
UNIVERSITY OF CALIFORNIA

Santa Barbara

On the Development of a New Class of Covering-Path Models

A Dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Geography

by

Timothy John Niblett

Committee in charge:

Professor Richard Church, Chair

Professor Konstadinos Goulias

Professor Erik Rolland, Cal Poly Pomona

Professor Stuart Sweeney

December 2016

The Dissertation of Timothy John Niblett is approved.

 Konstadinos Goulias

 Erik Rolland

 Stuart Sweeney

 Richard Church, Committee Chair

September, 2016

iii

On the Development of a New Class of Covering Path Models

Copyright © 2016

by

Timothy John Niblett

iv

ACKNOWLEDGEMENTS

There are many people who have helped me toward completion of this dissertation.

However, first and foremost I would like to thank my advisor, Dr. Rick Church, whose

input, feedback, and mentorship are invaluable. Not only has Rick stimulated my mind

and impressed upon me the value of looking at the world in an analytical context, Rick

has been a mentor, friend, and trusted confidant. I have truly enjoyed working and

learning with Rick and without Rick’s support this dissertation would not be possible. I

would also like to thank my committee members, Kostas Goulias, Erik Rolland, and

Stuart Sweeney for their comments and support. I would also like to thank my brother,

Matt Niblett. Matt introduced me to the world of Geography and has been extremely

helpful, particularly with elements of coding. Without his help this dissertation would

have been much more difficult and I am very grateful for all the support he has given me.

Thirdly, I would like to thank my family and friends. Mom and Dad: thanks for taking

the time to read through things and help me proof my dissertation and find errors and for

always supporting me, even when times were rough. Lacey, thank you for putting up

with me coming over to your place and hanging out with Matt; I’d also like to thank you

for generously offering me many dinners and meals as we worked things out. To my

wife, Yating, thank you for offering your input even when I didn’t always appreciate it,

thank you for always supporting me and for always encouraging me to do my best and

keep raising expectations. To my friends and cohort, thank you for the support and

stimulating conversation. Special thanks go to Wenwen Li and Ting Lei; without their

help in coding and in ArcGIS things would have been so much more difficult. To my

officemates Xin Feng and Carlos Baez, thanks for the conversations and good times.

v

vi

VITA OF TIMOTHY JOHN NIBLETT

September 2016

EDUCATION

Bachelor of Arts in History, California Polytechnic State University, San Luis Obispo,

June 2006 (cum laude)

Master of Arts in History, California Polytechnic State University, San Luis Obispo, June

2008

Master of Arts in Geography, University of California, Santa Barbara, June 2013

Doctor of Philosophy in Geography, University of California, Santa Barbara, September

2016 (expected)

PROFESSIONAL EMPLOYMENT

2008-16: Teaching Assistant, Department of Geography, University of California, Santa

Barbara

2012-16: Instructor, Department of Geography, University of California, Santa Barbara

2010-14: Research Assistant, Department of Geography, University of California, Santa

Barbara

PUBLICATIONS

Niblett, T. J. and Church, R. L. (2016) “The Shortest Covering Path Problem: A New

Perspective and Model.” International Regional Science Review Vol. 39, No. 1: 131 –

151.

Niblett, T. J. (2013) “The Maximal Covering/Shortest Path Problem Revisited: An

Examination and Reformulation of the Problem to Allow the Elimination or Attachment

of Sub-Tours.” Thesis: University of California, Santa Barbara.

Church, R. L. and T. J. Niblett (2012) “Transit Route Design for Smaller Cities: Working

Towards Sustainability.” Final Report for University of California Transportation Center

Grant awarded 2011-2012.

Niblett, T. J. (2008) “Chaos Among Order: the Impact of Internet Communities on

Modern Society.” Thesis: California Polytechnic State University.

Niblett, T. J. (2006) “The Stranglehold of Sprawl: A Case Study of Modesto and Its

Environs.” Senior Thesis: California Polytechnic State University.

In progress

Church, R. L. and T. J. Niblett. (2016) “TRANSMax II: an extended model for transit

route optimization.” To be submitted to European Journal of Operational Research.

vii

Niblett, T. J. and R. L. Church. (2016) “Are we there yet? The Maximal Covering

Shortest Path and Median Shortest Path Problems Revisited.” To be submitted to

Geographical Analysis

AWARDS

Jack and Laura Dangermond Travel Grant, University of California, Santa Barbara, 2014-

16

Dissertation Fellowship, University of California, Santa Barbara, 2013-15

FIELDS OF STUDY

Major Field: Geography

Studies in Operations Research and Location Analysis with Professor Richard Church

Studies in Transportation with Professor Konstadinos Goulias

Studies in Operations Research with Professor Erik Rolland

Studies in Spatial Statistics and Location Analysis with Professor Stuart Sweeney

viii

ABSTRACT

On the Development of a New Class of Covering Path Models

by

Timothy John Niblett

The basis of this dissertation work stems from the fact that if one examines system

route maps for many bus transit systems in U.S. cities, an interesting pattern emerges.

Routes often utilize embedded loops to increase accessibility coverage of a system at the

expense of adding a marginal amount of length to the overall path. Further, such routes

frequently share a common corridor with respect to traveling in opposing directions, but

they may depart spatially from each other in terms of direction. These departures in

direction represent embedded loops that are traversed in only one direction. However,

the literature has not explored this issue, and in fact, often discourages or outright

prevents any loops from occurring whether they are loops that are traversed in both

directions or traversed in only one direction. Furthermore, past research on covering path

models has not accounted for travel in opposing directions, even when attempting to

model transit lines. This is due in part to the roots of the covering path literature.

This dissertation presents an analysis of past work and from that defines several new

problems that are ‘loop agnostic’ – that is, they neither prevent nor encourage the

formation of loops in an optimal route, essentially a new class of covering path problems.

Although several loop agnostic models are developed in this dissertation to better

ix

represent the maximal covering shortest path problem, these models only capture one

aspect of loop use. In the classic Maximal Covering Shortest Path problem, it is assumed

that its use in transit will be traversed in both directions. Further, the classic formulation

prevents most loops from occurring. A new form of this model is developed that allows

loops to be part of a solution, whenever such loops provide an improvement in the

objective function value. This model is called “loop agnostic” as the model neither

prevents nor requires loops to be used in a solution. This means that a loop can be present

as part of the path, as an out-and-back path or a more complex loop which visits several

other nodes before returning to a previously visited node, or even as a ‘lollipop’ shaped

route attached to the origin node or the destination node. If one assumes that the

covering path can be traversed both in the outbound and inbound directions (which past

work has done), any loops that are present will be traversed in both directions and is what

we refer to as a bi-directional loop. When addressing the question of bi-directionality in

real world systems it is possible that a loop is traversed in only one direction. Such “uni-

directional” loops are formed whenever inbound/outbound paths diverge and can be

observed in many transit system maps, like those of Bozeman, MT; Eau Claire, WI; and

San Luis Obispo, CA. This dissertation also proposes a new problem, the Bi-Directional

MCSP, and formulates two new models that account for travel based upon inbound and

outbound path directions which allows for the use of shared arcs and uni-directional

loops as well as bi-directional loops.

This dissertation also presents results from the application of these new models as

well as a new heuristic to a hypothetical test network as well as a real world network

from Richardson/Garland, Texas. Results demonstrate that loops are present in many

x

optimal solutions and that the route designs that utilize loop structures such as a

‘lollipop,’ ‘barbell,’ and ‘figure eight’ may well be superior to route designs that do not

incorporate loops. This gives credence to the designs of virtually all transit systems in

small and medium sized cities in the United States.

xi

TABLE OF CONTENTS

Chapter 1 Introduction ... 1

1.1 Introduction ... 1

Chapter 2 Literature Review .. 7

2.1 Introduction ... 7

2.2 Key Problems .. 8

2.3 Extended Problems ... 35

2.4 Solution Procedures - Algorithms ... 78

2.5 Heuristics .. 92

2.6 Conclusions ... 102

Chapter 3 The MCSP Problem Revisited .. 105

3.1 Introduction ... 105

3.2 A New, Revised Model for the Maximum Covering Shortest Path Problem 107

3.3 Applying the NR-MCSP Model.. 111

3.4 Results and Comparison of the NR-MCSP to the MCSP 115

3.5 The Maximal Population Shortest Path Problem .. 123

3.6 Concluding Remarks ... 127

Chapter 4 A New Heuristic for the MCSP... 135

4.1 Introduction ... 135

4.2 The Maximal Covering Shortest Path Heuristic ... 138

4.3 Computational Experience .. 147

xii

Chapter 5 The TRANSMax Problem Revisited... 157

5.1 Introduction ... 157

5.2 The Original TRANSMax Model ... 160

5.3 Computational Experience for the TRANSMax II Model 168

5.4 Conclusions and Future Work .. 174

Chapter 6 The Bi-Directional Covering Path Problem .. 191

6.1 Introduction ... 191

6.2 Background ... 195

6.3 Notation and Formulation of the Bi-Directional Covering Path Problem 199

6.4 Network, Computational Environment, and Results .. 211

6.5 Concluding Remarks and Future Work .. 223

Chapter 7 .. 236

7.1 Concluding Remarks ... 236

References .. 246

Appendix I ... 254

Table 1 - Results to the NR-MCSP applied on the hypothetical Swain network 254

Table 2 - Results to the MCSP applied on the hypothetical Swain network 263

1

Chapter 1

1.1 Introduction

In the late 1970s and the early 1980s two researchers – Slater (1980, 1981) and

Current (1981) – defined the notion that some facilities should be represented as a path or

a tree on a network. They reasoned that paths could form the basis for a structure or

system that provides access or service to surrounding system elements. For example,

Current suggested that a path might represent a transit line or a bus line that provides

transit services to those living or working near the designed path. Whereas both Slater’s

and Current’s research involved structures such as a path defined on a network or graph;

Current modeled access or service based upon a maximal service/covering distance while

Slater measured service based upon the sum of travel or access distances to the path or

structure. This dissertation is concerned with the former construct where paths provide

service coverage within a maximum range.

The initial groundbreaking model of Current (1981) involved finding the shortest

path on a network connecting a prespecified origin node and a prespecified destination

node, where the path travels sufficiently close to all other nodes of the network that all

nodes receive access coverage. This service standard is formally defined as a maximal

coverage distance or time, S. If a given node is within S distance or time of the path, then

it is considered to be covered or served by the path. This original problem, in essence,

involved finding the shortest path that provided coverage to all nodes and has been

deemed the Shortest Covering Path problem (SCP). Current (1981) and Current et al.

(1984) developed a model for this problem based upon an integer-linear programming

2

format. They proposed an iterative approach to solving this problem using linear

programming with branch and bound at each iteration.

In subsequent work, Current et al. (1985) proposed lifting the condition that all

nodes must be covered when proposing the Maximal Covering Shortest Path problem

(MCSP). Their formulation for this problem was an extension of the original SCP model.

The covering concept was then extended to Travelling Salesman Tour-based problems

(Current and Schilling, 1989; 1994) and several other formulations and solution

approaches have been proposed (Current, Pirkul, and Roland, 1994; Curtin and Biba,

2011; Wu and Murray, 2005; Matisziw et al., 2006; Boffey and Narula, 1998). With the

exception of Curtin and Biba (2011), subsequent research involving the SCP and the

MCSP problems and their extensions have been built on the basic model forms of the

original papers of Current et. al. (1984 & 1985). Although Current and Biba formulated

their model using a different format proposed in the Traveling Salesman Problem (TSP)

literature, their model conforms to the basic premises underlying the original papers on

SCP and MCSP.

There is an inherent assumption that has often not been stated explicitly when

covering path model constructs are designed. This assumption deals with the direction of

service. For example, if the path represents a transit route (Matisziw et. al., 2006; Wu and

Murray, 2005; Current et. al., 1984, 1985; Murray and Wu, 2003), then it is assumed that

the route is traveled in both directions. Thus, access is provided when traveling on the

route whether heading towards one end of the path or towards the other end of the path.

This seems to be a reasonable and consistent assumption as many transit routes typically

involve bus or rail service along a path in both directions – e.g. a bus will travel in each

3

direction for a route located along a particular road. At first blush, it may be hard to think

of any counter examples to this rule. The second inherent assumption in past work is that

an optimal path will never loop back on itself. In fact, basic intuition seems to support

the notion that if a path loops back and returns again to the same node, then that path is

longer than needed. After all, why return to a node you’ve already been to? Clearly,

such a circumstance seems to be inferior and therefore not optimal. For example, Curtin

and Biba (2011) state that they formulated their TRANSMax transit model so that the

path will not cross itself (and thereby produce a loop). In another example, Current et al.

(1985) in formulating their maximum population covering path model include explicit

constraints which stipulate that a node may be entered at most once along the path. This,

too, is another form of preventing a path from looping back or crossing another part of

the path.

Until the work of Niblett (2013) and Niblett and Church (2016), there has not

been any question as to whether these two implicit, and sometime explicit, assumptions

are true and hold when identifying optimal covering paths. Niblett (2013) and Niblett

and Church (2016) demonstrated that for the original SCP, an optimal, complete covering

path may involve the use of one or more loops/tours as an optimal solution. To do this

they developed a new form of “sub-tour-breaking” constraints, a modified SCP model,

and demonstrated how these new constraints could be used in an additive and iterative

fashion similar to that of Dantzig et. al. (1954) and Current et al. (1984) to generate

optimal solutions to an unrestricted SCP problem. This work clearly demonstrated that

the implicit constraint imposed in the original SCP could not be supported when

identifying and guaranteeing an optimal solution.

4

In this dissertation we extend the concept that optimal solutions may be

comprised of loops/tours connected by a path or a path having attached loops/tours for

the Maximal Covering Shortest Path problem. Three new formulations are presented for

the following problems: the Maximal Covering Shortest Path problem, the Maximum

Population Shortest Path problem, and the TRANSMax problem. In addition, a new

heuristic algorithm is proposed for solving the unconstrained Maximal Covering Shortest

Path problem and computational results are presented.

In a separate vein, this dissertation also explores the underlying assumption that a

path represents a structure that is to be traveled in both directions. It can be observed that

on public transit systems, a bus route or path may differ depending on which arcs are

traversed which itself can be based upon the direction traveled. Sometimes this is done

because the underlying network contains one-way roads and the bus route travels in

parallel street segments depending on the direction of travel and street restrictions. Thus,

the route may be separated by a city block but can otherwise be thought of as traveling in

the opposite direction because it is not possible to traverse the same arc in the opposite

direction. However, at other times it can be seen that travel along the two directions may

be for the purposes of efficiently increasing access coverage. This can be observed in the

map of routes used in the City of Bozeman, Montana given in Figure 1.1.

Each route contains loops and paths that may or may not be traversed in each

direction. To model this type of design, this dissertation proposes a new path model

called the Bi-Directional Maximal Covering Shortest Path problem (BD-MCSP). This

problem involves determining a route composed of two path directions, one going from

the origin to the destination (forward) which is the outbound path and the other going

5

from the destination to the origin (reverse) which is the inbound path. For both paths, a

certain proportion of the route length involves arcs that are traversed in both directions

(forward and reverse directions). This means that geographically, routes may be

essentially the same in most respects for both directions, but deviations from the shared

route structure are made in one direction or the other to efficiently increase coverage.

Whereas the MCSP accounts for coverage and path distance in only one direction, this

model accounts for coverage and path distances in both forward and reverse directions.

Figure 1.1 - Route Map for the City of Bozeman, MT. Permission to publish the system map has been generously

given by the City of Bozeman.

 The dissertation is organized as follows. Chapter 2 presents a review of the

relevant literature. This includes a review of related models as well as several solution

procedures and heuristics. Chapter 3 presents revised models for the MCSP and the

6

Maximum Population Shortest Path (MPSP) problems that overcome the restrictions

inherent in the previous formulations of this model. This chapter also presents

computational experience in solving this problem as well as several example solutions

that demonstrate that this model can find better solutions than the original models of

Current et al. (1985). Chapter 4 presents a new heuristic solution strategy for the revised

MCSP. The focus of this heuristic is to generate ‘good’ solutions on large problems

where the determination of optimal solutions takes a large amount of time. Chapter 5

addresses the Transit Arc Node Service Maximization Problem (TRANSMax) problem

that was proposed by Curtin and Biba (2011). Their model restricts solutions from

crossing or looping where the model form employed by Curtin and Biba is quite different

from that of Current et. al. (1984, 1985). This chapter presents a new formulation for the

TRANSMax problem – TRANSMax II – that can allow for crossing or looping while

retaining the other features of their model. An application of this model is developed for

the Garland/Richardson, Texas area. An example is shown where an embedded loop is a

part of the optimal path/route. Chapter 6 presents details on a new problem called the Bi-

directional Maximal Covering Shortest Path problem (BD-MCSP). This type of model

accounts for travel in both forward and reverse directions – e.g. travel from a point A to a

point B and the return (reverse) trip from point B back to point A. Several model

formulations are developed and applied to example problems based upon the Swain

dataset. We show that allowing flexibility in the design based upon route direction can

improve service at little extra expense. Finally, Chapter 7 provides a summary of the

contributions of this dissertation as well as the needs for future research.

7

Chapter 2

2.1 Introduction

This chapter will review the major research concerning covering paths up to the

present. It is divided into the following sections: Key Problems, Extended Problems,

Solution Approaches, and Concluding Remarks. Each section will examine key

problems and topics with respect to the classic Maximal Covering Shortest Path problem

and will discuss the related formulations as well as the broader impact of each topic. All

model formulations will be given in a Mathematical Programming format. This means

that each model will have an objective that is to be optimized as well as constraints that

are necessary to meet pertinent conditions defining feasibility.

The Key Problems section presents several problems that are critical in the

development of the Maximal Covering Shortest Path Problem. The Extended Problems

section discusses related problems to the Maximal Covering Shortest Path problem and

the broader impacts that they have. The Solution Approaches section outlines several

methods that have been developed to solve covering path problems which will be useful

for the development and implementation of the proposed heuristic in this dissertation.

The final Concluding Remarks section is a brief overview of the papers and methods

discussed as well as their relevance to the new formulations presented in this dissertation.

8

2.2 Key Problems

In order to trace the lineage of the Maximal Covering Shortest Path Problem one

must look at several models that have been developed in the location science literature.

These key models are as follows: the Traveling Salesman Problem, the Location Set

Covering Problem, the Maximal Covering Location Problem, the Shortest Path Problem,

the Shortest Covering Path Problem, and the Maximal Covering Shortest Path Problem.

Each of these problems are presented in the context of covering models, path models, and

their synthesis into covering path models. The last segment of the first section focuses on

some nuances that need to be addressed in terms of a priori assumptions of past work.

The first key problem underpinning the research of this dissertation is the

Traveling Salesman Problem (TSP). The goal of formulating and solving a Traveling

Salesman Problem is to find the shortest route through a network such that each node

(often representing a city) is visited at least once. This problem was defined nearly 200

years ago – the oldest known reference to a traveling salesman tour comes from a

handbook published for traveling salesman routes in Germany and Switzerland in 1832.
1

However, the problem itself is rooted in the 7 Bridges of Königsberg Problem supposedly

proposed to Leonhard Euler in the 1730’s by the town fathers of Königsberg, Prussia.

Euler was asked to find a parade route which would traverse the seven bridges of

Königsberg once and only once. Euler proved that this was impossible to do in

Königsberg’s case, based upon a derived network representation and properties of this

1
 "Der Handlungsreisende – wie er sein soll und was er zu tun hat, um Aufträge zu erhalten und eines

glücklichen Erfolgs in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur" (The

travelling salesman — how he must be and what he should do in order to get commissions and be sure of

the happy success in his business — by an old commis-voyageur)

9

network. This work became the initial basis of the field of Graph Theory (Euler, 1741).

The problem of determining a route which traverses every arc only once (as opposed to

the TSP visiting every node) has become known as the Chinese Postman Problem due to

the translation of the work of a Chinese mathematician, Kwan Mei-Ko, in the early

1960’s.

The Traveling Salesman Problem, although having early practical interest, was

found to be a very difficult problem to solve. Interestingly, the handbook from 1832

mentioned above presented a route that has more recently been found to be within 3% of

an optimal solution – this can be seen in Figure 2.1 (Schrijver, 2003). However, it has

been pointed out that if one takes into account the road conditions of the time, the

solution offered in the handbook may even be the optimal solution! Nevertheless,

although this solution comes very close to optimality, problems of this size remained

computationally unsolvable to proven optimality until the advent

of modern computers. The first modern mathematical work on routing involved school buses in

Figure 2.1 – Solution to a Traveling Salesman Route from 1832 with a Modern Comparison as found in

Schrijver, 2003.

10

the 1930s (Dantzig, et. al., 1954). By the 1950’s the advent of mathematical

programming and the use of primitive digital computers finally allowed larger problems

to be solved, and in 1954 Dantzig, Fulkerson, and Johnson formulated the first

mathematical programming model. Since this is the first true mathematical formulation

to be developed, and given that it is still used today (see Orman and Williams, 2006), it is

given below as:

 , ji indices used to reference the nodes of a given network

 ijc the cost of traversing the arc connecting node i to node j

 ijx decision variable for whether the arc connecting node i to node j is on the tour; its

value is one if the arc is used and zero if not

 n the total number of vertices (v) that comprise the network

 V the set of all vertices/nodes

 S represents a set of subsets of V in which it is possible to draw a sub tour





ji

ijij xc ZMinimize (2.1)

n)1,...,(i 1

 ToSubject

,1




n

ijj

ijx
 (2.2)

n)1,...,(j 1
,1




n

jii

ijx (2.3)

2)SV,(1
,




SSx
n

Svv

ij

ji

 (2.4)

 );,...,1,(1,0 jinjixij  (2.5)

The formulation utilizes a cost array (ijc) and a set of binary decision variables

(ijx) which are used to represent the arcs chosen for the tour and their associated costs; S

represents the set of subsets of all vertices V in which it is possible to draw a sub tour.

11

The objective given in (2.1) minimizes the total cost for the tour. Constraint (2.2) ensures

that, for each node i, one arc is used which ‘leaves’ that node. Constraint (2.3) ensures

that at least one arc is used which ‘arrives’ at each node j. Constraint set (2.4) ensures

that sub-tours cannot be a part of any solution. This type of constraint is referred to as a

sub-tour breaking constraint. This set of sub-tour elimination constraints requires that for

each subset S comprised of V vertices, the sum of the arcs used to connect the vertices V

comprising that subset of S must be less than or equal to the total number of nodes in that

set minus 1. Essentially, this constraint makes it impossible to have a complete loop

between the nodes in the set S. Constraints of type (2.5) are simple binary constraints

which restrict the value of each ijx to either zero or one in value which indicate whether

the arc from node i to j is not used or used in the solution.

This formulation is of critical significance for this dissertation for two primary

reasons. The first reason is that, as noted above, the problem is one of the first

formulations of a routing problem. However the second reason is quite significant with

respect to the scope of the dissertation and that is due to the way this model has been

solved. Although constraint (2.4) in the Dantzig, Fulkerson, and Johnson formulation

specifies that all possible sub-tour sets should be prevented, the authors noted that this

would be impractical and suggested a constraint adding strategy to solve the TSP. In

essence this meant that one would solve a problem without constraint set (2.4), identify

any sub-tours that appeared in the solution, define constraints of type (2.4) which would

prevent these sub-tours from occurring, and then resolve the problem, and then repeat the

process as necessary until no sub-tours are identified within the solution.

12

This process is significant because it has largely been carried over into the

covering path literature, and is even suggested by Orman and Williams (2006) to be the

most efficient method used to solve the TSP problem to optimality by mathematical

programming. Although there is nothing inherently wrong with adding these sub-tour

breaking constraints in an additive fashion in solving a TSP on a complete graph, there

are nuances that should be considered when the method is applied in the solving the

shortest covering path problem (Niblett and Church, 2016). The main contribution of

this TSP formulation with respect to the covering path literature is that the sub-tour

breaking constraints (2.4) are consistently used in the formulation of most models. A

second element that is important to note is that this model was designed for a complete

network. A complete network is one in which there is an arc between every pair of nodes

(i.e. nn 2 arcs).

The second type of problem that is important to consider is the shortest path

problem. The notion of traveling the shortest distance between one place and another has

most likely occupied the mind of man from prehistoric times as they searched for shelter,

water, or food. The first written reference of the shortest distances between places seems

to be that of John Norden in 1607. The Norden map was the first gazetteer map which

referenced not only places but also tried to convey topography and distinctive features

along with a portion of local history.

13

Figure 2.2 - Triangular Distance Table from John Norden's England, an Intended Guyde for English Travailers

in 1625

By 1625, Norden updated his map to include a modern triangular distance matrix that one

could use to determine the distance from one city to another within Hampshire, England

which is shown in Figure 2.2. However, the mathematical inquiry into calculating the

true shortest distance between points was not investigated until relatively recently; the

first inquiries often dealt with routes through a maze and were done in the late 19
th

century (see Schrijver, 2012 for an excellent overview of these problems). In the late

1950’s, as the advent of computer processing became more widespread, attempts were

made to find the shortest route through algorithmic means. The Bellman-Ford algorithm

was the first to appear (Bellman, 1956) although Dijkstra’s algorithm is probably more

well-known (Dijkstra, 1959).

In terms of a mathematical formulation, Orden (1956) and Dantzig (1957) were

the first to describe the shortest path problem as an optimization model utilizing linear

14

programming.
2
 Although Orden and Dantzig both formulated this problem as a linear

programming model, the simplest form is that of Dantzig which will be presented here.

The formulation is given as:

},{ jiA the set of arcs such that an arc connects node i and j in the network

ji, indices representing nodes on the network

ijd the shortest distance or time needed to travel from node i to node j

ijx decision variable which is one if arc(i,j) is on the path and traversed from i to j and

zero if not

1node = the assumed starting node

nnode = the assumed terminus node

} exists),(|{ AjiarciN j 





jNi j

ijij xdZMinimize (2.6)

1

ToSubject

1

1 
Ni

ix (2.7)

1
 nNi

inx (2.8)

,njjxx
jj Ni

ji

Ni

ij 1 ; allfor 0 


 (2.9)

}1,0{ijx (2.10)

This formulation is based upon labeling each node with an index from 1, 2, 3, …,

n. The indices i and j are used to refer to any specific node of the network. The above

formulation is based upon the assumption that the arcs are undirected and that travel and

distance in one direction on an arc need not be the same as the other direction. For each

node j we can define a set of arcs that connect node i to its adjacent neighbors as
iN .

The decision variables, ijx , are used to specify whether a given arc is traversed in the

direction of i to j in the shortest path. The objective (2.6) is to find the least cost path

2
 Dantzig mentions that his paper was based on a conference presentation made in 1955.

15

through the network. Constraint (2.7) ensures that one arc is chosen to leave the origin,

that is, the path departs from the origin. In a similar manner, constraint (2.8) ensures that

the path reaches the destination. Constraint (2.9) is a “balance” constraint that is included

for each intermediate node (that is, all nodes except the origin and destination nodes).

This constraint maintains that if an arc is used to enter a node, then an arc must be used to

leave that node. Constraints of type (2.9) also maintain that if the path does not enter a

node j, then it also must not leave that node. Constraint (2.10) is a binary variable

constraint which insures that an arc is either used or not used in the shortest path. When

this model is solved it will generate the optimal shortest path if one exists.
3
 The concept

for this formulation is relatively simple, but it is a critical component of the covering path

literature in that the constraints given above (2.7-9) are used in virtually all covering path

model formulations.

The other critical component one must have in order to create a covering path is a

method to maintain coverage or define if it has been provided. In order to understand and

follow the development of the covering path literature, we must then exam the models

that have been formulated to cover demand nodes. Toregas et. al. (1971) are often

attributed to be the first to propose a location problem to cover demands. Toregas et. al.

(1971) proposed to find the smallest number of needed facilities and their locations such

that all demands are covered. They defined that a demand point is covered if a facility is

placed within a maximal service distance or time of that demand. They called this the

Location Set Covering Problem (LSCP). The LSCP has been used as the basis for

locating bus stops, emergency service facilities, and other public facilities such as

3
 A path will not exist when a network is disconnected with respect to its origin and destination.

16

libraries. The impact of this model in application has been quite extensive, particularly

with respect to applications where complete coverage is of the utmost importance.

Toregas et. al. (1971) assumed that any point of demand is also a potential

location point (although this assumption is not necessary) and that every point of demand

must be covered (that is, it must be served within a maximal service distance or time

denoted by S). The problem is formulated as follows:

xi = 1 if a facility is allocated to site j, 0 if not

S = maximum distance/service time

dij = the shortest distance/time from node i to node j

Ni = {j in the set J | dij ≤ S } the set of nodes within s distance/time of i that can provide

acceptable service coverage





n

j

jxZMinimize
1

 (2.11)

Iix
iNj

j 


,1

ToSubject

 (2.12)

}1,0{jx (2.13)

The objective (2.11) in the LSCP is to locate the smallest number (i.e. the

minimum number) of needed facilities jx . Constraint (2.12) ensures that there is at least

one facility that covers each demand point within the maximal service distance or time S.

The members of each set
iN are calculated for every node and are dependent upon the

maximal service distance, S. If S is set lower than the lowest ijd (where ji ) then

every site must be chosen for the solution, as no site will be able to cover any demand

other than itself; whereas, if S is a very large number and the distances are significantly

17

smaller it may be possible that one site coves all demand. Constraints of type (2.13) are

simple binary constraints which ensure that no fractional solutions are feasible.

In terms of coverage this is one of the first models proposed to optimally cover

demand with public resources in mind. One can see how it would be of particular

importance in that there are many services like fire protection, ambulance location, and of

course rapid transit in which it would be ideal to cover an entire city with accessible

services. In terms of applicability to a wide variety of public spatial problems, this

formulation has been immensely useful. The drawback of this model is that when it is

applied the cost of complete coverage may exceed the resources available. To address

this limitation, Church and ReVelle (1974) proposed the Maximal Covering Location

Problem. Instead of requiring complete coverage as in the LSCP, the MCLP involves

maximizing coverage while limiting the number of facilities (i.e. fire stations, etc.) being

used. Whereas the Location Set Covering Problem calls for coverage of all demand, the

MCLP represents a relaxation of this requirement and can be used to generate a tradeoff

between facilities used and coverage provided. The point on this tradeoff at which

complete coverage is provided is a solution to the location set covering problem.

Consequently, one can think of the MCLP subsuming the LSCP as a special case.

Church and ReVelle (1974) formulated the MCLP as an integer-linear programming

model using the following notation:

I = set of demand nodes

J = set of facility sites

S = distance beyond which there is no coverage

ijd = the shortest distance from node i to node j

jx = 1 if a facility is allocated to site j, 0 if not

18

iN = { j in the set J | ijd ≤ S }

ia = population or other measure of demand at node i

p = total number of facilities to be located





Ii

ii yaZMaximize (2.14)

Iiallforyx i

Nj

j

i




ToSubject

 (2.15)

px
Jj

j 


 (2.16)

Jjallforx j )1,0((2.17)

Iiallforyi )1,0((2.18)

In the MCLP formulation, we have an index of demand areas/points, i, and an

index of facility sites, j. We also have a distance matrix ijd which is the distance

between a demand point i and a facility site j. There is a maximum service distance of S

which is used to define the coverage sets
iN which list the set of sites which could

provide cover to demand i should any site in the set be selected for facility placement.

The objective function (2.14) of this model is to maximize the total demand covered.

Site selection is represented by the decision variable jx . The provision of coverage is

tracked using the variable
iy which is 1 if demand i is covered and 0 if it is not.

Constraint (2.15) allows node i to be counted as covered only when one or more facilities

have been located which cover demand i. The second constraint restricts the total

number of facilities used to be equal to p. Church and ReVelle noted that this problem

can be set up as a minimization problem by minimizing what is not covered by

19

substituting ii yy 1 into the problem where iy is 1 if i is not covered and 0 if it is.
4
 If

we then substitute in the variables, we would have the following objective function:

)(



Ii

ii

Ii

i yaaZMaximize (2.19)

which then simplifies to:





Ii

ii yaZMinimize (2.20)

since the maximization of a negative number is the same as the minimization of the same

positive number (Church and ReVelle 1974). Constraint (2.15) would also then be

reformulated using the same variable substitution as (2.21):

 1


i

Nj

j yx
i

 (2.21)

As mentioned above, one would be able to develop a cost benefit curve by solving

for a range of values of p until a solution is obtained in which there is complete coverage.

The flexibility of the MCLP in terms of being able to vary the number of facilities used

for coverage has made this formulation quite useful and it has had many applications in a

wide variety of spatial (and even some non-spatial) problems. In particular it has been

used for fire station location, ambulance location (Schilling et. al., 1979; Daskin, 1983;

Hogan and ReVelle, 1986, 1989; Marianov and ReVelle, 1996; Brotcome, et. al., 2003),

mapping chaparral (Roberts, et. al., 1998), reserve site selection (Church et. al., 1996),

humanitarian relief (Balcik and Beamon, 2008), selecting tooth color shades (Cocking, et.

al., 2009), among many more spatial location applications.

4
 Setting the Maximal Covering Location Problem up as a minimization can often be desirable in order

to suit the specific requirements of the problem being solved. One can computationally transform a

problem as well by changing from a primal form into the corresponding dual. More on duality theory can

be found in Introduction to Operations Research (Hillier and Lieberman, 1995).

20

Up to this point we have examined the Traveling Salesman Problem, the Shortest

Path Problem, and the major location covering problems (LSCP and MCLP). We will

now look at the fusion of covering and path problems in the form of the Shortest

Covering Path problem (SCP) and the Maximal Covering Shortest Path problem (MCSP).

These two problems each respectively represent a merging of the LSCP and the MCLP

with the Shortest Path Problem. In terms of the covering path literature, Current et. al.

(1984) were the first to propose the Shortest Covering Path Problem.

The Shortest Covering Path Problem involves finding the shortest path from an

origin to a destination which passes within a maximal access distance/time of all nodes of

the network. In the formulation proposed by Current et. al., the origin and destination

nodes are also prespecified. Relevant applications of this problem include air delivery

services, newspaper or other goods distribution, subway or other transit line creation, or

even a way for a developing nation to determine where to upgrade infrastructure. The

critical assumptions of the problem are as follows: 1) demand exists at every node, 2) all

demands must be covered, 3) demands are covered if a node is directly on the path or is

within the maximum service distance of a node on the path, 4) the system being modeled

is uncapacitated, 5) all arc costs are non-negative, and 6) there are no budgetary

constraints on the length/cost of the path. The ILP model is defined using the following

additional or modified notation:

 ijx 1 if the arc from i to j is on the shortest covering path and 0 otherwise

 1 node  the starting node for the shortest covering path

 node n the terminus node for the shortest covering path

S* the maximum allowable service distance/time

21

 } { S*j|dS jkk  the set of nodes j which are within the maximum service distance to

node k





jNi j

ijij xdZMinimize (2.22)

1

ToSubject

1 
 iNi

ix (2.23)

1
 nNi

inx (2.24)

njjjxx
jj Ni

ji

Ni

ij 


 and 1 where , 0 (2.25)

nkkkx
j kNi sj

ij 
 

 and 1 where , 1 (2.26)

)(, }1,0{ i,jxij  (2.27)

In this formulation the objective (2.22) minimizes the total cost or length of the

path, while ensuring all nodes are covered by the path. In terms of the SCP model

constraints, Constraint (2.23) ensures that the path starts at a pre-specified starting node

(given in the paper as node 1) and constraint (2.24) ensures that the path terminates at a

pre-specified node (designated as node n). Each of these constraints specifies that only

one arc may be used to leave the origin node and only one arc may be used to enter the

destination node. These two constraints together then establish our origin and destination

nodes respectively for the covering path. Constraint (2.25) is a flow balance constraint

where if a path enters a node, it must exit that node. This constraint is written for all

nodes except the origin and terminus nodes. This constraint ensures that the covering

path is a sequence of connected arcs. Constraint (2.26) is the coverage constraint which

requires that each demand node must be within S* distance of a given arc comprising the

covering path. The set kS in constraint (2.26) represents the set of arcs that passes within

a maximal distance S of a given demand node k, based upon the ending node of each arc

22

chosen for the path. The sum of the arcs that are used within this set has to equal or

exceed 1 – in other words each demand must be covered at least once.

The idea behind the SCP formulation is that each demand node must be covered

at least once and that the shortest possible path that does so must be found. However,

when this model is solved on a network the solution that is obtained is likely to include

what are called sub-tours. Sub-tours are a set of arcs that form a loop or an unattached

tour which is not connected to the covering path (hence the sub-tour moniker).

Technically speaking, these are the same elements that Dantzig et al. (1954) eliminated

with their sub-tour breaking constraints in the Traveling Salesman Problem. The reason

that these sub-tours form is that the model does not implicitly contain constraints to

eliminate the so called sub-tours which may appear in a solution. Current et al. (1984)

suggest that if sub-tours appear in a solution, the same sub-tour breaking constraints (2.4)

as Dantzig et al. suggested should be employed and the problem re-solved. That is, the

problem should be solved, the solution should be checked to see if any sub-tours exist,

and if they do, add the associated constraints (2.4) which prevent these tours from

forming and then the problem should be re-solved. This procedure is then repeated until

no such tours appear in the solution. The reason that such sub-tours must be addressed is

that they are anomalies that, unless prevented, will erroneously provide coverage away

from the selected path due to the fact that they are ‘unattached.’ Niblett and Church

(2016) noted, however, that the process for preventing these sub-tours must be properly

applied as a Dantzig et. al. type constraint can impose conditions leading to a sub-optimal

result.

23

In the covering path literature it has been assumed that, just as in the Traveling

Salesman Problem literature, an attached loop or tour is undesirable. It should be noted

that in the TSP literature it is assumed that all arcs form a complete graph, that is, a graph

in which each node is adjacent (connected) to every other node. If one utilizes this kind

of graph then it does indeed make sense to prevent any sub-tours. However, as one can

easily observe on real world maps, it is impossible to go from one node directly to all

other intersection nodes. Since we are searching for covering paths which, ostensibly, are

going to travel on a real world network map, we are unlikely to utilize a complete graph

and this key nuance will affect a covering path route if sub-tour adding constraints are not

added properly (Niblett and Church, 2016). A detailed explanation of how this is

addressed will be discussed later in this chapter. However, before we examine these

nuances I want to first discuss the formulation of the Maximal Covering Shortest Path

problem.

The Maximal Covering Shortest Path problem (MCSP) is a fusion of the Maximal

Covering Location Problem (MCLP) and the Shortest Path Problem (SPP). In many

ways it is a natural extension of the Shortest Covering Path problem (SCP) just as the

MCLP is a natural extension of the Location Set Covering Problem (LSCP). This is due

to the fact that, just as in the LSCP, the SCP problem requires that every demand node be

covered. This means that there is less flexibility to determine tradeoffs with respect to

coverage and overall path length/cost. Current et. al. (1985) formulated the MCSP such

that these two competing objectives are addressed through the use of a multi-objective

modeling framework. In this case, the MCSP involves two objectives; each weighted by

an importance factor. The model formulation and notation is given below as:

24

ka population at k

 weight associated with the coverage objective

  1 weight associated with the distance objective

 ijd the shortest distance/time from node i to node j

 ijx one if the arc from i to j is on the shortest covering path

ky one if node k is covered and zero if it is not

 1 node  the starting node for the shortest covering path

 node n the terminus node for the shortest covering path

 } exists),arc({ jii|N j  the set of nodes i which are connected to j

S* the maximum allowable service distance/time

 } { S*j|dS jkk  the set of nodes j which are within the maximum service distance to

node k







1

2

n

k

kkC yaZ 


i j

ijijD xdZ 

DC ZZ  Maximize (2.28)

1

ToSubject

1 
 jNj

jx (2.29)

1
 nNi

inx (2.30)

njjjxx
jj Ni

ji

Ni

ij 


 and 1 where , 0 (2.31)

nkkyx
j kNi sj

kij 1,, , 0 
 

 (2.32)

)(,)1,0(i,jxij  (2.33)

kyk ,)1,0( (2.34)

25

In the model representation, the summation of
kk ya in the objective function

(2.28) represents the total of what is covered with the exception of the starting and ending

nodes – node 1 and node n respectively. If
ky is 1 then the associated population

ka is

counted as being covered. In this objective, maximizing the first term represents

maximizing the demand covered by the path. Similarly there is a competing objective in

which we want to keep the path as short as reasonably possible. The overall length of the

path is represented as the sum of the ijij xd terms. If arc ijx is utilized in the solution

)1(ijx , then the associated distance, ijd , is included. The sum of the associated

distance/cost values, ijd , corresponding to selected arcs, ijx , yields the path length. When

multiplying these values by a negative one (e.g. -1), the objective is reversed and is

equivalent to minimizing path length. Altogether the objective is a composite of

maximizing path coverage and minimizing path cost/length where each objective is

weighted by importance factors  and  . Current et. al. (1985) formulated the coverage

objective such that 2k to n-1 in order to account for the fact that the starting and

ending nodes are explicitly specified in the problem and are automatically covered. One

could, however, sum from k = 1 to n and include the starting and ending nodes and obtain

the same covering path solution. Ignoring these two nodes in coverage does not impact

the solution at optimality and requires two fewer variables – 1y ,
ny – and two fewer

constraints.

The model constraints for this formulation are similar to those we have seen

earlier in this section due to the fact that this model formulation is a fusion of the MCLP

and the SPP. In this model formulation, Constraint (2.29) ensures that only one arc on

26

the path leaves the origin node and constraint (2.30) ensures that only one arc on the path

arrives at the destination node. Taken together these constraints ensure that a path has a

specific origin and destination. Constraints of type (2.31) require that, for each

intermediate node, if an arc on the covering path enters that node then there must also be

an arc on the covering path which leaves that node. The reason for excluding the origin

and destination nodes in constraint (2.31) is that Constraints (2.29) and (2.30) handle the

specific case of the origin and destination. If the origin and destination nodes were not

excluded we would have an ill-defined model. Constraints of type (2.32) are a modified

form of the coverage constraint (2.15) in the Maximal Covering Location Problem. In

this case, constraints of this type are defined such that variables which represent arcs

instead of specific node locations are used. Specifically, if an arc is used which passes

within S* distance/time of node k then node k is covered and
ky can equal 1. Constraints

of type (2.33-34) are simple binary constraints which are included in order to prevent

fractional variable values that do not conform to the problem description.

Since this problem is multi-objective in nature, having an objective for coverage

and an objective for path distance, this model may result in a number of different non-

inferior/Pareto optimal solutions, each uniquely defined by how much emphasis is placed

on one objective versus the other. We can identify those solutions which lie on the

pareto-optimal trade-off curve by modifying the objective function. This is done through

the use of the weighted terms  and  ; a plot of these solutions obtained in this fashion

can then be used to display the tradeoff curve. We can accomplish this by the use of the

following modified composite objective:

27

 


 i j

ijij

n

k

kk xdyaZ)()(Maximize
1

2

 (2.35)

where  and  represents weight values that can vary from zero to one. Conversely, we

can define 1 without any loss of generality. This will allow us to make easily

comprehensible weight values. For example, if we emphasize coverage () as 0.6 then

the emphasis on overall path length () would be 0.4 which means that we would value

coverage more than path length. Optimal solutions can be generated by solving the

model for a range of values  and  . The results can be plotted to view the tradeoff

between coverage and overall path length.

Current et al. (1985) also note that the MCSP can be modified via some structural

adjustments into a problem defined as the Maximum Population Shortest Path, or MPSP,

problem. This problem is defined for the case when the maximum coverage distance, S*,

is zero. This, in turn, implies that in order to be covered, a node must be a part of the

path rather than within some distance of the path. This allows the objective function to

be recast as:









jj Ni j

ijij

Ni

n

j

ijj xdxaZ
1

2

 Maximize (2.36)

Constraints (2.29-31) and (2.33) remain the same and constraint (2.32) is simplified to:

1 , , 1 


jjx
jNj

ij
 (2.37)

which requires that no more than one arc may enter any given node (Current et al. 1985).

This change reduces the number of variables in the problem which in turn reduces the

28

overall problem size. The change also has the effect of making the problem more akin to

a TSP in that each node can only be visited once. As noted above, however, this may

cause problems as a loop or return trip may be required to cover every node which would

require a node appearing more than once in the route. This feature is expressively

eliminated by constraints (2.37). Additionally, both the MCSP and its modified

counterpart, the MPSP, suffer from the same issues as the SCP with respect to the way

the problems are solved. Just as in the SCP, sub-tours are likely to occur in the solution if

one solves the model as formulated. Thus, there may be one or more of these loops, or

sub-tours, which exist independent of the covering path. In order to solve the problem to

meet the stated criteria of having one contiguous covering path, that is one continuous

path without any loops or sub-tours, a series of sub-tour breaking constraints (2.4) must

be formed and added to the model and the model re-solved a number of times until no

sub-tours exist in the resulting solution.

In solving the model, one needs to check the results and determine if any sub-

tours are present. If it is determined that any sub-tours occur in the solution, the model is

amended to prevent them by adding constraints for each sub-tour and then the problem is

re-solved just as in the SCP.
5
 The procedure for doing so is the same as that described

for the SCP problem and is borrowed from the work of Dantzig, Fulkerson, and Johnson

(1954). We must keep in mind that the DFJ sub-tour elimination process was developed

within the context of a complete graph while the SCP and the MCSP/MPSP have been

defined in the context of an incomplete graph. This nuance may actually result in an

5
 The authors note that since this model is set up as a bi-objective problem, there is a discrete set of

non-inferior solutions which are called Pareto optimal. For more information please refer to Multi-

Objective Programming and Planning by J. L. Cohon.

29

infeasible solution for a given problem even when a true feasible solution exists. The

MPSP as formulated and solved by Current et. al. (1985) is particularly susceptible to this

kind of issue although a similar result could occur on any of the covering-path type

models given the right set of network conditions (See for example Figure 2.3). Niblett

and Church (2013) were able to show that by utilizing the constraint structure developed

by Dantzig, Fulkerson, and Johnson (1954) the optimal solution to a problem may, in

fact, be overlooked. They also note that the work of Current et al. (1984 and 1985)

expressively excludes the possibility of having any attached loops. The underlying

assumption is that a loop/tour in the path is both undesirable as well as not optimal.

Thus, it was thought that any loops, attached or otherwise, should be prevented.

Although this approach seems reasonable and accurate, it is flawed and can be explained

using an example of Niblett and Church (2016).

The sub-tour breaking constraint utilized in the process developed by Dantzig,

Fulkerson, and Johnson in 1954 and used in the constraint additive process developed by

Current et. al. in solving the covering path takes the form:

1||  
 

Vx
Vi VFj

ij

i

 (2.38)

where V is the set of vertices in the sub-tour and iF represents the set of nodes that are

reachable from node i – in other words it is the set of nodes that are reachable by an arc

from node i. In general, there is one constraint for each vertex subset V. For a given set

of V, the constraint represents the sum of the arcs connecting this subset of nodes, which

must be strictly less than the number of members in V. Since the actual number of

constraints of this form are too large to handle in a model and since many are not

30

necessary, we add such a constraint whenever we encounter the condition that violates

the above condition for subset V and involves |V | arcs in the solution. When such a case

occurs, there will be a sub-tour or loop. However, as mentioned above, if one follows

the DFJ constraint additive process starting with an incomplete graph it is

possible that the true optimal solution may be prevented from being considered feasible. To

Figure 2.3A - An eight node, nine arc network. All arcs are undirected and can traverse in either direction.

Costs are given as numbers above arcs.

illustrate this, consider the following example graph shown in Figure 2.3A. In this

incomplete graph we have eight nodes and nine arcs which form an undirected graph. If

we were to apply the SCP model
6
 with a service distance of zero on this graph we would

obtain the result seen in Figure 2.3B. Following the Dantzig, Fulkerson, and Johnson

sub-tour breaking process we need to add a constraint to eliminate the cycle or sub-tour

4564. After we add such a condition and re-solve, we generate the solution given

in Figure 2.3C. The new solution determined has a path length of 23. However, is this

really the optimal solution? In Figure 2.3D we can see that there is in fact a better

6
 The MCSP/MPSP could have been used as well though for illustrative purposes and the simplicity of

the model formulation the SCPP is used here.

31

solution; involving an overall path length of 22. This clearly demonstrates that the sub-

tour elimination constraint process developed by Dantzig, Fulkerson, and Johnson and

applied by Current et. al. can prevent an optimal solution from being identified.

Figure 2.3B - An initial solution generated when solving the SCPP without constraints of type (7)

Figure 2.3C – The optimal solution to the SCPP after following the Dantzig, Fulkerson, and Johnson sub-tour

elimination process with a path length of 23. Note that there is an attached tour. If this tour was forced not to

exist there would be no feasible solution to the problem.

32

Figure 2.3D - The true optimal solution to a SCPP with a coverage distance of 0. The overall path length is 22.

To overcome this problem, Niblett and Church (2016) proposed a new type of

constraint that forces a loop/sub-tour to be eliminated (as in Dantzig, Fulkerson, and

Johnson) or attached to the path. This new condition is called an EAST constraint

(Eliminate or Attach Sub-Tour).

This new type of constraint developed by Niblett and Church (2016) takes the following form:

  
  





Vi VFj Vi

Vk
Tk

kiij

i i

Vxx 1 (2.39)

  
  





Vi VFj Vi

Vk
Fk

ikij

i i

Vxx 1 (2.40)

These two constraints taken together stipulate that in order for a tour/loop to exist in a

solution it must have at least one arc enter and one arc leave the sub-tour to some other

node which is not in the set V. The need to have an entering arc and an exiting arc for the

sub-tour ensures that the cycle is attached elsewhere. Constraints of type (2.39) are used

to ensure that if a sub-tour/loop is used in the solution it must have an external arc which

is used to enter, or attach to, the sub-tour/loop. The first part of the mathematical

33

statement is a conventional DFJ based summation that sums the arcs used in the sub-tour

denoted by the vertices in V. The new addition to this type of constraint is the term:








Vi

Vk
Tk

ki

i

x (2.41)

which represents arcs that can be used to enter the sub-tour from some node k such that

Vk  . Thus, a loop connecting nodes in V can occur when another arc is used in the

solution to enter the loop/tour from some node which is not in V. If an arc is not used to

enter the loop/tour from outside of V then the constraint prevents the loop/tour from being

used.

Constraints of type (2.40) work in a similar fashion to constraints of type (2.39);

the difference is that this type of constraint ensures that there must be at least one arc that

leaves the sub-tour/loop. The second term of the constraint in (2.40):





Vi

Vk
Fk

ik

i

x (2.42)

represents the sum of all arcs which are used to depart the sub-tour to some node k such

that Vk  The summation given in (2.42) includes all decision variables ikx that leave

the sub-tour/loop within the set V. If the decision variables included in the summation

given in (2.42) are all zero then the constraint given in (2.40) will revert into a Dantzig,

Fulkerson, and Johnson style constraint that will prevent the sub-tour/loop from being

formed. If one or more of the variables in (2.42) are equal to one, then the solution will

have an arc which leaves the sub-tour in route to other nodes Vk  and allow the loop to

34

exist. Thus, taken together these constraints will either Eliminate or Attach a Sub-

Tour/loop.

Once sub-tours within a solution have been identified and EAST constraints

created, the problem must be re-solved. The process is then repeated; that is, we identify

any sub-tours which have formed, create associated EAST constraints, and re-solve until

no further sub-tours are identified. Therefore, if one utilizes this process, one can

correctly identify the true optimal solution to any class of covering-path type of problem.

The EAST constraint allows loops to occur within a solution, but does not require them.

Whenever an optimal route is found by the use of this approach that involves the use of a

loop, the original model would result in a solution that was not optimal.

We have now examined the key portions of the literature which have led to the

development of covering-path type problems as well as looked at subtle but critical

nuances to the way this class of problems is solved. We described portions of the

Traveling Salesman Problem (TSP) literature as they have been applied in covering path

models as well as examined the reasons for why loops/sub-tours were considered to be

undesirable. We have also looked at the seminal problems in the covering

science/location literature in the form of the Location Set Covering Problem (LSCP) and

the Maximal Covering Location Problem (MCLP). The origins of the Shortest Path

Problem (SPP) were then reviewed with particular attention paid to how the LSCP and

MCLP formulations were merged into the seminal covering-path formulations of the

Shortest Covering Path (SCP) and Maximal Covering Shortest Path problems (MCSP).

Finally, we have reviewed how the traditional method of solving these problems needs to

be amended in order to properly account for the use of loops/tours which can yield a true

35

optimal solution. In the next section, we will examine how the SCP and MCSP

formulations have been utilized in applications.

2.3 Extended Problems

In this section several extended problems are discussed that are related to

covering-path problems. These include the following problems: The Median and

Maximal Covering Tour problems, the Covering Salesman problem, the Hierarchical

Network Design problem, the Transit Arc-Node Service Maximization problem

(TRANSMax), the Minimum Covering Shortest Path problem, and several multi-path

covering problems. Just as in the previous section each problem will be reviewed and the

modeling formulation will be defined and briefly discussed.

The Median and Maximal Covering Tour problems are a branch of the class of

covering-path problems. The formulations for these models were developed by Current

and Schilling (1994). The Median Tour Problem and Maximal Covering Tour problems

differ from the SCP/MCSP in that, rather than find a covering path which travels through

a series of intermediate nodes between a defined origin and destination node, we have a

tour which can be thought of as beginning and ending at the same node. The goal of the

Median Tour Problem is to visit p of n nodes such that the total tour length as well as the

total travel distance necessary for all demand nodes to reach their nearest facility, or stop,

on the tour is minimized. In effect it is a fusion of a Traveling Salesman Problem (TSP)

together with a p-Median Problem. The goal of a p-Median Problem is to minimize the

weighted distance from all demand nodes while locating p facilities (See Hakimi, 1964

and Maranzana, 1964). Hakimi defined the median location problem while Maranzana

36

was the first to propose a heuristic solution process. Although elements of the Traveling

Salesman Problem are captured in the model formulation, a key distinction is that in both

the Median and Maximal Covering Tour Problems the number of cities which are visited

on the tour are decided a priori. That is, in a TSP one must visit all nodes in a given

network while in the MTP/MCTP exactly p nodes must be visited on the tour. The

formulation for the Median Tour Problem is given as:

ijx = 1 if the arc from node i to node j is on the tour and 0 otherwise

ijy = the fraction of demand at node i assigned to a facility/stop at node j on the tour

ijc = the cost of including the path connecting nodes i and j on the tour

ijd = the travel distance of the shortest path connecting node i to node j

ia = the demand at node i

S = any subset of N

|| S = the cardinality of set S

p = the number of stops/facilities on the tour


  


Ni Nj

ijiji

Ni Nj

ijij ydaxcZMinimize (2.43)

Niy
Nj

ij 


1

Subject to

 (2.44)

Njxy
Nl

ljij 


0 (2.45)

Njxy
Nl

ljjj 


0 (2.46)

Njxx
Nk

jk

Ni

ij 


0 (2.47)

px
Ni Nj

ij 
 

 (2.48)

pSNSSx
Qi Qj

ij 
 

||2such that 1|| (2.49)

),(}1,0{ jixij  (2.50)

),(0 jiyij  (2.51)

37

The MTP is a bi-objective problem. The first term in the objective is to minimize

the overall tour length/cost. The second term of the objective involves the minimization

of the total weighted distance for each demand accessing their nearest facility/stop on the

tour. Since ijy represents the portion of demand at node i assigned to node j, the ‘cost’

will be a function of the value of the demand at node i,
ia , as well as the distance from

node i to node j, ijd , times the value of ijy . Constraints of type (2.44) ensure that all

demands i must be assigned to a stop/facility j (e.g. 1ijy) that is a part of the tour.

Constraints of type (2.45) require that all nodes to which demand is assigned must have

an arc which is part of the tour enter the node to which demand is assigned in order for

the demands to be served. Constraints of type (2.46) are self-assignment constraints

which allow a demand to self-assign only if it is a node that is part of an arc on the

covering tour. Constraints of type (2.45) and (2.46) taken together ensure service

assignment to the tour is made for all demand. Constraints of type (2.47) are flow

balance constraints which ensure that if a node is entered by an arc on the tour it must

also have an arc on the tour which leaves that node. This constraint will then force a tour

to form. Constraint (2.48) ensures that there will be p arcs used in the solution.

Constraints of type (2.49) represent the Dantzig, Fulkerson, and Johnson sub-tour

breaking style constraints. In this case, all sub-tours which have cardinality from 2 to p-1

are enumerated and prevented. These constraints are necessary as if they were not

included, sub-tours often form in the solution which break the stated goal of finding one

connected median tour. Constraints of type (2.50) are binary constraints which ensure

that there are no fractional solutions. This will ensure that the entirety of an arc is either

38

chosen or not chosen. Constraints of type (2.51) are non-negativity constraints which

prevent any negative demand assignment from occurring.

This formulation is quite useful in balancing tour length and total access distance.

In fact, a tradeoff curve can be developed with respect to tour length and demand

weighted distance costs by changing the values of p. Similarly, the use of objective

weights could also be employed to change the emphasis placed on overall tour

length/cost versus weighted demand coverage. However, a drawback of this formulation

is that it requires a complete graph)arcs (2 nn  which in itself increases the size of the

problem. An additional issue is the fact that a maximum distance/cost is not stated within

the model. Another issue lies in the fact that this formulation can be thought of as using a

coverage requirement akin to the Location Set Covering Problem where all demands

must be covered. That is, all demands must assign to a facility which is part of an arc

comprising the covering tour regardless of how far a given demand is from its closest

facility on the tour. This may be acceptable in some cases, though in situations where a

person or company is not likely to travel more than a certain distance the model would

not adequately capture the problem. This is, in part, why the authors proposed a variant

of the Median Tour Problem with the Maximal Covering Tour Problem formulation.

The Maximal Covering Tour problem objective is defined such that overall tour

length is minimized as well as what is not covered by the tour. The key distinction

between the Maximal Covering Tour Problem and the Median Tour Problem is that

access coverage is maximized instead of minimizing the total distance of tour access.

The additional set notation and formulation for the Maximal Covering Tour Problem is

given as follows:

39

iu = 1 if demand at node i is not covered by a stop/facility on the tour and 0 otherwise

}|{ sdjN iji  This is the set of all demands j which are covered by node I within the

service distance s

s = the maximum service distance


 


Ni

ii

Ni Nj

ijij uaxcZMinimize (2.52)

Njxx
Nk

jk

Ni

ij 


0

Subject to

 (2.53)

px
Ni Nj

ij 
 

 (2.54)

pSNSSx
Qi Qj

ij 
 

||2such that 1|| (2.55)

Niux i

Nl Nj

lj

i


 

1 (2.56)

),(}1,0{ jixij  (2.57)

iui  }1,0{ (2.58)

The first part of the objective (2.52) remains the same as in the Median Tour

Problem; the cost of the tour path is minimized. However, the second term of the

objective (2.52) is different. This second term of the objective minimizes what is not

covered by the tour defined by the variables
iu . This variable,

iu , is one if demand i is

not covered and zero if it is. The value of not covering demand i is given through the use

of demand values
ia . Constraints (2.53) through (2.55) and constraint (2.57) are exactly

the same as in the Median Tour Problem. Constraints of type (2.56) are used to tie the

variable representing what is not covered, iu , to the variables representing whether an arc

is used as part of the covering-tour. Essentially, if no arcs on the tour pass sufficiently

close to demand node i, then demand node i is not covered and iu is forced to equal one

in value. The last constraints (2.58) are the binary restrictions on iu . Current and

40

Schilling (1994) note that the Maximal Covering Tour can be formulated as a Median

Covering Tour problem through modification of the distance values ijd . Transforming

ijd into ijd  can be done as follows:


















sd

sd
d

ij

ij

ij
 if,0

 if,1
 (2.59)

This means that the weighted distance in the objective function in (2.43) will represent

the total demand not covered by the tour for a given service value s. However, utilizing

the Median Tour Problem formulation to represent a Maximal Covering Tour will add

more constraints to the problem than what is necessary in using the formulation of the

Maximal Covering Tour problem given above.

The advantage of the Maximal Covering Tour model over that of the Median

Tour problem is that it represents cases where one may wish to be within a certain

standard such as overnight delivery, or in cases where a customer or a business will not

travel farther than a certain distance in accessing service. The other advantage is that it

has flexibility in not requiring coverage of all demand. This allows a business or service

to design their service based upon a benefit/cost trade-off based upon the number of

facilities/stops that are used and what the gain or loss of customers may be. This can be a

powerful planning tool.

The next model of interest is the Covering Salesman Problem. This covering-path

model is a fusion of the Traveling Salesman Problem and the Location Set Covering

Problem. In a traditional Traveling Salesman Problem, all nodes must be visited using

the shortest possible tour. In the Covering Salesman Problem, all nodes must be covered

41

within a maximum service distance utilizing the shortest possible tour. Although this is

related to the Median Tour and Maximal Covering Tour problems it is different in that

there is not a prespecified number of arcs that will be used to define which nodes are a

part of the tour. Current and Schilling (1989) give the Covering Salesman formulation as

follows:

ijx = 1 if arc(i,j) is on the covering salesman tour and 0 otherwise

ijc = the cost of using arc(i,j) in the covering salesman problem

Q = the set of solutions which exclude all solutions with sub-tours.

}|{ jijl SdjP  = The set of nodes that are within the maximum coverage distance Sj

jS = the maximum coverage distance for a stop at node j

ljd = the shortest distance between node l and node j


 


Ni Nj

ijij xcZMinimize (2.60)

Nlx
Ni Pj

ij

l


 

1

Subject to

 (2.61)

Njxx
Nk

jk

Ni

ij 


0 (2.62)

2)SV,(1
,




SSx
n

Svv

ij

ji

 (2.63)

Njixij ),(}1,0{ (2.64)

In this formulation, the objective (2.60) is to minimize the overall cost of the tour, just as

it is in the Traveling Salesman Problem formulation. Constraints of type (2.61) ensure

that each node is covered by at least one arc which is on the covering tour and which is

within the maximal covering distance. This constraint is what allows the original TSP

requirement that every node be visited once to be relaxed into the Covering Salesman

requirement where every node must be either visited or be within a service range of a

42

node on the covering-tour. Constraints of type (2.62) are flow balance constraints which

ensure that if an arc enters node j then a subsequent arc must also leave node j.

Constraints of type (2.63) are given by the authors as constraints used to prevent sub-

tours and take the form of a Dantzig, Fulkerson, and Johnson sub-tour breaking

constraint. However, Current and Schilling (1989) note in their paper that since the set Q

is impossible to know a priori, either a solution process similar to Dantzig, et. al. must be

employed or an alternative sub-tour breaking constraint must be used. The final

constraints (2.64) are the binary constraints which ensure that an arc is either used or not

used and that there are no fractional solutions.

As was mentioned above, Current and Schilling use a sub-tour breaking constraint

type which was developed by Gavish (1983) for use on the Capacitated Minimal Directed

Tree Problem. In order to apply the method developed by Gavish, Current and Schilling

noted that they needed to modify the original graph through the creation of a dummy

node, defined as Node 0, and specifying that the cost of all arcs that go to and from Node

0 are equal to zero. Based on this form, constraints of type (2.63) can then be enumerated

through the following:

1
0,

0 


n

jNj

jx (2.65)

njzxx
n

i

ij

n

i

ij

n

k

jk 1
000

 


 (2.66)

njznz jj 1)1(00  (2.67)

jinjinxz ijij  ,1,  (2.68)

jinjnizij  ,0,10  (2.69)

43

njz j 1}1,0{0  (2.70)

The advantage of using the sub-tour elimination constraints (2.65-70) is that a model only

needs to be solved once instead of using an iterative approach that repeatedly solves and

adds constraints to a model until no sub-tours are part of the final solution.
7

The way that the constraints above exclude a sub-tour from being part of the

solution will now be described. Constraint (2.65) will ensure that one unit of flow leaves

the dummy node represented as node 0. Constraints of type (2.66) are flow augmentation

constraints. In this case, the flow out of j must be equal to the flow into j plus the number

of arcs on the Covering Salesman tour which enter node j. Constraints of type (2.67)

ensure that flow into the dummy node must originate from that node as the right hand

side will be zero for all but the origin node. Constraints of type (2.68) ensure that flow

will only occur on arcs that are used in the covering tour. Constraints of type (2.69)

ensure that flow along all arcs is non-negative and constraints of type (2.70) ensure that

the flow on all arcs from the dummy node must be either 0 or 1. Taken together, these

constraint types and the complete graph in conjunction with a dummy node will ensure

that the tour/circuit will not include a sub-tour or disconnected loop.

However, because these problems are a hybrid of location and Traveling

Salesman Problems, they must use a complete graph. This means that as a problem

increases in size, the problem begins to exponentially grow in terms of variables and

constraints. This poses considerable challenges and limits the scope of the network size

on which the problem can be optimally solved in a reasonable amount of time. Another

7
 Although there are many types of sub-tour elimination constraints such as Gavish and Graves (1978),

Miller, Tucker, and Zemlin (1960), Vajda (1961), Lawler et. al. (1985), Orman and Williams (2006)

suggest that an iterative approach may actually be a more efficient way of solving the problem.

44

drawback is that in effect you must use a complete network when in reality the network

may be quite sparse. Interestingly, Current and Schilling (1989) note this in their paper

where they show a solution to the CSP on an incomplete graph. This is readily seen in

Figure 2.4.

This shows that the use of attached loops/tours as a covering strategy may in

reality be an optimal solution. In terms of the modeling framework, one must use a

complete graph with their model of sub-tour breaking constraints in order to find such

embedded loops if they are optimal, whereas it is possible to use the EAST constraints of

Niblett and Church (2016) on a sparse graph and find the same result more efficiently

than the original approach. The next related problem that will be examined is the

Hierarchical Network Design Problem. This problem was first proposed by Current,

ReVelle, and Cohon (1986) and is formulated such that the least cost,

two-level hierarchical network is to be found. That is, we wish to find a path between an origin

Figure 2.4 - A solution to the Covering Salesman Problem as shown on an incomplete graph (Current and

Schilling, 1989).

45

and a destination as the primary path where all other nodes that are not part of the

primary path are connected to the primary path via secondary paths. The objective is to

minimize the length of the primary path as well as the lengths of all secondary paths. The

costs of developing the primary path (dollar per distance) are assumed to be greater than

that of secondary paths (dollar per distance). One can think of this type of hierarchical

structure as a primary transit line with secondary feeder lines that originate in the

hinterlands. Another way of thinking of this type of network would be for the allocation

of resources. For example in developing countries, the primary path may represent a

paved road between major populations while the secondary path would represent the

location of dirt or gravel roads connecting smaller or isolated communities. Perhaps the

most direct use would be in the application of power transmission lines where a primary

route might be the location of a high voltage line and the secondary paths could be lower

voltage distribution lines. An example of this type of solution is given in Figure 2.5.

Figure 2.5 - An example solution to the Hierarchical Network Design Problem (Current, et. al., 1986).

46

When formulating this model the authors make the following assumptions: 1)

demand exists at every node; 2) demand at every node must be satisfied; 3) demand at a

node is satisfied if either the node is on the primary path or is connected to the primary

path via a secondary path; 4) flow along all arcs is uncapacitated; 5) costs of trans-

shipment facilities at the intersections of the two path types are negligible; 6) all are arc

costs are non-negative; 7) there are no budgetary constraints. The formulation of the

Hierarchical Network Design Problem is given below:

ijC = the cost of a primary arc connecting node i to node j

'

ijC = the cost of a secondary arc connecting node i to node j

ijx = 1 if a primary arc connects node i to node j and 0 otherwise

ijy = 1 if a secondary arc connects node i to node j and 0 otherwise

} exists),arc(|{ jijNi 

} exists),arc(|{ jiiM j 

Node O = the starting node

Node D = the terminus node

V = a subset of nodes

Q = the set of all nodes

|Q| = the cardinality of subset Q

 
i

ij

j

ij

i j

ijij ycxcZMinimize '
 (2.71)

1

Subject to


 ONj

Ojx (2.72)

1
 DMi

iDx (2.73)

DOjjxx
jj Nk

jk

Mi

ij ,,0  


 (2.74)

47

DOiiyx
ii Nj

ij

Nj

ij ,,1 


 (2.75)

2||such that,1|| 
  

VQVVyx
Qi Qj

ij

Qi Qj

ij (2.76)

),(}1,0{ jixij  (2.77)

),(}1,0{ jiyij  (2.78)

The objective (2.71) minimizes the cost of the primary and secondary paths represented

by ijx and ijy respectively. Constraint (2.72) ensures that one arc will leave the

prespecified origin, O, on the primary path. Constraint (2.73) requires that one arc will

enter the prespecified terminus node, D, on the primary path. Constraints of type (2.74)

require that if a primary arc enters an intermediate node on the primary path, then an arc

must also leave that intermediate node on the primary path. Constraints of type (2.75)

require that a node must either have a primary arc or a secondary arc leave it with the

exception of the origin and destination nodes. This type of constraint ensures that all

nodes on the graph are connected by either a primary or a secondary path as it requires an

arc to be used which is either part of the primary or secondary path. Constraints of type

(2.76) are sub-tour elimination constraints derived from the Dantzig, Fulkerson, and

Johnson constraint type given in (2.4). Constraint types (2.77) and (2.78) are binary

constraints which force each decision variable to be either zero or one. As the complete

set of sub-tours is not known a priori, the authors suggest a Dantzig, Fulkerson, and

Johnson style iterative sub-tour elimination approach wherein one solves the model

without any constraints (2.76), determines the existence of sub-tours, adds constraints of

type (2.76) for each of the sub-tours involved in the solution, and then re-solves the

problem repeating the process until no further sub-tours are involved in the solution.

However, because this problem is solved on an incomplete graph, it is possible that the

48

sub-tour breaking constraints used in this type of problem would also need to be modified

through the use of EAST constraints as it is possible that the optimal solution could be

inadvertently excluded, just as in the SCP and MCSP problems.

The next problem formulation to be discussed is the Minimum Covering Shortest

Path Problem developed by Current, et. al. (1988). This problem is a natural extension of

the work done on the MCSP and SCP formulations. The problem itself is not

complicated with the title itself descriptive of the problem; the goal is to find the shortest

possible path which also covers as little as possible. A minimum covering shortest path

modeling framework is particularly useful for applications such as corridor location,

hazardous waste transportation, military frameworks wherein one wishes to avoid contact

with the enemy, et cetera. In the case of a corridor location application, one may wish to

avoid populations of a certain species or land areas which have a high ecological value.

The movement of toxic materials and hazardous wastes has also become contentious in

the public realm, particularly in light of the potential for attack after the events of

September 11, 2001. Thus, finding the path of minimum impact/disruption is highly

desirable from both a strategic, environmental, and public safety point of view.

With respect to the Minimum Covering Shortest Path Problem, the following

assumptions are held: 1) flow along arcs is not capacitated; 2) Arc costs are non-negative;

3) There are no budgetary constraints; and 4) Population at a node is negatively impacted

if the path comes within some predetermined impact/covering distance of that node. The

formulation for the Minimum Covering Shortest Path problem is given as:

ijc = the population covered by an arc from node i to node j

49

ijd = the distance/time to travel on an arc from node i to node j

ijx = 1 if an arc connects node i to node j and 0 otherwise

} exists),arc(|{ jijNi 

} exists),arc(|{ jiiM j 

 
i

ij

j

ij

i j

ijij xdxcZMinimize (2.79)

1

Subject to


 ONj

Ojx (2.80)

1
 DMi

iDx (2.81)

DOjjxx
jj Nk

jk

Mi

ij ,,0  


 (2.82)

),(}1,0{ jixij  (2.83)

where the objective function (2.79) minimizes the sum of what is covered by an arc as

well as the total distance of the covering path. Constraint (2.80) ensures that the path will

have one arc which leaves the origin node and constraint (2.81) ensures that the path will

have one arc that arrives at the destination node. Constraints of type (2.82) are balance

constraints which ensure that if an intermediate node, j, is entered by an arc from node i,

then there must also be a corresponding arc that leaves node j and travels to another node,

k. Constraints of type (2.83) ensure that the decision variables for arc use, ijx , must be

either 1 or 0 to represent whether an arc is used or not. Although Current et. al. do not

formulate the problem as such, it is possible to include a neighborhood set in which one

can define all nodes that are within a specified distance of the visited node. Such an

addition would be useful if one wished to include geographic proximity of outlying areas

into the model. Current et. al. state that in the formulation, population values at these

nodes have been calculated a priori and incorporate surrounding areas into the population

50

set ijc . The Minimum Covering Shortest Path problem could be solved using importance

weights applied for each objective term, just as in the MCSP problem. This would allow

one to determine a tradeoff curve based upon emphasis on minimizing coverage and

minimizing path length.

Up to this point we have examined several related problems in the covering-path

literature. These path problems have primarily utilized a tour or path and require the use

of sub-tour elimination constraints to obtain solutions feasible to the stated problem. The

next set of problems that we will examine are multi-path covering problems as well as a

new transit route design model. The multi-path covering problems are extensions of the

SCP/MCSP formulations. These include models such as the multi-path covering (Boffey

and Narula, 1998), the multiple route transit network design (Wan and Lo, 2003; Wu and

Murray, 2005), and the transit route extension (Matisziw, et. al., 2006) problems.

Because of the unique use of Vajda constraints and the fact that the formulation involves

a different modeling framework than the SCP/MCSP we will first examine the Transit

Arc Node Service Maximization Problem (TRANSMax).

TRANSMax was recently developed by Curtin and Biba (2011); it was

specifically designed for the development of transit lines and overcoming unique issues

presented through the use of a GIS. It should be noted that there has been much work

surrounding transit planning and routing. In transit planning there is a broad range of

issues that must be considered. For example, one issue may be customer satisfaction as

how a user perceives the safety, cleanliness, and cost (Levinson and Brown-West, 1984;

Levinson, 1992; Weinstein, 2000; Figler, et. al, 2011; Tyrinopoulos and Antoniou, 2008).

One of the first papers concerned specifically with transit was an adaptation of the LSCP

51

to locate bus stops (Gleason, 1975). However, much of the early literature from the mid

1970’s to the late 1990s focused primarily on efficient allocation of resources (i.e. run

cutting, headways, and scheduling) rather than optimally locating route alignments

(Rousseau, 1985; Furth and Day, 1985; Ceder and Wilson 1986; Daduna and Wren,

1988; Wren and Wren 1995). In the mid-1990s and early 2000’s an emphasis was placed

on the issues of access and accessibility as well as how these goals could be implemented

(O’Neill et. al., 1992; Hsiao, et. al., 1997; Murray, et. al., 1998; Murray, 2001, 2003). As

computer processing power has improved over time, models were developed which could

be optimally solved. The vast majority of routing models use the framework derived

from Current et. al. (1984, 1985). Later in this section we will discuss several of these

routing models, particularly Boffey and Narula (1998), Wan and Lo (2003), Wu and

Murray (2005), and Matisziw, et. al. (2006). The key point of noting this is that only

recently has attention been paid to optimal transit network design, and when this has been

an issue the framework that is most often used is that of Current, et. al. (1984, 1985).

This is what sets the TRANSMax model apart from others in the covering-path literature.

The TRANSMax model departs from the Current et. al. (1984, 1985) framework

by implementing a model based upon Vajda’s (1961) formulation of a Traveling

Salesman Problem. Vajda’s implementation utilizes a third index in addition to the

traditional origin, destination indices for the routing decision variables. The additional

index Vajda employs is used to denote the order an arc is used on the path. This ordering

or sequencing is principally used in order to prevent the formation of sub-tours. The sub-

tour preventing constraints developed by Vajda for the TSP take the form of (2.84):

52

mtjxx
m

i

m

i

tjiijt ,,2,1,0
1 1

)1( 
 

   (2.84)

where m is the number of cities to be visited, i and j are the indices of cities/nodes, and t

is the index representing the sequence of arcs along the route. Thus, in the constraint

formulated by (2.84), if an arc in sequence t is used to travel from i to j then the t-th plus

one arc must be used to travel from j to a subsequent node. To prevent sub-tours from

forming the additional constraints given in (2.85), (2.86), and (2.87) are required.

ix
m

ijj t

ijt  


1
,1

 (2.85)

jx
m

jii t

ijt  


1
,1

 (2.86)

tx
i j

ijt  1 (2.87)

Constraints of type (2.85) are used to ensure that only one arc would be permitted to

leave node i across all sequences t. Constraints of type (2.86) are used to ensure that only

one arc is allowed to enter node j across all sequences t; taken together constraints (2.85-

86) prevent a node from being visited more than once. Constraints of type (2.87) ensure

that only one arc can be used for each sequence t. Curtin and Biba (2011) utilize the

Vajda based framework above to formulate the TRANSMax model as follows:

ji, = indices of nodes that comprise the network

r = the index of arcs comprising a route

m = the number of nodes in the network

R = the maximum number of arcs within a route

ijA = the service value associated with the arc from i to j

iM = the service value associated with node i

ijd = the length of the arc from node i to node j

53

D = the maximum length of the route

ijrx = the decision value = to 1 if an arc from i to j is chosen in step r and 0 otherwise


  


m

i

m

j

R

r

ijriij xMAZMaximize
1 1 1

)((2.88)

mjx
m

i

R

r

ijr ,,2,11

Subject to

1 1


 

 (2.89)

mix
m

j

R

r

ijr ,,2,11
1 1


 

 (2.90)

1,,2,1;,,2,10
1

)1(

1








Rrmjxx
m

i

rji

m

i

ijr  (2.91)


 


m

i

m

j

ijr Rrx
1 1

,,2,11  (2.92)


  


m

i

m

j

R

r

ijrij Dxd
1 1 1

 (2.93)

),,(}1,0{ rjixijr  (2.94)

where the objective (2.88) is to maximize the service values of the arcs, ijA , as well as

the service values for the nodes, iM , using a total of R arcs. Constraints of type (2.89)

require that for each node j, at most one arc across all sequences used on the path is

allowed to be used to enter that node. Constraints of type (2.90) require that for each

node i, at most one arc across all sequences may be used to leave that node. In effect

these constraints, taken together, ensure that a path will only be able to enter and leave a

node once. Constraints of type (2.91) require that there be a sequentially connected path.

In this case, for each node j such that j is not on the first or last sequence, if an arc in

sequence r enters node j then the r-th plus one arc in the sequence must leave node j.

This constraint type will ensure that there is a connected path; the first and last sequence

numbers are excluded as those sequences represent travel from and to the origin and

54

destination nodes respectively. Constraints of type (2.92) ensure that there will be one

arc chosen for each sequence r on the route. It should be noted that by specifying a total

of R sequences, the optimal path may not be found as it could be forced to include more

sequences than required in the optimal solution. Additionally, there may not be enough

sequences specified which are required to obtain a truly optimal solution. Constraint

(2.93) requires that the route must not have a distance/cost larger than a prespecified

distance/cost D. Since there is no objective function that minimizes overall path length,

this constraint is used to ensure that a route does not have a cost/distance which exceeds a

certain cost/length. Curtin and Biba chose to model transit in this manner as they note

that many covering-path models do not optimize in terms of a user perspective but from

an operational perspective (i.e. the models are oriented to find a least cost covering path

as opposed to a path which optimizes the coverage of particular areas). By including a

maximum cost/distance, Curtin and Biba can ensure that a user would experience a level

of service which in the maximum case would be D cost/length. In essence, their goal is

to ensure a user would not spend say an hour on a bus line, but rather a maximum of 30

minutes. This model framework could, however, be modified so that the maximum path

cost/length given in constraint (2.94) is removed and an objective added which minimizes

overall length. Constraints of type (2.95) are binary constraints used to ensure that there

are no fractional solutions to the problem.

It is also important to note that the two constraint types (2.89 and 2.90) taken

together could a priori ensure that a truly optimal solution is never found as the

assumption built into this model, just as in other covering path models, is that an optimal

solution will never cross over itself (generating a loop) or involve an attached loop as an

55

optimal covering strategy. By restricting a node to having one entering and one exiting

arc, this will ensure that a node is never visited more than once. As was proven in Niblett

and Church (2016), the assumption that a route will never involve a loop in an optimal

solution is invalid and thus this model will also suffer from this limitation.

Curtin and Biba (2011) also note that their model is flexible and can be modified

to fit various needs based upon particular planning cases. For example, they recognize

that a salesman tour style route may be desired in a route planning context; as was noted

in the introduction, this is the case for a vast number of medium sized cities across the

US. That is, it may be desirable to find a route which begins and ends at a particular

place – i.e. a transit center. This also would seem to address the assumption that a route

can be traversed in either direction; however, as was noted for constraint types (2.89-90),

the formulation does not allow a node to be revisited and thus the efficacy of this type of

constraint in modeling “real world” routes is questionable. Nevertheless, Curtin and Biba

give their generic loop constraint (2.95) as:

mixx
m

j

m

j

ijRij ,,2,10
1 1

1 
 

  (2.95)

In effect the addition of this constraint type would require that for each node i either an

arc leaving the node on sequence one and an arc entering the node on the final sequence

R of the route will be chosen or node i will not be the starting and ending point of the

route. If it is not chosen, node i could still be included on some other sequence for the

route. However, this constraint only forces the route to return to a node at which it

originates. In effect it creates a singular tour; since constraint (2.89) and (2.90) do not

allow any node (including the origin and destination node) to be entered twice; this would

56

prevent any attached loops. Thus, the form of TRANSMax utilizing constraints of type

(2.95) would be more akin to that of a covering TSP.

Curtin and Biba also note that it may be desirable to have a route which originates

from and ends at a particular point of interest, such as a transit center. This form of the

model is similar to the form described above; the difference is that instead of trying to

determine the best possible tour given R sequences over the entire network, we now wish

to find the tour which is guaranteed to originate and end with a specific location. To

satisfy this type of need, Curtin and Biba proposed adding constraints (2.96) and (2.97):





m

j

sjx
1

1 1 (2.96)





m

i

isRx
1

1 (2.97)

where s represents the point of interest that must be the terminus. Constraint (2.96)

requires that an arc must be taken to leave the point of interest and constraint (2.97)

requires that the last arc used on the route must be used to enter the point of interest. In

effect constraints (2.96) and (2.97) will force the route to begin and end at a prespecified

node rather than determining the optimal tour given R total arcs for a route. Curtin and

Biba also note that there are two other variations which can be used to find an optimal

route given R sequences. The first case defines where one may wish to require the route

to end at a given terminus node while having no specific origin node. This case can be

defined through constraint (2.98) where e represents the desired

terminus node. The second case is similar, but instead of specifying a required terminus node





m

i

ieRx
1

1 (2.98)

57

and no specific origin, the requirements are inverted wherein we now must depart from a

specified origin node with no specific terminus node defined. This case is given by constrain t





m

j

ejx
1

1 1 (2.99)

(2.99). Where e now represents the specified origin and r equal to one represents the first

sequence to be used. Curtin and Biba note that all of the basic forms above can be further

modified to accommodate areas that may have a significant service demand area such as

business parks or other large employment centers through the use of waypoints. In this

case a waypoint is defined as a known point of interest/demand, but is not desirable as an

origin or terminal node. Curtin and Biba’s waypoint constraint can then be defined as

given in (2.100):

2
1 11 1


  

m

i

R

r

iwr

m

j

R

r

wjr xx (2.100)

where w represents the waypoint node desired on the route. The first summation

accounts for all arcs which leave the waypoint node, w, across all sequences. The second

summation accounts for all arcs which enter waypoint w across all sequences. Taken

together with constraints (2.89), (2.90), and (2.92), this constraint will ensure that the

waypoint is visited exactly one time and is not a beginning or ending point of a route.

However, even though the basic TRANSMax model can be modified to meet various

forms which suit a set of particular requirements such as way points, starting and ending

nodes, etc. the TRANSMax model is unable to use attached loops/tours. Although Curtin

and Biba do propose a form which creates a tour (i.e. a route that begins and ends at the

same point) which was described above, this form does not allow for attached or

58

embedded tours within the route. This is due to the fact that such cases are prevented a

priori through the use of Vajda style constraints. In this case it is constraints (2.89) and

(2.90) which force a node to be entered and exited exactly once which prohibits an

attached loop from occurring. If you remove these constraints from the model, then the

Vajda framework falls apart and it is likely you would be left with a series of sub-tours as

a solution, which defeats the purpose of using a larger set of variables ijrx in the first

place – that is, building a model which prevents unattached cycles without the need of an

iterative constraint addition and solution procedure.

As was noted above, the last set of papers we will examine is comprised of

problems that are Multi-Path Covering problems. There are four modeling formulations

that have particular relevance to the original work of John Current as well as fit into the

transit route modeling research quite nicely. The first paper on multi-path models is that

of Boffey and Narula (1998). Boffey and Narula were the first to formulate the multi-

path covering problem. Although in their paper they limit the number of paths to 2, they

note their formulation could be expanded to include any number of paths. The practical

applications for their model are of course in transit planning where one may want to

design multiple routes, but it could also have application in problems where one may

require the use of a number of routes for the same product or service. These can be such

things as deliveries (such as newspaper distribution or mail delivery), mobile services

(such as mobile glass repair, plumbing), electricity transmission/distribution, or even

tourism (sightseeing, etc.). Boffey and Narula’s model uses the Maximum Population

Shortest path problem as a base framework (See (2.36) in the Key Problems section

above). It is also important to note here that Curtin and Biba use r to represent the

59

chosen sequence of arc selection of a route whereas Boffey and Narula use r to

differentiate between several different routes. The formulation of the Multi-Path

Covering Problem involves the following notation:

kji ,, = indices of nodes that comprise the network

ka = the population at node k

r = the number of paths that one desires to model, in this case the formulation uses 2

O = the origin node

D = the destination node

V = the set of vertices comprising the graph

iF = the set of nodes that are reached by an arc from node i

jT = the set of nodes that are connected by an arc to node j

ijd = the length of the arc from node i to node j

r

ijx = 1 if an arc from i to j is chosen on path r and 0 otherwise

r

ky = 1 if node k is covered by path r and 0 otherwise

)()(2121

ij

i Fj

ijijk

Vk

kk xxdyyaZMaximize
i




 (2.101)

2,11

Subject to




rx
OFj

r

Oj

 (2.102)

2,11 


rx
DTi

r

iD (2.103)

DOjirxx
kk Fj

r

kj

Ti

r

ik ,,;2,10 


 (2.104)

2,1;0 


rjiyx
iTj

r

i

r

ji (2.105)

Vkyy kk  121 (2.106)

rkjiyx r

k

r

ij ,,,}1,0{,  (2.107)

The objective (2.101) of the Multi-Path Covering Problem is a multi-objective

formulation that involves maximizing the population covered and minimizing overall

path length for each of the two stated paths (i.e. r = 2). Constraint (2.102) requires that

one arc be used to leave the origin node for each path r and constraint (2.103) requires

that each path reach a terminus node, D. In this case each path begins and ends with the

60

same origin and destination nodes; however, these could be changed for each path r so

that each path would have a unique starting and ending node. Constraints of type (2.104)

represent balance constraints for each path r; for each intermediate node – that is, a node

that is not the origin or destination node – which is entered by an arc on the path must

then be exited by an arc on the path that leaves the intermediate node. Constraints of type

(2.105) represent the coverage constraints for each path r. In this case, in order for node i

to be covered by path r, path r must utilize an arc which enters node i. It should be noted

that there are no coverage distances used in this framework as this formulation is based

upon the Maximum Population Shortest Path formulation where a node is considered

covered only if it is directly visited by the covering-path. If one wished to transform this

formulation to a Maximum Covering Shortest Path style covering-path problem, one

could set up a maximum service distance, S, and utilize a neighborhood set defining the

set of all nodes j that are within the service distance of node i (i.e. }|{ SdjN iji  in

place of set
iT in (2.105). Constraints of type (2.106) require that only one path can

cover node k. This will ensure that there is no double coverage and the two paths are

spatially unique. If constraint type (2.106) was not added to the formulation, each path r

would follow the exact same route as each path would simply follow the best route and

count coverage twice. Constraints of type (2.107) represent binary conditions for the x

and y variables used on each path to represent whether they have been used or not used in

the solution.

Boffey and Narula also proposed a formulation where the value of covering a

node more than once can be captured through the use of two new binary variables, ku

61

and
kv , where 1ku if node k is covered by one path and

kv represents if node k is

covered by both paths. The objective function for coverage can then be modified to type

(2.108)

 
k

kkk vua)( (2.108)

where  can range from a value of zero through one depending on the emphasis one

wishes to place on the benefit/value of secondary coverage. A value of zero would

represent no additional coverage benefit while a value of one would represent a benefit

equal to that of covering the node once. Constraints of type (2.106) are then modified to

the form in (2.109) and additional constraints of type (2.110) are added to the

formulation.

kvuyy kkkk  21 (2.109)

kuv kk  (2.110)

A constraint of type (2.109) will ensure that if one path travels to node k,
ku is allowed to

be one since the coverage variables are binary. However, in order to prevent
ku from

being zero in value while
kv is positive, constraints of type (2.110) ensure that in order

for
kv to be used in the solution,

ku must already have a value – this of course indicates

that one of the paths has already visited node k. It should be noted that the assumption

used in creating this constraint is that the associated benefit multiplier value  will be the

same at all locations at all times which may or may not be true.

The Multi-Path Covering formulation is important in that it represented the first

real step towards creating a modeling framework which represents the “real world”

62

through the use of multiple covering paths. What is interesting is that Boffey and Narula

note that spurs, or branch lines – i.e. loops – may be a very acceptable alternative with

respect to covering. And yet, if one employs this model, the issue of sub-tour elimination

comes into play. Just as in the MCSP and SCP it is highly likely that sub-tours will form

when the problem is first solved. Thus, an iterative process such as the Dantzig, et. al.

iterative process must be used to eliminate all disconnected tours or flow constraints such

as Gavish and Graves (1978) that keep the route connected. In this case, it is very

possible that the optimal solution would be prevented from being determined as Boffey

and Narula use the Dantzig, et. al. sub-tour elimination process whose flaws were

detailed at the beginning of this chapter.

An additional issue that the Multi-Path Covering formulation faces is that it does

not account for bi-directional travel; that is, Boffey and Narula still assume travel from a

prespecified origin to a prespecified destination for each path can simply be reversed to

form a transit route. In other words, although the use of two bus routes could be modeled

using this formulation, the model itself does not consider the fact that a bus may or may

not travel in the opposite direction along that same route. Another transportation related

issue which is related to the issue of directional travel is that the formulation does not

consider the nature of the stop. For example, if one assumes a route can travel in both

directions, it may be that an intersection may just be a four way stop where a person can

easily cross the street and board the bus in the opposite direction. However, if one must

cross a 4 or more lane expressway this may mean that it is not practical to say that a stop

can, in fact, cover the same population on each side of the street. In short, although the

63

Multi-Path Covering Problem is a step forward, it still has a number of shortcomings that

could be addressed; particularly if the model is applied in a transportation context.

We next turn this discussion to models that primarily focus on transportation

design and expansion. Wan and Lo (2003) were among the first to formulate a transit

specific design model. Their model minimizes the overall cost of a transit network while

meeting transit demand. The objectives of their model are to simultaneously locate

routes as well as handle the flow of passengers along these routes. The key assumptions

of their model are as follows: 1) all origin and destination nodes must be covered; 2)

there exists a route or a collection of routes with spare capacity to meet every OD

demand; 3) every route is acyclic (i.e. a route does not contain, nor is it a part of, a tour);

and 4) every route serves both directions of the same line with the same frequency.

These assumptions are very standard in the literature but they do come with drawbacks.

For example, the assumption that a route will be acyclic has been proven to be flawed

and the assumption that a route will travel in both directions based on one path can also

be problematic. Wan and Lo’s formulation does attempt to address the issue of how one

can best optimize multiple routes to better serve travelers. Wan and Lo utilize the

following notation:

A = the set of arcs in a graph G

Aa = an arc from node i to node j

C = the homogenous transit capacity

ac = the link cost for using an arc

R = The set of transit routes
r = index of routes

 = the subset of all acyclic routes within R

kr = an individual route, k, that is within the set 

rf = the frequency for each route r, r = min being the minimum and r = max being the

maximum desired frequencies (e.g. headways on a transit line).

64

ts, = indices for the starting and terminus node pairs in the set W

wq = the demand at w

stq = the demand associated with travel from s to t
r

stq = the demand associated with travel from s to t that is served by route r
r

ijd = 1 if a route travels from node i to node j or 0 otherwise

r

ut

r

sudd = indicates a stop is made at u on route r between OD pair (s,t)
r

ax = 1 if route r traverses arc a and 0 otherwise

M = a very large number


 


max

1

R

r Aa

r

aar xcfZMinimize (2.111)

Wtsqq st

R

r

r

st 


),(

Subject to

max

1

 (2.112)

O

Wvu

r

uv

r

uv

Wts

r

st

r

ut

r

sur WuqdqddCf  
),(),(

 (2.113)

O

Wvu

r

uv

r

vu

Wts

r

st

r

us

r

tur WuqdqddCf  
),(),(

 (2.114)

max,,1, Rkrk  (2.115)

maxmin fff r  (2.116)

max,,1,),(),(0 RrWtsddMq r

ts

r

st

r

st  (2.117)

AaRrxr

a  ;,,1},1,0{ max (2.118)

DOr

st WWtsd  ,},1,0{ (2.119)

In this case, the objective function (2.111) is to minimize the operating cost of all transit

lines where fr represents how often route r is used (representing route headways), ca

represents the link cost for an arc, and r

ax represents whether arc a is included in the

solution for route r. Constraints of type (2.112) decompose each OD demand into route

specific demands. Constraints of type (2.113) represent capacity requirements for each

route r as it travels through stops on the route. In this case the authors assume that

capacity is homogenous for the entire system and that every route or collection of routes

65

is able to meet all demands for a given route frequency. Thus, (2.113) represents the fact

that there must be a route or series of routes that has capacity to serve demand.


Wts

r

st

r

us

r

tu qdd
),(

 (2.120)

The sum represented in (2.120) represents the passenger volume that is already aboard


Wvu

r

uv

r

uvqd
),(

 (2.121)

route r at node u while (2.121) represents the boarding demand from node u onward.

Constraints of type (2.113) handle travel volume in a forward direction and constraints of

type (2.114) handle travel volume to be met in the opposite direction. It should be noted

that although this would account for travel in opposite directions it does not allow for any

loops to be used as the model is designed such that a route is only determined in one

direction (i.e. all routes are by definition acyclic). These constraints are based on the

inherent assumption that it would be possible to travel in the opposite direction without

taking into account the true spatial layout of a route. Constraints of type (2.115) are used

to represent that each route will be part of an acyclic set. In essence this set represents

the set of all possible acyclic routes. Wan and Lo’s applied formulation must use some

form of tour elimination constraints in order to ensure feasibility and connectedness of

identified routes. The easiest way to do this is the flow balance and sub-tour elimination

constraints of Current et. al. (1985). Constraint type (2.116) sets limits for the lower and

upper bound on line frequency for each route. This constraint attempts to address how

often a route should be utilized. This is akin to how often a bus should run on the line.

Constraint set (2.117) is used to allow positive demand on route r only when a route is

traversed along an associated arc in either a forward or backward direction. In this case,

66

since demands may not be uniform, a large value M is used to make the number

sufficiently large so as to accommodate possible demand but still ensure demand cannot

be allowed if either direction variable 0 r

ts

r

st dd as 00* M . Constraint types

(2.118) and (2.119) are binary constraints on arc selection and direction respectively. If

an arc is utilized or a route travels in a specific direction then these variables will equal

one, zero otherwise.

As noted above, however, the set Ω cannot be known a priori and thus Wan and

Lo must specify a method for preventing sub-tours and looped routes (i.e. routes that

comprise, or even utilize, a loop). Although one could conceivably adapt a Dantzig, et.

al. iterative tour elimination process, Wan and Lo do so through a mechanism inspired by

Miller, Tucker, and Zemlin (1960), and their approach adds considerable computational

complexity to an already complex problem. In order to explain their approach it is

necessary to describe the variables they utilize. These are given below:

r

k = the sequence number for node k will be the n-th number of the sequence for route r

or 0 otherwise
r

k = 1 if route r starts at node k or 0 otherwise
r

k = 1 if route r ends at node k or 0 otherwise
r

a

r

hk xx  the authors use these variables interchangeably to represent an arc. In this case

the h represents the node that forms the head of the arc and k represents the node at

the tail.


kN = the set of tail nodes comprising an arc entering node k


kN = the set of head nodes comprising an arc leaving node k

The expanded form of constraint type (2.115) which represents the Ω set is then given as:

Nkx r

k

Nh

r

hk

r

k

k

 


 (2.122)

NkxM

kNh

r

k

r

hk

r

k  


 (2.123)

67

NkxxM

kk Nh

r

kh

Nh

r

hk

r

k 













 

 

 (2.124)

   k

r

k

r

hk

r

h

r

hk NhNkxMx ;1  (2.125)

   k

r

k

r

k

r

hk

r

k

r

h

r

hk NhNkxMx ;1  (2.126)





Nk

r

k

Aa

r

ax
M


1

 (2.127)














Nk

r

k

Aa

r

ax
M

1
1

1 (2.128)





Nk

r

k

Nk

r

k  (2.129)

Nkx

kNh

r

hk 


1 (2.130)

Nkx

kNh

r

kh 


1 (2.131)

Nkxx

kk Nh

r

kh

r

k

r

k

Nh

r

hk  
 

 (2.132)

In this expanded set of constraints used to define the feasibility of any design routes, Wan

and Lo use a node labeling approach to delineate attributes of the model, the variables for

which are given above. In this case, constraints of type (2.122) and (2.123) represent a

bound on the value of a sequence. These labeling constraints are inspired by the Miller,

Tucker, and Zemlin TSP sub-tour prevention constraints developed for traveling

salesman problems in that  represents the value of the sequence of the path; constraints

of type (2.122) and (2.123) stipulate that in order for route r at sequence k to be labeled as

the next sequence of the route, an arc must have entered node k on the previous sequence.

Constraints of type (2.124) ensure that a node on a route can only have a sequence value

if an arc enters or leaves that node. Constraints of type (2.125) and (2.126) ensure that

the value assigned to each sequence – i.e. each  – along the route must be an increment

of 1 larger than the sequence value of the node which entered k. Constraints of type

(2.127) and (2.128) are meant to ensure that there is one starting node that exists while

68

constraints of type (2.129) ensure that there is also a terminus node for each route if an

origin node for the route exists. Constraints of type (2.130) require that, for each node k,

only one arc may enter node k and constraints of type (2.131) require that only one arc

may leave node k on a specific route, r. Taken together, constraints of type (2.130) and

(2.131) are used to prevent tours/cycles from occurring. Constraints of type (2.132) are

essentially flow balance constraints where if a node is entered by an arc there must be a

corresponding arc that leaves that node with the exception of the origin and destination

nodes. In effect these additional constraints are needed to ensure that the route is a path

rather than a tour, unless r

k

r

k   .

One of the biggest drawbacks of this model formulation is that as the size of a

problem increases, the number of constraints and variables increase dramatically,

particularly given the tour elimination constraints that Wan and Lo add to the model.

This is a hard problem that is difficult to solve to optimality. The second major issue is

that Wan and Lo note that their formulation is not a truly linear model as the objective

and several of the introduced constraints are not linear – e.g. r

ar xf  in the objective

(2.111). Wan and Lo do attempt to linearize some of these constraints, but again, doing

so adds more computational overhead to the formulation. The last issue is that their

model explicitly prevents tours – whether attached or embedded – from occurring. Thus,

it is very possible a model of this type could exclude a truly optimal solution. However,

the formulation itself does attempt to address several crucial issues such as a user versus

operator perspective in terms of quality of service versus cost, and is the first true attempt

to do so in the context of a covering path framework. One should also note that enough

69

capacity is provided between each origin and destination to handle all traffic, but does not

address how long users might have to wait for a bus that is not already at capacity.

Wu and Murray (2005) formulated the Multiple Route, Maximal Covering

Shortest Path problem to optimize transit quality and system access. The authors note

that transit access – that is, the ability of a person to enter and ride on a transit system – is

of utmost importance in urban regions. In particular, emphasis is placed on maximizing

the spatial extent of system access in order to ensure that those with mobility problems

(i.e. senior citizens, persons with a disability) and those at the lower end of the socio-

economic ladder are able to adequately move about the city in pursuit of better jobs,

schooling, etc. An equally important objective is that of service quality. This includes

things such as: convenience, travel time, comfort, information access, reliability, safety,

etc. (Levinson, 1992). The use of interactive trip planning tools can also enhance a level

of service such as the Google Maps’ transit planner (Huang and Peng, 2002; Peng and

Huang, 2000). Improvement in reliability has been sought through the use of automatic

vehicle location data associated with bus arrival or departure at specific stops (Cathey

and Dailey, 2003; Yu et. al., 2011) and by implementing transit signal priority (Ling and

Shalaby, 2003; Li et. al., 2011). Yet an underlying theme is travel-time performance,

which is why travel time remains an important aspect of service quality, as noted by

Newman and Kenworthy (1999). The name of the model of Wu and Murray (2005) is a

bit misleading as it does not design routes nor does it seek to find maximal covering

shortest paths. It actually selects, among existing bus stops, a subset of stops that, when

kept, improve service times while keeping access coverage as high as possible. Wu and

Murray’s model notation and formulation are given below as:

70

kji ,, = indices of existing bus stops

r = index of existing transit routes

m = index of ridership service areas

o = index of origin terminals for transit routes

d = index of destination terminals for transit routes

ijl = the transit travel distance from stop i to stop j

ijv = the cruise speed from stop i to stop j

i = the total delay time at stop i associated with bus acceleration, deceleration, and door

opening and closing

ijt = the total travel time between stop i and stop j without intermediate stops

ma = the potential ridership demand in service area m

mj = the shortest travel time/distance from service area m to stop j

S = the suitable access service standard

}|{ SjN mjm  the set of stops that can service area m within the access standard

rmy = 1 if service area m is covered by route r and 0 otherwise

odijz = 1 if a directed arc from stop i to stop j is included in path from o to d and 0

otherwise

jx = 1 if stop j is selected to remain in the system and 0 otherwise

 
o d i j

odijij

m r

rmm ztyaZMaximize (2.133)

mryx rm

Nj

j

m

,

Subject to




 (2.134)

DdOox
j

odoj  ,1 (2.135)

DdOox
i

odid  ,1 (2.136)

DjOjJjDdOozz
k

odjk

i

odij  ,,,,0 (2.137)

JjDdOoxz j

i

odij  ,, (2.138)

mrdojiyzx rmodiji ,,,,,}1,0{,,  (2.139)

In this transit stop selection model, the objective (2.133) is to maximize ridership

while minimizing total system travel time. The first objective term maximizes the

potential ridership in each service area that is covered by a located bus stop within a

suitable access time/distance. The second objective term minimizes the total bus travel

71

time between terminal origin-destination pairs for all routes – in other words the overall

operation time for each route in a transit system is minimized. Constraints of type

(2.134) are coverage constraints for each route and service area. If a stop is located on a

route within the access standard of service area m then that area is considered covered.

Constraints of type (2.135) and (2.136) ensure that an arc is selected to leave an origin

terminus and an arc is selected to arrive at a destination terminus for each transit route.

Constraints of type (2.137) are flow balance constraints which ensure that if an arc on a

route enters a node, then that arc must subsequently leave that node with the exception of

all origin and destination nodes for each route. Constraints of type (2.138) are used to

track where bus stops are sited. In this case, a bus stop cannot be located on a route

unless it is connected by an arc on the route from o to d. Constraints of type (2.139) are

binary constraints which ensure that stops are either assigned or not assigned, arcs cannot

be partially used, and coverage is not partially assigned.

Wu and Murray (2005) also give a metric that allows one to calculate the value

for ijt as a function of travel time along a direct route or as a function of a transfer

between two or more routes. The formula for capturing this value is given in (2.140):





















routesdifferent on stops transfer are j and i stops if ,

stopser not transf and routesdifferent on are and stops if ,

route same on the are and stops if,
2

1

2

1

ij

j

ij

ij

i

ij

T

ji

ji
v

l

t



(2.140)

where  represents the total delay time due to acceleration/deceleration and door

opening and closing, ijl represents the transit travel distance from stop i to stop j and ijv

72

represents the cruising speed from stop i to stop j. Thus, if stop i and stop j are on the

same route, the estimated travel time between these stops will be half the delay at stop i

(representing the time it takes for passengers to board and the bus to leave) plus the time

it takes to go from stop i to stop j plus half the delay at stop j (the time it takes for the bus

to stop and passengers to get off). If i and j are transfer stops on different routes, then ijT

represents the amount of time it takes to transfer from one route to the next (in essence,

the amount of delay). If stop i and j are not on the same route or a transfer stop, then their

value is infinite as it is impossible to transfer or continue on to stop j. Wu and Murray

also note that each objective can be weighted in a similar manner as was applied in the

MCSP which would allow for the generation of a tradeoff curve. In this case, such a

curve would represent the importance of covering each service area with the importance

of efficient service.

By the fact that routes are held and fixed and stops are being localized, the model

of Wu and Murray will not be affected by the possibility of sub-tours as no routing

variables are included. However, by restricting the design in this fashion it is possible

that an optimal routing and stopping scheme will be overlooked. In fact, if one expected

to see elements of real world routes as well as the fact that it has been proven that

attached tours are an effective covering strategy (Niblett and Church, 2016), one would

expect that there would be at least one attached tour in many systems. Yet in this case,

due to the restriction on the routes and network, what will truly be optimized is the siting

of bus stops such that as much of the access area can be covered as possible using fewer

stops. If one were to open this model to changes in route alignment by allowing routing

to occur on a true road network, it is certain that a model of this nature would include

73

sub-tours in an initial solution and thus would need a sub-tour elimination process to

account for their occurrences. Overall, the requirement to follow a pre-set route

alignment is by far the biggest drawback of this model.

Another limitation of this model is that stops are assumed to provide coverage

regardless to the direction the bus travels. This means that the problem may not be truly

captured as they have formulated it. A related issue lies in the fact that it is assumed that

a bus will be able to reverse direction and begin to travel in the opposite direction of the

stated covering-path at an origin or destination terminal. Although many cities do

employ “transit centers” this assumption may not hold across the board – for example a

bus may actually continue in the same direction and instead simply change the route

number that it is traveling on. An example of such a case is that involving Line 6 and 11

in the Santa Barbara Metropolitan Transit District. The strength of their formulation is

that it was one of the first attempts to improve service and route design with respect to

access and efficiency, and it did so with a formulation much more concise than that of

Wan and Lo. However, to reiterate what was mentioned above, one of the major

drawbacks of this formulation is that it is limited in terms of network scope. That is, the

authors constrained the model to select from pre-existing stops while keeping routes

fixed. The last paper that will be discussed in this section attempts to address some of

these issues while extending existing routes.

Matisziw et. al. (2006) propose a formulation for strategic route extension for new

urban areas. This formulation is referred to as the Maximal Covering Route Extension

Problem (MCREP). The formulation is designed such that transit agencies can add to

their existing routes in order to minimize user disruption and dissatisfaction as well as

74

cover new urban areas as efficiently as possible within a standard of access. In particular,

the authors have formulated their model such that new areas will be served via a pre-

specified number of potential new stops. The MCREP is formulated as follows:

ji, = index of potential candidate stops

k = index of demand areas

r = index of clique sets (Entire set = R)

T = the set of beginning terminal nodes t

E = the set of destination (dummy) nodes e

}defined is),(| node{ jiarciN j 

}defined is),(| node{ jtarctNt 

}defined is),(| node{ eiarceNe 

ka = the potential demand in area k

ijd = the distance between stop i and stop j when i and j are directly connected

p = the number of stops to locate

kM = the set of stops j which cover demand k

rC = the subset of stops for which one j covers the same demand as other stops

jz = 1 if potential stop j is used as a stop and 0 otherwise

ky = 1 if demand k is covered and 0 otherwise

ijx = 1 if arc {i, j} is on the solution path and 0 otherwise

 
i j

ijij

k

kk xdyaZMaximize (2.141)

Ttzx t

Nj

tj

t




Subject to

 (2.142)

Ttzx e

Ni

ie

e




 (2.143)

etjjxx
jtlNl

jl

jeiNi

ij

jj

,,0
,,,,

 


 (2.144)

pz
etj

j 
 ,

 (2.145)

tjjxz
ji

ijj 


,0 (2.146)

eiixz
ij

iji 


,0 (2.147)

kzy
kMj

jk  


 (2.148)

75

Rrz
rCj

j 


1 (2.149)

kjizyx jkij ,,}1,0{,,  (2.150)

The objective (2.141) maximizes coverage and minimizes added route cost/length.

Specifically, the first portion of the objective statement maximizes the demands that are

covered while the second portion of the objective statement minimizes the overall

cost/length of the route. Constraints of type (2.142) ensure that an origin node for the

extended route, t, is part of an existing route. In this case, because we wish to extend

routes into a new service area, the origin for the extended route could be located

anywhere where a current route currently serves an area. Constraints of type (2.143)

ensure that a route will end at an ending node, e, which lies on an existing route.

Constraints of type (2.144) are balance constraints which ensure that if an intermediate

node j is entered by an arc, there must also be a corresponding arc which leaves

intermediate node j. This is done for all nodes with the exception of the origin and

destination nodes for the extended route – that is all nodes except nodes t and e.

Constraint (2.145) specifies that p stops along the route will be used. Constraints of type

(2.146) ensure that if a stop is located at node j then there must be a corresponding arc

which enters node j with the exception of the route extension origin node t. Constraints

of type (2.147) ensure that in order for a stop to be located at node i there must be a

corresponding arc which leaves node i with the exception of the destination node e for the

extended route. Constraints of type (2.148) ensure that in order for node k to be

considered covered, there must be a stop located at a node that is able to cover k.

Constraints of type (2.149) are clique constraints that will prevent redundant coverage.

That is, only one stop is allowed to be selected from among a set of stops that provide the

76

same spatial coverage. Constraints of type (2.150) are binary constraints which stipulate

which variables must be either one or zero in value.

Just as in the SCP/MCSP derived covering-path problems, the potential for sub-

tours exists in this model formulation. It is very likely that sub-tours would appear,

particularly on a large graph. In this case, the authors suggest a sub-tour elimination

procedure similar to that used by Current et. al. which is based on Dantzig, Fulkerson,

and Johnson TSP sub-tour elimination constraints. Thus, in order to obtain a solution

which does not include tours, a model must be solved, sub-tours identified, constraints

need to be added, and then the problem can be re-solved and the process repeated if the

need arises. As noted previously in this section, the use of Dantzig, Fulkerson, and

Johnson style constraints used by Current et. al. and most of the other covering-path

formulations have the potential to exclude truly optimal solutions from being determined.

Another potential problem is that these routes are assumed to be bi-directional; so even

though a path may be found, it is possible that a bus may not be able to make a U-turn,

or, in the worst case scenario, a bus may not physically be able to travel in the opposite

direction due to the fact that the route may utilize a way one street. It should also be

noted that an emphasis on keeping the alignment of current routes static – i.e. relatively

unchanged – could adversely impact the model. Although one may not want an

established transit line to shift its route alignment too much in order to avoid angering the

current ridership, it is possible that a marginal change in the route alignment, or even a

system wide re-alignment, could substantially improve service in terms of access,

accessibility, and system cost.

77

Nevertheless, the Maximal Covering Route Extension Problem is easily

formulated and solved on large networks using current computational solvers which is in

contrast to the Multiple Route Transit Network Design problem formulated by Wan and

Lo. Matisziw et. al. applied the MCREP to newly developed areas in Franklin County,

Ohio which includes the Columbus, Ohio metropolitan area. What is interesting about

their results is that one of their proposed extensions includes a nearly attached tour at two

points along the route as seen in Figure 2.6 below. Thus, if an EAST constraint process

were used, it is possible that more such loops could appear in a solution. Therefore, the

task is not only to determine a method of accounting for transit routes in both directions,

but also how routes can utilize loops to efficiently extend coverage.

Up to this point we have reviewed the core set of covering-path models and

formulations as well as extended models which deal with covering-path applications such

as public transportation. We have seen that these models utilize a framework which has

been proven to be flawed and we have seen that they do not entirely capture the problem

based upon the assumptions that a path can travel in both directions. It is also assumed

that busses can easily change direction at the terminal points of the route – that is their

78

Figure 2.6 - Example of a nearly attached tour (Matisziw et. al., 2006)

origin and destination points – for travel in the opposite direction. Moreover we have

seen that these models don’t easily capture the advantage that a route could provide

through the utilization of an attached or embedded loop and are in fact often encouraged

not to utilize such features either through explicit prevention such as in Vajda derived

models or through tour-elimination processes such as those modified from Dantzig,

Fulkerson, and Johnson. What we have yet to cover is the area of heuristics – or methods

used to find a reasonably ‘good’ solution – which have been developed to solve these

models. Therefore, it is pertinent to visit the heuristic work that has been developed to

solve these problems in the next section.

2.4 Solution Procedures – Algorithms

This section will examine several key papers that have developed algorithms or

heuristics used to solve covering-path problems. In order to provide a precise definition

of terms, this dissertation defines an algorithm as a method or process that is used to

obtain a guaranteed optimal solution to a problem while a heuristic is a process or method

79

which is used to obtain good if not optimal solutions to a defined problem but with no

guarantee of optimality or no guarantee of how close to optimal such a solution might be.

This is an important distinction as there are several algorithms which yield optimal

solutions for specific problems – e.g. Dijkstra’s Algorithm (1959) for shortest paths –

while heuristics are often used to solve NP-Hard problems such as the p-Median problem

– e.g. Teitz and Bart (1968). Often heuristics can produce optimal results; the key point

is that there is no guarantee. Thus, when discussing methods for finding solutions to a

stated problem we refer to an algorithm as a process which yields a verifiable optimal

result and we refer to a heuristic as one which yields, hopefully a good, but not

necessarily optimal, result.

This particular section will present several methods which have been used to

solve covering-path type problems. This section will also include a brief discussion of

shortest path algorithms, as covering path problems are a more complex form of a

shortest path problem. It is important to note that there are many different heuristic

approaches that could be applied – e.g. greedy, genetic, etc. – but it is imperative that the

heuristic is an appropriate fit for the problem. A good heuristic for one problem type –

e.g. Teitz and Bart for the p-Median – does not necessarily mean it is an appropriate fit

for covering-path type problems.

One of the classic algorithms for determining shortest paths through a network is

Dijkstra’s Algorithm (1959). Although Dijkstra did not come up with the first shortest

path algorithm – the Bellman-Ford-Moore algorithm was simultaneously developed

between 1956 and 1958 (Ford, 1956; Bellman, 1958; Moore, 1959); Minty (1957) even

80

suggested using knots on a series of strings.
8
 Schrijver (2012) gives an excellent

overview of the development of methods used to solve shortest path problems. However,

methods that have been applied in related covering-path problems are those based upon

k
th

-shortest paths. In general k
th

-shortest path algorithms find the k paths connecting a

given source/destination pair in order of total path length (Hoffman and Pavley, 1959).

In other words, k
th

-shortest path algorithms can find the 1
st
 shortest path, 2

nd
 shortest

path, etc., out to the k
th

-shortest path in order of lengths. This problem was first defined

by Bock, et. al. (1957) although the first published paper – using a different approach – is

by Hoffman and Pavley (1959). Interestingly, there are two different versions of this

problem; the k
th

-shortest path which does not include loops (i.e. tours) and the k
th

-shortest

path which does include loops (i.e. tours). The first efficient non-looping algorithm was

developed by Yen (1971)
9
 and the most efficient looping algorithm by Eppstein (1998)

10
.

It is not surprising that a k-shortest path would have the possibility of looping through a

node as we have seen that it can be a very efficient covering strategy in the covering-path

formulation. In a shortest path context it makes sense that if one has a very short segment

the path may loop around an arc forming a simple tour until another path exceeds the

efficiency of doing so. Coutinho-Rodrigues et. al. (1999) developed a k
th

-shortest path

based algorithm with respect to finding unsupported non-dominated solutions for bi-

objective shortest-path formulations (i.e. SCP/MCSP, etc.). However, with respect to

maximal covering, shortest path problems there has been little work done with respect to

8
 If one develops a network using a series of strings in which nodes represent cities and string lengths

distance between each city one can pull the knots representing the OD pair apart to find the shortest path.

The tautest string or set of strings represents the shortest path between the OD pair.
9
 Although Yen’s Algorithm was the first to have a known order of complexity, other approaches have

been able to further improve computational time (Lawler, 1972; Perko, 1986; Martins and Pascoal, 2003)
10

 Although the paper was published in 1998 Eppstein first reported his algorithm at the 35
th

 Annual

Symposium in the Foundations of Computer Science (IEEE) in 1994.

81

exact algorithms. The bi-objective nature of the problem makes the development of such

algorithms particularly complicated as there can be considerable variation regarding

emphasis that is placed on each objective. However, methods used to solve integer

problems as well as determine the non-inferior frontier are quite useful and these are

frequently solved through algorithmic methods. Therefore, the first algorithmic solution

method I would like to discuss is a process used to find integer solutions to a problem

which is often referred to as the ‘Branch and Bound’ method or algorithm. The second

method described relates to finding the non-inferior solution frontier and is called the

Non-Inferior Set Estimation (NISE) method.

In order to further explain the implications of modeling problems which require

integer solutions, a brief set of definitions will be given. When formulating a linear

programming problem/model, a graph where solutions are plotted as a function of

variables can be defined. The area representing the values associated with the variables

of the problem can be defined as a representation of the solution space. If we plot the

line (or hyperplane) defined by each constraint, we can begin to define a bounded region

which represents a limit on possible decision variable values. Depending on the

definition of the constraint, the feasible solutions to the problem will lie either on, above,

or below these constraint lines (or hyperplanes). Thus, these lines (or hyperplanes) then

define the region in which we have a feasible solution or the region of feasibility. If we

assume a simple problem where there exists a set of feasible solutions such as the

problem given by (2.151-153):

cxZMaximize  (2.151)

bAx 

Subject to
 (2.152)

82

0x (2.153)

where x is an n by one vector, b is an m by one vector, and all other matrices have

conformable dimensions, then a feasible region is then defined as the area which lies

within the region defined by bAx  (2.152). Note, since we specify that the vector x is

non-negative (i.e. greater than or equal to zero) in constraint (2.153) this will ensure that

the region will fall in Âspace where all variables are greater than or equal to zero. The

unique points at which one or more of these lines (or hyperplanes) intersect are defined as

the extreme points of the problem which we simply refer to as extreme points. Therefore,

extreme points represent a change in the limiting function for a particular feasible region.

In other words, these points represent where the limiting factor switches from one

constraint to another. In our sample problem the objective function (2.151) defined by cx

will be maximized and thus the optimal solution for this problem will be one of the

extreme points defined by (2.152) above.
11

 When solving these linear models, one can

use Dantzig’s simplex method which pivots along these extreme points until the optimal

solution is ultimately determined
12

.

However, if we constrain a problem to be defined as integer or binary, the set of

solutions within the feasible solution space is no longer a continuous region but is now

defined to be a set of discrete points at which each point is a discrete integer-feasible

solution to the problem. In effect this means that an extreme point which defines an

optimal solution in continuous space may not represent an optimal solution for a discrete

integer problem. Thus, a more computational intensive approach must be used to

11

 For a thorough explanation of mathematical programming I would refer one to Hillier and

Lieberman’s Introduction to Operations Research.
12

 There are possible nuances of cycling, which are often not a concern. However, they do present

theoretical issues that need to be addressed when proving convergence.

83

determine the optimal discrete integer solution to the problem. There have been several

methods proposed that will do this. One of the first to examine this issue was Gomory

(1958, 1960) who suggested an algorithm in which additional constraints could be added

to a problem. These added constraints are cutting planes which are used to reduce the

feasible region in an attempt to prevent non-integer solutions from occurring at the edge

of the region of feasibility containing the optimal all integer solutions. Although this is

may be an effective way to solve the problem, it is not terribly efficient – especially as a

problem grows in complexity, especially in terms of the number of integer variables

involved.

Land and Doig (1960) developed what has since become known as the Branch

and Bound Method/Algorithm. Rather than use a purely constraint-based approach to

solve an integer problem such as Gomory; Land and Doig recognized that the relaxed

integer problem – i.e. the relaxation of integer/binary constraints to non-negativity

constraints – represents a bound to the integer problem. That is, a solution to the integer

problem in the best case can never exceed that of the linear form of the problem. This is

illustrated in Figure 2.7. Thus, Land and Doig recognized that a method could be devised

wherein one can find the best bound and then ‘branch’ along the associated search tree

until the solution matches the best bound found. The generic form can be stated as

follows:

84

Figure 2.7 - Feasible Region to a linear problem and the associated integer solution given in Land and Doig

(1960). On the graph Point A represents an optimal linear solution while Point E represents the optimal integer

solution.

Step 0: determine a solution
hx to the problem (Note that this is a relaxed linear

solution). Set B as the solution to
hx where B represents the best solution found

by the linear relaxation.

Step 1: Determine all variables in the solution
hx which do not have integer values.

These represent the variables on which we will ‘branch.’ In the case of the

relaxed problem – if all variables are already integer stop, this is the optimal

solution.

Step 2: Pick one of the ‘branch’ variable candidates and set it to be the associated floored

integer value or the ceilinged integer value – e.g. if a variable has a value of 3.7

its floor is 3 and ceiling is 4. Determine the solution to the associated sub-

problem using these values. If a solution to a sub-problem is not feasible then that

branch can be removed from further exploration. If a sub-problem has an integer

solution it can also be removed from the set of ‘branches’ that require further

exploration as there will be no better solution than the current integer solution.

Step 3: Chose the next variable to ‘branch’ on which has an associated objective value

closest to B. If all initial non-integer variables have been ‘branched’ set the best

value found to be the best objective found associated with the branch variable that

yields the best objective.

Step 4: Repeat steps 2-3 until an integer solution is found which equals the best objective

or until all portions of the tree have been fathomed – i.e. no better solution can be

determined based upon branching on that variable.

85

The nice thing about the branch and bound algorithm is that you can use solutions

obtained from other heuristic methods to set bounds. If the best integer solution found by

the branch and bound algorithm is found to be a solution determined by the heuristic,

then you know that you have found the optimal solution. The branch and bound process

is also relatively easy to code and there exist several methods which amend the basic

branch and bound process to improve solution times.
13

 In any case it is discussed here

due to the fact that a form of the branch and bound algorithm is used by virtually all

commercial solvers to determine optimal binary/integer solutions. Virtually all covering-

path type problems are solved to optimality through the use of a branch and bound

algorithm. Although the branch and bound algorithm will find an optimal solution to a

problem given enough time, the practicality of doing so falls as problems increase in size.

Due to the bi-objective nature of covering path problems, it is essential to perform

some kind of multi-objective analysis. One of the earlier methods developed with respect

to multi-objective analysis, where the goal is to identify pareto optimal solutions, was

that of Cohon et. al. (1979) who developed a method for identifying the non-inferior

tradeoff curve. Cohon et. al. (1979) first formulated the NISE, or Non-Inferior Set

Estimation algorithm to identify solutions in multi-objective problems which are non-

inferior. This method would allow one to approximate the set of non-inferior solutions

through a novel procedure. The basic idea is to approximate the weights needed with

respect to a bi-objective problem such that the point defining the optimal objective in the

13

 See for example: Crowder, Johnson, and Padberg (1983) and Padberg and Rinaldi (1991) – I haven’t

been able to find a clear citation of the branch-and-cut algorithm but Gomory and Balas did extensive work

on cutting plane methods for solving integer problems; I suspect that the branch and cut algorithm came

together sometime in the early 1980’s.

86

feasible region is determined. If we recall, a bi-objective formulation takes the form of

(2.154).

2211 ZwZwMaximize  (2.154)

By approximating the lines which bound the points representing optimal solutions to each

objective, the region bounding the non-dominated inferior set can be ascertained. In

order to best explain the algorithm we must first define the notation that will be used in

the algorithm. The set of points, P , is a set that is composed of the optimal solution

points determined by the algorithm as it works through the process of finding the region

defining the non-inferior set. In other words, this set contains solutions which are

indexed according to the order in which they are determined by the algorithm. This

means that these points may not be adjacent to neighboring points in chronological

identification. In order to define solutions in order of decreasing value with respect to

one of the given objectives we can reorder the set of points. This set is ordered such that

each point in S represents the best solution with respect to the associated objective given

an associated weight; this can be readily seen in Figure 2.8 where the ordering of S is in

relation to objective 2Z . We also start with a predefined error tolerance for how accurate

we wish our final result to be. To do this we use 1,  ii which represents the error

tolerance for determining the non-inferior set between solution points i and i+1. We

define the maximum error tolerance as T. A visual representation of this is given in

Figure 2.9. In order to approximate the set given in Figure 2.8 we must determine the

weights that should be used with respect to each objective. We can do this through the

use of weights corresponding to the line segment formed by connecting known solution

87

points. For example, suppose we have a known solution for the i-th and a neighbor

represented as solution i + 1. The slope for the line connecting these points is given in

(2.155). The slope, m, is:

)()(

)()(

111

122










ii

ii

SZSZ

SZSZ
m (2.155)

should then be a function of the associated objective weights. This function is given as

(2.156):

)()(

)()(

111

122

2

1










ii

ii

SZSZ

SZSZ

w

w
 (2.156)

where
1w and 2w represent weights on

1Z and 2Z respectively. Therefore, we can

represent the weighted objective function for a segment between
iS and

1iS as defined

in (2.157) as follows:

211111221,)]()([)]()([ZSZSZZSZSZBMaximize iiiiii   (2.157)

Figure 2.8 - Solution Points according to set P and S as given in Cohon et. al. (1979)

88

Figure 2.9 - Generating the approximate set with error tolerances as given in Cohon et. al. (1979)

through the manipulation of (2.156) and (2.154). Therefore, the generalized version of

the NISE algorithm to find the approximated set is as follows:

Step 1: Set the desired value for the error threshold, T, the maximum allowable error.

Determine 1P by solving for 2Z and 2P by solving for 1Z . Set 11 PS  and

22 PS  . Compute 12 and let 1n where n equals the number of distinct points

currently in the string set.

Step 2: If Tii  1, then stop as a satisfactory approximation of the non-inferior set has

been determined. Otherwise, go to Step 3

Step 3: Find i such that Tii  1, . Solve the problem given in (156) and designate the

new solution as 1nP . Go to Step 4.

Step 4: In this step we will update the sets. Note that i is the highest value of t such that

)()(122  nt PZSZ . Therefore, we can update the string sets in the following

way:

itSS tt ,,2,1for 

11  
ni PS

iitSS tt ,,1for 1 


89

where
tS is the new ordering for the string set. Once this is completed we now

redefine the error threshold,  in the following way:

Compute 1, 
ii which represents the maximum possible error between

iS and

1iS and then compute 2,1 
ii which represents the maximum possible error

between
1iS and

2iS : 2 if 1,,1for 1,2,1 
 ninittttt  where

1, 
tt are the new values for the  variables. Increment n by one and then go to

Step 2.

The authors note that the NISE algorithm can be modified to suit certain demands. For

example, Step 3 could be modified such that i can be chosen such that the maximum error

1,  ii is the largest rather than choosing any maximum error that is above the threshold.

This change would result in a more even approximation which would be useful if one is

uncertain of the value chosen for the error threshold. One could also subscript the

threshold itself so that different error values can be set with respect to specific segments.

This would allow an analyst to gain greater insight with respect to a region of the non-

inferior set which is of greater importance. To illustrate how the method works, it is

useful to work through the example provided in Cohon et. al. (1979). Suppose we have a

sample problem that is composed of the following objective and constraints:

)()(2211 xZwxZwZMaximize  (2.158)

3001525

ToSubject

21  xx
 (2.159)

3007 21  xx (2.160)

700112 21  xx (2.161)

1822 21  xx (2.162)

112011 21  xx (2.163)

8021  xx (2.164)

01 x (2.165)

02 x (2.166)

1 if 1,,2,1for 1,1,   iittttt 

90

where
211 3)(xxxZ  and

212 5)(xxxZ  . The first step in the process is to identify

the optimal solution with respect to each objective. This will define a set of bounds at

which there can be no better solution with respect to each objective – i.e. weights are set

at zero and one and the problem is solved and then weights of one and zero respectively,

and then solved for
1Z and

2Z . Thus, the first points we will add to P are
1P and

2P

which define the best possible solutions with respect to each objective
2Z and

1Z . We

call these points
1P and

2P as these points correspond to the first two points that we have

added to the set of points used to define the bounds of the solution. The third point to be

found would be
3P and so on until the algorithm terminated. If two lines are drawn with

each line corresponding to the maximum value of each objective, eventually they will

intersect. We can call the point of intersection between these lines, point C. Thus, the

region formed by lines CP1 , CP2 , and 21PP represent the region in which the non-inferior

set must exist. In this case we will find the entire non-inferior set, so we set the error

tolerance threshold equal to zero. This means that in order for the NISE algorithm to

terminate all 1,  ii must be equal to zero. Since the line 21PP is not known to be inferior,

12 is greater than zero and thus we move to Step 3 in the algorithm. In this case, the

only possible candidate is to maximize 12B as at this stage we only have two solution

points (e.g. 2n). Having made this selection we now set the point of our new solution

as 1nP which means we have our new solution point 3P . We now move to Step 4 where

we update the string set and redefine the parameters needed for  and S . In this case,

11 PS  , 32 PS  , 23 PS  , 012  , and 023  . Upon completion of Step 4 we return

to Step 2 and begin the second iteration of the algorithm. Thus, up to this point the non-

91

inferior set looks like that given in Figure 2.10 where the shaded region represents the

non-inferior set after one iteration of the algorithm. Since we have values of 1,  ii that

are greater than zero we would need to continue the algorithm. For further examples and

a complete enumerative description, see Cohon et. al. (1979).

The limitation of the NISE algorithm is that it only applies to problems which are

linear in nature. This means that the optimal set of discrete points for integer or mixed

integer linear formulations can be approximated but only based upon finding supported

non-dominated points. Steuer and Choo (1983) utilized a Tchebycheff (also given as

Chebyshev) approximation to determine the non-inferior set. This process takes

advantage of the nature of Tchebycheff Polynomials by approximating the best

polynomial which fits the objective for the problem. Solanki (1991) expanded the idea of

by using a weighted Tchebycheff procedure for explicit multi-objective location

problems. The main contribution of Solanki (1991) was to generate the non-inferior set

with respect to discrete solutions. Medrano and Church (2014, 2015) have further

expanded this work into finding unsupported non-dominated solutions with respect to

shortest paths. These solutions are much harder to determine, although they are optimal

solutions, they are not necessarily readily determined as convex supported solutions. An

example of this is seen in Figure 2.11.

92

Figure 2.10 - Non-inferior set after one iteration of the NISE algorithm on the sample problem as given in Cohon

et. al. (1979).

Figure 2.11 - Example of un-supported non dominated solutions as given in Medrano and Church (2014)

2.5 Heuristics

Solving large problems to optimality may be computationally unrealistic.

Although solution algorithms such as branch and bound will determine an optimal

solution given enough time and computational resources for many problems, there still

exits a limit as to the size at which most NP-hard problems can be solved to optimality.

93

This necessitates the use of “good-enough” heuristics. The field of heuristic algorithm

development is very large and includes techniques such as: greedy; λ-opt (swapping);

insertion; GRASP (Feo and Resende, 1989); variable neighborhood search, genetic,

swarm smarts (e.g. ant colony optimization); simulated annealing; heuristic

concentration, Tabu search; as well as others. I will review here only those techniques

that have been used in covering path problems, notably ‘Tabu’ search and LaGrangian

relaxation. However, from the outset one should realize that all heuristic approaches are

possible for application in covering path problems. The first type of heuristic applied

with respect to covering paths is LaGrangian Relaxation. This will be reviewed and

followed by a discussion of Tabu Search.

The first application of LaGrangian relaxation we will look it is by Current,

Pirkul, and Rolland (1994) as it specifically addresses LaGrangian Relaxation as applied

to the Shortest Covering Path Problem. LaGrangian relaxation is a method of relaxing

selected constraints and adding “LaGrangian” terms to the objective function

approximating the problem. This means that the solution obtained for the relaxed

problem is an approximate solution to the original problem. Stated precisely, LaGrangian

relaxation allows one to remove one or more constraints within a model by incorporating

it into the objective function through the use of LaGrange multipliers, which impose costs

to violations of the incorporated inequality constraints on the objective. Incorporating a

set of inequality constraints into the objective and determining the proper multipliers

often will allow a problem to be solved much more efficiently and easily than the original

un-relaxed formulation. In practice this means that larger problems can be solved close

94

to optimally. Current et. al. (1994) applied LaGrangian relaxation to the Shortest

Covering Path problem. If we recall that the SCP is defined as:





jNi j

ijij xdZMinimize (2.22)

1

ToSubject

1 
 iNi

ix (2.23)

1
 nNi

inx (2.24)

njjjxx
jj Ni

ji

Ni

ij 


 and 1 where , 0 (2.25)

nkkkx
j kNi sj

ij 
 

 and 1 where , 1 (2.26)

)(, }1,0{ i,jxij  (2.27)

we can see that constraints of type (2.26) can be adapted into the objective function

transforming the problem into a version of a shortest path problem. Thus, if we remove

constraints of type (2.26) and incorporate these into our objective function using a

LaGrange multiplier we will obtain the form given in (2.167):

 
  
















Nk Ni Sj

ijk

Ni j

ijij

kj

xxdZMinimize 1  (2.167)

where
k represents a vector of LaGrangian multipliers. This function can be rewritten

into the form given in (2.168):

 
  

















Nk

kij

Ni Nj Sk

kij xdZMinimize
i

 (2.168)

which is, in essence, a shortest path problem objective. For values of k that are less than

or equal to zero the problem can be easily solved using Dijkstra’s Algorithm. However,

since the LaGrangian multipliers can be greater than zero, it is possible that negative cost

cycles could occur which would cause Dijkstra’s Algorithm to fail as it becomes caught

95

in a negative cost cycle. Although other algorithms could be used – e.g. Floyd-Warshall

or Bellman-Ford – Current et. al. noted that it was more efficient to discard multiplier

sets which result in negative cycles. They also noted that they could have alternatively

added sub-tour breaking constraints to the formulation as needed though they again noted

that it was more efficient to opt to avoid sets which resulted in negative cost cycles,

particularly since one searches for “good” LaGrangian multipliers.

Thus, the difficult part of any LaGrangian relaxation is finding the proper set of

multipliers. This is done through the approximate LaGrangian multiplier set
* that is

defined by (2.169):

 )(* 


ZMaximize (2.169)

This function can be interpreted as follows: find the best value of lambda values such that

the best objective using LaGrangian multipliers is determined in the relaxed problem.

The next step is to find these multipliers. Current et. al. note that there are several

methods for determining ‘good’ multipliers (Bazaara and Good, 1979; Fisher, 1981).

The method chosen by Current et. al. is a subgradient search method. This subgradient

optimization is defined by using the following function given in (2.170):

)(1 bAXt k

k

kk   (2.170)

where kX is an optimal solution to the relaxed problem and kt is a positive scalar step

size at iteration k. To determine the step size for the subgradient function in (2.170), the

following stepsize function (2.171) is commonly used.

2

)((

bAX

ZZd
t

k

k

k
k







 (2.171)

96

In this case, Z is a feasible solution value, and
kd is a scalar value such that 20  kd .

To initialize the function,
0 values are set to zero and

kd is initialized at 2. Current et.

al. halved
kd after 15 consecutive iterations when the bound did not improve. When

multipliers were found that resulted in negative cost cycles, Current et. al. discarded these

multipliers, halved
kd and resumed the optimization using the multiplier set that

generated the best bound found up to that time. In order to generate feasible solutions to

the relaxed SCP, Current et. al. formed a heuristic which would take a solution to a

multiplier set and determine if the solution covered all nodes. If so, a feasible solution

had been determined. If not, the following heuristic was employed.

Step 1: Let "path" be the path identified by the solution to the relaxed SCP. Initialize D

to be the set of all nodes not on the path, and let U be the set of all nodes not

covered by the "path." If }{U stop: "path" is a feasible solution.

Step 2: Find the node q, where Dq , which covers the maximum number of uncovered

nodes. If }{D then stop; no feasible solution is determined.

Step 3: Find two nodes k and l which are vertices of an arc on the “path” such that

jidddddd ijqiiqklqlqk , where i and j are vertices of an arc on the

“path.” If no arc exists connecting node q with nodes on the “path” then let

}{qDD  and go to step 2. Otherwise, insert node q on the “path” between k

and l and update U and D.

Step 4: if }{U then stop; a feasible solution has been identified, otherwise go to step

2.

Essentially this heuristic takes a solution obtained from LaGrangian multipliers in the

relaxed SCP and checks to see if all nodes are covered. If there are any uncovered nodes,

then nodes are inserted into to the path in a greedy manner. This process is then repeated

until there are no uncovered nodes or a solution has been determined to be infeasible.

This is done in order to find a feasible, but not necessarily optimal, solution to the

problem so that one can begin to optimize along the subgradient. Thus, the application of

LaGrangian relaxation to the SCPP allows the problem to be solved quite quickly and in

97

this case without the addition of sub-tour elimination constraints. Although no

commentary was given with respect to loops occurring in solutions (with the exception of

negative cost cycles) in their LaGrangian relaxation based approach, the process defined

by Current et. al. does not generate paths with loops. When a loop does exist in an

optimal shortest covering path, however, their process will not completely converge.

Furthermore, if the truly optimal solution includes negative multipliers, it is possible that

the true optimal primal solution could be overlooked. The drawback to using LaGrangian

relaxation lies in the fact that a formulation must be set up in such a way that the use of a

LaGrangian relaxation makes sense. In other words if you are attempting to reduce the

constraint size of a problem, the constraint to be relaxed should be one of sufficient size

and of an appropriate form.

However, Fernandez and Marin (2003) formulated a LaGrangian relaxation based

heuristic for what they called the Path Location with Multi Source Demand Problem.

The stated goal of that problem is that it should be applied to situations and applications

in “which the demands of one client must be satisfied through a set of different service

points (Fernandez and Marin, 2003).” In essence they are trying to model how to best

locate stops such that the site locating cost and the overall route cost (i.e. distance or

time) is minimized while user utility is maximized. The main value in this work,

however, is the fact that their problem can be formulated in such a way that a MCSP can

be subsumed and a LaGrangian relaxation applied. It is important to note several major

assumptions in their work. The first is that the network is directed, the second is that

there exists costs and demands associated with each node, and finally – and most

importantly – the route is acyclic; in other words it must not contain any loops or cycles.

98

The reason for this is exactly the same as in the relaxed SCP; a sub-tour can involve a

negative cost cycle resulting from negative multipliers. Thus, the possibility of a loop

occurring because of a negative cost cycle may imply that an optimal solution might

indeed include a loop. By assuming that an optimal solution must be acyclic and that such

conditions be ignored means true optimal solutions may not be generated and identified.

Nevertheless, when applied properly, LaGrangian relaxation based approaches are very

powerful tools that can often find good bounds on optimality as well as feasible, high

performing solutions
14

.

The last type of heuristic we will examine is Tabu Search. Tabu Search was

developed by Glover (1989); the basic idea of Tabu Search is to overcome local optima

through a search procedure which forces solutions to be excluded from a candidate set for

a period of time, usually a set number of iterations. The idea is based upon the idea of a

hill climbing heuristic, or a procedure which looks for the best solution and which

‘climbs’ the optimal curve. The simplex method (Dantzig, 1951) is an example of a type

of climbing algorithm as it pivots from extreme point to extreme point along the feasible

region in an improving direction, working its way to the optimal solution. However, in

the case of a non-convex feasible region, it is possible that a climbing heuristic may be

stuck in what is called a local optima. A local optima is optimal with respect to a

localized area within the feasible region but in the entirety of the solution space is not the

optimal solution. In an illustrative example, one can think of a local optima as a foothill

on the way up to the tallest peak of a mountain range. In a minimization context, one can

think of the ‘climbing’ process as descending a hill and looking for the lowest possible

14

 It is important to note that it is possible to embed a LaGrangian approach in a Branch and Bound

algorithm and identify and verify optimal solutions for certain classes of integer programming problems.

99

valley. Thus, any climbing heuristic has the potential to enter a local optima and define

this as an optimal solution even though a better solution may occur in a different part of

the region of feasibility.

Tabu Search is a type of meta-heuristic in which a search for an optimal solution

is initiated using another heuristic search process, but tries to ensure true optimality by

forcing certain solution elements to be ‘Tabu’ in order to avoid getting stuck at a local

optimum. In order to give the basic algorithm it is prudent to define the key notation.

The general heuristic and notation is as follows in a minimization context:

X = the set of solutions for the problem

x = discrete solution in X

S = the set of moves one makes towards an optimal solution

s = the current move from one solution to another

T = the set of ‘Tabu’ solutions which is a subset of S

t = the number of iterations that a solution is to remain in T

OPTIMUM = an evaluator function for the solution

Step 1: Select an initial solution such that Xx and let xx * . Set the iteration counter

0k and begin with the ‘Tabu’ set, T , to be null ().

Step 2: If TxS )(is null then go to Step 4; otherwise, set 1 kk and select

TXSsk )(such that))(:)(()(TxSsxsOPTIMUMxsk  .

Step 3: Let)(xsx k . If *)()(xcxc  , where *x is the best solution currently found,

then set xx *

Step 4: If a chosen number of iterations has elapsed either in total or since *x was last

improved, or if TXS)(upon reaching this step from Step 2, stop.

Otherwise update T and return to Step 2.

The way Tabu Search works can be described as follows. In Step 1 we need to identify

an initial starting solution that must be feasible to the stated problem. Although not

stated explicitly in Step 1 this solution can be derived through the use of another

heuristic, such as greedy, etc. One could even fill in the elements randomly; the point is

that we simply need to determine a solution that is feasible in order to begin the Tabu

Search process. We then set this solution to be the best solution currently found, *x .

100

Since this is the first initial step in starting Tabu Search we set the iteration counter to be

equal to zero, and the ‘Tabu’ set to be null as we have not presently added any elements

in this set. Step 2 first checks to see if the set of solution elements minus ‘Tabu’ elements

is null. If it is null the heuristic goes to Step 4. If one has just initialized the process this

set is not empty as set S(x) will be comprised of the initial solution. Since the ‘Tabu’ set

is null then by evaluation of TxS )(we determine that the set is not empty, and

therefore we increment k by one and find another solution to the problem through some

function. This function is defined above as OPTIMUM; the OPTIMUM function can be

defined in several ways. One possible method is through the use of some kind of

heuristic – depending on the problem this could be a swap heuristic or something similar

– or by solving an ‘auxiliary optimization problem’ (Glover, 1990a). Typically the

reason for solving an auxiliary problem is to enable one to determine a feasible starting

solution; for example this can be used in Dantzig’s Simplex Algorithm to specify a

feasible starting point. In this case an auxiliary problem is used in Tabu Search with

respect to IP/MIP problems and is detailed extensively in Glover (1990a). To keep things

understandable here, one can think of the goal of the OPTIMUM function as a way of

finding a better solution, given that there are some ‘Tabu’ restrictions imposed.

In Step 3 we let the solution we obtained in Step 2 be represented by x. If the

objective value of this solution, e.g.)(xc , is less than the objective value for the current

best solution, e.g. *)(xc , then we set the current best solution to be equal to x and then

move to Step 4. In Step 4 we keep track of what has happened with respect to the search

process. If we have reached a certain number of iterations, e.g. pk  where p is the

maximum number of iterations, then the algorithm stops. Similarly, if the best solution

101

found, e.g. *x , has not changed for a certain number of iterations then the algorithm

ends. The final stopping condition, where the set of solutions minus the ‘Tabu’ set is

null, implies that there are no moves which can improve the solution and thus the

heuristic ends. If this is not the case, i.e. none of the stopping conditions are met, then

the ‘Tabu’ set is updated and the algorithm repeats at Step 2. The remaining question

then becomes: what criteria is used to update the ‘Tabu’ set? A generalized method of

adding solutions to the ‘Tabu’ set is given in (2.172). In essence, this function represents the set

}for :{ 1 tkhsssT h   (2.172)

of ‘Tabu’ solutions which would ‘undo’ the current solution. In other words, the ‘Tabu’

set is used to prevent solutions from returning to a previous solution state. Thus, we

don’t want to make moves which will satisfy xxss ))((1 . In order to track changes

over time we introduce the index t which represents the number of iterations a move has

been in the ‘Tabu’ set. Therefore, (2.172) can be evaluated as follows: The ‘Tabu’ set

will consist of all moves which enable a previous solution such that this move occurred

within t iterations of the ‘Tabu’ Search heuristic. For example, if t was set to be equal to

10, then all previous solutions determined in the previous ten iterations would be

included in the ‘Tabu’ set. By setting a ‘Tabu’ set, we can ensure that a variety of

differing solutions are obtained, while also allowing a previous solution element to exit

the ‘Tabu’ set after a certain number of iterations to avoid the case of entering into a local

optima. It should be noted that the method of adding elements into the ‘Tabu’ set given

in (2.172) can vary; Glover (1989, 1990a) gives several alternate ways of adding and

removing elements from the ‘Tabu’ set. I have only given the generalized form as it

102

describes the function of the heuristic quite well. There are also several very good

instructional papers and books such as Glover (1990b), Glover and Taillard (1993),

Gendreau (2003), Glover and Laguna (2013) as well as many applications based papers –

i.e. Tabu Search for p-median (Rolland, et. al., 1997) – all of which are too numerous to

note here.

There are a number of papers that have direct links to covering-path type

problems that should be noted here. Gendreau et. al. (1995) utilize Tabu Search for the

location of rapid transit lines, while Dufourd et. al. (1996) use Tabu Search to locate a

transit line. Fan and Machemehl (2004) use a Tabu Search procedure to solve the

network design problem and Fan and Machemehl (2008) utilize Tabu Search to optimize

public transportation networks with variable transit demand. Although there are no

papers that deal directly with a Maximum Covering Shortest Path problem, there is no

reason that ‘Tabu’ Search could not be an effective strategy for finding a good solution.

Since ‘Tabu’ Search is a meta-heuristic, that is it can employ other heuristics to obtain

starting results and potentially different solutions, it is possible to employ other more

basic heuristic methods to aid in the search for optimal solutions, while Tabu search

controls the process. The biggest issue here is that no basic heuristic has been developed

that involves solving path like problems that expressively allow loops to be embedded in

their solutions.

2.6 Conclusions

This chapter has examined the underlying models which form the basis of

covering-path problems. Namely these include the Location Set Covering Problem

(LSCP), the Maximal Covering Location Problem (MCLP), and the Shortest Path

103

Problem (SPP). We have examined how these base models were developed into the

Shortest Covering Path and Maximum Covering Shortest Path problems (SCP, MCSP) as

well as several related problems such as the Median and Maximal Covering Tour

Problems (MTP/MCTP), the Covering Salesman Problem (CSP), the Hierarchical

Network Design Problem (HNDP), the Transit Arc-Node Service Maximization Problem

(TRANSMax), the Minimum Covering Shortest Path Problem, and several multi-path

covering problems. We have also examined algorithmic procedures used to find exact

solutions to covering-path problems as well as several heuristic based approaches which

are used to solve covering-path type problems such as Branch-and-Bound, Non-Inferior

Set Estimation (NISE), LaGrangian Relaxation, and Tabu Search. We have also

examined several issues with respect to covering-path type problems such as the methods

used to eliminate sub-tours as well as problem specific issues such as assumptions related

to directionality and service.

This examination has shown that there are deficiencies with respect to how

models describe the real world, how these problems are complex, and how these

problems can potentially be solved using algorithmic/heuristic procedures. Chapter 3 of

this dissertation will explore how covering-path models can be developed to reflect real

world routing situations. In particular it will address how the MCSP and MPSP models

can be reformulated to be ‘loop agnostic.’ Chapter 4 presents a new heuristic which can

calculate good, feasible solutions to the New, Revised MCSP problem formulated in

Chapter 3. Chapter 5 will present a new model formulation based on the alternatively

formulated MCSP, TRANSMax. Particular attention is given to how the model can be

reformulated to be loop agnostic as well. Chapter 6 will then build upon these new loop

104

agnostic models and present the new Bi-Directional Maximal Covering Shortest Path

problem which accounts for travel in opposite directions. The models formulated to

address the BD-MCSP are not only loop agnostic, they also allow unique forms of loops

such as the bi-directional and uni-directional loop structures.

105

Chapter 3

3.1 Introduction

The maximal covering shortest path problem is a bi-objective problem that

involves the location of a path connecting an origin with a destination where path

distance is minimized and path coverage is maximized. The original model formulation

for this problem was developed by (Current et al. 1985) and was cast as an integer-linear

programming problem. Because this is a discrete optimization problem, solutions in

objective space are represented as discrete points (Cohon, 1978). Pareto-optimal solutions

are those discrete solutions where it is impossible to increase path coverage without

increasing path distance or where it is impossible to reduce path distance without

decreasing path coverage as well.

Current et al. (1985) solved their model using a weighting approach described in

Cohon (1978), which is capable of identifying all supported, Pareto optimal solutions in

objective space. The shortest covering path problem is a special case of the maximal

covering shortest path problem, and an optimal solution to the SCP is the most efficient

“cover all nodes” path and is a supported Pareto-optimal solution to the MCSP. All other

Pareto-Optimal solutions to the MCSP cover less than all nodes and have a path distance

less than any SCP and are therefore infeasible to the SCP. Since Niblett (2013)

demonstrated that the original model to the SCP problem may not in all cases identify an

optimal solution, it is then possible that solutions to the MCSP of Current et al. may not

always be optimal in the sense of Pareto-optimality. The reason for this is that Pareto-

optimal solutions to the MCSP may involve embedded loops. From a technical point of

106

view, such solutions may not be considered paths; however, Minieka (1978) defined a

shortest path as the path that has the smallest possible length. Consequently, it is the

shortest path that accomplishes the desired task, whether it contains a loop or not. In

addition, some approaches to the k
th

-shortest path problem expressively allow for the

construction and use of loops (Dreyfus, 1969; Shier, 1979; Martins, 1984; Eppstein,

1998). This means that path definitions and solution algorithms for different types of path

problems have included the possibility that loops may be used as part of a solution.

The original shortest covering path model of Current et al. (1984) was predicated

upon an implied assumption that optimal solutions would never contain a loop or return

to a previously visited node. This assumption seems straight forward, except for the

simplest type of networks. For example, when turn restrictions are encountered at

intersections on a road network, some shortest paths leave a specific intersection in the

straight direction and then make a series of three right turns at subsequent intersections in

order to approach and go through that intersection for the second time to overcome the

case where a left hand turn was prohibited on the first approach and prevented a direct

left-turn move for that desired direction. Thus, in turn-restricted networks, loops may be

somewhat common in shortest paths.

This chapter introduces revised models that have been developed for the

Maximum Covering Shortest Path (MCSP) problem and the Maximum Population

Shortest Path (MPSP) problem with the intention of allowing loops to occur when it is

optimal to use them. Such models should be considered to be loop agnostic – loops are

neither required nor prevented. This chapter also presents computational experience in

solving these problems as well as several example solutions that demonstrate how the

107

new, revised models can find solutions that are as good as, or exceed, those solutions

produced by the original models of Current et al. (1985). This chapter expands the work

of Niblett (2013) and Niblett and Church (2016), where they analyzed issues with respect

to the Shortest Covering Path problem and offered a new, revised formulation of the SCP.

Here, it is shown that the original MPSP model formulation may result in the case that no

feasible solution exists, when in fact a feasible solution does exit.

This chapter is structured as follows: the next section will provide an overview of

the new, revised formulation of the maximum covering shortest path problem. Key

nuances in the formulation will be discussed, particularly how they compare to those in

the classic MCSP formulation given in chapter 2. The third section will discuss the

computer environment in which the NR-MCSP formulation was applied as well as

discuss the workflow of how the problems were solved. The fourth section will present

results from the model and compare them to counterpart solutions to the original MCSP

model. The fifth section addresses the related maximum population shortest path

(MPSP) model developed by Current et. al. (1985), particularly in how the original model

may be incapable of finding an optimal solution. Results from the original MPSP as well

as those derived utilizing the EAST constraint process described in Chapter 2 in

conjunction with a new revised MPSP model will then be compared. The sixth and final

section will offer concluding remarks.

3.2 A New, Revised Model for the Maximum Covering Shortest Path Problem

The formulation for the classic MCSP proposed by Current, et. al. (1985) is given

in Chapter 2; the model presented here is an expansion of this formulation and is setup in

108

such a way that Eliminate or Attach Sub-Tour (EAST) constraints can be utilized. As in

Chapter 2, we assume that there is a network of nodes and arcs. Arcs may be directed or

undirected. The first problem we will address is a new, revised formulation for the

MCSP. The notation and formulation for the NR-MCSP problem is as follows:

kji ,, indices used to reference nodes of the network

ka the amount of demand at node k where 0ka

 the importance weight associated with the coverage objective

 the importance weight associated with the distance objective

 ijd the distance or travel time from node i to node j






 otherwise 0,

MCSP in the to from traversedis to from arcan if 1,

jiji
xij

ky one if node k is covered and zero if it is not

 p the starting node for the shortest covering path

 q the terminus node for the shortest covering path

 } exists),arc({ jii|N j  the set of nodes i which are connected to j

S* the maximum allowable service distance/time

 } { S*j|dS jkk  the set of nodes j which are within the maximum service distance to

node k

iF the set of nodes, k, that are connected to i by an arc and can be directly traversed

from i to k. jT the set of nodes, k, that are connected to j by an arc and can be directly

traversed from j to k.


k

kkC yaZ  the objective term corresponding to coverage


 


Ni Fj

ijijD

i

xdZ  the objective term corresponding to path distance

DC ZZ Maximize (3.1)

pxx
pp Ti

ip

Fj

pj nodeorigin for 1

:Subject to




 (3.2)

qxx
qq Fj

qj

Ti

iq noden destinatiofor 1


 (3.3)

qkpkNkxx
kk Fj

kj

Ti

ik 


 and where , 0 (3.4)

109

qpkkyx
j kNi sj

kij ,, , 0 
 

 (3.5)

2when , nodes ofsubset , 1   
  




VVVxx
Vi VFj Vi

Vk
Tk

kiij

i i

 (3.6)

2when , nodes ofsubset , 1   
  




VVVxx
Vi VFj Vi

Vk
Fk

ikij

i i

 (3.7)

)(,)1,0(i,jxij  (3.8)

kyk ,)1,0( (3.9)

The objective (3.1) remains the same as in the original MCSP; the first term is a weighted

objective term that involves maximizing population covered and the second term is a

weighted objective term that involves minimizing overall path length. Constraint (3.2),

however, is modified from the original MCSP formulation. Constraint (3.2) allows for a

loop to form at the origin node so long as there is one more arc used to leave the origin

node than is used to enter it on the covering path. This is done by ensuring that the sum

of all arcs used to leave the origin must be one more than the sum of the arcs used to

enter the origin. This form of (3.2) allows for a ‘lollipop’ form of route to occur where a

loop is attached at the origin node. In a similar vein, Constraint (3.3) allows a loop in the

path to involve the destination node. The path may, essentially, loop through the

destination node, but it must eventually end at the destination. This is ensured by the fact

that the path must enter the destination node exactly one more time than the path departs

from the destination node. This constraint allows a ‘lollipop’ form of looping path to

occur at the destination (one or more times if necessary). Taken together, constraints

(3.2) and (3.3) allow for the possibility of a ‘barbell’ like route to occur, where loops are

added at the start and end of the route resulting in a barbell-esque route appearance.

110

Constraints (3.4) are classical balance constraints which are unchanged from the

original MCSP; if an arc is used to enter node k then a subsequent arc must also leave

node k. These constraints are imposed for all intermediate nodes, that is, for all nodes

except the origin and destination nodes. Constraints (3.5) are also unchanged from the

original MCSP. These constraints define whether a node is covered by the path; if the

path enters a node j which is within the maximum service distance of node k then node k

can be considered covered. Constraints (3.6) are the EAST constraints developed by

Niblett and Church (2016). These constraints ensure that a sub-tour connecting the set of

nodes V cannot exist in the solution unless there is an arc used to enter the sub-tour that is

not part of the sub-tour itself. If the sub-tour is not entered by an external arc – i.e. an arc

which is not part of the sub-tour – then the constraint devolves to the traditional Dantzig,

Fulkerson, and Johnson sub-tour breaking constraint and the tour cannot exist in the

solution. However, if an external arc is used to enter the loop then the loop is allowed to

occur as part of the covering path. Constraints (3.7) are similar to (3.6) but in this case

the tour is allowed to form only when an external arc which is not part of the sub-tour is

used to depart that sub-tour to some other node V , otherwise the sub-tour cannot form

in the solution. Taken together, these two constraints then force a sub-tour to be

connected to other nodes in the path which are not a part of the sub-tour or the sub-tour

cannot be used in the solution.

It should be noted that the number of constraints (3.6) and (3.7) increase

exponentially while increasing the number of nodes n comprising the network as there

are two constraints for every possible subset NV  , where 2V and 1 nV .

Because it is not practical to enumerate the complete set of constraints a priori, these

111

constraints are added to the problem whenever a disconnected sub-tour appears in a

solution. This model is then re-solved until no further disconnected loops or sub-tours

appear in the solution. Constraints (3.8) and (3.9) list the necessary binary constraints on

the decision variables. The key point in the formulation of this new, revised model is that

an attached loop is not expressively prevented from being used in a solution. That is, the

model is loop agnostic – loops can be used if their presence results in an optimal solution.

In the next section we show that loops/attached-tours may, in fact, be part of an optimal

covering path solution.

3.3 Applying the NR-MCSP Model

The mathematical model given above was formulated and solved using the

Xpress-IVE mathematical programming and modeling environment (version 7.8). This

software is marketed and maintained by FICO. Models were written in Mosel, a

modeling language provided in the Xpress-IVE 7.8 environment on a PC operating

Windows 7 Professional. Although the Xpress solver is included within the Xpress-IVE

modeling environment installed on the PC, all solver computations were accomplished

using the Xpress solver within the Ubuntu 14.04 Long-Term-Support server operating

system. The specifications for the Ubuntu Linux system are as follows: two Intel Xeon

X5560 CPUs which in total provide 8 logical cores and 8 virtual (hyper-threaded) cores;

a total of 48GB of DDR3 RAM running at 1333 MHz; and 136GB of hard disk drive

space using SAS SSD drives configured in a RAID 5 storage array.

The workflow for modeling the NR-MCSP is shown in Figure 3.1. It should be

noted at the start that the workflow is designed so that a series of problems (one for each

desired maximal service distance) are solved automatically. The steps in modeling are as

112

follows: 1) Obtain spatial data and input this information into associated data files which

can be read by Mosel; 2) Setup the model using the maximum service distance that one

wishes to solve and compile the problem written in Mosel so that it can be read by the

Xpress solver. It should be noted that when solving the MCSP and NR-MCSP models

we a priori added associated Dantzig, Fulkerson, and Johnson or EAST constraints

respectively for ‘simple tours’ or what we call out and back loops – that is, loops which

can form between two adjacent nodes that are connected by an arc. These constraints are

easy to add and are relatively small in number, equaling at most 2 times the number of

arcs. Simple disconnected loops can often appear in solutions to problems without any

loop restrictions, and adding these conditions can be considered a preemptive strategy.

However, complex sub-tours are likely to be found in the solution and still need to be

accounted for. In this case, two EAST constraints are required as compared to the

Dantzig, Fulkerson, and Johnson inspired sub-tour elimination constraints utilized by

Current, et. al. Two EAST constraints are required as we need to add a constraint for

both entering the sub-tour as well as leaving the sub-tour.

We found that an a priori addition of these simple sub-tour elimination

constraints had no notable increase in solution time beyond solving a model without such

constraints; however, doing so can eliminate a number of iterations needed to generate a

feasible, optimal solution to their respective problem (MCSP or NR-MCSP). Once the

model and associated constraints are compiled, the workflow proceeds to step 3). In step

3) the Xpress solver is utilized to solve the current model instance; once the solver

outputs a solution, workflow continues to step 4) where a check is made to determine if

any sub-tours exist in the solution. This step is coded entirely in Mosel. This detection

113

Figure 3.1 - Workflow in determining and displaying optimal solutions to the NR-MCSP problems

routine utilizes a node coloring approach and is structured in the following way. The

routine first begins with the origin node, p , and sets it to be the ‘from node’ and checks

all arcs which can be directly traversed from the ‘from node’ to other nodes. If an arc

from the ‘from node’ to a node k is used in the solution then node k is colored with a

temporary label and placed in the set of nodes that are labeled as temporary. Once all

arcs from the origin have been checked, we color this ‘from node’ as being permanently

labeled. The search process then checks if there are any nodes that are currently labeled

as temporary. If there is a node in the set of temporary labeled nodes then one such node

is removed from this set as it is selected as the new ‘from node’ and the process of

coloring new temporary nodes that are reached from this new ‘from node’ using path arcs

114

is repeated. Overall, this process is continued until no nodes are present in the set of

temporary labels. We then save the set of colored nodes as these represent nodes which

are directly visited by an arc on the covering path. The solution is then checked against

the set of colored nodes; any nodes which have not been colored then represent nodes

which lie on one or more sub-tours. If there are no sub-tours detected then the solution

file for the problem is output along with the LP/IP model formulation and a comma

separated value (CSV) file is appended with the optimal solution objective value, total

coverage, path distance, and maximum service value (Step 7).

If it is determined that a sub-tour or a set of sub-tours are present in the solution,

we need to define each sub-tour with respect to the nodes and arcs which form the sub-

tour. This is represented as step 5) in the workflow. To define the set of complex sub-

tours, we select the first node that is found in the solution set which has not been

permanently colored and set this as the new ‘from node’. At this point a new color is

selected, the ‘from node’ is colored as permanent, and the process continues anew to

color all nodes reached by arcs used in the solution from this new start of the coloring

process. This procedure is repeated until all nodes in the solution have been permanently

colored. Thus, this process first determines the path that connects the origin and

destination nodes along with any connected loops to this path. Then it determines all sub-

tours or loops that are part of a solution. All loops/sub-tours (nodes and arcs) that are

found are stored on a list. Once this process has completed, the model is then modified

by either adding one Dantzig, Fulkerson, and Johnson tour-breaking constraint for each

sub-tour encountered in the case of the MCSP or by adding a pair of EAST constraints

for each sub-tour encountered in the case of the NR-MCSP.

115

Once these constraints have been added and an associated log file has been

written, this new modified model is solved by returning to 3). The process loops through

steps 3 and 4 until enough constraints have been added so that the resulting solution is

sub-tour free. If this is the case then the solution file is written as shown in step 7). In

step 8), the current value of the maximum service value S is checked; if it is not the last

maximum service value to be run, the process returns to step 2) and initializes a new

problem with the next maximal service distance to be considered. Otherwise, if solutions

for all desired maximum service values have been computed the results are then

processed by a program that was developed in Microsoft’s Visual Studio.net SDE

represented in step 9) of the workflow. This program produces a map of the solution on

the associated network, displays this solution map on a visual interface, and then saves an

image of the map. This program is designed to read the solution files produced by the

Xpress-solver. The program also reads in the associated spatial network and then parses

the solution file and generates a graphical map of the results. Once this has been

generated a graphic solution image can then be saved as a common *.jpg, *.png, or *.bmp

image file.

3.4 Results and Comparison of the NR-MCSP to the MCSP

The framework described above was used to solve and develop images of

solutions for both the MCSP and NR-MCSP models. The new, revised maximal

covering shortest path model formulation and the original maximal covering shortest path

problem model formulation were applied to a network form of the well-known Swain

dataset. This network and associated points are shown in Figure 3.2. The network of

arcs was formed randomly, where arcs tend to connect near-by nodes in order to mimic

116

possible connections descriptive of conditions found in real world networks. Both the

MCSP and NR-MCSP model formulations were solved with a series of different

maximum service values and objective weights in order to develop a large, representative

set of solutions. The complete table of these results can be found in Appendix I. Both

the New, Revised MCSP and the classic MCSP were solved using maximum service

values ranging from zero to thirty-five in increments of 2.5 as well as an additional

service value of 50. The additional service value of 50 was used to compare cases where

the solution to the shortest path would also provide complete coverage for all nodes in the

Swain dataset. Importance weights were defined to range between 0 and 1 in increments

of 0.01 (where  1) in order to determine a relatively complete set of supportive

non-dominating solutions; a cover value of 1 was approximated using a weight of 0.99

and a distance weight of 0.01 as a distance weight of zero results in an impractical

solution.

There exist many supportive, non-dominating solutions to this multi-objective

problem. To demonstrate this for the Swain network, Figure 3.3 presents a tradeoff curve

of solutions generated by both models when the maximal service distance is zero.

Solutions that are depicted with circles are optimal solutions to the original MCSP

problem and those that are solutions to the new NR-MCSP model are depicted with plus

signs. These solutions are the unique solutions generated by the range of weights used for

each model. Note that solutions to both problems trace out a similar curve, but that the

number of uniquely different solutions identified as non-dominated is larger for the NR-

MCSP than what was found for the MCSP. Also note that in the region of the “elbow” of

the tradeoff curve, the number of solutions for the NR-MCSP is more numerous than for

117

the original MCSP. For this tradeoff, all problems were solved utilizing an origin node of

27 and a destination node of 21. Table 3.1 contains all of the unique results for the new,

revised MCSP with a service distance of zero and Table 3.2 contains all of the unique

results for the MCSP with a service distance of zero. For example, note in Table 3.1 that

the first line details a solution generated for a distance weight of 0.01. The second line

given in the table is associated with a distance weight of 0.18. This means that distance

weights between .01 up to and including 0.17 resulted in the same solution as that

generated for the distance weight of 0.01. Many of the solutions in this table involve the

use of one or more attached loops as part of the optimal path. The gray-shaded rows

indicate when this occurs. Thus, 8 out of 24 supported solutions involve the use of loops.

When this occurs, such solutions eclipse the performance of the solutions of the classic

MCSP, albeit such differences tend to be small in absolute value.

One should recognize that if a high relative weight is placed on path distance as

compared to path coverage, solutions tend to be very efficient and probably will not

double back with the exception of the case where a maximum covering distance of zero is

used. This is primarily due to the fact that this means the path must directly visit a node

which is part of the path and thus a loop which doubles back may in fact be an optimal

route. However, as objective weights begin to emphasize total coverage over path-length

solutions tend to utilize loops. This is not surprising as we expect that loops/tours can, in

fact, be used as the overall gain from the use of a loop may result in a solution which

provides more cover per unit of path length. Solutions with a maximal service distance

of zero are also optimal solutions to the Maximum Population Shortest Path problem,

which will be discussed shortly.

118

Table 3.1 – Unique solutions for the NR-MCSP where the maximal service distance was equal to zero. The table

includes coverage weights, distance weights, total path length, and path coverage for each unique solution found.

Distance Weight Coverage Weight Total Path Distance Total Path Coverage

0.01 0.99 312.11 640

0.18 0.82 297.55 637

0.21 0.79 269.82 630

0.27 0.73 236.73 618

0.30 0.70 224.96 613

0.34 0.66 219.12 610

0.39 0.61 208.04 603

0.43 0.57 202.68 599

0.44 0.56 198.81 596

0.47 0.53 185.08 584

0.50 0.50 156.15 556

0.51 0.49 144.34 544

0.56 0.44 119.83 513

0.57 0.43 112.90 504

0.58 0.42 97.08 483

0.62 0.38 90.83 473

0.67 0.33 86.32 464

0.72 0.28 75.45 437

0.76 0.24 68.94 417

0.89 0.11 62.47 366

0.90 0.10 58.47 331

0.95 0.05 54.00 260

0.97 0.03 52.06 206

1.00 0.00 51.92 171

*Note that shading denotes a solution where a loop has been attached to the covering path and

represent an integral part of the optimal solution

Table 3.2 – Unique solutions found for the MCSP where the maximal service distance was set to zero. The table

includes coverage weights, distance weights, total path length, and path coverage for each unique solution found.

Distance Weight Coverage Weight Total Path Distance Total Path Coverage

0.01 0.99 312.80 640

0.27 0.73 236.73 618

0.43 0.57 202.68 599

0.47 0.53 185.08 584

0.49 0.51 185.08 584

0.53 0.47 144.34 544

0.56 0.44 119.83 513

0.57 0.43 119.83 513

119

Distance Weight Coverage Weight Total Path Distance Total Path Coverage

0.58 0.42 104.01 492

0.64 0.36 97.76 482

0.67 0.33 93.25 473

0.75 0.25 78.71 443

0.84 0.16 61.07 352

0.85 0.15 61.07 352

0.89 0.11 58.47 331

0.99 0.01 52.06 206

1 0 51.92 109

An example of an optimal solution which embeds a loop within the covering path

is given in Figure 3.4. This path is listed in Table 3.1 where routes involve a coverage

distance of zero. Note that the path includes an embedded tour from node 1 to node 5 to

node 11 to node 13, and then back to node 1. Such tours are also utilized in cases where

maximum service values are non-zero – i.e. where a node need not be directly visited by

the path to be covered. An example of a loop/tour being used for a positive maximum

service distance is given in Figure 3.5; in this case this optimal covering path was formed

for a maximum service distance of 10, using a distance importance weight of 0.14 (with a

resulting coverage weight of 0.86). Note that the covering path solution utilizes a

loop/tour that travels from node 53 to node 50 and back again to 53. The tables of unique

non-dominating optimal solutions to the NR-MCSP and MCSP that involve a maximum

service distance of 10 are given in tables 3.3 and 3.4. Based upon these results it is clear

that loops/tours can and do appear in optimal covering paths and that they help to

efficiently increase coverage per unit of path distance. Such solutions occur for maximal

covering distances of zero as well as maximal covering distances that are greater than

zero.

120

As mentioned above, all solutions for the test problems are given in Appendix I.

Based upon the entire set of solution data presented in Appendix I that were generated

Table 3.3 – Unique solutions to the NR-MCSP using a maximum service distance of 10. The table includes coverage

weights, distance weights, total path length, and path coverage for each unique solution found.

Coverage

Weight

Distance

Weight

Total Path

Coverage

Total Path

Length

Objective

Value
15

Time

(Seconds)

0.99 0.01 640 145.43 1.4543 16544.90

0.85 0.15 638 133.77 21.7655 140982.00

0.82 0.18 633 109.45 25.4410 17433.2

0.64 0.36 620 85.94 31.8692 1954.26

0.44 0.56 613 80.38 56.8928 196.90

0.39 0.61 600 72.02 59.5322 104.17

0.38 0.62 592 67.11 59.8482 82.72

0.26 0.74 571 59.50 61.9700 2.92

0.24 0.76 552 53.20 62.2480 0.19

0.07 0.93 537 51.92 64.1792 0.02

0 1 537 51.92 51.9200 0.01

using MCSP and NR-MCSP models for the parameters described above (i.e. a series of

maximum service distances and objective weights), the NR-MCSP model found better

solutions in 527 of the 1600 problems that were solved. This represents approximately

33% of the total set of solutions. If we were to exclude maximum service distances in

which the shortest path is able to cover all demands, the overall proportion in which

loops/tours are utilized as an optimal covering strategy further increases. What is most

significant in the results, however, is the fact that, as one shifts emphasis towards shorter

overall path length, loops become more and more attractive as a covering strategy.

This seems to validate the use of loops in designing real world transit routing

applications. Moreover, solution times for the NR-MCSP performed similarly to the

MCSP although in some cases the total solution times could take substantially longer

15

 Note that the objective is calculated by minimizing what is not covered plus distance

121

than the MCSP. These cases occurred where there were a number of sub-tours which

were encountered and/or used in the solution process or in the final solution and were

often associated with solutions where a greater emphasis was placed on coverage than

distance. More time was also generally taken to solve problems with maximum service

values that were between 7.5 and 15.

Table 3.4 – Unique solutions found for the MCSP using a maximum service distance of 10. The table includes

coverage weights, distance weights, total path length, and path coverage for each unique solution.

Coverage

Weight

Distance

Weight

Total Path

Coverage

Total Path

Length

Objective

Value
16

Time

(Seconds)

0.99 0.01 640 162.69 1.6269 21.53

0.84 0.16 638 151.83 25.9728 62.82

0.81 0.19 633 130.02 30.3738 43.13

0.69 0.31 618 95.71 44.8501 41.68

0.44 0.56 599 80.38 63.0528 23.94

0.39 0.61 586 72.02 64.9922 24.93

0.38 0.62 578 67.11 65.1682 19.25

0.26 0.74 557 59.50 65.6100 4.51

0.24 0.76 538 53.20 64.9120 1.87

0.07 0.93 523 51.92 56.4756 0.02

0 1 523 51.92 51.9200 0.01

The reason that some cases took longer to solve is that EAST constraints allow for

a greater number of feasible solutions than traditional Dantzig, Fulkerson, and Johnson

based tour breaking constraints. The time taken to resolve each unique solution, that is,

the time taken to solve a model after insertion of EAST constraints, remained comparable

to those of the original MCSP. Because the Dantzig, et. al. constraints utilized by

Current, et. al. are much tighter, they effectively ensure that any form of a particular sub-

tour cannot occur in a solution. In contrast, EAST constraints allow a tour to exist so

long as arcs that were not part of the sub-tour are used to enter and leave the sub-tour.

16

 Note that the objective is calculated by minimizing a weighted combination of what is not covered

plus distance

122

This means that the flexibility of the EAST constraints result in a phenomenon where the

sub-tour will often ‘contort’ and ‘grow’ over time; as EAST constraints are identified and

added to the problem the sub-tour has a greater set of possibilities that can potentially

exist before finally being superseded by a solution in which that sub-tour attaches to the

covering path. As an illustrated example, Figures 3.6 through 3.11 show a progression of

intermediate solutions depicting the nature of a neighborhood of loops being generated

for a problem where the maximal covering distance is 12.5. Figure 3.6 depicts a first

solution where no EAST constraints are used, not even simple out-and-back (OAB) loop

EAST constraints. This highlights the practicality of OAB loop EAST constraints, as

these kinds of sub-tours are prevented from occurring and thus aids in reducing the

number of times a sub-tour identification routine must be run. Solutions depicted in 3.7

to 3.11 depict intermediate solutions, each representing a subsequent solution generated

after adding EAST constraints for each new sub-tour encountered in the previous

solution. After repeating the sub-tour identification and constraint process, the final

optimal solution is obtained which is shown in Figure 3.12. Another reason for which

execution times can be longer is a result of the fact that there is a possibility of having

more intricate sub-tours that are identified than in the original MCSP. These intricate sub-

tours are combinations of sub-tours which are prevented at the outset when solving the

original MCSP, but which might prevail in the new-revised formulation as they may lead

to an enhanced solution. This also means that beyond a greater exploration of decision

space, there may be more sub-tour identification and constraint addition iterations needed

to completely converge to optimality.

123

In a similar vein, as the maximum service distance increases from 7.5 to 15,

coverage provided by any node tends to increase, allowing for straighter, more direct

covering paths, but also for short loops to be used to veer from a path to pick up

additional node cover. Thus, the use of a loop in an optimal covering path problem can

be frequent. At coverage distances below 5 there are very few nodes which can cover

nodes other than themselves and for coverage distances greater than 15, most nodes are

able to cover many other nodes which means that the variety of unique, efficient covering

paths tends to decrease. However, the most significant contribution of this work lies in

the fact that loops may be necessary when generating an optimal maximal covering

shortest path solution, and that past MCSP models have been built upon an assumption

that does not hold in general.

3.5 The Maximal Population Shortest Path Problem

The Maximum Population Shortest Path problem is a special case problem that

involves a maximal covering distance of zero. This means that in order for a path to cover

a node, that node must be on the path. Solutions to this problem were generated and

reported in the previous section of the chapter, as they can be found using the NR-MCSP

model where the maximum service distance is fixed at zero. Current et. al. even noted

that MPSP solutions could be found using their original MCSP model where the

maximum service distance is set to zero. However, they noted that a streamlined

structure could be developed for the MPSP where fewer variable and constraints are

needed as compared to what would be needed when solving an equivalent MCSP. Their

streamlined model form for the MPSP uses the same notation that was introduced earlier

124

in this chapter. We can formulate the original MPSP model of Current et al. (1985) as

follows:

MPSP1:

DC ZZ  Maximize (3.10)

px
pFj

pj nodeorigin for 1

:Subject to




 (3.11)

qx
qTi

iq noden destinatiofor 1


 (3.12)

qkpkNkxx
kk Fj

kj

Ti

ik 


 and where , 0 (3.13)

qpjjx
jTi

ij ,, , 1 


 (3.14)

VVx
Vi VFj

ij

i

 nodes ofsubset , 1  
 

 (3.15)

)(,)1,0(i,jxij  (3.16)

Since the maximal coverage distance is zero, the path must visit node i for node i to be

considered covered. The objective function is similar to the MCSP in the sense that it

involves maximizing the population covered by the path (in this case the population at

nodes visited by the path) while minimizing the resulting path length. Constraints (3.11),

(3.12), and (3.13) are also exactly the same as in the MCSP. Constraint (3.14), however,

requires that a node may be visited at most once. Thus, a path may or may not visit a

node, but it cannot loop back or reverse course and visit that node again. This constraint

will then ensure that the model has no loops as part of the covering path, as no more than

one arc may be used to directly visit each intermediate node. However, utilizing such a

constraint may require a more circuitous route than would be necessary if this

requirement were relaxed by allowing a node to be visited a second time. Constraints

125

(3.15) are traditional Dantzig, Fulkerson, and Johnson sub-tour breaking constraints and

constraints (3.16) are the necessary binary restrictions used to indicate arc selection for

the path. It should be noted that constraints (3.15) are added to the formulation only when

necessary. That is, the problem is solved without constraints (3.15), if any sub-tours are

identified in the resulting solution, then selected constraints (3.15) are added to the

formulation to prevent these sub-tours from occurring, and then the problem is re-solved.

This process is repeated until no further sub-tours are identified as being part of the

optimal solution. The above model does not contain a set of covering variables, as

compared to the original MCSP model. By restricting the number of times that any node

can be visited on the path to 1, allows one to use the arc variables as a proxy for covering

whether a node is covered or not. Since the coverage distance is zero, and since a given

node can be entered at most once along the path, the use of any arc to directly reach that

node will represent whether that node is covered. Thus, we can define the coverage

objective using only ijx variables as follows:





k

ikk

Ti

C xaZ
k

 (3.17)

The fact that a path in the above model can visit a node at most once may lead to a path

that is longer than necessary to cover a given level of population. That is, it is possible

that some Pareto optimal solutions to the MPSP cannot be identified by model MPSP1.

To meet the stated objectives of the MPSP, that is, a node must be visited in order

to provide service, and allow for the use of loops/tours as a covering strategy, the MPSP

as formulated by Current et. al. (1985) cannot be modified to solve this less restricted

problem (i.e. a formulation that allows loops). The MPSP formulation as stated by

126

Current et. al. (1985) is unsuitable to be amended to allow for the use of loops/tours as

constraints (3.14) are used to ensure that a node’s demands are considered covered if it is

entered by an arc. However, since constraint (3.14) restricts a node to be only visited

once by the path, this prevents a loop from being considered. Eliminating this condition

will possibly lead to nodes being counted as covered more than in the covering objective

(3.17). To eliminate any coverage double counting, one will need to re-introduce

coverage variables and coverage constraints (3.5). In addition constraints (3.11) and

(3.12) will need to be modified as well, as one cannot arbitrarily restrict that origin node

as a point of exactly one departure or that the destination node is a point of only one

arrival. Consequently all of the constraints except the integer restrictions and the

constraints (3.13) will need to be modified to the forms found in NR-MCSP. Further, the

sub-tour elimination constraints of (3.14) will need to be replaced by an EAST constraint

set; essentially, all of these modifications lead to the model form of NR-MCSP given at

the beginning of this chapter. That is, there is no special formulation that is possible for

the MPSP problem when one allows loops to occur in a solution.

However, we can show that optimal solutions to the stated objective of the MPSP

do, in fact, utilize loops/tours, if allowed, by setting the maximum service distance to

zero in the NR-MCSP. Tables 3.1 and 3.2 present solutions to the NR-MCSP model and

the MCSP model where the maximum service distance is set to zero and all of these

solutions are optimal MPSP solutions. A comparison of two solutions, one to the MCSP

and one to the NR-MCSP for this special case using a service distance of zero can be

made by viewing the results depicted in Figures 3.13 and 3.14.

127

3.6 Concluding Remarks

In this chapter, we have presented a new, enhanced model for the maximal

covering shortest path problem. We have shown that this model can be solved for modest

size problem instances by off-the-shelf commercial software. We used the Xpress solver

to generate over 1600 solutions to a range of problem instances. Solution times in many

circumstances were comparable to the times needed to optimally solve the classic model

of Current et al. (1985), even though this new model explores a larger solution space.

The results have demonstrated that that embedded loops may be necessary in order to

generate optimal covering path solutions. We have found that loops may be effective in

several types of pathologies. One such case can occur when a loop is formed at the origin

node or at the destination node. Other cases occur when there is a greater emphasis on

coverage as compared to path length. This is particularly true when the maximum service

distance is greater than zero. It is important to underscore the fact that the model

formulated in this chapter, NR-MCSP, is loop agnostic, as it neither requires nor prevents

loops from being used. This is a unique feature of the EAST constraints. Taken

altogether we have seen that these model refinements yield solutions that are more

efficient when loops are used. The MPSP model of Current et. al. (1985) forces

intermediate nodes to be entered at most once and requires that the origin be left exactly

once and the destination be entered exactly once. This will preclude the formation of a

tour/loop in any solution. So, this too, is a model that may fail to find a true optimal

solution whenever analyzing the distances for arcs used and coverage achieved. It is

important to underscore that fact that whenever a loop is embedded in any optimal

solution, all arc traverses are counted in terms of the distance travelled. So, if a route goes

128

out to one or several nodes and loops back on the same set of arcs, traversal costs in both

directions are accounted for. In general, common intuition leads us to assume that such

route/path strategies are non-optimal, and on the face of it is a poorly conceived

approach. However, the results given in this chapter clearly demonstrate that true optimal

solutions associated with the non-inferior tradeoff of coverage and distance may involve

embedded loops. Therefore, we can see that the pioneering work of Current et. al. (1985)

should be updated to include not only the use of EAST constraints as part of the sub-tour

elimination process, but also allow for the possibility of a loop/tour to form at the origin

and destination nodes.

Figure 3.2 - The Swain based network. Nodes are labeled such that the higher population values are

associated with lower node numbers and the lower population values are associated with higher node

numbers. No distinction is made with respect to populations of the same value as these are assigned

to the next sequential node number.

129

Figure 3.3 - The tradeoff curve with respect to coverage and distance for the MCSP and the new,

revised MCSP models using a maximum service distance of s = 0

Figure 3.4 – An optimal NR-MCSP solution with a service value of 0 where the origin node is 27 and

the destination node is 21. The coverage weight used was = 0.43, and the corresponding distance

weight was = 0.57. Note that a loop/tour forms from node 1 to 5 to 11 to 13 and back to 1.

130

Figure 3.5 – An optimal NR-MCSP solution with a service distance of 10 where the origin node is 27

and the destination node is 21. This route corresponds to the solution generated when the distance

weight = 0.14 and coverage weight = 0.86. Note the existence of loops/tours along several locations

along on the path.

Figure 3.6 - Evolution of a sub-tour using EAST constraints 1

131

Figure 3.7 - Evolution of a sub-tour using EAST constraints 2

Figure 3.8 - Evolution of a sub-tour using EAST constraints 3

132

Figure 3.9 - Evolution of a sub-tour using EAST constraints 4

Figure 3.10 - Evolution of a sub-tour using EAST constraints 5

133

Figure 3.11 - Evolution of a sub-tour using EAST constraints 6

Figure 3.12 - An optimal NR-MCSP solution after the evolution of EAST constraints generated for a

problem with a service distance of 12.5, an origin node of 27, and a destination node of 21. This route

corresponds to the solution generated when the distance weight = 0.14 and coverage weight = 0.86.

134

Figure 3.13 - Solution to the MPSP with a distance weight of 0.64 and a coverage weight of 0.36

Figure 3.14 – An optimal NR-MPSP solution where the service distance is zero where the origin node

is 27 and the destination node is 21. The distance weight was = 0.64 and the coverage weight was =

0.36.

135

Chapter 4

4.1 Introduction

The Maximal Covering Shortest Path problem (MCSP) is a multi-objective

problem that involves maximizing weighted node coverage and minimizing path length.

This problem is a combination of a path problem (solvable in polynomial time) and a

maximal covering location problem that is classified as NP-hard. To say the least, there

will be many problem instances of the MCSP that are unlikely to be solved to optimality

using approaches such as linear programming combined with a branch and bound

algorithm. Because there will be many problems that cannot be solved to optimality, it

makes sense to develop heuristics for solving this problem. The objective of this chapter

is to develop a flexible heuristic for solving the maximal covering shortest path problem

that passively considers loops in seeking improvements.

Dufourd et al. (1996) were quite succinct in describing why they developed a

heuristic for a covering-path problem. Their reasoning was as follows: “Rather than

advocating the use of a large-scale mathematical model that would, in all likelihood, defy

any known solution technique, we propose a practical and versatile heuristic approach for

a simplified version of the problem…” (Dufourd et al., 1996). Because covering path and

tour problems are classified as NP-hard, they are amongst a set of difficult to solve

problems. Integer-linear programming, which was used in Chapter 3, is indeed limited in

its ability to solve large problems to optimality. Because of this issue, Dufourd et al.

(1996) and other have developed heuristics for this class of problems and it makes sense

136

to explore the development of the maximal covering-shortest path where loops are

allowed.

As was noted in Chapter 2, heuristics are methods of deriving potentially good,

but not necessarily optimal, solutions for a given problem. Heuristics have been applied

on a broad range of NP-Hard problems. General heuristic solution methods include

strategies such as:  -opt (Lin, 1965); insertion (Gendreau, et al. 1998; Current and

Schilling, 1994); greedy (Chvatal, 1979; Church, 1974); semi-greedy (Hart and Shogan,

1987); GRASP (Feo and Resende, 1995); ant colony optimization (Dorigo et al., 1999;

Colorni et. al., 1991); genetic algorithms (Hosage and Goodchild, 1986); LaGrangian

relaxation (Narula, 1977); heuristic concentration (Rosing and ReVelle, 1997); simulated

annealing (Kirkpatrick et al. 1983; Golden and Skiscim, 1986); Tabu search (Glover,

1989; Rolland et al., 1997); variable neighborhood search (Mladenović and Hansen,

1997); threshold accepting (Dueck and Scheuer, 1990); the great deluge (Dueck, 1993),

as well as many other methods.

Overall, there has been little attention paid to developing a heuristic with respect

to the MCSP problem. Notable exceptions to this have involved the development of a

heuristic for the Shortest Covering Path problem (Current et al., 1994); a heuristic for a

transit route delineation problem defined on a grid (Dufourd, et al. 1996); a heuristic for a

multi-route transit problem defined on a network that involved, routes, fleet size and

headways (Fan and Machemehl, 2004), and a heuristic for a maximal covering route

problem where each demand is served only when the route serves both their desired

origin and desired destination (Fernandez and Marin, 2003).

137

The approach taken by Fernandez and Marin (2003) and Current et al. (1994)

utilizes Lagrangian relaxation. The two formulations for these two related works both

include explicit sub-tour elimination constraints that are related to Dantzig, Fulkerson,

and Johnson’s (Dantzig et al., 1954) earlier work on the TSP. With certain values of

multipliers, it is possible that negative cost cycles will be present in network of the

relaxed problem. In such a case, Current et al. (1994) ignore that particular set of

multipliers. This allows them to use Dijkstra’s (Dijkstra, 1959) shortest path algorithm in

solving the relaxed problem. Dijkstra’s algorithm does not admit cycles or loops in its

process, which means that the resulting Lagrangian solution will not contain a loop.

Fernandez and Marin (2003) take a different approach, by defining their problem on an

acyclic network. This means that no solution could contain a loop or a cycle. This feature

allowed them to drop the sub-tour elimination constraints and solve sub-problems using a

shortest path algorithm. Fan and Machemehl (2004) utilized a genetic algorithm approach

to solve their problem involving routes, headways, and fleet sizes. The initial population

of routes were generated using the k
th

-shortest path algorithm of Yen (1971). It should be

noted that there are two types of k
th

-shortest path algorithms: those that admit loops as a

part of the path and those that don’t. The Yen algorithm does not allow loops in the

generation of paths. This means that overall, the Fan and Machemehl (2004) approach

does not generate loops on a given route. The work of Dufourd et al. (1996) rests on the

use of Tabu search.

The remainder of the chapter is outlined as follows. The next section will present

an overview of the heuristic followed by a discussion of each step within the heuristic.

The subsequent section will present results of the heuristic and compare them to known

138

optimal solutions. It will also discuss performance, and other computational issues. The

gaps between known optimal solutions and the heuristic will also be presented. The final

section will summarize the results and suggest future work.

4.2 The Maximal Covering Shortest Path Heuristic

The set of possible heuristic approaches can be considered to be large and diverse.

As described in Chapter 2 it ranges from approaches that are inspired by biological

mechanisms (Genetic algorithms & swarm smarts), chemical processes (Simulated

annealing), simple greedy and semi greedy approaches, as well as simple perturbation

mechanisms like insertion, swapping, and substitution. The work here is quite simple in

its design and is meant to be used as a building block to future work. As most meta-

heuristics, like Tabu search and simulated annealing, are built upon some form of

solution perturbation that explores a neighborhood defined about the current solution, the

design of the heuristic here is based upon a form of solution perturbation, which is based

upon modifying the current incumbent solution by a simple change in route alignment.

Changes in a route are based upon two techniques: a local insertion (which is a simple out

and back loop being added to the current solution) and a detour substitution, which

involves substituting a portion of the existing route alignment by a different alignment

that is itself a local gateway path.

All heuristics are based upon a metric of solution value. Generally speaking

heuristics tend to find those solutions which perform better in terms of this metric. Before

we delve into the details of the heuristic, it is important to describe the form in which the

metric of solution value is computed. To do this we define:

 the covering objective – the total coverage provided by the covering path (4.1) ZC =

139

DZ the path distance objective – the total length of the covering path

(4.2)

The maximal covering shortest path problem is a multi-objective problem involving

maximizing path coverage and minimizing path length. We can combine these two

objectives 4.1 and 4.2 as the following composite objective 4.3:

 the composite objective associated with the covering path (4.3)

Where:

 the importance weight associated with the covering objective (where 0)

 the importance weight associated with the path distance objective (where

0)

Whenever two solutions are compared, the solution with the higher composite objective

value, ObjZ , is preferred. In general, whenever a solution T is found that is better than the

existing solution E in terms of ObjZ , solution T becomes the new incumbent solution E.

Figure 4.1a depicts a hypothetical route between the designated origin and

destination nodes. Figure 4.1b depicts a simple out and back loop route being attached to

the existing route. Note that this out and back (OAB) loop is attached to a node

designated as k. This OAB loop travels from node k to node q. This OAB loop takes the

shortest path from node k to node q and then back again to node k. There are many

possible out and back loops that could be used to modify and improve an existing route.

Technically, there is one for every node k on the route times the number of nodes, q, that

are not on the route. Some of these are nonsensical. Figure 2a depicts one of these

nonsensical loops, which is formed by the route from 63254236. Such a

loop when inserted would needlessly add to route length as compared to the OAB loop

depicted in Figure 2b which simply goes from 2542. Since these nonsensical OAB

loops are clearly dominated by others they can be eliminated from further consideration.

ZObj =a *ZC -b *ZD

a =
b =

140

As stated above the number of possible OAB loops equals K*(n-K) where K is the total

number of nodes on the current path and n is the number of nodes on the network, which

means that as network size increases, the number of possible OAB loops also increases.

This is one of the reasons that a good heuristic is desirable in solving this problem.

 Figure 4.3a depicts a route alignment connecting the origin and destination

nodes. It also depicts two chosen nodes along the route, u and v. For any given nodes u

and v, there exists a gateway shortest path from u to v via node q. Figure 4.3b depicts a

gateway path starting at node u which goes to the gateway node q and then continues to

node v. The essence of the heuristic is to utilize a detour substitution by taking the

existing route from the origin, O, to the destination, D, and consider changing the route

from O to D, by going from O to u along the existing route, and then from u to q to v

along the gateway path, and then complete the route from node v to node D along the

existing route alignment. If a gateway path can substitute for a portion of the existing

route and improve the composite objective, then this modified route becomes the new

solution E.

The general form of the new maximal covering shortest path heuristic we have

derived is given below. We assume there is a planar network of arcs and nodes such that

each node has an associated demand and cover can be provided through the connected

arcs of the network to all other demands based upon a maximum service distance from a

node that is visited by the path. We base our heuristic on finding an initial shortest path

and then begin an insertion process that greedily chooses the best insertion it can make.

The generalized form and notation is as follows:

 origin node

 destination node

O =

D =

141

 the shortest distance through the network from node i to node j

 the maximum distance that service can be provided

 the set of nodes I, such that , that can be covered if node j is visited on the

covering path

 the emphasis associated with the covering objective

 the emphasis associated with the total path distance objective

 the covering objective – the total coverage provided by the covering path

 the total path distance objective – the total length of the covering path

 the objective value associated with the covering path

 the maximum number of possible iterations the heuristic can perform

 the current iteration number

G = the set of nodes which are not directly visited by the covering path indexed by

ascending order (e.g.)

g = a node within the set G that is to be swapped and which is not a part of the current

covering path

 the set of nodes that are currently a part of the covering path but which are not equal

to O or D and which is indexed in ascending order (e.g.)

 the point of departure associated with travel from the origin node to a node i

 the point of entry associated with travel from a node j to the destination

CPBest = the set of arcs for the current best maximal covering shortest path that has been

found

CPCandidate = the set of arcs for the current maximal covering shortest path candidate

 the set of arcs which comprise the current maximal covering shortest path

CPPi = the set of arcs which are used to go between the origin, O, and on the current

covering path

CPPj = the set of arcs which are used to go between and the destination, D, on the

current covering path

CPg = the set of arcs which are used to go from Pi to g and g to

Step 1: Define the parameters of the heuristic – set the maximum service

distance, s, and select an origin node, O, and destination node, D,

for the covering path. Set the desired coverage and distance

emphases weights such that each weight value lies between 0 and

1 and . Set the maximum number of iterations, , that

can be used should the heuristic not converge on a solution. Go to

Step 2.

Step 2: Determine the shortest path through the network from O to D.

Calculate ZObj (CPCurrent) and save this solution as the current

dij =

s =
c j = dij £ s

a =
b =

ZC =

ZD =

ZObj =a *ZC -b *ZD

e =
ℓ =

f = {1,3, 4,5, 7,...,n}

f =

f = {1,3, 4,5, 7,...,n}

Pi =

Pj =

CPCurrent =

Pi

Pj

Pj

a =1- b e

142

maximal covering shortest path, and set CPCurrent to be the set of

arcs that comprise the shortest path from O to D. Set

ZObj (CPBest) = ZObj (CPCurrent) and ℓ = 0 and go to Step 3.

Step 3: Set Go to Step 4.

Step 4: If Step 4 has been reached from Step 3 then set equal to the

first element (node) in . Else, set equal to the next element

in . Go to Step 5.

Step 5: If Step 5 has been reached from Step 4 then set Pj equal to the

first element in (note that can be the same node as).

Else, set Pj equal to the next element in . Calculate the

respective path elements for CPPi and CPPj .

Step 6: If Step 6 has been reached from Step 5 set g to be the first element

in G; else, set g to be the next element in the set. Calculate CPg

and set CPCandidate =CPPi +CPg +CPPj . Go to Step 7.

Step 7: If ZObj (CPCandidate) ³ ZObj (CPBest) then set CPBest =CPCandidate. If g

does not equal the last element in the set G then go to Step 6; else

go to Step 8.

Step 8: If Pj does not equal the last element in go to Step 5; else if Pj

equals the last element in and does not equal the last

element in then go to Step 4; else if Pj and equal the last

element in check whether ZObj (CPCurrent) = ZObj (CPBest); if this is

true then stop, the solution has not changed. Otherwise, set

CPCurrent =CPBest ; if ℓ =e then stop; else update G and with

respect to CPCurrent and go to Step 3.

Now that we have seen the basic structure of the heuristic, each step can be

explained in further detail. Step 1 in the maximal covering heuristic above sets all the

parameters required to start the heuristic. Since we are trying to find good solutions to

the MCSP we need to define the origin and destination nodes for the path as well as the

maximum service distance which defines the maximum distance at which a node visited

ℓ = ℓ +1

Pi
f Pi

f

f Pj Pi

f

f

f Pi
f Pi
f

f

143

on the path can provide coverage to other nodes. We also need to define how much

emphasis is placed on coverage versus total path length. The last element is a stopping

criteria used to set the maximum number of iterations the heuristic can run through before

exiting. Ideally this number would be relatively large in proportion to the problem size.

It is used to ensure that the heuristic has a stopping criterion should a solution not be

converged upon within a reasonable amount of time.

Step 2 is used to define an initial covering path from which the heuristic can start.

In this case we simply find the shortest path from origin to destination and set this to be

the current covering path. We can now set the iteration count at the initial value of zero

and set the best objective found to be that corresponding to the shortest path from O to D.

The reason for setting the best objective to that defined by the shortest path is to establish

a baseline objective so that better solutions can be initially identified. Since the shortest

path represents a lower bound on the optimal solution, we can use it to initialize the

heuristic with relatively little computational effort expended.

Step 3 begins the search procedure for the heuristic. In this case we now set the

iteration counter to be one and we begin to move through the steps of the heuristic search

process. The iteration counter allows us to keep track of the best solutions determined for

each search iteration. The next step after initializing and updating the iteration counter is

Step 4; If Step 4 has been reached directly from Step 3 then we select the first element in

the set . The first element in should correspond to the node that has the lowest index

number of the set of nodes that currently comprise the covering path. For example, if

nodes 3, 5, 8, 18, 27, and 31 lie on the covering path, the first element in the set would be

node 3. If Step 4 is not directly reached from Step 3 then the next element in the set is

f f

f

144

selected. Using the example set given above, if Step 4 has been entered three times, the

node represented at element position 3 should be selected – in this case that corresponds

to node 8. Thus, Step 4 allows us to select a ‘departure point’ utilizing the current

maximal covering shortest path as a basis. We will then use this basis to compile a test-

covering path. The departure point defined in Step 4 will be the position along the

covering path where a test insertion will originate as part of the test-covering path. As

such, we set , the ‘departure point,’ to be equal to the selected element in which

corresponds to the node on the path where the test insertion will originate. Once this has

been completed we move to Step 5.

In Step 5 we want to establish an ‘entry point’ where the test insertion enters the

existing covering path. The first portion of Step 5 is similar to that of Step 4. If Step 5 is

entered directly from Step 4 then we select the first element in ; otherwise we want to

select the next element in the set. The node represented by that element will then be set

as the ‘entry point,’ , for the test-covering path. It should be noted that in this case

both the ‘entry point’ and the ‘departure point’ can correspond to the same node.

By allowing both the entry point and the departure point to be the same we allow an OAB

tour to be inserted onto the test-covering path. The next portion of Step 5 determines the

path elements that are used to define the test-covering path. At this point, the heuristic

determines the set of arcs which are used to travel from the origin node to the point of

departure on the current covering path as CPPi . The heuristic also calculates the set of

arcs on the current covering path which are used to travel from the point of entry to the

destination node as CPPj . Together this will allow the heuristic to keep track of which

Pi f

f

Pj

Pj Pi

145

portions of the current covering path that are kept, and which portions of the current

covering path that will be removed and replaced with a newly defined insertion.

Step 6 determines what the test-covering path will be composed of. In this case

we want to first select a node which is not currently part of the covering path. If this is

the first time Step 6 has been entered from Step 5 then we select the first element of the

set G, and define this node as g. If Step 6 has not been directly entered from Step 5 then

we select the next element in the set G. We also need to define the path from the

‘departure point’ , to g and from g to the ‘entry point’ . To do this we find the

shortest path from to g and the shortest path from g to . We define this insertion as

CPg . Once we have determined the associated arc set that defines the insertion we can

define the test-covering path as CPCandidate which represents the newly defined candidate

path composed of CPPi , CPPj , and CPg . Once we have established the candidate

covering path we move to Step 7.

 In Step 7 we calculate the objective value for the candidate covering path. Since

we have a set of candidate arcs we are able to determine which nodes on the network are

covered by the candidate path and can calculate the associated coverage. We also know

the distance associated with each arc and since we know the order of arcs we are able to

determine the total length of the path. Therefore, we can determine the composite

objective associated with the candidate covering path; in this case weighted total

coverage minus weighted total distance. This allows us to make a direct comparison with

the current best covering path that has been determined. If the objective for the candidate

covering path exceeds the current best covering path then the current best covering path

is set to be equal to the current candidate covering path. If g is not the last element in the

Pi Pj

Pi Pj

146

set G then the heuristic returns to Step 6 and the process is repeated; otherwise if g is the

last element in the set G then the heuristic proceeds to Step 8.

In Step 8 of the heuristic process we determine if all possible candidate covering

paths have been checked with respect to ‘departure points’ and ‘entry points’ on the

current covering path. If the entry point, Pj , is not the last element in the set then the

heuristic moves to Step 5 where the next entry point can be selected from the set and the

heuristic continues. If the entry point, Pj , is the last element in the set and the

‘departure point,’ , is not the last element in then the heuristic must move to the next

‘departure point’ in the set . Thus, the heuristic must go to Step 4. If both the

‘departure point’ and the ‘entry point’ are the last elements in the set then the heuristic

checks to see if an improvement to the current covering path has been found. Thus, the

first part of Step 8 is used to determine which step the heuristic should return to.

If no better solution has been found for a complete iteration cycle – that is,

cycling through the set for all departure and entry points – then the heuristic stops.

Otherwise, the heuristic sets the current covering path to be equal to the current best

found covering path. If the heuristic has reached the stopping criterion for the maximum

number of iterations the heuristic stops. Otherwise, sets G and are updated to reflect

the new basis – i.e. the new current covering path that was just set – and the heuristic

returns to Step 3 and the process is repeated. Thus, the heuristic is able to quickly

determine good solutions through a logical process. In this case the steps of the heuristic

outlined above test a variety of insertions based upon an initial shortest path in a desire to

determine a good (and hopefully optimal) solution to the maximal covering shortest path

problem. Although this method does not guarantee optimal results, it is a logical method

f

f

Pi f

f

f

f

f

147

and our experience shows that we are able to determine a robust set of good solutions.

As such, the following section will discuss issues related to the performance of the

heuristic as applied to a test network.

4.3 Computational Experience

This section highlights the computational experience of the Maximal Covering

Shortest Path heuristic defined in section 2. Particular attention is given to the time taken

to determine a solution using the heuristic as well as the time taken to determine an

optimal solution to the NR-MCSP using the same parameters. We highlight a set of

solutions where we give the associated weights used to emphasize coverage and shortest

overall path length as well as the maximum service distance used to define coverage

within the network. We also highlight the total coverage provided for both the heuristic

and optimal solutions as well as their associated total path distance and provide the

composite objectives for both the heuristic solution and the optimal solution for each

problem and the associated solution gap, if any. Solutions derived from the New,

Revised Maximal Covering Shortest Path problem are indicated with an NR in the

problem heading and solutions determined from the heuristic are indicated with a H.

Solutions in which a loop/tour are used as a covering strategy are marked with an

asterisk, *, next to the problem type in the ‘Problem’ column in Table 4.1 which

highlights these findings below.

148

Table 4.1

Problem Maximum

Service

Distance

Weight

Cover

Weight

Solution

Time (s)

Composite

Objective

Total

Cover

Path

Length

Gap

Abs

%

NR 10 0.01 0.99 16544.9 632.15 640 145.43 -- --

H* 10 0.01 0.99 0.68 632.08 640 151.64 0.065 0.01

NR 10 0.15 0.85 140982 522.23 638 133.77 -- --

H* 10 0.15 0.85 0.49 521.30 638 139.98 0.930 0.2

NR* 10 0.19 0.81 4641.39 491.94 633 109.45 -- --

H* 10 0.19 0.81 0.31 490.28 633 118.17 1.660 0.3

NR* 10 0.3 0.7 219.76 410.27 633 109.45 -- --

H* 10 0.3 0.7 0.28 408.92 633 113.92 1.350 0.3

NR 10 0.56 0.44 196.90 224.71 613 80.38 -- --

H 10 0.56 0.44 0.15 224.71 613 80.38 0 0

NR 10 0.61 0.39 104.17 190.07 600 72.02 -- --

H 10 0.61 0.39 0.15 190.07 600 72.02 0 0

NR 10 0.62 0.38 82.72 183.35 592 67.11 -- --

H 10 0.62 0.38 0.09 183.35 592 67.11 0 0

NR 10 0.74 0.26 2.92 104.43 571 59.50 -- --

H 10 0.74 0.26 0.07 104.43 571 59.50 0 0

NR 10 0.76 0.24 0.19 92.05 552 53.20 -- --

H 10 0.76 0.24 0.07 92.05 552 53.20 0 0

NR 10 0.93 0.07 0.02 -10.70 537 51.92 -- --

H 10 0.93 0.07 0.04 -10.70 537 51.92 0 0

NR 10 1.0 0.0 0.01 -51.92 537 51.92 -- --

H 10 1.0 0.0 0.04 -51.92 537 51.92 0 0

It can be seen that the newly devised heuristic for this problem solves with times

that never exceed one second – in fact the longest amount of time the heuristic took to

149

solve was just over two-thirds of a second at 0.68 seconds for a coverage weight of 0.99

and a distance weight of 0.01. Solution performance of the heuristic was also quite good

with the percent gap between the heuristic solution and the optimal solution never

exceeding one half of one percent. This gap could likely be further reduced through

implementation of a GRASP (Greedy Randomized Adaptive Search Procedure; Feo and

Resende, 1995) implementation as this would allow perturbations which could potentially

flush out the optimal solution. However, although this heuristic uses a best insertion

approach, results that we obtained are robust and computational time is significantly

lower than if one solves the problem to optimality.

Table 4.1 also shows that the population that was covered in heuristically

determined solutions was equivalent to the total population covered by the optimal

solution. Although this result could change with respect to network geometry (i.e., a grid

based network, vs a hexagonal network, vs a random network, etc.) it seems that

significant changes are unlikely to occur as coverage is defined as being within a

maximum service distance which is a function of network distance. What is of particular

note is that the heuristic determined solutions which contained loops in several solutions.

Although some of these ‘looped’ solutions are not globally optimal the gap between the

optimal solution and those derived by the heuristic are quite low. This seems to lend

credence to the fact that planners can consider using loops and not necessarily feel that

they have compromised on what’s best when deriving bus routes within urban and

suburban areas.

Table 4.2 shows results for both the heuristic as well as the NR-MCSP as applied

to the Garland/Richardson, TX network such defined by Curtin and Biba (2011). We

150

have chosen to use this network as it is representative of what would likely be used in a

transportation planning context. Curtin and Biba note that the network is defined by

major arterial roads which are likely to have ample room for busses to maneuver. To add

data to the network, we were able to take the network defined by Curtin and Biba and

utilize Open Street Map (OSM) data to define the complete road network. We were then

able to crawl Zillow.com using cyber search methods and obtain the parcel information

for Garland/Richardson, TX. We then defined the centroid for each parcel and connected

the centroid to the nearest underlying road. Each centroid then represents one household.

These households allowed us to define a ‘population’ (in this case households served) at

each intersection node. Each centroid was then assigned to the nearest node of the Curtin

and Biba network using the ArcGIS network analyst toolbox. We were then able to

define the number of households served by each node based upon how many of these

attached centroids were within 660 ft (one-eighth of a mile) using the underlying road

network. A similar method was proposed by Biba et. al. (2010). Once the data was

processed, we created a data file that can be used as an input to the NR-MCSP problem

that can be solved by the Xpress solver as well as be used for the program that uses the

heuristic that is defined in this chapter. It should be noted that when solving the problem,

we utilized a maximum service distance that was equal to zero. Since we defined how

many households were within an eighth of a mile when establishing the number of

households that constituted the population for each node, it would be improper to use a

service distance in the model and heuristic as this has already been accounted for.

151

Table 4.2 – The Comparison of the Heuristic and the NR-MCSP model as applied to the Richardson,

TX dataset. An origin node = 70 and a destination node = 79 was used for all instances. A star (*)

next to the problem name indicates that a loop is used.

Problem Max

Service

Distance

Weight

Cover

Weight

Solution

Time (s)

Composite

Objective

Total

Cover

Path

Length

Gap

Abs

Gap

%

NR 0 0.99 0.01 0.3 -151.8 164 155 -- --

H 0 0.99 0.01 0.1 -151.8 164 155 0 0

NR 0 0.85 0.15 0.4 -107.2 164 155 -- --

H 0 0.85 0.15 0.1 -107.2 164 155 0 0

NR 0 0.70 0.30 0.5 -35.3 454 245 -- --

H 0 0.70 0.30 0.1 -59.3 164 155 24 67

NR* 0 0.55 0.45 8198.7 114.3 1283 842 -- --

H 0 0.55 0.45 1.48 102.2 843 504 12.1 10

NR* 0 0.40 0.60 171326.0 461.2 1706 1406 -- --

H* 0 0.40 0.60 46.2 450.0 1800 1575 11.2 2.4

Just as in the results shown in Table 4.1, all NR-MCSP calculations were

performed on the Ubuntu 14.04 LTS server defined above. Although we generated a

series of solutions with emphasis weights for distance and coverage ranging from 0.01 to

0.99 incremented in intervals of 0.01, only several solutions are shown here for

comparative purposes. Table 4.2 only has several entries as at the time of writing the

solver was not able to determine a complete set of solutions. However, the heuristic

performs very well in the cases that were tested. Only one solution had a result that was

far from optimal. Apart from this exception, in all the other cases that were tested the

heuristic was always within 10% of the optimal solution. All solutions also utilized loops

with the exception of those solutions that were the shortest path.

152

The use of loops appears to be particularly useful as emphasis is placed on the

covering objective. Thus, it seems the challenging factor in this case lies in determining

a least cost path which covers as much as possible. A loop then seems to be a useful tool

to provide good coverage while also not greatly increasing overall path length. It is also

possible that a GRASP based approach would potentially determine better, hopefully

optimal, solutions. These may or may not involve solutions which involve a ‘loop’ as a

perturbation by periodically forcing the heuristic process to utilize a randomly

determined solution which does not initially improve the objective may in the end allow

the heuristic to avoid local optima. In any case, a GRASP approach utilizing the basic

heuristic procedure defined above is certainly an avenue that will be pursued in future

work.

Nevertheless, the heuristic we define in this chapter is able to determine optimal

solutions as well as solutions that cover as much as the optimal solution albeit with a

slightly longer path. Another intriguing aspect of the heuristic performance is that it, too,

is loop agnostic in the sense that loops/attached tours are neither explicitly prevented nor

encouraged to form. In fact, in several near optimal solutions that were determined, the

heuristic utilized a loop/tour as part of the solution. Such a case is shown in Figure 4.4

below. In this case a loop is utilized between node 43 to node 55. As stated above, this

does seem to indicate that the use of a loop can be a practical strategy. Figure 4.5 is

another case where a loop structure is used in the heuristic determined solution. In this

case several loops are employed.

153

4.4 Summary

This chapter has introduced a new heuristic that is “loop agnostic” – that is it

neither requires nor prohibits loops from forming in a solution – and which performs

computationally well. The heuristic methodology was highlighted such that each step is

presented in detail. The heuristic uses an insertion strategy such that if a better insertion

is found it is taken and the process is repeated until no further improvements can be

made. Computational experience indicates that the heuristic is able to cover much of the

demand although it does not always determine the optimal maximal covering shortest

path in several cases. However, the gap from the heuristic solution to the optimal

solution is consistently less than half a percent with the maximum gap in any solution

being 0.3 percent. For the Swain based dataset. The Richardson, TX based dataset shows

that the heuristic is able to determine robust solutions, though it does not always

determine the optimal solution. Additional strategies for modifying the heuristic include

a GRASP based approach which would allow for a randomized insertion (one of the best

insertions rather the best insertion candidate). This would help to expand the region of

exploration.

154

Figure 4.1 - An example of a loop

Figure 4.2 - A nonsensical and realistic example of a looped route

Figure 4.3 - A path from O to T and associated changes using gateway paths from u to q and q to v

155

Figure 4.4 - Solution to the MCSP Heuristic determining a solution from node 27 to node 21 using a

coverage weight of 0.85, a distance weight of 0.15, and a maximum service distance of 10. The mauve

path is the initial shortest path and the blue path represents the final solution determined by the

heuristic.

156

Figure 4.5 - Solution to the MCSP Heuristic determining a solution from node 27 to node 21 using a

coverage weight of 0.90, a distance weight of 0.10, and a maximum service distance of 10. The mauve

path is the initial shortest path and the blue path represents the final solution determined by the

heuristic.

157

Chapter 5

5.1 Introduction

The goal of this dissertation is to develop new and improved models for the

maximal covering shortest path problem. In chapter 3, a new model called the New,

Revised Maximal Covering Shortest Path model was presented. This model was termed

loop agnostic, as it neither requires nor prevents loops from being used in covering paths.

Upon reflection, one can question whether a “loop” or “cycle” can be present if it is

defined as a path. Some might suggest that this type of problem should be called the

maximal covering shortest route problem instead. However, others have defined cases

where paths can contain cycles or loops, especially with regard to the thk shortest path

problem. For example, the literature on the thk shortest paths problem is bifurcated

between allowing loops in such paths and not allowing loops. Quibbling about such

terminology itself is not central to the research here. The issue here is to restructure

models so that they can use loops or cycles, if the use of a loop or cycle leads to a

solution which dominates one in which a loop or cycle is not permitted. As was shown in

Chapter 3, where the NR-MCSP model is described and solved, a loop or cycle can be an

optimal construct in a covering path. Chapter 4 presented a basic swapping heuristic for

solving the NR-MCSP. Its application demonstrated that many close to non-inferior

solutions exist that involve one or more loops. This also gives credence to current

planning practice in transit operations where planners often design routes/paths with

loops.

158

Up to this point we have examined the models originally developed by Current et.

al. (1984, 1985) or derivatives of these models. Their original problem involved finding

the shortest route through a network from a prespecified origin to a prespecified

destination such that all nodes were covered by the path. A node j is defined as covered

as long as the shortest covering path passes through node j or passes through some other

node that is within a maximal service distance S of node j . This original problem was

later expanded into the Maximal Covering Shortest Path problem. This newer problem is

based on relaxing the requirement of complete coverage and instead involves the search

for those paths that minimize path length and maximize path coverage. No MCSP

solution needs to be longer than the shortest covering path. As was described in Chapter

2, covering-path type problems are related to other forms of path and routing problems

such as the thK shortest paths (KSP) problem and the Traveling Salesman Problem.

Because of this, many of the models and even the solution procedures have been based

upon the TSP and KSP literature.

Current et. al. (1984, 1985) developed integer-programming models for both the

SCP and MCSP. These two models represented a combination of the shortest path model

of Dantzig (1956) with TSP sub-tour elimination constraints developed by Dantzig,

Fulkerson, and Johnson (1954). Coverage constraints were added to either enforce

coverage (as in the location set covering problem) or defined if a specific node is covered

(as in the Maximal Covering Location Problem). However, other methods have been

devised to solve the Traveling Salesman Problem through alternate formulations which

do not require the use of sub-tour elimination constraints as defined by Dantzig,

Fulkerson, and Johnson. Such formulations include the work of Miller, Tucker, and

159

Zemlin (1960), Vajda (1961), and Gavish and Graves (1978).
17

 Although there have

been many formulations of the Traveling Salesman Problem that have been developed

and tested, virtually all work with respect to covering path problems have utilized the

solution procedure and constraints originally developed by Dantzig, et al (1954) and

adapted by Current et al (1984, 1985) for use in their seminal formulations. There are

two exceptions to this general trend: the EAST constraints of Niblett and Church (2016)

and the TRANSMax model of Curtin and Biba (2011).

The Transit Arc Node Service Maximization (TRANSMax) model was developed

by Curtin and Biba (2011) which is adapted from an alternative model for the Traveling

Salesman Problem that was developed by Vajda (1961). The TRANSMax model can be

considered a special case of a maximal covering path problem where arcs on the path

provide coverage to nodes as well as to demand defined to exist along arcs. In essence, it

is an alternate model formulation for the MCSP. The TRANSMax model was discussed

in detail in the literature review of Chapter 2. If we recall from Chapter 2, the routing

construct of Vajda (1961) expressively prevents a travelling salesman tour from crossing

itself as well as looping back. The Vajda formulation is constructed in such a way as to

eliminate the need for sub-tour elimination constraints like those proposed by Dantzig,

Fulkerson, and Johnson. By expanding on Vajda’s formulation, Curtin and Biba (2011)

made it possible to solve for a path that maximizes node and arc coverage while

restricting the path to be no longer than desired. The Vajda construct expressively

prevents a path or route that ‘loops back’ upon itself as well as ensures that the path or

route is connected. In light of the work and results of Chapter 3, it makes sense to

17

 Orman and Williams (2004) give an excellent review of these problems and the efficacies of each

formulation with respect to solution time and general computational performance.

160

explore the possibility of transforming the TRANSMax model into an approach which is

‘loop agnostic’ – that is, a formulation in which the use of a loop is allowed if it

represents an improvement in the objective function. This is the goal of this chapter.

This chapter is organized as follows; we start with a brief review of the original

TRANSMax model and follow that with a revised form that allows for out-and-back

loops and cycles. We also describe and discuss the key differences between the revised

model – TRANSMax II – and the original TRANSMax formulation, particularly with

respect to being ‘loop agnostic.’ Both the original and new TRANSMax models are

applied to data that represents Richardson and Garland, Texas which was also used in

Chapter 4 when testing the performance of the heuristic. The choice of this network

follows the work of Curtin and Biba (2011). We will show that optimal solutions to the

revised TRANSMax problem mirror those of the NR-MCSP for this real world road

network; that is, true optimal solutions may rely on embedded loops. This is followed by

a section recapping key differences and findings.

5.2 The original TRANSMax model

Models which attempt to address problems associated with mass transit have been

explored since the advent of location modeling. Gleason (1975) offered a formulation for

bus stop location which is based upon the Location Set Covering Problem developed by

Toregas et al (1971). Church and ReVelle (1974) also proposed locating bus stops within

the context of the Maximal Covering Location Problem. Current et. al. (1984, 1985)

expanded transportation work by formulating both the Shortest Covering Path Problem

and the Maximal Covering Shortest Path problems. Recent work has been advanced by

researchers including that of Wu and Murray (2005), Matisziw et al. (2006), LaPorte et

161

al. (2005, 2011). Virtually all of the recent work is based upon the models first proposed

by Current et. Al (1984,1985).

 The TRANSMax model formulation takes a different tack; Curtin and Biba

(2011) based their work on the Vajda (1961) framework for solving a TSP. They attempt

to address the issue of transit based access by extending service access to include arcs as

well as nodes and their model was explicitly developed for short access distances like

those found in bus based transit systems. Their model is quite appealing from a transit

planning perspective as it captures many of the elements of route coverage without

explicitly specifying exact stop locations a priori. This gives transit planners flexibility in

final stop location adjustments as well as being able to account for differences in service

accessibility provided along long street segments as compared to shorter street segments.

This section gives the basic TRANSMax formulation. In the section following we

propose a new TRANSMax formulation – TRANSMax II – in order to be more realistic

with respect to transit planning. In particular this new version of TRANSMax is based

upon a ‘loop agnostic’ approach so that real world routes can be created and use loops

when such loops provide better levels of coverage. As was noted in Chapter 2 of this

dissertation, the TRANSMax formulation can be adapted to meet several planning cases.

Each of these cases can be easily captured through slight modifications of the modeling

constraints. A detailed overview of these cases is given in Chapter 2; however, each of

the cases in the original TRANSMax formulation are expressively prohibited from using

loops as part of the solution due to the use of Vajda (1961) inspired constraints. The

original TRANSMax notation and formulation are given below as:

𝑖, 𝑗= index of nodes

= index of sequence r

162

= the origin node for the route

= the destination/terminus node for the route

= the total number of segments, r that will be used

= the maximum distance for the route

= the distance associated with the arc from node i to node j

= the service possible by utilizing an arc from node i to node j

iM = the service value associated with node i

= the set of nodes which can be reached by an arc from node i

= the set of nodes which can be reached by an arc to node j

= 1 if an arc from node i to node j on segment r is used, 0 otherwise

 (5.1)

 (5.2)

 (5.3)

 (5.4)

 (5.5)

 (5.6)

),,(}1,0{ rjixijr  (5.7)

The complete discussion for the model can be found in Chapter 2 of this dissertation.

For clarity here, a brief description of the model will be given in order to highlight key

differences of the new TRANSMax II model that is subsequently formulated in this

chapter. The objective (5.1) in the model maximizes arc service, ijA , and node service,

o

t

R

D

ijd

ijA

iF

jT

ijrx


  


m

i

m

j

R

r

ijriij xMAZMaximize
1 1 1

)(

mjx
m

i

R

r

ijr ,,2,11

Subject to

1 1


 

mix
m

j

R

r

ijr ,,2,11
1 1


 

1,,2,1;,,2,10
1

)1(

1








Rrmjxx
m

i

rji

m

i

ijr 


 


m

i

m

j

ijr Rrx
1 1

,,2,11 


  


m

i

m

j

R

r

ijrij Dxd
1 1 1

163

iM . Constraint (5.2) specifies that each node j can only be entered once across all

sequences in R and constraint (5.3) specifies that each node i can only be departed once

across all sequences in R. Taken together these constraints ensure that no sub-tours will

form as they preclude the possibility of a tour from even forming. Constraint (5.4) is a

balance constraint which ensures that if a node is entered on sequence r then on sequence

r+1 that node must be departed. Constraint (5.5) specifies that for each sequence r,

exactly one arc may be used. This ensures that there are not multiple arcs used for each

sequence as this would not result in a connected path. Constraint (5.6) specifies that the

total length of the covering path cannot exceed a maximum length, D. Constraints (5.7)

are the binary restrictions on the decision variables xijr . The important aspect to note

with respect to this formulation is that, as formulated, the original TRANSMax model

cannot use loops/tours as part of a covering strategy. Thus, common route shapes that

one finds in the ‘real world’ such as the figure eight, lollipop, and barbell (see Figure 5.1)

can never form part of a solution determined by the original TRANSMax model. One of

the key contributions of the revised formulation is to then allow for the possibility that

loops may be used in such solutions. Therefore, the ‘loop agnostic’ – that is the form

where loops can be used if it results in an improved objective – form of TRANSMax can

be formulated as follows:






 otherwise ,0

route by the served is),(arc if ,1 ji
sij

 



ti

ii

i ijFj

ijij yMsA
i ,

 ZMaximize (5.8)






 otherwise ,0

route by the served is node if ,1
iy

164

 (5.9)

 (5.10)

 (5.11)

 (5.12)

(5.13)

(5.14)

 (5.15)

tjjyx i

R

r Ti

ijr

j


 

,
1

(5.16)

(5.17)

(5.18)

The objective function (5.8) for the revised TRANSMax model still maximizes

arc and node service just as in the original TRANSMax formulation; however, we

introduce two major changes in the formulation with respect to decision variables and

constraints. The first major change is that two new variables are introduced to indicate

whether an arc or a node is provided service. This is done through the variables ijs and

iy which are used to represent arc service and node service respectively. If ijs is utilized

in the solution, this indicates service has been provided by arc(i , j). It should be

explicitly noted here that ijs represents service provided by the arc, not the direction of

travel; the use of such variables is necessary to ensure that arc service is not double

xoj1
jÎFo

å =1

xojr
r=1

R

å
jÎFo

å - xior
r=1

R

å
iÎTo

å =1

xitr
r=1

R

å
iÎTt

å - xtjr
r=1

R

å
jÎFt

å =1

Rrx
i Fj

ijr

i

,,3,2,1 1 


 ,,4,3,2 01 Rrxx
tt Tj

jtr

Fj

tjr 




1,,3,2,1,, 01 






Rktjjxx
jj Fi

jir

Ti

ijr 

Dxd
i Fj

R

r

ijrij

i


 1

jijisxx ijjir

R

r Ti

ijr

j


 

,,
1

jijiarcs

iy

RrFjix

ij

i

iijr







),,(}1,0{

 }1,0{

,,3,2,1,, }1,0{ 

165

counted as a loop could conceptually utilize the same arc. Thus, arc service is captured

and counted exactly the same as in the original TRANSMax formulation. The use of
iy

represents node service and will similarly ensure that node service is counted only once

irrespective of how many times the node may be entered.

Constraint (5.9) requires that the path must leave the origin node. In this case, we

specify this by stipulating that the arc must leave the origin and travel to a node j that is

directly reachable from the origin node on the first sequence. Constraint (5.10) is a new

type of constraint in the TRANSMax II model; in this case we allow a loop to form at the

origin as long as the origin is departed exactly one more time than it is entered across all

sequences. Constraint (5.11) is also a new type of constraint. Specifically, this constraint

is used to ensure that the path terminates at the terminus node, t. The constraint is also

unique in that it allows for a loop to form; in this case this is achieved by specifying that

the terminus node must be entered exactly one more time than it is departed. Note that

this constraint also relaxes the requirement in the original TRANSMax problem that

exactly R sequences must be used. By allowing a loop to form and by ensuring it must be

entered one more time than it is departed this ensures that a solution is not forced to

conform to a preset number of sequences but rather can utilize as many sequences as

required to ensure the best solution is obtained without needlessly extending path length.

Constraints of type (5.12) are also new in the formulation; in order to allow for

the behavior above – that is, having a path where only the necessary sequences are used –

we must specify that each segment must be less than or equal to one for each arc and

sequence. If a sequence is necessary to form a connected path then it will be allowed to

equal one. If it is not needed, however, the sequence is allowed to be zero and thus a

166

preset number of sequences does not force the solution to include unnecessary lengths.

In conjunction with the binary requirements set for each variable, this constraint will then

also ensure that no more than one arc will be selected for any given sequence.

Constraints (5.13) are also new to the TRANSMax II formulation; these constraints are

used to ensure that the last arc sequence used must enter the terminus node. Since

constraint (5.11) only requires the terminus node to be visited it does not ensure that the

path will return on the final segment. Since we have relaxed the requirement that a

prespecified number of sequences must be used to that of utilizing only the number of

sequences up to the maximum number of sequences, R, constraint (5.13) then ensures that

the last sequence necessary to form an optimal path must be used to enter/return to the

terminus node. Constraints of type (5.14) remain the same as in the original TRANSMax

model and are used to ensure that, for each node that is not the origin or terminus node, if

a node is entered on sequence r then that node must subsequently be left by sequence

r+1. Constraint (5.15) also remains the same from the original TRANSMax model and

specifies that the path cannot have a total length greater than D. Constraint (5.16) is a

new constraint in TRANSMax II and defines coverage for nodes. In this case, a node is

considered covered if it is departed by the path. Coverage is defined in this manner to

match the original TRANSMax model; this can be readily seen in the objective function

(5.1) where node service iM is counted as a function of ijrx – if ijrx is utilized as part of

the path in the original formulation then node service from i is counted.

Constraints of type (5.17) are used to define service provided by),(jiarc . This is

done through the use of the variable ijs ; note that this variable is designed such that the

index value of i will always be less than the index value for j for this decision variable.

167

This is done so that the variable is able to capture the use of an arc but not double count

travel which occurs in the opposite direction. This then ensures that arc service is not

over-emphasized and is consistent with the original TRANSMax formulation, while still

allowing an arc to be used in the formation of a loop if it is beneficial to do so.

Constraints of type (5.18) are the binary restrictions on the decision variables.

This new TRANSMax II formulation is now ‘loop agnostic’ in the sense that

loops are permitted to occur should they be utilized in an optimal solution. The

formulation does not require loops to be used. It is important to note that the model also

does not require the use of R sequences. In the original TRANSMax model this is a hard

constraint and defining the number of arcs to be used a priori is not a particularly

appealing approach in transit route design. The new TRANSMax II formulation allows

for at most R arcs to be used while building in flexibility so that the route could

potentially use less than the required number of arcs to find an optimal solution. This is

particularly important as both the original TRANSMax and TRANSMax II formulations

utilize a constraint which limits the maximum length of the path. By allowing flexibility

in the number of sequences to be used it is possible that one may obtain a solution in

which service is maximized using less than R sequences but which has an overall path

length that is equal to or very near the maximum path length restriction. Although one

could eliminate the path length constraint entirely, this may result in a more convoluted

path that, while maximizing service, takes a very contorted route which in practicality is

not terribly useful to a transit patron as they wish to get from one point to another as

quickly as possible (Curtin and Biba, 2011). However, now that we have defined the new

TRANSMax model, we can now obtain results and make direct comparisons with respect

168

to the performance of TRANSMax II compared to other models. This will be elaborated

in the next section.

5.3 Computational Experience for the TRANSMax II Model

This section will highlight how the newly formulated TRANSMax II model

performs in relation to other related models. We will analyze how the model performs

with respect to the original TRANSMax formulation. Solution times as well as coverage

results will be discussed. In particular, we wish to show that an optimal solution to the

TRANSMax II model will mimic or exceed those of the original TRANSMax model

given the same parameters. All results were generated in the same modeling environment

detailed in other chapters: problems were formulated using the Mosel modeling language

and solved using the Xpress solver of FICO Corporation. The remaining parts of this

section are laid out as follows: first, a brief explanation will be given for the Richardson,

TX study area as well as the metrics used to define arc service and node service will be

discussed. Second, the solutions to several cases of the TRANSMax and TRANSMax II

models as applied to this network will be given as well as a brief discussion of their

performance with respect to time and the objective (service). The last section will offer

concluding remarks with respect to performance of the model.

The choice to use Richardson, TX as a data set stems from the fact that Curtin and

Biba (2011) utilize this as the data example for the TRANSMax model application. The

network that we define is based upon the road network they provide which is centered on

the Spring Valley DART (Dallas Area Rapid Transit) rail station. Figure 5.2 shows this

network in detail; red representing the arcs allowed for possible routes and grey

169

representing the excluded surface streets. Owing to the fact that we do not have the data

used by Curtin and Biba, we made an approximation of service values in the following

manner.

The first step we took toward creating the Richardson, TX data set was to obtain

the underlying geographic information. This was done through obtaining network data

from the Open Street Map project. This data contains information such as road network,

highway, bike trail, waterway, river, etc. In order to reduce the size of these dataset we

removed all extraneous information that is unnecessary to the task of determining a

covering path with respect to transit systems. As such, we removed information such as

bike trails, walkways, interstates, off-ramps and on-ramps, rail-networks, etc. Once we

had the underlying road network, we needed to quantify a rough estimate for household

service. To accomplish this we crawled the Zillow.com website to obtain residential

parcel data. We obtained information about the size of each home, how many bedrooms

and bathrooms, as well as the estimated market price and parcel information. Given this

data we then determined the centroids for these parcels. After determining the centroids,

we determined the nearest surface street to the centroid as a proxy for the nearest

walkable street location. A similar method was proposed by Biba, Curtin, and Manca

(2010). The next step is to define the network for possible transit use. In this case we

selected those arcs that matched the network given in Curtin and Biba (2011). This

network is defined by Curtin and Biba to be composed of the major/minor arterial roads

which would allow a bus to adequately make turns and pull off to the side of the street in

order to make stops. Nodes were derived as a function of the intersections for each arc,

and also matched those given in Curtin and Biba.

170

Once we attached the centroids of each parcel to their nearest street segment and

defined our possible transit network, we calculated the distance from each attached

centroid to their nearest node using ESRI’s Network Analyst. This allowed us to

calculate node service as a function of network distance; if one defined the maximum

service distance provided by each node to be ¼ mile then you know exactly how many of

these parcels are provided service by each node in the transit network that is defined. It

should be noted that this differs from the approach taken by Curtin and Biba as they

assigned node service using a random number – we wished to derive a quantifiable

number based upon unique parcels. Arc service was calculated as a function of not only

the possible number of stops per segment but also the population that could potentially be

served along that segment. This is represented by (5.19) below:

2

jiij

ij

MM

S

d
A


 (5.19)

where S represents the desired spacing between stops, ijd represents the length of arc(i, j)

and
2

ji MM 
 represents the average of the service provided by node i and node j. In this

case we average the service provided by each node to stand as a proxy for the likely

service that would be provided along an arc for any stop that is likely to be sited. The

whole equation then represents the likely service that would be provided by an arc based

upon the siting of potential stops along the arc. It should be noted that this is an

expansion of the definition of service detailed by Curtin and Biba; they defined arc

service as the number of potential stops whereas we attempt to account for service that

would be a function of the number of potential stops as well as the likely number of

households that could be serviced by those stops.

171

The next portion of this section will detail the solutions to several cases of the

TRANSMax and TRANSMax II models as applied to the network we defined above.

Solutions to the original TRANSMax will be presented first followed by solutions to

TRANSMax II. These solutions can then be compared with respect to both sequence use

and service (the objective). Each formulation is compared to the other with the same

origin and terminus nodes and a stop service distance, S, of 1200 ft. Figures 5.3 through

5.12 show several solutions to the TRANSMax model applied to the Richardson, TX

network. Figures 5.13 through 5.25 show the solutions to the TRANSMax II formulation

as applied to the Richardson, TX network utilizing the same parameters. The solution

times, objective, and other associated parameters for the TRANSMax model are shown in

Table 5.1 while those for the TRANSMax II model are given in Table 5.2.

Table 5.1 – Parameters and Solution Values for the TRANSMax Model

Origin

Node

Terminus

Node

Max

Sequences

Sequences

Used

Path

(Miles)

Node

Service

Arc

Service

 Total

Service

Time

(Sec)

6 79 10 10 5.001 232 513.02 745.02 1.62

6 79 20 20 10.215 647 1507.87 2154.87 2.48

6 79 30 30 11.877 970 1763.03 2733.03 13.93

27 79 10 10 4.149 80 129.85 209.85 1.50

27 79 15 15 10.215 375 529.89 904.89 1.76

27 79 25 25 11.886 662 1575.25 2237.25 2.89

27 79 30 30 11.916 786 1517.56 2303.56 17.57

172

Origin

Node

Terminus

Node

Max

Sequences

Sequences

Used

Path

(Miles)

Node

Service

Arc

Service

 Total

Service

Time

(Sec)

70 79 10 10 5.202 323 768.69 1091.69 1.48

70 79 15 15 8.487 462 1166.61 1628.61 1.70

70 79 20 20 10.709 611 1478.11 2089.11 2.71

70 79 30 30 11.896 904 1771.42 2675.42 36.35

27 21 10 10 4.450 143 358.31 501.31 1.45

27 21 20 20 9.497 489 1095.30 1584.30 1.80

27 21 30 30 11.994 774 1411.29 2185.29 9.50

Computational experience between both models proved to be statistically similar

for most parameters. However, the TRANSMax II model did take significantly longer to

solve for a few

cases. The reason for this is the fact that, in terms of the formulation, the constraints are not as

Table 5.2 – Parameters and Solution Values for the TRANSMax II Model

Origin

Node

Terminus

Node

Max

Sequences

Sequences

Used

Path

(Miles)

Node

Service

Arc

Service

 Total

Service

Time

(Sec)

6 79 10 10 5.001 232 513.02 745.02 0.85

6 79 20 20 10.215 647 1507.87 2154.87 2.86

6 79 30 30 11.994 926 1808.47 2734.47 274.35

27 79 10 10 4.149 80 129.85 209.85 0.77

27 79 15 15 7.113 375 529.89 904.89 1.23

27 79 25 25 11.886 662 1575.25 2237.25 1.81

27 79 30 30 11.991 786 1543.20 2329.20 111.40

173

Origin

Node

Terminus

Node

Max

Sequences

Sequences

Used

Path

(Miles)

Node

Service

Arc

Service

 Total

Service

Time

(Sec)

70 79 10 10 5.202 323 768.69 1091.69 0.75

70 79 15 15 8.232 424 1217.76 1641.76 1.03

70 79 20 20 10.774 611 1608.82 2219.82 2.18

70 79 30 29 11.954 897 1810.64 2707.64 2544.58

27 21 10 9 4.517 143 358.85 501.85 0.81

27 21 20 20 9.497 489 1095.30 1584.30 1.30

27 21 30 29 11.887 760 1462.13 2222.13 81.00

tight. This is due to the fact that the TRANSMax II model allows for the formation of

loops/tours as well as the fact that it does not require that the maximum number of

sequences are actually used. It can be observed from results shown in Table 5.2 that as

the route approaches the maximum path length (12 miles) there is a tendency to include a

loop or tour in the optimal solution. The case where the number of sequences used is

less than the maximum number of sequences also highlights the fact that there may be an

area which has a higher potential service but is only possible to be visited by a certain

number of arcs, or the path distance limit makes the problem behave somewhat like a

knapsack problem (i.e. there is a limited space and one must find the optimal number of

items to include based upon their size, value, etc.). The results do show that the

TRANSMax II problem uses the flexibility we have built into the problem to achieve

solutions that are equal to or superior to those derived from the original TRANSMax

formulation. This is particularly important as this shows that a loop agnostic strategy is

imperative with respect to finding truly optimal solutions to covering path type problems,

and verifies the work of Niblett and Church (2016) which highlighted the use of loops as

an optimal covering strategy with respect to the Maximal Covering Shortest Path

problem.

174

5.4 Conclusions and Future Work

Up to this point, this chapter has presented several aspects and issues that have

arisen with the TRANSMax model formulation. We have seen that the TRANSMax

model formulation takes a unique approach with respect to traditional covering path

problem formulations based upon the MCSP. We have also defined the TRANSMax

model; we have shown how the formulation prevents the use of loops or tours, as well as

how the model requires the use of R sequences. A new model formulation was proposed,

TRANSMax II, which addresses this deficiency as well as relaxes the requirement that

exactly R sequences be used. This new model utilizes a generalized form of the Vajda

construct. This new formulation was then compared to solutions determined by the

original TRANSMax formulation. We also defined a new metric for arc service as well

as explained how our test network was derived and data acquired. This section presents a

brief recap of these findings as well as possible research directions for the TRANSMax

problem.

This chapter notes that traditional MCSP based problems are defined such that

coverage is defined to be within some service standard and maximized and overall path

length is minimized. These two competing objectives are often proportionally weighted

so that emphasis placed on coverage is proportional to emphasis placed on path length.

Typically these models only treat nodes as demands which must be covered while arcs

are merely used to define a possible network on which the path must be defined. The

TRANSMax model is unique in that not only is service defined as a function of both

nodes and arcs, the formulation is formulated using a Vajda (1961) based sub-tour

prevention framework. Unfortunately, this framework results in sub-optimal solutions as

175

it is possible a loop or tour could form part of an optimal solution. In order to overcome

this issue as well as allow for more robust solutions to be used the TRANSMax II model

was formulated.

The TRANSMax II model formulation not only permits the use of loops as a

covering strategy by being ‘loop agnostic,’ it also relaxes the requirement that R arcs be

used. Instead the formulation specifies a maximum number of arcs that can be used

while allowing the model to use less should a better solution exist. This was proven

through the utilization of the Richardson, TX based network. This network was defined

based upon the original network given in Curtin and Biba (2011). Information regarding

household parcels was obtained through Zillow.com and a novel method for attaching

these households to the transit network was adopted similar to what was described in

Biba et. al. (2010). After this dataset was created, we defined a new approach with

respect to calculating arc service based upon not only the number of potential stops but

also the likely service that each of these potential stops could provide. This allows for a

more realistic problem in that service is directly tied to a stop location and not merely the

number of stops; this then helps to avoid cases where a long country road may have the

same level of service provided by a road next to a park for example.

Following the discussion of how we defined our network and service data, we

presented results to both the original TRANSMax and the new TRANSMax II models.

Several origin and terminus nodes were used as well as a wide variation in maximum

sequence values. The results to these problems show that the TRANSMax II formulation

finds solutions which are equal to or better than those obtained for the original

TRANSMax model. The results also indicate that, in general, the TRANSMax II

176

formulation is just as efficient as the original TRANSMax with respect to solution times.

We also noted that cases in which the TRANSMax II formulation took longer to solve

often corresponded to cases in which the maximum path distance constraint was binding

or in cases where fewer than the maximum number of sequences could be used which

resulted in a superior solution. This verifies the work of Niblett and Church (2016)

which shows that loops will be used in many optimal solutions (when allowed) as well as

the fact that allowing flexibility in the formulation with respect to relaxing the

requirement that exactly R sequences be used can determine solutions with a significantly

higher level of service.

Future work with respect to the TRANSMax II formulation includes incorporating

a weighted distance objective into the formulation. Preliminary results for this kind of

formulation indicate that the TRANSMax II model can replicate results derived for the

MCSP. Other significant attributes that can be explored include defining an arc service

value for MCSP based models with respect to transit routing as this may offer further

insight into these kinds of problems. One motivating factor to approach the solutions to

MCSP based models lies in the fact that, while the TRANSMax II model solves

reasonably quickly in this example, applying it to larger networks results in a significant

increase in variables and constraints. Orman and Williams (2006) also indicate this

would be a fruitful approach, particularly as their work explored computational

experiences based upon differing TSP formulations, a problem that is related to both the

MCSP and TRANSMax.

Therefore, we have defined, formulated, and solved a new form for the

TRANSMax II problem and observed that loops appear in optimal solutions in certain

177

cases. The next chapter of this dissertation will focus on moving from a “loop agnostic”

strategy to a “loop encouraging” strategy as well as defining how one can determine

optimal covering paths in a bi-directional manner rather than assuming a MCSP can

simply be implemented in the reverse order.

Figure 5.1 - Route Map Highlighting the use of loops in Eau Claire, WI. Permission to use this image

has graciously been given by the City of Eau Claire.

178

Figure 5.2 - The Richardson, TX transit network (red) centered around the DART Spring Street

Station (Node 55); the grey lines are the surface streets that were not considered as part of the

possible transit network.

179

Figure 5.3 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, the

number of sequences set to 15, and a maximum path length of 12 miles

Figure 5.4 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, the

number of sequences set to 20, and a maximum path length of 12 miles

180

Figure 5.5 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, the

number of sequences set to 30, and a maximum path length of 12 miles

Figure 5.6 - Solution to the TRANSMax model with an origin at node 6, a destination at node 79, the

number of sequences set to 10, and a maximum path length of 12 miles

181

Figure 5.7 - Solution to the TRANSMax model with an origin at node 6, a destination at node 79, the

number of sequences set to 20, and a maximum path length of 12 miles

Figure 5.8 - Solution to the TRANSMax model with an origin at node 6, a destination at node 79, the

number of sequences set to 30, and a maximum path length of 12 miles

182

Figure 5.9 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79, the

number of sequences set to 10, and a maximum path length of 12 miles

Figure 5.10 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79,

the number of sequences set to 15, and a maximum path length of 12 miles

183

Figure 5.11 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79,

the number of sequences set to 25, and a maximum path length of 12 miles

Figure 5.12 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79,

the number of sequences set to 30, and a maximum path length of 12 miles

184

Figure 5.13 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79,

the number of sequences set to 15, and a maximum path length of 12 miles

Figure 5.14 - Solution to the TRANSMax II model with an origin at node 6, a destination at node 79,

the maximum number of sequences set to 10, and a maximum path length of 12 miles

185

Figure 5.15 - Solution to the TRANSMax II model with an origin at node 6, a destination at node 79,

the maximum number of sequences set to 20, and a maximum path length of 12 miles

Figure 5.16 - Solution to the TRANSMax II model with an origin at node 6, a destination at node 79,

the maximum number of sequences set to 30, and a maximum path length of 12 miles

186

Figure 5.17 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 21,

the maximum number of sequences set to 10, and a maximum path length of 12 miles

Figure 5.18 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 21,

the maximum number of sequences set to 20, and a maximum path length of 12 miles

187

Figure 5.19 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79,

the maximum number of sequences set to 10, and a maximum path length of 12 miles

Figure 5.20 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79,

the maximum number of sequences set to 15, and a maximum path length of 12 miles

188

Figure 5.21 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79,

the maximum number of sequences set to 25, and a maximum path length of 12 miles

Figure 5.22 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79,

the maximum number of sequences set to 30, and a maximum path length of 12 miles. Labels have

been omitted to highlight the use of loops

189

Figure 5.23 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79,

the maximum number of sequences set to 10, and a maximum path length of 12 miles

Figure 5.24 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79,

the maximum number of sequences set to 15, and a maximum path length of 12 miles

190

Figure 5.25 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79,

the maximum number of sequences set to 20, and a maximum path length of 12 miles

Figure 5.26 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79,

the maximum number of sequences set to 30, and a maximum path length of 12 miles

191

Chapter 6

6.1 Introduction

This chapter represents a major departure from the previous chapters of this

dissertation, particularly chapters 3, 4, and 5. Chapter 3 presented a new model, NR-

MCSP, for solving the maximal covering shortest path problem. This new model was

termed “loop agnostic.” That is, this model allowed loops to be used in path formation

whenever embedded loops help produce a better solution. That chapter also described

why the original streamlined maximum population shortest path (MPSP) model of

Current et al. (1985) could not be extended to a “loop agnostic” form, although the new

NR-MCSP model proposed in that chapter can be used for solving a loop agnostic form

of the MPSP problem. Chapter 4 presented a “substitution/swapping” based heuristic for

solving the new NR-MCSP model. This new heuristic borrows heavily upon past work

involving substitution/insertion heuristics that was initially begun by Lin (1965) for the

Travelling Salesman Problem. What is entirely new about this heuristic is that it is

capable of substituting route components which can represent the building blocks of

loops, even out and back loops, into a shortest path or route. Results from both Chapters

3 and 4 demonstrated that embedded loops can be present in both optimal and

heuristically derived local optimal solutions.

Chapter 5 was based upon taking a different tack in structuring and solving the

original MCSP. Recall that Curtin and Biba developed a new formulation of the MCSP

that was based upon the TSP model of Vajda (1961). Their new model was called

TRANSMax. By using the underlying form of Vajda, their new model prevents sub-tours

192

from appearing in a solution even when explicit sub-tour elimination constraints are not

used (as opposed to constraints based upon Dantzig, Fulkerson, & Johnson). Chapter 5

presented a new model form that represents an extension of TRANSMax which allows

loops to be formed within a solution as long as such loops are attached to the path. This

new structure demonstrates that there can be other alternate pathways in which the MCSP

model can be formulated for the general case (i.e. allow embedded loops) while utilizing

a Vajda inspired framework.

This chapter explores a new, more general form of the MCSP problem. The basic

assumption in applying the classic MCSP for transit and other route design problems is

that the path will be traveled in both directions when needed. That is, a bus, using a

MCSP path, will traverse all of the arcs along the path from the origin to the destination,

and then reverse its direction and travel those same arcs beginning at the destination and

heading towards the origin. Sometimes such a complete reversal is not possible due to the

use of one-way streets. But, when that occurs then the return pathway simply uses the

neighboring one-way streets heading in the appropriate direction, so that the return,

inbound trip veers no more than a block or so away from the outbound trip or path. This

also means that in the more flexible NR-MCSP problem, it is assumed that a loop in a

path will be traversed in both directions (once outbound and once inbound). This chapter

is based upon the assumption that the outbound and inbound path need not be entirely the

same. That is, although certain route segments of a covering path may be the same for

both the outbound and inbound path, some segments may be different. We can define this

new form of the Maximal Covering Shortest Path problem as follows:

193

Find an “outbound” path starting at the origin and ending at the

destination and an “inbound” path starting at the destination and

ending at the origin, that in combination maximizes coverage,

minimizes total distance traveled (in both directions) and where at

least some portion, , of the outbound and inbound routes use the

same street or arc segments.

This problem will be defined as the bi-directional maximal covering shortest path (BD-

MCSP) problem. This problem is somewhat related to the multi-path maximal covering

shortest path problem of Boffey and Narula (1998). In their model, they assume that such

multiple routes (or paths) start at the same origin and end at the same destination, and

each route or pathway is independent of the other, except that they may be constrained to

be in the same region or corridor stretching between the origin and destination. They

make no assumption about direction of travel, just as in Current et al (1984, 1985).

Presumably, each pathway will be traveled in both inbound and outbound directions

when they are applied. Total coverage equals the total sum of coverage provided by all of

the paths. The bi-directional MCSP problem is similar to that of Boffey and Narula in

that it involves determining two directed paths (one inbound and one outbound) but

differs in that the inbound and outbound paths are encouraged to coincide whenever

possible, whereas there was no such attempt in Boffey and Narula. The basic idea is that

service coverage may be extended by expanding one direction or other direction of travel,

without seriously increasing route distance. This appears to be a strategy used by many

small to medium sized cities in transit route design, a point that will be described in more

194

detail in the next section. We can also define a variant of the BD-MCSP problem as

follows:

Find an “outbound” path starting at the origin and ending at the

destination and an “inbound” path starting at the destination and

ending at the origin, that in combination maximizes coverage,

minimizes total distance traveled (in both directions) and where it is

encouraged that a portion of the outbound and inbound routes visit

the same nodes or intersections.

Whereas the first form ensures a certain portion of the street segments coincide for the

outbound and inbound paths, this second form attempts to encourage both outbound and

inbound paths to coincide at intersections, when possible.

The remainder of this chapter is organized as follows. The next section will

present several examples of transit system designs, which demonstrate that transit

planners use bi-directional paths to provide high levels of access coverage while at the

same time keeping path/route mileage as low as possible. Particular emphasis will be

placed on defining how current models are not capable of generating such route

alternatives and why the models proposed in this chapter represent a step forward in not

only transit route modeling problems but also the broader class of covering path

problems. The following section will define two mathematical formulations which

represent the two design problems defined above. This section will focus on explaining

the notation for the model as well as defining the objectives and constraints for these two

models. The fourth section will describe the optimal results obtained from these model

formulations, and discuss key findings. Particular emphasis will be placed on how these

195

models compare not only to other formulations but also how well these models meet the

stated research questions. The fifth and final section will offer concluding remarks and a

brief discussion for possible future work.

6.2 Background

As was seen in Chapter 2, many real world transit routes in small to medium sized

cities utilize a mix of route alignments, some of which involve embedded loops. The

routes/paths that involve a combination of straightway sections and loops often help to

extend coverage to nearby areas without the need to use additional transit routes. In some

cases this can be attributed to the overall design of the network; for example, it may be

that a downtown business district is composed of city blocks with alternating one way

streets comprising the grid pattern. In such a case a tour/loop might be a necessity. For

example, Figure 6.1 presents a map of transit route 2 used by San Luis Obispo Transit.

This particular route uses loops in several sections, however, it should be noted that the

two loops in the northern section of the route use several parallel street segments that are

separated by several blocks. Two of these streets that are used in this section of the route

(i.e. Marsh and Pismo streets) are one way, and the route travels up one street and down

the other. Thus, the network layout forces such loops (departures) to be used. However,

as several route maps that were presented in Chapter 1 demonstrated, tours may be used

in a wide variety of other circumstances and forms. For example, a ‘barbell’ shaped

route as depicted in Figure 6.2a, a ‘lollipop’ shaped route as depicted in Figure 6.2b, or

even a figure eight shaped route as depicted in Figure 6.2c may be used by transit

planners in providing transit access coverage.

196

There may even be combinations of the patterns shown in Figure 6.2 within the

same route. Figures 6.3 and 6.4 present system route maps for the Cities of Bozeman,

MT and Eau Claire, WI respectively. For the City of Bozeman, four of the five routes

involve one or more loops. Note that the “yellow” route contains a large loop at the

western end of the route (creating a lollipop shape), where the loop itself is traveled only

in the clockwise direction. The “red” route contains two loops and two common sections,

where each of the embedded loops is traversed in only one direction. The “blue” route

shows the use of a loop in the center of the route, where the two sections of the route are

separated by 5 blocks. This clearly represents a pattern that is broadened in order to cover

more of the neighborhood with access coverage. Note that the “orange” route is primarily

a single loop (with a smaller loop in the Northwest section). Note also that the main loop,

as well as the smaller loop, is traversed in only one direction. The system map for the

City of Eau Claire depicts a wide variety of route shapes. For example, routes 17 and 18

are lollipop shaped routes and route 3 involves the use of three loops (traveled in only

one direction), and several long sections traversed in both directions. Overall, one can see

that routes, themselves, are not simple out and back features, but are of a more complex

nature that provide greater levels of route coverage while saving some route mileage.

When a loop is traversed in only one direction of travel, it can help to extend route

coverage at the expense of increasing travel times. This represents a tradeoff that planners

are forced to make when housing densities and transit demand is low. The idea is that

area coverage can be increased by introducing loops with a lower marginal cost (distance

of operation) than using an additional new route. This certainly increases travel times for

riders, but at the same time keeps transit route mileage as low as possible. For example,

197

consider the two simplistic route designs depicted in Figure 6.5; Route A is a simple

route, going up and down a street 5 blocks long, whereas route B is a loop route that

travels up that same street and then traverses over 3 blocks and travels down that street,

eventually traversing back to the original street. Whereas Route A serves 0.6 unique

intersections for each block traveled, Route B serves 1 unique intersection for each block

traveled, making route B more efficient in terms of spatial coverage per unit mile

traveled. Without doubt, customers travel less to move between their respective origins

and destinations along Route A as compared to what customers must travel between their

respective origins and destinations along Route B. Thus, route coverage is increased at

the expense of increasing service times. However, for most areas, it is better to have some

level of coverage even when service times are increased as overall access is increased.

As we have seen, models such as Current et. al. (1984, 1985) or a TSP structure

such as Vajda (Vajda, 1961; Curtin and Biba, 2011) explicitly prevent loops/tours from

being part of a solution unless the entire route is one large TSP loop. This of course

stems from the idea that an optimal route will never contain a loop or tour. This

assumption holds for a problem such as the simple shortest path problem, but for

maximal covering-shortest path problems it does not hold as a general assumption, as

demonstrated in chapters 3, 4, and 5 of this dissertation. However, all past work on the

maximal covering shortest path problem has been based upon models that represent a

route which is determined based upon one direction. The results of these models are then

assumed to be reversible; that is, vehicles will retrace their routes or paths in the opposite

direction. For example a route with a loop is depicted in the right panel of Figure 6.6,

where each segment is traversed in both directions. The left panel of Figure 6.6 depicts

198

the same alignment with the exception that the route travels the loop in only one

direction. Whereas the solution depicted in the right panel of Figure 6.6 can be generated

by the models in chapter 3, the solution depicted in the left panel of Figure 6.6 falls

outside the scope of existing models.

In the typical planning scenario, routes are often drawn by hand and subsequently

tweaked slightly in order to conform to surface street conditions. This is exactly what is

done through the Trapeze (www.trapezegroup.com) and remix (formerly TransitMix –

www.getremix.com) software packages. Thus, a key goal of this dissertation is to

propose and develop a new fundamental model for route planning which accounts for

travel in both directions. Further, previous formulations have restricted a loop from

forming outright. Chapters 3 and 5 presented models which are ‘loop agnostic’ in the

sense that the model allows a loop to be used, where travel is assumed to take place in

both directions. Loops in the previous chapters can be considered to be bi-directional

loops; they are bi-directional in the sense that the vehicle traveling the route or pathway

traverses all arcs in both directions, including the arcs which form loops. What is

assumed here is that a loop, if used, may or may not be traversed in both directions. This

chapter will present two models that delineate routes (or pathways) with respect to both

directions of travel; that is, inbound and outbound with respect to traveling from or to the

origin. The two models presented here are designed to find routes that can involve uni-

directional loops, that is, loops which travel in only one direction which are found in real

world examples.

Intuitively, it is quite likely that if one solves for a bi-directional path that the

inbound and outbound paths will share little, if any, street segments in common. Thus,

199

two almost independent paths will be generated, except for the notion of maximizing

combined coverage. That is, little will be gained in sharing any street segments between

the outbound and the inbound direction. Boffey and Narula (1998) seem to have been

aware of this fact as they defined their problem in such a way that 2 (or more) paths are

determined for the same origin and destination nodes. This in effect is an attempt to

model several routes as part of a whole system wherein each route is then assumed to

provide complementary coverage to the other routes. The research here differs from that

of Boffey and Narula in that paths should not necessarily be independent, but share some

of the route, so that travel times can be lower than what might occur in one large loop or

two completely independent directional paths. Two forms of this problem were presented

in the introduction: a form that requires a certain proportion of route segments to be

shared by both travel directions (inbound and outbound) and a form that encourages a

certain number of intersections to be shared between the two route directions. The next

section will present model formulations for the two versions of this problem.

6.3 Notation and Formulation of the Bi-Directional Covering Path Problem

This section will present the notation and two formulations for the Bi-Directional

Maximal Covering Shortest Path Problem. The notation given below will be used for

both variations of the BD-MCSP problem. Each formulation is designed such that it is

possible to traverse all or only parts of the route in both directions. Any departure in path

alignment between the outbound path and the inbound path represents the use of a uni-

directional loop. The notation for these models is as follows:

ji, = the index of nodes

200

r = the index for path direction, where r=1 refers to the outbound path from origin to

destination and r=2 refers to the inbound path from the destination to the origin.

ka population or measure of demand at k

 the importance weight associated with the coverage objective

  1 the importance weight associated with the distance objective

 ijd the shortest distance/time from node i to node j

 r

ijx 1 if the arc from i to j is traversed from i to j for path direction r

ky 1 if node k is covered and zero if it is not

 node p the origin (destination) node for the outbound (inbound) bi-directional shortest

covering path

 node q the destination (origin) node for the outbound (inbound) bi-directional shortest

covering path

} exists),arc({ jii|N j  , the set of nodes i which are connected to j

S* the desired maximum allowable access distance

} { S*j|dS jkk  , the set of nodes j which are within the maximum access distance to

node k

iF the set of nodes, k, that are connected to i by an arc and can be directly traversed

from i to k.

jT the set of nodes, k, that are connected to j by an arc and can be directly traversed

from j to k.

ij variable to define arc-sharing by both directions; 1, if the outbound path (1)

traverses arc(i,j) from i to j and the inbound path (2) traverses arc (i,j) from j to i;

0, otherwise

 ji variable to define arc-sharing by both directions; 1, if the outbound path 1

traverses arc(i,j) from j to i and the inbound path 2 traverses arc (i,j) from i to j;

0, otherwise

The first formulation of the BD-MCSP is one that specifies that there must be at least 

shared arcs that are to be shared among both the forward (outbound) and reverse

(inbound) directional paths. This will ensure that the two pathways (inbound and

outbound directions) are not completely independent and traverse completely different

201

arcs and alignments. For example, if an intermediate arc were specified to be used by

both directed paths, the model would allow the possibility of a barbell shaped route if

such a route was better than other shapes or that the same alignment in both directions for

that street segment was better than not. This form of the BDCP problem will be called

the Minimum-Shared Arcs Bi-Directional Maximal Covering Path Problem (MSA-BD-

MCSP) and is formulated as follows:





i Fj

ijijij

i

ii

i

xxdya)(Maximize 21 (6.1)

1path on nodeorigin for 1

ToSubject

11 pxx
pp Ti

ip

Fj

pj 


 (6.2)

2path on nodeorigin for 122 qxx
qq Ti

iq

Fj

qj 


 (6.3)

1path on noden destinatiofor 111 qxx
qq Fj

qj

Ti

iq 


 (6.4)

2path on noden destinatiofor 122 pxx
pp Fj

pj

Ti

ip 


 (6.5)

qkpkNkrxx
kk Fj

r

kj

Ti

r

ik  


 and where, 2&1for , 0 (6.6)

Ai,jxijij  each for ,x amd 1

jiji

1 (6.7)

Ai,jx jiij  each for , x and 2

ijji

2
 (6.8)

Ai,jjiij  each for , 1 (6.9)


i j

ij (6.10)

  qpkkyxx
j kNi sj

kijij ,, , 021 
 

 (6.11)

2when , nodes ofsubset ,2&1for , 1   
  




VVrVxx
Vi VFj Vi

Vk
Tk

r

ki

r

ij

i i

 (6.12)

2when , nodes ofsubset ,2&1for , 1   
  




VVrVxx
Vi VFj Vi

Vk
Fk

r

ik

r

ij

i i

 (6.13)

202

)(,2&1for ,)1,0(i,jrxr

ij  (6.14)

kyk ,)1,0( (6.15)

The objective of the model (6.1) is similar to that of the MCSP; an importance weight,

 , is placed on the covering objective and an importance weight,  1 , is placed on

the distance objective. In this case, coverage is defined such that population is

maximized while the total combined length of the outbound and inbound paths is

minimized. The constraints for the problem are somewhat similar to the NR-MCSP,

albeit with appropriate conditions imposed on each path direction. In order to account for

the bi-directional nature of the problem, we specify that path (1) corresponds to traveling

from an origin node p to destination node q (outbound) and the second path, path (2) –

the inbound path – corresponds to travel from node p back to the origin node q. Thus,

constraint (6.2) ensures that one more arc must be used to depart the origin node p than is

used to enter it with respect to path 1. In a similar vein, constraint (6.3) requires that one

more arc must be used to leave node q than is used to enter it with respect to the inbound

path 2. Constraints (6.4) and (6.5) are a similar type of constraint but in this case require

that one more arc must be used to enter the destination node than what may be used to

leave the destination, for each respective path (outbound and inbound). Constraints of

type (6.6) are “flow” balance constraints for each path direction. They specify that, for

each path direction, if a node that is not the origin or destination is entered one or more

times by arcs on a directional path, there must be a an equal number of departures from

that node for that direction. Constraints (6.7) and (6.8) are introduced here to define

each case in which an arc is used in both directions. Because the objective is to

maximize coverage while minimizing path length it is highly likely that each path would

203

take a route that is completely independent of the other path. Essentially, this means that

it is likely a solution to the problem would simply be a large covering tour. However,

since we know that real world routes often utilize some of the same street segments in

both directions, it is necessary to ensure that each path comes together and shares a

number of common arcs which are traversed in the forward direction by one path and the

reverse direction by the other. To establish that there is a minimum number of shared

arcs, we introduce a decision variable, ij . This decision variable is used to represent

whether an arc is shared by both path directions; if both paths utilize the same arc),(ji ,

but in opposite directions, then this variable (ij) can have a value of one. If only one or

neither path use this arc then the variable will be forced to a value of zero. Constraints

(6.7) account for travel on the ‘forward’ portion of the bi-directional path. If the arc is

traversed from node i to node j on path 1 (the ‘forward’ path) then ij is allowed to have

a value of one. If it is traversed in the opposite direction for path 1, then ji is allowed

to be one in value. Constraint (6.8) ensures that if the arc is traveled in the ‘reverse’

direction as part of path two from node j to node i then ij is allowed to have a value

equal to one and ji is allowed to be one in value if the reverse direction travels from i to

j. This ensures that ij (and conversely ji) can only have a value of 1 if the arc is

utilized as a part of both paths in the opposite directions. If either path uses an arc which

is not utilized in the opposite direction by the other path, then the respective constraints

will force ij and ji to have values of 0. Constraints (6.9) are necessary to prevent a

case where a shared arc is counted twice. For example, if there is an arc that connects

node i to node j there will be two variables representing the directional travel for each

204

path (outbound and inbound). That is, we will have the variables 1

ijx , 1

jix , 2

ijx , and 2

jix

which represent travel from node i to node j and from node j to node i for the outbound

and inbound paths, respectively. However, because ij and ji exists for each

complementary inbound and outbound path arc pair variables (i.e. 1

ijx and
2

jix) it is

possible that a single arc segment could be counted twice if
1

jix and 2

ijx are also utilized as

ij and ji would both be equal to 1. This of course violates the fact that we wish to

count shared arc use only once for a given arc; constraints (6.9) prevent such double

counting by ensuring that only one pair of inbound and outbound arc traverses can be

counted toward the minimum number of shared arcs,  , as only one pair of directions is

allowed to be used in calculating shared directional use. Constraint (6.10) requires that

there must be at least  arcs that are common to the forward and reverse paths as this

defines the minimal amount of arc sharing between the two directions. Since each pair of

ij and ji variables can have in common at most a value of 1 if based upon constraints

(6.9), we can ensure that there will be at least  arcs used in common between the

inbound and outbound directions with constraints (6.10). By ensuring that the number of

arcs that are used in the opposite directions is equal to or greater than  , we allow for

the possibility that more than this number of shared arcs could be part of a solution.

Constraints of type (6.11) define whether coverage has been provided by either path

direction. This constraint ties the coverage variables iy to the arc traversing variables

r

ijx . In this case, the constraint specifies that node k can be considered covered if an arc

on either path direction visits a node j which is within the maximum access distance of

205

node k. If this requirement is fulfilled, then iy is allowed to be 1 and node k is

considered to be covered.

Constraints (6.12) and (6.13) represent the EAST constraints for the problem. As

we have seen, sub-tours could be present in a covering-path solution, and because of this

should be allowed to occur only if they are connected to the covering path. These EAST

constraints are iteratively added to the problem as described in Chapter 3 of this

dissertation; if a sub-tour is identified in a solution then the appropriate EAST constraints

are added and the problem is re-solved. In this case, we will need to identify whether

sub-tours occur with respect to each path direction and add the corresponding EAST

constraint to prevent its use unless it is attached to the path. Constraint (6.12) requires

that in order for the loop/tour to exist for a specific path direction, it must be entered by

an arc which is not part of the sub-tour. Similarly, constraint (6.13) requires that in order

for the loop/tour to exist in a specific path direction, it must be left by an arc for that same

path direction which is not part of the sub-tour. Taken together, these constraints will

either eliminate or attach specific sub-tours within a solution. Finally, constraints (6.14)

and (6.15) represent the binary restrictions on the path and coverage decision variables,

respectively.

This formulation for the Minimum Shared Arcs Bi-Directional Maximal Covering

Shortest Path problem is able to capture elements that define real world transit routes. In

particular, it addresses the issue of defining a route in both directions as this allows for a

realistic accounting of coverage and travel. By requiring a minimum number of arcs to

be shared between both routes, one can explore solutions which vary in route similarity

between the outbound and inbound directions. In particular, this formulation allows for

206

the use of uni-directed loops as observed in Figures 6.3 and 6.4 for the cities of Bozeman,

MT and Eau Claire, WI. An example of an optimal uni-directed loop formed by both an

inbound and outbound path for the Swain network is given in Figure 6.7.

The formulation above is not without its drawbacks. Although the problem at a

basic level is a combined form of two MCSP problems, the addition of the constraint

requiring at least  arcs be shared among both path directions introduces a knapsack or

budget constrained sub-problem. Budget and Knapsack constraints involving integer

variables are often computationally intensive constructs when solving ILP problems to

optimality. Unfortunately, although the MSA-BD-MCSP problem is conceptually

simple, it is very difficult to solve to optimality for reasonable sized problems; this is due

in no small part to the fact that it can be classified as NP-Hard. Due to this fact, it is

likely that this and other model forms of the MSA-BD-MCSP will require significant

amounts of computer time to solve to optimality.

To address this possibility, an alternate formulation is proposed which utilizes an

additional objective term that contains an emphasis weight which is used to encourage an

inbound (or outbound) route to visit a node previously visited by the outbound (or

inbound) route, rather than requiring them to coincide with at least a minimum number of

arcs. This objective term can be specified as:




n

i

iita
1

 (6.16)

where  is the importance weight placed on the benefit to return to a node visited by the

opposite directed path, ia represents the population at node i and it is the binary decision

variable representing whether the return coverage benefit at node i is provided or not

207

provided. This weighted term is used to capture the benefit of serving and visiting a node

in both directions. In this case we define this benefit to be some portion of coverage;

thus, the emphasis weight can represent the percentage of additional coverage to be added

when a node is visited by both directed paths. It should be noted that it is possible to link

the return coverage benefit weight to the emphasis weights placed on overall path length

and path coverage through the term 1  . This allows the weights to be

proportional to one another and allows for one to define emphasis placed on each

objective term as a percentage. However, we do not require this as we prefer to define

the benefit of returning to a node in terms of how much additional coverage can be

provided. Using this construct we can define an alternative formulation for the Bi-

Directional Covering Path problem which is given below and is called the Weighted

Return Bi-Directional Maximal Covering Shortest Path Problem (WR-BD-MCSP). This

new model represents a form of the second type of bi-directional path problem defined in

the introduction:

 
 i

ii

i Fj

ijijij

i

ii taxxdya
i

)(Maximize 21
 (6.17)

1path on nodeorigin for 1

ToSubject

11 pxx
pp Ti

ip

Fj

pj 


 (6.18)

2path on nodeorigin for 122 qxx
qq Ti

iq

Fj

qj 


 (6.19)

1path on noden destinatiofor 111 qxx
qq Fj

qj

Ti

iq 


 (6.20)

2path on noden destinatiofor 122 pxx
pp Fj

pj

Ti

ip 


 (6.21)

qkpkNkrxx
kk Fj

r

kj

Ti

r

ik  


 and where,2&1for , 0 (6.22)

208

  qpkkyxx
j kNi sj

kijij ,, , 021 
 

 (6.23)

qpiiyt ii ,, ,  (6.24)

qpiixt
iTj

jii ,,1 


 (6.25)

qpiixt
iTj

jii ,,2 


 (6.26)

2when , nodes ofsubset ,2&1for , 1   
  




VVrVxx
Vi VFj Vi

Vk
Tk

r

ki

r

ij

i i

 (6.27)

2when , nodes ofsubset ,2&1for , 1   
  




VVrVxx
Vi VFj Vi

Vk
Fk

r

ik

r

ij

i i

 (6.28)

)(2, & 1reach for ,)1,0(i,jxr

ij  (6.29)

kyk ,)1,0( (6.30)

The objective (6.17) maximizes coverage and minimizes distance for both directions of

the covering path, just as objective (6.1). The new objective term given in (6.16) is added

to the objective (6.17) in order to allow for an additional weighted coverage benefit for

returning to a node that has been visited by the opposite direction. Constraints (6.18) and

(6.19) are unchanged and specify that the origin node for each path direction must be

exited one more time than it is entered. Similarly, constraints (6.20) and (6.21) require

that the destination node for each path direction must be entered one more time than it is

departed. Taken together these constraints allow loops to be formed at the origin and

destination nodes in either direction. Constraints of type (6.22) are flow balance

constraints for each path and are also unchanged from the previous formulation. They

require that an intermediate node, that is a node which is not the origin or destination,

must be departed every time that node is entered for a given path direction (inbound or

outbound). Constraints of type (6.23) are the constraints that define coverage: if a node is

209

visited or within the maximum access distance of a node that is part of the covering path

(in either direction) then it can be considered covered. However, we also require a new

constraint of type (6.24); constraints of type (6.24) ensure that an additional coverage

benefit can be counted only if a node has been visited by both directed paths. If iy is zero

then it must also be zero as it must be less than or equal to iy . Since iy represents path

coverage of node i , a node must be covered a first time in order for any additional

benefit, it , can be counted. Technically, this is a redundant constraint, when considering

constraints (6.25) and (6.26). Constraints of type (6.25) and (6.26) are what link a benefit

to being visited by the path in both directions. In this case, in order to provide an

incentive to return to a node based upon the opposite direction, it is allowed to be

positive only when a node is directly visited by both directional paths. Constraint (6.25)

ensures that, for each node i, it must be less than or equal to the sum of the arcs which

enter node i as part of the ‘forward’ or outbound covering path (i.e. path 1). If one or

more arcs are utilized as part of the forward covering path then it will be allowed to one

as it is limited by constraint (6.25). Constraint (6.26) works in a similar manner but in

this case it can only be positive if node i is directly visited by the ‘reverse’ or inbound

covering path (i.e. path 2). Taken together constraints (6.25) and (6.26) ensure that it will

only provide a weighted return benefit if node i is visited by both the ‘forward’ and

‘reverse’ covering paths. Thus, the model is allowed to be ‘loop agnostic’ with respect to

loops which form as part of each bi-directional covering path while also establishing an

incentive to encourage each path to ‘interact’ with one another by visiting nodes in

common. Such constraints aid in the fact that planners wish to have routes which utilize

210

a similar common corridor between each path, but allow for some divergence to cover a

wider region which is necessary to provide wider spatial coverage.

Constraints of type (6.27) and (6.28) represent the necessary EAST constraints.

As before, these are added when needed. Taken together they specify that a sub-tour of a

given path direction must have an arc which enters the sub-tour and an arc which leaves

the sub-tour but is not part of the sub-tour itself in order for the tour to exist. When

solving the model it is efficient to include the ‘simple’ form of the EAST constraints in

order to prevent simple out-and-back (OAB) sub-tours from occurring as such constraints

aid in reducing the number of times the iterative sub-tour identification and constraint

adding process must be repeated. Constraints (6.29) and (6.30) are the binary restrictions

imposed for the decision variables for path variables and coverage variables respectively.

Note, it is not necessary to maintain special restrictions of the
it variables as they will

naturally be either zero or one in value due to the restrictions of the
iy variables and the

nature of the constraints (6.25) and (6.26)

These two formulations specified above are designed to find complementary

paths, outbound and inbound, that together cover as much as possible while at the same

time are efficient in terms of path distances and share either links or visit nodes in

common when possible. To address the fact that the classic MCSP models are based upon

the assumption that the path can be traveled in both the forward and reverse directions

relative to the path alignment, any conflicts based upon network topology must then be

modified after the fact in an ad hoc fashion. Both of the model formulations proposed in

this chapter do not require such ad hoc adjustments as they can be applied to any

211

typology, including a mix of one-way streets and two-way streets. The BD-MCSP

formulations are ‘loop agnostic’ like the formulations of the NR-MCSP. However, they

allow both bi-directed paths and uni-directed paths to be present in a solution. The first

formulation (MSA-BD-MCSP) ensures that a certain number of arcs have to be shared by

both the outbound and inbound parts of the path, while the other formulation (WR-BD-

MCSP) involved finding complementary path directions (outbound and inbound) which

optimized path coverage, minimized path distance, and provided added benefits to

visiting nodes in common for the two directions or travel. Both formulations then allow

for uni-directional oriented loops (e.g. a loop that travels in either a clockwise or

counterclockwise rotation, but not both) to occur which is not possible in the NR-MCSP

formulation of the problem developed in Chapter 3. The next section will highlight

results for solving both of these models, and discuss nuances that occur for each

formulation.

6.4 Network, Computational Environment, and Results

Both formulations above are new, and represent model forms that allow for both

uni-directional loops and bi-directional loops. The task at hand is to provide a

demonstration of these model constructs, not to develop an efficient, tailored solution

process. We applied the models on the 55 node Swain based network dataset that was

utilized in the previous chapters of this dissertation. The network is defined to allow

travel in both directions along each arc; there are 104 arcs in the dataset which yields a

total of 208 directed arcs, and 416 directed path variables.

All problems were formulated and using the Xpress-IVE modeling environment

(a product of the FICO Corporation) on a Windows 7 Professional workstation and

212

solved using the Xpress solver on a Linux based server. The server utilized the Ubuntu

14.04 LTS operating system and the Xpress 64-bit solver v3.8.0. The computer hardware

was comprised of two physical Intel Xeon X5560 processors providing a total of 8 logical

and 8 virtual cores. This server utilized 48GB of DDR3 memory running at 1066 MHz.

The server also utilized five 36GB serial attached storage (SAS) drives in a RAID 5 array

which provides 136GB of data storage. All solution information was directed to a file

that was uploaded to a dropbox folder that was synced to the Windows 7 Pro workstation.

This final step allowed all bi-directional paths to be displayed as a map using a program

developed in Microsoft’s Visual Studio 2010 VisualBasic.Net programming

environment.

The first solution set involves results with respect to solving the MSA-BD-MCSP.

The MSA-BD-MCSP was solved for a series of coverage and distance weights as well as

 , the minimum number of required shared arcs (i.e. arcs shared in both the outbound

and inbound path directions). A more exhaustive set of solutions such as provided in

Chapter 3 and given in Appendix A is not included here as determining optimal solutions

to certain cases of the MSA-BD-MCSP proved to be so computationally complex that

determining a confirmed optimal solution to some problems was not feasible – in one

case a single problem instance took more than 2 weeks to solve before the decision was

made to terminate it. Solutions for selected MSA-BD-MCSP problems are given below

in Table 6.1. To generate this set of results, cover weights were incremented by units of

0.1 with weights ranging from 0.1 to .90 for coverage and path emphasis.

213

Table 6.1 - Solution Results for the MSA-BD-MCSP with p = 27 and q = 21

Cover

Weight

Distance

Weight

 Omega

Value

Service

Distance

Total

Covered

Total

Length

Objective

Value
18

Time

(Sec)

0.01 0.99 9 10 537 103.84 103.832 0.09

0.10 0.90 9 10 537 103.84 103.756 0.19

0.20 0.80 9 10 552 106.40 102.720 2.29

0.30 0.70 9 10 563 110.73 100.611 5.52

0.40 0.60 9 10 592 124.51 93.906 65.22

0.50 0.50 9 10 620 144.33 82.165 133.01

0.60 0.40 9 10 620 144.33 69.732 823.64

0.70 0.30 9 10 633 166.06 54.718 1503.99

0.80 0.20 9 10 638 184.89 38.578 29389.50

0.90 0.10 9 10 640 196.55 19.655 6478.77

0.99 0.01 9 10 640 196.55 1.966 5728.44

In order to exclude potentially inferior solutions (i.e. multiplying an objective by zero)

weights of zero and one were approximated through the use of 0.01 and 0.99

respectively. This results in a total of 11 problems detailed in Table 6.1. The results

here were generated for a maximum access distance of 10. Total path length is reported

which represents the combined distances of the inbound and outbound directions. The

combined coverage for the inbound and outbound portions of the path is also given for

each problem. If the distance required to travel through the network for each node j was

less than the maximum access distance, then that node is considered to be in the coverage

set of node j . All calculations utilized an  shared arc value of 9. The table also gives

the composite objective value and computational time for each problem. It should be

noted that in this case the objective is given as a combination of weighted terms of

minimizing what is not covered and minimizing total bi-directional path distance.

Shaded rows denote solutions that involve loops, such as a uni-directional loop and/or bi-

directional loop.

18

 Note that the objective minimizes total bi-directional path distance and what is not covered.

214

Figure 6.8 is an example of the optimal solution given in the table above that

utilizes an  minimum shared arc value of 9, a maximum service distance of 10, and

coverage and distance weights that are equal to 0.7 and 0.3 respectively. The outbound

portion of this solution from node p to node q, in this case from node 27 to 21, utilizes an

out-and-back loop from node 43 to node 55 and then back to node 43. This out and back

loop is a portion of a unidirectional section from node 16 to node 43 and from 43 to node

42. Note that the return direction from node 21 to node 27 includes a different return

route from node 42 to node 16, thereby forming a larger uni-directional loop. Thus,

several loop structures occurred in this specific bi-directional solution. This also

demonstrates that an out and back loop can be attached to a uni-directional section. Note

that the formulation requires that each directional path share at least  segments. Since

the loop from node 43 to node 55 and back to node 43 is formed as a section of only one

of the directed paths, it is not counted as a shared arc in both path directions. Its existence

in the solution demonstrates that the “loop agnostic” nature can be an advantageous

element in the bi-directional problem as well.

Figure 6.9 presents an interesting case that highlights the use of a single uni-

directional loop as an optimal solution strategy, particularly when higher importance is

given to combined shorter path distance. This solution was generated using an 

minimum shared arc value of 9, a maximum service distance of 10, and coverage and

distance weights that are equal to 0.3 and 0.7 respectively. The objective value, solution

time, and path length are listed in Table 6.1 for this solution. What is unique in the

solution, however, is that a single uni-directional loop is formed utilizing the outbound

path to form one half of the loop and the in-bound path to form the other portion. In this

215

case, the outbound path traverses from node 3 to node 8 to node 2 and the inbound path

traverses from node 2 to node 7 to node 3. This results in the formation of a clockwise

uni-directional loop. It should be noted that an alternate optimal solution could be the

formation of a counterclockwise loop if the inbound and outbound path segments were

reversed in terms of direction. That is, an alternate optimal solution could comprise an

outbound path traversing from node 3 to node 7, and from node 7 to node 2 and an

inbound path that traverses from node 2 to node 8, and from node 8 to node 3. The key

point is that an optimal solution to this problem utilizes a uni-directional loop, which is

one of the key contributions of this dissertation.

As was mentioned above, we were unable to generate an extensive set of optimal

solutions due to the computational complexity of the MSA-BD-MCSP model. One of the

solutions that was generated and not listed in Table 6.1 involved a maximum service

distance of 7.5, an  value of 11, a distance weight of 0.15 and a coverage weight of

0.85. The reason for showing this solution is that it contains several looped structures

that were discussed at the beginning of this chapter and which can be found on real world

transit systems. In particular, there is a uni-directional loop formed by each half of the

MSA-BD-MCSP path. In this case, the loop is formed from node p (equal to node 27)

through the graph to node 1 on the outbound path and from node 1 through the graph

back to node p on the inbound path. This particular version of the uni-directional loop

travels in a clockwise direction, although as noted above the respective outbound and

inbound path segments could be swapped in direction to form an alternate optimal

solution that utilizes a counterclockwise uni-directional loop. This solution also utilizes

a bi-directional loop comprised of nodes 1, 5, 11, and 13. In this case, the loop is

216

traversed in one direction by the inbound and in the other direction by the outbound

paths, which results in a bi-directional loop. It is important to note that a common path

also exists between nodes 1 and 21. Thus, Figure 6.10 illustrates nicely the fact that

loops can be used as an optimal covering strategy in several different ways which

matches what we find in cities in the real world such as Bozeman, MT; Eau Claire, WI;

San Luis Obispo, CA; etc. What is important to note is that loops can clearly be an

optimal feature, and these features mimic route design that is found in real world city

networks.

As was noted in the discussion of computational issues above, the MSA-BD-

MCSP formulation is a computationally hard problem that is made more complex

through the use of the knapsack like requirement that at least a certain number of arcs

must be shared. Although we were able to solve this formulation to optimality for certain

parameters with respect to the coverage weight, distance weight, and  value, some

solutions took a great deal of time and as one increased the value of  from moderate

values, the problem became essentially unsolvable within a realistic amount of time. As

such, we developed the second formulation for the problem, the weighted return bi-

directional maximal covering shortest path (WR-BD-MCSP). Since this formulation

does not utilize knapsack like constraints, but instead utilizes an objective weight that

allows for an additional coverage benefit to encourage a node to be visited a second time,

the computational complexity is not as onerous as the MSA-BD-MCSP formulation.

Table 6.2 presents solutions to the WR-BD-MCSP for the following parameters. We

defined the weighted return objective weight  in (6.15) to be equal to 0.1, 0.25, and 0.5

as these values seem to intuitively reflect the fact that if a node is visited by the opposite

217

direction as well, then service to that node is more direct and travel times to and from

that node is improved. That is, when a node is visited by both directions, service to that

node is better than if it is only visited with either the outbound or inbound directed path.

We also set these values to be on the conservative side; that is, the return benefit

importance weight is never more than half of what it would be for the first visit.

Although we calculated solutions for three different return importance weight values, one

would want to solve the problem for a range of return weights based upon known patterns

of transit usage and demand as this may generate results that better match regional

preferences. Since our network is a ‘proof-of-concept’ design, the use of a conservative

value seems to be a reasonable approach, given that we wish to show that we can

replicate real world routing patterns while solving the mathematical model to optimality.

Table 6.2 below shows results for a set of solutions to the WR-BD-MCSP problem

formulation.

Table 6.2 - Solution Results for the WR-BD-MCSP with p = 27 and q = 21

Cover

Weight

Distance

Weight

Return

Weight

Service

Distance

WR

Benefit
19

Total

Covered

Total

Length

Objective

Value
20

Time

(Sec)

0.01 0.99 0.10 10 24.50 545 108.00 -76.970 0.12

0.10 0.90 0.10 10 24.50 545 108.00 -18.200 0.57

0.20 0.80 0.10 10 24.50 545 108.00 47.100 2.19

0.30 0.70 0.10 10 32.60 592 135.39 115.427 5.87

0.40 0.60 0.10 10 32.60 592 135.39 188.166 28.60

0.50 0.50 0.10 10 30.50 620 153.27 263.865 195.13

0.60 0.40 0.10 10 39.10 622 174.21 342.616 6430.26

0.70 0.30 0.10 10 40.00 635 197.39 425.283 1550.06

0.80 0.20 0.10 10 41.10 635 202.30 508.640 31755.90

0.90 0.10 0.10 10 47.60 640 269.18 596.682 13910.40

0.99 0.01 0.10 10 64.00 640 632.14 691.279 27.17

0.01 0.99 0.25 10 93.00 553 130.14 -30.309 6.93

0.10 0.90 0.25 10 100.50 555 137.88 31.908 8.13

19

 This is the benefit provided based upon a node being visited by both the inbound and outbound paths
20

 Note that the objective minimizes total bi-directional path distance and maximizes what is covered

as well as the weighted return.

218

Cover

Weight

Distance

Weight

Return

Weight

Service

Distance

WR

Benefit
19

Total

Covered

Total

Length

Objective

Value
20

Time

(Sec)

0.20 0.80 0.25 10 100.50 555 137.88 101.196 15.50

0.30 0.70 0.25 10 100.50 555 137.88 170.484 1168.41

0.40 0.60 0.25 10 112.25 606 178.89 247.316 71.04

0.50 0.50 0.25 10 112.25 622 194.28 326.110 130.53

0.60 0.40 0.25 10 114.75 622 200.53 407.738 511.87

0.70 0.30 0.25 10 117.00 635 235.47 490.859 11934.10

0.80 0.20 0.25 10 123.50 635 259.88 579.524 49.70

0.90 0.10 0.25 10 151.75 640 485.05 679.245 57.12

0.99 0.01 0.25 10 137.50 640 802.32 763.077 383.83

0.01 0.99 0.50 10 201.00 555 137.88 70.049 10.08

0.10 0.90 0.50 10 201.00 555 137.88 132.408 21.31

0.20 0.80 0.50 10 224.50 594 172.64 205.188 19.88

0.30 0.70 0.50 10 224.50 594 172.64 281.852 20.07

0.40 0.60 0.50 10 229.50 606 185.14 360.816 28.55

0.50 0.50 0.50 10 238.00 622 215.92 441.040 480.42

0.60 0.40 0.50 10 247.00 625 238.80 526.480 101.71

0.70 0.30 0.50 10 265.00 629 296.29 616.413 1213.16

0.80 0.20 0.50 10 302.00 635 450.41 719.918 20.98

0.90 0.10 0.50 10 312.50 640 564.89 832.011 73.60

0.99 0.01 0.50 10 295.00 640 785.40 920.746 161.24

The shaded rows of the table indicate the presence of a uni-directional and/or bi-

directional loop in the optimal solution. The table includes a column indicating the

importance weight for coverage, the importance weight for distance, the importance

weight associated with  (shown in equation 6.16), and the maximum desired access

distance. We also highlight the population that is covered by the bi-directional paths as

well as the total length of the overall route (i.e. the total distance of both the inbound and

outbound paths), and the weighted return benefit for both paths. Also given are the

composite objective values for each solution as well as the solution time that was taken to

solve the problem. To generate this set of results, cover weights were incremented by

units of 0.1 with weights ranging from 0.1 to .90 for coverage and path emphasis. In

order to exclude potentially inferior solutions (i.e. multiplying an objective by a zero

219

weight) weights of zero and one were approximated by the values of 0.01 and 0.99

respectively. As mentioned above, we utilized three unique  values (0.10, 0.25, and

0.50) to vary the importance weight for returning to a previously visited node. This

meant that a total of 33 problems were solved and detailed in Table 6.2. All results

given in the table were generated for a maximum service access distance of 10, and all

computational tests were performed on the same system utilized to generate the results

found in Table 6.1.

Figure 6.11 highlights the solution associated with a cover weight of 0.6, a

distance weight of 0.4 and a return weight of 0.1. Note the use of a large uni-directional

loop between nodes 16 and 3 of the outbound path and nodes 3 and 16 on the inbound

path as well as a shared bi-directional loop between nodes 1, 13, 11, and 5. Figure 6.12

highlights a solution to the WR-BD-MCSP utilizing a cover importance weight of 0.4, a

distance importance weight of 0.6 and a return weight of 0.25. In this case, a uni-

directional loop is formed between nodes 31, 29, and 18 and a bi-directional loop is

formed between nodes 1, 13, 11, and 5. A closer view of the results in Table 6.2 reveals

that bi-directional path solutions exist which have a slightly longer total distance and the

same coverage, but where an additional visit is provided. This is captured in the

weighted return benefit value which is also given in Table 6.2. An example of such a

case where total coverage remains the same but an additional return benefit is used in one

solution versus another is reflected in the solutions where  is equal to 0.25 and where

the coverage importance weights are 0.5 and 0.6 in Table 6.2. The total population

covered for each solution is the same although in one solution a slightly longer path is

utilized as this yields a greater return weight value. The reason such a solution occurs is

220

that the value of return coverage is high enough to change alignments and encourage

visiting high values nodes a second time. These two bi-directional path solutions are

shown in Figures 6.13 and 6.14. Figure 6.13 depicts the optimal solution to the WR-BD-

MCSP problem where node p = 27 and node q = 21. In this case, the emphasis weight on

coverage is 0.5, and the importance weight on path length is 0.5; note that a uni-

directional loop between nodes 31, 18, 36, 15, 7, and 31 as well as a bi-directional loop

between nodes 1, 13, 11, 5 and 1 is used. Figure 6.14 highlights the optimal solution to

the WR-BD-MCSP problem where the importance weight on coverage is 0.6, and the

importance weight on path length is 0.4. Note that both of these solutions cover the exact

same population; the difference is that this solution employs a similar uni-directional loop

between nodes 31, 18, 36, 15, 7, and 31 as well as an additional uni-directional loop

between nodes 31, 18, 29, and 31. Both solutions also utilize a bi-directional loop

between nodes 1, 13, 11, 5, and 1. The distinguishing feature between these two

solutions is that an additional node (18) has been revisited. Thus, we can see that the

return weight,  , plays an important role with respect to encouraging the outbound and

inbound paths to coincide while eliminating the restriction that  minimum arcs must be

shared as in the MSA-BD-MCSP model.

One of the interesting results of the model was that we anticipated generating a

number of ‘figure 8’ type routes due to the nature of the formulation. That is, we

expected that each path would ‘zig-zag’ across one another as such a possibility is not

expressively prevented in the formulation. However, in our experience this tended not to

be the case with one exception: when a very low importance weight is placed on

combined overall length. One of the reasons for this seems to be the fact that we utilized

221

conservative values for  . This seems to be corroborated by the fact that low  values

reduced such behavior while as  values were increased ‘zig-zag’ pathways began to

occur at distance importance weights around 0.1 as opposed to importance weights of

0.01. Figures 6.15, 6.16, and 6.17 all show ‘zig-zag’ solutions which occurred at a

distance importance weight of 0.01 and the three  values of 0.10, 0.25, and 0.50

respectively. This clearly shows that a range of return importance weights should be

used as well as a thorough range of coverage and distance importance weights. However,

the important thing to note is that for the vast majority of solutions, the inbound and

outbound paths shared a large number of arcs, which is precisely what the formulation

encourages. Further, this mirrors what we would expect to find on real world routes.

The other advantage the WR-BD-MCSP model has with respect to the MSA-BD-MCSP

formulation is that there are no knapsack type constraints that must be used. This means

that, in general, the WR-BD-MCSP needed less time to converge to optimality for most

problems. The other significant advantage is that there were no cases of the WR-BD-

MCSP model which did not converge to an optimal solution, unlike in the MSA-BD-

MCSP. Although the MSA-BD-MCSP allow one to actively control the minimum

number of arcs that must be shared and can be used to find un-supported non-dominating

solutions, such solutions are likely to be ignored when compared to the supporting non-

dominating solutions. Thus, solutions to the WR-BD-MCSP seem very promising as

this would allow a planner to derive optimal routes, and compare those to what are

currently in existence or proposed.

The key question of course is whether one could interpret such models to be an

inefficient routing strategy or whether looped routes provide good service. However, as

222

was noted at the beginning of this chapter, it is clear that a route that adheres as closely as

possible to the shortest path will result in much shorter transit travel times with respect to

the origin and destination and the intermediate points served by the route. However, it is

important to highlight the fact that we can define solutions on the tradeoff curve between

route efficiency and coverage, while encouraging the sharing of a common corridor of

arcs. That is, these two models are capable of minimizing overall path length by

diverging in one or both directions while enabling service to areas that may not otherwise

be covered. As we have shown, such routes are clearly utilized by transit agencies as

looped structures are not uncommon among transit lines. For example, if one consults

the Bozeman, MT transit map (Figure 6.3), the Eau Claire, WI transit map (Figure 6.4),

or virtually all other transit route maps (especially medium sized cities), one can see that

routes often diverge directionally. In Santa Barbara, for example, line 14 has a good

portion of the route served in both directions, but also has a sizable uni-directional loop.

The key point, of course, is that many real-world systems are likely to utilize both bi-

directional and/or uni-directional loop structures. One possible advantage that we have

not looked into (which is an exciting opportunity for future work) is that such loop

structures could provide a means to increase the number of busses that pass through a

geographic region, particularly in areas that have high demand through a central corridor.

This could be important as it would effectively increase the number of times the corridor

is served and thus reduce wait times and increase the efficiency with respect to time that

it would take to go from one point to another along a main corridor or in a central area.

The Eau Claire system map in Figure 6.4 readily shows the use of loop structures and

corridors and we expect demand along these corridors to be high. Ultimately, the BD-

223

MCSP formulations are able to form routes that replicate behavior found in real world

networks and are able to capture travel in both directions when solving for an optimal

covering path. These new models, the MSA-BD-MCSP and the WR-BD-MCSP, now

provide an underlying analytical framework that can truly capture a more realistic

approach to optimize route design.

6.5 Concluding Remarks and Future Work

We have seen that previous modeling work has not truly addressed the flexibility

that transit planners take in designing transit routes. We have also seen that previous

models treat travel direction in a transit planning context somewhat as an afterthought.

That is models typically determine a covering path alignment in a single direction. These

routes are then often applied to transit design with the assumption that travel can simply

be reversed along the path and ‘tweaked’ as needed with respect to alignments such as

one-way streets, etc. All models, whether based on Current et. al. (1985), or upon a

Vajda (1961) framework such as Curtin and Biba (2011) have been formulated with the

implicit assumption that coverage must is provided for each direction of travel, even

when this is not the case in actual systems. Even the model formulation of Boffey and

Narula (1998), which is a multi-path covering problem, does not truly consider the aspect

that a covering path in transit planning should be defined in terms of each direction.

This chapter proposed two bi-directional maximal covering shortest path

formulations in an effort to capture the inherent tradeoff between coverage and overall

path distance while relaxing the assumption that the inbound path is merely the reverse of

the outbound path. The first model that was introduced, the Minimum Shared Arc Bi-

Directional Maximal Covering Shortest Path formulation (MSA-BD-MCSP) specified the

224

minimum number of arcs that should be common to both paths with respect to bi-

directional travel. This formulation expanded on the work of Chapter 3 and allowed bi-

directional and uni-directional loops to be used if they improved the overall objective.

The model is able to account for travel in an ‘inbound’ and an ‘outbound’ direction, be

loop agnostic through the use of EAST constraints, and allow each path direction to

diverge from each other, creating uni-directional loops. In particular, the formulation

allows for the formation of both uni-directional and bi-directional loops. We also

described one of the drawbacks of this formulation, which is the use of knapsack like

constraints requiring a minimum number of arcs to be shared. This prompted the

formulation of the Weighted Return, Bi-Directional Maximal Covering Shortest Path

formulation (WR-BD-MCSP).

The WR-BD-MCSP formulation eliminates the knapsack requirements for sharing

arcs and instead allows for a benefit to be awarded if a node initially visited by the

outbound path is visited again by the inbound path and vice-versa. We showed that

optimal results to this formulation included the use of shared arcs and mimicked routes

seen in real world systems such as Bozeman, MT (Figure 6.3) and Eau Claire, WI (Figure

6.4). We also demonstrated that the return weight can be adjusted and that this value can

be solved over several values which result in varying degrees of bi-directional service

(service provided on both outbound and inbound paths). We also noted the correlation

between the use of ‘zig-zag’ figure eight routes with higher return weights and very low

distance importance weights. Overall, however, we show that both formulations, the

MSA-BD-MCSP as well as the WR-BD-MCSP are able to determine optimal solutions

which reflect real world conditions as well as account for travel in both directions and use

225

uni-directional and bi-directional loop features. We also showed that the WR-BD-MCSP

appears to be an easier problem to solve, and optimal results can be determined via

commercial off the shelf solvers.

Future work should focus on several areas. One of the areas that makes sense to

explore is to solve these formulations on a real-world network using known transit data.

This would allow us to extend our proof-of-concept work into a true spatial analysis

modeling tool. An additional area for future work would explore models which route

many bi-directional paths simultaneously. Other avenues of potential work include the

use of a weighted benefit associated with traversing an arc in the opposite direction as

opposed to visiting a node in each direction such as was done in the WR-BD-MCSP.

Such a format may prove useful, particularly as this may allow one to consider both arc

and node service values as was used for the TRANSMax II formulation proposed in

Chapter 5 of this dissertation. However, although these avenues offer exciting avenues

for potential work, the greatest contribution of this chapter lies in the fact that a new

methodology for modeling transit routes has been offered. We are now able to model

covering paths which travel in opposing directions, allow for the use of uni-directional

and bi-directional loops if they improve the objective, and more importantly capture the

use of shared arcs and more complex loop features through two new modeling

frameworks.

226

Figure 6.1 - Route 2 in San Luis Obispo, CA which highlights the use of several 'loop' features such as the

lollipop, barbell, and figure eight.

Figure 6.2 - Generalized Patterns of Common Tours Formed on Transit Routes

A. The Barbell

Tour

B. The Lollipop

Tour

C. The Figure 8

Tour

227

Figure 6.3 - The system route map for the city of Bozeman, MT. Note the use of several loops throughout the

system. Permission to publish this route map has been generously given by the City of Bozeman and is

accessible at their website http://streamlinebus.com/routes-schedules/route-maps/weekday-service/

http://streamlinebus.com/routes-schedules/route-maps/weekday-service/

228

Figure 6.4 - The system route map for the city of Eau Claire, WI. Note the use of many different kinds of loops

throughout the system. Permission to publish this route map has been generously given by the City of Eau

Claire and is accessible at their website http://www.eauclairewi.gov/departments/transit/maps-schedules

http://www.eauclairewi.gov/departments/transit/maps-schedules

229

Figure 6.5 - Example of two routes, one out and back using the same alignment (Route A) and the other a loop

(Route B). On a grid of 5 by 3 blocks, route A serves 6 intersections (and 6 street segments) and travels 10

blocks. Route B travels 16 blocks and serves 16 intersections (and 16 street segments). Route A serves .6 unique

intersections per block traveled and route B serves 1 unique intersection of every block traveled.

Figure 6.6 - Two routes, each with one loop. The route on the left traverses the loop in only one direction,

whereas the route on the right traverses the loop in both directions.

230

Figure 6.7 - An example of a direction oriented loop utilizing nodes qlijkq formed by a forward path

traveling from node p to node i to node j to node k to node q and a reverse path from node q to node l to node i

to node p.

Figure 6.8 - The optimal MSA-BD-MCSP solution for p = 27 and node q = 21,  = 9, a maximum service

distance = 10, a distance weight = 0.3 and a coverage weight = 0.7. Note the formation of several distinct loop

structures.

231

Figure 6.9 - the optimal MSA-BD-MCSP solution for p = 27 and node q = 21,  = 9, a maximum service

distance = 10, a distance weight = 0.7 and a coverage weight = 0.3. Note the use of a direction oriented loop in

the middle of the route.

Figure 6.10 - An optimal solution to the MSA-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 7.5 is used,  = 11, the emphasis weight on coverage = 0.85, and the

emphasis on path length = 0.15. Note the use of a very large uni-directional loop between nodes 1 and 27 of the

inbound and outbound paths as well as a bi-directional loop between nodes 1, 13, 11, and 5.

232

Figure 6.11 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.6, and the emphasis on path

length = 0.4. Note the use of a large uni-directional loop between nodes 16 and 3 of the outbound path and nodes

3 and 16 on the inbound path as well as a shared bi-directional loop between nodes 1, 13, 11, and 5.

Figure 6.12 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.4, and the emphasis on path

length = 0.6. Note the use of a large uni-directional loop between nodes 31, 29, and 18 as well as a shared bi-

directional loop between nodes 1, 13, 11, and 5.

233

Figure 6.13 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.5, and the emphasis on path

length = 0.5. Note the use of a uni-directional loop between nodes 31, 18, 36, 15, and 7 as well as a bi-directional

loop between nodes 1, 13, 11, and 5.

Figure 6.14 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.6, and the emphasis on path

length = 0.4. Note the use of a uni-directional loop between nodes 31, 18, 36, 15, and 7 an additional uni-

directional loop between nodes 31, 18, and 29 as well as a bi-directional loop between nodes 1, 13, 11, and 5. Also

note that coverage has not changed with respect to Figure 6.13; the difference is that an additional node (18) has

been revisited.

234

Figure 6.15 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.99, the emphasis on path

length = 0.01, and the return importance weight = 0.10. Note the ‘zig-zag’ crossing of the inbound and outbound

paths.

Figure 6.16 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.99, the emphasis on path

length = 0.01, and the return importance weight = 0.25. Note the ‘zig-zag’ crossing of the inbound and outbound

paths.

235

Figure 6.17 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21. In this

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.99, the emphasis on path

length = 0.01, and the return importance weight = 0.50. Note the ‘zig-zag’ crossing of the inbound and outbound

paths.

236

Chapter 7

7.1 Concluding Remarks

This dissertation has reviewed, expanded, and developed several new models that

address several critical research questions that were raised in Chapter 1. This chapter

briefly reviews these research questions, the approaches taken to address them, and

suggestions related to future research directions. The basis of this dissertation work stems

from the fact that if one examines at system route maps for many bus transit systems in

U.S. cities, an interesting pattern emerges. Routes often utilize embedded loops to

increase accessibility coverage of a system at the expense of adding a marginal amount of

length to the overall path. Further, such routes frequently share a common corridor with

respect to traveling in opposing directions, but they may depart from each other in terms

of direction. These departures in direction represent embedded loops that are traversed in

only one direction. However, the literature has not explored this issue, and in fact, often

discourages or outright prevents any loops from occurring. Furthermore, the literature

has not accounted for travel in opposing directions, even when attempting to model

transit lines. This is due in part to the roots of the covering path literature.

Chapter one notes that the MCSP problem can be formulated in a variety of ways.

Virtually all covering path models utilize some form of a sub-tour elimination process

that is borrowed from the Traveling Salesman Problem (TSP) literature. Due to the

nature of the maximal covering shortest path problem, it is likely that a sub-tour (a cycle

that is not connected to the covering path itself) will form unless constraints are added to

the formulation or the formulation itself is structured in such a way so as to prevent sub-

237

tour formation. This is similar to the problem of sub-tours being encountered when

solving the TSP problem. Accordingly, past model formulations for the MCSP have been

based on model constructs found in the TSP literature that prevent the existence of sub-

tours and cycles.

The seminal Shortest Covering Path (SCP) and Maximal Covering Shortest Path

(MCSP) formulations of Current et. al. (1984, 1985) are built on the TSP framework

developed by Dantzig, Fulkerson, and Johnson (1956). Other frameworks such as Vajda

(1961), Gavish and Graves (1978), and Miller, Tucker, and Zemlin (1960) have also been

used. However, all of these formulations restrict the use of a ‘loop’ from being used in a

solution due to the fact that they prevent sub-tours and cycles from occurring. In a

traveling salesman context this makes sense as one wishes to visit all nodes of a complete

network exactly once. Nevertheless, as Niblett and Church (2016) demonstrated, an

embedded loop could actually be present in an optimal covering path solution and thus

the a priori exclusion of such loops could actually result in a sub-optimal solution in a

maximal covering shortest path context. This dissertation presented a new, innovative

‘loop agnostic’ approach to the classic Current et. al. (1985) form in Chapter 3 and the

alternate form of TRANSMax in Chapter 5. The issue of how loops are utilized with

respect to directionality is also an interesting research question that is answered by this

dissertation.

Although several loop agnostic models are developed in this dissertation to better

represent the maximal covering shortest path problem, these models only capture one

aspect of loop use. In a single path MCSP (i.e. a New, Revised MCSP formulated in

Chapter 3 of this dissertation), a loop can be present as part of the path, as an out-and-

238

back path or a more complex loop which visits several other nodes before returning to a

previously visited node, or as a ‘lollipop’ shaped route attached to the origin node or the

destination node. If one assumes that the covering path can be traversed both in the

outbound and inbound directions (which past work has done), any loops that are present

will be utilized in both directions and is what we refer to as a bi-directional loop. When

addressing the question of bi-directionality it is possible that a loop is traversed in only

one direction. Such “uni-directional” loops are formed whenever inbound/outbound

paths diverge and can be observed in many transit system maps, like those of Bozeman,

MT; Eau Claire, WI; and San Luis Obispo, CA that were presented in this dissertation.

This dissertation proposed a new route design problem called the bi-directional maximal

covering shortest path problem as well as proposed two formulations for this new

problem to address this real-world planning problem.

Chapter 2 of this dissertation provided an in-depth analysis of the existing

covering path literature. The covering path/routing formulations that are the genesis of

covering path problems are closely examined. This includes the major work from the

TSP literature such as the models developed by Dantzig, Fulkerson, and Johnson (1956)

as well as several other TSP frameworks such as those devised by Vajda (1961). We also

present the shortest path problem and how it relates to the maximal covering shortest path

problem. A review of the seminal works with respect to spatial covering models such as

the Location Set Covering Problem (Toregas, et. al., 1971, 1972) and the Maximal

Covering Location Problem (Church and ReVelle, 1974) are included in this chapter as

well. In addition to the underlying literature this chapter also details models that have

extended the MCSP formulation. This includes work dealing with issues such as

239

strategic route extension for transit lines (Wan and Lo, 2003; Wu and Murray, 2003;

Matisziw, et. al. 2006), alternative covering path models such as TRANSMax (Curtin and

Biba, 2011), and the multi-path model formulation of Boffey and Narula (1998). This

chapter also introduced several algorithms and heuristics that have been used to solve

path problems.

Chapter 3 of this dissertation expanded the work of Niblett and Church (2016)

and introduced a new, revised form of the MCSP and Maximum Population Shortest Path

(MPSP) problems. This chapter introduces a ‘loop agnostic’ model that allows for a loop

to form as part of the covering path if it improves the value of the objective. A

comparison of solutions between the revised models and the original MCSP was

performed and the results were compared with respect to objective values, the use of

loops, and solution times. This chapter also showed that the original MPSP model

formulation introduced by Current et. al. (1985) contained explicit constraints as well as

the Dantzig, Fulkerson, and Johnson TSP constraints that prevent embedded loops from

occurring by preventing any node to be visited more than once. Thus, the original

formulation prevents the use of loops a priori and precludes the determination of a truly

optimal solution in certain cases. Chapter 3 also highlights the solution process that is

used to add the necessary Eliminate or Attach Sub-Tour (EAST) constraints that are

required to ensure a continuous, connected, covering path as well as prevent any

disconnected sub-tours. These constraints allow for the embedded loops to occur within

the covering path. Thus, this model neither encourages nor discourages loops to occur

with a path. Because of this property, we called this model a ‘loop agnostic’ model as

loops are used only when they yield an improvement in the objective.

240

Chapter 4 of this dissertation presented a heuristic that can be used in instances

where computational complexity precludes one from solving an MCSP to optimality.

This chapter articulated a new swapping heuristic that allows for the determination of

good solutions which allow loops to form within the path when the presence of loops

improves a composite objective value of distance and coverage. In particular, the

heuristic process begins with the determination of the shortest path through a network.

This is then set as the current best path. The heuristic then identifies the best swap that

can be made by swapping a portion of the path with the insertion of a path segment that

detours to another node not on the path or the insertion of an out and back path which

visits a node not on the path being modified. What makes this unique is that the

candidate path segment being inserted (or swapped) into the current solution can be

comprised of a number of different structures including an out and back loop as well as

an alternate route between two nodes on the current path. After the best

insertion/substitution is made, it is repeated again until no improvement is found or until

the heuristic has reached the maximum number of swap/insertion iterations. We applied

this heuristic to the 55 node Swain network as well as to the Richardson, TX dataset. The

heuristic was able to find optimal, or near-optimal, solutions for a majority of the

problems that were tested. This is in part due to the fact that the heuristic search does not

preclude the use of an embedded loop in the path/route. The heuristic also runs within a

reasonable amount of computational time yielding excellent solutions in a few minutes of

computer time.

In Chapter 5, a new alternate formulation of the TRANSMax model was

presented. TRANSMax was developed by Curtin and Biba (2011) and represents a

241

variant of the Maximal Covering Shortest Path Problem. What is unique about the

original TRANSMax is that it uses a different approach than that of Current et al. (1984,

1985) to eliminate sub-tours in a solution. Curtin and Biba based their model formulation

on a structure proposed by Vajda (1961) to prevent sub-tours in a travelling salesman

problem. One of the key issues with Curtin and Biba’s formulation is that they require a

path to be less than a maximum total path length and the path must utilize an exact

number of arc segments. Utilizing a framework meant to solve traveling salesman

problems, means that the original TRANSMax formulation prevents any embedded loops

from occurring in a solution even if such a structure results in an improved objective

value. This restriction was relaxed by developing a new form of Vajda’s constraints,

which resulted in an alternate formulation, TRANSMax II, that allows for the use of

loops in a solution. The constraint that requires an exact number of arcs to be used was

also relaxed. Instead, the TRANSMax II formulation is defined such that any number of

arcs up to a maximum number of arcs can be used in the path. This chapter then

highlights several cases where the TRANSMax II formulation determines a better

objective than the original TRANSMax model. This chapter also provides a comparison

between both the TRANSMax and TRANSMax II models. Computational experience

and results are provided which demonstrates that the TRANSMax II model is able to

outperform the original TRANSMax model while also being ‘loop agnostic’ in that loops

can be utilized if they result in an improvement in the objective.

Chapter 6 showcased a new problem, the Bi-Directional Maximal Covering

Shortest Path problem. The previous chapters of this dissertation were primarily

concerned with detailing work centered around the research problem of making covering

242

path models loop agnostic. We show that loops have often been assumed to be

inefficient structures which should never be utilized in a covering path context. Not only

was this assumption shown to be incorrect, but this dissertation formulated several

alternative models which are loop agnostic. That is, the new formulations allow a loop to

be used, but only if it results in an improved objective. Computational results revealed

that optimal solutions often utilized one or mode embedded loops, and clearly

demonstrated that this long held assumption was false for realistic problems. Chapter 6

addresses an additional research question which centers on the fact that transit systems

often use pathways/routes that differ spatially to some extent depending upon the

direction of travel. Past covering path modeling work has been based upon the

assumption that the path represents the route in both directions. When network topology

prevents this (i.e. one way streets), then it is assumed that the solution can be tweaked a

bit in the opposite or return direction when needed. This chapter presented examples of

real world transit systems that utilize several kinds of loop structures such as a figure

eight, lollipop, and barbell, where some of the route segments are traversed in only one

direction creating embedded loops (called uni-directed loops). Uni-directional loops are

traversed in either a clockwise or counterclockwise manner. In addition, loops are used

which are bi-directional and are traversed in both a clockwise and counterclockwise

manner.

Chapter 6 presented a new form of the MCSP where travel was optimized in both

the inbound and outbound directions (called the Bi-Directional Maximal Covering

Shortest Path problem or BD-MCSP). Two new models were formulated which allow

loops to form if they improve the objective where loops may be either uni-directional or

243

bi-directional. The first model formulation for the BD-MCSP problem was called the

Minimum Shared Arcs BD-MCSP. This formulation requires that at least a certain

number of arcs must be used in common between the outbound path traveling from the

origin to the destination and the inbound path traveling from the destination to the origin.

We presented several optimal solutions to this problem which utilize both uni-directional

and bi-directional loops. This demonstrates the flexibility afforded by accounting for bi-

directional travel through the use of ‘outbound’ and ‘inbound’ paths. The chapter also

suggests potential areas of future work such as multi-route bi-directional MCSP problems

as well as the use of known transit data on real world networks.

Altogether, this dissertation has addressed several fundamental research issues.

We have noted that the research literature has assumed that loops will not be used and

that formulations should include either explicit tour-breaking constraints (Dantzig, et. al.,

1954; Current et. al., 1984, 1985) or that existing formulations implicitly prevent the

formation of any kind of loop/tour (Vajda, 1961; Curtin and Biba, 2011). Three new

problem have been formulated – the NR-MCSP problem, the TRANSMax II problem,

and the BD-MCSP problem. All new formulations are loop agnostic and allow for the

possibility of a loop only if an improvement in the objective value can be made. Results

in solving the NR-MCSP and TRANSMax II models both demonstrate that loops can be

part of an optimal covering path solution for the classic maximal covering shortest path

problem. This dissertation has also addressed the assumption that a solution to an MCSP

can simply be reversed for the return direction and ‘tweaked’ as needed to fit the

underlying network topology. Multi-path models such as Boffey and Narula (1998),

transit routing models such as Wu and Murray (2003), and route extension models such

244

as Matisziw, et. al. (2006) are all based upon the implicit assumption that a solution can

simply be reversed along a solution corridor. Even alternative MCSP formulations such

as that developed by Curtin and Biba (2011) are based upon the assumption that the

optimal covering path solution can simply be reversed and is essentially the same in both

directions. We show this assumption to be problematic as it doesn’t fully address the

design elements of covering paths in use by transit agencies. Because of this

shortcoming, a new problem is introduced called the Bi-Directional Maximal Covering

Shortest Path (BD-MCSP) problem which optimizes travel in both directions for a route

while still maintaining a loop agnostic model form.

We developed two alternate formulations of the BD-MCSP problem. The first

formulation allows one to specify the minimum number of shared arcs (MSA) that should

be used in common to both the outbound and inbound covering paths. We designated

this formulation as the MSA-BD-MCSP. This formulation allows one to find un-

supported non-dominating solutions although with a high computational cost due to the

use of budget/knapsack constraints. This dissertation also included an alternative form of

the BD-MCSP in which the minimum shared arc constraint is removed. In this version,

called the weighted return BD-MCSP (WR-BD-MCSP) problem, we include an objective

weight that allows one to specify a benefit that can be gained based upon a node being

visited by both the outbound and inbound covering paths. This formulation of the BD-

MCSP problem is computationally less complex than the MSA-BD-MCSP and allows

one to find a set of supported non-dominating solutions within a reasonable amount of

computer time. Both formulations show that loops are used in both a uni-directional and

bi-directional manner. This means that both formulations are able to capture the loop

245

design elements found in virtually all transit systems in mid-sized cities within the United

States.

Finally, it should be noted that there exist a number of questions that can be

addressed in future research. One is the need to develop a heuristic for the bi-directional

path/route problem. It is also desirable to consider whether other alternate forms of the

MCSP problem can be developed which are loop agnostic as well. A third area of needed

research is the need to expand these models to a multi-path or system framework. Finally,

it would be desirable to extend these models to handle not only coverage but individual

service times.

246

 References

1. Balcik, B., and B. M. Beamon. (2008). “Facility Location in Humanitarian Relief.”

International Journal of Logistics Research and Applications (Taylor & Francis) 11:

101-121.

2. Bellman, R. (1956). “On a routing problem.” No. RAND-P-1000 (RAND CORP): 1-

7.

3. Biba, Steve, Kevin M. Curtin, and Germana Manca. (2010). "A new method for

determining the population with walking access to transit." International Journal of

Geographical Information Science 24: 347-364.

4. Boffey, Brian, and Subhash C. Narula. (1998). "Models for multi-path covering-

routing problems." Annals of Operations Research (Springer) 82: 331-342.

5. Brotcorne, Luce, Gilbert Laporte, and Frederic Semet. (2003). "Ambulance Location

and Relocation Models." European Journal of Operational Research (Elsevier) 147:

451-463.

6. Cathey, F. W., and D. J. Dailey. (2003). "A prescription for transit arrival/departure

prediction using automatic vehicle location data." Transportation Research Part C:

Emerging Technologies (TRB) 11: 241-264.

7. Ceder, A., and N. H. M. Wilson. (1986). “Bus network design.” Transportation

Research Part B: Methodological (Elsevier) 20: 331-344.

8. Church, Richard L., and Charles ReVelle. (1974). "The Maximal Covering Location

Problem." Papers of the Regional Science Association (Wiley) 32: 101-118.

9. Church, Richard L. (1974). Synthesis of a class of public facility location problems

(Doctoral dissertation), The Johns Hopkins University, Baltimore, MD.

10. Church, Richard L., David Stoms, and Frank Davis. (1996). “Reserve Selection as a

Maximal Covering Location Problem.” Biological Conservation (Elsevier) 76: 105-

112.

11. Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of

operations research, 4: 233-235

12. Cocking, C., E. Cevirgen, S. Helling, M. Oswald, N. Corcodel, P. Rammelsberg, G.

Reinelt, and A. J. Hassel. (2009). "Colour compatibility between teeth and dental

shade guides in Quinquagenarians and Septuagenarians." Journal of oral

rehabilitation (Wiley) 36, No. 11: 848-855.

247

13. Current, John R., Charles ReVelle, and Jared L. Cohon. (1984). "The shortest

covering path problem: an application of locational constraints to network

design." Journal of Regional Science 24: 161-183.

14. Current, John R., Charles ReVelle, and Jared L. Cohon. (1985). "The maximum

covering/shortest path problem: A multiobjective network design and routing

formulation." European Journal of Operational Research (Elsevier) 21: 189-199.

15. Current, John R., Charles ReVelle, and Jared L. Cohon. (1988). “The minimum

covering shortest path problem.” Decision Sciences (Wiley) 19: 490-503.

16. Current, John R., Hasan Pirkul, and Erik Rolland. (1994). “Efficient Algorithms for

Solving the Shortest Covering Path Problem.” Transportation Science (INFORMS)

28: 317-327.

17. Current, John R., and David A. Schilling. (1989). “The Covering Salesman Problem.”

Transportation Science (INFORMS) 23: 208-213.

18. Current, John R., and David A. Schilling. (1994). “The median tour and maximal

covering tour problems: Formulations and heuristics.” European Journal of

Operational Research (Elsevier) 73: 114-126.

19. Curtin, Kevin M., and Steve Biba. (2011). “The Transit Route Arc-Node Service

Maximization problem.” European Journal of Operational Research (Elsevier) 208:

46-56.

20. Daduna, Joachim R., and Anthony Wren. (1988). "Computer-aided transit

scheduling." Lecture Notes in Economics and Mathematical Systems 308.

21. Dantzig, George B., R Fulkerson, and S Johnson. (1954). "Solution of a Large-Scale

Traveling-Salesman Problem." Operations Research 2: 393-410.

22. Dantzig, George B. (1957). "Discrete-Variable Extremum Problems." Operations

Research (INFORMS) 5: 266-277.

23. Daskin, Mark. (1983). “A Maximum Expected Covering Location Model:

Formulation, Properties, and Heuristic Solution.” Transportation Science

(INFORMS) 17: 48-70.

24. Dijkstra, E W. (1959). "A Note on Two Problems in Connexion with Graphs."

Numerische Mathematik (Springer) 1: 269-271.

25. Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). “Ant algorithms for discrete

optimization.” Artificial life, 5: 137-172.

248

26. Dreyfus, S. E. (1969). “An appraisal of some shortest-path algorithms.” Operations

Research, 17: 395-412.

27. Dueck, G., & Scheuer, T. (1990). “Threshold accepting: a general purpose

optimization algorithm appearing superior to simulated annealing.” Journal of

computational physics, 90: 161-175.

28. Dueck, G. (1993). “New optimization heuristics: The great deluge algorithm and the

record-to-record travel.” Journal of Computational physics, 104: 86-92.

29. Eppstein, David. (1998). "Finding the k shortest paths." SIAM Journal on Computing

28: 652-673.

30. Euler, Leonhard. (1741). "Solutio Problematis ad Geometriam Situs Pertinentis."

Commentarii Academiae Scientiarum Petropolitanae 8: 128-140.

31. Feo, T. A., & Resende, M. G. (1995). “Greedy randomized adaptive search

procedures.” Journal of Global Optimization (Springer) 6: 109-133.

32. Figler, Scott, P. Sriraj, Eric Welch, and Nilay Yavuz. (2011). "Customer Loyalty and

Chicago, Illinois, Transit Authority Buses: Results from 2008 Customer Satisfaction

Survey." Transportation Research Record: Journal of the Transportation Research

Board (TRB) 2216: 148-156.

33. Furth, Peter G., and F. Brian Day. (1985). "Transit routing and scheduling strategies

for heavy-demand corridors (Abridgment)." Transportation Research Record (TRB)

1011.

34. Gavish, Bezalel. (1983). “Formulations and Algorithms for the Capacitated Minimal

Directed Tree Problem.” Journal of the Association for Computing Machinery

(ACM) 30: 118-132.

35. Gavish, Bezalel, and Stephen C. Graves. (1978). "The travelling salesman problem

and related problems." (Working Paper) Operations Research Center (MIT).

36. Gendreau, M., Hertz, A., Laporte, G., & Stan, M. (1998). A generalized insertion

heuristic for the traveling salesman problem with time windows. Operations

Research, 46: 330-335.

37. Gleason, John M. (1975). "A set covering approach to bus stop location." Omega

(Elsevier) 3: 605-608.

249

38. Golden, B. L., & Skiscim, C. C. (1986). “Using simulated annealing to solve routing

and location problems.” Naval Research Logistics Quarterly, 33: 261-279.

39. Gomory, Ralph. (1958). "Outline of an Algorithm for Integer Solutions to Linear

Programs," Bulletin of the American Mathematical Society, 64: 275-278.

40. Gomory, Ralph. (1960). An algorithm for the mixed integer problem. No. RAND-P-

1885. RAND Corporation, Santa Monica, CA.

41. Hakimi, S. L. (1964). “Optimum Locations of Switching Centers and the Absolute

Centers and Medians of a Graph.” Operations Research (INFORMS) 12: 450-459.

42. Hart, J. P., & Shogan, A. W. (1987). “Semi-greedy heuristics: An empirical study.”

Operations Research Letters, 6: 107-114.

43. Hogan, Kathleen, and Charles ReVelle. (1986). “Concepts and Applications of

Backup Coverage.” Management Science (INFORMS) 32: 1434-1444.

44. Hosage, C. M., & Goodchild, M. F. (1986). Discrete space location-allocation

solutions from genetic algorithms. Annals of Operations Research, 6: 35-46.

45. Hsiao, Shirley, Jian Lu, James Sterling, and Matthew Weatherford. (1997). "Use of

geographic information system for analysis of transit pedestrian access."

Transportation Research Record: Journal of the Transportation Research Board

(TRB), 1604: 50-59.

46. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). “Optimization by simulated

annealing.” Science, 220: 671-680.

47. Lawler, Eugene L., Jan Karel Lenstra, AHG Rinnooy Kan, and David B. Shmoys.

(1985). The traveling salesman problem. John Wiley and Sons.

48. Levinson, Herbert S., and Orikaye Brown-West. (1984). Estimating bus ridership.

No. 994.

49. Levinson, H.S. (1992). “System and service planning.” In: Gray, L.A., Hoel, L.A.

(Eds.), Public Transportation, Second ed. (Prentice-Hall) Englewood Cliffs, NJ: 369–

406.

50. Li, Meng, Yafeng Yin, Wei‐Bin Zhang, Kun Zhou, and Hideki Nakamura. (2011).

"Modeling and implementation of adaptive transit signal priority on actuated control

systems." Computer‐Aided Civil and Infrastructure Engineering (Wiley) 26: 270-284.

250

51. Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell

System Technical Journal, 44(10), 2245-2269.

52. Maranzana, F. E. (1964). “On the Location of Supply Points to Minimize Transport

Costs.” Operations Research Quarterly (Pergamon Press) 15: 261-270.

53. Marianov, Vladimir, and Charles ReVelle. (1996). “The Queuing Maximal

availability location problem: A model for the siting of emergency vehicles.”

European Journal of Operational Research (Elsevier) 93: 110-120.

54. Martins, E. D. Q. V. (1984). “An algorithm for ranking paths that may contain

cycles.” European Journal of Operational Research (Elsevier), 18: 123-130.

55. Matisziw, Timothy C., Alan T. Murray, and Changjoo Kim. (2006). "Strategic route

extension in transit networks." European journal of operational research (Elsevier)

171: 661-673.

56. Miller, Clair E., Albert W. Tucker, and Richard A. Zemlin. (1960). "Integer

programming formulation of traveling salesman problems." Journal of the

Association for Computing Machinery (ACM) 7: 326-329.

57. Mladenović, N., & Hansen, P. (1997). “Variable neighborhood search.” Computers &

Operations Research, 24: 1097-1100.

58. Murray, Alan T., R. Davis, R. J. Stimson, and L. Ferreira. (1998). “Public

transportation access.” Transportation Research Part D: Transport and Environment

(Elsevier) 3: 319-328.

59. Murray, Alan T. (2001). “Strategic Analysis of public transport coverage.” Socio-

Economic Planning Sciences (Elsevier) 35: 175-188.

60. Murray, Alan T. and R. Davis. (2001). “Equity in regional service provision.” Journal

of Regional Science (Wiley) 41: 557-600

61. Murray, Alan T., and X Wu. (2003). “Accessibility tradeoffs in public transit

planning.” Journal of Geographical Systems (Springer) 5: 93-107

62. Murray, Alan T. (2003). “A coverage model for improving public transit system

accessibility and expanding access.” Annals of Operations Research (Springer) 123:

143-156.

251

63. Narula, S. C., Ogbu, U. I., & Samuelsson, H. M. (1977). Technical Note—An

Algorithm for the p-Median Problem. Operations Research, 25: 709-713.

64. Newman, Peter, and Jeffrey Kenworthy. (1999). Sustainability and cities: overcoming

automobile dependence. Island Press.

65. Niblett, Timothy J., and Richard L. Church. (2016). “The Shortest Covering Path

Problem: A New Perspective and Model.” International Regional Science Review

(Sage Publications) 39: 1-21.

66. Norden, John. (1625). England, an Intended Guyde for English Travailers. London:

Edward Allde.

67. O'Neill, Wende A., R. Douglas Ramsey, and JaChing Chou. (1992). "Analysis of

transit service areas using geographic information systems." Transportation Research

Record (TRB) 1364.

68. Orden, Alex. (1956). “The Transhipment Problem.” Management Science

(INFORMS) 2: 276-285.

69. Orman, A. J., and H. P. Williams. (2006). “A Survey of Different Integer

Programming Formulations of the Traveling Salesman Problem” in Kontoghiorhes,

E. J., and Cristian Gatu, eds. Optimisation, Economic and Financial Analysis

(Springer): 93-106.

70. ReVelle, Charles, and Kathleen Hogan. (1989). “The Maximum Availability Location

Problem.” Transportation Science (INFORMS) 23: 192-200.

71. Roberts, Dar, M. Gardner, R. L. Church, S. Ustin, G. Scheer, R. Green. (1998).

“Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember

Spectral Mixture Models.” Remote Sensing of Environment (Elsevier) 65: 267-279.

72. Rolland, E., Schilling, D. A., & Current, J. R. (1997). “An efficient tabu search

procedure for the p-median problem.” European Journal of Operational Research

(Elsevier) 96: 329-342.

73. Rousseau, J. M. (1985). Computer Scheduling of Public Transport 2. Elsevier, New

York, NY.

74. Schilling, David, D. Jack Elzinga, Jared Cohon, Richard Church, and Charles

ReVelle. (1979). “The Team/Fleet Models for Simultaneous Facility and Equipment

Siting.” Transportation Science (INFORMS) 13: 163-175.

252

75. Schrijver, Alexander. (2003). Combinatorial Optimization: Polyhedra and Efficiency.

New York: Springer-Verlag.

76. Schrijver, Alexander. (2012). "On the history of the shortest path

problem." Documenta Mathematica: 155-167.

77. Shier, D. R. (1979). “On algorithms for finding the k shortest paths in a

network.” Networks, 9: 195-214.

78. Teitz, Michael B., and Polly Bart. (1968). "Heuristic methods for estimating the

generalized vertex median of a weighted graph." Operations Research (INFORMS)

16: 955-961.

79. Toregas, Constantine, Ralph Swain, Charles ReVelle, and Lawrence Bergman.

(1971). "The Location of Emergency Service Facilities." Operations Research

(INFORMS) 19: 1363-1373.

80. Toregas, Constantine, and Charles ReVelle. (1972). “Optimal Location Under Time

or Distance Constraints.” Papers in Regional Science (Wiley) 28: 133-144.

81. Tyrinopoulos, Yannis, and Constantinos Antoniou. (2008). "Public transit user

satisfaction: Variability and policy implications." Transport Policy (Elsevier) 15:

260-272.

82. Vajda, Steven. (1961). Mathematical Programming. Addison-Wesley: Reading, MA.

83. Wan, Quentin K., and Hong K. Lo. (2003). “A Mixed Integer Formulation for

Multiple-Route Transit Network Design.” Journal of Mathematical Modelling and

Algorithms (Kluwer) 2: 299-308.

84. Weinstein, Aaron. (2000). "Customer satisfaction among transit riders: how

customers rank the relative importance of various service attributes." Transportation

Research Record: Journal of the Transportation Research Board (TRB) 1735: 123-

132.

85. Wren, Anthony, and David O. Wren. (1995). "A genetic algorithm for public

transport driver scheduling." Computers & Operations Research (Elsevier) 22: 101-

110.

86. Wu, Changshan, and Alan T. Murray. (2005). "Optimizing public transit quality and

system access: the multiple-route, maximal covering/shortest-path problem."

Environment and Planning B: Planning and Design (Pion) 32: 163-178.

253

87. Yen, J. Y. (1971). “Finding the k shortest loopless paths in a network.” Management

Science, 17: 712-716.

88. Yu, Bin, William HK Lam, and Mei Lam Tam. (2011). "Bus arrival time prediction at

bus stop with multiple routes." Transportation Research Part C: Emerging

Technologies (TRB) 19:1157-1170.

254

Appendix I

Table 1 - Results for solving the NR-MCSP applied on the hypothetical Swain network. The origin is node 27

and the destination is node 21.

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

0 1 0 171 51.92 -51.920 0.012

0.01 0.99 0 206 52.06 -49.479 0.012

0.02 0.98 0 206 52.06 -46.899 0.012

0.03 0.97 0 206 52.06 -44.318 0.013

0.04 0.96 0 260 54 -41.440 0.014

0.05 0.95 0 260 54 -38.300 0.016

0.06 0.94 0 331 58.47 -35.102 0.195

0.10 0.9 0 331 58.47 -19.523 1.257

…

Same Solution Values …

0.11 0.89 0 366 62.47 -15.338 2.027

0.12 0.88 0 417 68.94 -10.627 2.422

…

Same Solution Values …

0.24 0.76 0 417 68.94 47.686 5.063

0.25 0.75 0 437 75.45 52.663 5.461

…

Same Solution Values …

0.28 0.72 0 437 75.45 68.036 5.457

0.29 0.71 0 464 86.32 73.273 5.267

0.33 0.67 0 464 86.32 95.286 4.264

0.34 0.66 0 473 90.83 100.872 3.657
…

Same Solution Values …

0.38 0.62 0 473 90.83 123.425 4.410

0.39 0.61 0 483 97.08 129.151 4.624

…

Same Solution Values …

0.42 0.58 0 483 97.08 146.554 7.202

0.43 0.57 0 504 112.9 152.367 18.256

0.44 0.56 0 513 119.83 158.615 18.879

0.45 0.55 0 544 144.34 165.413 10.447

…

Same Solution Values …

0.49 0.51 0 544 144.34 192.947 7.746

0.5 0.5 0 556 156.15 199.925 14.119

0.51 0.49 0 584 185.08 207.151 32.268

0.52 0.48 0 584 185.08 214.842 28.135

255

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

0.53 0.47 0 584 185.08 222.532 37.052

0.54 0.46 0 596 198.81 230.387 36.186

0.55 0.45 0 596 198.81 238.336 25.409

0.56 0.44 0 596 198.81 246.284 24.653

0.57 0.43 0 599 202.68 254.278 16.336

0.58 0.42 0 603 208.04 262.363 12.119

…

Same Solution Values …

0.61 0.39 0 603 208.04 286.694 10.162

0.62 0.38 0 610 219.12 294.934 7.903

…

Same Solution Values …

0.66 0.34 0 610 219.12 328.099 0.632

0.67 0.33 0 613 224.96 336.473 0.726

…

Same Solution Values …

0.7 0.3 0 613 224.96 361.612 0.151

0.71 0.29 0 618 236.73 370.128 0.121

0.72 0.28 0 618 236.73 378.676 0.287

0.73 0.27 0 618 236.73 387.223 3.694

0.74 0.26 0 630 269.82 396.047 9.788

…

Same Solution Values …

0.79 0.21 0 630 269.82 441.038 9.543

0.8 0.2 0 637 297.55 450.090 13.271

0.81 0.19 0 637 297.55 459.436 8.724

0.82 0.18 0 637 297.55 468.781 8.258

0.83 0.17 0 640 312.11 478.141 10.997

…

Same Solution Values …

0.99 0.01 0 640 312.11 630.479 11.991

0 1 2.5 210 51.92 -51.920 0.010

…

Same Solution Values …

0.03 0.97 2.5 210 51.92 -44.062 0.017

0.04 0.96 2.5 384 58.33 -40.637 0.034

…

Same Solution Values …

0.13 0.87 2.5 384 58.33 -0.827 0.441

0.14 0.86 2.5 401 61.07 3.620 0.507

…

Same Solution Values …

0.2 0.8 2.5 401 61.07 31.344 1.557

0.21 0.79 2.5 417 65.07 36.165 1.714

256

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

…

Same Solution Values …

0.24 0.76 2.5 417 65.07 50.627 3.733

0.25 0.75 2.5 437 71.58 55.565 3.379

…

Same Solution Values …

0.28 0.72 2.5 437 71.58 70.822 3.725

0.29 0.71 2.5 464 82.45 76.021 4.062

…

Same Solution Values …

0.33 0.67 2.5 464 82.45 97.879 2.482

0.34 0.66 2.5 473 86.96 103.426 2.643

…

Same Solution Values …

0.38 0.62 2.5 473 86.96 125.825 3.548

0.39 0.61 2.5 483 93.21 131.512 3.635

…

Same Solution Values …

0.42 0.58 2.5 483 93.21 148.798 5.962

0.43 0.57 2.5 504 109.03 154.573 10.241

0.44 0.56 2.5 528 127.62 160.853 15.572

0.45 0.55 2.5 552 147.02 167.539 15.382

…

Same Solution Values …

0.49 0.51 2.5 552 147.02 195.500 9.594

0.5 0.5 2.5 556 151.02 202.490 15.018

0.51 0.49 2.5 556 151.02 209.560 23.493

0.52 0.48 2.5 577 173.52 216.750 45.418

0.53 0.47 2.5 577 173.52 224.256 67.049

0.54 0.46 2.5 596 195.4 231.956 56.156

0.55 0.45 2.5 596 195.4 239.870 38.809

0.56 0.44 2.5 596 195.4 247.784 27.197

0.57 0.43 2.5 599 199.27 255.744 19.715

0.58 0.42 2.5 603 204.63 263.795 16.830

…

Same Solution Values …

0.61 0.39 2.5 603 204.63 288.024 11.709

0.62 0.38 2.5 610 215.71 296.230 6.273

…

Same Solution Values …

0.7 0.3 2.5 610 215.71 362.287 0.943

0.71 0.29 2.5 615 227.48 370.681 1.201

0.72 0.28 2.5 618 235.13 379.124 1.383

0.73 0.27 2.5 618 235.13 387.655 13.055

257

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

0.74 0.26 2.5 630 268.22 396.463 16.288

…

Same Solution Values …

0.77 0.23 2.5 630 268.22 423.409 11.829

0.78 0.22 2.5 637 292.78 432.448 11.840

…

Same Solution Values …

0.82 0.18 2.5 637 292.78 469.640 3.342

0.83 0.17 2.5 640 307.34 478.952 2.914

…

Same Solution Values …

0.99 0.01 2.5 640 307.34 630.527 3.089

0 1 5 387 51.92 -51.920 0.012

…

Same Solution Values …

0.06 0.94 5 387 51.92 -25.585 0.024

0.07 0.93 5 456 56.39 -20.523 0.032

…

Same Solution Values …

0.21 0.79 5 456 56.39 51.212 0.306

0.22 0.78 5 463 58.33 56.363 0.442

…

Same Solution Values …

0.28 0.72 5 463 58.33 87.642 6.701

0.29 0.71 5 507 75.71 93.276 7.669

…

Same Solution Values …

0.33 0.67 5 507 75.71 116.584 10.039

0.34 0.66 5 512 78.2 122.468 12.577
…

Same Solution Values …

0.37 0.63 5 512 78.2 140.174 20.992

0.38 0.62 5 535 91.91 146.316 26.828

…

Same Solution Values …

0.42 0.58 5 535 91.91 171.392 50.120

0.43 0.57 5 568 116.59 177.784 58.765

…

Same Solution Values …

0.5 0.5 5 568 116.59 225.705 190.784

0.51 0.49 5 599 148.37 232.789 277.290

0.52 0.48 5 611 160.88 240.498 153.295

…

Same Solution Values …

0.63 0.37 5 611 160.88 325.404 20.529

0.64 0.36 5 617 171.4 333.176 21.174

258

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

…

Same Solution Values …

0.76 0.24 5 617 171.4 427.784 120.371

0.77 0.23 5 633 223.39 436.030 213.333

0.78 0.22 5 633 223.39 444.594 124.859

0.79 0.21 5 633 223.39 453.158 93.806

0.8 0.2 5 640 251.01 461.798 72.717

…

Same Solution Values …

0.99 0.01 5 640 251.01 631.090 1.937

0 1 7.5 499 51.92 -51.920 0.011

…

Same Solution Values …

0.17 0.83 7.5 499 51.92 41.736 0.034

0.18 0.82 7.5 534 59.5 47.330 0.089

…

Same Solution Values …

0.22 0.78 7.5 534 59.5 71.070 0.102

0.23 0.77 7.5 556 65.77 77.237 0.081

…

Same Solution Values …

0.3 0.7 7.5 556 65.77 120.761 0.108

0.31 0.69 7.5 565 69.8 126.988 0.197

…

Same Solution Values …

0.35 0.65 7.5 565 69.8 152.380 0.740

0.36 0.64 7.5 576 75.92 158.771 0.698

…

Same Solution Values …

0.51 0.49 7.5 576 75.92 256.559 20.727

0.52 0.48 7.5 613 115.05 263.536 21.613

…

Same Solution Values …

0.57 0.43 7.5 613 115.05 299.939 27.409

0.58 0.42 7.5 623 128.6 307.328 31.688

…

Same Solution Values …

0.77 0.23 7.5 623 128.6 450.132 745.392

0.78 0.22 7.5 627 142.03 457.813 1324.970

0.79 0.21 7.5 634 168.27 465.523 4097.080

0.8 0.2 7.5 634 168.27 473.546 4018.380

0.81 0.19 7.5 640 192.79 481.770 2816.100

…

Same Solution Values …

0.99 0.01 7.5 640 192.79 631.672 85.813

259

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

0 1 10 537 51.92 -51.920 0.012

…

Same Solution Values …

0.07 0.93 10 537 51.92 -10.696 0.022

0.08 0.92 10 552 53.2 -4.784 0.021

…

Same Solution Values …

0.24 0.76 10 552 53.2 92.048 0.191

0.25 0.75 10 571 59.5 98.125 0.764

0.26 0.74 10 571 59.5 104.430 2.921

0.27 0.73 10 592 67.11 110.850 3.324

…

Same Solution Values …

0.38 0.62 10 592 67.11 183.352 82.724

0.39 0.61 10 600 72.02 190.068 104.171

0.4 0.6 10 613 80.38 196.972 121.146

…

Same Solution Values …

0.44 0.56 10 613 80.38 224.707 196.901

0.45 0.55 10 620 85.94 231.733 192.819

…

Same Solution Values …

0.64 0.36 10 620 85.94 365.862 1954.260

0.65 0.35 10 633 109.45 373.143 1461.560

…

Same Solution Values …

0.82 0.18 10 633 109.45 499.359 17433.200

0.83 0.17 10 638 133.77 506.799 92232.600

0.84 0.16 10 638 133.77 514.517 102985.000

0.85 0.15 10 638 133.77 522.235 140982.000

0.86 0.14 10 640 145.43 530.040 113137.000

…

Same Solution Values …

0.99 0.01 10 640 145.43 632.146 16544.900

0 1 12.5 571 51.92 -51.920 0.013

…

Same Solution Values …

0.22 0.78 12.5 571 51.92 85.122 0.075

0.23 0.77 12.5 595 59 91.420 0.169

…

Same Solution Values …

0.32 0.68 12.5 595 59 150.280 5.550

0.33 0.67 12.5 613 67.54 157.038 6.847

…

Same Solution Values …

260

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

0.47 0.53 12.5 613 67.54 252.314 144.147

0.48 0.52 12.5 617 71.16 259.157 180.963

0.49 0.51 12.5 617 71.16 266.038 230.913

0.5 0.5 12.5 617 71.16 272.920 301.393

0.51 0.49 12.5 629 83.32 279.963 297.954

…

Same Solution Values …

0.72 0.28 12.5 629 83.32 429.550 108.877

0.73 0.27 12.5 633 93.71 436.788 131.760

…

Same Solution Values …

0.79 0.21 12.5 633 93.71 480.391 1691.100

0.8 0.2 12.5 638 113.41 487.718 2734.620

…

Same Solution Values …

0.88 0.12 12.5 638 113.41 547.831 2587.130

0.89 0.11 12.5 640 128.26 555.491 1322.350

…

Same Solution Values …

0.99 0.01 12.5 640 128.26 632.317 45.647

0 1 15 588 51.92 -51.920 0.012

…

Same Solution Values …

0.26 0.74 15 588 51.92 114.459 0.071

0.27 0.73 15 609 59.5 120.995 0.089

…

Same Solution Values …

0.38 0.62 15 609 59.5 194.530 7.362

0.39 0.61 15 614 62.67 201.231 9.354
…

Same Solution Values …

0.43 0.57 15 614 62.67 228.298 30.931

0.44 0.56 15 622 68.92 235.085 37.394

…

Same Solution Values …

0.52 0.48 15 622 68.92 290.358 177.047

0.53 0.47 15 629 76.53 297.401 184.540

…

Same Solution Values …

0.72 0.28 15 629 76.53 431.452 1596.750

0.73 0.27 15 633 87.24 438.535 1818.250

…

Same Solution Values …

0.79 0.21 15 633 87.24 481.750 12505.600

0.8 0.2 15 640 114.9 489.020 25344.300

261

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

…

Same Solution Values …

0.99 0.01 15 640 114.9 632.451 1263.050

0 1 17.5 590 51.92 -51.920 0.014

…

Same Solution Values …

0.06 0.94 17.5 590 51.92 -13.405 0.030

0.07 0.93 17.5 610 53.2 -6.776 0.028

…

Same Solution Values …

0.22 0.78 17.5 610 53.2 92.704 0.040

0.23 0.77 17.5 623 56.92 99.462 0.036

…

Same Solution Values …

0.48 0.52 17.5 623 56.92 269.442 0.147

0.49 0.51 17.5 629 62.56 276.304 0.114

…

Same Solution Values …

0.71 0.29 17.5 629 62.56 428.448 47.197

0.72 0.28 17.5 640 90.78 435.382 59.926

…

Same Solution Values …

0.99 0.01 17.5 640 90.78 632.692 14.595

0 1 20 616 51.92 -51.920 0.013

…

Same Solution Values …

0.25 0.75 20 616 51.92 115.060 0.040

0.26 0.74 20 631 56.92 121.939 0.050

…

Same Solution Values …

0.29 0.71 20 631 56.92 142.577 0.047

0.3 0.7 20 635 58.61 149.473 0.045

…

Same Solution Values …

0.72 0.28 20 635 58.61 440.789 1.259

0.73 0.27 20 638 66.62 447.753 1.848

…

Same Solution Values …

0.85 0.15 20 638 66.62 532.307 4.185

0.86 0.14 20 640 78.2 539.452 4.421

…

Same Solution Values …

0.99 0.01 20 640 78.2 632.818 2.918

0 1 22.5 638 51.92 -51.920 0.014

…

Same Solution Values …

0.82 0.18 22.5 638 51.92 513.814 0.041

262

Cover

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length

Objective Time

(Seconds)

0.83 0.17 22.5 640 61.32 520.776 0.045

…

Same Solution Values …

0.99 0.01 22.5 640 61.32 632.987 0.725

0 1 25 638 51.92 -51.920 0.014

…

Same Solution Values …

0.79 0.21 25 638 51.92 493.117 0.932

0.8 0.2 25 640 59.65 500.070 1.104

…

Same Solution Values …

0.99 0.01 25 640 59.65 633.004 0.910

0 1 27.5 640 51.92 -51.920 0.015

…

Same Solution Values …

0.99 0.01 27.5 640 51.92 633.081 0.035

0 1 30 640 51.92 -51.920 0.016

…

Same Solution Values …

0.99 0.01 30 640 51.92 633.081 0.035

0 1 32.5 640 51.92 -51.920 0.016

…

Same Solution Values …

0.99 0.01 32.5 640 51.92 633.081 0.035

0 1 35 640 51.92 -51.920 0.016

…

Same Solution Values …

0.99 0.01 35 640 51.92 633.081 0.035

0 1 50 640 51.92 -51.920 0.016
…

Same Solution Values …

0.99 0.01 50 640 51.92 633.081 0.023

263

Table 2 – Results for solving the MCSP applied on the hypothetical Swain network

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0 1 0 171 51.92 -51.920

0.01 0.99 0 206 52.06 -49.479

0.02 0.98 0 206 52.06 -46.899

0.03 0.97 0 206 52.06 -44.318

0.04 0.96 0 260 54 -41.440

0.05 0.95 0 260 54 -38.300

0.06 0.94 0 331 58.47 -35.102

…
 Same Solution Values

…

0.11 0.89 0 331 58.47 -15.628

0.12 0.88 0 352 61.07 -11.502

…
 Same Solution Values

…

0.16 0.84 0 352 61.07 5.021

0.17 0.83 0 443 78.71 9.981

…
 Same Solution Values

…

0.32 0.68 0 443 78.71 88.237

0.33 0.67 0 473 93.25 93.613

0.34 0.66 0 482 97.76 99.358
…

 Same Solution Values

…

0.38 0.62 0 482 97.76 122.549

0.39 0.61 0 492 104.01 128.434

…
 Same Solution Values

…

0.42 0.58 0 492 104.01 146.314

0.43 0.57 0 513 119.83 152.287

0.44 0.56 0 513 119.83 158.615

0.45 0.55 0 544 144.34 165.413

…
 Same Solution Values

…

264

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.49 0.51 0 544 144.34 192.947

0.5 0.5 0 556 156.15 199.925

0.51 0.49 0 584 185.08 207.151

0.52 0.48 0 584 185.08 214.842

0.53 0.47 0 584 185.08 222.532

0.54 0.46 0 596 198.81 230.387

0.55 0.45 0 596 198.81 238.336

0.56 0.44 0 596 198.81 246.284

0.57 0.43 0 599 202.68 254.278

0.58 0.42 0 603 208.04 262.363

…
 Same Solution Values

…

0.61 0.39 0 603 208.04 286.694

0.62 0.38 0 610 219.12 294.934

…
 Same Solution Values

…

0.66 0.34 0 610 219.12 328.099

0.67 0.33 0 613 224.96 336.473

…
 Same Solution Values

…

0.7 0.3 0 613 224.96 361.612

0.71 0.29 0 618 236.73 370.128

0.72 0.28 0 618 236.73 378.676

0.73 0.27 0 618 236.73 387.223

0.74 0.26 0 630 270.19 395.951

…
 Same Solution Values

…

0.79 0.21 0 630 270.19 440.960

0.8 0.2 0 637 297.55 450.090

…
 Same Solution Values

…

0.83 0.17 0 637 297.55 478.127

265

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.84 0.16 0 640 312.8 487.552

…
 Same Solution Values

…

0.99 0.01 0 640 312.8 630.472

0 1 2.5 210 51.92 -51.920

…
 Same Solution Values

…

0.03 0.97 2.5 210 51.92 -44.062

0.04 0.96 2.5 384 58.33 -40.637

…
 Same Solution Values

…

0.13 0.87 2.5 384 58.33 -0.827

0.14 0.86 2.5 401 61.07 3.620

…
 Same Solution Values

…

0.24 0.76 2.5 401 61.07 49.827

0.25 0.75 2.5 421 67.58 54.565

0.26 0.74 2.5 443 75.3 59.458

…
 Same Solution Values

…

0.32 0.68 2.5 443 75.3 90.556

0.33 0.67 2.5 473 89.84 95.897

0.34 0.66 2.5 482 94.35 101.609
…

 Same Solution Values

…

0.38 0.62 2.5 482 94.35 124.663

0.39 0.61 2.5 492 100.6 130.514

…
 Same Solution Values

…

0.42 0.58 2.5 492 100.6 148.292

0.43 0.57 2.5 513 116.42 154.231

0.44 0.56 2.5 537 135.15 160.596

0.45 0.55 2.5 552 147.02 167.539

…
 Same Solution Values

…

266

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.51 0.49 2.5 552 147.02 209.480

0.52 0.48 2.5 581 178.32 216.526

0.53 0.47 2.5 584 181.67 224.135

0.54 0.46 2.5 596 195.4 231.956

0.55 0.45 2.5 596 195.4 239.870

0.56 0.44 2.5 596 195.4 247.784

0.57 0.43 2.5 599 199.27 255.744

0.58 0.42 2.5 603 204.63 263.795

…
 Same Solution Values

…

0.61 0.39 2.5 603 204.63 288.024

0.62 0.38 2.5 610 215.71 296.230

…
 Same Solution Values

…

0.7 0.3 2.5 610 215.71 362.287

0.71 0.29 2.5 615 227.48 370.681

0.72 0.28 2.5 618 235.13 379.124

0.73 0.27 2.5 618 235.13 387.655

0.74 0.26 2.5 630 268.59 396.367

…
 Same Solution Values

…

0.77 0.23 2.5 630 268.59 423.324

0.78 0.22 2.5 637 292.78 432.448

…
 Same Solution Values

…

0.83 0.17 2.5 637 292.78 478.937

0.84 0.16 2.5 640 308.03 488.315

…
 Same Solution Values

…

0.99 0.01 2.5 640 308.03 630.520

0 1 5 387 51.92 -51.920

…
 Same Solution Values

…

267

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.06 0.94 5 387 51.92 -25.585

0.07 0.93 5 456 56.39 -20.523

…
 Same Solution Values

…

0.21 0.79 5 456 56.39 51.212

0.22 0.78 5 463 58.33 56.363

…
 Same Solution Values

…

0.28 0.72 5 463 58.33 87.642

0.29 0.71 5 507 75.71 93.276

…
 Same Solution Values

…

0.33 0.67 5 507 75.71 116.584

0.34 0.66 5 512 78.2 122.468

…
 Same Solution Values

…

0.37 0.63 5 512 78.2 140.174

0.38 0.62 5 535 91.91 146.316

…
 Same Solution Values

…

0.42 0.58 5 535 91.91 171.392

0.43 0.57 5 568 116.59 177.784

…
 Same Solution Values

…

0.5 0.5 5 568 116.59 225.705

0.51 0.49 5 599 148.37 232.789

0.52 0.48 5 611 160.88 240.498

…
 Same Solution Values

…

0.63 0.37 5 611 160.88 325.404

0.64 0.36 5 617 171.4 333.176

…
 Same Solution Values

…

0.76 0.24 5 617 171.4 427.784

0.77 0.23 5 627 203.81 435.914

268

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.78 0.22 5 627 203.81 444.222

0.79 0.21 5 630 214.67 452.619

0.8 0.2 5 637 242.31 461.138

…
 Same Solution Values

…

0.83 0.17 5 637 242.31 487.517

0.84 0.16 5 640 257.56 496.390

…
 Same Solution Values

…

0.99 0.01 5 640 257.56 631.024

0 1 7.5 497 51.92 -51.920

…
 Same Solution Values

…

0.17 0.83 7.5 497 51.92 41.396

0.18 0.82 7.5 532 59.5 46.970

…
 Same Solution Values

…

0.22 0.78 7.5 532 59.5 70.630

0.23 0.77 7.5 554 65.77 76.777

…
 Same Solution Values

…

0.3 0.7 7.5 554 65.77 120.161

0.31 0.69 7.5 563 69.8 126.368
…

 Same Solution Values

…

0.35 0.65 7.5 563 69.8 151.680

0.36 0.64 7.5 574 75.92 158.051

…
 Same Solution Values

…

0.51 0.49 7.5 574 75.92 255.539

0.52 0.48 7.5 611 115.05 262.496

…
 Same Solution Values

…

0.57 0.43 7.5 611 115.05 298.799

0.58 0.42 7.5 621 128.6 306.168

269

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

…
 Same Solution Values

…

0.7 0.3 7.5 621 128.6 396.120

0.71 0.29 7.5 627 143.02 403.694

…
 Same Solution Values

…

0.78 0.22 7.5 627 143.02 457.596

0.79 0.21 7.5 634 169.26 465.315

0.8 0.2 7.5 640 192.79 473.442

…
 Same Solution Values

…

0.99 0.01 7.5 640 192.79 631.672

0 1 10 523 51.92 -51.920

…
 Same Solution Values

…

0.07 0.93 10 523 51.92 -11.676

0.08 0.92 10 538 53.2 -5.904

…
 Same Solution Values

…

0.24 0.76 10 538 53.2 88.688

0.25 0.75 10 557 59.5 94.625

0.26 0.74 10 557 59.5 100.790

0.27 0.73 10 578 67.11 107.070
…

 Same Solution Values

…

0.38 0.62 10 578 67.11 178.032

0.39 0.61 10 586 72.02 184.608

0.4 0.6 10 599 80.38 191.372

…
 Same Solution Values

…

0.44 0.56 10 599 80.38 218.547

0.45 0.55 10 618 95.71 225.460

…
 Same Solution Values

…

0.69 0.31 10 618 95.71 396.750

270

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.7 0.3 10 633 130.02 404.094

…
 Same Solution Values

…

0.81 0.19 10 633 130.02 488.026

0.82 0.18 10 638 151.83 495.831

0.83 0.17 10 638 151.83 503.729

0.84 0.16 10 638 151.83 511.627

0.85 0.15 10 640 162.69 519.597

…
 Same Solution Values

…

0.99 0.01 10 640 162.69 631.973

0 1 12.5 571 51.92 -51.920

…
 Same Solution Values

…

0.24 0.76 12.5 571 51.92 97.581

0.25 0.75 12.5 593 59 104.000

…
 Same Solution Values

…

0.32 0.68 12.5 593 59 149.640

0.33 0.67 12.5 611 67.54 156.378

…
 Same Solution Values

…

0.45 0.55 12.5 611 67.54 237.803

0.46 0.54 12.5 625 79.22 244.721

…
 Same Solution Values

…

0.5 0.5 12.5 625 79.22 272.890

0.51 0.49 12.5 629 83.32 279.963

…
 Same Solution Values

…

0.8 0.2 12.5 629 83.32 486.536

0.81 0.19 12.5 634 104.1 493.761

0.82 0.18 12.5 638 122.24 501.157

…
 Same Solution Values

…

271

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.88 0.12 12.5 638 122.24 546.771

0.89 0.11 12.5 640 137.09 554.520

…
 Same Solution Values

…

0.99 0.01 12.5 640 137.09 632.229

0 1 15 584 51.92 -51.920

…
 Same Solution Values

…

0.26 0.74 15 584 51.92 113.419

0.27 0.73 15 605 59.5 119.915

…
 Same Solution Values

…

0.38 0.62 15 605 59.5 193.010

0.39 0.61 15 627 72.22 200.476

0.4 0.6 15 610 62.67 206.398

…
 Same Solution Values

…

0.43 0.57 15 610 62.67 226.578

0.44 0.56 15 618 68.92 233.325

…
 Same Solution Values

…

0.51 0.49 15 618 68.92 281.409

0.52 0.48 15 629 80.63 288.378
…

 Same Solution Values

…

0.62 0.38 15 629 80.63 359.341

0.63 0.37 15 633 87.24 366.511

…
 Same Solution Values

…

0.79 0.21 15 633 87.24 481.750

0.8 0.2 15 640 114.9 489.020

…
 Same Solution Values

…

0.99 0.01 15 640 114.9 632.451

0 1 17.5 590 51.92 -51.920

272

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

…
 Same Solution Values

…

0.07 0.93 17.5 590 51.92 -6.986

0.08 0.92 17.5 606 53.2 -0.464

…
 Same Solution Values

…

0.22 0.78 17.5 606 53.2 91.824

0.23 0.77 17.5 619 56.92 98.542

…
 Same Solution Values

…

0.48 0.52 17.5 619 56.92 267.522

0.49 0.51 17.5 625 62.56 274.344

…
 Same Solution Values

…

0.6 0.4 17.5 625 62.56 349.976

0.61 0.39 17.5 629 68.74 356.881

…
 Same Solution Values

…

0.64 0.36 17.5 629 68.74 377.814

0.65 0.35 17.5 631 72.97 384.611

0.66 0.34 17.5 631 72.97 391.650

0.67 0.33 17.5 631 72.97 398.690

0.68 0.32 17.5 640 91.31 405.981
…

 Same Solution Values

…

0.99 0.01 17.5 640 91.31 632.687

0 1 20 616 51.92 -51.920

…
 Same Solution Values

…

0.24 0.76 20 616 51.92 108.381

0.25 0.75 20 631 56.92 115.060

…
 Same Solution Values

…

0.29 0.71 20 631 56.92 142.577

0.3 0.7 20 635 58.61 149.473

273

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

…
 Same Solution Values

…

0.72 0.28 20 635 58.61 440.789

0.73 0.27 20 638 66.62 447.753

…
 Same Solution Values

…

0.85 0.15 20 638 66.62 532.307

0.86 0.14 20 640 78.2 539.452

0.99 0.01 20 640 78.2 632.818

0 1 22.5 638 51.92 -51.920

…
 Same Solution Values

…

0.82 0.18 22.5 638 51.92 513.814

0.83 0.17 22.5 640 61.32 520.776

…
 Same Solution Values

…

0.99 0.01 22.5 640 61.32 632.987

0 1 25 638 51.92 -51.920

…
 Same Solution Values

…

0.8 0.2 25 638 51.92 500.016

0.81 0.19 25 640 59.65 507.067

…
 Same Solution Values

…

0.99 0.01 25 640 59.65 633.004

0 1 27.5 640 51.92 -51.920

…
 Same Solution Values

…

0.99 0.01 27.5 640 51.92 633.081

0 1 30 640 51.92 -51.920

…
 Same Solution Values

…

0.99 0.01 30 640 51.92 633.081

0 1 32.5 640 51.92 -51.920

…
 Same Solution Values

…

274

Coverage

Weight

Distance

Weight

Service

Distance

Total

Covered

Path

Length
Objective

0.99 0.01 32.5 640 51.92 633.081

0 1 35 640 51.92 -51.920

…
 Same Solution Values

…

0.99 0.01 35 640 51.92 633.081

0 1 50 640 51.92 -51.920

…
 Same Solution Values

…

0.99 0.01 50 640 51.92 633.081

