty ≥ η in terms of the

79

Computing the Focal Length of a Single Camera Chapter 5

number of random samples k(f) generated so far for focal length f :

εmax(f) = 3

√
1− k(f)

√
η . (5.6)

Since we are only required to compute the correct pose with certainty greater than η,

the probability P (ε(f) > ε0 | f) of finding a model with a higher inlier ratio is directly

related to the probability that the number of correct matches found in M is in the

range (ε0 · |M|, εmax(f) · |M|]. Notice that the probability of finding a wrong match

only depends on the matching algorithm and the structure of the 3D model [69], and not

on the pose estimation strategy itself. Since this probability can be estimated empirically

from training data, we can assume without loss of generality that we know the cumulative

distribution function cdf(ε) over the inlier ratios for the given matching algorithm and

3D model. Thus, we can express the probability of finding a better model for f as

P (ε(f) > ε0 | f) = cdf(max(εmax(f), ε0))− cdf(ε0) . (5.7)

Under the reasonable assumption that cdf(ε) is strictly increasing, i.e., that all inlier

ratios occur with a non-zero probability, we have P (ε(f) > ε0 | f)=0 only if εmax(f)) ≤

ε0. Consequently, P3P(f)-RANSAC will terminate after |F| · kmax(ε0) iterations, i.e., if

no pose with inlier ratio greater than ε0 can be found with an uncertainty below η.

Case 2: ε∗ > ε0. Note that P (ε(f) > ε∗ | f) not only depends on the inlier ratio ε∗

but also on the value of the focal length f ∗ used to compute the current best hypothesis

θ∗. If f ∗ is close to the correct focal length fgt, then focal length values far away from

f ∗ are much less likely to result in better pose hypotheses than values close to f ∗. This

behavior can also be observed in Fig. 5.2(a), which shows that the inlier ratio decreases

monotonically with the distance to the correct focal length when applying RANSAC on

80

Computing the Focal Length of a Single Camera Chapter 5

correct matches only. While outlier matches might cause small local maxima, we found

that this relation is still a very good model in practice. Since a similar behavior has

been observed for other estimation problems [59], we thus use the following simplifying

assumption to derive the sampling probabilities.

Assumption 1 Let ε(f) be the maximal inlier ratio that can be obtained for focal length

f and let fgt be the correct focal length. For focal length values f and f ′ with |fgt− f ′| <

|fgt − f |, ε(f) ≤ ε(f ′) ≤ ε(fgt) should hold.

Without loss of generality, consider the focal length f < f ∗. If f is closer to fgt than

f ∗, Assumption 1 implies that we should be able to find an inlier ratio of at least ε∗ for

all f ′ ∈ F ∩ [f, f ∗). Let F(f, f ∗) = F ∩ [f, f ∗) be the set of corresponding focal length

values and let P (ε(F(f, f ∗)) > ε∗ | f) denote the probability of finding a better pose in

the range [f, f ∗), then we have

P (ε(f) > ε∗ | f) ≤ P (ε(F(f, f ∗)) > ε∗ | f) . (5.8)

The maximal inlier ratio expected in this range of focal lengths with a certainty of at

least η is again given by

εmax(F(f, f ∗)) = 3

√
1− k(F(f,f∗))

√
η , (5.9)

where k(F(f, f ∗)) =
∑

f ′∈F(f,f∗) k(f ′) is the sum over all samples generated for the focal

length from the considered range. Following the same argumentation as in Case 1, we

obtain

P (ε(f) > ε∗ | f) = cdf(max(εmax(F(f, f ∗)), ε∗))− cdf(ε∗) . (5.10)

This predict-and-update strategy is a recursive bayesian filter. Note that we again have

P (ε(f) > ε∗ | f) = 0 only if the probability of finding a better pose for f drops above

81

Computing the Focal Length of a Single Camera Chapter 5

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

Total # Iterations

#
 I

te
ra

ti
o

n
s
 p

e
r

F
o

c
a

l
L

e
n

g
th

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

Total # Iterations

#
 I

te
ra

ti
o

n
s
 p

e
r

F
o

c
a

l
L

e
n

g
th

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

Total # Iterations

#
 I

te
ra

ti
o

n
s
 p

e
r

F
o

c
a

l
L

e
n

g
th

Figure 5.3: The number of iterations in which each of the 100 focal length values
is selected, plotted over the iterations of P3P(f)-RANSAC for three cameras from
the Dubrovnik dataset and an outlier ratio of 50%. The focal length value clos-
est to the true focal length of each camera is highlighted in red. As can be seen,
P3P(f)-RANSAC is able to quickly identify a subset of promising focal lengths while
ignoring all other values.

the confidence threshold η, i.e., P3P(f)-RANSAC essentially uses the same termination

criterion as original RANSAC, offering the same guarantees on the quality of the pose.

Behavior of the proposed sampling strategy. As long as no pose with an inlier

ratio above ε0 is found (Case 1), P3P(f)-RANSAC essentially uses importance sampling

to select promising focal length values. As soon as a good model with inlier ratio above

ε0 is found (Case 2), P3P(f)-RANSAC is able to model the dependencies between focal

length values, allowing it to quickly focus on a smaller range of focal length values that

are most likely to be correct. This behavior is illustrated in Fig. 5.3. At the same time,

our sampling strategy is able to escape local maxima since all focal length values that

could lead to a better pose have a non-zero probability of being selected.

Implementation details. Each focal length value is used for at most kmax(ε0) samples.

Since both Eqn. 5.6 and Eqn. 5.9 only depend on the number of iterations and not on

ε∗, we can use a lookup table to determine the maximal inlier ratio. We represent the

(empirically determine) cumulative distribution function cdf(ε) as a discrete set of values.

For any inlier ratio ε′, we use linear interpolation to compute cdf(ε′). This guarantees

cdf(ε′) > cdf(ε∗) if cdf(ε) is strictly increasing and thus prevents P3P(f)-RANSAC from

82

Computing the Focal Length of a Single Camera Chapter 5

terminating too early.

5.2.3 Integrating Early Model Rejection

The P3P solver can compute the pose from three 2D-3D matches in 2µs [45] while

the fastest P4Pf solver takes 46µs [11]. Consequently, P3P(f)-RANSAC should be able

to perform 23 times more sampling steps while still being faster than P4Pf-RANSAC.

However, evaluating the computed pose on the set of matches also has a significant impact

on the run-time of a single RANSAC iteration. Since evaluating a pose takes around

20 − 50µs (or more for images with a large number of matches), P3P(f)-RANSAC can

be at most 2 − 3 times faster than P4Pf-RANSAC when evaluating each pose on all

matches. Obviously, we do not need to fully evaluate poses generated from non-all-inlier

samples or with a wrong focal length value. We can thus use approaches that terminate

the pose evaluation once it becomes likely that the current pose will not have an inlier

ratio higher than ε∗ [16, 18]. We chose to use the simple Td,d test, which evaluates a pose

on all matches only if d randomly selected matches are inlier to the pose [16], with d=1

as proposed in [16]. As a result of applying this T1,1 test, we need to draw n=4 matches

in each iteration of P3P(f)-RANSAC, increasing the number of required iterations (cf .

Eqn. 5.3). At the same time, it becomes rather unlikely that any pose estimated from a

focal length far away from the correct value, even if it was estimated only from correct

matches, is evaluated on all correspondences as significantly fewer correct matches are

inliers to such poses (cf . Fig. 5.2(a)). As a consequence, only a small fraction of all

generated poses need to be fully estimated, resulting in a significant speed-up.

83

Computing the Focal Length of a Single Camera Chapter 5

5.3 Image-based Localization Evaluation

In the following, we evaluate the performance of our proposed method both on syn-

thetic and real-world data. For all experiments, we use the Landmarks 1k dataset [51], re-

constructed from 205k Flickr images, to learn the probability distribution for 100 equally

spaced opening angles, which we then transform into focal length values for any image

with a given width and height.

Using realistic focal lengths is an important part of our experiments, since our algo-

rithm utilizes the distribution of likely focal lengths to inform our RANSAC scheme. In

order to obtain realistic focal length values, and realistic 2D-3D matches, for our syn-

thetic experiments, we use two large-scale SfM reconstructions and generate pixel-perfect

2D-3D correspondences by reprojecting the 3D points into the images in which they were

observed. The Rome model [52] consists of 15k database images and 4M points, while

1.9M points were reconstructed from 6k images to create the Dubrovnik model [52]. The

scale for the latter model is known, allowing us to measure the localization accuracy

on the Dubrovnik dataset in meters. Both datasets are form a standard benchmark for

image-based localization tasks [51], [69] and we thus evaluate the performance on real-

world data of our approach in this application scenario. For both datasets we use a CDF

learned from inlier ratios observed on the Dubrovnik dataset.

For our experiments, we used the publicly available implementations of the P3P [45]

and P4Pf [12] and our own implementation of the P5Pfr solver [46].

5.3.1 Experiments with Synthetic Data

We conducted two synthetic experiments to measure the performance of our algorithm

under increased levels of image noise and outlier ratios.

Image noise. We measured our algorithm’s robustness against image noise by adding

84

Computing the Focal Length of a Single Camera Chapter 5

0

0.5

1

1.5

2

R
o
ta

ti
o
n
 e

rr
o
r

(d
e
g
)

0 0.1 0.5 1.0 2.0
Noise in pixels

0

1

2

3

4

5

P
o
s
it
io

n
 e

rr
o
r

(m
)

0 0.1 0.5 1.0 2.0
Noise in pixels

0

0.02

0.04

0.06

0.08

0.1

F
o
c
a
l
le

n
g
th

 e
rr

o
r

0 0.1 0.5 1.0 2.0
Noise in pixels

0

0.002

0.004

0.006

0.008

0.01

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

0 0.1 0.5 1.0 2.0
Noise in pixels

Figure 5.4: Performance of our algorithm (red) and P4Pf [12] (blue) are compared for
increased levels of image noise. Our algorithm has comparable performance to P4Pf
for rotation, position, and focal length errors for all levels of noise. Despite requiring
more iterations, our algorithm has a lower run-time than P4Pf as the image noise
increases.

increasing levels of Gaussian pixel noise to the 2D positions of the perfect 2D-3D corre-

spondences obtained by reprojecting the 3D points. We tested image noise levels of 0,

0.1, 0.5, 1.0, and 2.0 pixels. Fig. 5.4 compares the performance of our approach with

P4Pf-RANSAC. For all levels of image noise, P4Pf achieves slightly lower rotation, trans-

lation, and focal length errors, though the errors are comparable. This indicates that our

algorithm is able to estimate the pose and focal length with high precision and is thus

robust to noise, which is important for real-world data.

Outlier ratio. The key idea of our approach is to use the faster P3P solver to estimate

85

Computing the Focal Length of a Single Camera Chapter 5

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Outlier ratio

P
o
s
it
io

n
 e

rr
o
r

(m
)

P3P(f) (Ours)

P4Pf

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Outlier ratio

O
b

s
e
rv

e
d
 i
n
lie

r
ra

ti
o

Expected inlier ratio

P3P(f) (Ours)
P4Pf

0 0.2 0.4 0.6

10
−3

10
−2

10
−1

10
0

Outlier ratio

R
u
n

ti
m

e
 (

s
)

P3P(f) (Ours)

P4Pf

Figure 5.5: The median position error, inlier ratio, and run-time was measured while
increasing the outlier ratio from 0 to 0.7. Both algorithms are able to recover high
quality poses (left) and almost all expected inliers (middle). Our algorithm has a much
lower run-time than P4Pf (right) as the outlier ratio increases because we require fewer
correspondences. This is a major advantage of our algorithm in low-inlier scenarios.

camera poses more efficiently while avoiding a brute-force search through all possible focal

length values through our novel sampling scheme. In this experiment, we evaluate the

robustness of our approach to high outlier ratios. We again use the perfect matches from

the Dubrovnik dataset, with 1 pixel of Gaussian noise added to the reprojected points,

and create outliers by adding new image points with correspondences to 3D points that

were not observed in the image until the desired outlier ratio is achieved.

Fig. 5.5 shows the performance of our P3P(f) approach and P4Pf-RANSAC for in-

creasing levels of outlier ratios. We plot the median position errors, inlier ratios, and

execution times. As can be seen, our algorithm is able to handle low-inlier scenarios

and still produce results that are nearly as accurate as P4Pf while being several orders

of magnitude faster. These results demonstrate that Assumption 1 holds well enough

even in the presence of outliers. For tasks such as image-based localization, being able

to handle low-inlier scenarios accurately and efficiently is extremely important.

86

Computing the Focal Length of a Single Camera Chapter 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Cumulative distribution of inlier ratios

Inlier ratio

F
ra

c
ti
o

n
 o

f
im

a
g

e
s

P3P
P4Pf
P5Pfr
P3Pf
P3Pf (const prior)

1e−4 1e−3 1e−2 0.1 1
0

0.2

0.4

0.6

0.8

1
Cumulative distribution of runtimes

Execution time (s)

F
ra

c
ti
o

n
 o

f
im

a
g

e
s

1e−4 1e−3 1e−2 0.1 1
0

0.2

0.4

0.6

0.8

1
Cumulative distribution of low−inlier runtimes

Execution time (s)

F
ra

c
ti
o

n
 o

f
im

a
g

e
s

Figure 5.6: Localization results from the Rome dataset [52] are shown. Our
P3P(f)-RANSAC algorithm is able to recover more inliers than P3P used with ground
truth focal lengths from Bundler, and a comparable amount to P4Pf and P5Pfr (left).
Our algorithm has an execution time that is nearly one order of magnitude faster
than P4Pf (center), despite running for more iterations. In low-inlier cases (inlier
ratio ≤ 0.5), our algorithm is significantly faster than alternative algorithms (right).

5.3.2 Experiments on Real Data

As a final experiment, we compare the performance of our algorithm to P3P, P4Pf,

and P5Pfr in an image-based localization task [52, 51], [69]. We use two versions of our

algorithm: one with priors obtained from the Landmarks 1K dataset, and one with no

priors (i.e. constant priors). We use the efficient, publicly available localization method

of [69] to obtain 2D-3D matches for the 800 and 1000 query images available for the

Dubrovnik and Rome datasets, respectively. All query images were obtained by removing

cameras from larger SfM reconstruction, providing ground truth positions for the query

images. Notice that we do not use perfect correspondences in these experiments.

The results for the Rome dataset are shown in Fig. 5.6. Algorithms that computed

focal length in addition to pose are able to recover noticeably more inliers than the P3P

method that was used with ground truth focal lengths values as we did not account for

radial distortion. As expected, all of the algorithms are slower than P3P. Our algorithm

performed much faster than P4Pf in all cases. As shown in Fig. 5.6, our approach is

faster than P5Pfr for low-inlier cases since it requires fewer matches per sample and thus

fewer iterations per focal length.

87

Computing the Focal Length of a Single Camera Chapter 5

Tab. 5.1 shows the position errors of each method on the Dubrovnik dataset, where we

can measure distances in meters. The median position error of each camera was recorded

over 100 trials for each of the methods. All methods are able to localize almost all images,

and our method gives position errors that are comparable to or only slightly higher than

P4Pf, which has the lowest errors of all algorithms. P3P(f) achieves better localization

accuracy than P5Pfr. As can be also seen in Tab. 5.1, our method is on average over an

order of magnitude faster than P4Pf. At the same time, P3P(f) is consistently faster than

P4Pf on all quantiles while being faster than P5Pfr for images with lower inlier ratios.

Notice that our P4Pf implementation requires 115µs compared to the 46µs required by

[12]. Yet, our approach is on average more than 7 times faster than when using the

solver from [12] and still achieves faster quantile run-times. On average, P3P(f) is only

1.39 times slower than P3P, even though it requires no knowledge about the focal length,

making it well suited for SfM and localization applications.

Tab. 5.1 also shows results obtained with our approach when using a uniform prior

on the focal lengths instead of the learned one. As can be seen, our method benefits

from using a realistic prior but performs only slightly worse using the uniform prior.

This demonstrates that our novel sampling scheme is the main reason for why P3P(f)

succeeds.

5.4 Discussion

In this chapter, we have proposed a novel approach, termed P3P(f)-RANSAC, for

efficiently estimating the pose of a camera with unknown focal length inside a RANSAC

loop. Instead of computing the focal length using a minimal solver, our approach samples

focal length values according to a probability distribution and then uses the significantly

faster P3P solver to estimate the pose of the now calibrated camera. As the main contri-

88

Computing the Focal Length of a Single Camera Chapter 5

Table 5.1: The position errors and localization times measured on the Dubrovnik
dataset for an image-based localization task. Besides the results obtained by our
approach using the learnt priors for the focal lengths, we also include results for an
uniform prior

Solver
Localization Accuracy [m]

loc. Mean Quantiles [m]
images [m] 25% 50% 75% 90%

P3P (exact focal) 792 40.3 1.0 7.6 26.4 111.8
P4Pf 795 38.7 0.4 1.3 4.7 20.1
P5Pfr 796 227.2 0.5 2.0 31.3 200.9

P3P(f) (Ours) 795 20.8 0.4 1.6 5.4 27.6
P3P(f) uniform prior 795 28.1 0.5 1.7 5.9 24.3

Table 5.2: The execution time required for each method in the localization experiment
on the Dubrovnik dataset. Our method, when used with or without priors, is nearly
as efficient as P3P with known calibration.

Solver
Localization Times [ms]

loc. Mean Quantiles [ms]
images [ms] 50% 75% 90%

P3P (exact focal) 792 1.21 0.20 1.00 3.01
P4Pf 795 32.09 4.84 10.78 28.73
P5Pfr 796 6.02 0.54 3.07 16.44

P3P(f) (Ours) 795 1.68 0.68 1.27 2.72
P3P(f) uniform prior 795 1.89 0.85 1.46 3.08

bution, we have proposed a novel sampling scheme that is able to model the probability

of finding a pose better than the current best estimate for all focal length values. As a

consequence, our approach is able to avoid evaluating all values and focus on the more

promising candidates while offering the same guarantees as RANSAC in the presence of

outliers. We have shown that our algorithm achieves a similar pose accuracy as previ-

ous pose solvers while achieving significantly faster run-times. These results challenge

the notion that using minimal solvers is always an optimal strategy. While this chapter

focuses on the absolute pose problem, we hope to explore the use of our framework for

89

Computing the Focal Length of a Single Camera Chapter 5

other pose estimation problems in future work.

90

Chapter 6

Computing Camera Focal Lengths
at Scale

A current limitation of global SfM methods is that they require relative poses in the form

of relative rotations and translations as input. For calibrated image sets, the relative poses

may be obtained by decomposing the essential matrix [33]. For uncalibrated cameras,

only the fundamental matrix is available between two views. Focal lengths may be

obtained from the fundamental matrix in closed form [40] and the resulting essential

matrix may be decomposed into relative rotations and translations. The relative rotations

and translations obtained through fundamental matrix decomposition, however, are far

less accurate compared to when calibration is known (cf . Figure 6.3) so obtaining accurate

calibration has a direct effect on the quality of SfM algorithms.

Individually decomposing fundamental matrices from all relative geometries contain-

ing a particular camera, however, is not guaranteed to yield a single consistent focal

length value. That is, each decomposition of a fundamental matrix containing a par-

ticular camera may yield a different focal length value for that camera (cf . Figure 6.2).

Further, the quality of the focal lengths computed from a fundamental matrix is solely

dependent on the quality of the fundamental matrix estimation. Focal lengths are not a

lie group and so a simple averaging of focal lengths does not give statistically meaningful

91

Computing Camera Focal Lengths at Scale Chapter 6

Figure 6.1: Reconstructions computed from global SfM methods on the Pisa
dataset [38]. Top: Standard global SfM pipelines [88] struggle to handle image sets
with poor calibration or inaccurate relative geometries, resulting in noisy or discon-
nected reconstructions. Bottom: Our method optimizes the relative geometries in
the viewing graph to enforce global consistency, resulting in an efficient SfM pipeline
that handles calibrated or uncalibrated images.

results [13] and a more meaningful metric is needed to effectively “average” focal lengths.

In this section we propose a new calibration method for simultaneously determining the

focal lengths of all cameras in a viewing graph using only fundamental matrices as input.

6.1 Focal Lengths from a Fundamental Matrix

First, let us review a technique for determining focal lengths from a single fundamental

matrix. An essential matrix E has the form t × R for a given relative translation t and

rotation R if and only if E is rank 2 with its two non-zero singular values equal [33].

92

Computing Camera Focal Lengths at Scale Chapter 6

v1

v2

F12

F13

F23

v3

f2 =	800

f1 =	650

f1 =	400 f3 =	900

f2 =	1200

f3 =	300

Figure 6.2: Camera focal lengths may be computed by decomposing the fundamental
matrix connecting two views; however, when multiple fundamental matrices are con-
nected to a view, multiple estimates for the focal length of the view may exist leading
to inconsistent calibration.

This property may be encapsulated by the scalar invariants of E [39]:

C = ||EE>||2 − 1

2
||E||4 . (6.1)

For a valid essential matrix E, the cost function C will be 0. Kanatani and Matsunaga

[40] show that Eq. (6.1) may be used to recover the two focal lengths from a fundamental

matrix by noting that:

E = K ′>FK . (6.2)

When the focal lengths are unknown, C is a non-negative cost function whose min-

imum is at 0. By inserting Eq. (6.2) into Eq. (6.1), we may solve for the focal length

values that minimize C. This may be solved in closed form by noting that the first order

partial derivatives ∂C/∂f ′ and ∂C/∂f must also be 0 [40].

93

Computing Camera Focal Lengths at Scale Chapter 6

Rotation Error (deg)
0 10 20 30

C
D

F
 o

f
c
a
m

e
ra

s

0

0.2

0.4

0.6

0.8

1

Calibrated

Uncalibrated

Translation Error (deg)
0 20 40 60

C
D

F
 o

f
c
a
m

e
ra

s

0

0.2

0.4

0.6

0.8

1

Figure 6.3: We measured the effect of calibration on relative pose error. When using
known calibration (red) the relative rotation and translations are significantly more
accurate then when calibration is unknown (blue). For unknown calibrations, we
compute relative rotations and translations by decomposing the fundamental matrix.

6.2 Focal Lengths from the Viewing Graph

Kanazawa et al . [41] extend Eq. (6.1) to a triplet of fundamental matrices with a

simple cost function:

C = C(F12) + C(F13) + C(F23) . (6.3)

When image noise is present, this non-negative cost function is no longer guaranteed to

have a minimum at C = 0; however, minimizing this function is shown to produce good

estimations of focal lengths for the triplet [41]. We extend this triplet formulation to

operate on an entire viewing graph:

f ∗ = arg min
∑
F∈G

C(F) , (6.4)

where f ∗ = {f0, . . . , fn} is the set of all focal lengths of all views in the viewing graph G.

The focal length values are obtained by minimizing the cost function of Eq. (6.1) over

94

Computing Camera Focal Lengths at Scale Chapter 6

all fundamental matrices that correspond to edges in the viewing graph. We use an L1

loss function to minimize the terms of Eq. (6.4) to maintain robustness to outliers.

The minimization of Eq. (6.4) can easily be modified to handle viewing graphs with

partially known calibration by keeping the known focal lengths constant during the min-

imization. Similarly, Eq. (6.4) can be easily modified to handle the case of all cameras

sharing the same focal length.

6.3 The Viewing Graph

A scene consisting of n views may be represented by a viewing graph G = {V , E}

whose vertices V correspond to views in the scene and whose edges E correspond to

feature matches and relative geometries between two views, namely the fundamental

matrix connecting two views. Specifically, Fij is the fundamental matrix that transfers

points in image j to lines in image i. The viewing graph contains information about

the relative geometry between views but does nothing to enforce geometric constraints

beyond 2-view geometry. For example, there may be triplets (loops of size 3) whose

relative geometry is not geometrically feasible when considering all three edges [68, 91].

Ideally, the edges in these loops would be consistent with each other.

Condition 1 A triplet of fundamental matrices is consistent when they satisfy [33]:

e>ikFijejk = e>ijFikekj = e>jiFjkeki = 0 , (6.5)

where eij is the epipole of Fij corresponding to the image of camera center j in view i

and eij 6= eik i.e., the non-collinearity condition is satisfied.

Definition 1 A consistent viewing graph is a viewing graph where all triplets satisfy

Condition 1.

95

Computing Camera Focal Lengths at Scale Chapter 6

The geometric interpretation of Definition 1 is that the projection of view k’s camera

center in image i is consistent with the projection of view k’s camera center in image j

transferred to image i by the fundamental matrix Fij.

Let us now consider the existence of a consistent viewing graph:

Theorem 1 Given a reconstruction R = {P ,X} consisting of projection matrices P

and 3D points X , a non-empty set of consistent viewing graphs exists.

Proof: A consistent viewing graph may be constructed directly from the recon-

struction R by setting each edge eC ∈ E to the fundamental matrix composed from the

two corresponding projection matrices [33]. By construction, Condition 1 is satisfied.

Thus, for every reconstruction R there exists a consistent viewing graph GC that

will generate R. Further, it is known that computing a reconstruction from a consistent

viewing graph may be done trivially by chaining projection matrices computed directly

from the fundamental matrices in the viewing graph [68, 71]. Computing a reconstruction

from a non-consistent viewing graph, however, is much more difficult and is the crux of

most SfM methods.

6.4 Creating a Consistent Viewing Graph

Rather than facing the difficult task of computing a reconstruction from a non-

consistent viewing graph G, we propose to instead recover a consistent viewing graph

GC from G so that computing a reconstruction is simplified [33, 68]. Thus, the goal of

this chapter is to optimize a noisy, non-consistent viewing graph G = {V , E} to recover

a consistent viewing graph GC that will improve SfM. This requires adjusting the edges

Fij ∈ E to enforce Condition 1. We propose an optimization scheme that uses a geometric

error to enforce loop constraints that attempt to satisfy Condition 1. If we are able to

96

Computing Camera Focal Lengths at Scale Chapter 6

Figure 6.4: The epipolar point transfer is the intersection of the points xj and xk
transferred to image i. We enforce loop consistency in the viewing graph by optimizing
fundamental matrices such that the distance between the observed point xi and the
epipolar point transfer xjki is minimized.

recover a consistent viewing graph then computing a reconstruction is trivial; however,

even in the case that we cannot recover a fully consistent viewing graph the accuracy of

the relative geometries improves enough that computing structure and motion is greatly

simplified (cf . Section 6.5).

In the remainder of this section we propose an optimization that operates on the view-

ing graph, enforcing loop consistency with the epipolar point transfer. Our optimization

recovers an approximately consistent viewing graph GOPT that improves the performance

of SfM by improving convergence in the estimation process.

6.4.1 Enforcing Loop Consistency

We now propose a cost function for adjusting E to enforce triplet consistency in

G. While Condition 1 is a sufficient condition for consistency [68], it is an algebraic

metric and is significantly under-constrained. Instead, we propose to use the epipolar

point transfer to enforce loop consistency. The epipolar point transfer is defined as the

97

Computing Camera Focal Lengths at Scale Chapter 6

intersection of two transfer lines of two views into a third view (cf . Figure 6.4).

x̂i
jk = Fijxj × Fikxk , (6.6)

where xi is the feature point in image i and x̂i
jk is the estimated pixel location of xi based

on the epipolar transfers from views j and k. In the ideal case we will have xi = x̂i
jk;

however, this is almost never the case in real data because of image noise and outliers in

the feature matching process. Instead, we define a cost function based on the epipolar

point transfer:

C(x)jki = ||xi − x̂ijk||2 . (6.7)

This cost is a geometric error in terms of pixel distance and has previously been shown

to be effective [28, 62]; however, care must be taken to avoid numerical instabilities (see

Section 6.4.4).

6.4.2 Updating Fundamental Matrices

We seek to adjust fundamental matrix edges Fij ∈ E in G based on Eq. (6.7). Funda-

mental matrices are a special class of rank-2 matrices [3]. Thus, updating a fundamental

matrix during the nonlinear optimization must be done carefully to ensure that the result-

ing 3× 3 matrix remains a valid fundamental matrix. We use the nonlinear fundamental

matrix representation of Bartoli and Sturm [8] to update the fundamental matrices and

briefly summarize their method here.

Note that a fundamental matrix F may be decomposed into matrices U , S, and V by

singular value decomposition F = USV >, where U and V are orthonormal matrices and

S is a 3 × 3 diagonal matrix of the form diag(1, s, 0). To update F , we apply a SO(3)

98

Computing Camera Focal Lengths at Scale Chapter 6

rotation to the O(3) matrices U and V , and a simple scalar addition to s.

U ← RuU (6.8)

V ← RvV (6.9)

s← s+ δs (6.10)

Since Ru and Rv are SO(3) rotations, they may be represented with the minimal 3

parameters (by Euler angle or angle axis representation), thus requiring 7 parameters

total (3 for Ru, 3 for Rv and 1 for δs) to update F . Since F has 7 degrees of freedom,

this is a minimal parameterization and has been shown to maintain valid fundamental

matrices [8].

6.4.3 Nonlinear Optimization

We create a large nonlinear optimization using the cost function of Eq. (6.7) and the

presented method for updating fundamental matrices. We only optimize edges that are

present in triplets T in the viewing graph:

F∗ = arg min
F

∑
t∈T

∑
x∈t

C(x)jki + C(x)ikj + C(x)ijk , (6.11)

where x is a feature track present in the triplet t = {i, j, k} and F is the set of funda-

mental matrices F ∈ E . That is, for all triplets, we minimize the epipolar point transfer

cost of all feature tracks within the triplet. Although the epipolar point transfer cost

function does not require a triplet of fundamental matrices, we found that using triplets

greatly improved the rate of convergence. Further, since each camera interacts with other

cameras that might not be linked together in a triplet, larger loops are implicitly created.

Finally, it should be noted that the feature points x are treated as constant in

99

Computing Camera Focal Lengths at Scale Chapter 6

Eq. (6.11) and alternatively could be treated as free parameters that are optimized with

the fundamental matrices. We found that additionally optimizing feature points with

fundamental matrices resulted in a dramatic decrease in efficiency and did not provide

significantly better results.

6.4.4 Numeric Instabilities

The epipolar point transfer has known degeneracies and numeric instabilities [33]. In

particular, any configuration in which the transfer point lies on the trifocal plane of the

images i, j, and k will be degenerate and points near this degeneracy are increasingly

ill-conditioned. To avoid ill-conditioned points, we do not consider points where the two

transfer lines are nearly parallel or when the transfer lines lay near the epipole. The

latter scenario can be checked by examining the norm of the transfer line. Since the

epipole is in the null space of Fij, the norm of the transfer line will be very small when

it is near the epipole.

It should be noted that if the three camera centers are collinear then there is a one-

parameter family of planes containing the three cameras and thus the trifocal plane is

ambiguous. We explicitly avoid this scenario by removing collinear triplets where the

epipoles are equal. In practice, we did not find this to be a limitation since nearly all

cameras in real datasets are constrained by at least one non-collinear camera triplet.

6.5 Estimating Structure and Motion

Given a consistent viewing graph, estimating structure and motion is extremely sim-

ple. To see why this is the case, let us consider a consistent and calibrated viewing graph

GC . Since the graph is consistent, this means that the relative rotations in each triplet

in GC are also consistent (i.e., concatenating the relative rotations in a triplet will form

100

Computing Camera Focal Lengths at Scale Chapter 6

Algorithm 2 Standard Global SfM Pipeline

Given: G = {V , E}, Focal lengths
1: Filter G from loop constraints [58, 91]
2: Robust orientation estimation [14]
3: Filter edges by orientations [38]
4: Filter edges by relative translations [58, 88]
5: Estimate camera positions linearly [38] or nonlinearly [58, 88]
6: Triangulate 3D points
7: Bundle Adjustment

Return: 3D points X, and camera poses P

a loop: RijRjkRki = I). The global orientations of each camera may be easily obtained

from a random spanning tree [14] or from a linear orientation method [57]. A consis-

tent viewing graph also means that the relative translation directions in GC are perfect

i.e., αijtij = Ri(cj − ci). Thus, estimating the camera positions (assuming orientation

is known) is equivalent to recovering the baselines αij between cameras. This pipeline

is simpler than alternative global SfM approaches that require many filtering steps and

more complex motion estimation algorithms [38, 58, 88] (cf . Algorithm 2).

While our viewing graph optimization is not guaranteed to create a consistent viewing

graph, the optimization enforces enough of a consistency constraint that the SfM process

can be simplified. In fact, we are able to remove all filtering steps from our SfM pipeline,

and are able to further simplify the orientation and position estimation algorithms.

6.5.1 Viewing Graph Optimization

The viewing graph optimization described in Section 6.4 has O(|E|) free parameters,

and thus the run time of the nonlinear optimization scales directly with the number

of edges. Viewing graphs may contain highly redundant information, and so we would

like to reduce the number of edges in the viewing graph so as to reduce the size of the

nonlinear optimization. This is similar to the skeletal set selection of Snavely et al .

101

Computing Camera Focal Lengths at Scale Chapter 6

Figure 6.5: In order to reduce size of the viewing graph optimization, we construct
a subgraph from the maximum spanning tree (MST). Edges in the MST (left) are
shown with thick lines. Edges from the original viewing graph (dashed lines) are then
added to the MST if they form a triplet to form G′ (right).

[74], whose goal is to find a minimal set of views in the viewing graph that represent

the entire scene. Our goal, in contrast, is to find a minimal set of edges that provide

sufficient coverage over all views in the viewing graph.

Given an input viewing graph G = {V , E}, we aim to create a subgraph G ′ that

sufficiently covers the viewing graph with a minimum number of edges. Similar to [24], we

first select the maximum spanning tree G ′ = GMST where edge weights are the number of

inliers from fundamental matrix estimation between two views then find all edges ET ∈ E

that, if added to G ′ would create a triplet in the graph (i.e., a loop of size 3) as show in

Figure 6.5. Among the edges in ET we select a set of “good” edges EG that have a triplet

projection error less than τ (see Appendix B) and add these to the graph. The triplet

projection error is an approximate error measurement to determine how close a triplet

of fundamental matrices is to being consistent (Condition 1). We repeat this procedure

(i.e., G ′ = G ′ ∪ EG) until every view in the viewing graph participates in at least one

triplet, or there are no more “good” edges that can be added.

After we have obtained a representative viewing graph G ′, we must choose which

feature tracks to use for the optimization. Similar to Crandall et al . [21], we use a set

cover approach to select a subset of all feature tracks to accelerate optimization. In

102

Computing Camera Focal Lengths at Scale Chapter 6

Algorithm 3 Simplified Global SfM Pipeline

Given: G = {V , E}
1: Choose subgraph G ′ (Section 6.5.1)
2: Optimize the G ′ for consistency (Section 6.4)
3: [optional] Calibrate cameras (Section 6.2)
4: Estimate camera orientation from Eq. (6.12)
5: Estimate camera positions from Eq. (6.13)
6: Triangulate 3D points
7: Bundle Adjustment

Return: 3D points X, and camera poses P

each image, we create an N ×N grid and choose the minimum number of feature tracks

such that all grid cells in all images contain at least one track in the optimization. We

have found that choosing spatially distributed feature points helps the viewing graph

optimization to converge to a better minimum.

Finally, we use all selected edges and feature tracks to optimize the viewing graph by

minimizing Eq. (6.11) using the Ceres Solver optimization library [4]. We use a Huber

loss function to remain robust to outliers from feature matching.

6.5.2 Estimating Motion

The resulting optimized viewing graph provides accurate fundamental matrices that

nearly form a consistent viewing graph (cf . Figure 6.6). As a result, there is no need for

further outlier filtering during the structure and motion estimation. Further, there is no

longer a need for robust methods such as [14] or [88]. This simplifies the SfM pipeline

from a mathematical standpoint and for implementation purposes. The result is a more

efficient pipeline with comparable accuracy to current methods.

Assuming the cameras are calibrated (or calibration is obtained with the method of

Section 6.2), computing the orientations is simple. We solve for orientations by enforcing

the relative rotation constraint Rij = RjR
>
i . Similar to the method of [57], we minimize

103

Computing Camera Focal Lengths at Scale Chapter 6

the cost function ∑
i,j

||RiRij −Rj||2 (6.12)

to solve for camera orientations. Martinec and Pajdla [57] use a linear least squares

technique to solve for matrices that minimize Eq. 6.12; however, this requires the solu-

tions of the linear system to be projected into SO(3) matrices in order to obtain valid

rotations. In contrast, we use the angle-axis parameterization (which ensures that all

rotations Ri remain on the rotation manifold throughout the optimization[14]) and min-

imize Eq. (6.12) with a nonlinear solver. The orientations are initialized by chaining

relative rotations from a random spanning tree as is done in the initialization for [14].

This simplified orientations solver is 2− 4× more efficient than the method of [14] while

producing orientations that typically differ less than 1◦ for the datasets in Table 6.3.

To compute camera positions, we use the same nonlinear position constraint as Wilson

and Snavely [88], though our pipeline does not require filtering steps before solving for

camera positions. Given a relative translation tij and a known camera orientation Ri, we

use the following constraint to estimate camera centers ci and cj:

tij = Ri
(cj − ci)
||cj − ci||

. (6.13)

This nonlinear constraint is known to be more stable than other cross-product con-

straints [6, 29]. We use the Ceres Solver library [4] to solve the nonlinear Eq. (6.12)

and Eq. (6.13) for recovering camera orientations and positions. After estimating camera

poses, we triangulate 3D points and run a single bundle adjustment. Our SfM pipeline

is summarized in Algorithm 3.

104

Computing Camera Focal Lengths at Scale Chapter 6

Rotation Error (deg)
0 5 10 15 20

C
D

F
 o

f
c
a
m

e
ra

s

0

0.2

0.4

0.6

0.8

1

G

G‘

G
OPT

Translation Error (deg)
0 5 10 15 20 25

C
D

F
 o

f
c
a
m

e
ra

s

0

0.2

0.4

0.6

0.8

1

Figure 6.6: We plot the relative rotation and translation errors of the initial viewing
graph G, the subgraph G′ and the viewing graph after optimization GOPT when ex-
ecuted on the uncalibrated images from the Colosseum dataset [89]. The subgraph
G′ has lower relative pose errors than the initial viewing graph and the viewing graph
optimization greatly improves the quality of relative poses.

6.6 Experimental Evaluation

We evaluate our algorithm on a number of small to large-scale benchmark datasets

consisting of internet photo collections of popular landmarks. All experiments were

performed on a 2008 Mac Pro with 2.26 GHz processor and 24 GB of RAM using a single

core.

6.6.1 Viewing Graph Optimization

We demonstrate the effectiveness of our viewing graph optimization by examining

the relative rotation and translation errors of the viewing graph compared to a reference

reconstruction computed by VisualSFM1. The relative translation error is the angular

distance (in degrees) between Rij from the viewing graph and RjR
>
i composed from the

1The reconstructions obtained with VisualSFM [89] are not meant to serve as ground truth but merely
a reference for a good reconstruction.

105

Computing Camera Focal Lengths at Scale Chapter 6

reference reconstruction. Similarly, the relative translation error is the angular distance

(in degrees) between the unit-norm vectors tij from the viewing graph and tij = (cj −

ci)/||cj − ci|| created from camera position cj and ci from the reference reconstruction.

That is, terr = acos(t>ijtij) is the translation error in degrees. We compare the relative

pose errors on three different viewing graphs: the initial input viewing graph G, the

unoptimized subgraph G ′ (see Section 6.5.1), and the viewing graph after the viewing

graph optimization GOPT .

The relative pose errors from the Colosseum dataset[89] are shown in Figure 6.6. The

subgraph G ′ is effective in removing some of the inaccurate edges in G; however, it is clear

to see that our viewing graph optimization significantly improves the accuracy of relative

poses. The mean relative rotation error on the Colosseum dataset is reduced from 8.3◦

in G to 7.5◦ in G ′ to 2.49◦ in GOPT . The mean relative translation error is reduced from

22.6◦ in G to 19.3◦ in G ′ to 3.29◦ in GOPT .

6.6.2 Focal Length Calibration

To determine the accuracy of our calibration method, we used images from the Pisa

and Trevi datasets [38] that contain EXIF focal lengths and compare our calibration to

reference focal lengths that were obtained from a reference reconstruction generated with

VisualSfM [89] after bundle adjustment of the internal and external camera parameters.

We compare our method to using EXIF data for calibration as well as the median focal

length. The median focal length is obtained by decomposing all fundamental matri-

ces connected to a view and taking the median of the focal lengths obtained from the

decompositions.

We plot the accuracy of the focal lengths obtained with each method in Figure 6.7.

For simplicity, we only plot the results from the Pisa dataset; however, the results from

106

Computing Camera Focal Lengths at Scale Chapter 6

Focal Length Error
0 0.1 0.2 0.3 0.4

C
D

F
 o

f
C

a
m

e
ra

s

0

0.2

0.4

0.6

0.8

1

Our Method

Median Focal

EXIF

Figure 6.7: We show the accuracy of calibration methods on the Pisa dataset [38] and
show the focal length error |f − fgt|/fgt compared to ground truth focal lengths ob-
tained from a reconstruction from VisualSfM [89]. Our method is at least as accurate
as using EXIF, and is significantly more accurate than using the median focal lengths
obtained from fundamental matrix decomposition.

the Trevi dataset were similar. For both datasets our calibration method converged in

less than 10 seconds. Our method is at least as accurate as using focal length values from

EXIF data. The accuracy stems from the use of many two-view constraints to estimate

the focal length. EXIF values can be accurate but have the potential to be inaccurate if

the image has been resized or cropped. Using the median focal length is very inaccurate

and is not sufficient for use in a SfM pipeline.

6.6.3 Structure-from-Motion

We ran our pipeline on the small-scale dataset of [77] and the large-scale datasets

of [88] to measure the performance and feasibility of our method on real data. We

compare our SfM pipeline to several alternative global SfM pipelines, and the results are

summarized in Tables 6.1, 6.2, 6.3, and 6.4.

Table 6.3 shows that our method is approximately up 2 to 10 times more efficient

than alternative methods, while maintaining comparble accuracy to the state-of-the-art.

107

Computing Camera Focal Lengths at Scale Chapter 6

Table 6.1: We evaluate several SfM pipelines on the Strecha MVS datasets [77]. Our
method shows excellent accuracy on all datasets.

Accuracy (mm)
Name VSFM [89] Olsson [60] Cui et al . [22] Moulon [58] Ours
FountainP11 7.6 2.2 2.5 2.5 2.4
EntryP10 63.0 6.9 - 5.9 5.7
HerzJesuP8 19.3 3.9 - 3.5 3.5
HerzJesuP25 22.4 5.7 5.0 5.3 5.3
CastleP19 258 76.2 - 25.6 38.2
CastleP30 522 66.8 21.2 21.9 32.4

Table 6.2: Timing evaluation for several SfM methods on the Strecha MVS
datasets [77]. Our method is the most efficient on nearly all datasets despite not
using multiple threads as in [58] or a GPU as in [89]. Timing results of Cui et al . [22]
were not available.

Time (s)
Name VSFM [89] Olsson [60] Moulon [58] Ours
FountainP11 3 133 5 4.5
EntryP10 3 88 5 3.8
HerzJesuP8 2 34 2 1.9
HerzJesuP25 12 221 10 9.3
CastleP19 9 99 6 5.7
CastleP30 18 317 14 11.6

The increase in efficiency is a direct result of our simplified SfM pipeline (see Section

6.5) that is able to efficiently utilize the high quality relative poses obtained from the

optimized viewing graph. The statistical pose averaging (cf . Eq. (6.12) and Eq. (6.13))

converges to a high quality result very quickly because our optimized viewing graph is

extremely accurate (cf . Figure 6.6).

108

Computing Camera Focal Lengths at Scale Chapter 6

Table 6.3: We compare results of several global SfM pipelines on the large-scale
1DSfM dataset [88]. We show the number of cameras reconstructed NC and the
median position error approximately in meters x̃. For our method, x̃ indicates position
errors before bundle adjustment, and x̃BA are the errors after bundle adjustment. Our
method produces accurate camera poses before bundle adjustment and has comparable
accuracy to alternative methods after bundle adjustment.

1DSfM [88] LUD [61] Cui et al . [22] Our Pipeline
Name Nc Nc x̃ Nc x̃ Nc x̃ Nc x̃ x̃BA
Piccadilly 2152 1956 0.7 - - - - 1928 5.2 1.0
Union Square 789 710 3.4 - - - - 701 4.5 2.1
Roman Forum 1084 989 0.2 - - - - 966 6.8 0.7
Vienna Cathedral 836 770 0.4 750 5.4 578 3.5 771 6.7 0.6
Piazza del Popolo 328 308 2.2 305 1.5 298 2.6 302 2.9 1.8
NYC Library 332 295 0.4 320 2.0 288 1.4 294 2.8 0.4
Alamo 577 529 0.3 547 0.4 500 0.6 533 1.4 0.4
Metropolis 341 291 0.5 - - - - 272 8.7 0.4
Yorkminster 437 401 0.1 404 2.7 333 3.7 409 3.9 0.3
Montreal N.D. 450 427 0.4 433 0.5 426 0.8 416 2.0 0.3
Tower of London 572 414 1.0 425 4.7 393 4.4 409 9.3 0.9
Ellis Island 227 214 0.3 - - 211 3.1 203 3.7 0.5
Notre Dame 553 507 1.9 536 0.3 539 0.3 501 9.4 1.2

6.7 Discussion

In this chapter, we have presented a new approach to large-scale SfM. Rather than

focusing on creating potentially complex algorithms to overcome noise and outliers in the

reconstruction process, we propose an optimization that corrects the viewing graph and

enforces global consistency via loop constraints before applying SfM. We demonstrated

that this optimization improves the quality of relative geometries in the viewing graph

and removes the need for complex filtering steps as part of the SfM pipeline. Our viewing

graph optimization works on calibrated or uncalibrated image sets and we provide a new

method for calibrating cameras from a set of fundamental matrices. We incorporated the

viewing graph optimization and focal length calibration into a global SfM pipeline that

is intuitive to understand and easy to implement, and showed that this pipeline achieves

greater efficiency and comparable accuracy to the current state-of-the-art methods. For

109

Computing Camera Focal Lengths at Scale Chapter 6

Table 6.4: Running time in seconds for the 1DSfM [88] experiment. TBA and TΣ denote
the final bundle adjustment time and the total running times for each reconstruction
method. TOPT is the time our method takes for the viewing graph optimization. Our
method is 2 to 9 times faster than alternative global SfM methods.

1DSfM [88] LUD [61] Cui et al . [22] Our Pipeline
Name TBA TΣ TBA TΣ TBA TΣ TOPT TBA TΣ

Piccadilly 2425 3483 - - - - 310 702 1246
Union Square 340 452 - - - - 98 102 243
Roman Forum 1245 1457 - - - - 284 847 1232
Vienna Cathedral 2837 3139 208 1467 717 959 139 422 607
Piazza del Popolo 191 249 31 162 93 144 12 78 101
NYC Library 392 468 54 200 48 90 14 83 154
Alamo 752 910 133 750 362 621 18 129 198
Metropolis 201 244 - - - - 27 94 161
Yorkminster 777 899 148 297 63 108 13 71 102
Montreal N.D. 1135 1249 167 553 226 351 61 133 266
Tower of London 606 648 86 228 121 221 92 246 391
Ellis Island 139 171 - - 64 95 12 14 33
Notre Dame 1445 1599 126 1047 793 1159 59 161 247

future work we plan to examine the guarantees we can make (if any) on the “consistency”

of the viewing graph we obtain from the viewing graph optimization. Additionally, it

would be interesting to see if our method may be applied for global SfM on projective

reconstructions.

110

Computing Camera Focal Lengths at Scale Chapter 6

Figure 6.8: Visualizations of the Alamo (top-left), Yorkminster (top-right), and Tower
of London (bottom) datasets from the 1DSfM experiments using internet photo col-
lections.

111

Part III

Open Source Contributions and

Conclusions

112

Chapter 7

Theia: A Fast and Scalable
Structure-from-Motion Library

Structure-from-Motion (SfM) is a powerful tool capable of synthesizing a large amount

of image information information into interesting 3D representations of scenes. In order

to make research contributions to SfM, it is likely that inner steps of the pipeline must

be altered or completely rethought; however, designing an SfM pipeline is a huge under-

taking involving many non-trivial steps, complex algorithms, and many parameters to

tune. While the benefits of SfM are clear, few publicly available tools exist for creating

3D reconstructions from SfM, and none of the currently available software is specifically

geared towards large-scale SfM. Solutions such as the Bundler software that was popular-

ized by the Photo Tourism work [73] existed but all available libraries only implemented

incremental SfM pipelines, limiting the scalability. No software libraries implementing

global SfM existed when I began my PhD. Further, I found the code for all of these

libraries to be difficult to alter and extend with my own ideas due to poor code quality

or outdated methods. Simply put, the solutions were great at creating high quality 3D

models, but the available software was difficult for researchers to tweak and extend.

To address this issue, this chapter introduces the Theia library for Structure-from-

Motion with the specific goal of making the library accurate, scalable, and most im-

113

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

portantly extendable. By taking a modular approach to the software design, the Theia

library provides students, researchers, and industry experts with a clean C++ library

including a state-of-the-art Structure-from-Motion pipeline and a vast collection of multi-

view geometry tools and algorithms that utilize image and video inputs to create high

quality 3D reconstructions. The library is BSD licensed with strict Google C++ style

guide adherence for code readability and comprehensive unit test coverage. All algo-

rithms are intentionally designed to be scalable, multithreaded computation is utilized

whenever possible, and SSE optimization is enabled with the Eigen1 linear algebra library.

CMake2 is used to ensure cross-platform portability and a simple build and installation

process and Theia is well documented within the code and on the library’s website3. Due

to the modular software design, all algorithms can be easily extended, modified, or used

independently of the rest of the library. Feature extraction, image matching, RANSAC,

pose estimation and SfM methods may all be chosen at runtime, enabling simple experi-

mentation and fine-tuning for obtaining high quality SfM reconstructions. Additionally,

the library features a large number of tools for visualizing, evaluating, and comparing

reconstructions. Since being released in February 2015 Theia has gathered an active

community of users spanning graduate students, industry members, and computer vision

experts.

7.1 Overview of Features

In this section we provide an overview of the core algorithms of Theia. The core

features are modular so although they contribute to Theia’s SfM pipeline, they may still

be used independently. As such, the interface to the core features is typically generic

1http://eigen.tuxfamily.org
2http://www.cmake.org
3http://www.theia-sfm.org

114

http://eigen.tuxfamily.org
http://www.cmake.org
http://www.theia-sfm.org

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

Figure 7.1: We are able to reconstruct Notre Dame from over 500 images in less than
120 seconds using Theia, compared to over 11 minutes using alternative software such
as VisualSfM.

and not dependent on Theia-specific data types. The library contains a large number of

useful algorithms for multi-view geometry, linear algebra, and optimization.

7.1.1 Comparison to other software

First, it is important to describe what makes Theia different from existing alternative

libraries. There are several open-source SfM libraries available, but they differ from

Theia in some key features. The Bundler library robustly computes 3D reconstructions

with incremental SfM, limiting the ability to scale (see Section 6.5 for a comparison

of incremental and global SfM). VisualSfM is a closed-source software that contains an

incremental SfM pipeline that utilizes multi-threading and GPU programming for high

efficiency; however, the scalability is still limited because of the incremental nature of the

115

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

pipeline. OpenMVG4 is a SfM library with an active community that implements both

an incremental SfM and global SfM pipeline; however, the focus of OpenMVG is on high

accuracy for small to medium-sized problems and many of the methods were not designed

with scalability in mind. Further, OpenMVG does not adhere to a consistent style guide

and is not particularly modular, making it more difficult to extend and develop for casual

users. The primary goals of the Theia library are usability, extendibility, and scalability.

7.1.2 Feature Extraction

Detecting salient image points is a fundamental aspect of computer vision. Feature

detection and extraction methods that produce distinctive, repeatable image points and

descriptors are desired for a wide range of applications such as object detection, image

recognition, and multi-view stereo. In Theia, we implement a generic keypoint detector

and feature descriptor extraction interface so that various types of image feature methods

may be implemented and seamlessly integrated into the library. Further, this abstract

interface allows the user to select the desired feature extraction method at run-time. The

library currently contains implementations for SIFT features with support for AKAZE

in development.

7.1.3 Feature Matching

To determine which images observe similar views of a scene, features are matched

across images. There are currently two methods for feature matching in Theia: brute

forces and a cascade hashing [15] that is over two orders of magnitude faster than brute

force matching. Feature matching is also built with a generic interface so that new match-

ing techniques may be seamlessly added and integrated into the library. The abstract

4http://openmvg.readthedocs.org

116

http://openmvg.readthedocs.org

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

Table 7.1: Our RANSAC class is comprised of a Sampler class and a
QualityMeasurement class that allow for alternative RANSAC approaches to be eas-
ily implemented. The table below outlines the RANSAC variants implemented in
Theia by combining different sampling and quality measurement strategies.

Random Sampler Progressive Sampler EVT Sampler SPRT Sampler
Inlier RANSAC [25] PROSAC [17] EVSAC [26] -
MLE MLESAC [83] MLE + PROSAC MLE + EVSAC ARRSAC [65]

matching interface utilizes dynamic thread-pooling to optimize for multi-threaded per-

formance, allowing Theia users to implement new matching techniques while getting the

multi-threaded performance for free.

7.1.4 RANSAC

Random sample and consensus, or RANSAC, is one of the most commonly used

algorithms in computer vision (cf . Chapter 2). As a result, much research has gone

into making RANSAC extensions and variants that increase the efficiency or accuracy of

the estimation. We have implemented a templated class that makes using RANSAC for

estimation extremely easy as well as simple to extend. The user defines an Estimator

class that estimates a model from a set of data. This allows the user to easily deploy

any RANSAC class for a variety of tasks without having to rewrite the RANSAC-specific

code.

Further, the RANSAC class itself is composed of an abstract Sampler class that

samples the data and a QualityMeasurement class that determines how a model fits

the data. For standard RANSAC, the Sampler class performs random sampling and

the QualityMeasurement class counts the number of inliers in the data. These classes

can be used to implement different RANSAC methods. For instance, using a maximum

likelihood error as the QualityMeasurement would result in MLESAC[83] as shown in

Table 7.1. RANSAC [25], PROSAC [17], MLESAC [83], ARRSAC [65], LMeds [67] and

117

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

EVSAC [26] have been implemented with this generic RANSAC interface.

7.1.5 Camera Pose Estimation

A fundamental problem in multi-view geometry is the ability to determine a cam-

era’s pose in a scene. This library implements numerous state-of-the-art pose estimation

methods with generic interfaces so that they may be used independently of Theia’s SfM

pipeline. In addition to tcomprisedhe standard absolute and relative pose problems, we

also implement methods for multi-camera systems, partially calibrated cameras, and sce-

narios where IMU information is available (e.g ., the vertical direction is known from IMU

sensors). The following state-of-the-art solvers are currently implemented:

• Absolute pose: P3P [45], PnP [34]

• 4-point algorithm for absolute pose and focal length [12]

• 5-point algorithm for absolute pose, focal length, and radial distortion parame-

ter(s) [46]

• Relative pose: 5-point essential matrix [75], 7-point fundamental matrix [33], 8-

point fundamental matrix [32]

• Relative pose with known vertical direction: 3-point relative pose [78], 4-point for

multi-camera systems [78]

• Homography from 4 points [33]

• Similarity transformations: from 3D-3D correspondences [86], from 2D-3D corre-

spondences [79], from 2D-2D correspondences [80]

118

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

7.1.6 Global SfM Estimation Methods

The estimation step of global SfM pipelines can be broken into two parts: estimating

camera orientations, and estimating camera positions. Both steps have received con-

siderable research attention, though the position estimation problem is considered more

difficult because positions do not form a Lie Group as rotations do. Combining dif-

ferent rotation and position methods can affect efficiency, accuracy, and robustness of

global SfM pipelines. Theia takes a modular approach global SfM by using abstract

RotationEstimator and PositionEstimator classes that define interfaces for estimat-

ing rotations and positions for global SfM, respectively. Rotation or position estimation

methods may be easily constructed by deriving from these interfaces, allowing for seamless

integration into the rest of the global SfM pipeline. This makes adding new estimation

methods extremely simple and gives users the freedom to experiment with new methods

without having to modify the entire pipeline. The rotation and position estimation choice

may be set at run-time, allowing users to easily benchmark various estimation methods.

Theia currently implements the following methods:

• Rotation Estimation: the robust method of Chatterjee et al . [14], the linear method

of Martinec and Padjla [57], and a novel nonlinear method.

• Position Estimation: the least unsquared deviation formulation of Ozyesil and

Singer [61], the nonlinear formulation of Wilson and Snavely [88], and the linear

method of Jiang et al . [38].

7.1.7 Mathematics and Optimization

Multiple view geometry is centered around mathematics, and makes great use of fields

such as linear algebra, probability, and optimization. While the mathematics are well-

understood, implementing code to perform the mathematics can sometimes prove to be

119

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

more difficult. As such, Theia make a number of complex mathematics tools available as

part of the library, in the hopes that they will be useful to other users.

• A scalable L1 minimizer

• Polynomial solvers (closed form and iterative), including a novel SSE optimized

re-implementation of RPOLY [36]

• Sparse matrix eigen-decomposition

• RQ matrix decomposition

• Bundle Adjustment

• Normalized graph cuts [70]

7.2 SfM Pipeline

At the core of Theia is the SfM module. Theia contains Incremental and Global

SfM pipelines, but we only describe the Global SfM pipeline here as the incremental

pipeline is similar to that proposed by Wu [89]. By combining the modular features pre-

sented in Section 7.1, we create SfM pipelines that are simple to follow, easily extendable,

and highly scalable. The Incremental pipeline follows a standard sequential SfM proce-

dure [73]. The Global SfM pipeline takes a set of pairwise relative poses between cameras

as input, and outputs the orientation and position of all cameras in a global reference

frame. The camera poses are computed through motion averaging algorithms. These

global methods are inherently parallelizable and only require a single bundle adjustment,

which is generally the most expensive part of SfM. This is in contrast to incremental

SfM methods that add one new image at a time repeatedly perform bundle adjustment,

120

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

making them slower and less scalable than global SfM methods. Our global SfM pipeline

is summarized with the following steps:

1. Feature Extraction: We extract feature descriptors (in parallel) at salient points

within images. The feature type may be chosen at run-time for convenience.

2. Image Matching: After features are extracted, images must be matched to de-

termine two-view geometry between images that observe the same scene. By de-

fault, Theia uses the extremely fast cascade hashing method [15] to compute image

matches with multiple threads, though the matching technique may also be chosen

at run-time.

3. Estimate Camera Orientations: We use the geometrically verified two-view

matches from the previous step to estimate camera poses with global motion av-

eraging schemes. A generic RotationEstimator abstract class is used to define

the interface for rotation estimation methods. Currently, derived classes are im-

plemented for three different rotation estimation methods: the robust orientation

estimation algorithm [14], a linear L2 averaging scheme [57], or a novel nonlinear

estimation method.

4. Estimate Camera Positions: After camera orientations are estimated, the cam-

era positions are estimated. Similar to the rotation estimation, we utilize an

abstract PositionEstimator class to define the interface for position estimation

methods. Currently, three methods are implemented for position estimation: a

nonlinear position optimization [88], the linear method of [38], and the robust least

unsquared deviations method of [61].

5. Triangulate 3D Points: After camera poses are estimated, 3D points are trian-

gulated in parallel and refined with a nonlinear optimization.

121

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

6. Bundle Adjustment: As a final step, camera poses and 3D points are refined

with a nonlinear optimization to minimize reprojection error. We use the Ceres

Solver for scalable multi-threaded optimization to ensure high quality results are

obtained efficiently.

7.2.1 ReconstructionBuilder

The simplest way to create a 3D reconstruction with Theia is to utilize the ReconstructionBuilder

class. This class takes images as input and outputs 3D reconstructions created from the

input images. The caller may choose to use Incremental or Global SfM at runtime. The

options set in the ReconstructionBuilder control parameters for feature extraction,

matching, pose estimation, triangulation, and bundle adjustment. Creating a recon-

struction can be done in just a few lines of code:

Recons t ruc t ionBu i lde r b u i l d e r (opt ions) ;

for (const std : : s t r i n g& image : i m a g e f i l e s)

b u i l d e r . AddImage (image) ;

s td : : vector<Reconstruct ion∗> r e c o n s t r u c t i o n s ;

b u i l d e r . Bui ldReconst ruct ion (& r e c o n s t r u c t i o n s) ;

7.2.2 Performance

Theia achieves state-of-the-art performance on large scale datasets both in terms of

efficiency and accuracy. Timing results for several large scale datasets are shown in

Table 7.2, and more results are available on the Theia website.

122

Theia: A Fast and Scalable Structure-from-Motion Library Chapter 7

Figure 7.2: Theia’s SfM pipeline is able to reconstruct 3D models for Notre Dame,
Pisa, and the Trevi Fountain up to an order of magnitude faster than alternative
open-source SfM libraries.

Table 7.2: Efficiency evaluation (in seconds) of Theia vs VisualSfM for large recon-
structions using 8 threads. The number of images is given in parentheses for each
dataset.

VisualSfM Theia
Notre Dame (553) 687 118

Pisa (481) 621 142
Trevi (1259) 2467 387

7.3 Impact

In this chapter, we have presented a comprehensive multi-view geometry library,

Theia, that focuses on large-scale SfM. In addition to state-of-the-art scalable SfM

pipelines, the library provides numerous tools that are useful for students, researchers,

and industry experts in the field of multi-view geometry. Theia contains clean code that

is well documented (with code comments and the website) and easy to extend. The

modular design allows for users to easily implement and experiment with new algorithms

within our current pipeline without having to implement a full end-to-end SfM pipeline

themselves. Theia has already gathered a large number of diverse users from universities,

startups, and industry and we hope to continue to gather users and active contributors

from the open-source community.

123

Chapter 8

Conclusion

This thesis has presented my work creating detailed, explorable 3D models from with

new scalable, accurate Structure-from-Motion (SfM) algorithms in spite of inaccurate or

missing camera intrinsic calibration information. By explicitly developing the geometry

and mathematics for the distributed camera these methods overcome limitations with

previous SfM techniques so that image data can be crowd-source through internet photo

collections to create 3D models of large, complex scenes that can be readily explored.

This work makes the following specific contributions to the areas of computer vision and

multiple view geometry:

• Modeling the distributed camera.

– The relative pose problem. In Chapter 3, I examined the standard relative

pose problem, and provided a generalization of this problem to the distributed

camera. The generalized problem is equivalent to determining a similarity

transformation between two sets of viewing rays that intersect in the general

space. I have shown that the single-camera relative pose and multi-camera

relative pose problems are specializations of this general form, and presented a

solution to the generalized problem capable of solving any of the sub-problems.

– The absolute pose problem. In Chapter 4, I investigated the absolute pose

124

Conclusion Chapter 8

problem of determining the pose of a camera from 2D-3D correspondences.

As with Chapter 3, I show how to generalize this problem to the distributed

camera, which is equivalent to compute the 7 degrees-of-freedom similarity

transformation that aligns a set of viewing rays in one coordinate system to a

set of corresponding 3D points in a different coordinate system by minimizing

reprojection error. The solution to this problem is applicable for solving the

single-camera and multi-camera absolute pose problems. I demonstrate how

this method can be incorporated as a building block for a novel hierarchical

SfM pipeline that is able to reconstruct nearly 16,000 images of Rome in just

20 minutes.

• Calibrating the distributed camera.

– A method for calibrating a camera from a 3D model is discussed

in Chapter 5. I present a method for computing a camera’s pose and focal

length by using importance sampling to intelligently guess the camera’s focal

length at each iteration of a RANSAC loop. The importance sampling is

modified as the algorithm proceeds so that only the most likely focal lengths

are sampled in successive iterations. This method is shown to give state-of-

the-art performance on image-based localization tasks despite the absence of

calibration information.

– A method for calibrating a network of cameras that is capable of ac-

curately and efficiently determining camera intrinsic parameters. Chapter 6

described this calibration procedure, and an efficient pre-SfM optimization

that improves the efficiency of global SfM pipelines by up to an order of mag-

nitude.

125

Conclusion Chapter 8

• An open-source software library for Structure-from-Motion. In Chapter 7,

I describe my open-source SfM library that implements incremental and global

SfM pipelines. The library is designed to be clean and easily extendable so that

researchers and developers may easily experiment with specific parts of the SfM

pipelines without having to worry about the rest of the pipeline. As such, it is

a useful framework for researchers and developers interested in implementing new

SfM techniques within a reliable, efficient framework. Many parameters may be

easily set at run-time and Theia achieves state-of-the-art performance on both

small and large-scale datasets. The Theia library was the winner of the 2015 ACM

Multimedia Open Source Software Competition.

8.1 Future Work

In this thesis, I have presented methods for efficient and accurate large-scale SfM

that are suitable for use on corrupted and diverse data sources such as internet photo

collections. Using these methods, 3D geometry of large and complex scenes may be re-

covered and explored in a compelling way. While SfM models are an excellent mechanism

for viewing large scenes, they are only able to recover sparse geometry and thus are not

suitable for immersion. True immersion is simply not possible with sparse 3D models as

it requires the scene to be viewed with the level of detail and completeness comparable to

viewing it in the real world. As such, I view the contributions of this thesis as a first step

towards full immersion in a scene and describe several future projects to help achieve

this goal.

Virtual Reality is an extremely exciting medium for immersion with great potential

to transform the way that humans explore the world and interact with each other. High-

fidelity displays such as Oculus Rift provide a convincing experience of “being there”

126

Conclusion Chapter 8

and are able to transport us to entirely different places. An avenue of VR that greatly

excites me is the potential ability to transport yourself anywhere in the world. Inspired

by the vision of Noah Snavely [72] and others, I envision a virtual tourism system where

users may type in a query location such as the Notre Dame Cathedral and instantly be

transported to that location through immersive displays. Viewers may explore Notre

Dame freely in the virtual environment, taking in it’s vastness and appreciating the

intricate details of the archways and the beautiful colors of the windows. This experience

would be extremely compelling and would enable a wide variety of applications including

virtual tourism, virtual field trips for students, and would even enable architectural and

archaeological research with immersive viewing of scenes as they appeared in the past.

Similarly, it would be interesting to view how a scene has changed over time with an

immersive VR display.

Currently, real-world scenes are only suitable for viewing in VR displays when cap-

tured with multi-camera rigs that are able to recover sufficient multi-view stereo con-

straints. These rigs are prohibitively expensive for every-day consumers and require a

careful capture process at the scenes of interest. What if we could leverage existing data

to recover the necessary geometry instead? I believe SfM can be used for content creation

for virtual reality by effectively crowd-sourcing public image data from the internet. If

SfM is used as a first step for creating VR content, additional information such as dense

detail, surface reconstruction, and texturing of the scene can be added to the sparse 3D

model in order to create high-fidelity

Utilizing Video for SfM. Currently, video streams are an under-utilized source of

rich visual information. Due to the temporal nature and high frame rate of videos, there

is much more information that may be exploited to aid in 3D geometry extraction as

compared to images alone. One of the challenges with video, however, is determining

correspondence between different videos accurately and efficiently. One of the major

127

Conclusion Chapter 8

breakthroughs for SfM was the SIFT descriptor [55], which allowed correspondence to be

determined between unordered images such as those found in internet photo collections.

Prior to SIFT, SfM required ordered collections (such as frames from a single video

stream) in order to determine correspondence between images. Currently, there is no

adequate “SIFT-like” tool to determine correspondence between unordered videos from

sources such as YouTube or Vimeo. While SIFT or other descriptors could be extracted

from the individual frames of the video, this quickly becomes inefficient and, further, it

ignores very powerful temporal information that videos contain.

Temporal information from videos could be utilized with simultaneous localization

and mapping (SLAM) techniques. These techniques operate on individual video streams,

resulting in a 3D map of the environment and a collection of posed keyframes from the

videos. Each SLAM sequence could then be considered a distributed camera, and these

distributed cameras could be merged into a common reference frame using either the

methods of Chapter 3 or 4. Due to the sheer volume of data in videos, this procedure

could prove challenging when considering many videos at once. Thus, the criteria for

selecting keyframes in SLAM should be optimized such that only the most useful frames

are saved. This would require a method for temporal sampling of live video streams to

effectively compress the data.

128

Appendix A

Computing Matrices U, S, and V for
Depth, Scale, and Translation

The constant matrices U, S, and V are used to recover depth, scale, and translation from

the solution for the rotation matrix. These matrices are constructed as a function of

known measurements from the matrix (A>A)−1A>. Using the expression for A from Eq.

(4.7), we have:

A>A =

1 r̄1
>q1 −r̄1

>

. . .
...

...

1 r̄n
>qn −r̄n>

q>1 r̄1 . . . q>n r̄n
∑n

i=1 q
>
i qi

∑n
i=1−q>i

−r̄1 . . . −r̄n
∑n

i=1−qi nI

=

A B

B> D

 , (A.1)

129

Computing Matrices U, S, and V for Depth, Scale, and Translation Chapter A

where solid lines represent the block-matrix boundaries. Through block matrix inversion,

we can conveniently solve for the inverse:

(A>A)−1 =

E F

G H

E = I + BHB>

F = −BH

G = −HB>

H =

∑n

i=1 q
>
i qi

∑n
i=1−q>i∑n

i=1−qi nI

−
∑n

i=1 q
>
i r̄ir̄i

>qi
∑n

i=1−q>i r̄ir̄i>∑n
i=1−r̄ir̄i>qi

∑n
i=1 r̄ir̄i

>

−1

.

(A.2)

Finally, we can compute U , S, and V from Eq. (A.2). Many of the terms can be simplified

because of multiplications involving r̄i
>r̄i = 1. This leaves us with a greatly simplified

130

Computing Matrices U, S, and V for Depth, Scale, and Translation Chapter A

expression for U, S, and V:

U

S

V

= (A>A)−1A>

U =

r̄i
>

. . .

r̄n
>

+ B

S
V

 S

V

 = −HB>

r̄i
>

. . .

r̄n
>

+H

q>1 . . . q>n

−I . . . −I

= H

q>1 − q>1 r̄1r̄1
> . . . q>n − q>n r̄nr̄n>

r̄1r̄1
> − I . . . r̄nr̄n

> − I

 .

(A.3)

131

Appendix B

Triplet Projection Error

We define here the triplet projection error used in Section 6.5.1. Given three views, i,

j, and k, and the corresponding fundamental matrices Fij, Fik, and Fjk, Sinha et al .

[71] compute a consistent triplet of fundamental matrices. We use their technique to

define a triplet projection error that measures the consistency of a triplet of fundamental

matrices. We will briefly summarize the method here.

First, projection matrices for views i and j and k are constructed from the funda-

mental matrices

Pi = [I|0] (B.1)

Pj = [[eji]×Fij|eji] (B.2)

Pk = [[eki]×Fik|0] + ekiv
> (B.3)

where v is an unknown 4-vector. Recall from [33] that a fundamental matrix may be

constructed from the projection matrices of the two views it connects:

F
>
jk = [ekj]×PkP

+
j . (B.4)

F jk is linear in v and all possible solutions for F jk span the subspace of possible funda-

132

mental matrices that will form a consistent triplet as defined in Condition (1) [71]. We

solve for v that yields F jk closest to Fjk. We define the triplet projection error as the

difference of F jk and Fjk by Frobenius norm:

Errijk = ||F jk − Fjk|| . (B.5)

133

Bibliography

[1] M. A. Abidi and T. Chandra, A New Efficient and Direct Dolution for Pose
Estimation Using Quadrangular Targets: Algorithm and Evaluation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 17 (1995), no. 5
534–538.

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and
R. Szeliski, Building rome in a day, Communications of the ACM 54 (2011), no. 10
105–112.

[3] S. Agarwal, H.-l. Lee, B. Sturmfels, and R. R. Thomas, Certifying the existence of
epipolar matrices, arXiv preprint arXiv:1407.5367 (2014).

[4] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://ceres-solver.org.

[5] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, Bundle adjustment in the
large, in European Conference on Computer Vision, pp. 29–42. Springer, 2010.

[6] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman, A. Singer, and
R. Basri, Global motion estimation from point matches, in International
Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), pp. 81–88, IEEE, 2012.

[7] E. Ask, K. Yubin, and K. Astrom, Exploiting p-fold symmetries for faster
polynomial equation solving, in Proceedings of the International Conference on
Pattern Recognition (ICPR), IEEE, 2012.

[8] A. Bartoli and P. Sturm, Nonlinear estimation of the fundamental matrix with
minimal parameters, IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (March, 2004) 426–432.

[9] B. Bhowmick, S. Patra, A. Chatterjee, V. Govindu, and S. Banerjee, Divide and
conquer: Efficient large-scale structure from motion using graph partitioning, in
The Asian Conference on Computer Vision, pp. 273–287. Springer International
Publishing, 2015.

134

http://ceres-solver.org

[10] M. Bujnak, Z. Kukelova, and T. Pajdla, Robust Focal Length Estimation by Voting
in Multi-view Scene Reconstruction, in Proceedings of the Asian Conference on
Computer Vision (ACCV), 2009.

[11] M. Bujnak, Z. Kukelova, and T. Pajdla, Making Minimal Solvers Fast, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[12] M. Bujnak, Z. Kukelova, and T. Pajdla, A general solution to the p4p problem for
camera with unknown focal length, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–8, IEEE, 2008.

[13] M. Bujnak, Z. Kukelova, and T. Pajdla, 3d reconstruction from image collections
with a single known focal length, in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 1803–1810, IEEE, 2009.

[14] A. Chatterjee and V. M. Govindu, Efficient and robust large-scale rotation
averaging, in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 521–528, IEEE, 2013.

[15] J. Cheng, C. Leng, J. Wu, H. Cui, and H. Lu, Fast and accurate image matching
with cascade hashing for 3d reconstruction, in CVPR, IEEE, 2014.

[16] O. Chum and J. Matas, Randomized ransac with td, d test, in Proceedings of the
British Machine Vision Conference (BMVC), vol. 2, pp. 448–457, 2002.

[17] O. Chum and J. Matas, Matching with PROSAC-progressive sample consensus, in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
2005.

[18] O. Chum and J. Matas, Optimal randomized ransac, IEEE Transactions on
Pattern Analysis and Machine Intelligence 30 (2008), no. 8 1472–1482.

[19] O. Chum, J. Matas, and J. Kittler, Locally optimized ransac, in Pattern
Recognition, pp. 236–243. Springer, 2003.

[20] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher, SfM with MRFs:
Discrete-continuous optimization for large-scale structure from motion, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35
(December, 2013) 2841–2853.

[21] D. Crandall, A. Owens, N. Snavely, and D. P. Huttenlocher, Discrete-continuous
optimization for large-scale structure from motion, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[22] Z. Cui, N. Jiang, and P. Tan, Linear global translation estimation from feature
tracks, arXiv preprint arXiv:1503.01832 (2015).

135

[23] C. Engels, H. Stewénius, and D. Nistér, Bundle adjustment rules, Photogrammetric
computer vision 2 (2006) 124–131.

[24] O. Enqvist, F. Kahl, and C. Olsson, Non-sequential structure from motion, in
Computer Vision Workshops of the IEEE International Conference on Computer
Vision (ICCV), pp. 264–271, IEEE, 2011.

[25] M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,
Communications of the ACM 24 (1981), no. 6 381–395.

[26] V. Fragoso, P. Sen, S. Rodriguez, and M. Turk, EVSAC: Accelerating Hypotheses
Generation by Modeling Matching Scores with Extreme Value Theory, in
Proceedings of IEEE International Conference on Computer Vision, IEEE, 2013.

[27] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H.
Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys, Building rome on a
cloudless day, in Proceedings of the European Conference on Computer Vision
(ECCV), 2010.

[28] A. Goldstein and R. Fattal, Video stabilization using epipolar geometry, ACM
Transactions on Graphics (TOG) 31 (2012), no. 5 126.

[29] V. M. Govindu, Combining two-view constraints for motion estimation, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2, pp. II–218, IEEE, 2001.

[30] V. M. Govindu, Lie-algebraic averaging for globally consistent motion estimation,
in Proceeding of the IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. I–684, IEEE, 2004.

[31] R. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle, Review and analysis of
solutions of the three point perspective pose estimation problem, International
Journal of Computer Vision 13 (1994), no. 3 331–356.

[32] R. Hartley, In defense of the eight-point algorithm, IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (1997), no. 6 580–593.

[33] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[34] J. Hesch and S. Roumeliotis, A direct least-squares (dls) solution for pnp, in
Proceedings of the International Conference on Computer Vision (ICCV), IEEE,
2011.

136

[35] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, From Structure-from-Motion
Point Clouds to Fast Location Recognition, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2009.

[36] M. A. Jenkins, Algorithm 493: Zeros of a real polynomial [c2], ACM Transactions
on Mathematical Software (TOMS) 1 (1975), no. 2 178–189.

[37] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S. Kweon, Pushing the envelope
of modern methods for bundle adjustment, IEEE Transactions on Pattern Analysis
and Machine Intelligence 34 (2012), no. 8 1605–1617.

[38] N. Jiang, Z. Cui, and P. Tan, A global linear method for camera pose registration,
in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pp. 481–488, IEEE, 2013.

[39] K. Kanatani, Group-theoretical methods in image understanding, vol. 2.
springer-Verlag New York, 1990.

[40] K. Kanatani and C. Matsunaga, Closed-form expression for focal lengths from the
fundamental matrix, in Proceedings of the Asian Conference on Computer Vision,
vol. 1, pp. 128–133, 2000.

[41] Y. Kanazawa, Y. Sugaya, and K. Kanatani, Decomposing three fundamental
matrices for initializing 3-d reconstruction from three views, IPSJ Transactions on
Computer Vision and Applications 6 (2014) 120–131.

[42] G. Klein and D. Murray, Parallel tracking and mapping for small ar workspaces, in
IEEE International Symposium on Mixed and Augmented Reality, pp. 225–234,
IEEE, 2007.

[43] L. Kneip and H. Li, Efficient computation of relative pose for multi-camera
systems, in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8, IEEE, 2014.

[44] L. Kneip, H. Li, and Y. Seo, Upnp: An optimal o (n) solution to the absolute pose
problem with universal applicability, in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 127–142. Springer International Publishing, 2014.

[45] L. Kneip, D. Scaramuzza, and R. Siegwart, A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera position
and orientation, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2969–2976, IEEE, 2011.

[46] Z. Kukelova, M. Bujnak, and T. Pajdla, Real-Time Solution to the Absolute Pose
Problem with Unknown Radial Distortion and Focal Length, in Proceedings of the
International Conference on Computer Vision, 2013.

137

[47] Z. Kukelova, M. Bujnak, and T. Pajdla, Automatic generator of minimal problem
solvers, in European Conference on Computer Vision, pp. 302–315. Springer, 2008.

[48] A. Kushal and S. Agarwal, Visibility based preconditioning for bundle adjustment,
in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1442–1449,
IEEE, 2012.

[49] V. Lepetit, F. Moreno-Noguer, and P. Fua, Epnp: An accurate o (n) solution to the
pnp problem, International Journal of Computer Vision 81 (2009), no. 2 155–166.

[50] H. Li, R. Hartley, and J.-h. Kim, A linear approach to motion estimation using
generalized camera models, in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8, IEEE, 2008.

[51] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, Worldwide Pose Estimation Using
3D Point Clouds, in Proceedings of the European Conference on Computer Vision,
2012.

[52] Y. Li, N. Snavely, and D. Huttenlocher, Location recognition using prioritized
feature matching, in Proceedings of the European Conference on Computer Vision,
vol. 6312, pp. 791–804. Springer, 2010.

[53] M. I. Lourakis, A. Argyros, et. al., Is levenberg-marquardt the most efficient
optimization algorithm for implementing bundle adjustment?, in IEEE
International Conference on Computer Vision, vol. 2, pp. 1526–1531, IEEE, 2005.

[54] M. I. Lourakis and A. A. Argyros, Sba: A software package for generic sparse
bundle adjustment, ACM Transactions on Mathematical Software (TOMS) 36
(2009), no. 1 2.

[55] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2004), no. 2 91–110.

[56] F. Macaulay, Some formulae in elimination, London Mathematical Society 1
(1902), no. 1 3–27.

[57] D. Martinec and T. Pajdla, Robust rotation and translation estimation in
multiview reconstruction, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–8, June, 2007.

[58] P. Moulon, P. Monasse, and R. Marlet, Global Fusion of Relative Motions for
Robust, Accurate and Scalable Structure from Motion, in Proceedings of IEEE
International Conference on Computer Vision, 2013.

[59] D. Nistér, An efficient solution to the five-point relative pose problem, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (2004), no. 6
756–770.

138

[60] C. Olsson and O. Enqvist, Stable structure from motion for unordered image
collections, in Image Analysis, pp. 524–535. Springer, 2011.

[61] O. Ozyesil and A. Singer, Robust camera location estimation by convex
programming, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June, 2015.

[62] J. K. Pillai, Consistent averaging of multi-camera epipolar geometries, Master’s
thesis, India Institute of Science, 2008.

[63] R. Pless, Using many cameras as one, in Proceedings IEEE Conference on
Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–587, IEEE,
2003.

[64] J. Plùcker, On a new geometry of space, Philosophical Transactions of the Royal
Society of London 155 (1865) 725–791.

[65] R. Raguram, J.-M. Frahm, and M. Pollefeys, A comparative analysis of ransac
techniques leading to adaptive real-time random sample consensus, in ECCV.
Springer, 2008.

[66] R. Raguram, J.-M. Frahm, and M. Pollefeys, Exploiting Uncertainty in Random
Sample Consensus, in Proceedings of the International Conference on Computer
Vision, 2009.

[67] P. J. Rousseeuw, Least median of squares regression, Journal of the American
statistical association 79 (1984), no. 388 871–880.

[68] A. Rudi, M. Pizzoli, and F. Pirri, Linear solvability in the viewing graph, in
Proceedings of the Asian Conference on Computer Vision, pp. 369–381. Springer,
2011.

[69] T. Sattler, B. Leibe, and L. Kobbelt, Improving Image-Based Localization by
Active Correspondence Search, in Proceedings of the European Conference on
Computer Vision (ECCV), 2012.

[70] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI) 22 (2000), no. 8 888–905.

[71] S. N. Sinha, M. Pollefeys, and L. McMillan, Camera network calibration from
dynamic silhouettes, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, pp. I–195, IEEE, 2004.

[72] K. N. Snavely et. al., Scene reconstruction and visualization from internet photo
collections, .

139

[73] N. Snavely, S. M. Seitz, and R. Szeliski, Photo tourism: exploring photo collections
in 3d, in ACM transactions on graphics (TOG), vol. 25, pp. 835–846, ACM, 2006.

[74] N. Snavely, S. M. Seitz, and R. Szeliski, Skeletal graphs for efficient structure from
motion., in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, p. 2, 2008.

[75] H. Stewenius, C. Engels, and D. Nistér, Recent developments on direct relative
orientation, ISPRS Journal of Photogrammetry and Remote Sensing 60 (2006),
no. 4 284–294.

[76] H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström, Solutions to minimal
generalized relative pose problems, in Workshop on Omnidirectional Vision, 2005.

[77] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen, On
benchmarking camera calibration and multi-view stereo for high resolution imagery,
in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pp. 1–8, IEEE, 2008.

[78] C. Sweeney, J. Flynn, and M. Turk, Solving for relative pose with a partially known
rotation is a quadratic eigenvalue problem, in Proceedings of the International
Conference on 3D Vision, IEEE, 2014.

[79] C. Sweeney, V. Fragoso, T. Hollerer, and M. Turk, gdls: A scalable solution to the
generalized pose and scale problem, in European Conference on Computer Vision,
vol. 8692, pp. 16–31, Springer, 2014.

[80] C. Sweeney, L. Kneip, T. Hollerer, and M. Turk, Computing similarity
transformations from only image correspondences, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3305–3313, 2015.

[81] R. Szeliski, Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[82] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM review 43
(2001), no. 2 235–286.

[83] P. H. Torr and A. Zisserman, MLESAC: A new robust estimator with application
to estimating image geometry, Computer Vision and Image Understanding 78
(2000), no. 1 138–156.

[84] B. Triggs, Camera Pose and Calibration from 4 or 5 Known 3D Points, in
Proceedings of the International Conference on Computer Vision, 1999.

[85] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, Bundle
adjustmenta modern synthesis, in Vision algorithms: theory and practice,
pp. 298–372. Springer, 2000.

140

[86] S. Umeyama, Least-squares estimation of transformation parameters between two
point patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence
13 (1991), no. 4 376–380.

[87] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg, A minimal solution to the
generalized pose-and-scale problem, in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, 2014.

[88] K. Wilson and N. Snavely, Robust global translations with 1dsfm, in Proceedings of
the European Conference on Computer Vision, pp. 61–75. Springer, 2014.

[89] C. Wu, Towards linear-time incremental structure from motion, in Proceedings of
the International Conference on 3D Vision, pp. 127–134, IEEE, 2013.

[90] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, Multicore bundle adjustment, in
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3057–3064,
IEEE, 2011.

[91] C. Zach, M. Klopschitz, and M. Pollefeys, Disambiguating visual relations using
loop constraints, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1426–1433, IEEE, 2010.

[92] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi, Revisiting the pnp
problem: A fast, general and optimal solution, in Proceedings of the International
Conference on Computer Vision, IEEE, Dec, 2013.

141

	Abstract
	Introduction
	Overview of Contributions
	Thesis Organization

	Foundations
	The Pinhole Camera Model
	Structure-from-Motion

	Part I Modeling the Distributed Camera
	A Full Generalization of the Relative Pose Problem
	A Quadratic Eigenvalue Formulation
	Generalization to 7 d.o.f@let@token .
	Experimental Evaluation
	Discussion

	A Full Generalization of the Absolute Pose Problem
	Generalization to 7 d.o.f@let@token .
	An L2 Optimal Solution
	Experimental Evaluation
	A Hierachical SfM Pipeline
	Discussion

	Part II Calibrating the Distributed Camera
	Computing the Focal Length of a Single Camera
	Problem Formulation
	Probabilistic Focal Length Sampling
	Image-based Localization Evaluation
	Discussion

	Computing Camera Focal Lengths at Scale
	Focal Lengths from a Fundamental Matrix
	Focal Lengths from the Viewing Graph
	The Viewing Graph
	Creating a Consistent Viewing Graph
	Estimating Structure and Motion
	Experimental Evaluation
	Discussion

	Part III Open Source Contributions and Conclusions
	Theia: A Fast and Scalable Structure-from-Motion Library
	Overview of Features
	SfM Pipeline
	Impact

	Conclusion
	Future Work

	Computing Matrices U, S, and V for Depth, Scale, and Translation
	Triplet Projection Error
	Bibliography

