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Dieckmann at Cornell University.

My research at UCSB would have been impossible (and not much fun at all) without
the numerous collaborators I had the privilege to work with for each project described
in this dissertation. Dr. Scott Ferguson’s endless enthusiasm, tenacity, and ingenuity
turned the real-time feedback project from an interesting idea into a reality, and Dan
Maliniak and Kyle Ploense provided invaluable time and expertise during our animal
work. Prof. Kevin Plaxco and Prof. Tod Kippin provided valuable guidance, constant
enthusiasm, and occasional pizza. Dr. Andrew Csordas first showed me how to use FACS
and assisted on every FACS experiment described in this dissertation, in addition to
providing insightful discussions. YongWoon Song (Sogang University, Korea) developed
the software interface and algorithms for the SuperFACS image-based sorting project. Dr.
Kuangwen Hsieh served as a key mentor, giving me the opportunity early in my PhD to
help him finish his excellent work on contamination-resistant genetic detection. Other key
collaborators for the research described in this work were Dr. Monte Radeke, Dr. Daniel
Klinger, Dr. Allen Yang, Tyler Brown, Cynthia Wang, Diana Wu, Anusha Pusuluri, Nate
Ogden, Dan Mamerow, Jacob Somerson, Dr. Netz Arroyo, and Abe Pressman. I would
also like to thank the staff of the UCSB Animal Resource Center, specifically Dr. Manny
Garcia, Ronni Wynn, and Amber Griffin, as well as the UCSB Nanofabrication Facility
staff. Thank you to Dave Bothman for being a wealth of practical engineering advice
and for making the UCSB Microfluidics Lab a reality. I am also indebted to Elizabeth
Bagley and Lore Dobler for doing the huge amount of work required to keep the Soh
lab running smoothly day-to-day. Finally, it was a joy to work with all of my Soh Lab
compatriots over the years: Dr. Seung Soo Oh, Dr. Allen Yang, Dr. Kareem Ahmad,
Dr. J.P. Wang, Dr. Gurpreet Sekhon, Dr. Qiang Gong, Dr. Jackie Alva, Dr. Hao Qu,
Dr. Faye Walker, Faye Fong, Forrest McClellan, Tracy Chuong, Michael Gotrik, Chelsea
Lyons, Brandon Wilson, Ola Jakobsson, Nupur Maheshwari, and David Hoggarth.

I was privileged to work, study, and enjoy Santa Barbara with fantastic colleagues,
coworkers, and friends. To all of my friends in Materials, Mechanical Engineering, ECE,
Bioengineering, Chemistry, BMSE, Linguistics, the climbing gym, and beyond —I can’t
imagine my time here without all of you. Thank you to my fantastic roommates at
Coolbrook for making the house a true home throughout the years. Finally, I am fortu-
nate beyond words to have had a supportive, loving family behind me the entire time.

v



Thank you to my grandparents for your active support and involvement throughout my
entire education, and for being astounding role models, both personally and profession-
ally. Thank you to my brother, for always being several notches cooler than me. And
finally, thank you to my parents, who raised me in such a way that I have never doubted
how much you loved me.

vi



Curriculum Vitæ
Peter L. Mage

Education

2016 Ph.D. in Materials, University of California, Santa Barbara.

2011 B.S. in Physics, Cedarville University, summa cum laude.

2011 B.A. in Mathematics, Cedarville University, summa cum laude

Publications

1 P. Mage, B.S. Ferguson, D. Maliniak, K. Ploense, M. Eisenstein, T.
Kippin, and H.T. Soh. “Closed-loop control of therapeutic molecules
in live animals.” Manuscript in preparation.

2 P. Mage, Y. Song, N. Ogden, D. Wu, M. Radeke, H.J. Lee, H.T.
Soh. “High-throughput image-based cell sorting.” Manuscript in
preparation.

3 P. Mage, A. Csordas, D. Klinger, C. Wang, T. Brown, C. Hawker,
H.T. Soh. “Shape-based sorting of synthetic microparticles with
flow cytometry.” Manuscript in preparation.

4 K. Hsieh*, P. Mage*, K.W. Plaxco, H.T. Soh.“Contamination-resistant
real-time LAMP” Manuscript in preparation.

5 K. Hsieh*, P. Mage*, A. Csordas, M. Eisenstein, and H.T. Soh. “Si-
multaneous elimination of carryover contamination and detection
of DNA with uracil-DNA-glycosylase-supplemented loop-mediated
isothermal amplification (UDG-LAMP).” Chemical Communications.
2014 April 11; 50(28): 3747-9. doi: 10.1039/c4cc00540f. *authors
contributed equally

Conferences

1 P. Mage, A. Csordas, D. Klinger, C. Wang, T. Brown, C. Hawker,
and H.T. Soh. “Precision sorting of designer microparticles based
on size and shape using fluorescence-activated cell sorting (FACS).”
Oral presentation at: 2015 Materials Research Society Fall Meeting;
2015 November 30 December 4; Boston, MA.

2 P. Mage, B.S. Ferguson, D. Maliniak, K. Ploense, T. Kippin, and
H.T. Soh. “Real-time closed-loop control of circulating drug levels
in live animals.” Oral presentation at: 2014 Materials Research
Society Fall Meeting; 2014 December 1-5; Boston, MA.

vii



3 P. Mage, B.S. Ferguson, D. Maliniak, K. Ploense, T. Kippin, and
H.T. Soh. “Real-time control of in vivo drug concentrations in
live animals.” Poster presented at: Biosensors 2014. 24th World
Anniversary Congress on Biosensors; 2014 May 27-31; Melbourne,
Australia.

4 P. Mage, K. Hsieh, A. Csordas, and H.T. Soh. “Staying on target:
using nature’s error-correcting tools to make molecular diagnostics
more robust.” Poster presented at: SLAS 2014. Third Annual
Society for Laboratory Automation and Screening Conference and
Exhibition; 2014 January 18-22; San Diego, CA.

Honors and Awards

2015 First Place, Falling Walls Lab, San Diego; Scholar, Falling Walls
Lab Finals, Berlin
Worldwide and regional competitions for best breakthrough research
talk

2015 Best Scientific Presentation, UCSB Chemical Sciences Student Sem-
inar Series 2014-2015

2015 Student Delegate, 2015 University of California Graduate Research
Advocacy Day
Selected to present research to members of the California State Leg-
islature

2014 Best Student Presentation (Symposium D: Biosensors), 2014 Mate-
rials Research Society Fall Meeting

2013 Grand Prize Winner, UCSB Grad Slam
Campus-wide competition for best three-minute research talk for a
general audience

2012-2013 Honorable Mention, NSF Graduate Research Fellowship Program

2007 - 2011 Cedarville University Scholar Award Nine recipients yearly; 75%
tuition for four years

2007 - 2011 Cedarville University Deans Honor List

viii



Abstract

Real-time measurement, analysis, and control in microfluidic systems for personalized

medicine and designer materials

by

Peter L. Mage

The field of microfluidics has enabled the development of powerful tools for analyz-

ing and manipulating phenomena at the micro- and nano-scales, ranging from chemical

analysis of biological samples to controlled synthesis of colloidal materials. In this disser-

tation we explore four unique platforms for real-time microfluidic measurement, analysis,

and control systems with applications at the intersection of biomedicine and materials

engineering. First, we show that a real-time biosensor can be used to perform closed-

loop control of drug concentrations in the bloodstream of live animals. Second, we show

that a commercially available cell-sorting instrument can be used to sort heterogeneous

suspensions of synthetic microparticles based on shape using optical scattering measure-

ments, resulting in monodisperse microparticle suspensions with well-defined morphology.

Third, we report preliminary results for an image-based cell and microparticle sorter ca-

pable of sorting objects using two-dimensional high-speed microscopy and real-time image

analysis. Finally, we report a contamination-resistant microfluidic assay for quantitative

genetic detection based on real-time loop-mediated isothermal amplification, improving

the robustness of point-of-care pathogen detection techniques.
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Chapter 1

Introduction

1.1 Thesis goals and outline

The field of microfluidics has enabled the development of powerful tools for analyz-

ing and manipulating phenomena at the micro- and nano-scales, ranging from chemical

analysis of biological samples to controlled synthesis of colloidal materials. In this disser-

tation we explore several unique platforms for real-time measurement, signal processing,

and control in microfluidic systems with applications at the intersection of biomedicine

and materials engineering.

First, we describe a potential solution to the widespread clinical problem of patient-

to-patient variability in drug response. Here we report a system capable of directly con-

trolling circulating drug levels in the body in real-time. We achieve feedback-controlled

drug infusion using a microfluidic real-time biosensor that can continuously measure a

wide variety of drugs directly in the bloodstream. We demonstrate closed-loop control of

circulating concentrations of the chemotherapy drug doxorubicin in live rabbits and rats,

showing the ability to maintain virtually any concentration profile in the bloodstream

as a function of time. We demonstrate our system’s ability to regulate dosing across

1



Introduction Chapter 1

multiple animals with varying pharmacokinetics, and within a single animal undergoing

acute drug-drug interactions.

Second, we explore the unorthodox use of a microfluidic tool from the field of biology

to enable the production of well-defined colloids with applications as functional mate-

rials. We show that a commercially available fluorescence-activated cell sorter (FACS)

—a powerful and increasingly ubiquitous instrument used by cell biologists —can be

repurposed to sort synthetic colloidal microparticles based on shape. Using stretched

polystyrene microspheres as a model system, we demonstrate that microparticles exhibit

unique shape-dependent optical scattering profiles in FACS. We then use these signature

scattering profiles to sort and separate heterogeneous mixtures of particles with differ-

ent morphologies (spheres, discs, and ellipsoids with varying aspect ratios) with high

throughput (>1000 particles/s), purity, and yield, resulting in monodisperse suspensions

of particles with well-defined shapes.

Third, we report preliminary results for a novel integrated microfluidic device capable

of sorting particles and cells based on two-dimensional image features. Using high-speed

microscopy and automated 2D image analysis, we demonstrate automated sorting of

polymer microspheres and ellipsoids based on direct image detection of morphological

features such as size and shape. We also demonstrate an algorithm for analyzing and

sorting stem cell-derived retinal cells based on internal cell features.

Fourth and finally, we report an enzyme-based approach to eliminating carryover

contamination in real-time genetic pathogen detection assays based on loop-mediated

isothermal amplification (LAMP). Our contamination-resistant real-time LAMP assay

combines enzymatic elimination of carryover contaminants with DNA-intercalation-based

real-time amplification monitoring. Uracil-tagged carryover contaminants are degraded

with the uracil-DNA-glycosylase enzyme, and target amplification is monitored electro-

chemically in an integrated microfluidic device, enabling rapid discrimination of DNA

2
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samples with different amounts of pathogen DNA even in the presence of substantial car-

ryover contamination. This represents a critical enabling step toward robust, quantitative

real-time pathogen detection.

Because of the wide variety of topics covered in this dissertation, rather than us-

ing unified “Introduction,” “Theoretical Framework,” and “Conclusion” chapters, each

chapter has self-contained introductory material describing the motivation, prior work,

relevant theoretical discussions, and proposed future work related to that chapter’s topic.

3



Chapter 2

Closed-Loop Control of Circulating

Drug Concentrations in Live

Animals

2.1 Introduction

Although personalized medicine is typically perceived through the lens of matching

patients with the appropriate drugs, achieving the ideal dose for a given individual is

also critical. The optimal dose should maximize the efficacy of treatment while mini-

mizing the risk of harmful toxicity, a target range that is exceedingly narrow for many

widely-used drugs including chemotherapeutics [1,2], immunosuppressants [3,4], antipsy-

chotics [5], anticoagulants [6], aminoglycoside antibiotics [5], and others. Achieving this

optimal dose for drugs with narrow therapeutic windows is a major challenge for clin-

icians because of the profound variability with which patients respond to medication,

both from patient-to-patient and within the same patient over time [2, 7]. Response

to drug varies due to differences in both pharmacokinetics (PK) —describing how the

4
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body affects drug concentration over time through absorption, distribution, metabolism,

and excretion —and pharmacodynamics (PD), describing how the drug’s physiological

effect depends on effect-site concentration [8]. This variability in drug response, which

arises from a combination of genetic, physiological, and environmental factors [2], can

result in harmful under- or over-dosing, making it one of the principal problems in drug

development and clinical pharmacology.

To counter this unpredictability, clinicians presently use a variety of imperfect tools

that attempt to tailor drug dose to a specific patient’s needs. Most commonly, dosage

is selected by comparing the patient’s physiological parameters —such as sex, weight, or

body surface area (BSA) [9] —to dosage tables based on population-averaged PK/PD

data for that drug [10]. Unsurprisingly, this simple approach fails to account for a

large proportion of the clinically meaningful PK/PD variability observed across pa-

tients [1, 10, 11]. The recent explosion of “precision medicine” has encouraged the use

of more sophisticated personalization methods such as pharmacogenetic profiling, which

identifies specific polymorphisms in the individual’s genome that are known to cause

changes in drug metabolism, clearance, or susceptibility [12]. Unfortunately, pharmacoge-

netic approaches are time- and resource-intensive to develop and administer, making them

useful for only a select few drugs [13] and severely limiting their clinical deployment [14].

Moreover, methods such as pharmacogenetics and BSA-normalization do not correct

for physiological changes that may occur within a single patient over time, potentially

altering their response to drug over the course of treatment (e.g., exposure-dependent

pharmacokinetics, or comorbidities affecting ADME such as hepatic or renal failure, or

lowered serum albumin levels). To account for both patient-to-patient and intrapatient

variability, some drugs are accompanied by therapeutic dose monitoring (TDM), which

entails tracking the plasma levels of drugs and metabolites after initial drug adminis-

tration, and adjusting subsequent dosing accordingly based on PK/PD models [15, 16].

5
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Although TDM is the current standard of care for many narrow-therapeutic-index drugs,

it is constrained by slow, delayed measurements of plasma concentration at single time-

points, giving limited PK/PD insights and preventing responsive dose adjustment for

fast-acting drugs or rapidly changing disease states.

A much more powerful approach to personalized dosing would be to control the cir-

culating level of drugs in the body in a closed-loop manner. Toward this end, a small

number of closed-loop dosing systems have been developed since the 1950s for niche

applications involving narrow-therapeutic-index drugs, namely anesthesia delivery dur-

ing surgery [17–19] and cardiovascular drug infusion for maintenance of hemodynam-

ics [20–22]. More recently, the artificial pancreas platform has been used to regulate

blood glucose levels in diabetic patients through feedback-controlled insulin infusion [23].

Although these systems have shown improved therapeutic outcomes compared to manual

human-guided dosing [21, 24, 25], they cannot be applied to the vast majority of other

drugs. This is because all existing closed-loop dosing platforms perform control based

on readily measurable physiological effects of the drug (e.g. depth of anesthesia, blood

pressure, or blood glucose levels for the respective systems mentioned above) which act

as feedback for adjusting drug delivery. Many other drugs with narrow therapeutic win-

dows, such as chemotherapeutics or antipsychotics, have effects that cannot be measured

quickly enough to adjust infusion, preventing this sort of feedback control from being

implemented. A more general approach would be to control drug levels directly based on

measurements of in vivo drug concentration; however, the vast majority of drugs cannot

be measured in the body in real-time, making such an approach impossible to date. Nev-

ertheless, such control, if possible, would eliminate a major source of pharmacokinetic

uncertainty, namely, how drug infusion is related to the drug’s concentration-time profile

in the bloodstream.

Here we report the first medical technology that directly controls the circulating con-

6
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Figure 2.1: Scheme for closed-loop control of in vivo drug levels with CLINIC. As a
programmable infusion pump injects drug into the animal, the bloodstream is sampled
continuously by our real-time biosensor. The resulting electrochemical measurements
of drug concentration are analyzed by our control algorithm, which calculates the
infusion rate needed to maintain the desired circulating drug set-point at any given
time, and automatically adjusts the infusion rate accordingly.

centrations of drugs in the body in real-time. Our Closed-Loop Infusion for In vivo Con-

trol (CLINIC) system (Figure 2.1) continuously regulates the circulating concentration

of intravenous drugs by measuring the drug’s concentration in the bloodstream with a

real-time aptamer-based biosensor [26] and using a feedback control algorithm to contin-

uously modulate the rate of drug infusion, achieving the desired in vivo concentration at

minute time-scales. Crucially, in contrast to existing closed-loop dosing systems, CLINIC

controls infusion based on direct measurement of drug concentration in vivo, rather than

depending on delayed physiological indicators of drug activity as proxies for drug concen-

tration. This enables rapid and responsive control of drug plasma levels from patient to

patient and within the same patient over time, with no need for complex pharmacokinetic

modeling [10]. As a proof of concept, we used CLINIC to perform continuous closed-loop

dosing of the chemotherapy drug doxorubicin (DOX) in live rabbits and rats, demon-

7
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strating the capacity to achieve and maintain a wide range of concentration set-points in

the bloodstream as a function of time. We chose to use DOX because, while widely used

in cancer treatment, it is difficult to dose successfully in the clinic. The therapeutic out-

come of DOX treatment is closely tied to its plasma concentration profile over the course

of treatment, with efficacy dependent on total plasma exposure [27] and cardiotoxic side

effects correlated with peak plasma levels reached during drug infusion [28–31]. However,

DOX exhibits a very narrow therapeutic dose window [32], and patient-to-patient phar-

macokinetic response to DOX varies widely [27, 33, 34] even when normalized to body

surface area (BSA) —the current clinical standard for DOX dosing [11, 35]. Suboptimal

DOX dosing has been linked to a significant reduction in survival among breast cancer

patients [36].

2.2 Background and Theoretical Framework

2.2.1 Sensing requirements for feedback control

Performing feedback control of drug concentration requires a sensor that quantita-

tively measures drug levels in the body continuously (e.g., with high time resolution

relative to the relevant physiological processes, usually in the minute-range but poten-

tially shorter for applications such as neurological stimulation) and in real-time (e.g.,

with minimal measurement lag relative to the aforementioned time scales). A practi-

cal consequence of these requirements is that measurements must be performed directly

in the biological medium of interest, since traditional benchtop processing steps such

as centrifugation or affinity purification would introduce unacceptably long processing

times. Unfortunately, the majority of existing bioanalysis assays —such as the widely-

used enzyme-linked immunosorbent assay, or ELISA —provide only single time-point

8
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measurements [26]. This is because they require time-consuming sample processing and

analysis procedures, typically with multiple incubation and wash steps, making them im-

possible to use for real-time feedback control. Toward enabling continuous measurements,

other biosensor formats interrogate changes in physical properties of surface-bound re-

ceptors (typically antibodies) exposed to a sample flow containing analyte, providing

a continuous measurement of analyte concentration; examples of such an approach are

surface plasmon resonance and quartz crystal microbalance systems [37]. However, these

systems are cripplingly susceptible to nonspecific binding, making measurements all but

impossible in complex media such as blood [37]. This leaves a small number of analyte-

specific tools for measuring molecular species in vivo both continuously and in real-time,

namely, the pulse oximeter for monitoring blood oxygen content and oxidase-based elec-

trochemical sensors for blood glucose, lactate, glutamate, and cholesterol [37]. Unfor-

tunately, each of these examples is based on a target-specific enzyme interaction that

allows a quantitative readout of target concentration; such an enzymatic approach is not

generalizable to the vast majority of other analytes of interest.

Toward developing a general biosensor that could be used for in vivo feedback con-

trol, the Soh lab developed a sensor platform capable of real-time, continuous molec-

ular measurement directly in complex biological media. This platform combines three

key technologies. First, electrochemical aptamer probes provide instantaneous, re-

versible, and quantitative readout of target molecule concentration. These probes are

target-specific and can be generated for a wide variety of molecular targets [38]. Second,

a kinetic differential measurement scheme is utilized to eliminate baseline drift, re-

moving the need for baseline correction during post-processing and thus allowing truly

real-time measurements. Third, measurement is performed in a microfluidic blood

sampling device that enables analyte measurements directly in whole blood drawn di-

rectly from the bloodstream [26]. We will briefly discuss each of these technologies in
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turn.

2.2.2 Real-time biosensing with electrochemical aptamer probes

Electrochemical aptamer probes are a class of reagentless probes for real-time molec-

ular detection [39–41]. Aptamers are synthetic single-stranded DNA or RNA oligonu-

cleotides (generally < 100 bases long) that are generated through an in vitro evolution

process to bind specifically to some molecular target. Electrochemical aptamer probes

are based on a subset of aptamers whose three-dimensional conformation changes signif-

icantly upon target binding. This target-induced structure change can be measured by

probing the change in proximity that occurs between the 3’ and 5’ ends of the oligonu-

cleotide strand. This can be performed optically in solution, using a fluorophore-quencher

or FRET pair on the 3’ and 5’ ends of the strand. Alternatively, the conformation change

can be probed electrochemically using surface-tethered aptamers, wherein one end of the

aptamer is anchored to an electrode and the other end is tagged with a redox-active re-

porter which transfers electrons to the electrode through oxidation and reduction at the

appropriate potentials. We measure this redox activity using square-wave voltammetry

(SWV), which minimizes the effects of capacitive charging so that only faradaic electron

transfer due to redox reactions is measured. The amplitude of this faradaic current is

highly dependent on the average distance from the redox probe to the electrode surface;

hence, SWV interrogation of the redox-tagged surface-bound aptamer provides an in-

stantaneous electrical readout of target-binding-induced aptamer conformation changes.

Electrochemical aptamer-based sensing enables sensitive, specific, and real-time mea-

surement of target molecule concentrations. The performance of an electrochemical ap-

tamer for doxorubicin [26,42] is shown in Figure 2.2. First, the aptamer probe is sensitive

to DOX over a range of concentrations covering therapeutic levels in humans [43]; binding
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Figure 2.2: Characterization of electrochemical DOX aptamer performance, showing
probe response to target (left), probe specificity (center), and probe binding kinetics
(right). Adapted with permission from [26].

follows a Langmuir isotherm with an apparent dissociation constant of ∼ 0.8 nM in buffer

(Fig. 2.2, left). Second, the electrochemical DOX aptamer is highly specific to DOX over

other chemotherapy drugs commonly administered with DOX (Figure 2.2, center), al-

though it is known to bind to the structurally similar anthracycline daunorubicin [42].

Third, the DOX aptamer exhibits reversible drug binding with rapid binding kinetics as

shown in response to a 5-minute pulse of 600 nM DOX (Figure 2.2, right). The aptamer

exhibits an on-rate of kon = 3.0± 0.35 mM−1 min−1 and an off-rate of koff = 1.35± 0.05

min−1, enabling real-time readout of DOX pharmacokinetics [26].

2.2.3 Drift-free concentration tracking through kinetic differ-

ential measurement

To avoid signal drift over time, our real-time biosensor employs a differential mea-

surement scheme that self-corrects for baseline drift. Unlike differential measurements

that rely on a separate “reference” sensor, we perform differential measurements using a

single probe. We do this by exploiting the fact that the DOX aptamer, like many other

structure-switching electrochemical aptamers [38], can be used both as a “signal-on”
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Figure 2.3: The signaling polarity of the DOX aptamer is dependent on SWV pulse
width (1/2f , where f is SWV frequency) (left). By measuring at both signal-on
and signal-off SWV frequencies, a drift-free differential measurement can be obtained
(right). Adapted with permission from [26].

probe, where redox current increases with target binding, and as a “signal-off” probes,

where current decreases with target binding. The signaling magnitude and polarity of

electrochemical aptamers is dependent on the SWV interrogation frequency (the inverse

of the square-wave pulse width) [38], an effect arising from the kinetics of charge deple-

tion for surface-bound redox probes [38]. The DOX probe exhibits a signal-on response

in the presence of DOX when interrogated at high (≥100Hz) frequencies, and a signal-off

response to DOX at low (leq10Hz) frequencies (Figure 2.3, left). By interrogating the

probe at both signal-on and signal-off SWV frequencies, we obtain two current traces

with opposite target response polarity but similar baseline drift; subtracting these two

signals eliminates baseline drift while maintaining response to target. This kinetic differ-

ential measurement (KDM) strategy has two key benefits: (1) reduced baseline drift and

(2) enhanced signal magnitude relative to “common mode” noise (Figure 2.3, right) [26].
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(a) Diagram of the microfluidic real-time biosensor chip.

(b) Cross-sectional schematic of the CDF (compo-
nents not to scale).

(c) Simulated molecular transport across the CDF (left) and optical micrographs of electrode
fouling with or without the CDF (right).

Figure 2.4: Schematic and characterization of the continuous diffusion filter (CDF).
Adapted with permission from [26].
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2.2.4 Microfluidic continuous diffusion filter for long-term mea-

surement directly in whole blood

The third key technology in our real-time biosensor is a microfluidic continuous diffu-

sion filter (CDF) which allows target measurement directly in whole blood. The CDF pre-

vents occlusion of the aptamer-functionalized electrode surface by blood cells, platelets,

and other high-molecular-weight interferents (such as serum albumin and clotting fac-

tors) present in blood; such biofouling occurs rapidly on unprotected electrodes placed

directly in blood, causing significant baseline drift and diminished signal in response to

target. The CDF is formed within a microfluidic channel in the biosensor chip (Figure

2.4a) via vertical laminar flow stacking of a saline buffer layer (blue) on top a contin-

uous flow of blood (red), which may be drawn directly from a sample tube or from

an animal or patient’s bloodstream through a catheter (Figure 2.4b). The buffer layer

serves as a liquid-phase low-pass molecular weight filter between blood and the aptamer-

functionalized sensor electrode (located at the top of the channel). Low-molecular-weight

species, such as DOX, rapidly diffuse through the CDF and are detected at the electrode,

while only a small fraction of high-molecular-weight blood interferents are able to diffuse

to the electrode (finite element simulations of molecular transport across the CDF shown

in Figure 2.4c, left). Furthermore, the CDF prevents physical occlusion of the sensor by

blood cells and platelets (Figure 2.4c, right) [26].

In summary, our real-time biosensor achieves continuous quantitative measurements

of DOX directly in whole blood by integrating (i) electrochemical aptamer probes inter-

rogated with (ii) a kinetic differential measurement scheme in (iii) a microfluidic blood

sampling device that utilizes continuous diffusion filtering.
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2.3 Results and Discussion

2.3.1 CLINIC system overview

The CLINIC system controls in vivo drug concentrations by integrating our real-

time biosensor (RTB), a dose controller, and an intravenous infusion pump into a closed

feedback loop (Figure 2.1) which operates as follows. The RTB continuously samples

circulating blood directly from the bloodstream, transmitting drug concentration mea-

surements to the controller for real-time analysis. Based on the measured drug level,

the controller uses a feedback control algorithm to calculate the infusion rate required

to reach and maintain the desired concentration set-point. The controller then modu-

lates the infusion pump’s rate of drug administration accordingly. In this way, CLINIC

continuously adjusts drug infusion in response to measurements of drug concentration,

enabling it to control a wide range of concentration profiles in the bloodstream over time

with sub-minute resolution.

2.3.2 Real-time biosensing

The RTB achieves continuous, virtually lag-free measurements of in vivo DOX levels

by integrating electrochemical aptamer-based detection with a microfluidic blood sam-

pling system, described in detail above and in [26]. For this work, we dramatically reduced

the measurement lag of the RTB compared to our previous work by implementing two key

improvements. First, we wrote a real-time electrochemical analysis script in MATLAB

that converts raw electrochemical measurements to DOX concentration values on-the-fly.

Second, we optimized fluidic transport of blood from the animal to the device by using

short (< 10 cm) lengths of small-bore (∼ 200 µm ID) microcapillary tubing between a

venous catheter and the chip. Implementing these improvements enabled the controller
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Figure 2.5: Real-time biosensing of DOX in live rabbits. CLINIC’s real-time biosensor
has a point-to-point time resolution of 11 seconds and a measurement lag (δt) of 0.8
min (inset). Vertical dotted line indicates time of DOX bolus injection (0.93 mg/m2).

to respond to DOX fluctuations in vivo within 40 seconds (e.g., sensor-to-pump lag) with

a sampling interval of 11 seconds (Figure 2.5). Importantly, the aptamer probes in our

biosensor can readily be exchanged to measure a variety of target molecules [26], thereby

enabling CLINIC to potentially control a broad range of small-molecule drugs.

2.3.3 Feedback controller design, modeling, and tuning

CLINIC modulates the rate of drug infusion using a proportional-integral (PI) feed-

back control algorithm to achieve responsive, robust control of drug levels in the blood-

stream. The PI algorithm calculates infusion pump output U at any given time t as a

weighted sum of one term proportional (P) to the present error e(t) (difference between

measured and set-point concentrations) and another term proportional to the integral

(I) of the total error over time:

U(t) = kpe(t) + ki

∫ t

0

e(τ)dτ (2.1)
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Controller performance is wholly determined by two parameters, the proportional and

integral gains kp and ki, which determine the relative weight of the P and I terms.

Although physiological closed-loop control systems such as the artificial pancreas typically

rely on complex model-based control algorithms (e.g., [44]), we selected the PI feedback

algorithm for its simplicity and ability to respond rapidly to set-point changes while

achieving stable set-point tracking even in the presence of sensor lag.

To design and optimize the controller, we first modeled the entire feedback loop in

silico as a linear time-invariant system (Figure 2.6a). The central element of the system

model is a pharmacokinetic expression that empirically describes how DOX levels in the

bloodstream change over time, using a biphasic exponential decay model with a constant

dilution volume [45]. The model captures the dynamics of the rapid distribution (α) and

elimination (β) phases of DOX plasma clearance in rabbits (tα1/2 = 2 min, tβ1/2 = 18 min)

while ignoring the γ-phase (tγ1/2 = 15 hr) [45], which is too slow to meaningfully affect our

system. To build this model, we experimentally determined average α- and β-phase half-

lives of DOX by using the RTB to measure circulating DOX levels in rabbits during DOX

administration. We then empirically tuned the model so that it accurately simulated in

vivo concentrations for a given DOX input (Figure 2.6b). We finally added components to

the system model describing the temporal behavior of the RTB, the infusion pump, and

the feedback controller, allowing us to simulate operation of the entire CLINIC system.

To ensure that simulations using our system model matched real-world CLINIC be-

havior, we measured the step response of the controller using a simple, untuned propor-

tional (P only, ki = 0) control algorithm. When deployed in a rabbit, the controller had

the underdamped response typical of untuned P control for a second-order process, with

a steady-state error due to sensor lag (Figure 2.6c, top ). Simulating the same control

algorithm with our system model yielded quantitatively similar control behavior (Figure

2.6c, bottom), validating the model’s usefulness for describing CLINIC performance.
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(a) Feedback loop model (b) Pharmacokinetic simulation

(c) Controller simulation perfor-
mance

(d) Result of PI controller tuning

Figure 2.6: Simulation and tuning of CLINIC feedback controller

Using our system model, we tested the performance of different PI control settings

to determine an optimal controller design for CLINIC use in vivo. Notably, simulations

showed that controller performance was sufficient without a derivative (D) term (used in

the more common PID algorithm), which would have made the system more susceptible

to high-frequency noise in the RTB measurements. We used our system model and

controller tuning software to determine an optimal set of kp and ki parameters that

balanced controller response time and stability (Figure 2.6d). We then utilized these

gain parameters in CLINIC’s tuned PI controller.
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2.3.4 Closed-loop control of DOX levels in live rabbits and rats

Using this algorithm, CLINIC achieved stable, prolonged feedback control of circu-

lating levels of DOX in live, conscious New Zealand White rabbits (Figure 2.7). CLINIC

responded rapidly to changes in set-point (Figure 2.7, top), reaching 95% of the set-point

concentration in 7.52.9 minutes from the start of controlled infusion, and remained within

20% of the set-point throughout the experiment (details in supplementary online text).

We note that these set-points, representative of typical therapeutic concentrations for

humans, are maintained for durations similar to those used during clinical infusions [43].

We also used CLINIC to maintain other dosing profiles as a function of time, including

concentration ramp-ups and ramp-downs and arbitrary combinations of ramps and holds

(Figure 2.7, middle and bottom, respectively). In all instances, CLINIC maintained

stable feedback control with minimal oscillation.

To demonstrate our platform’s capacity for robust closed-loop feedback control across

species, we used CLINIC in live, anesthetized Sprague-Dawley rats. We chose this species

because rats have DOX plasma clearance times markedly different from the rabbit model

but nearly identical to those of humans [43,46–48]. We obtained optimal P and I control

parameters for infusion in rats by adapting our in silico model to account for this cross-

species difference in pharmacokinetics. By adjusting only the P and I control parameters

without further modifications to the CLINIC system, we achieved feedback performance

in rats that was essentially equivalent to that demonstrated in rabbits, reaching 95% of

the concentration set-point within 8.6 min (Figure 2.8). Of note, DOX plasma levels

returned to an elevated baseline concentration at the end of infusion because DOX has

considerably longer α- and β-phase circulation half-lives in rats.
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Figure 2.7: Closed-loop feedback control of doxorubicin. CLINIC accurately maintains
in vivo drug concentrations (blue dots) at the desired set point (orange line) with a
response time of 5-10 minutes in live, conscious New Zealand White rabbits. A variety
of concentration profiles can be realized continuously as a function of time. Start of
control indicated by orange arrows.

20



Closed-Loop Control of Circulating Drug Concentrations in Live Animals Chapter 2

Figure 2.8: Closed-loop feedback control of doxorubicin. CLINIC accurately maintains
in vivo drug concentrations (blue dots) at the desired set point (orange line) with a
response time of 5-10 minutes in live, anesthetized Sprague-Dawley rats. A variety
of concentration profiles can be realized continuously as a function of time. Start of
control indicated by orange arrows.
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2.3.5 Compensating for animal-to-animal pharmacokinetic vari-

ability with CLINIC

We next applied CLINIC to the widespread clinical problem of pharmacokinetic vari-

ability in chemotherapy dosing, both across individuals and in the same individual over

time [2, 7]. First, we employed CLINIC to perform real-time dose compensation for in-

dividual differences in DOX pharmacokinetics across multiple rabbits. To quantify the

extent of pharmacokinetic variability, we administered three different rabbits with an

identical BSA-adjusted dose of DOX. We performed a constant one-hour infusion regi-

men at 11.5 mg/m2/hr, equivalent to typical human therapeutic dosing [35]. Real-time

biosensor measurements revealed pronounced variability in plasma levels of DOX across

individual rabbits during this “open-loop” dosing, even though the dosing regimens were

normalized by BSA —the current clinical standard (Figure 2.9A). Only Rabbit 3 achieved

the desired plasma level and stayed in the target concentration range for 80% of the in-

fusion period (white windows in Figure 2.9A). The steady-state values of plasma DOX

levels in Rabbits 1 and 2 were either below or above the desired level, staying within

the target concentration range for only 31% and 12% of the infusion period, respectively

(Figure 2.9A). The biosensor was independently calibrated immediately prior to each in-

fusion, ensuring that differences in measured plasma levels were due to pharmacokinetics

and not sensor variability.

In contrast to open-loop dosing, CLINIC automatically and dynamically adjusted

infusion rates to achieve the desired DOX concentration (Figure 2.9B). Under closed-

loop infusion control, Rabbits 1 and 2 remained within the target concentration range

81% and 96% of the time, respectively (Figure 2.9C), a significant improvement compared

to open-loop BSA-adjusted dosing. Importantly, the same P and I control parameters

were used for all animals, demonstrating that CLINIC can optimize therapeutic dosing
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Figure 2.9: CLINIC maintains stable plasma drug levels in animals with varying
pharmacokinetics. (A) Pharmacokinetic variability results in distinctly different DOX
plasma concentrations in three different animals over the course of infusion; only Rab-
bit 3 remains in the target range (white band) for the majority of the infusion period
(demarcated by arrows). (B) CLINIC maintains the desired DOX plasma concentra-
tion set-point (orange dashed line) in both Rabbits 1 and 2. (C) Closed-loop feedback
control results in a far greater proportion of time spent in the target concentration
range, independent of pharmacokinetic variability.

without a priori knowledge of an individual’s pharmacokinetics.

2.3.6 Correcting for acute drug-drug interactions with CLINIC

Finally, we used CLINIC to automatically optimize dosing during acute drug-drug

interactions, which can cause rapid, unpredictable, and dangerous pharmacokinetic dis-

turbances [7]. Specifically, we co-administered the widely-used chemotherapy drug cis-

platin (CDDP) to rabbits prior to DOX infusion [49], leading to a drug interaction

known to significantly extend DOX’s plasma half-life and increase its peak plasma con-

centration, presumably due to CDDP-induced changes in liver and kidney function [50].
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This interaction was clearly evident when we compared the plasma concentration pro-

file of DOX during DOX-only infusion (Figure 2.10A, left) to that of DOX during

DOX+CDDP co-administration in the same rabbit one week later (Figure 2.10A, cen-

ter). Co-administration led to significantly higher plasma levels of DOX over the course

of infusion, even though an identical BSA-adjusted DOX dose was given in both cases.

This open-loop dosing resulted in only 34% time in the target concentration range dur-

ing co-administration, dramatically worse than the 95% for DOX infusion alone (Figure

2.10A, right). In contrast, closed-loop dosing with CLINIC automatically maintained

DOX at precisely the desired concentration in the presence of CDDP (Figure 2.10B),

increasing percent time in the target concentration range to 97% during DOX+CDDP

co-administration.

2.3.7 Discussion and Conclusion

In this work, we have demonstrated CLINIC’s potential to enable precise therapies

through closed-loop control of drug concentrations in vivo. As a proof-of-concept, we di-

rectly controlled the circulating levels of the chemotherapeutic agent DOX in live rabbits

and rats, with the ability to reach and maintain a broad range of concentration set-points

in the bloodstream as a function of time. Our system automatically adapts drug delivery

to individual animals’ physiology, compensating in real-time for pharmacokinetic vari-

ability and drug-drug interactions to enable optimal therapeutic dosing. We have shown

that CLINIC can be readily adapted to regulate DOX levels in two mammalian species

with dramatically different physiological and pharmacokinetic characteristics. Based on

this, we believe that CLINIC could be successfully adapted to control DOX levels in hu-

mans with minimal changes to the system. Moreover, because CLINIC uses a real-time

biosensor based on aptamers that can readily be exchanged to measure other molecular
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Figure 2.10: CLINIC automatically corrects for acute drug-drug interactions. (A)
DOX pharmacokinetics in rabbits (left) is markedly altered by co-administration of
cisplatin (CDDP; middle), resulting in plasma concentrations that exceed the target
range (right). (B) CLINIC automatically corrects for this effect and achieves a stable
set-point (middle), maintaining the target concentration for the entire duration of
infusion (right). Arrows indicate start and end of DOX infusion.

targets [26], it offers a generalizable platform for closed-loop control of a broad range of

drugs in living subjects.

Although this work demonstrates CLINIC’s therapeutic potential, there are a number

of limitations to the results of this study. We did not perform therapeutic endpoint studies

to determine whether our dosing approach improves efficacy or diminishes toxicity in an

animal model over the course of long-term treatment. However, because the efficacy

and toxicity of DOX are known to be correlated with plasma drug levels, such studies

are a logical next step. We also note that our system only regulates levels of unbound
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drug in the circulatory compartment, which, while clinically relevant for DOX and many

other drugs, neglects the fact that there is often a complex pharmacokinetic relationship

between plasma levels and effect-site concentration (and therefore efficacy) for other

drugs.

There are several areas of improvement possible for the CLINIC platform. First,

CLINIC can actively increase circulating DOX levels by accelerating infusion, but con-

centration decreases are dependent on the animal’s physiological drug-clearance rate.

However, for drugs with injectable reversal agents [51, 52], our system could readily be

adapted to perform active reduction of effective drug concentrations. Second, CLINIC is

presently designed to control infusion based on measurements of unbound drug molecules

in the blood. However, for many drugs, levels of metabolites and protein-bound drug

are also important indicators of pharmacological activity. Future versions of our sys-

tem could integrate multiple aptamer probes to control infusion based on simultaneous

measurement of not only free drug but also its metabolites and drug-protein complexes.

Third, we demonstrated stable drug control over multiple-hour time periods, suitable for

acute clinical applications. Previously, similar aptamer probes have been shown to be

chemically stable for several weeks [53]. Based on these results, we anticipate that control

with CLINIC could be extended over much longer time frames to enable treatment of

chronic conditions.

2.4 Conclusion

Our results controlling DOX suggest that CLINIC would be particularly useful for

drugs with narrow therapeutic windows, a major class of therapeutics with unresolved

challenges for dosing due to patient-to-patient variability [5]. Another potentially power-

ful application of CLINIC is for dosing drugs with fast pharmacokinetics and pharmaco-
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dynamics (e.g., propofol [54]), especially in situations where patient physiology changes

rapidly and unpredictably (e.g., during surgery or trauma care). In its present con-

figuration, CLINIC is an ex vivo system that would be well-suited for use in clinical

settings, but future iterations of our platform could incorporate implantable sensors [55]

and infusion devices [56] to enable continuous, minimally-invasive dose regulation for

chronic conditions. We envision that future versions of CLINIC could eventually be

used to control drug delivery not only based on measurement of in vivo drug levels, but

also by continuously monitoring the body’s response to drug in the form of circulating

biomarkers. This ability would be a first step toward direct closed-loop regulation of

physiological processes, potentially making CLINIC a powerful tool for next-generation

precision medicine.

2.5 Experimental Methods

2.5.1 Study design

The objectives of our study were twofold. First, we sought to demonstrate the proof-

of-concept capability to directly control circulating concentrations of therapeutic agents

in live New Zealand White rabbits and live Sprague-Dawley rats, using DOX as a model.

Second, we aimed to use this closed-loop control to adjust DOX administration in rabbits

to automatically compensate for pharmacokinetic variability, both from animal-to-animal

and within the same animal due to drug-drug interactions. To evaluate controller perfor-

mance, DOX concentrations were measured directly in the animals’ bloodstream using

our real-time biosensor. To evaluate pharmacokinetic variability, we measured the cir-

culating concentration of DOX in multiple rabbits undergoing identical BSA-adjusted

infusions of DOX, as well as in rabbits undergoing identical infusions of DOX before and
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after CDDP administration (details in Results). For pharmacokinetic variability exper-

iments, rabbits were used instead of rats because drug monitoring and control can be

performed as a non-terminal survival procedure in rabbits, enabling comparison across

multiple experiments in the same animal. Individual animals were selected randomly for

each experiment. Blinding was not applicable to this study. Replication conditions for

each experiment are defined and described in Results.

2.5.2 Sensor fabrication

Sensor fabrication (Figure 2.11) is described in detail in [26]. Briefly, two Borofloat

glass wafers (University Wafer Inc.), each 10 cm in diameter and 700 µm thick, were

cleaned by sequential immersion in acetone, isopropanol and deionized water. Gold

working electrodes and platinum counter and reference electrodes were photolithograph-

ically patterned onto the top wafer and electron beamevaporated (VES 2550, Temescal)

to a thickness of 300 nm on 20-nm titanium adhesion layers. Subsequently, a CNC mill

(Flashcut CNC) with 1.1-mm diamond bit (Triple Ripple, Abrasive Technology) was used

to drill fluidic vias (two inlets, one outlet) in the top wafer. The top and bottom wafers

were diced (DISCO) into device pieces with dimensions of 58 mm 11 mm and 53 mm 11

mm, respectively. The 500-µm-wide top (buffer) and bottom (blood) flow channels were

both cut from a 250-µm-thick polydimethylsiloxane (PDMS) sheet (BISCO Silicones,

Rogers Corp.) using a laser cutter (Speedy 100, Trotec).

The blood channel was first bonded to the diced bottom glass substrate via 10-s

corona-ozone treatment (BD-20AC, Electro-Technic Products Inc.). The buffer channel

was then bonded to the blood channel. To prevent clot formation in the sensor chips

during exposure to whole blood, a commercial heparin surface-coating kit [57, 58] (Har-

vard Apparatus) was used to treat the inner surface of the assembled blood and buffer
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Figure 2.11: Exploded diagram of MEDIC chip components and assembly.
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channels as well as the bottom glass substrate. Meanwhile, electrochemical cleaning of

the gold working electrodes was performed on the top electrode glass substrate following

the protocol in [26]. The heparin-treated bottom glass substrate-blood channel-buffer

channel assembly and cleaned top electrode glass substrate were both ozone treated in a

UV ozone cleaner (Novascan) for 10 minutes and subsequently bonded. Alignment was

performed under a standard inverted microscope via an xyzq stage (Newport Corp.) and

vacuum chuck. Fluidic port connectors were glued onto the device with 5-min epoxy

(ITW Devcon), readying the chip for probe immobilization.

2.5.3 Aptamer probe preparation and immobilization

The DOX-specific aptamer probe was synthesized by Biosearch Technologies with the

following sequence: 5’-(HS-(CH2)6)3-ACCATCTGTGTAAGGGGTAAGGGGTGGT-MB-

3’. Design rationale for this probe is described in detail in [26]. Notably, we replaced

the mono-thiol linker used in [26] with a more robust trithiol anchor, extending the sen-

sor lifetime and thermal stability compared to mono-thiol linkers alone [53]. The probe

was tri-thiolated at the 5’ end to facilitate self-assembly on the gold working electrodes,

and conjugated with a methylene blue (MB) redox label at the 3’ end to enable target

binding-induced charge transfer modulation. Probe preparation and immobilization were

otherwise identical to [26].

2.5.4 Fluidic instrumentation

All flow to and from CLINIC was controlled via syringe pumps (PhD 2000, Harvard

Apparatus). The sensor chip input port was connected to a 24-gauge intravenous catheter

(Beckton Dickinson) for animal studies via a 15-cm length of 0.20-mm inner diameter (ID)

fluorinated ethylene propylene (FEP) tubing (IDEX). A 10-ml syringe loaded with 1 SSC
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supplemented with 100 U/ml heparin was placed in a pump and connected to the buffer

port on the sensor chip via a 30-cm length of Tygon tubing (Saint-Gobain Performance

Plastics), with 1.78-mm outer diameter (OD) and 1.02-mm ID. The sensor chip output

port was connected to a primed 20-ml “waste” syringe placed in a second pump via 1.65-

mm OD and 0.762-mm ID silicone tubing (NewAge Industries). To monitor flow rates in

real-time, we used a flow meter (Mitos Flow Rate Sensor, Dolomite Microfluidics) in-line

between the output port and waste syringe pump. The buffer layer was established by

engaging the buffer pump at 0.331 ml/hour. Simultaneously, sample was continuously

drawn into the device by engaging the waste pump at 1.654 ml/hour.

2.5.5 Voltammetry

Electrochemical measurements were conducted with a PalmSens EmStat2 USB-connected

potentiostat (Palm Instruments BV). Sensor chips were connected to the potentiostat via

an 8-pin card edge connector. Square-wave voltammetry (SWV) scans were performed

at interrogation frequencies of 10 Hz and 100 Hz, with a square-wave pulse amplitude

of 30 mV and potential steps of 10 and 1 mV, respectively, resulting in an average scan

period of 5.5 s. A potential range of 160 mV to -240 mV (vs. Pt) was used to capture

the full redox current peak of MB. In cases where reference potential drift occurred, the

scan range was adjusted until the MB redox peak occurred in the center of the range.

2.5.6 Sensor characterization and calibration

To convert electrochemical current measurements to concentration values, we ob-

tained a dose-response curve by exposing the sensor chip to DOX (LC Laboratories)

concentrations ranging from 250 nM to 8 µM in rabbit whole blood flowing at the rate

described above. At each concentration, the sensor signal was permitted to equilibrate
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and the subsequent 50 points were averaged as the reported values. A dose-response

curve was obtained by fitting signal gain to a Langmuir isotherm, resulting in an appar-

ent dissociation constant (Kd) of 1.682± 0.030 µM (mean±SD).

2.5.7 Real-time analysis and control program

To facilitate real-time measurement, dose calculation, and pump control, a custom

analysis and control program was written in MATLAB (Mathworks). The program per-

forms three key functions: (1) retrieving and converting raw electrochemical data from

the potentiostat into concentration measurements, (2) calculating the necessary infusion

rate —based on these measurements and the user-input concentration set-point —using

a discrete implementation of the parallel PI control algorithm, and (3) communicating

with the infusion pump to adjust the drug infusion rate. In addition, the program pro-

vides a real-time graphical plotting interface enabling the user to observe concentration

measurements and controller output.

2.5.8 Control system modeling, simulation & tuning

The dynamical systems simulation software Simulink (Mathworks) was used to model

the feedback loop comprising the animal pharmacokinetics, real-time biosensor, and PI

controller, as well as all relevant transport and signal processing delays in the system 2.12.

Pharmacokinetics of DOX in rabbits and rats was modeled as a biphasic concentration

decay with decay constants α and β and respective weighting constants Wα and Wβ:

C(t)

C0

= Wα exp(−αt) +Wβ exp(−βt) (2.2)

where C(t) is drug concentration in the bloodstream at time t and C0 is the initial

concentration. A constant blood dilution volume was incorporated to account for dilution
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Figure 2.12: Simulink model used for controller tuning.

of drug in the bloodstream. To model the real-time biosensor, we incorporated terms to

account for the fluidic transport delay from the animal’s bloodstream to the sensor, as

well as the sensor’s fixed sampling rate and its temporal response to changes in DOX

concentration (fitted from sensor step-response data).

With the full feedback loop described in the model, we used Simulink’s built-in PID

tuning functionality to determine P and I parameters that maximized response time

(rapid rise time) and minimized both overshoot and oscillation about the set-point. To

account for uncertainties in the model, it was necessary to determine a correction factor

so that these in silico tuned parameters would result in similar control performance when

implemented in vivo. To do this, we performed in vivo feedback control using specific

sets of “training” control parameters. We then manually adjusted the control parameters

in the Simulink model until we found a set of P and I parameters that resulted in in silico

performance that was quantitatively similar to the in vivo training data. We compared

the in vivo control parameters to the in silico control parameters that produced the same

observed performance, and subsequently calculated a correction factor. The final control
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algorithm was implemented in a discrete form, with a fixed sampling time of 5 seconds.

2.5.9 Live animal studies

Live animal studies using New Zealand White rabbits were performed according to

our protocol titled “In vivo small molecule detection (rabbits),” approved by the Univer-

sity of California, Santa Barbara (UCSB) Institutional Animal Care and Use Committee

(IACUC) and assigned protocol number 859. All rabbits used in this work were male

(n=14) and purchased from Charles River Laboratories. Rabbits were acclimated to the

facility for at least one week after arrival and observed for abnormal health conditions

before experiments were performed. Rabbits were treated with aspirin (CVS) (10 mg/kg

P.O. cumulative) and clopidogrel (Henry Schein) (10 mg/kg P.O. cumulative) over the

four days leading up to and including the day of the experiment to prevent formation of

clots in the catheter, tubing, and chip during blood draws [59]. Immediately prior to the

experiment, rabbits were partially sedated with acepromazine (Henry Schein) (1 mg/kg

I.M.). Rabbits were placed in rabbit restrainers to prevent them from damaging or dis-

turbing their catheters. To facilitate catheter access to the marginal ear veins, the rabbits’

ears were shaved and a topical anesthetic (EMLA lidocaine/prilocaine cream, MedVet)

was applied 15 minutes prior to catheterization. Cannulation was performed in the

marginal vein of both ears (Insyte Autoguard Shielded IV Catheter, Becton-Dickinson).

To prevent clot formation in the catheters, tubing, and sensor chip, an initial dose of

300 IU/kg heparin (SavMart) was injected via each catheter, followed by hourly doses

of 150 IU/kg administered via the right ear vein catheter. Following catheterization and

heparin administration, 2.5 mL of blood was drawn for sensor calibration. After calibra-

tion, capillary tubing (0.008” ID FEP tubing, IDEX) was inserted into the left ear vein

catheter and blood was drawn continuously from the catheter through the sensor chip
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at a rate of 1.323 ml/hr. Bolus injections, continuous infusions, and controlled infusions

of DOX (LC Laboratories) and CDDP (Western Medical Supply) were all administered

via the right ear vein catheter. Continuous and controlled infusions were injected by

a syringe pump from a 5 ml syringe connected to the catheter via a 30-cm length of

polytetrafluoroethylene (PTFE) tubing (Cole-Parmer), with 0.76-mm OD and 0.30-mm

ID. The catheters for infusion and measurement were placed such that injected drug

passed through the heart and into circulation before being withdrawn for measurement.

At the conclusion of experiments, rabbits were euthanized via intravenous Euthasol (Vir-

bac Animal Health) injection if they received CDDP during the experiment and/or their

cumulative dose of DOX over all experiments exceeded 1 mg/kg; otherwise, they were

returned to their cages for recovery and use in subsequent experiments.

Live animal studies using Sprague-Dawley rats were performed under our “In vivo

small molecule detection” protocol, similarly approved by the UCSB IACUC and assigned

protocol number 824. All rats used in this work were male (n=6) and purchased from

Charles River Laboratories. The rat surgical setup protocol, including anesthetization,

catheter placement, heparin administration, DOX bolus administration, and euthanasia,

is identical to the protocol described in [26], with the addition that controlled infusion of

DOX was administered into the right jugular vein catheter using the same setup described

above for rabbits.

Controlled infusions of DOX for rats and rabbits were given at a concentration of 2

mM. For continuous open-loop infusion experiments in rabbits, DOX concentration and

volume infusion rate were selected such that all rabbits would receive the same BSA-

adjusted dose at an infusion rate of 11.5 mg/m2/hr for exactly one hour. Body surface
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area (BSA, m2) for dose normalization was calculated according to the equation

BSA =
9.9×m2/3

10, 000
(2.3)

as described in [60], where m is the animal’s mass in grams. CDDP, when administered,

was given to a total dose of 4 mg/kg as a single bolus injection at a concentration of 1

mg/ml, 2-4 hours prior to DOX infusion.

2.5.10 Step-response rise time calculation and infusion analysis

To quantify controller performance in vivo, we calculated the time required for the

controller to reach 95% of its set-point step response, with starting time defined as when

feedback control was activated. For these calculations, sensor data was smoothed to

minimize the impact of high-frequency noise. Step response profiles from four separate

rabbit experiments were analyzed to calculate mean and standard deviation.

In each rabbit, the plasma concentration profile was characterized by a rapid rise

(drug distribution phase, 1-5 minutes after start of infusion), a subsequent slow linear

increase in concentration over the remainder of the infusion time (quasi-steady state,

qSS, 6-60 minutes after start of infusion), and a rapid decrease to a slightly elevated

baseline concentration after cessation of infusion. We defined the target concentration

range as a window whose center is the average concentration during the qSS phase across

all three animals and whose width is the average standard deviation of the qSS-phase

concentration in a single animal. We calculated this target range to be 0.5 µM ± 0.1

µM. Percent time in target range was defined as the percentage of the qSS phase during

which the measured in vivo concentration was within the target concentration range.
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Chapter 3

Shape-based Separation of Synthetic

Microparticles with a

Fluorescence-Activated Cell Sorter

3.1 Introduction

1 Synthetic microparticles are a major class of “designer” materials [61], with applica-

tions ranging from drug delivery [62–64] and biomedical imaging [65] to directed assembly

of photonic colloids [66] and other functional materials [67–69]. Successful synthesis of

well-defined colloidal materials for these applications requires tight control over not only

their chemical properties, but also their physical attributes such as microparticle size and

shape [63] As a result, a large body of work related to controlled polymer microparticle

synthesis has been developed over the past several decades. Complex schemes relying on

droplet microfluidics [70–73], flow lithographic methods [71, 74, 75], and electrohydrody-

1At the date of compiling this thesis, March 17, 2016, this work is still in progress. The contents are
thus presented as preliminary results.
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namic inkjet printing [76] have been developed, all boasting various degrees of control over

particle shape, size, and composition. However, such approaches are typically difficult

to develop and operate, requiring specialized devices for any desired particle, prevent-

ing their adoption on a large scale. In addition, these approaches are often severely

limited by their particle generation throughput. On the other end of the synthesis spec-

trum are facile and scalable methods such as emulsification in bulk mixtures undergoing

mechanical agitation or sonication [61] or precipitation reactions [77]; however, these

approaches typically result in heterogeneous, polydisperse colloidal mixtures [61, 67, 78].

Aggregation-based methods, wherein clusters of monodisperse “building blocks” can be

formed through templated [67] or surface-tension driven [79] self-assembly, can also be

used to generate clusters of specific size and shape, but similarly require downstream

purification.

The heterogeneity resulting from scalable, facile synthesis approaches can be overcome

with downstream fractionation and sorting, enabling purified populations of microparti-

cles with specific desired morphologies to be obtained. A wide range of techniques for

separating particles based on their physical characteristics have been reported [80]. The

majority of these rely on intrinsic differences in the particles’ density, volume, or hydrody-

namic radius to achieve separation. Density gradient centrifugation is the most common

example of such an approach. Isopycnic centrifugation can be used to enrich particles

based on their density, but is incapable of separating particles based on shape. Rate-

zonal centrifugation can separate particles based on mass differences, but can only achieve

shape-based separation for radically differing shapes (e.g., needles vs. spheres), with poor

resolving power and purity [81, 82]. More sophisticated electrophoretic techniques have

also been used to separate nanoparticles based on shape (hydrodynamic radius) [83],

but require coating the particles with charged functional groups. Specialized microfluidic

tools have also been developed to sort particles based on their hydrodynamic or electroki-
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netic properties. Deterministic lateral displacement (DLD) can separate particles based

on volume and shape (exploiting the fact that particles with different shape have different

hydrodynamic radii), but are physically limited to very low flow rates and consequently

have very low particle throughput [84, 85]. Other techniques utilizing electrokinetics are

similarly throughput- and purity-limited [86]. Faster systems using inertial microfluidics

have been shown to passively separate isovolumetric ellipsoid particles based on aspect

ratio [87] at comparatively high fluid volume throughput (40-80 µl/min, demonstrated

with 1 × 106 particles/ml), but with limited separation purity and separation resolu-

tion. More troublingly, the use of such microfluidic systems defeats the purpose of using

facile and scalable emulsion-based synthesis techniques, because they require specialized

microfluidic devices that are difficult to design and operate, they necessitate extensive

tuning and even redesign depending on the target particle system to be sorted, and have

poor scalability. There is thus a pressing need for a separation strategy that can achieve

high sorting sensitivity and purity, while preserving the scalability and throughput of

facile emulsion-based synthesis.

Toward this end, we report the first shape-based sorting of synthetic microparticles

using elastic optical scattering measurements performed in a commercial fluorescence-

activated cell sorter (FACS). Optical scattering is a well-characterized method for non-

destructive characterization of synthetic microparticle morphology [88–90], but has never

been used for active sorting or enrichment of microparticles. FACS is used heavily in the

fields of molecular and cell biology2 to sort single particles (typically cells) based on opti-

cal characteristics such as scattering or fluorescence [91]. Commercial FACS instruments

can typically handle objects ranging from ∼500 nm to > 100 µm in size, and are ca-

pable of particle throughput in excess of 10,000 particles/s [91], with newer instruments

2For reference, the number of papers in the NCBI Pubmed database containing the phrases
“flourescence-activated cell sorting” or “flow cytometer” has exceeded 10,000 every year from 2010 to
2015.
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Figure 3.1: FACS scheme

exceeding 50,000 particles/s. Here we use FACS to analyze and sort mixtures of shaped

polystyrene microparticles using single-particle elastic optical scattering measurements.

With no special sample preparation or labeling required, we achieve high separation

purity, throughput, and yield for a variety of particle morphologies.

3.2 Background and Theoretical Framework

3.2.1 FACS and Flow Cytometry

FACS is a flow-based single-particle analysis and sorting tool. There are three major

elements to any FACS system: fluidic handling, optical interrogation, and particle sort-

ing. A schematic of a FACS instrument is shown in Figure 3.1. A suspension containing

cells or particles to be analyzed is flowed into the instrument. The sample stream is
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coaxially injected through a flow nozzle into a saline buffer sheath flow that serves to

hydrodynamically focus particles to a well-defined flow region in the core of the sheath

flow. This hydrodynamic focusing process also ensures that particles flow through the

instrument in single-file, enabling single particles to be interrogated one at a time and

precisely manipulated downstream. The focused particles are subsequently illuminated

by one or more lasers for fluorescence excitation as well as elastic scattering measure-

ments. Scattered light is collected for measurement in two directions: at small (0±5 deg)

angular deviations from the laser’s direction of incidence (“forward scatter” or FSC) as

well as perpendicular to the incident light (90±5 deg) (“side scatter” or SSC). Scattered

light is collected and focused to detectors (FSC light is measured with a photodiode, while

SSC and fluorescence are measured with PMTs). After optical interrogation, particles

pass through a droplet nozzle that is excited at ultrasonic frequencies by a piezoelectric

vibrator. Just as these droplets are broken off the main sample stream into air, a charging

collar applies a net negative or positive charge (or no charge) to each droplet depending

on the desired deflection. The ejected droplets then pass through a fixed electric field

between two charged deflection plates; the direction and amplitude of their deflection is

controlled by the polarity and amount of charge they receive from the charging collar

at the droplet nozzle. Finally, the droplets are collected in tubes placed at appropriate

angles beneath the deflection plates to collect the deflected droplets.

Analysis in FACS instruments is performed on the basis of the various scattering

and fluorescence measurements that have been collected for each particle. To facili-

tate population-level visualization and sorting, FACS data are typically presented as 1-

dimensional histograms (for examining a single measurement parameter for a collection

of particles) or as correlated 2-dimensional scatter plots (for examining two measure-

ment parameters simultaneously), where each point represents a single particle. Sorting

is achieved by defining “gates,” one-dimensional intervals or two-dimensional regions of
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interest on these histograms or scatter plots. Detected particles, or “events,” can be

deflected to specific collection tubes based on whether or not they reside in a given gate.

By performing Boolean gating, wherein gates are combined or assembled into hierarchies,

particles can be classified and sorted based on more than just two parameters.

3.2.2 Elastic optical scattering in FACS

While FACS is most often thought of as a tool for measuring fluorescence (i.e., inelas-

tic optical scattering), it is also used to measure the elastic optical scattering properties of

cells and microparticles. Fundamentally, scattering describes the interaction of incident

light with dipoles in matter; elastic optical scattering involves light-matter interactions in

which the energy (wavelength) of the incident and scattered light is the same. Scattering

behavior —described by the angular intensity distribution and polarization of scattered

light relative to the incident light —is strongly dependent on the wavelength and polar-

ization of the incident light, as well as the intrinsic (refractive index) and extrinsic (size,

shape) properties of the scatterer itself. In flow cytometry, the intensity of scattered light

at small angles relative to the direction of incidence (forward scatter) is often used to

gain insight into the size and refractive index of the interrogated object, while large-angle

scattering (side scattering) provides additional information about the object’s granularity

or surface roughness.

Elastic scattering in flow cytometers has been rigorously characterized, both exper-

imentally and theoretically using electromagnetic scattering theory. For instance, for

polystyrene spheres, the strong dependence of FSC and SSC amplitude on particle size

can be predicted using Mie theory (described below) [92]. Interestingly, the specific

optical geometry of the FACS instrument has an important impact on scattering mea-

surements. For example, the angular width of the forward scatter obscuration bar, which
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blocks unscattered incident illumination at ∼ 0◦ from swamping the FSC detector, was

found to affect the quantitative relationship between particle size and FSC intensity [92].

The role of incident beam geometry has also been explored [93]. The scattering proper-

ties of biological particles across a wide range of sizes have been rigorously characterized

using FACS, ranging from cells on the order of 10s of microns [94–96] to sub-micron

protein aggregates [97] and vesicles [98–100]. A good review of single-cell scattering

analysis, including FACS and other methods, is provided by Kinnunen et al. [101]. Of

note, the same fundamental phenomenon of elastic optical scattering is frequently used

in synthetic particle characterization, whether in ensemble approaches such as dynamic

light scattering or in single particle analyzers such as aerosol monitors [88–90].

In addition to using FACS to measure the amplitude of elastically scattered light,

useful information about particle morphology may also be obtained by analyzing the

temporal shape of the scattering signal pulse at the photodetector [102], which is gener-

ated as the particle passes through the interrogation beam. Sharpless et al. found that

the pulse width of both the fluorescence signal [103] and the FSC signal [104] for spherical

synthetic microparticles are strongly correlated with particle size. Leary and coworkers

found a similar relationship between FSC pulse width and microsphere diameter [105].

Interestingly, the relationship between size and pulse shape differs significantly for FSC

in comparison to SSC [102]. Pulse-width analysis has since been used extensively for size

discrimination for a variety of biological targets such as endosomes [106, 107], immune

cells [108], and algae [109].

Based on the fact that scattering can be measured at multiple angles (FSC and SSC)

and analyzed using multiple parameters (scattering amplitude and pulse width), combi-

natorial analysis can enable more effective particle discrimination than the use of single

parameters alone [110]. Terstappen et al. showed that by using various combinations of

scattering parameters, the four most clinically-relevant distinct subtypes of white blood
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cells can be separated from each other out of a white blood cell mixture [111,112]. Recent

work by Tzur et al. found that gates based on combinations of scattering parameters

(such as scattering amplitude and pulse width) are more effective for size-based discrim-

ination than either parameter alone, for a wide variety of cell types [113].

3.2.3 Optical scattering for analysis and sorting of nonspherical

particles

As described above, the relationship between scattering measurements and particle

size has been extensively characterized; however, there is comparably little research re-

garding the use of scattering in FACS to characterize particle shape independent of size,

even though the scattering behavior of both nonspherical cells [114] and nonspherical syn-

thetic microparticles [115] is known to be orientation-depedent. In a patent application

regarding a FACS-basd pulse-width analyzer, Leary et al. noted that pulse width mea-

surements vary for identical nonspherical particles depending on their orientation when

entering the interrogation beam [116]. The most common use of FACS for shape-based

particle discrimination is blood typing, where disk-shaped erythrocytes can be separated

from more spherical leukocytes. Early work by Salzman and coworkers showed that the

optical scattering of disk-shaped red-blood cells takes on a unique distribution based on

the range of potential orientations that the cells can take when being interrogated [117].

3.2.4 Simulating elastic optical scattering

While elastic optical scattering can be fully described across all length scales by solv-

ing Maxwell’s equations, this is analytically and computationally impractical for all but

the simplest scatterer geometries. It is therefore useful to consider a number of approxi-

mations that apply in limiting size regimes described by the characteristic scattering size
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parameter x = 2πa
λ

, where a is the effective radius of the scatterer and λ is the wavelength

of the incident radiation. For particles significantly smaller than the incident wavelength

(Rayleigh scattering, where x� 1), the particle effectively acts as a single dipole, scatter-

ing light equally in all directions independent of shape but dependent on size, refractive

index, and incident wavelength. For scatterers much larger than the illuminating wave-

length (x� 1), the classical macroscopic descriptions provided by geometric optics, such

as reflection and refraction, are sufficiently descriptive. For microparticle scattering, we

are interested in an intermediate regime where the scatterer has a size similar to the

incident wavelength; unfortunately, calculating such scattering behavior is more difficult

than the large and small extremes described above due to the lack of simple approxima-

tions. Nevertheless, a number of approaches to obtaining approximate or exact solutions

to Maxwell’s equations may be used for particles in this size range. Mie theory in partic-

ular is a powerful tool, providing an exact solution to Maxwell’s equations for an incident

electromagnetic plane wave interacting with homogenous spherical scatterers [118].

While electromagnetic scattering of homogeneous spheres is a solved (and computa-

tionally tractable) problem using Mie theory, scattering of nonspherical particles is more

difficult to simulate. Geometric approximations based on Mie theory have been explored

for prolate and oblate spheroids [119]. Alternatively, the T-matrix method provides an

exact solution for nonspherical scatterers [120]. T-matrix calculations have been used to

predict scattering for spheroids [121], ellipsoids [122], and cylinders [123]. Spheroid-based

simulations have been found to predict experimental scattering behavior of particles of

arbitrary shape [124].
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3.3 Results and Discussion

3.3.1 Optical scattering is dependent on particle shape, size,

and orientation

We characterized microparticles in FACS using optical scattering measurements, cap-

tured both in the direction of incidence (FSC) and orthogonal to the direction of incidence

(SSC). The intensity of scattered light in these directions is converted to a voltage by

either a photodiode (for FSC) or PMT (for SSC), giving a characteristic voltage pulse

for each particle as it passes through the interrogation beam. The FACS instrument dig-

itizes this pulse and records the peak height (H) as well as the integrated pulse area (A).

The pulse width (W) is then calculated and reported as the ratio of peak area to height.

Since pulse width is calculated from the other two parameters, there are effectively only

two “independent” pulse shape parameters; the pulse shape information provided by the

instrument is fully contained in any pair of the three available parameters H, A, and

W. For simplicity, we use pulse height and pulse width only. Therefore, since there are

two scattering detectors, each particle’s measurement has four independent parameters:

pulse height and width at the forward detector (FSC-H and FSC-W), and pulse height

and width at the orthogonal detector (SSC-H and SSC-W). Pulse height is closely related

to the amplitude of the scattered light, while pulse width is a more complex function of

both the particle’s residence time in the interrogation beam as well as the shape of the

pulse during interrogation.

We measured FSC and SSC for a variety of polymer microparticles with different

morphologies. As a model system, we used microparticles formed by stretching an initial

suspension of monodisperse polystyrene microspheres (6 µm diameter) in the manner de-

scribed by Champion, et al. [62]. Specifically, we examined spheres and ellipsoids (aspect
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(a) SEM images of stretched polystyrene ellipsoids with aspect
ratios of (left to right) 1.0, 2.0, 3.0, and 4.5.

(b) Scattering profiles for microparticles with varying aspect ratios.

Figure 3.2: Shape dependence of scattering profiles for ellipsoids
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Figure 3.3: Scattering profiles of AR 4.5 ellipsoids arise from particle orientation, not
sample heterogeneity. (top) Particles falling in gates P1 (red) and P2 (blue) were
separately collected and re-analyzed in the instrument (bottom), each yielding the
full scattering distribution of the original suspension.

ratios ranging from 1.1 to 4.5). Notably, all microparticles we examined had identical

volumes and densities, differing only in terms of their shape. Nevertheless, we found

that each particle morphology, when analyzed by scattering measurements in FACS, ex-

hibited a distinct range of scattering parameters (FSC-H, FSC-W, SSC-H, and SSC-W).

Two-dimensional correlated scatter plots show unique “scattering profiles” arising from

particles of different morphologies. Spheres exhibit a relatively narrow distribution for all

four parameters, while increasingly eccentric particles yield a significantly wider range of

FSC-H, FSC-W, SSC-H, and SSC-W values. The complexity of these correlated scatter

plots increases for increasingly nonspherical particles.

We next sought to determine whether scattering profiles are due to sample hetero-
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geneity or are intrinsic to particle morphology, arising from the ensemble of random

orientations available to the particles as they pass through the optical interrogation re-

gion. Due to the fully developed laminar (Poiseuille) flow in the sample stream, there is

a parabolic velocity distribution across the cross section of the stream, such that fluid in

the center of the stream flows faster than fluid at the channel walls. Consequently, par-

ticles passing through the sample stream experience a net torque and undergo rotation,

leading to a full range of possible orientations for any particle entering the interrogation

beam [125]. Because the angular distribution of scattering intensities is highly depen-

dent on particle orientation relative to incident radiation [119], this leads to a range of

potential FSC and SSC intensities for any given particle, depending on its orientation.

To verify this, we defined sorting gates P1 and P2 on a 2-D scatter plot of FSC-H vs

SSC-W for a relatively monodisperse suspension of AR 4.5 ellipsoids. These gates en-

capsulated two distinct population density peaks along the SSC-H dimension. Particles

from each gate were collected and separately re-analyzed in the FACS instrument. A bi-

modal scattering profile nearly identical to that of the original unsorted suspension was

observed for the particles obtained from both gates, strongly suggesting that the scatter-

ing distribution arises primarily from random particle orientations and not from sample

heterogeneity. 3 Similar results were obtained for a suspension of stretched discs showing

a trimodal population density distribution (data not shown); in this case, a three-way

sort was performed and the sorted suspensions were re-analyzed, each yielding the full

scattering distribution independently. Similar behavior has previously been reported for

red blood cells, where the disc-like geometry results in a range of FSC and SSC intensities

based on cell orientation [126,127]; cells collected from non-overlapping gates yielded the

same full distribution of scattering parameters when re-measured in the instrument.

3Notably, there is a difference in the relative population percentages for the P1 and P2 gates in the
two sorted samples, likely due to some polydispersity in the starting suspension.
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(a) Histograms of side-scatter intensity (integrated intensity
over a solid angle spanning 83◦ to 97◦ in both the azimuth and
zenith angles in the instrument coordinate system, see [128] for
geometry details) for randomly oriented particles of varying as-
pect ratio, as simulated using the T-matrix method.

(b) Measured histograms of SSC-H for particles of varying as-
pect ratio.

Figure 3.4: Scattering simulations of side-scatter intensity distributions match the
relationship between differently-shaped particles observed in experimental scattering
measurements, further confirming that the observed distribution of scattering param-
eters arises due to random particle orientations. The discrepancy between simulated
and measured scattering for spherical particles is likely due to slight polydispersity in
the spherical particle suspension, resulting in a broader distribution.
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We further sought to verify that the scattering profile arises from random scatterer

orientations by performing numerical electromagnetic scattering simulations. Specifically,

we used the T-matrix method [128, 129] to simulate scattering of spheres and ellipsoids

with AR 1.5 and 2.5. These simulations calculate the angular dependence of the scattered

light intensity for a variety of particle orientations relative to the direction of incident

radiation. Using this approach, we show that the distribution of orthogonal scattering

amplitudes (SSC-H) is predicted well by scattering at random orientations. These sim-

ulations match both the experimentally-observed distributions of values observed for all

three particle types, as well as their relative values from shape-to-shape. Notably, this

simulation does not capture the nonuniform incident beam geometry, which has a Gaus-

sian intensity profile [91] and is focused to a height of 9 mum, smaller than the longest

dimension of the AR 2.5 ellipsoids. This may explain the lack of measured high-intensity

values for AR 2.5 compared with the simulated results. Due to convergence limitations

of the specific T-matrix algorithm employed here, only aspect ratios up to 2.5 could be

explored for particles of this volume using 488 nm illumination [130].

3.3.2 Defining gates to separate particles

We next attempted to sort a heterogeneous mixture of ellipsoidal particles (Figure

3.5a) based on scattering measurements. To do this, we sought to define minimally

overlapping sort gates on a 2D correlated scatter plot of scattering parameters. We

therefore decided to define gates on a plot of FSC-H vs. SSC-W, because the four

different types of ellipsoids exhibited distinct (though overlapping) scattering profiles

for this parameter pair. The scatter plot for the 4-way particle mixture is shown in

Figure 3.5b. Sort gates were defined manually using the following procedure. First,

population density plots of each particle type were examined to determine the highest-
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density regions. Initial “high-yield” gates for each particle type were created around these

population peaks. For each particle type, we then applied the high-yield gate to scatter

plots of the three other particle types to see how many non-target particles would be

included (e.g., how many particles of AR 2.0, 3.0, or 4.5 would be included in the initial

high-yield gate for AR 1.0). The high-yield gate was then manually adjusted to include

the highest-density regions of the target particle type, while avoiding the highest-density

regions of the non-target particle types. In this way, high-purity gates for each particle

type could be defined (Figure 3.5c).

The results of this 4-way sort based on 2D gates are shown in Figure 3.6a. Sorted

particle mixtures were recovered from the instrument and analyzed via optical microscopy

to determine the sort purity (details in Section 3.5.4); purity values were renormalized to

reflect a hypothetical 0.25:0.25:0.25:0.25 distribution of particle types as the sorter input.

Although all sort gates resulted in purities exceeding 75%, only the gates for AR 1.0 and

AR 4.5 particles resulted in purities above 95%. The lower purity achieved by the AR

2.0 and AR 3.0 gates can be attributed to a significant degree of overlap between these

populations on the plot of SSC-W vs. FSC-H (Figure 3.6b). Moreover, there is significant

overlap between the scatter plots for AR 3.0 and AR 4.5 particles, further worsening the

purity of the AR 3.0 gate. Notably, the AR 1.0 and AR 4.5 gates both result in relatively

high purities because their respective areas of highest population density are far from the

population peaks of the other particle types.

3.3.3 Sorting with higher-dimensional gates

While sorting based on 2-D gates is possible, the highest purity attainable is lim-

ited by overlap between closely-related particle types. However, there are a total of 4

independent parameters available for sorting. The correlation between these scattering

52



Shape-based Separation of Synthetic Microparticles with FACS Chapter 3

(a) Heterogeneous particle mixture for sorting, con-
taining microparticles with aspect ratio 1.0, 2.0, 3.0,
and 4.5

(b) Scattering profile for heteroge-
neous mixture

(c) Sorting gates for each particle type

Figure 3.5: Two-dimensional gate design for ellipsoid sorting.
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(a) Purity for each particle type after performing the
2-D sort

(b) Closely related particle types have sig-
nificant overlap in their 2-D scatter profiles

Figure 3.6: Sorting of ellipsoids based on 2-D gates
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parameters for various particle types can thus be considered in a higher-dimensional

space, as shown for example in the 3-D correlated scatter plots of FSC-W vs. FSC-H

vs. SSC-H (Figure 3.7). Such higher-dimensional visualization reveals that populations

which appear to significantly overlap on any given 2-D parameter space may actually be

possible to separate in the higher-dimensional scattering space.

However, sorting particles based on gates defined in higher-dimensional space (3-

D or 4-D) presents two important technical and practical challenges. First, we must

determine a method for rigorously defining particle-specific regions in higher-dimensional

scattering space that do not overlap each other. While visual inspection of the plots

in Figure 3.7 suggest that such regions exist, defining and optimizing them is not a

straightforward task. While a number of statistical tools are available for defining clusters

in higher-dimensional FACS data [131–142], these are primarily designed to discover and

distinguish unknown cell populations. Our problem is the inverse: we already know

the unique scattering profiles for each particle type, but now want to determine the

optimal higher-dimensional region for maximizing both yield and purity. The second key

challenge is both practical and technical: the higher-dimensional gates, once discovered

and defined, must then be translated for sorting with the FACS instrument software.

Unfortunately, commercial FACS instruments are only capable of sorting based on gates

drawn on 1-D histograms or 2-D correlated scatter plots; no software tool exists for

sorting directly based on 3-D, 4-D, or higher-dimensional gates.

To overcome these problems and sort using 4-D gates, we first exploited the fact that

a convex region in higher-dimensional space can be reconstructed from its projections

onto lower-dimensional spaces. For each particle type, we defined a 4-D gate by creating

2-D gates on multiple 2-D parameter spaces (with 6 different 2-D spaces available based

on pairwise combinations of FSC-H, FSC-W, SSC-H, and SSC-W). These 2-D gates are

manually selected for yield and purity following a procedure similar to that described in
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(a) (b)

(c) (d)

Figure 3.7: 3D visualization of scattering profiles for a four-component particle mixture
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Section 3.3.2. The intersection of this set of 2-D gates then defines a particular region

in 4-D space; and, because FACS software allows sorting based on Boolean combinations

of 2-D gates, we can perform a sort based on this 4-D region using a logical “AND”

combination of its constitutive 2-D projections. Therefore, this projection-reconstruction

approach enables us to begin solving the two problems described above, by (i) facilitating

the definition of a 4-D sorting region for each particle type and (ii) providing a simple

means of translating that region to the FACS software for actual sorting.

However, while this projection-reconstruction approach can recreate simple convex

regions in 4-D space, it is unable to capture more complicated geometric features such

as concave regions, gaps, and holes. Practically, this limits the maximal purity attain-

able using gates developed with the projection-reconstruction approach, due to the high

degree of overlap of different particle types’ scattering profiles. To achieve higher purity,

we need to define more complex 4-D regions in a manner that is still compatible with

the constraints of the FACS software. We can achieve this higher geometric complexity

by “rasterizing” the 4-D regions. This is achieved by defining 1-D slices (in the form

of interval gates on a histogram plot) along one parameter axis, and creating multiple

2-D gates within the subpopulation defined by that slice using combinations of the other

three parameters (e.g., define a slice on the histogram of SSC-H, then create 2-D gates

using combinations of FSC-H, FSC-W, and SSC-W). This approach allows complex 4-D

geometries to be built up slice by slice. Moreover, this approach is compatible with the

FACS sorting software, which allows sorting based not only on Boolean gate combina-

tions, but also on nested sub-gates (e.g., gates defined as subsets of populations defined

by other gates). In this manner, each 1-D slice is a separate subpopulation of the total

parent population; sets of intersecting 2-D gates are then applied to these subpopulations

independently.

Using the combined rasterization and projection-reconstruction method, we per-
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Figure 3.8: Results of sorting ellipsoids based on 4-D gates

formed a four-way sort based on 4-D gates. The specific gates used for each particle type

are shown in Appendix B. Optimal gate combinations to achieve maximal purity were

selected manually. We note that these sort gates do not necessarily use all possible com-

binations of scattering parameters; rather, an optimal combination of lower-dimensional

gates was chosen that maximized purity while maintaining a reasonable yield. The results

of the four-way 4-d sort are shown in Figure 3.8, compared side-by-side with the results

of the 2-D sort. The 4-D sort resulted in sort purities above 95% for each particle type,

with dramatic improvements for the AR 2.0 and AR 3.0 gates. These results demon-

strate that sorting based on 4-D gates can overcome the purity limitations of 2-D sorting,

by enabling separation of closely related particle morphologies in a higher dimensional

scattering space.

3.3.4 Morphology-based enrichment from polydisperse suspen-

sions: diblock copolymer “micro-footballs”

To demonstrate the utility and generality of our approach, we applied FACS to sort

a “real-world” polydisperse mixture of nonspherical microparticles. Football-shaped
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poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer microparticles can be

synthesized with alternating stacked lamellar domains of PS and P2VP, causing them

to act as Bragg reflectors. These “micro-football” particles have applications in stimuli-

responsive optics, wherein pH can be used to tune the relative spacing of the lamellar

Bragg domains and thus the particle color, while particle-to-particle arrangement can

be used to tune overall reflectance. Such controllable optical properties, however, de-

pends on well-defined particle morphology. Unfortunately, when synthesized through

shear-induced emulsification, the resultant microparticle mixture is highly polydisperse

(Figure 3.9a).

We used FACS to sort this polydisperse micro-football mixture. Unlike the stretched

polystyrene spheroids used before, this mixture does not have well-defined subpopula-

tions; rather, it contains a continuum of particle sizes and shapes. Consequently, the

measured scattering profile of the polydisperse mixture shows a wide range of FSC-A

and SSC-A values (Figure 3.9b). As a preliminary test, we sorted based on a number of

2-D gates in different regions of the correlated scatter plot (colored areas in Figure 3.9c).

Sorted particles were recovered and analyzed via optical microscopy as before. Each gate

resulted in a unique distribution of particle sizes as characterized by the particles’ major

axis length (Figure 3.10). For example, the high-FSC gate (gate 1, blue) contained far

more particles with major axis lengths above 4 µm than the starting mixture or any of

the other gates. Interestingly, although gates 2 and 3 (orange and magenta) have similar

FSC-A values and differ only along the SSC-A axis, their resulting size distributions are

appreciably different. These results show that FACS can be used to enrich subpopula-

tions of a polydisperse particle mixture based on morphology, even when the scattering

profiles of the individual subpopulations are not known ahead of time.
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(a) SEM micrograph of polydisperse micro-footballs

(b) 2-D scattering profile for polydis-
perse mixture of micro-footballs

(c) Sorting gates (colored regions)

Figure 3.9: Sorting gates for diblock copolymer micro-footballs
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Figure 3.10: Sorting micro-footballs based on scattering results in selective enrichment
for particles of various sizes in each gate.
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3.3.5 Discussion

In this work, we have demonstrated the first use of a commercial FACS system to

sort synthetic microparticles based on shape. Using only elastic optical scattering mea-

surements captured at two angles, we showed the ability to sort multiple varieties of

particle morphologies out of heterogeneous suspensions. Furthermore, by utilizing 3- and

4-dimensional gating strategies, we achieved high purity separation for closely related

particle morphologies.

Although these preliminary sort results are promising, there are a number of areas

of improvement that future works should address. First, for this work, we have focused

primarily on maximizing purity; however, many applications of particle synthesis would

also require high yield in order to obtain usable quantities of the desired particle mor-

phology. Future gate design procedures, similar to those described above, could take into

account the balance between yield and purity, enabling the selection of higher-yield or

higher-purity gates depending on the application. The actual instrument yield should

also be measured and compared to the predicted gate yield. Second, our existing gating

strategy depends ultimately on manual, user-defined gates. While this is sufficient to

achieve the high purities obtained in this work, it is time-intensive and ultimately too

subjective to be useful as a general approach. Future algorithms could be developed to

automate gate selection in either a deterministic fashion, where high-purity and high-

yield regions of the 4-dimensional scattering space are selected according to pre-defined

design rules, or in a probabilistic fashion, where psuedorandomly generated “seed” gates

are tested and gradually evolved to maximize purity and/or yield. Third, further testing

with additional morphology types, beyond ellipsoids, should be performed. Preliminary

results with stretched discs (data not shown) suggest that this approach is generalizable

to multiple particle geometries.
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To gain insight into the fundamental nature of FACS-based scattering measurements,

we performed simple scattering simulations to verify the orientation dependence of our

measured scattering profiles. However, these simulations made a number of simplifying

assumptions that should be either validated or corrected in the future. For instance, the

simulations assume that our particles are perfect prolate spheroids (where the lengths of

the two minor axes are equal), but they are actually irregular ellipsoids with significantly

varying minor axes. In addition, the simulation does not take into account the FACS

laser’s nonuniform Gaussian intensity profile [91]. Future simulations should also more

carefully leverage scatterer symmetry to reduce the necessary range of orientations to

test and therefore speed up simulation time [93]. In addition, it may be possible to

directly simulate arbitrary shapes [143, 144], further increasing the utility of scattering

simulations for optimizing FACS-based particle sorting.

Even if these improvements are made, however, there are a number of limitations

to this method that are potentially intrinsic to the FACS instrument. First, scattering

and pulse width measurements are highly dependent on the specific optical geometry

of the FACS instrument being used [110], potentially leading to unpredictable results

for the same particle system when analyzed on different models of cytometer. However,

we note that we developed our method on one of the most common FACS systems in

use in the U.S. (the BD FACSAria II). In addition, the fluidic setup of the cytometer

will have an important effect on the ensemble of microparticle orientations; for instance,

stream-in-air FACS systems will tend to align oblong microparticles in the direction

of flow, potentially resulting in different scattering profiles for the same microparticles

from cytometer to cytometer. We also have demonstrated our system using polystyrene

particles, which have a large refractive index mismatch with water and therefore scatter

strongly. Materials with refractive indices closer to that of water may not provide as

distinct of a scattering profile. Finally, we note that this method may not be suitable
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for microparticles that are only stable in non-aqueous solvents, since most commercial

FACS systems are only designed for use with water.

3.4 Conclusion

Shape-based microparticle sorting in FACS is a promising and potentially general

approach to enriching designer microparticles based on morphology. Commercial FACS

systems are becoming increasingly ubiquitous in both academic and industrial research

settings, making our method accessible to a wide range of researchers. In the future,

by exploiting other optical tools built into FACS instruments —such as the ability to

measure particle autofluorescence at a variety of excitation wavelengths —FACS-based

sorting could be used to enrich microparticles based on other material properties in

addition to morphology. By leveraging the high performance (throughput and precision)

of commercial FACS instruments, shape-based particle sorting with FACS could become

a standard tool for laboratory-scale microparticle enrichment.

3.5 Experimental Methods

3.5.1 Microparticle synthesis and characterization

Microparticles were fabricated by the process described in [63]. Briefly, monodisperse

spherical polystyrene (PS) particles (diameter of 6 µm) were suspended in an aqueous

solution of polyvinyl alcohol (PVA) which was subsequently spread and dried into a

sheet. The sphere-embedded sheet was then heated to 120 ◦C and stretched to achieve

the desired particle shape, followed by cooling and washing to remove any PVA residue.

64



Shape-based Separation of Synthetic Microparticles with FACS Chapter 3

3.5.2 FACS instrumentation and operating procedure

All experiments were performed on a BD FacsAria II cell sorter. Particles were

suspended in DI water and were sonicated for 5 min, vortexed, and filtered through

a 35 µm filter prior to analysis. Unless otherwise noted, samples were processed at a

cytometer flow rate setting of “1.0,” corresponding to a flow rate of approximately 16

µl/min. Particles were sorted into 1.5 ml Eppendorf tubes containing 100 µl of DI water.

3.5.3 Scattering simulation validation

Angular scattering distributions for polystyrene ellipsoids were simulated in Python

using a specific implementation of the T-matrix method, described by Mishchenko et

al. [128] and released in Python by Leinonen et al. [129]. To validate this T-matrix

algorithm, scattering from homogeneous spheres was simulated using both the T-matrix

method and a well-characterized program based on Mie theory developed by Matzler et

al. [145]. Simulations from both algorithms were performed for spheres of identical size

and refractive index, resulting in exact overlap of the scattering distributions calculated

by the two methods.

3.5.4 Microscopy analysis procedure for sorter results

Sorted particle samples were centrifuged at 13.7 krcf for 2 minutes to concentrate all

particles at the bottom of the tube, and the supernatant was removed and saved so that

only 40 µl of concentrated particle solution remained. The concentrated suspensions

were then vortexed and 5 µl samples were pipetted onto a microscope coverslip placed on

the imaging stage of an Olympus IX-73 inverted microscope. Particles were allowed to

settle via gravity. Microscope images were captured across the entire deposited sample

drop by scanning across the drop’s width and height. Unless otherwise noted, all images
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were captured in brightfield at a magnification of 40x using a Phantom v211 camera.

Unsorted “input” particle suspensions were not concentrated prior to imaging.

Identification of particles in sorted samples containing highly distinguishable particle

types (e.g., spheres vs. ellipsoids or ellipsoids vs. discs) was performed manually. For

samples containing particle types that were difficult to reliably distinguish manually (e.g.,

ellipsoids with aspect ratio 2.5 vs 3.5), images were analyzed by a feature-identification

program in MATLAB as follows. First, captured images were manually segmented in

MATLAB to identify individual particles. The segmented regions were then analyzed

with an ellipse-detection program in MATLAB that performs Canny edge detection and

subsequently uses a Hough transform to calculate the best-fit ellipse for each edge in the

image, using parameters for major axis length, minor axis length, center X-Y coordinates,

and rotation angle4. Fitted ellipses were manually verified for each particle through visual

inspection. The major axis of the fitted ellipse was found to be the most reliable particle

identifier and was used to classify detected particles by their aspect ratio.

4Available on Mathworks Exchange at http://www.mathworks.com/matlabcentral/fileexchange/33970-
ellipse-detection-using-1d-hough-transform, based on [146].
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Chapter 4

High-Speed Image-Based Sorting of

Cells and Microparticles

4.1 Introduction

1 Flow cytometry and cell sorting have become irreplaceable tools for cell biology

and bioengineering, enabling researchers to study large cell populations with single-cell

resolution at high throughput. The current “gold standard” for cytometry is fluorescence-

activated cell sorting (FACS), wherein cells are labeled with fluorescent stains or fluorophore-

labeled antibodies and are subsequently analyzed based on their fluorescence signatures.

Modern FACS instruments can achieve very high sort throughput (approaching 50,000

cells/s for state-of-the-art systems) and are capable of analyzing multiple fluorescence

channels simultaneously, enabling serial sorting and enrichment of target cells based on a

wide variety of phenotypic criteria. However, this high throughput comes at the expense

of spatial resolution: FACS is based only on single point measurements of whole-cell

1At the date of compiling this thesis, March 17, 2016, this work is still in progress. The contents are
thus presented as preliminary results.
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fluorescence or scattering intensity.2 Because of this lack of spatial resolution, FACS is

incapable of sorting cells based on complex morphologies or internal cellular features,

such as the spatial distribution of organelles or fluorescently-tagged proteins. Such 2-

D information is necessary for studying cell cycle progression [147], protein aggregation

disorders such as amyloidosis [148], nuclear translocation [149], and endosomal traffick-

ing [150], to name a few. Two-dimensional spatial data is capable of conveying far more

biologically useful phenotypic information than whole-cell fluorescence alone [151], but

to date there is no system capable of sorting at FACS-like throughput based on two-

dimensional microscopy.

The field of imaging flow cytometry has partially solved this problem by combining

the rich spatial information of traditional 2-D microscopy with the high throughput of

flow cytometry [152]. Unlike FACS, imaging flow cytometers capture full 2-D images of

single cells in flow using a CCD or CMOS detector, providing multi-channel fluorescence

images in addition to brightfield, darkfield, and (in some instruments) phase contrast

images. Advances in high-speed CCD and CMOS technology have made it possible for

commercial imaging flow cytometers to reach imaging throughputs approaching 5,000

cells/s at the time of writing this dissertation [149, 152, 153]. However, to date none

of these systems are capable of sorting cells based on images. This is because imaging

flow cytometers cannot perform real-time image analysis, instead depending on post-

processing and off-line analysis after cell images have already been acquired. Such an

approach is understandable, since extracting biologically relevant features from 2-D im-

ages is a computationally expensive task. Nevertheless, image-based cell sorting would

require not only high-throughput image acquisition, but also real-time image analysis to

classify cells for sorting based on image features.

2As discussed in the previous chapter, scattering measurements and fluorescence pulse width analysis
do provide some basic spatial information about cell shape and size.
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Here we present a system capable of high-throughput image-based sorting of cells

and microparticles. Our SuperFACS3 system combines high-speed CMOS imaging with

optical microscopy and real-time image analysis to perform active image-based sorting on

a microfluidic chip. To achieve this, we developed a microfluidic sorting platform, a real-

time image acquisition interface, and real-time analysis algorithms for object detection,

tracking, and feature extraction. We demonstrate sorting of synthetic microparticles

based on size and shape, and show preliminary results for internal feature-based sorting

of induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells.

4.2 Background and Theoretical Framework

4.2.1 Imaging flow cytometers and image-based sorters

While FACS-based sorting is widespread, no commercial image-based sorters are avail-

able. A small number of image-based sorters have recently been reported in the litera-

ture, capable of sorting synthetic microparticles [154], bacteria culture in droplets [155],

murine macrophages [156], and human embryonic stem cells [157] all based on simple

image features like size, granularity, or single channel fluorescence intensity. Crucially,

these systems are all limited to throughputs < 100 cells/s, many orders of magnitude

lower than those reached by FACS systems. This is primarily due to their slow analysis

algorithms (each taking on the order of ∼10 ms/cell). An imaging flow cytometer capable

of real-time image analysis, without sorting, was reported to reach higher imaging and

analysis throughputs of close to 500 cells/s, with an analysis time per frame of only 250

µs [158]. This fast analysis time was achieved through the use of highly optimized C++

code using the OpenCV image analysis library, implemented on a standard PC with a

3Yes, really.
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six-core central processing unit.

4.2.2 Pressure-driven flow in microfluidic channels

Designing microfluidic flow channels for microparticle and cell manipulation requires

an understanding of the physics of pressure-driven flow. For the simple case of pressure-

driven laminar flow of an incompressible Newtonian fluid in a rigid channel, the important

physical variables describing the system are pressure, hydraulic resistance, and volumet-

ric flow rate. These quantities are related by the Hagen-Poiseuille equation for long

cylindrical flow channel geometries:

∆P =
128µLQ

πd4
(4.1)

where ∆P is the pressure drop, µ is the dynamic viscosity, L is the length of the channel,

Q is the volumetric flow rate, and d is the diameter of the channel. By defining the

hydraulic resistance RH = 128µL/πd4, the Hagen-Poiseuille equation takes the form

∆P = QRH . (4.2)

This is directly analogous to Ohm’s law for voltage drop across a resistor, ∆V = IR,

where pressure P , flow rate Q, and hydraulic resistance RH are analogous to voltage

V , current I, and electrical resistance R, respectively. Similar analogies apply for other

well-known rules describing electrical circuits. For instance, Kirchoff’s voltage law and

Kirchoff’s current law can be recreated by considering mass and energy conservation in

fluidic systems, leading to directly analogous rules describing flow and pressure drops in

multi-channel, multi-node microfluidic systems. This leads to familiar solutions for total

hydraulic resistance in networks of fluidic channels connected in series or in parallel.
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Other insights from circuit theory can be applied using the same basic mathematics,

such as the design of constant-pressure and constant-flow sources, as well as pressure and

flow rate dividers. A good overview is provided in [159].

Due to the practical constraints of microfluidic channel fabrication, many microfluidic

systems utilize rectangular channel geometries instead of circular cross-sections. While

Equation 4.1 applies only to cylindrical channels, a general hydraulic resistance RH can be

defined such that Equation 4.2 applies to arbitrary channel geometries. For rectangular

channels of height h and width w (with w > h), the hydraulic resistance is given exactly

by [160]

RH,rec =
12µL

h4
(
w
h
−
(

192
π5

∑∞
n=1

1
(2n−1)5 tanh

(
(2n−1)πw

2h

))) . (4.3)

Thus, RH increases linearly with channel length L and is inversely proportional to the

fourth power of h, with an additional geometric factor dependent on channel aspect

ratio.

4.2.3 Dielectrophoresis

To enable high-speed sorting of cells and microparticles, we require a rapidly switch-

able, nondestructive actuation technique. Hydraulic switching using valves is gentle, but

limited in throughput due to compliance in the fluidic system. Electrophoresis, while

rapidly switchable and popular for macromolecule separation, requires the object being

manipulated to have a net charge; in addition, it requires the use of strong DC fields,

which can interfere with cell function (and even cause cell death) and can lead to un-

wanted bubble generation in the device due to electrolytic water splitting. An extensive

review of microfluidic particle manipulation approaches is provided in [161]. Dielec-

trophoresis (DEP), on the other hand, exploits the force experienced by a dielectric

object suspended in a medium of differing complex permittivity, all under the influence
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of a spatially nonuniform AC electric field [162]. Therefore, DEP does not require parti-

cles to carry a net charge, and can be performed using biocompatible high-frequency AC

fields that avoid electrolysis.

The DEP force experienced by a spherical particle of radius r and complex permit-

tivity ε∗p in a medium of complex permittivity ε∗m in an electric field ~E is given by

FDEP = 2πr3εmRe

{
ε∗p − ε∗m
ε∗p + 2ε∗m

}
∇| ~E|2 where ε∗i = εi +

σi
jωi

, (4.4)

where the term in brackets is the Clausius-Mossotti (CM) factor fCM . The complex

permittivity can be rewritten in terms of the absolute permittivity ε = εrε0, where εr is

the dielectric constant and ε0 is the vacuum permittivity; the conductivity σ = σb + 2Ks

r
,

where σb is the bulk conductivity and Ks is the surface conductivity [163]; and the applied

field frequency ω. Thus, the DEP force on a particle of a given size depends on (i) the

difference in dielectric constant and conductivity between the particle and the medium

(captured in fCM), (ii) the frequency of the applied field (which determines the sign

and magnitude of fCM), and (iii) the gradient of the electric field (which depends on

electrode geometry and applied voltage) [162]. In order to achieve the maximum DEP

force possible, the frequency and medium conditions must be optimized to maximize the

magnitude of fCM , while the electric field gradient must be made as sharp as possible

near the path of the object in flow. Notably, for a given particle and medium, fCM may

be either positive or negative depending on frequency, allowing the selection of either

an attractive or repulsive DEP force. Dielectrophoretic sorters have been reported for

droplets [154,155,164,165], cells [166–168], and microparticles [166].
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Figure 4.1: SuperFACS system scheme

4.3 Results and Discussion

4.3.1 SuperFACS system overview

To perform image-based sorting of cells and microparticles, the SuperFACS system

combines three key functions: (i) microfluidic particle manipulation, (ii) high-speed mi-

croscopy, and (iii) real-time image analysis. The scheme for SuperFACS operation is

shown in Figure 4.1. Particles flowing one-by-one through the microfluidic chip are

imaged through an inverted microscope using a high-speed camera. These images are

transferred to a computer in real-time, where a custom program performs image analysis

to detect, analyze, and identify particles in the microchannel. Based on this analysis,

particles classified as “target” objects are actively sorted into a separate collection chan-

nel within the microfluidic chip; this sorting is achieved using DEP actuator electrodes on

the chip, which are attached to a function generator controlled by the analysis computer.

In this way, particles flowing through the SuperFACS chip are imaged, analyzed, and

sorted in a serial manner.
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4.3.2 Microfluidic channel for particle handling and flow control

The sorter chip uses pressure-driven flow to focus the input mixture of microparticles

to a single-file stream for imaging and subsequent sorting at a Y-junction downstream in

the chip (Figure 4.2). The chip consists of two layers: a glass substrate with deposited

microelectrodes, bonded to a PDMS flow channel fabricated using soft lithography (de-

tails in Section 4.5.1). The chip has three fluidic inputs: (1) the sample sheath inlet,

which provides a flow of buffer to propel particles through the chip and prevent particle

settling [169]; (2) the sample injection port, where a concentrated suspension of cells or

microparticles is introduced into the chip; and (3) the focusing sheath inlet, which pro-

vides a secondary stream of buffer that focuses the particles to a narrow range of stream-

lines in the channel and introduces additional longitudinal spacing between subsequent

beads [170] (Figure 4.2b, left inset), thereby enabling consistent actuation. Particles are

imaged before reaching the actuator, which is located upstream of the Y-junction (Figure

4.2b, right inset). By default (that is, without DEP actuation), particles flow into the

waste outlet (bottom of diagram) at the Y-junction, because it is wider and therefore has

slightly lower flow resistance. However, particles actuated by the DEP electrodes will be

deflected away from the electrodes into a streamline leading to the collection outlet (top

of diagram).

Fluid flow through the SuperFACS chip is driven by a simple hydrostatic pressure

source. The two sheath inlets are connected via fluid-filled tubing to an off-chip fluid

reservoir, while the waste and collection outlets are similarly connected to a second fluid

reservoir (the sample injection port is sealed after the introduction of the concentrated

sample solution, and thus no flow occurs through this port during device operation).

The total pressure difference between the inlets and outlets is determined by the relative

heights of the fluid columns in the inlet reservoir and the outlet reservoir, resulting from
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(a) SuperFACS flow channel design

(b) Optical micrograph of assembled SuperFACS chip with flow channel and sorter electrodes.
Arrows indicate direction of flow. Left inset shows magnified view of focusing sheath perfor-
mance for a single 6 µm polystyrene microbead (time-lapse image sequence captured at 30 fps).
Right inset shows magnified view of imaging and actuation regions.

Figure 4.2: SuperFACS flow channel design and layout
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Segment Width (µm) Height (µm) Length (µm) RH (Pa·m−3·s) Q (µL·hr−1)
AC 30 25 615 2.81× 1013 1.41
BC 25 25 1000 6.48× 1013 0.61
CD 30 25 2725 1.25× 1014 2.02
DE 30 25 1750 8.00× 1013 0.77
DF 40 25 1750 4.90× 1013 1.25

Total - - - 1.75× 1014 2.02

Table 4.1: Hydraulic resistance calculations for the channel segments shown in Figure
4.2a for water at 25 ◦C. Example flow rates Q are calculated for the hydrostatic
pressure resulting from a 1 cm height differential between the inlet and outlet fluid
reservoirs. Note that the length of AC does not include the ∼ 700 µm diameter sample
injector port, whose contribution to the total hydraulic resistance between points A
and C is very small.

gravitational force on the two fluid columns; this pressure difference results in net fluid

flow across the device. By simply changing the fluid column height in the reservoirs

(e.g. by adding or removing fluid), we have a highly controllable method of adjusting

the fluid flow rate through the chip; moreover, the reservoir volume is large relative to

the total volume flowed through the chip during an experiment, meaning that flow rates

are stable over time. Notably, because both inlets are connected to a common fluid

reservoir, there is no pressure difference across the inlets and therefore no risk of inlet-

to-inlet backflow; the same is true for the outlets. The relative flow rates through the

individual inlet channels AC and BC and outlet channels DE and DF (Figure 4.2a)

are a result of each channel’s dimensions, which are designed to provide the appropriate

flow ratios at each junction. The channel dimensions and calculated flow rates in each

channel for a 1 cm inlet-to-outlet reservoir height difference is shown in Table 4.1. In

summary, our hydrostatic control scheme enables robust and reliable fluidic operation of

the SuperFACS chip without a complex pumping setup.
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Figure 4.3: Real component of the calculated Clausius-Mossotti factor fCM as a func-
tion of applied field frequency for polystyrene spheres of varying diameter suspended
in deionized water.

4.3.3 Dielectrophoretic actuation

To design and implement an optimal DEP actuator, we mathematically simulated the

effects of particle size, electric field frequency, and electrode geometry on the strength and

polarity of the DEP force. We first calculated the Clausius-Mossotti factor, which deter-

mines the magnitude and direction of the DEP force, for polystyrene spheres of varying

size suspended in deionized water over a range of applied frequencies, using Equation 4.4

(Figure 4.3). These results indicate that DEP is strongly attractive (“positive DEP”,

or pDEP) at lower frequencies, and strongly repulsive (”negative DEP”, or nDEP) at

higher frequencies; moreover, the crossover frequency between pDEP and nDEP is size-

dependent, in agreement with results reported elsewhere [171,172]. Although polystyrene

spheres can undergo both pDEP and nDEP depending on frequency, cells suspended in

salt-containing cell culture media (DMEM, conductivity 1.5 S/m) undergo only negative

DEP, regardless of applied field frequency [173]. Therefore we elected to use an actuator

design based on repulsive nDEP only.

We next used finite element analysis (COMSOL) to simulate the two-dimensional

DEP force field arising from different electrode designs. As expected, smaller electrode
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Figure 4.4: Simulated DEP force experienced by a 6 µm polystyrene particle sus-
pended in deionized water for electrodes spaced 10 µm apart, with a driving field
frequency of 1 MHz and a peak-to-peak voltage of 40 V. Insets show the 1-D force
distribution for slices (white dashed lines) perpendicular to the direction of flow (left
inset) and parallel to the direction of flow (bottom inset). Only the y-component of
the force (e.g., perpendicular to the direction of flow) is shown.

spacings resulted in stronger electric field gradients and higher possible DEP forces. We

chose a 10 µm electrode spacing because it achieves strong DEP deflection, but is still

facile to fabricate using standard photolithography. Figure 4.4 shows the two-dimensional

repulsive DEP force distribution in the channel for electrodes spaced 10 µm apart and

protruding 1 µm into the channel for a 6 µm polystyrene sphere suspended in deionized

water, with an applied potential of 40 VPP at 1 MHz. These simulations indicate that

the DEP force is highly localized at the electrode tips and is strongly position-dependent

in the channel.

Finally, based on these simulated designs, we fabricated and tested the DEP actuator.

The chip’s platinum actuator electrodes (10 µm spacing) are connected to a function gen-

erator and amplifier which provide the necessary AC voltage. We verified the actuator’s

performance for deflecting both polystyrene microparticles (Figure 4.5a) and live human
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(a) Polystyrene microsphere (b) MCF-7 cell

Figure 4.5: Time-lapse image composites of DEP actuation of a polystyrene micro-
sphere in water (a) and a human breast cancer cell in cell culture media (b). Flow
direction is left-to-right.

cancer cells (Figure 4.5b), both with a driving frequency of 1 MHz and a peak-to-peak

voltage of 34 V. For both synthetic microparticles and live cells, the actuators provide

sufficient nDEP repulsive force to deflect the particles or cells into the collection outlet.

4.3.4 Imaging, tracking, analysis, and classification

The assembled SuperFACS chip is mounted on an inverted microscope (Olympus

IX-73), and imaging of the flow channel is performed using a high-speed CMOS camera

(Vision Research Phantom v211). Sorting requires us to obtain image data from the cam-

era in real-time, but commercial high-speed cameras are only designed to store images on

internal memory and transfer them to an external computer after the full image sequence

has been captured 4. To overcome this problem and obtain images in real-time, we wrote

a custom interface that bypasses the camera’s internal storage and delivers image data

directly to the analysis computer. This interface is built around a manufacturer-provided

API that enables direct access to the camera’s “image preview” function over a 1 Gb/s

ethernet connection. Using this approach, we can capture a live stream of 8-bit images

4Specifically, high-speed cameras continuously store data from the image sensor on internal flash
memory using a circular buffer; when triggered by an external computer, the camera then “dumps” the
most recent images from its internal memory to an external computer for storage and analysis.
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from the camera at a resolution of 512× 56 px at a framerate of 250 fps.

This stream of images is continuously processed by an analysis program that performs

three key tasks for each frame: (i) object detection, to determine if an object such as

a microparticle or cell is present in the image; (ii) object tracking, to determine the

object’s location and speed by comparing it to objects detected in previous frames; and

(iii) object classification, in which the relevant image feature for sorting is extracted

and quantified, enabling an eventual sorting decision. The program first uses contrast

thresholding and edge detection to determine if the image is occupied by any objects of

interest, defined as any pixels with sufficiently high contrast compared to the channel

background. If any such edges are present, the program performs image segmentation

using feature-specific algorithms, such as circle or ellipse detection. These detection

algorithms provide the size and location of any objects in the frame; the program then

performs frame-to-frame comparisons to determine if a given object in the present frame

is the same object as detected in the previous frame or is a new object. If the object has

been detected in the preceding frame(s), its position in the channel is compared to its

position in previous frames to determine its displacement. This displacement, combined

with the images’ timestamps, can be used to calculate the object’s velocity. The program

uses this velocity measurement to calculate the precise time delay required for accurate

DEP actuation of the particle downstream. This dynamic velocity tracking is important

because particles passing through the channel can have varying velocities due to the non-

uniform (parabolic Poiseuille flow) cross-sectional flow profile in the channel, resulting in

variable time delays between the imaging region and the actuator for different particles.

Finally, the program compares the extracted image features for a given object to a

user-defined sort criteria, classifying the object as “target” or “non-target” for sorting

downstream. If the object is classified as “non-target,” no action is taken and the object

will flow to the waste channel by default. If the object is classified as “target,” the
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program will use the object’s detected velocity to calculate the appropriate time delay

for activating the DEP electrodes, which are situated a known fixed distance downstream

from the imaging region. The program activates the electrodes by triggering a function

generator using a 5V TTL signal through the computer’s serial port. To facilitate post-

experiment analysis, all images containing detected objects are saved and timestamped.

4.3.5 Size-based sorting of microparticles

As an initial test of our system, we demonstrated real-time sorting of spherical

polystyrene beads based on size. Specifically, a mixture of 13 µm and 8 µm diame-

ter beads suspended in a water/surfactant solution was flowed through the SuperFACS

chip. Bead images were analyzed via edge detection and subsequent circle detection us-

ing the circle Hough Transform [174], which provides the center coordinates and radius

of any detected circular objects (Figure 4.6a). Total time for image acquisition, trans-

fer, and analysis was ∼ 10 ms per image. The program then checked to see whether

the radius measured for the bead in the current image was larger or smaller than the

threshold value for sorting. If the radius met the sort criteria (in this case, was smaller

than the sort threshold), then the program classified the bead as a “target” object for

subsequent actuation and sorting into the collection outlet downstream. For frames with

a bead with a radius above the sorting threshold, the electrodes were not energized and

thus the bead was allowed to pass into the waste outlet. To verify sorter performance,

we used the program’s position tracking ability to monitor each beads center coordinates

both upstream and downstream of the actuator electrodes. The deflected beads exhibit

a large change in their position in the y-direction (i.e., perpendicular to the direction of

flow), providing an automatic means of detecting whether a bead was deflected or not.

Results from this preliminary sort are shown in Figure 4.6a, which plots the observed
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(a) Circular edge (or-
ange and blue outlines)
of polystyrene micro-
spheres detected by the
circle Hough Transform

(b) Size-based sort results

Figure 4.6: Sorting of microparticles based on size

bead deflection due to DEP actuation against the detected bead radius. Only those

beads whose radius was measured to be below the sort threshold of 5 µm were actuated

into the collection channel, as intended.

4.3.6 Shape-based sorting of microparticles

We next used our sorter to perform the more sophisticated task of sorting microparti-

cles based on two-dimensional shape. As a model system, we attempted to sort stretched

polystyrene ellipsoids (described in detail in Chapter 3) based on their aspect ratio. To

do this, we utilized an open-source ellipse detection algorithm in the OpenCV imaging

library based on least-squares fitting [175]; this algorithm provides the major and minor

axis lengths of the fitted ellipse, in addition to center coordinates and rotation angle (Fig-

ure 4.7a. Using this algorithm, we sorted a mixture of stretched ellipsoids and spheres,

with the sorting criteria that only objects with an aspect ratio exceeding 2.0 be deflected
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into the collection channel. Results for this sort, quantified in terms of measured ac-

tuator deflection as in the preceding section, are shown in Figure 4.7b, with the total

number of particles directed into the target and waste outlets shown in Figure 4.7c. As

intended, only those particles with detected aspect ratios greater than 2 were deflected.

However, we note that an appreciable number of detected “target” particles were not

actuated. This was due to suboptimal alignment of the particles as they flowed through

the channel, arising from a faulty focusing sheath inlet. Thus, some of the particles were

already at the “top” of the channel and could not be deflected further. Manual inspec-

tion of the images recorded during this experiment reveal that even for those beads with

AR¿2 where no deflection was detected due to their position at the upper edge of the

channel, the actuator actually did fire at the appropriate time, as revealed by motion of

the particle out of the microscope’s focal plane.

4.3.7 Toward image-based sorting of live cells

Having demonstrated sorting of synthetic particles based on two separate 2-D image

features (detected radius and aspect ratio), we next sought to sort live cells using the

SuperFACS system. However, cells present a number of challenges for image analysis

compared to synthetic microparticles. First, unlike synthetic microparticles, cells can

take on a wide range of irregular shapes and sizes, making it difficult to define a specific

shape or feature a priori for the algorithm to detect, e.g., spheres or ellipses. Second,

when viewed in the brightfield mode, cells have relatively low contrast with the channel

background compared to polystyrene microparticles, due to the similar refractive index

between the cells and their suspension media. This leads to less robust edge detection,

resulting in failed or inconsistent object recognition using the object-oriented shape de-

tection algorithms described above.
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(a) Example fits for ellipsoid microparticles in the flow
channel using the ellipse detection algorithm

(b) Results of shape-based sort (c) Summary of shape-based sort results

Figure 4.7: Sorting of microparticles based on shape
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To overcome these problems, we developed a new cell tracking algorithm for detecting,

tracking, and analyzing cells of arbitrary shape, size, and contrast. At the heart of this

algorithm is a pixel-based contrast analysis scheme, which detects cells by finding groups

of pixels with brightness values different from the channel background. This algorithm

is implemented via a five-step procedure (Figure 4.8). First, the input image undergoes

Gaussian smoothing to minimize the effect of image sensor noise (Figure 4.8a). Second,

all pixels with values close to the average channel background brightness are subtracted,

leaving only those “feature pixels” that are sufficiently brighter or darker than the back-

ground (Figure 4.8b). Next, the channel is downsampled so that immediately proximal

feature pixels are grouped together (Figure 4.8c). Connected component analysis using

an 8-way nearest neighbor algorithm on the downsampled grid is used to identify clusters,

or “connected components,” of feature pixels (Figure 4.8d). Finally, overlapping clusters

are merged using a blob association algorithm, and only clusters above a certain size

cutoff (e.g., the smallest cell size expected) are preserved (Figure 4.8e), in order to reject

contrast artifacts such as debris in the channel.

The final outputs of the cell tracking algorithm are the cluster of contrasting feature

pixels, as well as the rectangular region-of-interest (ROI) bounding the detected cell,

from which the cell’s approximate center coordinates and size may be determined. Fur-

ther cell-specific image analysis, either pixel-based or object-oriented, can subsequently

be performed on either the feature pixels only, or on all pixels contained within the ROI.

There are several key benefits to this algorithm’s design. First, because it is based on

pixel analysis, it is generalizable to potentially any type of object moving through the

flow channel, so long as it has some contrast with the channel background (i.e., is vis-

ible). Second, the algorithm’s computational simplicity makes it very fast to operate,

taking only ∼ 6 ms per frame. Third, it decouples the task of object detection/tracking

from object analysis/classification. Because stable sorter operation requires object de-
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(a) Gaussian smoothed input

(b) Background subtraction

(c) Downsampling and pixel grouping

(d) Connected component analysis (black boxes indicate connected components)

(e) Blob association and artifact rejection, with the final “cell ROI” shown as a black
rectangle containing the white “feature pixels”

Figure 4.8: Contrast-based object tracking algorithm demonstrated for an image of
an RPE cell in the flow channel
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tection and tracking to be performed on each frame, the overall sorter throughput is

coupled to the tracking analysis time per frame. However, object analysis/classification

can be performed on the basis of a single frame. While the relatively fast algorithms

used for shape detection above are not a problem in this regard, more sophisticated cell

classification may require more computationally intensive, and therefore slow, analysis

algorithms. Thus, the fast tracking algorithm described above could be performed for

each frame to maintain a fast framerate; the slower classification algorithm would only

need to be performed once (e.g., on that cell’s first frame in the imaging region).

To demonstrate the utility of our tracking algorithm, we used it to analyze live iPSC-

RPE cells flowing through the device. Transplantation of RPE cells is a promising method

for the treatment of age-related macular degeneration [176, 177], but therapeutic use

requires highly pure populations of mature, fully-differentiated RPE cells, indicated by

their degree of pigmentation. However, highly pure discrimination of pigmented versus

unpigmented RPE cells is unfeasible using traditional FACS alone. We therefore used

a pixel-based algorithm to classify RPE cells flowing through the SuperFACS device as

either pigmented or unpigmented. To do this, we first used our contrast-based tracking

algorithm to detect and track the cells as they flowed through the channel. For each cell

image, we then counted the number of feature pixels within each cell that are brighter

than the average background pixel value, as well as the number of pixels that are darker.

By plotting the dark pixel count versus bright pixel count for each cell, we can define a

dividing line differentiating pigmented cells from unpigmented cells (Figure 4.9). This

simple algorithm requires further optimization and testing, but is a promising approach

to perform image-based sorting of RPE cells in the future.
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Figure 4.9: Pixel-based algorithm for classification of RPE cells based on pigmen-
tation. Small faded circles indicate analysis of individual frames as the cell flowed
through the channel, while large bright circles indicate the mean values for a given
cell across all its frames (error bars indicate S.D.). A representative image for each
numbered cell is shown on the right.
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4.3.8 Discussion

In this work, we have showed promising preliminary results toward an image-based cell

sorter. We demonstrated that the SuperFACS system’s unique combination of microflu-

idic particle manipulation and real-time image processing enables image-based sorting

of synthetic microparticles based on a variety of two-dimensional features. We also de-

veloped a novel object tracking algorithm to enable the analysis and sorting of a wide

variety of cell types, and we demonstrated preliminary results for a pixel-based classifi-

cation algorithm for iPSC-RPE cells. These proof-of-concept results should be followed

up with a real-time sort of RPE cells based on pigmentation.

A critical performance metric for the SuperFACS system is its sorting throughput.

The overall system sort rate depends on a number of limiting factors, including the image

capture rate, image transfer rate, image analysis time, and actuator speed. The current

throughput bottleneck is image analysis time, which takes roughly 5-10 ms per frame

using our existing unoptimized algorithms. This currently limits our practical sorter

throughput to a rate of < 100 objects/s. Future work utilizing dedicated image analysis

hardware through an FPGA would be able to lower this analysis time by 2-3 orders

of magnitude [158, 178]. Image transfer rate is also presently limited to about 250 fps;

again, high-speed image transfer interfaces and dedicated image acquisition hardware

(e.g., a framegrabber FPGA) can increase this throughput 10-100 fold. As imaging

and analysis rates are increased, the DEP actuator may not be able to deflect cells

sufficiently quickly without applying large electric fields that could damage cell viability.

To overcome this problem, we could employ gentler methods of cell manipulation capable

of rapid switching, such as surface acoustic wave actuators [179, 180] that can actuate

microparticles and cells at rates approaching 20,000 Hz. With all of these potential

improvements combined, we estimate that a final sorter throughput of ∼ 1000 cells/s
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could be feasible.

One key limitation of the SuperFACS system in its current iteration is its inability to

perform fluorescence imaging. Because of the very brief exposure times employed for high-

speed imaging, we are currently limited to capturing brightfield images only; well-resolved

fluorescence images would be impossible to obtain for all but the brightest fluorescent

dyes. This problem could be addressed by utilizing high-gain image sensor techniques

such as time-delay integration [153,181], but such hardware-based techniques are difficult

to implement on commercially available high-speed image sensors. Brightfield imaging

still contains a wealth of phenotypic information —especially when “brightfield-visible”

labeling strategies are used, such as antibody-conjugated high-contrast microparticles

that bind to specific surface proteins on a cell of interest [182] —but the overall usefulness

of the SuperFACS system will be limited without fluorescence imaging capabilities.

Another key challenge for image-based cell sorting is the determination of the ideal

image analysis and classification criteria to use in order to enrich cells expressing the de-

sired phenotype. While certain cases, such as RPE pigmentation, have an obvious visual

phenotype on which sorting may be based, many other cellular systems have far more

subtle differentiating features separating “target” and “non-target” cell types. Future

work in image-based sorting should leverage recent advances in the field of high-speed

imaging flow cytometry which have employed machine learning approaches to identify

relevant image features for cell classification [147,151,182].

4.4 Conclusion

We have demonstrated promsing proof-of-concept results for image-based cell sorting,

which has the potential to become a powerful tool for biological research, biotechnology,

and biomedicine. By combining the rich information content of traditional microscopy
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with the throughput and population-level data afforded by flow cytometry, image-based

sorters could enable new insights into subtle cellular processes and new approaches to

cellular therapeutics.

4.5 Experimental Methods

4.5.1 Chip fabrication and assembly

Microelectrodes were deposited on glass wafers (500-µm thick, 100 mm diameter) via

contact lithography and electron beam deposition (200 Ti, 1800 Pt). The wafer was

then diced to form individual glass substrates with electrodes. A master mold for the

microfluidic flow channels was fabricated via contact lithography on a silicon substrate

using SU-8 negative photoresist. Polydimethylsiloxane, or PDMS (Sylgard 184, Dow-

Corning), was then mixed and poured over the mold. After being partially cured at 80

◦C for one hour, we peeled the PDMS off of the mold and punched 1.5 mm diameter

holes to form the sample sheath inlet, focusing sheath inlet, and outlets. A via to the

sample injection port was formed using a 0.7 mm hole punch. The bottom (channel-

imprinted) side of the PDMS and the top (electrode) surface of the glass substrate were

both briefly exposed to an O2 plasma (BD-20AC Laboratory Corona Treater, ETP Inc.).

Immediately after, the plasma-treated PDMS and glass substrate were aligned using

an inverted microscope to ensure that the electrode tips were located directly in the

center of the microchannel ∼ 5 microns upstream of the sorting junction, and were

subsequently placed into contact and cured for several hours at 80 ◦C, facilitating an

irreversible covalent bond between the glass and PDMS. Finally, wires leading to a BNC

connector were soldered to the electrode contact pads to allow for connection to the

function generator.
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4.5.2 Fluidic connections

Fluidic vias to the sample sheath inlet, focusing sheath inlet, and waste and collection

outlets were formed via 1 cm lengths of 0.02” I.D. / 0.06” O.D. Tygon tubing (Saint-

Gobain Performance Plastics). These vias were friction-fit into the ends of 20 cm lengths

of 0.04” I.D. / 0.07” O.D. Tygon tubing, which ultimately were passed into the inlet

reservoir (for the sample sheath and focusing sheath inlets) or the outlet reservoir (for

the collection and waste outlets). The sample injection port was attached to a 5 cm

length of 0.76-mm O.D. / 0.30-mm I.D. PTFE tubing (Cole-Parmer), which was filled

with the suspension to be sorted and capped with a small plunger to enable injection

into the chip. The inlet and outlet reservoirs contained deionized water.

4.5.3 Electronic instrumentation

The sorter chip’s electrodes were connected to a high-frequency function generator

(AFG320, Tektronix) and a custom-built power amplifier. In order to achieve maximum

dielectrophoretic deflection at the electrodes, a DEP driving signal of 1 MHz at 34 V

peak-to-peak amplitude was employed.

4.5.4 Microparticles and suspensions

Size-based sorting of spherical microparticles was performed using 8 and 13 µm diam-

eter polystyrene microbeads (Fisher). Stretched polystyrene ellipsoids were produced in

the same manner as was described in Chapter 3. All synthetic particles were suspended

in deionized water containing 1% Tween 20 (Sigma Aldrich) as a surfactant. Particle

suspensions were vortexed, sonicated, and passed through a 20 µm filter prior to use in

the chip.
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4.5.5 Cell protocols

MCF-7 cells for actuator testing were revitalized from liquid nitrogen storage and sus-

pended in 1 mL of culture media containing Eagle’s minimum essential medium (EMEM)

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. All

culture reagents were purchased from ATCC (Manassas, VA). Cells were then incubated

in T-150 cell culture asks (Fisher Scientic) with 30 mL of culture media until they reached

90% conuence. The cells were washed with Dulbecco’s phosphate-buered saline (DPBS;

ATCC), released using 5 mL of trypsin/EDTA solution (ATCC), and then collected and

pelleted via centrifugation at 400g for 10 min. Live cells were resuspended in 10 mL of

EMEM. Retinal pigment epithelium cells produced from induced pluripotent stem cells

(iPSC-RPE) were provided by Dr. Monte Radeke of the UCSB Neuroscience Research

Institute.

Prior to sorting, cells were suspended in Dulbecco’s modified Eagle medium (DMEM)

at a concentration of 1 × 105 to 1× 106/ml. Immediately prior to entering the chip, all

cell suspensions were gently mixed with a 1 mL pipette and subsequently passed through

a 20 µm filter.
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Chapter 5

Contamination-Resistant

Loop-Mediated Isothermal

Amplification for Genetic Pathogen

Detection

5.1 Introduction

1 Rapid, sensitive, and specific genetic amplification methods have become an indis-

pensable tool for a wide array of applications including disease diagnostics [183–185], food

safety testing [186–188], and environmental monitoring [189, 190]. In particular, loop-

mediated isothermal amplification (LAMP) [191] has emerged as a popular technique

because of its sensitivity, specificity and isothermal reaction conditions, which obviate

1The first portion of this chapter was previously published in Hsieh, K., Mage, P.L., Csordas,
A.T., Eisenstein, M., Soh, H.T. Simultaneous elimination of carryover contamination and detection of
DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP).
Chemical Communications 50, 3747-9 (2014).
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the need for specialized thermal cycling equipment [191, 192]. Unfortunately, LAMP’s

potent amplification mechanism, while making the assay highly sensitive, also renders

it highly susceptible to carryover contamination, wherein amplified DNA products from

previous LAMP reactions become templates for re-amplification that lead to false positive

results [193]. Importantly, there is currently no effective means for eliminating LAMP

carryover contamination. Thus, laboratories using LAMP can only rely on careful (and

failure-prone) preventative methods, because once contamination occurs, the process of

decontamination is costly and time-consuming, sometimes requiring a complete redesign

of the assay.

Toward a strategy to eliminate carryover contamination, a number of groups have ex-

plored selective enzymatic digestion of contaminant amplicons (see references [194, 195]

for extensive reviews). For example, the pioneering work by Longo and coworkers [196]

utilized deoxyuridine triphosphate (dUTP) for polymerase chain reaction (PCR) amplifi-

cation, such that all amplicons incorporated uracil bases. Prior to performing subsequent

PCR reactions, any uracil-containing PCR amplicons from previous reactions (i.e., carry-

over contaminants) were digested with uracil-DNA-glycosylase (UDG) [197], an enzyme

that specifically removes uracil bases in uracil-containing DNA but has no effect on nat-

ural, thymine-containing DNA [197, 198]. This enzyme degraded uracil-containing PCR

amplicons from previous reactions, preventing them from amplifying while leaving only

the target DNA intact for amplification. Crucially, this assay is effective because it is

a one-pot reaction that can be performed in a closed-tube vessel; it is well known that

opening the reaction vessel during the amplification reaction dramatically increases the

risk of reintroducing contaminants from the environment [193].

Recently, He and co-workers have shown that dUTP can also be incorporated into

LAMP reactions and that UDG can be used to degrade uracil-labeled LAMP amplicons in

a similar manner to PCR [199,200]. Unfortunately, the assay requires UDG digestion and
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LAMP amplification to be performed in separate reactions, which necessitates opening

the reaction vessels and exposing them to carryover contaminants in the environment.

This key limitation has prevented the translation of this method into a practically useful

assay.

5.2 Results and Discussion

5.2.1 Overview of UDG-LAMP Assay

Motivated by this critical unmet need, we report the first integration of LAMP ampli-

fication with UDG digestion in a one-pot, closed-vessel reaction to eliminate false-positive

results arising from carryover contaminants. Our uracil-DNA-glycosylase-supplemented

LAMP (UDG-LAMP) assay requires only two additional components relative to conven-

tional LAMP and eliminates carryover contamination in two stages. In the first stage,

we add dUTP into all LAMP reaction mixtures so that uracil is incorporated into the

amplicons (Figure 5.1; stage 1). To enhance dUTP incorporation, which is critical to

the success of this method, we have replaced the Bst DNA polymerase commonly used

in conventional LAMP reactions with Bst 2.0 DNA polymerase [201]. In the second

stage, which applies to all subsequent reactions, we perform UDG digestion and the

LAMP reaction in a one-pot process. Specifically, prior to amplification, we treat the

reaction mixture with a heat-labile UDG enzyme [202,203] (Figure 5.1; stage 2) at room

temperature for 5 minutes. The UDG enzyme selectively cleaves uracil bases from any

contaminating LAMP amplicons, leaving behind abasic sites [204], while uracil-free target

DNA remains completely unaffected. In the immediately ensuing LAMP reaction, these

abasic sites block replication by DNA polymerases and cause rapid degradation of the

carryover contaminants via hydrolysis at the phosphate backbone [196, 205], effectively
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Figure 5.1: Overview of uracil-DNA-glycosylase-supplemented loop- mediated isother-
mal amplification (UDG-LAMP). UDG-LAMP eliminates carryover contamination in
two stages. First, all LAMP reactions are performed in the presence of dUTP and
Bst 2.0 DNA polymerase, such that all amplicons contain uracil bases. All subsequent
LAMP reactions are then treated with UDG to eliminate carryover contaminants by
specifically removing uracil from amplified products from previous LAMP reactions,
while having no effect on natural DNA. During the LAMP reaction, the digested con-
taminants are degraded and the UDG enzyme is heat-inactivated, ensuring that only
the target is amplified.

preventing them from re-amplification.

Critically, the use of our heat-labile UDG enables the UDG-LAMP assay to be per-

formed in a single closed vessel, because the enzyme is rapidly and automatically deacti-

vated when the LAMP reaction is performed at an elevated temperature (i.e., ◦65 C). In

this way, genuine amplicons subsequently produced from the target during the reaction

are not digested, allowing amplification to proceed normally (Figure 5.1; stage 2). Finally,

once amplification is complete, amplicons from the UDG-LAMP reaction can be detected

with standard methods such as gel electrophoresis and fluorescence. Here, we used com-

mercially available calcein fluorescence reagents to detect UDG-LAMP amplicons in a

closed-tube fashion, further ensuring a contamination-free read-out of the reaction [193].
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Samples that have undergone amplification exhibit strong calcein fluorescence that is

directly observable under ambient light or UV irradiation.

5.2.2 LAMP with dUTP and Bst 2.0 DNA polymerase

To demonstrate the utility of UDG-LAMP, we used the assay to detect genomic DNA

from Salmonella enterica serovar Typhimurium (S. Typhimurium), a bacterial pathogen

that causes food poisoning, using a pre-existing set of six primers that target the invA

gene [206] (see Methods for primer sequences). We first confirmed that robust LAMP

reactions could be achieved with Bst 2.0 DNA polymerase incorporating dUTP into

LAMP amplicons in the presence of the UDG enzyme. To test this, we added either dUTP

alone or both dUTP and UDG to the reaction mixture (see Methods for details), along

with 2104 copies of purified S. Typhimurium genomic DNA as target. After incubating

the reaction for 60 minutes at 65 ◦C, we observed strong calcein fluorescence in both

target-containing reaction tubes under UV illumination, confirming that both samples

amplified successfully with Bst 2.0, even in the presence of the UDG enzyme (Figure

5.2A).

5.2.3 UDG digestion of carryover contaminant

We next verified that UDG is capable of digesting carryover contaminants with high

efficiency. To demonstrate this, we performed a UDG-free LAMP reaction supplemented

with dUTP, and then added between 100 zeptograms (1 × 10−19 g) and 1 femtogram

(1 × 10−15 g) of amplicon DNA from this reaction into a new set of target-free UDG-

LAMP reactions to simulate carryover contamination. In parallel, we also added the same

amounts of contaminants to a set of LAMP reactions without UDG as controls. We esti-

mated the amount of carryover contaminants by mass because LAMP reactions produce

98



Contamination-Resistant LAMP for Genetic Pathogen Detection Chapter 5

Figure 5.2: Addition of UDG preserves robust LAMP reactions and achieves effec-
tive digestion of carryover contaminants. (A) Bst 2.0 DNA polymerase successfully
incorporated dUTP into amplicons both in the presence and absence of UDG, as indi-
cated by the bright calcein fluorescence from the reaction mixture. Control reactions
with no target DNA exhibited minimal fluorescence. (B) UDG-free reactions yielded
amplification from as little as 1 attogram of carryover contaminants (top row). In
contrast, UDG treatment effectively eliminated such amplification, even at 100-fold
higher contaminant concentrations (bottom row).

amplicons of various lengths, rendering a priori estimates of copy number impractical

(see Methods for calculation).

In samples without UDG, we observed amplification from as little as 1 attogram of

carryover contaminant (Figure 5.2B, top row). This demonstrates that a source contam-

inant equivalent to a 0.2µm-diameter aerosol droplet (4 × 10−18 L) —which cannot be

efficiently blocked by fibrous pipette tip filters [207,208] —was sufficient to contaminate

new reactions. These results clearly illustrate the danger of carryover contamination in

LAMP reactions, where even miniscule amounts of contaminant can produce unwanted

amplification. In contrast, UDG prevented amplification of up to 100-fold higher concen-

trations of carryover contaminant DNA (Figure 5.2B, bottom row), and calcein fluores-

cence was only observed in the sample containing the highest tested dose of contaminants
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(1 femtogram DNA).

5.2.4 UDG prevents false-positive amplifications

Finally, we show that UDG-LAMP can significantly reduce false-positive results due

to carryover contaminants. To do so, we set up UDG-free LAMP reactions and UDG-

LAMP reactions with and without target DNA, and deliberately doped these samples

with ∼ 10 attograms of carryover contaminant amplicons, simulating a moderate level of

contamination (e.g., resulting from multiple aerosol droplets too small to be sequestered

by pipette tip filters). Without UDG, we observed fluorescence in the no-target negative

control sample (Figure 5.3A, left), yielding a false-positive signal indistinguishable from

true positive signals obtained in the presence of target DNA. In contrast, UDG-LAMP

eliminated these false positives, and we could clearly distinguish the negative control

from samples containing as little as 4 × 103 copies of target DNA (Figure 5.3A, right).

This difference is even more striking in gel electrophoresis results, where the strong false-

positive amplicon bands arising from contaminant amplification products in the no-UDG

sample (Figure 5.3B, lane 1) is virtually eliminated with UDG-LAMP (lane 4).

5.2.5 Extending UDG-LAMP to achieve contamination-resistant

real-time LAMP

Recent advancements in real-time LAMP assays [201,209–214] offer quantitative tar-

get copy-number information that is useful for accurate disease diagnoses. Unfortunately,

carryover contamination produces false products that can overwhelm the true products

generated from the target DNA, giving rise to inaccurate results in copy number. At

present, there is no effective means for eliminating LAMP carryover contamination in

real-time LAMP assays. We therefore sought to extend our UDG-LAMP strategy to con-
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Figure 5.3: UDG-LAMP reduces false-positive detection due to carryover contam-
ination. (A) In the presence of 10 attograms of contaminant DNA, a target-free
standard LAMP reaction (left) generates a fluorescent signal indistinguishable from
that generated by samples containing 4 × 103 or 2 × 104 copies of target DNA. In
contrast, UDG treatment (right) eliminates this false-positive signal, restoring the
accuracy of the assay. (B) Gel electrophoresis clearly demonstrates the effectiveness
of UDG-LAMP in eliminating false-positives, with virtually no amplification detected
in a contaminant DNA-only sample (lane 4).
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fer contamination resistance to real-time LAMP assays. Our Contamination-Resistant

Real-time LAMP (CORR-LAMP), the first real-time LAMP assay that is immune to

carryover contamination, combines UDG-LAMP with real-time amplification monitoring

based on DNA-intercalating reporters, leveraging a detection approach that has been

widely-adopted in both fluorescent [215] and electrochemical [216] real-time monitoring

of LAMP reactions. In doing so, CORR-LAMP can discriminate DNA samples with

different copy numbers even in the presence of substantial amounts of carryover contam-

ination (Figure 5.4A). As a further benefit, we have integrated the entire CORR-LAMP

assay onto a multiplexed microfluidic device such that multiple samples can be processed

simultaneously with excellent reproducibility.

Our CORR-LAMP integrates electrochemical real-time LAMP [217–222] with UDG

treatment (Figure 5.4B). As in UDG-LAMP, CORR-LAMP incorporates dUTP into the

LAMP reaction so that all amplification products contain uracil bases, and at the begin-

ning of each reaction, any uracil-tagged carryover contaminants from previous reactions

are digested away by the UDG enzyme (Figure 5.4B, left). We then initiate the LAMP

reaction with a DNA-intercalating electrochemical reporter (methylene blue, MB) added

to the sample. In the initial phase of the amplification, MB molecules freely diffuse and

transfer electrons to the gold working electrode in the device, producing a high redox

current. Importantly, because the reaction is performed at 66 ◦C, the thermally labile

UDG enzyme is automatically deactivated, which prevents digestion of dUTP-containing

amplicons produced from the target DNA. As the amplification progresses, more MB

molecules intercalate into the double-stranded LAMP amplicons, thereby decreasing the

electrochemical current at the working electrode (Figure 5.4B, right). We continuously

monitor the MB redox current throughout the reaction; when this current is plotted

as a function of time, a successful amplification is indicated by a sigmoidal decrease in

current [218].
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Figure 5.4: (A) Carryover contamination prevents accurate discrimination between
samples with different copy numbers of target DNA (top). CORR-LAMP can accu-
rately discriminate samples containing different copy numbers of target DNA, even
with carryover contamination (bottom). (B) CORR-LAMP integrates electrochemical
real-time LAMP with enzymatic digestion of carryover contaminants in a “one-pot”
assay. As in UDG-LAMP, the assay incorporates dUTP into the LAMP reaction to
chemically differentiate amplicons from natural target DNA. At the beginning of the
reaction, the UDG enzyme digests uracil-containing amplicons while leaving natural
target DNA untouched. The reaction mixture is then heated to the LAMP reaction
temperature (i.e., 66 ◦C), at which point the heat-labile UDG is automatically deac-
tivated and LAMP amplification commences. As amplification progresses, more MB
molecules intercalate into the double-stranded LAMP amplicons and become less effi-
cient at transferring electrons at the working electrode in the device. Amplification is
indicated by a sigmoidal decrease in current when plotted as a function of time. (C)
CORR-LAMP is performed in a sealed microfluidic device with three identical but in-
dependent reaction chambers to enable simultaneous triplicated measurements. The
electrodes are coated with a thermally-stable monolayer of 11-mercaptoundecanoic
acid (MUA) that facilitates stable MB current measurements.
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In addition to digestion of contaminants, the CORR-LAMP assay is designed as a

“one-pot” reaction and is performed in a sealed microfluidic device, which further avoids

re-exposing the sample to contaminants during the reaction. Our device integrates three

reaction chambers, each equipped with a set of microfabricated electrodes (Figure 5.4C).

This design allows us to obtain triplicate measurements from a sample in a single run (or

to include internal positive and negative controls, though not used as such in the current

work). To protect the electrodes from potential non-specific adsorption of MB [223], we

coat the electrodes with a monolayer of 11-mercaptoundecanoic acid (MUA). Notably,

this thermally stable monolayer [224,225] remains intact even at high temperatures, thus

enabling accurate and reproducible electrochemical real-time measurements. After load-

ing the sample, primers, and reagents into the device, we incubate the mixture at room

temperature for 5 minutes to allow complete UDG digestion of carryover contaminants.

We then heat the device to 66 ◦C to commence the LAMP reaction while simultaneously

initiating a series of electrochemical measurements to achieve real-time detection.

5.2.6 CORR-LAMP assay validation

We first demonstrated robust target amplification and electrochemical real-time mon-

itoring in CORR-LAMP by analyzing a contamination-free sample containing 2 × 104

copies of the S. Typhimurium genomic DNA. This reaction yielded a sigmoidal decrease

in the time-course current trace over the course of amplification as expected (Figure

5.5a, red), signaling successful production of LAMP amplicons that led to intercala-

tion of MB into the amplicons, as previously observed [218]. In contrast, a no-target

control yielded no such decrease in current (Figure 5.5a, black), and produced a small

background drift, presumably due to weak interaction between MB and single-stranded

LAMP primers [226–228] and/or gradual dissociation of MB initially entrapped in MUA
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(a) The CORR-LAMP sample with 2 × 104

copies of S. Typhimurium genomic DNA pro-
duces a sigmoidal-shaped decrease in the time-
course current trace (red). This indicates
successful production and detection of uracil-
tagged LAMP amplicons. In contrast, the no-
target control produces no amplicons and thus
yields a small, background drift (black).

(b) Real-time LAMP reactions containing S. Ty-
phimurium genomic DNA target without (black
current trace) and with UDG (red current
trace) show comparable target amplification,
as both reactions yield similar amplification-
specific, sigmoidal decrease in the MB redox cur-
rent traces. The similar current traces indicate
that UDG does not affect the LAMP reaction ef-
ficiency and that UDG is effectively de-activated
during the LAMP reaction.

Figure 5.5: Target amplification in CORR-LAMP
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Figure 5.6: The UDG enzyme in the CORR-LAMP reaction effectively digests car-
ryover contaminants that deliberately doped into the reaction mixture, preventing
false-positive amplification (orange). This is evident by the current trace that is vir-
tually indistinguishable from a reaction performed without contaminants or targets.
In contrast, the reaction without UDG results in a false-positive as shown by the
current decrease due to amplification of contaminants (gray).

monolayer [223,229]. Importantly, we confirmed that the addition of UDG did not affect

the efficiency of LAMP, as the reactions containing the same copy number of DNA target

performed with and without UDG yielded similar current traces (Figure 5.5b). This re-

sult also indicates that the UDG is effectively de-activated during the LAMP reaction if

this were not the case, UDG would digest the amplicons and there would be no sigmoidal

decrease in the current trace.

The UDG enzyme can efficiently digest the carryover contaminants, preventing false-

positive amplifications. To demonstrate this, we compared two “contaminated,” no-

target control reactions either with or without UDG treatment. Specifically, we deliber-

ately doped ∼ 10 attograms of carryover contaminants to both reaction mixtures, again

representing a moderate level of contamination typically carried by aerosol droplets. The

reaction without UDG resulted in false-positive results as shown by the current decrease

caused by the amplification of the contaminants (Figure 5.6, gray), which is similar to

the results obtained with target DNA. In contrast, the incorporation of UDG effectively

prevented false positive amplification (Figure 5.6, orange), resulting in current traces
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that were virtually indistinguishable from a reaction performed without any templates

(i.e., either contaminants or targets).

5.2.7 CORR-LAMP enables copy number discrimination in con-

taminated samples

Towards a fully quantitative, contamination-resistant LAMP assay, we performed a

proof-of-concept experiment to test whether CORR-LAMP can discriminate samples with

different amounts of target DNA in the presence of carryover contamination. Specifically,

we prepared two contaminated samples containing either a low dose (4 × 103 copies)

or high dose (2 × 104 copies) of target DNA. We then compared CORR-LAMP with

standard real-time LAMP (without UDG). Without UDG, it was not possible to dis-

tinguish between the two samples containing different copy numbers of target DNA, as

they yielded essentially indistinguishable current traces (Figure 5.7A, left). In contrast,

CORR-LAMP yielded two distinct current traces from the two contaminated samples

(Figure 5.7A, right); the sample containing the higher dose of target DNA (Figure 5.7A,

right, red) took shorter time to accumulate sufficient amplicons and cause the sigmoidal

decrease in current than the sample containing the lower dose of target DNA (Figure

5.7A, right, blue), as expected.

Finally, we utilized the “time-to-threshold” (tTH) metric [218] to discriminate the

relative amount of target DNA in the contaminated samples. The tTH is defined as

the time point at which amplification is most efficient in a reaction, and it is obtained

by locating the local minimum in the current derivative trace (dI/dt), where the MB

current decreases most rapidly. Furthermore, we obtained triplicate measurements from

our microfluidic device for each of the four samples (low or high target dose, with or

without UDG), and calculated the mean and standard deviation of the tTH values (Figure

107



Contamination-Resistant LAMP for Genetic Pathogen Detection Chapter 5

5.7B). The two samples amplified without UDG yielded statistically indistinguishable tTH

values of 12.3 ± 0.6 min for the high-dose sample and 11.7 ± 0.6 min for the low-dose

sample (Figure 5.7B, left), confirming that quantitative discrimination of contaminated

samples is not possible due to the carryover contamination (likely because the carryover

contaminant had become the more “dominant” amplification template relative to the

target). In contrast, CORR-LAMP resulted in a large, statistically significant difference

in tTH values: 14.3±2.5 min for the high dose sample and 25.3±2.3 min for the low dose

samples (Figure 5.7B, left), demonstrating the potential of CORR-LAMP to discriminate

between samples with different copy numbers of target DNA even when contaminated.

5.3 Conclusion

In sum, we report the first integration of LAMP amplification with UDG digestion

in a one-pot, closed-vessel reaction to greatly reduce false-positives from carryover con-

taminants. As a demonstration, we used UDG-LAMP to detect genomic DNA from the

pathogen S. Typhimurium, and showed that we can readily eliminate false-positives aris-

ing from volumes of contaminant DNA equivalent to the aerosol droplets that may be

encountered in a typical diagnostic or experimental setting. Currently, our limit of de-

tection is approximately ∼4000 copies of target DNA in the presence of 10 attograms of

carryover contaminants. Although this is a useful limit of detection, it nevertheless sug-

gests some inhibition of LAMP by the UDG enzyme. We believe we can further improve

the limit of detection by taking measures to reduce UDG inhibition of amplification. This

could be achieved by adjusting the dose of UDG, adding a UDG-inactivation step at an

intermediate temperature prior to initiating the LAMP reaction, or exploring alterna-

tive UDG enzymes that may be more susceptible to thermal deactivation. With these

improvements to detection sensitivity, and with the demonstrated contamination elimina-
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Figure 5.7: CORR-LAMP can discriminate samples with different amounts of tar-
get DNA in the presence of carryover contamination (A) Without UDG treatment,
carryover contamination prevents real-time LAMP from discriminating between sam-
ples with different amounts of target DNA. In contrast, CORR-LAMP successfully
discriminates these two samples, resulting in clearly distinct current traces for the
samples with high and low doses of target DNA (right). (B) When analyzed by re-
al-time LAMP without UDG treatment, contaminated samples with different target
copy numbers yielded statistically indistinguishable tTH values, confirming that quan-
titative detection of target in contaminated samples is impossible without UDG (left
column). In contrast, CORR-LAMP enables statistically significant discrimination
of contaminated samples with different target copy numbers (right column). tTH for
each current derivative trace is indicated by a vertical line, and overall tTH for each
sample is reported as mean ± S.D. 109
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tion capability of our assay, we believe UDG-LAMP has the potential to greatly expand

the utility of LAMP-based target detection in a wide variety of laboratory and point-

of-care settings. We further demonstrated a strategy to address the unsolved problem

of obtaining copy-number information for target DNA in a sample laced with carryover

contamination. We achieved this by integrating real-time electrochemical detection with

UDG treatment in a “one-pot” reaction, which can be performed in a sealed microfluidic

device that offers highly reproducible, triplicate results in a single experiment. As a

demonstration, we used our system to quantitatively discriminate samples that contain

2 × 104 and 4 × 103 copies of genomic DNA of a bacterial pathogen, which were laced

with a substantial amount (10 attograms) of carryover contaminants.

This ability to discriminate between contaminated samples with varying amounts

of target DNA is a crucial first step toward contamination-resistant DNA quantitation,

but a number of improvements must be made to develop CORR-LAMP into a reliable,

fully quantitative real-time assay. First, a calibration curve needs to be developed by

measuring the tTH for a number of samples containing a broader range of known initial

target DNA copy numbers (as reported by Mori et al. [209]), enabling the determination

of target copy number for samples with unknown quantities of target DNA based solely

on tTH measurement. Second, the calibrated CORR-LAMP assay should be validated

by analyzing samples using a well-characterized secondary measurement technique such

as real-time quantitative PCR. Finally, the impact of varying amounts of contaminant

should be evaluated to ensure robust assay performance under a variety of environmental

conditions. The success of these improvements could pave the way for robust and quan-

titative genomic detection methodology, which is “immune” to carryover contamination,

and they are topics of current investigations.
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5.4 Experimental Methods

5.4.1 Materials and Reagents.

LAMP reaction reagents, including Loopamp DNA Amplification Kit and Loopamp

Fluorescent Detection (FD) Reagent, were purchased from SA Scientific (San Antonio,

TX). LAMP DNA primers were ordered from Integrated DNA Technologies (Coralville,

IA). Bst 2.0 DNA polymerase and low molecular weight DNA ladder were obtained from

New England Biolabs (Ipswich, MA). Cod uracil-DNA-glycosylase (UDG) was purchased

from ArcticZymes (Plymouth Meeting, PA). 2’-deoxyuridine-5’-triphosphate (dUTP)

sodium salt was acquired in the form of a 100 mM solution from Affymetrix (Santa

Clara, CA). Nuclease-free water (not DEPC-treated) and TE buffer (10 mM Tris and

1 mM EDTA, pH 8.0) were purchased from Life Technologies (Carlsbad, CA). Purified

Salmonella enterica serovar Typhimurium genomic DNA was acquired from ATCC (Man-

assas, VA) and reconstituted in-house in TE buffer at 20 ng/L, as measured by a Nan-

oDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). Agarose

(Low-EEO/Multi-Purpose/Molecular Biology Grade) was purchased from Fisher BioRe-

agents (Fair Lawn, NJ) and TBE buffer (0.089 M Tris base, 0.089 M boric acid (pH

8.3) and 2 mM Na2EDTA) was purchased from National Diagnostics (Atlanta, GA).

GelStar nucleic acid gel stain was obtained from Lonza (Basel, Switzerland). Reagent-

grade chemicals, including 11-mercaptoundecanoic acid (MUA), sulfuric acid (H2SO4),

and methylene blue (MB) were purchased from Sigma-Aldrich (St. Louis, MO) and used

without further purification.

5.4.2 Primer sequences for S. Typhimurium

Each primer is shown with its sequence (5’ to 3’):
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FIP: GACGACTGGTACTGATCGATAGTTTTTCAACGTTTCCTGCGG

BIP: CCGGTGAAATTATCGCCACACAAAACCCACCGCCAGG

F3: GGCGATATTGGTGTTTATGGGG

B3: AACGATAAACTGGACCACGG

FL: GACGAAAGAGCGTGGTAATTAAC

BL: GGGCAATTCGTTATTGGCGATAG

5.4.3 UDG-LAMP Reaction Assembly.

The reaction mix was assembled in a laminar flow hood in a laboratory separate from

where the amplification and the detection steps were performed to prevent unwanted

carryover contamination. A typical UDG-LAMP reaction mix (9 L) contained the fol-

lowing: 1 Loopamp DNA Amplification Reaction Mix (20 mM Tris-HCl, 10 mM KCl, 8

mM MgSO4, 10 mM (NH4)2SO4, 0.1% Tween20, 0.8 M betaine, and 1.4 mM dNTP), 1.4

mM dUTP (1:1 dUTP-to-dTTP ratio), 0.2% BSA, 3.2 M each of FIP and BIP primers,

0.4 M each of F3 and B3 primers, 0.8 M each of LF and LB primers (see Supporting

Information Table S1 for sequences), 0.36 L FD reagent, 0.64 U/L Bst 2.0 DNA poly-

merase, 0.005 U/L UDG, 0.5 L genomic target DNA diluted from the stock with TE

buffer to obtain the desired concentration, and 0.4 L contaminant DNA diluted from

previous LAMP reactions with TE buffer to obtain the desired concentration. Of note,

during the reaction assembly, the reagents were kept cold with a 96-well PCR cold block

(Eppendorf, Hauppauge, NY). Also, the two enzymes were added only after the other

reagents had been assembled and well mixed (except for targets and contaminants) in

order to ensure the activity of these enzymes. Finally, contaminant DNA was added in a
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fume hood in a separate laboratory to prevent exposing the reaction preparation facility

with unwanted carryover contamination.

5.4.4 Fabrication of CORR-LAMP Microfluidic Chips

CORR-LAMP chips were assembled from three modular, separately fabricated layers

—the gold electrode substrate, the chamber layer, and the fluidic via substrate —similar

to previously described methods [218]. For the gold electrode substrate, working, ref-

erence, and counter electrodes were microfabricated on a 4-inch-diameter, 650-µm-thick

Borofloat glass wafer (Mark Optics, Santa Ana, CA) through a standard lift-off process.

The lift-off process began with transparency mask (CAD/Art Services, Bandon, OR)

based contact photolithography, followed by electron-beam evaporation-based metal de-

position (180 nm of gold on 20 nm titanium for adhesion) in a VES 2550 evaporation

chamber (Temescal, Livermore, CA), and concluded with immersion and gentle soni-

cation in acetone. The chamber layer was formed from a 0.01-inch-thick PDMS sheet

(BISCO Silicones, Rogers Corporation, Carol Stream, IL) with the channel design cut

using a programmable sign-cutting tool (CE5000-60, Graphtec, Santa Ana, CA). For the

fluidic via substrate, eyelet holes were drilled through a second Borofloat glass wafer

with a 0.75-mm-diameter diamond drill bit (Triple Ripple, Abrasive Technology, Lewis

Center, OH) using a programmable CNC milling machine (Flashcut CNC, San Carlos,

CA). The electrode wafer and fluidic via substrate were diced (7100, Advanced Dicing

Technologies, Horsham, PA) into individual chips prior to assembly. The three modu-

lar layers were manually assembled in a fume hood. During the assembly, one side of

the PDMS chamber layer was corona treated with a hand-held high-frequency emitter

(BD-20AC, Electro-Technic Products, Chicago, IL) for approximately 3 seconds before

bonding to the fluidic via substrate. This assembly was allowed to rest for several min-
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utes to ensure strong bonding between PDMS and glass. Subsequently, the other side

of the PDMS was corona treated and bonded to the electrode substrate to finish device

assembly. The complete chip measured 25 mm 11 mm and harbored three individual

chambers, each with an approximate volume of 9 µL and housed an independent set of

working, reference, and counter electrodes.

The gold working electrode in each chamber of the chip was cleaned with 50 mM

H2SO4 via cyclic voltammetry, with twelve potential sweeps ranging from -0.5 to 1.3 V

(with respect to the gold reference electrode in the chamber) applied at 0.1 V s−1 with a

sample interval of 0.001 V and 10 µA sensitivity, readying it for surface passivation. After

a brief rinse with deionized (DI) water to wash away H2SO4, the gold electrodes were

passivated with 10 mM MUA (dissolved in absolute ethanol) for 2 hr. After this passi-

vation step, each chamber was immediately rinsed three times with DI water before the

CORR-LAMP reaction mix was loaded. Of note, in contrast to the 6-mercapto-1-hexanol

(MCH) monolayer employed in the Soh Lab’s previous work [218], the MUA monolayer

obviates the high-temperature annealing step to remove defects in the monolayer, thus

simplifying the chip preparation process.

5.4.5 Assembly of CORR-LAMP Reactions

The reaction was assembled within a laminar flow hood in a separate laboratory to

prevent unwanted carryover contamination. Typical reaction mix (9 µL) contained the

following: 1x Loopamp DNA Amplification Reaction Mix (20 mM Tris-HCl, 10 mM KCl,

8 mM MgSO4, 10 mM (NH4)2SO4, 0.1% Tween20, 0.8 M betaine, and 1.4 mM dNTP),

1.4 mM dUTP, 0.2% BSA, 3.2 µM of each FIP and BIP primers, 0.4 µM of each F3

and B3 primers, 0.8 µM of each LF and LB primers (see Table S1 for primer sequences),

10 µM MB, 0.64 U/µL Bst2.0 DNA polymerase, 0.005 U/µL UDG, 0.5 µL genomic
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target DNA diluted from the stock with TE buffer to obtain the desired concentration,

and 0.4 µL simulated contaminant DNA diluted from previous LAMP reactions with

TE buffer to obtain the desired concentration. Of note, during the reaction assembly,

the reagents were kept cold with a 96-well PCR cold block (Eppendorf, Hauppauge,

NY). Also, the two enzymes were only added after other reagents have been assembled

and well mixed (except for targets and contaminants) in order to ensure their optimal

activities. Finally, simulated contaminant DNA was added in a fume hood in a separate

laboratory to prevent exposing the reaction preparation facility with unwanted carryover

contamination.

5.4.6 Dose Estimation for Carryover Contamination.

The mass yield of the LAMP reaction generated from 1× 103 copies of target in the

absence of UDG, which served as the source of carryover contaminants, was conservatively

estimated to be 0.25 g/L, as typical LAMP reactions can generate up to 0.4 to 0.8 g/L

of DNA amplicons. This source reaction was diluted by 1×108 to 1×1012-fold and 0.4 L

of the diluted product was spiked in each UDG-LAMP reaction. The mass of carryover

contaminant therefore corresponds to approximately 1× 10−15 to 1× 10−19 g.

5.4.7 UDG-LAMP Reaction Conditions and Detection.

UDG-LAMP reactions were conducted in standard Eppendorf PCR tubes and in a

bench-top thermocycler (DYAD 220 Peltier Thermal Cycler, MJ Research, Inc., Waltham,

MA), first at 25 ◦C for 5 min and then at 65 ◦C for 60 min. Upon completion of the

reaction, each sample was immediately evaluated without opening the reaction tube. Al-

though calcein fluorescence can be clearly observed by naked eye under ambient light,

images acquired under UV illumination within an imaging system can be more consistent
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due to the suppression of uneven background lighting. We therefore imaged each tube

with a Kodak Gel Logic 200 imaging system equipped with Kodak molecular imaging

software (Carestream Health, Rochester, NY) with a single exposure at 0.01 s exposure

time.

5.4.8 Gel Electrophoresis.

Amplified UDG-LAMP products were analyzed via gel electrophoresis using a 2%

agarose gel pre-stained with 1 GelStar (Lonza). Each sample consisted of 1 µL LAMP

reaction product, 2 µL 10 bromophenol blue loading dye, and 7 µL 1 TBE. In parallel,

each lane of ladder contains 1 µL low molecular weight DNA ladder, 2 µL loading dye,

and 7 µL 1 TBE. Electrophoresis was performed in 1 TBE buffer at 140 V for 40 min.

Gel images were taken with Kodak Gel Logic 200 imaging system.

5.4.9 Experimental Procedure of CORR-LAMP

Assembled reaction mix was pipette-loaded into MUA-passivated and DI-water-rinsed

microfluidic chip. The chip fluid ports were sealed with PCR film (Microseal ‘B’ Adhesive

Seals, Bio-Rad, Hercules, CA) to prevent reaction contamination and reagent evapora-

tion. The chips were connected to a potentiostat (CHI 660D, CH Instruments, Austin,

TX) for electrochemical measurements via custom card-edge connectors. After the 5-min

UDG treatment step at room temperature, the chip was placed on a digital block heater

(VWR International, Radnor, PA) maintained at 66 ◦C to perform the LAMP reaction.

The thermal contact between the chip and the heater was established by a thermal com-

pound (Arctic Alumina, Arctic Silver, Inc., Visalia, CA), which also served as an adhesive

to keep chips attached to the heater during the reaction. We simultaneously initiated a

series of time-course electrochemical measurements, measuring the redox current in each

116



Contamination-Resistant LAMP for Genetic Pathogen Detection Chapter 5

chip every minute for 60 min. Up to six samples (two chips) could be tested in a single

experiment.

5.4.10 Electrochemical Measurements

Square wave voltammetry (SWV) was selected for monitoring the MB redox current

during LAMP reactions due to its fast measurement time (approximately 4 seconds per

measurement). The SWV parameters were as followed: 0.2 V initial voltage, -0.4 V final

voltage, 0.004 V increment, 0.025 V amplitude, 100 Hz frequency, 1 second quiet time

and 100 nA sensitivity. A custom potentiostat macro command was written to enable

the simultaneous monitoring of two chips (six samples).

5.4.11 Electrochemical Data Processing

The time-course current measurements were normalized to the current value at the

end of the first minute of the LAMP reaction (i.e., t = 1 min). The normalized current

trace was plotted and further processed with Origin 8.0 data analysis and graphing soft-

ware (OriginLab, Northampton, MA). The normalized current trace was smoothed by

the Origin built-in five-point adjacent averaging function. The derivative curve was sub-

sequently calculated from the smoothed current trace using the Origin built-in derivative

function. The derivative trace facilitated the reliable identification of the signal threshold

—designated as the local minimum of the current derivative trace —and the correspond-

ing time-to-threshold —defined as the reaction time required for a particular sample

reaction to reach the signal threshold.
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Appendix A

Supplementary Data for

Closed-Loop Infusion Control

A.1 Pump output during controlled single-set-point

targeting
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Figure A.1: Infusion rate of DOX for three rabbits undergoing feedback-controlled
infusion targeting an identical set-point (0.5 µM for 1 hr). These infusion profiles
correspond to the control results shown for (top) Rabbit 2 in Figure 2.9B, (center)
Rabbit 1 in Figure 2.9B, and (bottom) the right-hand plot for Rabbit 5 in Figure
2.10B.
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Appendix B

Supplementary Data for

Shape-Based Sorting with FACS

B.1 4-D Gates for particle sort

Figure B.1: 4-D gate AR 1.0
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Figure B.2: 4-D gate AR 2.0
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Figure B.3: 4-D gate AR 3.0
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Figure B.4: 4-D gate AR 4.5
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