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Abstract 

 

 

 

Deformation of Polymer Composites in Force Protection Systems 

 

by 

 

Oshin Nazarian 

 

 

Systems used for protecting personnel, vehicles and infrastructure from ballistic 

and blast threats derive their performance from a combination of the intrinsic properties 

of the constituent materials and the way in which the materials are arranged and at-

tached to one another. The present work addresses outstanding issues in both the in-

trinsic properties of high-performance fiber composites and the consequences of how 

such composites are integrated into force protection systems. One aim is to develop a 

constitutive model for the large-strain intralaminar shear deformation of an ultra-high 

molecular weight polyethylene (UHMWPE) fiber-reinforced composite. To this end, 

an analytical model based on a binary representation of the constituent phases is devel-

oped and validated using finite element analyses. The model is assessed through com-

parisons with experimental measurements on cross-ply composite specimens in the 

±45° orientation. The hardening behavior and the limiting tensile strain are attributable 

to rotations of fibers in the plastic domain and the effects of these rotations on the 
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internal stress state. The model is further assessed through quasi-static punch experi-

ments and dynamic impact tests using metal foam projectiles. The finite element model 

based on this model accurately captures both the back-face deflection-time history and 

the final plate profile (especially the changes caused by fiber pull-in). 

A separate analytical framework for describing the accelerations caused by head 

impact during, for example, the secondary collision of a vehicle occupant with the cabin 

interior during an external event is also presented. The severity of impact, characterized 

by the Head Injury Criterion (𝐻𝐼𝐶), is used to assess the efficacy of crushable foams 

in mitigating head injury. The framework is used to identify the optimal foam strength 

that minimizes the 𝐻𝐼𝐶 for prescribed mass and velocity, subject to constraints on foam 

thickness. The predictive capability of the model is evaluated through comparisons 

with a series of experimental measurements from impacts of an instrumented headform 

onto several commercial foams. Additional comparisons are made with the results of 

finite element simulations. An analytical model for the planar impact of a cylindrical 

mass on a foam is also developed. This model sets a theoretical bound for the reduction 

in 𝐻𝐼𝐶 by utilizing a “plate-on-foam” design. Experimental results of impact tests on 

foams coupled with stiff composite plates are presented, with comparisons to the theo-

retical limits predicted by the analytical model. Design maps are developed from the 

analytical models, illustrating the variations in the 𝐻𝐼𝐶 with foam strength and impact 

velocity.  
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Chapter 1 

 

Introduction  

1.1 Background 

Systems used for protecting personnel, vehicles and infrastructure from ballistic 

and blast threats derive their performance from a combination of: (i) the intrinsic prop-

erties of the constituent materials (e.g. strength, stiffness, ductility); and (ii) the way in 

which the materials are arranged spatially and attached to one another.  For instance, 

armors used for protecting military vehicles from ballistic threats typically consist of 

multiple layers of ceramics, metals and fiber composites. The ceramic is placed at or 

near the impacting surface; its high hardness serves to blunt an incoming projectile and 

spread the impact forces over larger areas. Layers of metals or fiber composites are 

placed at the back of the armor in order to “catch” the debris from the damaged ceramic 

and prevent further penetration of the projectile. Alternative strategies are required to 

protect against blast loads that accompany, for example, a detonated improvised explo-

sive device (IED). Personnel within affected military vehicles are protected from the 

transmitted stress waves through intermediate systems with relatively high compliance 

and high energy-absorption capability. The present study addresses outstanding issues 
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in both the intrinsic properties of high-performance fiber composites and the conse-

quences of how such composites are integrated into force protection systems. 

One of the principal classes of materials of interest here are composites based on 

ultra-high molecular weight polyethylene (UHMWPE) in soft polymer matrices. The 

selection of these fibers stems from the combination of high strength and modulus 

along with low mass density.  For example, the Dyneema® SK76 UHMWPE fiber, 

manufactured by DSM Dyneema, exhibits mechanical properties that are comparable 

to or better than those of aramid fibers such as Kevlar®, with a density that is about 

40% lower. Additionally, these fibers can be repeatedly bent without loss in strength 

and do not exhibit a ductile-to-brittle transition even at cryogenic temperatures. 

Dyneema® fibers are also cut-, tear-, and abrasion-resistant and are not susceptible to 

water absorption (unlike other polymer fibers). Because of these properties, Dyneema® 

fibers are used not only in force prtection systems but also in cut-resistant gloves, ropes, 

fishing lines, motorcycle safety equipment and high-performance sports apparel. 

One metric that has proved to be useful in ranking the ballistic performance of re-

inforcing fibers is the so-called Cunniff parameter [1,2]. It is defined by:  

 𝐶 = (
𝜎𝑢⋅𝜀𝑢

2𝜌𝑓
  √

𝐸𝑓

𝜌𝑓
)
1/3

  (1.1) 

where 𝜎𝑢 is the ultimate tensile strength, 𝜀𝑢 is the tensile failure strain, 𝜌𝑓 is mass 

density, and 𝐸𝑓 is Young’s modulus. The parameter represents the product of the spe-

cific toughness (i.e., the area under the tensile stress-strain curve divided by density) 

and the elastic wave speed. High values of each of these two parameters separately are 
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desirable in ballistic applications, so combining them in this manner is appealing. The 

specific toughness of various fibers is plotted on Figure 1.1 as a function of the exten-

sional wavespeed in the fiber. The dashed lines on this material map represent fibers 

with an equivalent value of 𝐶. On this basis, the polyethylene fibers used for reinforcing 

the Dyneema® composites (e.g. SK75 and SK76) emerge as the preeminent choices 

among all fibers that are commercially available today.  

One proposed armor design that incorporates Dyneema® composites is shown in 

Figure 1.2. Here, hard prismatic tiles of alumina are placed in the voids of a corrugated 

cellular panel extruded from a ductile aluminum alloy (𝐴𝑙6061 − 𝑇6). Subsequently, 

the structure is wrapped in a [0 90⁄ °] layup of unidirectional laminae comprising 

Dyneema® SK76 fibers. In this design, damaged ceramic elements are isolated from 

their neighbors by the Al members and the Dyneema “over-wrap”, improving the sur-

vivability of the structure beyond a single impact event. Use of the fiber composite in 

this manner has been shown to increase the ballistic limit of the structure by 85%, as 

shown in Figure 1.3 [3]. 

Interestingly, Dyneema® composites are extremely anisotropic. When loaded in 

tension along one of the fiber directions, their response is dominated by the fibers, with 

little contribution from the soft matrix, and hence they exhibit high strength and failure 

strain. Some representative test results are plotted on Figure 1.6. In contrast, because 

of the presence of a soft matrix and the inherent anisotropy of heavily drawn fibers, the 

inter- and intra-laminar strengths are very low. Results for interlaminar shear loading 

are shown in Figure 1.7. The degree of anisotropy, characterized by the ratio of the 
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tensile strength to the shear strength, is about 400: about an order of magnitude greater 

than that of other fiber composites. One of the principal goals of the present study is to 

develop a better understanding of the mechanics of shear deformation of cross-ply  

Dyneema® composites. This understanding is expected to aid in the design of armor 

systems that attempt to exploit the desirable characteristics of Dyneema composites.    

Additional issues arise in the design of systems that are intended to protect 

occupants in military vehicles during an IED event against the secondary impact of the 

occupants with the cabin interior. Here the threat of head injury due to blunt impact is 

a key consideration. Protective systems for this type of impact are based on open-celled 

viscoelastic foams [4–9]. These systems are designed to reduce the acceleration of the 

head by spreading the impact event over a relatively long period of time. Their 

effectiveness is limited largely by constraints on the allowable foam thickness in the 

cabin interior.    

Studies performed over the past half-century have revealed strong correlations be-

tween various measures of impact severity based on acceleration-time histories and the 

degree of injury. The measures originated through impact studies on skulls of human 

cadavers and live animals [10]. The data were used to construct the so-called Wayne 

State Tolerance Curve: the locus of average acceleration and impact duration below 

which skull fracture would not occur. A stronger correlation of the data was obtained 

using other measures of impact severity, based on weighted averages of acceleration-

time profiles. The first of these was the Gadd Severity Index (𝐺𝑆𝐼) [11], defined by: 

𝐺𝑆𝐼 = ∫ [𝑎(𝑡)]5 2⁄  𝑑𝑡
�̅�

0
 (1.2) 
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where 𝑎 is deceleration in units of 𝑔 (the acceleration due to gravity), 𝑡 is time and 𝑡̅ is 

the impact duration. Yet a stronger correlation was obtained using the Head Injury Cri-

terion (𝐻𝐼𝐶), defined by [10–14]:  

𝐻𝐼𝐶 = max
𝑡1,𝑡2

{[
∫ 𝑎(𝑡)𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
]

5 2⁄

 (𝑡2 − 𝑡1)} (1.3) 

where t2 and t1 are the two times that maximize the quantity in ...{ }, subject to the 

constraint that the two times not differ from one another by more than a prescribed 

amount, tc  (typically 15 ms) (Figure 1.4). The  𝐻𝐼𝐶 is essentially a product of a power-

weighted time-averaged acceleration and the corresponding time duration. Because of 

the weightings, the 𝐻𝐼𝐶 is more sensitive to acceleration than duration time. The time 

restriction reflects the fact that low acceleration levels over extended periods of time 

pose low risk of injury. The connections between the HIC value and the probability of 

sustaining a head injury of specified severity are illustrated in Figure 1.5 [15,16].  A 

value of 1400 corresponds to a 50% probability of producing a life-threatening head 

injury.  

The Head Injury Criterion (HIC) has been adopted by the US National Highway 

Traffic Safety Administration [17]  and is currently the standard used by the US Insur-

ance Institute for Highway Safety for rating automobile safety in collisions. It is also 

used by manufacturers of motorcycle helmets and protective equipment for sporting 

applications (e.g. football, hockey, soccer, snow boarding [18,19] and is employed in 
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assessing head injury risk potential of various surfaces used on playgrounds [20,21] 

and for cheerleading [22]. 

1.2 Objectives and outline 

The overarching goal of this work is two-fold: (𝑖) to advance the understanding of 

the deformation mechanics governing the behavior of Dyneema® fiber composites and 

(𝑖𝑖) to develop tools that can aid in the design of composite protection systems. Two 

model problems have been identified.  The first is the distributed pressure-load exerted 

on a catch-plate in an armor system that has been impacted by a projectile. The pertinent 

time scale of these events is on the order of hundreds of microseconds. The second 

model problem is that of blunt impact of a human head on a rigid target. Here the impact 

persists for time periods on the order of tens of milliseconds. In both scenarios, fiber 

composites prove to be very beneficial. 

The dissertation is organized in the following manner.  The following two chapters 

address the mechanics of deformation of Dyneema® fiber composites. Chapter 2 

focuses on the tensile response of cross-ply composites loaded in the [±45°]. In parallel, 

an analytical model based on a binary representation of the constitutent phases is 

presented and validated using finite element analyses.   

In Chapter 3, the model is extended to encompass other types of loading and 

dynamic effects. First, quasi-static punch tests on clamped plates are used to validate 

the predictive capability of the model presented in Chapter 2. The nature of the clamped 

boundaries prove to play an important role in the manner in which material is drawn 
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into the punch region. Next, tests based on high velocity impact of similarly-clamped 

plates by metal foam projectiles are used to identify the dynamic effects operative in 

punch-type loadings. Finite element simulations are again used for assessing features 

of the material model.   

Chapters 4 focuses on the design of systems for mitigating head injuries during 

blunt impact. The Head Injury Criterion (HIC) underpins this work. An analytical 

model for predicting the accelerations transferred to a human head during moderate-

velocity impacts is presented. The minimum values for the HIC along with the optimal 

foam strength are presented for both planar and spherical impacts. Finite element sim-

ulations are used to validate the analytical model.  

Building on the analyses of the preceding chapter, Chapter 5 presents the results of 

an experimental study on the effects of a composite plate placed on top of a protective 

foam in further mitigating the HIC value for a prescribed impact velocity.  These results 

are compared to those on foam-only systems. The benefits associated with the plates 

are rationalized on the basis of the load distributions at the impact site and the resulting 

acceleration-time history experienced by the impacting head. 

Lastly, Chapter 6 summarizes the key findings and presents future opportunities for 

research.  
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Figure 1.1: The specific energy absorption of commercially available fibers plotted as 

a function of extensional wave speed.  Dashed lines represent equivalent value of the 

Cunniff parameter. (Adapted from [3]) 
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Figure 1.2: Schematic of the response of a (𝑎) composite armor system subject to 

impact by a high-speed projectile at a velocity 𝑣𝑖. The response is characterized by (𝑏) 

cutting of the fibers on the front face and deformation of the projectile on the surface 

of the ceramic prism followed by (𝑐) pulverization of the panel components. This ulti-

mately results in (𝑑) a distributed load on the back face of the Dyneema® laminate [3]. 

 

 

 

 

 
 

Figure 1.3: The residual velocity of spherical steel projectiles after impact with three 

different armor structures of equivalent density as a function of impact velocity. Esti-

mates of the ballistic limit of the structures is highlighted by the shaded regions. 

(Adapted from [3]) 
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Figure 1.4: Schematic of acceleration-time profile and the two times bounding the cal-

culation of the HIC [23,24]. 

 

 

 

 

 

 

 

 

 
 

Figure 1.5: Effects of HIC on probability of sustaining head injuries of varying severity 

(from 1 to 6 on the Abbreviated Injury Scale). The Abbreviated Injury Scale was de-

veloped by the Association for the Advancement of Automotive Medicine. On this 

scale, 1 is minor and 6 is fatal. (Adapted from  [15]) 
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Figure 1.6: Schematic of the tensile stress-strain response of Dyneema® HB26 lami-

nates at various low strain rates. (Adapted from [25]) 
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Figure 1.7: The measured inter-laminar shear stress, 𝜏31, as a function of shear 

displacement, Δ, for Dyneema® HB26. (Adapted from [26]) 
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Chapter 2 

 

In-plane shear behavior of Dyneema® fiber 

composites 

2.1 Introduction 

The performance of Dyneema® composites in absorbing blast energy depends 

heavily on the ultimate tensile strength and failure strain of the underlying fibers.  How-

ever, recent studies on the soft-impact performance of Dyneema® HB26 and other fiber 

composites have demonstrated an important role of the matrix properties. Karthikeyan 

et al. [26,27] performed comparisons of the dynamic responses of beams and plates 

made from two grades of carbon fiber reinforced plastics (CFRP) – one with a cured 

matrix and one with an uncured matrix – and two grades of Dyneema® composites 

(HB26 and HB50), both containing the same fibers but with different matrices. They 

found that, for each pair of materials, the one with the lower matrix yield strength out-

performed the other. They therefore concluded that the Cunniff parameter alone cannot 

distinguish and rank these materials (since the parameter does not depend on the matrix 
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shear strength).  

Our own work in this area has suggested an important role of the intralaminar shear 

strength of Dyneema® composites under impact loading. Figure 2.1 shows an example 

of a Dyneema® [0°/90°] HB26 plate that had been situated behind a 6 mm-thick alu-

mina tile (Corbit 98, Bitossi Industries) during impact by a 7.62 mm-diameter steel 

projectile at 1200 m/s. The two plates had been clamped snugly together in a circular 

fixture with a 75 mm-diameter open window. The images include both in situ observa-

tions of the back face of the HB26 plate taken with a high-speed video camera (in (a)) 

as well as post-test photographs of the same plate in plan and side views after removal 

from the test fixture (in (b)). The extensive bulging of the plate had been accommodated 

largely through shear deformation parallel to the fiber directions, as manifested in dis-

tortion of fiducial lines on the plate surface as well as extensive pull-in of material from 

the distal regions of the plate. (Measurements of the total length of fiducial lines show 

that the plate had undergone minimal stretching in either of the two fiber directions.) 

The peak nominal shear strain exceeds 0.2.  

As discussed in Chapter 1, considerable research has been conducted on 

Dyneema® SK76 fibers and composites containing these fibers (Figure 1.6). Here, the 

on-axis response is dominated by the fibers. Because of the extremely low strength and 

stiffness of the matrix in comparison to the fibers, little insight is obtained from these 

tests regarding the contribution of the matrix to the composite behavior. Instead, meas-

urements of the off-axis response, as manifested, for example, in the tensile response 

in cross-ply laminates in the ±45° orientation, are necessary.  
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The objectives of this chapter are twofold: (i) to develop an improved understand-

ing of the mechanics of large-strain deformation of Dyneema® composites under in-

tralaminar shear loading and (ii) to utilize this understanding in developing an elastic-

plastic constitutive model for use in design and analysis of armors and other systems 

containing these composites. The experimental portion of the study presented in this 

chapter focuses on the quasi-static tensile response of one specific cross-ply Dyneema® 

composite in the [±45°] orientation. In addition to the usual instrumentation used in 

tensile tests, we employ 3D digital image correlation for strain mapping. We also de-

velop an analytical model for the composite response that accounts for the large fiber 

rotations that accompany deformation in these tests. The analytical model is assessed 

through comparisons with numerical simulations based on a closely-analogous finite 

element model. The use of the latter model in simulating tests of the type shown in 

Figure 2.1 is presented in Chapter 3.  

2.2 Materials and test methods 

All tests were performed on samples cut from panels of Dyneema® HB26 (provided 

by DSM Dyneema, The Netherlands). The panels comprise 83% ultra-high molecular 

weight polyethylene fibers, each 17 microns in diameter, and 17% polyurethane matrix 

with a [0°/90°]48 fiber lay-up. The ply thickness was 68 microns and the panel thick-

ness was 3.3 mm. The panels had been consolidated through a proprietary hot-pressing 

process.  
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Test coupons for optical microscopy were mounted in a low-viscosity epoxy (Bueh-

ler Inc.), hand-ground down to 1200 grit SiC paper, and then polished on an automated 

turntable using a 1 m colloidal alumina solution (Allied High Tech Products, Inc.). 

The polished sections were viewed using dark-field microscopy; this imaging mode 

has been found to be effective in distinguishing between the highly-crystalline fibers 

and the amorphous matrix [25]. A representative micrograph is shown in Figure 2.2. 

The majority of the fibers are evenly dispersed with a small amount of matrix material 

surrounding each fiber.   

Uniaxial tension tests were conducted on dog-bone coupons, 13 mm wide and 50 

mm long in the gauge section, in accordance with the Type-I geometry in ASTM stand-

ard D638 [28]). Rectangular coupons in the [±45°] orientation were first cut out of the 

panel using a band saw. These coupons were mounted between two aluminum blocks 

and dry-cut with a high-speed milling tool bit on a computer numerical control (CNC) 

mill. This procedure yielded smooth surfaces and sharp edges without fraying. Finally, 

in preparation for strain mapping, one of the broad faces of each test coupon was lightly 

misted with black spray paint (Krylon®). The resulting speckles had an average diam-

eter of about 250 m. 

The coupons were tested in a hydraulic mechanical test system using hydraulic 

wedge grips. Prior to testing, the grips were aligned by clamping both ends of a steel 

bar and locking the grips in place. The tests were performed at a nominal strain rate of 

10−3  𝑠−1. Displacements on the painted surface were measured using a 3D digital im-

age correlation (DIC) system (Vic-3D, Correlated Solutions, Inc.). The two principal 
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in-plane strains were calculated using the Vic-3D correlation software. Out-of-plane 

strains were estimated from the DIC out-of-plane displacement fields, assuming uni-

form through-thickness straining; that is, the nominal strain was calculated as the 

through-thickness displacement on one face divided by half the plate thickness. The 

effective magnification of the images ranged from 25 to 40 pixels/mm. The subset size 

used for correlation was 31–40 pixels and the step size was selected to be about 10% 

of the subset size [29]. Incremental correlation was used to assist in feature tracking at 

large plastic strains.  

Strain distributions acquired by the DIC system during the experiments were pro-

cessed using the computational and visualization tool Mathematica® (Wolfram Re-

search). Line scans of the three principal strains across the samples were used to assess 

the uniformity of the deformation. Examinations of these scans along with full-field 

strain maps led to the identification of a central rectangular region within which the 

strains were indeed uniform. The average strain values within this region were used to 

characterize the global deformation response.  

2.3 Test results 

The nominal tensile stress-strain curves for several test coupons are shown in Fig-

ure 2.3(a). Tensile strains were taken from an average of five virtual extensometers 

within the gauge section of each coupon using DIC. These strains represent the global 

nominal tensile strain with the standard definition 𝜀�̃�𝑥 =
Δ𝑙

𝑙𝑜
, where 𝑙𝑜 is an initial gauge 
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length and Δ𝑙 is the corresponding change in that length1. The onset of inelasticity oc-

curs at 𝜀�̃�𝑥 = 0.02 at a stress �̃�𝑥𝑥 = 2.2 MPa. The initial elastic modulus is 𝐸𝑥𝑥 = 110 

MPa. Appreciable hardening is seen up to strains of 𝜀�̃�𝑥 ≈ 0.3, with an almost-constant 

tangent modulus of about 50 MPa (essentially half of the initial elastic modulus). 

Thereafter, at strains 𝜀�̃�𝑥 > 0.3, the tangent modulus increases by about an order of 

magnitude. As demonstrated below, hardening is attributable largely to the fiber rota-

tions that accompany large deformations and the associated changes in stress state 

within the matrix. Failure occurs consistently at a critical nominal tensile strain of 

0.37±0.01 

Figure 2.4 shows representative line scans of the two transverse strains, 𝜀�̃�𝑦 and 

𝜀�̃�𝑧,  across the sample width at various axial strain levels (𝜀�̃�𝑦 = 0.05–0.35). The strains 

exhibit edge effects which manifest at strains 𝜀�̃�𝑥 > 0.15 but remain largely confined 

to the outer 15-20% of the sample width. In light of these variations, the strains reported 

subsequently are based on values averaged over a central rectangular region comprising 

about 75% of the specimen width.  

The two transverse strains (averaged accordingly) are plotted against axial strain in 

Figure 2.5. The in-plane component, 𝜀�̃�𝑦, is roughly proportional to the axial strain at 

                                                           
1 Following convention, the true strains and true stresses are denoted as ij and ij, respectively, 

and the corresponding deviatoric components eij and sij; the engineering (or nominal) values 

are indicated with a tilde over the symbols. Furthermore, the global Cartesian coordinate sys-

tem is denoted as (x,y,z) where x is aligned with the tensile loading direction, y is the in-plane 

transverse direction, and z is the through-thickness direction. The local coordinates within an 

individual lamina are denoted (1,2,3), where 1 is aligned with the fiber direction. 
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strains 𝜀�̃�𝑥 ≤ 0.2, with a “plastic” Poisson’s ratio of 𝑣12
𝑝 ≈ 1.25. In contrast, over the 

same strain range, the out-of-plane strain 𝜀�̃�𝑧 is of opposite sign, yielding a “plastic” 

Poisson’s ratio 𝑣13
𝑝  ≈ -1.5. The magnitudes of both 𝑣12

𝑝
 and 𝑣13

𝑝  increase with applied 

strain; that is, 𝜀�̃�𝑦 becomes increasingly more negative and 𝜀�̃�𝑧 becomes more positive 

with increasing 𝜀�̃�𝑥. Additionally, the volumetric strain (plotted in Figure 2.5(b)) is 

initially negligible but then begins to rise at a nominal axial strain of about 0.1 and 

attains values as high as 0.3 at fracture. This trend suggests the development of micro-

structural damage. 

Images of a fractured tensile specimen and transverse cross-sections taken at vari-

ous positions along its gauge length relative to the fracture location are shown in Figure 

2.6. Fracture occurs via both extensive shear deformation within the plies and, because 

of ply symmetry, delamination between plies, with no apparent fiber fracture. Sections 

within the fracture zone reveal the delaminations. Away from the fracture zone, there 

is some evidence of delamination near the edges; but the density of these delaminations 

and their penetration depth appear to be relatively small in comparison to the total in-

terlaminar area. Higher magnification optical examinations were unable to reveal any 

finer-scale damage, possibly a consequence of smearing of the soft matrix during pol-

ishing.  Nevertheless, the measured volumetric strains strongly suggest that damage 

within the matrix is likely substantial.  
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2.4 Analytical model 

2.4.1 Preliminaries 

Here an analytical model for the elastic-plastic response of the HB26 composite 

loaded in tension in the ±45° orientation is presented. For this purpose, a binary repre-

sentation of the constituent phases is adopted, closely analogous to that employed else-

where [30]. The fibers are treated as a series of line-spring elements aligned with the 

fiber directions. These elements are embedded in an effective medium with properties 

affected by (but not equal to) those of the matrix. The latter properties incorporate all 

of the off-axis composite properties (e.g. strengths and stiffness in shear and transverse 

tension) as well as the axial composite stiffness and strength that are not attributable to 

the fibers. No attempt is made to predict the effective medium properties on the basis 

of the fundamental constituent properties; instead, they are inferred from them com-

parisons of predicted and measured responses.  

It is assumed that the fibers are axially inextensible. (Finite element simulations 

presented in Section 2.5.3 demonstrate that elastic straining of the fibers has negligible 

effect on the tensile response in the orientation of interest). Three constitutive laws for 

the effective medium are considered. Two are based on Mises-type elastic-plastic be-

havior: one being perfectly-plastic and the other with linear hardening after yield.  The 

third is based on the linear Drucker-Prager yield criterion with associated flow and no 

hardening. As usually done in these types of analyses, the strain increments are parti-

tioned into elastic and plastic components. The finite element simulations presented in 
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Section 2.5.3 demonstrate that the analytical model predictions are highly accurate. 

The model follows naturally from the observation that, with stiff fibers in a ±45° 

lay-up, a finite tensile strain leads to rotations of the two sets of fibers towards the 

tensile loading direction. Furthermore, the in-plane strain state in the effective medium 

is governed entirely by the degree of such rotations; the functional relationship between 

strains and rotations are readily ascertained from geometry. With knowledge of the 

strain state and an assumed form for the constitutive law of the effective medium, the 

stresses acting on the effective medium and the fibers are obtained. Then, upon per-

forming an appropriate averaging, the composite stress-strain response is ascertained. 

2.4.2 Elastic response 

The small-strain elastic response is obtained using classical laminate theory, with a 

slight modification to account for the binary representation of the constituents. Specif-

ically, since the fibers are treated as line-springs with no cross-sectional area, the axial 

and transverse Young’s moduli of a single lamina are given by [30,31]: 

𝐸1 = 𝑉𝑓 ⋅ 𝐸𝑓 + 𝐸𝑒𝑚  (2.1) 

𝐸2 = 𝐸𝑒𝑚  (2.2) 

where 𝑉𝑓 is the volume fraction of fibers, 𝐸𝑓 is the fiber modulus, and 𝐸𝑒𝑚 is the mod-

ulus of the effective medium. (Note that, in contrast to conventional composite models, 

the term containing the effective medium modulus in Eqn. (2.1) is not weighted by the 

matrix volume fraction.)  Details of the analysis are contained in Appendix A. The key 
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result, for the Young’s modulus of the laminate measured in the x-direction (with fibers 

in the ±45° orientation), is 

𝐸𝑥 =
𝑉𝑓𝐸𝑓+2(1+𝑣)𝐸𝑒𝑚
(1+𝑣)𝑉𝑓𝐸𝑓

2𝐸𝑒𝑚
+(2+𝑣)

  (2.3) 

When 𝐸𝑓 ≫ 𝐸𝑒𝑚 (as it is in the Dyneema® composites), Eqn. (2.3) reduces to:  

𝐸𝑥 ≈
2𝐸𝑒𝑚

(1+𝑣)
  (2.4) 

Eqn. (2.4) has been used to infer 𝐸𝑒𝑚 from the measured composite modulus, 𝐸𝑥 , 

and an estimate of 𝑣. From Figure 2.3 the measured modulus is 𝐸𝑥 = 110 ± 15 MPa. 

Assuming that the Poisson’s ratio of the effective medium is 𝑣 = 0.4, the inferred ef-

fective medium modulus is 𝐸𝑒𝑚 = 68 MPa. This value is employed in subsequent sec-

tions for computing the elastic strain components in the post-yielding domain. 

2.4.3 The strain state 

Following a straightforward analysis of the geometric changes associated with the 

rotation of inextensible fibers in an angle-ply laminate, the principal in-plane strain 

increments, 𝑑𝜀xx and 𝑑𝜀yy, in the axial and transverse directions, respectively, can be 

expressed as: 

𝑑𝜀xx = −tan(𝜃)  𝑑𝜃  (2.5a) 

𝑑𝜀yy = cot(𝜃)  𝑑𝜃  (2.5b) 

Upon integration, the total (true) strains become: 
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𝜀xx = ln [
cos(𝜃)

cos(𝜃𝑜)
]  (2.6a) 

𝜀yy =   ln [
sin(𝜃)

sin(𝜃𝑜)
]  (2.6b) 

where 𝜃𝑜 and 𝜃 are the initial and current fiber angles, respectively. Combining these 

results leads to a direct relationship between the two strains, notably:  

𝜀yy = ln [
sin(cos−1[cos(𝜃𝑜)⋅exp(𝜀xx)])

sin(𝜃𝑜)
]  (2.7) 

This relationship is independent of the constitutive law for the effective medium. 

When the deformation is volume-conserving – as it would be, for example, in a 

rigid-plastic Mises-type solid – the through-thickness strain can be expressed in terms 

of the other two strains via: 

𝜀𝑧𝑧 = −[𝜀𝑥𝑥 + 𝜀𝑦𝑦] = − [𝜀𝑥𝑥 + ln [
sin(cos−1[cos(𝜃𝑜)⋅exp(𝜀xx)])

sin(𝜃𝑜)
]] (2.8) 

Eqns. (2.7) and (2.8) can be re-cast in terms of the nominal strains, 𝜀�̃�𝑥, 𝜀�̃�𝑦 and 𝜀�̃�𝑧, 

yielding: 

𝜀�̃�𝑦 = [
sin(cos−1[cos𝜃𝑜⋅(1+�̃�𝑥𝑥)])

sin𝜃𝑜
] − 1  (2.9a) 

𝜀�̃�𝑧 = [(1 + 𝜀�̃�𝑥) ⋅ (
sin(cos−1[cos𝜃𝑜⋅(1+�̃�𝑥𝑥)])

sin𝜃𝑜
)] − 1 (2.9b) 

The predicted variations in 𝜀�̃�𝑦 and 𝜀�̃�𝑧 with 𝜀�̃�𝑥 are compared with the correspond-

ing experimental measurements in Figure 2.5. Excellent agreement is obtained for 𝜀�̃�𝑦 

over the entire strain range (up to fracture). One inference is that the assumption that 

the fibers are inextensible is indeed a very good one. In contrast, although the predicted 
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curve of 𝜀�̃�𝑧  vs. 𝜀�̃�𝑥 exhibits features that are qualitatively consistent with the experi-

ments, it falls somewhat below the experimental curve, especially at large strains 

(>0.1). The latter strain domain is the one in which dilatation is appreciable.  

Further comparisons are made regarding the failure strain. From Eqn. (2.6a), the 

limiting nominal tensile strain – when the fibers have reached alignment with the ten-

sile axis (=0°) – is csc𝜃𝑜 − 1 ≈ 0.41.  By comparison, the measured failure strains are 

only slightly lower, at 0.37±0.1. This correlation re-affirms the dominant role of fiber 

rotation in the deformation response of these composites. 

Henceforth the challenges are to (i) ascertain the effective medium and fiber 

stresses that are consistent with the strains imposed by the rotations and (ii)  average 

the stresses accordingly in order to obtain the composite stress as a function of the 

imposed strain. 

2.4.4 Effective medium stresses 

Here a framework within which the effective medium stresses can be computed, 

subject to the strain path dictated by fiber rotation, is presented. When combined with 

the results in the next section, the corresponding composite tensile stress-strain relation 

is obtained.  

In its most rudimentary form, the model is based on the assumption that the effec-

tive medium is a Mises-type solid. The yield function f is defined by 

𝑓 = 𝜎𝑒
2 − [𝐹(𝑒𝑒

𝑝)]2=0  (2.10) 
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where 

𝜎𝑒 = √
3

2
𝑠𝑖𝑗 ⋅ 𝑠𝑖𝑗  (2.11) 

and 

𝑒𝑒
𝑝 = ∫ 𝑑𝑒𝑒

𝑝 = ∫ √
2

3
𝑑𝑒𝑖𝑗

𝑝 ⋅ 𝑑𝑒𝑖𝑗
𝑝

  (2.12) 

Here 𝜎𝑒 and 𝑒𝑒
𝑝
 are the equivalent stress and equivalent plastic strain, respectively; 𝑠𝑖𝑗 

and 𝑒𝑖𝑗  are the components of the deviatoric stress and strain tensors, respectively; and 

𝐹(𝑒𝑒
𝑝) is the plastic part of the tensile stress-strain curve. (Hereafter the superscript 

“em” is dropped since the entire analysis in this section pertains only to the effective 

medium). Assuming associated flow:  

𝑑𝑒𝑖𝑗
𝑝

= 𝜆
𝑑𝑓

𝑑(𝑠𝑖𝑗)
=

3𝑑𝜎𝑒

2ℎ𝜎𝑒
⋅ 𝑠𝑖𝑗  (2.13) 

with 

𝑑𝜎𝑒 =
𝐺  𝑠𝑖𝑗⋅𝑑𝑒𝑖𝑗

𝜎𝑒[
1

3
+

𝐺

ℎ
]

  (2.14) 

where ℎ =
𝑑𝐹

𝑑𝑒𝑒
𝑝   is the post-yielding tangent modulus in a uniaxial tension test and 𝜆 is 

the plastic multiplier. Summing the elastic and plastic components yields the total de-

viatoric strain increment, 𝑑𝑒𝑖𝑗:  

𝑑𝑒𝑖𝑗 =
1

2𝐺
𝑑𝑠𝑖𝑗 +

3𝑑𝜎𝑒

2ℎ𝜎𝑒
⋅ 𝑠𝑖𝑗  (2.15) 
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where G is the shear modulus of the effective medium. Combining the preceding re-

sults, the increment of deviatoric stress is found to be:  

𝑑𝑠𝑖𝑗 = 2𝐺 [𝑑𝑒𝑖𝑗 −
3  𝑠𝑖𝑗

2  𝜎𝑒
⋅

𝐺  𝑠𝑘𝑙⋅𝑑𝑒𝑘𝑙

𝜎𝑒[
ℎ

3
+𝐺]

]  (2.16) 

Further assuming that the effective medium is perfectly-plastic (ℎ = 0), Eqn. (2.16) 

reduces to  

𝑑𝑠𝑖𝑗 = 2𝐺 [𝑑𝑒𝑖𝑗 −
3

2
⋅

𝑠𝑖𝑗  𝑠𝑘𝑙⋅𝑑𝑒𝑘𝑙

𝜎𝑒
2 ]  (2.17) 

Adding the non-deviatoric components of strain and stress, the total stress increment 

becomes:  

𝑑𝜎𝑖𝑗 = 𝑑𝑠𝑖𝑗 +
1

3
𝑑𝜎𝑘𝑘 ⋅ 𝛿𝑖𝑗  (2.18a) 

or        𝑑𝜎𝑖𝑗 = 2𝐺 [𝑑𝜀𝑖𝑗 +
𝑣

1−2𝑣
𝑑𝜀𝑘𝑘𝛿𝑖𝑗 −

3

2

𝑠𝑖𝑗𝑠𝑘𝑙𝑑𝜀𝑘𝑙

𝜎𝑒
2 ] (2.18b) 

where 𝛿𝑖𝑗 is the Kronecker delta. Finally, assuming plane stress conditions (𝜎zz = 0), 

the out-of-plane strain increment becomes: 

𝑑𝜀zz = −
𝑑𝜀xx[

𝑣

1−2𝑣
−

3

2
  
𝑠zz⋅𝑠xx

𝜎𝑒
2 ]  +  𝑑𝜀yy[

𝑣

1−2𝑣
−

3

2
  
𝑠zz⋅𝑠yy

𝜎𝑒
2 ]

[
𝑣

1−2𝑣
−

3

2
  
𝑠zz⋅𝑠zz

𝜎𝑒
2 ]

 (2.19) 

and the in-plane stress increments (from (2.18(b))  are:  

𝑑𝜎xx = 2𝐺 [𝑑𝜀xx +
𝑣

1−2𝑣
𝑑𝜀𝑘𝑘 −

3

2

𝑠xx  𝑠𝑘𝑙⋅𝑑𝜀𝑘𝑙

𝜎𝑒
2 ] (2.20a) 

𝑑𝜎yy = 2𝐺 [𝑑𝜀yy +
𝑣

1−2𝑣
𝑑𝜀𝑘𝑘 −

3

2

𝑠yy  𝑠𝑘𝑙⋅𝑑𝜀𝑘𝑙

𝜎𝑒
2 ] (2.20b) 

In this form the stress increments only depend explicitly on the current deviatoric stress, 
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𝑠𝑖𝑗, and the incremental tensile strain, 𝑑𝜀xx (𝑑𝜀yy being related to 𝑑𝜀xx via (2.7)). Eqns. 

(2.20a) and (2.20b) have been combined with (2.6a) and (2.6b) and the results inte-

grated numerically to evaluate the effective medium stresses in terms of the total axial 

strain.  

A typical set of results from this procedure is shown in Figure 2.7.  Two features 

are noteworthy. First, because 𝑑𝜀xx = −𝑑𝜀yy at small strains, the two stresses are re-

lated by 𝜎xx = −𝜎yy.  That is, the effective medium is in a state of pure shear. Second, 

as the fiber rotations increase, both stresses decrease in value; indeed, 𝜎xx becomes 

negative beyond strains of about 0.16. In effect, the fiber rotations cause the stresses in 

the effective medium to migrate along the yield surface in the way shown by the sche-

matic inset of this figure. Accordingly, the stress triaxiality within the effective medium 

becomes increasingly negative as the tensile strain increases: a non-intuitive and unex-

pected result. 

Analogous results (not shown) have been obtained for effective media that exhibit 

linear strain hardening beyond yield. The effect of hardening on the predicted compo-

site response below in Section 2.4.4.  

2.4.5 Laminate stresses 

The axial stress 𝜎𝑥𝑥
𝑙𝑎𝑚 borne by the laminate is obtained by adding the contributions 

from the fibers (𝜎𝑓) and the effective medium (𝜎𝑥𝑥
𝑒𝑚), with the fiber contribution being 

resolved into the approriate direction. This process yields: 
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𝜎𝑥𝑥
𝑙𝑎𝑚 = 𝜎𝑥𝑥

𝑒𝑚 + 𝑉𝑓 ⋅ 𝜎𝑓 ⋅ cos2[cos−1([cos(𝜃𝑜) ⋅ exp(𝜀𝑥𝑥)])] (2.21) 

To obtain 𝜎𝑓, use is made of the fact that the net stress in the y-direction is identically 

zero; that is, the y-component of tension supported by the fibers, given by 𝑉𝑓 ⋅ 𝜎𝑓 ⋅

sin2(𝜃), must be balanced by the compression within the effective medium elements, 

−𝜎𝑦𝑦
𝑒𝑚. This equilibrium condition yields: 

𝑉𝑓 ⋅ 𝜎𝑓 ⋅ sin2(cos−1[cos(𝜃𝑜) ⋅ exp(𝜀𝑥𝑥)]) = 𝜎𝑦𝑦
𝑒𝑚 (2.22) 

 Combining (2.21) and (2.22) gives the true axial laminate stress: 

𝜎𝑥𝑥
𝑙𝑎𝑚 = 𝜎𝑥𝑥

𝑒𝑚 + 𝜎𝑦𝑦
𝑒𝑚 ⋅ cot2[cos−1(cos(𝜃𝑜) ⋅ exp(𝜀𝑥𝑥))] (2.23) 

The corresponding nominal stress-strain relation is readily computed by invoking vol-

ume conservation, whereupon: 

�̃�𝑥𝑥
𝑙𝑎𝑚 =

𝜎𝑥𝑥
𝑒𝑚+𝜎𝑦𝑦

𝑒𝑚⋅{cot2[cos−1(cos(𝜃𝑜)⋅(1+�̃�𝑥𝑥))]}

1+�̃�𝑥𝑥
 (2.24) 

Eqn. (2.24) in combination with (2.20a) and (2.20b) represent key results of this chap-

ter.  

The nominal stress-strain curves predicted by (2.20a), (2.20b) and (2.24) for vari-

ous values of the effective medium yield stress (from 2 to 4 MPa) and the elastic mod-

ulus inferred in Section 2.4.2 along with representative experimental data are plotted 

on Figure 2.3(a). Although qualitatively in good agreement, the model predictions ei-

ther match the experimental data well at low strains and underestimate them at high 

strains, or vice versa, depending on the selection of 𝜎𝑜.  

Additional theoretical results for a linear-hardening Mises-material with tangent 
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moduli h=0–30 MPa are plotted in Figure 3(b). The selection of h values was guided 

by previously-reported experimental measurements on the tensile response of the neat 

polyurethane matrix used in HB26, which reveal a post-yielding tangent modulus of 

10-15 MPa [3]. To re-iterate a point made earlier in Section 2.4.1, in the way it is de-

fined here the effective medium has properties that are strongly influenced by but not 

equivalent to the properties of the matrix. Thus, the post-yield tangent modulus of the 

effective medium is expected to be of the same order of magnitude as that measured on 

the neat matrix material, but may vary somewhat about this value. Here, again, the 

correlations between theoretical predictions and experimental measurements are 

mixed; the tensile response at either small or large strains can be adequately captured 

by  varying one of the parameter values,  yet the response over the entire strain range 

is not captured by any one of the individual cases. These discrepancies, coupled with 

the measured dilatational strains, are interpreted as being strong indications of micro-

structural damage. Such effects are addressed by using a phenomenological strain-sof-

tening constitutive law for the effective medium elements, presented below in Section 

2.5.  

2.5 Finite element analyses 

2.5.1 The model 

An assessment of the preceding analytical model was made through comparisons 

with finite element (FE) analyses. For consistency, the FE model was comprised of 
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arrays of line elements to represent the fibers, implemented as rebar elements in the 

Abaqus FE code. This selection was based on the understanding that, under large shear 

deformations, rebar elements are able to rotate and remain aligned with the element’s 

isoparametric directions, as illustrated in Figure 2.8. Other approaches for modeling 

anisotropic materials, such as that based on the Hill yield condition, fail to properly 

capture such rotations and retain the correct orientation relationships.  

The dimensions of the specimen in the finite element model were chosen to match 

those employed in the experiments. The specimen was modeled as a collection of 16 

sheets of continuum shell elements, each containing unidirectionally-aligned rebar 

(line) elements at either 45° or -45° to the loading direction. The in-plane element di-

mensions were chosen to meet two competing criteria: (i) they must be large enough in 

comparison to the element thickness to prevent shear-locking, and (ii) they must be 

small enough to properly resolve the details of in-plane deformation. These criteria 

were satisfied using elements that were 1 mm x 1 mm in-plane and 100 m through-

thickness.  A mesh-sensitivity study was conducted by altering the element width from 

2.15 mm to 0.5 mm. The results for stresses and strains for 1 mm and 0.5 mm elements 

were indistinguishable from one another and thus all subsequent calculations were per-

formed using the higher value. The thickness of the model was 1.6 mm. An out-of-

plane symmetry boundary condition was implemented, thereby yielding a model that 

was 3.2 mm thick (essentially the same as the thickness of the actual test specimen). 

The boundary conditions at the two opposing ends of the sample were chosen to 

reflect the conditions imposed by the wedge grips in the experiments. At one end, the 
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displacements in the three principal directions were prescribed to be 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 =

0; at the other end, they were  𝑢𝑦 = 𝑢𝑧 = 0 and �̇�𝑥 = 𝑢𝑥
𝑜 ∗ 𝑡𝑐 where 𝑢𝑥

𝑜 is the final 

displacement and 𝑡𝑐 is the total computation time. Since the computations were per-

formed using an explicit solver, the displacement rates were chosen such that the ki-

netic energy was always much smaller than the total internal energy.  

2.5.2 Constitutive laws 

The effective area and stiffness of the rebar elements were selected to be consistent 

with the fiber volume fraction (𝑉𝑓 = 0.83) and the fiber Young’s modulus (𝐸𝑓 = 100 

GPa) of HB26 [31]. The elastic properties of the shell elements were taken to be the 

same as those of the effective medium in the analytical model (𝐸𝑒𝑚 = 68 MPa, 𝑣 =

0.4). The plastic responses of the shell elements employed in the FE calculations are 

detailed in Table 2.1. They include cases of perfect plasticity as well as linear harden-

ing. In one case, the linear-hardening law was augmented with a linear-softening por-

tion, with softening modulus ℎ̃, starting at an equivalent strain of 0.15 (coinciding ap-

proximately with the point at which dilatation was observed in the experiments). The 

latter scenario was intended to represent the effect of damage, as manifested in volu-

metric expansion (Figure 2.5).  

Bonding between adjacent laminae was treated using the cohesive behavior within 

the contact algorithm available in Abaqus [32]. The behavior was modeled as a linear 

traction law with normal and shear tractions defined by: 
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[

𝑡𝑥
𝑡𝑦
𝑡𝑧

] = [

𝐾𝑥 0 0
0 𝐾𝑦 0

0 0 𝐾𝑧

] ⋅ [

𝛿𝑥

𝛿𝑦

𝛿𝑧

]   (2.25) 

where 𝑡𝑖 are surface tractions in the global coordinate system, 𝐾𝑖 are stiffness cooeffi-

cients and 𝛿𝑖 are the nodal separations.  In this formulation, normal and shear compo-

nents are decoupled; that is, normal separation does not give rise to shear tractions, and 

vice-versa. This description of normal tractions was only applied to tension; compres-

sive forces between shell elements were treated with the general contact algorithm us-

ing “hard” contact.  

Most of the FE calculations were performed using stiffness coefficients that reflect 

the response of the effective medium elements: notably, Kx=Ky=Gem/H  and Kz=Eem/H  

where H is element thickness. In some cases, the stiffnesses were reduced by a factor 

of 10, in an effort to assess the sensitivity of the macroscopic response to these param-

eter values. In yet others, cohesion between the plies was removed, such that the 45° 

and -45° plies were uncoupled from one another. The latter represents the limiting case 

in which all plies have delaminated. The pertinent property values are summarized in 

Table 2.1. 

2.5.3 FEA results  

FEA results of the spatial variations in 𝜀�̃�𝑦 and 𝜀�̃�𝑧 for the cases denoted FEA-2 and 

FEA-3 (distinguished from one another by the cohesive stiffness values, Table 2.1) are 

plotted in Figure 9 and compared with the corresponding experimental measurements.  
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Evidently the mean values of the transverse strains are well captured by the FEA. The 

curves from FEA exhibit the “up-turns” near the specimen edges, similar to those seen 

experimentally. However, the magnitude of the up-turn is slightly underpredicted by 

the FEA. Furthermore, it increases as the stiffness of the interlaminar cohesive law is 

decreased. These comparisons suggest that edge effects associated with inelastic inter-

laminar shear are likely operative. No further efforts were made to capture such effects 

quantitatively. 

The average values of 𝜀�̃�𝑦 and 𝜀�̃�𝑧 obtained for these two cases are plotted in Figure 

2.5.  The variations in 𝜀�̃�𝑦 with 𝜀�̃�𝑥 are virtually identical in the two cases (FEA-2 and 

FEA-3) and closely match those from the experiments and from the analytical model. 

The variations of 𝜀�̃�𝑧 with 𝜀�̃�𝑥 are also almost identical to one another but, as for the 

case of the analytical model, underpredict the measurements, especially at strains be-

yond 0.1. The results of FEA-1 (where the effective medium is perfectly plastic) are 

also shown. These agree exceedingly well with the corresponding analytical predic-

tions for the same set of constituent properties.  Yet another set of results, for FEA-4, 

where the plies are de-coupled from one another, exhibit a strong underprediction of 

the magnitudes of the strains.  This result is qualitatively consistent with the relatively 

small amounts of interply delamination seen in the optical micrographs of the fractured 

test specimens, especially away from the fracture location (Figure 2.6). 

The computed stress-strain curves are compared with the experimental measure-

ments in Figure 2.10. For FEA-2 and FEA-3, the curves initially coincide with the 

measured ones (to a strain of about 0.15) but overestimate the strength at higher strains. 
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The slight difference between the two computed curves is a manifestation of the differ-

ent cohesive stiffnesses (Table 2.1).  In contrast, the response computed for the case in 

which the plies are uncoupled (FEA-4) lies well below the measurements.  Here the 

fibers undergo minimal rotation and the hardening closely mimics that of the effective 

medium alone. The differences further illustrate the important effect of fiber rotations 

on the high apparent hardening rate of the composite.  

The final set of computed results from both the analytical model and FE for the case 

in which the effective medium undergoes softening beyond a strain of 0.15 are plotted 

in Figure 2.11. For the selection ℎ̃ = −3  MPa, the analytical and FE results are in close 

agreement with one another and correlate extremely well with the measurements over 

the entire loading history. In addition to matching the plastic response, the predicted 

curve exhibits a load maximum at a strain of about 0.37: virtually identical to the meas-

ured failure strain.  These correlations imply that microstructural damage does indeed 

play an important role in the plastic response of the composite at large strains. Despite 

this correlation, we acknowledge that the assumed softening response employed in this 

set of computations is ad hoc and lacks a sound mechanistic basis. Further study of the 

damage mechanisms at the microscopic level is clearly needed in order to fully capture 

the shear-dominated stress-strain response of Dyneema® composites at the highest plas-

tic strains. 
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2.6 Discussion 

In this chapter, an analytical constitutive model has been presented for the shear-

dominated behavior of Dyneema® composites in 2D loading – as manifested in the in-

plane tensile response of [±45°] cross-ply laminates – and compared with the predic-

tions to both FE results and experimental measurements. In this regard, the binary rep-

resentation of the constituent phases proves to be a useful basis for modeling the com-

posite response. For all cases examined here, the analytical predictions are in excellent 

agreement with the FE results.  

The results demonstrate that the rapid hardening in the stress-strain curve is attribut-

able to fiber rotations and the associated changes in stress state. With realistic estimates 

of the pertinent constituent properties, the hardening rate is captured well by the ana-

lytical model up to moderate plastic strains. The model also yields a realistic bound on 

the limiting tensile failure strain. Although some edge effects are obtained in the strain 

distributions (likely caused by interlaminar shear), their spatial extent appears to be 

small in comparison to the specimen dimensions employed in the present tests. At 

larger plastic strains, corresponding to the onset of dilatation, the theoretical models 

over-predict the measured stresses. The discrepancies are likely due to microstructural 

damage. A phenomenological description of the softening caused by damage within 

the effective medium elements appears to capture the salient features of the stress-strain 

response and the strain at fracture, though additional work is needed to identify the 
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underlying mechanisms. The model also underestimates the out-of-plane strains asso-

ciated with this damage. Further work in the cohesive zone representation of the inter-

laminar behavior is necessary to capture these effects. 

Having established the utility of a binary model representation of Dyneema® lami-

nates, the FE model presented here is adapted to simulate the response of the laminates 

under more complex loadings, both quasi-static and dynamic. The details are presented 

in the following chapter. 
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Table 2.1: Constitutive laws employed in FEA 

 

Designation o 
(MPa) 

h 
(MPa) 

Kx = Ky 

(GN/m3) 
Kz 

(GN/m3) 
Comments 

FEA-1 2 0 240 680  

FEA-2 2 20 240 680  

FEA-3 2 20 24 68  

FEA-4 2 20 0 0  

FEA-5 2 20 240 680 Softening after strain of 0.15 
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Figure 2.1: Deformation of an HB26 plate situated behind a 6 mm-thick target plate 

upon impact with a 7.6 mm-diameter steel sphere at a velocity of 1195 m/s (E.A. Gam-

ble, O. Nazarian, F.W. Zok, unpublished). 

(a) During impact 
 

t=0 ms 12 ms 34 ms 

57 ms 79 ms 102 ms 25 mm 

Plan view 

(b) After impact 

50 mm 

g ≈ 0.2 

Side view 
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Figure  2.2: Dark-field optical micrograph showing the cross-ply architecture of HB26 

laminate.  
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Figure  2.3: (a) Nominal tensile stress-strain response of HB26 laminate in the [±45°] 
orientation obtained from several tensile tests. Comparisons between experimental re-

sults and theory, showing effects of (a) the yield strength of the effective medium for 

an elastic-perfectly plastic material and (b) the effective medium tangent modulus in 

the post-yielding domain. The experimental curve in (b) represent average values; the 

error bars represent the full range from the measurements.  

0 

10 

20 

30 

40 

(a)

so=4 MPa

 3 MPa

 2 MPa

Experimental

Analytical
model (h=0)

0 

10 

20 

30 

40 

0 0.1 0.2 0.3 0.4 

Nominal strain,  εxx ~

N
o

m
in

a
l 
s
tr

e
s
s
, 

  
(M

P
a
) 

s
x
x
 

~

20 MPa

10 MPa

Experimental

h=0

h=30 MPa

(b)

Analytical model
(so=2 MPa)



41 
 

 
 

 

Figure  2.4: Transverse line scans of (a) out-of-plane and (b) in-plane transverse strains 

at various levels of applied axial strain.   
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Figure  2.5: Evolution of (a) the two transverse strains and (b) the volumetric strain 

with nominal axial strain. The error bars in (a) represent the full range from the exper-

imental measurements. 
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Figure 2.6: Photograph of fractured test coupon and optical images of transverse cross-

sections at the indicated locations. Although not evident in the test coupon (on the left), 

the section at B is essentially at the fracture location.  
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Figure 2.7: Evolution of effective medium in-plane stresses with axial strain for an 

elastic-perfectly plastic Mises-type material. Results are from analytical model. Inset 

shows the evolution of the stress path. 
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Figure 2.8: Schematics showing (a) rebar reinforcement in a first-order element, with 

the two sets of rebars initially aligned with the element isoparametric directions; and 

(b) the same element after large pure shear deformation. Here the rebars remain aligned 

with the element isoparametric directions. If the problem were modeled using an ani-

sotropic yield condition, the principal material directions would rotate, as illustrated by 

the coordinate axes in (b). (Adapted from [32])  
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Figure 2.9: Spatial distributions of the two transverse strains from experimental meas-

urements and finite element predictions as functions of axial strain. 
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Figure 2.10: Comparisons of FEA and analytical model predictions with experimental 

measurements of tensile stress-strain response. 
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Chapter 3 

Soft-impact response of Dyneema®  

composite plates 

3.1 Introduction 

 

In Chapter 3, a finite element model for predicting the behavior of Dyneema® com-

posites in uniaxial tension was established. The pertinent FE material input parameters 

(i.e. 𝐸𝑒𝑚, 𝑣, 𝜎𝑜 and ℎ) were calibrated from experimental tension tests with fibers ori-

ented ±45° to the loading axis [33]. The present chapter focuses on the dynamic re-

sponse of Dyneema® plates in threat protection systems, where the stress state in the 

composite is multi-axial. In addition to this complexity, the yield strength and modulus 

of the composite have been shown to exhibit strain-rate sensitivity [25–27]. For these 

reasons, additional tests and modeling tools are necessary. The objective of this chapter 

is to extend the current form of the finite element (FE) model (as presented in Chapter 

2) to incorporate the effects of dynamic loading, and to evaluate the efficacy of the 

model as a design tool for predicting the behavior of Dyneema® composites in armor 

systems.  
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The experimental portion of the chapter centers on the quasi-static and dynamic 

response of Dyneema® HB26 plates. Quasi-static punch tests are used to validate the 

choice of material parameters taken from a previous study [33]. The boundary condi-

tion in these tests are varied to study the role of the initial clamping pressure, 𝑃𝑜, on the 

load-displacement response. In parallel, dynamic experiments are performed by firing 

metal foam projectiles at plates of the composite material. These tests are designed to 

simulate the distributed pressure loads exerted on a catch-plate in armor systems. The 

impulse exerted on the samples is varied by changing the impact speed of the projec-

tiles, and in-situ observations are made by utilizing high-speed video. The results of 

the experimental tests are presented in Section 3.2. Details of the finite element consti-

tutive law is presented in Section 3.3. The rate sensitivity of the effective medium is 

studied by varying the elastic modulus, 𝐸𝑒𝑚, and the yield strength, 𝜎𝑜, parametrically. 

The predictive capability of the model is assessed through comparisons with experi-

mental observations. The key results are summarized in Section 3.4.  

3.2 Experiments 

3.2.1 Materials and test methods 

All tests were performed on samples cut from [0°/90°]48 cross-ply panels of 

Dyneema® HB26 (provided by DSM Dyneema, The Netherlands), identical to the ma-

terial used in the study described in Chapter 2. 
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3.2.2 Quasi-static punch tests 

The test configuration for the punch tests is illustrated in Figure 3.2(a). It was de-

signed to simulate, in a highly idealized manner, the response of a spall shield located 

on the back face of a ballistic protection system containing a hard face material (e.g. 

ceramic) and secured in some fashion around its periphery. As demonstrated by the 

subsequent results, the test probes not only the effects of a distributed pressure but also 

the effects of boundary conditions as material is drawn in from the plate edges. The 

plate dimensions were 100 𝑚𝑚 𝑥 100 𝑚𝑚 𝑥 3.3 𝑚𝑚. The plates had been cut to size 

using a band saw with precautions taken to minimize fraying at the specimen edges. 

They were mounted between two precision-ground steel annular (washer-like) rings 

with 60 𝑚𝑚 inner diameter and 80 𝑚𝑚 outer diameter. The assembly (specimen and 

annular rings) was then placed in a mechanical test machine and loaded in compression 

to a specified pressure, 𝑃𝑜, between 1.3 and 12 𝑀𝑃𝑎. Once the appropriate load had 

been attained, eight securing bolts passing through the annular rings were tightened 

uniformly until the machine force was reduced to zero. Subsequently, a torque wrench 

was used on each bolt to verify that the appropriate clamping pressure had been 

achieved. The samples were then loaded at the center-point of the front face using a 

38 𝑚𝑚 diameter spherical punch at a rate of 1.2 𝑚𝑚/𝑚𝑖𝑛. Most tests were performed 

until a load maximum had been reached and structural softening had commenced; this 

typically occurred at about 30 − 35 𝑚𝑚 of punch displacement. In one case, the sam-

ple was unloaded before the peak, for the purpose of comparing the surface appearances 

in the region of sliding between the samples and the clamping rings. 
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3.2.3 Dynamic loading 

Impact tests were performed using the same specimen types in the same test fixture 

within a single-stage gas gun. The initial clamping pressure for these tests was 1 𝑀𝑃𝑎. 

Tests were performed by firing cylindrical Al foam (Alporas®) projectiles at the center 

of the front face of the specimen. The projectiles had been prepared by electro-dis-

charge machining (EDM). They had a diameter of 44 mm and a length of 53 𝑚𝑚. The 

foam density was approximately 𝜌 = 230 𝑘𝑔 𝑚3⁄  and its relative density was 8.5%. 

Projectile velocities were measured using magnetic intervalometers (Physics Applica-

tions Inc.). Some tests were performed on the foam alone and high-speed photography 

was used to confirm the velocity measurements obtained from the intervalometers. The 

initial velocities ranged from 150 to 300 𝑚/𝑠. The reported velocities are estimated to 

have an error of no more than ±5%. The dynamic displacement of the center point on 

the distal (back) face of the composite panel was monitored using a high-speed camera 

(Phantom v7, Vision Research Inc.). The surface was viewed at an angle of approxi-

mately 45°. The precise orientation relationship between the two was obtained before 

each test from images taken of a scale that had been mounted normal to the specimen 

surface. 

3.2.4 Experimental results 

Representative load-displacement curves from the quasi-static punch tests are 

shown in Figure 3.3. Each curve is characterized by: (i) an initial nearly-linear rise, to 
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a displacement of about 10 𝑚𝑚, (ii) a secondary regime in which the load increases 

more rapidly, to a displacement of about 30 𝑚𝑚; and (iii) attainment of a load maxi-

mum followed by softening. The peak corresponds to the point at which the sample 

edges had been pulled through the annular rings and the total contact area between the 

rings and the sample had begun to decrease with increasing displacement. The loads 

increase only slightly with clamp pressure; over the range 𝑃𝑜 = 1.3– 12 𝑀𝑃𝑎, the load 

at a specified deflection increases by about 15%. 

Photographs of the tested samples at clamping pressures of 1.3, 4.0 and 12 𝑀𝑃𝑎 

are shown in Figure 3.4. To provide a frame of reference, the initial size of the plate is 

indicated by the dashed squares superimposed on the photographs. Also shown are the 

inner and outer diameters of the clamping ring: the area between the two indicating the 

region in which sliding had occurred between the sample and the rings. The samples 

exhibit significant pull-in from the distal regions of the plate, mainly along the two 

principal fiber directions (aligned with the sample edges). The pull-in is accommodated 

by shear deformation parallel to the fiber directions, as manifested in rotations of fidu-

cial lines that were initially oriented parallel to the fiber directions. There is also some 

evidence of near-surface damage of the samples where they have slid past the clamping 

rings, especially at the highest clamping pressure. The damage involves delamination 

of thin layers of the composite. Based on numerical simulations presented in a subse-

quent section, this damage occurs when the interfacial stresses reach the interlaminar 

shear strength of the composite [26,27]. 
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Figure 3.5 shows a sequence of images of the back face of a typical sample im-

pacted by a foam projectile, at an impact velocity 𝑣𝑜 = 210 𝑚/𝑠. The displacement-

time histories based on measurements from such images for this and other tests are 

plotted in Figure 3.6. Photographs of samples after testing at three different velocities 

are shown in Figure 3.7. The deformed shape is similar to that obtained in the quasi-

static punch tests (Figure 3.4). Here, again, the bulging is accommodated by pull-in of 

material along the two fiber directions and the accompanying shear deformation. For 

impact velocities exceeding 300 m/s, the samples were pulled through the clamping 

rings on one half whereas the other half remained attached to the assembly.  

3.3 Finite element model 

3.3.1 Representation of Dyneema® HB26 

For the purpose of the finite element calculations, the composite is represented by 

a binary model of the constituent phases, similar to the method described in Chapter 2. 

In the same fashion, the fibers are represented by an array of one-dimensional line-

spring rebar elements. These elements are embedded within a three-dimensional con-

tinuum that represents an effective medium. However, several key modifications have 

been made in the current formulation. The details are described below. 

The fiber architecture was modeled as a collection of 16 sheets of first-order surface 

elements with reduced integration. Each sheet contained unidirectionally-aligned rebar 

elements with a [0°/90°] layup. To reiterate from Chapter 2, this selection was based 
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on the understanding that, under large shear deformations, rebar elements are able to 

rotate and remain aligned with the element’s isoparametric directions, as illustrated in 

Figure 3.8. Other approaches for modeling anisotropic materials, such as that based on 

the Hill yield condition, fail to properly capture such rotations and retain the correct 

orientation relationships. The properties of the rebar layer are smeared uniformly across 

an effective thickness. Operationally, this is done by assigning a rebar cross-sectional 

area, 𝐴𝑅, and a spacing, 𝑆𝑅, between rebar elements, with the effective thickness of a 

surface element then defined by 𝑡𝑅 = 𝐴𝑅 𝑆𝑅⁄ .  The values were chosen to be repre-

sentative of the fiber volume fraction 𝑉𝑓 such that 𝑡𝑅 = 𝑉𝑓 ⋅ 𝑡ℎ , where 𝑡ℎ is the thick-

ness of the host element.   

The effective medium was modeled with three-dimensional first-order continuum 

elements with reduced integration. A Mises-type constitutive law was employed. The 

material response was taken to be elastic-plastic with linear hardening after yield [33]. 

The surface elements were embedded into this effective medium and a kinematic con-

straint was used to enforce alignment of the element edges. This ensured that the in-

plane deformations of both constituents was the same. The mass density of the compo-

site was assigned entirely to the effective medium. In doing so, the embedded line ele-

ments only contribute additional stiffness to the host elements in the direction of the 

rebar. The modulus, 𝐸𝑒𝑚, yield strength, 𝜎𝑜, post-yield hardening rate, ℎ, and Poisson’s 

ratio, 𝑣, of the effective medium were obtained by fitting tensile tests that had been 

performed in the ±45° orientation (as described in Chapter 2 [33]). The curve fit is 

shown in Figure 9. The inferred property values are: 𝐸𝑒𝑚 = 80 𝑀𝑃𝑎, 𝑣 = 0.4, 𝜎𝑜 =
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2 𝑀𝑃𝑎 and ℎ = 20 𝑀𝑃𝑎. These properties are identical to the properties determined 

from the analytical analysis presented in Chapter 2. The finite element calculations in 

present study do not incorporate softening in the effective medium, (ℎ̃ = ℎ =

20 𝑀𝑃𝑎), since the source of the softening in the tension tests remains uncertain. 

For the impact calculations, the effect of strain rate 𝜀̇ on the yield stress 𝜎(𝜀̇) of the 

effective medium was modeled using a power-law of the form:  

𝜎(𝜀)̇

𝜎(�̇�𝑜)
= (

�̇�

𝜀�̇�
)
𝑘

  (3.1) 

where 𝜀�̇� is a reference strain rate (chosen to be 10−3 𝑠−1) and 𝑘 is the power-law 

exponent. The limited available data on rate sensitivity, obtained from tension tests in 

the ±45° orientation [25], indicate that 𝑘 ≈  0.08.  This value is used in the initial FE 

simulations; other values are also considered in order to assess the sensitivity of the 

results to this selection.  

As demonstrated by the subsequent comparisons of the numerical and experimental 

results, the modulus of the effective medium also exhibits a rate sensitivity. Although 

this rate sensitivity is not explicitly modeled in the present study, a parametric study is 

performed to infer the modulus from comparisons to one impact test. Indeed, as ex-

pected, this modulus is considerably higher than the corresponding quasi-static value. 

Subsequently, this value is used to predict the behavior of the composite in the remain-

ing experiments. 

The in-plane element dimensions of the laminate were chosen following a mesh-

sensitivity study. The study entailed varying the element width from 0.5 𝑚𝑚 to 2 𝑚𝑚 
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and the element thickness from 0.1 𝑚𝑚 to 0.8 𝑚𝑚. The computed stresses and strains 

for elements 1 𝑚𝑚 and 0.5 𝑚𝑚 wide were indistinguishable from one another and thus 

all subsequent calculations were performed using the higher value (1 𝑚𝑚). In a similar 

fashion, the through-thickness dimension was chosen to be 0.2 𝑚𝑚.  

3.3.2 Foam constitutive model 

The projectile was modeled as a three-dimensional solid continuum using first-or-

der elements with reduced integration and hourglass control. Each element had in-plane 

dimensions nominally 0.75 𝑚𝑚 x 0.75 𝑚𝑚 and a thickness of 0.2 𝑚𝑚. The choice of 

element thickness was selected to ensure that densification of the foam was accurately 

captured [34].  

The material properties of the foam were characterized using the Deshpande-Fleck 

crushable foam model in ABAQUS. A non-associated flow potential was used, with 

parameters selected to be consistent with a plastic Poisson’s ratio of 0. Consequently, 

the ratio of yield strengths in hydrostatic compression and uniaxial compression was 

taken to be √3. The uniaxial compressive response of the foam was represented by an 

analytical model developed by Gibson and Ashby [35].  The response has three do-

mains: (i) elastic, characterized by a Young’s modulus 𝐸𝑓𝑚 and a Poisson’s ratio 𝜈𝑓𝑚; 

(ii) perfectly-plastic crushing at a plateau stress, 𝜎𝑝𝑙, and with a plastic Poisson’s ratio 

of zero; and (iii) a hardening domain at strains beyond a critical value, given by 

𝜀𝐷(1 − 1 𝐷⁄ ) where 𝜀𝐷 is the densification strain and 𝐷 is a fitting parameter (selected 
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to be 2.5). The plastic response in the latter (hardening) domain is described by: 

𝜎𝑓𝑚

𝜎𝑓𝑚
𝑝𝑙 =

1

𝐷
(

𝜀𝐷

𝜀𝐷−𝜀𝑓𝑚
)
𝑚

  (3.2) 

where 𝜎𝑓𝑚 and 𝜀𝑓𝑚 are the axial stress and strain, respectively, and m is a fitting pa-

rameter (taken to be 1). Based on previous measurements of the mechanical properties, 

the elastic modulus and plateau stress of the foam were taken to be 𝜎𝑓𝑚
𝑝𝑙 = 1.35 𝑀𝑃𝑎 

and  𝐸𝑓𝑚 = 1.1 𝐺𝑃𝑎, respectively. The density of the foam was chosen to match the 

weight of the projectile in each experiment, approximately 𝜌𝑓𝑚 = 235 ± 10 𝑘𝑔 𝑚3⁄ .  

The strain rate sensitivity of the composite response in the dynamic domain was 

prescribed by a power-law of the form: 

𝜀̇ = 𝐷 (𝑅 − 1)𝑛  (3.3) 

𝑅 =
𝜎𝑓𝑚

𝑝𝑙 (�̇�)

𝜎𝑓𝑚
𝑝𝑙 (�̇�𝑜)

  (3.4) 

Here 𝜀̇ is the strain rate, 𝜀�̇� is a reference strain rate (10−3 𝑠−1), and 𝑅 is the strength 

ratio at the two strain rates, 𝜀̇ and 𝜀�̇�. The coefficient 𝐷 and exponent 𝑛 are determined 

by the initial projectile velocity and the material properties of the foam. The foam is 

assumed to be linear-viscous with viscosity, 𝜇, defined by [34]:  

 𝜇 = (𝜌𝑓𝑚 ∙ 𝑐 ∙ 𝑙)   (3.5) 

where 𝑐 is the shock propagation speed in the foam and 𝑙 is the width of the shock front. 

Since the material is assumed to be essentially rigid beyond the densification strain, the 
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shock speed can be expressed as 𝑐 = 𝑣𝑜 𝜀𝐷⁄ , where 𝑣𝑜 is the initial velocity of the pro-

jectile and is taken to be equivalent to the change in velocity across the shock front. 

Since momentum is conserved across the shock, the difference in the yield stress on 

either side of the shock front is: 

𝜎𝑓𝑚
𝑝𝑙 (𝜀̇) − 𝜎𝑓𝑚

𝑝𝑙 (𝜀�̇�) = 𝜌𝑓𝑚 𝑐 𝑣𝑜 =
𝜌𝑓𝑚 𝑣𝑜

2

𝜀𝐷
    (3.6) 

This can be rewritten in terms of 𝑅 and 𝑙, yielding: 

𝑅 − 1 =
𝜇  𝑣𝑜

𝜎𝑓𝑚
𝑝𝑙 (�̇�𝑜) 𝑙

   (3.7) 

Since we are interested in the elevation in stress due to viscous effects, the relevant 

strain rate is simply the one at the shock front, and is given by: 

𝜀̇ = 𝑣𝑜 𝑙⁄ =
𝜎𝑓𝑚

𝑝𝑙 (�̇�𝑜)

𝜇
∙ (𝑅 − 1)  (3.8) 

Upon comparison with Eqn. (3.3), the coefficient 𝐷 = 𝜎𝑓𝑚
𝑝𝑙 (𝜀�̇�)/𝜇 and 𝑛 = 1. 

3.3.3 Model definition 

For computational efficiency, only one-quarter of the assembly was modeled (Fig-

ure 3.2(b)). Appropriate displacement and rotational boundary conditions were pre-

scribed on the axes of symmetry. The bolts and outer assembly were not explicitly 

modeled. Instead, the contact pressure at the interface between the sample and the an-

nular rings was achieved by implementing a displacement boundary condition between 

the sample and the two ring surfaces. In the initial step of the calculation, the two rings 
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were brought into contact with the composite panel to achieve the desired clamping 

pressure. Thereafter, the positions of the rings were held fixed.  

For simulations of the quasi-static punch tests, the spherical punch was modeled 

with elastic, first-order continuum elements with an average element length of 0.5 𝑚𝑚. 

The elements within the punch were assigned a constant displacement rate, in accord 

with that used in the experiments. In the dynamic calculations, an initial velocity was 

assigned to all material points in the projectile.  

All contact surfaces were modeled using the “surface-to-surface” contact algorithm 

in Abaqus [32]. Contact normal to element surfaces was treated as being “hard” and 

the tangential response was modeled using a penalty formulation. A friction coefficient 

𝜇𝑜 was assigned to adjust the penalty. The friction coefficient between the annular rings 

and the composite was determined experimentally. This was accomplished by placing 

one of the annular rings on a sheet of the composite, applying a dead-load on top of the 

ring, and then measuring the force required to move the ring across the laminate at a 

constant rate. The tests were performed with several different weights. In all cases, the 

friction coefficient was 𝜇𝑜  = 0.1 ± 02. 

3.4 Results of finite element simulations 

3.4.1 Quasi-static punch tests 

FEA results of the load-displacement curves for the quasi-static punch tests are 

compared with the corresponding experimental measurements in Figure 3.3. Each pair 
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of curves represents the results for a different value of the initial clamping pressure, 𝑃𝑜. 

The mechanical response of the samples tested at the two lower values of 𝑃𝑜 is captured 

well by the simulations over most of the loading history. The results begin to diverge 

only at high displacements (𝛿 ≥ 25 𝑚𝑚). Thereafter, the measured response exhibits 

larger displacements and lower peak load than that emerging from the simulations. At 

higher clamp pressures (𝑃𝑜 = 12 𝑀𝑃𝑎), the simulated results deviate from the experi-

mental ones earlier, at a penetration depth of about 10 𝑚𝑚.  

To gain some further insights into limitations of the numerical model and the un-

derlying assumptions, the average contact shear stress 𝜏𝜇 due to friction beneath the 

annular rings was also calculated. The variation in this stress with penetration depth is 

plotted in Figure 3.9(b). Each curve starts at a value of 𝜇𝑜𝑃𝑜 but then rises when the 

displacement exceeds 10–15 𝑚𝑚. Also indicated on these curves are the points at 

which the finite element predictions deviate from the experimental measurements by 

more than 10%. In each case, the deviation initiates at a shear stress 𝜏𝜇 ≈ 1.5 𝑀𝑃𝑎. 

This value coincides closely with the interlaminar shear strength (≈ 1.7 𝑀𝑃𝑎) meas-

ured by Karthikeyan et al. on essentially the same composite material [26,27]. Further-

more, the relatively small damage amount of surface damage on the specimen clamped 

with a pressure of 1.3 𝑀𝑃𝑎 and unloaded before the peak load (at a displacement of 

24 𝑚𝑚) can be attributed to the fact that the interfacial shear stress (1.0 𝑀𝑃𝑎) had not 

achieved a sufficiently high value to initiate delamination. The conclusion is that the 

model in its current form (based on the assumption of frictional sliding at the sam-
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ple/ring interface) begins to break down once the interfacial stresses exceed the inter-

laminar shear strength. The critical point at which this occurs depends on both the 

clamping pressure and the amount of displacement.  

3.4.2 Foam impact tests 

Comparisons of the computed and measured back-face deflection histories of sam-

ples impacted by foam projectiles are presented in Figure 3.6. Here all parameter values 

were the same as those in the quasi-static punch tests. However, the strain rate sensi-

tivity of the effective medium modulus and yield strength have been incorporated into 

the model. To achieve good agreement between the predictions and the measurements, 

this modulus was calibrated to one impact test (𝑣𝑜 = 210 𝑚/𝑠), and was determined 

to be 260 𝑀𝑃𝑎 (higher than the quasi-static value of 80 𝑀𝑃𝑎). The power law expo-

nent was determined from experiments in the literature, and taken to be 𝑘 = 0.08. With 

this fixed set of material properties, the measured curves across all of the experiments 

are well-matched by the simulated results. The only exception is for the test conducted 

at the highest impact velocity (305 m/s) wherein the sample is penetrated by the foam 

projectile.  

Additional simulations showing the effects of the modulus on the predictions for 

one particular case (vo=210 m/s) are shown in Figure 3.11(a). (Here all other material 

properties were unchanged.) ). Reductions or elevations in 𝐸𝑒𝑚 by 50% (relative to the 

baseline case 𝐸𝑒𝑚 = 260 𝑀𝑃𝑎) yield a 9.25 ± 3.5% change in the plateau displace-

ment. 
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 In light of the fact that only a small amount of data on the strain rate sensitivity of 

the effective medium is available [25], additional parametric studies were performed 

to assess the effects of 𝑘. The results are shown in Figure 3.11(b). In this case, reduc-

tions or elevations in 𝑘 by 50% (relative to the baseline case 𝑘 = 0.08) yield only about 

a 15 ± 3.5% change in the plateau displacement. Additionally, changes in 𝐸𝑒𝑚 and 𝑘 

have no effect on the intial (rising portion) of the deflection-time curve.   

3.5 Discussion 

 A finite element model for the shear-dominated behavior of Dyneema® composites 

based on a binary representation of the composite constituents has been developed. The 

pertinent quasi-static material properties in the model (notably 𝐸𝑒𝑚, 𝑣, 𝜎𝑜 and ℎ) have 

been calibrated from results of ±45° uniaxial tension tests [33]. Using the the quasi-

static material properties coupled with an independent measurement of 𝜇𝑜 , the result-

ing predictions of the punch response agree very well with the measurements, with the 

exception of that near the load maximum. In the latter regime, the simulations yield 

over-estimates of the loads: a discrepancy attributable to the damage done during pull-

in of the specimens past the ring clamps and the resulting reduction in the frictional 

sliding resistance. Observations of tested samples and FE simulations suggest that the 

damage initiates at a critical value of interfacial shear stresses, given approximately by 

the interlaminar shear strength of the composite. Finally, using the quasi-static material 

properties coupled with a value of 𝑘 from other studies [25] and parameteric numerical 
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studies in 𝐸𝑒𝑚, the dynamic response of clamped samples during impact by foam pro-

jectiles was shown to be predicted equally well. In order to advance the model from its 

current form, a critical assessment of the strain rate dependent behavior is necessary. 

Chapters 2 and 3 have discussed the utility of fiber composites in threat-protection 

systems, and have outlined modeling techniques for predicting their behavior in a re-

gime characterized by very high deformation rates (𝜀̇~1000 𝑠−1). The following two 

chapters present an analysis of material systems designed for protection in the low-

velocity impact of a human head with the interior walls of a vehicle. 
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Figure 3.1: Dark-field optical micrograph showing the fiber architecture of  

Dyneema® HB26. 

 

 

 

 
 

 

 

Figure 3.2: (a) Schematic of one half of the assembly used for foam impact tests. (b) 

The finite element geometry and mesh of the sample in plan-view. 
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Figure 3.3: Experimental measurements and finite element predictions of the quasi-

static punch tests. 
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Figure 3.4: Photographs of test samples after punch tests, showing (a,b) effects of peak 

displacement on the surface appearance of samples tested with a clamping pressure of 

1.3 MPa, and (c,d) effects of clamping pressure (indicated on the images).  
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Figure 3.5: Sequence of images showing the back-face response of a sample upon im-

pact with a foam projectile at 210 m/s.   

 

 

 

 

 
 

Figure 3.6: Experimental measurements and finite element predictions of the temporal 

evolution of the center-point back-face deflection.  
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Figure 3.7: Photographs of test specimens after foam impact tests at three different 

velocities.  

 

 

 

 

 

 
 

Figure 3.8: Schematics showing (a) rebar reinforcement in a first-order element, with 

the two sets of rebars initially aligned with the element isoparametric directions; and 

(b) the same element after large pure shear deformation. Here the rebars remain aligned 

with the element isoparametric directions. If the problem were modeled using an ani-

sotropic yield condition, the principal material directions would rotate, as illustrated by 

the coordinate axes in (b). (Adapted from ABAQUS FEA Manual [32])  
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Figure 3.9: Quasi-static tensile response of the composite in the ±45° orientation and 

the FE simulations used to infer the pertinent elastic constants of the effective medium 

elements.  

 

 

 
 

Figure 3.10:  Computed variation in the average shear stress at the sample/ring inter-

face during quasi-static punch tests with varying clamping pressures. Points A, B, and 

C correspond to the displacements at which the finite element predictions (on Figure 

3.3) deviate from experimental measurements by more than 10%. 
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Figure 3.11: Effects of (a) effective medium modulus and (b) strain rate sensitivity 

parameter k on the evolution of back-face deflection for impact at 210 m/s. Also shown 

for comparison are the corresponding experimental measurements. 
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Chapter 4 

 

Analysis of protective materials for 

mitigating head injury 

4.1 Introduction 

The prior two chapters have focused on the intrinsic properties of Dyneema® lam-

inates and the development of a framework for modeling the behavior of these compo-

sites in threat protection systems. This chapter concentrates on an analysis of materials 

that are used to mitigate the secondary effects of a blast event, wherein occupants of a 

vehicle are susceptible to head injuries resulting from collisions with the cabin interior. 

As discussed in Chapter 1, the physiological mechanisms of head injury remain to be 

fully elucidated. However, there have been countless studies conducted on this topic 

[10,12,14,19,36–38]. The culmination of this research has led to the Head Injury Cri-

terion (HIC), an empirical parameter that correlates the accelerations imparted to the 

human head during impact to the severity of injury. To reiterate from Chapter 1, the 

HIC is defined by [13]: 
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𝐻𝐼𝐶 = max
𝑡1,𝑡2

{[
∫ 𝑎(𝑡)𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
]

5 2⁄

 (𝑡2 − 𝑡1)} (4.1) 

where 𝑎(𝑡) is the acceleration imparted to the head, and the quantity (𝑡2 − 𝑡1) defines 

an interval that maximizes the 𝐻𝐼𝐶. It should be noted that the predictive capability of 

the 𝐻𝐼𝐶 parameter is limited to severe head injuries, where the criterion is skull frac-

ture. Therefore, the term “head injury” in this study refers to damage in the form of 

skull fracture, rather than brain injury.   

The principal objective of this chapter is to present an analytical framework for 

selecting protective materials that minimize the 𝐻𝐼𝐶 subject to constraints on allowable 

thickness. The scope is restricted to impacts with initial velocities in the range of about 

1– 10 𝑚/𝑠 and duration times in the range of  1–30 𝑚𝑠. These encompass the majority 

of events associated with the secondary impact of a vehicle occupant with the interior 

structure in blast impact scenarios. It is also relevant to impacts commonly encountered 

in sporting events and typical automobile accidents [4,5,7,9,18,20,22,36,39].  In this 

velocity–time domain, impact is essentially quasi-static in the sense that there is ample 

time for stress waves to travel over distances comparable to the dimensions of the hu-

man skull and thus a quasi-equilibrium state is attained2.  

                                                           
2  The elastic wave speed in the human skull is in the range 2500–2900 m/s. Thus the time 

required for stress waves to travel a characteristic distance of 0.2 m (roughly the diameter 

of the human head) is about 70 s. This time scale is about two orders of magnitude smaller 

than the impact duration times of present interest. Thus, for the purpose on analyzing head 

motion, details of stress wave propagation can be neglected. 
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The framework presented here is based on an idealization of the form and the prop-

erties of the constituents. Specifically, the head is represented by a rigid spherical mass 

and the target is a flat foam plate supported on a rigid foundation. The foam is treated 

as a rate-independent, rigid-perfectly plastic material. The analytical results are pre-

sented in Section 4.2. A critical assessment of the predictive capability of the model is 

made through comparisons with a series of experimental measurements from impacts 

of an instrumented headform with three different commercial foams. The experimental 

results are presented in Section 4.3. Additional comparisons are made with the results 

of finite element simulations that take into account the elasticity of the foam as well as 

its hardening during densification (also in Section 4.3). Despite its seeming simplicity, 

the analytical model is found to predict the acceleration-time histories and the HIC 

values to within 5– 10% of the values measured experimentally or obtained from finite 

element simulations.  

4.2 Analytical model of impact 

As a model problem, consider the impact of a spherical body of radius 𝑅, mass 𝑚 

and initial velocity 𝑣𝑜 with a flat crushable foam pad, thickness 𝐻𝑜, mounted on a rigid 

foundation (Figure 4.3(a)). The foam is assumed to be rigid/perfectly-plastic with a 

crushing stresss o
 up to the densification straineD .  Thereafter, at higher strains, the 

foam behaves as a rigid solid. The foam pad is further assumed to be sufficiently thick 

(defined below) so that full densification does not occur before the mass arrests. (The 
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pad thickness inherently acts as a constraint, since thicker pads of softer materials will 

always lower the HIC value but introduce impractical solutions.) Additionally, the pen-

etration depth of the spherical body into the foam pad is assumed to be small compared 

to 𝑅. A derivation of the equations of motion of the spherical body during the impact 

event follows. 

For small displacements (𝑥 << 𝑅), the contact area 𝐴 is given by 𝐴 ≈ 2𝜋𝑅𝑥 and 

thus the contact force is 𝐹 = 2𝜋𝑅𝜎𝑜𝑥. Here the foam acts effectively as a linear inelas-

tic spring with stiffness 𝑘 ≡ 2𝜋𝑅𝜎𝑜. The equation of motion of the sphere is thus given  

by: 

𝑚�̈� + 𝑘𝑥 = 0 (4.2) 

Provided arrest precedes densification, the full solution to Eqn. (4.2) is: 

𝑥(𝑡) = 𝑣𝑜√
𝑚

𝑘
 sin√

𝑘

𝑚
 𝑡 (4.3) 

𝑣(𝑡) = 𝑣𝑜  cos√
𝑘

𝑚
 𝑡 (4.4) 

𝑎(𝑡) =
−�̈�

𝑔
=

𝑣𝑜

𝑔
 √

𝑘

𝑚
 sin√

𝑘

𝑚
 𝑡 (4.5) 

over the time domain  

0 ≤ 𝑡 ≤ 𝑡𝑜 =
𝜋

2
 √

𝑚

𝑘
= 

1

2
 √

𝜋𝑚

2𝑅𝜎𝑜
 (4.6) 

Thereafter, for 𝑡 ≥ 𝑡𝑜, 𝑥(𝑡) = 𝑣𝑜 √𝑚/𝑘, 𝑣(𝑡) = 0 and 𝑎(𝑡) = 0 (Figure 4.3(b)). Thus, 

the peak acceleration and peak displacement, obtained at 𝑡 = 𝑡𝑜, are  
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𝑎𝑚𝑎𝑥 =
𝑣𝑜

𝑔
 √

𝑘

𝑚
=

𝑣𝑜

𝑔
 √

2𝜋𝑅𝜎𝑜

𝑚
  (4.7) 

and  

𝑥𝑚𝑎𝑥 = 𝑣𝑜 √
𝑚

𝑘
= 𝑣𝑜 √

𝑚

2𝜋𝑅𝜎𝑜
  (4.8) 

In order for arrest to precede densification, the foam thickness must exceed a critical 

value, given by 

𝐻𝑜 =
𝑥𝑚𝑎𝑥

𝜀𝐷
=

𝑣𝑜

𝜀𝐷
 √

𝑚

𝑘
  (4.9) 

The HIC value is evaluated using Eqn. (4.1). Here 𝑡2 = 𝑡𝑜 and 𝑡1 is obtained by max-

imizing the quantity within ...{ } in Eqn. (4.1). It has the solution 

𝑡1 = 0.518 √
𝑚

𝑘
  (4.10) 

 The corresponding time interval over which the integration is performed is  

𝑡2 − 𝑡1 = 1.05 √
𝑚

𝑘
  (4.11) 

Combining Eqns. (4.1), (4.5), (4.6) and (4.10) yields 

𝐻𝐼𝐶 = 0.651 (
𝑘

𝑚
)
3/4

(
𝑣𝑜

𝑔
)
5/2

 (4.12) 

Imposing the time restriction 𝑡2 − 𝑡1 ≤ 𝑡𝑐 we find that the solution in (4.12) is valid 

for: 

𝐻𝐼𝐶 ≥ 0.651 (
1

𝑡𝑐
)
3/2

(
𝑣𝑜

𝑔
)
5/2

 (4.13) 
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The minimum value of the HIC is obtained when the foam thickness is equal to its 

minimum critical value. From Eqns. (4.9) and (4.12), the minimum HIC is: 

𝐻𝐼𝐶𝑚𝑖𝑛 =
1.84 𝑣𝑜

4

(2𝐻𝑜𝜀𝐷)3/2𝑔5/2
 (4.14) 

It is attained when the foam strength is: 

𝜎𝑜
𝑜𝑝𝑡 =

𝑚 𝑣𝑜
2

2𝜋𝑅 (𝐻𝑜𝜀𝐷)2
 (4.15) 

The results in Eqns. (4.14) and (4.15) have been used to construct a “design map”, 

shown in Figure 4.4. The axes are 𝐻𝐼𝐶𝑚𝑖𝑛 and 𝜎𝑜
𝑜𝑝𝑡

.  Contours are plotted for constant 

values of two parameters: (i) the impact velocity 𝑣𝑜 and (ii) the maximum allowable 

penetration depth, given by the product of the foam thickness and the densification 

strain, 𝐻𝑜𝜀𝐷. (The latter product constitutes a minimum effective foam thickness). The 

other parameter values are 𝑅 = 0.1 𝑚  and 𝑚 = 4.5 𝑘𝑔  (representative approximately 

of the human head).  Its use is demonstrated by way of the following examples. 

Consider first a scenario in which the maximum allowable head motion following 

impact is 15 𝑚𝑚 and the anticipated maximum impact velocity is 6 𝑚/𝑠 (point A in 

Figure 4.4). Under these conditions the best-case scenario would lead to a 𝐻𝐼𝐶 value 

of 1520; it would require use of a foam with a strength of 1.14 𝑀𝑃𝑎. Use of a harder 

foam would lead to a reduced amount of head travel with higher accelerations imparted 

to the head and hence an increase in 𝐻𝐼𝐶. Use of a softer foam would potentially be 

much worse. It would lead to full densification of the foam and a rapid rise in acceler-

ation in the final stages of impact. If, on the other hand, the constraint on allowable 
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head motion were increased to 20 𝑚𝑚, the lowest 𝐻𝐼𝐶 value at the same impact ve-

locity would be reduced to 990 (point B). This would require use of a different foam – 

one with a strength of 0.64 𝑀𝑃𝑎.  A further increase in allowable head travel to 25 𝑚𝑚 

would reduce the 𝐻𝐼𝐶 further, to 720, for a foam with strength of 0.41 𝑀𝑃𝑎 (point C).  

An alternative scenario would be one in which the allowable travel is rigidly set at 

a prescribed value, say 15 𝑚𝑚, and a maximum allowable 𝐻𝐼𝐶 value, say 700, is pre-

scribed to prevent a specified level of head injury. In this case, the requisite protection 

would be achieved only up to velocities of 5 𝑚/𝑠, using a foam with strength of 

0.8 𝑀𝑃𝑎 (point D). Using either harder or softer foams would lead to an increase in 

𝐻𝐼𝐶. 

Also shown on Figure 4.4 is the domain in which the computed 𝐻𝐼𝐶 violates the 

time restriction 𝑡2 − 𝑡1 ≤ 𝑡𝑐. This domain occupies a very small area in the bottom left 

corner of the design space. It has no substantive effect on the results for parameter 

values of present interest.   

4.3 Model assessment  

The fidelity of the preceding analytical model has been assessed through a combi-

nation of impact experiments on commercial foams and corresponding finite element 

simulations. Details of the materials and the test procedures are presented in Section 

4.3.1. The finite element methods are described in Section 4.3.2. Results from both the 

experiments and the FEA are compared with the model predictions in Section 4.3.3. 
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4.3.1 Materials and test methods 

Tests were conducted on three PVC-polyurethane foams (DivinyCell®).  The ma-

terials are designated H45, H100 and H200 (the numerical values indicating the ap-

proximate mass density in 𝑘𝑔/𝑚3). Their key properties are summarized in Table 4.1. 

The materials were procured as plates with thickness of either 25.7 𝑚𝑚 (H45) or 

19.6 𝑚𝑚 (H100, H200). Square samples (250 𝑚𝑚 𝑥 250 𝑚𝑚) were cut from the 

plates using a precision table saw.  

Impact experiments were conducted using a standard instrumented head-form [21] 

mounted in a tripod drop system (Triax 2010, Alpha Automation Inc).  The head-form 

was a hemi-spherical Aluminum body with 4.65 𝑘𝑔 mass and radius of 83 𝑚𝑚. An 

image of the tripod drop system and headform is shown in Figure 4.9. A 3-axis accel-

erometer in the head-form was used to measure acceleration-time histories during the 

impact event. The head-form was attached to the tripod using a flexible cable at pre-

scribed heights above the sample surface. Three heights were used: 0.2, 0.82 and 

1.85 𝑚, yielding impact velocities of 2, 4 and 6 𝑚/𝑠, respectively. An electro-mag-

netic release mechanism was employed to allow smooth (rotation-free) release from 

the tripod. The samples were held fixed at the periphery using a steel picture-frame 

assembly. Side view high-speed video footage was taken with a Phantom video camera 

(Vision Research®) placed at a height level with the top of the foam.  The videos were 

used to corroborate the accelerometer data.  Either 2 or 3 tests were performed on each 

foam at each impact velocity. The test results proved to be highly reproducible. 



79 
 

In order to calibrate the material model for use in the FEA, the three foams were 

subjected to uniaxial compression tests at strain rates varying from 10−4𝑠−1 to 1 𝑠−1. 

The data were augmented by test results reported by Tagarielli et al [40] for some of 

the same foams at strain rates as high as 104 𝑠−1. The compression samples were 

square in cross-section with dimensions 50 𝑚𝑚 𝑥 50 𝑚𝑚. The samples were com-

pressed between two platens using a mechanical test frame (MTS®) at a fixed nominal 

strain rate. 

For incorporation of the test data into the FE simulations, the uniaxial compressive 

properties of the foams were fit using the Gibson-Ashby model presented in Chapter 2 

[35]. The plastic response in the hardening domain is again described by:  

𝜎𝑓

𝜎𝑝𝑙
=

1

𝐷
(

𝜀𝐷

𝜀𝐷−𝜀𝑓
)
𝑚

 (4.16) 

where 𝜎𝑓 is the current axial stress, 𝜀𝑓 is the current axial strain and m is another fitting 

parameter (taken to be 1). The strain rate dependence of the plateau stress was fit to a 

power-law of the form: 

𝜎𝑝𝑙

𝜎𝑜
= (

�̇�

𝜀�̇�
)
𝑛

 (4.17) 

where 𝜀̇ is the strain rate, 𝜎𝑜 is a reference stress corresponding to at reference strain 

rate, 𝜀�̇� (the latter chosen to be 10−2 𝑠−1), and 𝑛 is the power law exponent determined 

from the compression tests.   

Representative results from the compression tests are plotted in Figure 4.5(a). Each 

of the three foams exhibits the three expected domains of behavior: elastic, perfectly-
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plastic and strain hardening. The modulus and the plateau stress increase with foam 

density whereas the densification strain decreases. The foam strength varies by as a 

factor of 6.5 (from softest to hardest). The strain rate sensitivity data, plotted in Figure 

4.5(b), show that the plateau stress for each of the three foams (normalized accordingly) 

follows the same (weak) rate sensitivity, characterized by a hardening exponent 𝑛 =

0.03.   

4.3.2 Finite element analysis 

Finite element simulations of the impact tests were performed using explicit time-

integration with the ABAQUS code [32]. All simulations were run with 4-noded bilin-

ear axisymmetric quadrilateral elements (CAX4R) with reduced integration and hour-

glass control. A mesh sensitivity study was conducted in which the size of the elements 

was varied over a range of 100 𝜇𝑚 to 1 𝑚𝑚. Each simulation yielded nominally iden-

tical results. The pertinent parameter values of the impacting sphere and the foam are 

summarized in Table 4.1. The foam was represented by the Fleck-Deshpande crushable 

foam model as presented in Chapter 3 (with rate dependent behavior), and was imple-

mented as a user material in the Abaqus code [32,34]. In order to attain a plastic Pois-

son’s ratio of 0, the ratio of yield strengths in hydrostatic compression and uniaxial 

compression was taken to be √3. A non-associated flow potential was used, with pa-

rameters selected to also be consistent with a plastic Poisson’s ratio of 0. The hardening 

of the foam was described by Eqn. (4.16) and its rate-dependence by Eqn. (4.17). The 

geometry of the finite element mesh was designed to match the test samples. The foam 
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was placed against a rigid backing plate with frictionless contact in the tangential di-

rection and “hard” normal contact. Contact between the head-form and the foam was 

“hard” in the normal direction; tangential motion was allowed subject to a friction pen-

alty coefficient 𝜇𝑜 = 0.2.  (Select simulations run with frictionless contact yielded vir-

tually equivalent results). The initial velocity of the sphere was prescribed to match one 

of the three values employed in the experiments. 

4.3.3 Blunt impact test results 

Representative acceleration-time histories measured on each of the three foams at 

each of the three velocities are plotted in Figure 4.6. Repeat tests showed high repro-

ducibility (the curves lying essentially within the thickness of the lines on Figure 4.6). 

The results exhibit the following trends. First, the peak acceleration for each foam in-

creases approximately three-fold as the velocity is increased threefold (from 2 to 

6 𝑚/𝑠). This proportional scaling is consistent with the prediction of Eqn (4.5). Sec-

ond, the duration of impact for each foam is essentially independent of impact velocity, 

consistent with Eqn. (4.6). Third, the peak acceleration and the corresponding time fol-

low the predicted scalings (in agreement with prior work [41]): 𝑎𝑚𝑎𝑥 ∝ √𝜎𝑜  and  𝑡 ∝

1 √𝜎𝑜⁄ . That is, the ratio of peak accelerations of the hardest and the softest foams is 

about 2.6 (the predicted ratio being √6 ≈ 2.5). The duration time scales by the same 

amount. 
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Also shown on Figure 4.6 are the acceleration-time histories predicted by Eqn. 

(4.5), using foam strengths at a characteristic strain rate of  𝜀�̇� = 𝑣𝑜 𝐻𝑜⁄   s-1, as well as 

the results of the finite element simulations. The agreement between the analytical 

model (based on the rigid-perfectly plastic representation of the foam response) and the 

FE results is excellent for the rising portions of all curves. The implication is that the 

effects of elasticity and rate dependence (weak in the present materials) are insignifi-

cant. The one discrepancy pertains to the post-peak response; the analytical model pre-

dicts a sudden drop to zero whereas the FE simulations show a more gradual drop dur-

ing the rebound phase of the impact.  

The agreement between the FEA simulations and the experimental results is excel-

lent for the softest foam (H45) for all velocities. The shapes of the curves for the other 

foams show almost equally good agreement, though there appears to be a slight time-

offset between the curves (about 0.5 𝑚𝑠). That is, shifting the FE curves to the right by 

about 1 𝑚𝑠 brings them into close agreement with the measured curves. 

The HIC values obtained from the experiments (computed in accordance with Eqn. 

(4.1)) and both the analytical model and the numerical simulations are plotted in Figure 

4.7. The agreement between FEA and the experiments is, again, very good (to within 

about 3%). The analytical model is almost as accurate as the FEA, though it underes-

timates the measured HIC values by 5– 10%. This discrepancy is attributable to the 

absence of elastic deformation in the model and hence the inability of the model to 

capture the rebound phase of the impact event.   
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Some insights into the effects of elastic rebound on the HIC can be gleaned from 

comparisons of the times (𝑡1, 𝑡2) bounding the HIC calculation with the time 𝑡∗ at which 

the headform velocity reaches zero and thus the headform begins its rebound. (A rep-

resentative set of these times are shown for one of the curves in Figure 4.6(b)). The 

expectation is that, if the latter event occurs outside the pertinent interval (notably, 𝑡∗ >

𝑡2), the rebound phase would have no effect on the HIC. Otherwise, if  𝑡1 < 𝑡∗ < 𝑡2, 

an assessment of the relative time within the HIC interval occupied by the rebound 

phase can be characterized by a non-dimensional time parameter, 𝜏𝐸 , defined by: 

𝜏𝐸 =
𝑡2−𝑡∗

𝑡2−𝑡1
 (4.18) 

Figure 4.8 shows the values of  𝜏𝐸   obtained from the experiments. (Here 𝑡∗ 
was com-

puted by integrating the measured acceleration-time histories.) The results show that  

𝜏𝐸  increases with foam density – from about 0.15 for H45 to about 0.3 for H200 – and 

appears to be only weakly dependent on velocity. The cases in which the lowest values 

of  𝜏𝐸   are obtained are also those for which the error in the predicted HIC is lowest, 

and vice versa. This trend is consistent with the notion that the slight discrepancies 

between predicted and measured HIC values is associated with absence of elasticity in 

the model.  

4.4 Discussion 

In this chapter, an analytical framework has been developed to assess the efficacy 

of crushable foams in mitigating risk of serious head injury during blunt impact. During 
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such an impact, the contact area increases approximately linearly with penetration dis-

tance. This causes the acceleration to vary approximately sinusoidally with time up to 

its peak value.  The model also predicts that the acceleration will drop precipitously 

from the peak to zero. Despite its seeming simplicity, the model predicts the accelera-

tion-time histories and the HIC values to within 10% for the three foams tested in this 

study. The experimental results are better represented by the finite element simulations, 

where the elasticity effects have been naturally incorporated.  

The slight underestimate of the predicted HIC has been attributed to the elasticity 

of the foams and the resulting rebound of the headform. The time scale associated with 

rebound within the interval used for calculating the HIC has been identified for the 

three foams of present interest and characterized by a non-dimensional time parameter. 

This parameter increases with increasing foam density: consistent with the trend of 

increasing errors in predicted HIC values.  

In addition to guiding the selection of foams for optimal head protection during 

impact, the present model can be used to glean insights into composite systems that 

could be employed to further reduce the HIC relative to the present “optimized” values. 

This topic is discussed in Chapter 5. 
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Table 4.1:  Material properties for Divinycell® foams 

 

 
Density 

(
𝑘𝑔 

𝑚3⁄ ) 
Modulus 

(𝑀𝑃𝑎) 

Strength 

(𝑀𝑃𝑎) 

Poisson’s 

Ratio 

DivinyCell 

H45 
48 25 0.63 0.33 

DivinyCell 

H100 
100 70 2.04 0.33 

DivinyCell 

H200 
200 135 4.09 0.33 

Impact 

Sphere 
2700 68,000 240 0.3 
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Figure 4.1: Schematic of acceleration-time profile and the two times bounding the cal-

culation of the HIC. 
 

 

 

Figure 4.2: Effects of HIC on probability of sustaining head injuries of varying severity 

(from 1 to 6 on the Abbreviated Injury Scale). The Abbreviated Injury Scale was de-

veloped by the Association for the Advancement of Automotive Medicine. On this 

scale, 1 is minor and 6 is fatal. (Adapted from [8]) 
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Figure 4.3: Schematic of impact of a spherical body onto a flat foam plate supported 

by a rigid foundation. (b) The predicted response for a rigid-perfectly plastic foam be-

fore densification. 
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Figure 4.4: Design map showing the optimal foam thickness and foam strength needed 

to minimize the HIC for specified velocity (R=0.1 m, m=4.5 kg). Points A–D are de-

scribed in the text. The dashed line in the lower left region marks the boundary beyond 

which the HIC calculation violates the time restriction t2 - t1 £ tc .  
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Figure 4.5: (a) Representative compressive stress-strain curves for DivinyCell® foams 

at one strain rate. (b) Effects of strain rate on the plateau (crushing) stress. Plateau 

stresses have been normalized by their respective values at 𝜀�̇� = 10−2 𝑠−1. 
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Figure 4.6: Acceleration-time histories for impact of all foams at three impact veloci-

ties. Dotted lines – experimental measurements; dashed lines – analytical model; solid 

lines – FEA. (Note the different acceleration scales on the three graphs.)  
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Figure 4.7:  Measured and predicted HIC values for impact on DivinyCell® foams.  

Solid symbols – experimental measurements; solid lines – analytical model; open sym-

bols – FEA. 
 

 

 

 

Figure 4.8: Fractional time within the HIC interval spent in rebound. 
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Figure 4.9:  Triax 2000 surface impact test setup (left) and instrumented headform 

(right). 
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Chapter 5 

 

Composite material systems for mitigating 

head injury 

5.1 Introduction 

In Chapter 4, a model was presented to guide the selection of foams for mitigating 

head injury.  The optimum foam strength, 𝜎𝑜
𝑜𝑝𝑡

, that minimizes the 𝐻𝐼𝐶 was ascertained 

for given constraints on the maximum allowable foam thickness (𝐻𝑜) and impact ve-

locity (𝑣𝑜). This chapter explores composite systems for reducing the 𝐻𝐼𝐶 relative to 

systems containing foams alone. 

 In the prior analysis, contact between the impacting “head” and the target was as-

sumed to be spherical, as shown in Figure 5.1(b).  This leads to acceleration-time pro-

files that are approximately sinusoidal in shape (Figure 5.2(b)). In light of the fact that 

the 𝐻𝐼𝐶 is far more sensitive to acceleration than to impact duration, it follows that the 

𝐻𝐼𝐶 could be reduced further by transforming the sinusoidal acceleration-time history 

into one with a “top hat” profile (ie with acceleration being constant), as shown in 
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Figure 5.2(a). Theoretically, this could be achieved by tailoring the compressive prop-

erties of the foam to yield high peak crushing stress followed by strain softening, as 

described elsewhere [24].  Alternatively, it could be achieved through the addition of 

thin stiff sheets to the foams, configured to spread the load laterally during the impact 

event.  The simplest example is a system in which a stiff faceplate is adhered onto the 

impact face of the foam. Assuming that plate bending is negligible, the impact load 

would be spread essentially uniformly in the foam over the area defined by the plate 

dimensions. This problem is analogous to a cylindrical slug impacting a foam that is 

mounted on a rigid plate (Figure 5.1(a)). The expectation then is that the stress resisting 

impact and the corresponding acceleration would be essentially constant over the du-

ration of the event.  

The principal objective of this chapter is to assess the benefits of composite mate-

rials systems over foam-only structures in reducing the 𝐻𝐼𝐶. The scope is restricted to 

impacts with an initial velocity 𝑣𝑜 = 6.7 𝑚/𝑠. This represents the approximate speeds 

during the secondary impact of a vehicle occupant with the cabin interior in blast im-

pact scenarios. An analytical model for the impact of a cylindrical mass on a foam is 

developed in Section 5.2.  This model sets a theoretical bound for the reduction in 𝐻𝐼𝐶 

by utilizing a “plate-on-foam” design. Experimental results of impact tests are pre-

sented in Section 5.3, with comparisons to the theoretical limits predicted by the ana-

lytical model. 
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5.2 Analytical model of impact 

The potential benefit of the plate-on-foam strategy can be readily ascertained 

through an analysis closely analogous to that presented in Section 4.2. The analysis 

begins with a one-dimensional analysis of impact of a flat-ended cylindrical body of 

radius R and mass m and a flat crushable foam pad mounted on a rigid support (Figure 

5.1(a)). The foam is assumed to either be rigid/perfectly-plastic with a crushing stress 

𝜎𝑜 up to the densification strain, 𝜀𝐷 .  Thereafter, at higher strains, the foam behaves 

again as a rigid solid. The foam pad is further assumed to be sufficiently thick (defined 

below) so that full densification does not occur before the mass arrests. As stated in 

Chapter 4, the pad thickness inherently acts as a constraint, since thicker pads of softer 

materials will always lower the 𝐻𝐼𝐶 value but introduce impractical solutions. In this 

case, the solution to the equation of motion is simply:  

𝑎 = 𝑎𝑜 =
−�̈�

𝑔
=

𝜎𝑜𝜋𝑅2

𝑚𝑔
 (5.1) 

over the time interval  

0 ≤ 𝑡 ≤ 𝑡𝑜 =
𝑚𝑣𝑜

𝜎𝑜𝜋𝑅2
 (5.2) 

In order for arrest to precede densification, the thickness of the foam pad must exceed 

a critical value, given by 

𝐻𝑜 =
𝑥𝑚𝑎𝑥

𝜀𝐷
=

𝑚𝑣𝑜
2

2𝜎𝑜𝜋𝑅2𝜀𝐷
  (5.3) 

The two times that maximize 𝐻𝐼𝐶 are 𝑡1 = 0 and 𝑡2 = 𝑡𝑜. Integrating Eqn. (4.1) yields: 
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𝐻𝐼𝐶 = (
𝜎𝑜𝜋𝑅2

𝑚𝑔
)
3 2⁄

(
𝑣𝑜

𝑔
) (5.4) 

The 𝐻𝐼𝐶 decreases monotonically with decreasing foam strength, but this comes at the 

expense of an increasing minimum thickness. The minimum value of the 𝐻𝐼𝐶 is ob-

tained when the foam thickness is at its minimum critical value: 

𝐻𝐼𝐶𝑚𝑖𝑛 = (
𝑣𝑜

4

(2𝐻𝑜𝜀𝐷)3 2⁄  𝑔5 2⁄ ) (5.5) 

It is attained when the foam crushing stress is at its optimal value, given by: 

𝜎𝑜
𝑜𝑝𝑡 = (

𝑚𝑣𝑜
2

2𝜋𝑅2𝐻𝑜𝜀𝐷
) (5.6) 

Comparison with Eqn (4.14) reveals that the 𝐻𝐼𝐶 in Eqn (5.5) is reduced by a factor of  

1/1.84 ≈ 0.54. Reductions of this magnitude in head protection systems would have 

very significant benefits in reducing the risk of serious head injury during impact.  

An analogous solution exists for the impact of a spherical body on a composite 

system incorporating a rigid plate.  Here, the plate is bonded to the foam such that the 

contact geometry is altered from the spherical case, presented in Chapter 4, to that of 

the cylindrical analysis presented above. The analysis remains unchanged, but now the 

contact area of the cylindrical slug is replaced by the area of the rigid plate, 𝐴𝑝. Equa-

tions 5.4 and 5.6 can now be rewritten in terms of 𝐴𝑝: 

𝐻𝐼𝐶 = (
𝜎𝑜𝐴𝑝

𝑚𝑔
)
3 2⁄

(
𝑣𝑜

𝑔
) (5.7) 

and 
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𝜎𝑜
𝑜𝑝𝑡 = (

𝑚𝑣𝑜
2

2𝐴𝑝𝐻𝑜𝜀𝐷
) (5.8) 

It is important to note that Eqn. 5.5, defining the minimum 𝐻𝐼𝐶 that is attainable, re-

mains unchanged.  

5.3 Experiments  

The preceding model has been assessed through impact experiments on several 

commercial foams and composites systems. Details of the materials and the test proce-

dures are presented in Section 5.3.1. Results from experiments are compared with the 

model predictions in Section 5.3.2. 

5.3.1 Materials and test methods 

Tests were conducted on four viscoelastic polyurethane foams (SunMate®).  The 

materials are designated Firm, XFirm, XXFirm, and T50E. The density of all of the 

foams is approximately 88 𝑘𝑔 𝑚3⁄ , and their key properties are summarized in Table 

5.1. The quasi-static compressive stress-strain response of the foams is shown in Figure 

5.3. The materials were procured as plates with a thickness of 38.1 𝑚𝑚 . This choice 

was made on the basis that, in many protective systems, the foam thickness is likely 

larger than 25 𝑚𝑚, but limited to 50 𝑚𝑚. Thus, an average value of 38.1 mm was 

used for the present study. Square plates of varying sizes (75 − 150 𝑚𝑚 𝑥 75 −

150 𝑚𝑚) were cut from the plates using a precision table saw. Square plates of equal 
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size were cut from panels of Dyneema® HB26 and carbon fiber reinforced plastic 

(CFRP).  Both the Dyneema® and CFRP plates were approximately 3.3 𝑚𝑚 in thick-

ness. For tests conducted on samples comprising plates and foams, the plates were ad-

hered to the foam using a commercial off-the-shelf epoxy resin (Devcon®). 

Impact experiments were conducted in a method identical to the procedure de-

scribed in Chapter 4 using an instrumented head-form mounted in a tripod drop system 

(Triax 2010, Alpha Automation Inc).  The head-form was dropped from a height of 

2.3 𝑚, yielding impact velocities of approximately 6.7 𝑚/𝑠. This velocity is repre-

sentative of impact velocities observed in most automobile collisions. An electro-mag-

netic release mechanism was employed to allow smooth (rotation-free) release from 

the tripod. The samples were held fixed at the periphery using duct-tape. Side view 

high-speed video footage was taken with a Phantom video camera (Vision Research®) 

placed at a height level with the top of the foam.  The videos were used to corroborate 

the accelerometer data.  Either 2 or 3 tests were performed on each foam and plate-on-

foam composite. The results were found to be very reproducible, yielding 𝐻𝐼𝐶 values 

that were within 5 − 10% of one another. 

A series of preliminary tests was conducted to identify the appropriate sizes of 

the composite specimens. From Eqn. (5.8), the optimal tile area is expected to scale 

inversely with foam strength. This led to the selection of smaller tiles for the stronger 

foams and vice-versa. Specifically, tile dimensions of 150 𝑚𝑚 𝑥 150 𝑚𝑚 were used 

with both the Firm and the XFirm foams, 100 𝑚𝑚 𝑥 100 𝑚𝑚 for both the XFirm and 

XXFirm foams, and 75𝑚𝑚 𝑥 75 𝑚𝑚 for both the XXFirm and T50E foams. (These 
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combinations are also summarized in the legend inset in Figure 5.8.) (Because the mod-

els presented here are rather rudimentary – neglecting effects of face-sheet bending, 

elastic recovery and strain rate sensitivity – they are used only to guide the design. 

Optimization would require more rigorous analysis of the impact.)  

5.3.2 Blunt impact test results 

Representative acceleration-time and displacement-time histories measured on 

three of the foams are shown in Figure 5.4. The displacements (measured relative to 

the point of initial contact) are normalized by the thickness of the foam pad and thus 

represent the maximum nominal strain beneath the contact site. The results exhibit the 

following characteristics.  

(i) The initial rise of the acceleration-time curve scales approximately linearly with 

the quasi-static foam strength, in accordance with Eqn. (5.5). (ii) For the softest foam, 

the initial nearly-linear rise is followed by a rapid upturn in acceleration, to a peak value 

of almost 290𝑔. The upturn is attributable to full densification of the foam and “bot-

toming out” of the head-form, as evidenced by a peak displacement 𝑥𝑚𝑎𝑥/𝐻𝑜 ≈ 0.83. 

(iii) The foam of intermediate strength does not exhibit an upturn in acceleration rate, 

consistent with the peak displacement being less (albeit only slightly) than that needed 

for full densification (𝑥𝑚𝑎𝑥/𝐻𝑜 ≈ 0.7). Consequently, the peak acceleration is reduced 

to about 160𝑔 and the 𝐻𝐼𝐶 reduced from 1500 to 900. Furthermore, the curve shape 

(up to the peak) is broadly consistent with that predicted by Eqn. (5.5) and plotted in 
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Figure 5.2(a). (iv) The response of the strongest foam is similar to that of the interme-

diate foam, with the exception of a brief plateau shortly after contact. Its shape is at-

tributable to the strain softening of the foam after yielding, as evident in Figure 5.3. 

Further reductions are obtained in both the peak acceleration, to 130𝑔, and the 𝐻𝐼𝐶, to 

700.  

The acceleration- and displacement-time histories measured on three CFRP-foam 

systems are shown in Figure 5.5. All behave in a similar manner. The acceleration rises 

sharply to a plateau and then gradually increases to the peak. The peak accelerations 

and 𝐻𝐼𝐶 values are lower than those of the foam alone. The effects are most pro-

nounced for the softest foam: the acceleration dropping from 290𝑔 to 120𝑔 and the 

𝐻𝐼𝐶 dropping from 1500 to 750. Here again the peak displacements are maintained 

below the levels needed for significant densification. 

Figure 5.6 shows the results for the Dyneema®/XXFirm foam composites. To pro-

vide direct comparison, the results for the XXFirm foam alone and the CFRP/XXFirm 

foam composite are reproduced on this figure. The curves for the two composite sys-

tems are very similar to one another and produce nearly-equivalent 𝐻𝐼𝐶 values. Addi-

tionally, both systems yield lower 𝐻𝐼𝐶 values than that of the foam alone (750 vs. 

950).  

Figure 5.11 shows the impact and rebound process for impact with the XXFirm and 

Firm foams at equivalent time intervals. At 𝑡 =  24 𝑚𝑠, the headform has achieved a 

higher rebound height after impact with the Firm foam (Figure 5.11(b)). Some insights 

into the effects of elastic rebound on the 𝐻𝐼𝐶 can be gleaned from comparisons of the 
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times (𝑡1, 𝑡2) bounding the 𝐻𝐼𝐶 calculation with the time 𝑡∗ at which the headform ve-

locity reaches zero and thus the headform begins its rebound. The expectation is that, 

if the latter event occurs outside the pertinent interval (notably, 𝑡∗ > 𝑡2), the rebound 

phase would have no effect on the 𝐻𝐼𝐶. Otherwise, if  𝑡1 < 𝑡∗ < 𝑡2, an assessment of 

the relative time within the 𝐻𝐼𝐶 interval occupied by the rebound phase can be charac-

terized by a non-dimensional time parameter, 𝜏𝐸 , defined by: 

𝜏𝐸 =
𝑡2−𝑡∗

𝑡2−𝑡1
 (5.9) 

Figure 5.7 shows the variation of 𝜏𝐸  with the quasi-static (QS) foam strength. Here 𝜏𝐸 

decreases with the increasing foam strength, from about 0.25 for the Firm foam to 

about 0.12 for the T50E foam. These values indicate that the rebound plays only a 

small (though perhaps not insubstantial) role in the 𝐻𝐼𝐶 value. They are further con-

sistent with the asymmetry of the acceleration-time histories (Figures 5.4-5.6); if foam 

elasticity dominated the impact response, the acceleration-time histories would be per-

fectly symmetric about the peak. The addition of a face-sheet alters 𝜏𝐸 by only a small 

amount (≤0.05). Adhering a CFRP plate to the foams increases 𝜏𝐸, whereas coupling 

with a plate of Dyneema® HB26 reduces the value (relative to the XXFirm foam 

alone). Lastly, signs of (macroscopic) failure via matrix cracking is observed in the 

CFRP plates after multiple impacts, as shown in Figure 5.10(b). The operative failure 

mode in the Dyneema® plates is separation of the laminae at the boundary of the plate, 

with significant plastic deformation after a single impact test (Figure 5.10(a)). In this 
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regard, the CFRP plates may be better suited for systems that require multi-hit capabil-

ity. 

The 𝐻𝐼𝐶 values for the foams alone and the foam/face-sheet composites are plotted 

in Figure 5.8(a) and (b), respectively. Also shown are the predictions of the analytical 

models: Eqn. (4.12) for the foams alone and Eqn. (5.7) for the face-sheet/foam compo-

sites. The model predictions are shown only in the domain in which full densification 

(taken as the point at which the strain reaches 0.8) does not occur. Full densification 

and head-form “bottoming out” at low foam strengths leads to an increase in 𝐻𝐼𝐶: a 

feature not captured by the present models.  

The experimentally-measured 𝐻𝐼𝐶 for the foams decreases with increasing foam 

strength and appears to approach a minimum for the hardest foam. This minimum co-

incides closely with the minimum predicted 𝐻𝐼𝐶, albeit the predicted minimum occurs 

at a slightly higher foam strength. The latter difference can be attributed in part to the 

strain rate sensitivity of the foam response. That is, the pertinent foam strength for 

comparing the measurements with the model predictions should be the one at the aver-

age strain rate obtained in the impact tests (about 200 s-1 in the present experiments3). 

The trend in the experimental measurements is associated with the larger strains ob-

tained under the impact site for the softer foams and hence the increasing propensity 

for bottoming out of the head-form. A further inference is that, upon increasing the 

                                                           
3   Taking the strain rate dependence of the foam strength to follow a power law with an exponent typical 

of viscoelastic foams (0.05–0.1), the predicted strength at 200s-1 becomes about twice that measured 

quasi-statically (at 0.01 s-1). A two-fold shift in the foam strengths in Figure 8(a) would bring the 

measured HIC for the T50E foam in close correspondence with the minimum point predicted by the 

model. 
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foam strength beyond that of the T50E, the 𝐻𝐼𝐶 would again start to rise. It would thus 

appear that the T50E is nearly optimal for the present loadings (ie. mass, radius and 

velocity of head-form) and the selected foam thickness.  

Qualitatively similar trends are obtained for the measurements on the foam/face-

sheet composites, with additional effects arising from the tile size. Here, again, the HIC 

initially decreases with increasing foam strength. Furthermore, the 𝐻𝐼𝐶 decreases with 

increasing tile size. Presumably it, too, will reach a minimum value at higher foam 

strengths, given by Eqn. (5.5) and indicated by the dashed black line in Figure 5.8(b). 

The difference between the lowest measured value of 𝐻𝐼𝐶 (650) and the predicted min-

imum (420) suggests room for further improvement, through a combination of increas-

ing foam strength and/or increasing tile size. 

5.4 Discussion 

In this chapter, a new concept that has the potential for reducing the severity of 

head injury during blunt impact has been presented. The efficacy of the concept has 

been assessed by comparing measured HIC values for several commercial foams and 

several foam/face-sheet composites, at an impact velocity relevant to vehicle occupants 

in automobile collisions. A rudimentary model of the acceleration-time history has also 

been presented. The model serves as the motivation for the experimental study and 

provides context for the experimental measurements. The key conclusions follow. 
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(i) Among the foams considered here, the T50E performs best and its HIC ap-

pears to be close to the theoretical minimum for the prescribed foam thickness 

(38 mm).  

(ii)  The addition of stiff face-sheets to the foams leads to a predicted potential 

reduction in HIC of almost a factor of two. Although comparable reductions 

in HIC have indeed been obtained in some instances, comparisons between 

the measurements and the predictions suggest further room for improvement. 

(iii) The effects of elastic rebound on the HIC measurements appear to be rela-

tively small, in the sense that the rebound phase comprises only a small part 

of the pertinent duration of the impact event and that the rebound velocity is 

only a small fraction of the incident velocity.  

(iv) Although the correspondence between the experimental measurements and the 

theoretical predictions appears reasonable, there remains a need to develop 

more rigorous models that account for higher-order effects, including the 

strain rate sensitivity of the foam strength, the finite strain hardening of the 

foams at strains approaching densification, and the effects of elastic bending 

and rebound of the face-sheets. 

The analytical framework presented in this chapter can be used to construct design 

maps based on the foam strength, foam thickness, impact velocity, and plate dimen-

sions. Two such maps, showing the variation in 𝐻𝐼𝐶 with foam strength, were pre-

sented in Figure 5.8. Yet another is shown in Figure 5.9, wherein the foam strength and 

thickness have been held constant at realistic values (𝜎𝑜 = 0.6 𝑀𝑃𝑎, 𝐻𝑜𝜀𝐷 =
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31.4 𝑚𝑚). This design map shows the analytical predictions of the variation in 𝐻𝐼𝐶 

with impact velocity for spherical impact and planar impact for three plate sizes. The 

𝐻𝐼𝐶 varies linearly with impact velocity in the planar contact model. For spherical 

contact, however, the 𝐻𝐼𝐶 is much more sensitive to the impact velocity, with 𝐻𝐼𝐶 ∝

𝑣𝑜
2.5. The dashed segments represent the maximum velocities for each system that pre-

vent full densification in the foam. This map demonstrates the range of impact veloci-

ties for which a chosen plate size yields reductions in 𝐻𝐼𝐶 relative the foam alone. For 

example, at an impact velocity of 7 𝑚/𝑠, only a marginal reduction in the 𝐻𝐼𝐶 can be 

achieved by coupling the foam with a 100 𝑚𝑚 𝑥 100 𝑚𝑚 plate. However, it increases 

the maximum impact velocity from 8.17 𝑚/𝑠 to 9.17 𝑚/𝑠. In contrast, a 

90 𝑚𝑚 𝑥 90 𝑚𝑚 plate leads to a 30% reduction in the 𝐻𝐼𝐶, but limits the maximum 

impact velocity to 8.12 𝑚/𝑠.   
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Table 5.1:  Material properties for SunMate® foams 

 
Density 

(
𝑘𝑔 𝑚

𝑠2⁄ ) 
Modulus 

(𝑀𝑃𝑎) 

Strength 

(𝑀𝑃𝑎) 

Poisson’s Ratio 



SunMate® 

Firm 
88 0.6 0.015 0.33 

SunMate® 

XFirm 
88 1.1 0.025 0.33 

SunMate® 

XXFirm 
88 2 0.069 0.33 

SunMate® 

T50E 
88 6 0.196 0.33 
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Figure 5.1: Two impact idealizations: (a) a flat-ended cylindrical slug and (b) a spher-

ical mass, impacted onto a crushable foam pad mounted on a rigid flat support. 

 

 

 

 

 

Figure 5.2: Acceleration-time profiles for (a) flat contact and (b) sphere impact, subject 

to the assumption that arrest precedes densification.  
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Figure 5.3: Representative compressive stress-strain curves for SunMate® foams un-

der quasi-static loading rates (𝜀̇ = 10−2𝑠−1). 
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Figure 5.4: Experimental measurements of acceleration- and displacement-time histo-

ries at an impact velocity 𝑣𝑜 = 6.7 𝑚/𝑠 for three SunMate® foams.  
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Figure 5.5: Experimental measurements of acceleration- and displacement-time histo-

ries at an impact velocity 𝑣𝑜 = 6.7 𝑚/𝑠 for three CFRP/foam (SunMate®) composites. 

 



111 
 

 

 

Figure 5.6: Effects of face-sheet material – Dyneem® vs. CFRP – on impact test re-

sults: acceleration- and displacement-time histories at an impact velocity 𝑣𝑜 =

6.7 𝑚/𝑠.  
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Figure 5.7: Effects of elastic rebound: fractional time within the 𝐻𝐼𝐶 interval spent in 

the rebound phase. (The error bars for T50E represent the range of crushing strengths 

from the initial peak to the subsequent plateau, at a strain 𝜀 = 0.2, as seen in Figure 

5.3) 
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Figure 5.8: Variation in HIC with foam strength for (a) foams alone and (b) foam/face-

sheet composites, from experimental measurements (filled symbols) and model predic-

tions (solid lines).  
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Figure 5.9: Analytical predictions of the variation in 𝐻𝐼𝐶 with impact velocity for 

planar and spherical contact geometries.  

 

 

 

Figure 5.10: Images showing damage in the composite plates due to bending: (a) de-

lamination at the boundary of the Dyneema® HB26 plate and (b) matrix cracking at 

the center of the back face in the CFRP plate. 
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Figure 5.11: Image sequence showing the impact and rebound process for (a) XX firm 

and (b) Firm foams at equivalent time intervals. 
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Chapter 6 

 

Conclusions and future work 

6.1 Summary of work and conclusions 

A binary representation of the constituent phases has proven to be useful for mod-

eling the composite response of cross-ply Dyneema® HB26 composites, especially un-

der loading conditions that elicit the off-axis response. Specifically, an analytical model 

for the ±45° tensile response of the composite based on the binary representation has 

been developed and found to be in excellent agreement with the predictions of corre-

sponding finite element simulations. Furthermore, following a straightforward calibra-

tion of the elastic/plastic properties of the effective medium, both sets of predictions 

agree well with the experimental measurements. One key conclusion drawn from this 

part of the study is that the strain-state of the composite is controlled largely by the 

rotation of essentially inextensible fibers. In turn, this rotation governs the macroscopic 

hardening of the composite and its tensile strain limit. Although the model adequately 

predicts the measured stresses and out-of-plane strains over much of the loading his-

tory, it overestimates the stresses at the highest strains. These discrepancies are likely 
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due to microstructural damage. One area of future research lies in the development of 

experiments to illuminate the mechanisms for the observed softening behavior and in 

the implementation of an appropriate damage model.  

The results of the quasi-static finite element simulations of the quasi-static punch 

response of clamped plates of these composites based on the same binary model also 

agree well with experimental measurements. The simulations begin to break down only 

once the shear sliding stress at the interface between the plate and the clamps exceeds 

the interlaminar shear strength of the composite. In this case, since the model assumes 

purely frictional sliding without interlaminar deformation or damage, pull-in of the 

composite plate past the clamp surfaces is predicted to occur at a higher shear stress 

relative to that obtained experimentally. The model works similarly well for predicting 

the dynamic response of clamped plates subject to impact by foam projectiles. Both the 

back-face deflection-time history and the final plate profile (especially the changes 

caused by fiber pull-in) are captured with remarkable accuracy. Discrepancies arise 

once the contact area between the plates and the clamps begins to diminish and the 

plate deformation begins to exhibit some asymmetry. Since the present version of the 

model used in the numerical simulations is based on one-quarter of the entire plate with 

symmetry boundary conditions imposed, the model cannot predict the real (asymmet-

ric) plate response in this domain. Some additional refinements to the model could be 

made by characterizing more rigorously the strain rate-sensitivity of the matrix re-

sponse. 
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An analytical framework has been developed to assess the efficacy of crushable 

foams in mitigating risk of serious head injury. The model predicts that the contact area 

grows approximately linearly with penetration distance, resulting in accelerations that 

vary sinusoidally with time. The model also predicts that the acceleration will drop 

precipitously from the peak to zero. The model underestimates the 𝐻𝐼𝐶 values of the 

three Divinycell® foams tested in this study, attributed to the elasticity of the foams 

and the resulting rebound of the headform, but is still accurate to within 10%. The time 

scale associated with rebound within the 𝐻𝐼𝐶 interval has been characterized by a non-

dimensional time parameter. It increases with increasing foam density, which was 

found to be consistent with the trend of increasing errors in predicted 𝐻𝐼𝐶 values. Finite 

element simulations, where the elasticity had been naturally incorporated, provided 

marginal improvements on the predictions of the 𝐻𝐼𝐶. Thus, the errors associated with 

the rigid-plastic approximation of the foam response in the analytical model are insig-

nificant. 

An analytical framework has been presented to predict the reduction in 𝐻𝐼𝐶 that is 

attainable by adhering stiff composite plates to viscoelastic crushable foams. The 

model predicts that the shape of the acceleration-time history is transformed from si-

nusoidal to square in shape, with reductions of up to 46% in the 𝐻𝐼𝐶. Experimental 

results have shown that, for the viscoelastic foams (SunMate®) tested in this study, 

significant reductions in the 𝐻𝐼𝐶 are indeed obtained by adhering a stiff composite 

plate on top of the foams. The model predicts the 𝐻𝐼𝐶 to within 10% for both the 

composite plate-foam systems and the foams alone, provided that the headform is 
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brought to arrest prior to densification in the foam. One of the key conclusions from 

this work stems from the design maps produced by the analytical models. That is, for 

any given foam strength, foam thickness, and impact velocity, the 𝐻𝐼𝐶 can always be 

reduced by adhering a plate to the foam. Furthermore, the plate geometry can be used 

to tailor the magnitude of the reduction in 𝐻𝐼𝐶, and can also be used to increase the 

maximum impact velocity that prevents densification in the foam. Additional refine-

ments to the model could be made by incorporating the effects elasticity and rate-sen-

sitivity in the foam response, as well as the elastic bending in the plates. As an important 

note, one must consider the consequences of approaching limits that yield unrealistic 

outcomes. For instance, if the plate area approaches excessively small values, the forces 

exerted on the headform approach that of a point-load, and this can have highly unde-

sirable consequences. Additionally, the model predicts that reductions in the 𝐻𝐼𝐶 can 

be achieved by increasing the area of the plate to an infinitely large value and coupling 

that plate with a foam with an infinitesimally low strength, which is an unrealistic sce-

nario. The analytical models presented in this study are merely guidelines, and should 

be used as such. 

Select experiments have been conducted to assess the predictive capability of the 

analytical model and the benefits of the plate-foam design. However, the design space, 

for the most part, remains uncharted. Perhaps one of the most interesting results of this 

body of work is the performance of the SunMate® T50E foams. The observed reduc-

tion in the 𝐻𝐼𝐶, when compared to the other foams in this study, is remarkable. The 

significant reduction in the 𝐻𝐼𝐶 has been attributed to the strain-softening after yield. 
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This result, coupled with the observed damage in both the Dyneema® and CFRP plates, 

serves as motivation for future research in other composite material systems. Structural 

geometries could be devised to strain-soften at a prescribed rate to produce a similar 

“top-hat” shape to the acceleration-time history. As a result, such systems would 

achieve further reductions in the value of the 𝐻𝐼𝐶.  
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Appendix A 

Elastic properties of  ±𝟒𝟓° laminates 

The elastic response of a balanced symmetric angle ply laminate under plane stress 

conditions is given by: 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

] = [

𝑄11 𝑄12 0

𝑄12 𝑄11 0

0 0 𝑄66

] ⋅ [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

]  (A1) 

where �̅�𝑖𝑗 are the components of the reduced transformed stiffness matrix for the indi-

vidual laminae. In general, the latter are: 

𝑄11 = 𝑄11 ⋅ 𝑚4 + 𝑄22 ⋅ 𝑛4 + (2𝑄12 + 4𝑄66) ⋅ 𝑚2𝑛2 (A2a) 

𝑄22 = 𝑄11 ⋅ 𝑛4 + 𝑄22 ⋅ 𝑚4 + (2𝑄12 + 4𝑄66) ⋅ 𝑚2𝑛2 (A2b) 

𝑄12 = 𝑄12 ⋅ (𝑚4 + 𝑛4) + (𝑄11 + 𝑄22 − 4𝑄66) ⋅ 𝑚2𝑛2 (A2c) 

𝑄66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) ⋅ 𝑚2𝑛2 + 𝑄66 ⋅ (𝑚4 + 𝑛4) (A2d) 

where the  𝑄𝑖𝑗 terms (without the over-bar) represent the reduced stiffness matrix of an 

individual lamina (in the coordinate system defined by the fibers, under conditions of 

plane stress),  𝑚 = cos𝜃 and 𝑛 = sin(𝜃). For a [±45°] laminate, 𝑚 = 𝑛 =
√2

2
. The 𝑄𝑖𝑗 

terms can be expressed in terms of the engineering elastic constants of the lamina as: 
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𝑄11 =
𝐸1

(1−𝑣12
2E2/𝐸1)

  (A3a) 

𝑄12 =
𝑣12𝐸2

(1−𝑣12
2E2/𝐸1)

  (A3b) 

𝑄22 =
𝐸2

(1−𝑣12
2E2/𝐸1)

  (A3c) 

𝑄66 = 𝐺12  (A3d) 

where 𝑣12 is the in-plane Poisson’s ratios and 𝐺12 is the in-plane shear modulus. Com-

bining (A2) with (A3), 𝑄𝑖𝑗 becomes: 

𝑄11 = 𝑄22 =
1

4
[
𝐸1+(1+2𝑣12)⋅𝐸2

1−𝑣12
2 ⋅

𝐸2
𝐸1

+ 4𝐺12]  (A4a) 

𝑄12 =
1

4
[
𝐸1+(1+2𝑣12)⋅𝐸2

1−𝑣12
2 ⋅

𝐸2
𝐸1

− 4𝐺12]  (A4b) 

𝑄66 =
1

4
[
𝐸2(1−𝑣12)

1−𝑣12
2 ⋅

𝐸2
𝐸1

+ 2𝐺12]  (A4c) 

In the present binary representation of the composite, 𝐺12 = 𝐺 =
𝐸𝑒𝑚

2(1+𝑣)
 , 𝑣12 = 𝑣 and 

E1 and E2 are given by (2a) and (2b) in the text. Combining these results with (A4a) 

yields: 

𝑄11 = 𝑄22 = [
𝑉𝑓𝐸𝑓+𝐸𝑚+(1+2𝑣)⋅𝐸𝑒𝑚

4(1−𝑣2 ⋅(
𝐸𝑒𝑚

𝐸𝑒𝑚+𝑉𝑓𝐸𝑓
))

+
𝐸𝑒𝑚

2(1+𝑣)
] (A5) 

Making the assumption that 𝐸𝑓 ≫ 𝐸𝑚 , (A5) simplifies to: 

𝑄11 = 𝑄22 ≈
𝑉𝑓𝐸𝑓

4
+

𝐸𝑚

2
⋅ [

1

(1+𝑣)
+ (1 + 𝑣)] (A6) 
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 Similarly, from (A4b): 

 

𝑄12 =
𝑉𝑓𝐸𝑓

4
+

𝐸𝑚

2
⋅ [

2𝑣+𝑣2

(1+𝑣)
]  (A7) 

Inverting (A1), the strains are expressed in terms of the stresses via:  

[

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

] =

[
 
 
 
 
 

𝑄11

𝑄11

2
−𝑄12

2 −
𝑄12

𝑄11

2
−𝑄12

2 0

−
𝑄12

𝑄11

2
−𝑄12

2

𝑄11

𝑄11

2
−𝑄12

2 0

0 0 𝑄66

−1

]
 
 
 
 
 

⋅ [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

]             (A8) 

The tensile modulus of the laminate is thus given by  

𝐸𝑥 =
𝑄11

2
−𝑄12

2

𝑄11

  (A9) 

 which, combined with (A6) and (A7), yields (2.3) in the text. 
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