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Abstract

Frequency Division Using A Micromechanical Resonance

Cascade

Kamala R. Qalandar

Frequency conversion mechanisms are essential elements in frequency synthe-

sizers, which are used in many applications ranging from microwave and RF

transceivers to wireless applications to vibration energy harvesters. In partic-

ular, the frequency divider, which is an integral part of the phase-locked loop cir-

cuit, is essential in modern day instrumentation and wireless communications. In

most systems requiring frequency conversion, electronic frequency converters are

used; these components require significant power input and introduce noise into

the system. In this dissertation, we introduce a mechanism for eliminating these

noisy electronic components by using coupled mechanical elements. This novel

mechanism for frequency division using parametric resonance in MEMS relies on

finite deformation kinematics and nonlinear coupling between isolated modes in a

structure to divide an input signal through multiple stages using purely mechan-

ical coupling.

We present the theoretical framework for a generic subharmonic resonance

cascade. Design considerations for one specific implementation are discussed, and

x



a proof-of-concept for low-noise low-power applications is demonstrated. A single

input signal is divided through three modal stages, generating output signals at

1
2
, 1

4
, and 1

8
of the input signal. Coupling and boundary conditions are explored,

as well as the noise characteristics of this mechanical frequency divider. We show

that this type of cascading frequency conversion improves phase noise performance

of each individual mode.

Professor Kimberly L. Turner

Dissertation Committee Chair
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Chapter 1

Introduction

Microelectromechanical systems (MEMS) are systems that combine electrical

and mechanical components, created using microfabrication techniques, to create

new technology at the microscale. Though there’s some disagreement on when the

field of MEMS was first established, or whether Richard Feynman’s 1952 lecture

There’s Plenty of Room at the Bottom [1] was really as influential as it appears

in hindsight, we can all agree that some of the most significant “firsts” in the

field occured in the 1960’s and 1970’s - the evolution of surface micromachining

techniques, the development of capacitive pressure sensors, and the invention of

microprocessors are just a few of many examples [2, 3]. Then, Kurt Peterson’s

1982 paper Silicon as a Mechanical Material [4] layed the groundwork for future

structural MEMS design by describing methods of fabrication for many types of

silicon MEMS devices, and shortly thereafter, in 1986, the term “microelectrome-

chanical system” was first introduced. Since these early days, the field of MEMS
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Chapter 1. Introduction

has expanded to include a wide range of areas of interest, including subjects as

varied as microfluidics, bio-mems, point-of-care medical systems, and energy har-

vesters.

As microfabrication techniques are refined, smaller length scales and higher

frequencies can be repeatably realized. In the field of resonant MEMS, as fre-

quency goes up and size goes down, significant concerns that already exist - phase

noise, power consumption, and anchor loss are just a few examples - become even

more significant. The accuracy of the frequency reference itself can be the limiting

factor in determining what practical applications a particular technology has [5],

and low quality factor electronic elements can also add noise to a system [6], even

when the system uses a frequency reference with good noise characteristics.

Frequency synthesizers, which are used in many applications ranging from

microwave and RF transceivers to wireless applications to vibration energy har-

vesters [7, 8, 9, 10], have a high power consumption because of the electronic

elements, rather than the frequency setting element. In this dissertation, we in-

troduce a mechanism for eliminating these noisy electronic components by using

coupled mechanical elements. This novel mechanism for frequency division using

parametric resonance in MEMS relies on finite deformation kinematics and non-

linear coupling between isolated modes in a structure to divide an input signal

through multiple stages using purely mechanical coupling [11, 12]. We demon-
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Chapter 1. Introduction

strate successful divide-by-eight operation, and show that this type of cascading

frequency conversion improves phase noise performance of each individual mode.

Chapter 2 gives an introduction to parametric resonance and discusses ex-

amples of coupled resonators in current literature. In Chapter 3, the theoretical

framework for a generic subharmonic resonance cascade is presented, and design

considerations for one specific implementation are discussed. In Chapter 4, a

proof-of-concept for low-noise low-power applications is demonstrated, and the

coupling and boundary conditions are explored. Chapter 5 discusses the precision

and accuracy of these dividers. Finally, in Chapter 6, we discuss other types of

mechanical frequency dividers to be fabricated and tested in the future, as well as

other drive and sense mechanisms. We also investigate the possibility of tuning

the coupling strength of such systems using finite element modeling. The conclu-

sion of this work is that nonlinearity in MEMS is not something to fear - not only

are nonlinearities unavoidable, they can be utilized in novel design or for better

performance. Using parametric resonance and nonlinear intermodal coupling, we

demonstrate mechanical frequency division with improved noise characteristics

over traditional operation.

3



Chapter 2

Background

2.1 Frequency Conversion and Coupled Systems

Frequency conversion mechanisms are essential elements in frequency synthe-

sizers [13, 7]. Frequency synthesizers, which generate a range of signals from a sin-

gle stable input signal, are used in many applications, ranging from microwave and

RF transceivers to wireless applications to vibration energy harvesters [7, 8, 9, 10].

In particular, the frequency divider, which is an integral part of the phase-locked

loop circuit, is essential in modern day instrumentation and wireless communica-

tions. The design of the frequency divider is critical as it is generally the element

in the circuit that requires the most power, and significant literature exists cover-

ing the research on low power frequency dividers [14, 15]. Accuracy and precision

in these frequency conversion mechanisms are essential, particularly in wireless

technology, which relies on precise selection of a signal on a particular channel.

4



Chapter 2. Background

With small frequency bands near each other on the spectrum, small unintended

frequency shifts can lead to the problem of crossed signals, which highlights the

need to limit phase noise in frequency conversion mechanisms.

In most systems requiring frequency conversion, electronic frequency convert-

ers are used [13, 6]. Solid-state devices have dominated this field due to wide

bandwidth operation and ease of implementation. In [13], two types of GaAs-

based frequency dividers with divide-by-two operation are presented: a parametric

divider and a regenerative type divider, which can generally operate over a wider

range of frequencies and drive levels. Regenerative dividers, also referred to as

Miller dividers, can be used to divide a signal by N+1 where N is an integer, and

generally show better phase noise characteristics than traditional digital dividers

[16]. Fractional-N dividers, seen in [17] and [18], use a time-average of two dividers

to select a particular frequency. [19] demonstrates a cascading CMOS divider at

40 GHz with an input range of 2.3 GHz, with two successive divide-by-two stages.

There are several demonstrations of cascading conversion stages, but they gener-

ally require amplifiers and buffers for cascading conversion stages [13, 19, 20] and

preventing back-coupling [21, 22]. Input phase noise variations in a phase-locked

loop are multiplied by N at the ouput, so a frequency divider actually increases

noise by 20 log(N) [6]. This noise can be high enough to mask noise floor of input

oscillator. In single-stage conversion mechanisms, such as prescalers or fractional-

5



Chapter 2. Background

N synthesizers, or cascading converters with successive division stages, the active

elements are the main sources of noise.

Passive dividers are another type of device used for frequency conversion; in

this context, passive refers to a mechanism that does not require active elements

for dividing frequency and preventing back-coupling, and instead relies on coupled

mechanical components. Because passive dividers don’t require active elements

for operation, they require less power and can avoid the added noise generated by

active elements in a circuit. Each output frequency is based on the resonance of

a mechanical element; precise design is required for alignment of these resonant

modes.

So far, passive frequency dividers, which have the capacity for low phase

noise and low power consumption, have only successfully been demonstrated in

a single divide-by-two conversion stage [23, 24]. In [23], a capacitive-gap trans-

duced micromechanical array demonstrates single divide-by-two frequency oper-

ation through the use of a parametric oscillation effect. This frequency divider

requires no active elements, thus adding no additional noise sources outside of that

from the frequency source itself. The coupled modes demonstrated frequency di-

vision from 121 MHz to 60.6 MHz, with a 23 dB decrease in far-from-carrier noise,

which is a significant improvement over the expected 6 dB drop in a divide-by-two

6



Chapter 2. Background

operation (discussed further in Chapter 5). This is attributed to the high quality

factor of the device combined with the lack of active elements.

A detailed model of coupled modes in a single resonator structure in autopara-

metric resonance in presented in [25]. In this work, the response of two modes

of an electrostatically-actuated device, with a frequency ratio of 2:1, are simu-

lated. It is shown that with proper choice of drive amplitude, the bandwidth over

which the lower frequency mode is actuated can be narrowed, resulting in high

quality factor operation. This paper is followed by [26], in which experimental

results for a pedal microresonator are presented. A single divide-by-two stage

in this microresonator takes advantage of nonlinear coupling between modes: a

flexural mode is driven directly, and then quadratic intermodal coupling excites

a lower frequency torsional mode, aligned at a 2:1 ratio. This work explores the

sensitivity to mistuning of the 2:1 modal frequency ratios, as well as the effects of

damping and structural features that alter the targeted design specifications, and

demonstrates some of the limitations of frequency conversion with a mechanical

frequency divider based on autoparametric resonance. Nayfeh, Asrar, and Nayfeh

[27] investigate a system with three internal modes. This study is motivated by

internal resonance between modes in a plane; energy in one mode is transferred

to a lower frequency mode, inducing vibrations that caused the plane to break

apart. In this case, the modes align with 2:1 frequency ratios, and parametric

7



Chapter 2. Background

resonance between the modes causes large amplitude vibrations. In [24], a passive

CMOS frequency divider relying on parametric oscillation is presented. It shows

a better phase noise performance than a traditional injection-locked divider due

to the absence of active elements. This divider also has no static power consump-

tion, which is advantageous for implementation in a phase-locked loop. These

types of parametric dividers are capable of producing a larger power output and

demonstrating superior phase noise performance to more traditional dividers, but

so far have not been shown capable of cascading conversion stages.

There are also cases in literature of parametric excitation of similar resonators,

with one frequency division stage occuring between the input signal and the single

output signal. In [28], globally coupled oscillators of the same frequency subjected

to parametric resonance are studied for the purpose of improved performance and

amplified response signal. [29] discusses coupling between 2, 3, and N resonators

in a weakly coupled oscillator network. The linearly coupled non-autonomos os-

cillators synchronize under parametric 2:1 excitation.

A novel frequency conversion method is proposed in [11] that combines the

cascading capability demonstrated by solid-state dividers and the passivity of a

parametric divider into a single mechanical device. The operation is based on

nonlinear dynamics and exploits the robustness of parametric resonance. This

method uses a subharmonic resonance cascade in a chain of resonators with ap-

8



Chapter 2. Background

proximate 2:1 natural frequency ratios, with weak nonlinear coupling between the

elements that allows energy exchange between them. Of interest is a particular

type of this type of system, where the high frequency end of the chain is excited,

and the coupling between the elements activates each resonator down the chain.

The following chapters cover the modeling, design, and experimental results of

such a system.

2.2 Resonance Phenomena

2.2.1 Linear and Nonlinear Resonance

Mechanical resonance can be described as the tendency of a system to oscillate

at a greater amplitude at some frequencies than at others. These frequencies are

called the resonance frequencies and depend on geometric and material parameters

of the system. When the system is driven at or very near one of these resonance

frequencies, the amplitude of the response increases, which increases the signal to

noise ratio and improves the ability to measure the response.

In mechanics, resonance is described using a mass-spring-damper system. The

equation of motion of such a system when it is subjected to sinusoidal external

forcing is given by

9



Chapter 2. Background

mẍ+ cẋ+ kx = F0cos(ωt) (2.1)

where m is the mass, c is the damping coefficient, k is the stiffness of the spring,

and F0 and ω are the strength and frequency of the forcing. Resonant motion

occurs when ω is very near the resonance frequency. For small values of damping,

ω0 of the forced system is very near the natural frequency of the system, which

is given by ω0 =
√
k/m, where ω0 describes the frequency of unforced vibrations.

The solution for the sinusoidally-forced resonator is given by x(t) = A sin(ω0t+ θ)

where A is the amplitude and θ refers to the phase of the solution. Note from

this solution that the amplitude and frequency of the solution are independent.

Ignoring the effects of damping momentarily, with increasing forcing strength,

the amplitude of the harmonic response increases linearly (Figure 2.1). As the

mass displaces farther from equilibrium, the restoring force pulls back with a force

proportional to the displacement, and the period of oscillation remains unchanged.

Nonlinear resonance can be described very simply as the occurence of reso-

nance in a nonlinear system. Nonlinearities in a MEMS system can arise from

various sources, including material properties, boundary conditions, actuation

and detection mechanisms, and nonlinear damping [30, 31, 32], and always exist,

though they are generally ignored for the sake of simple analysis. Though this

approximation of linearity is valid for certain ranges of operation, it also masks

10
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Figure 2.1: Representative amplitude-frequency response of a harmonic oscillator
subjected to increasing forcing strength. The x-axis shows ω/ω0, where ω is the
drive frequency and ω0 is the resonance frequency. In the linear regime, the
resonance frequency is independent of the response amplitude. Increased forcing
strength increases the response amplitude, but does not cause a shift in resonance
frequency.

the interesting and sometimes useful dynamical properties that arise from the

nonlinearities.

In contrast to linear resonance, nonlinear resonance is a phenomenon in which

the resonance frequency does depend on the amplitude of vibration. The non-

linear restoring force, which can be represented generally by F = k1x + k2x
2 +

k3x
3 + (h.o.t.), now means that the eigenfrequency is amplitude dependent. The

nonlinear resonance shift is then given by ω = ωo + κx2, where κ is a constant

derived from the nonlinear coefficients and x is the amplitude of the displacement.

The Duffing equation [33] is a well-studied example of an equation of motion

describing nonlinear resonance [34, 35]. It is used here as an illustrative example

11



Chapter 2. Background

as the cubic nonlinearity it contains describes the dynamics of a doubly-clamped

beam resonating at large amplitude, which will be encountered in later chapters.

Here, the nonlinear restoring force arises from the axial stretching of the beam.

The forced Duffing equation with damping takes the form of

mẍ+ cẋ+ k1x+ k3x
3 = F0cos(ωt) (2.2)

where m, c, and ω0 retain the previous definitions, k1 is the linear stiffness pre-

viously defined simply as k, and we introduce k3 as the coefficient of the cubic

stiffness term. If k3 is positive, κ is positive. Increased forcing increases the

amplitude, and the resonance frequency increases; this is known as a hardening

nonlinearity. Conversely, if k3 is negative, increased forcing and amplitude lead

to a lower resonance frequency. This is known as a softening nonlinearity. Rep-

resentative amplitude-frequency curves for both hardening and softening systems

are shown in Figure 2.2. Nonlinear systems exhibit the “foldover effect,” demon-

strated for positive (left) and negative (right) values of k3. For certain values of

drive frequency, there is more than one possible solution; in these regions, there are

two stable solutions (solid lines) and one unstable solution (dotted line). While

the unstable solution is never seen in experiment, the nature of the resonance

curve can change depending on which direction the frequency is swept.

12
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Figure 2.2: Representative amplitude-frequency response curves for system with
Duffing nonlinearity. Note that in nonlinear resonance, the resonance frequency is
not independent of the response amplitude. Increased forcing strength increases
the response amplitude and also causes a frequency shift. Stable solutions are
indicated by solid lines, and unstable solutions are indicated by dotted lines.

While analysis of the dynamics of a system generally starts with the assump-

tion of linearity, and almost all design is done in such a way as to increase the

range of linear operation, most physical systems possess some degree of nonlinear-

ity. Understanding the sources of nonlinearity, and methods for designing around

them, is important. More importantly, nonlinearity in MEMS can be exploited,

to increase the dynamic range and improve sensitivity [36, 37, 38]. Ideas for ex-

ploiting nonlinearity for improved performance are discussed further in Section

5.1.2.
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Chapter 2. Background

2.2.2 Parametric Resonance

Parametric resonance is a resonance phenomenon that differs from the previ-

ously described linear and nonlinear resonance because it exhibits the instability

phenomenon - solutions change from stable to unstable, and vice versa, across

instability boundaries that are determined by parameters of the system and the

excitation to which it is subjected.

Two classic examples of parametric resonance are the child on a swing [39],

where a child sits and stands while swinging, thereby periodically modulating

the effective length of the swing and increasing the amplitude of oscillation, and

the vertically-forced pendulum [40], where the vertical forcing of the support at

twice the natural frequency of the pendulum causes a large amplitude swing of

the pendulum. Other examples of physical phenomena described by the Mathieu

equation inlude roll resonance of a ship on water [41], reheating of the universe

after inflation [42], analysis of the dynamics of cables in large stayed bridges [43],

and oscillations of spherical bubbles in water [44]. The common attribute among

these examples concerns the relationship between the frequency of the input and

output: an important property of parametric resonance is that in contrast to linear

or nonlinear resonance, in which a small excitation near the resonance frequency

can produce a large response at that frequency, in parametric excitation, a small

14
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excitation at a frequency far from the natural frequency can produce a large

amplitude response at the natural frequency.

This phenomenon arises when a parameter of the system is varied periodically

in time at certain frequencies. In this work, we focus on systems with sinusoidally

varying stiffness, though the same effect can be achieved when other energy-

storage terms are varied in time. In contrast to linear and nonlinear resonance,

where external forcing provides the energy to increase the response amplitude, in

the examples of parametric resonance covered here, the energy from the external

forces varies the stiffness, which acts as an energy source and causes a jump in

amplitude.

Parametric resonance occurs for drive frequencies at or near 2ω0/n where n is

a postive integer [45]. When n = 1 and the drive frequency is at or near 2ω, it

is termed primary parametric resonance; this first instability region is the most

commonly studied and will be the focus of the remainder of this work. Parametric

resonance is generally difficult to achieve for any n > 1 in macroscopic systems

due to energy losses in the system, but can be more readily demonstrated in mi-

crosystems due to their ability to overcome damping. The first demonstration

of multiple parametric resonance instabilities in a micromechanical system comes

from Turner et al. in [45]. A torsional microelectromechanical resonator is driven

into out-of-plane cantilevered rotation using comb drive levitation, and the first
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five regions of instability are mapped and compared to theory. The authors sug-

gest that parametric excitation in microelectromechanical systems can be used to

reduce parasitic signals that sometimes cause concern in capacitive sensing, and

in this particular device, increase the sensitivity of atomic force microscopy mea-

surements. Since then, parametric resonance has been demonstrated in a wide

variety of micromechanical systems for a wide variety of purposes, including mass

detection with high sensitivity using microbeams [46, 47], robust micro-gyroscopes

that are less sensitive to parameter variations due to their dynamical properties

[48], and in bandpass filter applications [49]. An excellent review of parametric

resonance in MEMS can be found in [50].

Parametric resonance can be described mathematically by the general form of

the linear, undamped Mathieu equation, which is given by

ẍ+ (δ + ε cosωt)x = 0 (2.3)

where δ refers to the forcing strength and ε cosωt is the parametric perturbation.

The linear Mathieu equation can be used to describe systems undergoing external

periodic forcing, and the solutions describe the boundaries of the instability zones

as drawn in the ε− δ parameter space [51, 52]. Readers may encounter the linear

Mathieu equation in alternate forms, such as ẍ + (δ + 2ε cos 2t)x = 0 [35], or
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ẍ + (a − 2q cos(2τ))x = 0 [52], where different scaling methods lead to different

forms. Those interested in a visual approach to Mathieu functions are strongly

encouraged to read [53], which also nicely summarizes different vocabulary and

notation used throughout literature to describe Mathieu functions.

For systems undergoing dynamics described by the Mathieu equation, the

boundaries of the instability zones are a critical data set. The instability zones are

the regions of drive frequency and amplitude parameter space in which paramet-

ric resonance will occur, and can be numerically determined by solving Equation

2.2.2 for the boundaries in the a− q or δ− ε parameter space. [35] shows the first

several instability zones as determined by the linear Matheiu equation. More prac-

tically, these instability zones are mapped experimentally by varying the forcing

parameters and determining when parametric resonance occurs through a method

of detecting the jump to the large amplitude solution. By experimentally deter-

mining the forcing parameters that lead to parametric resonance, we are able to

map a curve in the amplitude and frequency parameter space, termed the Arnold

tongue [54]. Inside this region, parametric resonance will occur. A representative

Arnold tongue is shown in Figure 2.3, using the forcing parameters often used in

MEMS - frequency and amplitude of the voltage of the input signal. The pres-

ence of a damping terms rounds the point of this curve, increasing the threshold

for parametric resonance without shifting the tongue in the amplitude-frequency
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parameter space. Damping does not limit the growth inside the instability zone,

but does affect the rate at which the amplitude grows [35].

Detuning

F
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damping

Figure 2.3: Schematic of wedge of instability for a micromechanical system. As
damping increases, the threshold in the frequency-amplitude parameter space at
which parametric resonance is achieved, and the point becomes rounded. A system
with a higher quality factor will have a narrower tongue.

Outside the instability region, the origin is stable. Inside the tongue, the

solution to the linear Mathieu equation (Equation 2.2.2) gives unbounded expo-

nential amplitude growth. In a physical system, this unbounded amplitude would

eventually lead to system failure. However, most systems possess some degree of

nonlinearity that limits the amplitude, and can be be more accurately represented

by a nonlinear form of the Mathieu equation. The stability of the origin is the

same for the linear and nonlinear systems, and so the transition boundaries are

still determined using the linear Mathieu equation. Inside the tongue, the ampli-

tude still grows exponentially, but is limited to a finite value by the nonlinearity

and cannot be predicted using linear approximations. In a nonlinear system, the
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sytem exhibits hysteresis, and the possibility of non-trivial solutions outside the

instability region exists. There are many different types of nonlinearities that

arise in systems described by the Mathieu equation: [55] describes a system with

a quadratic nonlinearity; [47] describes a system with cubic nonlinearities; and

[56] describes a system with both quadratic and cubic nonlinearities. One specific

case, a microbeam subjected to periodic loading along its longitudinal axis, is

described in the following section.

Case Study: Parametric resonance in a doubly-clamped beam subjected

to axial loading

Here, we consider a system with a nonlinear restoring force. For the doubly-

clamped beam discussed in Section 2.2.1, the stiffening cubic nonlinearity arising

from the axial stretching dictates the response. The undamped nonlinear Mathieu

equation with a cubic nonlinearity is given by ẍ+ (a− 2q cos 2τ)x+a2x
3 = uf (τ),

where a2 is the cubic stiffness coefficient, and the other coefficients retain their

previous definitions.

The equation of motion describing this dynamic behavior can be rewritten

using physical parameters as

ÿ +
c

m
ẏ +

(
k1
m
− 2λω2 cos (2ωt)

π2

L

)
x+

k3
m
y3 = 0 (2.4)
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Figure 2.4: Parametric resonance in an axially-forced beam. When a microbeam is
subjected to periodic loading in the axial (x) direction at twice the resonance fre-
quency, the beam will respond with large amplitude in the transverse (y) direction
at the resonance frequency. Maximum displacement occurs at x = L/2.

where y is the response amplitude at the center of the beam, m is the mass, c

is the damping, k1 and k3 are the linear and cubic stiffness respectively, λ is the

forcing amplitude, and L is the length of the beam. The displacement depends

on the location along the beam, but in experiment, we generally refer to the

maximum displacement at the center of the beam (x = L/2). For certain ranges

of frequency and amplitude of drive, the beam will respond with large amplitude

in the transverse direction. A full derivation leading to the nonlinear Matheiu

equation describing the dynamics of a doubly-clamped beam can be found in [57].

In this system, the amplitude does not grow unbounded, but is limited to a fi-

nite displacement envelope by the stiffening cubic nonlinearity. At a single forcing

amplitude, as we sweep frequency from left to right across the instability region,

we start outside the tongue with the stable solution at the origin. As the drive
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signal parameters cross the left boundary, a supercritical putchfork bifurcation

[58] occurs. The stable trival solution becomes unstable, and two stable large am-

plitude solutions appear as upper and lower branches. Across the right boundary,

the unstable zero solution becomes stable again. The system exhibits hystere-

sis, and the stable large amplitude solution continues to grow for a short time,

eventually collapsing again onto the zero solution. Another unstable solution also

appears.

Figure 2.5: Stable and unstable solutions for primary parametric resonance insta-
bility region. At a single forcing amplitude, with increasing forcing frequency, the
stable zero solution becomes unstable as the left boundary is crossed, and a stable
large amplitude solution appears as a supercritical pitchfork bifurcation appears.
As the right boundary is crossed, the origin becomes stable again.

At a single drive signal with frequency and amplitude parameters that fall in-

side the tongue, the response grows exponentially, as in the linear case, and then

settles to a large amplitude solution dictated by the nonlinearity. The amplitude

response of a doubly-clamped microbeam driven at 2ω with sufficient drive am-
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plitude, with a cubic nonlinearity included as in Equation 2.4, is shown in Figure

2.6.
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Figure 2.6: Response of a doubly-clamped beam subjected to axial loading, with
L = 500 µm, b = 20 µm, h = 1.5 µm, c = 5× 10−8 Ns/m and λ = 6× 10−6 m in
Equation 2.4.

In the next chapter, we’ll use this discussion of parametric resonance in an axi-

ally forced beam in our development of a general model for a mechanical frequency

divider that utilizes parametric resonance in coupled microbeams.
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Mechanical Divider Theory and
Design

Invention, my dear friends, is 93% perspiration, 6% electricity,

4% evaporation, and 2% butterscotch ripple.

Willy Wonka

3.1 Subharmonic resonance cascade theory

Multiple approaches to the mechanical implementation of passive multi-stage

frequency divider were explored. The first specific approach involves coupling

between orthogonal microbeams with spatially localized modes, discussed in the

following section. A generic model of a beam-spring mechanical implementation

of a subharmonic resonance cascade is shown in Figure 3.1. A sinusoidal signal

applied to u0 at twice the frequency of the highest frequency mode (u1), when

it has sufficient amplitude to overcome losses in the system, drives u1 into para-
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metric resonance through the coupling of the spring connection. The motion in

u1 then excites parametric resonance in u2. This excitation continues down the

chain, eventually exciting the entire cascade, due to the 2:1 frequency ratios and

nonlinear coupling between modes. Eventually, the entire chain is excited, and

frequency division by 2N is achieved, where N is the number of modes. Strachan,

Shaw, and Kogan present the development of the full set of equations describing

the dynamics of an infinite chain in [11], which shows that for a particular scal-

ing of nonlinearity and intermodal coupling, and above a critical forcing level, all

modes will be activated and reach equal amplitude solutions.

0 1

2

3

u u

u
u

Figure 3.1: Generic model of a mechanical implementation of a resonance cascade
showing the first three localized modes and coupling elements [11]. u0 actuates
the cascade of modes 1-n with degrees of freedom u1-un.

This generic model, of coupled orthogonal modes with 2:1 frequency ratios,

is the one considered in the remainder of this work. But note that this is not
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the only approach that can take advantage of the same autoparametric resonance

effects. Though this design relies on 2:1 frequency ratios, theory predicts that

parametric resonance occurs when the drive frequency is ωdrive = 2ω0/n, where

n is an integer ≥1 [45]. In general, we think of the case for n = 1, so that

ωdrive = 2ω0, but other ratios of drive frequency to response frequency can also

be considered. [59] demonstrates modal coupling at a 3:1 ratio. Orthogonality is

also not a requirement. Flexural beams can be placed at angles other than the

90° considered here, but orthogonality does maximize the energy transfer from

one mode to the next when considering axial forcing in order to actuate large

amplitude transverse displacements. In addition, it is possible to couple other

types of modes together, as in the case of a flexural mode coupled to a torsional

mode at a 2:1 ratio [26].

3.2 Modeling of Coupled Modes

3.2.1 Coupled Modes: Long Chain

Initial work from [11] develops the dynamics of a fully activated infinite chain

of subharmonic resonators. In the model development, certain assumptions were

made. Specifically, it was assumed that the cubic nonlinearity and the coupling

between modes each increase by a factor of four at each successive stage. Us-
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ing these assumptions and modeling the cascade as an infinite chain, the model

predicts an equal amplitude solution when the entire cascade is activated.

In practice, a chain of this type comprises a finite number of resonators, and the

cubic nonlinearity of each mode actually decreases with increasing beam length

[60]. Mathematica (Wolfram Mathematica Student Edition, Version 10.0.0.0) can

be used to show the dynamics of a generic, but more realistic physical system of

a “long” chain of coupled orthogonal microbeams. This approach gives us the

ability to tune individual parameters of each beam, as well as coupling, input

forcing parameters, and initial conditions. With quadratic coupling of the type

in [11], we assume a nonlinear equation for each beam, similar to the format in

[12], with modal amplitudes, natural frequencies, quality factors, and damping

coefficients denoted as xn, ωn, Qn, and γn, respectively. The dynamics of this

coupled system of a finite length are described by

ẍn +
ωn
Qn

ẋn + ω2
nx+ γnx

3
n + 2κn−1xn−1xn + κnx

2
n+1 = 0 (3.1)

where modes 1 to N provide the output signals, x0 = F cos(Ωt) is the applied

parametric force on mode 1 with Ω = 2ω1, and the chain is terminated with

xN+1 = 0. The coupling coefficents are denoted by κ, with κn−1 representing

forward coupling (parametric pumping from one mode to the next), and κn rep-
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resenting back coupling (back action from from the driven mode back to drive

mode). These couplings occur between each adjacent pair of modes. We’ll rewrite

Equation 3.2.1 in a slightly different format, for convenience later, as

ẍn + 21−ncẋn + 22(1−n) (ω2x+ γx3n + 4κfxn−1xn + κbx
2
n+1

)
= 0 (3.2)

where c is the damping coefficient, κf and κb are the forward and back coupling

coefficients, respectively, and all other variables retain their previous definitions.

This reformulation uses a single parameter, scaling modal damping, coupling, and

frequency parameters for modes 2-N to mode 1.

A simple time domain analysis shows sequential actuation of each member of

a seven-stage cascade (a method for finding averaged equations can be found in

[11]).

In this model, we’ve assumed exact alignment of modes, with no detuning, i.e.

ωn = 2ωn+1. In addition, we reverse the assumption that the nonlinearity scales by

1:4 from one mode to the next, and instead model this scaling in a more physical

manner, based on dynamics of doubly-clamped beams (Section 2.2.1) and scale

the nonlinearity by 4:1 ratios. We also reverse the scaling of the coupling to match

the physical architecture: each successive lower frequency mode is localized in a

longer, less stiff beam, transferring a smaller amount of energy. As can be seen in
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Figure 3.2: Full activation of a seven-stage cascade. Scaled system parameters
from Equation 3.2.1: F = 1, γ = .2, ω = 1, κf = .064, and κb = 1

2
κf = .032. This

represents the larger of the two non-trivial solutions, with an additional trivial
solution at zero amplitude.

Figure 3.2, the more realistic scaled physical system, when it reaches steady state

actuation of the full cascade, just about reaches the equal amplitude solution.

Figure 3.3 shows a short segment of the time-domain response at full cas-

cade actuation, showing more clearly the equal amplitude solution and successive

frequency division by two. The last mode in the chain reaches a slightly lower

amplitude, due to the fixed final boundary condition, as described in [11].

3.2.2 Two Coupled Modes

A smaller number of similarly coupled modes allows us to further investigate

the complex dynamics of a subharmonic resonance cascade. Adjusting the model
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Figure 3.3: Time-domain view of full activation of a seven-stage cascade. Scaled
system parameters from Equation 3.2.1: F = 1, γ = .2, ω = 1, κf = .064, and
κb = 1

2
κf = .032. Note here that the last mode has a slightly smaller amplitude,

as predicted by [11], due to the fact that the last mode couples to a mode with
zero amplitude, corresponding to a fixed boundary condition.

to account for smaller number of stages, and expanding to including more complex

phenomena like nonlinear damping, or fabrication-related problems like detuning

from physical fabrication inconsistencies, we begin to see interesting effects in the

response of each mode. In the following sections, we investigate the response

of two coupled modes, mode 1 and mode 2, where mode 2 has a frequency half
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that of mode 1, or ω1 = 2ω2. Mode 1 is actuated with an input signal at ωin =

2ω1. The goal is to develop an understanding of the trends and compare them

to experimental results, thereby giving us a way to recognize which effects are

important and need to be included in the generic infinite chain model.

Forcing Bias

Here, we hold the amplitude of the sinusoidal input signal constant while

increasing the bias. This changes the range of direct and parametric forcing in

which both modes actuate. The results are shown in Figure 3.4.
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Figure 3.4: Effects of asymmetric forcing levels (DC) on response of mode 1 and
2 in a coupled two-mode system. Solid lines represent response of mode 1 and
dashed lines represent the response of mode 2, with ω1 = 2ω2.

As expected, the increasing bias shifts the response frequencies higher. The

amplitude of mode 1 also increases, while the amplitude of mode 2 remains con-
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stant. An interesting result is that with increasing bias, the transition to large

amplitude becomes a sharp jump. This occurs in both modes.

Nonlinear Damping

Up to this point, we have considered only linear damping. As described in [61],

when the response amplitude is large enough that we need to consider nonlinear

stiffness terms, like the cubic term for a single beam in Equation 2.2 or for coupled

modes in Equation 3.2.1, we should also include a nonlinear damping term of the

form ζn,2x
2
nẋn, which increases with amplitude, where ζn,2 is the nonlinear damping

coefficient. Redefining the linear damping coefficient to ζn,1, where ζn,1 = ωn

Qn
, the

equation of motion for two coupled modes can be given as

ẍn + ζn,1ẋn + ζn,2x
2
nẋn + ω2

nx+ γnx
3
n + 2κn−1xn−1xn + κnx

2
n+1 = 0 (3.3)

Results for this system are shown in Figure 3.5.

Nonlinear damping affects the amplitude of the response. As the nonlinear

damping coefficient is increased, the response of mode 1 flattens. The spikes seen

at the end of the last two levels of nonlinear damping are an artifact in the model

and could not be resolved within the constraints of the working memory of the

computer.
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Figure 3.5: Effects of nonlinear damping on response of mode 1 and 2 in a coupled
two-mode system. Solid lines represent response of mode 1 and dashed lines
represent the response of mode 2, with ω1 = 2ω2.

3.3 Semicircular Spring Implementation

3.3.1 Design Considerations

The general theory introduced in Section 3.1 describes the design of a reso-

nance cascade of individual microbeam elements, each one sequentially perpen-

dicular and mechanically coupled to its two nearest neighbors (Figure 3.1). The

coupling in the mathematical model developed there is quadratic in nature, but

makes no reference to any particular geometry. Three different coupling structures

were considered. The first involves direct coupling between two nearest neighbors,

shown in Figure 3.6a. The other two approaches involve springs between orthog-

onal beams: Figure 3.6b shows orthogonal beams connected by elliptic springs,

and in Figure 3.6c, the springs are semi-circular.
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(a) Directly connected

(b) Elliptical springs

(c) Semi-circular springs

Figure 3.6: Three implementations of orthogonal microbeam frequency dividers.
In (a), orthogonal microbeams are fixed at both ends and directly connected to
nearest neighbors at midpoints. In (b) and (c), one end of each microbeam is
fixed, and spring connections are used between nearest neighbors at the other
ends.
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In the following sections, we discuss the design, testing, and results of a divider

of the third type. In this layout, as shown in Figure 3.6c, the coupling geometry

is a semicircular spring between orthogonal microbeams. Modes are spatially

localized in beams 1-4, and the springs provide weak coupling between modes.

The geometry is shown in Figure 3.7. An animation of how this divider works can

be found at Dr. Turner’s research group website [62].

We begin with the design of a four-stage cascade, with N = 4, though the same

constraints apply to an arbitrary number of modes. Several design considerations,

listed below, were used to guide the layout of the device.

1. The frequency of the fundamental mode of each stage in the cascade must be

under 1 MHz. This allows us to use laser Doppler vibrometer measurements

with a limit of 1.5 MHz, as well as a stroboscopic planar motion analyzer,

which has a limit of 1 MHz. This does not include the frequency of the 0th

beam, which is designed to be actuated at a higher frequency off resonance.

2. Each subsequent frequency must be half that of the previous mode. That

is, fn = 2fn+1.

3. In the case of the elliptic or semicircular springs, the stiffness of the cou-

pling structure, and by extension the coupling between modes, must be

weak enough so that the modes are spatially localized in the beams, but
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sufficiently strong enough to transfer energy and provide parametric pump-

ing from one stage to the next.

4. The depth of the released structure must be significantly higher than the

in-plane dimensions, in order to isolate flexural modes in plane.

5. For a simple and repeatable fabrication process consistent over a full wafer,

the gap and line sizes must be able to be realized using projection lithography

and deep reactive ion etching.

3.3.2 Numerical Analysis - Modal Mechanics

In our mathematical model of coupled modes in parametric resonance, we

have assumed behavior similar to that of a doubly-clamped microbeam for each

mode. We have included a hardening cubic stiffness term due to axial stretching,

and assumed negligible higher order nonlinearities at the expected amplitudes.

The microbeams of our structure, with different boundary conditions at the semi-

circular spring connections, as well as coupling effects between modes, may not

exhibit the same behavior. Using mechanics analysis with finite element anal-

ysis verification, we investigate the relevant terms affecting the frequency and

dynamics of a single beam-spring (Figure 3.7).
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Figure 3.7: Design dimensions for a mechanical frequency divider comprising semi-
circular springs with diameter dn between orthogonal beams with length Ln and
width Wn, with in-plane device depth bn.

We first consider a doubly-clamped beam, with analytically determined linear

stiffness k1 = 192EI/L3 and cubic stiffness k3 = 11.92Ebh/L3 [60]. We compare

these analytical solutions for a particular set of geometric parameters to the solu-

tions determined using finite element analysis (described in the following section).

A transverse point load is applied at the center of the beam, and the resulting

force-displacement curve is fit to a polynomial (MATLAB R2014b 8.4.0.150421).

As seen in Table 3.1, these values agree with theoretical calculations for a doubly-

clamped beam subjected to a point load at the center, verifying our finite element

method.

Using a similar process, we determine the significant terms for the stiffness

of a single beam-spring. The full analytical derivation of the linear stiffness of a

beam-spring can be found in Appendix A. Using this solution, as seen in Table

3.1, the linear stiffness of a clamped beam-spring is significantly lower than that
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k1 k2 k3

[µN/µm] [µN/µm2] [µN/µm3]

Fixed Beam, Analytical 217.6 0 40.29

Fixed Beam, COMSOL 216.83 .003 39.07

Beam-Spring, Analytical 157.22 – –

Beam-Spring, COMSOL 157.36 5.25 .37

Coupled Beam-Springs, COMSOL 159.48 1.59 .52

Table 3.1: Comparison of analytical and finite elements methods for determin-

ing stiffness of a single beam, a single beam-spring, and coupled beam-springs.

Uniform depth of 10 µm, length 100 µm, width 2 µm, with hook outer diameter of

24 µm. A point load is applied at L/2. The Young’s modulus E is taken to be

170 GPa, along axis of (100) silicon wafer, with a density of 2329 kg/m3.

of a doubly-clamped beam with the same geometric and material parameters. We

also see the presence of a small quadratic stiffness term for a beam-spring, which

is not present in the symmetric doubly-clamped beam. Though this term is small

in comparison to the linear term, an accurate numerical model of a subharmonic

resonance cascade with semi-circular spring connections would need to include a

quadratic term. The model developed in the previous section is generic, making no

reference to specific coupling geometry, and so did not include a quadratic term.
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Higher order terms are negligible in these models, as was assumed in the generical

model, and so additional higher order terms need to be included. The numerical

model in Section 3.2 was modified to include a quadratic term. Activation of the

cascade and the resulting displacements were unaffected; the only change occured

in length of the transient build up to the large displacement envelope.

With verification that a model of a single beam-spring gives us insight into the

response of that same beam-spring when included in a larger coupled system, we

use our derived solutions to study the effects of different device design parameters.

Varying length and spring size allows us to find the combinations of the two and

determine dependence of of the linear stiffness k1 on not just L but also R, starting

with assumption of similar format to a doubly clamped beam. This relationship

is useful at the design stage, as we attempt to align modal frequencies at 2:1

ratios. We find that the relationship of spring radius to frequency, though it

follows the expectation that larger radii correspond to lower frequencies, is not

linear over wide ranges of spring size. However, in the range of interest, it can

be approximated as a linear relationship, with a slope that also depends on beam

length (Figure 3.8): for longer beam lengths, the slope of the spring-frequency

radius decreases.

We also investigate the relationship between the ratio of L1/L2, with a con-

stant total length L, and frequency. For a symmetric doubly-clamped beam, the
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Figure 3.8: Mechanics and geometry. (a) Effects of spring outer radius on fre-
quency, with increasing beam length L. (b) Effects of L1/L2 ratio with constant
total beam length L = L1 + L2 = 100 µm on frequency, with increasing outer
spring radius.

maximum displacement occurs at the center, with L1 = L2 = 1
2
L. In the analysis

of the beam-spring considered here, we have made the same assumption, but the

asymmetry of the structure means that this will not be the case. We find that

this relationship is highly nonlinear. As expected, for each spring radius, there

is a minimum in the length ratio to frequency curve. This point is dependent on

spring radius, with shorter radii corresponding to greater frequency shifts with

the L1/L2 ratio.

This numerical analysis is useful when determining design parameters. Achiev-

ing 2:1 or very nearly 2:1 frequency ratios is successive modes is critical to the

actuation of the full cascade. In addition, as we refine our design to include tuned

coupling, understanding these relationships will be important.
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3.3.3 Finite Element Modeling

To determine final device parameters that will align the modal frequencies in

the desired 2:1 ratios, we turn to finite element analysis using COMSOL Multi-

physics (Version 5.2.0.166). Though an analytical solution for the frequency of a

single beam-spring was derived in the previous section, the strength of the cou-

pling between modes in autoparametric resonance and how this coupling geometry

affects the boundary conditions and frequency of each mode in the cascade is still

to be determined, and so finite element analysis software is used.

Initial geometric parameters are determined by selecting a device layer depth

and a uniform feature size, and then using the numerical models developed in the

previous section to find the approximate length of each beam. Then, using this

general layout as a starting point, finite element simulations are used to determine

more exact geometric parameters of this device. The microbeam elements are

chosen to be uniformly 10 µm in depth and 1.85 µm wide (Wn in Figure 3.7). The

material properties are uniform across all microbeam elements, with E taken to

be 170 GPa and ρ = 2329 kg/m3. In the springs themselves, the finite element

analysis takes into consideration the fact that the Young’s modulus varies with

θ. The beam lengths increase by approximately
√

2 (but not exactly) to tune

the modal frequencies to decrease by a factor of 2 (Figure 3.9). Device design

40



Chapter 3. Mechanical Divider Theory and Design

parameters, determined from the COMSOL Multiphysics simulations, are shown

in Table 4.1.

Note that the differing boundary conditions have significant effects on the

modal frequencies. Scaling the lengths by exactly
√

2, as we would do for doubly-

clamped beams if we wanted 2:1 ratios, and starting with L2 = 183.8 µm, the

resulting simulated frequencies are f2 = 419.44 kHz, f3 = 217.56 kHz, and f4 =

111.53 kHz, with relative intermodal frequency scaling values of 1.93:1 and 1.95:1,

respectively. In order to achieve the desired 2:1 ratios between each nearest neigh-

bor in the cascade, we must take the springs and the coupling between them into

account using finite element analysis. Though each mode is spatially localized in a

single beam, changing the length of a single beam affects the frequency of all other

modes. This frequency shift is different for each mode, and varies with spring di-

ameter, making analytical determination of exact frequency difficult. Note also

that this is only one of many possible length specifications that achieves the de-

sired 2:1 modal frequency ratios.

Actuation for the structure is provided through a smaller beam, termed the 0th

beam, shown generically in the top left of Figure 3.1 as the drive element u0. The

0th beam is specifically designed not to align with the 2:1 frequency ratios. It has

a much shorter length (34 µm), and so a much higher natural frequency than the

highest mode in the cascade. It is actuated off-resonance using capacitive plate
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Mode 4: 103 kHz

Mode 3: 206 kHz

Mode 2: 413 kHz

Figure 3.9: Modal analysis of three-stage divide-by-eight frequency divider. Mode
4, isolated in the longest beam, has a frequency of 103 kHz. Similarly, modes 3
and 2 have frequencies of 206 kHz and 413 kHz, respectively.

actuation, providing a force proportional to the DC and AC applied voltages, and

is used to excite the resonance chain.
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Experimental Cascade

Invention, my dear friends, is 93% perspiration, 6%

electricity, 4% evaporation, and 2% butterscotch ripple.

Willy Wonka

4.1 Fabrication

The first successful implementation of a multi-stage passive mechanical fre-

quency divider is shown here in a three-stage (N = 3) divider comprising orthog-

onal beams with springs between them. An SEM micrograph of the fabricated

device, showing the response microbeam elements, the shorter 0th beam used for

actuation, the drive electrode, and the semi-circular spring connectors, can be

seen in Figure 4.1.

The released mechanical structure, spanning 400 µm x 400 µm, is fabricated in

single-crystal silicon using standard SOI processing techniques. The 10 µm device
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layer on a (100) silicon wafer is patterned using projection lithography (GCA

6300 I-Line Wafer Stepper). Trenches, with the smallest at 1 µm for the drive and

sense capacitive gaps, are etched using deep reactive ion etching (Plasma-Therm

770 SLR). Wherever possible, all trenches are designed to be the same width in

order to keep the etch rate consistent. Moveable structures are then released by

isotropically etching the 2 µm buried oxide layer with HF vapor (SPTS Primaxx

uEtch).

4.2 Experimental Results: Divide-by-eight Cas-

cade

The device was tested in vacuum at 350 mTorr using an MMR microprobe

vacuum chamber. The device is driven capacitively through the 0th beam using

the internal function generator integrated in the Polytec system in conjunction

with an HP 3245A Universal Source for DC voltage. The velocity and phase of

the in-plane motion of a point on each beam is detected using the MSA-400 Laser

Doppler Vibrometer from Polytec GmbH, which uses a helium neon laser and

doppler shift to measure velocity or displacement [63]. To direct the out-of-plane

laser beam perpendicular to the in-plane motion, 45◦ angled mirrors are etched

into anchored regions using focused ion beam milling [64].
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Actuation
Beam

Drive Electrode

Mode 4 Response Beam

Mode 3 Response Beam

Mode 2 Response Beam

Mode 1 Response Beam

Figure 4.1: SEM micrograph of mechanical frequency divider, showing the four re-
sponse beams in which the modes are localized, the shorter 0th beam and the drive
electrode used for actuation, and the semicircular coupling springs. Sense elec-
trodes are seen between the response beams, and large fixed anchors are arranged
outside the device to provide surfaces to etch mirrors. The released structure is
10 µm deep with a uniform feature size of 1.85 µm. The entire device spans 400 µm
x 400 µm.

The device is driven capacitively through the 0th beam at drive voltages Vdc =

50−90 V and Vac = 3−40 V using the internal function generator integrated in the

Polytec system. To characterize the modal frequencies, each mode is individually

actuated through the 0th beam by applying Vin = Vac + Vdc and sweeping the

frequency (ωd) of Vac. The electrostatic force felec resulting from Vin is given by
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fe =
1

2
Cd(Vac + Vdc)

2

=
1

2
Cd(V

2
acsin

2(ωdt) + V 2
dc + 2VacVdcsin(ωdt))

(4.1)

where Cd is the drive variable capacitance. When Vdc >> Vac, the first term

in Equation 4.1 can be neglected, and the linear behavior of each beam can be

characterized. A frequency sweep of the input signal with Vin = 4Vac + 70Vdc at

the 0th beam results in a harmonic response at the modal frequencies given in

Table 4.1, from which the quality factors are determined to range between 858-

1315. While these measurements were taken at each individual beam, the coupling

between modes allows determination of all modal frequencies at one query point.

In operation, a measurable response of mode n is observed when the ampli-

tude of the drive signal is sufficiently large and the drive frequency is sufficiently

close to 2ωn. This induces a parametric resonant response in the corresponding

beam, and a large amplitude solution is observed at the resonance frequency. The

region of drive amplitude and frequency parameter space in which this transition

occurs is determined by driving each mode independently into parametric reso-

nance through a signal applied to the 0th beam. Due to the modal coupling in the

system, each mode can be driven independently into parametric resonance with-

out actuating the full cascade. These experimentally determined regions, termed

46



Chapter 4. Experimental Cascade

Beam Design Measured Quality

Length Frequency Frequency Factor

[µm] [kHz] [kHz]

Mode 2 183.8 420 413 1315

Mode 3 263 210 206 1035

Mode 4 376.22 105 103 858

Table 4.1: Device design parameters: beam lengths, designed and measured res-

onance frequencies, and measured quality factors (in vacuum), with outer hook

diameter of 24 µm. Direct excitation of each mode is achieved through the actu-

ation beam shown in Figure 4.1, with signal Vdc = 90 V and Vac = 3− 10 V.

Arnold tongues [54], for modes 2-4 are shown in Figure 4.2. To induce parametric

resonance of each mode, Vdc is fixed at 90 V and Vac is varied at twice the fre-

quency to determine the transition between the zero stable solution and the large

amplitude solution. On this particular device, the response of mode 1 was not

easily observed using LDV measurements, and so actuation of the cascade begins

at Mode 2.

An important characteristic of this device is the region of of drive amplitude

and frequency parameter space that will cause the whole chain to be excited,

thus resulting in divide-by-eight operation. To determine the region of parameter
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Frequency [kHz]
200 300 400 500 600 700 800

D
riv

e 
V

ol
ta

ge
 V

ac
 [V

]

0

10

20

30

40

50

824 826 828
0

10

20

30

40

50

412 414 416
0

10

20

30

40

50

205.5 206 206.5
0

10

20

30

40

50

Figure 4.2: Parametric resonance zones, or Arnold tongues, for the first three
modes of the device. X-axis shows drive frequency Vac (ac component of drive
frequency), which is at or near twice the resonant response frequency of the mode.
Insets show close-ups of the tongues for clarity.

space where the entire chain of subharmonic resonances is activated, the individ-

ual Arnold tongues are normalized by mode number n and drive frequency fin

according to fin/(2
nfn). The results of this scaling are shown in Figure 4.3. The

overlap region of these three regions in this parameter space (shaded) is where the

entire cascade is expected to become activated, resulting in frequency division by

2, 4 and 8. Outside of this region, some elements of the chain may be excited,

depending on which region the drive amplitude and frequency fall in.
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Figure 4.3: Individual tongues for modes 2-4 normalized by mode number n and
drive frequency fin. The overlap region (shaded) is where the divide-by-eight
operation is achieved.

The instability regions observed in Figure 4.3 are not the usual single mode

parametric resonance regions due to the fact that the modal responses include the

dynamics of other modes. Specifically, mode n is parametrically driven by mode

n−1, which, due to the complicated geometry, is in turn driven by both parametric

and direct excitation from the drive signal. The various mode n instability wedges

are dictated by these subtle effects. For example, modes 2 and 4 are parametrically

driven by modes 1 and 3, respectively. Since both beams 1 and 3 are perpendicular

to the drive beam, the drive signal will have a dominant parametric force and a
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much smaller direct forcing term on beams 1 and 3. In contrast, mode 3 is

parametrically driven by mode 2, which has a parallel orientation to the drive

beam and, as a result, the drive signal has a much larger direct force on beam 2

than either beams 1 or 3. As such, the effective parametric forcing on modes 2

and 4 is considerably smaller than that on mode 3 which is why the third mode

instability region is much larger than the other two instability regions.

In this device, a minimum of 19 VVac is required along with Vdc = 90 V to

induce a three-stage cascade with corresponding divide-by-eight frequency division

using a single drive signal. At this drive amplitude, the drive frequency has a

bandwidth of 400 Hz. The bandwidth of the overlap region increases to 1400 Hz

with an input amplitude of 34 VVac with Vdc remaining at 90 V. This effect can be

seen in Figure 4.3; as the amplitude of the drive signal increases, the bandwidth

of full cascade operation grows. To demonstrate operation inside this shaded

region, the 0th beam is actuated with a signal that fall inside the shaded region.

A signal with an amplitude of 34 V at 824.6 kHz used to actuate the divide-by-

eight cascade. The cascaded parametric response from each beam is observed and

large amplitudes, obtained from the envelope of the large amplitude solution, are

plotted (Figure 4.4). It is experimentally shown that large amplitudes of up to

0.7 µm are achieved using these drive amplitudes and a capacitive drive gap of

1 µm at the 0th beam.
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Figure 4.4: Cascaded parametric response for each mode with 824.6 kHz drive
signal at 34 Vac with a DC bias of 70 volts. Mode 2 (divide-by-two) has a gain of
12, mode 3 (divide-by-four) has a gain of 28, and mode 4 (divide-by-eight) has a
gain of 20.

To show sequential activation of each mode across the different regions, we

sweep frequency up across the three tongues, starting in the trivial solution zone

to the left of all the tongues. Figure 4.5 shows the measured response amplitudes

from modes 2-4 over the frequency range of interest indicated in Figure 4.3. When

operating with a drive amplitude and frequency that falls inside all three tongues,

all modes respond at the large amplitude solution. Outside of this shaded region,

only one or two modes may be responding at large amplitude, depending on

location inside or outside of the tongues and the direction of the sweep. Note

that the mode 3 amplitude drops when mode 4 becomes active. The presence of a
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mode 3 response represents passive frequency division by a factor of 4, and mode

4 represents frequency division by a factor of 8.Response Frequency

0

0.2

0.4
412.25 413.25 414.25

0

0.3

0.6
206.25 206.75 207.25

0

0.2

0.4
103.05 103.25

Inside Mode 2 Wedge

fin/2

fin/4

fin

fin/8

M
ea

su
re
d
D
is
p
la
ce
m
en

t
A
m
p
li
tu

d
e
[µ
m
]

Drive Frequency of Vac [kHz]

Frequency of Concurrent Large Amplitude
Responses of Modes 1, 2, and 3 [kHz]

824 825 826 827 828 829

824 825 826 827 828 829

Inside
Mode 3
Wedge

824 825 826 827 828 829

Inside
Mode 1
Wedge

1

Figure 4.5: Measured amplitudes from modes 2-4, extracted from the spectrum
at 1

2
, 1

4
, and 1

8
of the drive frequency over the frequency range of interest; AC

amplitude of 30 V. The frequency range marked with black corresponds to that
of Figure 4.3, where the entire cascade activation is predicted to occur. Note that
these data were taken on separate sweeps (simultaneous measurement of modes
is not possible), and that the mode 4 response was slightly shifted to account for
drift between the runs.

The results show succesful demonstration of a multi-stage micromechanical

frequency divider. A single input signal provides frequency division by two, four,a
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dn eight in each of three different output elements. This proof of concept proves

the capability of dividing frequency using mechanical elements and eliminating

the need for noisy and high power electronic elements that are generally used to

prevent back coupling. Noise characteristics of a mechanical frequency divider

will be explored further in Chapter 5.

4.3 Device Characterization: Two Coupled Modes

A second device with only two coupled modes will be used to investigate

the noise characteristics of this mechanical frequency divider design (Chapter

5). Here, we discuss the characterization of the two resonant modes of interest of

this device; we focus on the coupling between modes 2 and 3, skipping modes 1

and 4 in the cascade. This cascade provides frequency division by two and four

at the two output stages. The design, layout, and fabrication are similar to the

divide-by-eight cascade in the previous section.

We use a modified experimental set up for this set of measurements in order

to achieve more precise control of input parameters and data acquisition (Fig-

ure 4.6). Rather than relying on Polytec’s built-in function generator, we use

an external waveform generator (Agilent 33500B Series) for generating sinusoidal

signals with a universal source (HP3245A) for the DC bias, and a spectrum an-
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alyzer (HP89410A) to gather the data directly from the vibrometer instead of

through the Polytec software interface. Chamber pressure control has also been

implemented using a (MKS Type 651 Pressure Controller), allowing us to specify

a set point and reach lower and more stable pressure levels. This control is done

manually, and not through the computer shown in the figure.

Oscilloscope

ComputerDivider

Vibrometer

Function
Generator

Motor
Controller

Spectrum  analyzer

Figure 4.6: Experimental setup for velocity measurements using external compo-
nents. The computer is used to control the function generator, motor controller,
and gather data from the spectrum analyzer.

The method used for device actuation remains the same. The device is driven

capacitively through the 0th beam and the drive electrode (Figure 4.1) at drive

voltages Vdc = 70 V and Vac = 1 − 24 V. To characterize the linear response of

modes 2 and 3, input signals at ωin = ω2 and ωin = ω3, respectively, are used.

To actuate the divide-by-four cascade, the input signal at the actuation beam has

a frequency of ωin = 2ω2, which actuates mode 2 and mode 3 into parametric

resonance, with response frequencies of ω2 and ω3.
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From initial measurements, we determined frequencies of 436 kHz, 210 kHz,

and 105.5 kHz for modes 2-4. Poor mirror quality prevent measurement of mode

1. Frequency ratios were determined to be 2.08:1 and 1:1.99 between adjacent

modes. To align modes at the desired 2:1 ratios for cascade actuation, we be-

gin by experimentally determining the boundaries the instability wedges in drive

amplitude and frequency parameter space for each mode (Figure 4.7).
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Figure 4.7: Individual tongues for modes 2-4. The drive frequency required for
each mode is scaled by plotted each individually on the x-axis. Neither set of
adjacent modes (mode 2 to mode 3, and mode 3 to mode 4), align at 2:1frequency
ratios. The scaled frequencies of modes 2 and 4 are too high when compared
to mode 3, so the response beams in which these modes are localized will be
lengthened using focused ion beam milling.

Then, focused ion beam milling was once again employed to lengthen beams in

which modes that are too high in frequency are localized. Two rounds of milling

were completed in order to shift the frequencies of modes 2 and 4 down. Response
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Figure 4.8: Responses of mode 2 and mode 3 to harmonic actuation. Mode 2

responds at 421.8 kHz with a quality factor of 1427, and mode 3 responds at

209.1 kHz with a quality factor of 720. This measurement was taken with a drive

amplitude 6 Vpp at a pressure of 30 mTorr.

beams 2 and 4 were lengthened by 3.68 µm and 0.97 µm, respectively. Response

beam 3 was not lengthened, as it had the lowest scaled frequency in the cascade.

After this post-processing on response beams 2 and 4, mode 2 was determined to

have a resonance frequency of 421.8 kHz and a quality factor of 1427, and mode 3

was determined to have a resonance frequency of 209.1 kHz with a quality factor

of 720.

When the frequency sweep range for mode 3 is expanded, the amplitude-

frequency response curve exhibits two peaks, one at resonance, and another about

1.5 kHz away (Figure 4.9). We believe this is due to the slight misalignment of the
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frequency ratio between modes 2 and 3, as the second peak appears at f2/2. This

phenomenon contributes to the low quality factor, as the energy from the input

voltage is distributed between generating displacement at two different frequency

components. More precise alignment of sequential frequencies would eliminate this

issue. As the linear drive amplitude increases, the peak at resonance increases and

the second peak decreases in relative magnitude.
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Figure 4.9: Two response peaks in mode 3. The input signal is swept near ω3

over a wider frequency range than the measurement shown in Figure 4.8. This
measurement was taken with a drive amplitude of 6 Vpp at a pressure of 30 mTorr.

The instability boundaries for modes 2 and 3 after response beam post-processing

are shown together in Figure 4.10. Mode 4 did not align with the cascade, and so

is not included in further discussion. A single input signal with an amplitude and

frequency in the overlapping region of these tongues should be expected to actuate
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the two-stage cascade with frequency divide-by-four operation. This occurs at a

narrow range of drive frequencies at drive levels greater than 21 Vpp.
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Figure 4.10: Individual instability regions after post-processing, normalized by
drive frequency and mode number. The overlapping area of the two instability
regions indicates the drive signal parameters that will actuate both stages of the
cascade. This only occurs at drive levels above 21 Vpp.

To show sequential activation of each mode across the different regions, we

sweep frequency across both instability regions tongues, starting in the trivial

solution zone to the left of both tongues. Figure 4.11 shows the measured response

amplitudes from modes 2 and 3 over the frequency range of interest for both

forward and backward sweeps. Solid lines indicate forward sweeps, with increasing

drive frequency at a given drive amplitude, and dashed lines indicated backward

sweeps. As discussed in the last section, modal interactions cause the response
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shape to look different than what we might expect. Here, the mode 2 response

indicates a softening nonlinearity, which we do expect from a fixed microbeam.

This response beam is parallel to the drive electrode, so we believe this is due to

the effects of the nonlinearity caused by the strong electrostatic drive term. The

mode 3 response looks more like what we would expect from a doubly-clamped

beam with a hardening nonlinearity. Both modes exhibit hysteresis. Note that

both modes also exhibit a plateau of displacement, similar to what we saw in

the three-stage cascade (Figure 4.5. The modal interactions with bi-directional

coupling limit the displacement in each mode as they transfer energy betwen each

other.

Now that this device is characterized, in the next chapter, we will explore the

effects of pressure and drive signals more in depth, with better pressure control

and a new laser for better measurement capability. We will also begin to look at

the noise characteristics of a parametric divider, and how noise propagates down

the cascade.
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Figure 4.11: Cascade actuation using frequency sweeps across instability wedges of
modes 2 and 3. Data taken at 1

2
and 1

4
of the input frequency. Blue lines represent

mode 2, black lines represent mode 3. Solid lines indicate forward frequency
sweeps, dashed lines indicated backward frequency sweep. All measurements taken
at 50mTorr.
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Chapter 5

Noise In A Resonance Cascade

The signal is the truth.

The noise is what distracts us from the truth.

Nate Silver

5.1 Noise in MEMS

When assessing the performance of microsystems and the accuracy of their

output signals, we must accept that any signal contains small, unwanted fluctu-

ations of both phase and amplitude. These fluctations can be represented in a

sinusoidal signal by

v(t) = V0 [1 + α (t)] cos [ω0t+ ϕ (t)] (5.1)

where α (t) and ϕ (t) represent amplitude and phase fluctuations, respectively.

Though there are both phase and amplitude fluctuations, the amplitude fluctua-
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tions are more readily reduced or eliminated, and the phase fluctuations are the

dominant component of the overall noise [65]. Small fluctuations in the phase

of a waveform can build up over time, causing large variance from the average

or ideal cycle, but here we’ll be discussing the short-term fluctuations that occur

over very short times and remain within a half-cycle [−π, π], as assumed here in

this definition from [66]. Phase noise is the frequency domain representation of

these short-term time domain instabilities, and characterizes spectral purity.

There are many sources of phase noise in a microelectromechanical system.

Noise can be caused by environmental factors, including temperature, humidity

in the air, and Brownian motion noise, or instabilities in the device itself, such

as thermal noise or flicker noise. Powered elements in the attendant electronics,

such as buffers or filters, can add noise to the circuit, and device actuation mecha-

nisms can cause device heating during operation. Measurement techniques are yet

another source: heating from LDV measurements can cause drift and noise, and

instabilities can be introduced when a sensing scheme affected by small Brownian

motion induced problems is used, as in the case of capactive sensing [67, 68]. De-

tection noise in the measurement system can also introduce noise [69]. A thorough

discussion of many possible sources of noise in MEMS can be found in [67].

There are multiple definitions of phase noise present in literature. No dis-

cussion of phase noise would be complete without first mentioning the Leeson
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equation [70], which describes an oscillator’s phase noise spectrum. Leeson mod-

ified this equation from its original form to include experimentally observed phe-

nomenon, resulting in the more commonly recognized form

L (fm) = 10 log

[
1

2

((
f0

2Qlfm

)2

+ 1

)(
fc
fm

+ 1

)(
FkT

Ps

)]
(5.2)

where f0 is the output frequency, fm is the offset frequency from carrier, fc is the

corner frequency, Ql is the loaded quality factor, k is Boltzmann’s constant, T is

the temperature, and F is the empirically determined noise factor. In more broad

terms, there are two different ways of considering phase noise. IEEE Standard

1939-2008 defines phase noise L (f) as one half of the one-sided spectral density

of the phase fluctuations [71], while other sources define phase noise as the single

sideband spectral density. [66] contains descriptions of the many terms used when

talking about phase noise, a timeline of how the definition has evolved over time,

and the mathematical relationships between different definitions.

As wireless technology expands and communications infrastructure grow, we

place more demands on the accuracy of our systems. In the following sections,

we’ll discuss how to measure open loop phase noise in a microelectromechanical

system, and how to reduce it in a system by exploiting nonlinearity, by operating

in parametric resonance, and through careful design.
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5.1.1 Measuring Phase Noise

There are two distinct methods available in the Turner MEMS laboratory for

measuring short-term stability of a resonator operating in an open loop configura-

tion. One involves measuring the jitter using time domain signals, and the other

involves looking at the single side band (SSB) spectrum of the output signal in

the frequency domain. It must be made clear that in this chapter, though we refer

to ”phase noise,“ we are measuring the short term stability of a resonator in an

open loop configuration, not the phase noise of an oscillator operating in closed

loop.

The time domain method for analyzing the short term stability of a resonator

involves looking at the output signal in the time domain, measuring the duration

of a clock cycle (rising edge to rising edge), and comparing the deviation σy (τ)

to the average or ideal cycle. When using this method, we must collect a long

enough time sample in order to capture effects beyond the time constant of the

resonator, while also staying above the minimum sampling rate as determine by

the frequency. The highest frequency we can capture at a given samping rate is

determined by fnyquist = 1
2
v where v is the sampling rate. The Nyquist sampling

theorem tells us that the frequency of measurement must be twice the highest

frequency component contained in the signal or fsamp ≥ 2fsig. This is beyond

our current laboratory capabilities (LeCroy WavePro 725Zi oscilloscope only takes
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20M sample points), and so all measurements reported in this chapter are gathered

using frequency domain measurements.

The frequency domain method of noise analysis involves looking directly at

the frequency components of the output signal. Though there are many valid ap-

proaches, we do this by looking directly at the spectral power at the range of offset

frequencies using a spectrum analyzer, and comparing this to the carrier power.

Care must be taken that the phase noise of the resonator is much larger than the

noise of the spectrum analyzer. For the types of devices and the measurement

methods used in the Turner MEMS lab, this is generally not an issue, as the in-

ternal stabliity of the analyzer exceeds the noise levels seen in measurements. A

discussion of the limitations of this method can be found in [66].

Successful use of a spectrum analyzer for noise analysis depends the ability

to take enough sample points with a small enough resolution bandwidth (RBW).

A large frequency window allows us to capture power data at frequency offsets

far from the carrier, but limits the resolution of the components of the frequency

spectrum. A small frequency window allows us to accurately capture a signal,

but only over a very small range of frequency offsets. In addition, the larger

the window, or the smaller the resolution, the longer our measurement takes. A

measurement of a wide frequency range with good resolution and high enough

averaging take a very long time to complete, and we run into problems with drift
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in the device due to heating from prolonged operation and power from the laser,

and drift in the laser head itself. Using mirrors for in-plane measurements makes

for a measurement that is very sensitive to even the slightest shift in the laser

spot location.

To overcome this problem and gather frequency domain data in our laboratory

without purchasing a phase noise analyzer, data is collected using two spectrum

analyzers simultaneously. One is set to a very small frequency window with a

very small resolution bandwidth, in order to gather the close-in phase noise and

accurately determine the response frequency and power. Simultaneously, another

spectrum analyzer set to a large window with a much larger RBW gathers data up

to a 105 Hz offset on order to analyze far-from-carrier noise characteristics. Phase

noise is often given as the ratio of the noise power at the offset frequency to the

carrier power in a 1 Hz bandwidth [72], so both measurements are normalized to

a 1 Hz bandwidth. This window could be increased in order to gather data at

larger offset frequencies, if needed. The large coarse window prevents us from de-

termining an accurate carrier frequency and power, so these results are compared

to the carrier signal of the narrow window with fine RBW in order to accurately

determine decibels below carrier.
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Figure 5.1: Experimental setup for measuring phase noise. Two spectrum ana-
lyzers (HP89410A) are used simultaneously to gather both close-in and far-from-
carrier phase noise of the device under test from LDV measurements.

5.1.2 Reducing Phase Noise

There are many operational issues that arise when significant noise is present

in a signal. Channel selectivity, important in wireless communications, can be

negatively affected by phase noise when the adjacent channel power interferes

with the desired signal. As the demand for available channels increases, accuracy

becomes even more critical. Successful operation of tracking and guidance systems

depends on a stable frequency reference [73]. Given the importance of stable

signals with little fluctation, much effort has been put into researching methods

of reducing phase noise. Approaches to reducing phase noise include improving the

performance of the frequency setting element itself, through careful design for high

quality factor or through materials selection for long term stability, eliminating

noise in the circuit elements, using filtering to improve the output signal, or using
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clever design to harness the noise improvement that comes along with parametric

resonance and resonator coupling.

Quartz resonators, which are often used in timing mechanisms, generally op-

erate in the linear regime and demonstrate excellent stability characteristics.

MEMS-based resonators generally lack the same instrinsic stability of quartz res-

onators [74], but can operate at higher frequencies, in different vibrational modes,

and in the nonlinear regime, making them an attractive alternative if we can

design for stability. There are several examples in literature of ways in which

to exploit nonlinear phenomenon through novel design of resonator structure to

improve the phase noise of MEMS resonators. Other examples of using nonlin-

ear behavior in the resonator to improve phase noise include coupling between

resonators [75], internal resonance between modes [59], parametric feedback, op-

erating at a critical point in the nonlinear regime [76], or through appropriate

feedback mechanisms. While not discussed in detail in this work, there are many

other methods for improving phase noise - packaging can increase stability [77],

as the environment can have a significant affect on the stability, and designing for

thermal control through isolation or ovenization can improve performance [68].

Another approach involves exploiting nonlinearities or the performance en-

hancement of coupled resonators in arrays. Villanueva et al. show in [76] that it

is possible to improve device performance by operating the resonator at special
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points in the nonlinear regime and thereby reducing the phase noise below that

seen in the linear regime. Using a piezoelectric doubly-clamped beam, it is shown

that operation near these critical points in the ∆− s parameter space (oscillator

delay and power level), termed amplitude detachment points, reduces contribu-

tions to the phase noise by phase fluctuations in the feedback and amplitude-phase

conversion.

Coupled vibrational modes have been considered in many situations to im-

prove device performance. In [59], Antonio, Zanette, and Lopez demonstrate that

by coupling two vibration modes in a single nonlinear micromechanical resonator

through internal resonance, the phase noise at the target frequency can be im-

proved. Energy transfer between the first mode of a clamped-clamped beam and

a higher frequency mode decreases the energy in the first mode, opposing the

increase in amplitude and frequency produced by noise. Nonlinear mode-coupling

was considered in [78], and a macroscale example of modal coupling based on

nonlinear 1:2 internal resonance with the potential as a frequency filter-mixer or

mass sensor has also been shown [79].

Replacing a single mechanical resonator element in an oscillator with an array

has been shown to increase power handling and decrease phase noise [75]. In

this work, a mechanically coupled free-free beam resonator array demonstrates

an increased power handling ability proportional to the number of resonators in
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the array and a reduction in both close-in and far-from-carrier phase noise. The

far-from-carrier noise reduction is 26 dB over the input signal for an array of 10

resonators. A similar example of using an array to reduce phase noise can be

found in [80], which demonstrates a phase noise reduction of 13 dB over a single

resonator by using an array of nine 60 MHz wine glass resonators.

While the resonator ultimately limits the overall stability of an oscillator, elec-

tronic elements in the circuit often add a significant amount of noise. Amplifier

noise evasion, as shown in [81], is a technique that exploits nonlinearity in the

resonator element to suppress the noise coming from the amplifier. In a resonator

with a cubic nonlinearity, using feedback at points of instability leads to stable

operation throughout parameter space. In this scheme, at points of infinite slope,

the frequency is insensitive to the phase of the drive, improving the noise charac-

teristics of the resonator.

Parametric resonance, the phenomenon upon which the device in this work is

based, has also been shown to improve signal quality from resonators. [82] shows

that parametric amplification in a MEMS gyroscope reduces the noise associated

with the desired vibrational mode with a greater than twofold increase in the

signal to noise ratio. In [23], a high quality factor wine-glass disk array utilizes

parametric resonance to generate a 61 MHz output signal from a 121 MHz input

signal, with a 6 dB close-to-carrier phase noise reduction and a 23 dB reduction
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in far from carrier noise. The 6 dB is what is expected from a divide-by-two

operation, and the large reduction in the noise floor us attributed to the high

quality factor of the resonator itself. [83] also uses a parametric actuation scheme

to reduce phase noise. In this work, coupled nonlinear resonators are actuated

above the threshold for parametric instability at specific operation points that

eliminate the noise in the drive oscillator. [84] demonstrates a parametrically

actuated double-clamped beam which shows improved phase noise characteristics

over a traditionally operated device. The parametric feedback scheme in this work

suppresses the effects of the nosie in the electronics. Based on this literature,

we believe that a mechanical frequency divider with nonlinear coupling between

localized resonant modes in parametric resonance should demonstrate improved

signal quality and higher spectral purity when compared to linear operation.

5.2 Phase noise in a cascade

As discussed in Section 5.1.2, evidence from literature suggests that the short-

term stability of a particular resonance mode should improve when it is operated

in parametric resonance. We measure noise characteristics of a mechanical fre-

quency divider at each of two output stages when driven at resonance through
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the actuation beam, as well as at resonance when operated in a divide-by-eight

cascade in order to determine if there is any improvement in performance.

To compare the relative noise levels in two resonance modes, we start with

the following equation for phase noise at an offset frequency of ∆ω, derived from

equations found in [85]

L(∆ω) = 10 log

(
2kT

psig

(
ωo

2Q∆ω

)2
)

(5.3)

where k is Boltzmann’s constant in joules/kelvin, T is the absolute temperature

in kelvins, psig is the carrier power at frequency ω0, Q is the quality factor of

the resonance mode, and ∆ω refers to the frequency offset from carrier. Using

this definition, the difference in phase noise between two modes at a certain offset

frequency can be determined by

∆Lω = 10 log

(
ω2
1

ω2
2

psig,2Q
2
2

psig,1Q2
1

)
(5.4)

where we’ve assumed that T1 = T2, which we believe to be a reasonable assumption

for two localized modes in the same device, tested under the same operating

conditions. When modal frequencies align at 2:1 ratios, and the quality factors and

carrier power signal are equal in each mode, Equation 5.4 predicts an improvement

of ∆Lω = 10 log(4), or 6 dB, at a certain offset frequency ω for each divide-by-

two operation. However, in the device considered here, the frequencies are not
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perfectly aligned, and the quality factor of mode 2 is almost twice the quality

factor of mode 3. Using the experimental values from Chapter 4, we can expect

not an improvement, but actually an increase of over 7 dB from mode 2 to mode

3. Note that many simplifying assumptions have been made in this general model,

which doesn’t take into consideration the terms that were introduced by Leeson

in order to match theory to experimental results, including the experimentally

determined noise factor F and the modifications for the noise floor [85].

Using the frequency domain method previously described, we measure the

noise characteristics of modes 2 and 3 when driven harmonically through the

actuation beam in order to determine the noise characteristics in the linear regime.

The open loop noise of each mode, when driven at resonance, is shown in Figure

5.2. It can easily be seen that mode 3 has a higher noise floor than mode 2 (-103

dBc/Hz and -113 dBc/Hz, respectively), and reaches the noise floor at a larger

offset frequency. We can attribute this disparity in noise levels to a few factors,

one of which is the relatively low quality factor of mode 3 (Q = 720) in comparison

to mode 2 (Q = 1427). The nature of the frequency response of mode 3, which

exhibits two peaks (Figure 4.9), is another indicator of low quality factor, and

explains the two large peaks seen in the noise curve. In addition, mode 3 is closer

in frequency to mode 4 than mode 2 is to mode 1, and so there is more energy
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exchange between modes 3 and 4 than between modes 1 and 2 when the cascade

is actuated and responding at large amplitude.
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Figure 5.2: Comparison of noise characteristics of modes 2 and 3, each driven
at resonance through the actuation beam. The resonance frequencies of modes 2
and 3 are 421.79 kHz and 209.1 kHz, respectively. As predicted using Equation 5.3,
mode 3 shows a higher noise floor than mode 2 (-103 dBc/Hz and -113 dBc/Hz,
respectively). Mode 3 also reaches the noise floor at a larger offset frequency than
mode 2.

In order to investigate our hypothesis that actuating the cascade in parametric

resonance will improve performance in comparison to linear operation, we drive

the resonance cascade into actuation with divide-by-eight operation through the

actuation beam. We use an input signal at 843.625 kHz with an amplitude of

24 Vpp and a 70 V DC bias, which falls inside the overlapping region of the in-

stablity wedges for modes 2 and 3. Mode 2 responds at 421.79 kHz, and mode

3 responds at 209.1 kHz. Mode 3, which when driven directly has a 10 dBc/Hz

higher noise floor than mode 2, now shows improved performance, with a noise
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floor equal to that of mode 2 at -113 dBc/Hz. The spurious peak seen in the

linear amplitude-frequency response and in the the linear noise curve for mode 3,

at an offset frequency of 1.5 kHz, has been eliminated. The close-in noise is also

improved. Operating in a subharmonic resonance cascade clearly improves the

quality of the response in mode 3, but only improves it to the level of what mode

2 demonstrates in linear operation.
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Figure 5.3: Noise in a two-stage cascade. The cascade is actuated with a drive
signal at 843.625 kHz with an amplitude of 24 Vpp with a 70 V DC bias. Mode
2 responds at 421.79 kHz. Mode 3 responds at 209.1 kHz. Mode 3, which when
driven directly has a 10 dBc/Hz higher noise floor than mode 2, now shows a much
better performance. The noise in mode 3 noise has been reduced to the level of
mode 2. Both modes now demonstrate equal noise floor levels at -113 dBc/Hz.

Higher quality factors could lead to even better performance. Careful redesign

for more precise modal frequency alignment at 2:1 ratios would eliminate the need

for post-processing. This would significantly increase the quality factor of each

mode, thereby reducing the noise in both linear and cascade operation. This
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would also eliminate the spurious peaks that arise due to slight frequency mis-

alignment. More deliberate fabrication methods for straight sidewalls and minimal

undercutting at anchors would also lead to improved device performance.

An interesting investigation would be a measurement of noise in a similar

two-stage cascade, where mode 3 has been designed to have a higher quality

factor than mode 2. In this case, we would expect mode 3 to exhibit better noise

characteristics in linear operation, and would investigate what happens to the

relative noise levels when the subharmonic resonance cascade is actuated. When

mode 2 has a higher quality factor, as in the experiments above, mode 3 noise

is improved in the cascade. If the reverse were true, could we expect improved

performance in mode 2? If a higher quality factor in mode 3 did not improve the

performance of mode 2, we could say that the noise floor can only be improved to

the level exhibited by the highest frequency resonator in the chain. If in fact it did

improve the performance of mode 2, we could then say that we can expect noise

floors in the cascade to improve to match the best peforming mode in the chain.

Either result would give us information on how to design for low noise resonance

cascades.

We further investigate device performance by consider the effects of pressure

on successful two-stage cascade actuation and corresponding noise levels. As de-

scribed in Section 4.3, the device is operated in a vacuum chamber and initially
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characterized at a pressure of 30 mTorr. The response of modes 2 and 3 when

the divide-by-four cascade is actuated is shown in Figure 5.4 for seven different

pressure levels between 30 mTorr and 150 mTorr. Four sets of data are plotted,

and described here for clarity. The drive signal for two-stage cascade actuation is

swept both forward and backward between 843.45 kHz and 843.8 kHz. This fre-

quency sweep starts outside both instability boundaries, in a region where the only

solution is the zero amplitude solution. As the signal over the boundaries, one or

two modes made be actuated. The sweep ends in a region where only the trivial

solution exists. The resulting velocity response to both forward and backward

sweeps is plotted for modes 2 and 3. Mode 2 responds at ωin/2, from 421.73 kHz

to 421.9 kHz, and mode 3 responds at ωin/4, from 210.86 kHz to 210.95 kHz. Solid

and dashed lines denote the responses of mode 2 to forward and backward sweeps,

respectively, and can be seen as a group in the top left are of the figure. Solid

and dashed lines with * markers denote the responses of mode 3 to forward and

backward sweeps, respectively, and can be seen in the bottom right area.

There are many interesting things to note in this plot. The response am-

plitude of mode 2 does not decrease significantly as the pressure level increases

from 30 mTorr. In constrast, the response of mode 3 decreases significantly with

increased pressure, and at approximately 130 mTorr reaches a point where the

drive amplitude is no longer above the threshhold for parametric resonance. This

77



Chapter 5. Noise In A Resonance Cascade

Drive Frequency [kHz]
843.45 843.5 843.55 843.6 843.65 843.7 843.75 843.8

M
od

e 
2 

an
d 

M
od

e 
3 

V
el

oc
ity

 [m
m

/s
]

0

20

40

60

80

100

120

Mode 2

Mode 3

30mTorr
50mTorr
70mTorr
90mTorr
100mTorr
130mTorr
150mTorr

Figure 5.4: Frequency response of modes 2 and 3 at varying pressure. Four sets
of data are plotted: the drive signal for cascade actuation is swept both forward
and backward, and the resulting velocity response is plotted for modes 2 and 3.
Solid and dashed lines indicate the response of mode 2 to forward and backward
sweeps, respectively. Solid and dashed lines with * markers indicate the response
of mode 3 to forward and backward sweeps. Note that the response of mode 3
decreases significantly with increased pressure, while the maximum response of
mode 2 remains relatively constant.

indicates that the coupling between mode 2 to mode 3 is affected by pressure. We

can also note that mode 2 exhibits signs of a softening nonlinearity. Returning to

Figure 4.1, we see that the response beam in which mode 2 is localized is parallel

to the electrostatic drive acutation, while the response beam in which mode 3 is

localized is orthogonal to this electrostatic drive.
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We then consider how the pressure level in the chamber affects the noise in each

mode when driven directly, as well as at both stages when cascade is actuated.

As we would expect, as pressure increases, the noise gets worse; this effect is more

pronounced in mode 3. As the pressure varies from 25 mTorr up to 70 mTorr, the

far-from-carrier noise floor increases in both modes when driven directly (Figure

5.5), but more so in mode 3. Mode 2 outperforms mode 3 at all pressure levels,

with a lower noise floor, reached at a smaller frequency offset. At the last pressure

level included in this set of measurements, 70 mTorr, both modes show a significant

increase in the noise floor.

When the cascade is in operation, the pressure doesn’t have nearly as much of

an effect. In parametric resonance, the variability between noise floors at different

pressure levels is much smaller than the variability seen in direct operation. At

each pressure level, we see the same effect as in Figure 5.3, where the performance

of mode 3 improves to match the performance of mode 2. Because mode 2 isn’t

strongly affected by pressure in the range that we are considering here, mode 3

also demonstrates less variability.

The quality of the response of each spatially localized mode in a single device is

improved when operated in parametric resonance. This confirms that with further

design development, we will be able to demonstrate a multi-stage mechanical
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Figure 5.5: Noise at varying pressure with both direct drive of modes 2 and 3
(ωin = ω2 and ωin = ω3), and with parametric drive of mode 2 with a single signal
at ωin = 2ω2 that activates the cascade. At pressures ranging from 25 mTorr to
70 mTorr, with direct drive, mode 2 always has a lower noise floor than mode
3, and reaches it at a smaller frequency offset. Both modes show poorer noise
characteristics as pressure increases. In full cascade operation, the noise floor of
mode 3 improves to the match the performance of mode 2.

frequency divider with cascading modes that exhibit good noise quality without

using powered elements.
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Future Work

Science never solves a problem without creating ten more.

George Bernard Shaw

6.1 Improving Performance

The goal of this work is to present a possible alternative to current electronic

frequency dividers. Eliminating these electronic elements reduces the required

power for operation and eliminates the noise that they add to the circuit. We have

successfully demonstrated a proof-of-concept of a mechanical frequency divider

that uses coupled modes and parametric resonance to divide a single input signal

through several output stages.

To move beyond the proof-of-concept phase, the transition from fabrication

to successful cascade operation must be improved. The process of characteriz-
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ing each mode with laser Doppler vibrometry, comparing frequencies, and then

post-processing the response beams is time consuming and imprecise. Most of

the problems encountered during testing were due to the misalignment of modal

frequencies and the low quality factor that results from milling the beams, and

so a logical next step would be a redesign of the geometry based on what we’ve

learned from testing. Characterization of multiple devices has given us a better

understanding of the modal interactions and insight in to how to improve our

finite element model. If we can better design for frequencies alignment during

the fabrication stage, we can eliminate the need for post-processing, resulting in

a streamlined design-to-device process and devices with better performance.

6.2 Device Design

Though much effort has gone into modeling and characterizing modal frequen-

cies, at this point, there has been no effort put toward characterizing or tuning the

strength of the bi-directional coupling between modes. The original mathematical

model makes the assumption of forward coupling between modes scaling by 4:1

as we move down the cacade, with back coupling equal to one half of the forward

coupling. Though this was not a requirement of the physical system, it does allow

us to achieve an equal amplitude solution when the full cascade is actuated.
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To this end, a brief investigation into the geometry of the coupling springs

was performed. The current design is based on the need for the springs to be

stiff enough to transmit energy, but with coupling that is weak enough to keep

the modes spatially isolated. Using COMSOL Multiphysics, we investigated the

coupling from the input beam to each of the output beams, as well as the coupling

between nearest neighbors, as a function of spring radius. The results of varying

the spring radius from 10 µm to 14 µm (current devices have a 12 µm radius)

indicate that increasing the spring radius increases coupling between each nearest

neighbor; as expected, this effect is most pronounced from the actuation beam to

the first mode in the chain. When we investigate the coupling from the actuation

beam to each of the four response beams, the effect is different depending on

whether the response beam is parallel or perpendicular to the actuation beam.

Coupling between the actuation beam and the beams parallel to it decrease with

increasing spring radius, while coupling to orthogonal beams increases with spring

radius. In addition, two other coupling geometries have been fabricated, but have

yet to be tested. It is possible that one of these designs has more readily tunable

coupling strength. This logical next step of characterizing and tuning coupling

will require further investigation.

83



Chapter 6. Future Work

6.3 Characterization

Laser Doppler vibrometry allows us to make incredible dynamic measurements

of microstructures, determining displacement and velocity of each mode, as well

as determining mode shapes and beginning to map the mechanical dynamics of

interest. Currently, the Turner Lab has displacement measurement capabilities

down to 0.4 pm up to a frequency of 1.2 MHz with the Polytec MSA-400, and

a resolution of 1.4 pm up to 1.2 MHz with a 4 pm noise floor with the Polytec

UHF-120. However, the in-plane nature of the device described in this document

requires us to etch mirrors in order to direct the laser perpendicular to the motion.

While the coupling between modes allows us to determine all frequencies from

single measurement point, it is necessary to query each sense point individually for

velocity measurements; for a device with four spatially localized response modes,

this requires four etched mirrors and four separate runs of testing for one complete

measurement. One drive signal is repeated multiple times, repositioning the laser

spot at a different response beam each time in order to capture the dynamics.

Repeated testing with varying drive parameters is time consuming and difficult,

and because of the multiple runs, is prone to being affected by the environment.

Another method for signal transduction would allow us to take more repeatable

measurements.
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A second layout of these devices was made with the intention of measuring

them using capacitive sensing. An array of device geometries was made, varying

the length of each response beam as well as the spring radius, in order to deter-

mine effects of geometry. Electrodes were aligned to each response beam with a

700 nm gap, in order to use capacitive parallel plate sensing at each output. This

eliminates the need for mirrors, and makes it much easier to make simultaneous

measurements, and makes it much easier to test multiple devices. So an array of

combinations from the nominal set of dimensions was arrayed, with all possible

combinations applied to three different hook sizes (18 µm, 20 µm, and 24 µm). This

results in an array of 180 four-stage mechanical frequency dividers, each designed

to achieve frequency divide-by-16 operation.

Actuation Beam Beam 1 Beam 2 Beam 3 Beam 4
[um] [um] [um] [um] [um]
34 130 190 272.2 390.5

191 273.6 391
192 275 391.5

276.4 392
392.5

Table 6.1: Array of dimensions in layout to determine geometric effects.

However, testing of these devices resulted in catastrophic failure every single

time. As a particular mode would reach large amplitude, the response beam

corresponding to that mode would pull in to the electrode. We were unable

to successfully drive any of the modes into parametric resonance, and could not
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characterize the cascade at a 700 nm gap size. At the larger gap size of the devices

tested for the work presented here (1 µm), the change in capacitance as the beams

are in motion is not detectable using equipment currently available. Capacitive

sensing is a commonly used technique for signal transduction in MEMS, but for the

large amplitude response of parametric resonance, other methods are used. In [86],

laser Doppler vibrometry is used to sense the large amplitude displacement of a

torsional MEMS resonator, but we have already seen the limitations of this method

for our application. [84] utilizes two piezometallic loops fabricated on opposite

sides of a MEMS cantilever, one for drive and one for sensing. There are many

other examples of piezoresistive sensing in silicon-based MEMS [87, 88]. Though

these approaches have proven very effective, the in-plane motion of the device

described in this work makes the necessary fabrication process quite complicated.

An intriguing idea, as yet unexplored in coupled systems, is the use of magnetic

fields for both actuation and sensing. In [89], axial Lorentz forces are used to drive

a u-shaped cantilever into out-of-plane parametric resonance, and the resulting

large amplitude displacement is sensed using magnetomotive forces. Though this

was also an out-of-plane device, the sensing mechanism depends on the motion

being perpenducular to the sensing field generated by an integrated permanent

magnet; in-plane motion can be detected by reorienting the field. Though this
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constitutes a significant redesign, it would allow rapid characterization of many

devices, as we had hoped to accomplish with the capacitive sensing array.

We have demonstrated a proof-of-concept of a multi-stage frequency divider

that uses mechanical coupling between resonant modes of a single structure to

divide frequencies, rather than relying on noisy electronic elements in a circuit. By

redesigning based on experimental results and devising a better characterization

method, this concept can be developed into a repeatably realizable mechanical

frequency divider for low power, low noise applications.
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Appendix A

Beam-Spring Stiffness

Much of the analysis of the frequency divider presented in this document assumes
that each mode is that of the lowest flexural mode of a doubly-clamped beam,
ignoring the spring boundary condition on one end. Here, we consider the spring
and derive the stiffness of a single beam-spring subjected to a point load at the
point of maximum deflection. It is tempting to consider bending only, while
ignoring transverse shear and axial strain. This approximation is common, and
generally only leads to a small error. However, in this case, the approximation
leads to a nearly 15% error, and so all terms must be included.

L1

L2

R

F

RB

NB

MB

R

N
M

A

AA
A

Figure A.1: Free body diagram of a single beam-spring for determing stiffness and
deflection.

Finite element analysis shows that the point of maximum deflection is not at the
exact center, so we use L1 and L2 independently. With six unknowns, this is
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Appendix A. Beam-Spring Stiffness

a statically indeterminate problem. We assume linearity and use Castigliano’s
second theorem, given as

qi =
∂U

∂Qi

(A.1)

where qi refers to the generalized displacement, Qi is the generalized force, and U
is the strain energy. We begin by determining the strain energy due to bending
(Mi), transverse shear (Vi), and tension (Ni).

U =

∫ L1

0

(
M2

1

2EI
+

V 2
1

2GA
+

N2
1

2EA

)
dx

+

∫ L1+L2
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(
M2

2

2EI
+

V 2
2

2GA
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N2
2

2EA

)
dx

+

∫ π

0

(
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3

2EI
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V 2
3
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+
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3

2EA

)
Rdθ

(A.2)

Partial derivatives of the strain energy are used to find the reaction forces MA

and RA.

θA = 0 =
∂U

∂MA

(A.3)

δx,A = 0 =
∂U

∂Rx,A

δy,A = 0 =
∂U

∂NA

θB = 0 =
∂U

∂MB

δx,B = 0 =
∂U

∂Rx,B

δy,B = 0 =
∂U

∂NB

We use these results to solve for the deflection at the point of application of the
force F using δx,F = ∂U

∂F
. The deflection allows us to find the linear stiffness of the

structure.
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k1 = 192AEGI
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(A.4)

If we make the assumption that the point load is in the middle of the beam,
L1 = L2 = L/2, and ignore shear and tension (Vi = 0 and Ni = 0), Equation A.4
reduces to the stiffness of a doubly-clamped beam, k1 = 192EI/L3 in the case of
R = 0.
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