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Abstract

Glacial Response to Climate Change in the Tien Shan Mountain Range of Central Asia

by

Taylor Smith

High Mountain Asia (HMA) has been strongly impacted by climate change, and

will continue to be impacted by diverse climate stressors in the coming years. A combi-

nation of changing weather patterns and retreating glaciers has begun to impact water

resources in the region; the rate, extent, and mechanisms behind these changes are

poorly quantified due to a lack of data and process understanding. As rivers sourced in

HMA feed more than a billion people in the region, increased understanding of climate

impacts on regional hydrology is essential for effective water management. Glaciers play

a diverse role in hydrology throughout the range, with some catchments having little to

no reliance on glacial meltwater, and some catchments receiving almost all of their water

from glaciers. This study aims to decipher the impact of climate change on glaciers in

the Tien Shan mountain range, a large and understudied region that extends roughly

2,800 km northeast from the Pamir Knot in Tajikistan through China, Kazakhstan,

Kyrgyzstan, and Mongolia towards the Altai Mountains.

Previous studies in the region lack the data to decipher gradients in glacial retreat

across the range. To address this data deficit, the author designed and implemented

a glacial mapping algorithm which delineates both clean glacial ice – methods which
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are well documented – and glacial debris tongues, which often require extensive manual

digitization. This research is the most significant part of the thesis, and improves upon

methods developed to automatically delineate glacial areas using spectral, topographic,

velocity, and spatial relationships. The author found that the algorithm misclassifies

between 2 and 10% of glacial areas, compared to a ∼700 glacier control dataset. These

results show significant improvement over previously used methods, as well as large-scale

glacier databases such as the Randolph Glacier Inventory (RGI) which are commonly

used in mountain-belt scale studies of glaciers.

After validating the algorithm against multiple manually digitized control datasets,

the author applied it to a study area encompassing six Landsat scene footprints along

the strike of the Tien Shan Orogen. A statistically significant, though minor, gradient

in glacier retreat was found, where those glaciers in the west of the range have retreated

less than those glaciers in the east. This gradient is explained by differences in regional

climate, where large winter storms tend to arrive from the west and break apart and

weaken before moving towards the eastern edge of the range. This is substantiated by

differences in mean annual precipitation, as derived from Tropical Rainfall Measurement

Mission (TRMM) 3B43 V7 data, as well as differences in atmospheric lapse rates, where

the western region of the range remains cold year-round and the more eastern edges

have larger annual temperature fluctuations, as well as a lower overall lapse rate, which

implies higher temperatures at higher elevations.

As glacial area extents do not present a complete picture of the impacts of climate

change on glaciers, the author undertook a pilot study to examine the mass balances of

glaciers throughout the range. Mass balance estimates are a proxy for changes in water
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equivalent stored in a glacier, and are thus essential measurements for understanding

the hydrology of the range. The author presents preliminary evidence that high ele-

vation areas in the Tien Shan are thickening, even in the context of retreating glacial

tongues. This implies an overall gain of ice mass in the region, despite generally retreat-

ing glaciers. This trend was linked to recent increases in precipitation in the range, as

well as increases in air temperature. There is not yet enough data to unravel changes

in glacier mass balance across the range, although the author predicts that the recently

coined ‘Karakoram Anomaly’ may in fact need to be renamed to include both the Pamir

and the western Tien Shan.
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I. State of Scientific Knowledge on Glaciology and

Climate Change in the Tien Shan Range

High Mountain Asia (HMA) – defined loosely as the seven major mountain ranges of

Asia: the Himalaya, the Hindu Kush, the Karakorum, the Pamir, the Tien Shan, the

Altai, and the Kunlun – faces diverse and extensive risks due to climate change (e.g.,

Xu et al., 2009; Bookhagen and Burbank, 2010; Jacob et al., 2012; Stocker, 2013). High

dependence on seasonal rainfall and glacial runoff for water resources in the region (e.g.,

Aizen et al., 2007a; Lioubimtseva and Henebry, 2009; Bookhagen and Burbank, 2010;

Sorg et al., 2012; Kitoh et al., 2013; Gardelle et al., 2013; Menon et al., 2013; Stocker,

2013), as well as lack of resources in the region to adapt to climate stressors, have

created a large and growing at-risk population. Although the entire region remains

relatively understudied in comparison to other glaciated regions around the globe, there

is a distinct lack of data for the Tien Shan. The purpose of this thesis is to expand upon

current knowledge on glaciers throughout the Tien Shan, and their response to regional

climate change.

A. Climate Patterns of the Greater HMA Region

The majority of HMA is influenced by a combination of the Indian Summer Monsoon

(ISM) and Winter Westerly Disturbances (WWDs) which combine to create precipita-

tion gradients across the continent (Figure 1.1) (Lang and Barros, 2004). The most

recent Intergovernmental Panel on Climate Change (IPCC) report notes that HMA is

likely to see increasingly extreme and variable weather due to climate changes (Stocker,

2013). Increasing moisture availability, due to both increased surface evaporation and
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rising sea surface temperatures, is likely to lead to increases in both mean and extreme

precipitation from the ISM, as well as increased spatial variability in extreme events (e.g.,

May, 2004; Lau et al., 2006; Malik et al., 2011; May, 2011; Ghosh et al., 2012; Turner

and Annamalai, 2012; Stocker, 2013; Wang et al., 2014; Singh et al., 2014; Cannon et al.,

in review).

Figure 1.1: Percentage of summer rainfall (May-Oct), derived from daily TRMM 3B43 V7 data
(1998-2014). The figure illustrates the general split between summer and winter precipitation
driven by the Indian Summer Monsoon (ISM) and the Winter Westerly Disturbances (WWDs),
as well as the location of the Siberian High which blocks continental precipitation into the Tien
Shan during the winter season.

In the southeastern regions of HMA, the ISM accounts for nearly 80% of yearly

precipitation (Lang and Barros, 2004; Bookhagen and Burbank, 2010). The southwest-
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erly regions of HMA receive 50% or more of their precipitation from WWDs (Bookhagen

and Burbank, 2010; Palazzi et al., 2013; Cannon et al., in review). The more northern

ranges (Tien Shan and Altai) are also influenced by climatic teleconnections associated

with the North Atlantic Oscillation (NAO), Arctic Oscillation, Eurasian/Polar Pattern,

Siberian High, and the El Niño-Southern Oscillation (ENSO), though precipitation is

generally low throughout both of these ranges (Cohen and Entekhabi, 1999; Lang and

Barros, 2004; Folland et al., 2008; Linderholm et al., 2011; Cannon et al., in review).

Several studies have argued that anthropogenic influence can drive shifts in these major

circulation systems (e.g., Fu, 2003; Ramanathan et al., 2005; Gautam et al., 2009; May,

2011; Turner and Annamalai, 2012).

Changes in land cover have long been recognized as drivers of climate change

(e.g., Charney, 1975; Charney et al., 1977). Charney et al. (1977) concluded that

changes in surface albedo could alter weather patterns significantly in both monsoonal

and arid regions, based on data collected in North America, Asia, and Africa. More

recently, changes in surface roughness, forest cover, evapotranspiration, and seasonal

water storage have all been recognized as drivers of climate change (Fu, 2003). Asia has

experienced particularly dramatic land cover changes over the past three thousand years,

as expanding populations have converted large areas of tropical forest to farmland, and

increased the amount of degraded and desertified land (Fu, 2003). Fu’s (2003) analysis

suggests that anthropogenic influence has weakened the East Asian Summer Monsoon

(which provides moisture to the eastern edge of the Himalaya), and enhanced the winter

monsoon in southeast Asia; these observations have been substantiated by other studies

(e.g., Xue et al., 2004; Yoo et al., 2006; Lee et al., 2011).
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The ISM, which provides the majority of the moisture for the southern reaches

of HMA, is driven by temperature gradients between the Indian Subcontinent and the

Indian Ocean, and has been described in detail in several publications (e.g., Flohn, 1957;

Webster, 1983; Fasullo and Webster, 2003; Gadgil, 2003; Barros et al., 2004; Magagi

and Barros, 2004; Barlow et al., 2005; Bookhagen et al., 2005; Boos and Kuang, 2010;

Bookhagen and Burbank, 2010). Recent work has challenged the temperature gradient

between land and ocean as a driving factor and has identified the steep orographic

gradient between the subcontinent and the Tibetan Plateau as responsible for creating

these strong temperature gradients, as it insulates the warm and moist subcontinent from

the colder and drier regions of HMA (Boos and Kuang, 2010). However, these structural

controls are unlikely to influence monsoon patterns at a human-relevant timescale, and

thus are unlikely to account for observed changes in the ISM.

Several studies have examined changes in the ISM, which has seen a 20% increase in

early summer rains since the 1950s (Gautam et al., 2009; Menon et al., 2013; Kitoh et al.,

2013). Kitoh et al. (2013) showed that increasing moisture availability has driven an

increasingly erratic and powerful summer monsoon, which agrees with the IPCC assess-

ment that monsoon seasons are likely to increase in both severity and duration (Stocker,

2013). The ‘atmospheric brown cloud’ over southeast Asia, as well as other aerosols,

have recently been implicated in changes in the ISM (e.g., Ramanathan et al., 2007;

Ramanathan and Carmichael, 2008; Gautam et al., 2009; Bonasoni et al., 2010), though

long-term warming trends have also been implicated in increasing monsoon strength,

due to factors such as volcanic aerosols, precession, obliquity, and eccentricity in earth’s

orbit, and changes in glacier size and distribution (e.g., Overpeck et al., 1996; Anderson
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et al., 2002).

The mechanism by which aerosols may have modified the monsoon is still de-

bated. Ramanathan et al. (2005) propose that aerosols such as black carbon reduce sea

surface temperatures, which in turn reduces available moisture and monsoon strength.

Alternatively, it is possible that aerosols act to trap heat over the ocean and increase

available moisture (Ramanathan et al., 2005). Lau et al. (2006) proposed that aerosol

stacking along the Himalayan front may modify the temperature gradient in the region,

leading to earlier summer rainfall. An atmosphere enriched in aerosols provides more

abundant nuclei for cloud formation, which could help promote early precipitation (Lau

et al., 2006). It is not clear yet what role aerosols play in modified monsoon seasons,

or whether anthropogenic aerosols such as black carbon or increased dust availability

due to desertification play a more important role in the ISM (Gautam et al., 2009).

Natural cycles, such as El Niño-Southern Oscillation (ENSO) variations, seasonal snow

cover, and seasonal aerosol content, can also drive changes in the monsoon (Bookhagen

et al., 2005). These natural cycles have shown a notable upwards trend over the past

few decades, resulting in increased rainfall penetration into the drier reaches of HMA

(Bookhagen et al., 2005).

The northwestern reaches of the Himalaya, and the more central ranges of the

Hindu Kush, Karakorum, Pamir, and Tien Shan are strongly influenced by WWDs (Li-

oubimtseva et al., 2005; Palazzi et al., 2013). These disturbances are driven by baroclinic

systems that arise from the Mediterranean and Arabian Seas, and which occasionally

extend into central Asia (Barlow et al., 2005). These storms tend to carry far less mois-

ture, and deposit snow rather than rain (Hewitt, 2005, 2011, 2014). Large-scale changes
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in the Central Asian landscape, such as the desiccation of the Aral Sea, have increased

aerial dust, and could potentially alter major weather patterns. Unfortunately, following

the collapse of the Soviet Union, many monitoring stations ceased to be maintained, and

thus long-term data is sparse in the region (Lioubimtseva et al., 2005).

B. Climate Setting of the Tien Shan Range

The Tien Shan range extends nearly 2,800 km northeast from the Pamir Knot towards

the Altai mountains. Its climate is primarily controlled by WWDs, which are most

active between January and March (Lang and Barros, 2004), as well as the Siberian

High, which serves as a blocking mechanism for winter storms (Narama et al., 2010).

Both the Pamirs and the Tien Shan receive moisture from extra-tropical cyclones brought

into the region by westerly troughs. Moisture transport is generally from the southwest,

from the Mediterranean and Arabian Seas. Precipitable water is generally low in all

cases, especially in comparison to moisture availability in other glaciated regions of

Asia, such as the southern Himalayan front. Furthermore, precipitation is not evenly

distributed, as the western edges of the range tend to have more winter precipitation,

while the eastern and central ranges tend to see more summer precipitation (Narama

et al., 2010). Moisture is also topographically trapped, with the outer reaches receiving

relatively more moisture than the inner ranges, which border the Taklamakan Desert in

northwest China (Sorg et al., 2012). This difference can be seen in Figure 1.2.

In general, storms hit the Pamirs and break into northern and southern portions:

the southern portions head along the front of the Tibetan Plateau towards the Hindu

Kush and Karakorum, and the northern portions continue onwards towards the Tien

Shan, where they are generally trapped along the orography of the range (Cannon et al.,
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Figure 1.2: Average precipitation in January and July, 1961-1990. Data from Bohner (2006),
analyzing NCAR/CDAS GCM data. Figure modified from Sorg et al. (2012).

in review). As they continue northwards they generally weaken, dropping less precipi-

tation as they move from west to east. This can also be seen in the number of events

at the 95th percentile, where the Pamirs received 87 extreme events and the Tien Shan

received 25 (1998-2013) (Cannon et al., in review). Storms in the Tien Shan are often

remnants of larger storms, which broke apart on the Pamirs, and generally carry less

precipitation.

During the summer months, both the Pamirs and the Tien Shan receive mois-

ture from the northwest, due to the weakening of the Siberian High which allows more

continental moisture to flow into the region. As moisture is generally received from
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the northwest (perpendicular to the strike of the orogen), there is less of a precipita-

tion gradient from west to east. Low elevation areas generally do not receive summer

snow, although some high elevation areas and glaciers receive moisture during summer

storms. The summer is also the period of highest precipitation from the Indian Summer

Monsoon (ISM), which provides much of the moisture for the more southern Himalaya

Range. However, the Tien Shan receives little to no precipitation from the ISM, as it

is topographically separated, and influenced by wind patterns derived from continental

Europe (Mölg et al., 2012).

C. Glacial Studies in the Tien Shan Range

Changing climate has had an impact upon glaciers in the Tien Shan. Sorg et al. (2012)

noted that the outer ranges have lost more glacial area than the inner ranges, though

recent estimates using Gravity Recovery and Climate Experiment (GRACE) data esti-

mate glacial mass loss at only -5 ± 6 gigatons per year between 2003 and 2010 (Jacob

et al., 2012). These data, however, assume that all gravitational differences are due to

glaciers and this study does not consider sediment transport, groundwater, and other

processes that may account for gravitational differences. Narama et al. (2010) reported

between 9 and 19% area loss in the Tien Shan over the period 1970-2010, depending

on the sub-region analyzed. Glacial loss accelerated between 2000 and 2007, except in

several cases in the southeastern Tien Shan (Figure 1.3) (Narama et al., 2010). Similar

retreat amounts were reported for the central Tien Shan, with glaciers retreating on

average 14.2% between the 1860s and 2003, with the bulk of the area loss occurring in

the period 1977 to 2003 (e.g., Aizen et al., 2006, 2007b). More recent work has noted

that though there has generally been area loss throughout the Tien Shan, retreat rates
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have been shrinking over the past 15 years (Pieczonka et al., 2013). There have also been

isolated cases of glacial surging over the period 2000-2007, with some glaciers growing

by as much as 1,400 meters (Narama et al., 2010).

Figure 1.3: Glacial area decline between 2000 and 2007 throughout the Tien Shan modified
after Narama et al. (2010)
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II. Improving Automated Glacial Mapping with a

Multi-Method Approach: Examples from the

Tien Shan

A. Introduction

Changes in glacier length have long been considered one of the best indications of climate

change (i.e. Oerlemans, 2005), though more recent studies have also assessed glacial

volume changes with the advent of new remote sensing techniques (e.g., Berthier et al.,

2007; Aizen et al., 2007a; Gardelle et al., 2012, 2013; Bolch et al., 2012; Kääb et al.,

2012; Stocker, 2013). This chapter focuses on assessing glacial length fluctuations over

a large spatial scale using widely available remotely sensed data. Several attempts have

been made to produce accurate and high-resolution glacial outlines, most notably the

Global Land Ice Measurements from Space (GLIMS) project (Armstrong et al., 2005;

Raup et al., 2007), and the recently produced supplemental GLIMS dataset known as the

Randolph Glacial Inventory (RGI) V3.2 (Arendt et al., 2012). A coherent, complete, and

accurate global glacial database is important for several reasons, including monitoring

global glacial changes driven through climate changes, natural hazard detection and

assessment – such as glacial lake outburst floods, and assessment of the role of glaciers in

natural and built environments, including glacial contributions to regional water budgets

and hydrologic cycles (Racoviteanu et al., 2009). Precision in glacial outlines is of utmost

importance for monitoring changes in glaciers, which may only change by 15-30 m/yr (∼1-

2 pixels of Landsat Enhanced Thematic Mapper (ETM+)/yr). Thus, spatially accurate

glacial outlines are imperative for precise glacial change detection (Paul et al., 2009,
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2013).

Several methods have been developed to delineate clean glacial ice (i.e. Paul, 2002;

Paul et al., 2002; Racoviteanu et al., 2008a,b; Hanshaw and Bookhagen, 2014), relying

primarily on spectral data available on satellites such as Landsat and Advanced Space-

borne Thermal Emission and Reflection Radiometer (ASTER). Several authors have

also investigated the application of remote sensing datasets to snowcover determination,

through both assessments of sub-pixel snow covered area and grain size (i.e. Dozier,

1989; Painter et al., 2003; Dozier and Painter, 2004; Painter et al., 2009). These studies

form the basis for analysis of seasonal snowcover throughout the range, an important

climatic indicator used in assessing trends in snow covered area across the greater Tien

Shan range.

Although significant progress has been made towards automated glacial outline

retrieval using satellite imagery, these methods struggle to accurately map debris-covered

glaciers, or other glaciers with irregular spectral profiles (Paul et al., 2004; Racoviteanu

et al., 2008b; Scherler et al., 2011). Much of this difficultly stems from the similarities in

spectral profiles of debris located on top of a glacial tongue and the surrounding hillslopes

where the debris is sourced from. The majority of studies examining debris-covered

glaciers employ extensive manual digitization in a Geographic Information System (GIS),

which is very time consuming, and can introduce significant user-generated errors (Paul

et al., 2013; Pfeffer et al., 2014). Building on the multi-spectral, topographic, and

spatially weighted methods developed by Paul et al. (2004), the author presents a refined

rules-based classification based on spectral, topographic, land-cover, velocity, and spatial

relationships between glacial areas and the surrounding environment.
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Using a suite of 23 Landsat Thematic Mapper (TM), ETM+ and Optical Land

Imager (OLI) images across a spatially and topographically diverse set of study sites

comprising six Landsat footprints (Path/Row combinations: 144/30, 147/31, 148/31,

149/31, 151/33, 153/33) along the profile of the Tien Shan Range (Figure 2.1), the

author (1) pre-processes the imagery (georeference and co-register), (2) applies the algo-

rithm based on spectral, topographic, and spatial information, (3) analyzes range-wide

trends in glacial character, and (4) links spatially heterogeneous glacial retreat to cli-

mate factors. We address the hypothesis that spatially heterogeneous glacial retreat

throughout the Tien Shan range is driven by precipitation gradients across the range.

B. Study Area and Data Sources

Figure 2.1: Study Area, showing SRTM V4.1 topography (Farr and Kobrick, 2000), locations
of six Landsat scene outlines used in the study, and along-strike profile (red).
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Study Area

The Tien Shan Range (also known as the Tian Shan) extends almost 2,800 km from

Tajikistan northeast into China (Figure 2.1). Its climate is controlled by both the

Winter Westerly Disturbances (WWDs) and the Siberian High, which together create

strong precipitation gradients throughout the range (Narama et al., 2010; Sorg et al.,

2012; Lioubimtseva and Henebry, 2009; Bolch et al., 2011; Cannon et al., in review). The

western edges of the range tend to have more winter precipitation in the form of snow,

with precipitation concentrated in the spring and summer in the central and eastern

reaches of the Tien Shan (Narama et al., 2010).

Sorg et al. (2012) note that due to the interaction of the Siberian High and more

western continental atmospheric patterns such as WWDs, the Tien Shan Range has a

distinct precipitation gradient with decreasing precipitation from the west to east. There

is also a strong gradient between outer and inner reaches of the Tien Shan, as moisture

is trapped by the topography of the range (Sorg et al., 2012).

In a smaller scale study, (Narama et al., 2010) found that for the period of 1970-

2010, glacial area decreased between nine and 19%, depending on the subregion of the

Tien Shan analyzed. Glacial loss was then seen to accelerate between 2000 and 2007,

except in a few cases in the southeastern reaches of the Tien Shan (Narama et al., 2010).

This agrees generally with work by Narama et al. (2006), who noted that total glaciated

area in the northern and central Tien Shan had shrunk by 14.2% between the 1860s

and 2003, with the bulk of shrinking occurring between 1977 and 2003. Several larger

scale studies (e.g., Kääb et al., 2012; Bolch et al., 2012; Stocker, 2013) have looked at
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retreat over large scales, but lack sufficient spatial detail to fully constrain the rates and

mechanisms of glacial retreat in the region.

Data Sources

The author’s glacial mapping algorithm is based on several datasets. The Landsat 5

(TM), 7 (ETM+), and 8 (OLI) platforms were chosen as the primary spectral data

sources, as they provide spatially and temporally extensive coverage of the Tien Shan

(Table 1). ASTER can also be used as a source of spectral information, but the author

chose to focus on the larger footprint and longer timeseries available through the Landsat

archive. In addition to spectral data, the SRTM DEM (∼90m) was leveraged to provide

elevation, slope, and hillshade information (Farr and Kobrick, 2000). The SRTM data

and its derivatives were downsampled to 30m to match the resolution of the Landsat

images using bilinear resampling. The USGS Hydrosheds river network (15◦ resolution)

was also used as an input dataset (Lehner et al., 2008).

Several climatic datasets were analyzed to provide context to the analysis of glacial

changes in the Tien Shan. Daily gridded Advanced Microwave Scanning Radiometer

(AMSR-E) data (0.25◦ x 0.25◦ resolution) was used to estimate the snow-water equivalent

(SWE) stored throughout the study area on a yearly basis (2002-2011) (Tedesco et al.,

2004). The AMSR-E satellite measures microwave brightness temperatures at different

frequencies to analyze snow depth, although the algorithm assumes a homogeneous

snowpack with constant grain size (Tedesco and Narvekar, 2010). SWE measurements

are further complicated by changing snow densities, which are not well represented

in the AMSR-E dataset, which converts estimated snow depth to a water equivalent.

Despite these caveats, the AMSR-E SWE measurements remain the best estimates of
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Table 1: Data table listing Landsat scene IDs used in this study. Organized by WRS2
Path/Row combinations. Starred scene IDs denote ‘Master’ images to which others were
rectified.

144/030 147/031 148/031
Number of Images 4 4 4

Date Range of Images 2002-2013 2000-2013 2002-2013

LT5 IDs
LT51440302006212IKR00
LT51440302009220KHC01

LT51470312011231KHC01
LT51480312007259IKR00
LT51480312011254IKR01

LE7 IDs LE71440302002257SGS00*
LE71470312000257SGS00*
LE71470312002278SGS00

LE71480312002205SGS00*

LC8 IDs LC81440302013295LGN00 LC81470312013268LGN00 LC81480312013211LGN00

Projection WGS 1984 45N WGS 1984 44N WGS 1984 44N

Comments Eastern Edge of Study Area Vicinity of Inylchek Glacier

149/031 151/033 153/033
Number of Images 3 5 3

Date Range of Images 1999-2013 1998-2013 1998-2013

LT5 IDs LT51490312007250IKR00
LT51510331998271XXX01
LT51510332009253KHC00

LT51530331998269AAA01

LE7 IDs LE71490311999252SGS00*
LE71510332000237SGS00*
LE71510332001271SGS00

LE71530332002272SGS00*

LC8 IDs LC81490312013282LGN00 LC81510332013280LGN00 LC81530332013278LGN00

Projection WGS 1984 43N WGS 1984 43N WGS 1984 42N

Comments Towards Pamir Knot

the water stored in snowpack throughout much of the world, and especially in remote

and understudied areas such as the Tien Shan.

Tropical Rainfall Measurement Mission (TRMM) data (product 3B43 V7) with

a spatial resolution of 0.25◦ x 0.25◦, aggregated into monthly and yearly means (1998-

2014), were used to analyze precipitation trends across the range (Huffman et al., 2010;

Bookhagen, 2010; Bookhagen and Burbank, 2010; Duan and Bastiaanssen, 2013). The

precipitation radar (PR) onboard TRMM primarily senses rainfall, as liquid water is

easier to detect by radar, though the TRMM 3B43 V7 dataset used in this study also

contains information from several other datasets (e.g., AMSR-E precipitation estimates,

infrared (IR) imagery from several satellites including Geosynchronous Operational En-

vironmental Satellites (GOES), Multifunctional Transport Satellite (MTSat), and Me-
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teorological Satellite (Meteosat), Advanced Microwave Sounding Unit (AMSU-B), and

Global Precipitation Climatology Centre (GPCC) ground-based rainfall measurements),

which are merged during processing to improve precipitation estimates (Huffman and

Bolvin, 2007).

Two Moderate Resolution Imaging Spectroradiometer (MODIS) products MOD10C1

(snow covered area, SCA) and MOD11C1 (land surface temperature, LST) were used

to analyze yearly average snowcover and atmospheric lapse rates respectively (Hall and

Salomonson, 2006; Wan, 2008). MOD10C1 data between 2001 and 2014 were aggregated

to seasonal timesteps at 0.05◦ x 0.05◦ spatial resolution. MOD11C1 data was aggregated

seasonally to calculate atmospheric lapse rates at 0.05◦ x 0.05◦ spatial resolution using

SRTM elevation data. Lapse rates were calculated using night time temperatures, which

have been shown to be more consistent in alpine regions (Colombi et al., 2007). A recent

study validated MODIS LST data in the region by comparing ground station data for

western Tibet with generated LST products, finding generally good agreement across

both day and night (Wang et al., 2007).

The RGI V3.2 dataset is comprised of ∼198,000 glaciers with an estimated extent

of 726,800 ± 34,000 km2 (Pfeffer et al., 2014). This dataset was derived from previous

glacier inventories, as well as satellite imagery over the period of 1999-2010, and provides

complete global coverage, excepting ice sheets. This dataset was intended for wide-scale

analysis, and has been successfully used to improve estimates of global glacial changes,

and their contribution to sea-level rise. In this paper, the dataset is used as a comparison

dataset against which to analyze algorithm-derived glacial outlines.

16



C. Methods

Figure 2.2: Steps of the algorithm as developed in this research, showing initial spectral clas-
sification vs final automated classification results on top of a Landsat scene. Further detail is
provided in Figures 2.3-2.8.

Data Preparation

For accurate glacial delineation, this research used only those Landsat images which

were free of new snow, and had less than 10% cloud cover. The presence of fresh snow in
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images tends to overclassify glacial areas and classify non-permanent snow as glaciers.

Additionally, cloud cover tends to confuse the algorithm, and render glacial outlines that

overlap with cloud cover unreliable (Paul et al., 2004; Hanshaw and Bookhagen, 2014).

After selecting a series of Landsat images, the author co-registered each image to

a ‘master’ image specific to each Landsat Row/Path combination, using the Automated

Registration and Orthorectification Package (AROP) (Gao et al., 2009). Master images

are denoted in Table 1 with asterisk. This ensures that glacier outlines are properly

matched, and that any timeseries of glacial change is consistent in space. Once the

data were georeferenced and registered, a series of scripts written in Python and Matlab

perform the glacial classification (flow diagram shown in Figure 2.2, source code available

at www.geog.ucsb.edu/∼bodo/Smith Glacier Scripts.zip). The Python script prepares

several datasets for processing in Matlab by resampling and reprojecting each dataset

to the same spatial extent, resolution (30m to match the Landsat data), and projection.

Once the hydrologically corrected DEM has been resampled, slope and hillshade images

are derived for use in the algorithm. The Hydrosheds 15s river network is buffered by

200m to properly capture stream areas, and then converted to a raster matrix so that it

can be ingested along with the other datasets. This dataset is also clipped and projected

using the same methods as the SRTM and its derivative datasets. Although the current

algorithm is based on proprietary software, the author will continue to update the code

with the goal of using only open source tools and libraries in the future.

Lake Delineation

Glacial debris tongues tend to host supra-glacial lakes, particularly during the summer

months when snow cover is lowest (Quincey et al., 2007; Gardelle et al., 2011). These
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lakes can be used as seed points for distance-weighting mechanisms to more accurately

delineate glacial debris tongues. Lakes are delineated using the Normalized Difference

Water Index (NDWI) (Gao, 1996), after which misclassified areas are removed by mask-

ing out high slopes and shadowed areas (Huggel et al., 2002; Worni et al., 2013; Nie

et al., 2013; Hanshaw and Bookhagen, 2014). To increase the modularity of the algo-

rithm, the author did not rely on a fixed NDWI value across all datasets, but instead

used a manually generated set of index lakes that exhibit the spectral properties desired.

This small manual step greatly increases the number of correctly classified lakes by pro-

viding scene specific NDWI thresholds for each processed image. The author notes that

future improvements will use radar data to delineate and decipher lake extents.

Glacier Delineation

Spectral Delineation

Calculations are performed on rasterized versions of each input dataset in Matlab. The

first step in the classification process leverages Landsat bands 1, 3, and 5. For Landsat 8

OLI images, a slightly different set of bands is used to conform to the modified spectral

range of sensors on Landsat 8. For simplicity, bands referenced in this publication refer

to Landsat 7 ETM+ spectral ranges. The ratio of TM3/TM5, with additional spectral

information from TM1 has long been established as an effective means of delineating

glacier areas (e.g., Hall et al., 1987; Hanshaw and Bookhagen, 2014), but is not effective

in delineating debris-covered glacial areas (Figure 2.3). Shadowed areas derived from a

SRTM-generated hillshade and lake areas derived in the previous lake processing step

are then removed from this initial spectral classification. The end result of this step is

the spectrally-derived glacier outlines, which are later integrated back into the workflow
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Figure 2.3: Spectrally delineated glacier outlines (Red), over Landsat bands B7/B4/B2 loaded
as Red/Green/Blue. Low reflectance on B7 (typical of glacial ice) results in glaciers being
displayed as cyan.

before statistical filtering. The results of this step are also saved for comparisons between

spectrally delineated glacier outlines and the end result glacier outlines.

Topographic Filtering

Building on the work of Paul et al. (2004), low slope areas (between 1 and 24◦) are

isolated as areas where debris-covered glaciers are likely to exist. As glacial surfaces

tend to be rougher than the surrounding areas, a standard deviation filter (3x3 kernel

size) is also applied to the slope and used to mask out areas of low slope variability. Low

elevation areas are then masked out to decrease processing time. This step is performed

20



independent of the previous, spectrally delineated, glacier outlines. In essence, this

step identifies areas where there is the potential for a debris covered glacier to exist.

Additional filtering is then performed on this subset to identify debris-covered areas

(Figure 2.4).

Figure 2.4: Manual glacial outlines (Blue) and Algorithm outlines (Orange) before velocity
filtering. Landsat Band 8 background.

The Correlation Image Analysis Software (CIAS) (Kääb, 2002) tool, which uses

a method of statistical image cross-correlation, is used to derive glacial velocities from

Landsat Band 8 panchromatic images. This method functions by tracking individual

pixels across space and time, and provides a velocity surface at the same resolution as the

input datasets (15m). The velocity surface is then upsampled using bilinear resampling
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to provide a consistent velocity estimate across the entire Landsat scene. Due to the

differing timesteps between Landsat images, all velocities used in the glacier algorithm

are standardized by the length of time between scene captures. Thus, the author was able

to obtain velocity measures in m/yr for all of the target Landsat Path/Row combinations.

It is important to note that cloud-free and snow-free images are essential for this step,

as the presence of snow or cloud cover can disrupt the correlation process, resulting in

anomalous velocity measurements.

The author only used one multi-year velocity measurement for each path/row

combination to derive general areas of movement/stability for glacial classification, as

using stepped velocity measurements over smaller time increments did not show a no-

ticeable improvement in glacial classification. Furthermore, a method of frequential

cross-correlation using the co-registration of optically sensed images and correlation

(COSI-Corr) tool (Leprince et al., 2007) was tested and did not show any appreciable

improvement in velocity measurements (Heid and Kääb, 2012). Future iterations of the

algorithm aim to include provisions for stepped velocity measurements, possibly using

the Image Correlation (IMCORR) package (Scambos et al., 1992).

Two additional topographic indices were tested here, though neither provided sig-

nificant improvement to the algorithm. The author attempted to derive frequential in-

formation from several Landsat and ASTER bands, with limited success. Some glaciers

do exhibit a unique frequency signature when analyzed using spatial Fast Fourier Trans-

forms (FFTs), though these were not consistent across multiple debris-covered glaciers

with differing surface characteristics (Figure 2.5). Additionally, the FFT approach was

tested against a principal component analysis (PCA) image derived from Landsat, with-
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out significant improvement to the algorithm.

Figure 2.5: Manual glacial outlines (Black) over FFT results on Landsat 7 Band 2 image.

The author also attempted to integrate surface roughness measurements using the

ASTER satellite, which contains both a forward looking (3N - nadir) and backwards

looking (3B - backwards) imager, primarily intended for the generation of stereoscopic

DEMs. However, the difference in imaging angle also provides the opportunity to ex-

amine surface roughness by looking at changes in shadowed areas (Mushkin et al., 2006;

Mushkin and Gillespie, 2011). The author found that there are slight surface roughness

differences between glaciated and non-glaciated areas on some debris tongues, but that

these differences are not significant enough to use as a thresholding metric (Figure 2.6).
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Furthermore, the nature of the steep topography limits the efficacy of this method, as

valleys which parallel the satellite flight path and those which lie perpendicular to the

flight path show different results. Shadows tend to move less in parallel valleys, and

ridgelines tend to enhance shadow differences in perpendicular valleys. Thus, the algo-

rithm relies on the velocity and slope thresholds to characterize the topography of the

glacial areas.

Figure 2.6: Manual glacial outlines (Black) over 3B/3N ratio showing relative surface rough-
ness.

The velocity step is most important for removing hard-to-classify pixels along

the edges of glaciers, and wet sands in riverbeds. These regions are often spectrally
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indistinguishable from debris tongues, but have very different velocity profiles. It is

important to note, however, that this step also removes some glacial area, as not all

parts of a glacier are moving at the same speed (Figure 2.7). This can result in small

holes in the delineated glaciers, which are addressed by statistical filtering.

Figure 2.7: Manual glacial outlines (Blue) and Algorithm outlines (without velocity integrated)
(Black). Correlation results in the background.

Spatial Weighting

After topographic and velocity filtering, a set of spatially weighted filters was con-

structed. The first filtering step uses the Hydrosheds river network to remove classified

areas which are distant from the center of a given glacial valley. As glaciers occur along

the flowlines of rivers, and the Hydrosheds river network generally delineates flowlines
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all the way to the peaks of mountains, the river network provides a perfect set of seed

points with which to remove misclassified pixels. A second distance weighting is then

performed using both the supra-glacial lakes detected during the lake delineation step,

and the spectrally delineated glaciers. As debris tongues must occur in proximity to one

or more of: (1) glacier areas, (2) the centerlines of valleys, or (3) supra-glacial lakes, this

step is effective at removing overclassified areas. At this step, it is also possible to add

manual seed points, which may be necessary for some longer debris tongues. The author

notes that these are optional, and the majority of glaciers do not need the addition of

manual seed points. However, for certain glaciers which do not have many lakes, or do

not have lakes large enough to be delineated by Landsat, adding a few manual control

points greatly increases the efficacy of the algorithm. In future iterations of the algo-

rithm, high-resolution radar datasets will be used for delineating water bodies on snow

and ice to provide additional seed points.

The spatial weighting step is essential for removing pixels spatially distant from

any glacier or lake area. In many cases, large numbers of river pixels, and in some

cases dry sand pixels, have similar spectral and topographic profiles to glaciers. This

step effectively removes the majority of pixels outside the general glaciated area(s) of a

Landsat scene.

Masking and Filtering

Once the spatial weighting steps are completed, the glacial outlines are generally accu-

rate. Additional filtering and smoothing steps help to remove some misclassified pixels

due to errors in the SRTM, high velocities in non-glacier areas, and areas with sim-

ilar spectral profiles to glaciers. A NDWI mask is applied to remove dry areas, as
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glaciers uniformly exhibit a moisture signal that is detectable with NDWI. A Normal-

ized Difference Vegetation Index (NDVI) mask is also applied, as glaciers in the study

region rarely have noticeable vegetation. The author notes that all of the threshold

parameters are set on the basis of Landsat scene Path/Row combinations to account

for the slightly different topographic, velocity, and landcover settings of spatially diverse

Landsat scenes. In general, one set of parameters is sufficient to characterize glaciers

within multiple Landsat scenes with the same spatial extent (Path/Row combination)

throughout time. However, scenes with extensive cloud cover or snow cover sometimes

need separate thresholds to account for the differences in spectral signatures between

cloud-free and clouded images.

A set of median filters are then applied, as well as a set of statistical filters designed

to remove isolated pixels (3x3 median filter, applied twice, as well as 5x5 median filter,

applied after image opening), bridge gaps between isolated glacial areas (image bridging),

and fill holes in large contiguous areas (image opening, applied twice). After these

filters have been applied, the resulting glacial outlines are post-processed in Python, as

described in the next section.

This step is essential for filling holes and reconnecting separated glacier areas.

As the filtering methods used are based on a fixed set of threshold values, there are

often glacier pixels which are removed. For example, some pixels along the edge of a

debris tongue may be moving slower than the provided velocity threshold, and are thus

removed. This problem is somewhat, but not completely, mitigated by the statistical

filtering (Figure 2.8).
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Figure 2.8: Manual glacial outlines (Blue) and Algorithm outlines (with velocity and statistical
filtering) (Orange). Landsat band 8 in the background.

Post-Processing

Using the glacial outlines provided by the algorithm, additional metadata is added to

each glacier, such as area, perimeter, and polygon centroid, as well as Landsat date and

time. Using the area and perimeter information, a final threshold is used to remove very

small glacial areas (∼10-20 px or less). The outlines with metadata are then exported to

shapefile format, though any geographic vector format could be substituted. For more

specific information on the algorithm, please refer to the commented source code in the

appendix (appendices A - C).
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D. Results

Statistical Analysis of Algorithm Errors

Two manual control datasets encompassing ∼700 glaciers (∼380 km2) each were created

to test the efficacy of the glacial mapping algorithm. A subset of 138 glaciers of vary-

ing size and topographic setting was chosen for more detailed analysis. The unedited

algorithm-generated glacial outlines were compared against three separate datasets: (1)

the RGI V3.2 (Arendt et al., 2012), which is an optimized subset of the GLIMS database;

(2) Spectral outlines, which only classify the glacial areas via commonly used spectral

subsetting (using TM1, TM3, and TM5); and (3) a manual control dataset, which was

hand-digitized by the author from Landsat imagery. Figure 2.9 shows the bulk elevation

distributions across 138 glaciers for each dataset in 10m elevation bins.

Figure 2.9: Bulk elevation distributions of sampled glaciers, with manual delineation (reference
dataset) in blue, algorithm-derived delineation in red, spectral delineation in green, and RGI
in black.
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From these distributions, it is apparent that the RGI universally overclassifies

glacial areas, and that using only a spectral classification tends to overclassify high

elevation areas and underclassify low elevation areas. It is important to again note

that the RGI is intended for wide-area studies, and thus individual glacial outlines are

not guaranteed to be accurate. There is some apparent bias in the author’s algorithm

towards low elevation areas, which represent the debris-covered portions of glaciers and

are the most difficult to classify. To illustrate the difference between the manual control

dataset and each of the comparison datasets, the elevation distributions were differenced

in Figure 2.10.

Figure 2.10: Percentage offset of area across elevation slices from a manual control dataset,
with algorithm-derived delineation in red, spectral delineation in green, and RGI in black.

In general, the same patterns appear in Figure 2.10 as in Figure 2.9: RGI over-

classifies across each elevation slice, the spectral-only method overclassifies in the high

elevations and underclassifies in the low elevations, and the algorithm-derived dataset
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underclassifies low elevation areas. However, at any given elevation slice, the algorithm-

derived data is off by less than 0.5% from the area of the manual control dataset, and is

generally well matched at elevations above 4000m. The underclassification at the 3500-

4000m class can be attributed to hard-to-classify side glaciers, or glaciers which feed into

larger glaciers from connected side valleys. Many of these glaciers are located in shaded

or otherwise topographically distinct valleys, which can result in underclassification of

connected glacial areas, though an analysis of shadowed area mismatches between both

manual and algorithm datasets indicates that shadowed areas are responsible for only

very small misclassifications (∼4×10−8 km2, ∼5-10px per elevation slice). Over the span

of a single Landsat scene, or even over most individual watersheds within the control

Landsat scene, the elevation distributions of the manual and algorithm datasets are

virtually indistinguishable (ks-test at the 99% confidence interval passes).

Figure 2.11: Elevation distributions of over- and under-classified glacial areas.

In order to examine persistent bias throughout the algorithm classification, under-
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and over-classified areas were examined, as well as areas which may have been unduly

affected by shadows. To determine areas of overclassification (underclassification), the

manually (algorithm) generated dataset was subtracted from the algorithm (manual)

dataset, leaving only pixels which are overclassified (underclassified). Figure 2.11 shows

the elevation distributions of under and over classified areas. The algorithm tends to con-

sistently overclassify areas above 4500m, and underclassify areas under 4500m, though

much of this misclassification occurs at similar elevation slices, and thus in bulk the

mismatch between the manual and algorithm derived datasets is minimal. The total

misclassification for the two control datasets are 2% and 10% respectively, which repre-

sents a significant improvement from a pure spectral delineation approach, or the data

provided by the RGI.

Finally, a set of topographic indices was examined to determine if there was an

misclassification bias towards a certain elevation, size, aspect, or slope setting (Figure

2.12). The results of this analysis are that none of the topographic indices show a strong

trend across the analyzed glaciers, though there is a slight bias towards underclassifying

lower elevation areas vs higher elevation areas, and underclassifying lower slope areas.

These are known errors associated with the difficulty of classifying glacial tongues, par-

ticularly those with heavy debris cover. However, on average, the mismatch between the

algorithm and manual control datasets is minimal regardless of topographic setting (be-

tween 2-10%). It is important to note that the algorithm datasets used in the statistical

analysis were not manually edited, and are the direct output of the author’s algorithm.
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Figure 2.12: (A) Area mismatch vs average elevation of each glacier, (B) Area mismatch vs
area of glaciers, (C) Area mismatch vs average slope, (D) Area mismatch vs average aspect.

E. Discussion

Using the newly developed glacier delineation algorithm, the author analyzed retreat

rates of glaciers across the greater Tien Shan Range (Figure 2.1).

Retreat Rates of Selected Glaciers

Two example glaciers were chosen to display specific retreat rates (Figures 2.13 and

2.14). In general, glaciers have retreated over the period 1998-2013. However, including

additional data sources such as Corona, Landsat Multispectral Scanner (MSS), ASTER,

and non-cloud free Landsat TM, ETM+ and OLI images was outside of the scope of this

study. Thus, area measurements are limited to the manually selected Landsat scenes.

The author would like to note that the primary use of the algorithm is not in

assessing trends within single individual glaciers, but in assessing trends at a larger

spatial scale. Due to the difficulties inherent in dividing one glacier area from another,
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Figure 2.13: Retreat for a glacier towards the far east of the study area, with 95% confidence
bounds. Retreat: 0.5%.

Figure 2.14: Retreat for a glacier towards the far west of the study area, with 95% confidence
bounds. Retreat: 0.1%.

particularly at high elevation areas where snowcover often connects multiple glaciers,

retreat rates on a glacier-by-glacier basis are associated with larger uncertainties. Fur-

thermore, over- and under-classified areas which tend to even out over a large spatial

scale can present problems at the scale of individual glaciers in a particularly distinct

topographic setting. An effort was made to choose glaciers which are somewhat isolated

to demonstrate retreat rates at a small scale, using both the algorithm and some manual

corrections at the tongue of the glacier. The algorithm is more useful when glacier area

changes are assessed at a watershed, drainage basin, or range-wide scale.
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Figure 2.15: Retreat rates of index glaciers across the Tien Shan, showing a slight trend from
east to west, with 95% confidence bounds.

Areal Changes in Glaciers Across the Entire Tien Shan

Figure 2.15 illustrates the relationship between spatial location, from east to west, and

retreat rates across the entirety of the Tien Shan Range. Though noise in the data

is evident, all of the data were generated using the same methodology, and are thus

comparable (a t-test performed on the data shows that the trend is significant at the 99

percent confidence level). The one caveat to this is that the author has noted that not

all Landsat scenes perform equally; scenes with excess snow, cloud cover, shadows, or

other strong spectral signatures may misclassify some glacial areas. An effort was made

to choose only the best suited images for this study; as can be seen from the statistical

analysis presented above, the glacier outlines are generally accurate, particularly when

considered in larger quantities.

Regional bulk retreat rates do not necessarily represent an accurate accounting of
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glacial health – for example, high elevation glaciers will generally retreat more slowly

than low elevation glaciers. This research has chosen to normalize the retreat rate

data by the area of each glacier (Hanshaw and Bookhagen, 2014). When the data are

normalized by other indices, such as median slope and elevation, the relationship remains

consistent, in that glaciers further to the east in the Tien Shan tend to have retreated

further than glaciers to the west, over the period ∼1998 - 2013. This agrees well with

work by Gardelle et al. (2013), who noted that the Pamir range has experienced slightly

positive mass balances over the period 2000-2011. Although this study is focused on areal

changes across the Tien Shan, as opposed to the mass balances examined by Gardelle

et al. (2013), the author proposes a similar mechanism for the variability in retreat rates:

spatial gradients in precipitation. To understand climatic forcing across the range, the

author has analyzed several climatic and topographic variables to determine the factors

responsible for the variation in retreat rates across the Tien Shan.

Links to Climate Trends

To analyze the impacts of climatic gradients across the study area on glacial behavior,

the author created a swath profile along the length of the greater Tien Shan Range.
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Figures 2.16A and 2.16B show the general topography across the range from the

Pamir Knot towards the eastern end of the Tien Shan. The highest elevation areas host

the most glaciers, most notably the Pamirs on the west of the swath profile (∼73◦E) and

the area surrounding the Inylchek glacier around 80◦E. Both SWE and precipitation in

general are fairly low throughout the range. Figure 2.16C shows precipitation and snow

cover throughout the study area, as well as seasonal precipitation percentages. Winter

(November-April) precipitation is dominant up until the eastern edge of the Pamirs,

where summer (May-October) precipitation becomes dominant. As glacial response to

summer and winter precipitation regimes is different (e.g., Narama et al., 2010), the split

between the winter and summer growth regions could also explain some of the east-west

variability in glacier retreat.

The atmospheric lapse rates (Figure 2.16D) illustrate generally cold temperatures

year round in the Pamirs, and generally higher summer temperatures than winter tem-

peratures throughout the remainder of the Tien Shan. Lapse rates are defined here as

the change in atmospheric temperature (in this case, land surface temperature, MODIS

product MOD11C) over change in elevation, which gives a temperature gradient across

the mountain range. The strongly negative lapse rates in the west indicate colder moun-

tain peaks, which have a strong correlation with larger glacial areas. As lapse rates

become less strongly negative towards the east, peaks become slightly warmer, and less

glaciated overall. The glaciers to the east are also more likely to be impacted by warming

temperatures, as they are situated in generally warmer areas to begin with.

There is a distinct precipitation gradient between the external watersheds and

the internal watershed, which drains towards the Taklamakan Desert (generalized into
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internal and external components as a black line in Figure 2.16A). The inner basin

receives generally less rainfall, and has less snow covered area. Lapse rates are similar in

the two regions, primarily due to generally cold temperatures year-round. Unfortunately,

TRMM data did not allow the author to effectively measure snowfall, which is a key

component in glacier area changes, and there is insufficient data to draw conclusions on

whether or not the drainage divide influences glacier retreat rates. It is unlikely that

the north-south divide is a strong controlling factor in retreat rates in the region, and

that the east-west gradient is a far stronger control.

Discussion of Algorithm Use Cases

Lack of data density and temporal range limits the efficacy of individual glacial analysis.

The algorithm presented in this paper was not designed with individual glacial studies in

mind, and in many cases, such as in mass balance studies, more accurate manual glacier

outlines are necessary. The glacier outlines provided by the algorithm are, however, a

useful first pass analysis of glacial area. It is often quicker to digitize only misclassified

areas, as opposed to digitizing entire glacier areas by hand (Paul et al., 2013). Paul

et al. (2013) also note that for clean ice, automatically derived glacial outlines tend to

be more accurate, and it is only in the more difficult debris-covered and shadowed areas

that manual digitization becomes preferable.

The algorithm moves a step further and attempts to classify glacier areas as ac-

curately as possible, including debris-covered areas. As can be seen in Figures 2.9 and

2.10, the algorithm performs very well over a large dataset (∼700 glaciers). At the scale

of watersheds, satellite image footprints, or entire mountain ranges, this is an effective

methodology which can be used to generate wide-area glacial statistics, as can be seen
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in Figure 2.15. As the method can be easily modified to fit the topographic and glacial

setting of any region, it is a powerful tool for analyzing glacier changes over large scales

over the period of Landsat TM, ETM+ and OLI coverage. Lastly, as the algorithm per-

forms well on debris-covered areas, it could be used in the place of simple spectral ratios,

as it will reduce the time required for manual digitization and correction, as compared

to spectral-only methods.

F. Conclusions

This study presents an enhanced glacial classification methodology based on the spectral,

topographic, and spatial characteristics of glaciers. The author has additionally applied

the algorithm to analyze the character of glaciers across the Tien Shan Range from

1998-2014.

The author’s algorithm represents a step forward toward (semi-) automated glacial

classification, in that it outperforms spectral-only algorithms in wide use in the glaciology

and remote sensing communities. Although it does not completely solve the difficulties

associated with debris covered glaciers, it can effectively and rapidly characterize glaciers

over a wide area. The first steps of this algorithm, which seek to characterize maximum

possible glacier area, are lake delineation, spectral delineation, and topographic filtering.

Following these steps, a set of velocity, spatial, and statistical filters are applied to

accurately delineate glacier outlines.

Using this newly developed algorithm, the author presents evidence that glacial

retreat rates across the Tien Shan show a distinct east to west gradient. Although

the difference in retreat rate is slight, it has been shown to be statistically significant,

and the author can say with confidence that glaciers closer to the Pamirs (west) are
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shrinking less than those closer to the Altai (east). To explain this gradient, the author

analyzed climate and topographic data, which reveal a distinct west to east trend in

precipitation which matches the general trend in retreat rates. As storms move from

the west, they split along the topographic front of the Pamirs, and only the largest

storms continue on north into the Tien Shan, where they are topographically trapped,

resulting in more precipitation in the west. This split is also evident in precipitation

seasonality, where the western regions of the Tien Shan receive more winter precipitation,

and less summer precipitation. This implies that the western regions receive both more

precipitation overall, and that the majority of this precipitation in glaciated areas falls

as snow. As a consequence of increasing temperatures in the region, summer-fed glaciers

(towards the east of the study area) will be impacted by longer ablation seasons, shorter

accumulation seasons, and shorter periods of high albedo (from fresh snow). All of these

factors enhance glacial retreat towards the east of the study area, while having weaker

effects on the glaciers towards the west of the study area. In summation, the east-west

glacier retreat gradient is driven by a combination of climate and topography.
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III. Progress Towards Mass Balance Analysis of the

Tien Shan

A. Introduction

Glacier change can be assessed through either areal change (through studies such as the

one presented in Chapter 2 of this thesis), or through estimates of mass balance. While

areal measurements are useful for tracking changes in glaciers, they are not always a

reliable measure of glacier health and are not always accurate enough for studying water

resources associated with the cryosphere. However, area measurements are easier to

collect over large scales, using satellite imagery, and thus much of the world’s glacier

inventory is comprised of areal measurements.

Mass balance estimates provide a more holistic view of glacier health by incor-

porating changes in glacier height, which allows researchers to estimate the amount of

water-equivalent stored in a glacier. Throughout the year, glaciers grow and shrink as

snowfall accumulates during cold months and ice melts off during warmer months. A

glacier’s mass balance is a measure of the total mass gained or lost over a fixed period

of time. As it is entirely possible for glaciers to thicken while shrinking in area, or thin

while growing in area, mass balance estimates are a more accurate and complete measure

of glacier health.

The Tien Shan has not received many mass balance estimates, and those estimates

were neither spatially extensive nor temporally dense (i.e. Pieczonka et al., 2013). The

purpose of this chapter, which is work in progress, is to both increase the density of

mass balance estimates and to extend the spatial extent of analyzed glaciers in the Tien
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Shan.

B. Data Sources

This study focuses on remotely sensed data and imagery, with additional contributions

of hydrologic and in-situ data where available via a long-standing research relationship

between the author’s adviser (Dr. Bodo Bookhagen) and several Kyrgyz institutions.

Optical Data

The primary data sources for this investigation are the Landsat and ASTER missions.

Landsat’s long time series is essential for assessing areal changes in glaciers over a decadal

and annual time scale, and forms the core of the debris-mapping algorithm (presented

in Chapter 2 of this thesis). Though additional datasets are required to accurately map

debris tongues, mapping would not be possible without the availability of several spectral

bands on Landsat.

ASTER stereoscopic imagery at 15m resolution was used to create DEMs of the

study region over multiple timesteps. By leveraging a time series of elevation models

over a specific glacier area, the author can derive an estimate of volumetric changes.

This volumetric data can in turn be used to estimate the amount of water gained or lost

over the same time period, and provides key insight into the water budget of a glaciated

watershed.

Elevation and Topographic Data

Accurate terrain and elevation data are a prerequisite for assessing volumetric changes

in glaciers, and hence any changes in their water storage capacity. The 2000 SRTM

DEM serves as a robust baseline elevation measure, as well as a master elevation model

with which to correct subsequent DEMs. Several studies have noted that the SRTM
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DEM is not always vertically accurate, particularly in mountainous terrain (e.g., Smith

and Sandwell, 2003; Berthier et al., 2006; Kääb et al., 2012; Gardelle et al., 2013).

This is partially due to over- and under-sampling in steep terrain, and also due to the

penetration of radar signals into snow and ice. To control for radar signal penetration,

both C and X band SRTM data is used.

Elevation models derived from optical imagery, such as ASTER, often contain size-

able errors, and must be statistically corrected. The author has developed an automated

correction technique, modified after Nuth and Kääb (2011), comprised of an image reg-

istration step, a tilt correction, an aspect correction, and an elevation correction. Once

two DEMs have been accurately co-registered and corrected for vertical agreement, they

can provide volumetric change estimates over a defined glacial area.

C. Methods

The first step in estimating glacier mass balance is the derivation of accurate glacial

outlines. This was undertaken through use of both the algorithm presented in Chapter 2,

and through manual corrections for misclassified areas. Where appropriate, corrections

for areal changes are taken into account when estimating mass balances.

DEM Correction

Nuth and Kääb (2011) presented a comprehensive correction methodology involving a tilt

correction, aspect correction, elevation correction, and satellite orientation correction.

To streamline this algorithm and make it more useful for large datasets, the author has

updated and automatized the DEM correction algorithm. Full scripts are provided here

as appendices D-I.
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Data Preparation

ASTER DEMs are created manually in ENVI by selecting a set of common tie points

between 3N (Nadir) and 3B (Backward) images. The SRTM DEM is used as a reference

image for accurate geolocation. Tie points are selected based on feature recognizabil-

ity, lack of snow, and lack of cloudcover. An effort was made to distribute tie points

throughout the image, and minimize the RMS error of the tie points (parallax below

∼1). These steps guarantee that the DEM generated is mostly geographically accurate,

although the ASTER DEM is not yet usable for mass balance measurements

Data are prepared by a script which resamples, reprojects, and renames input

datasets for easy ingestion by Matlab. The three datasets used in this step are the

SRTM DEM, a set of input ASTER DEMs, and a set of corresponding masks. The

masks comprise cloud-covered areas, as well as glaciated areas, which are not expected

to remain vertically stable over time. Between the 2000 SRTM DEM and subsequent

ASTER DEMs, much of the terrain in a given scene is expected to remain stable. Using

this stable terrain, a set of corrections can be derived and applied to the entirety of the

ASTER DEM, thus removing bias on both stable and unstable terrain. Excluding the

unstable terrain improves the statistical correlation over stable terrain by removing areas

which are known to be vertically inconsistent between the ‘master’ and ‘slave’ DEMs,

and is an essential step in accurately correcting the ASTER DEMs.

Co-registration

The image co-registration step takes the ASTER DEM as a slave input, and the SRTM

DEM as a master input. Image registration is performed through an intensity-based
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image registration which shifts the slave image in x, y, and z dimensions until the

closest match is found. This step is an extension of the algorithm proposed by Nuth and

Kääb (2011), and greatly increases the efficacy of the subsequent statistical corrections.

Tilt Correction

The tilt correction as implemented in the correction algorithm chooses low slope areas,

as well as areas with a low absolute difference between the SRTM DEM and ASTER

DEM, and performs iterative plane fitting to identify and correct relatively too-high and

too-low areas. The step is performed multiple times until the absolute difference between

the two datasets is minimized. The tilt corrected DEM is then used as the input for an

aspect based correction.

Aspect Correction

In complex terrain, such as the study area, slopes of differing aspect will be relatively

under- and over-sampled based on their orientation relative to the satellite view angle.

To reduce this sampling bias, an aspect correction is applied iteratively to minimize the

sampling bias. The aspect correction selects high slope areas (above a given threshold),

as well as the difference between the SRTM and ASTER DEM at those points. From

these points, a statistically significant sample is taken (1e5 pixels), and a sinusoidal

curve is fit to the difference vs aspect (Figure 3.1).

Using the curve fitted to the aspect data, a correction was applied to ‘flatten’

the aspect bias until there was no longer a statistically significant correlation between

aspect and height bias. Using the aspect corrected DEM, a final elevation correction

was applied.
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Figure 3.1: Example output of aspect correction script, showing selected height difference vs
height difference divided by tangent of slope and aspect vs height difference divided by tangent
of slope.

Elevation Correction

Studies have noted a significant bias in ASTER datasets due to uneven spatial distri-

bution of ground control points used in the generation of stereoscopic DEMs (Nuth and

Kääb, 2011). This can distort the height scale, and lead to significant offsets, especially

at the scales of glacial height changes. To correct for this, a model is fitted to compare

the ASTER DEM with the difference between the ASTER DEM and SRTM DEM, to

identify any elevation-dependant bias. The resulting correction removes any remaining

bias along the z axis. The results of these corrections can be seen in Figure 3.2.
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Figure 3.2: Number of points in 10m elevation bins vs the difference in height between ASTER
and SRTM DEMs. Black is uncorrected, Red is co-registered, Blue is tilt-corrected, Pink is
aspect corrected, and Green is elevation corrected. Illustrates improved agreement between
SRTM and ASTER DEMs over stable terrain through stepwise correction, as larger numbers
of pixels are well matched between the SRTM and ASTER dataset (∆h around zero).

As can be seen in Figure 3.2, the stepwise corrections increase the agreement

between the ‘master’ SRTM DEM and ‘slave’ ASTER DEM. Once the two datasets

have been properly co-registered, they can be used for elevation, and thus volume, change

estimates. As a final step, the mean bias between the two datasets is calculated, and

the bias is added to the ASTER DEM. This ensures that they two datasets are properly

matched in the z axis, and that changes in height between datasets can be trusted as

being significant (Figure 3.3).
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Figure 3.3: Mean bias between SRTM DEM and ASTER DEM.

Mass Balance Estimates

Using the set of corrected ASTER DEMs, as well as the master SRTM DEM, a timeseries

of glacier height changes can be calculated. As the research is interested in not only how

much the volume of a glacier changes, but where that volume change occurs, rasterized

versions of each DEM, bounded by the glacier outlines, are differenced. The results of

this preliminary study are presented below.

D. Preliminary Results

To examine the extent of glacial change in the Tien Shan, a pilot study site of one

glacier was chosen. This glacier was chosen due to its proximity to relatively large

glaciers in the region, and a large number of ASTER scenes which provided a relatively

dense volumetric timeseries. A preliminary figure illustrating the spatial gradient across

a single glacier can be seen in Figure 3.4.

Figure 3.4 shows general mass gain at the higher areas of the glacier, and mass
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Figure 3.4: Height difference between an example ASTER DEM and the SRTM DEM. Showing
general spatial patterns in mass change.

loss towards the glacier tongue. From this perspective, it is possible that the glacier

tongue is thinning and retreating while the higher elevation areas of the glacier are

actually thickening. Following this result, several more estimates of mass change across

glacier elevation distributions were created. Figure 3.5 illustrates the densest timeseries

examined, for a medium sized glacier near the Inylchek glacier.

Notably, single-timestep estimates for several other glaciers in the region show a

similar pattern. This work has not yet been extended throughout the entirely of the

Tien Shan Range, though recent work by Gardelle et al. (2013) has shown a slightly

positive mass balance in the Pamir Range, accompanied by a slight decrease in glacier
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Figure 3.5: Glacier hypsometry, as well as mass balance estimates through time. Shows a
consistent trend of mass loss at the tongue and mass gain in the high elevations across all
timesteps (Blue - August 2002, Red - June 2003, Green - July 2013)

area (∼1%).

E. Preliminary Discussion

As has been discussed above in Chapter 2 of this thesis, there are significant climatic gra-

dients across the greater Tien Shan Range. Though Figure 2.2.16 illustrates the spatial

aspects of climate gradients across the Tien Shan, it does not effectively illustrate climate

shifts over time. Aizen et al. (1997) analyzed long-term temperature and precipitation

trends across the Tien Shan, and showed that across all zones there was statistically

significant warming of both summer and annual air temperature (1940-1991). Precipi-

tation trends were generally flat, with the exception of the more western and northern

areas of the Tien Shan, though this trend is only exhibited below 2000 meters, as can

be seen in Figure 3.6 (Aizen et al., 1997). This is likely at least somewhat influenced by

lack of accurate snowfall measurements, particularly at high elevations. However, these

trends generally agree that the western areas of the Tien Shan towards the Pamir are
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receiving more moisture in general.

Figure 3.6: Precipitation trends (1940-1991) for station data across the Tien Shan. Generally
flat trends, with the exception of low elevation areas in the north and west. Modified from
Aizen et al. (1997).

One possibility which would explain both the glacial retreat and glacial mass bal-

ance estimates presented in this thesis is that warming throughout the Tien Shan has

led to glacier loss at low elevations. This would work to expand the ablation area, par-

ticularly in low elevation glaciers, and could account for the observed glacier retreat.

Glacier thickening at high elevations is less temperature dependent, because tempera-

tures remain low, but more reliant on precipitation. As precipitation has been shown to
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slightly increase in the west, and stay relatively constant in the east, the author would

expect slightly positive mass balances in the west and central regions of the Tien Shan,

and constant or negative mass balances towards the east. Preliminary work, combined

with the work of Gardelle et al. (2013), has shown that there are positive mass balances,

at least at high elevations, in the western and central regions of the Tien Shan. Extrap-

olating from this, it is likely that further analysis of glaciers in the eastern regions of

the Tien Shan will result in negative mass balance measurements. This, however, will

require further work outside of the scope of this thesis.

F. Future Work

Although this study presents some interesting results, they should be considered prelim-

inary until further analysis can be undertaken. The author aims to incorporate three

more data sources in order to further constrain the character of glaciers in the Tien

Shan.

First, Ice, Cloud, and Land Elevation Satellite (ICESat) data will be used to

constrain accurate point elevations on selected glaciers, dependent on data coverage.

The ICESat mission can provide very accurate (cm-to-dm-scale) measures of elevation

at point locations (Schutz et al., 2005). These point locations, although spatially di-

verse and temporally separated, provide valuable controls on ice elevations. Preliminary

analysis indicates that there are enough data points throughout the study region for

ICESat to provide a valuable control on elevation estimates derived from optical and

radar imagery. As the values are spatially limited, they are not appropriate for mass

balance estimates. When combined with ASTER DEM data, however, they provide

useful high-resolution control points.
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Second, Synthetic Aperture Radar Interferometry (InSAR) will be used for three

purposes: to (1) accurately identify lakes at high spatial resolution, (2) create interfero-

grams to map glacial area via incoherence, and (3) generate high-resolution DEMs from

interferograms with a temporal baseline of less than 2 weeks. Pro- and peri-glacial lakes,

which provide a highly visible signal in SAR data, are crucial seed points for the glacier

algorithm presented in Chapter 2 of this thesis. As glaciers move much faster than the

surrounding terrain, it is possible to remove low-velocity areas and return a map of only

‘incoherent’ areas. This provides similar utility to the image cross correlation presented

above, though at a higher spatial resolution. The high spatial resolution will also be

leveraged in the mass balance estimates, as low temporal baseline SAR images can be

used for DEM generation, which will help enhance the temporal and spatial resolution

of the mass balance estimates.

Finally, MODIS surface reflectances will be used to track surface reflectance changes

on glaciers. This is useful for identifying changes in snow cover (fresh vs. old snow), and

delineating ice and snow. On larger glaciers, it can also be used to estimate equilibrium

line altitudes (ELAs), which are a key measure of glacier health. If ELAs are moving

upwards, either precipitation is falling or temperatures are rising. When combined with

mass balance estimates over the whole glacier, ELAs can help untangle the true drivers

of glacial change in the region. As the mechanisms driving glacial change in the Tien

Shan are still poorly understood, creating linkages between seasonal snow cover and

glacier snowlines, and their resulting effects on glacial extents and mass balances, is

essential in understanding climate change impacts in the Tien Shan.
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Appendix A. Python Code - Glacier Mapping

## This script takes Landsat data and performs automated

classifications of glaciated areas and lake areas.

## Wrapper to two Matlab scripts (Glacier_Extraction ,

Late_Extraction)

## Created by Taylor Smith , June 2014

#Import Modules

print "Loading modules ..."

import arcpy , sys , os, string , csv , numpy , glob

import datetime , solar , time , subprocess , math , traceback

#All modules are open source with the exception of ArcPy

arcpy.env.overwriteOutput = True #Set the script to be able

to overwrite files

arcpy.CheckOutExtension("Spatial") #Access Spatial Analyst

extension

basepath = "" # This is the base directory path. All other

file paths are relative to this

def conf_reader(config_file):

"""Reads configuration files and returns a list of

strings"""

f = open(config_file , ’r’)

conf_list = []

for line in f:

raw = line.split(’#’)

data = raw[0]

new = data.replace(’\r\n’, ’’)

new_2 = new.replace(’ ’, ’’)

conf_list.append(new_2)

f.close()

return conf_list

if os.path.exists(basepath + "\\ Extract.conf"):

#Read config file to set up input datasets

conf = conf_reader(basepath + "\\ Extract.conf")

Asia_SRTM = conf [0] #SRTM (WGS84)

Asia_Slope = conf [1] #Pre -calculated Slope map from SRTM

, or NULL to calc during script

Rivers = conf [2] #Pre -calculated Rivers with 200m buffer
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(Tif Format)

TraceLakes = conf [3] #Training Lake TIFF FILE. SHP ->TIFF

Conversion is highly error prone

TraceDebris = conf [4] #Training Debris TIFF FILE. SHP ->

TIFF Conversion is highly error prone

Velocitydir = conf [5] # Points to directory of

Velocities for each zone (choose by path/row , date)

prjdir = conf [6] #Output projection directory

def LandsatMetadataRead(filename):

"""Parses the metadata associated with Landsat images (

_MTL.txt). Assumes that the metadata files are stored

in the same directory

as the image files (default). It then creates slope and

hillshade images from a clipped DEM (SRTM by Default)

."""

metafile = Path_Raw + filename + ’\\’ + filename + ’_MTL

.txt’

Sensor = filename [0:3] #Extract the sensor (LE7 ,LT4/5,

LC8)

f = open(metafile , ’r’)

for line in f: #Parse the XML structure for necessary

metadata

if ’DATE_ACQUIRED ’ in line:

date = line.split(’=’)[1]

datelist = date.split(’-’)

year = datelist [0]. strip(’ ’)

month = datelist [1]

day1 = datelist [2]

day = day1.strip(’\n’)

elif ’SUN_AZIMUTH ’ in line:

Sun_azi = float(line.split(’=’)[1])

elif ’SUN_ELEVATION ’ in line:

Sun_elev = float(line.split(’=’)[1])

elif ’SCENE_CENTER_TIME ’ in line:

timetop = line.split(’=’)[1]

t = timetop.split(’:’)

t3 = t[2]. strip(’abcdefghijklmnopqrstuvwxyz \

nABCDEFGHIJKLMNOPQRSTUVWXYZ ’)

timestamp = t[0] + ’:’ + t[1] + ’:’ + t3

elif ’GRID_CELL_SIZE_REFLECTIVE ’ in line:

sizetop = line.split(’=’)[1]

size = sizetop.strip(’\n’)

G = float(size)
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elif ’UTM_ZONE ’ in line:

UTMZONE = str(line.split(’=’)[1])

UTMZONE_strip = UTMZONE.strip(’ \n’)

#The following line should be modified based on

where .prj files are stored relative to data.

Ex:

prjfile = basepath + ’\\ PRJ_Files \\WGS 1984 UTM

Zone ’ + UTMZONE_strip + ’N.prj’

elif ’WRS_PATH ’ in line:

PATH = int(line.split(’=’)[1])

elif ’WRS_ROW ’ in line:

ROW = int(line.split(’=’)[1])

else:

continue

f.close()

print ’Metadata parsed ...’

year_day = year + ’_’ + month + ’_’ + day #Construct

timestamp for naming conventions

raster = Path_Raw + filename + ’\\’ + filename + ’_B4.

tif’ #Use a single band for creation clipping mask

for other datasets. This can be any image.

flag = ’N’

clipshp , arcrast = RastToShp(raster , year_day , flag) #

Return clipping polygon and raster that is used to

snap other datasets to same grid

print ’Extent Created ...’

HS_Mask , prjDEM = HSMask(year_day , clipshp , arcrast ,

Sun_azi , Sun_elev , Asia_SRTM , prjfile) #Create a

hillshade image to remove shadows from forthcoming

datasets

print ’HS Created ’

if Asia_Slope == ’NULL’:

Slope = Path_SRTM + year_day + "_Slope.tif"

S = arcpy.sa.Slope(prjDEM)

S.save(Slope)

else:

Slope == Asia_Slope

print ’Slope done ...’

#Choose which velocity profile to use

Velocity = Velocitydir + str(PATH) + ’_’ + str(ROW) + ’

_Normed.tif’ #Velocities are named relative to the

Path/Row combination

print ’Velocity chosen ...’
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return year_day , HS_Mask , clipshp , timestamp , G, Sensor ,

arcrast , Velocity , Slope , prjfile , prjDEM , PATH , ROW

#Returns data needed for the rest of the script

def RastToShp(rastinfile , year_day , flag):

"""Creates the output extent to be used in the rest of

the script. Allows all images to be snapped to

a constant grid , for direct matrix to matrix comparison"

""

if flag == ’N’:

arcrast = TMP + year_day + "_recasttif.tif"

tmptif = arcpy.Raster(rastinfile)

tmptif.save(arcrast) #This step can be necessary for

Arc tools to work properly on .tif files

arcpy.CalculateStatistics_management(arcrast)

if flag == ’Y’:

arcrast = TMP + year_day + "_recasttif.tif"

arcpy.CopyRaster_management(rastinfile , arcrast , ’’,

’ -9999’, ’ -9999’)

arcpy.env.extent = arcrast

clipshp_tmp = TMP + year_day + "_clipshp_tmp.shp"

EXT_data = arcpy.sa.Con(arcrast , 1, 0, ’"Value" > 0’) #

Choose only areas with data

tmp_ext = TMP + year_day + "_clipshp_con.tif"

EXT_data.save(tmp_ext)

del EXT_data

arcpy.RasterToPolygon_conversion(tmp_ext , clipshp_tmp , "

NO_SIMPLIFY", "Value") #Convert to Shpfile

clipshp = TMP + year_day + "_ext.shp"

clipshp_tmp2 = TMP + year_day + "_ext_tmp2.shp"

arcpy.Select_analysis(clipshp_tmp , clipshp_tmp2 , ’"

GRIDCODE" = 1’)

arcpy.Buffer_analysis(clipshp_tmp2 , clipshp , "-2

Kilometers") #Negative buffer to remove edge effects

cliprast = TMP + year_day + ’_ext_tif.tif’

arcpy.FeatureToRaster_conversion(clipshp , "GRIDCODE",

cliprast , 30) #Convert back to TIF file to use as

output extent

arcpy.Delete_management(clipshp)

arcpy.Delete_management(clipshp_tmp)

arcpy.Delete_management(clipshp_tmp2)

arcpy.Delete_management(tmp_ext)
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return cliprast , arcrast

def HSMask(year_day , clipshp , rastband , Sun_azi , Sun_elev ,

Asia_DEM , prj):

"""Clips a subset of a larger DEM , and then creates both

a hillshade and a shadow mask. Returns the shadow

mask ,

as well as a projected version of the DEM"""

outDEM = Path_SRTM + year_day + "_DEM.tif"

HSname = Path_SRTM + year_day + "_DEM_HS.tif"

arcpy.env.snapRaster = Asia_SRTM

arcpy.env.extent = clipshp

SRTM_DEM_clip = arcpy.sa.ExtractByMask(Asia_DEM , clipshp

)

SRTM_DEM_clip.save(outDEM)

prjDEM = Path_SRTM + year_day + "_DEM_prj.tif"

arcpy.ProjectRaster_management(outDEM , prjDEM , prj , ’

BILINEAR ’, ’30’)

arcpy.Delete_management(outDEM)

HS = arcpy.sa.Hillshade(prjDEM , Sun_azi , Sun_elev , "

SHADOWS") #Create Hillshade image

HS.save(HSname)

del HS

#Find shadowed areas and return a binary raster to use

as a mask

HS_Maskout = Path_SRTM + year_day + "_HSMask.tif"

HS_Mask = arcpy.sa.Con(HSname , 1, 0, ’"VALUE" < 10’)

HS_Mask.save(HS_Maskout)

del HS_Mask

arcpy.Delete_management(HSname)

return HS_Maskout , prjDEM

def ExtMatch(year_day , band , clipshp , tiffile , arcrast ,

prjfile , foldername):

"""This function matches all rasters to the same grid.

It resamples when necessary using bilinear resampling

.

Returns the clipped version of the input dataset."""
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arcpy.env.snapRaster = arcrast

arcpy.env.extent = clipshp

outprj = TMP + year_day + ’_’ + band + ’_tightprj.tif’

arcpy.ProjectRaster_management(tiffile , outprj , prjfile ,

’BILINEAR ’, ’30’)

out_tight = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

cliptif = arcpy.sa.ExtractByMask(outprj , clipshp)

cliptif.save(out_tight)

del cliptif

arcpy.Delete_management(outprj)

cell = arcpy.GetRasterProperties_management(out_tight , ’

CELLSIZEX ’)

cellsize = cell.getOutput (0)

if cellsize <> 30:

out_tight_res = TMP + year_day + "_" + band + "

_tight_res.tif"

arcpy.Resample_management(out_tight , out_tight_res ,

’30’, ’BILINEAR ’) #Resample all datasets to same

resolution

arcpy.Delete_management(out_tight)

arcpy.CopyRaster_management(out_tight_res , out_tight

)

arcpy.Delete_management(out_tight_res)

return out_tight

def ConvertShp(dataset , year_day , timestamp , filename , typed

, G, prjfile):

"""This function takes a raster dataset and converts it

to polygons. It also adds a set

of metadata , including year , timestamp , image ID, and

centroid to each polygon."""

arcpy.env.extent = Asia_SRTM

if typed == ’G’:

outfeats = Path_Glac_Ext + year_day + ’_’ + filename

+ ’_glaciers_tmp.shp’

R35 = Glac_Base + ’_35.tif’

if typed == ’L’:

outfeats = Path_Lake_Ext + year_day + ’_’ + filename
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+ ’_lakes_tmp.shp’

arcpy.CalculateStatistics_management(dataset)

outfeats_t = basepath + ’\\TMP\\ tmp_shp.shp’

arcpy.RasterToPolygon_conversion(dataset , outfeats_t , ’

NO_SIMPLIFY ’) #Convert raster back to polygon

arcpy.Select_analysis(outfeats_t , outfeats , ’"GRIDCODE"

= 1’)

arcpy.Delete_management(outfeats_t)

arcpy.DefineProjection_management(outfeats , prjfile)

arcpy.AddField_management(outfeats , ’IMG’, ’TEXT’) #Add

Fields

arcpy.AddField_management(outfeats , ’Date’, ’TEXT’)

arcpy.AddField_management(outfeats , ’Timestamp ’, ’TEXT’)

arcpy.AddField_management(outfeats , ’Area’, ’FLOAT’)

arcpy.AddField_management(outfeats , ’Perimeter ’, ’FLOAT ’

)

arcpy.AddField_management(outfeats , ’Error’, ’FLOAT’)

arcpy.AddField_management(outfeats , ’CentX’, ’FLOAT’)

arcpy.AddField_management(outfeats , ’CentY’, ’FLOAT’)

opt1 = "’%s’" % filename

arcpy.CalculateField_management(outfeats , ’IMG’, opt1 , ’

PYTHON ’) #Add filename

operator = " ’%s’" % year_day

arcpy.CalculateField_management(outfeats , ’Date’,

operator , ’PYTHON ’) #Add Date

opt2 = "’%s’" % timestamp

arcpy.CalculateField_management(outfeats , ’Timestamp ’,

opt2 , ’PYTHON ’) #Add Timestamp

arcpy.CalculateField_management(outfeats , ’Area’, "float

(!SHAPE.AREA!)", ’PYTHON ’) #Calculate Area

arcpy.CalculateField_management(outfeats , ’CentX’, "

float(!SHAPE.CENTROID !. split()[0])", ’PYTHON ’) #Add

centroids

arcpy.CalculateField_management(outfeats , ’CentY’, "

float(!SHAPE.CENTROID !. split()[1])", ’PYTHON ’)

print ’Fields calculated for ’ + year_day + ’ on ’ +

outfeats

cur = arcpy.UpdateCursor(outfeats)

shapeName = arcpy.Describe(outfeats).shapeFieldName

for shape in cur:
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feat = shape.getValue(shapeName)

shape.PERIMETER = feat.length #Add perimeter

shape.ERROR = feat.length /(G * 0.6872 * (math.pow(G

,2))/2) # (P/G) * 0.6872 * G2/2 where P is

perimeter and G is spatial resolution pre

resampling

##! Perimeter! /( 30 * 0.6872 * (math.pow (30,2))/2)##

cur.updateRow(shape)

del cur

if typed == ’G’: #For glaciers - trim out small spaces

if they are not explicitly classified as glacier

outtable = TMP + ’R35table.dbf’

arcpy.CalculateStatistics_management(R35)

outfeats_fin = Path_Glac_Ext + year_day + ’_’ +

filename + ’_glaciers.shp’

arcpy.Select_analysis(outfeats , outfeats_fin , ’"AREA

" > 1000 AND "PERIMETER" > 1000’)

out_spec = basepath + ’\\ Spec_Raw \\’ + year_day + ’_

’ + filename + ’_glaciers_35_tmp.shp’

out_spec_fin = basepath + ’\\ Spec_Raw \\’ + year_day

+ ’_’ + filename + ’_glaciers_35.shp’

arcpy.RasterToPolygon_conversion(R35 , out_spec , ’

NO_SIMPLIFY ’) #Convert raster back to polygon

arcpy.DefineProjection_management(out_spec , prjfile)

arcpy.Select_analysis(out_spec , out_spec_fin , ’"

GRIDCODE" = 1’)

arcpy.Delete_management(out_spec)

arcpy.Delete_management(R35)

arcpy.Delete_management(outfeats)

print ’Zonal Stats Done for Glacier ...’

if typed == ’L’: #For Lakes - trim out small areas

outfeats_fin = Path_Lake_Ext + year_day + ’_’ +

filename + ’_lakes.shp’

arcpy.Select_analysis(outfeats , outfeats_fin , ’"AREA

" > 5’) #500

arcpy.Delete_management(outfeats)

return outfeats_fin

## Set up folders for things to be saved to and pulled from

Path_Raw = basepath + #PATH TO RAW DATA (Landsat images each

in seperate directory)

Path_Glac_Ext = basepath + #PATH TO OUTPUT GLACIAL EXTENT
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SHAPEFILES TO

Path_Lake_Ext = basepath + #PATH TO OUTPUT LAKE EXTENTS TO

Path_SRTM = basepath + #PATH TO SAVE RESAMPLED DEMS INTO

TMP = basepath + #WORKING DIRECTORY WHERE TEMPORARY DATASETS

WILL BE SAVED

for foldername in os.listdir(Path_Raw):

try:

print ’Processing ’ + foldername

arcpy.env.extent = Asia_SRTM #Set the default

processing extent before each tree

year_day , HS_Mask , clipshp , timestamp , G, Sensor ,

arcrast , Velocity , Slope , prjfile , prjDEM , PATH ,

ROW = LandsatMetadataRead(foldername) #Read

metadata , prep elevation derived datasets

arcpy.env.extent = clipshp

for file in os.listdir(Path_Raw + foldername):

Landsat = Path_Raw + foldername + "\\" + file

## Clip all the images to the same size

if Landsat.endswith(’.TIF’) == True:

bandtop = Landsat.split(’_’)[-1]

band = bandtop.strip(’.tifTIF ’)

if band == ’1’:

band = ’B6_1’

elif band == ’2’:

band = ’B6_2’

if band == ’B1’ or band == ’B2’ or band == ’

B3’ or band == ’B4’ or band == ’B5’ or

band == ’B7’ or band == ’B6’:

if os.path.exists(TMP + year_day + "_" +

band + ’_’ + foldername + "_tight.

tif") == False:

ExtMatch(year_day , band , clipshp ,

Landsat , arcrast , prjfile ,

foldername) #This function does

the clipping and resampling

print band + ’ extent matched.’

else:

continue

else:

continue

if Sensor == ’LE7’ or Sensor == ’LT5’:

B1 = TMP + year_day + ’_B1_’ + foldername + "
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_tight.tif"

B3 = TMP + year_day + ’_B3_’ + foldername + "

_tight.tif"

B4 = TMP + year_day + ’_B4_’ + foldername + "

_tight.tif"

B5 = TMP + year_day + ’_B5_’ + foldername + "

_tight.tif"

B7 = TMP + year_day + ’_B7_’ + foldername + "

_tight.tif"

elif Sensor == ’LC8’: #Rename some files to account

for different band values on LC8

B1 = TMP + year_day + ’_B2_’ + foldername + "

_tight.tif"

B3 = TMP + year_day + ’_B4_’ + foldername + "

_tight.tif"

B4 = TMP + year_day + ’_B5_’ + foldername + "

_tight.tif"

B5 = TMP + year_day + ’_B6_’ + foldername + "

_tight.tif"

B7 = TMP + year_day + ’_B7_’ + foldername + "

_tight.tif"

band = ’ShadowMask ’

if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:

Mask = ExtMatch(year_day , band , clipshp , HS_Mask

, arcrast , prjfile , foldername)

else:

Mask = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

print ’Shadow Mask Created ’

band = ’SlopeMask ’

if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:

SlopeMask = ExtMatch(year_day , band , clipshp ,

Slope , arcrast , prjfile , foldername)

else:

SlopeMask = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

print ’Slope Mask Created ’

band = ’ElevMask ’

if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:
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ElevMask = ExtMatch(year_day , band , clipshp ,

prjDEM , arcrast , prjfile , foldername)

else:

ElevMask = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

print ’Elevation Mask Created ’

band = ’RivMask ’

if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:

RivMask = ExtMatch(year_day , band , clipshp ,

Rivers , arcrast , prjfile , foldername)

else:

RivMask = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

print ’River Mask Created ’

band = ’VelMask ’

if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:

Vel_Arc = TMP + year_day + ’_tmpVel.tif’ #This

is necessary for datasets which come from

Matlab , because Arc is bad with projections

v = arcpy.Raster(Velocity)

v.save(Vel_Arc)

del v

VelMask = ExtMatch(year_day , band , clipshp ,

Vel_Arc , arcrast , prjfile , foldername)

arcpy.Delete_management(Vel_Arc)

else:

VelMask = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

print ’Velocity Mask Created ’

band = ’LakeTrace ’

if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:

Lakes_known = ExtMatch(year_day , band , clipshp ,

TraceLakes , arcrast , prjfile , foldername)

else:

Lakes_known = TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif"

print ’Lake Training Set Created ’

band = ’ManualDebris ’
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if os.path.exists(TMP + year_day + "_" + band + ’_’

+ foldername + "_tight.tif") == False:

Debris = ExtMatch(year_day , band , clipshp ,

TraceDebris , arcrast , prjfile , foldername)

else:

Debris = TMP + year_day + "_" + band + ’_’ +

foldername + "_tight.tif"

print ’Manual Debris Cover Clipped ’

arcpy.Delete_management(arcrast)

if Asia_Slope == ’NULL’:

arcpy.Delete_management(Slope)

print ’Input Datasets Created ’

#Set up output paths

Out_Lakes = Path_Lake_Ext + year_day + ’_’ +

foldername + ’_lakes.tif’

Glac_Base = Path_Glac_Ext + year_day + ’_’ +

foldername + ’_glaciers ’

Out_Glaciers = Path_Glac_Ext + year_day + ’_’ +

foldername + ’_glaciers.tif’

## Send the inputs to Matlab for processing of Lakes

##

try:

arcpy.Delete_management(Out_Lakes)

except:

pass

if os.path.exists(Out_Lakes) == False:

#print "matlab -nosplash -nodesktop -r

LakeExtract (’%s’,’%s’,’%s’,’%s’,’%s’,’%s’)" %

(B1 ,B4,HS_Mask ,Out_Lakes , Lakes_known ,

SlopeMask)

subprocess.call("matlab -nosplash -nodesktop -r

LakeExtract (’%s’,’%s’,’%s’,’%s’,’%s’,’%s’)" %

(B1 ,B4,Mask ,Out_Lakes , Lakes_known ,

SlopeMask))

while not os.path.exists(Out_Lakes):

time.sleep (1)

time.sleep (5)

typed = ’L’

arcpy.DefineProjection_management(Out_Lakes , prjfile

)

Lake_Shp = ConvertShp(Out_Lakes , year_day , timestamp

, foldername , typed , G, prjfile)
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## Send inputs to Matlab for processing of Glaciers

##

try:

arcpy.Delete_management(Out_Glaciers)

except:

pass

if os.path.exists(Out_Glaciers) == False:

#Matlab takes a hard number of characters for

command line calls , so this writes all of the

data to a CSV which is then parsed in Matlab

procsv = ’E:\\ Kyrgyz_Glacier_Cover \\

Extensive_Landsat \\ Procfiles \\ Threshold_ ’ +

str(PATH) + ’_’ + str(ROW) + ’.csv’

tmproc = ’E:\\ Kyrgyz_Glacier_Cover \\

Extensive_Landsat \\ Procfiles \\ procfile_ ’ +

foldername + ’.csv’

csvwrite = csv.writer(open(tmproc , ’wb’))

csvwrite.writerow ([B1,B3 ,B4,B5,B7 ,Mask ,Glac_Base

,Out_Lakes ,SlopeMask ,ElevMask ,RivMask ,Debris ,

VelMask ,procsv ])

del csvwrite

#print "matlab -nosplash -nodesktop -r

GlacExtract (’%s’)" % tmproc

subprocess.call("matlab -nosplash -nodesktop -r

GlacExtract (’%s’)" % tmproc)

d = 0

while not os.path.exists(Out_Glaciers):

time.sleep (1)

d = d + 1

if d > 1000:

break

print ’Matlab done. Vectorizing ...’

time.sleep (5) #Allow five seconds for datasets to be

properly saved out

## Do final attribute adding and conversion

typed = ’G’

GlacOut = Glac_Base + ’.tif’

Glac_Shp = ConvertShp(GlacOut , year_day , timestamp ,

foldername , typed , G, prjfile)

arcpy.DefineProjection_management(Glac_Shp , prjfile)

## Clean up unneccessary datasets ##

arcpy.Delete_management(B1)

76



arcpy.Delete_management(B3)

arcpy.Delete_management(B4)

arcpy.Delete_management(B5)

arcpy.Delete_management(Mask)

arcpy.Delete_management(B7)

arcpy.Delete_management(SlopeMask)

arcpy.Delete_management(ElevMask)

arcpy.Delete_management(RivMask)

arcpy.Delete_management(Out_Lakes)

arcpy.Delete_management(Debris)

arcpy.Delete_management(Out_Glaciers)

arcpy.Delete_management(VelMask)

print ’Done with ’ + foldername

except:

print foldername + ’ failed.’

traceback.print_exc ()

print ’I hope that error code helps.’

try:

arcpy.Delete_management(B1)

arcpy.Delete_management(B3)

arcpy.Delete_management(B4)

arcpy.Delete_management(B5)

arcpy.Delete_management(Mask)

arcpy.Delete_management(B7)

arcpy.Delete_management(SlopeMask)

arcpy.Delete_management(ElevMask)

arcpy.Delete_management(RivMask)

arcpy.Delete_management(Out_Lakes)

arcpy.Delete_management(Debris)

arcpy.Delete_management(Out_Glaciers)

arcpy.Delete_management(VelMask)

except:

pass
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Appendix B. Matlab Code - Lake Delineation

function LakeExtract(TM1_r , TM4_r , Mask_r , outpath ,

tracerLakes ,Slope_r)

%LakeExtract - Lake extraction via Landsat Band Ratios

% LakeExtract(TM1 , TM4 , Mask , outpath , TracerLakes , Slope)

% returns a TIF file delineating lake areas in a given

scene.

% Functions by checking band ratios in a set of training

lakes

% (TracerLakes) and using them to delineate other lakes.

%Created by Taylor Smith , June 2014

[TM1 , refmat , bbox] = geotiffread(TM1_r); %Read in datasets

TMinfo = geotiffinfo(TM1_r);

TM1 = single(TM1); %Integerize

idx0 = find(TM1 <= 0); TM1(idx0) = NaN; %Recast nodata as

NaN

disp(’TM1 Loaded ’)

[TM4 , refmat , bbox] = geotiffread(TM4_r);

TM4 = single(TM4); %Integerize

idx0 = find(TM4 <= 0); TM4(idx0) = NaN; %Recast nodata as

NaN

disp(’TM4 Loaded ’)

[Mask , refmat , bbox] = geotiffread(Mask_r);

Mask = single(Mask); %Integerize

idx0 = find(Mask <= 0); Mask(idx0) = NaN; %Recast nodata as

NaN

disp(’Mask Loaded ’)

Ratio = (TM4 - TM1)./( TM4 + TM1); %NDWI to identify lakes

clear TM4 bbox idx0

disp(’Bands Ratiod ’)

[LakeT , refmat , bbox] = geotiffread(tracerLakes); %Read in

manually classified lakes as training

LakeT = single(LakeT);

target = find(LakeT == 1);

LTemp = Ratio;

LRatio = nanmean(LTemp(target)) + 0.05; %Add buffer for

sediment -laden lakes. Can be removed if lakes are highly
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constrained

clear LakeT bbox refmat idx0 LTemp target

ratioidx = find(Ratio < LRatio); % Identify lakes based on

NDWI

Maskidx = find(Mask > 0);

TM1(ratioidx) = 1; %Remove misclassified areas in shadow

TM1(Maskidx) = NaN;

clear ratioidx Maskidx Mask Ratio

restidx = find(TM1 > 1);

TM1(restidx) = NaN;

clear restidx

[Slope , refmat , bbox] = geotiffread(Slope_r);

Slope = single(Slope); %Integerize

idx0 = find(Slope <= 0); Slope(idx0) = NaN;

disp(’Slope Loaded ’)

clear idx0

Slopeidx = find(Slope > 5); %Identify slopes greater than 5

degrees and remove lakes

TM1(Slopeidx) = NaN;

clear Slope Slopeidx

B3 = int16(TM1);

B4 = reshape(B3 , TMinfo.Height , TMinfo.Width); %Reshape to

save out

clear B3

geotiffwrite(outpath , B4 , TMinfo.SpatialRef , ’

CoordRefSysCode ’, TMinfo.GeoTIFFCodes.PCS);

disp(strcat(outpath ,’ created.’))

exit
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Appendix C. Matlab Code - Glacier Delineation

function GlacExtract(csvfile)

%GlacExtract(csvfile)

% This function performs glacier extraction via Landsat

Band comparisons.

% It requires an extensive set of input datasets , read

from a CSV. These

% are TM1 , TM3 , TM4 , TM5 , TM7 , Shadow Mask , Base Export

Path , Lakes from

% Lake_Extraction , Slope , Elevation , River Network , Manual

Debris , Velocity ,

% and a CSV containing thresholds for the region.

%Created by Taylor Smith , June 2014

%% Data read -in

fid = fopen(csvfile , ’r’); %Read attributes from a csv

nextLine = fgetl(fid);

Cells = strsplit(nextLine , ’,’);

TM1_r = Cells {1};

TM3_r = Cells {2};

TM4_r = Cells {3};

TM5_r = Cells {4};

TM7_r = Cells {5};

Mask_r = Cells {6};

Glac_Base = Cells {7};

Out_Lakes = Cells {8};

Slope_r = Cells {9};

Elev_r = Cells {10};

Riv_r = Cells {11};

TraceDebris_r = Cells {12};

Vel_r = Cells {13};

Attscsv = Cells {14};

fclose(fid);

fid = fopen(Attscsv , ’r’); %Pull elevation , min and max

velocity , and NDVI threshold for each individual Landsat

scene

nextLine = fgetl(fid);

Cells = strsplit(nextLine , ’,’);

ElevThreshold = str2double(Cells {1});

MinVelocity = str2double(Cells {2});

MaxVelocity = str2double(Cells {3});
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NDVIThreshold = str2double(Cells {4});

fclose(fid);

%% Pure Glacial Delineation

[TM3 , refmat , bbox] = geotiffread(TM3_r);

TM3 = single(TM3); %Integerize

idx0 = find(TM3 <= 0); TM3(idx0) = NaN; %Recast nodata as

NaN

[TM5 , refmat , bbox] = geotiffread(TM5_r);

TM5 = single(TM5); %Integerize

idx0 = find(TM5 <= 0); TM5(idx0) = NaN; %Recast nodata as

NaN

Ratio = TM3./TM5; %Create the ratio of TM3/TM5

disp(’Bands Ratiod ’)

clear TM5 bbox idx0 TM3

TMinfo = geotiffinfo(TM1_r);

[TM1 , refmat , bbox] = geotiffread(TM1_r);

TMinfo = geotiffinfo(TM1_r);

TM1 = single(TM1); %Integerize

idx01 = find(TM1 <= 0); TM1(idx01) = NaN; %Recast nodata as

NaN

ratioidx = find(Ratio >= 2 & TM1 > 250); %Use both the ratio

and TM band 1 to pull out glaciated areas.

% This calculation is very bad at pulling thick debris cover

, so the rest of this script works to identify debris

cover

TM1(ratioidx) = 1;

clear ratioidx bbox idx01 Ratio

[Mask , refmat , bbox] = geotiffread(Mask_r); %Mask out

shadows

Mask = single(Mask); %Integerize

idx0 = find(Mask <= 0); Mask(idx0) = NaN; %Recast nodata as

NaN

disp(’Mask Loaded ’)

Maskidx = find(Mask > 0);

TM1(Maskidx) = NaN;

clear Maskidx Mask bbox idx0

[Lake , refmat , bbox] = geotiffread(Out_Lakes); %Mask out
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lakes

Lake = single(Lake); %Integerize

idx0 = find(Lake <= 0); Lake(idx0) = NaN; %Recast nodata as

NaN

clear bbox idx0

Lakeidx = find(Lake == 1); %Create an index of just lakes

TM1(Lakeidx) = 1; %Temporarily add lakes to glacier dataset

for processing

clear Lake

restidx2 = find(TM1 > 1);

TM1(restidx2) = NaN;

restidx = find(TM1 > 0);

Ttmp = TM1;

Ttmp(Lakeidx) = NaN;

outpath = strcat(Glac_Base , ’_35.tif’);

geotiffwrite(outpath , int16(Ttmp), TMinfo.SpatialRef , ’

CoordRefSysCode ’, TMinfo.GeoTIFFCodes.PCS); %Write out

the spectral -only outlines for future processing

clear Ttmp

[Seeds , refmat , bbox] = geotiffread(TraceDebris_r); %Add

manual seed points to index of glaciers

Seeds = single(Seeds);

Sidx = find(Seeds == 1); clear Seeds

TM1(Sidx) = 1; clear Sidx

testseed = find(TM1 > 0);

clear TM1 restidx2

%% Examine Debris Areas

% At this point , these are pure glacier outlines. Next find

debris

[Slope , refmat , bbox] = geotiffread(Slope_r);

Slope = single(Slope); %Integerize

idx0 = find(Slope <= 0); Slope(idx0) = NaN;

disp(’Slope Loaded ’)

clear idx0

Slopeidx = find(Slope > 24); %Identify slopes between 1 and

24 degris (After Paul et al., 2004)

Slope(Slopeidx) = NaN;
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Slope2idx = find(Slope < 1);

Slope(Slope2idx) = NaN;

S = stdfilt(Slope , ones (9)); %Identify and remove areas of

low slope variability (plains , riverbeds , etc)

Stdidx = find(S > 2);

Slope(Stdidx) = NaN;

clear S Stdidx

Slopeidxr = find(Slope > 0);

Slope(Slopeidxr) = 1;

clear Slope2idx Slopeidx Slopeidxr

[Elev , refmat , bbox] = geotiffread(Elev_r); %Filter for

elevation. This can be set dependent on lowest glacier

elevation in study region

Elev = single(Elev); %Integerize

idx0 = find(Elev <= 0); Elev(idx0) = NaN;

disp(’Elev Loaded ’)

clear idx0

elevmask = find(Elev < ElevThreshold); %Low elev , not

glacier

Slope(elevmask) = NaN;

clear Elev refmat bbox

[Riv , refmat , bbox] = geotiffread(Riv_r); %Read in rivers to

remove mis -identified areas of wet soil

Riv = single(Riv); %Integerize

idx0 = find(Riv > 1); Riv(idx0) = NaN;

Riv(elevmask) = NaN;

rivseed = find(Riv == 1);

clear Riv refmat bbox

[Vel , refmat , bbox] = geotiffread(Vel_r); %Read velocity

data

Vel = single(Vel);

idx0 = find(Vel < 0); Vel(idx0) = NaN;

idx1 = find(Vel > MaxVelocity); Vel(idx1) = NaN;

disp(’Velocity Loaded ’)

velmask = find(Vel < MinVelocity);

Slope(velmask) = NaN;

clear Vel refmat bbox idx0 idx1

%Use a distance weighting metric based on distance from

rivers (center of valleys) to identify debris areas

T = graydist(Slope , rivseed);

Tidx = find(T > 90);
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Slope(Tidx) = NaN; Slope(elevmask) = NaN;

clear Tidx T elevmask

seed2idx = find(Slope > 0);

Slope(seed2idx) = 1;

Slope(restidx) = NaN;

clear seed2idx rivseed

maskidx = isnan(Slope);

%% Filter Overclassifications

%Debris maximum extent is now identified. The next steps try

to remove misclassified areas

%% NDWI Masking

[TM1 , refmat , bbox] = geotiffread(TM1_r);

TM1 = single(TM1); %Integerize

idx0 = find(TM1 <= 0); TM1(idx0) = NaN; %Recast nodata as

NaN

disp(’TM1 Loaded ’)

[TM4 , refmat , bbox] = geotiffread(TM4_r);

TM4 = single(TM4); %Integerize

idx0 = find(TM4 <= 0); TM4(idx0) = NaN; %Recast nodata as

NaN

disp(’TM4 Loaded ’)

Ratio = (TM4 - TM1)./( TM4 + TM1); %NDWI Calculation

clear TM4 TM1

Ratio(maskidx) = NaN;

RadIdx = find(Ratio > 0); % Remove positive water areas

Slope(RadIdx) = NaN;

clear RadIdx Ratio

%% NDVI Masking

maskidx = isnan(Slope);

[TM3 , refmat , bbox] = geotiffread(TM3_r);

TM3 = single(TM3); %Integerize

idx0 = find(TM3 <= 0); TM3(idx0) = NaN; %Recast nodata as

NaN

[TM4 , refmat , bbox] = geotiffread(TM4_r);

TM4 = single(TM4); %Integerize

idx0 = find(TM4 <= 0); TM4(idx0) = NaN; %Recast nodata as

NaN
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NDVI = (TM4 - TM3)./(TM4 + TM3); clear TM4 TM3 idx0 bbox

refmat

NDVI(maskidx) = NaN;

NDVIdx = find(NDVI > NDVIThreshold); %Remove vegetated areas

Slope(NDVIdx) = NaN;

clear NDVI NDVIdx

S2 = Slope; % Do a second distance weighting from only

manual seed points and lakes

S2(restidx) = 1;

T2 = graydist(S2,testseed);

T2idx = find(T2 > 400);

Slope(T2idx) = NaN;

clear S2 T2 T2idx

%% Statistical Filtering

slopeidx = isnan(Slope);

Slope(slopeidx) = 0; clear slopeidx

B = medfilt2(Slope , [3 3]);

new = ~bwareaopen (~B, 100000);

clear B Slope

new(restidx) = 1;

new(testseed) = 1;

new(Lakeidx) = 0;

clear TM1 restidx Lakeidx testseed

B2 = medfilt2(new , [3 3]); %Single median filter pass

disp(’Pass 2 Done. Saving ...’)

new2 = bwareaopen(B2, 1000); % Was 1500

clear B2

new4 = bwmorph(new2 ,’open’); %Perform an image opening to

remove more edge effects

new4 = single(new4);

clear new2

[Slope , refmat , bbox] = geotiffread(Slope_r);

Slope = single(Slope);

idx0 = find(Slope <= 0); Slope(idx0) = NaN;

disp(’Slope Loaded ’)

clear idx0

Slopeidx = find(Slope > 60); %Make sure that no new high -

slope areas have been added during distance weighting/

statistical filtering
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new4(Slopeidx) = NaN;

clear Slope Slopeidx

new5 = medfilt2(new4 , [5 5]);

clear new4

new5(find(new5 == 0)) = NaN;

BW = im2bw(new5 , 0.1);

new6 = bwmorph(BW , ’bridge ’);

clear BW

clear maskidx new new5 velmask

new8 = +new6;

outpath = strcat(Glac_Base , ’.tif’);

geotiffwrite(outpath , int16(new8), TMinfo.SpatialRef , ’

CoordRefSysCode ’, TMinfo.GeoTIFFCodes.PCS); %Save out the

glaciated areas

exit
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Appendix D. Python Code - DEM Correction

##This script was created to prepare ASTER data for DEM

Extraction , and then for optimization via Matlab. It

takes

##inputs as GeoTiff files , and exports corrected images into

a defined file structure.

##REQUIRES CUSTOM MODULES: Numpy , Solar , and Arcpy , with the

Spatial Analyst Extension available. Designed under

Python 2.6.5

##Created by Taylor Smith , Mar 2013

## Most recent update: June 2014

#Import Modules

print "Loading modules ..."

import arcpy , sys , os, string , csv , numpy , glob

import datetime , solar , time , subprocess

arcpy.env.overwriteOutput = True #Set the script to be able

to overwrite files

arcpy.CheckOutExtension("Spatial")

basepath = "" #Base directory goes here

#These lines comprise the folder structure I have developed.

You can add or change these as necessary for your

purposes.

Path_Corrected = basepath + #Corrected DEM Output Directory

Path_CorrStat = basepath + #Correction Stats output

Path_Extents = basepath + #Extents

Path_SRTM = basepath + #SRTM Path

Path_ASTER = basepath + #ASTER DEMs Stored here. Script

loops through here

def conf_reader(config_file): #Read config files with

comments

f = open(config_file , ’r’)

conf_list = []

for line in f:

raw = line.split(’#’)

data = raw[0]

new = data.replace(’\r\n’, ’’)

new_2 = new.replace(’ ’, ’’)

conf_list.append(new_2)

f.close()
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return conf_list

if os.path.exists(basepath + "DEM_Correction.conf"): #Read

in necessary parameters from config file

f = open(basepath + "DEM_Correction.conf",’r’)

conf = f.read().split(’\n’)

SRTM_Cont = conf [0]

process = conf [2]

correct = conf [3]

maskin = conf [4]

Path_Mask = conf [5]

buffdist = float(conf [6])

Resampled_SRTM = conf [7]

f.close()

def SRTMtoASTSpace(shortname ,timestamp ,area ,code ,ASTER):

"""This function clips two DEMs to the same extent , and

equalizes their cellsize. This

preps the rasters for use as Matlab matrices"""

arcpy.env.snapRaster = Resampled_SRTM

arcpy.env.extent = Resampled_SRTM

clipshp_tmp = Path_SRTM + shortname + "_" + timestamp +

"_" + code + "_DEM_clip_tmp.shp"

clipshp = Path_SRTM + shortname + "_" + timestamp + "_"

+ code + "_DEM_clip.shp"

ASTER_DEM_data = arcpy.sa.Con(ASTER , 1, 0, ’"VALUE" > 0’

)

arcpy.RasterToPolygon_conversion(ASTER_DEM_data ,

clipshp_tmp , "NO_SIMPLIFY", "VALUE")

if buffdist == 0:

clipshp_tmp2 = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_DEM_clip_tmp2.shp"

arcpy.Select_analysis(clipshp_tmp , clipshp_tmp2 , ’"

GRIDCODE" = 1’)

clipshp = clipshp_tmp2

else:

clipshp_tmp2 = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_DEM_clip_tmp2.shp"

arcpy.Buffer_analysis(clipshp_tmp , clipshp , "-%f

Kilometers" % buffdist) #Remove edge effects

arcpy.Select_analysis(clipshp , clipshp_tmp2 , ’"

GRIDCODE" = 1’)

88



clipshp = clipshp_tmp2

arcpy.env.extent = clipshp

outDEM_tight = Path_SRTM + shortname + "_" + timestamp +

"_" + code + "_DEM_tight.tif"

SRTM_DEM_clip = arcpy.sa.ExtractByMask(Resampled_SRTM ,

clipshp)

SRTM_DEM_clip.save(outDEM_tight)

outname = Path_Corrected + shortname + "_" + timestamp +

"_" + code + "_ArcForm.tif"

AST_DEM_clip = arcpy.sa.ExtractByMask(ASTER , clipshp)

AST_DEM_clip.save(outname)

if MASK != ’NULL’:

MSKout = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_MASK_clip.tif"

MSK_Clip = arcpy.sa.ExtractByMask(MASK , clipshp)

MSK_Clip.save(MSKout)

MSK = MSKout

arcpy.Delete_management(clipshp)

try:

arcpy.Delete_management(chipshp_tmp)

except:

pass

try:

arcpy.Delete_management(clipshp_tmp2)

except:

pass

def ResampleReclip(shortname ,timestamp ,Area ,code ,ASTER_asp):

"""This function functions pretty much the same as above

, except it calls different export paths."""

arcpy.env.extent = Resampled_SRTM #Reset the environment

extent

arcpy.env.snapRaster = Resampled_SRTM

clipshp = Path_SRTM + shortname + "_" + timestamp + "_"

+ code + "_DEM_clip.shp"

time.sleep (5)

ASTER_DEM_data = arcpy.sa.Con(ASTER_asp , 1, 0, ’"VALUE"

> 0’)

arcpy.RasterToPolygon_conversion(ASTER_DEM_data , clipshp

, "NO_SIMPLIFY", "VALUE")
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del ASTER_DEM_data

arcpy.env.extent = clipshp

outDEM_tight = Path_SRTM + shortname + "_" + timestamp +

"_" + code + "_ASP_SRTM_tight.tif"

SRTM_DEM_clip = arcpy.sa.ExtractByMask(Resampled_SRTM ,

clipshp)

SRTM_DEM_clip.save(outDEM_tight)

outname = Path_Corrected + shortname + "_" + timestamp +

"_" + code + "_AspCorr.tif"

AST_DEM_clip = arcpy.sa.ExtractByMask(ASTER_asp , clipshp

)

AST_DEM_clip.save(outname)

if MASK != ’NULL’:

MSKout = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_ASP_MASK_clip.tif"

MSK_Clip = arcpy.sa.ExtractByMask(MASK , clipshp)

MSK_Clip.save(MSKout)

arcpy.Delete_management(clipshp)

def MaskMaker(shortname ,timestamp ,code ,MASK):

"""This function rasterizes a shapefile mask if a mask

is being used during statistical analysis"""

MSK = Path_Corrected + shortname + "_" + timestamp + "_"

+ code + "_MASK.tif"

try:

arcpy.DeleteField_management(MASK , "DATA")

except:

pass

arcpy.AddField_management(MASK , "DATA", "SHORT")

arcpy.CalculateField_management(MASK , "DATA", ’!DATA! ==

0’, "PYTHON")

arcpy.PolygonToRaster_conversion(MASK , "DATA", MSK , "

CELL_CENTER","#" ,15)

return MSK

def RegReclip(Reg_AST):

"""Reclips SRTM after coregistration"""

arcpy.env.extent = Reg_AST

clipshp = Path_SRTM + shortname + "_" + timestamp + "_"

+ code + "_clip_reg.shp"
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time.sleep (5)

ASTER_DEM_data = arcpy.sa.Con(Reg_AST , 1, 0, ’"VALUE" >

0’)

arcpy.RasterToPolygon_conversion(ASTER_DEM_data , clipshp

, "NO_SIMPLIFY", "VALUE")

del ASTER_DEM_data

arcpy.env.extent = clipshp

SRTM_tight = Path_SRTM + shortname + "_" + timestamp + "

_" + code + "_SRTM_tight_reg.tif"

SRTM_DEM_clip = arcpy.sa.ExtractByMask(Resampled_SRTM ,

clipshp)

SRTM_DEM_clip.save(SRTM_tight)

return SRTM_tight

def DataClean(Elev_Corr):

"""Adds stats to final exported product so it is easier

to use in ArcGIS. Also

creates a final difference map between the two DEMs"""

outSetNull = arcpy.sa.SetNull(Elev_Corr , Elev_Corr , ’"

VALUE" < 0’)

outSetNull.save(Elev_Corr)

arcpy.CalculateStatistics_management(Elev_Corr)

elev_outline = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_finaloutline.shp"

elev_data = arcpy.sa.Con(Elev_Corr , 1, 0, ’"VALUE" > 0’)

arcpy.RasterToPolygon_conversion(elev_data , elev_outline

, "NO_SIMPLIFY", "VALUE")

del elev_data

arcpy.env.extent = elev_outline

final_DEM_tight = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_elev_SRTM_tight.tif"

SRTM_DEM_clip = arcpy.sa.ExtractByMask(Resampled_SRTM ,

elev_outline)

SRTM_DEM_clip.save(final_DEM_tight)

finaldifmap = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_finaldifmap.tif"

minus = arcpy.sa.Minus(final_DEM_tight , Elev_Corr)

minus.save(finaldifmap)

for root , dirs , files in os.walk(Path_ASTER): #The script

will walk the entire directory under Path_ASTER looking
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for .tif files. If you don ’t want them processed , hide

them , or divert the walk function

for name in files:

ASTER = os.path.join(root ,name)

if ASTER.endswith(’.tif’) == True:

longname = name.split(’_’)

shortname = longname [0]

timestamp = longname [1]

code = longname [2]

print "Processing: " + ASTER

if maskin == ’Y’:

if Path_Mask.endswith(’.tif’):

MASK = Path_Mask

elif Path_Mask.endswith(’.shp’):

MASK = MaskMaker(shortname ,timestamp ,

code ,Path_Mask) #Rasterize input mask

data

print "Mask Generated."

elif maskin == ’N’:

MASK = ’NULL’

SRTMtoASTSpace(shortname ,timestamp ,Area ,code ,

ASTER) #Match the two DEMs to same cell

extents

ASTER = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_ArcForm.tif"

if MASK == ’NULL’:

MSK = ’NULL’

else:

MSK = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_MASK_clip.tif"

SRTM_tight = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_DEM_tight.tif"

print "Data clipped. Starting registration ..."

## Image Registration ##

Reg_AST = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_Registered.tif"

if os.path.exists(Reg_AST) == False:

#print "matlab -nosplash -nodesktop -r

Coregistration (’%s’,’%s’,’%s’)" % (

SRTM_tight ,ASTER ,Reg_AST)

subprocess.call("matlab -nosplash -nodesktop

-r Coregistration (’%s’,’%s’,’%s’)" % (
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SRTM_tight ,ASTER ,Reg_AST)) #Note that

this is processor intensive , and may

require a lot of time

while not os.path.exists(Reg_AST):

time.sleep (1)

ASTER = Reg_AST

else:

ASTER = Reg_AST

SRTM_tight = RegReclip(Reg_AST) #Re-align the

DEMs

print "Registration done. Tilt correcting ..."

## Tilt Correction ##

csvwrite = csv.writer(open(Path_CorrStat +

shortname + "_" + timestamp + "_" + code + "

_TiltCorrectionParameters.csv", ’wb’),

lineterminator=’\r\n’)

csvwrite.writerow ([’fitresult.p00’, ’fitresult.

p10’, ’fitresult.p01’, ’gof.sse’, ’gof.

rsquare ’, ’gof.dfe’, ’gof.adjrsquare ’, ’gof.

rmse’])

del csvwrite

tilt_ASTER = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_Tilt_Corrected.tif

"

if os.path.exists(tilt_ASTER) == True:

arcpy.Delete_management(tilt_ASTER)

subprocess.call("matlab -nosplash -nodesktop -r

Tilt_Correction (’%s’,’%s’,’%s’,’%s’,’%s’,’%s

’,’%s’,’%s’,’%s’)" % (Area ,shortname ,

timestamp ,code ,ASTER ,SRTM_tight ,

Path_Corrected ,Path_CorrStat ,MSK)) #Calls for

area , name and time , code , SRTM , ASTER , and

savepath inputs

while not os.path.exists(tilt_ASTER):

time.sleep (1)

print shortname + " tilt corrected."

## Aspect Correction ##

csvwrite = csv.writer(open(Path_CorrStat +

shortname + "_" + timestamp + "_" + code + "
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_AspectCorrectionParameters.csv", ’wb’),

lineterminator=’\r\n’)

csvwrite.writerow ([’dh_tan_fit (1)’,’dh_tan_fit

(2)’,’dh_tan_fit (3)’,’resnorm (1)’, ’dh_mean ’,

’nanmean(tmp_dh)’, ’nanstd(tmp_dh)’, ’xshift

(m)’, ’yshift (m)’])

del csvwrite

#initial conditions

stdevchange = 1

stdinit = 1

AST = tilt_ASTER

loop = 0

while stdevchange > 0.02 and loop < 20: #Loop

through aspect corrections until the data is

properly matched. Reclip/resample the DEMs

each time to keep them matched.

Aspect_Corr = Path_Corrected + shortname + "

_" + timestamp + "_" + code + "

_Aspect_Corrected.tif"

if os.path.exists(Aspect_Corr) == True:

arcpy.Delete_management(Aspect_Corr)

figureout_filename = Path_Corrected +

shortname + "_" + timestamp + "_" + code

+ "_aspectfit_" + str(loop) + ".jpg"

subprocess.call("matlab -nosplash -nodesktop

-r Aspect_Correction (’%s’,’%s’,’%s’,’%s

’,’%s’,’%s’,’%s’,’%s’,’%s’,’%s’)" % (Area

,shortname ,timestamp ,code ,AST ,SRTM_tight ,

Path_Corrected ,Path_CorrStat ,MSK ,

figureout_filename))

while not os.path.exists(Aspect_Corr):

time.sleep (1)

AST = Aspect_Corr

ResampleReclip(shortname ,timestamp ,Area ,code

,AST) #Reclip after each loop

AST = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_AspCorr.tif"

SRTM_tight = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_ASP_SRTM_tight

.tif"

if MASK != ’NULL’:

MSK = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "
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_ASP_MASK_clip.tif"

else:

MSK = ’NULL’

f = open(Path_CorrStat + "Aspect_looper.txt"

,’r’) #This looks for a correction

parameter

itr = f.read()

out = itr.split(’,’)

mean = out[0]

std = out[1]

stdevchange = abs((abs(float(std)) - stdinit

)/stdinit)

stdinit = float(std)

f.close()

stdlooper = stdevchange * 100

print "loop: " + str(loop) + ", dh mean: " +

str(mean) + ", dh stdev: " + str(std) +

"m. Change in stdev (%) is " + str(

stdlooper)

loop = loop + 1

rst = arcpy.Raster(AST)

rst.save(Aspect_Corr)

del rst

print shortname + " aspect corrected after " +

str(loop)+ " loops. Final std is " + str(

stdinit)

## Elevation Correction ##

csvwrite = csv.writer(open(Path_CorrStat +

shortname + "_" + timestamp + "_" + code + "

_ElevCorrectionParameters.csv", ’wb’),

lineterminator=’\r\n’)

csvwrite.writerow ([’fitresult.p1’, ’fitresult.p2

’, ’fitresult.p3’, ’gof.sse’, ’gof.rsquare ’,

’gof.dfe’, ’gof.adjrsquare ’, ’gof.rmse’])

del csvwrite

Elev_Corr = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "

_Elevation_Corrected.tif"

if os.path.exists(Elev_Corr) == True:

arcpy.Delete_management(Elev_Corr)
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subprocess.call("matlab -nosplash -nodesktop -r

Elevation_Correction (’%s’,’%s’,’%s’,’%s’,’%s

’,’%s’,’%s’,’%s’,’%s’)" % (Area ,shortname ,

timestamp ,code ,Aspect_Corr ,SRTM_tight ,

Path_Corrected ,Path_CorrStat ,MSK))

while not os.path.exists(Elev_Corr):

time.sleep (1)

print shortname + " elevation corrected."

AST = Elev_Corr

## Compare final image with first image ##

AST_init = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_ArcForm.tif"

SRTM_init = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_DEM_tight.tif"

Reg_SRTM = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_SRTM_tight_reg.tif

"

figureout = Path_CorrStat + shortname + "_" +

timestamp + "_" + code + "_Corrections_hist.

jpg"

figureout2 = Path_CorrStat + shortname + "_" +

timestamp + "_" + code + "_Corrections_dh.jpg

"

Reg_AST = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_Registered.tif"

tilt_ASTER = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_Tilt_Corrected.tif

"

SRTM_aspect = Path_SRTM + shortname + "_" +

timestamp + "_" + code + "_ASP_SRTM_tight.tif

"

Aspect_Corr = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "_Aspect_Corrected.

tif"

Elev_Corr = Path_Corrected + shortname + "_" +

timestamp + "_" + code + "

_Elevation_Corrected.tif"

figpth = Path_CorrStat + shortname + "_" +

timestamp + "_" + code

Corrpath = Path_Corrected + shortname + "_" +

timestamp + "_" + code

if os.path.exists(figureout) == True:
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os.remove(figureout)

if os.path.exists(figureout2) == True:

os.remove(figureout2)

subprocess.call("matlab -nosplash -nodesktop -r

compare_DEMs (’%s’,’%s’,’%s’,’%s’,’%s’,’%s’,’%

s’,’%s’)" % (AST_init , SRTM_init , MSK ,

Reg_AST , Reg_SRTM , SRTM_aspect , Corrpath ,

figpth))

while not os.path.exists(figureout2):

time.sleep (2)

## Clean up Data , export bounding box ##

time.sleep (10)

DataClean(Elev_Corr)

print "Supplementary Data Generated ..."

## Delete Superfluous Datasets ##

try:

arcpy.Delete_management(Path_Corrected +

shortname + "_" + timestamp + "_" + code

+ "_AspCorr.tif")

except:

pass

try:

arcpy.Delete_management(Path_SRTM +

shortname + "_" + timestamp + "_" + code

+ "_ASP_SRTM_tight.tif")

except:

pass

try:

arcpy.Delete_management(Reg_SRTM)

except:

pass

if maskin == ’Y’:

arcpy.Delete_management(Path_Corrected +

shortname + "_" + timestamp + "_" + code

+ "_MASK_clip.tif")

print shortname + " finished."

time.sleep (10)

else:

continue
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Appendix E. Matlab Code - DEM Correction: Step

1 - Coregistration

function Coregistration(SRTM , ASTER , ASTER_out)

%Coregistration(SRTM , ASTER , ASTER_out)

% Takes a master and slave DEM for coregistration.

%Created by Taylor Smith , March 2013

%Import SRTM DEM

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTM);

SRTM_info = geotiffinfo(SRTM);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem < 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN % was ==0 %%%%%

idxfinite = find(~ isfinite(SRTM_dem)); SRTM_dem(idxfinite) =

0;

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(ASTER);

ASTER_info = geotiffinfo(ASTER);

AST_dem = single(AST_dem);

idxnan = find(AST_dem < 0); AST_dem(idxnan) = NaN;

idxfinite = find(~ isfinite(AST_dem)); AST_dem(idxfinite) =

0;

%perform intensity -based image registration

[optimizer , metric] = imregconfig(’multimodal ’);

optimizer.MaximumIterations = 5000;

[AST_dem_moved_reg] = imregister(AST_dem , SRTM_dem , ’rigid’,

optimizer , metric);

AST_dem_moved_reg(idxfinite) = NaN;

geotiffwrite(ASTER_out , int16(AST_dem_moved_reg), SRTM_info.

SpatialRef , ’CoordRefSysCode ’, ASTER_info.GeoTIFFCodes.

PCS);

exit
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Appendix F. Matlab Code - DEM Correction: Step

2 - Tilt Correction

function Tilt_Correction(area ,date ,time ,vers ,ASTpath ,

SRTMpath ,Savepath ,Corrstats ,MSK)

%Tilt_Correction(area , date , time , version , Slave Path ,

Master Path , save path , correlation stats , Mask)

% Performs a correction to fix tilt in the slave DEM.

% Functions by fitting a plane to common low -slope

% surfaces between the two DEMs.

%Created by Taylor Smith , March 2013

disp(strcat(date ,’ being processed for Tilt Correction.’))

%Import SRTM DEM

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTMpath);

SRTM_info = geotiffinfo(SRTMpath);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(ASTpath);

ASTER_info = geotiffinfo(ASTpath);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

%Perform masking if desired

if strcmp(MSK , ’NULL’) ~= 1

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxmsk = find(AST_msk >= 1 & AST_msk < 255);

if length(idxmsk) == numel(AST_msk)

idxmsk = find(AST_msk == 127);

end

AST_dem_msk = AST_dem; AST_dem_msk(idxmsk) = NaN;

SRTM_dem(idxmsk) = NaN;

MASK = single(AST_dem_msk);

end

if strcmp(MSK , ’NULL’) == 1

MASK = single(AST_dem);

end

%Apply Tilt Correction
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slope_threshold = 20;

dh_m_threshold = 100;

STD_dif = 4;

warning off

%Create gridbox for use in rest of loop

DEM_X_size = AST_refmat (2,1); DEM_Y_size = AST_refmat (2,1);

[AST_utm_y , AST_utm_x] = meshgrid(AST_bbox (3):DEM_Y_size:

AST_bbox (4)-DEM_Y_size , AST_bbox (1):DEM_X_size:AST_bbox

(2)-DEM_X_size);

AST_utm_y = rot90(AST_utm_y); AST_utm_x = rot90(AST_utm_x);

stdinit = 1;

STD_calc = STD_dif;

counter = 1;

max_nr_iterations = 100;

for i = 1: max_nr_iterations

%calculate SLOPE and ASPECT

[fx , fy] = gradient(MASK , DEM_X_size , DEM_Y_size);

AST_SLOPE = sqrt(fx.^2 + fy.^2); clear fx fy

AST_SLOPE_DEG = atand(AST_SLOPE);

%Do Plane Fitting

DH = SRTM_dem - MASK;

if strcmp(MSK , ’NULL’) ~= 1

DH(idxmsk) = NaN;

end

x = reshape(AST_utm_x , 1, numel(AST_utm_x));

y = reshape(AST_utm_y , 1, numel(AST_utm_y));

z = reshape(DH , 1, numel(DH));

%Trim data by slope and error

idx_slope = find(AST_SLOPE_DEG < slope_threshold); x = x

(idx_slope); y = y(idx_slope); z = z(idx_slope)’;

idx_dh = find(abs(z) < dh_m_threshold); x = x(idx_dh); y

= y(idx_dh); z = z(idx_dh);

[xData , yData , zData] = prepareSurfaceData(x,y,z);

ft = fittype( ’poly11 ’ ); opts = fitoptions( ft ); opts.

Lower = [-Inf -Inf -Inf]; opts.Robust = ’Bisquare ’;

opts.Upper = [Inf Inf Inf];

[ASTER_DEM_plane_fitresult , ASTER_DEM_plane_gof] = fit(

[xData , yData], zData , ft, opts );

ASTER_DEM_plane = ASTER_DEM_plane_fitresult.p00 +

ASTER_DEM_plane_fitresult.p10 .* AST_utm_x +

100



ASTER_DEM_plane_fitresult.p01 .* AST_utm_y;

Corr_ASTER = single(AST_dem) + ASTER_DEM_plane;

tmp_dh = SRTM_dem - Corr_ASTER;

dh_stdev = nanstd(tmp_dh (:));

AST_dem = Corr_ASTER;

dh_param(i) = nanmean(tmp_dh (:));

if i > 1

if abs(( dh_param(i-1)-dh_param(i))/dh_param(i)) <

0.005

%less than 0.5% change , stop

break

end

fprintf(1,’delta h between SRTM and ASTER DEM mean:

%3.3f m, stdev: %3.3f m, rmse: %3.3f m, percent

mean elev. change = %1.3f\n’, nanmean(tmp_dh (:)),

dh_stdev , ASTER_DEM_plane_gof.rmse , (dh_param(i

-1)-dh_param(i))/dh_param(i));

else

fprintf(1,’delta h between SRTM and ASTER DEM mean:

%3.3f m, stdev: %3.3f m, rmse: %3.3f m, percent

mean elev. change = %1.3f\n’, nanmean(tmp_dh (:)),

dh_stdev , ASTER_DEM_plane_gof.rmse , dh_param(i))

;

end

%removing areas identified by Mask from ASTER DEM

if strcmp(MSK , ’NULL’) ~= 1

MASK = AST_dem; MASK(idxmsk) = NaN;

end

%Store the fit parameters in a csv

txt = strcat(Corrstats ,date ,’_’,time ,’_’,vers ,’

_TiltCorrectionParameters.csv’);

towrite = [ASTER_DEM_plane_fitresult.p00

ASTER_DEM_plane_fitresult.p10

ASTER_DEM_plane_fitresult.p01 ASTER_DEM_plane_gof.sse

ASTER_DEM_plane_gof.rsquare ASTER_DEM_plane_gof.dfe

ASTER_DEM_plane_gof.adjrsquare ASTER_DEM_plane_gof.

rmse];

dlmwrite(txt ,towrite ,’-append ’);

MASK = Corr_ASTER;
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end

outname = strcat(Savepath ,date , ’_’,time , ’_’,vers , ’

_Tilt_Corrected.tif’);

geotiffwrite(outname , int16(Corr_ASTER), ASTER_info.

SpatialRef , ’CoordRefSysCode ’, ASTER_info.GeoTIFFCodes.

PCS);

exit

102



Appendix G. Matlab Code - DEM Correction: Step

3 - Aspect Correction

function Aspect_Correction(area ,date ,time ,vers ,ASTpath ,

SRTMpath ,Savepath ,Corrstats ,MSK , figureout)

%Aspect_Correction(area , date , time , version , Slave Path ,

Master Path , save path , correlation stats , Mask , outpath

for figure)

% Performs a correction to fix aspect bias in the slave

DEM.

% Functions by fitting a plane to common high -slope

% surfaces between the two DEMs.

%Created by Taylor Smith , March 2013

disp(strcat(date ,’ being processed for Aspect Correction.’))

%Import SRTM DEM

SRTM = SRTMpath;

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTM);

SRTM_info = geotiffinfo(SRTM);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

ASTER = ASTpath;

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(ASTER);

ASTER_info = geotiffinfo(ASTER);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

%Perform masking if desired

if strcmp(MSK , ’NULL’) ~= 1

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxmsk = find(AST_msk >= 1 & AST_msk < 255);

if length(idxmsk) == numel(AST_msk)

idxmsk = find(AST_msk == 127);

end

AST_dem_msk = AST_dem; AST_dem_msk(idxmsk) = NaN;

SRTM_dem(idxmsk) = NaN;

MASK = single(AST_dem_msk);

end

if strcmp(MSK , ’NULL’) == 1
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MASK = single(AST_dem);

end

slope_threshold = 20;

dh_m_threshold = 200;

nr_of_random_points = 1e5;

STD_dif = 0.02;

warning off

%Create gridbox for use in rest of loop

DEM_X_size = AST_refmat (2,1); DEM_Y_size = AST_refmat (2,1);

[AST_utm_y , AST_utm_x] = meshgrid(AST_bbox (3):DEM_Y_size:

AST_bbox (4)-DEM_Y_size , AST_bbox (1):DEM_X_size:AST_bbox

(2)-DEM_X_size);

AST_utm_y = rot90(AST_utm_y); AST_utm_x = rot90(AST_utm_x);

%%%%% ASPECT CORRECTION %%%%%%

[fx , fy] = gradient(MASK , DEM_X_size , DEM_Y_size);

AST_SLOPE = sqrt(fx.^2 + fy.^2); clear fx fy

AST_SLOPE_DEG = atand(AST_SLOPE);

AST_ASPECT = aspect(AST_utm_x , AST_utm_y , AST_dem);

%Extract slope and DEM Differences

AST_dem_idx = find(MASK > 0);

ASTER_DEM = single(AST_dem(AST_dem_idx));

SRTM_DEM = single(SRTM_dem(AST_dem_idx));

ASTER_ASPECT = AST_ASPECT(AST_dem_idx);

ASTER_SLOPE = AST_SLOPE_DEG(AST_dem_idx);

%Grab only above slope threshold points for aspect fitting

slope_idx = find(ASTER_SLOPE > slope_threshold & ASTER_SLOPE

< 90);

tmp_aspect = ASTER_ASPECT(slope_idx);

tmp_slope = ASTER_SLOPE(slope_idx);

tmp_aster = ASTER_DEM(slope_idx);

tmp_srtm = SRTM_DEM(slope_idx);

DH = tmp_srtm - tmp_aster;

dh_index = find(abs(DH) < dh_m_threshold);

tmp_aspect = tmp_aspect(dh_index);

tmp_slope = tmp_slope(dh_index);

tmp_aster = tmp_aster(dh_index);

tmp_srtm = tmp_srtm(dh_index);

104



tmp_dh = DH(dh_index);

dh_tan = tmp_dh ./ tand(tmp_slope);

%Choose random points for fit and get ’c’ coefficient

idx2plot = randi(length(tmp_slope), 1, nr_of_random_points);

c = mean(tmp_dh(idx2plot))./( tand(mean(tmp_slope(idx2plot)))

);

aster_aspect_data = double(tmp_aspect(idx2plot));

dh_tan_data = double(dh_tan(idx2plot));

aster_slope_data = double(tmp_slope(idx2plot));

dh_tan_0 = [0; 0; 0]; %Set start position

%Setup a multistart problem that tries many different values

model=@(x,aster_aspect_data) x(1)*cosd(x(2)-

aster_aspect_data)+x(3);

opt_options = optimset(’lsqcurvefit ’);

opt_options.Display = ’off’;

problem = createOptimProblem(’lsqcurvefit ’,’objective ’,

model , ’xdata’, aster_aspect_data , ’ydata’, dh_tan_data ,

’x0’,dh_tan_0 ,’lb’, [0 0 -100], ’ub’, [200 360 100],’

options ’,opt_options);

%Use Multistart (and not GlobalSearch), because Globalsearch

doesn ’t work

%with lsqcurvefit

ms=MultiStart(’Display ’, ’off’);

[dh_tan_fit ,resnorm ,flag ,outpt ,allmins] = run(ms ,problem ,20)

;

%calculate mean bias (following equation 4 in Nuth and Kaab ,

2011):

dh_mean = dh_tan_fit (3) .* tand(mean(aster_slope_data));

h = figure;

clf

subplot (2,1,1,’align ’)

plot(aster_slope_data , dh_tan_data ,’.’), grid

title(’DEM Finite Difference Slope vs. dh/tan(\alpha)’, ’

Fontsize ’, 12)

xlabel(’Terrain slope (degree)’, ’Fontsize ’, 12), ylabel(’dh

/tan(\ alpha) (meters)’, ’Fontsize ’, 12)

axis ([0 90 -100 100])

subplot (2,1,2,’align ’)

plot(aster_aspect_data , dh_tan_data ,’b.’), grid , hold
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plot ([1:1:360] , equation3(dh_tan_fit , [1:1:360]) , ’k-’, ’

linewidth ’, 2)

title(’DEM aspect vs. dh/tan(\alpha)’, ’Fontsize ’, 12)

xlabel(’Terrain Aspect (degree), 0=North , clockwise ’, ’

Fontsize ’, 12), ylabel(’dh/tan(\alpha) (meters)’, ’

Fontsize ’, 12)

axis ([0 360 -100 100])

text2print = sprintf(’%s: dh-mean: %2.2f m\na: %2.2f, b:

%2.2f, c: %2.2f’, date , dh_mean , dh_tan_fit (1),

dh_tan_fit (2), dh_tan_fit (3));

text(10, 60, text2print , ’Fontsize ’, 16);

set(gcf , ’OuterPosition ’, [49 162 923 899]);

print(h, ’-djpeg90 ’, figureout);

%adding mean bias to ASTER DEM (this is likely to be small)

Corr_aspect_ASTER = single(AST_dem) + dh_mean;

%adding shift vector to coordinates

if (dh_tan_fit (2) <= 90 & dh_tan_fit (2) > 0)

%positive x and y shift

yshift = sind(dh_tan_fit (2))*dh_tan_fit (1);

xshift = cosd(dh_tan_fit (2))*dh_tan_fit (1);

elseif (dh_tan_fit (2) > 90 & dh_tan_fit (2) <=180)

%positive x and negative y shift

yshift = abs(sind(dh_tan_fit (2)))*dh_tan_fit (1)*(-1);

xshift = abs(cosd(dh_tan_fit (2)))*dh_tan_fit (1);

elseif (dh_tan_fit (2) > 180 & dh_tan_fit (2) <= 270)

%negative x and negative y shift

yshift = abs(sind(dh_tan_fit (2)))*dh_tan_fit (1)*(-1);

xshift = abs(cosd(dh_tan_fit (2)))*dh_tan_fit (1)*(-1);

elseif (dh_tan_fit (2) > 270 & dh_tan_fit (2) <= 360)

%negative x and positive y shift

yshift = abs(sind(dh_tan_fit (2)))*dh_tan_fit (1);

xshift = abs(cosd(dh_tan_fit (2)))*dh_tan_fit (1)*(-1);

end

%Fix spatial referencing to account for shifts

ASTER_info.SpatialRef.XLimWorld = [( ASTER_info.SpatialRef.

XLimWorld (1) + xshift) (ASTER_info.SpatialRef.XLimWorld

(2) + xshift)];

ASTER_info.SpatialRef.YLimWorld = [( ASTER_info.SpatialRef.

YLimWorld (1) + yshift) (ASTER_info.SpatialRef.YLimWorld

(2) + yshift)];

Corr_ASTER = Corr_aspect_ASTER;
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txt = strcat(Corrstats ,date ,’_’,time ,’_’,vers ,’

_AspectCorrectionParameters.csv’);

towrite = [dh_tan_fit (1) dh_tan_fit (2) dh_tan_fit (3) resnorm

(1) dh_mean nanmean(tmp_dh) nanstd(tmp_dh) xshift yshift

];

dlmwrite(txt ,towrite ,’-append ’);

tmp_dh = SRTM_dem - Corr_ASTER;

news = strcat(Corrstats ,’Aspect_looper.txt’);

fileID = fopen(news ,’w’);

fprintf(fileID ,’%s,%s’,num2str(nanmean(tmp_dh (:))), num2str(

nanstd(tmp_dh (:))));

fclose(fileID);

outname = strcat(Savepath ,date , ’_’,time , ’_’,vers , ’

_Aspect_Corrected.tif’);

geotiffwrite(outname , int16(Corr_ASTER), ASTER_info.

SpatialRef , ’CoordRefSysCode ’, ASTER_info.GeoTIFFCodes.

PCS);

exit
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Appendix H. Matlab Code - DEM Correction: Step

4 - Elevation Correction

function Elevation_Correction(area ,date ,time ,vers ,AST ,SRTM ,

Savepath ,Corrstats ,MSK)

%Elevation_Correction(area , date , time , version , Slave Path ,

Master Path , save path , correlation stats , Mask)

% Performs a correction to fix aspect bias in the slave

DEM.

% Functions by fitting a plane to common high -slope

% surfaces between the two DEMs.

%Created by Taylor Smith , March 2013

disp(strcat(date ,’ being processed for Elevation Correction.

’))

%Import SRTM DEM

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTM);

SRTM_info = geotiffinfo(SRTM);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(AST);

ASTER_info = geotiffinfo(AST);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

%Do masking if desired

if strcmp(MSK , ’NULL’) ~= 1

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxmsk = find(AST_msk >= 1 & AST_msk < 255);

if length(idxmsk) == numel(AST_msk)

idxmsk = find(AST_msk == 127);

end

AST_dem_msk = AST_dem; AST_dem_msk(idxmsk) = NaN;

SRTM_dem(idxmsk) = NaN;

MASK = single(AST_dem_msk);

end

if strcmp(MSK , ’NULL’) == 1

MASK = single(AST_dem);
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end

%Create gridbox for use in rest of loop

DEM_X_size = AST_refmat (2,1); DEM_Y_size = AST_refmat (2,1);

[AST_utm_y , AST_utm_x] = meshgrid(AST_bbox (3):DEM_Y_size:

AST_bbox (4)-DEM_Y_size , AST_bbox (1):DEM_X_size:AST_bbox

(2)-DEM_X_size);

AST_utm_y = rot90(AST_utm_y); AST_utm_x = rot90(AST_utm_x);

%Apply Elevation Correction

dh_m_threshold = 100;

nr_of_random_points = 1e6;

STD_dif = 0.02;

warning off

%Extract slope and DEM Differences

AST_dem_idx = find(MASK > 0);

ASTER_DEM = single(AST_dem(AST_dem_idx));

SRTM_DEM = single(SRTM_dem(AST_dem_idx));

DH = SRTM_DEM - ASTER_DEM;

dh_index = find(abs(DH) < dh_m_threshold);

tmp_aster = ASTER_DEM(dh_index);

tmp_srtm = SRTM_DEM(dh_index);

tmp_dh = DH(dh_index);

%Choose random subset

idx2plot = randi(length(tmp_aster), 1, nr_of_random_points);

aster_elev_data = tmp_aster(idx2plot);

dif_data = tmp_dh(idx2plot);

[xData , yData] = prepareCurveData(aster_elev_data , dif_data)

;

% Set up fittype and options.

ft = fittype( ’poly2’ );

opts = fitoptions( ft );

opts.Lower = [-Inf -Inf -Inf -Inf];

%opts.Robust = ’Bisquare ’;

opts.Upper = [Inf Inf Inf Inf];

%opts.Weights = wData;
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% Fit model to data.

[fitresult , gof] = fit( xData , yData , ft , opts );

figure;plot(xData , yData , ’.’), hold , grid , plot(fitresult ,

’k-’);

Newplane = fitresult.p1 .*( AST_dem).^2 + fitresult.p2 .*(

AST_dem) + fitresult.p3;

Corrected_AST = single(AST_dem) - single(Newplane);

txt = strcat(Corrstats ,date ,’_’,time ,’_’,vers ,’

_ElevCorrectionParameters.csv’);

towrite = [fitresult.p1 fitresult.p2 fitresult.p3 gof.sse

gof.rsquare gof.dfe gof.adjrsquare gof.rmse];

dlmwrite(txt ,towrite ,’-append ’);

outname = strcat(Savepath ,date , ’_’,time , ’_’,vers , ’

_Elevation_Corrected.tif’);

geotiffwrite(outname , int16(Corrected_AST), ASTER_info.

SpatialRef , ’CoordRefSysCode ’, ASTER_info.GeoTIFFCodes.

PCS);

exit
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Appendix I. Matlab Code - DEM Correction: Step

5 - DEM Comparison

function compare_DEMs(AST_init ,SRTM_init ,MSK ,AST_imregister ,

Reg_SRTM ,SRTM_aspect ,Corrpath ,figpth)

%compare_DEMs(Initial Slave , Initial Master , Mask ,

Registered ASTER , Registered SRTM , Aspect corrected SRTM ,

Correlation path , figure outpath)

% This simply compares all of the datasets to show

corrections.

%Created by Taylor Smith and Bodo Bookhagen , March 2013

figureout = strcat(figpth , ’_Corrections_hist.jpg’);

figureout2 = strcat(figpth , ’_Corrections_dh.jpg’);

AST_elev = strcat(Corrpath , ’_Elevation_Corrected.tif’);

AST_aspect = strcat(Corrpath , ’_Aspect_Corrected.tif’);

AST_tilt = strcat(Corrpath , ’_Tilt_Corrected.tif’);

dh_bins = -500:10:500;

%1. SRTM and uncorrected ASTER (from ENVI)

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTM_init);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(AST_init);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

if strcmp(MSK , ’NULL’) == 0

%remove areas stored in ASTER_mask

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxnan = find(AST_msk >= 1 & AST_msk < 255);

if length(idxnan) == numel(AST_msk)

idxnan = find(AST_msk == 127);

end

AST_dem(idxnan) = NaN;

end

Dh1_SRTM_ASTER = SRTM_dem -AST_dem; Dh1_SRTM_ASTER = reshape(

Dh1_SRTM_ASTER , 1, numel(Dh1_SRTM_ASTER));

Dh1_SRTM_ASTER_hist = histc(Dh1_SRTM_ASTER , dh_bins);

Dh1_SRTM_ASTER_stats = [nanmean(Dh1_SRTM_ASTER) nanstd(
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Dh1_SRTM_ASTER) nanmedian(Dh1_SRTM_ASTER) prctile(

Dh1_SRTM_ASTER , [1 5 10 25 50 75 90 95 99])];

Dh1_IQ = [AverageDifference(SRTM_dem , AST_dem)

MaximumDifference(SRTM_dem , AST_dem) MeanSquareError(

SRTM_dem , AST_dem) NormalizedAbsoluteError(SRTM_dem ,

AST_dem) PeakSignaltoNoiseRatio(SRTM_dem , AST_dem)

NormalizedCrossCorrelation(SRTM_dem , AST_dem)

StructuralContent(SRTM_dem ,AST_dem)];

%convert SRTM_DEM to uint8 for wavelet analysis

clear AST_dem* SRTM_dem*

%2. SRTM and imregistered ASTER

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(Reg_SRTM);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN % was ==0 %%%%%

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(AST_imregister);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

if strcmp(MSK , ’NULL’) == 0

%remove areas stored in ASTER_mask

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxnan = find(AST_msk >= 1 & AST_msk < 255);

if length(idxnan) == numel(AST_msk)

idxnan = find(AST_msk == 127);

end

AST_dem(idxnan) = NaN;

end

Dh2_SRTM_ASTER = SRTM_dem -AST_dem; Dh2_SRTM_ASTER = reshape(

Dh2_SRTM_ASTER , 1, numel(Dh2_SRTM_ASTER));

Dh2_SRTM_ASTER_hist = histc(Dh2_SRTM_ASTER , dh_bins);

Dh2_SRTM_ASTER_stats = [nanmean(Dh2_SRTM_ASTER) nanstd(

Dh2_SRTM_ASTER) nanmedian(Dh2_SRTM_ASTER) prctile(

Dh2_SRTM_ASTER , [1 5 10 25 50 75 90 95 99])];

Dh2_IQ = [AverageDifference(SRTM_dem , AST_dem)

MaximumDifference(SRTM_dem , AST_dem) MeanSquareError(

SRTM_dem , AST_dem) NormalizedAbsoluteError(SRTM_dem ,

AST_dem) PeakSignaltoNoiseRatio(SRTM_dem , AST_dem)

NormalizedCrossCorrelation(SRTM_dem , AST_dem)

StructuralContent(SRTM_dem ,AST_dem)];

clear AST_dem* SRTM_dem*

%3. SRTM and Tilt Correction
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[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(Reg_SRTM);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(AST_tilt);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

if strcmp(MSK , ’NULL’) == 0

%remove areas stored in ASTER_mask

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxnan = find(AST_msk >= 1 & AST_msk < 255);

if length(idxnan) == numel(AST_msk)

idxnan = find(AST_msk == 127);

end

AST_dem(idxnan) = NaN;

end

Dh3_SRTM_ASTER = SRTM_dem -AST_dem; Dh3_SRTM_ASTER = reshape(

Dh3_SRTM_ASTER , 1, numel(Dh3_SRTM_ASTER));

Dh3_SRTM_ASTER_hist = histc(Dh3_SRTM_ASTER , dh_bins);

Dh3_SRTM_ASTER_stats = [nanmean(Dh3_SRTM_ASTER) nanstd(

Dh3_SRTM_ASTER) nanmedian(Dh3_SRTM_ASTER) prctile(

Dh3_SRTM_ASTER , [1 5 10 25 50 75 90 95 99])];

Dh3_IQ = [AverageDifference(SRTM_dem , AST_dem)

MaximumDifference(SRTM_dem , AST_dem) MeanSquareError(

SRTM_dem , AST_dem) NormalizedAbsoluteError(SRTM_dem ,

AST_dem) PeakSignaltoNoiseRatio(SRTM_dem , AST_dem)

NormalizedCrossCorrelation(SRTM_dem , AST_dem)

StructuralContent(SRTM_dem ,AST_dem)];

clear AST_dem* SRTM_dem*

%4. SRTM and Aspect Correction

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTM_aspect);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(AST_aspect);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

if strcmp(MSK , ’NULL’) == 0

%remove areas stored in ASTER_mask

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

113



idxnan = find(AST_msk >= 1 & AST_msk < 255);

if length(idxnan) == numel(AST_msk)

idxnan = find(AST_msk == 127);

end

AST_dem(idxnan) = NaN;

end

Dh4_SRTM_ASTER = SRTM_dem -AST_dem; Dh4_SRTM_ASTER = reshape(

Dh4_SRTM_ASTER , 1, numel(Dh4_SRTM_ASTER));

Dh4_SRTM_ASTER_hist = histc(Dh4_SRTM_ASTER , dh_bins);

Dh4_SRTM_ASTER_stats = [nanmean(Dh4_SRTM_ASTER) nanstd(

Dh4_SRTM_ASTER) nanmedian(Dh4_SRTM_ASTER) prctile(

Dh4_SRTM_ASTER , [1 5 10 25 50 75 90 95 99])];

Dh4_IQ = [AverageDifference(SRTM_dem , AST_dem)

MaximumDifference(SRTM_dem , AST_dem) MeanSquareError(

SRTM_dem , AST_dem) NormalizedAbsoluteError(SRTM_dem ,

AST_dem) PeakSignaltoNoiseRatio(SRTM_dem , AST_dem)

NormalizedCrossCorrelation(SRTM_dem , AST_dem)

StructuralContent(SRTM_dem ,AST_dem)];

clear AST_dem* SRTM_dem*

%5. SRTM and Elevation Correction

[SRTM_dem ,SRTM_refmat ,SRTM_bbox] = geotiffread(SRTM_aspect);

SRTM_dem = single(SRTM_dem); %Integerize SRTM DEM

idx0 = find(SRTM_dem <= 0); SRTM_dem(idx0) = NaN; %Recast

nodata as NaN

%Import ASTER DEM

[AST_dem ,AST_refmat ,AST_bbox] = geotiffread(AST_elev);

AST_dem = single(AST_dem);

idxnan = find(AST_dem <= 0); AST_dem(idxnan) = NaN;

if strcmp(MSK , ’NULL’) == 0

%remove areas stored in ASTER_mask

[AST_msk ,AST_msk_refmat ,AST_msk_bbox] = geotiffread(MSK)

;

idxnan = find(AST_msk >= 1 & AST_msk < 255);

if length(idxnan) == numel(AST_msk)

idxnan = find(AST_msk == 127);

end

AST_dem(idxnan) = NaN;

end

Dh5_SRTM_ASTER = SRTM_dem -AST_dem; Dh5_SRTM_ASTER = reshape(

Dh5_SRTM_ASTER , 1, numel(Dh5_SRTM_ASTER));

Dh5_SRTM_ASTER_hist = histc(Dh5_SRTM_ASTER , dh_bins);

Dh5_SRTM_ASTER_stats = [nanmean(Dh5_SRTM_ASTER) nanstd(

Dh5_SRTM_ASTER) nanmedian(Dh5_SRTM_ASTER) prctile(

Dh5_SRTM_ASTER , [1 5 10 25 50 75 90 95 99])];
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Dh5_IQ = [AverageDifference(SRTM_dem , AST_dem)

MaximumDifference(SRTM_dem , AST_dem) MeanSquareError(

SRTM_dem , AST_dem) NormalizedAbsoluteError(SRTM_dem ,

AST_dem) PeakSignaltoNoiseRatio(SRTM_dem , AST_dem)

NormalizedCrossCorrelation(SRTM_dem , AST_dem)

StructuralContent(SRTM_dem ,AST_dem)];

clear AST_dem* SRTM_dem*

Dh_IQ = [Dh1_IQ; Dh2_IQ; Dh3_IQ; Dh4_IQ; Dh5_IQ ];

Dh_stats = [Dh1_SRTM_ASTER_stats; Dh2_SRTM_ASTER_stats;

Dh3_SRTM_ASTER_stats; Dh4_SRTM_ASTER_stats;

Dh5_SRTM_ASTER_stats ];

%% Plot Figure %%

h = figure;

clf

%subplot(1,2,1,’align ’)

plot(dh_bins , Dh1_SRTM_ASTER_hist ./1e3, ’k-’, ’Linewidth ’,

2), hold , grid ,

plot(dh_bins , Dh2_SRTM_ASTER_hist ./1e3, ’r-’, ’Linewidth ’,

2),

plot(dh_bins , Dh3_SRTM_ASTER_hist ./1e3, ’b-’, ’Linewidth ’,

2),

plot(dh_bins , Dh4_SRTM_ASTER_hist ./1e3, ’m-’, ’Linewidth ’,

2),

plot(dh_bins , Dh5_SRTM_ASTER_hist ./1e3, ’g-’, ’Linewidth ’,

2)

legend(’Uncorrected ’, ’IMREGISTER ’, ’Tilt Corrected ’, ’

Aspect Corrected ’, ’Elevation Corrected ’, ’Location ’, ’

Northeast ’)

xlabel(’\Delta h (m) between SRTM and ASTER’, ’Fontsize ’,

14), ylabel(’# of points in 10-m bins x10^3’, ’FontSize ’,

14)

title(’Histograms of \Delta h (elevation difference between

SRTM and ASTER DEM) in m’, ’Fontsize ’, 14)

axis ([-200 200 0 5000])

%subplot(1,2,2,’align ’)

h2 = figure;

clf

plot ([1:5] , Dh_stats (:,1), ’k-’, ’Linewidth ’, 2), hold , grid

,

plot ([1:5] , Dh_stats (:,3), ’r-’,’Linewidth ’, 2),

plot ([1:5] , Dh_stats (:,6)./10, ’b-’, ’Linewidth ’, 1),
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plot ([1:5] , Dh_stats (:,10)./10, ’b-’, ’Linewidth ’, 1),

plot ([1:5] , Dh_stats (:,4)./10, ’m-’, ’Linewidth ’, 1),

plot ([1:5] , Dh_stats(:,end)./10, ’m-’, ’Linewidth ’, 1),

legend(’mean \Delta h’, ’median \Delta h’, ’lower 10^{th}

percentile x10’, ’upper 90^{th} percentile x10’, ’lower

1^{th} percentile x10’, ’upper 99^{th} percentile x10’)

ylabel(’\Delta h (m) between SRTM and ASTER’, ’Fontsize ’,

14), xlabel(’Step #’, ’FontSize ’, 14)

title(’Mean , median , and 1,10, 90, 99^{th} percentile of \

Delta h (elevation difference between SRTM and ASTER DEM)

in m’, ’Fontsize ’, 14)

axis ([1 5 -100 100])

set(h, ’OuterPosition ’, [1 1 1920 1080]);

set(h2 , ’OuterPosition ’, [1 1 1920 1080]);

print(h, ’-djpeg’, ’-r300’, figureout);

print(h2, ’-djpeg ’,’-r300’, figureout2);

exit
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