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ABSTRACT 

 

On the Development of a New Class of Covering Path Models 

 

by 

 

Timothy John Niblett 

 

The basis of this dissertation work stems from the fact that if one examines system 

route maps for many bus transit systems in U.S. cities, an interesting pattern emerges.  

Routes often utilize embedded loops to increase accessibility coverage of a system at the 

expense of adding a marginal amount of length to the overall path.   Further, such routes 

frequently share a common corridor with respect to traveling in opposing directions, but 

they may depart spatially from each other in terms of direction. These departures in 

direction represent embedded loops that are traversed in only one direction.  However, 

the literature has not explored this issue, and in fact, often discourages or outright 

prevents any loops from occurring whether they are loops that are traversed in both 

directions or traversed in only one direction.  Furthermore, past research on covering path 

models has not accounted for travel in opposing directions, even when attempting to 

model transit lines.  This is due in part to the roots of the covering path literature. 

This dissertation presents an analysis of past work and from that defines several new 

problems that are ‘loop agnostic’ – that is, they neither prevent nor encourage the 

formation of loops in an optimal route, essentially a new class of covering path problems.  

Although several loop agnostic models are developed in this dissertation to better 



 

ix 

 

represent the maximal covering shortest path problem, these models only capture one 

aspect of loop use.  In the classic Maximal Covering Shortest Path problem, it is assumed 

that its use in transit will be traversed in both directions. Further, the classic formulation 

prevents most loops from occurring. A new form of this model is developed that allows 

loops to be part of a solution, whenever such loops provide an improvement in the 

objective function value.  This model is called “loop agnostic” as the model neither 

prevents nor requires loops to be used in a solution. This means that a loop can be present 

as part of the path, as an out-and-back path or a more complex loop which visits several 

other nodes before returning to a previously visited node, or even as a ‘lollipop’ shaped 

route attached to the origin node or the destination node.  If one assumes that the 

covering path can be traversed both in the outbound and inbound directions (which past 

work has done), any loops that are present will be traversed in both directions and is what 

we refer to as a bi-directional loop.  When addressing the question of bi-directionality in 

real world systems it is possible that a loop is traversed in only one direction.  Such “uni-

directional” loops are formed whenever inbound/outbound paths diverge and can be 

observed in many transit system maps, like those of Bozeman, MT; Eau Claire, WI; and 

San Luis Obispo, CA.  This dissertation also proposes a new problem, the Bi-Directional 

MCSP, and formulates two new models that account for travel based upon inbound and 

outbound path directions which allows for the use of shared arcs and uni-directional 

loops as well as bi-directional loops. 

This dissertation also presents results from the application of these new models as 

well as a new heuristic to a hypothetical test network as well as a real world network 

from Richardson/Garland, Texas.  Results demonstrate that loops are present in many 
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optimal solutions and that the route designs that utilize  loop structures such as a 

‘lollipop,’ ‘barbell,’ and ‘figure eight’ may well be superior to route designs that do not 

incorporate loops. This gives credence to the designs of virtually all transit systems in 

small and medium sized cities in the United States. 
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Chapter 1 

1.1 Introduction 

 

In the late 1970s and the early 1980s two researchers – Slater (1980, 1981) and 

Current (1981) – defined the notion that some facilities should be represented as a path or 

a tree on a network. They reasoned that paths could form the basis for a structure or 

system that provides access or service to surrounding system elements. For example, 

Current suggested that a path might represent a transit line or a bus line that provides 

transit services to those living or working near the designed path. Whereas both Slater’s 

and Current’s research involved structures such as a path defined on a network or graph; 

Current modeled access or service based upon a maximal service/covering distance while 

Slater measured service based upon the sum of travel or access distances to the path or 

structure.  This dissertation is concerned with the former construct where paths provide 

service coverage within a maximum range. 

The initial groundbreaking model of Current (1981) involved finding the shortest 

path on a network connecting a prespecified origin node and a prespecified destination 

node, where the path travels sufficiently close to all other nodes of the network that all 

nodes receive access coverage. This service standard is formally defined as a maximal 

coverage distance or time, S. If a given node is within S distance or time of the path, then 

it is considered to be covered or served by the path. This original problem, in essence, 

involved finding the shortest path that provided coverage to all nodes and has been 

deemed the Shortest Covering Path problem (SCP). Current (1981) and Current et al. 

(1984) developed a model for this problem based upon an integer-linear programming 
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format. They proposed an iterative approach to solving this problem using linear 

programming with branch and bound at each iteration. 

In subsequent work, Current et al. (1985) proposed lifting the condition that all 

nodes must be covered when proposing the Maximal Covering Shortest Path problem 

(MCSP). Their formulation for this problem was an extension of the original SCP model. 

The covering concept was then extended to Travelling Salesman Tour-based problems 

(Current and Schilling, 1989; 1994) and several other formulations and solution 

approaches have been proposed (Current, Pirkul, and Roland, 1994; Curtin and Biba, 

2011; Wu and Murray, 2005; Matisziw et al., 2006; Boffey and Narula, 1998).  With the 

exception of Curtin and Biba (2011), subsequent research involving the SCP and the 

MCSP problems and their extensions have been built on the basic model forms of the 

original papers of Current et. al. (1984 & 1985). Although Current and Biba formulated 

their model using a different format proposed in the Traveling Salesman Problem (TSP) 

literature, their model conforms to the basic premises underlying the original papers on 

SCP and MCSP.  

There is an inherent assumption that has often not been stated explicitly when 

covering path model constructs are designed. This assumption deals with the direction of 

service. For example, if the path represents a transit route (Matisziw et. al., 2006; Wu and 

Murray, 2005; Current et. al., 1984, 1985; Murray and Wu, 2003), then it is assumed that 

the route is traveled in both directions. Thus, access is provided when traveling on the 

route whether heading towards one end of the path or towards the other end of the path. 

This seems to be a reasonable and consistent assumption as many transit routes typically 

involve bus or rail service along a path in both directions – e.g. a bus will travel in each 
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direction for a route located along a particular road.  At first blush, it may be hard to think 

of any counter examples to this rule. The second inherent assumption in past work is that 

an optimal path will never loop back on itself.  In fact, basic intuition seems to support 

the notion that if a path loops back and returns again to the same node, then that path is 

longer than needed.  After all, why return to a node you’ve already been to?  Clearly, 

such a circumstance seems to be inferior and therefore not optimal. For example, Curtin 

and Biba (2011) state that they formulated their TRANSMax transit model so that the 

path will not cross itself (and thereby produce a loop). In another example, Current et al. 

(1985) in formulating their maximum population covering path model include explicit 

constraints which stipulate that a node may be entered at most once along the path. This, 

too, is another form of preventing a path from looping back or crossing another part of 

the path.  

Until the work of Niblett (2013) and Niblett and Church (2016), there has not 

been any question as to whether these two implicit, and sometime explicit, assumptions 

are true and hold when identifying optimal covering paths.  Niblett (2013) and Niblett 

and Church (2016) demonstrated that for the original SCP, an optimal, complete covering 

path may involve the use of one or more loops/tours as an optimal solution. To do this 

they developed a new form of “sub-tour-breaking” constraints, a modified SCP model, 

and demonstrated how these new constraints could be used in an additive and iterative 

fashion similar to that of Dantzig et. al. (1954) and Current et al. (1984) to generate 

optimal solutions to an unrestricted SCP problem. This work clearly demonstrated that 

the implicit constraint imposed in the original SCP could not be supported when 

identifying and guaranteeing an optimal solution. 
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In this dissertation we extend the concept that optimal solutions may be 

comprised of loops/tours connected by a path or a path having attached loops/tours for 

the Maximal Covering Shortest Path problem. Three new formulations are presented for 

the following problems: the Maximal Covering Shortest Path problem, the Maximum 

Population Shortest Path problem, and the TRANSMax problem.  In addition, a new 

heuristic algorithm is proposed for solving the unconstrained Maximal Covering Shortest 

Path problem and computational results are presented.  

In a separate vein, this dissertation also explores the underlying assumption that a 

path represents a structure that is to be traveled in both directions. It can be observed that 

on public transit systems, a bus route or path may differ depending on which arcs are 

traversed which itself can be based upon the direction traveled.  Sometimes this is done 

because the underlying network contains one-way roads and the bus route travels in 

parallel street segments depending on the direction of travel and street restrictions.  Thus, 

the route may be separated by a city block but can otherwise be thought of as traveling in 

the opposite direction because it is not possible to traverse the same arc in the opposite 

direction.  However, at other times it can be seen that travel along the two directions may 

be for the purposes of efficiently increasing access coverage. This can be observed in the 

map of routes used in the City of Bozeman, Montana given in Figure 1.1. 

Each route contains loops and paths that may or may not be traversed in each 

direction.  To model this type of design, this dissertation proposes a new path model 

called the Bi-Directional Maximal Covering Shortest Path problem (BD-MCSP).  This 

problem involves determining a route composed of two path directions, one going from 

the origin to the destination (forward) which is the outbound path and the other going 
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from the destination to the origin (reverse) which is the inbound path.  For both paths, a 

certain proportion of the route length involves arcs that are traversed in both directions 

(forward and reverse directions).  This means that geographically, routes may be 

essentially the same in most respects for both directions, but deviations from the shared 

route structure are made in one direction or the other to efficiently increase coverage.  

Whereas the MCSP accounts for coverage and path distance in only one direction, this 

model accounts for coverage and path distances in both forward and reverse directions. 

 

 

Figure 1.1 - Route Map for the City of Bozeman, MT. Permission to publish the system map has been generously 

given by the City of Bozeman. 

 

      The dissertation is organized as follows. Chapter 2 presents a review of the 

relevant literature.  This includes a review of related models as well as several solution 

procedures and heuristics.  Chapter 3 presents revised models for the MCSP and the 
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Maximum Population Shortest Path (MPSP) problems that overcome the restrictions 

inherent in the previous formulations of this model.  This chapter also presents 

computational experience in solving this problem as well as several example solutions 

that demonstrate that this model can find better solutions than the original models of 

Current et al. (1985).  Chapter 4 presents a new heuristic solution strategy for the revised 

MCSP.  The focus of this heuristic is to generate ‘good’ solutions on large problems 

where the determination of optimal solutions takes a large amount of time.  Chapter 5 

addresses the Transit Arc Node Service Maximization Problem (TRANSMax) problem 

that was proposed by Curtin and Biba (2011).  Their model restricts solutions from 

crossing or looping where the model form employed by Curtin and Biba is quite different 

from that of Current et. al. (1984, 1985).  This chapter presents a new formulation for the 

TRANSMax problem – TRANSMax II – that can allow for crossing or looping while 

retaining the other features of their model.  An application of this model is developed for 

the Garland/Richardson, Texas area.  An example is shown where an embedded loop is a 

part of the optimal path/route.  Chapter 6 presents details on a new problem called the Bi-

directional Maximal Covering Shortest Path problem (BD-MCSP).  This type of model 

accounts for travel in both forward and reverse directions – e.g. travel from a point A to a 

point B and the return (reverse) trip from point B back to point A.  Several model 

formulations are developed and applied to example problems based upon the Swain 

dataset.  We show that allowing flexibility in the design based upon route direction can 

improve service at little extra expense.  Finally, Chapter 7 provides a summary of the 

contributions of this dissertation as well as the needs for future research.
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Chapter 2 
 

2.1 Introduction 

 

This chapter will review the major research concerning covering paths up to the 

present. It is divided into the following sections: Key Problems, Extended Problems, 

Solution Approaches, and Concluding Remarks.  Each section will examine key 

problems and topics with respect to the classic Maximal Covering Shortest Path problem 

and will discuss the related formulations as well as the broader impact of each topic.  All 

model formulations will be given in a Mathematical Programming format.  This means 

that each model will have an objective that is to be optimized as well as constraints that 

are necessary to meet pertinent conditions defining feasibility. 

The Key Problems section presents several problems that are critical in the 

development of the Maximal Covering Shortest Path Problem.  The Extended Problems 

section discusses related problems to the Maximal Covering Shortest Path problem and 

the broader impacts that they have.  The Solution Approaches section outlines several 

methods that have been developed to solve covering path problems which will be useful 

for the development and implementation of the proposed heuristic in this dissertation.  

The final Concluding Remarks section is a brief overview of the papers and methods 

discussed as well as their relevance to the new formulations presented in this dissertation. 
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2.2 Key Problems 

 

In order to trace the lineage of the Maximal Covering Shortest Path Problem one 

must look at several models that have been developed in the location science literature.  

These key models are as follows: the Traveling Salesman Problem, the Location Set 

Covering Problem, the Maximal Covering Location Problem, the Shortest Path Problem, 

the Shortest Covering Path Problem, and the Maximal Covering Shortest Path Problem.  

Each of these problems are presented in the context of covering models, path models, and 

their synthesis into covering path models.  The last segment of the first section focuses on 

some nuances that need to be addressed in terms of a priori assumptions of past work. 

The first key problem underpinning the research of this dissertation is the 

Traveling Salesman Problem (TSP).  The goal of formulating and solving a Traveling 

Salesman Problem is to find the shortest route through a network such that each node 

(often representing a city) is visited at least once.  This problem was defined nearly 200 

years ago – the oldest known reference to a traveling salesman tour comes from a 

handbook published for traveling salesman routes in Germany and Switzerland in 1832.
1
  

However, the problem itself is rooted in the 7 Bridges of Königsberg Problem supposedly 

proposed to Leonhard Euler in the 1730’s by the town fathers of Königsberg, Prussia.  

Euler was asked to find a parade route which would traverse the seven bridges of 

Königsberg once and only once.  Euler proved that this was impossible to do in 

Königsberg’s case, based upon a derived network representation and properties of this 

                                                 
1
 "Der Handlungsreisende – wie er sein soll und was er zu tun hat, um Aufträge zu erhalten und eines 

glücklichen Erfolgs in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur" (The 

travelling salesman — how he must be and what he should do in order to get commissions and be sure of 

the happy success in his business — by an old commis-voyageur) 
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network.  This work became the initial basis of the field of Graph Theory (Euler, 1741).  

The problem of determining a route which traverses every arc only once (as opposed to 

the TSP visiting every node) has become known as the Chinese Postman Problem due to 

the translation of the work of a Chinese mathematician, Kwan Mei-Ko, in the early 

1960’s. 

The Traveling Salesman Problem, although having early practical interest, was 

found to be a very difficult problem to solve.  Interestingly, the handbook from 1832 

mentioned above presented a route that has more recently been found to be within 3% of 

an optimal solution – this can be seen in Figure 2.1 (Schrijver, 2003).  However, it has 

been pointed out that if one takes into account the road conditions of the time, the 

solution offered in the handbook may even be the optimal solution!  Nevertheless, 

although this solution comes very close to optimality, problems of this size remained 

computationally unsolvable to proven optimality until the advent 

of modern computers. The first modern mathematical work on routing involved school buses in 

  

Figure 2.1 – Solution to a Traveling Salesman Route from 1832 with a Modern Comparison as found in 

Schrijver, 2003. 
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the 1930s (Dantzig, et. al., 1954).  By the 1950’s the advent of mathematical 

programming and the use of primitive digital computers finally allowed larger problems 

to be solved, and in 1954 Dantzig, Fulkerson, and Johnson formulated the first 

mathematical programming model.  Since this is the first true mathematical formulation 

to be developed, and given that it is still used today (see Orman and Williams, 2006), it is 

given below as: 

  , ji indices used to reference the nodes of a given network 

  ijc the cost of traversing the arc connecting node i to node j 

  ijx decision variable for whether the arc connecting node i to node j is on the tour; its 

value is one if the arc is used and zero if not 

  n the total number of vertices (v) that comprise the network 

 V  the set of all vertices/nodes 

  S  represents a set of subsets of V in which it is possible to draw a sub tour 

 





ji

ijij xc   ZMinimize                                                                                                                          (2.1) 

n)1,...,(i 1

    ToSubject 

,1




n

ijj

ijx
                                                                                                                           (2.2) 

n)1,...,(j 1
,1




n

jii

ijx                                                                                                                             (2.3) 

2)SV,( 1
,




SSx
n

Svv

ij

ji

                                                                                                         (2.4) 

  );,...,1,(1,0 jinjixij                                                                                                       (2.5) 

The formulation utilizes a cost array ( ijc ) and a set of binary decision variables 

( ijx ) which are used to represent the arcs chosen for the tour and their associated costs; S 

represents the set of subsets of all vertices V in which it is possible to draw a sub tour.  
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The objective given in (2.1) minimizes the total cost for the tour.  Constraint (2.2) ensures 

that, for each node i, one arc is used which ‘leaves’ that node.  Constraint (2.3) ensures 

that at least one arc is used which ‘arrives’ at each node j.  Constraint set (2.4) ensures 

that sub-tours cannot be a part of any solution.  This type of constraint is referred to as a 

sub-tour breaking constraint.  This set of sub-tour elimination constraints requires that for 

each subset S comprised of V vertices, the sum of the arcs used to connect the vertices V 

comprising that subset of S must be less than or equal to the total number of nodes in that 

set minus 1.  Essentially, this constraint makes it impossible to have a complete loop 

between the nodes in the set S.  Constraints of type (2.5) are simple binary constraints 

which restrict the value of each ijx  to either zero or one in value which indicate whether 

the arc from node i to j is not used or used in the solution. 

This formulation is of critical significance for this dissertation for two primary 

reasons.  The first reason is that, as noted above, the problem is one of the first 

formulations of a routing problem.  However the second reason is quite significant with 

respect to the scope of the dissertation and that is due to the way this model has been 

solved.  Although constraint (2.4) in the Dantzig, Fulkerson, and Johnson formulation 

specifies that all possible sub-tour sets should be prevented, the authors noted that this 

would be impractical and suggested a constraint adding strategy to solve the TSP.  In 

essence this meant that one would solve a problem without constraint set (2.4), identify 

any sub-tours that appeared in the solution, define constraints of type (2.4) which would 

prevent these sub-tours from occurring, and then resolve the problem, and then repeat the 

process as necessary until no sub-tours are identified within the solution. 
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This process is significant because it has largely been carried over into the 

covering path literature, and is even suggested by Orman and Williams (2006) to be the 

most efficient method used to solve the TSP problem to optimality by mathematical 

programming.  Although there is nothing inherently wrong with adding these sub-tour 

breaking constraints in an additive fashion in solving a TSP on a complete graph, there 

are nuances that should be considered when the method is applied in the solving the 

shortest covering path problem (Niblett and Church, 2016).   The main contribution of 

this TSP formulation with respect to the covering path literature is that the sub-tour 

breaking constraints (2.4) are consistently used in the formulation of most models. A 

second element that is important to note is that this model was designed for a complete 

network.  A complete network is one in which there is an arc between every pair of nodes 

(i.e. nn 2  arcs).  

The second type of problem that is important to consider is the shortest path 

problem.  The notion of traveling the shortest distance between one place and another has 

most likely occupied the mind of man from prehistoric times as they searched for shelter, 

water, or food.  The first written reference of the shortest distances between places seems 

to be that of John Norden in 1607.  The Norden map was the first gazetteer map which 

referenced not only places but also tried to convey topography and distinctive features 

along with a portion of local history.   
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Figure 2.2 - Triangular Distance Table from John Norden's England, an Intended Guyde for English Travailers 

in 1625 

 

By 1625, Norden updated his map to include a modern triangular distance matrix that one 

could use to determine the distance from one city to another within Hampshire, England 

which is shown in Figure 2.2.  However, the mathematical inquiry into calculating the 

true shortest distance between points was not investigated until relatively recently; the 

first inquiries often dealt with routes through a maze and were done in the late 19
th

 

century (see Schrijver, 2012 for an excellent overview of these problems). In the late 

1950’s, as the advent of computer processing became more widespread, attempts were 

made to find the shortest route through algorithmic means.  The Bellman-Ford algorithm 

was the first to appear (Bellman, 1956) although Dijkstra’s algorithm is probably more 

well-known (Dijkstra, 1959). 

In terms of a mathematical formulation, Orden (1956) and Dantzig (1957) were 

the first to describe the shortest path problem as an optimization model utilizing linear 
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programming.
2
  Although Orden and Dantzig both formulated this problem as a linear 

programming model, the simplest form is that of Dantzig which will be presented here.  

The formulation is given as: 

},{ jiA  the set of arcs such that an arc connects node i and j in the network 

ji,  indices representing nodes on the network 

ijd the shortest distance or time needed to travel from node i to node j 

ijx  decision variable which is one if arc(i,j) is on the path and traversed from i to j and 

zero if not 

1node = the assumed starting node 

nnode = the assumed terminus node 

} exists),(|{ AjiarciN j   

 





jNi j

ijij xdZMinimize                                                                                               (2.6) 

1

ToSubject 

1

1 
Ni

ix                                                                                                                      (2.7) 

1
 nNi

inx                                                                                                                        (2.8) 

,njjxx
jj Ni

ji

Ni

ij 1 ; allfor 0 


                                                                              (2.9) 

}1,0{ijx                                                                                                                      (2.10) 

 

This formulation is based upon labeling each node with an index from 1, 2, 3, …, 

n. The indices i and j are used to refer to any specific node of the network.  The above 

formulation is based upon the assumption that the arcs are undirected and that travel and 

distance in one direction on an arc need not be the same as the other direction.  For each 

node j we can define a set of arcs that connect node i to its adjacent neighbors as 
iN .  

The decision variables, ijx , are used to specify whether a given arc is traversed in the 

direction of i to j in the shortest path.  The objective (2.6) is to find the least cost path 

                                                 
2
 Dantzig mentions that his paper was based on a conference presentation made in 1955.   
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through the network.  Constraint (2.7) ensures that one arc is chosen to leave the origin, 

that is, the path departs from the origin.  In a similar manner, constraint (2.8) ensures that 

the path reaches the destination.  Constraint (2.9) is a “balance” constraint that is included 

for each intermediate node (that is, all nodes except the origin and destination nodes).  

This constraint maintains that if an arc is used to enter a node, then an arc must be used to 

leave that node.  Constraints of type (2.9) also maintain that if the path does not enter a 

node j, then it also must not leave that node. Constraint (2.10) is a binary variable 

constraint which insures that an arc is either used or not used in the shortest path.  When 

this model is solved it will generate the optimal shortest path if one exists.
3
  The concept 

for this formulation is relatively simple, but it is a critical component of the covering path 

literature in that the constraints given above (2.7-9) are used in virtually all covering path 

model formulations. 

The other critical component one must have in order to create a covering path is a 

method to maintain coverage or define if it has been provided.  In order to understand and 

follow the development of the covering path literature, we must then exam the models 

that have been formulated to cover demand nodes.  Toregas et. al. (1971) are often 

attributed to be the first to propose a location problem to cover demands. Toregas et. al. 

(1971) proposed to find the smallest number of needed facilities and their locations such 

that all demands are covered.  They defined that a demand point is covered if a facility is 

placed within a maximal service distance or time of that demand.  They called this the 

Location Set Covering Problem (LSCP).  The LSCP has been used as the basis for 

locating bus stops, emergency service facilities, and other public facilities such as 

                                                 
3
 A path will not exist when a network is disconnected with respect to its origin and destination. 
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libraries. The impact of this model in application has been quite extensive, particularly 

with respect to applications where complete coverage is of the utmost importance. 

Toregas et. al. (1971) assumed that any point of demand is also a potential 

location point (although this assumption is not necessary) and that every point of demand 

must be covered (that is, it must be served within a maximal service distance or time 

denoted by S).  The problem is formulated as follows: 

xi = 1 if a facility is allocated to site j, 0 if not  

S = maximum distance/service time 

dij = the shortest distance/time from node i to node j 

Ni = {j in the set J | dij  ≤ S } the set of nodes within s distance/time of i that can provide 

acceptable service coverage 

 





n

j

jxZMinimize
1

                                                                                                                          (2.11) 

Iix
iNj

j 


,1

ToSubject 

                                                                                                           (2.12) 

}1,0{jx                                                                                                                       (2.13) 

 

The objective (2.11) in the LSCP is to locate the smallest number (i.e. the 

minimum number) of needed facilities jx .  Constraint (2.12) ensures that there is at least 

one facility that covers each demand point within the maximal service distance or time S.  

The members of each set 
iN  are calculated for every node and are dependent upon the 

maximal service distance, S.  If S is set lower than the lowest ijd  (where ji  ) then 

every site must be chosen for the solution, as no site will be able to cover any demand 

other than itself; whereas, if S is a very large number and the distances are significantly 
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smaller it may be possible that one site coves all demand.  Constraints of type (2.13) are 

simple binary constraints which ensure that no fractional solutions are feasible. 

In terms of coverage this is one of the first models proposed to optimally cover 

demand with public resources in mind.  One can see how it would be of particular 

importance in that there are many services like fire protection, ambulance location, and of 

course rapid transit in which it would be ideal to cover an entire city with accessible 

services.  In terms of applicability to a wide variety of public spatial problems, this 

formulation has been immensely useful.  The drawback of this model is that when it is 

applied the cost of complete coverage may exceed the resources available.  To address 

this limitation, Church and ReVelle (1974) proposed the Maximal Covering Location 

Problem.  Instead of requiring complete coverage as in the LSCP, the MCLP involves 

maximizing coverage while limiting the number of facilities (i.e. fire stations, etc.) being 

used.  Whereas the Location Set Covering Problem calls for coverage of all demand, the 

MCLP represents a relaxation of this requirement and can be used to generate a tradeoff 

between facilities used and coverage provided. The point on this tradeoff at which 

complete coverage is provided is a solution to the location set covering problem.  

Consequently, one can think of the MCLP subsuming the LSCP as a special case.  

Church and ReVelle (1974) formulated the MCLP as an integer-linear programming 

model using the following notation:  

I = set of demand nodes 

J = set of facility sites 

S = distance beyond which there is no coverage 

ijd  = the shortest distance from node i to node j 

jx  = 1 if a facility is allocated to site j, 0 if not 
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iN = { j in the set J | ijd  ≤ S } 

ia  = population or other measure of demand at node i 

p = total number of facilities to be located 

 





Ii

ii yaZMaximize                                                                                                    (2.14) 

Iiallforyx i

Nj

j

i




ToSubject 

                                                                                              (2.15) 

px
Jj

j 


                                                                                                                                              (2.16) 

Jjallforx j  )1,0(                                                                                                                  (2.17) 

Iiallforyi  )1,0(                                                                                            (2.18) 

In the MCLP formulation, we have an index of demand areas/points, i, and an 

index of facility sites, j.  We also have a distance matrix ijd  which is the distance 

between a demand point i and a facility site j.  There is a maximum service distance of S 

which is used to define the coverage sets 
iN  which list the set of sites which could 

provide cover to demand i should any site in the set be selected for facility placement. 

The objective function (2.14) of this model is to maximize the total demand covered.  

Site selection is represented by the decision variable jx .  The provision of coverage is 

tracked using the variable 
iy  which is 1 if demand i is covered and 0 if it is not.  

Constraint (2.15) allows node i to be counted as covered only when one or more facilities 

have been located which cover demand i.  The second constraint restricts the total 

number of facilities used to be equal to p.  Church and ReVelle noted that this problem 

can be set up as a minimization problem by minimizing what is not covered by 
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substituting ii yy 1  into the problem where iy  is 1 if i is not covered and 0 if it is.
4
  If 

we then substitute in the variables, we would have the following objective function: 

)( 



Ii

ii

Ii

i yaaZMaximize                                                                                                 (2.19) 

 

which then simplifies to: 

   





Ii

ii yaZMinimize                                                                                                    (2.20) 

since the maximization of a negative number is the same as the minimization of the same 

positive number (Church and ReVelle 1974). Constraint (2.15) would also then be 

reformulated using the same variable substitution as (2.21): 

 1


i

Nj

j yx
i

                                                                                                            (2.21) 

As mentioned above, one would be able to develop a cost benefit curve by solving 

for a range of values of p until a solution is obtained in which there is complete coverage.  

The flexibility of the MCLP in terms of being able to vary the number of facilities used 

for coverage has made this formulation quite useful and it has had many applications in a 

wide variety of spatial (and even some non-spatial) problems.  In particular it has been 

used for fire station location, ambulance location (Schilling et. al., 1979; Daskin, 1983; 

Hogan and ReVelle, 1986, 1989; Marianov and ReVelle, 1996; Brotcome, et. al., 2003), 

mapping chaparral (Roberts, et. al., 1998), reserve site selection (Church et. al., 1996), 

humanitarian relief (Balcik and Beamon, 2008), selecting tooth color shades (Cocking, et. 

al., 2009), among many more spatial location applications.   

                                                 
4
 Setting the Maximal Covering Location Problem up as a minimization can often be desirable in order 

to suit the specific requirements of the problem being solved.  One can computationally transform a 

problem as well by changing from a primal form into the corresponding dual.  More on duality theory can 

be found in Introduction to Operations Research (Hillier and Lieberman, 1995). 
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Up to this point we have examined the Traveling Salesman Problem, the Shortest 

Path Problem, and the major location covering problems (LSCP and MCLP).  We will 

now look at the fusion of covering and path problems in the form of the Shortest 

Covering Path problem (SCP) and the Maximal Covering Shortest Path problem (MCSP).  

These two problems each respectively represent a merging of the LSCP and the MCLP 

with the Shortest Path Problem.  In terms of the covering path literature, Current et. al. 

(1984) were the first to propose the Shortest Covering Path Problem.   

The Shortest Covering Path Problem involves finding the shortest path from an 

origin to a destination which passes within a maximal access distance/time of all nodes of 

the network.  In the formulation proposed by Current et. al., the origin and destination 

nodes are also prespecified.  Relevant applications of this problem include air delivery 

services, newspaper or other goods distribution, subway or other transit line creation, or 

even a way for a developing nation to determine where to upgrade infrastructure.  The 

critical assumptions of the problem are as follows: 1) demand exists at every node, 2) all 

demands must be covered, 3) demands are covered if a node is directly on the path or is 

within the maximum service distance of a node on the path, 4) the system being modeled 

is uncapacitated, 5) all arc costs are non-negative, and 6) there are no budgetary 

constraints on the length/cost of the path.  The ILP model is defined using the following 

additional or modified notation: 

 ijx 1 if the arc from i to j is on the shortest covering path and 0 otherwise 

 1 node  the starting node for the shortest covering path 

   node n the terminus node for the shortest covering path 

S* the maximum allowable service distance/time 
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  }  { S*j|dS jkk  the set of nodes j which are within the maximum service distance to 

node k 





jNi j

ijij xdZMinimize                                                                                                 (2.22) 

1

ToSubject 

1 
 iNi

ix                                                                                                                                            (2.23) 

1
 nNi

inx                                                                                                                                               (2.24) 

njjjxx
jj Ni

ji

Ni

ij 


 and 1  where , 0                                                                               (2.25) 

nkkkx
j kNi sj

ij 
 

 and 1  where , 1                                                                                       (2.26) 

)( , }1,0{ i,jxij                                                                                                            (2.27) 

In this formulation the objective (2.22) minimizes the total cost or length of the 

path, while ensuring all nodes are covered by the path.  In terms of the SCP model 

constraints, Constraint (2.23) ensures that the path starts at a pre-specified starting node 

(given in the paper as node 1) and constraint (2.24) ensures that the path terminates at a 

pre-specified node (designated as node n).  Each of these constraints specifies that only 

one arc may be used to leave the origin node and only one arc may be used to enter the 

destination node.  These two constraints together then establish our origin and destination 

nodes respectively for the covering path.  Constraint (2.25) is a flow balance constraint 

where if a path enters a node, it must exit that node.  This constraint is written for all 

nodes except the origin and terminus nodes.  This constraint ensures that the covering 

path is a sequence of connected arcs.  Constraint (2.26) is the coverage constraint which 

requires that each demand node must be within S* distance of a given arc comprising the 

covering path.  The set kS  in constraint (2.26) represents the set of arcs that passes within 

a maximal distance S of a given demand node k, based upon the ending node of each arc 
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chosen for the path.  The sum of the arcs that are used within this set has to equal or 

exceed 1 – in other words each demand must be covered at least once. 

The idea behind the SCP formulation is that each demand node must be covered 

at least once and that the shortest possible path that does so must be found.  However, 

when this model is solved on a network the solution that is obtained is likely to include 

what are called sub-tours.  Sub-tours are a set of arcs that form a loop or an unattached 

tour which is not connected to the covering path (hence the sub-tour moniker).  

Technically speaking, these are the same elements that Dantzig et al. (1954) eliminated 

with their sub-tour breaking constraints in the Traveling Salesman Problem. The reason 

that these sub-tours form is that the model does not implicitly contain constraints to 

eliminate the so called sub-tours which may appear in a solution.  Current et al. (1984) 

suggest that if sub-tours appear in a solution, the same sub-tour breaking constraints (2.4) 

as Dantzig et al. suggested should be employed and the problem re-solved.  That is, the 

problem should be solved, the solution should be checked to see if any sub-tours exist, 

and if they do, add the associated constraints (2.4) which prevent these tours from 

forming and then the problem should be re-solved.  This procedure is then repeated until 

no such tours appear in the solution.  The reason that such sub-tours must be addressed is 

that they are anomalies that, unless prevented, will erroneously provide coverage away 

from the selected path due to the fact that they are ‘unattached.’  Niblett and Church 

(2016) noted, however, that the process for preventing these sub-tours must be properly 

applied as a Dantzig et. al. type constraint can impose conditions leading to a sub-optimal 

result. 
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In the covering path literature it has been assumed that, just as in the Traveling 

Salesman Problem literature, an attached loop or tour is undesirable.  It should be noted 

that in the TSP literature it is assumed that all arcs form a complete graph, that is, a graph 

in which each node is adjacent (connected) to every other node.  If one utilizes this kind 

of graph then it does indeed make sense to prevent any sub-tours.  However, as one can 

easily observe on real world maps, it is impossible to go from one node directly to all 

other intersection nodes.  Since we are searching for covering paths which, ostensibly, are 

going to travel on a real world network map, we are unlikely to utilize a complete graph 

and this key nuance will affect a covering path route if sub-tour adding constraints are not 

added properly (Niblett and Church, 2016).  A detailed explanation of how this is 

addressed will be discussed later in this chapter.  However, before we examine these 

nuances I want to first discuss the formulation of the Maximal Covering Shortest Path 

problem. 

The Maximal Covering Shortest Path problem (MCSP) is a fusion of the Maximal 

Covering Location Problem (MCLP) and the Shortest Path Problem (SPP).  In many 

ways it is a natural extension of the Shortest Covering Path problem (SCP) just as the 

MCLP is a natural extension of the Location Set Covering Problem (LSCP).  This is due 

to the fact that, just as in the LSCP, the SCP problem requires that every demand node be 

covered.  This means that there is less flexibility to determine tradeoffs with respect to 

coverage and overall path length/cost.  Current et. al. (1985) formulated the MCSP such 

that these two competing objectives are addressed through the use of a multi-objective 

modeling framework.  In this case, the MCSP involves two objectives; each weighted by 

an importance factor.  The model formulation and notation is given below as: 
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ka  population at k 

  weight associated with the coverage objective 

  1  weight associated with the distance objective 

  ijd the shortest distance/time from node i to node j 

 ijx one if the arc from i to j is on the shortest covering path 

ky  one if node k is covered and zero if it is not 

 1 node  the starting node for the shortest covering path 

   node n the terminus node for the shortest covering path 

  } exists ),arc( { jii|N j  the set of nodes i which are connected to j 

S* the maximum allowable service distance/time 

  }  { S*j|dS jkk  the set of nodes j which are within the maximum service distance to 

node k 


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


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2

n

k

kkC yaZ   


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ijijD xdZ   

DC ZZ  Maximize                                                                                                        (2.28) 
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ij 
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 and 1  where , 0                                                                               (2.31) 
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j kNi sj

kij 1,, , 0 
 

                                                                                   (2.32) 

)( , )1,0( i,jxij                                                                                                                                   (2.33) 

kyk   , )1,0(                                                                                                                (2.34) 
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In the model representation, the summation of 
kk ya  in the objective function 

(2.28) represents the total of what is covered with the exception of the starting and ending 

nodes – node 1 and node n respectively.  If 
ky  is 1 then the associated population 

ka is 

counted as being covered.  In this objective, maximizing the first term represents 

maximizing the demand covered by the path.  Similarly there is a competing objective in 

which we want to keep the path as short as reasonably possible.  The overall length of the 

path is represented as the sum of the ijij xd terms.  If arc ijx is utilized in the solution 

)1( ijx , then the associated distance, ijd , is included.  The sum of the associated 

distance/cost values, ijd , corresponding to selected arcs, ijx , yields the path length. When 

multiplying these values by a negative one (e.g. -1), the objective is reversed and is 

equivalent to minimizing path length.  Altogether the objective is a composite of 

maximizing path coverage and minimizing path cost/length where each objective is 

weighted by importance factors  and  .  Current et. al. (1985) formulated the coverage 

objective such that 2k  to n-1 in order to account for the fact that the starting and 

ending nodes are explicitly specified in the problem and are automatically covered.  One 

could, however, sum from k = 1 to n and include the starting and ending nodes and obtain 

the same covering path solution.  Ignoring these two nodes in coverage does not impact 

the solution at optimality and requires two fewer variables – 1y , 
ny  – and two fewer 

constraints. 

The model constraints for this formulation are similar to those we have seen 

earlier in this section due to the fact that this model formulation is a fusion of the MCLP 

and the SPP.  In this model formulation, Constraint (2.29) ensures that only one arc on 
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the path leaves the origin node and constraint (2.30) ensures that only one arc on the path 

arrives at the destination node.  Taken together these constraints ensure that a path has a 

specific origin and destination.  Constraints of type (2.31) require that, for each 

intermediate node, if an arc on the covering path enters that node then there must also be 

an arc on the covering path which leaves that node.  The reason for excluding the origin 

and destination nodes in constraint (2.31) is that Constraints (2.29) and (2.30) handle the 

specific case of the origin and destination.  If the origin and destination nodes were not 

excluded we would have an ill-defined model.  Constraints of type (2.32) are a modified 

form of the coverage constraint (2.15) in the Maximal Covering Location Problem.  In 

this case, constraints of this type are defined such that variables which represent arcs 

instead of specific node locations are used.  Specifically, if an arc is used which passes 

within S* distance/time of node k then node k is covered and 
ky  can equal 1.  Constraints 

of type (2.33-34) are simple binary constraints which are included in order to prevent 

fractional variable values that do not conform to the problem description. 

Since this problem is multi-objective in nature, having an objective for coverage 

and an objective for path distance, this model may result in a number of different non-

inferior/Pareto optimal solutions, each uniquely defined by how much emphasis is placed 

on one objective versus the other.  We can identify those solutions which lie on the 

pareto-optimal trade-off curve by modifying the objective function.  This is done through 

the use of the weighted terms    and  ; a plot of these solutions obtained in this fashion 

can then be used to display the tradeoff curve.  We can accomplish this by the use of the 

following modified composite objective: 
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 


 i j

ijij

n

k

kk xdyaZ )()(   Maximize
1

2

                                                                (2.35) 

where  and   represents weight values that can vary from zero to one.  Conversely, we 

can define 1  without any loss of generality.  This will allow us to make easily 

comprehensible weight values.  For example, if we emphasize coverage ( ) as 0.6 then 

the emphasis on overall path length (  ) would be 0.4 which means that we would value 

coverage more than path length.  Optimal solutions can be generated by solving the 

model for a range of values   and  .  The results can be plotted to view the tradeoff 

between coverage and overall path length. 

Current et al. (1985) also note that the MCSP can be modified via some structural 

adjustments into a problem defined as the Maximum Population Shortest Path, or MPSP, 

problem.  This problem is defined for the case when the maximum coverage distance, S*, 

is zero.  This, in turn, implies that in order to be covered, a node must be a part of the 

path rather than within some distance of the path.  This allows the objective function to 

be recast as:  
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   Maximize                                                                         (2.36) 

Constraints (2.29-31) and (2.33) remain the same and constraint (2.32) is simplified to: 

1 ,  , 1 


jjx
jNj

ij
                                                                      (2.37) 

which requires that no more than one arc may enter any given node (Current et al. 1985).  

This change reduces the number of variables in the problem which in turn reduces the 
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overall problem size.  The change also has the effect of making the problem more akin to 

a TSP in that each node can only be visited once.  As noted above, however, this may 

cause problems as a loop or return trip may be required to cover every node which would 

require a node appearing more than once in the route.  This feature is expressively 

eliminated by constraints (2.37).  Additionally, both the MCSP and its modified 

counterpart, the MPSP, suffer from the same issues as the SCP with respect to the way 

the problems are solved.  Just as in the SCP, sub-tours are likely to occur in the solution if 

one solves the model as formulated.  Thus, there may be one or more of these loops, or 

sub-tours, which exist independent of the covering path.  In order to solve the problem to 

meet the stated criteria of having one contiguous covering path, that is one continuous 

path without any loops or sub-tours, a series of sub-tour breaking constraints (2.4) must 

be formed and added to the model and the model re-solved a number of times until no 

sub-tours exist in the resulting solution. 

In solving the model, one needs to check the results and determine if any sub-

tours are present.  If it is determined that any sub-tours occur in the solution, the model is 

amended to prevent them by adding constraints for each sub-tour and then the problem is 

re-solved just as in the SCP.
5
  The procedure for doing so is the same as that described 

for the SCP problem and is borrowed from the work of Dantzig, Fulkerson, and Johnson 

(1954).  We must keep in mind that the DFJ sub-tour elimination process was developed 

within the context of a complete graph while the SCP and the MCSP/MPSP have been 

defined in the context of an incomplete graph.  This nuance may actually result in an 

                                                 
5
 The authors note that since this model is set up as a bi-objective problem, there is a discrete set of 

non-inferior solutions which are called Pareto optimal.  For more information please refer to Multi-

Objective Programming and Planning by J. L. Cohon. 
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infeasible solution for a given problem even when a true feasible solution exists.  The 

MPSP as formulated and solved by Current et. al. (1985) is particularly susceptible to this 

kind of issue although a similar result could occur on any of the covering-path type 

models given the right set of network conditions (See for example Figure 2.3).  Niblett 

and Church (2013) were able to show that by utilizing the constraint structure developed 

by Dantzig, Fulkerson, and Johnson (1954) the optimal solution to a problem may, in 

fact, be overlooked.  They also note that the work of Current et al. (1984 and 1985) 

expressively excludes the possibility of having any attached loops.  The underlying 

assumption is that a loop/tour in the path is both undesirable as well as not optimal.  

Thus, it was thought that any loops, attached or otherwise, should be prevented.  

Although this approach seems reasonable and accurate, it is flawed and can be explained 

using an example of Niblett and Church (2016). 

The sub-tour breaking constraint utilized in the process developed by Dantzig, 

Fulkerson, and Johnson in 1954 and used in the constraint additive process developed by 

Current et. al. in solving the covering path takes the form:  

1||  
 

Vx
Vi VFj

ij

i

                                                                                                        (2.38) 

where V is the set of vertices in the sub-tour and iF  represents the set of nodes that are 

reachable from node i – in other words it is the set of nodes that are reachable by an arc 

from node i.  In general, there is one constraint for each vertex subset V.  For a given set 

of V, the constraint represents the sum of the arcs connecting this subset of nodes, which 

must be strictly less than the number of members in V.  Since the actual number of 

constraints of this form are too large to handle in a model and since many are not 
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necessary, we add such a constraint whenever we encounter the condition that violates 

the above condition for subset V and involves |V | arcs in the solution.  When such a case 

occurs, there will be a sub-tour or loop.  However, as mentioned above, if one follows 

the DFJ constraint additive process starting with an incomplete graph it is 

possible that the true optimal solution may be prevented from being considered feasible.  To

  

 

Figure 2.3A - An eight node, nine arc network.  All arcs are undirected and can traverse in either direction.  

Costs are given as numbers above arcs. 

illustrate this, consider the following example graph shown in Figure 2.3A.  In this 

incomplete graph we have eight nodes and nine arcs which form an undirected graph.  If 

we were to apply the SCP model
6
 with a service distance of zero on this graph we would 

obtain the result seen in Figure 2.3B.  Following the Dantzig, Fulkerson, and Johnson 

sub-tour breaking process we need to add a constraint to eliminate the cycle or sub-tour 

4564.  After we add such a condition and re-solve, we generate the solution given 

in Figure 2.3C.  The new solution determined has a path length of 23.  However, is this 

really the optimal solution?  In Figure 2.3D we can see that there is in fact a better 

                                                 
6
 The MCSP/MPSP could have been used as well though for illustrative purposes and the simplicity of 

the model formulation the SCPP is used here. 
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solution; involving an overall path length of 22.  This clearly demonstrates that the sub-

tour elimination constraint process developed by Dantzig, Fulkerson, and Johnson and 

applied by Current et. al. can prevent an optimal solution from being identified. 

 
 
Figure 2.3B -  An initial solution generated when solving the SCPP without constraints of type (7) 

 

 
 
Figure 2.3C – The optimal solution to the SCPP after following the Dantzig, Fulkerson, and Johnson sub-tour 

elimination process with a path length of 23.  Note that there is an attached tour.  If this tour was forced not to 

exist there would be no feasible solution to the problem. 
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Figure 2.3D - The true optimal solution to a SCPP with a coverage distance of 0.  The overall path length is 22. 

 

To overcome this problem, Niblett and Church (2016) proposed a new type of 

constraint that forces a loop/sub-tour to be eliminated (as in Dantzig, Fulkerson, and 

Johnson) or attached to the path.  This new condition is called an EAST constraint 

(Eliminate or Attach Sub-Tour).  

This new type of constraint developed by Niblett and Church (2016) takes the following form:  

  
  





Vi VFj Vi

Vk
Tk

kiij

i i

Vxx 1                                                                                               (2.39) 

  
  


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
Vi VFj Vi

Vk
Fk

ikij

i i

Vxx 1                                                                                              (2.40) 

These two constraints taken together stipulate that in order for a tour/loop to exist in a 

solution it must have at least one arc enter and one arc leave the sub-tour to some other 

node which is not in the set V.  The need to have an entering arc and an exiting arc for the 

sub-tour ensures that the cycle is attached elsewhere.  Constraints of type (2.39) are used 

to ensure that if a sub-tour/loop is used in the solution it must have an external arc which 

is used to enter, or attach to, the sub-tour/loop.  The first part of the mathematical 
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statement is a conventional DFJ based summation that sums the arcs used in the sub-tour 

denoted by the vertices in V.  The new addition to this type of constraint is the term: 








Vi

Vk
Tk

ki

i

x                                                                                                                                             (2.41) 

which represents arcs that can be used to enter the sub-tour from some node k such that 

Vk  .  Thus, a loop connecting nodes in V can occur when another arc is used in the 

solution to enter the loop/tour from some node which is not in V.  If an arc is not used to 

enter the loop/tour from outside of V then the constraint prevents the loop/tour from being 

used.  

Constraints of type (2.40) work in a similar fashion to constraints of type (2.39); 

the difference is that this type of constraint ensures that there must be at least one arc that 

leaves the sub-tour/loop.  The second term of the constraint in (2.40):  





Vi

Vk
Fk

ik

i

x                                                                                                                                                (2.42) 

represents the sum of all arcs which are used to depart the sub-tour to some node k such 

that Vk   The summation given in (2.42) includes all decision variables ikx that leave 

the sub-tour/loop within the set V.  If the decision variables included in the summation 

given in (2.42) are all zero then the constraint given in (2.40) will revert into a Dantzig, 

Fulkerson, and Johnson style constraint that will prevent the sub-tour/loop from being 

formed.  If one or more of the variables in (2.42) are equal to one, then the solution will 

have an arc which leaves the sub-tour in route to other nodes Vk   and allow the loop to 
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exist.  Thus, taken together these constraints will either Eliminate or Attach a Sub-

Tour/loop. 

Once sub-tours within a solution have been identified and EAST constraints 

created, the problem must be re-solved.  The process is then repeated; that is, we identify 

any sub-tours which have formed, create associated EAST constraints, and re-solve until 

no further sub-tours are identified.  Therefore, if one utilizes this process, one can 

correctly identify the true optimal solution to any class of covering-path type of problem.  

The EAST constraint allows loops to occur within a solution, but does not require them.  

Whenever an optimal route is found by the use of this approach that involves the use of a 

loop, the original model would result in a solution that was not optimal. 

We have now examined the key portions of the literature which have led to the 

development of covering-path type problems as well as looked at subtle but critical 

nuances to the way this class of problems is solved.  We described portions of the 

Traveling Salesman Problem (TSP) literature as they have been applied in covering path 

models as well as examined the reasons for why loops/sub-tours were considered to be 

undesirable.  We have also looked at the seminal problems in the covering 

science/location literature in the form of the Location Set Covering Problem (LSCP) and 

the Maximal Covering Location Problem (MCLP).  The origins of the Shortest Path 

Problem (SPP) were then reviewed with particular attention paid to how the LSCP and 

MCLP formulations were merged into the seminal covering-path formulations of the 

Shortest Covering Path (SCP) and Maximal Covering Shortest Path problems (MCSP).  

Finally, we have reviewed how the traditional method of solving these problems needs to 

be amended in order to properly account for the use of loops/tours which can yield a true 



 

35 

 

optimal solution.  In the next section, we will examine how the SCP and MCSP 

formulations have been utilized in applications. 

2.3 Extended Problems 

 

In this section several extended problems are discussed that are related to 

covering-path problems.  These include the following problems: The Median and 

Maximal Covering Tour problems, the Covering Salesman problem, the Hierarchical 

Network Design problem, the Transit Arc-Node Service Maximization problem 

(TRANSMax), the Minimum Covering Shortest Path problem, and several multi-path 

covering problems.  Just as in the previous section each problem will be reviewed and the 

modeling formulation will be defined and briefly discussed. 

The Median and Maximal Covering Tour problems are a branch of the class of 

covering-path problems.  The formulations for these models were developed by Current 

and Schilling (1994).  The Median Tour Problem and Maximal Covering Tour problems 

differ from the SCP/MCSP in that, rather than find a covering path which travels through 

a series of intermediate nodes between a defined origin and destination node, we have a 

tour which can be thought of as beginning and ending at the same node.  The goal of the 

Median Tour Problem is to visit p of n nodes such that the total tour length as well as the 

total travel distance necessary for all demand nodes to reach their nearest facility, or stop, 

on the tour is minimized.  In effect it is a fusion of a Traveling Salesman Problem (TSP) 

together with a p-Median Problem.  The goal of a p-Median Problem is to minimize the 

weighted distance from all demand nodes while locating p facilities (See Hakimi, 1964 

and Maranzana, 1964).  Hakimi defined the median location problem while Maranzana 
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was the first to propose a heuristic solution process.  Although elements of the Traveling 

Salesman Problem are captured in the model formulation, a key distinction is that in both 

the Median and Maximal Covering Tour Problems the number of cities which are visited 

on the tour are decided a priori.  That is, in a TSP one must visit all nodes in a given 

network while in the MTP/MCTP exactly p nodes must be visited on the tour.  The 

formulation for the Median Tour Problem is given as: 

ijx  = 1 if the arc from node i to node j is on the tour and 0 otherwise 

ijy  = the fraction of demand at node i assigned to a facility/stop at node j on the tour 

ijc  = the cost of including the path connecting nodes i and j on the tour 

ijd  = the travel distance of the shortest path connecting node i to node j 

ia  = the demand at node i 

S  = any subset of N 

|| S  = the cardinality of set S 

p  = the number of stops/facilities on the tour 
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The MTP is a bi-objective problem. The first term in the objective is to minimize 

the overall tour length/cost.  The second term of the objective involves the minimization 

of the total weighted distance for each demand accessing their nearest facility/stop on the 

tour.  Since ijy represents the portion of demand at node i assigned to node j, the ‘cost’ 

will be a function of the value of the demand at node i, 
ia , as well as the distance from 

node i to node j, ijd , times the value of ijy .  Constraints of type (2.44) ensure that all 

demands i must be assigned to a stop/facility j (e.g. 1ijy ) that is a part of the tour.  

Constraints of type (2.45) require that all nodes to which demand is assigned must have 

an arc which is part of the tour enter the node to which demand is assigned in order for 

the demands to be served.  Constraints of type (2.46) are self-assignment constraints 

which allow a demand to self-assign only if it is a node that is part of an arc on the 

covering tour.    Constraints of type (2.45) and (2.46) taken together ensure service 

assignment to the tour is made for all demand.  Constraints of type (2.47) are flow 

balance constraints which ensure that if a node is entered by an arc on the tour it must 

also have an arc on the tour which leaves that node.  This constraint will then force a tour 

to form.  Constraint (2.48) ensures that there will be p arcs used in the solution.  

Constraints of type (2.49) represent the Dantzig, Fulkerson, and Johnson sub-tour 

breaking style constraints.  In this case, all sub-tours which have cardinality from 2 to p-1 

are enumerated and prevented.  These constraints are necessary as if they were not 

included, sub-tours often form in the solution which break the stated goal of finding one 

connected median tour.  Constraints of type (2.50) are binary constraints which ensure 

that there are no fractional solutions.  This will ensure that the entirety of an arc is either 
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chosen or not chosen.  Constraints of type (2.51) are non-negativity constraints which 

prevent any negative demand assignment from occurring. 

This formulation is quite useful in balancing tour length and total access distance.  

In fact, a tradeoff curve can be developed with respect to tour length and demand 

weighted distance costs by changing the values of p.  Similarly, the use of objective 

weights could also be employed to change the emphasis placed on overall tour 

length/cost versus weighted demand coverage.  However, a drawback of this formulation 

is that it requires a complete graph )arcs  ( 2 nn   which in itself increases the size of the 

problem. An additional issue is the fact that a maximum distance/cost is not stated within 

the model.  Another issue lies in the fact that this formulation can be thought of as using a 

coverage requirement akin to the Location Set Covering Problem where all demands 

must be covered.  That is, all demands must assign to a facility which is part of an arc 

comprising the covering tour regardless of how far a given demand is from its closest 

facility on the tour.  This may be acceptable in some cases, though in situations where a 

person or company is not likely to travel more than a certain distance the model would 

not adequately capture the problem.  This is, in part, why the authors proposed a variant 

of the Median Tour Problem with the Maximal Covering Tour Problem formulation. 

The Maximal Covering Tour problem objective is defined such that overall tour 

length is minimized as well as what is not covered by the tour.  The key distinction 

between the Maximal Covering Tour Problem and the Median Tour Problem is that 

access coverage is maximized instead of minimizing the total distance of tour access.  

The additional set notation and formulation for the Maximal Covering Tour Problem is 

given as follows: 
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iu  = 1 if demand at node i is not covered by a stop/facility on the tour and 0 otherwise 

}|{ sdjN iji   This is the set of all demands j which are covered by node I within the 

service distance s 

s  = the maximum service distance 
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The first part of the objective (2.52) remains the same as in the Median Tour 

Problem; the cost of the tour path is minimized.  However, the second term of the 

objective (2.52) is different.  This second term of the objective minimizes what is not 

covered by the tour defined by the variables 
iu .  This variable, 

iu , is one if demand i is 

not covered and zero if it is.  The value of not covering demand i is given through the use 

of demand values 
ia .  Constraints (2.53) through (2.55) and constraint (2.57) are exactly 

the same as in the Median Tour Problem.  Constraints of type (2.56) are used to tie the 

variable representing what is not covered, iu , to the variables representing whether an arc 

is used as part of the covering-tour.  Essentially, if no arcs on the tour pass sufficiently 

close to demand node i, then demand node i is not covered and iu  is forced to equal one 

in value.  The last constraints (2.58) are the binary restrictions on iu .  Current and 
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Schilling (1994) note that the Maximal Covering Tour can be formulated as a Median 

Covering Tour problem through modification of the distance values ijd .  Transforming 

ijd  into ijd  can be done as follows: 


















sd

sd
d

ij

ij

ij
 if,0

 if,1
                                                                                                   (2.59) 

This means that the weighted distance in the objective function in (2.43) will represent 

the total demand not covered by the tour for a given service value s.  However, utilizing 

the Median Tour Problem formulation to represent a Maximal Covering Tour will add 

more constraints to the problem than what is necessary in using the formulation of the 

Maximal Covering Tour problem given above. 

The advantage of the Maximal Covering Tour model over that of the Median 

Tour problem is that it represents cases where one may wish to be within a certain 

standard such as overnight delivery, or in cases where a customer or a business will not 

travel farther than a certain distance in accessing service.  The other advantage is that it 

has flexibility in not requiring coverage of all demand.  This allows a business or service 

to design their service based upon a benefit/cost trade-off based upon the number of 

facilities/stops that are used and what the gain or loss of customers may be.  This can be a 

powerful planning tool. 

The next model of interest is the Covering Salesman Problem.  This covering-path 

model is a fusion of the Traveling Salesman Problem and the Location Set Covering 

Problem.  In a traditional Traveling Salesman Problem, all nodes must be visited using 

the shortest possible tour.  In the Covering Salesman Problem, all nodes must be covered 
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within a maximum service distance utilizing the shortest possible tour.  Although this is 

related to the Median Tour and Maximal Covering Tour problems it is different in that 

there is not a prespecified number of arcs that will be used to define which nodes are a 

part of the tour.  Current and Schilling (1989) give the Covering Salesman formulation as 

follows: 

ijx  = 1 if arc(i,j) is on the covering salesman tour and 0 otherwise 

ijc  = the cost of using arc(i,j) in the covering salesman problem 

Q  = the set of solutions which exclude all solutions with sub-tours. 

}|{ jijl SdjP   = The set of nodes that are within the maximum coverage distance Sj 

jS  = the maximum coverage distance for a stop at node j 

ljd  = the shortest distance between node l and node j 
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In this formulation, the objective (2.60) is to minimize the overall cost of the tour, just as 

it is in the Traveling Salesman Problem formulation.  Constraints of type (2.61) ensure 

that each node is covered by at least one arc which is on the covering tour and which is 

within the maximal covering distance.  This constraint is what allows the original TSP 

requirement that every node be visited once to be relaxed into the Covering Salesman 

requirement where every node must be either visited or be within a service range of a 
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node on the covering-tour.  Constraints of type (2.62) are flow balance constraints which 

ensure that if an arc enters node j then a subsequent arc must also leave node j.  

Constraints of type (2.63) are given by the authors as constraints used to prevent sub-

tours and take the form of a Dantzig, Fulkerson, and Johnson sub-tour breaking 

constraint.  However, Current and Schilling (1989) note in their paper that since the set Q 

is impossible to know a priori, either a solution process similar to Dantzig, et. al. must be 

employed or an alternative sub-tour breaking constraint must be used.  The final 

constraints (2.64) are the binary constraints which ensure that an arc is either used or not 

used and that there are no fractional solutions.   

As was mentioned above, Current and Schilling use a sub-tour breaking constraint 

type which was developed by Gavish (1983) for use on the Capacitated Minimal Directed 

Tree Problem.  In order to apply the method developed by Gavish, Current and Schilling 

noted that they needed to modify the original graph through the creation of a dummy 

node, defined as Node 0, and specifying that the cost of all arcs that go to and from Node 

0 are equal to zero.  Based on this form, constraints of type (2.63) can then be enumerated 

through the following: 
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njz j 1}1,0{0                                                                                                     (2.70) 

The advantage of using the sub-tour elimination constraints (2.65-70) is that a model only 

needs to be solved once instead of using an iterative approach that repeatedly solves and 

adds constraints to a model until no sub-tours are part of the final solution.
7
   

The way that the constraints above exclude a sub-tour from being part of the 

solution will now be described. Constraint (2.65) will ensure that one unit of flow leaves 

the dummy node represented as node 0.  Constraints of type (2.66) are flow augmentation 

constraints.  In this case, the flow out of j must be equal to the flow into j plus the number 

of arcs on the Covering Salesman tour which enter node j.  Constraints of type (2.67) 

ensure that flow into the dummy node must originate from that node as the right hand 

side will be zero for all but the origin node.  Constraints of type (2.68) ensure that flow 

will only occur on arcs that are used in the covering tour.  Constraints of type (2.69) 

ensure that flow along all arcs is non-negative and constraints of type (2.70) ensure that 

the flow on all arcs from the dummy node must be either 0 or 1.  Taken together, these 

constraint types and the complete graph in conjunction with a dummy node will ensure 

that the tour/circuit will not include a sub-tour or disconnected loop. 

However, because these problems are a hybrid of location and Traveling 

Salesman Problems, they must use a complete graph.  This means that as a problem 

increases in size, the problem begins to exponentially grow in terms of variables and 

constraints.  This poses considerable challenges and limits the scope of the network size 

on which the problem can be optimally solved in a reasonable amount of time.  Another 

                                                 
7
 Although there are many types of sub-tour elimination constraints such as Gavish and Graves (1978), 

Miller, Tucker, and Zemlin (1960), Vajda (1961), Lawler et. al. (1985), Orman and Williams (2006) 

suggest that an iterative approach may actually be a more efficient way of solving the problem.   



 

44 

 

drawback is that in effect you must use a complete network when in reality the network 

may be quite sparse.  Interestingly, Current and Schilling (1989) note this in their paper 

where they show a solution to the CSP on an incomplete graph.  This is readily seen in 

Figure 2.4. 

This shows that the use of attached loops/tours as a covering strategy may in 

reality be an optimal solution.  In terms of the modeling framework, one must use a 

complete graph with their model of sub-tour breaking constraints in order to find such 

embedded loops if they are optimal, whereas it is possible to use the EAST constraints of 

Niblett and Church (2016) on a sparse graph and find the same result more efficiently 

than the original approach. The next related problem that will be examined is the 

Hierarchical Network Design Problem.  This problem was first proposed by Current, 

ReVelle, and Cohon (1986) and is formulated such that the least cost, 

two-level hierarchical network is to be found.  That is, we wish to find a path between an origin 

 
Figure 2.4 - A solution to the Covering Salesman Problem as shown on an incomplete graph (Current and 

Schilling, 1989). 
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and a destination as the primary path where all other nodes that are not part of the 

primary path are connected to the primary path via secondary paths.  The objective is to 

minimize the length of the primary path as well as the lengths of all secondary paths.  The 

costs of developing the primary path (dollar per distance) are assumed to be greater than 

that of secondary paths (dollar per distance).  One can think of this type of hierarchical 

structure as a primary transit line with secondary feeder lines that originate in the 

hinterlands.  Another way of thinking of this type of network would be for the allocation 

of resources.  For example in developing countries, the primary path may represent a 

paved road between major populations while the secondary path would represent the 

location of dirt or gravel roads connecting smaller or isolated communities.  Perhaps the 

most direct use would be in the application of power transmission lines where a primary 

route might be the location of a high voltage line and the secondary paths could be lower 

voltage distribution lines.  An example of this type of solution is given in Figure 2.5.   

 
 
Figure 2.5 - An example solution to the Hierarchical Network Design Problem (Current, et. al., 1986). 
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When formulating this model the authors make the following assumptions: 1) 

demand exists at every node; 2) demand at every node must be satisfied; 3) demand at a 

node is satisfied if either the node is on the primary path or is connected to the primary 

path via a secondary path; 4) flow along all arcs is uncapacitated; 5) costs of trans-

shipment facilities at the intersections of the two path types are negligible; 6) all are arc 

costs are non-negative; 7) there are no budgetary constraints.   The formulation of the 

Hierarchical Network Design Problem is given below: 

ijC  = the cost of a primary arc connecting node i to node j 

'

ijC  = the cost of a secondary arc connecting node i to node j 

ijx  = 1 if a primary arc connects node i to node j and 0 otherwise 

ijy  = 1 if a secondary arc connects node i to node j and 0 otherwise 

} exists ),arc( |{ jijNi   

} exists ),arc( |{ jiiM j   

Node O = the starting node 

Node D = the terminus node 

V = a subset of nodes 

Q = the set of all nodes 

|Q| = the cardinality of subset Q 
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The objective (2.71) minimizes the cost of the primary and secondary paths represented 

by ijx  and ijy  respectively.  Constraint (2.72) ensures that one arc will leave the 

prespecified origin, O, on the primary path.  Constraint (2.73) requires that one arc will 

enter the prespecified terminus node, D, on the primary path.  Constraints of type (2.74) 

require that if a primary arc enters an intermediate node on the primary path, then an arc 

must also leave that intermediate node on the primary path.  Constraints of type (2.75) 

require that a node must either have a primary arc or a secondary arc leave it with the 

exception of the origin and destination nodes.  This type of constraint ensures that all 

nodes on the graph are connected by either a primary or a secondary path as it requires an 

arc to be used which is either part of the primary or secondary path.  Constraints of type 

(2.76) are sub-tour elimination constraints derived from the Dantzig, Fulkerson, and 

Johnson constraint type given in (2.4).  Constraint types (2.77) and (2.78) are binary 

constraints which force each decision variable to be either zero or one.  As the complete 

set of sub-tours is not known a priori, the authors suggest a Dantzig, Fulkerson, and 

Johnson style iterative sub-tour elimination approach wherein one solves the model 

without any constraints (2.76), determines the existence of sub-tours, adds constraints of 

type (2.76) for each of the sub-tours involved in the solution, and then re-solves the 

problem repeating the process until no further sub-tours are involved in the solution.  

However, because this problem is solved on an incomplete graph, it is possible that the 



 

48 

 

sub-tour breaking constraints used in this type of problem would also need to be modified 

through the use of EAST constraints as it is possible that the optimal solution could be 

inadvertently excluded, just as in the SCP and MCSP problems. 

The next problem formulation to be discussed is the Minimum Covering Shortest 

Path Problem developed by Current, et. al. (1988).  This problem is a natural extension of 

the work done on the MCSP and SCP formulations.  The problem itself is not 

complicated with the title itself descriptive of the problem; the goal is to find the shortest 

possible path which also covers as little as possible.  A minimum covering shortest path 

modeling framework is particularly useful for applications such as corridor location, 

hazardous waste transportation, military frameworks wherein one wishes to avoid contact 

with the enemy, et cetera.  In the case of a corridor location application, one may wish to 

avoid populations of a certain species or land areas which have a high ecological value.  

The movement of toxic materials and hazardous wastes has also become contentious in 

the public realm, particularly in light of the potential for attack after the events of 

September 11, 2001.  Thus, finding the path of minimum impact/disruption is highly 

desirable from both a strategic, environmental, and public safety point of view. 

With respect to the Minimum Covering Shortest Path Problem, the following 

assumptions are held: 1) flow along arcs is not capacitated; 2) Arc costs are non-negative; 

3) There are no budgetary constraints; and 4) Population at a node is negatively impacted 

if the path comes within some predetermined impact/covering distance of that node.  The 

formulation for the Minimum Covering Shortest Path problem is given as: 

ijc  = the population covered by an arc from node i to node j 
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ijd  = the distance/time to travel on an arc from node i to node j 

ijx  = 1 if an arc connects node i to node j and 0 otherwise 

} exists ),arc( |{ jijNi   

} exists ),arc( |{ jiiM j   
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where the objective function (2.79) minimizes the sum of what is covered by an arc as 

well as the total distance of the covering path.  Constraint (2.80) ensures that the path will 

have one arc which leaves the origin node and constraint (2.81) ensures that the path will 

have one arc that arrives at the destination node.  Constraints of type (2.82) are balance 

constraints which ensure that if an intermediate node, j, is entered by an arc from node i, 

then there must also be a corresponding arc that leaves node j and travels to another node, 

k. Constraints of type (2.83) ensure that the decision variables for arc use, ijx , must be 

either 1 or 0 to represent whether an arc is used or not.  Although Current et. al. do not 

formulate the problem as such, it is possible to include a neighborhood set in which one 

can define all nodes that are within a specified distance of the visited node.  Such an 

addition would be useful if one wished to include geographic proximity of outlying areas 

into the model.  Current et. al. state that in the formulation, population values at these 

nodes have been calculated a priori and incorporate surrounding areas into the population 
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set ijc .  The Minimum Covering Shortest Path problem could be solved using importance 

weights applied for each objective term, just as in the MCSP problem.  This would allow 

one to determine a tradeoff curve based upon emphasis on minimizing coverage and 

minimizing path length. 

Up to this point we have examined several related problems in the covering-path 

literature.  These path problems have primarily utilized a tour or path and require the use 

of sub-tour elimination constraints to obtain solutions feasible to the stated problem.  The 

next set of problems that we will examine are multi-path covering problems as well as a 

new transit route design model.  The multi-path covering problems are extensions of the 

SCP/MCSP formulations.  These include models such as the multi-path covering (Boffey 

and Narula, 1998), the multiple route transit network design (Wan and Lo, 2003; Wu and 

Murray, 2005), and the transit route extension (Matisziw, et. al., 2006) problems.  

Because of the unique use of Vajda constraints and the fact that the formulation involves 

a different modeling framework than the SCP/MCSP we will first examine the Transit 

Arc Node Service Maximization Problem (TRANSMax). 

TRANSMax was recently developed by Curtin and Biba (2011); it was 

specifically designed for the development of transit lines and overcoming unique issues 

presented through the use of a GIS.  It should be noted that there has been much work 

surrounding transit planning and routing.  In transit planning there is a broad range of 

issues that must be considered.  For example, one issue may be customer satisfaction as 

how a user perceives the safety, cleanliness, and cost (Levinson and Brown-West, 1984; 

Levinson, 1992; Weinstein, 2000; Figler, et. al, 2011; Tyrinopoulos and Antoniou, 2008).  

One of the first papers concerned specifically with transit was an adaptation of the LSCP 
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to locate bus stops (Gleason, 1975).  However, much of the early literature from the mid 

1970’s to the late 1990s focused primarily on efficient allocation of resources (i.e. run 

cutting, headways, and scheduling) rather than optimally locating route alignments 

(Rousseau, 1985; Furth and Day, 1985; Ceder and Wilson 1986; Daduna and Wren, 

1988; Wren and Wren 1995).  In the mid-1990s and early 2000’s an emphasis was placed 

on the issues of access and accessibility as well as how these goals could be implemented 

(O’Neill et. al., 1992; Hsiao, et. al., 1997; Murray, et. al., 1998; Murray, 2001, 2003).  As 

computer processing power has improved over time, models were developed which could 

be optimally solved.  The vast majority of routing models use the framework derived 

from Current et. al. (1984, 1985).  Later in this section we will discuss several of these 

routing models, particularly Boffey and Narula (1998), Wan and Lo (2003), Wu and 

Murray (2005), and Matisziw, et. al. (2006).  The key point of noting this is that only 

recently has attention been paid to optimal transit network design, and when this has been 

an issue the framework that is most often used is that of Current, et. al. (1984, 1985).  

This is what sets the TRANSMax model apart from others in the covering-path literature. 

The TRANSMax model departs from the Current et. al. (1984, 1985) framework 

by implementing a model based upon Vajda’s (1961) formulation of a Traveling 

Salesman Problem.  Vajda’s implementation utilizes a third index in addition to the 

traditional origin, destination indices for the routing decision variables.  The additional 

index Vajda employs is used to denote the order an arc is used on the path.  This ordering 

or sequencing is principally used in order to prevent the formation of sub-tours.  The sub-

tour preventing constraints developed by Vajda for the TSP take the form of (2.84): 
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where m is the number of cities to be visited, i and j are the indices of cities/nodes, and t 

is the index representing the sequence of arcs along the route.  Thus, in the constraint 

formulated by (2.84), if an arc in sequence t is used to travel from i to j then the t-th plus 

one arc must be used to travel from j to a subsequent node.  To prevent sub-tours from 

forming the additional constraints given in (2.85), (2.86), and (2.87) are required. 
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Constraints of type (2.85) are used to ensure that only one arc would be permitted to 

leave node i across all sequences t.  Constraints of type (2.86) are used to ensure that only 

one arc is allowed to enter node j across all sequences t; taken together constraints (2.85-

86) prevent a node from being visited more than once.  Constraints of type (2.87) ensure 

that only one arc can be used for each sequence t. Curtin and Biba (2011) utilize the 

Vajda based framework above to formulate the TRANSMax model as follows: 

ji,  = indices of nodes that comprise the network 

r  = the index of arcs comprising a route 

m  = the number of nodes in the network 

R  = the maximum number of arcs within a route 

ijA  = the service value associated with the arc from i to j 

iM  = the service value associated with node i 

ijd  = the length of the arc from node i to node j 
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D  = the maximum length of the route 

ijrx  = the decision value = to 1 if an arc from i to j is chosen in step r and 0 otherwise 
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where the objective (2.88) is to maximize the service values of the arcs, ijA , as well as 

the service values for the nodes, iM , using a total of R arcs.  Constraints of type (2.89) 

require that for each node j, at most one arc across all sequences used on the path is 

allowed to be used to enter that node.  Constraints of type (2.90) require that for each 

node i, at most one arc across all sequences may be used to leave that node.  In effect 

these constraints, taken together, ensure that a path will only be able to enter and leave a 

node once.  Constraints of type (2.91) require that there be a sequentially connected path.  

In this case, for each node j such that j is not on the first or last sequence, if an arc in 

sequence r enters node j then the r-th plus one arc in the sequence must leave node j.  

This constraint type will ensure that there is a connected path; the first and last sequence 

numbers are excluded as those sequences represent travel from and to the origin and 
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destination nodes respectively.  Constraints of type (2.92) ensure that there will be one 

arc chosen for each sequence r on the route.  It should be noted that by specifying a total 

of R sequences, the optimal path may not be found as it could be forced to include more 

sequences than required in the optimal solution.  Additionally, there may not be enough 

sequences specified which are required to obtain a truly optimal solution. Constraint 

(2.93) requires that the route must not have a distance/cost larger than a prespecified 

distance/cost D.  Since there is no objective function that minimizes overall path length, 

this constraint is used to ensure that a route does not have a cost/distance which exceeds a 

certain cost/length.  Curtin and Biba chose to model transit in this manner as they note 

that many covering-path models do not optimize in terms of a user perspective but from 

an operational perspective (i.e. the models are oriented to find a least cost covering path 

as opposed to a path which optimizes the coverage of particular areas).  By including a 

maximum cost/distance, Curtin and Biba can ensure that a user would experience a level 

of service which in the maximum case would be D cost/length.  In essence, their goal is 

to ensure a user would not spend say an hour on a bus line, but rather a maximum of 30 

minutes. This model framework could, however, be modified so that the maximum path 

cost/length given in constraint (2.94) is removed and an objective added which minimizes 

overall length.  Constraints of type (2.95) are binary constraints used to ensure that there 

are no fractional solutions to the problem. 

It is also important to note that the two constraint types (2.89 and 2.90) taken 

together could a priori ensure that a truly optimal solution is never found as the 

assumption built into this model, just as in other covering path models, is that an optimal 

solution will never cross over itself (generating a loop) or involve an attached loop as an 
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optimal covering strategy.  By restricting a node to having one entering and one exiting 

arc, this will ensure that a node is never visited more than once.  As was proven in Niblett 

and Church (2016), the assumption that a route will never involve a loop in an optimal 

solution is invalid and thus this model will also suffer from this limitation.   

Curtin and Biba (2011) also note that their model is flexible and can be modified 

to fit various needs based upon particular planning cases.  For example, they recognize 

that a salesman tour style route may be desired in a route planning context; as was noted 

in the introduction, this is the case for a vast number of medium sized cities across the 

US.  That is, it may be desirable to find a route which begins and ends at a particular 

place – i.e. a transit center.  This also would seem to address the assumption that a route 

can be traversed in either direction; however, as was noted for constraint types (2.89-90), 

the formulation does not allow a node to be revisited and thus the efficacy of this type of 

constraint in modeling “real world” routes is questionable.  Nevertheless, Curtin and Biba 

give their generic loop constraint (2.95) as: 
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In effect the addition of this constraint type would require that for each node i either an 

arc leaving the node on sequence one and an arc entering the node on the final sequence 

R of the route will be chosen or node i will not be the starting and ending point of the 

route.  If it is not chosen, node i could still be included on some other sequence for the 

route.  However, this constraint only forces the route to return to a node at which it 

originates.  In effect it creates a singular tour; since constraint (2.89) and (2.90) do not 

allow any node (including the origin and destination node) to be entered twice; this would 
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prevent any attached loops.  Thus, the form of TRANSMax utilizing constraints of type 

(2.95) would be more akin to that of a covering TSP. 

Curtin and Biba also note that it may be desirable to have a route which originates 

from and ends at a particular point of interest, such as a transit center.  This form of the 

model is similar to the form described above; the difference is that instead of trying to 

determine the best possible tour given R sequences over the entire network, we now wish 

to find the tour which is guaranteed to originate and end with a specific location.  To 

satisfy this type of need, Curtin and Biba proposed adding constraints (2.96) and (2.97): 
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where s represents the point of interest that must be the terminus.  Constraint (2.96) 

requires that an arc must be taken to leave the point of interest and constraint (2.97) 

requires that the last arc used on the route must be used to enter the point of interest.  In 

effect constraints (2.96) and (2.97) will force the route to begin and end at a prespecified 

node rather than determining the optimal tour given R total arcs for a route.  Curtin and 

Biba also note that there are two other variations which can be used to find an optimal 

route given R sequences.  The first case defines where one may wish to require the route 

to end at a given terminus node while having no specific origin node.  This case can be 

defined through constraint (2.98) where e represents the desired 

terminus node.  The second case is similar, but instead of specifying a required terminus node 
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and no specific origin, the requirements are inverted wherein we now must depart from a 

specified origin node with no specific terminus node defined.  This case is given by constrain t 
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(2.99). Where e now represents the specified origin and r equal to one represents the first 

sequence to be used.  Curtin and Biba note that all of the basic forms above can be further 

modified to accommodate areas that may have a significant service demand area such as 

business parks or other large employment centers through the use of waypoints.  In this 

case a waypoint is defined as a known point of interest/demand, but is not desirable as an 

origin or terminal node.  Curtin and Biba’s waypoint constraint can then be defined as 

given in (2.100): 
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where w represents the waypoint node desired on the route.  The first summation 

accounts for all arcs which leave the waypoint node, w, across all sequences.  The second 

summation accounts for all arcs which enter waypoint w across all sequences.  Taken 

together with constraints (2.89), (2.90), and (2.92), this constraint will ensure that the 

waypoint is visited exactly one time and is not a beginning or ending point of a route.  

However, even though the basic TRANSMax model can be modified to meet various 

forms which suit a set of particular requirements such as way points, starting and ending 

nodes, etc. the TRANSMax model is unable to use attached loops/tours.  Although Curtin 

and Biba do propose a form which creates a tour (i.e. a route that begins and ends at the 

same point) which was described above, this form does not allow for attached or 
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embedded tours within the route.  This is due to the fact that such cases are prevented a 

priori through the use of Vajda style constraints.  In this case it is constraints (2.89) and 

(2.90) which force a node to be entered and exited exactly once which prohibits an 

attached loop from occurring.  If you remove these constraints from the model, then the 

Vajda framework falls apart and it is likely you would be left with a series of sub-tours as 

a solution, which defeats the purpose of using a larger set of variables ijrx  in the first 

place – that is, building a model which prevents unattached cycles without the need of an 

iterative constraint addition and solution procedure. 

As was noted above, the last set of papers we will examine is comprised of 

problems that are Multi-Path Covering problems.  There are four modeling formulations 

that have particular relevance to the original work of John Current as well as fit into the 

transit route modeling research quite nicely.  The first paper on multi-path models is that 

of Boffey and Narula (1998).  Boffey and Narula were the first to formulate the multi-

path covering problem.  Although in their paper they limit the number of paths to 2, they 

note their formulation could be expanded to include any number of paths.  The practical 

applications for their model are of course in transit planning where one may want to 

design multiple routes, but it could also have application in problems where one may 

require the use of a number of routes for the same product or service.  These can be such 

things as deliveries (such as newspaper distribution or mail delivery), mobile services 

(such as mobile glass repair, plumbing), electricity transmission/distribution, or even 

tourism (sightseeing, etc.).  Boffey and Narula’s model uses the Maximum Population 

Shortest path problem as a base framework (See (2.36) in the Key Problems section 

above).  It is also important to note here that Curtin and Biba use r to represent the 



 

59 

 

chosen sequence of arc selection of a route whereas Boffey and Narula use r to 

differentiate between several different routes.  The formulation of the Multi-Path 

Covering Problem involves the following notation: 

kji ,,  = indices of nodes that comprise the network 

ka  = the population at node k 

r  = the number of paths that one desires to model, in this case the formulation uses 2 

O  = the origin node 

D  = the destination node 

V  = the set of vertices comprising the graph 

iF  = the set of nodes that are reached by an arc from node i 

jT  = the set of nodes that are connected by an arc to node j 

ijd  = the length of the arc from node i to node j 

r

ijx  = 1 if an arc from i to j is chosen on path r and 0 otherwise 

r

ky  = 1 if node k is covered by path r and 0 otherwise 
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The objective (2.101) of the Multi-Path Covering Problem is a multi-objective 

formulation  that involves maximizing the population covered and minimizing overall 

path length for each of the two stated paths (i.e. r = 2).  Constraint (2.102) requires that 

one arc be used to leave the origin node for each path r and constraint (2.103) requires 

that each path reach a terminus node, D.  In this case each path begins and ends with the 
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same origin and destination nodes; however, these could be changed for each path r so 

that each path would have a unique starting and ending node.  Constraints of type (2.104) 

represent balance constraints for each path r; for each intermediate node – that is, a node 

that is not the origin or destination node – which is entered by an arc on the path must 

then be exited by an arc on the path that leaves the intermediate node.  Constraints of type 

(2.105) represent the coverage constraints for each path r.  In this case, in order for node i 

to be covered by path r, path r must utilize an arc which enters node i.  It should be noted 

that there are no coverage distances used in this framework as this formulation is based 

upon the Maximum Population Shortest Path formulation where a node is considered 

covered only if it is directly visited by the covering-path.  If one wished to transform this 

formulation to a Maximum Covering Shortest Path style covering-path problem, one 

could set up a maximum service distance, S, and utilize a neighborhood set defining the 

set of all nodes j that are within the service distance of node i (i.e. }|{ SdjN iji   in 

place of set 
iT  in (2.105).  Constraints of type (2.106) require that only one path can 

cover node k.  This will ensure that there is no double coverage and the two paths are 

spatially unique.  If constraint type (2.106) was not added to the formulation, each path r 

would follow the exact same route as each path would simply follow the best route and 

count coverage twice.  Constraints of type (2.107) represent binary conditions for the x 

and y variables used on each path to represent whether they have been used or not used in 

the solution. 

Boffey and Narula also proposed a formulation where the value of covering a 

node more than once  can be captured through the use of two new binary variables, ku
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and 
kv , where 1ku  if node k is covered by one path and 

kv represents if node k is 

covered by both paths.  The objective function for coverage can then be modified to type 

(2.108) 

 
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kkk vua )(                                                                                                             (2.108) 

where   can range from a value of zero through one depending on the emphasis one 

wishes to place on the benefit/value of secondary coverage.  A value of zero would 

represent no additional coverage benefit while a value of one would represent a benefit 

equal to that of covering the node once. Constraints of type (2.106) are then modified to 

the form in (2.109) and additional constraints of type (2.110) are added to the 

formulation. 
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A constraint of type (2.109) will ensure that if one path travels to node k, 
ku is allowed to 

be one since the coverage variables are binary.  However, in order to prevent 
ku from 

being zero in value while 
kv  is positive, constraints of type (2.110) ensure that in order 

for 
kv  to be used in the solution, 

ku must already have a value – this of course indicates 

that one of the paths  has already visited node k.  It should be noted that the assumption 

used in creating this constraint is that the associated benefit multiplier value   will be the 

same at all locations at all times which may or may not be true. 

The Multi-Path Covering formulation is important in that it represented the first 

real step towards creating a modeling framework which represents the “real world” 
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through the use of multiple covering paths.  What is interesting is that Boffey and Narula 

note that spurs, or branch lines – i.e. loops – may be a very acceptable alternative with 

respect to covering.  And yet, if one employs this model, the issue of sub-tour elimination 

comes into play.  Just as in the MCSP and SCP it is highly likely that sub-tours will form 

when the problem is first solved.  Thus, an iterative process such as the Dantzig, et. al. 

iterative process must be used to eliminate all disconnected tours or flow constraints such 

as Gavish and Graves (1978) that keep the route connected.  In this case, it is very 

possible that the optimal solution would be prevented from being determined as Boffey 

and Narula use the Dantzig, et. al. sub-tour elimination process whose flaws were 

detailed at the beginning of this chapter.   

An additional issue that the Multi-Path Covering formulation faces is that it does 

not account for bi-directional travel; that is, Boffey and Narula still assume travel from a 

prespecified origin to a prespecified destination for each path can simply be reversed to 

form a transit route.  In other words, although the use of two bus routes could be modeled 

using this formulation, the model itself does not consider the fact that a bus may or may 

not travel in the opposite direction along that same route.  Another transportation related 

issue which is related to the issue of directional travel is that the formulation does not 

consider the nature of the stop.  For example, if one assumes a route can travel in both 

directions, it may be that an intersection may just be a four way stop where a person can 

easily cross the street and board the bus in the opposite direction.  However, if one must 

cross a 4 or more lane expressway this may mean that it is not practical to say that a stop 

can, in fact, cover the same population on each side of the street.  In short, although the 
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Multi-Path Covering Problem is a step forward, it still has a number of shortcomings that 

could be addressed; particularly if the model is applied in a transportation context. 

We next turn this discussion to models that primarily focus on transportation 

design and expansion.  Wan and Lo (2003) were among the first to formulate a transit 

specific design model.  Their model minimizes the overall cost of a transit network while 

meeting transit demand.  The objectives of their model are to simultaneously locate 

routes as well as handle the flow of passengers along these routes.  The key assumptions 

of their model are as follows: 1) all origin and destination nodes must be covered; 2) 

there exists a route or a collection of routes with spare capacity to meet every OD 

demand; 3) every route is acyclic (i.e. a route does not contain, nor is it a part of, a tour); 

and 4) every route serves both directions of the same line with the same frequency.  

These assumptions are very standard in the literature but they do come with drawbacks.  

For example, the assumption that a route will be acyclic has been proven to be flawed 

and the assumption that a route will travel in both directions based on one path can also 

be problematic.  Wan and Lo’s formulation does attempt to address the issue of how one 

can best optimize multiple routes to better serve travelers.  Wan and Lo utilize the 

following notation: 

A  = the set of arcs in a graph G 

Aa  = an arc from node i to node j 

C  = the homogenous transit capacity 

ac  = the link cost for using an arc 

R  = The set of transit routes 
r  = index of routes 

  = the subset of all acyclic routes within R 

kr  = an individual route, k, that is within the set   

rf  = the frequency for each route r, r = min being the minimum and r = max being the 

maximum desired frequencies (e.g. headways on a transit line). 
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ts,  = indices for the starting and terminus node pairs in the set W 

wq  = the demand at w 

stq  = the demand associated with travel from s to t 
r

stq  = the demand associated with travel from s to t that is served by route r 
r

ijd  = 1 if a route travels from node i to node  j or 0 otherwise 

r

ut

r

sudd  = indicates a stop is made at u on route r between OD pair (s,t)  
r

ax  = 1 if route r traverses arc a and 0 otherwise 

M  = a very large number 
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maxmin fff r                                                                                                             (2.116) 
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AaRrxr
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DOr

st WWtsd  ,},1,0{                                                                                    (2.119) 

 

In this case, the objective function (2.111) is to minimize the operating cost of all transit 

lines where fr represents how often route r is used (representing route headways), ca 

represents the link cost for an arc, and r

ax represents whether arc a is included in the 

solution for route r.  Constraints of type (2.112) decompose each OD demand into route 

specific demands. Constraints of type (2.113) represent capacity requirements for each 

route r as it travels through stops on the route.  In this case the authors assume that 

capacity is homogenous for the entire system and that every route or collection of routes 
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is able to meet all demands for a given route frequency.  Thus, (2.113) represents the fact 

that there must be a route or series of routes that has capacity to serve demand. 


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r

tu qdd
),(

                                                                                                               (2.120) 

The sum represented in (2.120) represents the passenger volume that is already aboard  


Wvu

r

uv

r

uvqd
),(

                                                                                                                  (2.121) 

route r at node u while (2.121) represents the boarding demand from node u onward.  

Constraints of type (2.113) handle travel volume in a forward direction and constraints of 

type (2.114) handle travel volume to be met in the opposite direction.  It should be noted 

that although this would account for travel in opposite directions it does not allow for any 

loops to be used as the model is designed such that a route is only determined in one 

direction (i.e. all routes are by definition acyclic).  These constraints are based on the 

inherent assumption that it would be possible to travel in the opposite direction without 

taking into account the true spatial layout of a route.  Constraints of type (2.115) are used 

to represent that each route will be part of an acyclic set.  In essence this set represents 

the set of all possible acyclic routes.  Wan and Lo’s applied formulation must use some 

form of tour elimination constraints in order to ensure feasibility and connectedness of 

identified routes.  The easiest way to do this is the flow balance and sub-tour elimination 

constraints of Current et. al. (1985).  Constraint type (2.116) sets limits for the lower and 

upper bound on line frequency for each route.  This constraint attempts to address how 

often a route should be utilized.  This is akin to how often a bus should run on the line.  

Constraint set (2.117) is used to allow positive demand on route r only when a route is 

traversed along an associated arc in either a forward or backward direction.  In this case, 
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since demands may not be uniform, a large value M is used to make the number 

sufficiently large so as to accommodate possible demand but still ensure demand cannot 

be allowed if either direction variable 0 r

ts

r

st dd  as 00* M .  Constraint types 

(2.118) and (2.119) are binary constraints on arc selection and direction respectively.  If 

an arc is utilized or a route travels in a specific direction then these variables will equal 

one, zero otherwise. 

As noted above, however, the set Ω cannot be known a priori and thus Wan and 

Lo must specify a method for preventing sub-tours and looped routes (i.e. routes that 

comprise, or even utilize, a loop).  Although one could conceivably adapt a Dantzig, et. 

al. iterative tour elimination process, Wan and Lo do so through a mechanism inspired by 

Miller, Tucker, and Zemlin (1960), and their approach adds considerable computational 

complexity to an already complex problem.  In order to explain their approach it is 

necessary to describe the variables they utilize.  These are given below: 

r

k  = the sequence number for node k will be the n-th number of the sequence for route r 

or 0 otherwise 
r

k  = 1 if route r starts at node k or 0 otherwise 
r

k  = 1 if route r ends at node k or 0 otherwise 
r

a

r

hk xx   the authors use these variables interchangeably to represent an arc.  In this case 

the h represents the node that forms the head of the arc and k represents the node at 

the tail. 


kN  = the set of tail nodes comprising an arc entering node k 


kN  = the set of head nodes comprising an arc leaving node k 

 

The expanded form of constraint type (2.115) which represents the Ω set is then given as: 
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In this expanded set of constraints used to define the feasibility of any design routes, Wan 

and Lo use a node labeling approach to delineate attributes of the model, the variables for 

which are given above.  In this case, constraints of type (2.122) and (2.123) represent a 

bound on the value of a sequence.  These labeling constraints are inspired by the Miller, 

Tucker, and Zemlin TSP sub-tour prevention constraints developed for traveling 

salesman problems in that   represents the value of the sequence of the path; constraints 

of type (2.122) and (2.123) stipulate that in order for route r at sequence k to be labeled as 

the next sequence of the route, an arc must have entered node k on the previous sequence.   

Constraints of type (2.124) ensure that a node on a route can only have a sequence value 

if an arc enters or leaves that node.  Constraints of type (2.125) and (2.126) ensure that 

the value assigned to each sequence – i.e. each  – along the route must be an increment 

of 1 larger than the sequence value of the node which entered k.  Constraints of type 

(2.127) and (2.128) are meant to ensure that there is one starting node that exists while 



 

68 

 

constraints of type (2.129) ensure that there is also a terminus node for each route if an 

origin node for the route exists.  Constraints of type (2.130) require that, for each node k, 

only one arc may enter node k and constraints of type (2.131) require that only one arc 

may leave node k on a specific route, r.  Taken together, constraints of type (2.130) and 

(2.131) are used to prevent tours/cycles from occurring.  Constraints of type (2.132) are 

essentially flow balance constraints where if a node is entered by an arc there must be a 

corresponding arc that leaves that node with the exception of the origin and destination 

nodes.  In effect these additional constraints are needed to ensure that the route is a path 

rather than a tour, unless r

k

r

k   .   

One of the biggest drawbacks of this model formulation is that as the size of a 

problem increases, the number of constraints and variables increase dramatically, 

particularly given the tour elimination constraints that Wan and Lo add to the model.  

This is a hard problem that is difficult to solve to optimality.  The second major issue is 

that Wan and Lo note that their formulation is not a truly linear model as the objective 

and several of the introduced constraints are not linear – e.g. r

ar xf   in the objective 

(2.111).  Wan and Lo do attempt to linearize some of these constraints, but again, doing 

so adds more computational overhead to the formulation.  The last issue is that their 

model explicitly prevents tours – whether attached or embedded – from occurring.  Thus, 

it is very possible a model of this type could exclude a truly optimal solution.  However, 

the formulation itself does attempt to address several crucial issues such as a user versus 

operator perspective in terms of quality of service versus cost, and is the first true attempt 

to do so in the context of a covering path framework.  One should also note that enough 
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capacity is provided between each origin and destination to handle all traffic, but does not 

address how long users might have to wait for a bus that is not already at capacity. 

Wu and Murray (2005) formulated the Multiple Route, Maximal Covering 

Shortest Path problem to optimize transit quality and system access.  The authors note 

that transit access – that is, the ability of a person to enter and ride on a transit system – is 

of utmost importance in urban regions.  In particular, emphasis is placed on maximizing 

the spatial extent of system access in order to ensure that those with mobility problems 

(i.e. senior citizens, persons with a disability) and those at the lower end of the socio-

economic ladder are able to adequately move about the city in pursuit of better jobs, 

schooling, etc.  An equally important objective is that of service quality.  This includes 

things such as: convenience, travel time, comfort, information access, reliability, safety, 

etc. (Levinson, 1992).  The use of interactive trip planning tools can also enhance a level 

of service such as the Google Maps’ transit planner (Huang and Peng, 2002; Peng and 

Huang, 2000). Improvement in reliability has been sought through the use of automatic 

vehicle location data associated with bus arrival or departure at specific stops (Cathey 

and Dailey, 2003; Yu et. al., 2011) and by implementing transit signal priority (Ling and 

Shalaby, 2003; Li et. al., 2011). Yet an underlying theme is travel-time performance, 

which is why travel time remains an important aspect of service quality, as noted by 

Newman and Kenworthy (1999).  The name of the model of Wu and Murray (2005) is a 

bit misleading as it does not design routes nor does it seek to find maximal covering 

shortest paths.  It actually selects, among existing bus stops, a subset of stops that, when 

kept, improve service times while keeping access coverage as high as possible.  Wu and 

Murray’s model notation and formulation are given below as: 



 

70 

 

kji ,,  = indices of existing bus stops 

r  = index of existing transit routes 

m  = index of ridership service areas 

o  = index of origin terminals for transit routes 

d  = index of destination terminals for transit routes 

ijl  = the transit travel distance from stop i to stop j 

ijv  = the cruise speed from stop i to stop j 

i  = the total delay time at stop i associated with bus acceleration, deceleration, and door 

opening and closing 

ijt  = the total travel time between stop i and stop j without intermediate stops 

ma  = the potential ridership demand in service area m 

mj  = the shortest travel time/distance from service area m to stop j 

S  = the suitable access service standard 

}|{ SjN mjm   the set of stops that can service area m within the access standard 

rmy  = 1 if service area m is covered by route r and 0 otherwise 

odijz  = 1 if a directed arc from stop i to stop j is included in path from o to d and 0 

otherwise 

jx  = 1 if stop j is selected to remain in the system and 0 otherwise 
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In this transit stop selection model, the objective (2.133) is to maximize ridership 

while minimizing total system travel time.  The first objective term maximizes the 

potential ridership in each service area that is covered by a located bus stop within a 

suitable access time/distance.  The second objective term minimizes the total bus travel 
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time between terminal origin-destination pairs for all routes – in other words the overall 

operation time for each route in a transit system is minimized.  Constraints of type 

(2.134) are coverage constraints for each route and service area.  If a stop is located on a 

route within the access standard of service area m then that area is considered covered.  

Constraints of type (2.135) and (2.136) ensure that an arc is selected to leave an origin 

terminus and an arc is selected to arrive at a destination terminus for each transit route.  

Constraints of type (2.137) are flow balance constraints which ensure that if an arc on a 

route enters a node, then that arc must subsequently leave that node with the exception of 

all origin and destination nodes for each route.  Constraints of type (2.138) are used to 

track where bus stops are sited.  In this case, a bus stop cannot be located on a route 

unless it is connected by an arc on the route from o to d.  Constraints of type (2.139) are 

binary constraints which ensure that stops are either assigned or not assigned, arcs cannot 

be partially used, and coverage is not partially assigned. 

Wu and Murray (2005) also give a metric that allows one to calculate the value 

for ijt  as a function of travel time along a direct route or as a function of a transfer 

between two or more routes.  The formula for capturing this value is given in (2.140): 
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where   represents the total delay time due to acceleration/deceleration and door 

opening and closing, ijl  represents the transit travel distance from stop i to stop j and ijv  
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represents the cruising speed from stop i to stop j.  Thus, if stop i and stop j are on the 

same route, the estimated travel time between these stops will be half the delay at stop i 

(representing the time it takes for passengers to board and the bus to leave) plus the time 

it takes to go from stop i to stop j plus half the delay at stop j (the time it takes for the bus 

to stop and passengers to get off).  If i and j are transfer stops on different routes, then ijT  

represents the amount of time it takes to transfer from one route to the next (in essence, 

the amount of delay). If stop i and j are not on the same route or a transfer stop, then their 

value is infinite as it is impossible to transfer or continue on to stop j.  Wu and Murray 

also note that each objective can be weighted in a similar manner as was applied in the 

MCSP which would allow for the generation of a tradeoff curve.  In this case, such a 

curve would represent the importance of covering each service area with the importance 

of efficient service. 

By the fact that routes are held and fixed and stops are being localized, the model 

of Wu and Murray will not be affected by the possibility of sub-tours as no routing 

variables are included.  However, by restricting the design in this fashion it is possible 

that an optimal routing and stopping scheme will be overlooked.  In fact, if one expected 

to see elements of real world routes as well as the fact that it has been proven that 

attached tours are an effective covering strategy (Niblett and Church, 2016), one would 

expect that there would be at least one attached tour in many systems.  Yet in this case, 

due to the restriction on the routes and network, what will truly be optimized is the siting 

of bus stops such that as much of the access area can be covered as possible using fewer 

stops.  If one were to open this model to changes in route alignment by allowing routing 

to occur on a true road network, it is certain that a model of this nature would include 
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sub-tours in an initial solution and thus would need a sub-tour elimination process to 

account for their occurrences.  Overall, the requirement to follow a pre-set route 

alignment is by far the biggest drawback of this model.   

Another limitation of this model is that stops are assumed to provide coverage 

regardless to the direction the bus travels.  This means that the problem may not be truly 

captured as they have formulated it.  A related issue lies in the fact that it is assumed that 

a bus will be able to reverse direction and begin to travel in the opposite direction of the 

stated covering-path at an origin or destination terminal.  Although many cities do 

employ “transit centers” this assumption may not hold across the board – for example a 

bus may actually continue in the same direction and instead simply change the route 

number that it is traveling on.  An example of such a case is that involving Line 6 and 11 

in the Santa Barbara Metropolitan Transit District.  The strength of their formulation is 

that it was one of the first attempts to improve service and route design with respect to 

access and efficiency, and it did so with a formulation much more concise than that of 

Wan and Lo.  However, to reiterate what was mentioned above, one of the major 

drawbacks of this formulation is that it is limited in terms of network scope.  That is, the 

authors constrained the model to select from pre-existing stops while keeping routes 

fixed.  The last paper that will be discussed in this section attempts to address some of 

these issues while extending existing routes. 

Matisziw et. al. (2006) propose a formulation for strategic route extension for new 

urban areas.  This formulation is referred to as the Maximal Covering Route Extension 

Problem (MCREP).  The formulation is designed such that transit agencies can add to 

their existing routes in order to minimize user disruption and dissatisfaction as well as 
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cover new urban areas as efficiently as possible within a standard of access.  In particular, 

the authors have formulated their model such that new areas will be served via a pre-

specified number of potential new stops.  The MCREP is formulated as follows: 

ji,  = index of potential candidate stops 

k  = index of demand areas 

r  = index of clique sets (Entire set = R) 

T  = the set of beginning terminal nodes t 

E  = the set of destination (dummy) nodes e 

}defined is ),(| node{ jiarciN j   

}defined is ),(| node{ jtarctNt   

}defined is ),(| node{ eiarceNe    

ka  = the potential demand in area k 

ijd  = the distance between stop i and stop j when i and j are directly connected 

p  = the number of stops to locate 

kM  = the set of stops j which cover demand k 

rC  = the subset of stops for which one j covers the same demand as other stops 

jz  = 1 if potential stop j is used as a stop and 0 otherwise 

ky  = 1 if demand k is covered and 0 otherwise 

ijx  = 1 if arc {i, j} is on the solution path and 0 otherwise 
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The objective (2.141) maximizes coverage and minimizes added route cost/length.  

Specifically, the first portion of the objective statement maximizes the demands that are 

covered while the second portion of the objective statement minimizes the overall 

cost/length of the route.  Constraints of type (2.142) ensure that an origin node for the 

extended route, t, is part of an existing route.  In this case, because we wish to extend 

routes into a new service area, the origin for the extended route could be located 

anywhere where a current route currently serves an area.  Constraints of type (2.143) 

ensure that a route will end at an ending node, e, which lies on an existing route.  

Constraints of type (2.144) are balance constraints which ensure that if an intermediate 

node j is entered by an arc, there must also be a corresponding arc which leaves 

intermediate node j.  This is done for all nodes with the exception of the origin and 

destination nodes for the extended route – that is all nodes except nodes t and e.  

Constraint (2.145) specifies that p stops along the route will be used.  Constraints of type 

(2.146) ensure that if a stop is located at node j then there must be a corresponding arc 

which enters node j with the exception of the route extension origin node t.  Constraints 

of type (2.147) ensure that in order for a stop to be located at node i there must be a 

corresponding arc which leaves node i with the exception of the destination node e for the 

extended route.  Constraints of type (2.148) ensure that in order for node k to be 

considered covered, there must be a stop located at a node that is able to cover k.  

Constraints of type (2.149) are clique constraints that will prevent redundant coverage. 

That is, only one stop is allowed to be selected from among a set of stops that provide the 
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same spatial coverage.  Constraints of type (2.150) are binary constraints which stipulate 

which variables must be either one or zero in value. 

Just as in the SCP/MCSP derived covering-path problems, the potential for sub-

tours exists in this model formulation.  It is very likely that sub-tours would appear, 

particularly on a large graph.  In this case, the authors suggest a sub-tour elimination 

procedure similar to that used by Current et. al. which is based on Dantzig, Fulkerson, 

and Johnson TSP sub-tour elimination constraints.  Thus, in order to obtain a solution 

which does not include tours, a model must be solved, sub-tours identified, constraints 

need to be added, and then the problem can be re-solved and the process repeated if the 

need arises.  As noted previously in this section, the use of Dantzig, Fulkerson, and 

Johnson style constraints used by Current et. al. and most of the other covering-path 

formulations have the potential to exclude truly optimal solutions from being determined.  

Another potential problem is that these routes are assumed to be bi-directional; so even 

though a path may be found, it is possible that a bus may not be able to make a U-turn, 

or, in the worst case scenario, a bus may not physically be able to travel in the opposite 

direction due to the fact that the route may utilize a way one street.  It should also be 

noted that an emphasis on keeping the alignment of current routes static – i.e. relatively 

unchanged – could adversely impact the model.  Although one may not want an 

established transit line to shift its route alignment too much in order to avoid angering the 

current ridership, it is possible that a marginal change in the route alignment, or even a 

system wide re-alignment, could substantially improve service in terms of access, 

accessibility, and system cost. 
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Nevertheless, the Maximal Covering Route Extension Problem is easily 

formulated and solved on large networks using current computational solvers which is in 

contrast to the Multiple Route Transit Network Design problem formulated by Wan and 

Lo.  Matisziw et. al. applied the MCREP to newly developed areas in Franklin County, 

Ohio which includes the Columbus, Ohio metropolitan area.  What is interesting about 

their results is that one of their proposed extensions includes a nearly attached tour at two 

points along the route as seen in Figure 2.6 below.  Thus, if an EAST constraint process 

were used, it is possible that more such loops could appear in a solution.  Therefore, the 

task is not only to determine a method of accounting for transit routes in both directions, 

but also how routes can utilize loops to efficiently extend coverage. 

Up to this point we have reviewed the core set of covering-path models and 

formulations as well as extended models which deal with covering-path applications such 

as public transportation.  We have seen that these models utilize a framework which has 

been proven to be flawed and we have seen that they do not entirely capture the problem 

based upon the assumptions that a path can travel in both directions.  It is also assumed 

that busses can easily change direction at the terminal points of the route – that is their   
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Figure 2.6 - Example of a nearly attached tour (Matisziw et. al., 2006) 

 

origin and destination points – for travel in the opposite direction.  Moreover we have 

seen that these models don’t easily capture the advantage that a route could provide 

through the utilization of an attached or embedded loop and are in fact often encouraged 

not to utilize such features either through explicit prevention such as in Vajda derived 

models or through tour-elimination processes such as those modified from Dantzig, 

Fulkerson, and Johnson.  What we have yet to cover is the area of heuristics – or methods 

used to find a reasonably ‘good’ solution – which have been developed to solve these 

models.  Therefore, it is pertinent to visit the heuristic work that has been developed to 

solve these problems in the next section. 

2.4 Solution Procedures – Algorithms 
 

This section will examine several key papers that have developed algorithms or 

heuristics used to solve covering-path problems.  In order to provide a precise definition 

of terms, this dissertation defines an algorithm as a method or process that is used to 

obtain a guaranteed optimal solution to a problem while a heuristic is a process or method 
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which is used to obtain good if not optimal solutions to a defined problem but with no 

guarantee of optimality or no guarantee of how close to optimal such a solution might be.  

This is an important distinction as there are several algorithms which yield optimal 

solutions for specific problems – e.g. Dijkstra’s Algorithm (1959) for shortest paths – 

while heuristics are often used to solve NP-Hard problems such as the p-Median problem 

– e.g. Teitz and Bart (1968).  Often heuristics can produce optimal results; the key point 

is that there is no guarantee.  Thus, when discussing methods for finding solutions to a 

stated problem we refer to an algorithm as a process which yields a verifiable optimal 

result and we refer to a heuristic as one which yields, hopefully a good, but not 

necessarily optimal, result. 

This particular section will present several methods which have been used to 

solve covering-path type problems.  This section will also include a brief discussion of 

shortest path algorithms, as covering path problems are a more complex form of a 

shortest path problem.  It is important to note that there are many different heuristic 

approaches that could be applied – e.g. greedy, genetic, etc. – but it is imperative that the 

heuristic is an appropriate fit for the problem.  A good heuristic for one problem type – 

e.g. Teitz and Bart for the p-Median – does not necessarily mean it is an appropriate fit 

for covering-path type problems.   

One of the classic algorithms for determining shortest paths through a network is 

Dijkstra’s Algorithm (1959).  Although Dijkstra did not come up with the first shortest 

path algorithm – the Bellman-Ford-Moore algorithm was simultaneously developed 

between 1956 and 1958 (Ford, 1956; Bellman, 1958; Moore, 1959); Minty (1957) even 
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suggested using knots on a series of strings.
8
  Schrijver (2012) gives an excellent 

overview of the development of methods used to solve shortest path problems.  However, 

methods that have been applied in related covering-path problems are those based upon 

k
th

-shortest paths.  In general k
th

-shortest path algorithms find the k paths connecting a 

given source/destination pair in order of total path length (Hoffman and Pavley, 1959).  

In other words, k
th

-shortest path algorithms can find the 1
st
 shortest path, 2

nd
 shortest 

path, etc., out to the k
th

-shortest path in order of lengths.  This problem was first defined 

by Bock, et. al. (1957) although the first published paper – using a different approach – is 

by Hoffman and Pavley (1959).  Interestingly, there are two different versions of this 

problem; the k
th

-shortest path which does not include loops (i.e. tours) and the k
th

-shortest 

path which does include loops (i.e. tours).  The first efficient non-looping algorithm was 

developed by Yen (1971)
9
 and the most efficient looping algorithm by Eppstein (1998)

10
.  

It is not surprising that a k-shortest path would have the possibility of looping through a 

node as we have seen that it can be a very efficient covering strategy in the covering-path 

formulation.  In a shortest path context it makes sense that if one has a very short segment 

the path may loop around an arc forming a simple tour until another path exceeds the 

efficiency of doing so.  Coutinho-Rodrigues et. al. (1999) developed a k
th

-shortest path 

based algorithm with respect to finding unsupported non-dominated solutions for bi-

objective shortest-path formulations (i.e. SCP/MCSP, etc.). However, with respect to 

maximal covering, shortest path problems there has been little work done with respect to 

                                                 
8
 If one develops a network using a series of strings in which nodes represent cities and string lengths 

distance between each city one can pull the knots representing the OD pair apart to find the shortest path.  

The tautest string or set of strings represents the shortest path between the OD pair. 
9
 Although Yen’s Algorithm was the first to have a known order of complexity, other approaches have 

been able to further improve computational time (Lawler, 1972; Perko, 1986; Martins and Pascoal, 2003) 
10

 Although the paper was published in 1998 Eppstein first reported his algorithm at the 35
th

 Annual 

Symposium in the Foundations of Computer Science (IEEE) in 1994. 
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exact algorithms.  The bi-objective nature of the problem makes the development of such 

algorithms particularly complicated as there can be considerable variation regarding 

emphasis that is placed on each objective.  However, methods used to solve integer 

problems as well as determine the non-inferior frontier are quite useful and these are 

frequently solved through algorithmic methods.  Therefore, the first algorithmic solution 

method I would like to discuss is a process used to find integer solutions to a problem 

which is often referred to as the ‘Branch and Bound’ method or algorithm.  The second 

method described relates to finding the non-inferior solution frontier and is called the 

Non-Inferior Set Estimation (NISE) method. 

In order to further explain the implications of modeling problems which require 

integer solutions, a brief set of definitions will be given.  When formulating a linear 

programming problem/model, a graph where solutions are plotted as a function of 

variables can be defined.  The area representing the values associated with the variables 

of the problem can be defined as a representation of the solution space.  If we plot the 

line (or hyperplane) defined by each constraint, we can begin to define a bounded region 

which represents a limit on possible decision variable values.  Depending on the 

definition of the constraint, the feasible solutions to the problem will lie either on, above, 

or below these constraint lines (or hyperplanes). Thus, these lines (or hyperplanes) then 

define the region in which we have a feasible solution or the region of feasibility.  If we 

assume a simple problem where there exists a set of feasible solutions such as the 

problem given by (2.151-153): 

cxZMaximize                                                                                                       (2.151) 

bAx 

Subject to
                                                                                                                  (2.152) 
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0x                                                                                                                            (2.153) 

 

where x is an n by one vector, b is an m by one vector, and all other matrices have 

conformable dimensions, then a feasible region is then defined as the area which lies 

within the region defined by bAx   (2.152).  Note, since we specify that the vector x is 

non-negative (i.e. greater than or equal to zero) in constraint (2.153) this will ensure that 

the region will fall in Âspace where all variables are greater than or equal to zero.  The 

unique points at which one or more of these lines (or hyperplanes) intersect are defined as 

the extreme points of the problem which we simply refer to as extreme points.  Therefore, 

extreme points represent a change in the limiting function for a particular feasible region.  

In other words, these points represent where the limiting factor switches from one 

constraint to another.  In our sample problem the objective function (2.151) defined by cx 

will be maximized and thus the optimal solution for this problem will be one of the 

extreme points defined by (2.152) above.
11

  When solving these linear models, one can 

use Dantzig’s simplex method which pivots along these extreme points until the optimal 

solution is ultimately determined
12

. 

However, if we constrain a problem to be defined as integer or binary, the set of 

solutions within the feasible solution space is no longer a continuous region but is now 

defined to be a set of discrete points at which each point is a discrete integer-feasible 

solution to the problem.  In effect this means that an extreme point which defines an 

optimal solution in continuous space may not represent an optimal solution for a discrete 

integer problem.  Thus, a more computational intensive approach must be used to 

                                                 
11

 For a thorough explanation of mathematical programming I would refer one to Hillier and 

Lieberman’s Introduction to Operations Research. 
12

 There are possible nuances of cycling, which are often not a concern. However, they do present 

theoretical issues that need to be addressed when proving convergence.  
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determine the optimal discrete integer solution to the problem.  There have been several 

methods proposed that will do this.  One of the first to examine this issue was Gomory 

(1958, 1960) who suggested an algorithm in which additional constraints could be added 

to a problem.  These added constraints are cutting planes which are used to reduce the 

feasible region in an attempt to prevent non-integer solutions from occurring at the edge 

of the region of feasibility containing the optimal all integer solutions.  Although this is 

may be an effective way to solve the problem, it is not terribly efficient – especially as a 

problem grows in complexity, especially in terms of the number of integer variables 

involved. 

Land and Doig (1960) developed what has since become known as the Branch 

and Bound Method/Algorithm.  Rather than use a purely constraint-based approach to 

solve an integer problem such as Gomory; Land and Doig recognized that the relaxed 

integer problem – i.e. the relaxation of integer/binary constraints to non-negativity 

constraints – represents a bound to the integer problem.  That is, a solution to the integer 

problem in the best case can never exceed that of the linear form of the problem.  This is 

illustrated in Figure 2.7.  Thus, Land and Doig recognized that a method could be devised 

wherein one can find the best bound and then ‘branch’ along the associated search tree 

until the solution matches the best bound found.  The generic form can be stated as 

follows: 
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Figure 2.7 - Feasible Region to a linear problem and the associated integer solution given in Land and Doig 

(1960). On the graph Point A represents an optimal linear solution while Point E represents the optimal integer 

solution. 
 

Step 0: determine a solution 
hx  to the problem (Note that this is a relaxed linear 

solution). Set B as the solution to 
hx  where B represents the best solution found 

by the linear relaxation. 

Step 1: Determine all variables in the solution 
hx  which do not have integer values.  

These represent the variables on which we will ‘branch.’  In the case of the 

relaxed problem – if all variables are already integer stop, this is the optimal 

solution. 

Step 2: Pick one of the ‘branch’ variable candidates and set it to be the associated floored 

integer value or the ceilinged integer value – e.g. if a variable has a value of 3.7 

its floor is 3 and ceiling is 4.  Determine the solution to the associated sub-

problem using these values. If a solution to a sub-problem is not feasible then that 

branch can be removed from further exploration.  If a sub-problem has an integer 

solution it can also be removed from the set of ‘branches’ that require further 

exploration as there will be no better solution than the current integer solution. 

Step 3: Chose the next variable to ‘branch’ on which has an associated objective value 

closest to B.  If all initial non-integer variables have been ‘branched’ set the best 

value found to be the best objective found associated with the branch variable that 

yields the best objective. 

Step 4: Repeat steps 2-3 until an integer solution is found which equals the best objective 

or until all portions of the tree have been fathomed – i.e. no better solution can be 

determined based upon branching on that variable. 
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The nice thing about the branch and bound algorithm is that you can use solutions 

obtained from other heuristic methods to set bounds.  If the best integer solution found by 

the branch and bound algorithm is found to be a solution determined by the heuristic, 

then you know that you have found the optimal solution.  The branch and bound process 

is also relatively easy to code and there exist several methods which amend the basic 

branch and bound process to improve solution times.
13

  In any case it is discussed here 

due to the fact that a form of the branch and bound algorithm is used by virtually all 

commercial solvers to determine optimal binary/integer solutions.  Virtually all covering-

path type problems are solved to optimality through the use of a branch and bound 

algorithm.  Although the branch and bound algorithm will find an optimal solution to a 

problem given enough time, the practicality of doing so falls as problems increase in size.   

Due to the bi-objective nature of covering path problems, it is essential to perform 

some kind of multi-objective analysis.  One of the earlier methods developed with respect 

to multi-objective analysis, where the goal is to identify pareto optimal solutions, was 

that of Cohon et. al. (1979) who developed a method for identifying the non-inferior 

tradeoff curve.  Cohon et. al. (1979) first formulated the NISE, or Non-Inferior Set 

Estimation algorithm to identify solutions in multi-objective problems which are non-

inferior.  This method would allow one to approximate the set of non-inferior solutions 

through a novel procedure.  The basic idea is to approximate the weights needed with 

respect to a bi-objective problem such that the point defining the optimal objective in the 

                                                 
13

 See for example: Crowder, Johnson, and Padberg (1983) and Padberg and Rinaldi (1991) – I haven’t 

been able to find a clear citation of the branch-and-cut algorithm but Gomory and Balas did extensive work 

on cutting plane methods for solving integer problems; I suspect that the branch and cut algorithm came 

together sometime in the early 1980’s. 
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feasible region is determined.    If we recall, a bi-objective formulation takes the form of 

(2.154).   

2211 ZwZwMaximize                                                                                             (2.154) 

By approximating the lines which bound the points representing optimal solutions to each 

objective, the region bounding the non-dominated inferior set can be ascertained.  In 

order to best explain the algorithm we must first define the notation that will be used in 

the algorithm.  The set of points, P , is a set that is composed of the optimal solution 

points determined by the algorithm as it works through the process of finding the region 

defining the non-inferior set.  In other words, this set contains solutions which are 

indexed according to the order in which they are determined by the algorithm.  This 

means that these points may not be adjacent to neighboring points in chronological 

identification.  In order to define solutions in order of decreasing value with respect to 

one of the given objectives we can reorder the set of points.  This set is ordered such that 

each point in S represents the best solution with respect to the associated objective given 

an associated weight; this can be readily seen in Figure 2.8 where the ordering of S is in 

relation to objective 2Z .  We also start with a predefined error tolerance for how accurate 

we wish our final result to be.  To do this we use 1,  ii  which represents the error 

tolerance for determining the non-inferior set between solution points i and i+1. We 

define the maximum error tolerance as T.  A visual representation of this is given in 

Figure 2.9.  In order to approximate the set given in Figure 2.8 we must determine the 

weights that should be used with respect to each objective.  We can do this through the 

use of weights corresponding to the line segment formed by connecting known solution 
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points.  For example, suppose we have a known solution for the i-th and a neighbor 

represented as solution i + 1.  The slope for the line connecting these points is given in 

(2.155).  The slope, m, is: 
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should then be a function of the associated objective weights.  This function is given as 

(2.156): 
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where 
1w  and 2w  represent weights on 

1Z  and 2Z  respectively.  Therefore, we can 

represent the weighted objective function for a segment between 
iS  and 

1iS  as defined 

in (2.157) as follows:  

211111221, )]()([)]()([ ZSZSZZSZSZBMaximize iiiiii                                (2.157) 

 

 
Figure 2.8 - Solution Points according to set P and S as given in Cohon et. al. (1979) 
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Figure 2.9 - Generating the approximate set with error tolerances as given in Cohon et. al. (1979) 

 

through the manipulation of (2.156) and (2.154).  Therefore, the generalized version of 

the NISE algorithm to find the approximated set is as follows: 

Step 1: Set the desired value for the error threshold, T, the maximum allowable error.  

Determine  1P  by solving for 2Z  and 2P  by solving for 1Z .  Set 11 PS   and 

22 PS  .  Compute 12 and let 1n  where n equals the number of distinct points 

currently in the string set. 

Step 2: If Tii  1,  then stop as a satisfactory approximation of the non-inferior set has 

been determined.  Otherwise, go to Step 3 

Step 3: Find i such that Tii  1, .  Solve the problem given in (156) and designate the 

new solution as 1nP .  Go to Step 4. 

Step 4: In this step we will update the sets.  Note that i is the highest value of t such that 

)()( 122  nt PZSZ .  Therefore, we can update the string sets in the following 

way: 

itSS tt ,,2,1for    

11  
ni PS  

iitSS tt ,,1for 1 
  
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where 
tS  is the new ordering for the string set.  Once this is completed we now 

redefine the error threshold,  in the following way: 

 

Compute 1, 
ii  which represents the maximum possible error between 

iS  and 

1iS  and then compute  2,1 
ii  which represents the maximum possible error 

between 
1iS  and 

2iS : 2 if  1,,1for 1,2,1 
 ninittttt   where 

1, 
tt  are the new values for the   variables.  Increment n by one and then go to 

Step 2. 
 

 

The authors note that the NISE algorithm can be modified to suit certain demands.  For 

example, Step 3 could be modified such that i can be chosen such that the maximum error 

1,  ii  is the largest rather than choosing any maximum error that is above the threshold.  

This change would result in a more even approximation which would be useful if one is 

uncertain of the value chosen for the error threshold.   One could also subscript the 

threshold itself so that different error values can be set with respect to specific segments.  

This would allow an analyst to gain greater insight with respect to a region of the non-

inferior set which is of greater importance.  To illustrate how the method works, it is 

useful to work through the example provided in Cohon et. al. (1979).  Suppose we have a 

sample problem that is composed of the following objective and constraints: 

)()( 2211 xZwxZwZMaximize                                                                             (2.158) 

3001525

ToSubject 

21  xx
                                                                                                   (2.159) 

3007 21  xx                                                                                                         (2.160) 

700112 21  xx                                                                                                         (2.161) 

1822 21  xx                                                                                                             (2.162) 

112011 21  xx                                                                                                         (2.163) 

8021  xx                                                                                                                (2.164) 

01 x                                                                                                                          (2.165) 

02 x                                                                                                                         (2.166) 

1 if  1,,2,1for 1,1,   iittttt 
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where 
211 3)( xxxZ   and 

212 5)( xxxZ  .  The first step in the process is to identify 

the optimal solution with respect to each objective.  This will define a set of bounds at 

which there can be no better solution with respect to each objective – i.e. weights are set 

at zero and one and the problem is solved and then weights of one and zero respectively, 

and then solved for 
1Z  and 

2Z .  Thus, the first points we will add to P are 
1P  and 

2P  

which define the best possible solutions with respect to each objective 
2Z  and

1Z .  We 

call these points 
1P  and 

2P  as these points correspond to the first two points that we have 

added to the set of points used to define the bounds of the solution.  The third point to be 

found would be 
3P  and so on until the algorithm terminated.  If two lines are drawn with 

each line corresponding to the maximum value of each objective, eventually they will 

intersect.  We can call the point of intersection between these lines, point C.  Thus, the 

region formed by lines CP1 , CP2 , and 21PP  represent the region in which the non-inferior 

set must exist.  In this case we will find the entire non-inferior set, so we set the error 

tolerance threshold equal to zero.  This means that in order for the NISE algorithm to 

terminate all 1,  ii  must be equal to zero.  Since the line 21PP  is not known to be inferior, 

12  is greater than zero and thus we move to Step 3 in the algorithm.  In this case, the 

only possible candidate is to maximize 12B  as at this stage we only have two solution 

points (e.g. 2n ).  Having made this selection we now set the point of our new solution 

as 1nP  which means we have our new solution point 3P .  We now move to Step 4 where 

we update the string set and redefine the parameters needed for  and S .  In this case, 

11 PS  , 32 PS  , 23 PS  , 012  , and 023  .  Upon completion of Step 4 we return 

to Step 2 and begin the second iteration of the algorithm.  Thus, up to this point the non-
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inferior set looks like that given in Figure 2.10 where the shaded region represents the 

non-inferior set after one iteration of the algorithm.  Since we have values of 1,  ii  that 

are greater than zero we would need to continue the algorithm.  For further examples and 

a complete enumerative description, see Cohon et. al. (1979). 

The limitation of the NISE algorithm is that it only applies to problems which are 

linear in nature.  This means that the optimal set of discrete points for integer or mixed 

integer linear formulations can be approximated but only based upon finding supported 

non-dominated points.  Steuer and Choo (1983) utilized a Tchebycheff (also given as 

Chebyshev) approximation to determine the non-inferior set.  This process takes 

advantage of the nature of Tchebycheff Polynomials by approximating the best 

polynomial which fits the objective for the problem.  Solanki (1991) expanded the idea of 

by using a weighted Tchebycheff procedure for explicit multi-objective location 

problems.  The main contribution of Solanki (1991) was to generate the non-inferior set 

with respect to discrete solutions.  Medrano and Church (2014, 2015) have further 

expanded this work into finding unsupported non-dominated solutions with respect to 

shortest paths.  These solutions are much harder to determine, although they are optimal 

solutions, they are not necessarily readily determined as convex supported solutions.  An 

example of this is seen in Figure 2.11.   
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Figure 2.10 - Non-inferior set after one iteration of the NISE algorithm on the sample problem as given in Cohon 

et. al. (1979). 

 

 
Figure 2.11 - Example of un-supported non dominated solutions as given in Medrano and Church (2014) 

 

2.5 Heuristics 

Solving large problems to optimality may be computationally unrealistic.  

Although solution algorithms such as branch and bound will determine an optimal 

solution given enough time and computational resources for many problems,  there still 

exits a limit as to the size at which most NP-hard problems can be solved to optimality. 
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This necessitates the use of “good-enough” heuristics.  The field of heuristic algorithm 

development is very large and includes techniques such as: greedy; λ-opt (swapping); 

insertion; GRASP (Feo and Resende, 1989); variable neighborhood search, genetic, 

swarm smarts (e.g. ant colony optimization); simulated annealing; heuristic 

concentration, Tabu search; as well as others.  I will review here only those techniques 

that have been used in covering path problems, notably ‘Tabu’ search and LaGrangian 

relaxation.  However, from the outset one should realize that all heuristic approaches are 

possible for application in covering path problems.  The first type of heuristic applied 

with respect to covering paths is LaGrangian Relaxation.  This will be reviewed and 

followed by a discussion of Tabu Search.   

The first application of LaGrangian relaxation we will look it is by Current, 

Pirkul, and Rolland (1994) as it specifically addresses LaGrangian Relaxation as applied 

to the Shortest Covering Path Problem.  LaGrangian relaxation is a method of relaxing 

selected constraints and adding “LaGrangian” terms to the objective function 

approximating the problem.  This means that the solution obtained for the relaxed 

problem is an approximate solution to the original problem.  Stated precisely, LaGrangian 

relaxation allows one to remove one or more constraints within a model by incorporating 

it into the objective function through the use of LaGrange multipliers, which impose costs 

to violations of the incorporated inequality constraints on the objective.  Incorporating a 

set of inequality constraints into the objective and determining the proper multipliers 

often will allow a problem to be solved much more efficiently and easily than the original 

un-relaxed formulation.  In practice this means that larger problems can be solved close 
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to optimally.  Current et. al. (1994) applied LaGrangian relaxation to the Shortest 

Covering Path problem.  If we recall that the SCP is defined as: 


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
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)( , }1,0{ i,jxij                                                                                                            (2.27) 

 

we can see that constraints of type (2.26) can be adapted into the objective function 

transforming the problem into a version of a shortest path problem.  Thus, if we remove 

constraints of type (2.26) and incorporate these into our objective function using a 

LaGrange multiplier we will obtain the form given in (2.167): 
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where 
k  represents a vector of LaGrangian multipliers.  This function can be rewritten 

into the form given in (2.168): 
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which is, in essence, a shortest path problem objective.  For values of k  that are less than 

or equal to zero the problem can be easily solved using Dijkstra’s Algorithm.  However, 

since the LaGrangian multipliers can be greater than zero, it is possible that negative cost 

cycles could occur which would cause Dijkstra’s Algorithm to fail as it becomes caught 
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in a negative cost cycle.  Although other algorithms could be used – e.g. Floyd-Warshall 

or Bellman-Ford – Current et. al. noted that it was more efficient to discard multiplier 

sets which result in negative cycles.  They also noted that they could have alternatively 

added sub-tour breaking constraints to the formulation as needed though they again noted 

that it was more efficient to opt to avoid sets which resulted in negative cost cycles, 

particularly since one searches for “good” LaGrangian multipliers. 

Thus, the difficult part of any LaGrangian relaxation is finding the proper set of 

multipliers.  This is done through the approximate LaGrangian multiplier set 
*  that is 

defined by (2.169): 

 )( * 


ZMaximize                                                                                                 (2.169) 

This function can be interpreted as follows: find the best value of lambda values such that 

the best objective using LaGrangian multipliers is determined in the relaxed problem.  

The next step is to find these multipliers.  Current et. al. note that there are several 

methods for determining ‘good’ multipliers (Bazaara and Good, 1979; Fisher, 1981).  

The method chosen by Current et. al. is a subgradient search method.  This subgradient 

optimization is defined by using the following function given in (2.170): 
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where kX  is an optimal solution to the relaxed problem and kt  is a positive scalar step 

size at iteration k.  To determine the step size for the subgradient function in (2.170), the 

following stepsize function (2.171) is commonly used. 
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In this case, Z is a feasible solution value, and 
kd  is a scalar value such that 20  kd .  

To initialize the function, 
0  values are set to zero and 

kd  is initialized at 2.  Current et. 

al. halved 
kd  after 15 consecutive iterations when the bound did not improve.  When 

multipliers were found that resulted in negative cost cycles, Current et. al. discarded these 

multipliers, halved 
kd  and resumed the optimization using the multiplier set that 

generated the best bound found up to that time.  In order to generate feasible solutions to 

the relaxed SCP, Current et. al. formed a heuristic which would take a solution to a 

multiplier set and determine if the solution covered all nodes.  If so, a feasible solution 

had been determined.  If not, the following heuristic was employed. 

Step 1: Let "path" be the path identified by the solution to the relaxed SCP. Initialize D 

to be the set of all nodes not on the path, and let U be the set of all nodes not 

covered by the "path." If }{U  stop: "path" is a feasible solution. 

Step 2: Find the node q, where Dq , which covers the maximum number of uncovered 

nodes. If }{D  then stop; no feasible solution is determined. 

Step 3: Find two nodes k and l which are vertices of an arc on the “path” such that 

jidddddd ijqiiqklqlqk ,  where i and j are vertices of an arc on the 

“path.”  If no arc exists connecting node q with nodes on the “path” then let 

}{qDD   and go to step 2.  Otherwise, insert node q on the “path” between k 

and l and update U and D. 

Step 4: if }{U  then stop; a feasible solution has been identified, otherwise go to step 

2.  

 

Essentially this heuristic takes a solution obtained from LaGrangian multipliers in the 

relaxed SCP and checks to see if all nodes are covered.  If there are any uncovered nodes, 

then nodes are inserted into to the path in a greedy manner.  This process is then repeated 

until there are no uncovered nodes or a solution has been determined to be infeasible.  

This is done in order to find a feasible, but not necessarily optimal, solution to the 

problem so that one can begin to optimize along the subgradient.  Thus, the application of 

LaGrangian relaxation to the SCPP allows the problem to be solved quite quickly and in 
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this case without the addition of sub-tour elimination constraints.  Although no 

commentary was given with respect to loops occurring in solutions (with the exception of 

negative cost cycles) in their LaGrangian relaxation based approach, the process defined 

by Current et. al. does not generate paths with loops.  When a loop does exist in an 

optimal shortest covering path, however, their process will not completely converge.  

Furthermore, if the truly optimal solution includes negative multipliers, it is possible that 

the true optimal primal solution could be overlooked.  The drawback to using LaGrangian 

relaxation lies in the fact that a formulation must be set up in such a way that the use of a 

LaGrangian relaxation makes sense.  In other words if you are attempting to reduce the 

constraint size of a problem, the constraint to be relaxed should be one of sufficient size 

and of an appropriate form. 

However, Fernandez and Marin (2003) formulated a LaGrangian relaxation based 

heuristic for what they called the Path Location with Multi Source Demand Problem.  

The stated goal of that problem is that it should be applied to situations and applications 

in “which the demands of one client must be satisfied through a set of different service 

points (Fernandez and Marin, 2003).”  In essence they are trying to model how to best 

locate stops such that the site locating cost and the overall route cost (i.e. distance or 

time) is minimized while user utility is maximized.  The main value in this work, 

however, is the fact that their problem can be formulated in such a way that a MCSP can 

be subsumed and a LaGrangian relaxation applied.  It is important to note several major 

assumptions in their work.  The first is that the network is directed, the second is that 

there exists costs and demands associated with each node, and finally – and most 

importantly – the route is acyclic; in other words it must not contain any loops or cycles.  
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The reason for this is exactly the same as in the relaxed SCP; a sub-tour can involve a 

negative cost cycle resulting from negative multipliers.  Thus, the possibility of a loop 

occurring because of a negative cost cycle may imply that an optimal solution might 

indeed include a loop. By assuming that an optimal solution must be acyclic and that such 

conditions be ignored means true optimal solutions may not be generated and identified.  

Nevertheless, when applied properly, LaGrangian relaxation based approaches are very 

powerful tools that can often find good bounds on optimality as well as feasible, high 

performing solutions
14

. 

The last type of heuristic we will examine is Tabu Search.  Tabu Search was 

developed by Glover (1989); the basic idea of Tabu Search is to overcome local optima 

through a search procedure which forces solutions to be excluded from a candidate set for 

a period of time, usually a set number of iterations.  The idea is based upon the idea of a 

hill climbing heuristic, or a procedure which looks for the best solution and which 

‘climbs’ the optimal curve.  The simplex method (Dantzig, 1951) is an example of a type 

of climbing algorithm as it pivots from extreme point to extreme point along the feasible 

region in an improving direction, working its way to the optimal solution.  However, in 

the case of a non-convex feasible region, it is possible that a climbing heuristic may be 

stuck in what is called a local optima.  A local optima is optimal with respect to a 

localized area within the feasible region but in the entirety of the solution space is not the 

optimal solution.  In an illustrative example, one can think of a local optima as a foothill 

on the way up to the tallest peak of a mountain range.  In a minimization context, one can 

think of the ‘climbing’ process as descending a hill and looking for the lowest possible 

                                                 
14

 It is important to note that it is possible to embed a LaGrangian approach in a Branch and Bound 

algorithm and identify and verify optimal solutions for certain classes of integer programming problems. 
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valley.  Thus, any climbing heuristic has the potential to enter a local optima and define 

this as an optimal solution even though a better solution may occur in a different part of 

the region of feasibility. 

Tabu Search is a type of meta-heuristic in which a search for an optimal solution 

is initiated using another heuristic search process, but tries to ensure true optimality by 

forcing certain solution elements to be ‘Tabu’ in order to avoid getting stuck at a local 

optimum.  In order to give the basic algorithm it is prudent to define the key notation.  

The general heuristic and notation is as follows in a minimization context: 

X  = the set of solutions for the problem 

x  = discrete solution in X  

S  = the set of moves one makes towards an optimal solution 

s  = the current move from one solution to another 

T  = the set of ‘Tabu’ solutions which is a subset of S  

t  = the number of iterations that a solution is to remain in T  

OPTIMUM  = an evaluator function for the solution 

 

Step 1: Select an initial solution such that Xx and let xx * .  Set the iteration counter 

0k  and begin with the ‘Tabu’ set, T , to be null ( ). 

Step 2: If TxS )(  is null then go to Step 4; otherwise, set 1 kk  and select 

TXSsk  )(  such that ))(:)(()( TxSsxsOPTIMUMxsk  . 

Step 3: Let )(xsx k . If *)()( xcxc  , where *x  is the best solution currently found, 

then set xx *  

Step 4: If a chosen number of iterations has elapsed either in total or since *x  was last 

improved, or if TXS )(  upon reaching this step from Step 2, stop.  

Otherwise update T  and return to Step 2. 

 

The way Tabu Search works can be described as follows.  In Step 1 we need to identify 

an initial starting solution that must be feasible to the stated problem.  Although not 

stated explicitly in Step 1 this solution can be derived through the use of another 

heuristic, such as greedy, etc.  One could even fill in the elements randomly; the point is 

that we simply need to determine a solution that is feasible in order to begin the Tabu 

Search process.  We then set this solution to be the best solution currently found, *x .  
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Since this is the first initial step in starting Tabu Search we set the iteration counter to be 

equal to zero, and the ‘Tabu’ set to be null as we have not presently added any elements 

in this set.  Step 2 first checks to see if the set of solution elements minus ‘Tabu’ elements 

is null.  If it is null the heuristic goes to Step 4.  If one has just initialized the process this 

set is not empty as set S(x) will be comprised of the initial solution.  Since the ‘Tabu’ set 

is null then by evaluation of TxS )(  we determine that the set is not empty, and 

therefore we increment k by one and find another solution to the problem through some 

function.  This function is defined above as OPTIMUM; the OPTIMUM function can be 

defined in several ways.  One possible method is through the use of some kind of 

heuristic – depending on the problem this could be a swap heuristic or something similar 

– or by solving an ‘auxiliary optimization problem’ (Glover, 1990a).  Typically the 

reason for solving an auxiliary problem is to enable one to determine a feasible starting 

solution; for example this can be used in Dantzig’s Simplex Algorithm to specify a 

feasible starting point.  In this case an auxiliary problem is used in Tabu Search with 

respect to IP/MIP problems and is detailed extensively in Glover (1990a).  To keep things 

understandable here, one can think of the goal of the OPTIMUM function as a way of 

finding a better solution, given that there are some ‘Tabu’ restrictions imposed. 

In Step 3 we let the solution we obtained in Step 2 be represented by x.  If the 

objective value of this solution, e.g.  )(xc , is less than the objective value for the current 

best solution, e.g. *)(xc , then we set the current best solution to be equal to x and then 

move to Step 4.  In Step 4 we keep track of what has happened with respect to the search 

process.  If we have reached a certain number of iterations, e.g. pk  where p is the 

maximum number of iterations, then the algorithm stops.  Similarly, if the best solution 
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found, e.g. *x , has not changed for a certain number of iterations then the algorithm 

ends.  The final stopping condition, where the set of solutions minus the ‘Tabu’ set is 

null, implies that there are no moves which can improve the solution and thus the 

heuristic ends.  If this is not the case, i.e. none of the stopping conditions are met, then 

the ‘Tabu’ set is updated and the algorithm repeats at Step 2.  The remaining question 

then becomes: what criteria is used to update the ‘Tabu’ set?  A generalized method of 

adding solutions to the ‘Tabu’ set is given in (2.172).  In essence, this function represents the set

  

}for  :{ 1 tkhsssT h                                                                                    (2.172) 

of ‘Tabu’ solutions which would ‘undo’ the current solution.  In other words, the ‘Tabu’ 

set is used to prevent solutions from returning to a previous solution state.  Thus, we 

don’t want to make moves which will satisfy xxss  ))((1 .  In order to track changes 

over time we introduce the index t which represents the number of iterations a move has 

been in the ‘Tabu’ set.  Therefore, (2.172) can be evaluated as follows: The ‘Tabu’ set 

will consist of all moves which enable a previous solution such that this move occurred 

within t iterations of the ‘Tabu’ Search heuristic.  For example, if t was set to be equal to 

10, then all previous solutions determined in the previous ten iterations would be 

included in the ‘Tabu’ set.  By setting a ‘Tabu’ set, we can ensure that a variety of 

differing solutions are obtained, while also allowing a previous solution element to exit 

the ‘Tabu’ set after a certain number of iterations to avoid the case of entering into a local 

optima.  It should be noted that the method of adding elements into the ‘Tabu’ set given 

in (2.172) can vary; Glover (1989, 1990a) gives several alternate ways of adding and 

removing elements from the ‘Tabu’ set.  I have only given the generalized form as it 
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describes the function of the heuristic quite well.  There are also several very good 

instructional papers and books such as Glover (1990b), Glover and Taillard (1993), 

Gendreau (2003), Glover and Laguna (2013) as well as many applications based papers – 

i.e. Tabu Search for p-median (Rolland, et. al., 1997) – all of which are too numerous to 

note here.   

There are a number of papers that have direct links to covering-path type 

problems that should be noted here.  Gendreau et. al. (1995) utilize Tabu Search for the 

location of rapid transit lines, while Dufourd et. al. (1996) use Tabu Search to locate a 

transit line.  Fan and Machemehl (2004) use a Tabu Search procedure to solve the 

network design problem and Fan and Machemehl (2008) utilize Tabu Search to optimize 

public transportation networks with variable transit demand.  Although there are no 

papers that deal directly with a Maximum Covering Shortest Path problem, there is no 

reason that ‘Tabu’ Search could not be an effective strategy for finding a good solution.  

Since ‘Tabu’ Search is a meta-heuristic, that is it can employ other heuristics to obtain 

starting results and potentially different solutions, it is possible to employ other more 

basic heuristic methods to aid in the search for optimal solutions, while Tabu search 

controls the process.  The biggest issue here is that no basic heuristic has been developed 

that involves solving path like problems that expressively allow loops to be embedded in 

their solutions.  

2.6 Conclusions 

 
This chapter has examined the underlying models which form the basis of 

covering-path problems.  Namely these include the Location Set Covering Problem 

(LSCP), the Maximal Covering Location Problem (MCLP), and the Shortest Path 
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Problem (SPP).  We have examined how these base models were developed into the 

Shortest Covering Path and Maximum Covering Shortest Path problems (SCP, MCSP) as 

well as several related problems such as the Median and Maximal Covering Tour 

Problems (MTP/MCTP), the Covering Salesman Problem (CSP), the Hierarchical 

Network Design Problem (HNDP), the Transit Arc-Node Service Maximization Problem 

(TRANSMax), the Minimum Covering Shortest Path Problem, and several multi-path 

covering problems.  We have also examined algorithmic procedures used to find exact 

solutions to covering-path problems as well as several heuristic based approaches which 

are used to solve covering-path type problems such as Branch-and-Bound, Non-Inferior 

Set Estimation (NISE), LaGrangian Relaxation, and Tabu Search.  We have also 

examined several issues with respect to covering-path type problems such as the methods 

used to eliminate sub-tours as well as problem specific issues such as assumptions related 

to directionality and service. 

This examination has shown that there are deficiencies with respect to how 

models describe the real world, how these problems are complex, and how these 

problems can potentially be solved using algorithmic/heuristic procedures.  Chapter 3 of 

this dissertation will explore how covering-path models can be developed to reflect real 

world routing situations.  In particular it will address how the MCSP and MPSP models 

can be reformulated to be ‘loop agnostic.’  Chapter 4 presents a new heuristic which can 

calculate good, feasible solutions to the New, Revised MCSP problem formulated in 

Chapter 3.  Chapter 5 will present a new model formulation based on the alternatively 

formulated MCSP, TRANSMax.  Particular attention is given to how the model can be 

reformulated to be loop agnostic as well.  Chapter 6 will then build upon these new loop 
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agnostic models and present the new Bi-Directional Maximal Covering Shortest Path 

problem which accounts for travel in opposite directions.  The models formulated to 

address the BD-MCSP are not only loop agnostic, they also allow unique forms of loops 

such as the bi-directional and uni-directional loop structures.
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Chapter 3 
 

3.1 Introduction 

 

The maximal covering shortest path problem is a bi-objective problem that 

involves the location of a path connecting an origin with a destination where path 

distance is minimized and path coverage is maximized. The original model formulation 

for this problem was developed by (Current et al. 1985) and was cast as an integer-linear 

programming problem. Because this is a discrete optimization problem, solutions in 

objective space are represented as discrete points (Cohon, 1978). Pareto-optimal solutions 

are those discrete solutions where it is impossible to increase path coverage without 

increasing path distance or where it is impossible to reduce path distance without 

decreasing path coverage as well.  

Current et al. (1985) solved their model using a weighting approach described in 

Cohon (1978), which is capable of identifying all supported, Pareto optimal solutions in 

objective space. The shortest covering path problem is a special case of the maximal 

covering shortest path problem, and an optimal solution to the SCP is the most efficient 

“cover all nodes” path and is a supported Pareto-optimal solution to the MCSP. All other 

Pareto-Optimal solutions to the MCSP cover less than all nodes and have a path distance 

less than any SCP and are therefore infeasible to the SCP. Since Niblett (2013) 

demonstrated that the original model to the SCP problem may not in all cases identify an 

optimal solution, it is then possible that solutions to the MCSP of Current et al. may not 

always be optimal in the sense of Pareto-optimality. The reason for this is that Pareto-

optimal solutions to the MCSP may involve embedded loops. From a technical point of 
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view, such solutions may not be considered paths; however, Minieka (1978) defined a 

shortest path as the path that has the smallest possible length. Consequently, it is the 

shortest path that accomplishes the desired task, whether it contains a loop or not. In 

addition, some approaches to the k
th

-shortest path problem expressively allow for the 

construction and use of loops (Dreyfus, 1969; Shier, 1979; Martins, 1984; Eppstein, 

1998). This means that path definitions and solution algorithms for different types of path 

problems have included the possibility that loops may be used as part of a solution.  

The original shortest covering path model of Current et al. (1984) was predicated 

upon an implied assumption that optimal solutions would never contain a loop or return 

to a previously visited node. This assumption seems straight forward, except for the 

simplest type of networks. For example, when turn restrictions are encountered at 

intersections on a road network, some shortest paths leave a specific intersection in the 

straight direction and then make a series of three right turns at subsequent intersections in 

order to approach and go through that intersection for the second time to overcome the 

case where a left hand turn was prohibited on the first approach and prevented a direct 

left-turn move for that desired direction. Thus, in turn-restricted networks, loops may be 

somewhat common in shortest paths.  

This chapter introduces revised models that have been developed for the 

Maximum Covering Shortest Path (MCSP) problem and the Maximum Population 

Shortest Path (MPSP) problem with the intention of allowing loops to occur when it is 

optimal to use them. Such models should be considered to be loop agnostic – loops are 

neither required nor prevented.  This chapter also presents computational experience in 

solving these problems as well as several example solutions that demonstrate how the 
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new, revised models can find solutions that are as good as, or exceed, those solutions 

produced by the original models of Current et al. (1985).  This chapter expands the work 

of Niblett (2013) and Niblett and Church (2016), where they analyzed issues with respect 

to the Shortest Covering Path problem and offered a new, revised formulation of the SCP.  

Here, it is shown that the original MPSP model formulation may result in the case that no 

feasible solution exists, when in fact a feasible solution does exit. 

This chapter is structured as follows: the next section will provide an overview of 

the new, revised formulation of the maximum covering shortest path problem.  Key 

nuances in the formulation will be discussed, particularly how they compare to those in 

the classic MCSP formulation given in chapter 2.  The third section will discuss the 

computer environment in which the NR-MCSP formulation was applied as well as 

discuss the workflow of how the problems were solved.  The fourth section will present 

results from the model and compare them to counterpart solutions to the original MCSP 

model.  The fifth section addresses the related maximum population shortest path 

(MPSP) model developed by Current et. al. (1985), particularly in how the original model 

may be incapable of finding an optimal solution.  Results from the original MPSP as well 

as those derived utilizing the EAST constraint process described in Chapter 2 in 

conjunction with a new revised MPSP model will then be compared.  The sixth and final 

section will offer concluding remarks. 

 

3.2 A New, Revised Model for the Maximum Covering Shortest Path Problem 

 

The formulation for the classic MCSP proposed by Current, et. al. (1985) is given 

in Chapter 2; the model presented here is an expansion of this formulation and is setup in 
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such a way that Eliminate or Attach Sub-Tour (EAST) constraints can be utilized.  As in 

Chapter 2, we assume that there is a network of nodes and arcs. Arcs may be directed or 

undirected. The first problem we will address is a new, revised formulation for the 

MCSP.  The notation and formulation for the NR-MCSP problem is as follows: 

kji ,, indices used to reference nodes of the network 

ka  the amount of demand at node  k where 0ka  

  the importance weight associated with the coverage objective 

  the importance weight associated with the distance objective 

  ijd the distance or travel time from node i to node j 






                                                                          otherwise 0,

MCSP in the    to from  traversedis      to from arcan  if 1,
 

jiji
xij  

ky  one if node k is covered and zero if it is not 

  p the starting node for the shortest covering path 

   q the terminus node for the shortest covering path 

  } exists ),arc( { jii|N j  the set of nodes i which are connected to j 

S* the maximum allowable service distance/time 

  }  { S*j|dS jkk  the set of nodes j which are within the maximum service distance to 

node k 

iF the set of nodes, k, that are connected to i by an arc and can be directly traversed 

from i to k. jT  the set of nodes, k, that are connected to j by an arc and can be directly 

traversed from j to k. 


k

kkC yaZ   the objective term corresponding to coverage 
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)( , )1,0( i,jxij                                                                                                                                     (3.8) 

kyk   , )1,0(                                                                                                                  (3.9) 

The objective (3.1) remains the same as in the original MCSP; the first term is a weighted 

objective term that involves maximizing population covered and the second term is a 

weighted objective term that involves minimizing overall path length.  Constraint (3.2), 

however, is modified from the original MCSP formulation.  Constraint (3.2) allows for a 

loop to form at the origin node so long as there is one more arc used to leave the origin 

node than is used to enter it on the covering path.  This is done by ensuring that the sum 

of all arcs used to leave the origin must be one more than the sum of the arcs used to 

enter the origin.  This form of (3.2) allows for a ‘lollipop’ form of route to occur where a 

loop is attached at the origin node.  In a similar vein, Constraint (3.3) allows a loop in the 

path to involve the destination node.  The path may, essentially, loop through the 

destination node, but it must eventually end at the destination.  This is ensured by the fact 

that the path must enter the destination node exactly one more time than the path departs 

from the destination node.  This constraint allows a ‘lollipop’ form of looping path to 

occur at the destination (one or more times if necessary).  Taken together, constraints 

(3.2) and (3.3) allow for the possibility of a ‘barbell’ like route to occur, where loops are 

added at the start and end of the route resulting in a barbell-esque route appearance.   
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Constraints (3.4) are classical balance constraints which are unchanged from the 

original MCSP; if an arc is used to enter node k then a subsequent arc must also leave 

node k.  These constraints are imposed for all intermediate nodes, that is, for all nodes 

except the origin and destination nodes.  Constraints (3.5) are also unchanged from the 

original MCSP.  These constraints define whether a node is covered by the path; if the 

path enters a node j which is within the maximum service distance of node k then node k 

can be considered covered.  Constraints (3.6) are the EAST constraints developed by 

Niblett and Church (2016).  These constraints ensure that a sub-tour connecting the set of 

nodes V cannot exist in the solution unless there is an arc used to enter the sub-tour that is 

not part of the sub-tour itself.  If the sub-tour is not entered by an external arc – i.e. an arc 

which is not part of the sub-tour – then the constraint devolves to the traditional Dantzig, 

Fulkerson, and Johnson sub-tour breaking constraint and the tour cannot exist in the 

solution.  However, if an external arc is used to enter the loop then the loop is allowed to 

occur as part of the covering path.  Constraints (3.7) are similar to (3.6) but in this case 

the tour is allowed to form only when an external arc which is not part of the sub-tour is 

used to depart that sub-tour to some other node V , otherwise the sub-tour cannot form 

in the solution.  Taken together, these two constraints then force a sub-tour to be 

connected to other nodes in the path which are not a part of the sub-tour or the sub-tour 

cannot be used in the solution.   

It should be noted that the number of constraints (3.6) and (3.7) increase 

exponentially while increasing the number of nodes n comprising the network as there 

are two constraints for every possible subset NV  , where 2V  and 1 nV . 

Because it is not practical to enumerate the complete set of constraints a priori, these 
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constraints are added to the problem whenever a disconnected sub-tour appears in a 

solution.  This model is then re-solved until no further disconnected loops or sub-tours 

appear in the solution.  Constraints (3.8) and (3.9) list the necessary binary constraints on 

the decision variables.  The key point in the formulation of this new, revised model is that 

an attached loop is not expressively prevented from being used in a solution.  That is, the 

model is loop agnostic – loops can be used if their presence results in an optimal solution. 

In the next section we show that loops/attached-tours may, in fact, be part of an optimal 

covering path solution. 

3.3 Applying the NR-MCSP Model 

 

The mathematical model given above was formulated and solved using the 

Xpress-IVE mathematical programming and modeling environment (version 7.8).  This 

software is marketed and maintained by FICO.  Models were written in Mosel, a 

modeling language provided in the Xpress-IVE 7.8 environment on a PC operating 

Windows 7 Professional.  Although the Xpress solver is included within the Xpress-IVE 

modeling environment installed on the PC, all solver computations were accomplished 

using the Xpress solver within the Ubuntu 14.04 Long-Term-Support server operating 

system.  The specifications for the Ubuntu Linux system are as follows: two Intel Xeon 

X5560 CPUs which in total provide 8 logical cores and 8 virtual (hyper-threaded) cores; 

a total of 48GB of DDR3 RAM running at 1333 MHz; and 136GB of hard disk drive 

space using SAS SSD drives configured in a RAID 5 storage array. 

The workflow for modeling the NR-MCSP is shown in Figure 3.1.  It should be 

noted at the start that the workflow is designed so that a series of problems (one for each 

desired maximal service distance) are solved automatically. The steps in modeling are as 
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follows: 1) Obtain spatial data and input this information into associated data files which 

can be read by Mosel; 2) Setup the model using the maximum service distance that one 

wishes to solve and compile the problem written in Mosel so that it can be read by the 

Xpress solver.  It should be noted that when solving the MCSP and NR-MCSP models 

we a priori added associated Dantzig, Fulkerson, and Johnson or EAST constraints 

respectively for ‘simple tours’ or what we call out and back loops – that is, loops which 

can form between two adjacent nodes that are connected by an arc.   These constraints are 

easy to add and are relatively small in number, equaling at most 2 times the number of 

arcs. Simple disconnected loops can often appear in solutions to problems without any 

loop restrictions, and adding these conditions can be considered a preemptive strategy. 

However, complex sub-tours are likely to be found in the solution and still need to be 

accounted for.  In this case, two EAST constraints are required as compared to the 

Dantzig, Fulkerson, and Johnson inspired sub-tour elimination constraints utilized by 

Current, et. al.  Two EAST constraints are required as we need to add a constraint for 

both entering the sub-tour as well as leaving the sub-tour. 

We found that an a priori addition of these simple sub-tour elimination 

constraints had no notable increase in solution time beyond solving a model without such 

constraints; however, doing so can eliminate a number of iterations needed to generate a 

feasible, optimal solution to their respective problem (MCSP or NR-MCSP). Once the 

model and associated constraints are compiled, the workflow proceeds to step 3).  In step 

3) the Xpress solver is utilized to solve the current model instance; once the solver 

outputs a solution, workflow continues to step 4) where a check is made to determine if 

any sub-tours exist in the solution.  This step is coded entirely in Mosel. This detection  
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Figure 3.1 - Workflow in determining and displaying optimal solutions to the NR-MCSP problems 

routine utilizes a node coloring approach and is structured in the following way.  The 

routine first begins with the origin node, p , and sets it to be the ‘from node’ and checks 

all arcs which can be directly traversed from the ‘from node’ to other nodes.  If an arc 

from the ‘from node’ to a node k is used in the solution then node k is colored with a 

temporary label and placed in the set of nodes that are labeled as temporary.  Once all 

arcs from the origin have been checked, we color this ‘from node’ as being permanently 

labeled.  The search process then checks if there are any nodes that are currently labeled 

as temporary.  If there is a node in the set of temporary labeled nodes then one such node 

is removed from this set as it is selected as the new ‘from node’ and the process of 

coloring new temporary nodes that are reached from this new ‘from node’ using path arcs 
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is repeated. Overall, this process is continued until no nodes are present in the set of 

temporary labels.  We then save the set of colored nodes as these represent nodes which 

are directly visited by an arc on the covering path.  The solution is then checked against 

the set of colored nodes; any nodes which have not been colored then represent nodes 

which lie on one or more sub-tours.  If there are no sub-tours detected then the solution 

file for the problem is output along with the LP/IP model formulation and a comma 

separated value (CSV) file is appended with the optimal solution objective value, total 

coverage, path distance, and maximum service value (Step 7).   

If it is determined that a sub-tour or a set of sub-tours are present in the solution, 

we need to define each sub-tour with respect to the nodes and arcs which form the sub-

tour.  This is represented as step 5) in the workflow. To define the set of complex sub-

tours, we select the first node that is found in the solution set which has not been 

permanently colored and set this as the new ‘from node’. At this point a new color is 

selected, the ‘from node’ is colored as permanent, and the process continues anew to 

color all nodes reached by arcs used in the solution from this new start of the coloring 

process. This procedure is repeated until all nodes in the solution have been permanently 

colored.  Thus, this process first determines the path that connects the origin and 

destination nodes along with any connected loops to this path. Then it determines all sub-

tours or loops that are part of a solution. All loops/sub-tours (nodes and arcs) that are 

found are stored on a list.   Once this process has completed, the model is then modified 

by either adding one Dantzig, Fulkerson, and Johnson tour-breaking constraint for each 

sub-tour encountered in the case of the MCSP or by adding a pair of EAST constraints 

for each sub-tour encountered in the case of the NR-MCSP.   
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Once these constraints have been added and an associated log file has been 

written, this new modified model is solved by returning to 3).  The process loops through 

steps 3 and 4 until enough constraints have been added so that the resulting solution is 

sub-tour free.  If this is the case then the solution file is written as shown in step 7). In 

step 8), the current value of the maximum service value S is checked; if it is not the last 

maximum service value to be run, the process returns to step 2) and initializes a new 

problem with the next maximal service distance to be considered.  Otherwise, if solutions 

for all desired maximum service values have been computed the results are then 

processed by a program that was developed in Microsoft’s Visual Studio.net SDE 

represented in step 9) of the workflow.  This program produces a map of the solution on 

the associated network, displays this solution map on a visual interface, and then saves an 

image of the map.  This program is designed to read the solution files produced by the 

Xpress-solver.  The program also reads in the associated spatial network and then parses 

the solution file and generates a graphical map of the results.  Once this has been 

generated a graphic solution image can then be saved as a common *.jpg, *.png, or *.bmp 

image file. 

3.4 Results and Comparison of the NR-MCSP to the MCSP 

 

The framework described above was used to solve and develop images of 

solutions for both the MCSP and NR-MCSP models.  The new, revised maximal 

covering shortest path model formulation and the original maximal covering shortest path 

problem model formulation were applied to a network form of the well-known Swain 

dataset.  This network and associated points are shown in Figure 3.2.  The network of 

arcs was formed randomly, where arcs tend to connect near-by nodes in order to mimic 
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possible connections descriptive of conditions found in real world networks.  Both the 

MCSP and NR-MCSP model formulations were solved with a series of different 

maximum service values and objective weights in order to develop a large, representative 

set of solutions.  The complete table of these results can be found in Appendix I.  Both 

the New, Revised MCSP and the classic MCSP were solved using maximum service 

values ranging from zero to thirty-five in increments of 2.5 as well as an additional 

service value of 50.  The additional service value of 50 was used to compare cases where 

the solution to the shortest path would also provide complete coverage for all nodes in the 

Swain dataset.  Importance weights were defined to range between 0 and 1 in increments 

of 0.01 (where  1 ) in order to determine a relatively complete set of supportive 

non-dominating solutions; a cover value of 1 was approximated using a weight of 0.99 

and a distance weight of 0.01 as a distance weight of zero results in an impractical 

solution.   

There exist many supportive, non-dominating solutions to this multi-objective 

problem. To demonstrate this for the Swain network, Figure 3.3 presents a tradeoff curve 

of solutions generated by both models when the maximal service distance is zero. 

Solutions that are depicted with circles are optimal solutions to the original MCSP 

problem and those that are solutions to the new NR-MCSP model are depicted with plus 

signs. These solutions are the unique solutions generated by the range of weights used for 

each model. Note that solutions to both problems trace out a similar curve, but that the 

number of uniquely different solutions identified as non-dominated is larger for the NR-

MCSP than what was found for the MCSP. Also note that in the region of the “elbow” of 

the tradeoff curve, the number of solutions for the NR-MCSP is more numerous than for 
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the original MCSP.  For this tradeoff, all problems were solved utilizing an origin node of 

27 and a destination node of 21.  Table 3.1 contains all of the unique results for the new, 

revised MCSP with a service distance of zero and Table 3.2 contains all of the unique 

results for the MCSP with a service distance of zero.  For example, note in Table 3.1 that 

the first line details a solution generated for a distance weight of 0.01. The second line 

given in the table is associated with a distance weight of 0.18. This means that distance 

weights between .01 up to and including 0.17 resulted in the same solution as that 

generated for the distance weight of 0.01. Many of the solutions in this table involve the 

use of one or more attached loops as part of the optimal path. The gray-shaded rows 

indicate when this occurs. Thus, 8 out of 24 supported solutions involve the use of loops. 

When this occurs, such solutions eclipse the performance of the solutions of the classic 

MCSP, albeit such differences tend to be small in absolute value.     

One should recognize that if a high relative weight is placed on path distance as 

compared to path coverage, solutions tend to be very efficient and probably will not 

double back with the exception of the case where a maximum covering distance of zero is 

used. This is primarily due to the fact that this means the path must directly visit a node 

which is part of the path and thus a loop which doubles back may in fact be an optimal 

route. However, as objective weights begin to emphasize total coverage over path-length 

solutions tend to utilize loops.  This is not surprising as we expect that loops/tours can, in 

fact, be used as the overall gain from the use of a loop may result in a solution which 

provides more cover per unit of path length.  Solutions with a maximal service distance 

of zero are also optimal solutions to the Maximum Population Shortest Path problem, 

which will be discussed shortly.   
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Table 3.1 – Unique solutions for the NR-MCSP where the maximal service distance was equal to zero. The table 

includes coverage weights, distance weights, total path length, and path coverage for each unique solution found. 

Distance Weight Coverage Weight Total Path Distance Total Path Coverage 

0.01 0.99 312.11 640 

0.18 0.82 297.55 637 

0.21 0.79 269.82 630 

0.27 0.73 236.73 618 

0.30 0.70 224.96 613 

0.34 0.66 219.12 610 

0.39 0.61 208.04 603 

0.43 0.57 202.68 599 

0.44 0.56 198.81 596 

0.47 0.53 185.08 584 

0.50 0.50 156.15 556 

0.51 0.49 144.34 544 

0.56 0.44 119.83 513 

0.57 0.43 112.90 504 

0.58 0.42 97.08 483 

0.62 0.38 90.83 473 

0.67 0.33 86.32 464 

0.72 0.28 75.45 437 

0.76 0.24 68.94 417 

0.89 0.11 62.47 366 

0.90 0.10 58.47 331 

0.95 0.05 54.00 260 

0.97 0.03 52.06 206 

1.00 0.00 51.92 171 

*Note that shading denotes a solution where a loop has been attached to the covering path and 

represent an integral part of the optimal solution 

 
Table 3.2 – Unique solutions found for the MCSP where the maximal service distance was set to zero. The table 

includes coverage weights, distance weights, total path length, and path coverage for each unique solution found. 

Distance Weight Coverage Weight Total Path Distance Total Path Coverage 

0.01 0.99 312.80 640 

0.27 0.73 236.73 618 

0.43 0.57 202.68 599 

0.47 0.53 185.08 584 

0.49 0.51 185.08 584 

0.53 0.47 144.34 544 

0.56 0.44 119.83 513 

0.57 0.43 119.83 513 
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Distance Weight Coverage Weight Total Path Distance Total Path Coverage 

0.58 0.42 104.01 492 

0.64 0.36 97.76 482 

0.67 0.33 93.25 473 

0.75 0.25 78.71 443 

0.84 0.16 61.07 352 

0.85 0.15 61.07 352 

0.89 0.11 58.47 331 

0.99 0.01 52.06 206 

1 0 51.92 109 

 

An example of an optimal solution which embeds a loop within the covering path 

is given in Figure 3.4. This path is listed in Table 3.1 where routes involve a coverage 

distance of zero. Note that the path includes an embedded tour from node 1 to node 5 to 

node 11 to node 13, and then back to node 1.  Such tours are also utilized in cases where 

maximum service values are non-zero – i.e.  where a node need not be directly visited by 

the path to be covered.  An example of a loop/tour being used for a positive maximum 

service distance is given in Figure 3.5; in this case this optimal covering path was formed 

for a maximum service distance of 10, using a distance importance weight of 0.14 (with a 

resulting  coverage weight of 0.86). Note that the covering path solution utilizes a 

loop/tour that travels from node 53 to node 50 and back again to 53.  The tables of unique 

non-dominating optimal solutions to the NR-MCSP and MCSP that involve a maximum 

service distance of 10 are given in tables 3.3 and 3.4.  Based upon these results it is clear 

that loops/tours can and do appear in optimal covering paths and that they help to 

efficiently increase coverage per unit of path distance. Such solutions occur for maximal 

covering distances of zero as well as maximal covering distances that are greater than 

zero.   
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As mentioned above, all solutions for the test problems are given in Appendix I. 

Based upon the entire set of solution data presented in Appendix I that were generated  

Table 3.3 – Unique solutions to the NR-MCSP using a maximum service distance of 10. The table includes coverage 

weights, distance weights, total path length, and path coverage for each unique solution found. 

Coverage 

Weight 

Distance 

Weight 

Total Path 

Coverage 

Total Path 

Length 

Objective 

Value
15

 

Time 

(Seconds) 

0.99 0.01 640 145.43 1.4543 16544.90 

0.85 0.15 638 133.77 21.7655 140982.00 

0.82 0.18 633 109.45 25.4410 17433.2 

0.64 0.36 620 85.94 31.8692 1954.26 

0.44 0.56 613 80.38 56.8928 196.90 

0.39 0.61 600 72.02 59.5322 104.17 

0.38 0.62 592 67.11 59.8482 82.72 

0.26 0.74 571 59.50 61.9700 2.92 

0.24 0.76 552 53.20 62.2480 0.19 

0.07 0.93 537 51.92 64.1792 0.02 

0 1 537 51.92 51.9200 0.01 

 

using MCSP and NR-MCSP models for the parameters described above (i.e. a series of 

maximum service distances and objective weights), the NR-MCSP model found better 

solutions in 527 of the 1600 problems that were solved. This represents approximately 

33% of the total set of solutions.  If we were to exclude maximum service distances in 

which the shortest path is able to cover all demands, the overall proportion in which 

loops/tours are utilized as an optimal covering strategy further increases.  What is most 

significant in the results, however, is the fact that, as one shifts emphasis towards shorter 

overall path length, loops become more and more attractive as a covering strategy.  

This seems to validate the use of loops in designing real world transit routing 

applications.  Moreover, solution times for the NR-MCSP performed similarly to the 

MCSP although in some cases the total solution times could take substantially longer 

                                                 
15

 Note that the objective is calculated by minimizing what is not covered plus distance 
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than the MCSP.  These cases occurred where there were a number of sub-tours which 

were encountered and/or used in the solution process or in the final solution and were 

often associated with solutions where a greater emphasis was placed on coverage than 

distance. More time was also generally taken to solve problems with maximum service 

values that were between 7.5 and 15. 

Table 3.4 – Unique solutions found for the MCSP using a maximum service distance of 10. The table includes 

coverage weights, distance weights, total path length, and path coverage for each unique solution. 

Coverage 

Weight 

Distance 

Weight 

Total Path 

Coverage 

Total Path 

Length 

Objective 

Value
16

 

Time 

(Seconds) 

0.99 0.01 640 162.69 1.6269 21.53 

0.84 0.16 638 151.83 25.9728 62.82 

0.81 0.19 633 130.02 30.3738 43.13 

0.69 0.31 618 95.71 44.8501 41.68 

0.44 0.56 599 80.38 63.0528 23.94 

0.39 0.61 586 72.02 64.9922 24.93 

0.38 0.62 578 67.11 65.1682 19.25 

0.26 0.74 557 59.50 65.6100 4.51 

0.24 0.76 538 53.20 64.9120 1.87 

0.07 0.93 523 51.92 56.4756 0.02 

0 1 523 51.92 51.9200 0.01 

 

The reason that some cases took longer to solve is that EAST constraints allow for 

a greater number of feasible solutions than traditional Dantzig, Fulkerson, and Johnson 

based tour breaking constraints.  The time taken to resolve each unique solution, that is, 

the time taken to solve a model after insertion of EAST constraints, remained comparable 

to those of the original MCSP.  Because the Dantzig, et. al. constraints utilized by 

Current, et. al. are much tighter, they effectively ensure that any form of a particular sub-

tour cannot occur in a solution.  In contrast, EAST constraints allow a tour to exist so 

long as arcs that were not part of the sub-tour are used to enter and leave the sub-tour.  

                                                 
16

 Note that the objective is calculated by minimizing a weighted combination of what is not covered 

plus distance 
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This means that the flexibility of the EAST constraints result in a phenomenon where the 

sub-tour will often ‘contort’ and ‘grow’ over time; as EAST constraints are identified and 

added to the problem the sub-tour has a greater set of possibilities that can potentially 

exist before finally being superseded by a solution in which that sub-tour attaches to the 

covering path.  As an illustrated example, Figures 3.6 through 3.11 show a progression of 

intermediate solutions depicting the nature of a neighborhood of loops being generated 

for a problem where the maximal covering distance is 12.5. Figure 3.6 depicts a first 

solution where no EAST constraints are used, not even simple out-and-back (OAB) loop 

EAST constraints.  This highlights the practicality of OAB loop EAST constraints, as 

these kinds of sub-tours are prevented from occurring and thus aids in reducing the 

number of times a sub-tour identification routine must be run.  Solutions depicted in 3.7 

to 3.11 depict intermediate solutions, each representing a subsequent solution generated 

after adding EAST constraints for each new sub-tour encountered in the previous 

solution.  After repeating the sub-tour identification and constraint process, the final 

optimal solution is obtained which is shown in Figure 3.12. Another reason for which 

execution times can be longer is a result of the fact that there is a possibility of having 

more intricate sub-tours that are identified than in the original MCSP. These intricate sub-

tours are combinations of sub-tours which are prevented at the outset when solving the 

original MCSP, but which might prevail in the new-revised formulation as they may lead 

to an enhanced solution. This also means that beyond a greater exploration of decision 

space, there may be more sub-tour identification and constraint addition iterations needed 

to completely converge to optimality.    
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In a similar vein, as the maximum service distance increases from 7.5 to 15, 

coverage provided by any node tends to increase, allowing for straighter, more direct 

covering paths, but also for short loops to be used to veer from a path to pick up 

additional node cover.   Thus, the use of a loop in an optimal covering path problem can 

be frequent.   At coverage distances below 5 there are very few nodes which can cover 

nodes other than themselves and for coverage distances greater than 15, most nodes are 

able to cover many other nodes which means that the variety of unique, efficient covering 

paths tends to decrease.  However, the most significant contribution of this work lies in 

the fact that loops may be necessary when generating an optimal maximal covering 

shortest path solution, and that past MCSP models have been built upon an assumption 

that does not hold in general.  

 

3.5 The Maximal Population Shortest Path Problem 

 

The Maximum Population Shortest Path problem is a special case problem that 

involves a maximal covering distance of zero. This means that in order for a path to cover 

a node, that node must be on the path. Solutions to this problem were generated and 

reported in the previous section of the chapter, as they can be found using the NR-MCSP 

model where the maximum service distance is fixed at zero.   Current et. al. even noted 

that MPSP solutions could be found using their original MCSP model where the 

maximum service distance is set to zero.   However, they noted that a streamlined 

structure could be developed for the MPSP where fewer variable and constraints are 

needed as compared to what would be needed when solving an equivalent MCSP.   Their 

streamlined model form for the MPSP uses the same notation that was introduced earlier 
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in this chapter. We can formulate the original MPSP model of Current et al. (1985) as 

follows: 

 

MPSP1:                 

DC ZZ     Maximize                                                                                                     (3.10) 
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Since the maximal coverage distance is zero, the path must visit node i for node i  to be 

considered covered. The objective function is similar to the MCSP in the sense that it 

involves maximizing the population covered by the path (in this case the population at 

nodes visited by the path) while minimizing the resulting path length.  Constraints (3.11), 

(3.12), and (3.13) are also exactly the same as in the MCSP.  Constraint (3.14), however, 

requires that a node may be visited at most once. Thus, a path may or may not visit a 

node, but it cannot loop back or reverse course and visit that node again.  This constraint 

will then ensure that the model has no loops as part of the covering path, as no more than 

one arc may be used to directly visit each intermediate node.  However, utilizing such a 

constraint may require a more circuitous route than would be necessary if this 

requirement were relaxed by allowing a node to be visited a second time.     Constraints 
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(3.15) are traditional Dantzig, Fulkerson, and Johnson sub-tour breaking constraints and 

constraints (3.16) are the necessary binary restrictions used to indicate arc selection for 

the path. It should be noted that constraints (3.15) are added to the formulation only when 

necessary. That is, the problem is solved without constraints (3.15), if any sub-tours are 

identified in the resulting solution, then selected constraints (3.15) are added to the 

formulation to prevent these sub-tours from occurring, and then the problem is re-solved. 

This process is repeated until no further sub-tours are identified as being part of the 

optimal solution. The above model does not contain a set of covering variables, as 

compared to the original MCSP model. By restricting the number of times that any node 

can be visited on the path to 1, allows one to use the arc variables as a proxy for covering 

whether a node is covered or not. Since the coverage distance is zero, and since a given 

node can be entered at most once along the path, the use of any arc to directly reach that 

node will represent whether that node is covered. Thus, we can define the coverage 

objective using only ijx variables as follows: 





k

ikk

Ti

C xaZ
k

                                                                                                                             (3.17) 

The fact that a path in the above model can visit a node at most once may lead to a path 

that is longer than necessary to cover a given level of population. That is, it is possible 

that some Pareto optimal solutions to the MPSP cannot be identified by model MPSP1.  

To meet the stated objectives of the MPSP, that is, a node must be visited in order 

to provide service, and allow for the use of loops/tours as a covering strategy, the MPSP 

as formulated by Current et. al. (1985) cannot be modified to solve this less restricted 

problem (i.e. a formulation that allows loops).  The MPSP formulation as stated by 
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Current et. al. (1985) is unsuitable to be amended to allow for the use of loops/tours as 

constraints (3.14) are used to ensure that a node’s demands are considered covered if it is 

entered by an arc.  However, since constraint (3.14) restricts a node to be only visited 

once by the path, this prevents a loop from being considered. Eliminating this condition 

will possibly lead to nodes being counted as covered more than in the covering objective 

(3.17). To eliminate any coverage double counting, one will need to re-introduce 

coverage variables and coverage constraints (3.5).  In addition constraints (3.11) and 

(3.12) will need to be modified as well, as one cannot arbitrarily restrict that origin node 

as a point of exactly one departure or that the destination node is a point of only one 

arrival.  Consequently all of the constraints except the integer restrictions and the 

constraints (3.13) will need to be modified to the forms found in NR-MCSP. Further, the 

sub-tour elimination constraints of (3.14) will need to be replaced by an EAST constraint 

set; essentially, all of these modifications lead to the model form of NR-MCSP given at 

the beginning of this chapter. That is, there is no special formulation that is possible for 

the MPSP problem when one allows loops to occur in a solution.    

However, we can show that optimal solutions to the stated objective of the MPSP 

do, in fact, utilize loops/tours, if allowed, by setting the maximum service distance to 

zero in the NR-MCSP.  Tables 3.1 and 3.2 present solutions to the NR-MCSP model and 

the MCSP model where the maximum service distance is set to zero and all of these 

solutions are optimal MPSP solutions.   A comparison of two solutions, one to the MCSP 

and one to the NR-MCSP for this special case using a service distance of zero can be 

made by viewing the results depicted in Figures 3.13 and 3.14. 
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3.6 Concluding Remarks 

 

In this chapter, we have presented a new, enhanced model for the maximal 

covering shortest path problem. We have shown that this model can be solved for modest 

size problem instances by off-the-shelf commercial software. We used the Xpress solver 

to generate over 1600 solutions to a range of problem instances. Solution times in many 

circumstances were comparable to the times needed to optimally solve the classic model 

of Current et al. (1985), even though this new model explores a larger solution space.  

The results have demonstrated that that embedded loops may be necessary in order to 

generate optimal covering path solutions.   We have found that loops may be effective in 

several types of pathologies. One such case can occur when a loop is formed at the origin 

node or at the destination node. Other cases occur when there is a greater emphasis on 

coverage as compared to path length. This is particularly true when the maximum service 

distance is greater than zero.    It is important to underscore the fact that the model 

formulated in this chapter, NR-MCSP, is loop agnostic, as it neither requires nor prevents 

loops from being used. This is a unique feature of the EAST constraints.   Taken 

altogether we have seen that these model refinements yield solutions that are more 

efficient when loops are used.   The MPSP model of Current et. al. (1985) forces 

intermediate nodes to be entered at most once and requires that the origin be left exactly 

once and the destination be entered exactly once. This will preclude the formation of a 

tour/loop in any solution.  So, this too, is a model that may fail to find a true optimal 

solution whenever analyzing the distances for arcs used and coverage achieved. It is 

important to underscore that fact that whenever a loop is embedded in any optimal 

solution, all arc traverses are counted in terms of the distance travelled. So, if a route goes 
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out to one or several nodes and loops back on the same set of arcs, traversal costs in both 

directions are accounted for. In general, common intuition leads us to assume that such 

route/path strategies are non-optimal, and on the face of it is a poorly conceived 

approach. However, the results given in this chapter clearly demonstrate that true optimal 

solutions associated with the non-inferior tradeoff of coverage and distance may involve 

embedded loops.  Therefore, we can see that the pioneering work of Current et. al. (1985) 

should be updated to include not only the use of EAST constraints as part of the sub-tour 

elimination process, but also allow for the possibility of a loop/tour to form at the origin 

and destination nodes. 

 
 
Figure 3.2 - The Swain based network.  Nodes are labeled such that the higher population values are 

associated with lower node numbers and the lower population values are associated with higher node 

numbers. No distinction is made with respect to populations of the same value as these are assigned 

to the next sequential node number. 
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Figure 3.3 - The tradeoff curve with respect to coverage and distance for the MCSP and the new, 

revised MCSP models using  a maximum service distance of s = 0 

 

Figure 3.4 – An optimal NR-MCSP solution with a service value of 0 where the origin node is 27 and 

the destination node is 21. The coverage weight used was = 0.43, and the corresponding distance 

weight was = 0.57.  Note that a loop/tour forms from node 1 to 5 to 11 to 13 and back to 1. 
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Figure 3.5 – An optimal NR-MCSP solution with a service distance of 10 where the origin node is 27 

and the destination node is 21.  This route corresponds to the solution generated when the distance 

weight = 0.14 and coverage weight = 0.86. Note the existence of loops/tours along several locations 

along on the path. 

 
 
Figure 3.6 - Evolution of a sub-tour using EAST constraints 1 
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Figure 3.7 - Evolution of a sub-tour using EAST constraints 2 

 
 
Figure 3.8 - Evolution of a sub-tour using EAST constraints 3 
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Figure 3.9 - Evolution of a sub-tour using EAST constraints 4 

 
 
Figure 3.10 - Evolution of a sub-tour using EAST constraints 5 
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Figure 3.11 - Evolution of a sub-tour using EAST constraints 6 

 

Figure 3.12 - An optimal NR-MCSP solution after the evolution of EAST constraints generated for a 

problem with a service distance of 12.5, an origin node of 27, and a destination node of 21.  This route 

corresponds to the solution generated when the distance weight = 0.14 and coverage weight = 0.86. 
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Figure 3.13 - Solution to the MPSP with a distance weight of 0.64 and a coverage weight of 0.36 

 

Figure 3.14 – An optimal NR-MPSP solution where the service distance is zero where the origin node 

is 27 and the destination node is 21. The distance weight was = 0.64 and the coverage weight was = 

0.36.
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Chapter 4 
 

4.1 Introduction 

The Maximal Covering Shortest Path problem (MCSP) is a multi-objective 

problem that involves maximizing weighted node coverage and minimizing path length. 

This problem is a combination of a path problem (solvable in polynomial time) and a 

maximal covering location problem that is classified as NP-hard.  To say the least, there 

will be many problem instances of the MCSP that are unlikely to be solved to optimality 

using approaches such as linear programming combined with a branch and bound 

algorithm. Because there will be many problems that cannot be solved to optimality, it 

makes sense to develop heuristics for solving this problem. The objective of this chapter 

is to develop a flexible heuristic for solving the maximal covering shortest path problem 

that passively considers loops in seeking improvements.   

Dufourd et al. (1996) were quite succinct in describing why they developed a 

heuristic for a covering-path problem. Their reasoning was as follows: “Rather than 

advocating the use of a large-scale mathematical model that would, in all likelihood, defy 

any known solution technique, we propose a practical and versatile heuristic approach for 

a simplified version of the problem…” (Dufourd et al., 1996). Because covering path and 

tour problems are classified as NP-hard, they are amongst a set of difficult to solve 

problems. Integer-linear programming, which was used in Chapter 3, is indeed limited in 

its ability to solve large problems to optimality. Because of this issue, Dufourd et al. 

(1996) and other have developed heuristics for this class of problems and it makes sense 
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to explore the development of the maximal covering-shortest path where loops are 

allowed.  

As was noted in Chapter 2, heuristics are methods of deriving potentially good, 

but not necessarily optimal, solutions for a given problem.  Heuristics have been applied 

on a broad range of NP-Hard problems.  General heuristic solution methods include 

strategies such as:  -opt (Lin, 1965); insertion (Gendreau, et al. 1998; Current and 

Schilling, 1994); greedy (Chvatal, 1979; Church, 1974); semi-greedy (Hart and Shogan, 

1987); GRASP (Feo and Resende, 1995); ant colony optimization (Dorigo et al., 1999; 

Colorni et. al., 1991); genetic algorithms (Hosage and Goodchild, 1986); LaGrangian 

relaxation (Narula, 1977); heuristic concentration (Rosing and ReVelle, 1997); simulated 

annealing (Kirkpatrick et al. 1983; Golden and Skiscim, 1986); Tabu search (Glover, 

1989; Rolland et al., 1997); variable neighborhood search (Mladenović and Hansen, 

1997); threshold accepting (Dueck and Scheuer, 1990); the great deluge (Dueck, 1993), 

as well as many other methods. 

Overall, there has been little attention paid to developing a heuristic with respect 

to the MCSP problem.  Notable exceptions to this have involved the development of a 

heuristic for the Shortest Covering Path problem (Current et al., 1994); a heuristic for a 

transit route delineation problem defined on a grid (Dufourd, et al. 1996); a heuristic for a 

multi-route transit problem defined on a network that involved, routes, fleet size and 

headways (Fan and Machemehl, 2004), and a heuristic for a maximal covering route 

problem where each demand is served only when the route serves both their desired 

origin and desired destination (Fernandez and Marin, 2003).  
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The approach taken by Fernandez and Marin (2003) and Current et al. (1994) 

utilizes Lagrangian relaxation. The two formulations for these two related works both 

include explicit sub-tour elimination constraints that are related to Dantzig, Fulkerson, 

and Johnson’s (Dantzig et al., 1954) earlier work on the TSP.  With certain values of 

multipliers, it is possible that negative cost cycles will be present in network of the 

relaxed problem. In such a case, Current et al. (1994) ignore that particular set of 

multipliers. This allows them to use Dijkstra’s (Dijkstra, 1959) shortest path algorithm in 

solving the relaxed problem. Dijkstra’s algorithm does not admit cycles or loops in its 

process, which means that the resulting Lagrangian solution will not contain a loop. 

Fernandez and Marin (2003) take a different approach, by defining their problem on an 

acyclic network. This means that no solution could contain a loop or a cycle. This feature 

allowed them to drop the sub-tour elimination constraints and solve sub-problems using a 

shortest path algorithm. Fan and Machemehl (2004) utilized a genetic algorithm approach 

to solve their problem involving routes, headways, and fleet sizes. The initial population 

of routes were generated using the k
th

-shortest path algorithm of Yen (1971). It should be 

noted that there are two types of k
th

-shortest path algorithms: those that admit loops as a 

part of the path and those that don’t. The Yen algorithm does not allow loops in the 

generation of paths. This means that overall, the Fan and Machemehl (2004) approach 

does not generate loops on a given route. The work of Dufourd et al. (1996) rests on the 

use of Tabu search.  

The remainder of the chapter is outlined as follows. The next section will present 

an overview of the heuristic followed by a discussion of each step within the heuristic.  

The subsequent section will present results of the heuristic and compare them to known 
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optimal solutions.  It will also discuss performance, and other computational issues.  The 

gaps between known optimal solutions and the heuristic will also be presented.  The final 

section will summarize the results and suggest future work. 

4.2 The Maximal Covering Shortest Path Heuristic 

The set of possible heuristic approaches can be considered to be large and diverse. 

As described in Chapter 2 it ranges from approaches that are inspired by biological 

mechanisms (Genetic algorithms & swarm smarts), chemical processes (Simulated 

annealing), simple greedy and semi greedy approaches, as well as simple perturbation 

mechanisms like insertion, swapping, and substitution. The work here is quite simple in 

its design and is meant to be used as a building block to future work. As most meta-

heuristics, like Tabu search and simulated annealing, are built upon some form of 

solution perturbation that explores a neighborhood defined about the current solution, the 

design of the heuristic here is based upon a form of solution perturbation, which is based 

upon modifying the current incumbent solution by a simple change in route alignment. 

Changes in a route are based upon two techniques: a local insertion (which is a simple out 

and back loop being added to the current solution) and a detour substitution, which 

involves substituting a portion of the existing route alignment by a different alignment 

that is itself a local gateway path.  

All heuristics are based upon a metric of solution value. Generally speaking 

heuristics tend to find those solutions which perform better in terms of this metric. Before 

we delve into the details of the heuristic, it is important to describe the form in which the 

metric of solution value is computed.  To do this we define:  

 the covering objective – the total coverage provided by the covering path         (4.1) ZC =



 

139 

 

DZ  the path distance objective – the total length of the covering path                      

(4.2) 

 

The maximal covering shortest path problem is a multi-objective problem involving 

maximizing path coverage and minimizing path length. We can combine these two 

objectives 4.1 and 4.2 as the following composite objective 4.3: 

  

 the composite objective associated with the covering path        (4.3) 

 

Where: 

 the importance weight associated with the covering objective (where 0 ) 

 the importance weight associated with the path distance objective (where 

0 ) 

Whenever two solutions are compared, the solution with the higher composite objective 

value, ObjZ , is preferred. In general, whenever a solution T is found that is better than the 

existing solution E in terms of ObjZ , solution T becomes the new incumbent solution E. 

Figure 4.1a depicts a hypothetical route between the designated origin and 

destination nodes. Figure 4.1b depicts a simple out and back loop route being attached to 

the existing route. Note that this out and back (OAB) loop is attached to a node 

designated as k. This OAB loop travels from node k to node q. This OAB loop takes the 

shortest path from node k to node q and then back again to node k. There are many 

possible out and back loops that could be used to modify and improve an existing route. 

Technically, there is one for every node k on the route times the number of nodes, q, that 

are not on the route. Some of these are nonsensical. Figure 2a depicts one of these 

nonsensical loops, which is formed by the route from 63254236. Such a 

loop when inserted would needlessly add to route length as compared to the OAB loop 

depicted in Figure 2b which simply goes from 2542. Since these nonsensical OAB 

loops are clearly dominated by others they can be eliminated from further consideration. 

ZObj =a *ZC -b *ZD

a =
b =
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As stated above the number of possible OAB loops equals K*(n-K) where K is the total 

number of nodes on the current path and n is the number of nodes on the network, which 

means that as network size increases, the number of possible OAB loops also increases.  

This is one of the reasons that a good heuristic is desirable in solving this problem. 

   Figure 4.3a depicts a route alignment connecting the origin and destination 

nodes. It also depicts two chosen nodes along the route, u and v.  For any given nodes u 

and v, there exists a gateway shortest path from u to v via node q.  Figure 4.3b depicts a 

gateway path starting at node u which goes to the gateway node q and then continues to 

node v.  The essence of the heuristic is to utilize a detour substitution by taking the 

existing route from the origin, O, to the destination, D, and consider changing the route 

from O to D, by going from O to u along the existing route, and then from u to q to v 

along the gateway path, and then complete the route from node v to node D along the 

existing route alignment. If a gateway path can substitute for a portion of the existing 

route and improve the composite objective, then this modified route becomes the new 

solution E.    

The general form of the new maximal covering shortest path heuristic we have 

derived is given below.  We assume there is a planar network of arcs and nodes such that 

each node has an associated demand and cover can be provided through the connected 

arcs of the network to all other demands based upon a maximum service distance from a 

node that is visited by the path.  We base our heuristic on finding an initial shortest path 

and then begin an insertion process that greedily chooses the best insertion it can make.  

The generalized form and notation is as follows: 

 origin node 

 destination node 

O =

D =
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 the shortest distance through the network from node i to node j 

 the maximum distance that service can be provided 

 the set of nodes I, such that  , that can be covered if node j is visited on the 

covering path 

  the emphasis associated with the covering objective 

 the emphasis associated with the total path distance objective 

 the covering objective – the total coverage provided by the covering path 

 the total path distance objective – the total length of the covering path 

 the objective value associated with the covering path 

 the maximum number of possible iterations the heuristic can perform 

 the current iteration number 

G = the set of nodes which are not directly visited by the covering path indexed by 

ascending order (e.g. ) 

g =  a node within the set G that is to be swapped and which is not a part of the current 

covering path 

 the set of nodes that are currently a part of the covering path but which are not equal 

to O or D  and which is indexed in ascending order (e.g. ) 

 the point of departure associated with travel from the origin node to a node i   

 the point of entry associated with travel from a node j to the destination   

CPBest = the set of arcs for the current best maximal covering shortest path that has been 

found 

CPCandidate = the set of arcs for the current maximal covering shortest path candidate 

 

 the set of arcs which comprise the current maximal covering shortest path 

CPPi = the set of arcs which are used to go between the origin, O, and  on the current 

covering path 

CPPj = the set of arcs which are used to go between  and the destination, D, on the 

current covering path 

CPg =  the set of arcs which are used to go from Pi  to g and g to   

 

Step 1: Define the parameters of the heuristic – set the maximum service 

distance, s, and select an origin node, O, and destination node, D, 

for the covering path.  Set the desired coverage and distance 

emphases weights such that each weight value lies between 0 and 

1 and .  Set the maximum number of iterations, , that 

can be used should the heuristic not converge on a solution.  Go to 

Step 2. 

 

Step 2: Determine the shortest path through the network from O to D.  

Calculate ZObj (CPCurrent ) and save this solution as the current 

dij =

s =
c j = dij £ s

a =
b =

ZC =

ZD =

ZObj =a *ZC -b *ZD

e =
ℓ =

f = {1,3, 4,5, 7,...,n}

f =

f = {1,3, 4,5, 7,...,n}

Pi =

Pj =

CPCurrent =

Pi

Pj

Pj

a =1- b e
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maximal covering shortest path, and set CPCurrent  to be the set of 

arcs that comprise the shortest path from O to D.  Set 

ZObj (CPBest ) = ZObj (CPCurrent ) and ℓ =  0 and go to Step 3. 

 

Step 3: Set    Go to Step 4.  

 

Step 4: If Step 4 has been reached from Step 3 then set  equal to the 

first element (node) in .  Else, set  equal to the next element 

in . Go to Step 5. 

 

Step 5: If Step 5 has been reached from Step 4 then set Pj  equal to the 

first element in  (note that  can be the same node as ).  

Else, set Pj  equal to the next element in .  Calculate the 

respective path elements for CPPi  and CPPj .   

 

Step 6: If Step 6 has been reached from Step 5 set g to be the first element 

in G; else, set g to be the next element in the set.  Calculate CPg  

and set CPCandidate =CPPi +CPg +CPPj . Go to Step 7.  

 

Step 7: If ZObj (CPCandidate ) ³ ZObj (CPBest ) then set CPBest =CPCandidate. If g 

does not equal the last element in the set G then go to Step 6; else 

go to Step 8. 

 

Step 8:  If Pj  does not equal the last element in  go to Step 5; else if Pj  

equals the last element in  and  does not equal the last 

element in  then go to Step 4; else if Pj  and  equal the last 

element in  check whether ZObj (CPCurrent ) = ZObj (CPBest ); if this is 

true then stop, the solution has not changed.  Otherwise, set 

CPCurrent =CPBest ; if ℓ =e  then stop; else update G and  with 

respect to CPCurrent  and go to Step 3. 

 

Now that we have seen the basic structure of the heuristic, each step can be 

explained in further detail. Step 1 in the maximal covering heuristic above sets all the 

parameters required to start the heuristic.  Since we are trying to find good solutions to 

the MCSP we need to define the origin and destination nodes for the path as well as the 

maximum service distance which defines the maximum distance at which a node visited 

ℓ = ℓ +1

Pi
f Pi

f

f Pj Pi

f

f

f Pi
f Pi
f

f



 

143 

 

on the path can provide coverage to other nodes.  We also need to define how much 

emphasis is placed on coverage versus total path length.  The last element is a stopping 

criteria used to set the maximum number of iterations the heuristic can run through before 

exiting.  Ideally this number would be relatively large in proportion to the problem size.  

It is used to ensure that the heuristic has a stopping criterion should a solution not be 

converged upon within a reasonable amount of time. 

Step 2 is used to define an initial covering path from which the heuristic can start.  

In this case we simply find the shortest path from origin to destination and set this to be 

the current covering path.  We can now set the iteration count at the initial value of zero 

and set the best objective found to be that corresponding to the shortest path from O to D.  

The reason for setting the best objective to that defined by the shortest path is to establish 

a baseline objective so that better solutions can be initially identified.  Since the shortest 

path represents a lower bound on the optimal solution, we can use it to initialize the 

heuristic with relatively little computational effort expended. 

Step 3 begins the search procedure for the heuristic.  In this case we now set the 

iteration counter to be one and we begin to move through the steps of the heuristic search 

process.  The iteration counter allows us to keep track of the best solutions determined for 

each search iteration.  The next step after initializing and updating the iteration counter is 

Step 4; If Step 4 has been reached directly from Step 3 then we select the first element in 

the set .  The first element in  should correspond to the node that has the lowest index 

number of the set of nodes that currently comprise the covering path.  For example, if 

nodes 3, 5, 8, 18, 27, and 31 lie on the covering path, the first element in the set would be 

node 3.  If Step 4 is not directly reached from Step 3 then the next element in the set  is 

f f

f
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selected.  Using the example set given above, if Step 4 has been entered three times, the 

node represented at element position 3 should be selected – in this case that corresponds 

to node 8.  Thus, Step 4 allows us to select a ‘departure point’ utilizing the current 

maximal covering shortest path as a basis.  We will then use this basis to compile a test-

covering path.  The departure point defined in Step 4 will be the position along the 

covering path where a test insertion will originate as part of the test-covering path.  As 

such, we set , the ‘departure point,’ to be equal to the selected element in  which 

corresponds to the node on the path where the test insertion will originate.  Once this has 

been completed we move to Step 5. 

In Step 5 we want to establish an ‘entry point’ where the test insertion enters the 

existing covering path.   The first portion of Step 5 is similar to that of Step 4.  If Step 5 is 

entered directly from Step 4 then we select the first element in ; otherwise we want to 

select the next element in the set.  The node represented by that element will then be set 

as the ‘entry point,’ , for the test-covering path.   It should be noted that in this case 

both the ‘entry point’  and the ‘departure point’  can correspond to the same node.  

By allowing both the entry point and the departure point to be the same we allow an OAB 

tour to be inserted onto the test-covering path.  The next portion of Step 5 determines the 

path elements that are used to define the test-covering path.  At this point, the heuristic 

determines the set of arcs which are used to travel from the origin node to the point of 

departure on the current covering path as CPPi .  The heuristic also calculates the set of 

arcs on the current covering path which are used to travel from the point of entry to the 

destination node as CPPj .  Together this will allow the heuristic to keep track of which 

Pi f

f

Pj

Pj Pi
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portions of the current covering path that are kept, and which portions of the current 

covering path that will be removed and replaced with a newly defined insertion. 

Step 6 determines what the test-covering path will be composed of.  In this case 

we want to first select a node which is not currently part of the covering path.  If this is 

the first time Step 6 has been entered from Step 5 then we select the first element of the 

set G, and define this node as g.  If Step 6 has not been directly entered from Step 5 then 

we select the next element in the set G.  We also need to define the path from the 

‘departure point’ , to g and from g to the ‘entry point’ .  To do this we find the 

shortest path from  to g and the shortest path from g to .  We define this insertion as 

CPg .  Once we have determined the associated arc set that defines the insertion we can 

define the test-covering path as CPCandidate  which represents the newly defined candidate 

path composed of CPPi , CPPj , and CPg .  Once we have established the candidate 

covering path we move to Step 7. 

 In Step 7 we calculate the objective value for the candidate covering path.  Since 

we have a set of candidate arcs we are able to determine which nodes on the network are 

covered by the candidate path and can calculate the associated coverage.  We also know 

the distance associated with each arc and since we know the order of arcs we are able to 

determine the total length of the path.  Therefore, we can determine the composite 

objective associated with the candidate covering path; in this case weighted total 

coverage minus weighted total distance.  This allows us to make a direct comparison with 

the current best covering path that has been determined.  If the objective for the candidate 

covering path exceeds the current best covering path then the current best covering path 

is set to be equal to the current candidate covering path.  If g is not the last element in the 

Pi Pj

Pi Pj
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set G then the heuristic returns to Step 6 and the process is repeated; otherwise if g is the 

last element in the set G then the heuristic proceeds to Step 8. 

In Step 8 of the heuristic process we determine if all possible candidate covering 

paths have been checked with respect to ‘departure points’ and ‘entry points’ on the 

current covering path.  If the entry point, Pj  , is not the last element in the set  then the 

heuristic moves to Step 5 where the next entry point can be selected from the set and the 

heuristic continues.  If the entry point, Pj  , is the last element in the set  and the 

‘departure point,’ , is not the last element in  then the heuristic must move to the next 

‘departure point’ in the set .  Thus, the heuristic must go to Step 4.  If both the 

‘departure point’ and the ‘entry point’ are the last elements in the set  then the heuristic 

checks to see if an improvement to the current covering path has been found.  Thus, the 

first part of Step 8 is used to determine which step the heuristic should return to. 

If no better solution has been found for a complete iteration cycle – that is, 

cycling through the set  for all departure and entry points – then the heuristic stops.  

Otherwise, the heuristic sets the current covering path to be equal to the current best 

found covering path.  If the heuristic has reached the stopping criterion for the maximum 

number of iterations the heuristic stops.  Otherwise, sets G and  are updated to reflect 

the new basis – i.e. the new current covering path that was just set – and the heuristic 

returns to Step 3 and the process is repeated.  Thus, the heuristic is able to quickly 

determine good solutions through a logical process.  In this case the steps of the heuristic 

outlined above test a variety of insertions based upon an initial shortest path in a desire to 

determine a good (and hopefully optimal) solution to the maximal covering shortest path 

problem.  Although this method does not guarantee optimal results, it is a logical method 
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and our experience shows that we are able to determine a robust set of good solutions.  

As such, the following section will discuss issues related to the performance of the 

heuristic as applied to a test network. 

 

4.3 Computational Experience  

 

This section highlights the computational experience of the Maximal Covering 

Shortest Path heuristic defined in section 2.  Particular attention is given to the time taken 

to determine a solution using the heuristic as well as the time taken to determine an 

optimal solution to the NR-MCSP using the same parameters.  We highlight a set of 

solutions where we give the associated weights used to emphasize coverage and shortest 

overall path length as well as the maximum service distance used to define coverage 

within the network.  We also highlight the total coverage provided for both the heuristic 

and optimal solutions as well as their associated total path distance and provide the 

composite objectives for both the heuristic solution and the optimal solution for each 

problem and the associated solution gap, if any.  Solutions derived from the New, 

Revised Maximal Covering Shortest Path problem are indicated with an NR in the 

problem heading and solutions determined from the heuristic are indicated with a H.  

Solutions in which a loop/tour are used as a covering strategy are marked with an 

asterisk, *, next to the problem type in the ‘Problem’ column in Table 4.1 which 

highlights these findings below. 
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Table 4.1  

Problem Maximum 

Service 

Distance 

Weight 

Cover 

Weight 

Solution 

Time (s) 

Composite 

Objective 

Total 

Cover 

Path 

Length 

Gap 

Abs 

 

% 

NR 10 0.01 0.99 16544.9 632.15 640 145.43 -- -- 

H* 10 0.01 0.99 0.68 632.08 640 151.64 0.065 0.01 

NR 10 0.15 0.85 140982 522.23 638 133.77 -- -- 

H* 10 0.15 0.85 0.49 521.30 638 139.98 0.930 0.2 

NR* 10 0.19 0.81 4641.39 491.94 633 109.45 -- -- 

H* 10 0.19 0.81 0.31 490.28 633 118.17 1.660 0.3 

NR* 10 0.3 0.7 219.76 410.27 633 109.45 -- -- 

H* 10 0.3 0.7 0.28 408.92 633 113.92 1.350 0.3 

NR 10 0.56 0.44 196.90 224.71 613 80.38 -- -- 

H 10 0.56 0.44 0.15 224.71 613 80.38 0 0 

NR 10 0.61 0.39 104.17 190.07 600 72.02 -- -- 

H 10 0.61 0.39 0.15 190.07 600 72.02 0 0 

NR 10 0.62 0.38 82.72 183.35 592 67.11 -- -- 

H 10 0.62 0.38 0.09 183.35 592 67.11 0 0 

NR 10 0.74 0.26 2.92 104.43 571 59.50 -- -- 

H 10 0.74 0.26 0.07 104.43 571 59.50 0 0 

NR 10 0.76 0.24 0.19 92.05 552 53.20 -- -- 

H 10 0.76 0.24 0.07 92.05 552 53.20 0 0 

NR 10 0.93 0.07 0.02 -10.70 537 51.92 -- -- 

H 10 0.93 0.07 0.04 -10.70 537 51.92 0 0 

NR 10 1.0 0.0 0.01 -51.92 537 51.92 -- -- 

H 10 1.0 0.0 0.04 -51.92 537 51.92 0 0 

 

It can be seen that the newly devised heuristic for this problem solves with times 

that never exceed one second – in fact the longest amount of time the heuristic took to 
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solve was just over two-thirds of a second at 0.68 seconds for a coverage weight of 0.99 

and a distance weight of 0.01. Solution performance of the heuristic was also quite good 

with the percent gap between the heuristic solution and the optimal solution never 

exceeding one half of one percent. This gap could likely be further reduced through 

implementation of a GRASP (Greedy Randomized Adaptive Search Procedure; Feo and 

Resende, 1995) implementation as this would allow perturbations which could potentially 

flush out the optimal solution.  However, although this heuristic uses a best insertion 

approach, results that we obtained are robust and computational time is significantly 

lower than if one solves the problem to optimality. 

Table 4.1 also shows that the population that was covered in heuristically 

determined solutions was equivalent to the total population covered by the optimal 

solution. Although this result could change with respect to network geometry (i.e., a grid 

based network, vs a hexagonal network, vs a random network, etc.) it seems that 

significant changes are unlikely to occur as coverage is defined as being within a 

maximum service distance which is a function of network distance.  What is of particular 

note is that the heuristic determined solutions which contained loops in several solutions.  

Although some of these ‘looped’ solutions are not globally optimal the gap between the 

optimal solution and those derived by the heuristic are quite low.  This seems to lend 

credence to the fact that planners can consider using loops and not necessarily feel that 

they have compromised on what’s best when deriving bus routes within urban and 

suburban areas. 

Table 4.2 shows results for both the heuristic as well as the NR-MCSP as applied 

to the Garland/Richardson, TX network such defined by Curtin and Biba (2011).  We 
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have chosen to use this network as it is representative of what would likely be used in a 

transportation planning context.  Curtin and Biba note that the network is defined by 

major arterial roads which are likely to have ample room for busses to maneuver.  To add 

data to the network, we were able to take the network defined by Curtin and Biba and 

utilize Open Street Map (OSM) data to define the complete road network.  We were then 

able to crawl Zillow.com using cyber search methods and obtain the parcel information 

for Garland/Richardson, TX.  We then defined the centroid for each parcel and connected 

the centroid to the nearest underlying road.  Each centroid then represents one household.  

These households allowed us to define a ‘population’ (in this case households served) at 

each intersection node.  Each centroid was then assigned to the nearest node of the Curtin 

and Biba network using the ArcGIS network analyst toolbox. We were then able to 

define the number of households served by each node based upon how many of these 

attached centroids were within 660 ft (one-eighth of a mile) using the underlying road 

network.  A similar method was proposed by Biba et. al. (2010).  Once the data was 

processed, we created a data file that can be used as an input to the NR-MCSP problem 

that can be solved by the Xpress solver as well as be used for the program that uses the 

heuristic that is defined in this chapter.  It should be noted that when solving the problem, 

we utilized a maximum service distance that was equal to zero.  Since we defined how 

many households were within an eighth of a mile when establishing the number of 

households that constituted the population for each node, it would be improper to use a 

service distance in the model and heuristic as this has already been accounted for. 
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Table 4.2 – The Comparison of the Heuristic and the NR-MCSP model as applied to the Richardson, 

TX dataset.  An origin node = 70 and a destination node = 79 was used for all instances. A star (*) 

next to the problem name indicates that a loop is used. 

Problem Max 

Service 

Distance 

Weight 

Cover 

Weight 

Solution 

Time (s) 

Composite 

Objective 

Total 

Cover 

Path 

Length 

Gap 

Abs 

Gap 

% 

NR 0 0.99 0.01 0.3 -151.8 164 155 -- -- 

H 0 0.99 0.01 0.1 -151.8 164 155 0 0 

NR 0 0.85 0.15 0.4 -107.2 164 155 -- -- 

H 0 0.85 0.15 0.1 -107.2 164 155 0 0 

NR 0 0.70 0.30 0.5 -35.3 454 245 -- -- 

H 0 0.70 0.30 0.1 -59.3 164 155 24 67 

NR* 0 0.55 0.45 8198.7 114.3 1283 842 -- -- 

H 0 0.55 0.45 1.48 102.2 843 504 12.1 10 

NR* 0 0.40 0.60 171326.0 461.2 1706 1406 -- -- 

H* 0 0.40 0.60 46.2 450.0 1800 1575 11.2 2.4 

 

Just as in the results shown in Table 4.1, all NR-MCSP calculations were 

performed on the Ubuntu 14.04 LTS server defined above.  Although we generated a 

series of solutions with emphasis weights for distance and coverage ranging from 0.01 to 

0.99 incremented in intervals of 0.01, only several solutions are shown here for 

comparative purposes. Table 4.2 only has several entries as at the time of writing the 

solver was not able to determine a complete set of solutions.  However, the heuristic 

performs very well in the cases that were tested.  Only one solution had a result that was 

far from optimal.  Apart from this exception, in all the other cases that were tested the 

heuristic was always within 10% of the optimal solution.  All solutions also utilized loops 

with the exception of those solutions that were the shortest path. 
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The use of loops appears to be particularly useful as emphasis is placed on the 

covering objective.  Thus, it seems the challenging factor in this case lies in determining 

a least cost path which covers as much as possible.  A loop then seems to be a useful tool 

to provide good coverage while also not greatly increasing overall path length.  It is also 

possible that a GRASP based approach would potentially determine better, hopefully 

optimal, solutions.  These may or may not involve solutions which involve a ‘loop’ as a 

perturbation by periodically forcing the heuristic process to utilize a randomly 

determined solution which does not initially improve the objective may in the end allow 

the heuristic to avoid local optima.  In any case, a GRASP approach utilizing the basic 

heuristic procedure defined above is certainly an avenue that will be pursued in future 

work.  

Nevertheless, the heuristic we define in this chapter is able to determine optimal 

solutions as well as solutions that cover as much as the optimal solution albeit with a 

slightly longer path. Another intriguing aspect of the heuristic performance is that it, too, 

is loop agnostic in the sense that loops/attached tours are neither explicitly prevented nor 

encouraged to form. In fact, in several near optimal solutions that were determined, the 

heuristic utilized a loop/tour as part of the solution.  Such a case is shown in Figure 4.4 

below. In this case a loop is utilized between node 43 to node 55.  As stated above, this 

does seem to indicate that the use of a loop can be a practical strategy.  Figure 4.5 is 

another case where a loop structure is used in the heuristic determined solution.  In this 

case several loops are employed. 
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4.4 Summary 

This chapter has introduced a new heuristic that is “loop agnostic” – that is it 

neither requires nor prohibits loops from forming in a solution – and which performs 

computationally well. The heuristic methodology was highlighted such that each step is 

presented in detail.  The heuristic uses an insertion strategy such that if a better insertion 

is found it is taken and the process is repeated until no further improvements can be 

made. Computational experience indicates that the heuristic is able to cover much of the 

demand although it does not always determine the optimal maximal covering shortest 

path in several cases.  However, the gap from the heuristic solution to the optimal 

solution is consistently less than half a percent with the maximum gap in any solution 

being 0.3 percent. For the Swain based dataset. The Richardson, TX based dataset shows 

that the heuristic is able to determine robust solutions, though it does not always 

determine the optimal solution.  Additional strategies for modifying the heuristic include 

a GRASP based approach which would allow for a randomized insertion (one of the best 

insertions rather the best insertion candidate). This would help to expand the region of 

exploration.  
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Figure 4.1 - An example of a loop 

 

 

Figure 4.2 - A nonsensical and realistic example of a looped route 

 

 

Figure 4.3 - A path from O to T and associated changes using gateway paths from u to q and q to v 
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Figure 4.4 - Solution to the MCSP Heuristic determining a solution from node 27 to node 21 using a 

coverage weight of 0.85, a distance weight of 0.15, and a maximum service distance of 10. The mauve 

path is the initial shortest path and the blue path represents the final solution determined by the 

heuristic. 
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Figure 4.5 - Solution to the MCSP Heuristic determining a solution from node 27 to node 21 using a 

coverage weight of 0.90, a distance weight of 0.10, and a maximum service distance of 10. The mauve 

path is the initial shortest path and the blue path represents the final solution determined by the 

heuristic. 
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Chapter 5 

5.1 Introduction 

 

The goal of this dissertation is to develop new and improved models for the 

maximal covering shortest path problem. In chapter 3, a new model called the New, 

Revised Maximal Covering Shortest Path model was presented. This model was termed 

loop agnostic, as it neither requires nor prevents loops from being used in covering paths. 

Upon reflection, one can question whether a “loop” or “cycle” can be present if it is 

defined as a path. Some might suggest that this type of problem should be called the 

maximal covering shortest route problem instead. However, others have defined cases 

where paths can contain cycles or loops, especially with regard to the thk  shortest path 

problem. For example, the literature on the thk shortest paths problem is bifurcated 

between allowing loops in such paths and not allowing loops. Quibbling about such 

terminology itself is not central to the research here. The issue here is to restructure 

models so that they can use loops or cycles, if the use of a loop or cycle leads to a 

solution which dominates one in which a loop or cycle is not permitted.  As was shown in 

Chapter 3, where the NR-MCSP model is described and solved, a loop or cycle can be an 

optimal construct in a covering path. Chapter 4 presented a basic swapping heuristic for 

solving the NR-MCSP. Its application demonstrated that many close to non-inferior 

solutions exist that involve one or more loops. This also gives credence to current 

planning practice in transit operations where planners often design routes/paths with 

loops.   
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Up to this point we have examined the models originally developed by Current et. 

al. (1984, 1985) or derivatives of these models.  Their original problem involved finding 

the shortest route through a network from a prespecified origin to a prespecified 

destination such that all nodes were covered by the path. A node j is defined as covered 

as long as the shortest covering path passes through node j or passes through some other 

node that is within a maximal service distance S  of node j .   This original problem was 

later expanded into the Maximal Covering Shortest Path problem.  This newer problem is 

based on relaxing the requirement of complete coverage and instead involves the search 

for those paths that minimize path length and maximize path coverage.  No MCSP 

solution needs to be longer than the shortest covering path. As was described in Chapter 

2, covering-path type problems are related to other forms of path and routing problems 

such as the thK  shortest paths (KSP) problem and the Traveling Salesman Problem. 

Because of this, many of the models and even the solution procedures have been based 

upon the TSP and KSP literature.  

Current et. al. (1984, 1985) developed integer-programming models for both the 

SCP and MCSP. These two models represented a combination of the shortest path model 

of Dantzig (1956) with TSP sub-tour elimination constraints developed by Dantzig, 

Fulkerson, and Johnson (1954). Coverage constraints were added to either enforce 

coverage (as in the location set covering problem) or defined if a specific node is covered 

(as in the Maximal Covering Location Problem).  However, other methods have been 

devised to solve the Traveling Salesman Problem through alternate formulations which 

do not require the use of sub-tour elimination constraints as defined by Dantzig, 

Fulkerson, and Johnson.  Such formulations include the work of Miller, Tucker, and 
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Zemlin (1960), Vajda (1961), and Gavish and Graves (1978).
17

  Although there have 

been many formulations of the Traveling Salesman Problem that have been developed 

and tested, virtually all work with respect to covering path problems have  utilized the 

solution procedure and constraints originally developed by Dantzig, et al (1954) and 

adapted by Current et al (1984, 1985) for use in their seminal formulations.  There are 

two exceptions to this general trend: the EAST constraints of Niblett and Church (2016) 

and the TRANSMax model of Curtin and Biba (2011).   

The Transit Arc Node Service Maximization (TRANSMax) model was developed 

by Curtin and Biba (2011) which is adapted from an alternative model for the Traveling 

Salesman Problem that was developed by Vajda (1961).  The TRANSMax model can be 

considered a special case of a maximal covering path problem where arcs on the path 

provide coverage to nodes as well as to demand defined to exist along arcs. In essence, it 

is an alternate model formulation for the MCSP.  The TRANSMax model was discussed 

in detail in the literature review of Chapter 2.  If we recall from Chapter 2, the routing 

construct of Vajda (1961) expressively prevents a travelling salesman tour from crossing 

itself as well as looping back.  The Vajda formulation is constructed in such a way as to 

eliminate the need for sub-tour elimination constraints like those proposed by Dantzig, 

Fulkerson, and Johnson.  By expanding on Vajda’s formulation, Curtin and Biba (2011) 

made it possible to solve for a path that maximizes node and arc coverage while 

restricting the path to be no longer than desired. The Vajda construct expressively 

prevents a path or route that ‘loops back’ upon itself as well as ensures that the path or 

route is connected.   In light of the work and results of Chapter 3, it makes sense to 

                                                 
17

 Orman and Williams (2004) give an excellent review of these problems and the efficacies of each 

formulation with respect to solution time and general computational performance. 
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explore the possibility of transforming the TRANSMax model into an approach which is 

‘loop agnostic’ – that is, a formulation in which the use of a loop is allowed if it 

represents an improvement in the objective function. This is the goal of this chapter.    

This chapter is organized as follows; we start with a brief review of the original 

TRANSMax model and follow that with a revised form that allows for out-and-back 

loops and cycles. We also describe and discuss the key differences between the revised 

model – TRANSMax II – and the original TRANSMax formulation, particularly with 

respect to being ‘loop agnostic.’ Both the original and new TRANSMax models are 

applied to data that represents Richardson and Garland, Texas which was also used in 

Chapter 4 when testing the performance of the heuristic. The choice of this network 

follows the work of Curtin and Biba (2011). We will show that optimal solutions to the 

revised TRANSMax problem mirror those of the NR-MCSP for this real world road 

network; that is, true optimal solutions may rely on embedded loops.  This is followed by 

a section recapping key differences and findings.  

5.2 The original TRANSMax model  

 

Models which attempt to address problems associated with mass transit have been 

explored since the advent of location modeling.  Gleason (1975) offered a formulation for 

bus stop location which is based upon the Location Set Covering Problem developed by 

Toregas et al (1971).  Church and ReVelle (1974) also proposed locating bus stops within 

the context of the Maximal Covering Location Problem.  Current et. al. (1984, 1985) 

expanded transportation work by formulating both the Shortest Covering Path Problem 

and the Maximal Covering Shortest Path problems.  Recent work has been advanced by 

researchers including that of Wu and Murray (2005), Matisziw et al. (2006), LaPorte et 
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al. (2005, 2011).  Virtually all of the recent work is based upon the models first proposed 

by Current et. Al (1984,1985). 

 The TRANSMax model formulation takes a different tack; Curtin and Biba 

(2011) based their work on the Vajda (1961) framework for solving a TSP.  They attempt 

to address the issue of transit based access by extending service access to include arcs as 

well as nodes and their model was explicitly developed for short access distances like 

those found in bus based transit systems. Their model is quite appealing from a transit 

planning perspective as it captures many of the elements of route coverage without 

explicitly specifying exact stop locations a priori. This gives transit planners flexibility in 

final stop location adjustments as well as being able to account for differences in service 

accessibility provided along long street segments as compared to shorter street segments. 

This section gives the basic TRANSMax formulation. In the section following we 

propose a new TRANSMax formulation – TRANSMax II – in order to be more realistic 

with respect to transit planning.  In particular this new version of TRANSMax is based 

upon a ‘loop agnostic’ approach so that real world routes can be created and use loops 

when such loops provide better levels of coverage.  As was noted in Chapter 2 of this 

dissertation, the TRANSMax formulation can be adapted to meet several planning cases.  

Each of these cases can be easily captured through slight modifications of the modeling 

constraints.  A detailed overview of these cases is given in Chapter 2; however, each of 

the cases in the original TRANSMax formulation are expressively prohibited from using 

loops as part of the solution due to the use of Vajda (1961) inspired constraints. The 

original TRANSMax notation and formulation are given below as: 

𝑖, 𝑗= index of nodes 

= index of sequence r
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= the origin node for the route 

= the destination/terminus node for the route 

= the total number of segments, r that will be used 

= the maximum distance for the route 

= the distance associated with the arc from node i to node j 

= the service possible by utilizing an arc from node i to node j 

iM = the service value associated with node i 

= the set of nodes which can be reached by an arc from node i 

= the set of nodes which can be reached by an arc to node j 

= 1 if an arc from node i to node j on segment r is used, 0 otherwise 

  

                                                                          (5.1) 

                                                                                       (5.2) 

                                                                                            (5.3) 

                                                   (5.4) 

                                                                                           (5.5) 

                                                                                                        (5.6) 

),,(}1,0{ rjixijr                                                                                                          (5.7) 

 

The complete discussion for the model can be found in Chapter 2 of this dissertation.  

For clarity here, a brief description of the model will be given in order to highlight key 

differences of the new TRANSMax II model that is subsequently formulated in this 

chapter.  The objective (5.1) in the model maximizes arc service, ijA ,  and node service, 

o

t

R

D

ijd

ijA

iF

jT

ijrx


  


m

i

m

j

R

r

ijriij xMAZMaximize
1 1 1

)(

mjx
m

i

R

r

ijr ,,2,11

Subject to

1 1


 

mix
m

j

R

r

ijr ,,2,11
1 1


 

1,,2,1;,,2,10
1

)1(

1








Rrmjxx
m

i

rji

m

i

ijr 


 


m

i

m

j

ijr Rrx
1 1

,,2,11 


  


m

i

m

j

R

r

ijrij Dxd
1 1 1



 

163 

 

iM .    Constraint (5.2) specifies that each node j can only be entered once across all 

sequences in R and constraint (5.3) specifies that each node i can only be departed once 

across all sequences in R.  Taken together these constraints ensure that no sub-tours will 

form as they preclude the possibility of a tour from even forming.  Constraint (5.4) is a 

balance constraint which ensures that if a node is entered on sequence r then on sequence 

r+1 that node must be departed.  Constraint (5.5) specifies that for each sequence r, 

exactly one arc may be used. This ensures that there are not multiple arcs used for each 

sequence as this would not result in a connected path.  Constraint (5.6) specifies that the 

total length of the covering path cannot exceed a maximum length, D.  Constraints (5.7) 

are the binary restrictions on the decision variables xijr .  The important aspect to note 

with respect to this formulation is that, as formulated, the original TRANSMax model 

cannot use loops/tours as part of a covering strategy.  Thus, common route shapes that 

one finds in the ‘real world’ such as the figure eight, lollipop, and barbell (see Figure 5.1) 

can never form part of a solution determined by the original TRANSMax model.  One of 

the key contributions of the revised formulation is to then allow for the possibility that 

loops may be used in such solutions.  Therefore, the ‘loop agnostic’ – that is the form 

where loops can be used if it results in an improved objective – form of TRANSMax can 

be formulated as follows: 


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                                                                                                                                               (5.9) 

                                                                                              (5.10) 
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The objective function (5.8) for the revised TRANSMax model still maximizes 

arc and node service just as in the original TRANSMax formulation; however, we 
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counted as a loop could conceptually utilize the same arc.  Thus, arc service is captured 

and counted exactly the same as in the original TRANSMax formulation.  The use of 
iy  

represents node service and will similarly ensure that node service is counted only once 

irrespective of how many times the node may be entered.    

Constraint (5.9) requires that the path must leave the origin node.  In this case, we 

specify this by stipulating that the arc must leave the origin and travel to a node j that is 

directly reachable from the origin node on the first sequence.  Constraint (5.10) is a new 

type of constraint in the TRANSMax II model; in this case we allow a loop to form at the 

origin as long as the origin is departed exactly one more time than it is entered across all 

sequences.  Constraint (5.11) is also a new type of constraint.  Specifically, this constraint 

is used to ensure that the path terminates at the terminus node, t.  The constraint is also 

unique in that it allows for a loop to form; in this case this is achieved by specifying that 

the terminus node must be entered exactly one more time than it is departed.  Note that 

this constraint also relaxes the requirement in the original TRANSMax problem that 

exactly R sequences must be used.  By allowing a loop to form and by ensuring it must be 

entered one more time than it is departed this ensures that a solution is not forced to 

conform to a preset number of sequences but rather can utilize as many sequences as 

required to ensure the best solution is obtained without needlessly extending path length.   

Constraints of type (5.12) are also new in the formulation; in order to allow for 

the behavior above – that is, having a path where only the necessary sequences are used – 

we must specify that each segment must be less than or equal to one for each arc and 

sequence.  If a sequence is necessary to form a connected path then it will be allowed to 

equal one.  If it is not needed, however, the sequence is allowed to be zero and thus a 
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preset number of sequences does not force the solution to include unnecessary lengths.  

In conjunction with the binary requirements set for each variable, this constraint will then 

also ensure that no more than one arc will be selected for any given sequence.  

Constraints (5.13) are also new to the TRANSMax II formulation; these constraints are 

used to ensure that the last arc sequence used must enter the terminus node. Since 

constraint (5.11) only requires the terminus node to be visited it does not ensure that the 

path will return on the final segment.  Since we have relaxed the requirement that a 

prespecified number of sequences must be used to that of utilizing only the number of 

sequences up to the maximum number of sequences, R, constraint (5.13) then ensures that 

the last sequence necessary to form an optimal path must be used to enter/return to the 

terminus node.  Constraints of type (5.14) remain the same as in the original TRANSMax 

model and are used to ensure that, for each node that is not the origin or terminus node, if 

a node is entered on sequence r then that node must subsequently be left by sequence 

r+1.  Constraint (5.15) also remains the same from the original TRANSMax model and 

specifies that the path cannot have a total length greater than D.  Constraint (5.16) is a 

new constraint in TRANSMax II and defines coverage for nodes.  In this case, a node is 

considered covered if it is departed by the path.  Coverage is defined in this manner to 

match the original TRANSMax model; this can be readily seen in the objective function 

(5.1) where node service iM  is counted as a function of ijrx  – if ijrx  is utilized as part of 

the path in the original formulation then node service from i is counted. 

Constraints of type (5.17) are used to define service provided by ),( jiarc .  This is 

done through the use of the variable ijs ; note that this variable is designed such that the 

index value of i will always be less than the index value for j for this decision variable.  
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This is done so that the variable is able to capture the use of an arc but not double count 

travel which occurs in the opposite direction.  This then ensures that arc service is not 

over-emphasized and is consistent with the original TRANSMax formulation, while still 

allowing an arc to be used in the formation of a loop if it is beneficial to do so. 

Constraints of type (5.18) are the binary restrictions on the decision variables. 

This new TRANSMax II formulation is now ‘loop agnostic’ in the sense that 

loops are permitted to occur should they be utilized in an optimal solution.  The 

formulation does not require loops to be used.  It is important to note that the model also 

does not require the use of R sequences.  In the original TRANSMax model this is a hard 

constraint and defining the number of arcs to be used a priori is not a particularly 

appealing approach in transit route design.  The new TRANSMax II formulation allows 

for at most R arcs to be used while building in flexibility so that the route could 

potentially use less than the required number of arcs to find an optimal solution.  This is 

particularly important as both the original TRANSMax and TRANSMax II formulations 

utilize a constraint which limits the maximum length of the path.  By allowing flexibility 

in the number of sequences to be used it is possible that one may obtain a solution in 

which service is maximized using less than R sequences but which has an overall path 

length that is equal to or very near the maximum path length restriction.  Although one 

could eliminate the path length constraint entirely, this may result in a more convoluted 

path that, while maximizing service, takes a very contorted route which in practicality is 

not terribly useful to a transit patron as they wish to get from one point to another as 

quickly as possible (Curtin and Biba, 2011).  However, now that we have defined the new 

TRANSMax model, we can now obtain results and make direct comparisons with respect 
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to the performance of TRANSMax II compared to other models.  This will be elaborated 

in the next section. 

 

5.3 Computational Experience for the TRANSMax II Model 

  

This section will highlight how the newly formulated TRANSMax II model 

performs in relation to other related models.  We will analyze how the model performs 

with respect to the original TRANSMax formulation.  Solution times as well as coverage 

results will be discussed.  In particular, we wish to show that an optimal solution to the 

TRANSMax II model will mimic or exceed those of the original TRANSMax model 

given the same parameters. All results were generated in the same modeling environment 

detailed in other chapters: problems were formulated using the Mosel modeling language 

and solved using the Xpress solver of FICO Corporation. The remaining parts of this 

section are laid out as follows: first, a brief explanation will be given for the Richardson, 

TX study area as well as the metrics used to define arc service and node service will be 

discussed.  Second, the solutions to several cases of the TRANSMax and TRANSMax II 

models as applied to this network will be given as well as a brief discussion of their 

performance with respect to time and the objective (service).  The last section will offer 

concluding remarks with respect to performance of the model. 

The choice to use Richardson, TX as a data set stems from the fact that Curtin and 

Biba (2011) utilize this as the data example for the TRANSMax model application.  The 

network that we define is based upon the road network they provide which is centered on 

the Spring Valley DART (Dallas Area Rapid Transit) rail station.  Figure 5.2 shows this 

network in detail; red representing the arcs allowed for possible routes and grey 
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representing the excluded surface streets.  Owing to the fact that we do not have the data 

used by Curtin and Biba, we made an approximation of service values in the following 

manner. 

The first step we took toward creating the Richardson, TX data set was to obtain 

the underlying geographic information.  This was done through obtaining network data 

from the Open Street Map project.  This data contains information such as road network, 

highway, bike trail, waterway, river, etc.  In order to reduce the size of these dataset we 

removed all extraneous information that is unnecessary to the task of determining a 

covering path with respect to transit systems.  As such, we removed information such as 

bike trails, walkways, interstates, off-ramps and on-ramps, rail-networks, etc. Once we 

had the underlying road network, we needed to quantify a rough estimate for household 

service.  To accomplish this we crawled the Zillow.com website to obtain residential 

parcel data.  We obtained information about the size of each home, how many bedrooms 

and bathrooms, as well as the estimated market price and parcel information.  Given this 

data we then determined the centroids for these parcels. After determining the centroids, 

we determined the nearest surface street to the centroid as a proxy for the nearest 

walkable street location.  A similar method was proposed by Biba, Curtin, and Manca 

(2010).  The next step is to define the network for possible transit use.  In this case we 

selected those arcs that matched the network given in Curtin and Biba (2011).  This 

network is defined by Curtin and Biba to be composed of the major/minor arterial roads 

which would allow a bus to adequately make turns and pull off to the side of the street in 

order to make stops.  Nodes were derived as a function of the intersections for each arc, 

and also matched those given in Curtin and Biba.   
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Once we attached the centroids of each parcel to their nearest street segment and 

defined our possible transit network, we calculated the distance from each attached 

centroid to their nearest node using ESRI’s Network Analyst.  This allowed us to 

calculate node service as a function of network distance; if one defined the maximum 

service distance provided by each node to be ¼ mile then you know exactly how many of 

these parcels are provided service by each node in the transit network that is defined.  It 

should be noted that this differs from the approach taken by Curtin and Biba as they 

assigned node service using a random number – we wished to derive a quantifiable 

number based upon unique parcels.  Arc service was calculated as a function of not only 

the possible number of stops per segment but also the population that could potentially be 

served along that segment.  This is represented by (5.19) below: 

2

jiij

ij

MM

S

d
A


                                                                                                       (5.19) 

where S represents the desired spacing between stops, ijd represents the length of arc(i, j) 

and 
2

ji MM 
 represents the average of the service provided by node i and node j.  In this 

case we average the service provided by each node to stand as a proxy for the likely 

service that would be provided along an arc for any stop that is likely to be sited.  The 

whole equation then represents the likely service that would be provided by an arc based 

upon the siting of potential stops along the arc.  It should be noted that this is an 

expansion of the definition of service detailed by Curtin and Biba; they defined arc 

service as the number of potential stops whereas we attempt to account for service that 

would be a function of the number of potential stops as well as the likely number of 

households that could be serviced by those stops. 
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The next portion of this section will detail the solutions to several cases of the 

TRANSMax and TRANSMax II models as applied to the network we defined above.  

Solutions to the original TRANSMax will be presented first followed by solutions to 

TRANSMax II. These solutions can then be compared with respect to both sequence use 

and service (the objective).  Each formulation is compared to the other with the same 

origin and terminus nodes and a stop service distance, S, of 1200 ft.  Figures 5.3 through 

5.12 show several solutions to the TRANSMax model applied to the Richardson, TX 

network.  Figures 5.13 through 5.25 show the solutions to the TRANSMax II formulation 

as applied to the Richardson, TX network utilizing the same parameters.  The solution 

times, objective, and other associated parameters for the TRANSMax model are shown in 

Table 5.1 while those for the TRANSMax II model are given in Table 5.2.   

Table 5.1 – Parameters and Solution Values for the TRANSMax Model 

Origin 

Node 

Terminus 

Node 

Max 

Sequences 

Sequences 

Used 

Path 

(Miles) 

Node 

Service 

Arc 

Service 

 Total 

Service 

Time 

(Sec) 

6 79 10 10 5.001 232 513.02 745.02 1.62 

6 79 20 20 10.215 647 1507.87 2154.87 2.48 

6 79 30 30 11.877 970 1763.03 2733.03 13.93 

27 79 10 10 4.149 80 129.85 209.85 1.50 

27 79 15 15 10.215 375 529.89 904.89 1.76 

27 79 25 25 11.886 662 1575.25 2237.25 2.89 

27 79 30 30 11.916 786 1517.56 2303.56 17.57 
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Origin 

Node 

Terminus 

Node 

Max 

Sequences 

Sequences 

Used 

Path 

(Miles) 

Node 

Service 

Arc 

Service 

 Total 

Service 

Time 

(Sec) 

70 79 10 10 5.202 323 768.69 1091.69 1.48 

70 79 15 15 8.487 462 1166.61 1628.61 1.70 

70 79 20 20 10.709 611 1478.11 2089.11 2.71 

70 79 30 30 11.896 904 1771.42 2675.42 36.35 

27 21 10 10 4.450 143 358.31 501.31 1.45 

27 21 20 20 9.497 489 1095.30 1584.30 1.80 

27 21 30 30 11.994 774 1411.29 2185.29 9.50 

 

Computational experience between both models proved to be statistically similar 

for most parameters.  However, the TRANSMax II model did take significantly longer to 

solve for a few 

cases.  The reason for this is the fact that, in terms of the formulation, the constraints are not as

  

Table 5.2 – Parameters and Solution Values for the TRANSMax II Model 

Origin 

Node 

Terminus 

Node 

Max 

Sequences 

Sequences 

Used 

Path 

(Miles) 

Node 

Service 

Arc 

Service 

 Total 

Service 

Time 

(Sec) 

6 79 10 10 5.001 232 513.02 745.02 0.85 

6 79 20 20 10.215 647 1507.87 2154.87 2.86 

6 79 30 30 11.994 926 1808.47 2734.47 274.35 

27 79 10 10 4.149 80 129.85 209.85 0.77 

27 79 15 15 7.113 375 529.89 904.89 1.23 

27 79 25 25 11.886 662 1575.25 2237.25 1.81 

27 79 30 30 11.991 786 1543.20 2329.20 111.40 
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Origin 

Node 

Terminus 

Node 

Max 

Sequences 

Sequences 

Used 

Path 

(Miles) 

Node 

Service 

Arc 

Service 

 Total 

Service 

Time 

(Sec) 

70 79 10 10 5.202 323 768.69 1091.69 0.75 

70 79 15 15 8.232 424 1217.76 1641.76 1.03 

70 79 20 20 10.774 611 1608.82 2219.82 2.18 

70 79 30 29 11.954 897 1810.64 2707.64 2544.58 

27 21 10 9 4.517 143 358.85 501.85 0.81 

27 21 20 20 9.497 489 1095.30 1584.30 1.30 

27 21 30 29 11.887 760 1462.13 2222.13 81.00 

 

tight.  This is due to the fact that the TRANSMax II model allows for the formation of 

loops/tours as well as the fact that it does not require that the maximum number of 

sequences are actually used.  It can be observed from results shown in Table 5.2 that as 

the route approaches the maximum path length (12 miles) there is a tendency to include a 

loop or tour in the optimal solution.   The case where the number of sequences used is 

less than the maximum number of sequences also highlights the fact that there may be an 

area which has a higher potential service but is only possible to be visited by a certain 

number of arcs, or the path distance limit makes the problem behave somewhat like a 

knapsack problem (i.e. there is a limited space and one must find the optimal number of 

items to include based upon their size, value, etc.).  The results do show that the 

TRANSMax II problem uses the flexibility we have built into the problem to achieve 

solutions that are equal to or superior to those derived from the original TRANSMax 

formulation.  This is particularly important as this shows that a loop agnostic strategy is 

imperative with respect to finding truly optimal solutions to covering path type problems, 

and verifies the work of Niblett and Church (2016) which highlighted the use of loops as 

an optimal covering strategy with respect to the Maximal Covering Shortest Path 

problem.   
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5.4 Conclusions and Future Work 

Up to this point, this chapter has presented several aspects and issues that have 

arisen with the TRANSMax model formulation.  We have seen that the TRANSMax 

model formulation takes a unique approach with respect to traditional covering path 

problem formulations based upon the MCSP.  We have also defined the TRANSMax 

model; we have shown how the formulation prevents the use of loops or tours, as well as 

how the model requires the use of R sequences.  A new model formulation was proposed, 

TRANSMax II, which addresses this deficiency as well as relaxes the requirement that 

exactly R sequences be used. This new model utilizes a generalized form of the Vajda 

construct.  This new formulation was then compared to solutions determined by the 

original TRANSMax formulation.  We also defined a new metric for arc service as well 

as explained how our test network was derived and data acquired.  This section presents a 

brief recap of these findings as well as possible research directions for the TRANSMax 

problem. 

This chapter notes that traditional MCSP based problems are defined such that 

coverage is defined to be within some service standard and maximized and overall path 

length is minimized.  These two competing objectives are often proportionally weighted 

so that emphasis placed on coverage is proportional to emphasis placed on path length.  

Typically these models only treat nodes as demands which must be covered while arcs 

are merely used to define a possible network on which the path must be defined.  The 

TRANSMax model is unique in that not only is service defined as a function of both 

nodes and arcs, the formulation is formulated using a Vajda (1961) based sub-tour 

prevention framework.  Unfortunately, this framework results in sub-optimal solutions as 
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it is possible a loop or tour could form part of an optimal solution.  In order to overcome 

this issue as well as allow for more robust solutions to be used the TRANSMax II model 

was formulated. 

The TRANSMax II model formulation not only permits the use of loops as a 

covering strategy by being ‘loop agnostic,’ it also relaxes the requirement that R arcs be 

used.  Instead the formulation specifies a maximum number of arcs that can be used 

while allowing the model to use less should a better solution exist.  This was proven 

through the utilization of the Richardson, TX based network.  This network was defined 

based upon the original network given in Curtin and Biba (2011).  Information regarding 

household parcels was obtained through Zillow.com and a novel method for attaching 

these households to the transit network was adopted similar to what was described in 

Biba et. al. (2010).  After this dataset was created, we defined a new approach with 

respect to calculating arc service based upon not only the number of potential stops but 

also the likely service that each of these potential stops could provide.  This allows for a 

more realistic problem in that service is directly tied to a stop location and not merely the 

number of stops; this then helps to avoid cases where a long country road may have the 

same level of service provided by a road next to a park for example. 

Following the discussion of how we defined our network and service data, we 

presented results to both the original TRANSMax and the new TRANSMax II models.  

Several origin and terminus nodes were used as well as a wide variation in maximum 

sequence values.  The results to these problems show that the TRANSMax II formulation 

finds solutions which are equal to or better than those obtained for the original 

TRANSMax model.  The results also indicate that, in general, the TRANSMax II 
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formulation is just as efficient as the original TRANSMax with respect to solution times.  

We also noted that cases in which the TRANSMax II formulation took longer to solve 

often corresponded to cases in which the maximum path distance constraint was binding 

or in cases where fewer than the maximum number of sequences could be used which 

resulted in a superior solution.  This verifies the work of Niblett and Church (2016) 

which shows that loops will be used in many optimal solutions (when allowed) as well as 

the fact that allowing flexibility in the formulation with respect to relaxing the 

requirement that exactly R sequences be used can determine solutions with a significantly 

higher level of service. 

Future work with respect to the TRANSMax II formulation includes incorporating 

a weighted distance objective into the formulation.  Preliminary results for this kind of 

formulation indicate that the TRANSMax II model can replicate results derived for the 

MCSP.  Other significant attributes that can be explored include defining an arc service 

value for MCSP based models with respect to transit routing as this may offer further 

insight into these kinds of problems.  One motivating factor to approach the solutions to 

MCSP based models lies in the fact that, while the TRANSMax II model solves 

reasonably quickly in this example, applying it to larger networks results in a significant 

increase in variables and constraints.  Orman and Williams (2006) also indicate this 

would be a fruitful approach, particularly as their work explored computational 

experiences based upon differing TSP formulations, a problem that is related to both the 

MCSP and TRANSMax. 

Therefore, we have defined, formulated, and solved a new form for the 

TRANSMax II problem and observed that loops appear in optimal solutions in certain 
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cases.  The next chapter of this dissertation will focus on moving from a “loop agnostic” 

strategy to a “loop encouraging” strategy as well as defining how one can determine 

optimal covering paths in a bi-directional manner rather than assuming a MCSP can 

simply be implemented in the reverse order. 

 

Figure 5.1 - Route Map Highlighting the use of loops in Eau Claire, WI.  Permission to use this image 

has graciously been given by the City of Eau Claire. 
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Figure 5.2 - The Richardson, TX transit network (red) centered around the DART Spring Street 

Station (Node 55); the grey lines are the surface streets that were not considered as part of the 

possible transit network. 
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Figure 5.3 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, the 

number of sequences set to 15, and a maximum path length of 12 miles 

 

Figure 5.4 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, the 

number of sequences set to 20, and a maximum path length of 12 miles 
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Figure 5.5 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, the 

number of sequences set to 30, and a maximum path length of 12 miles 

 

Figure 5.6 - Solution to the TRANSMax model with an origin at node 6, a destination at node 79, the 

number of sequences set to 10, and a maximum path length of 12 miles 
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Figure 5.7 - Solution to the TRANSMax model with an origin at node 6, a destination at node 79, the 

number of sequences set to 20, and a maximum path length of 12 miles 

 

Figure 5.8 - Solution to the TRANSMax model with an origin at node 6, a destination at node 79, the 

number of sequences set to 30, and a maximum path length of 12 miles 
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Figure 5.9 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79, the 

number of sequences set to 10, and a maximum path length of 12 miles 

 

Figure 5.10 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79, 

the number of sequences set to 15, and a maximum path length of 12 miles 
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Figure 5.11 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79, 

the number of sequences set to 25, and a maximum path length of 12 miles 

 

Figure 5.12 - Solution to the TRANSMax model with an origin at node 27, a destination at node 79, 

the number of sequences set to 30, and a maximum path length of 12 miles 
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Figure 5.13 - Solution to the TRANSMax model with an origin at node 70, a destination at node 79, 

the number of sequences set to 15, and a maximum path length of 12 miles 

 

Figure 5.14 - Solution to the TRANSMax II model with an origin at node 6, a destination at node 79, 

the maximum number of sequences set to 10, and a maximum path length of 12 miles 
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Figure 5.15 - Solution to the TRANSMax II model with an origin at node 6, a destination at node 79, 

the maximum number of sequences set to 20, and a maximum path length of 12 miles 

 

Figure 5.16 - Solution to the TRANSMax II model with an origin at node 6, a destination at node 79, 

the maximum number of sequences set to 30, and a maximum path length of 12 miles 
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Figure 5.17 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 21, 

the maximum number of sequences set to 10, and a maximum path length of 12 miles 

 

Figure 5.18 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 21, 

the maximum number of sequences set to 20, and a maximum path length of 12 miles 
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Figure 5.19 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79, 

the maximum number of sequences set to 10, and a maximum path length of 12 miles 

 

Figure 5.20 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79, 

the maximum number of sequences set to 15, and a maximum path length of 12 miles 
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Figure 5.21 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79, 

the maximum number of sequences set to 25, and a maximum path length of 12 miles 

 

Figure 5.22 - Solution to the TRANSMax II model with an origin at node 27, a destination at node 79, 

the maximum number of sequences set to 30, and a maximum path length of 12 miles. Labels have 

been omitted to highlight the use of loops 
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Figure 5.23 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79, 

the maximum number of sequences set to 10, and a maximum path length of 12 miles 

 

Figure 5.24 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79, 

the maximum number of sequences set to 15, and a maximum path length of 12 miles 
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Figure 5.25 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79, 

the maximum number of sequences set to 20, and a maximum path length of 12 miles 

 

Figure 5.26 - Solution to the TRANSMax II model with an origin at node 70, a destination at node 79, 

the maximum number of sequences set to 30, and a maximum path length of 12 miles
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Chapter 6 

6.1 Introduction 
 

This chapter represents a major departure from the previous chapters of this 

dissertation, particularly chapters 3, 4, and 5. Chapter 3 presented a new model, NR-

MCSP, for solving the maximal covering shortest path problem. This new model was 

termed “loop agnostic.” That is, this model allowed loops to be used in path formation 

whenever embedded loops help produce a better solution. That chapter also described 

why the original streamlined maximum population shortest path (MPSP) model of 

Current et al. (1985) could not be extended to a “loop agnostic” form, although the new 

NR-MCSP model proposed in that chapter can be used for solving a loop agnostic form 

of the MPSP problem. Chapter 4 presented a “substitution/swapping” based heuristic for 

solving the new NR-MCSP model. This new heuristic borrows heavily upon past work 

involving substitution/insertion heuristics that was initially begun by Lin (1965) for the 

Travelling Salesman Problem. What is entirely new about this heuristic is that it is 

capable of substituting route components which can represent the building blocks of 

loops, even out and back loops, into a shortest path or route. Results from both Chapters 

3 and 4 demonstrated that embedded loops can be present in both optimal and 

heuristically derived local optimal solutions.  

Chapter 5 was based upon taking a different tack in structuring and solving the 

original MCSP.  Recall that Curtin and Biba developed a new formulation of the MCSP 

that was based upon the TSP model of Vajda (1961). Their new model was called 

TRANSMax. By using the underlying form of Vajda, their new model prevents sub-tours 
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from appearing in a solution even when explicit sub-tour elimination constraints are not 

used (as opposed to constraints based upon Dantzig, Fulkerson, & Johnson). Chapter 5 

presented a new model form that represents an extension of TRANSMax which allows 

loops to be formed within a solution as long as such loops are attached to the path. This 

new structure demonstrates that there can be other alternate pathways in which the MCSP 

model can be formulated for the general case (i.e. allow embedded loops) while utilizing 

a Vajda inspired framework.  

This chapter explores a new, more general form of the MCSP problem. The basic 

assumption in applying the classic MCSP for transit and other route design problems is 

that the path will be traveled in both directions when needed. That is, a bus, using a 

MCSP path, will traverse all of the arcs along the path from the origin to the destination, 

and then reverse its direction and travel those same arcs beginning at the destination and 

heading towards the origin. Sometimes such a complete reversal is not possible due to the 

use of one-way streets. But, when that occurs then the return pathway simply uses the 

neighboring one-way streets heading in the appropriate direction, so that the return, 

inbound trip veers no more than a block or so away from the outbound trip or path. This 

also means that in the more flexible NR-MCSP problem, it is assumed that a loop in a 

path will be traversed in both directions (once outbound and once inbound). This chapter 

is based upon the assumption that the outbound and inbound path need not be entirely the 

same. That is, although certain route segments of a covering path may be the same for 

both the outbound and inbound path, some segments may be different. We can define this 

new form of the Maximal Covering Shortest Path problem as follows: 
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Find an “outbound” path starting at the origin and ending at the 

destination and an “inbound” path starting at the destination and 

ending at the origin, that in combination maximizes coverage, 

minimizes total distance traveled (in both directions) and where at 

least some portion,  , of the outbound and inbound routes use the 

same street or arc segments.  

This problem will be defined as the bi-directional maximal covering shortest path (BD-

MCSP) problem. This problem is somewhat related to the multi-path maximal covering 

shortest path problem of Boffey and Narula (1998). In their model, they assume that such 

multiple routes (or paths) start at the same origin and end at the same destination, and 

each route or pathway is independent of the other, except that they may be constrained to 

be in the same region or corridor stretching between the origin and destination. They 

make no assumption about direction of travel, just as in Current et al (1984, 1985). 

Presumably, each pathway will be traveled in both inbound and outbound directions 

when they are applied. Total coverage equals the total sum of coverage provided by all of 

the paths. The bi-directional MCSP problem is similar to that of Boffey and Narula in 

that it involves determining two directed paths (one inbound and one outbound) but 

differs in that the inbound and outbound paths are encouraged to coincide whenever 

possible, whereas there was no such attempt in Boffey and Narula. The basic idea is that 

service coverage may be extended by expanding one direction or other direction of travel, 

without seriously increasing route distance. This appears to be a strategy used by many 

small to medium sized cities in transit route design, a point that will be described in more 



 

194 

 

detail in the next section. We can also define a variant of the BD-MCSP problem as 

follows:  

Find an “outbound” path starting at the origin and ending at the 

destination and an “inbound” path starting at the destination and 

ending at the origin, that in combination maximizes coverage, 

minimizes total distance traveled (in both directions) and where it is 

encouraged that a portion of the outbound and inbound routes visit 

the same nodes or intersections. 

Whereas the first form ensures a certain portion of the street segments coincide for the 

outbound and inbound paths, this second form attempts to encourage both outbound and 

inbound paths to coincide at intersections, when possible.   

The remainder of this chapter is organized as follows.  The next section will 

present several examples of transit system designs, which demonstrate that transit 

planners use bi-directional paths to provide high levels of access coverage while at the 

same time keeping path/route mileage as low as possible. Particular emphasis will be 

placed on defining how current models are not capable of generating such route 

alternatives and why the models proposed in this chapter represent a step forward in not 

only transit route modeling problems but also the broader class of covering path 

problems.  The following section will define two mathematical formulations which 

represent the two design problems defined above.  This section will focus on explaining 

the notation for the model as well as defining the objectives and constraints for these two 

models.  The fourth section will describe the optimal results obtained from these model 

formulations, and discuss key findings.  Particular emphasis will be placed on how these 
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models compare not only to other formulations but also how well these models meet the 

stated research questions.  The fifth and final section will offer concluding remarks and a 

brief discussion for possible future work. 

6.2 Background 
 

As was seen in Chapter 2, many real world transit routes in small to medium sized 

cities utilize a mix of route alignments, some of which involve embedded loops.  The 

routes/paths that involve a combination of straightway sections and loops often help to 

extend coverage to nearby areas without the need to use additional transit routes.  In some 

cases this can be attributed to the overall design of the network; for example, it may be 

that a downtown business district is composed of city blocks with alternating one way 

streets comprising the grid pattern.  In such a case a tour/loop might be a necessity. For 

example, Figure 6.1 presents a map of transit route 2 used by San Luis Obispo Transit. 

This particular route uses loops in several sections, however, it should be noted that the 

two loops in the northern section of the route use several parallel street segments that are 

separated by several blocks. Two of these streets that are used in this section of the route 

(i.e. Marsh and Pismo streets) are one way, and the route travels up one street and down 

the other. Thus, the network layout forces such loops (departures) to be used. However, 

as several route maps that were presented in Chapter 1 demonstrated, tours may be used 

in a wide variety of other circumstances and forms.  For example, a ‘barbell’ shaped 

route as depicted in Figure 6.2a, a ‘lollipop’ shaped  route as depicted  in Figure 6.2b, or 

even a figure eight shaped route as depicted in Figure 6.2c may be used by transit 

planners in providing transit access coverage. 
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There may even be combinations of the patterns shown in Figure 6.2 within the 

same route.  Figures 6.3 and 6.4 present system route maps for the Cities of Bozeman, 

MT and Eau Claire, WI respectively.  For the City of Bozeman, four of the five routes 

involve one or more loops. Note that the “yellow” route contains a large loop at the 

western end of the route (creating a lollipop shape), where the loop itself is traveled only 

in the clockwise direction. The “red” route contains two loops and two common sections, 

where each of the embedded loops is traversed in only one direction. The “blue” route 

shows the use of a loop in the center of the route, where the two sections of the route are 

separated by 5 blocks. This clearly represents a pattern that is broadened in order to cover 

more of the neighborhood with access coverage. Note that the “orange” route is primarily 

a single loop (with a smaller loop in the Northwest section). Note also that the main loop, 

as well as the smaller loop, is traversed in only one direction. The system map for the 

City of Eau Claire depicts a wide variety of route shapes. For example, routes 17 and 18 

are lollipop shaped routes and route 3 involves the use of three loops (traveled in only 

one direction), and several long sections traversed in both directions. Overall, one can see 

that routes, themselves, are not simple out and back features, but are of a more complex 

nature that provide greater levels of route coverage while saving some route mileage. 

When a loop is traversed in only one direction of travel, it can help to extend route 

coverage at the expense of increasing travel times. This represents a tradeoff that planners 

are forced to make when housing densities and transit demand is low. The idea is that 

area coverage can be increased by introducing loops with a lower marginal cost (distance 

of operation) than using an additional new route. This certainly increases travel times for 

riders, but at the same time keeps transit route mileage as low as possible. For example, 
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consider the two simplistic route designs depicted in Figure 6.5; Route A is a simple 

route, going up and down a street 5 blocks long, whereas route B is a loop route that 

travels up that same street and then traverses over 3 blocks and travels down that street, 

eventually traversing back to the original street. Whereas Route A serves 0.6 unique 

intersections for each block traveled, Route B serves 1 unique intersection for each block 

traveled, making route B more efficient in terms of spatial coverage per unit mile 

traveled. Without doubt, customers travel less to move between their respective origins 

and destinations along Route A as compared to what customers must travel between their 

respective origins and destinations along Route B. Thus, route coverage is increased at 

the expense of increasing service times. However, for most areas, it is better to have some 

level of coverage even when service times are increased as overall access is increased.    

As we have seen, models such as Current et. al. (1984, 1985) or a TSP structure 

such as Vajda (Vajda, 1961; Curtin and Biba, 2011) explicitly prevent loops/tours from 

being part of a solution unless the entire route is one large TSP loop.  This of course 

stems from the idea that an optimal route will never contain a loop or tour.  This 

assumption holds for a problem such as the simple shortest path problem, but for 

maximal covering-shortest path problems it does not hold as a general assumption, as 

demonstrated in chapters 3, 4, and 5 of this dissertation.  However, all past work on the 

maximal covering shortest path problem has been based upon models that represent a 

route which is determined based upon one direction.  The results of these models are then 

assumed to be reversible; that is, vehicles will retrace their routes or paths in the opposite 

direction. For example a route with a loop is depicted in the right panel of Figure 6.6, 

where each segment is traversed in both directions. The left panel of Figure 6.6 depicts 
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the same alignment with the exception that the route travels the loop in only one 

direction. Whereas the solution depicted in the right panel of Figure 6.6 can be generated 

by the models in chapter 3, the solution depicted in the left panel of Figure 6.6 falls 

outside the scope of existing models.    

In the typical planning scenario, routes are often drawn by hand and subsequently 

tweaked slightly in order to conform to surface street conditions.  This is exactly what is 

done through the Trapeze (www.trapezegroup.com) and remix (formerly TransitMix – 

www.getremix.com) software packages.  Thus, a key goal of this dissertation is to 

propose and develop a new fundamental model for route planning which accounts for 

travel in both directions.     Further, previous formulations have restricted a loop from 

forming outright. Chapters 3 and 5 presented models which are ‘loop agnostic’ in the 

sense that the model allows a loop to be used, where travel is assumed to take place in 

both directions. Loops in the previous chapters can be considered to be bi-directional 

loops; they are bi-directional in the sense that the vehicle traveling the route or pathway 

traverses all arcs in both directions, including the arcs which form loops. What is 

assumed here is that a loop, if used, may or may not be traversed in both directions.  This 

chapter will present two models that delineate routes (or pathways) with respect to both 

directions of travel; that is, inbound and outbound with respect to traveling from or to the 

origin. The two models presented here are designed to find routes that can involve uni-

directional loops, that is, loops which travel in only one direction which are found in real 

world examples.  

Intuitively, it is quite likely that if one solves for a bi-directional path that the 

inbound and outbound paths will share little, if any, street segments in common. Thus, 
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two almost independent paths will be generated, except for the notion of maximizing 

combined coverage. That is, little will be gained in sharing any street segments between 

the outbound and the inbound direction.  Boffey and Narula (1998) seem to have been 

aware of this fact as they defined their problem in such a way that 2 (or more) paths are 

determined for the same origin and destination nodes.  This in effect is an attempt to 

model several routes as part of a whole system wherein each route is then assumed to 

provide complementary coverage to the other routes.  The research here differs from that 

of Boffey and Narula in that paths should not necessarily be independent, but share some 

of the route, so that travel times can be lower than what might occur in one large loop or 

two completely independent directional paths. Two forms of this problem were presented 

in the introduction: a form that requires a certain proportion of route segments to be 

shared by both travel directions (inbound and outbound) and a form that encourages a 

certain number of intersections to be shared between the two route directions.  The next 

section will present model formulations for the two versions of this problem. 

6.3 Notation and Formulation of the Bi-Directional Covering Path Problem 
 

This section will present the notation and two formulations for the Bi-Directional 

Maximal Covering Shortest Path Problem.  The notation given below will be used for 

both variations of the BD-MCSP problem.  Each formulation is designed such that it is 

possible to traverse all or only parts of the route in both directions. Any departure in path 

alignment between the outbound path and the inbound path represents the use of a uni-

directional loop.  The notation for these models is as follows: 

ji,  = the index of nodes 
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r  = the index for path direction, where r=1 refers to the outbound path from origin to 

destination and r=2 refers to the inbound path from the destination to the origin. 

ka  population or measure of demand at k 

  the importance weight associated with the coverage objective 

  1  the importance weight associated with the distance objective 

  ijd the shortest distance/time from node i to node j 

 r

ijx 1 if the arc from i to j is traversed from i to j for path direction  r 

ky  1 if node k is covered and zero if it is not 

  node p the origin (destination) node for the outbound (inbound) bi-directional shortest 

covering path 

   node q the destination (origin) node for the outbound (inbound) bi-directional shortest 

covering path 

} exists ),arc( { jii|N j  , the set of nodes i which are connected to j 

S* the desired maximum allowable access distance 

}  { S*j|dS jkk  , the set of nodes j which are within the maximum access distance to 

node k 

iF the set of nodes, k, that are connected to i by an arc and can be directly traversed 

from i to k.  

jT  the set of nodes, k, that are connected to j by an arc and can be directly traversed 

from j to k. 

ij  variable to define arc-sharing by both directions; 1, if the outbound path (1) 

traverses  arc(i,j) from i to j and the inbound path (2) traverses arc (i,j) from j to i; 

0, otherwise 

 ji  variable to define arc-sharing by both directions; 1, if the outbound path 1 

traverses  arc(i,j) from j to i and the inbound path 2 traverses arc (i,j) from i to j; 

0, otherwise 

 

The first formulation of the BD-MCSP is one that specifies that there must be at least   

shared arcs that are to be shared among both the forward (outbound) and reverse 

(inbound) directional paths.  This will ensure that the two pathways (inbound and 

outbound directions) are not completely independent and traverse completely different 
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arcs and alignments.   For example, if an intermediate arc were specified to be used by 

both directed paths, the model would allow the possibility of a barbell shaped route if 

such a route was better than other shapes or that the same alignment in both directions for 

that street segment was better than not.  This form of the BDCP problem will be called 

the Minimum-Shared Arcs Bi-Directional Maximal Covering Path Problem (MSA-BD-

MCSP) and is formulated as follows: 
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)( ,2&1for     , )1,0( i,jrxr
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The objective of the model (6.1) is similar to that of the MCSP; an importance weight, 

 , is placed on the covering objective and an importance weight,  1 , is placed on 

the distance objective.  In this case, coverage is defined such that population is 

maximized while the total combined length of the outbound and inbound paths is 

minimized.  The constraints for the problem are somewhat similar to the NR-MCSP, 

albeit with appropriate conditions imposed on each path direction.  In order to account for 

the bi-directional nature of the problem, we specify that path (1) corresponds to traveling 

from an origin node p to destination node q (outbound) and the second path, path (2) – 

the inbound path – corresponds to travel from node p back to the origin node q.  Thus, 

constraint (6.2) ensures that one more arc must be used to depart the origin node p than is 

used to enter it with respect to path 1.  In a similar vein, constraint (6.3) requires that one 

more arc must be used to leave node q than is used to enter it with respect to the inbound 

path 2.  Constraints (6.4) and (6.5) are a similar type of constraint but in this case require 

that one more arc must be used to enter the destination node than what may be used to 

leave the destination, for each respective path (outbound and inbound).  Constraints of 

type (6.6) are “flow” balance constraints for each path direction.  They specify that, for 

each path direction, if a node that is not the origin or destination is entered one or more 

times by arcs on a directional path, there must be a an equal number of departures from 

that node for that direction.   Constraints (6.7) and (6.8) are introduced here to define 

each case in which an arc is used in both directions.  Because the objective is to 

maximize coverage while minimizing path length it is highly likely that each path would 
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take a route that is completely independent of the other path.  Essentially, this means that 

it is likely a solution to the problem would simply be a large covering tour.  However, 

since we know that real world routes often utilize some of the same street segments in 

both directions, it is necessary to ensure that each path comes together and shares a 

number of common arcs which are traversed in the forward direction by one path and the 

reverse direction by the other.  To establish that there is a minimum number of shared 

arcs, we introduce a decision variable, ij . This decision variable is used to represent 

whether an arc is shared by both path directions; if both paths utilize the same arc ),( ji , 

but in opposite directions, then this variable ( ij ) can have a value of one.  If only one or 

neither path use this arc then the variable will be forced to a value of zero.  Constraints 

(6.7) account for travel on the ‘forward’ portion of the bi-directional path.  If the arc is 

traversed from node i to node j on path 1 (the ‘forward’ path) then ij  is allowed to have 

a value of one. If it is traversed in the opposite direction for path 1, then ji  is allowed 

to be one in value. Constraint (6.8) ensures that if the arc is traveled in the ‘reverse’ 

direction as part of path two from node j to node i then ij  is allowed to have a value 

equal to one and ji  is allowed to be one in value if the reverse direction travels from i to 

j.   This ensures that ij  (and conversely ji ) can only have a value of 1 if the arc is 

utilized as a part of both paths in the opposite directions.  If either path uses an arc which 

is not utilized in the opposite direction by the other path, then the respective constraints 

will force ij  and ji to have values of 0.  Constraints (6.9) are necessary to prevent a 

case where a shared arc is counted twice.  For example, if there is an arc that connects 

node i to node j there will be two variables representing the directional travel for each 
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path (outbound and inbound).  That is, we will have the variables 1

ijx , 1

jix , 2

ijx , and 2

jix  

which represent travel from node i to node j and from node j to node i for the outbound 

and inbound paths, respectively.  However, because ij  and ji  exists for each 

complementary inbound and outbound path arc pair variables (i.e. 1

ijx  and 
2

jix ) it is 

possible that a single arc segment could be counted twice if 
1

jix  and 2

ijx  are also utilized as 

ij  and ji would both be equal to 1.  This of course violates the fact that we wish to 

count shared arc use only once for a given arc; constraints (6.9) prevent such double 

counting by ensuring that only one pair of inbound and outbound arc traverses can be 

counted toward the minimum number of shared arcs,  , as only one pair of directions is 

allowed to be used in calculating shared directional use.  Constraint (6.10) requires that 

there must be at least   arcs that are common to the forward and reverse paths as this 

defines the minimal amount of arc sharing between the two directions.  Since each pair of 

ij and ji variables can have in common at most a  value of 1 if  based upon constraints 

(6.9), we can ensure that there will be at least   arcs used in common between the 

inbound and outbound directions with constraints (6.10).   By ensuring that the number of 

arcs that are used in the opposite directions is equal to or greater than  , we allow for 

the possibility that more than this number of shared arcs could be part of a solution.  

Constraints of type (6.11) define whether coverage has been provided by either path 

direction.   This constraint ties the coverage variables iy  to the arc traversing variables 

r

ijx .  In this case, the constraint specifies that node k can be considered covered if an arc 

on either path direction visits a node j which is within the maximum access distance of 
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node k.  If this requirement is fulfilled, then iy  is allowed to be 1 and node k is 

considered to be covered.   

Constraints (6.12) and (6.13) represent the EAST constraints for the problem.  As 

we have seen, sub-tours could be present in a covering-path solution, and because of this 

should be allowed to occur only if they are connected to the covering path.  These EAST 

constraints are iteratively added to the problem as described in Chapter 3 of this 

dissertation; if a sub-tour is identified in a solution then the appropriate EAST constraints 

are added and the problem is re-solved.  In this case, we will need to identify whether 

sub-tours occur with respect to each path direction and add the corresponding EAST 

constraint to prevent its use unless it is attached to the path.  Constraint (6.12) requires 

that in order for the loop/tour to exist for a specific path direction, it must be entered by 

an arc which is not part of the sub-tour.  Similarly, constraint (6.13) requires that in order 

for the loop/tour to exist in a specific path direction, it must be left by an arc for that same 

path direction which is not part of the sub-tour.  Taken together, these constraints will 

either eliminate or attach specific sub-tours within a solution. Finally, constraints (6.14) 

and (6.15) represent the binary restrictions on the path and coverage decision variables, 

respectively. 

This formulation for the Minimum Shared Arcs Bi-Directional Maximal Covering 

Shortest Path problem is able to capture elements that define real world transit routes.  In 

particular, it addresses the issue of defining a route in both directions as this allows for a 

realistic accounting of coverage and travel.  By requiring a minimum number of arcs to 

be shared between both routes, one can explore solutions which vary in route similarity 

between the outbound and inbound directions.   In particular, this formulation allows for 
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the use of uni-directed loops as observed in Figures 6.3 and 6.4 for the cities of Bozeman, 

MT and Eau Claire, WI.   An example of an optimal uni-directed loop formed by both an 

inbound and outbound path for the Swain network is given in Figure 6.7.   

The formulation above is not without its drawbacks.  Although the problem at a 

basic level is a combined form of two MCSP problems, the addition of the constraint 

requiring at least    arcs be shared among both path directions introduces a knapsack or 

budget constrained sub-problem.  Budget and Knapsack constraints involving integer 

variables are often computationally intensive constructs when solving ILP problems to 

optimality.   Unfortunately, although the MSA-BD-MCSP problem is conceptually 

simple, it is very difficult to solve to optimality for reasonable sized problems; this is due 

in no small part to the fact that it can be classified as NP-Hard.   Due to this fact, it is 

likely that this and other model forms of the MSA-BD-MCSP will require significant 

amounts of computer time to solve to optimality.  

To address this possibility, an alternate formulation is proposed which utilizes an 

additional objective term that contains an emphasis weight which is used to encourage an 

inbound (or outbound) route to visit  a  node previously visited by the outbound (or 

inbound) route, rather than requiring them to coincide with at least a minimum number of 

arcs.  This objective term can be specified as: 




n

i

iita
1

                                                                                                                         (6.16) 

where  is the importance weight placed on the benefit to return to a node visited by the 

opposite directed path, ia  represents the population at node i and it is the binary decision 

variable representing whether the return coverage benefit at node i is provided or not 
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provided. This weighted term is used to capture the benefit of serving and visiting a node 

in both directions.  In this case we define this benefit to be some portion of coverage; 

thus, the emphasis weight can represent the percentage of additional coverage to be added 

when a node is visited by both directed paths.  It should be noted that it is possible to link 

the return coverage benefit weight to the emphasis weights placed on overall path length 

and path coverage through the term 1  .  This allows the weights to be 

proportional to one another and allows for one to define emphasis placed on each 

objective term as a percentage.  However, we do not require this as we prefer to define 

the benefit of returning to a node in terms of how much additional coverage can be 

provided.  Using this construct we can define an alternative formulation for the Bi-

Directional Covering Path problem which is given below and is called the Weighted 

Return Bi-Directional Maximal Covering Shortest Path Problem (WR-BD-MCSP). This 

new model represents a form of the second type of bi-directional path problem defined in 

the introduction: 
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The objective (6.17) maximizes coverage and minimizes distance for both directions of 

the covering path, just as objective (6.1).  The new objective term given in (6.16) is added 

to the objective (6.17) in order to allow for an additional weighted coverage benefit for 

returning to a node that has been visited by the opposite direction.  Constraints (6.18) and 

(6.19) are unchanged and specify that the origin node for each path direction must be 

exited one more time than it is entered.  Similarly, constraints (6.20) and (6.21) require 

that the destination node for each path direction must be entered one more time than it is 

departed.  Taken together these constraints allow loops to be formed at the origin and 

destination nodes in either direction.  Constraints of type (6.22) are flow balance 

constraints for each path and are also unchanged from the previous formulation.  They 

require that an intermediate node, that is a node which is not the origin or destination, 

must be departed every time that node is entered for a given path direction (inbound or 

outbound).  Constraints of type (6.23) are the constraints that define coverage: if a node is 
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visited or within the maximum access distance of a node that is part of the covering path 

(in either direction) then it can be considered covered.  However, we also require a new 

constraint of type (6.24); constraints of type (6.24) ensure that an additional coverage 

benefit can be counted only if a node has been visited by both directed paths.  If iy is zero 

then it must also be zero as it must be less than or equal to iy . Since iy represents path 

coverage of node i , a node must be covered a first time in order for any additional 

benefit, it , can be counted.   Technically, this is a redundant constraint, when considering 

constraints (6.25) and (6.26).  Constraints of type (6.25) and (6.26) are what link a benefit 

to being visited by the path in both directions.  In this case, in order to provide an 

incentive to return to a node based upon the opposite direction, it  is allowed to be 

positive only when a node is directly visited by both directional paths.  Constraint (6.25) 

ensures that, for each node i, it must be less than or equal to the sum of the arcs which 

enter node i as part of the ‘forward’ or outbound covering path (i.e. path 1).  If one or 

more arcs are utilized as part of the forward covering path then it will be allowed to one 

as it  is limited by constraint (6.25).   Constraint (6.26) works in a similar manner but in 

this case it can only be positive if node i is directly visited by the ‘reverse’ or inbound 

covering path (i.e. path 2).  Taken together constraints (6.25) and (6.26) ensure that it will 

only provide a weighted return benefit if node i is visited by both the ‘forward’ and 

‘reverse’ covering paths.  Thus, the model is allowed to be ‘loop agnostic’ with respect to 

loops which form as part of each bi-directional covering path while also establishing an 

incentive to encourage each path to ‘interact’ with one another by visiting nodes in 

common.   Such constraints aid in the fact that planners wish to have routes which utilize 
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a similar common corridor between each path, but allow for some divergence to cover a 

wider region which is necessary to provide wider spatial coverage. 

Constraints of type (6.27) and (6.28) represent the necessary EAST constraints. 

As before, these are added when needed.  Taken together they specify that a sub-tour of a 

given path direction must have an arc which enters the sub-tour and an arc which leaves 

the sub-tour but is not part of the sub-tour itself in order for the tour to exist.  When 

solving the model it is efficient to include the ‘simple’ form of the EAST constraints in 

order to prevent simple out-and-back (OAB) sub-tours from occurring as such constraints 

aid in reducing the number of times the iterative sub-tour identification and constraint 

adding process must be repeated.  Constraints (6.29) and (6.30) are the binary restrictions 

imposed for the decision variables for path variables and coverage variables respectively. 

Note, it is not necessary to maintain special restrictions of the 
it variables as they will 

naturally be either zero or one in value due to the restrictions of the 
iy  variables and the 

nature of the constraints (6.25) and (6.26) 

These two formulations specified above are designed to find complementary 

paths, outbound and inbound, that together cover as much as possible while at the same 

time are efficient in terms of path distances and share either links or visit nodes in 

common when possible. To address the fact that the classic MCSP models are based upon 

the assumption that the path can be traveled in both the forward and reverse directions 

relative to the path alignment, any conflicts based upon network topology must then be 

modified after the fact in an ad hoc fashion.   Both of the model formulations proposed in 

this chapter do not require such ad hoc adjustments as they can be applied to any 
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typology, including a mix of one-way streets and two-way streets.  The BD-MCSP 

formulations are ‘loop agnostic’ like the formulations of the NR-MCSP. However, they 

allow both bi-directed paths and uni-directed paths to be present in a solution.  The first 

formulation (MSA-BD-MCSP) ensures that a certain number of arcs have to be shared by 

both the outbound and inbound parts of the path, while the other formulation (WR-BD-

MCSP) involved finding complementary path directions (outbound and inbound) which 

optimized path coverage, minimized path distance, and provided added benefits to 

visiting nodes in common for the two directions or travel.  Both formulations then allow 

for uni-directional oriented loops (e.g. a loop that travels in either a clockwise or 

counterclockwise rotation, but not both) to occur which is not possible in the NR-MCSP 

formulation of the problem developed in Chapter 3. The next section will highlight 

results for solving both of these models, and discuss nuances that occur for each 

formulation. 

6.4 Network, Computational Environment, and Results 

 

Both formulations above are new, and represent model forms that allow for both 

uni-directional loops and bi-directional loops. The task at hand is to provide a 

demonstration of these model constructs, not to develop an efficient, tailored solution 

process.  We applied the models on the 55 node Swain based network dataset that was 

utilized in the previous chapters of this dissertation.  The network is defined to allow 

travel in both directions along each arc; there are 104 arcs in the dataset which yields a 

total of 208 directed arcs, and 416 directed path variables.   

All problems were formulated and using the Xpress-IVE modeling environment 

(a product of the FICO Corporation) on a Windows 7 Professional workstation and 
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solved using the Xpress solver on a Linux based server.  The server utilized the Ubuntu 

14.04 LTS operating system and the Xpress 64-bit solver v3.8.0.  The computer hardware 

was comprised of two physical Intel Xeon X5560 processors providing a total of 8 logical 

and 8 virtual cores.  This server utilized 48GB of DDR3 memory running at 1066 MHz. 

The server also utilized five 36GB serial attached storage (SAS) drives in a RAID 5 array 

which provides 136GB of data storage.  All solution information was directed to a file 

that was uploaded to a dropbox folder that was synced to the Windows 7 Pro workstation. 

This final step allowed all bi-directional paths to be displayed as a map using a program 

developed in Microsoft’s Visual Studio 2010 VisualBasic.Net programming 

environment. 

The first solution set involves results with respect to solving the MSA-BD-MCSP.  

The MSA-BD-MCSP was solved for a series of coverage and distance weights as well as 

 , the minimum number of required shared arcs (i.e. arcs shared in both the outbound 

and inbound path directions).  A more exhaustive set of solutions such as provided in 

Chapter 3 and given in Appendix A is not included here as determining optimal solutions 

to certain cases of the MSA-BD-MCSP proved to be so computationally complex that 

determining a confirmed optimal solution to some problems was not feasible – in one 

case a single problem instance took more than 2 weeks to solve before the decision was 

made to terminate it.  Solutions for selected MSA-BD-MCSP problems are given below 

in Table 6.1.  To generate this set of results, cover weights were incremented by units of 

0.1 with weights ranging from 0.1 to .90 for coverage and path emphasis. 
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Table 6.1 - Solution Results for the MSA-BD-MCSP with p = 27 and q = 21 

Cover 

Weight 

Distance 

Weight 

 Omega 

Value 

Service 

Distance 

Total 

Covered 

Total 

Length 

Objective 

Value
18

 

Time 

(Sec) 

0.01 0.99 9 10 537 103.84 103.832 0.09 

0.10 0.90 9 10 537 103.84 103.756 0.19 

0.20 0.80 9 10 552 106.40 102.720 2.29 

0.30 0.70 9 10 563 110.73 100.611 5.52 

0.40 0.60 9 10 592 124.51 93.906 65.22 

0.50 0.50 9 10 620 144.33 82.165 133.01 

0.60 0.40 9 10 620 144.33 69.732 823.64 

0.70 0.30 9 10 633 166.06 54.718 1503.99 

0.80 0.20 9 10 638 184.89 38.578 29389.50 

0.90 0.10 9 10 640 196.55 19.655 6478.77 

0.99 0.01 9 10 640 196.55 1.966 5728.44 

 

In order to exclude potentially inferior solutions (i.e. multiplying an objective by zero) 

weights of zero and one were approximated through the use of 0.01 and 0.99 

respectively.  This results in a total of 11 problems detailed in Table 6.1.   The results 

here were generated for a maximum access distance of 10. Total path length is reported 

which represents the combined distances of the inbound and outbound directions. The 

combined coverage for the inbound and outbound portions of the path is also given for 

each problem.   If the distance required to travel through the network for each node j was 

less than the maximum access distance, then that node is considered to be in the coverage 

set of node j .  All calculations utilized an   shared arc value of 9.  The table also gives 

the composite objective value and computational time for each problem.  It should be 

noted that in this case the objective is given as a combination of weighted terms of 

minimizing what is not covered and minimizing total bi-directional path distance.  

Shaded rows denote solutions that involve loops, such as a uni-directional loop and/or bi-

directional loop. 

                                                 
18

 Note that the objective minimizes total bi-directional path distance and what is not covered. 
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Figure 6.8 is an example of the optimal solution given in the table above that 

utilizes an   minimum shared arc value of 9, a maximum service distance of 10, and 

coverage and distance weights that are equal to 0.7 and 0.3 respectively.   The outbound 

portion of this solution from node p to node q, in this case from node 27 to 21, utilizes an 

out-and-back loop from node 43 to node 55 and then back to node 43.  This out and back 

loop is a portion of a unidirectional section from node 16 to node 43 and from 43 to node 

42.    Note that the return direction from node 21 to node 27 includes a different return 

route from node 42 to node 16, thereby forming a larger uni-directional loop.  Thus, 

several loop structures occurred in this specific bi-directional solution.  This also 

demonstrates that an out and back loop can be attached to a uni-directional section. Note 

that the formulation requires that each directional path share at least   segments.  Since 

the loop from node 43 to node 55 and back to node 43 is formed as a section of only one 

of the directed paths, it is not counted as a shared arc in both path directions. Its existence 

in the solution demonstrates that the “loop agnostic” nature can be an advantageous 

element in the bi-directional problem as well.    

Figure 6.9 presents an interesting case that highlights the use of a single uni-

directional loop as an optimal solution strategy, particularly when higher importance is 

given to combined shorter path distance.  This solution was generated using an   

minimum shared arc value of 9, a maximum service distance of 10, and coverage and 

distance weights that are equal to 0.3 and 0.7 respectively.  The objective value, solution 

time, and path length are listed in Table 6.1 for this solution.  What is unique in the 

solution, however, is that a single uni-directional loop is formed utilizing the outbound 

path to form one half of the loop and the in-bound path to form the other portion.  In this 
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case, the outbound path traverses from node 3 to node 8 to node 2 and the inbound path 

traverses from node 2 to node 7 to node 3.  This results in the formation of a clockwise 

uni-directional loop.  It should be noted that an alternate optimal solution could be the 

formation of a counterclockwise loop if the inbound and outbound path segments were 

reversed in terms of direction.  That is, an alternate optimal solution could comprise an 

outbound path traversing from node 3 to node 7, and from node 7 to node 2 and an 

inbound path that traverses from node 2 to node 8, and from node 8 to node 3.  The key 

point is that an optimal solution to this problem utilizes a uni-directional loop, which is 

one of the key contributions of this dissertation. 

As was mentioned above, we were unable to generate an extensive set of optimal 

solutions due to the computational complexity of the MSA-BD-MCSP model. One of the 

solutions that was generated and not listed in Table 6.1 involved a maximum service 

distance of 7.5, an   value of 11, a distance weight of 0.15 and a coverage weight of 

0.85.  The reason for showing this solution is that it contains several looped structures 

that were discussed at the beginning of this chapter and which can be found on real world 

transit systems.  In particular, there is a uni-directional loop formed by each half of the 

MSA-BD-MCSP path.  In this case, the loop is formed from node p (equal to node 27) 

through the graph to node 1 on the outbound path and from node 1 through the graph 

back to node p on the inbound path.  This particular version of the uni-directional loop 

travels in a clockwise direction, although as noted above the respective outbound and 

inbound path segments could be swapped in direction to form an alternate optimal 

solution that utilizes a counterclockwise uni-directional loop.   This solution also utilizes 

a bi-directional loop comprised of nodes 1, 5, 11, and 13.   In this case, the loop is 
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traversed in one direction by the inbound and in the other direction by the outbound 

paths, which results in a bi-directional loop.  It is important to note that a common path 

also exists between nodes 1 and 21.  Thus, Figure 6.10 illustrates nicely the fact that 

loops can be used as an optimal covering strategy in several different ways which 

matches what we find in cities in the real world such as Bozeman, MT; Eau Claire, WI; 

San Luis Obispo, CA; etc.  What is important to note is that loops can clearly be an 

optimal feature, and these features mimic route design that is found in real world city 

networks. 

As was noted in the discussion of computational issues above, the MSA-BD-

MCSP formulation is a computationally hard problem that is made more complex 

through the use of the knapsack like requirement that at least a certain number of arcs 

must be shared.  Although we were able to solve this formulation to optimality for certain 

parameters with respect to the coverage weight, distance weight, and   value, some 

solutions took a great deal of time and as one increased the value of   from  moderate 

values, the problem became essentially unsolvable within a realistic amount of time.  As 

such, we developed the second formulation for the problem, the weighted return bi-

directional maximal covering shortest path (WR-BD-MCSP).  Since this formulation 

does not utilize knapsack like constraints, but instead utilizes an objective weight that 

allows for an additional coverage benefit to encourage a node to be visited a second time, 

the computational complexity is not as onerous as the MSA-BD-MCSP formulation.  

Table 6.2 presents solutions to the WR-BD-MCSP for the following parameters.  We 

defined the weighted return objective weight   in (6.15) to be equal to 0.1, 0.25, and 0.5 

as these values seem to intuitively reflect the fact that if a node is visited by the opposite 
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direction as well,  then service to that node is more direct and travel times to and from 

that node is improved.  That is, when a node is visited by both directions, service to that 

node is better than if it is only visited with either the outbound or inbound directed path.  

We also set these values to be on the conservative side; that is, the return benefit 

importance weight is never more than half of what it would be for the first visit.   

Although we calculated solutions for three different return importance weight values, one 

would want to solve the problem for a range of return weights based upon known patterns 

of transit usage and demand as this may generate results that better match regional 

preferences.  Since our network is a ‘proof-of-concept’ design, the use of a conservative 

value seems to be a reasonable approach, given that we wish to show that we can 

replicate real world routing patterns while solving the mathematical model to optimality.  

Table 6.2 below shows results for a set of solutions to the WR-BD-MCSP problem 

formulation. 

Table 6.2 - Solution Results for the WR-BD-MCSP with p = 27 and q = 21 

Cover 

Weight 

Distance 

Weight 

Return 

Weight 

Service 

Distance 

WR 

Benefit
19

 

Total 

Covered 

Total 

Length 

Objective 

Value
20

 

Time 

(Sec) 

0.01 0.99 0.10 10 24.50 545 108.00 -76.970 0.12 

0.10 0.90 0.10 10 24.50 545 108.00 -18.200 0.57 

0.20 0.80 0.10 10 24.50 545 108.00 47.100 2.19 

0.30 0.70 0.10 10 32.60 592 135.39 115.427 5.87 

0.40 0.60 0.10 10 32.60 592 135.39 188.166 28.60 

0.50 0.50 0.10 10 30.50 620 153.27 263.865 195.13 

0.60 0.40 0.10 10 39.10 622 174.21 342.616 6430.26 

0.70 0.30 0.10 10 40.00 635 197.39 425.283 1550.06 

0.80 0.20 0.10 10 41.10 635 202.30 508.640 31755.90 

0.90 0.10 0.10 10 47.60 640 269.18 596.682 13910.40 

0.99 0.01 0.10 10 64.00 640 632.14 691.279 27.17 

0.01 0.99 0.25 10 93.00 553 130.14 -30.309 6.93 

0.10 0.90 0.25 10 100.50 555 137.88 31.908 8.13 

                                                 
19

 This is the benefit provided based upon a node being visited by both the inbound and outbound paths 
20

 Note that the objective minimizes total bi-directional path distance and maximizes what is covered 

as well as the weighted return. 



 

218 

 

Cover 

Weight 

Distance 

Weight 

Return 

Weight 

Service 

Distance 

WR 

Benefit
19

 

Total 

Covered 

Total 

Length 

Objective 

Value
20

 

Time 

(Sec) 

0.20 0.80 0.25 10 100.50 555 137.88 101.196 15.50 

0.30 0.70 0.25 10 100.50 555 137.88 170.484 1168.41 

0.40 0.60 0.25 10 112.25 606 178.89 247.316 71.04 

0.50 0.50 0.25 10 112.25 622 194.28 326.110 130.53 

0.60 0.40 0.25 10 114.75 622 200.53 407.738 511.87 

0.70 0.30 0.25 10 117.00 635 235.47 490.859 11934.10 

0.80 0.20 0.25 10 123.50 635 259.88 579.524 49.70 

0.90 0.10 0.25 10 151.75 640 485.05 679.245 57.12 

0.99 0.01 0.25 10 137.50 640 802.32 763.077 383.83 

0.01 0.99 0.50 10 201.00 555 137.88 70.049 10.08 

0.10 0.90 0.50 10 201.00 555 137.88 132.408 21.31 

0.20 0.80 0.50 10 224.50 594 172.64 205.188 19.88 

0.30 0.70 0.50 10 224.50 594 172.64 281.852 20.07 

0.40 0.60 0.50 10 229.50 606 185.14 360.816 28.55 

0.50 0.50 0.50 10 238.00 622 215.92 441.040 480.42 

0.60 0.40 0.50 10 247.00 625 238.80 526.480 101.71 

0.70 0.30 0.50 10 265.00 629 296.29 616.413 1213.16 

0.80 0.20 0.50 10 302.00 635 450.41 719.918 20.98 

0.90 0.10 0.50 10 312.50 640 564.89 832.011 73.60 

0.99 0.01 0.50 10 295.00 640 785.40 920.746 161.24 

 

The shaded rows of the table indicate the presence of a uni-directional and/or bi-

directional loop in the optimal solution.  The table includes a column indicating the 

importance weight for coverage, the importance weight for distance, the importance 

weight associated with   (shown in equation 6.16), and the maximum desired access 

distance.  We also highlight the population that is covered by the bi-directional paths as 

well as the total length of the overall route (i.e. the total distance of both the inbound and 

outbound paths), and the weighted return benefit for both paths.  Also given are the 

composite objective values for each solution as well as the solution time that was taken to 

solve the problem.  To generate this set of results, cover weights were incremented by 

units of 0.1 with weights ranging from 0.1 to .90 for coverage and path emphasis.  In 

order to exclude potentially inferior solutions (i.e. multiplying an objective by a zero 
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weight) weights of zero and one were approximated by the values of 0.01 and 0.99 

respectively.  As mentioned above, we utilized three unique   values (0.10, 0.25, and 

0.50) to vary the importance weight for returning to a previously visited node.  This 

meant that a total of 33 problems were solved and detailed in Table 6.2.   All results 

given in the table were generated for a maximum service access distance of 10, and all 

computational tests were performed on the same system utilized to generate the results 

found in Table 6.1.  

Figure 6.11 highlights the solution associated with a cover weight of 0.6, a 

distance weight of 0.4 and a return weight of 0.1.  Note the use of a large uni-directional 

loop between nodes 16 and 3 of the outbound path and nodes 3 and 16 on the inbound 

path as well as a shared bi-directional loop between nodes 1, 13, 11, and 5.  Figure 6.12 

highlights a solution to the WR-BD-MCSP utilizing a cover importance weight of 0.4, a 

distance importance weight of 0.6 and a return weight of 0.25.  In this case, a uni-

directional loop is formed between nodes 31, 29, and 18 and a bi-directional loop is 

formed between nodes 1, 13, 11, and 5.  A closer view of the results in Table 6.2 reveals 

that bi-directional path solutions exist which have a slightly longer total distance and the 

same coverage, but where an additional visit is provided.  This is captured in the 

weighted return benefit value which is also given in Table 6.2.  An example of such a 

case where total coverage remains the same but an additional return benefit is used in one 

solution versus another is reflected in the solutions where   is equal to 0.25 and where 

the coverage importance weights are 0.5 and 0.6 in Table 6.2.  The total population 

covered for each solution is the same although in one solution a slightly longer path is 

utilized as this yields a greater return weight value.  The reason such a solution occurs is 
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that the value of return coverage is high enough to change alignments and encourage 

visiting high values nodes a second time.  These two bi-directional path solutions are 

shown in Figures 6.13 and 6.14. Figure 6.13 depicts the optimal solution to the WR-BD-

MCSP problem where node p = 27 and node q = 21.  In this case, the emphasis weight on 

coverage is 0.5, and the importance weight on path length is 0.5; note that a uni-

directional loop between nodes 31, 18, 36, 15, 7, and 31 as well as a bi-directional loop 

between nodes 1, 13, 11, 5 and 1 is used.  Figure 6.14 highlights the optimal solution to 

the WR-BD-MCSP problem where the importance weight on coverage is 0.6, and the 

importance weight on path length is 0.4.  Note that both of these solutions cover the exact 

same population; the difference is that this solution employs a similar uni-directional loop 

between nodes 31, 18, 36, 15,  7, and 31 as well as an additional uni-directional loop 

between nodes 31, 18, 29, and 31.  Both solutions also utilize a bi-directional loop 

between nodes 1, 13, 11, 5, and 1.  The distinguishing feature between these two 

solutions is that an additional node (18) has been revisited.  Thus, we can see that the 

return weight,  , plays an important role with respect to encouraging the outbound and 

inbound paths to coincide while eliminating the restriction that   minimum arcs must be 

shared as in the MSA-BD-MCSP model. 

One of the interesting results of the model was that we anticipated generating a 

number of ‘figure 8’ type routes due to the nature of the formulation.  That is, we 

expected that each path would ‘zig-zag’ across one another as such a possibility is not 

expressively prevented in the formulation.  However, in our experience this tended not to 

be the case with one exception: when a very low importance weight is placed on 

combined overall length.  One of the reasons for this seems to be the fact that we utilized 
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conservative values for  . This seems to be corroborated by the fact that low   values 

reduced such behavior while as   values were increased ‘zig-zag’ pathways began to 

occur at distance importance weights around 0.1 as opposed to importance weights of 

0.01.  Figures 6.15, 6.16, and 6.17 all show ‘zig-zag’ solutions which occurred at a 

distance importance weight of 0.01 and the three   values of 0.10, 0.25, and 0.50 

respectively.  This clearly shows that a range of return importance weights should be 

used as well as a thorough range of coverage and distance importance weights.  However, 

the important thing to note is that for the vast majority of solutions, the inbound and 

outbound paths shared a large number of arcs, which is precisely what the formulation 

encourages.  Further, this mirrors what we would expect to find on real world routes.  

The other advantage the WR-BD-MCSP model has with respect to the MSA-BD-MCSP 

formulation is that there are no knapsack type constraints that must be used.  This means 

that, in general, the WR-BD-MCSP needed less time to converge to optimality for most 

problems.  The other significant advantage is that there were no cases of the WR-BD-

MCSP model which did not converge to an optimal solution, unlike in the MSA-BD-

MCSP.  Although the MSA-BD-MCSP allow one to actively control the minimum 

number of arcs that must be shared and can be used to find un-supported non-dominating 

solutions, such solutions are likely to be ignored when compared to the supporting non-

dominating solutions.   Thus, solutions to the WR-BD-MCSP seem very promising as 

this would allow a planner to derive optimal routes, and compare those to what are 

currently in existence or proposed.  

The key question of course is whether one could interpret such models to be an 

inefficient routing strategy or whether looped routes provide good service.  However, as 
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was noted at the beginning of this chapter, it is clear that a route that adheres as closely as 

possible to the shortest path will result in much shorter transit travel times with respect to 

the origin and destination and the intermediate points served by the route.  However, it is 

important to highlight the fact that we can define solutions on the tradeoff curve between 

route efficiency and coverage, while encouraging the sharing of a common corridor of 

arcs. That is, these two models are capable of minimizing overall path length by 

diverging in one or both directions while enabling service to areas that may not otherwise 

be covered.  As we have shown, such routes are clearly utilized by transit agencies as 

looped structures are not uncommon among transit lines.  For example, if one consults 

the Bozeman, MT transit map (Figure 6.3), the Eau Claire, WI transit map (Figure 6.4), 

or  virtually all other transit route maps (especially medium sized cities), one can see that 

routes often diverge directionally.   In Santa Barbara, for example, line 14 has a good 

portion of the route served in both directions, but also has a sizable uni-directional loop.   

The key point, of course, is that many real-world systems are likely to utilize both bi-

directional and/or uni-directional loop structures.  One possible advantage that we have 

not looked into (which is an exciting opportunity for future work) is that such loop 

structures could provide  a means to increase the number of busses that pass through a 

geographic region, particularly in areas that have high demand through a central corridor.  

This could be important as it would effectively increase the number of times the corridor 

is served and thus reduce wait times and increase the efficiency with respect to time that 

it would take to go from one point to another along a main corridor or in a central area.  

The Eau Claire system map in Figure 6.4 readily shows the use of loop structures and 

corridors and we expect demand along these corridors to be high.  Ultimately, the BD-
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MCSP formulations are able to form routes that replicate behavior found in real world 

networks and are able to capture travel in both directions when solving for an optimal 

covering path.   These new models, the MSA-BD-MCSP and the WR-BD-MCSP, now 

provide an underlying analytical framework that can truly capture a more realistic 

approach to optimize route design. 

6.5 Concluding Remarks and Future Work 
 

We have seen that previous modeling work has not truly addressed the flexibility 

that transit planners take in designing transit routes.  We have also seen that previous 

models treat travel direction in a transit planning context somewhat as an afterthought.  

That is models typically determine a covering path alignment in a single direction.  These 

routes are then often applied to transit design with the assumption that travel can simply 

be reversed along the path and ‘tweaked’ as needed with respect to alignments such as 

one-way streets, etc.  All models, whether based on Current et. al. (1985), or upon a 

Vajda (1961) framework such as Curtin and Biba (2011) have been formulated with the 

implicit assumption that coverage must is provided for each direction of travel, even 

when this is not the case in actual systems.   Even the model formulation of Boffey and 

Narula (1998), which is a multi-path covering problem, does not truly consider the aspect 

that a covering path in transit planning should be defined in terms of each direction.    

This chapter proposed two bi-directional maximal covering shortest path 

formulations in an effort to capture the inherent tradeoff between coverage and overall 

path distance while relaxing the assumption that the inbound path is merely the reverse of 

the outbound path.   The first model that was introduced, the Minimum Shared Arc Bi-

Directional Maximal Covering Shortest Path formulation (MSA-BD-MCSP) specified the 
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minimum number of arcs that should be common to both paths with respect to bi-

directional travel.  This formulation expanded on the work of Chapter 3 and allowed bi-

directional and uni-directional loops to be used if they improved the overall objective.  

The model is able to account for travel in an ‘inbound’ and an ‘outbound’ direction, be 

loop agnostic through the use of EAST constraints, and allow each path direction to 

diverge from each other, creating uni-directional loops.  In particular, the formulation 

allows for the formation of both uni-directional and bi-directional loops.  We also 

described one of the drawbacks of this formulation, which is the use of knapsack like 

constraints requiring a minimum number of arcs to be shared.  This prompted the 

formulation of the Weighted Return, Bi-Directional Maximal Covering Shortest Path 

formulation (WR-BD-MCSP). 

The WR-BD-MCSP formulation eliminates the knapsack requirements for sharing 

arcs and instead allows for a benefit to be awarded if a node initially visited by the 

outbound path is visited again by the inbound path and vice-versa.  We showed that 

optimal results to this formulation included the use of shared arcs and mimicked routes 

seen in real world systems such as Bozeman, MT (Figure 6.3) and Eau Claire, WI (Figure 

6.4).  We also demonstrated that the return weight can be adjusted and that this value can 

be solved over several values which result in varying degrees of bi-directional service 

(service provided on both outbound and inbound paths).  We also noted the correlation 

between the use of ‘zig-zag’ figure eight routes with higher return weights and very low 

distance importance weights.  Overall, however, we show that both formulations, the 

MSA-BD-MCSP as well as the WR-BD-MCSP are able to determine optimal solutions 

which reflect real world conditions as well as account for travel in both directions and use 



 

225 

 

uni-directional and bi-directional loop features.  We also showed that the WR-BD-MCSP 

appears to be an easier problem to solve, and optimal results can be determined via 

commercial off the shelf solvers. 

Future work should focus on several areas.  One of the areas that makes sense to 

explore is to solve these formulations on a real-world network using known transit data.  

This would allow us to extend our proof-of-concept work into a true spatial analysis 

modeling tool.  An additional area for future work would explore models which route 

many bi-directional paths simultaneously.  Other avenues of potential work include the 

use of a weighted benefit associated with traversing an arc in the opposite direction as 

opposed to visiting a node in each direction such as was done in the WR-BD-MCSP.   

Such a format may prove useful, particularly as this may allow one to consider both arc 

and node service values as was used for the TRANSMax II formulation proposed in 

Chapter 5 of this dissertation.  However, although these avenues offer exciting avenues 

for potential work, the greatest contribution of this chapter lies in the fact that a new 

methodology for modeling transit routes has been offered.  We are now able to model 

covering paths which travel in opposing directions, allow for the use of uni-directional 

and bi-directional loops if they improve the objective, and more importantly capture the 

use of shared arcs and more complex loop features through two new modeling 

frameworks. 
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Figure 6.1 - Route 2 in San Luis Obispo, CA which highlights the use of several 'loop' features such as the 

lollipop, barbell, and figure eight. 

 

 
 

Figure 6.2 - Generalized Patterns of Common Tours Formed on Transit Routes 

 

A. The Barbell 

Tour 

B. The Lollipop 

Tour 

C. The Figure 8 

Tour 
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Figure 6.3 - The system route map for the city of Bozeman, MT.  Note the use of several loops throughout the 

system.  Permission to publish this route map has been generously given by the City of Bozeman and is 

accessible at their website http://streamlinebus.com/routes-schedules/route-maps/weekday-service/ 

http://streamlinebus.com/routes-schedules/route-maps/weekday-service/
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Figure 6.4 - The system route map for the city of Eau Claire, WI.  Note the use of many different kinds of loops 

throughout the system.  Permission to publish this route map has been generously given by the City of Eau 

Claire and is accessible at their website http://www.eauclairewi.gov/departments/transit/maps-schedules 

 

 

 

http://www.eauclairewi.gov/departments/transit/maps-schedules
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Figure 6.5 - Example of two routes, one out and back using the same alignment (Route A) and the other a loop 

(Route B). On a grid of 5 by 3 blocks, route A serves 6 intersections (and 6 street segments) and travels 10 

blocks. Route B travels 16 blocks and serves 16 intersections (and 16 street segments). Route A serves .6 unique 

intersections per block traveled and route B serves 1 unique intersection of every block traveled.   

 

 
Figure 6.6 - Two routes, each with one loop. The route on the left traverses the loop in only one direction, 

whereas the route on the right traverses the loop in both directions. 
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Figure 6.7 - An example of a direction oriented loop utilizing nodes qlijkq  formed by a forward path 

traveling from node p to node i to node j to node k to node q and a reverse path from node q to node l to node i 

to node p. 

 
Figure 6.8 - The optimal MSA-BD-MCSP solution for p = 27 and node q = 21,   = 9, a maximum service 

distance = 10, a distance weight = 0.3 and a coverage weight = 0.7.  Note the formation of several distinct loop 

structures. 
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Figure 6.9 - the optimal MSA-BD-MCSP solution for p = 27 and node q = 21,   = 9, a maximum service 

distance = 10, a distance weight = 0.7 and a coverage weight = 0.3.  Note the use of a direction oriented loop in 

the middle of the route. 

 
Figure 6.10 - An optimal solution to the MSA-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 7.5 is used,   = 11, the emphasis weight on coverage = 0.85, and the 

emphasis on path length = 0.15.  Note the use of a very large uni-directional loop between nodes 1 and 27 of the 

inbound and outbound paths as well as a bi-directional loop between nodes 1, 13, 11, and 5. 
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Figure 6.11 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.6, and the emphasis on path 

length = 0.4.  Note the use of a large uni-directional loop between nodes 16 and 3 of the outbound path and nodes 

3 and 16 on the inbound path as well as a shared bi-directional loop between nodes 1, 13, 11, and 5.  

 
Figure 6.12 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.4, and the emphasis on path 

length = 0.6.  Note the use of a large uni-directional loop between nodes 31, 29, and 18 as well as a shared bi-

directional loop between nodes 1, 13, 11, and 5. 
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Figure 6.13 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.5, and the emphasis on path 

length = 0.5.  Note the use of a uni-directional loop between nodes 31, 18, 36, 15, and 7 as well as a bi-directional 

loop between nodes 1, 13, 11, and 5. 

 

 
Figure 6.14 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.6, and the emphasis on path 

length = 0.4.  Note the use of a uni-directional loop between nodes 31, 18, 36, 15, and 7 an additional uni-

directional loop between nodes 31, 18, and 29 as well as a bi-directional loop between nodes 1, 13, 11, and 5. Also 

note that coverage has not changed with respect to Figure 6.13; the difference is that an additional node (18) has 

been revisited. 
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Figure 6.15 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.99, the emphasis on path 

length = 0.01, and the return importance weight = 0.10.  Note the ‘zig-zag’ crossing of the inbound and outbound 

paths. 

 

 
Figure 6.16 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.99, the emphasis on path 

length = 0.01, and the return importance weight = 0.25.  Note the ‘zig-zag’ crossing of the inbound and outbound 

paths. 
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Figure 6.17 – An optimal solution to the WR-BD-MCSP problem where node p = 27 and node q = 21.  In this 

case a maximum service distance of 10 is used, the emphasis weight on coverage = 0.99, the emphasis on path 

length = 0.01, and the return importance weight = 0.50.  Note the ‘zig-zag’ crossing of the inbound and outbound 

paths.
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Chapter 7 

7.1 Concluding Remarks 

 

This dissertation has reviewed, expanded, and developed several new models that 

address several critical research questions that were raised in Chapter 1.  This chapter 

briefly reviews these research questions, the approaches taken to address them, and 

suggestions related to future research directions. The basis of this dissertation work stems 

from the fact that if one examines at system route maps for many bus transit systems in 

U.S. cities, an interesting pattern emerges.  Routes often utilize embedded loops to 

increase accessibility coverage of a system at the expense of adding a marginal amount of 

length to the overall path.   Further, such routes frequently share a common corridor with 

respect to traveling in opposing directions, but they may depart from each other in terms 

of direction. These departures in direction represent embedded loops that are traversed in 

only one direction.  However, the literature has not explored this issue, and in fact, often 

discourages or outright prevents any loops from occurring.  Furthermore, the literature 

has not accounted for travel in opposing directions, even when attempting to model 

transit lines.  This is due in part to the roots of the covering path literature. 

Chapter one notes that the MCSP problem can be formulated in a variety of ways.  

Virtually all covering path models utilize some form of a sub-tour elimination process 

that is borrowed from the Traveling Salesman Problem (TSP) literature.  Due to the 

nature of the maximal covering shortest path problem, it is likely that a sub-tour (a cycle 

that is not connected to the covering path itself) will form unless constraints are added to 

the formulation or the formulation itself is structured in such a way so as to prevent sub-
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tour formation.  This is similar to the problem of sub-tours being encountered when 

solving the TSP problem. Accordingly, past model formulations for the MCSP have been 

based on model constructs found in the TSP literature that prevent the existence of sub-

tours and cycles.    

The seminal Shortest Covering Path (SCP) and Maximal Covering Shortest Path 

(MCSP) formulations of Current et. al. (1984, 1985) are built on the TSP framework 

developed by Dantzig, Fulkerson, and Johnson (1956).  Other frameworks such as Vajda 

(1961), Gavish and Graves (1978), and Miller, Tucker, and Zemlin (1960) have also been 

used.   However, all of these formulations restrict the use of a ‘loop’ from being used in a 

solution due to the fact that they prevent sub-tours and cycles from occurring.  In a 

traveling salesman context this makes sense as one wishes to visit all nodes of a complete 

network exactly once.  Nevertheless, as Niblett and Church (2016) demonstrated, an 

embedded loop could actually be present in an optimal covering path solution and thus 

the a priori exclusion of such loops could actually result in a sub-optimal solution in a 

maximal covering shortest path context.  This dissertation presented a new, innovative 

‘loop agnostic’ approach to the classic Current et. al. (1985) form in Chapter 3 and the 

alternate form of TRANSMax in Chapter 5.  The issue of how loops are utilized with 

respect to directionality is also an interesting research question that is answered by this 

dissertation. 

Although several loop agnostic models are developed in this dissertation to better 

represent the maximal covering shortest path problem, these models only capture one 

aspect of loop use.  In a single path MCSP (i.e. a New, Revised MCSP formulated in 

Chapter 3 of this dissertation), a loop can be present as part of the path, as an out-and-
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back path or a more complex loop which visits several other nodes before returning to a 

previously visited node, or as a ‘lollipop’ shaped route attached to the origin node or the 

destination node.  If one assumes that the covering path can be traversed both in the 

outbound and inbound directions (which past work has done), any loops that are present 

will be utilized in both directions and is what we refer to as a bi-directional loop.  When 

addressing the question of bi-directionality it is possible that a loop is traversed in only 

one direction.   Such “uni-directional” loops are formed whenever inbound/outbound 

paths diverge and can be observed in many transit system maps, like those of Bozeman, 

MT; Eau Claire, WI; and San Luis Obispo, CA that were presented in this dissertation. 

This dissertation proposed a new route design problem called the bi-directional maximal 

covering shortest path problem as well as proposed two formulations for this new 

problem to address this real-world planning problem. 

Chapter 2 of this dissertation provided an in-depth analysis of the existing 

covering path literature.  The covering path/routing formulations that are the genesis of 

covering path problems are closely examined.  This includes the major work from the 

TSP literature such as the models developed by Dantzig, Fulkerson, and Johnson (1956) 

as well as several other TSP frameworks such as those devised by Vajda (1961).  We also 

present the shortest path problem and how it relates to the maximal covering shortest path 

problem.  A review of the seminal works with respect to spatial covering models such as 

the Location Set Covering Problem (Toregas, et. al., 1971, 1972) and the Maximal 

Covering Location Problem (Church and ReVelle, 1974) are included in this chapter as 

well.  In addition to the underlying literature this chapter also details models that have 

extended the MCSP formulation.  This includes work dealing with issues such as 
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strategic route extension for transit lines (Wan and Lo, 2003; Wu and Murray, 2003; 

Matisziw, et. al. 2006), alternative covering path models such as TRANSMax (Curtin and 

Biba, 2011), and the multi-path model formulation of Boffey and Narula (1998).  This 

chapter also introduced several algorithms and heuristics that have been used to solve 

path problems. 

Chapter 3 of this dissertation expanded the work of Niblett and Church (2016) 

and introduced a new, revised form of the MCSP and Maximum Population Shortest Path 

(MPSP) problems.  This chapter introduces a ‘loop agnostic’ model that allows for a loop 

to form as part of the covering path if it improves the value of the objective.  A 

comparison of solutions between the revised models and the original MCSP was 

performed and the results were compared with respect to objective values, the use of 

loops, and solution times.  This chapter also showed that the original MPSP model 

formulation introduced by Current et. al. (1985) contained explicit constraints as well as 

the Dantzig, Fulkerson, and Johnson TSP constraints that prevent embedded loops from 

occurring by preventing any node to be visited more than once.  Thus, the original 

formulation prevents the use of loops a priori and precludes the determination of a truly 

optimal solution in certain cases.  Chapter 3 also highlights the solution process that is 

used to add the necessary Eliminate or Attach Sub-Tour (EAST) constraints that are 

required to ensure a continuous, connected, covering path as well as prevent any 

disconnected sub-tours.  These constraints allow for the embedded loops to occur within 

the covering path.  Thus, this model neither encourages nor discourages loops to occur 

with a path.  Because of this property, we called this model a ‘loop agnostic’ model as 

loops are used only when they yield an improvement in the objective. 
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Chapter 4 of this dissertation presented a heuristic that can be used in instances 

where computational complexity precludes one from solving an MCSP to optimality.  

This chapter articulated a new swapping heuristic that allows for the determination of 

good solutions which allow loops to form within the path when the presence of loops 

improves a composite objective value of distance and coverage. In particular, the 

heuristic process begins with the determination of the shortest path through a network. 

This is then set as the current best path. The heuristic then identifies the best swap that 

can be made by swapping a portion of the path with the insertion of a path segment that 

detours to another node not on the path or the insertion of an out and back path which 

visits a node not on the path being modified.  What makes this unique is that the 

candidate path segment being inserted (or swapped) into the current solution can be 

comprised of a number of different structures including an out and back loop as well as 

an alternate route between two nodes on the current path. After the best 

insertion/substitution is made, it is repeated again until no improvement is found or until 

the heuristic has reached the maximum number of swap/insertion iterations.  We applied 

this heuristic to the 55 node Swain network as well as to the Richardson, TX dataset.  The 

heuristic was able to find optimal, or near-optimal, solutions for a majority of the 

problems that were tested.  This is in part due to the fact that the heuristic search does not 

preclude the use of an embedded loop in the path/route.   The heuristic also runs within a 

reasonable amount of computational time yielding excellent solutions in a few minutes of 

computer time. 

In Chapter 5, a new alternate formulation of the TRANSMax model was 

presented. TRANSMax was developed by Curtin and Biba (2011) and represents a 
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variant of the Maximal Covering Shortest Path Problem. What is unique about the 

original TRANSMax is that it uses a different approach than that of Current et al. (1984, 

1985) to eliminate sub-tours in a solution. Curtin and Biba based their model formulation 

on a structure proposed by Vajda (1961) to prevent sub-tours in a travelling salesman 

problem.  One of the key issues with Curtin and Biba’s formulation is that they require a 

path to be less than a maximum total path length and the path must utilize an exact 

number of arc segments.  Utilizing a framework meant to solve traveling salesman 

problems, means that the original TRANSMax formulation prevents any embedded loops 

from occurring in a solution even if such a structure results in an improved objective 

value.  This restriction was relaxed by developing a new form of Vajda’s constraints, 

which resulted in an alternate formulation, TRANSMax II, that allows for the use of 

loops in a solution. The constraint that requires an exact number of arcs to be used was 

also relaxed.  Instead, the TRANSMax II formulation is defined such that any number of 

arcs up to a maximum number of arcs can be used in the path.  This chapter then 

highlights several cases where the TRANSMax II formulation determines a better 

objective than the original TRANSMax model.  This chapter also provides a comparison 

between both the TRANSMax and TRANSMax II models.  Computational experience 

and results are provided which demonstrates that the TRANSMax II model is able to 

outperform the original TRANSMax model while also being ‘loop agnostic’ in that loops 

can be utilized if they result in an improvement in the objective. 

Chapter 6 showcased a new problem, the Bi-Directional Maximal Covering 

Shortest Path problem.  The previous chapters of this dissertation were primarily 

concerned with detailing work centered around the research problem of making covering 
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path models loop agnostic.   We show that loops have often been assumed to be 

inefficient structures which should never be utilized in a covering path context.  Not only 

was this assumption shown to be incorrect, but this dissertation formulated several 

alternative models which are loop agnostic.  That is, the new formulations allow a loop to 

be used, but only if it results in an improved objective. Computational results revealed 

that optimal solutions often utilized one or mode embedded loops, and clearly 

demonstrated that this long held assumption was false for realistic problems. Chapter 6 

addresses an additional research question which centers on the fact that transit systems 

often use pathways/routes that differ spatially to some extent depending upon the 

direction of travel. Past covering path modeling work has been based upon the 

assumption that the path represents the route in both directions. When network topology 

prevents this (i.e. one way streets), then it is assumed that the solution can be tweaked a 

bit in the opposite or return direction when needed.   This chapter presented examples of 

real world transit systems that utilize several kinds of loop structures such as a figure 

eight, lollipop, and barbell, where some of the route segments are traversed in only one 

direction creating embedded loops (called uni-directed loops).  Uni-directional loops are 

traversed in either a clockwise or counterclockwise manner.  In addition, loops are used 

which are bi-directional and are traversed in both a clockwise and counterclockwise 

manner.   

Chapter 6 presented a new form of the MCSP where travel was optimized in both 

the inbound and outbound directions (called the Bi-Directional Maximal Covering 

Shortest Path problem or BD-MCSP).  Two new models were formulated which allow 

loops to form if they improve the objective where loops may be either uni-directional or 
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bi-directional.  The first model formulation for the BD-MCSP problem was called the 

Minimum Shared Arcs BD-MCSP.  This formulation requires that at least a certain 

number of arcs must be used in common between the outbound path traveling from the 

origin to the destination and the inbound path traveling from the destination to the origin.  

We presented several optimal solutions to this problem which utilize both uni-directional 

and bi-directional loops. This demonstrates the flexibility afforded by accounting for bi-

directional travel through the use of ‘outbound’ and ‘inbound’ paths.  The chapter also 

suggests potential areas of future work such as multi-route bi-directional MCSP problems 

as well as the use of known transit data on real world networks. 

Altogether, this dissertation has addressed several fundamental research issues. 

We have noted that the research literature has assumed that loops will not be used and 

that formulations should include either explicit tour-breaking constraints (Dantzig, et. al., 

1954; Current et. al., 1984, 1985) or that existing formulations implicitly prevent the 

formation of any kind of loop/tour (Vajda, 1961; Curtin and Biba, 2011).  Three new 

problem have been formulated – the NR-MCSP problem, the TRANSMax II problem, 

and the BD-MCSP problem. All new formulations are loop agnostic and allow for the 

possibility of a loop only if an improvement in the objective value can be made.  Results 

in solving the NR-MCSP and TRANSMax II models both demonstrate that loops can be 

part of an optimal covering path solution for the classic maximal covering shortest path 

problem.  This dissertation has also addressed the assumption that a solution to an MCSP 

can simply be reversed for the return direction and ‘tweaked’ as needed to fit the 

underlying network topology.  Multi-path models such as Boffey and Narula (1998), 

transit routing models such as Wu and Murray (2003), and route extension models such 
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as Matisziw, et. al. (2006) are all based upon the implicit assumption that a solution can 

simply be reversed along a solution corridor.  Even alternative MCSP formulations such 

as that developed by Curtin and Biba (2011) are based upon the assumption that the 

optimal covering path solution can simply be reversed and is essentially the same in both 

directions.  We show this assumption to be problematic as it doesn’t fully address the 

design elements of covering paths in use by transit agencies. Because of this 

shortcoming, a new problem is introduced called the Bi-Directional Maximal Covering 

Shortest Path (BD-MCSP) problem which optimizes travel in both directions for a route 

while still maintaining a loop agnostic model form. 

We developed two alternate formulations of the BD-MCSP problem.  The first 

formulation allows one to specify the minimum number of shared arcs (MSA) that should 

be used in common to both the outbound and inbound covering paths.  We designated 

this formulation as the MSA-BD-MCSP.  This formulation allows one to find un-

supported non-dominating solutions although with a high computational cost due to the 

use of budget/knapsack constraints.  This dissertation also included an alternative form of 

the BD-MCSP in which the minimum shared arc constraint is removed.  In this version, 

called the weighted return BD-MCSP (WR-BD-MCSP) problem, we include an objective 

weight that allows one to specify a benefit that can be gained based upon a node being 

visited by both the outbound and inbound covering paths.  This formulation of the BD-

MCSP problem is computationally less complex than the MSA-BD-MCSP and allows 

one to find a set of supported non-dominating solutions within a reasonable amount of 

computer time.  Both formulations show that loops are used in both a uni-directional and 

bi-directional manner.  This means that both formulations are able to capture the loop 
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design elements found in virtually all transit systems in mid-sized cities within the United 

States. 

Finally, it should be noted that there exist a number of questions that can be 

addressed in future research. One is the need to develop a heuristic for the bi-directional 

path/route problem. It is also desirable to consider whether other alternate forms of the 

MCSP problem can be developed which are loop agnostic as well. A third area of needed 

research is the need to expand these models to a multi-path or system framework. Finally, 

it would be desirable to extend these models to handle not only coverage but individual 

service times. 
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Appendix I  

Table 1 - Results for solving the NR-MCSP applied on the hypothetical Swain network. The origin is node 27    

and the destination is node 21. 

Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

0 1 0 171 51.92 -51.920 0.012 

0.01 0.99 0 206 52.06 -49.479 0.012 

0.02 0.98 0 206 52.06 -46.899 0.012 

0.03 0.97 0 206 52.06 -44.318 0.013 

0.04 0.96 0 260 54 -41.440 0.014 

0.05 0.95 0 260 54 -38.300 0.016 

0.06 0.94 0 331 58.47 -35.102 0.195 

0.10 0.9 0 331 58.47 -19.523 1.257 

…
 

Same Solution Values …
 

0.11 0.89 0 366 62.47 -15.338 2.027 

0.12 0.88 0 417 68.94 -10.627 2.422 

…
 

Same Solution Values …
 

0.24 0.76 0 417 68.94 47.686 5.063 

0.25 0.75 0 437 75.45 52.663 5.461 

…
 

Same Solution Values …
 

0.28 0.72 0 437 75.45 68.036 5.457 

0.29 0.71 0 464 86.32 73.273 5.267 

0.33 0.67 0 464 86.32 95.286 4.264 

0.34 0.66 0 473 90.83 100.872 3.657 
…

 

Same Solution Values …
 

0.38 0.62 0 473 90.83 123.425 4.410 

0.39 0.61 0 483 97.08 129.151 4.624 

…
 

Same Solution Values …
 

0.42 0.58 0 483 97.08 146.554 7.202 

0.43 0.57 0 504 112.9 152.367 18.256 

0.44 0.56 0 513 119.83 158.615 18.879 

0.45 0.55 0 544 144.34 165.413 10.447 

…
 

Same Solution Values …
 

0.49 0.51 0 544 144.34 192.947 7.746 

0.5 0.5 0 556 156.15 199.925 14.119 

0.51 0.49 0 584 185.08 207.151 32.268 

0.52 0.48 0 584 185.08 214.842 28.135 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

0.53 0.47 0 584 185.08 222.532 37.052 

0.54 0.46 0 596 198.81 230.387 36.186 

0.55 0.45 0 596 198.81 238.336 25.409 

0.56 0.44 0 596 198.81 246.284 24.653 

0.57 0.43 0 599 202.68 254.278 16.336 

0.58 0.42 0 603 208.04 262.363 12.119 

…
 

Same Solution Values …
 

0.61 0.39 0 603 208.04 286.694 10.162 

0.62 0.38 0 610 219.12 294.934 7.903 

…
 

Same Solution Values …
 

0.66 0.34 0 610 219.12 328.099 0.632 

0.67 0.33 0 613 224.96 336.473 0.726 

…
 

Same Solution Values …
 

0.7 0.3 0 613 224.96 361.612 0.151 

0.71 0.29 0 618 236.73 370.128 0.121 

0.72 0.28 0 618 236.73 378.676 0.287 

0.73 0.27 0 618 236.73 387.223 3.694 

0.74 0.26 0 630 269.82 396.047 9.788 

…
 

Same Solution Values …
 

0.79 0.21 0 630 269.82 441.038 9.543 

0.8 0.2 0 637 297.55 450.090 13.271 

0.81 0.19 0 637 297.55 459.436 8.724 

0.82 0.18 0 637 297.55 468.781 8.258 

0.83 0.17 0 640 312.11 478.141 10.997 

…
 

Same Solution Values …
 

0.99 0.01 0 640 312.11 630.479 11.991 

0 1 2.5 210 51.92 -51.920 0.010 

…
 

Same Solution Values …
 

0.03 0.97 2.5 210 51.92 -44.062 0.017 

0.04 0.96 2.5 384 58.33 -40.637 0.034 

…
 

Same Solution Values …
 

0.13 0.87 2.5 384 58.33 -0.827 0.441 

0.14 0.86 2.5 401 61.07 3.620 0.507 

…
 

Same Solution Values …
 

0.2 0.8 2.5 401 61.07 31.344 1.557 

0.21 0.79 2.5 417 65.07 36.165 1.714 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

…
 

Same Solution Values …
 

0.24 0.76 2.5 417 65.07 50.627 3.733 

0.25 0.75 2.5 437 71.58 55.565 3.379 

…
 

Same Solution Values …
 

0.28 0.72 2.5 437 71.58 70.822 3.725 

0.29 0.71 2.5 464 82.45 76.021 4.062 

…
 

Same Solution Values …
 

0.33 0.67 2.5 464 82.45 97.879 2.482 

0.34 0.66 2.5 473 86.96 103.426 2.643 

…
 

Same Solution Values …
 

0.38 0.62 2.5 473 86.96 125.825 3.548 

0.39 0.61 2.5 483 93.21 131.512 3.635 

…
 

Same Solution Values …
 

0.42 0.58 2.5 483 93.21 148.798 5.962 

0.43 0.57 2.5 504 109.03 154.573 10.241 

0.44 0.56 2.5 528 127.62 160.853 15.572 

0.45 0.55 2.5 552 147.02 167.539 15.382 

…
 

Same Solution Values …
 

0.49 0.51 2.5 552 147.02 195.500 9.594 

0.5 0.5 2.5 556 151.02 202.490 15.018 

0.51 0.49 2.5 556 151.02 209.560 23.493 

0.52 0.48 2.5 577 173.52 216.750 45.418 

0.53 0.47 2.5 577 173.52 224.256 67.049 

0.54 0.46 2.5 596 195.4 231.956 56.156 

0.55 0.45 2.5 596 195.4 239.870 38.809 

0.56 0.44 2.5 596 195.4 247.784 27.197 

0.57 0.43 2.5 599 199.27 255.744 19.715 

0.58 0.42 2.5 603 204.63 263.795 16.830 

…
 

Same Solution Values …
 

0.61 0.39 2.5 603 204.63 288.024 11.709 

0.62 0.38 2.5 610 215.71 296.230 6.273 

…
 

Same Solution Values …
 

0.7 0.3 2.5 610 215.71 362.287 0.943 

0.71 0.29 2.5 615 227.48 370.681 1.201 

0.72 0.28 2.5 618 235.13 379.124 1.383 

0.73 0.27 2.5 618 235.13 387.655 13.055 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

0.74 0.26 2.5 630 268.22 396.463 16.288 

…
 

Same Solution Values …
 

0.77 0.23 2.5 630 268.22 423.409 11.829 

0.78 0.22 2.5 637 292.78 432.448 11.840 

…
 

Same Solution Values …
 

0.82 0.18 2.5 637 292.78 469.640 3.342 

0.83 0.17 2.5 640 307.34 478.952 2.914 

…
 

Same Solution Values …
 

0.99 0.01 2.5 640 307.34 630.527 3.089 

0 1 5 387 51.92 -51.920 0.012 

…
 

Same Solution Values …
 

0.06 0.94 5 387 51.92 -25.585 0.024 

0.07 0.93 5 456 56.39 -20.523 0.032 

…
 

Same Solution Values …
 

0.21 0.79 5 456 56.39 51.212 0.306 

0.22 0.78 5 463 58.33 56.363 0.442 

…
 

Same Solution Values …
 

0.28 0.72 5 463 58.33 87.642 6.701 

0.29 0.71 5 507 75.71 93.276 7.669 

…
 

Same Solution Values …
 

0.33 0.67 5 507 75.71 116.584 10.039 

0.34 0.66 5 512 78.2 122.468 12.577 
…

 

Same Solution Values …
 

0.37 0.63 5 512 78.2 140.174 20.992 

0.38 0.62 5 535 91.91 146.316 26.828 

…
 

Same Solution Values …
 

0.42 0.58 5 535 91.91 171.392 50.120 

0.43 0.57 5 568 116.59 177.784 58.765 

…
 

Same Solution Values …
 

0.5 0.5 5 568 116.59 225.705 190.784 

0.51 0.49 5 599 148.37 232.789 277.290 

0.52 0.48 5 611 160.88 240.498 153.295 

…
 

Same Solution Values …
 

0.63 0.37 5 611 160.88 325.404 20.529 

0.64 0.36 5 617 171.4 333.176 21.174 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

…
 

Same Solution Values …
 

0.76 0.24 5 617 171.4 427.784 120.371 

0.77 0.23 5 633 223.39 436.030 213.333 

0.78 0.22 5 633 223.39 444.594 124.859 

0.79 0.21 5 633 223.39 453.158 93.806 

0.8 0.2 5 640 251.01 461.798 72.717 

…
 

Same Solution Values …
 

0.99 0.01 5 640 251.01 631.090 1.937 

0 1 7.5 499 51.92 -51.920 0.011 

…
 

Same Solution Values …
 

0.17 0.83 7.5 499 51.92 41.736 0.034 

0.18 0.82 7.5 534 59.5 47.330 0.089 

…
 

Same Solution Values …
 

0.22 0.78 7.5 534 59.5 71.070 0.102 

0.23 0.77 7.5 556 65.77 77.237 0.081 

…
 

Same Solution Values …
 

0.3 0.7 7.5 556 65.77 120.761 0.108 

0.31 0.69 7.5 565 69.8 126.988 0.197 

…
 

Same Solution Values …
 

0.35 0.65 7.5 565 69.8 152.380 0.740 

0.36 0.64 7.5 576 75.92 158.771 0.698 

…
 

Same Solution Values …
 

0.51 0.49 7.5 576 75.92 256.559 20.727 

0.52 0.48 7.5 613 115.05 263.536 21.613 

…
 

Same Solution Values …
 

0.57 0.43 7.5 613 115.05 299.939 27.409 

0.58 0.42 7.5 623 128.6 307.328 31.688 

…
 

Same Solution Values …
 

0.77 0.23 7.5 623 128.6 450.132 745.392 

0.78 0.22 7.5 627 142.03 457.813 1324.970 

0.79 0.21 7.5 634 168.27 465.523 4097.080 

0.8 0.2 7.5 634 168.27 473.546 4018.380 

0.81 0.19 7.5 640 192.79 481.770 2816.100 

…
 

Same Solution Values …
 

0.99 0.01 7.5 640 192.79 631.672 85.813 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

0 1 10 537 51.92 -51.920 0.012 

…
 

Same Solution Values …
 

0.07 0.93 10 537 51.92 -10.696 0.022 

0.08 0.92 10 552 53.2 -4.784 0.021 

…
 

Same Solution Values …
 

0.24 0.76 10 552 53.2 92.048 0.191 

0.25 0.75 10 571 59.5 98.125 0.764 

0.26 0.74 10 571 59.5 104.430 2.921 

0.27 0.73 10 592 67.11 110.850 3.324 

…
 

Same Solution Values …
 

0.38 0.62 10 592 67.11 183.352 82.724 

0.39 0.61 10 600 72.02 190.068 104.171 

0.4 0.6 10 613 80.38 196.972 121.146 

…
 

Same Solution Values …
 

0.44 0.56 10 613 80.38 224.707 196.901 

0.45 0.55 10 620 85.94 231.733 192.819 

…
 

Same Solution Values …
 

0.64 0.36 10 620 85.94 365.862 1954.260 

0.65 0.35 10 633 109.45 373.143 1461.560 

…
 

Same Solution Values …
 

0.82 0.18 10 633 109.45 499.359 17433.200 

0.83 0.17 10 638 133.77 506.799 92232.600 

0.84 0.16 10 638 133.77 514.517 102985.000 

0.85 0.15 10 638 133.77 522.235 140982.000 

0.86 0.14 10 640 145.43 530.040 113137.000 

…
 

Same Solution Values …
 

0.99 0.01 10 640 145.43 632.146 16544.900 

0 1 12.5 571 51.92 -51.920 0.013 

…
 

Same Solution Values …
 

0.22 0.78 12.5 571 51.92 85.122 0.075 

0.23 0.77 12.5 595 59 91.420 0.169 

…
 

Same Solution Values …
 

0.32 0.68 12.5 595 59 150.280 5.550 

0.33 0.67 12.5 613 67.54 157.038 6.847 

…
 

Same Solution Values …
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

0.47 0.53 12.5 613 67.54 252.314 144.147 

0.48 0.52 12.5 617 71.16 259.157 180.963 

0.49 0.51 12.5 617 71.16 266.038 230.913 

0.5 0.5 12.5 617 71.16 272.920 301.393 

0.51 0.49 12.5 629 83.32 279.963 297.954 

…
 

Same Solution Values …
 

0.72 0.28 12.5 629 83.32 429.550 108.877 

0.73 0.27 12.5 633 93.71 436.788 131.760 

…
 

Same Solution Values …
 

0.79 0.21 12.5 633 93.71 480.391 1691.100 

0.8 0.2 12.5 638 113.41 487.718 2734.620 

…
 

Same Solution Values …
 

0.88 0.12 12.5 638 113.41 547.831 2587.130 

0.89 0.11 12.5 640 128.26 555.491 1322.350 

…
 

Same Solution Values …
 

0.99 0.01 12.5 640 128.26 632.317 45.647 

0 1 15 588 51.92 -51.920 0.012 

…
 

Same Solution Values …
 

0.26 0.74 15 588 51.92 114.459 0.071 

0.27 0.73 15 609 59.5 120.995 0.089 

…
 

Same Solution Values …
 

0.38 0.62 15 609 59.5 194.530 7.362 

0.39 0.61 15 614 62.67 201.231 9.354 
…

 

Same Solution Values …
 

0.43 0.57 15 614 62.67 228.298 30.931 

0.44 0.56 15 622 68.92 235.085 37.394 

…
 

Same Solution Values …
 

0.52 0.48 15 622 68.92 290.358 177.047 

0.53 0.47 15 629 76.53 297.401 184.540 

…
 

Same Solution Values …
 

0.72 0.28 15 629 76.53 431.452 1596.750 

0.73 0.27 15 633 87.24 438.535 1818.250 

…
 

Same Solution Values …
 

0.79 0.21 15 633 87.24 481.750 12505.600 

0.8 0.2 15 640 114.9 489.020 25344.300 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

…
 

Same Solution Values …
 

0.99 0.01 15 640 114.9 632.451 1263.050 

0 1 17.5 590 51.92 -51.920 0.014 

…
 

Same Solution Values …
 

0.06 0.94 17.5 590 51.92 -13.405 0.030 

0.07 0.93 17.5 610 53.2 -6.776 0.028 

…
 

Same Solution Values …
 

0.22 0.78 17.5 610 53.2 92.704 0.040 

0.23 0.77 17.5 623 56.92 99.462 0.036 

…
 

Same Solution Values …
 

0.48 0.52 17.5 623 56.92 269.442 0.147 

0.49 0.51 17.5 629 62.56 276.304 0.114 

…
 

Same Solution Values …
 

0.71 0.29 17.5 629 62.56 428.448 47.197 

0.72 0.28 17.5 640 90.78 435.382 59.926 

…
 

Same Solution Values …
 

0.99 0.01 17.5 640 90.78 632.692 14.595 

0 1 20 616 51.92 -51.920 0.013 

…
 

Same Solution Values …
 

0.25 0.75 20 616 51.92 115.060 0.040 

0.26 0.74 20 631 56.92 121.939 0.050 

…
 

Same Solution Values …
 

0.29 0.71 20 631 56.92 142.577 0.047 

0.3 0.7 20 635 58.61 149.473 0.045 

…
 

Same Solution Values …
 

0.72 0.28 20 635 58.61 440.789 1.259 

0.73 0.27 20 638 66.62 447.753 1.848 

…
 

Same Solution Values …
 

0.85 0.15 20 638 66.62 532.307 4.185 

0.86 0.14 20 640 78.2 539.452 4.421 

…
 

Same Solution Values …
 

0.99 0.01 20 640 78.2 632.818 2.918 

0 1 22.5 638 51.92 -51.920 0.014 

…
 

Same Solution Values …
 

0.82 0.18 22.5 638 51.92 513.814 0.041 
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Cover 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 

Objective Time 

(Seconds) 

0.83 0.17 22.5 640 61.32 520.776 0.045 

…
 

Same Solution Values …
 

0.99 0.01 22.5 640 61.32 632.987 0.725 

0 1 25 638 51.92 -51.920 0.014 

…
 

Same Solution Values …
 

0.79 0.21 25 638 51.92 493.117 0.932 

0.8 0.2 25 640 59.65 500.070 1.104 

…
 

Same Solution Values …
 

0.99 0.01 25 640 59.65 633.004 0.910 

0 1 27.5 640 51.92 -51.920 0.015 

…
 

Same Solution Values …
 

0.99 0.01 27.5 640 51.92 633.081 0.035 

0 1 30 640 51.92 -51.920 0.016 

…
 

Same Solution Values …
 

0.99 0.01 30 640 51.92 633.081 0.035 

0 1 32.5 640 51.92 -51.920 0.016 

…
 

Same Solution Values …
 

0.99 0.01 32.5 640 51.92 633.081 0.035 

0 1 35 640 51.92 -51.920 0.016 

…
 

Same Solution Values …
 

0.99 0.01 35 640 51.92 633.081 0.035 

0 1 50 640 51.92 -51.920 0.016 
…

 

Same Solution Values …
 

0.99 0.01 50 640 51.92 633.081 0.023 
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Table 2 – Results for solving the MCSP applied on the hypothetical Swain network 

Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0 1 0 171 51.92 -51.920 

0.01 0.99 0 206 52.06 -49.479 

0.02 0.98 0 206 52.06 -46.899 

0.03 0.97 0 206 52.06 -44.318 

0.04 0.96 0 260 54 -41.440 

0.05 0.95 0 260 54 -38.300 

0.06 0.94 0 331 58.47 -35.102 

…
 Same Solution Values 

…
 

0.11 0.89 0 331 58.47 -15.628 

0.12 0.88 0 352 61.07 -11.502 

…
 Same Solution Values 

…
 

0.16 0.84 0 352 61.07 5.021 

0.17 0.83 0 443 78.71 9.981 

…
 Same Solution Values 

…
 

0.32 0.68 0 443 78.71 88.237 

0.33 0.67 0 473 93.25 93.613 

0.34 0.66 0 482 97.76 99.358 
…

 Same Solution Values 

…
 

0.38 0.62 0 482 97.76 122.549 

0.39 0.61 0 492 104.01 128.434 

…
 Same Solution Values 

…
 

0.42 0.58 0 492 104.01 146.314 

0.43 0.57 0 513 119.83 152.287 

0.44 0.56 0 513 119.83 158.615 

0.45 0.55 0 544 144.34 165.413 

…
 Same Solution Values 

…
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.49 0.51 0 544 144.34 192.947 

0.5 0.5 0 556 156.15 199.925 

0.51 0.49 0 584 185.08 207.151 

0.52 0.48 0 584 185.08 214.842 

0.53 0.47 0 584 185.08 222.532 

0.54 0.46 0 596 198.81 230.387 

0.55 0.45 0 596 198.81 238.336 

0.56 0.44 0 596 198.81 246.284 

0.57 0.43 0 599 202.68 254.278 

0.58 0.42 0 603 208.04 262.363 

…
 Same Solution Values 

…
 

0.61 0.39 0 603 208.04 286.694 

0.62 0.38 0 610 219.12 294.934 

…
 Same Solution Values 

…
 

0.66 0.34 0 610 219.12 328.099 

0.67 0.33 0 613 224.96 336.473 

…
 Same Solution Values 

…
 

0.7 0.3 0 613 224.96 361.612 

0.71 0.29 0 618 236.73 370.128 

0.72 0.28 0 618 236.73 378.676 

0.73 0.27 0 618 236.73 387.223 

0.74 0.26 0 630 270.19 395.951 

…
 Same Solution Values 

…
 

0.79 0.21 0 630 270.19 440.960 

0.8 0.2 0 637 297.55 450.090 

…
 Same Solution Values 

…
 

0.83 0.17 0 637 297.55 478.127 
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.84 0.16 0 640 312.8 487.552 

…
 Same Solution Values 

…
 

0.99 0.01 0 640 312.8 630.472 

0 1 2.5 210 51.92 -51.920 

…
 Same Solution Values 

…
 

0.03 0.97 2.5 210 51.92 -44.062 

0.04 0.96 2.5 384 58.33 -40.637 

…
 Same Solution Values 

…
 

0.13 0.87 2.5 384 58.33 -0.827 

0.14 0.86 2.5 401 61.07 3.620 

…
 Same Solution Values 

…
 

0.24 0.76 2.5 401 61.07 49.827 

0.25 0.75 2.5 421 67.58 54.565 

0.26 0.74 2.5 443 75.3 59.458 

…
 Same Solution Values 

…
 

0.32 0.68 2.5 443 75.3 90.556 

0.33 0.67 2.5 473 89.84 95.897 

0.34 0.66 2.5 482 94.35 101.609 
…

 Same Solution Values 

…
 

0.38 0.62 2.5 482 94.35 124.663 

0.39 0.61 2.5 492 100.6 130.514 

…
 Same Solution Values 

…
 

0.42 0.58 2.5 492 100.6 148.292 

0.43 0.57 2.5 513 116.42 154.231 

0.44 0.56 2.5 537 135.15 160.596 

0.45 0.55 2.5 552 147.02 167.539 

…
 Same Solution Values 

…
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.51 0.49 2.5 552 147.02 209.480 

0.52 0.48 2.5 581 178.32 216.526 

0.53 0.47 2.5 584 181.67 224.135 

0.54 0.46 2.5 596 195.4 231.956 

0.55 0.45 2.5 596 195.4 239.870 

0.56 0.44 2.5 596 195.4 247.784 

0.57 0.43 2.5 599 199.27 255.744 

0.58 0.42 2.5 603 204.63 263.795 

…
 Same Solution Values 

…
 

0.61 0.39 2.5 603 204.63 288.024 

0.62 0.38 2.5 610 215.71 296.230 

…
 Same Solution Values 

…
 

0.7 0.3 2.5 610 215.71 362.287 

0.71 0.29 2.5 615 227.48 370.681 

0.72 0.28 2.5 618 235.13 379.124 

0.73 0.27 2.5 618 235.13 387.655 

0.74 0.26 2.5 630 268.59 396.367 

…
 Same Solution Values 

…
 

0.77 0.23 2.5 630 268.59 423.324 

0.78 0.22 2.5 637 292.78 432.448 

…
 Same Solution Values 

…
 

0.83 0.17 2.5 637 292.78 478.937 

0.84 0.16 2.5 640 308.03 488.315 

…
 Same Solution Values 

…
 

0.99 0.01 2.5 640 308.03 630.520 

0 1 5 387 51.92 -51.920 

…
 Same Solution Values 

…
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.06 0.94 5 387 51.92 -25.585 

0.07 0.93 5 456 56.39 -20.523 

…
 Same Solution Values 

…
 

0.21 0.79 5 456 56.39 51.212 

0.22 0.78 5 463 58.33 56.363 

…
 Same Solution Values 

…
 

0.28 0.72 5 463 58.33 87.642 

0.29 0.71 5 507 75.71 93.276 

…
 Same Solution Values 

…
 

0.33 0.67 5 507 75.71 116.584 

0.34 0.66 5 512 78.2 122.468 

…
 Same Solution Values 

…
 

0.37 0.63 5 512 78.2 140.174 

0.38 0.62 5 535 91.91 146.316 

…
 Same Solution Values 

…
 

0.42 0.58 5 535 91.91 171.392 

0.43 0.57 5 568 116.59 177.784 

…
 Same Solution Values 

…
 

0.5 0.5 5 568 116.59 225.705 

0.51 0.49 5 599 148.37 232.789 

0.52 0.48 5 611 160.88 240.498 

…
 Same Solution Values 

…
 

0.63 0.37 5 611 160.88 325.404 

0.64 0.36 5 617 171.4 333.176 

…
 Same Solution Values 

…
 

0.76 0.24 5 617 171.4 427.784 

0.77 0.23 5 627 203.81 435.914 
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.78 0.22 5 627 203.81 444.222 

0.79 0.21 5 630 214.67 452.619 

0.8 0.2 5 637 242.31 461.138 

…
 Same Solution Values 

…
 

0.83 0.17 5 637 242.31 487.517 

0.84 0.16 5 640 257.56 496.390 

…
 Same Solution Values 

…
 

0.99 0.01 5 640 257.56 631.024 

0 1 7.5 497 51.92 -51.920 

…
 Same Solution Values 

…
 

0.17 0.83 7.5 497 51.92 41.396 

0.18 0.82 7.5 532 59.5 46.970 

…
 Same Solution Values 

…
 

0.22 0.78 7.5 532 59.5 70.630 

0.23 0.77 7.5 554 65.77 76.777 

…
 Same Solution Values 

…
 

0.3 0.7 7.5 554 65.77 120.161 

0.31 0.69 7.5 563 69.8 126.368 
…

 Same Solution Values 

…
 

0.35 0.65 7.5 563 69.8 151.680 

0.36 0.64 7.5 574 75.92 158.051 

…
 Same Solution Values 

…
 

0.51 0.49 7.5 574 75.92 255.539 

0.52 0.48 7.5 611 115.05 262.496 

…
 Same Solution Values 

…
 

0.57 0.43 7.5 611 115.05 298.799 

0.58 0.42 7.5 621 128.6 306.168 
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

…
 Same Solution Values 

…
 

0.7 0.3 7.5 621 128.6 396.120 

0.71 0.29 7.5 627 143.02 403.694 

…
 Same Solution Values 

…
 

0.78 0.22 7.5 627 143.02 457.596 

0.79 0.21 7.5 634 169.26 465.315 

0.8 0.2 7.5 640 192.79 473.442 

…
 Same Solution Values 

…
 

0.99 0.01 7.5 640 192.79 631.672 

0 1 10 523 51.92 -51.920 

…
 Same Solution Values 

…
 

0.07 0.93 10 523 51.92 -11.676 

0.08 0.92 10 538 53.2 -5.904 

…
 Same Solution Values 

…
 

0.24 0.76 10 538 53.2 88.688 

0.25 0.75 10 557 59.5 94.625 

0.26 0.74 10 557 59.5 100.790 

0.27 0.73 10 578 67.11 107.070 
…

 Same Solution Values 

…
 

0.38 0.62 10 578 67.11 178.032 

0.39 0.61 10 586 72.02 184.608 

0.4 0.6 10 599 80.38 191.372 

…
 Same Solution Values 

…
 

0.44 0.56 10 599 80.38 218.547 

0.45 0.55 10 618 95.71 225.460 

…
 Same Solution Values 

…
 

0.69 0.31 10 618 95.71 396.750 
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.7 0.3 10 633 130.02 404.094 

…
 Same Solution Values 

…
 

0.81 0.19 10 633 130.02 488.026 

0.82 0.18 10 638 151.83 495.831 

0.83 0.17 10 638 151.83 503.729 

0.84 0.16 10 638 151.83 511.627 

0.85 0.15 10 640 162.69 519.597 

…
 Same Solution Values 

…
 

0.99 0.01 10 640 162.69 631.973 

0 1 12.5 571 51.92 -51.920 

…
 Same Solution Values 

…
 

0.24 0.76 12.5 571 51.92 97.581 

0.25 0.75 12.5 593 59 104.000 

…
 Same Solution Values 

…
 

0.32 0.68 12.5 593 59 149.640 

0.33 0.67 12.5 611 67.54 156.378 

…
 Same Solution Values 

…
 

0.45 0.55 12.5 611 67.54 237.803 

0.46 0.54 12.5 625 79.22 244.721 

…
 Same Solution Values 

…
 

0.5 0.5 12.5 625 79.22 272.890 

0.51 0.49 12.5 629 83.32 279.963 

…
 Same Solution Values 

…
 

0.8 0.2 12.5 629 83.32 486.536 

0.81 0.19 12.5 634 104.1 493.761 

0.82 0.18 12.5 638 122.24 501.157 

…
 Same Solution Values 

…
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.88 0.12 12.5 638 122.24 546.771 

0.89 0.11 12.5 640 137.09 554.520 

…
 Same Solution Values 

…
 

0.99 0.01 12.5 640 137.09 632.229 

0 1 15 584 51.92 -51.920 

…
 Same Solution Values 

…
 

0.26 0.74 15 584 51.92 113.419 

0.27 0.73 15 605 59.5 119.915 

…
 Same Solution Values 

…
 

0.38 0.62 15 605 59.5 193.010 

0.39 0.61 15 627 72.22 200.476 

0.4 0.6 15 610 62.67 206.398 

…
 Same Solution Values 

…
 

0.43 0.57 15 610 62.67 226.578 

0.44 0.56 15 618 68.92 233.325 

…
 Same Solution Values 

…
 

0.51 0.49 15 618 68.92 281.409 

0.52 0.48 15 629 80.63 288.378 
…

 Same Solution Values 

…
 

0.62 0.38 15 629 80.63 359.341 

0.63 0.37 15 633 87.24 366.511 

…
 Same Solution Values 

…
 

0.79 0.21 15 633 87.24 481.750 

0.8 0.2 15 640 114.9 489.020 

…
 Same Solution Values 

…
 

0.99 0.01 15 640 114.9 632.451 

0 1 17.5 590 51.92 -51.920 
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

…
 Same Solution Values 

…
 

0.07 0.93 17.5 590 51.92 -6.986 

0.08 0.92 17.5 606 53.2 -0.464 

…
 Same Solution Values 

…
 

0.22 0.78 17.5 606 53.2 91.824 

0.23 0.77 17.5 619 56.92 98.542 

…
 Same Solution Values 

…
 

0.48 0.52 17.5 619 56.92 267.522 

0.49 0.51 17.5 625 62.56 274.344 

…
 Same Solution Values 

…
 

0.6 0.4 17.5 625 62.56 349.976 

0.61 0.39 17.5 629 68.74 356.881 

…
 Same Solution Values 

…
 

0.64 0.36 17.5 629 68.74 377.814 

0.65 0.35 17.5 631 72.97 384.611 

0.66 0.34 17.5 631 72.97 391.650 

0.67 0.33 17.5 631 72.97 398.690 

0.68 0.32 17.5 640 91.31 405.981 
…

 Same Solution Values 

…
 

0.99 0.01 17.5 640 91.31 632.687 

0 1 20 616 51.92 -51.920 

…
 Same Solution Values 

…
 

0.24 0.76 20 616 51.92 108.381 

0.25 0.75 20 631 56.92 115.060 

…
 Same Solution Values 

…
 

0.29 0.71 20 631 56.92 142.577 

0.3 0.7 20 635 58.61 149.473 
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Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

…
 Same Solution Values 

…
 

0.72 0.28 20 635 58.61 440.789 

0.73 0.27 20 638 66.62 447.753 

…
 Same Solution Values 

…
 

0.85 0.15 20 638 66.62 532.307 

0.86 0.14 20 640 78.2 539.452 

0.99 0.01 20 640 78.2 632.818 

0 1 22.5 638 51.92 -51.920 

…
 Same Solution Values 

…
 

0.82 0.18 22.5 638 51.92 513.814 

0.83 0.17 22.5 640 61.32 520.776 

…
 Same Solution Values 

…
 

0.99 0.01 22.5 640 61.32 632.987 

0 1 25 638 51.92 -51.920 

…
 Same Solution Values 

…
 

0.8 0.2 25 638 51.92 500.016 

0.81 0.19 25 640 59.65 507.067 

…
 Same Solution Values 

…
 

0.99 0.01 25 640 59.65 633.004 

0 1 27.5 640 51.92 -51.920 

…
 Same Solution Values 

…
 

0.99 0.01 27.5 640 51.92 633.081 

0 1 30 640 51.92 -51.920 

…
 Same Solution Values 

…
 

0.99 0.01 30 640 51.92 633.081 

0 1 32.5 640 51.92 -51.920 

…
 Same Solution Values 

…
 



 

274 

 

Coverage 

Weight 

Distance 

Weight 

Service 

Distance 

Total 

Covered 

Path 

Length 
Objective 

0.99 0.01 32.5 640 51.92 633.081 

0 1 35 640 51.92 -51.920 

…
 Same Solution Values 

…
 

0.99 0.01 35 640 51.92 633.081 

0 1 50 640 51.92 -51.920 

…
 Same Solution Values 

…
 

0.99 0.01 50 640 51.92 633.081 

 


