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ABSTRACT 

 

Photovoltaic devices that directly convert sunlight to electrical power have the 

potential to generate terawatts of usable power if they can be produced economically at 

scale. Solution-processed bulk heterojunction organic photovoltaics (BHJ OPVs) are a 

particularly interesting photovoltaic technology primarily because they have demonstrated 

power conversion efficiencies (PCEs) exceeding 10% and can be solution-processed over 

large areas, indicating their potential as a cost-effective, scalable source of renewable 

energy. Whereas BHJ OPVs utilizing polymer donors and functionalized fullerene acceptors 

dominate the organic solar cell literature, BHJ OPVs have recently been fabricated using 

small molecule donors with PCEs on par with their polymeric counterparts. The work 

comprising this dissertation therefore consists of two separate but related goals: 1) 

understanding and controlling the crystallization of small molecule donor materials in BHJ 

blends with functionalized fullerene acceptors and 2) identifying the efficiency limiting 

processes of organic solar cells utilizing perylene diimide (a commercial dye) acceptor 

molecules and small molecule donor materials.  

It is well established that the specifics of the bulk heterojunction morphology (phase 

separation, crystallinity, etc.) profoundly affect BHJ OPV device PCE. Controlling the BHJ 

morphology is thus of great importance. Using in-situ thermal annealing grazing incidence 

wide and small angle x-ray scattering it was discovered that the driving force for phase 

separation in BHJ OPV systems utilizing small molecule donor materials and functionalized 

fullerene acceptors is the crystallization of the small molecule donor material. Additionally, 

it was shown that this crystallization process, and therefore the development of the bulk 



 

 

 ix

heterojunction morphology and device performance, can be controlled by using 

commercially available nucleating agents designed for the clarifying of isotactic 

polypropylene.   

Functionalized fullerene acceptors, ubiquitous in high efficiency BHJ OPVs, are 

produced via particularly solvent and energy intensive techniques and exhibit small 

extinction coefficients across the terrestrial solar spectrum. There then exists obvious 

benefits for using inexpensive, easily mass-produced fullerene alternatives that strongly 

absorb solar photons. Perylene diimides (PDIs) are a class of organic dye molecules with 

high electron affinity similar to fullerenes, large extinction coefficients across the terrestrial 

solar spectrum and relatively high electron mobilities, thus making them attractive for use as 

electron acceptors in organic solar cells. A BHJ OPV with a PCE of 3.1% was fabricated 

using a small molecule donor material and a PDI acceptor, making this one of the most 

efficient BHJ OPV devices utilizing a non-fullerene acceptor. Use of the solvent additive 

1,8-diiodooctane (DIO) was shown to greatly improve the PCE of these devices. Using UV-

Vis and transient absorption pump-probe experiments it was shown that use of DIO 

increases the structural order of both the donor and acceptor molecule, corresponding to a 

drastic increase in the efficiency with which excited states separate into free charge carriers 

and therefore largely explaining the drastic increase in solar cell figures of merit when using 

the solvent additive.  
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Introduction 

A. Motivation for Work 

The world is in need of economically viable, low-carbon sources of energy on a terawatt 

scale in order to mitigate the potentially devastating consequences of anthropogenic climate 

change.1,2 As the sun directly provides several times the total energy demand of human 

civilization on a daily basis, solar energy production has the potential to offset more carbon-

intensive energy production from fossil fuel-based technologies.3–5 Solar energy can be 

converted to useful energy in any one of several ways. Photovoltaic devices are those that 

directly convert solar photons to electrical power, usually via the use of solid state 

semiconducting materials. Additionally, photovoltaic devices produce no direct emissions. 

Photovoltaic devices therefore have the potential to serve as a large scale, low-carbon source 

of energy. Widespread adoption of photovoltaic technology, however, has been hindered by 

the relatively high cost of energy produced from the photovoltaic effect. 

 The high cost of photovoltaic energy is in part the result of the large amount of 

energy required for the processing of the silicon6 found in the majority of commercial solar 

panels as well as the rare and/or toxic materials used in newer thin film photovoltaic 

materials such as cadmium telluride and copper indium gallium selenide. Organic 

photovoltaic (OPV) devices have the potential to overcome these obstacles as they are 

synthesized from readily available petroleum feedstock materials and can be processed using 

large area, high throughput solution deposition technologies such roll-to-roll coating.7–9 

OPVs have the additional benefit of being mechanically flexible, allowing the possibility of 

solar cells that can be rolled or folded for ease of storage and transportation. They also 

possess high extinction coefficients making it possible for very thin films (~300 nm) to 
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absorb almost all incident light. Their optical band gaps are also highly modular based on 

their chemical structure meaning their color can be tuned based on aesthetic or architectural 

desires.10 OPVs devices then have the potential to serve as a large area source of clean 

energy and/or could be used in niche applications that require bendability or a specific color 

scheme. 

B. Solar Cell Figures of Merit 

Solar cells are evaluated by applying a voltage and measuring the current response of the 

device while irradiating with a light source. This produces a current density-voltage (J-V) 

curve (Figure 1). The solar cell figures of merit are then extracted from this J-V curve. The 

short-circuit current density (JSC) is the current density from the device at zero applied 

voltage. The open-circuit voltage (VOC) is the voltage at which the current density from the 

device is zero. The max power point is the point on the curve where the power, that is the 

product of current and voltage, is maximized (Figure 1). The fill factor (FF) is then defined 

as: 

��	 = 	
���	 �	
��	�	
��

���	���
        (1) 

Perhaps the figure of merit of greatest importance, however, is the power conversion 

efficiency (PCE). The PCE is a measure of how efficiently a photovoltaic device converts 

solar energy into electrical energy. PCE is calculated as follows: 

���	 = 	
��	���	���

���
         (2) 

Where Pin stands for the incident power. Under standard Air Mass 1.5 Global (AM 1.5 G) 

testing conditions Pin is defined as 100 watts/cm2.11 
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Figure 1: Typical J-V curve for a photovoltaic device. 

 

Another important solar cell figure of merit is the quantum efficiency of the device. This 

figure of merit is an indicator of how efficiently a solar cell converts photons into electrical 

current and is typically expressed as a percentage. The quantum efficiency can be further 

broken down into the percentage of incident photons converted into electrical current, i.e. 

the external quantum efficiency (EQE), and the percentage of absorbed photons converted 

into electrical current, i.e. the internal quantum efficiency (IQE).  

When the EQE spectrum of a device is integrated, it should yield a current density value 

equivalent to that of the device’s JSC. This check should be routinely performed to confirm 

JSC values determined from J-V curves, which are subject to some error given the difficulty 

associated with accurately measuring a device area. For an efficient device, a significant 

difference between integrated EQE and JSC is usually an indication of unacceptable 

experimental error.12,13 Additionally, when calculating the IQE, care must be taken to 
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account for photons parasitically absorbed by the electrodes and interlayers of the device as 

well as optical interference effects.14 Failure to appropriately account for these optical 

effects can lead to erroneous conclusions about device operation.15,16 More detailed 

information on how to accurately test excitonic solar cells can be found elsewhere.17 

C. Bulk Heterojunction Organic Solar Cell Operating Principles 

The inorganic semiconductors that the majority of commercial solar cells are made of 

directly produce free charge carriers, i.e. a spatially separated electron and hole, upon 

absorption of a photon. These free charge carriers additionally have relatively long (~100 

μm) diffusion lengths. These characteristics then enable the fabrication of efficient inorganic 

solar cells using relatively simple p-n or p-i-n junction architectures. Organic 

semiconductors, however, have low dielectric constants (~2-3) and the coulombic 

interaction between the hole and electron generated by absorption of a photon is therefore 

not sufficiently screened to allow for spontaneous spatial separation. In an organic 

semiconductor, absorption of a photon thus produces a bound electron-hole pair known as 

an exciton. The diffusion length of an exciton is additionally typically limited to ~10 nm in a 

solution-processed organic semiconductor.18 

The formation of an exciton rather than spatially separated charge carriers upon photon 

absorption in an organic semiconductor as well as this exciton’s relatively short diffusion 

length profoundly influences the architecture required for the fabrication of high efficiency 

organic solar cells. In order to overcome the coulombic interaction between the electron-

hole pair within the exciton a type II molecular heterojunction between an electron donating 

molecule and an electron accepting molecule must be formed.19 This interface provides a 

driving force for a photoexcited, bound electron located on the electron donating molecule’s 
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lowest unoccupied molecular orbital (LUMO) to charge transfer to the LUMO of the 

electron accepting molecule, thus generating an unbound electron on the electron accepting 

molecule. Likewise, hole transfer from the electron acceptor’s highest occupied molecular 

orbital (HOMO) to the electron donator’s HOMO proceeds in similar fashion to produce an 

unbound hole on the electron donating molecule. This exciton splitting process is sometimes 

known to proceed via an intermediate charge transfer state (CT state) where charge transfer 

between electron donor and acceptor has occurred, but the coulombic interaction between 

the electron on the acceptor and the hole on the donor has not yet been overcome.  

In practice excitons can be split and an organic solar cell fabricated by forming a bilayer 

organic solar cell consisting of a layer of electron donating molecule on top of a layer of 

electron accepting molecule sandwiched between electrodes of opposite polarity (Figure 

2).20 In order to ensure generated excitons are able to diffuse to the donor-acceptor interface 

to be split into free charge carriers, the donor and acceptor layers can roughly only be made 

as thick as the exciton diffusion length. These very thin layers unfortunately only absorb a 

fraction of incident light. The JSC, and in turn the PCE, of these devices is then severely 

limited by the short diffusion length of an exciton in an organic solar cell utilizing a bilayer 

architecture. 

The shortcomings of the bilayer architecture were overcome with the development of the 

bulk heterojunction (BHJ) architecture (Figure 2).21 A BHJ consists of nanoscale 

interpenetrating and bicontinuous domains of electron donating and electron accepting 

molecules. The interpenetrating nature of this morphology provides vastly more donor-

acceptor interfacial area compared to a bilayer architecture and thus increases the probability 

that an exciton will reach such an interface to be split into a free electron and hole before 
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decaying back to the ground state. The bicontinuous nature of the BHJ morphology then 

allows generated electrons (holes) to traverse through the acceptor (donor) phase to be 

collected at the cathode (anode). A BHJ morphology therefore increases the PCE of OPV 

devices compared to bilayers by increasing the donor-acceptor interfacial area that is 

necessary to convert generated excitons to free charge carriers, thereby allowing for a 

thicker organic semiconductor layer which increases the amount of incident light absorbed. 

 

Figure 2: Cartoon schematics of a bilayer and bulk heterojunction organic solar cell 
architecture. 

 

For a BHJ OPV device to generate electrical power absorbed photons must be converted 

to excitons, which must then be split to produce free charge carriers and then these free 

charge carriers must be successfully collected at the appropriate electrode. These processes 

are illustrated schematically in Figure 3. There are numerous possibilities for competing and 

deleterious processes to disrupt this power generating scheme. The active layer may not be 

thick enough to absorb all incident photons or the donor and/or acceptor domains may be 

larger than the exciton diffusion length, thus reducing the potential JSC. Excitons may form 

Bilayer Bulk Heterojunction

Indium Tin Oxide

Electron Acceptor

Electron Donor

Aluminum

Indium Tin Oxide

Aluminum
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CT states that do not further dissociate into free charge carriers for reasons that are still 

vigorously debated.22,23 Free charge carriers may recombine because of low mobilities or a 

lack of a continuous transport pathway to an electrode. Recombination is generally classified 

as either geminate, those processes involving an electron-hole pair produced from a single 

photon absorption, or nongeminate, those processes involving spatially separated free 

electrons and holes. Several excellent reviews discuss these processes in more detail.24–26 

Given that a BHJ OPV device requires the formation of a relatively specific and complicated 

morphology that is then fraught with possible loss mechanisms, it is perhaps surprising that 

BHJ OPV devices work at all! BHJ OPV devices with IQEs approaching 100% and PCEs of 

approximately 8% have, however, been fabricated.22,27,28  

 

Figure 3: Left: From left to right. Incoming light is absorbed in the donor material (blue 
arrow); a bound exciton is formed. The exciton diffuses toward the donor–acceptor 
interface. The exciton transfers onto the interface state i.e. CT state (dashed arrows), after 
which the exciton dissociates (solid arrows) and the free hole and electron drift through the 
donor and acceptor phase respectively, to the extracting contacts (brown arrows). Right: An 
overview of the four most encountered recombination mechanisms. The geminate 
mechanisms: (a) exciton decay after excitation, (b) recombination through the CT state, and 
the nongeminate mechanisms: (c) recombination of free holes and electrons, (d) 
recombination of free carrier with carrier trapped on sites within the band gap. Reprinted 
with permission from Elsevier from reference 25. 
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D. Bulk Heterojunction Processing and Morphological Characterization 

From the above it is clear that the morphology of a BHJ OPV device profoundly 

influences its solar cell figures of merit. It is therefore imperative that processing techniques 

exist to control BHJ morphology as well as characterization techniques that allow the BHJ 

morphology to be probed and quantified. The BHJ morphology is commonly manipulated 

by modulating the donor-acceptor blend ratio29,30, the casting solvent or the incorporation of 

solvent additives into the casting solution27,31 as well as post film formation thermal 

annealing.27,32 These processing techniques generally allow the manipulation of the solid 

state order (crystallinity)27,32–34 and spatial distribution (phase separation)34,35 of the donor 

and acceptor molecules within the BHJ. These specific aspects of the BHJ morphology must 

then be characterized so processing-property-performance relationships can be established. 

Solid state order is generally probed using grazing incidence wide angle x-ray scattering 

(GIWAXS), transmission electron microscopy (TEM) or UV-Vis absorption spectroscopy. 

The spatial distribution of donor and acceptor are often characterized using TEM, grazing 

incidence small angle x-ray scattering (GISAXS), or resonant soft x-ray scattering. This is of 

course not a comprehensive list of techniques used for BHJ characterization. Several 

excellent reviews offer a more thorough discussion of this topic.36–39  

Briefly, GIWAXS and GISAXS will be discussed in further detail because of their 

importance to the work contained within this dissertation. GIWAXS and GISAXS are 

complimentary x-ray scattering techniques in the context of BHJ characterization in that 

GIWAXS is used to provide information on structural order whereas GISAXS is used to 

provide information on phase separation.40 As x-ray scattering techniques, they offer the 

additional advantage over microscopy techniques such as atomic force microscopy or TEM 
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in that they probe a much larger sample volume so that interpretations of GIWAXS or 

GISAXS data are representative of the dominant morphological features in a sample. 

 

Figure 4: Typical experimental set up of GIWAXS and GISAXS. α denotes the incident 
angle (on the order of 0.1˚). Reprinted with permission from reference 39. © 2014 WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

1. GIWAXS 

GIWAXS is an x-ray diffraction technique and is therefore sensitive to probing 

crystalline order within a film.40,41 The grazing incidence geometry allows for the creation of 

an evanescent wave within the film. This evanescent electric field increases the scattered 

intensity from the film, which is important when trying to probe thin, relatively disordered, 

carbonaceous materials such as organic semiconductors. The distribution of this evanescent 

electric field within the film can additionally be tuned to ensure scattering is dominated by 

the BHJ film rather than the substrate33 and to allow for depth profiling of specific ordered 
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features as function of depth within the BHJ.42  When GIWAXS is combined with an area 

detector, crystallites distributed over all polar angles within the film are able to be probed 

rather than just those with their scattering vector parallel to the diffracted plane normal as in 

a traditional specular scan. This allows for the straightforward determination of any 

crystalline texture.  The combination of a planar area detector and a grazing incidence 

geometry, however, does not allow for the probing of crystallites within a few degrees of 

those directly out of plane because of how the orientation and Ewald spheres overlap.43 This 

leads to a “missing wedge” of crystallites directly out of plane. Additionally, the grazing 

incidence geometry is particularly amenable to in-situ studies as it does not require thin 

films to be removed from their substrate and minimizes exposure times because of the 

increased scattered intensity from the standing wave formed within the film. 

GIWAXS can also be used to quantify the crystalline order within a film. This is most 

commonly done by calculating the crystalline correlation length (CCL) of a material. The 

CCL is calculated from the broadening of diffraction peaks: 

���	 = 	
��

�� !
         (3) 

Where the FWHM is the full width at half maximum of a given peak. Peak broadening 

occurs because of finite sized crystallites, crystalline disorder and instrumentation effects. In 

organic semiconductors, especially when using synchrotron x-ray facilities as is common 

practice, instrumentation effects are dominated by the effect of finite sized crystallites and 

crystalline disorder. In systems with multiple orders of a single diffraction peak, it is 

relatively straightforward to deconvolute the effects of crystallite size vs. disorder on peak 

broadening with the Warren-Averbach analysis.39 This, however, is rarely the case for 

organic semiconductors. Accordingly, the CCL is interpreted as having contributions from 
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crystallite size and disorder effects in organic semiconductors and can be thought of as the 

spatial distribution over which crystalline order is maintained within a material.44 The CCL 

is rarely greater than 25 nm for most solution processed organic semiconductors.  

Using GIWAXS to calculate the degree of crystallinity of a material is more difficult. 

The diffracted intensity from different GIWAXS samples cannot be compared to determine 

their relative structural order because the diffracted intensity from GIWAXS is highly 

sensitive to the incident angle and resulting evanescent electric field within a sample, which 

will undoubtedly vary from sample to sample because of the limitations of the motors and 

optics of the experimental set-up. Traditionally, the degree of crystallinity in organic 

polymers has been calculated with x-ray scattering by comparing the intensity of the 

diffraction from ordered regions of the polymer to the scattering arising from amorphous 

regions of the polymer.45 Using this method it is then possible to compare the degree of 

crystallinity for example of identical polyethylene samples processed different ways. This 

method has been adapted for organic semiconductors33, but is complicated when analyzing a 

sample comprising a blend of multiple materials or a more crystalline sample where it is 

difficult to accurately define the scattering associated with amorphous regions of the 

material. A relatively new method has been developed to use GIWAXS to calculate a 

relative degree of crystallinity between samples, however, it requires use of two separate 

synchrotron beam lines and so is not extremely practical.46 These techniques to calculate the 

degree of crystallinity are limited to comparing the same material because of structure factor 

considerations and cannot determine crystallinity on an absolute scale. 
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2. GISAXS 

GISAXS additionally has many of the advantages of GIWAXS in that the same grazing 

incidence geometry allows for increased scattering from the BHJ layer and is amenable to 

in-situ studies. In practice, the only difference between GIWAXS and GISAXS is the 

sample to detector distance. In GISAXS, the detector is usually 1-3 meters from the sample 

whereas in GIWAXS the detector is usually less than a meter from the sample. The sample 

to detector distance determines the q range being probed. The scattering vector, q, can be 

related to real space, d, in the following manner: 

"	 = 	
��

#
          (4) 

GISAXS is then sensitive to probing features on the order of 10 nm to 1 µm. Scattering 

contrast in GISAXS is generated by electron density inhomogeneities, for example between 

donor-rich and acceptor-rich phases in a BHJ blend. GISAXS is therefore well suited to 

probing blend phase separation in BHJ OPV films.40 In highly ordered organic systems such 

as block copolymers, GISAXS is capable of providing detailed structural information, such 

as the lattice the different domains occupy.47 In less ordered systems, extracting quantitative 

information from GISAXS profiles requires fitting experimental data to a model48,49, 

however, modeling a BHJ OPV blend is extremely challenging given the irregularly shaped, 

polydisperse, interconnected and randomly distributed domains characteristic of a BHJ 

morphology. Due to these complexities there exists no widely accepted GISAXS model for 

BHJ OPV blends and therefore GISAXS data on BHJ blends is most often interpreted 

qualitatively or only semi-quantitatively. When probing a BHJ blend, to a first order 

approximation, films will produce a peak or shoulder in scattered intensity at a q value 

corresponding to the average length scale associated with the differences in electron density, 
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i.e. the length scale of phase separation. Additionally, the intensity of this peak or shoulder 

within a given sample undergoing a series of in-situ measurements is proportional to the 

extent of blend phase separation. More information on GISAXS can be found in several 

excellent reviews.50,51 
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Small Molecule Bulk Heterojunction 

Organic Solar Cells Utilizing a 
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A. Section Introduction 

Given the strong dependence of BHJ OPV performance on blend phase separation, it is 

imperative to understand the thermodynamic driving forces and processes that lead to the 

formation of nanoscale phase separated, bicontinuous morphologies. Investigations of the 

much studied poly(3-hexylthiopene):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) 

OPV blend have found that in this system phase separation is largely the result of 

crystallization of the semicrystalline donor P3HT.1–3 Solid state miscibility between the 

donor and acceptor has, however, also been demonstrated to directly affect BHJ morphology 

including the degree of donor-acceptor phase separation as well as the relative purity of 

mixed regions of amorphous donor and acceptor.4–8 As polymer:fullerene BHJ blends 

dominate the literature9, much less is known about the development of phase separation in 

OPVs that utilize solution-processed small molecule donor materials. Small molecule donors 

have, however, recently emerged as a viable alternative10,11 to their polymer counterparts and 

offer several potential advantages in that they are monodisperse and can be purified with 

standard organic chemistry techniques. Knowledge of the driving forces for phase separation 

in solution-processed small molecule BHJ OPVs will therefore aid in the engineering of 

future high performing solar cells. 

In this section the relationship between crystallization and phase separation in a solution-

processed BHJ blend consisting of the small molecule donor 3,6-bis(5-(benzofuran-2-

yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(TBFu)2) and 

the fullerene electron acceptor PC71BM is investigated (Figure 5). This system was chosen 

because previous studies suggested that in optimized devices thermal annealing leads to 

increased phase separation and dramatic gains in power conversion efficiency (PCE).12,13 
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However, the driving forces for this behavior have not been previously investigated and it 

was therefore unclear what specific processes are responsible for this change in blend 

morphology and device performance. In-situ thermal annealing grazing incidence x-ray 

scattering is used to investigate the development of blend crystallinity and phase separation 

as a function of temperature and donor:acceptor blend ratio in order to better understand how 

thermal annealing leads to the formation of a BHJ morphology. Using these data we are able 

to correlate the formation of DPP(TBFu)2 crystallites with the onset of phase separation in 

DPP(TBFu)2:PC71BM blends. Based on these x-ray scattering data as well as charge carrier 

mobility data extracted from J-V curves of single carrier diodes undergoing in-situ thermal 

annealing, it is hypothesized that, on the time scales and temperature ranges associated with 

the fabrication of optimized BHJ OPVs, blend phase separation is largely the result of donor 

crystallization. This observation is then used to explain the dramatic increase in performance 

induced by thermal annealing in higher performing donor:acceptor ratio 

DPP(TBFu)2:PC71BM BHJ OPVs as we directly correlate changes in blend morphology with 

solar cell figures of merit. A commercially available nucleating agent is then used during 

processing to modulate donor crystallization, and therefore the development of the bulk 

heterojunction morphology and device performance. 

 

a) b)

DPP(TBFu)2 PC71BM
 

Figure 5: Chemical structures of the electron donor, DPP(TBFu)2 (a), and electron acceptor, 
PC71BM (b), used in this study. 
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B. Crystallization and Phase Separation as a Function of Annealing Temperature 

In order to monitor blend morphological evolution as a function of temperature and 

therefore provide insight into the processes associated with the development of phase 

separation in solution-processed small molecule BHJ OPVs, both GIWAXS and GISAXS 

were performed on samples undergoing in-situ thermal annealing. This allowed donor or 

acceptor crystallization and donor-acceptor phase separation to be monitored during 

morphological development. DPP(TBFu)2 crystallinity was quantified by fitting the 

DPP(TBFu)2 (100) peak from GIWAXS spectra taken at various temperatures with a 

Pseudo-Voigt function. The Pseudo-Voigt peak area is a relative measure of the crystalline 

volume within the thin film. In neat films as well as in blends with PC71BM, DPP(TBFu)2 

exhibits no signs of crystallinity in the as-cast state when spin-cast from chloroform. 

However, upon thermal annealing DPP(TBFu)2 undergoes a cold crystallization similar to 

what has previously been observed in PC61BM (Figure 6a).14 We define the cold 

crystallization temperature (TCC) as the temperature at which the DPP(TBFu)2 (100) peak 

appears above the background scattering. In neat DPP(TBFu)2 films the TCC occurs at 50 ˚C. 

In DPP(TBFu)2:PC71BM blend films the DPP(TBFu)2 TCC increases with increasing 

PC71BM content to 70 ˚C, 75 ˚C and 100 ˚C in 70:30, 50:50 and 30:70 

DPP(TBFu)2:PC71BM blends by weight respectively (Figure 6b-d). The trend of increasing 

DPP(TBFu)2 TCC with increasing PC71BM content can be explained in terms of DPP(TBFu)2 

dilution. As PC71BM content increases, the concentration of DPP(TBFu)2 nuclei likely 

decreases and thus the overall DPP(TBFu)2 crystallization rate decreases, therefore 

increasing DPP(TBFu)2’s TCC. Similar TCC trends have previously been observed in partially 

miscible polymer blends and explained as such.15,16 The CCL of DPP(TBFu)2 in both neat 
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and blend films follows a very similar trend to the relative peak area. This indicates that 

most of the increase in peak area after the TCC can be attributed to the growth of existing 

DPP(TBFu)2 crystallites as opposed to the nucleation of new crystallites. In the neat 

DPP(TBFu)2 film and 70:30 blend samples the (100) peak area and CCL increase 

dramatically beginning at the TCC and continuing over a narrow temperature range of 

approximately 10 degrees. They then only slightly increase as the temperature is further 

increased. The 50:50 blend sample’s peak area and CCL exhibit the same dramatic increases 

beginning at the TCC but then continue to gradually increase as temperature is further 

increased. The 30:70 blend exhibits somewhat different behavior from the other samples in 

that its peak area and CCL continually increase with an increase in temperature above TCC 

without exhibiting the dramatic increases followed by a small or gradual increase 

characteristic of the other samples. Therefore as the fraction of PC71BM in the film 

increases, the nucleation of DPP(TBFu)2 crystallites requires higher temperatures and 

becomes a more gradual process. Importantly, no PC71BM crystallization was observed in 

any of the DPP(TBFu)2:PC71BM blend films in the temperature ranges investigated during 

this study. 
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Figure 6: In-situ thermal annealing GIWAXS (a-d) and GISAXS (e-h) of a neat 
DPP(TBFu)2 film (a, e) as well as DPP(TBFu)2:PC71BM blend films (b-d, f-h). Reprinted 
with permission. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

To facilitate a direct comparison of thin film crystallinity and phase separation, in-situ 

thermal annealing GISAXS measurements were performed on samples fabricated identically 

to those used for in-situ GIWAXS and measured over the same temperature range (Figure 
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6e-h). Figure 6e shows in-situ thermal annealing GISAXS data for a neat film of 

DPP(TBFu)2 from 25 to 70 ˚C. The in-plane line scans show no significant change even 

though in-situ thermal annealing GIWAXS measurements have shown that DPP(TBFu)2 

undergoes a cold crystallization in this temperature range. We therefore conclude that the 

electron density differences between amorphous and crystalline regions of DPP(TBFu)2 are 

not significant enough to produce a peak in scattered intensity. We can then reason that any 

peaks in the scattered intensity exhibited by DPP(TBFu)2:PC71BM blend films are the result 

of electron density differences between DPP(TBFu)2-rich and PC71BM-rich phases. Figures 

3f-h display in-situ thermal annealing GISAXS data of 70:30, 50:50 and 30:70 

DPP(TBFu)2:PC71BM blend films. Each blend ratio exhibits similar behavior. As-cast 

blends display only the same monotonically decreasing intensity seen in films of neat 

DPP(TBFu)2. Thus, the as-cast blends lack sufficient electron density to produce a peak in 

scattered intensity indicating that these samples consist of an intimately mixed donor-

acceptor morphology. As the blends are heated, however, a peak develops at some transition 

temperature indicating the appearance of differences in electron density in the film which is 

interpreted as the onset of donor-acceptor phase separation. The GISAXS peak shifts slightly 

to smaller q values with increasing PC71BM content indicating phase separation is occurring 

on a larger length scale with increasing PC71BM content. Most interestingly, in each blend 

the temperature at which this transition from homogeneously mixed to phase separated 

morphology occurs closely correlates with the nucleation of DPP(TBFu)2 crystallites as 

measured using the in-situ thermal annealing GIWAXS discussed above. The development 

of phase separation in each of the different blend ratios also follows the same trend exhibited 

by the in-situ GIWAXS measurements. Specifically, the 70:30 blend transitions from a 

homogeneous blend to a phase separated morphology over a relatively narrow temperature 
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range and the 50:50 blend transitions slightly more gradually whereas the 30:70 blend 

gradually and continuously phase separates with increasing temperature. In both the 70:30 

and 50:50 blends, phase separation occurs at the temperature immediately following the 

dramatic increase in peak area exhibited by in-situ GIWAXS. The 30:70 blend, however, 

begins to phase separate at the temperature that corresponds to the onset of DPP(TBFu)2 

crystallization, i.e. DPP(TBFu)2’s TCC. 

C. Effect of Crystallization and Phase Separation on Device Optical and Electrical 

 Properties 

Photoluminescence (PL) measurements of as-cast blend films as well as blend films that 

had been annealed above their respective DPP(TBFu)2 TCC were used to further verify our 

interpretation of the presented GISAXS data (Figure 7). For each blend, annealed films 

exhibit PL spectra identical to that of neat DPP(TBFu)2. The PL spectra of as-cast blends, 

however, are shifted to lower energy and broadened compared to those of the annealed 

blends and neat DPP(TBFu)2. This lower energy, broader PL spectra likely originates from 

the DPP(TBFu)2:PC71BM charge transfer (CT) state.17,18 In order for the CT state emission 

to dominate emission from DPP(TBFu)2, the blend must consist of a well-mixed 

morphology that maximizes DPP(TBFu)2:PC71BM interfacial surface area while lacking 

neat DPP(TBFu)2 domains larger than the exciton diffusion length.19,20 Conversely, for neat 

DPP(TBFu)2 emission to dominate CT state emission, the blend morphology must consist of 

a significant amount of neat DPP(TBFu)2 domains larger than the exciton diffusion length. 

PL and GISAXS measurements then both indicate that as-cast blends consist of an intimately 

mixed morphology, but that when blend films are annealed above DPP(TBFu)2’s TCC they 

phase separate. These measurements of bulk morphological properties are also consistent 
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with previous atomic force microscopy measurements of surface topography which indicated 

phase separation upon thermal annealing.12 However, we have now importantly correlated 

the development of bulk phase separation with the onset of DPP(TBFu)2 crystallization. We 

thus hypothesize that the development of DPP(TBFu)2:PC71BM blend phase separation is 

the direct result of DPP(TBFu)2 crystallization from an initially homogeneously mixed, 

amorphous donor:acceptor film. We propose that as DPP(TBFu)2 nuclei form and grow they 

expel PC71BM molecules, simultaneously creating DPP(TBFu)2-rich domains, consisting 

largely of DPP(TBFu)2 crystallites, and PC71BM-rich domains, formed from previously 

mixed regions of the film that have been enriched with PC71BM during DPP(TBFu)2 

crystallization.  
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Figure 7: Photoluminescence spectra of a neat DPP(TBFu)2 film as well as as-cast and 
annealed DPP(TBFu)2:PC71BM blend films. The annealed 70:30, 50:50 and 30:70 blend 
films were annealed at 100, 110 and 150 ˚C respectively for 2 minutes each in a nitrogen 
environment. Reprinted with permission. © 2014 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim. 

 

If phase separation is the result of DPP(TBFu)2 crystallization, the nucleation and growth 

of DPP(TBFu)2 crystallites should correlate with an increase in blend electron mobility as 

increased phase separation leads to aggregation and percolation of PC71BM, the electron 
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transporting phase. To confirm this behavior, electron-only diodes of a 70:30 

DPP(TBFu)2:PC71BM blend were fabricated. Diode J-V curves were then measured during 

in-situ thermal annealing over the same temperature range investigated with in-situ thermal 

annealing GIWAXS and GISAXS and mobility values extracted by fitting these data to the 

Mott-Gurney relation for space charge-limited current (Figure 5). In the as-cast 70:30 blend 

film the electron mobility is 2.0 x 10-6 cm2/Vs, 3 orders of magnitude lower than the diode 

electron mobility of a neat PCBM film, likely due to a lack of percolated PC71BM networks 

in the homogeneous as-cast morphology.21 The electron mobility remains low with 

increasing thermal annealing temperature until dramatically increasing approximately 2 

orders of magnitude at 90 ˚C to 3.3 x 10-4 cm2/Vs. In organic semiconductors, charge 

carriers move by a thermally activated hopping process between localized states. Thus, some 

increase in mobility is expected with increasing sample temperature. Based on PCBM’s 

hopping activation energy we would expect the electron mobility to approximately double 

with an increase in temperature from 80 to 100 ˚C.22 The observed increase in electron 

mobility is thus far greater than can be explained by increased thermal hopping activation 

alone. Based on this observation as well as the fact that the mobility increases from a value 

orders of magnitude lower than that of neat PCBM to approaching that of neat PCBM, we 

explain this dramatic increase in electron mobility as a consequence of the development of 

percolated networks of PC71BM that form as a result of DPP(TBFu)2 crystallization and 

concurrent PC71BM aggregation. This interpretation of the data is further supported given 

the close correlation of the dramatic increase in the relative crystallinity of DPP(TBFu)2 as 

measured by in-situ thermal annealing GIWAXS, the temperature at which phase separation 

develops as determined by in-situ thermal annealing GISAXS and the temperature at which 

the electron mobility significantly increased. The slightly higher temperature at which the 



 

 
29

increase in electron mobility is observed as compared to the development of phase 

separation measured with GISAXS could be because further phase separation needs to occur 

before the aggregated PC71BM domains form a percolated network necessary for high 

electron mobility in the blend. Therefore not only does DPP(TBFu)2 crystallization lead to 

blend phase separation but that in 70:30 blends this phase separation then leads to a dramatic 

increase in electron mobility, presumably due to the formation of a percolated network of 

aggregated PC71BM domains. 
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Figure 8: Electron mobility (µe) of a 70:30 DPP(TBFu)2:PC71BM diode measured during in-
situ thermal annealing. Data collected by Dr. Martijn Kuik using a temperature controlled 
probe station evacuated to ~10-7 Torr. Reprinted with permission. © 2014 WILEY-VCH 
Verlag GmbH & Co. KGaA, Weinheim.  

Previous work demonstrated that BHJ OPV performance in the as-cast 70:30 blend is 

very low but that upon thermal annealing both short-circuit current density (Jsc) and fill 

factor (FF) (and therefore PCE) dramatically increase.12 A 70:30 DPP(TBFu)2:PC71BM BHJ 

OPV device was therefore serially annealed over a temperature range similar to what has 

been investigated with in-situ thermal annealing GIWAXS, GISAXS and electron only diode 

measurements so that the increase in solar cell figures of merit could be compared with the 

changes in film morphology and charge transport discussed above. Figure 9 displays the Jsc 
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and FF of a 70:30 OPV device that was serially annealed at the given temperature values. 

The Jsc and FF are initially very low, 0.43 mA/cm2 and 0.23, respectively, but dramatically 

increase to 5.35 mA/cm2 and 0.36 when annealed at 90 ˚C. This is the same temperature the 

blend electron mobility was observed to dramatically increase via in-situ thermal annealing 

of electron only diodes of 70:30 DPP(TBFu)2:PC71BM blends. The strong correlation 

between the dramatic increases in electron mobility and Jsc and FF is consistent with 

previous investigations that have shown that, in general, recombination decreases, and thus 

Jsc and FF increase, as charge carrier mobility increases.23,24 While we are now comparing an 

ex-situ measurement (serial annealing) to an in-situ measurement (blend electron mobility), 

the strong correlation between data from the two types of measurements suggests this is a 

valid comparison. Some of this increase in Jsc and FF, however, is probably additionally 

attributed to the approximately order of magnitude increase in hole mobility that also occurs 

over this temperature range, likely due to the increase in the solid state order of 

DPP(TBFu)2, the hole transporting phase (Table 1). The lower OPV performance exhibited 

here compared to previous reports12 can be attributed to the shorter, serialized annealing in 

this study as opposed to the optimized, longer, single annealing step previously used to 

achieve higher efficiency. From the presented data, it is clear that crystallization, the 

development of blend phase separation and a significant increase in blend electron mobility 

and OPV figures of merit all dramatically increase over the same narrow temperature range 

during thermal annealing.  
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Figure 9: Jsc and FF of a 70:30 DPP(TBFu)2:PC71BM BHJ OPV device series annealed at 
the indicated temperatures. Reprinted with permission. © 2014 WILEY-VCH Verlag GmbH 
& Co. KGaA, Weinheim. 

Table 1: Hole mobility of as-cast and annealed 70:30 DPP(TBFu)2:PC71BM blend films. 

processing condition hole mobility (cm
2
/Vs) 

as-cast 2.0 X 10-5 
annealed 2 min, 100 ˚C 1.1 X 10-4 

 

D. Long Time, Low Temperature Thermal Annealing of BHJ Blends 

In order to investigate the influence DPP(TBFu)2:PC71BM solid state immiscibility has 

on phase separation 70:30, 50:50 and 30:70 blend films were annealed for 48 hours at 60 ˚C. 

If solid state immiscibility between the two materials is acting as a significant driving force 

for phase separation, perhaps via a spinodal decomposition process, it was hypothesized that 

samples held at an elevated temperature that facilitated solid state diffusion, but below 

DPP(TBFu)2’s TCC, and allowed time to approach equilibrium, would exhibit blend phase 

separation without DPP(TBFu)2 crystallization. This experiment was therefore an attempt to 

decouple DPP(TBFu)2 crystallization and blend phase separation. Figure 10 shows the 

GISAXS line scans and GIWAXS 1D integrations of these samples. By comparing as-cast 

and annealed line cuts in Figure 10a we can deduce that the 70:30 blend ratio sample 
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developed some amount of phase separation based on the small peak it displays that is not 

present in the as-cast sample. Likewise, the 50:50 blend exhibits an even smaller degree of 

phase separation based on the slight increase in intensity of the annealed film at high q 

values compared to the as-cast film. However, the 30:70 blend display a negligible amount 

of phase separation during the 48 hour, 60 ˚C anneal based on the very similar shape of the 

as-cast and annealed line cuts. Interestingly, Figure 10b shows that the 70:30 film displays 

some amount of DPP(TBFu)2 crystallization based on the strength of the DPP(TBFu)2 (100) 

peak and the 50:50 blend exhibits a small amount of DPP(TBFu)2 crystallization based on 

the very weak (100) peak intensity. The 30:70 blend, however, displays no signs of 

DPP(TBFu)2 crystallization as the peaks at 0.68, 1.31 and 1.90 Å-1 associated with PC71BM 

dominate the spectra and the DPP(TBFu)2 (100) peak is absent. As phase separation once 

again correlates with DPP(TBFu)2 crystallization and is absent in blends that lack 

DPP(TBFu)2 crystallization, it is hypothesized that while DPP(TBFu)2 and PC71BM may be 

less than perfectly miscible, DPP(TBFu)2 crystallization is the primary driving force for the 

development of blend phase separation. This is not to say that miscibility plays no role in the 

development of blend phase separation, however, as the degree to which PC71BM is soluble 

in the amorphous DPP(TBFu)2:PC71BM matrix will affect how easily PC71BM-rich domains 

form,25,26 and thus how easily PC71BM percolation is achieved as PC71BM is aggregated 

during DPP(TBFu)2 crystallization. Nonetheless, as the data indicate that the development of 

a nanoscale phase separated, bicontinuous morphology is initiated by the formation of 

DPP(TBFu)2 crystallites, we assign DPP(TBFu)2 crystallization as the primary driving force 

and thus the essential process responsible for the development of blend phase separation in 

the samples studied here. We also note that these results imply that DPP(TBFu)2’s TCC has 

some kinetic dependence, i.e. the TCC can be shifted to lower temperatures given sufficiently 
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long annealing times, which follows from well-established crystallization theory.27 As all in-

situ thermal annealing experiments were performed on extremely similar time scales, this 

kinetic dependence does not affect our interpretation of the presented data. 
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Figure 10: a) GISAXS in-plane line scans of as-cast DPP(TBFu)2:PC71BM blend films as 
well as blend films annealed at 60 ˚C for 48 hours. b) 1D GIWAXS radial integrations of 
DPP(TBFu)2:PC71BM blend films annealed at 60 ˚C for 48 hours. Reprinted with 
permission. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

E. The Effect of a Commercially Available Nucleating Agent on Device Processing 

The work presented thus far demonstrates that crystallization of the donor molecule is 

extremely important in BHJ OPV devices fabricated using small molecule donors and the 

fullerene acceptor phenyl-C71-butyric acid methyl ester (PC71BM).  Likewise, control of 

polymer crystallization has proven essential for the manufacture of many consumer products. 

Nucleating agents are widely used to control crystallization in commodity polymers in order 

to tailor their mechanical, thermal and optical properties.28–30 More recently, nucleating 

agents functionality has been extended to organic electronics as they have been used to 

increase the device yield and processability of solution-processed organic field-effect 

transistors as well as limit the size of PCBM crystallites upon thermal annealing.31,32 It was 
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therefore hypothesized that commercially available nuvleating agents could be used to 

control the crystallization, and therefore BHJ development, in solution-processed small 

molecule BHJ OPVs. A sample of 1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol (DMDBS; 

Millad 3988), a nucleating agent commonly used to clarify isotactic polypropylene, was 

obtained from Milliken Chemical (Figure 11). Figure 12 displays Jsc as a function of 

isothermal annealing time for DPP(TBFu)2:PC71BM BHJ OPV devices processed without 

and with 1.4 wt. % DMDBS. Both devices display near identical Jsc in the as-cast state, 

approximately 0.45 mA/cm2. However, the devices cast without and with nucleating agent 

respond drastically different to the isothermal annealing with the Jsc of the device processed 

with DMDBS increasing significantly faster than the device processed without DMDBS. 

The Jsc of the device processed with DMDBS increases to 4.62 mA/cm2 after 22 minutes 

whereas the device processed without DMDBS does not exhibit a comparable Jsc until 

approximately 44 minutes of annealing. 

DMDBS
 

Figure 11: Chemical structure of the nucleating agent 1,3:2,4-bis(3,4-
dimethylbenzylidene)sorbitol (DMDBS; Millad 3988). 
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Figure 12: Jsc as a function of isothermal annealing time at 80 ˚C for 70:30 
DPP(TBFu)2:PC71BM BHJ OPV devices. Error bars denote the first standard deviation 
calculated from 12 different devices of each condition fabricated over multiple days. 
Reproduced from Sharenko, A. et al. Use of a commercially available nucleating agent to 
control the morphological development of solution-processed small molecule bulk 
heterojunction organic solar cells. J. Mater. Chem. A (2014). doi:10.1039/C4TA03469D 
with permission from The Royal Society of Chemistry. 

As explained below, it is inferred that the accelerated increase in Jsc as a function of 

isothermal annealing exhibited by the device processed with DMDBS compared to the 

device processed without DMDBS is the result of a faster DPP(TBFu)2 nucleation rate 

leading to faster crystallization kinetics in the presence of DMDBS. This interpretation of 

the data is consistent with the observation that, in DPP(TBFu)2:PC71BM BHJ OPV devices, 

DPP(TBFu)2 crystallization leads to increased phase separation and a concomitant increase 

in Jsc, thus directly linking donor crystallization to increased Jsc.
33 Additionally, this 

interpretation is consistent with the fact that sorbitol-based nucleating agents were developed 

to accelerate the primary nucleation rate of iPP during solidification from the melt34–36 and 
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have more recently demonstrated the ability to modulate the crystallization of a variety of 

organic semiconductors.31 According to classic nucleation theory, nucleating agents improve 

the rate of primary nucleation by reducing the driving force needed to form a stable nuclei, 

resulting in an increase in the overall crystallization rate of a material.37 It therefore appears 

that DMDBS is remarkably able to have a similar effect on the molecular semiconductor 

DPP(TBFu)2 in a DPP(TBFu)2:PC71BM BHJ OPV blend. 

Further evidence for this hypothesis was collected using in-situ isothermal annealing 

GIWAXS experiments, which were performed on DPP(TBFu)2:PC71BM BHJ blend films 

cast without and with DMDBS. The data in Figure 13 reveal that the crystallization kinetics 

of DPP(TBFu)2 are faster with DMDBS compared to without. To quantify this difference the 

in-situ isothermal annealing GIWAXS data was fit using Avrami kinetics38–40 as described 

by Equation 5: 

F = 1 – exp[-(kt)n]               (5) 

Where F is the fractional crystallization at time t, k is a temperature dependent rate constant 

and n is referred to as the Avrami exponent, which is often interpreted as indicative of the 

geometry or dimensionality of the crystallization process. The results of this fitting process 

are displayed in Table 2. DPP(TBFu)2:PC71BM BHJ blend films without and with DMDBS 

exhibit essentially the same Avrami constant, suggesting DMDBS does not significantly 

alter the crystallization geometry or dimensionality. The overall crystallization rate constant 

for the two samples, however, differs with the film prepared with DMDBS having a rate 

constant approximately 1.5 times greater than the film prepared without DMDBS. This 

increased rate constant for DPP(TBFu)2:PC71BM BHJ blends prepared with DMDBS is 

consistent with the data in Figure 12 and confirms that incorporation of DMDBS into 
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DPP(TBFu)2:PC71BM BHJ blend films leads to accelerated DPP(TBFu)2 crystallization 

kinetics. 

1.0

0.8

0.6

0.4

0.2

0.0

N
o

rm
al

iz
ed

 P
ea

k 
A

re
a

454035302520151050

Annealing Time (mins)

 0% DMDBS
 1.4% DMDBS

 

 

Figure 13: In-situ isothermal annealing GIWAXS at 80 ˚C for 70:30 DPP(TBFu)2:PC71BM 
BHJ films with and without DMDBS. The y-axis is the normalized peak area of the 
DPP(TBFu)2 (100) reflection integrated over all polar angles. The normalization was done to 
longest times. Solid lines are Avrami fits to the data. Reproduced from Sharenko, A. et al. 
Use of a commercially available nucleating agent to control the morphological development 
of solution-processed small molecule bulk heterojunction organic solar cells. J. Mater. 

Chem. A (2014). doi:10.1039/C4TA03469D with permission from The Royal Society of 
Chemistry. 

Table 2: Avrami parameters extracted from fits to the in-situ isothermal GIWAXS data in 
Figure 13. R2 is the coefficient of determination for the fits. Wt. % expressed as a percentage 
of total donor and acceptor weight in solution. 

DMDBS  

[wt. %] 
n k R

2 

0 1.44 ± 0.10 0.053 ± 0.001 0.9931 

1.4 1.28 ± 0.05 0.078 ± 0.001 0.9978 
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DMDBS does not appear to change the crystal structure or crystalline texture of 

DPP(TBFu)2:PC71BM BHJ blends as evidenced by Figure 14. This would be consistent with 

the similar Avrami exponents for the blend without and with the nucleating agent as 

determined from the data in Figure 13. 
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Figure 14: 2D GIWAXS images of 70:30 DPP(TBFu)2:PC71BM BHJ films without (a) and 
with (b) 1.4 wt. % DMDBS after isothermal anneal at 80 ˚C for 47 mins. Normalized peak 
area data in Figure 10 was calculated using the DPP(TBFu)2 (100) peak at qz = 0.43 Å-1. 
Reproduced from Sharenko, A. et al. Use of a commercially available nucleating agent to 
control the morphological development of solution-processed small molecule bulk 
heterojunction organic solar cells. J. Mater. Chem. A (2014). doi:10.1039/C4TA03469D 
with permission from The Royal Society of Chemistry. 

 

F. Section Conclusion 

Using in-situ thermal annealing GIWAXS, GISAXS and electron only diode 

measurements as well as PL spectra of as-cast and annealed films it has been demonstrated 

that in DPP(TBFu)2:PC71BM blends donor crystallization is the driving force for the 

development of the nanoscale phase separated, bicontinuous morphology necessary for the 

fabrication of efficient BHJ OPVs. Specifically, it has been shown that thermal annealing 

causes donor crystallization in neat donor films as well as donor:acceptor blend films and 

that in blend films this crystallization leads to the formation of donor-rich and acceptor-rich 
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domains. In higher performing donor:acceptor ratio devices the formation of these acceptor-

rich domains leads to dramatic increases in blend electron mobility and device Jsc and FF 

(and thus overall device performance). Our results therefore suggest that small molecule 

donor crystallization is important for reasons other than the increase in charge carrier 

mobility associated with order in molecular species. We have shown that phase separation in 

the DPP(TBFu)2:PC71BM system is induced via donor crystallization much like what has 

been observed in the P3HT:PCBM BHJ OPV system. However, P3HT is semicrystalline and 

therefore generally not considered representative of the largely structurally disordered donor 

polymers utilized by high performing polymer:PCBM BHJ OPVs.7,8,25,41 In contrast, it is 

proposed that because many small molecule donors have shown evidence of crystallization, 

the trends we have observed in the DPP(TBFu)2:PC71BM system are likely more generally 

applicable to other small molecule donor:PCBM systems. This is additionally evidenced by 

the correlation between crystallization and phase separation exhibited by other efficient 

small molecule donor:PCBM BHJ OPVs.42 Accordingly, the commercially available 

nucleating agent DMDBS was used to successfully control small molecule donor 

crystallization, and therefore BHJ morphological development, in the DPP(TBFu)2:PC71BM 

BHJ OPV system. It was shown that DMDBS is capable of accelerating donor molecule 

crystallization kinetics. The ability to accelerate donor molecule crystallization kinetics has 

important implications for BHJ OPV device fabrication, where the use of nucleating agents 

could potentially lead to shorter thermal annealing protocols, thus leading to more 

economical device manufacturing, or help overcome kinetic barriers to crystallization that 

prevent the formation of optimized BHJ morphologies.43 This section has therefore 

developed useful processing-property-performance relationships for solution-processed 

small molecule organic solar cells utilzing PCBM as an electron acceptor. Such knowledge 
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will likely be essential as this promising photovoltaic technology attempts to transition from 

an academic curiosity to a commercially viable renewable energy technology.   
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A. Section Introduction 

Solution processed bulk heterojunction organic photovoltaics (BHJ OPVs) have been the 

subject of significant scientific and industrial research due to their potential as a low cost, 

scalable source of renewable energy. OPVs have recently surpassed 10% power conversion 

efficiency (PCE), comparable to what has been achieved with inorganic PV technologies 

such as amorphous silicon.1 Additionally, OPVs have demonstrated the ability to be solution 

processed over large areas2 and have exhibited extrapolated lifetimes approaching 7 years.3 

Despite these promising advances, many of the donor materials used in high efficiency OPV 

active layers require multistep synthetic protocols that may hinder their commercial 

viability.4 Likewise, fullerene derivatives, ubiquitous in high efficiency BHJ OPVs, are 

produced via particularly solvent and energy intensive techniques.5,6 There then exists 

obvious benefits for using inexpensive, easily mass produced donor materials and fullerene 

alternatives. To date, however, non-fullerene OPVs significantly underperform fullerene 

based devices with PCEs of 2-3%.7–11  

 Recently, small molecule donor materials blended with fullerene acceptors have 

achieved efficiencies approaching those of their polymer counterparts.12,13 Conjugated small 

molecules offer several advantages over polymers in that they are monodisperse and can be 

readily synthesized and purified with standard organic chemistry techniques.14,15 Thus, 

combining small molecule donors with non-fullerene acceptors may lead to efficient, 

scalable OPVs. Despite the potential benefits of a solution processed small molecule:non-

fullerene BHJ OPV, there are few examples of such systems.9,16 Studies of small 

molecule:non-fullerene BHJ OPVs are therefore necessary to gauge the full potential of BHJ 
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molecular structural combinations and to develop processing-property-performance 

relationships for the design and optimization of future non-fullerene OPV systems.   

Herein a solution processed BHJ OPV device is fabricated by combining a narrow band 

gap small molecule donor, p-DTS(FBTTh2)2, and a perylene diimide  (PDI) acceptor (Figure 

15) to achieve a PCE of 3.1%, one of the highest PCEs to date for a BHJ OPV utilizing a 

non-fullerene acceptor. p-DTS(FBTTh2)2 has previously demonstrated utility as a donor 

molecule in BHJ OPVs, achieving a PCE of 7.0% when combined with phenyl-C71-butyric 

acid methyl ester (PC71BM) as an electron acceptor.12 PDIs have been investigated as 

electron acceptors because of their high electron mobility, photochemical stability and 

strong optical absorption17,18 and are currently inexpensively produced on the kiloton scale 

as industrial pigments19.  

 

Figure 15: Chemical structures of the electron donor, p-DTS(FBTTh2)2, and electron 
acceptor, PDI, used in this study. 

PDI

p-DTS(FBTTh2)2
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B. The Influence of Solvent Additive on Photovoltaic Performance 

Figure 16a displays the current density-voltage (J-V) curves of p-DTS(FBTTh2)2:PDI 

BHJ OPV devices processed from pure chlorobenzene (without DIO) and chlorobenzene 

with 0.4 vol% 1,8-diiodooctane (with DIO) under simulated AM 1.5 sun illumination. The 

device processed with DIO exhibits an open-circuit voltage (VOC) of 0.78 V, a JSC of 7.0 

mA/cm2, a fill factor (FF) of 0.57 and a PCE of 3.1%. The device processed without DIO, 

however, displays very low photovoltaic performance with a VOC of 0.74 V, a JSC of 0.50 

mA/cm2, a FF of 0.35 and a PCE of 0.13%. The external quantum efficiency (EQE) spectra 

of the blends processed without and with DIO are displayed in Figure 16b. The relative 

magnitudes of the EQE spectra correlate well to the JSC values determined from the J-V 

curves with the EQE of the device processed with DIO exhibiting a maximum value of 

approximately 37% while the EQE of the device processed without DIO never exceeds 7%. 

The use of the solvent additive DIO thus results in a drastic increase in photovoltaic 

performance due to simultaneous increases in all figures of merit (VOC, JSC and FF). Of note, 

DIO has previously been shown to increase the PCE of BHJ OPV devices utilizing polymer 

donors20 as well as p-DTS(FBTTh2)2:PCBM BHJ OPV devices.12,21 These changes have 

largely been correlated to changes in the BHJ morphology.21,22 
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Figure 16: a) J-V curves and b) EQE spectra of BHJ OPV devices processed without 
(green) and with (blue) DIO. 

  

C. Blend Morphology With and Without Solvent Additive 

In order to understand the drastic difference in photovoltaic performance without and 

with the solvent additive, the BHJ blend morphology was investigated. 2D GIWAXS images 

and cake segment cuts are shown in Figure 17. The GIWAXS data of the blend cast without 

DIO lacks several of the well-defined p-DTS(FBTTh2)2 and PDI peaks exhibited in the 

GIWAXS data of the blend with DIO indicating the blend with DIO is more structurally 

ordered than the blend without DIO. The GIWAXS of the blend without DIO, however, 

appears to contain some peaks partially obscured by peak broadening and/or background 

amorphous scattering. The presence of these peaks is suggestive that some amount of solid 

state order exists even in the blend without DIO. As GIWAXS is an x-ray diffraction 

technique, however, it is only sensitive to crystalline regions of the film capable of 

satisfying Bragg’s condition and is therefore severely biased towards characterization of 

crystalline order within a film, regardless of the fraction of film containing such order. 

Alternatively, UV-Vis probes all regions of the film (regardless of solid state order) and the 

resulting UV-Vis spectrum is therefore representative of the dominant morphological 
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features in the film.23 Because of the wealth of information about molecular order associated 

with UV-Vis data23, its ability to probe both ordered and disordered regions of a film, and 

the unambiguous and well established indicators of structural order in the UV-Vis spectra of 

both p-DTS(FBTTh2)2
12,21

 and PDI24,25, UV-Vis spectroscopy was also used to qualitatively 

characterize the overall relative structural order in p-DTS(FBTTh2)2:PDI BHJ films cast 

without and with DIO. 

 
Figure 17 2D GIWAXS images (a, c) and out of plane (chi = 75˚ to 105˚) cake segments (b, 
d) of p-DTS(FBTTh2)2:PDI BHJ film processed without  (a, b) and with (c, d) 0.4 vol. % 
DIO. p-DTS(FBTTh2)2 and PDI peaks were indexed using their respective single crystal 
structures as reference.21,26 Reprinted with permission from Sharenko, A. et al. The Effect of 
Solvent Additive on Charge Generation and Photovoltaic Performance of a Solution-
Processed Small Molecule:Perylene Diimide Bulk Heterojunction Solar Cell. Chem. Mater. 
(2014). Copyright 2014 American Chemical Society. 
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The normalized UV-Vis absorption spectra of the blends spin-cast without and with DIO 

are displayed in Figure 18. These spectra exhibit significant differences. Both spectra 

display approximately the same number and position of peaks with the major exception 

being the additional peak at 675 nm observed in the blend processed with DIO compared to 

the blend processed without DIO. The relative magnitude of the peaks in the two spectra, 

however, is significantly different. The most intense peaks in the blend processed without 

DIO are those at 500 and 539 nm, whereas the most intense peaks in the blend processed 

with DIO are those at 620 and 675 nm. The peak at 675 nm in the blend processed with DIO 

can be assigned to p-DTS(FBTTh2)2 and is present in the pristine molecule’s thin film 

absorption spectra, but absent in its solution spectra. Additionally, the relative intensity of 

this transition has previously been observed to increase with increasing p-DTS(FBTTh2)2 

crystallinity.21 The presence of the p-DTS(FBTTh2)2 transition at approximately 675 nm is 

therefore indicative of p-DTS(FBTTh2)2 solid state order, whereas its absence in the blend 

cast without DIO indicates a relative lack of p-DTS(FBTTh2)2 structural order. DIO has 

previously been shown to have a similar effect on p-DTS(FBTTh2)2:phenyl-C71-butyric acid 

methyl ester (PC71BM) BHJ blends in that its use was shown to increase the solid state 

ordering of p-DTS(FBTTh2)2 during spin casting.27 The peaks at 500 nm and 539 nm in the 

blend cast without DIO correspond to PDI’s 0-1 and 0-0 transition, respectively. It has been 

shown that PDI crystallization results in a reduction of the intensity of the 0-0 and 0-1 peaks 

as these transitions are associated with absorption from individual chromophores rather than 

PDI crystallites.25,28 The relative decrease in intensity of these peaks upon the addition of 

DIO to the casting solution is therefore interpreted as indicating that in the blend spin-cast 

without DIO PDI is predominantly structurally disordered but that DIO directly or indirectly 
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induces the nucleation of PDI crystallites in the blend spin-cast with DIO. By analyzing the 

blend UV-Vis spectra cast without and with DIO it can therefore be deduced that the blend 

film cast without DIO predominantly consists of structurally disordered p-DTS(FBTTh2)2 

and PDI molecules, while the addition of DIO results in an increase in the crystallinity of 

both p-DTS(FBTTh2)2 and PDI. Notably, the increase in both donor and acceptor structural 

order correlates to a drastic improvement in device photovoltaic performance. It is 

emphasized that the characterization of the solid state order of the p-DTS(FBTTh2)2:PDI 

BHJ without and with DIO should be considered on a relative scale as quantifying the 

absolute order of organic semiconductors is notoriously difficult.29 

 
Figure 18 UV-Vis absorption spectra of p-DTS(FBTTh2)2:PDI BHJ films processed without 
(green) and with (blue) DIO. Reprinted with permission from Sharenko, A. et al. The Effect 
of Solvent Additive on Charge Generation and Photovoltaic Performance of a Solution-
Processed Small Molecule:Perylene Diimide Bulk Heterojunction Solar Cell. Chem. Mater. 
(2014). Copyright 2014 American Chemical Society. 
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BHJ blend films were also investigated with atomic force microscopy (AFM) (Figure 

19). The root mean square (RMS) roughness of the films increases upon use of DIO, 

consistent with an increase in the crystallinity of the films.30 Additionally, the films do not 

show any sign of large scale phase separation and do not exhibit the micron sized PDI 

crystallites often observed in other BHJ systems utilizing the PDI donor.11,31,32 The lack of 

large PDI crystallites in AFM images is consistent with crystalline correlation length 

calculations done using the GIWAXS peak fitting in Figure 17d. p-DTS(FBTTh2)2 and PDI 

peaks were indexed, deconvoluted and fit with pseudo-voigt peak functions using their 

respective single crystal structures as reference.21,26 Background scattering was fit using a 

biexponential function. Using the FWHM of PDI’s (200) peak (qz = 0.35 Å-1), the PDI’s 

CCL was calculated to be 7.4 ± 3.3 nm. The (001) peak (qz = 0.28 Å-1) of p-DTS(FBTTh2)2 

was used to calculate a CCL of 15.5 ± 0.3 nm for p-DTS(FBTTh2)2. 
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Figure 19 Atomic force microscopy topography images of p-DTS(FBTTh2)2:PDI BHJ 
blends processed without (a, b) and with (c, d) 0.4 vol. % DIO. Reprinted with permission 
from Sharenko, A. et al. The Effect of Solvent Additive on Charge Generation and 
Photovoltaic Performance of a Solution-Processed Small Molecule:Perylene Diimide Bulk 
Heterojunction Solar Cell. Chem. Mater. (2014). Copyright 2014 American Chemical 
Society. 

D.  The Effect of Solvent Additive on Geminate Recombination 

In order to investigate the cause of the drastic difference in photovoltaic performance 

without and with DIO, p-DTS(FBTTh2)2:PDI BHJ blends were probed with transient 

absorption (TA) spectroscopy in collaboration with the group of Dr. Frédéric Laquai at the 

Max Planck Institute for Polymer Research. TA pump-probe spectroscopy involves the 

excitation of a sample with an ultrashort pump laser pulse followed by exposing the sample 

to an optical supercontinuum probe pulse. Excited states generated by the pump pulse 

induce a differential absorption that is measured by the probe pulse. The difference in 
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sample transmission between the excited and non-excited state (∆T/T) can then be used to 

infer the population dynamics of the excited states as a function of pump-probe time delay. 

TA spectroscopy is then uniquely suited to study the charge generation and recombination 

dynamics of photovoltaic devices. 

 
Figure 20 Ground state bleach kinetics of p-DTS(FBTTh2)2:PDI films processed without 
and with DIO excited at 625 nm. Data collected by Dominik Gehrig. Reprinted with 
permission from Sharenko, A. et al. The Effect of Solvent Additive on Charge Generation 
and Photovoltaic Performance of a Solution-Processed Small Molecule:Perylene Diimide 
Bulk Heterojunction Solar Cell. Chem. Mater. (2014). Copyright 2014 American Chemical 
Society. 

 

Figure 20 displays the ground state bleach dynamics as a function of excitation intensity. 

The blend spin-cast without DIO displays only a weak intensity dependence, whereas the 

blend processed with DIO exhibits a significantly more pronounced intensity dependence 

indicating geminate recombination dominates in the blend processed without DIO, while 

non-geminate recombination dominates in the blend processed with DIO. This means that in 
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the blend without DIO, a negligible amount of free charge carriers are being generated, 

which likely largely explains the very poor photovoltaic performance of this blend.  

The remarkable increase in the efficiency of interfacial charge separation associated with 

the use of the processing additive DIO in p-DTS(FBTTh2)2:PDI films corresponds to a 

significant increase in the solid state order of both p-DTS(FBTTh2)2 and PDI as inferred 

from UV-Vis measurements. TA spectroscopy has previously been used to observe similar 

behavior in polymer:PCBM BHJ films. For example, the efficiency of charge generation 

increases from approximately 68% to 85% upon thermal annealing of poly(3-

hexylthiopene):PCBM (P3HT:PCBM) films33 and in poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-

cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]:PCBM 

(PCPDTBT:PCBM) films the charge generation efficiency additionally increases upon using 

the processing additive DIO during film casting.34 Thermal annealing of P3HT:PCBM films 

and the use of the processing additive DIO during spin casting of PCPDTBT:PCBM films 

improves the solid state order of these donor polymers.22,30 The p-DTS(FBTTh2)2:PDI BHJ 

system differs from these polymer:PCBM BHJ systems, however, as here the use of the 

processing additive DIO leads to crystallization of both donor and acceptor, which may 

explain the much more significant increase in the charge separation efficiency between 

disordered and ordered morphologies compared to previous observations of polymer:PCBM 

films. In order to gain insight into this observation it is useful to compare the relationship 

between solid state order and charge generation in p-DTS(FBTTh2)2:PDI BHJ OPV devices 

to p-DTS(FBTTh2)2:PC71BM BHJ OPV devices. p-DTS(FBTTh2)2:PC71BM BHJ OPV 

devices cast without DIO form a structurally disordered BHJ morphology lacking significant 

phase separation, very similar to p-DTS(FBTTh2)2:PDI films cast without DIO. However, p-
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DTS(FBTTh2)2:PC71BM devices processed without DIO exhibit a JSC over 6 mA/cm2, even 

though they absorb approximately the same number of photons as optimized p-

DTS(FBTTh2)2:PDI BHJ OPV devices.21,35 Comparing the results reported herein on p-

DTS(FBTTh2)2:PDI BHJ OPVs to previous observations on p-DTS(FBTTh2)2:PC71BM BHJ 

OPVs then further supports the suggestion that PDIs require greater solid state order 

compared to PCBM in order to achieve efficient charge generation.36 This relationship 

between solid state order and efficient charge generation may be general for BHJ electron 

acceptors capable of forming crystalline domains as evidenced by recent work comparing 

the efficiency of charge generation with the crystallinity of C60 and CdS acceptors.37,38. It is 

still unclear, however, specifically why increased solid state order leads to more efficient 

charge separation in PDI acceptors. Given the delocalization of excited states associated 

with crystalline molecular semiconductors39,40 and the crucial role delocalization is thought 

to play in efficient charge generation at organic heterojunctions,37,41–43 it is possible that the 

increased solid state order in p-DTS(FBTTh2)2:PDI films associated with the use of DIO 

facilitates the delocalization of photogenerated excited states, thereby allowing these states 

to successfully overcome coulombic forces and produce free charge carriers.  

E. Recombination in Optimized Blends 

In order to further understand why p-DTS(FBTTh2)2:PDI BHJ OPV devices 

underperform p-DTS(FBTTh2)2:PCBM BHJ OPV devices the IQE of p-DTS(FBTTh2)2:PDI 

BHJ OPV devices was determined under different applied voltages and light intensities 

(Figure 21). Of note, the above TA measurements were performed on blend films without 

electrodes, essentially in an open-circuit condition, meaning there is no internal electric field 

to drive generated charge carriers out of the device and then no electrodes to collect the 
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charges. The following IQE measurements are performed on fully functional OPV devices at 

short-circuit condition, meaning there is an internal electric field to drive charges out of the 

device and electrodes to collect said charges. 

 
Figure 21 Light intensity dependent (a) and bias dependent (b) IQE of a p-
DTS(FBTTh2)2:PDI BHJ solar cell prepared with 0.4 vol% DIO. Light intensity 
measurements performed at short circuit conditions. Reprinted with permission. © 2014 
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

 

Figure 21a shows the IQE for a p-DTS(FBTTh2)2:PDI BHJ solar cell prepared with 

DIO to be only ~45%, much reduced compared to the greater than 90% IQE for p-

DTS(FBTTh2)2:PCBM devices cast with DIO.21 The extent to which the low IQE of the p-

DTS(FBTTh2)2:PDI device can be attributed to bimolecular recombination was investigated 

with light intensity dependent IQE as well as hole and electron only diode mobility 

measurements of p-DTS(FBTTh2)2:PDI blends. The hole and electron mobilities in the solar 

cell blend were measured to be 7.4 x 10-5 and 1.7 x 10-4 cm2 V-1 s-1 respectively, as 

determined by fitting the J-V characteristics of single carrier diodes to the Mott-Gurney 

relation for space charge limited current (Figure 22). The electron mobility is one order 
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lower than what has been reported for fullerene acceptors44,45. The reduced electron mobility 

and relatively low hole mobility therefore likely contribute to the reduced FF in this device 

as compared to p-DTS(FBTTh2)2:PC71BM devices.21,44,46,47 However, it is found that the 

transport properties are not a limitation to overcoming bimolecular losses at short circuit 

conditions. As shown in Figure 3a, the difference between the IQE measured at short circuit 

conditions with 1 sun white light background and no white light background is only 

approximately 3%. IQE measurements performed with background illumination less than 

0.1 suns converge to the same value as without any background illumination. It is then 

estimated that only approximately 3% of absorbed photons are lost to bimolecular 

recombination at short circuit conditions.48,49 These findings therefore suggest that while the 

FF may be transport limited, bimolecular recombination is only a small fraction of the total 

recombination losses at short circuit. The modest increase in IQE under strong reverse bias 

exhibited in Figure 21b may be due to a field dependent charge generation mechanism,50,51 

or the release of trapped charge carriers as the negative bias increases the internal electric 

field within the device. More notable however, is that even at -10 V the IQE is still only 

~60% suggesting that in addition to a voltage dependent loss mechanism, there are 

significant losses that are likely independent of voltage. 
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Figure 22 J-V characteristics of electron and hole only devices of p-DTS(FBTTh2)2:PDI 
blends. In both cases films were 120 nm thick. Solubility limitations excluded the possibility 
of making thicker films in order to verify these mobility values were consistent over a range 
of film thicknesses. Reprinted with permission. © 2014 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim. 

 

 
Figure 23 Excitation intensity dependence of the PIA dynamics (symbols) and respective 
fits (lines) using the recombination model detailed elsewhere.33 Data collected by Dominik 

0.1

1

10

100

1000

C
u

rr
e

n
t 

D
e

n
s

it
y

 (
A

/m
2
)

2.52.01.51.00.50.0

V-VBI (V)

 electron only diode
 hole only diode
 SCLC fit

 
 

100p 1n 10n 100n 1µ 10µ 100µ

0.0

0.5

1.0

 

∆∆ ∆∆
T

/T
 (

n
o

rm
a

li
z
e

d
)

time (s)

7 µJ/cm²

101 µJ/cm²



 

 
62

Gehrig. Reprinted with permission from Sharenko, A. et al. The Effect of Solvent Additive 
on Charge Generation and Photovoltaic Performance of a Solution-Processed Small 
Molecule:Perylene Diimide Bulk Heterojunction Solar Cell. Chem. Mater. (2014). 
Copyright 2014 American Chemical Society. 

 

Figure 23 shows long delay TA data fit with a recombination model introduced by 

Howard et al. The model assumes concomitant recombination of CT states via a 

monomolecular and geminate recombination process parallel to recombination of free 

charges via a non-geminate recombination process.33 In the present case, this model 

concludes that approximately 76% of the charges surviving the first ns are free charge 

carriers as opposed to bound CT states. This then means that there is still a significant 

amount of geminate recombination in optimized p-DTS(FBTTh2)2:PDI BHJ OPV devices as 

not all bound CT states are able to form spatially separated free charges. This results is 

consistent with the bias dependent IQE measurements above which seemingly plateaued at 

~60% at -10 V. Some of the remaining ~40% losses can then likely be attributed to geminate 

losses such as the recombination of CT states rather than the formation of free charge 

carriers. 

It is difficult to determine what exactly prevents the remaining CT states from 

dissociating into free charge carriers in p-DTS(FBTTh2)2:PDI films processed with DIO. 

Perhaps additional increases in the solid state order of p-DTS(FBTTh2)2 and/or the PDI 

would result in more efficient charge generation, provided this could be achieved without 

leading to phase separation on a length scale larger than the exciton diffusion length. PDIs, 

however, may lack some fundamental property fullerene derivatives possess that enables 

extremely efficient charge generation.52 More work is needed to better understand the charge 
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generation process, especially in systems utilizing non-fullerene acceptors, before these 

questions can be answered.  

F. Section Conclusion 

It has been demonstrated that using the processing additive DIO during spin-casting of 

p-DTS(FBTTh2)2:PDI BHJ OPV devices leads to a drastic improvement in PCE compared 

to devices processed without the additive, increasing the PCE from 0.13% to 3.1%. Using 

UV-Vis absorption spectroscopy and GIWAXS it has been shown that the increased PCE is 

associated with a significant increase in both p-DTS(FBTTh2)2 and PDI solid state order. TA 

spectroscopy measurements are used to characterize the charge generation and 

recombination dynamics of p-DTS(FBTTh2)2:PDI films processed without and with DIO.  

Fast, intensity independent geminate recombination was found to be the dominant loss 

process in blends spin-cast without DIO, while geminate recombination was significantly 

reduced in blends cast with DIO, thereby increasing the yield of free charge carriers in these 

blends as demonstrated by the occurrence of intensity dependent non-geminate 

recombination in their charge carrier dynamics. Devices processed without DIO are 

therefore relatively structurally disordered compared to the blend processed with DIO and 

display negligible photovoltaic efficiency because the vast majority of excitons form 

interfacial CT states that recombine prior to dissociation. In contrast, in blends processed 

with DIO both p-DTS(FBTTh2)2 and PDI exhibit increased structural order as well as phase 

separation and a much higher PCE, largely due to a drastic increase of the efficiency with 

which excitons dissociate into free charge carriers. This section thus provide useful insight 

into the conditions under which photogenerated excitons are able to overcome coulombic 

forces to produce spatially-separated free charge carriers in a BHJ architecture when using a 
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non-fullerene acceptor. Light intensity dependent IQE measurements suggest that 

bimolecular recombination is not a significant loss process in p-DTS(FBTTh2)2:PDI devices 

cast with DIO at short-circuit condition, however, the relatively low hole and electron 

mobilities of this device may limit the FF. The blend processed with DIO additionally 

displays a significant amount of geminate recombination of coulombically-bound CT states 

that do not form free charge carriers as determined from bias dependent IQE as well as long 

delay TA measurements. This relatively low efficiency of charge separation compared to 

fullerene acceptors largely explains why p-DTS(FBTTh2)2:PDI devices exhibit less efficient 

photovoltaic performance compared to p-DTS(FBTTh2)2:PCBM devices, which exhibit a 

PCE of 7.0% and an IQE exceeding 90%.21 It remains unclear, however, why the use of the 

PDI as an electron acceptor leads to less efficient charge generation compared to the use of 

PCBM as an electron acceptor. Accordingly, it is emphasized that further advances in the 

fabrication of high efficiency BHJ OPV devices utilizing PDI acceptors are dependent on 

developing a more thorough understanding of the relationship between PDI chemical 

structure, BHJ processing conditions, thin film morphology and the fundamental processes 

associated with charge generation in in these devices.  
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Appendix- GIWAXS Data Processing Using WXDiff Software Package 

All GIWAXS measurements in this dissertation were performed at Stanford Synchrotron 

Radiation Lightsource beamline 11-3 using a photon energy of 12.7 keV with a sample to 

detector distance of approximately 400 mm. Experiments were performed under a helium 

environment to minimize background scattering and sample damage from the x-ray beam. 

An incident angle of 0.12˚ (above the critical angle of the BHJ blend, but below the critical 

angle of the substrate to ensure probing of the BHJ blend and not the substrate) was used in 

all cases. Images were collected with a MAR-345 2D image plate. A custom built heating 

stage was utilized as described elsewhere for in-situ heating measurements.1 The absolute 

temperature values during these experiments are estimated to have an error of ± 3 ˚C. This is 

largely the result of temperature fluctuations as a function of position on the film as well as 

over time. For all GIWAXS measurements samples were spin-cast onto silicon substrates 

previously coated with PEDOT:PSS to mimic a solar cell architecture. Silicon substrates 

were used so as to reduce background scattering from the substrate. 

2D diffraction images were processed with the software package WxDiff, provided by 

SSRL scientist Dr. Stefan Mannsfeld. This processing involved the isolation of specific 

peaks, background subtraction and conversion of 2D data to 1D data that could be fit with a 

pseudo-Voigt function in OriginPro 8.6. This process is further explained below. 
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A 2D image is loaded in WXDiff and a specific peak is isolated using the “CakeSeg” 

functionality: 
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Figure A1 2D GIWAXS image of DPP(TBFu)2 thin film measured in-situ above it’s TCC. 
The (100) peak is enclosed in a cake segment for further analysis (orange region). Imaged 
copied from WXDiff software. 

 

The 2D data enclosed in the cake segment is then converted to a plot of chi (polar angel) 

vs. q. The “peak” functionality is then used to define the region of interest (white rectangle) 

and the background (orange shaded regions): 
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Figure A2 The cake segment in Figure A1 has been converted to a plot of chi (polar angle) 
vs. q. The enclosed area around the (100) peak indicates the region used for summation of 
peak intensity. Background was subtracted by fitting the intensity in the shaded orange 
regions to a polynomial in order to determine precise boundary conditions. These boundary 
conditions were then extended into the peak area. Imaged copied from WXDiff software. 

 

A peak column sum is then performed to produce a plot of intensity vs. q: 

 

Figure A3 Plot of intensity vs. q (displayed as pixels but exportable as q) produced by 
performing a “Peak: col sum” of Figure 2A. Imaged copied from WXDiff software. 
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The data in Figure A3 is then exported to OriginPro 8.6 and fit with a pseudo-Voigt 

function. A pseudo-Voigt function is used because this linear combination of a Lorentzian 

and a Gaussian most accurately captures peak broadening from paracrystalline disorder and 

lattice-parameter fluctuation in organic semiconductors.2 
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