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Abstract

Three Papers in Applied Microeconomics and Econometrics

by

Valerie K. Bostwick

This dissertation is comprised of three distinct papers covering topics in applied

microeconomics and applied econometrics. The first paper addresses a common problem

faced by empirical researchers wishing to estimate Markov regime-switching models. For

these models, testing for the possible presence of more than one regime requires the

use of a non-standard test statistic. The analytic steps needed to implement the test

of Markov regime-switching proposed by Cho & White (2007) are derived in detail in

Carter & Steigerwald (2013). We summarize those implementation steps and address the

computational issues that arise. A new Stata command to compute the regime-switching

critical values, rscv, is introduced and presented in the context of empirical economic

research. This paper is joint work with Douglas Steigerwald, and has previously appeared

in the Stata Journal (Bostwick and Steigerwald, 2014).

In the second paper, I address a question in the field of economics of education: that is,

whether college students use their choice of major as a signal of unobserved productivity

in the labor market. I propose a model of postsecondary education in which major field

of study can be used by individuals to signal productivity to employers. Under this

signaling model, I show that geographic areas with high access to elite universities result

in fewer science, technology, engineering, and mathematics (STEM) majors among lower

ability students at non-elite colleges. Using data from the National Center for Education

Statistics’ Baccalaureate and Beyond survey, I find evidence that is consistent with the

signaling model prediction, specifically a 2.3-3.7 percentage point (or 16-25%) decrease

vii



in the probability of choosing a STEM major among lower ability students in areas with

greater access to elite colleges. This paper has previously appeared in Economic Inquiry

(Bostwick, 2016).

In the third paper, I analyze an unexpected consequence of a highly debated education

policy. Many school districts are now considering delaying high school start times to

accommodate the sleep schedules of teens. This paper explores whether such policy

changes can have an impact on teen car accident rates. This impact could function

both through a direct effect on teen sleep deprivation and indirectly through changes to

the driving environment, i.e. shifting teen commute times into the high volume, “rush

hour” of the morning. I find that, during the morning commute hours, any potential

effect stemming from avoided sleep deprivation is offset by the effect of shifting teen

driving into rush hour, so that a 15 minute delay in high school start times leads to a

21% increase in morning teen accidents. However, by focusing on late-night accidents, I

also find evidence of a persistent sleep effect. By decreasing teen sleep deprivation, a 15

minute delay in school start times leads to a 26% decrease in late-night teen accidents.
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Chapter 1

Obtaining Critical Values for Test of
Markov Regime Switching

1.1 Introduction

Markov regime-switching models are frequently used in economic analysis and are

prevalent in a variety of fields including finance, industrial organization, and business

cycle theory. Unfortunately, conducting proper inference with these models can be ex-

ceptionally challenging. In particular, testing for the possible presence of more than one

regime requires the use of a non-standard test statistic and critical values that may differ

across model specifications.

Cho and White (2007) demonstrate that, due to the unusually complicated nature of

the null space, the appropriate measure for a test of more than one regime in the Markov

regime-switching framework is a quasi-likelihood ratio (QLR) statistic. They provide an

asymptotic null distribution for this test statistic from which critical values should be

drawn. Because this distribution is a function of a Gaussian process, the critical values

are not easily obtained from a simple closed-form distribution. Moreover, the elements

of the Gaussian process underlying the asymptotic null distribution are dependent upon

one another. For this reason the critical values depend on the covariance of the Gaussian
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Obtaining Critical Values for Test of Markov Regime Switching Chapter 1

process and, due to the complex nature of this covariance structure, are best calculated

using numerical approximation. In this article we summarize the steps necessary for such

an approximation and introduce the new Stata command, rscv, which implements the

methodology to produce the desired regime-switching critical values for a QLR test of

only one regime.

We focus on the case of a simple linear model with Gaussian errors, but the QLR

test and the rscv command are generalizable to a much broader class of models. This

methodology can be applied to models with mulitple covariates and non-Gaussian er-

rors. It is also applicable to regime-switching models where the dependent variable is

vector valued, although the difference between distributions must be in only one mean

parameter. Although most regime-switching models are thought of in the context of

time-series data, we provide an example in Section 1.5 of how the QLR test can be

used in cross-section models. However, there is one notable restriction on the allow-

able class of regime-switching models. Carter and Steigerwald (2012) establish that the

quasi-maximum likelihood estimator created by the use of the quasi-log-likelihood is in-

consistent if the covariates include lagged values of the dependent variable. For this

reason, the QLR test should be used with extreme caution on autoregressive models.

The article is organized as follows. In Section 1.2 we describe the unusual null space

that corresponds to a test of only one regime versus the alternative of regime-switching.

In Section 1.3 we present the QLR test statistic, as derived by Cho and White (2007),

and the corresponding asymptotic null distribution. We also summarize the detailed

analysis in Carter and Steigerwald (2013) describing the covariance structure of the

relevant Gaussian process. In Section 1.4 we describe the methodology used by the

rscv command to numerically approximate the relevant critical values. We also present

the syntax and options of the rscv command and provide sample output. We illustrate

use of the rscv command with an application from the economics literature in Section

2
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1.5. Finally, we conclude with some remarks on the general applicability of this command

and the underlying methods.

1.2 Null Hypothesis

Specification of a Markov regime-switching model requires a test to confirm the pres-

ence of multiple regimes. The first step is to test the null hypothesis of a single regime

against the alternative hypothesis of Markov switching between two regimes. If this null

hypothesis can be rejected, then the researcher can progress to estimation of Markov

regime-switching models with two, or more, regimes. The key to conducting valid infer-

ence is then a test of the null hypothesis of a single regime, which yields an asymptotic

size equal to or less than the nominal test size.

To understand how to conduct valid inference for the null hypothesis of only a single

regime, consider a basic regime-switching model

yt = θ0 + δst + ut, (1.1)

where ut ∼ i.i.d.N (0, σ2). The unobserved state variable st ∈ {0, 1} indicates regimes:

in state 0, yt has mean θ0, while in state 1, yt has mean θ1 = θ0 + δ. The sequence

{st}nt=1 is generated by a first-order Markov process with P (st = 1|st−1 = 0) = p0 and

P (st = 0|st−1 = 1) = p1.

The key is to understand the parameter space that corresponds to the null hypothesis.

Under the null hypothesis there exists a single regime, with mean θ∗. Hence the null

parameter space must capture all the possible regions that correspond to a single regime.

The first region corresponds to the assumption that θ0 = θ1 = θ∗, which carries with it

the implicit assumption that each of the two regimes is observed with positive probability:
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p0 > 0 and p1 > 0. The non-standard feature of the null space is the inclusion of two

additional regions, each of which also correspond to a single regime, with mean θ∗. The

second region corresponds to the assumption that only regime 0 occurs with positive

probability, p0 = 0, and that θ0 = θ∗. Note that in this second region, the mean of

regime 1, θ1 is not identified, so that this region in the null hypothesis does not impose

any value on θ1 − θ0. The third region is a mirror image of the second region, where

now the assumption is that regime 1 occurs with probability 1: p1 = 0 and θ1 = θ∗ The

three regions are depicted in Figure 1.1. The vertical distance measures the value of p0

and of p1 and the horizontal distance measures the value of θ1 − θ0. Thus the vertical

line at θ1 = θ0 captures the region of the null parameter space that corresponds to the

assumption that θ0 = θ1 = θ∗ together with p0, p1 ∈ (0, 1). The lower horizontal line

captures the region of the null parameter space where p0 = 0 and θ1− θ0 is unrestricted.

Similarly, the upper horizontal line captures the region of the null parameter space where

p1 = 0 and θ1 − θ0 is unrestricted.

θ1 − θ0 = 0
p1 = 0

p0 = 0

Figure 1.1: All three regions of the null hypothesis H0 : p0 = 0 and θ0 = θ∗; p1 = 0 and
θ1 = θ∗; or θ0 = θ1 = θ∗ together with local neighborhoods of p1 = 0 and θ0 = θ1 = θ∗

The additional curves that correspond to the values p0 = 0 and p1 = 0 play a crucial

role in guarding against the misclassification of a small group of extremal values as a

second regime. In Figure 1.1 we depict the null space together with local neighborhoods
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for two points in this space. These two neighborhoods illustrate the different roles of

the three curves in the null space. Points in the circular neighborhood of the point on

θ1 − θ0 = 0 correspond to processes with two regimes that have only slightly separated

means. On the other hand, points in the semicircular neighborhood around the point

on p1 = 0 correspond to processes in which there are two regimes with widely separated

means, one of which occurs infrequently. As one is often concerned that rejection of the

null hypothesis of a single regime is due to a small group of outliers, rather than multiple

regimes, including these boundary values reduces precisely this type of false rejection.

Consequently, a valid test of the null hypothesis of a single regime must account for the

entire null region and include all three curves.

1.3 Quasi-Likelihood Ratio Test Statistic

To implement a valid test of the null hypothesis of a single regime, a likelihood ratio

statistic is needed. When considering the likelihood ratio statistic for a Markov regime-

switching process, Cho and White (2007) find that the necessary inclusion of p0 = 0 and

p1 = 0 in the parameter space creates significant difficulties in the asymptotic analysis.

These difficulties lead them to consider a quasi-likelihood ratio (QLR) statistic for which

the Markov structure of the state variable is ignored and {st} is instead a sequence of

i.i.d. random variables.

This i.i.d. restriction allows Cho and White to consider only the stationary proba-

bility, P (st = 1) = π, where π = p0/(p0 + p1). Because π = 1 if and only if p1 = 0 (and

π = 0 if and only if p0 = 0), the null hypothesis for a test of one regime based on the

QLR statistic is expressed with three curves. The null hypothesis is, H0 : θ0 = θ1 = θ∗

(curve 1), π = 0 and θ0 = θ∗ (curve 2), π = 1 and θ1 = θ∗ (curve 3). The alternative

hypothesis is H1 : π ∈ (0, 1) and θ0 6= θ1.

5
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For our basic model in (1.1), the quasi-log-likelihood analyzed by Cho and White is

Ln
(
π, σ2, θ0, θ1

)
=

1

n

n∑
t=1

lt
(
π, σ2, θ0, θ1

)
, (1.2)

where lt (π, σ2, θ0, θ1) := log ((1− π) f (yt|σ2, θ0) + πf (yt|σ2, θ1)) and f (yt|σ2, θj) is the

conditional density with j = 0, 1. Define
(
π̂, σ̂2, θ̂0, θ̂1

)
to be the parameter values that

maximize the quasi-log-likelihood function. Let
(

1, σ̃2, ·, θ̃1

)
be the parameter values

that maximize Ln under the null hypothesis that π = 1. The QLR statistic is then

QLRn = 2n
(
Ln

(
π̂, σ̂2, θ̂0, θ̂1

)
− Ln

(
1, σ̃2, ·, θ̃1

))
. (1.3)

The asymptotic null distribution of QLRn is (Cho and White, 2007, Theorem 6(b),

p. 1692),

QLRn ⇒ max

[
[max (0, G)]2 , sup

Θ

[
G (θ0)−

]2]
, (1.4)

where G (θ0) is a Gaussian process, G (θ0)− := min [0,G (θ0)], and G is a standard Gaus-

sian random variable that is correlated with G (θ0). (For a more complete description of

(1.4) see Bostwick and Steigerwald (2012)).

The critical value for a test based on the statistic QLRn thus corresponds to a quantile

for the largest value over max (0, G)2 and supΘ

[
G (θ0)−

]2
. In order to determine this

quantity one must account for the covariance among the elements of G (θ0) as well as

their covariance with G. The structure of this covariance, which is described in detail in

Bostwick and Steigerwald (2012), is

E [G (θ0)G (θ′0)] =
eηη
′ − 1− ηη′ − (ηη′)2

2(
eη2 − 1− η2 − η4

2

) 1
2
(
e(η′)2 − 1− (η′)2 − (η′)4

2

) 1
2

, (1.5)

6
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where η = θ0−θ∗
σ

and η′ =
θ′0−θ∗
σ

. The quantity supΘ

[
G (θ0)−

]2
that appears in the

asymptotic null distribution is determined by this covariance. Since the regime-specific

parameters enter (1.5) only through η, a researcher does not need to specify the parameter

space Θ to calculate supΘ

[
G (θ0)−

]2
. All that is required is the set H that contains the

number of standard deviations that separate the regime means. Finally, in order to fully

capture the behavior of the asymptotic null distribution of QLRn, we must also account

for the covariance between G and G (θ0). Cho and White show that Cov (G,G (θ0)) =(
eη

2 − 1− η2 − η4

2

)− 1
2
η4.

1.4 The rscv Command

1.4.1 Syntax

rscv [, ll(value) ul(value) r(value) q(value)]

1.4.2 Description

rscv simulates the asymptotic null distribution of QLRn and returns the correspond-

ing critical value. If no options are specified, rscv returns the critical value for a size

5 percent QLR test with a regime separation of ±1 standard deviation calculated over

100,000 replications.

1.4.3 Options

ll(value) specifies a lower bound on the interval H containing the number of standard

deviations separating regime means, where η ∈ H. The default value is -1.

ul(value) specifies an upper bound on the interval H containing the number of stan-

dard deviations separating regime means. The default value is 1.

7
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r(value) specifies the number of simulation replications. The default value is 100,000.

q(value) specifies the quantile for which a critical value should be calculated. The

default value is 0.95, which corresponds to a nominal test size of 5 percent.

1.4.4 Simulation Process

For a QLR test with size 5 percent, the critical value corresponds to the 0.95 quantile

of the limit distribution given on the right side of (1.4). Because the dependence in the

process G (θ0) renders numeric integration infeasible, we construct the quantile by simu-

lating independent replications of the process. In this section, we describe the simulation

process used to obtain these critical values and how each of the rscv command options

affect those simulations.

As the covariance of G (θ0) depends only on an index η, we do not need to simulate

G (θ0) directly. Instead we simulate GA (η), which we will construct to have the same

covariance structure as G (θ0). The process GA (η) will therefore provide us with the

correct quantile, while relying solely on the index, η.

To construct GA (η) for the covariance structure in (1.5) recall that, by a Taylor-series

expansion, eη = 1 + η + η2

2!
+ · · · . Hence, for {εk}∞k=0 ∼ i.i.d.N (0, 1):

∞∑
k=3

ηk√
k!
εk ∼ N

(
0, eη

2 − 1− η2 − η4

2

)
.

Using this fact, our simulated process is constructed as

GA (η) =

(
eη

2 − 1− η2 − η4

2

)− 1
2
K−1∑
k=3

ηk√
k!
εk,

where K determines the accuracy of the Taylor-series approximation. Note that the

covariance of this simulated process, E
[
GA (η)GA (η′)

]
, is identical to the covariance

8
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structure of G (θ0) in (1.5).

We must also account for the covariance between G and G (θ0). Cho and White (2007)

establish that this covariance corresponds to the term in the Taylor-series expansion for

k = 4. For this reason we set G = ε4 so that Cov (G,G (θ0)) = Cov
(
G,GA (η)

)
. The

critical value that corresponds to (1.4) for a test size of 5 percent is therefore the 0.95

quantile of the simulated value

max

{
[max (0, ε4)]2 ,max

η∈H

[
min

(
0,GA (η)

)]2}
. (1.6)

The rscv command executes the numerical simulation of (1.6) by first generating

the series {εk}Kk=0 ∼ i.i.d.N (0, 1). For each value in a discrete set of η ∈ H, it then

constructs GA (η) =
(
eη

2 − 1− η2 − η4

2

)− 1
2 ∑K−1

k=3
ηk√
k!
εk. The command then obtains the

value mi = max
{

[max (0, ε4)]2 ,maxη
[
min

(
0,GA (η)

)]2}
corresponding to the right side

of (1.4) for each replication (indexed by i). Let
{
m[i]

}r
i=1

be the vector of ordered values

of mi calculated in each replication. The command rscv returns the critical value for a

test with size q from m[(1−q)r].

For each replication, rscv calculates GA (η) at a fine grid of values over the interval

H. To do so requires three quantities: the interval H (which must encompass the true

value of η), the grid of values over H (given by the grid mesh), and the number of desired

terms in the Taylor-series approximation, K. The user specifies the interval H using the

ll and ul options. If θ0 is thought to lie within 3 standard deviations of θ1, the interval

is H = [−3.0, 3.0]. Because the process is calculated at only a finite number of values

the accuracy of the calculated maximum increases as the grid mesh shrinks. For this

reason the command rscv implements a grid mesh of 0.01, as recommended in Cho and

White (2007, p. 1693). For the interval H = [−3.0, 3.0], and with a grid mesh of 0.01,

the process is calculated at the points (−3.00,−2.99, . . . , 3.00).

9
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Given the grid mesh of 0.01 and the user-specified interval H, we must determine the

appropriate value of K. To do so, consider the approximation error,

ξK,η =
(
eη

2 − 1− η2 − η4

2

)− 1
2 ∑∞

k=K
ηk√
k!
εk. We want to ensure that, as K increases, the

variance of ξK,η is decreasing towards zero. Carter and Steigerwald (2013) show that, for

large K, Var (ξK,η) ≤ e2J log η−K logK . The command rscv therefore implements a value

of K such that, for the user-specified interval H, (maxH |η|)2 /K ≤ 1/2.

The rscv command also allows the user to specify the number of simulation replica-

tions and the desired quantile. Note that for large values of H and the default number

of replications (r = 100, 000), the rscv command may require more memory than a 32-

bit operating system can provide. In this case, the user may need to specify a smaller

number of replications in order to calculate the critical values for the desired interval,

H. Critical values derived using fewer simulation replications may be stable only to a

single significant digit. Table 1.1 depicts the results of rscv for a size 5 percent test over

varying values of ll, ul, and r.

Table 1.1: Critical values for linear models with Gaussian errors

H [−1, 1] [−2, 2] [−3, 3] [−4, 4] [−5, 5]
100,000 4.9 5.6 6.2 6.7 7.0

Replications
10,000 4.9 5.6 6.2 6.6 7.1

Nominal level 5 percent; grid mesh of 0.01.

1.5 Example

We demonstrate how to test for the presence of multiple regimes through an example

that captures many features of empirical interest. Importantly, the example we study

generalizes (1.1) in several important ways: both the intercept and a slope coefficient

differ over regimes; the error variance differs across regimes; and the regime probability

10
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depends on the covariates. For this very general model we first detail how to construct a

QLR test statistic in Stata and then describe how to use the new Stata command rscv

to obtain an appropriate critical value.

Our example is derived from Bloom et al. (2003), who test whether the large dif-

ferences in income levels across countries are better explained by differences in intrinsic

geography or by a regime-switching model of multiple equilibria with poverty traps. To

this end, the authors use cross-sectional data to analyze the distribution of per capita in-

come levels for countries with similar exogenous characteristics and test for the presence

of multiple regimes.

Unlike the simple model, (1.1), that we have considered up until now, Bloom et al.

present a model that includes several added complexities that are commonly used in

regime-switching applications. These additions include covariates with coefficients that

vary across regimes, as well as error variances that are regime-specific. The authors also

allow the regime probabilities to depend on the included covariates.

Bloom et al. propose a model of regime-switching between two equilibria. Regime

1 occurs with probability p(x) and corresponds to countries that are in a poverty trap

equilibrium:

y = µ1 + β1x+ ε1 , V ar(ε1) = σ2
1. (1.7)

Regime 2 occurs with probability 1 − p(x) and corresponds to countries in a wealthy

equilibrium:

y = µ2 + β2x+ ε2 , V ar(ε2) = σ2
2. (1.8)

In both regimes, y is log Gross Domestic Product (GDP) per capita and x is absolute

latitude, which functions as a catchall for a variety of exogenous geographic characteris-

tics.

This model is slightly different from a Markov regime-switching model in that the

11



Obtaining Critical Values for Test of Markov Regime Switching Chapter 1

authors are looking at different regimes in a cross-section, rather than over time. For

this reason, the probability of being in either regime is stationary and the unobserved

regime indicator is an i.i.d. random variable. These modifications correspond exactly to

those made by Cho and White (2007) to create the quasi-log-likelihood, so that in this

model the log-likelihood ratio and the QLR are one and the same.

To construct a QLR test statistic we must estimate the model under the null hypothe-

sis of only a single regime and under the alternative hypothesis of two regimes. The most

important aspect of constructing the test statistic is to understand what model should be

estimated under the alternative hypothesis. As Carter and Steigerwald (2013) discuss,

the asymptotic null distribution (1.4) is derived under the assumption that the difference

between regimes be in only the intercept, µj. Thus, to form the test statistic the two

regime model that is estimated is: regime 1 occurs with probability p and corresponds

to

y = µ1 + βx+ ε, (1.7′)

while regime 2, which occurs with probability (1− p) corresponds to

y = µ2 + βx+ ε, (1.8′)

where V ar (ε) = σ2. We have simplified (1.7) and (1.8) in three ways: the slope coefficient

is constant across regimes; the variance of the error terms is constant across regimes; and

the regime probability does not depend on the exogenous characteristics, x.

Simplifying the model in this way does not diminish the validity of the QLR as a test

of a single regime for the model in (1.7) and (1.8). Note that under the null hypothesis

of one regime there is necessarily only one error variance, only one coefficient for each

covariate, and a regime probability equal to 1. Thus, under the null hypothesis, the QLR

12
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test will necessarily have the correct size even if the data is accurately modeled by a

more complex system. Following a rejection of the null hypothesis using this restricted

quasi-log-likelihood, the researcher can then confidently proceed to estimate a model with

regime-specific variances and coefficients, if desired.1

For (1.7′) and (1.8′) the quasi-log-likelihood is

Ln
(
p, σ2, σ, µ1, µ2

)
=

1

n

n∑
t=1

lt
(
p, σ2, β, µ1, µ2

)
,

where lt (p, σ2, β, µ1, µ2) := log (pf (yt|σ2, β, µ1) + (1− p) f (yt|σ2, β, µ2)) and f (yt|σ2, β, µj)

is the conditional density for j = 1, 2. It is common to assume as Bloom et al. do, that

ε is a normal random variable,2 so that f (yt|xt;σ2, β, µj) = 1√
2πσ2

e
−1

2σ2
(yt−µj−βxt)2 . Let(

p̂, σ̂2, β̂, µ̂1, µ̂2

)
be the values that maximize Ln and let

(
1, σ̃2, β̃, µ̃1, ·

)
be the values

that make Ln as large as possible under the null hypothesis. The QLR statistic is then

QLRn = 2n
(
Ln

(
p̂, σ̂2, β̂, µ̂1, µ̂2

)
− Ln

(
1, σ̃2, β̃, µ̃1, ·

))
. (1.9)

To obtain Ln

(
1, σ̃2, β̃, µ̃1, ·

)
we simply estimate a linear regression of y on x, which

corresponds to maximizing

1

n

n∑
t=1

log

(
1√

2πσ2
e
−1

2σ2
(yt−µ1−βxt)2

)
.

While the parameter estimates can be obtained with a simple OLS command, we need

the value of the log-likelihood, so we detail how to use Stata commands to obtain this

value.

1With a more complex data generating process these restrictions may however lead to an increase in
the probability of failing to reject a false null hypothesis and, hence, a decrease in the power of the QLR
test.

2Bloom et al. (2003) assume normally distributed errors but the QLR test also allows for any error
distribution within the exponential family.
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In what follows, we use the same Penn World Table and CIA World Factbook data

as in Bloom et al. to test for the presence of multiple equilibria.3 To find
(

1, σ̃2, β̃, µ̃1, ·
)

,

simply use the following code, which relies on the Stata command ml.

. program define llfsingle

1. version 10.1

2. args lnf mu beta sigma

3. quietly replace ‘lnf’= (1/_N)*ln(((2*_pi*‘sigma’^2)^(-1/2))*exp((-1/

> (2*‘sigma’^2))*(lgdp-‘mu’-‘beta’*latitude)^2))

4. end

. ml model lf llfsingle /mu /beta /sigma

. ml max

initial: log likelihood = -<inf> (could not be evaluated)

feasible: log likelihood = -127.9261

rescale: log likelihood = -31.297788

rescale eq: log likelihood = -2.3397622

Iteration 0: log likelihood = -2.3397622 (not concave)

Iteration 1: log likelihood = -1.5887217 (not concave)

Iteration 2: log likelihood = -1.2837809

Iteration 3: log likelihood = -1.2491574

Iteration 4: log likelihood = -1.1988511

Iteration 5: log likelihood = -1.1982504

Iteration 6: log likelihood = -1.1982487

Iteration 7: log likelihood = -1.1982487

Number of obs = 152

Wald chi2(0) = .

Log likelihood = -1.1982487 Prob > chi2 = .

3Latitude data for countries appearing in the 1985 Penn World Tables and missing from the CIA
World Factbook comes from https://www.google.com/.
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu 6.927805 1.420095 4.88 0.000 4.144469 9.711141

beta .0408554 .049703 0.82 0.411 -.0565607 .1382714

sigma .8019654 .5670751 1.41 0.157 -.3094815 1.913412

. mat gammasingle=e(b)

Using these estimates, we evaluate Ln at its maximum to find Ln

(
1, σ̃2, δ̃, ·, µ̃2

)
.

. gen llf1regime=ln(((2*_pi*gammasingle[1,3]^2)^(-1/2))*exp((-1/(2*gamma

> single[1,3]^2))*(lgdp-gammasingle[1,1]-gammasingle[1,2]*latitude)^2))

. quietly summ llf1regime

. quietly replace llf1regime=r(sum)

. disp "Final estimated quasi-log-likelihood for 1 regime: " llf1reg

Final estimated quasi-log-likelihood for 1 regime: -182.1338

Thus we have n · Ln
(

1, σ̃2, β̃, µ̃1, ·
)

= −182.1388.

Under the alternative hypothesis of two regimes, direct maximization is more difficult,

as the quasi-log-likelihood involves the log of the sum of two terms:

Ln
(
p, σ2, β, µ1, µ2

)
=

1

n

n∑
t=1

log
(
pf
(
yt|σ2, β, µ1

)
+ (1− p) f

(
yt|σ2, β, µ2

))
.

The expectations-maximization (EM) algorithm provides a method for circumventing this

difficulty. This algorithm requires iterative estimation of the latent regime probabilities,

p, and maximization of the resultant log-likelihood function until parameter estimates

converge. The EM algorithm proceeds as follows:
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1. Choose a starting guess for the parameter values: p(0), σ2(0), β(0), µ
(0)
1 , µ

(0)
2

2. For each observation, calculate ηt = P(st = 1|yt, xt) such that

η̂t = p(0)
f
(
yt|σ2(0), β(0), µ

(0)
1

)
p(0)f

(
yt|σ2(0), β(0), µ

(0)
1

)
+ (1− p(0)) f

(
yt|σ2(0), β(0), µ

(0)
2

)

3. Using Stata’s ml command, find parameter values p(1), σ2(1), β(1), µ
(1)
1 , µ

(1)
2 that max-

imize the complete log-likelihood:

LCn
(
p, σ2, β, µ1, µ2

)
=

1

n

n∑
t=1

(η̂t log f
(
yt|σ2, β, µ1

)
+ (1− η̂t) log f

(
yt|σ2, β, µ2

)
+(1− η̂t) log(1− p) + η̂t log p)

4. To test for convergence, calculate

(a) max((p(1), σ2(1), β(1), µ
(1)
1 , µ

(1)
2 )− (p(0), σ2(0), β(0), µ

(0)
1 , µ

(0)
2 )),

(b) |LCn
(
p(1), σ2(1), β(1), µ

(1)
1 , µ

(1)
2

)
− LCn

(
p(0), σ2(0), β(0), µ

(0)
1 , µ

(0)
2

)
|,

(c) and (using numeric derivatives) max(LCn
′
).

5. If all three convergence criteria are less than some tolerance level (we use 1
n
) then

quit and use p(1), σ2(1), β(1), µ
(1)
1 , µ

(1)
2 as final parameter estimates. Else, repeat Steps

2-5 with p(1), σ2(1), β(1), µ
(1)
1 , µ

(1)
2 as the new starting guess.

The following code illustrates the implementation of these steps for the model at hand.

. program define llfmulti

1. version 10.1

2. args lnf mu1 mu2 beta sigma p

3. quietly replace ‘lnf’= (1/_N)*((1-etahat)*(ln((2*_pi*‘sigma’^2)^(-1
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> /2))+((-1/(2*‘sigma’^2))*(lgdp-‘mu2’-‘beta’*latitude)^2)+ln(1-‘p’))+et

> ahat*(ln((2*_pi*‘sigma’^2)^(-1/2))+((-1/(2*‘sigma’^2))*(lgdp-‘mu1’-‘be

> ta’*latitude)^2)+ln(‘p’)))

4. end

. gen error=10

. gen tol=1/_N

. while error>tol {

2. quietly replace f1=((2*_pi*gammahat[1,4]^2)^(-1/2))*exp((-1/(2*gamm

> ahat[1,4]^2))*(lgdp-gammahat[1,1]-gammahat[1,3]*latitude)^2)

3. quietly replace f2=((2*_pi*gammahat[1,4]^2)^(-1/2))*exp((-1/(2*gamm

> ahat[1,4]^2))*(lgdp-gammahat[1,2]-gammahat[1,3]*latitude)^2)

4. quietly replace fboth=gammahat[1,5]*f1+(1-gammahat[1,5])*f2

5. quietly replace etahat=gammahat[1,5]*f1/fboth

6. ml model lf llfmulti /mu1 /mu2 /beta /sigma /p

7. ml init gammahat, copy

8. quietly ml max

9. mat gammanew=e(b)

10. *Check for convergence using user-defined program nds

. nds

11. quietly replace error=max(nd1,nd2,nd3,nd4,nd5)

12. matrix gammahat=gammanew

13. }

. ml display

Number of obs = 152

Wald chi2(0) = .

Log likelihood = -1.4441013 Prob > chi2 = .
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu1 6.532847 1.148891 5.69 0.000 4.281062 8.784632

mu2 7.813265 1.45266 5.38 0.000 4.966102 10.66043

beta .0451607 .0374139 1.21 0.227 -.0281691 .1184905

sigma .5986278 .4232938 1.41 0.157 -.2310127 1.428268

Using these estimates, we evaluate Ln at its maximum to find Ln

(
p̂, σ̂2, δ̂, µ̂1, µ̂2

)
and then calculate QLRn.

. quietly replace f1=((2*_pi*gammanew[1,4]^2)^(-1/2))*exp((-1/(2*gammane

> w[1,4]^2))*(lgdp-gammanew[1,1]-gammanew[1,3]*latitude)^2)

. quietly replace f2=((2*_pi*gammanew[1,4]^2)^(-1/2))*exp((-1/(2*gammane

> w[1,4]^2))*(lgdp-gammanew[1,2]-gammanew[1,3]*latitude)^2)

. gen lf2reg=gammanew[1,5]*f1+(1-gammanew[1,5])*f2

. gen llf2regime=ln(lf2reg)

. quietly summ llf2regime

. quietly replace llf2regime=r(sum)

. disp "Final estimated quasi-log-likelihood for 2 regimes: " llf2regime

Final estimated quasi-log-likelihood for 2 regimes: -179.9662

Thus we have n · Ln
(
p̂, σ̂2, β̂, µ̂1, µ̂2

)
= −179.9662. To calculate the test statistic,

. gen QLR=2*(llf2reg-llf1reg)
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. disp "Quasi-Likelihood Ratio test statistic of 1 regime: " QLR

Quasi-Likelihood Ratio test statistic of 1 regime: 4.3352051

These estimates and the resulting QLR test statistic are summarized in Table 1.2. For

the complete Stata code used to create Table 1.2, see Appendix A.

Table 1.2: QLR Test of Two Regimes vs. One Regime

Single Regime Two Regimes
Regime I Regime II

Constant (µ1, µ2) 6.928 6.533 7.813
Latitude (β) 0.041 0.045
SD of error (σ) 0.802 0.599
Probability of Regime I (p) 0.771
Log likelihood (Ln) -182.1 -180.0
QLRn 4.3

Finally, we use the rscv command to calculate the critical value for the QLR test of

size 5 percent. We allow for the possibility that the two regimes are widely separated

and set H = [−5.0, 5.0]. The command and output are shown below.

. rscv ,ll(-5) ul(5) r(100000) q(0.95)

7.051934397

Given that this critical value of 7.05 exceeds the QLR statistic of 4.3, we cannot reject

the null hypothesis of a single regime.

This result is consistent with the findings of Bloom et al., although they use a different

method to obtain the necessary critical values. They report a likelihood ratio and the

corresponding critical values for a restricted version of their model where the regime

probabilities are fixed (p does not depend on x). Using this restricted model, the authors

do not reject the null hypothesis of a single regime. At the time that Bloom et al. (2003)

was published, researchers had yet to successfully derive the asymptotic null distribution
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for a likelihood ratio test of regime-switching. For this reason, the authors employ Monte

Carlo methods to generate their critical values using random data generated from the

estimated relationship given by the model in (1.7) and (1.8). The primary disadvantage

of this approach is that the derived critical values are then dependent upon the authors’

assumptions concerning the underlying data generating process.

Bloom et al. go on to report a likelihood ratio test of a single regime model against the

unrestricted model with latitude-dependent regime probabilities. Using the unrestricted

model, the likelihood ratio and simulated critical values allow the authors to reject the

null hypothesis in favor of the alternative of two regimes. Because the null distribution

derived by Cho and White (2007) applies only to the restricted QLR presented in (1.9),

we are unable to use the QLR test, and hence the rscv command, to obtain the critical

values necessary to evaluate this unrestricted test statistic.

1.6 Discussion

For the case of a simple linear model with Gaussian errors, we provide a methodol-

ogy and a new Stata command, rscv, to construct critical values for a test of regime-

switching. Despite the complexity of the underlying methodology, the execution of rscv

is relatively simple and merely requires the researcher to provide a range for the stan-

dardized distance between regime means. We demonstrate in Section 1.5 both how these

methods can be generalized to a very broad class of models and the restrictions necessary

to properly estimate the QLR statistic and utilize the rscv critical values.
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Chapter 2

Signaling in Higher Education: The
Effect of Access to Elite Colleges on
Choice of Major

2.1 Introduction

It is a well-established fact that more educated individuals earn higher wages. There

are two primary theories for the source of this education wage premium. The first is

the human capital accumulation, or full information, model in which education directly

enhances productivity and thereby increases an individual’s wages. The second is the

signaling model of the labor market first proposed by Spence (1973), wherein the mon-

etary returns to schooling are partially explained by information asymmetries between

individuals and employers. These two models lead to strikingly similar labor market

predictions, which has made testing between them difficult. I provide a new test of the

signaling model against the full information model using individuals’ choices of college

major. This test is novel in that it focuses on the quality of an individual’s education

as a potential signal, rather than the quantity of education. Furthermore, while other

tests have focused on high school students or other specific groups (e.g. GED takers in

Tyler et al. (2000) and MBA students in Hussey (2012)), this test sheds light onto the
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decision-making process of college-going students.

In a full information model, productivity is costlessly observed by both the individual

and the employer. Each individual chooses her optimal level of education to improve

productivity and wages, given her ability and the marginal cost of schooling. In the

signaling framework, information is asymmetric such that employers cannot perfectly

observe individual ability or true productivity. Employers use education levels to infer

expected productivity while each individual chooses her level of schooling to signal a

higher innate ability and potential productivity to employers. The equilibrium result

in both models is that higher ability individuals obtain more education and accordingly

earn higher wages.

While the equilibria in both models appear similar, the extent to which individuals

sort on ability depends on the amount of information asymmetry in the labor market.

Under the signaling model, the individual’s social and private returns to education do

not necessarily coincide. The private return is a combined effect of the social return from

increased productivity and the signaling effect of being identified (perhaps falsely) as a

high ability individual. This disparity between private and social returns could lead to

an inefficient allocation of schooling in the competitive labor market. The implication

that investment in schooling might lead to a deadweight loss for society has prompted

many attempts to distinguish between these two theories (Wolpin, 1977; Riley, 1979;

Lang and Kropp, 1986; Bedard, 2001; Hussey, 2012) and to measure what portion of the

returns to schooling are attributable to signaling effects (Altonji and Pierret, 1997; Tyler

et al., 2000; Altonji and Pierret, 2001; Fang, 2006; Clark and Martorell, 2014). However,

the empirical evidence differentiating the two models has been fairly limited and testing

between the full information and signaling models of education has proven difficult.

I propose a new model, applying the signaling framework of Spence (1973) to the

postsecondary environment. In this model, major field of study can be used by individuals
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to signal unobserved ability and productivity to employers. I show that this leads to a

prediction that geographic areas with high access to elite colleges result in fewer science,

technology, engineering, and mathematics (STEM) majors among lower ability students

at non-elite colleges. This is distinct from the prediction of a full information model where

the level of access to elite schools should only affect those high ability individuals who

are eligible to attend an elite school. Using data from the National Center for Education

Statistics’ Baccalaureate and Beyond survey and the geographic variation in access to

elite schools across the U.S., I find evidence that is consistent with the signaling model

prediction.

This paper adds to the existing literature on testing between the signaling and full

information frameworks and specifically builds upon the the comparative statics approach

used in both Lang and Kropp (1986) and Bedard (2001) to successfully identify signaling

effects among high school students. Furthermore, this paper contributes new evidence

that information asymmetries and signaling considerations continue to play a significant

role in college-level decision-making and that the quality of education, in addition to the

quantity, can successfully be used by students to signal unobserved ability. This evidence

that students are using college major as an ability signal indicates that some portion of

the substantial wage returns to college major choice (Daymonti and Andrisani, 1984;

James et al., 1989; Grogger and Eide, 1995; Arcidiacono, 2004; Bettinger, 2010) can be

attributed to private returns to the individual above and beyond the socially optimal

value of the degree.

The remainder of this paper is organized as follows. Section 2.2 presents a signaling

model of postsecondary education. Section 2.3 sets forth an empirical approach for testing

the signaling and full information predictions. Section 2.4 discusses the data and Section

2.5 presents the results. Finally, Section 2.6 offers some concluding remarks.
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2.2 Theoretical Framework

2.2.1 Asymmetric Information Model

Consider an environment in which every individual has an ability level, ai, drawn

from a continuous distribution, f(a). Employers cannot directly observe an individual’s

ability level, but instead receive two potential signals: college quality (Q) and major

choice (M). For ease of exposition, I focus here on the simple case of only 2 college

types (QH = elite and QL = non-elite) and 2 major choices (MH = STEM and ML =

non-STEM).1

In this context, it is somewhat simpler and more intuitive to model the college en-

rollment decision and the major choice decision sequentially. However, a simultaneous

modeling of these two choices ultimately yields the same theoretical predictions, provided

the following 2 conditions hold: (1) the equilibrium ability sorting is restricted to the

case where the highest ability students choose (QH ,MH), followed by the next highest

ability group choosing (QH ,ML), then (QL,MH), and finally (QL,ML); and (2) there is

an excess supply of applicants to elite colleges. Given the symmetry between these two

models, I address the simultaneous case fully in Appendix Section B.1 and proceed here

with the sequential model.

In the first stage, each student applies to a range of schools and, ideally, attends

the highest quality college that she is eligible for. Symmetrically, college admissions are

based on ability alone, creating a strict cutoff point in the distribution of ability, aQH . Of

course, there will also be those high ability individuals, ai > aQH , who do not attend the

best possible school that they qualify for. This could be due to the high financial cost or

for other reasons such as a desire to stay close to home, etc. To account for this, I follow

1Given previous findings showing that quantitative human capital is a scarce resource that yields
higher returns in the labor market (Paglin and Rufolo, 1990), the value M can be thought of as repre-
senting the quantitative component of each major.
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Bedard (2001) and allow for a uniformly distributed constraint so that some fraction,

1− p, of all eligible students are “directly constrained” from attending an elite college.

Once enrolled in school, the student must next decide on a field of study. Without

loss of generality I assume that there is no human capital accumulation due to college

quality and major choice so that, in equilibrium, firms set wages equal to expected ability.

The individual’s major choice problem can then be written as,

max
Mi

E[a|Qi,Mi]− CMH
(ai, Qi). (2.1)

The function CMH
(ai, Qi) represents the effort cost of choosing a STEM major, which

depends on both ability and college quality. This cost is decreasing in ability,

∂CMH
(ai, Qi)/∂ai < 0, as in the traditional Spence model (Spence, 1973).2 As Spence

points out, it is this decreasing cost assumption that is critical to ensuring that major

choice serves as a distinguishing signal and leads to a separating equilibrium. Within

each college quality level, students will choose to major in STEM provided that the added

benefit, E [a|Qi,MH ] − E [a|Qi,ML], is greater than the added cost, CMH
(ai, Qi). This

leads to two cutoff points in the ability distribution, aQLMH
and aQHMH

, that represent the

marginal individuals for whom the added benefit and cost of majoring in a STEM field

are exactly equal. The two conditions forming the cutoff points that define the separating

equilibrium can be written formally as:

E[a|aQH ≤ a < aQHMH
] = E[a|a ≥ aQHMH

]− CMH
(aQHMH

, QH), (2.2)

E[a|a < aQLMH
] = ψ(a)− CMH

(aQLMH
, QL), (2.3)

2The sign of the effect of college quality on cost is ambiguous from a theoretical perspective and does
not have any effect on the model predictions of interest here.
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where

ψ(a) =
[F (aQH )− F (aQLMH

)]E[a|aQLMH
≤ a < aQH ] + (1− p)[1− F (aQH )]E[a|a ≥ aQH ]

F (aQH )− F (aQLMH
) + (1− p)[1− F (aQH )]

.

(2.4)

This separating equilibrium is shown for a uniform ability distribution in the top

panel of Figure 2.1. The function ψ(a) is the expected ability/wages of individuals at

non-elite colleges who choose STEM majors (individuals in the area labeled (QL,MH)

in Figure 2.1). This is an average of the abilities of the individuals who are not eligible

to attend an elite school and then choose STEM, aQLMH
< ai < aQH , and the abilities

of the directly constrained individuals, ai ≥ aQH , weighted by their relative prevalence

in the population at non-elite schools. It is implicit in (2.4) that the equilibrium cutoff

for choosing a STEM major at non-elite schools is below the elite college admissions

cutoff point, aQLMH
≤ aQH . This requires an assumption on the upper bound of the cost

of choosing STEM at non-elite schools; CMH
(aQH , QL) ≤ aQH − E[a|a < aQH ], such that

it is optimal to choose a STEM major for at least the most able student who is not

eligible to attend an elite college.3 The separating equilibrium defined by conditions

(2.2)-(2.4) is somewhat non-standard due to the constraint, p, but is similar to that in

Bedard (2001). This equilibrium differs in the fact that the two major cutoff points

are independently determined. This follows directly from the sequential nature of the

decision-making process but is also true in a simultaneous model when there exists an

excess supply of applicants to elite colleges (see Appendix Section B.1).

Next consider a scenario in which there is decreased access to elite colleges and there-

fore a larger fraction of eligible students who are directly constrained, 1− p̃, where p̃ < p.

The bottom panel of Figure 2.1 shows the new separating equilibrium resulting from this

change in the constraint. Identification of the signaling effect of this difference in the

3I address the implications of a violation of this assumption in Appendix Section B.3.
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Figure 2.1: Separating equilibrium for uniform ability under 2 levels of uniform constraint

constraint relies on two primary assumptions:

Assumption 1 The distribution of ability, f(a), does not depend on the constraint level,

p;

Assumption 2 The cost of majoring in a STEM field at a non-elite college, CMH
(ai, QL),

does not depend on the constraint level, p.

Under these two assumptions, I show that an increase in the fraction of students who
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are constrained leads to a negative shift in the non-elite major cutoff point, aQLMH
,4 only

in an asymmetric information framework.5

At elite colleges, the distribution of ability is unchanged; therefore the maximization

problem in (2.1) and major cutoff point in (2.2) are also unchanged. For this reason, the

major choice decisions of elite college students will not provide a testable implication of

the signaling framework. Therefore, I will focus exclusively on the implications

for students at non-elite colleges for the remainder of this paper. At non-elite

schools the shift in the constraint causes an increase in the enrollment of individuals from

the top end of the ability distribution. Given the existing major cutoff point, these high

ability individuals will clearly choose STEM majors and will thus drive up the expected

ability for all STEM majors at non-elite colleges, ψ(a). Now consider the individual who

is at the margin, ai = aQLMH
, such that the added benefit of choosing STEM is exactly

equal to the marginal cost when the constraint is equal to p. It is clear that the increase

in the expected ability of STEM majors caused by the stricter constraint, p̃, will drive

up the associated marginal benefit (and have no effect on the cost) thereby inducing the

formerly indifferent individual to switch into a STEM field. This results in a negative

shift in the major cutoff point in the non-elite schools from aQLMH
to ãQLMH

.

This shift in the non-elite major cutoff point can be shown mathematically by taking

the total derivative of equations (2.3) and (2.4) and solving for
da
QL
MH

dp
:

daQLMH

dp
=

∂ψ(a)/∂p

∂E[a|a < aQLMH
]/∂aQLMH

− ∂ψ(a)/∂aQLMH
+ ∂CMH

(aQLMH
, QL)/∂aQLMH

. (2.5)

4Or conversely, a decrease in the fraction of constrained students will lead to a positive shift of the
non-elite major cutoff point.

5I make a third, non-essential assumption that the admissions cutoff, aQH , does not shift in response
to the change in the constraint. Relaxing this assumption may lead to an even larger shift in the non-elite
major cutoff, or it may have a mitigating effect on the cutoff shift. For details, see Appendix Section
B.4.
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The quantity in the denominator, ∂E[a|a < aQLMH
]/∂aQLMH

− ∂ψ(a)/∂aQLMH

+∂CMH
(aQLMH

, QL)/∂aQLMH
, is the first derivative of condition (2.3), which must be negative

under local stability of the equilibrium. The numerator, which is the direct effect of

decreasing the fraction constrained on the expected ability of STEM majors at non-elite

schools, can also be shown to be negative:

∂ψ(a)

∂p
=

[1− F (aQH )][F (aQH )− F (aQLMH
)]

γ
(E[a|aQLMH

≤ a < aQH ]− E[a|a > aQH ]), (2.6)

where γ = F (aQH )− F (aQLMH
) + (1− p)[1− F (aQH )].

The leading fraction in (2.6) is a ratio of populations, which is clearly positive: 1 −

F (aQH ) > 0; F (aQH )−F (aQLMH
) > 0; γ > 0. The quantity (E[a|aQLMH

≤ a < aQH ]−E[a|a >

aQH ]) is the difference between the expected ability of STEM majors at non-elite schools

who are below the admissions cutoff and the expected ability of all students who are

above the admissions cutoff. It is clear that E[a|aQLMH
≤ a < aQH ] < E[a|a > aQH ] so that

E[a|aQLMH
≤ a < aQH ]− E[a|a > aQH ] < 0 and ∂ψ(a)

∂p
< 0.

Thus, (2.5) is the product of two negative values and
da
QL
MH

dp
> 0, so that the effect

of increased access to elite colleges and a smaller fraction of students who

are directly constrained is an increase in the non-elite major cutoff point.

Conversely, decreased access and a larger fraction of directly constrained students (as in

the bottom panel of Figure 2.1) will have a negative effect on the non-elite cutoff point.

This same effect holds for a non-uniform constraint when the constraint is an increas-

ing function of ability, p(a). Given the availability of merit-based scholarships and grants,

it seems likely that the most able students are also the least likely to face a constraint

to entering their college of choice. The above calculations are somewhat complicated by

this addition, but the results will hold under two conditions: (1) p(a) must be increas-

ing in ability (so that the fraction constrained, 1 − p(a), is smallest for the most able);
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and (2) p(a) < 1 for all ability levels both before and after the change in the fraction

constrained.6 Note that this more flexible constraint, when applied to the simultaneous

decision-making model described in Appendix Section B.1, will allow for the possibility

that some students who would otherwise sort into non-STEM majors at elite colleges

may decide to opt-out of attending the elite college in favor of majoring in a STEM field

at a non-elite school (as long as the probability of making this choice is decreasing in

ability).

2.2.2 Full Information Model

The predictions from a full information model are more straightforward. Under full

information, employers can observe individual ability so that wages perfectly reflect

marginal product (which is now a function of individual ability as well as the human

capital accumulated from college quality and major choice). For this reason, differences

in access to elite colleges will only affect the major choice for students who are directly

constrained. Those individuals who are directly constrained from entering an elite college

will instead attend a non-elite school and consequently choose a STEM major, as in the

asymmetric information model. The key difference between the two models is that in the

full information model, the decision of the marginal student who is indifferent between

a STEM and non-STEM major at a non-elite college is unaffected by the proportion of

high ability students in that school. For those students at non-elite colleges who are not

eligible to attend the elite schools, regardless of the constraint, both wages and the effort

cost of choosing a STEM major are unaffected (because wages equal marginal product

rather than expected marginal product) and thus the major choice problem is also un-

affected.7 The key prediction of the full information model is that altering the level of

6See Appendix section B.2 for more detail.
7The cost of choosing a STEM major is unchanged by assumption (see Section 2.2.1, Assumption

2). If this cost is lower when the fraction of constrained students is higher then the full information
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constraint does not shift the cutoff points in any way.

The shift in the STEM cutoff point at non-elite colleges that is unique to the signaling

framework allows for a test between the full information and asymmetric information

models. If there exist separate geographical areas such that the level of access to elite

colleges (and therefore the level of the constraint) differs across these areas, then a positive

(negative) shift in the STEM cutoff point at non-elite schools in the high (low) access

areas is consistent only under the asymmetric information model.

An important caveat to the full information model prediction is that it does not

account for potential peer effects. If lower ability students prefer to be in classrooms

with high ability students (for reasons unrelated to signaling) then having additional

high ability peers in the STEM fields at non-elite colleges in low access areas would make

those majors more attractive to the marginal student. This could lead to a negative shift

in the STEM cutoff point in the low access areas, even under full information, and make

the two models indistinguishable. I cannot directly test for the presence of peer effects

in this paper. However, existing research on peer effects and STEM major persistence

indicate that this may not be a concern.

Recent research shows that having higher ability STEM peers actually decreases the

probability of graduating with a STEM major (Fischer, 2015; Luppino and Sander, 2015).

Luppino and Sander (2015) analyze a rich dataset covering all students at the 8 Univer-

sity of California campuses and find that students who attend campuses with higher

ability peers in the STEM fields are less likely to graduate with a STEM degree. Simi-

larly, Fischer (2015) finds that, for women, a higher percentage of high ability peers in

an introductory STEM course decreases the probability of persistence in a STEM field

(she finds no discernable peer effect on men). This is not entirely surprising given the

model will predict a negative shift in the major cutoff point, as in the asymmetric model. I address this
possibility in Section 2.5 and show that the data does not suggest a difference in the cost of choosing a
STEM field.
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prevalence of rigid grading curves and highly competitive environments in STEM under-

graduate courses. Other research by Ost (2010) finds that STEM persistence is highly

influenced by relative grades. Students who receive lower relative grades in STEM vs.

non-STEM courses are more likely to switch out of STEM majors. If an increase in

the number of high ability peers in STEM courses leads to lower relative grades for the

marginal students, then this research implies that many of those students would conse-

quently leave the STEM majors. All of this evidence indicates that having additional

high ability peers in the STEM fields at non-elite colleges in low access areas would make

lower ability students less likely to major in a STEM field, thereby shifting the major

cutoff point to the right. This is the opposite effect of that predicted by the signaling

model in Section 2.2.1. Therefore, if there are significant peer effects at work, they will

mitigate the signaling effect and I will observe no shift in the major cutoff, or perhaps

even a shift in the opposite direction of the signaling model prediction. In this case I will

not be able to reject the null hypothesis of a full information model.

2.3 Empirical Approach

Recall that the testable prediction provided by the two models above involves only the

major choices of students at non-elite colleges, so the following empirical analysis excludes

students at elite colleges and all equations are implicitly conditional on Qi = QL. In order

to conduct the test, I implement a simple probit model of the probability that a student

at a non-elite college chooses a STEM major wherein an individual’s latent ability is

modeled by

ai = X ′iβ + εi. (2.7)
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The vector Xi represents individual characteristics (such as age, sex, parents’ education),

which might influence the individual’s aptitude for a STEM major and εi is a normally

distributed error term. The observable outcome, yi, is an indicator for whether individual

i (attending a non-elite college) chooses a STEM major:

yi =


0 if ai ≤ aQLMH

1 if ai > aQLMH
.

(2.8)

Under the asymmetric information model, the cutoff point, aQLMH
, is a function of being

in a high or low access area so that,

aQLMH
= α + γHi, (2.9)

where Hi is an indicator for being in a high access area with a small fraction of directly

constrained individuals. The signaling model predicts that γ will be positive (to reflect

a positive shift in the cutoff point).

The probability of observing a student at a non-elite college in a STEM field is then,

P (yi = 1|Xi, Hi) = P
(
ai > aQLMH

|Xi, Hi

)
= P (X ′iβ + εi > α + γHi|Xi, Hi)

= P (εi < −α− γHi +X ′iβ|Xi, Hi)

= Φ (−α− γHi +X ′iβ) . (2.10)

Note the reversed signs on the parameters, α and γ, that enter into the equation for the
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cutoff point. This indicates that estimation of a regression model of the form,

P (yi = 1|Xi, Hi) = Φ (θ0 + θ1Hi +X ′iβ) , (2.11)

will produce estimates such that θ0 = −α and θ1 = −γ. Therefore, in the results in

Section 2.5, a negative estimate of θ1 will indicate a positive shift in the cutoff point,

aQLMH
, in high access areas, as is consistent with the asymmetric information model.

For identification of γ it is important that the high access indicator enters into the

cutoff point alone and not also into the vector Xi. For this reason, I must restrict the

estimation sample to individuals who are not directly affected by the constraint, i.e.

ai < aQH . Otherwise the high access indicator, Hi, will enter directly into the vector Xi

by removing mass from the upper end of the ability distribution.8

The primary empirical challenge is then identifying low access areas (those with a high

fraction of constrained students) and high access areas (those with a smaller fraction of

constrained students). It is reasonable to assume that proximity to a college decreases

both the financial and psychic costs of attendance. The cost of attending a given college

might be substantially reduced simply due to the lower financial costs of moving and

holiday/summer travel. Furthermore, growing up in proximity to many elite colleges

may lead to additional awareness of the benefits of attending such a school and perhaps

additional information on how to best prepare for and apply to those colleges. A student

is also more likely to attend a college close to his home, family, and existing social

network in order to avoid the additional social and psychic costs associated with moving

to a distant region. Therefore, I assume that students living near a large number of elite

8It is also important that the high access and low access regions satisfy Assumption 1 (see Section
2.2.1). If the distribution of ability differs between region types, then the variable Hi will enter di-
rectly into the vector Xi (even after the sample is limited to lower ability individuals) because it will
add/subtract mass from the bottom end of the ability distribution. I address this possibility in Section
2.5 and show that the data does not suggest a difference in ability distributions across the two region
types.
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colleges are less likely to be constrained from entering an elite school and use geographic

variation in proximity to elite colleges across the U.S. to identify high and low access areas.

Existing research (Do, 2004; Griffith and Rothstein, 2009) and empirical data support

this assumption; conditional on attending college, a freshman student is 4.6 times more

likely to enroll at Yale University if they attended high school in Connecticut. Even

compared to students from nearby Massachusetts, the Connecticut high schooler is 2.2

times more likely to enroll at Yale.9

Consider for example student i living in Massachusetts and student j living in Kansas

who are both high ability students with ai = aj > aQH . Living within driving distance

of Boston and its myriad elite colleges, student i is more likely to consider applying

to an elite school and will face less of a financial and emotional burden if she attends

one of these schools than will student j. For this reason, it is more likely that i ends

up attending an elite school while it is more likely that j attends a non-elite school

in Kansas. Now consider student k and student l who also live in Massachusetts and

Kansas, respectively, but who have ability ak = al < aQH . Neither student will be able

to gain admission to an elite college. When these two students later enter the labor

market employers will observe their major choice and both the quality and location of

the colleges they each attended. Because student l attended a non-elite school in a low

access region (Kansas), employers will determine his expected ability (and corresponding

wage) based on the ability distribution in the bottom panel of Figure 2.1. As discussed in

Section 2.2.1, the presence of additional high ability students (like student j) at non-elite

schools in low access regions changes the incentive structure for their fellow classmates.

The equilibrium result is that student l, who would have chosen a non-STEM major in a

9Data is from the Integrated Postsecondary Education Data System and references freshman enroll-
ment from the fall of 2004. For all elite colleges (as defined in Section 2.4) freshmen are at least 1.9
times more likely to enroll if they attended high school in the same state and for some elite schools this
probability ratio is as high as 230.
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high access region (like student k), will instead be more likely to be motivated to choose

a quantitative major in order to “blend in” with his constrained high ability classmates.

Note that this identification strategy assumes a national market for college gradu-

ates. However, to the extent that there are local labor markets, there may be general

equilibrium effects on the wages of college graduates. If the increased supply of STEM

graduates resulting from a higher fraction of constrained students has a general equilib-

rium effect, it would be to drive down the wages for STEM majors in the low access

markets. This would make STEM a less attractive option and shift the non-elite major

cutoff to the right, which would mitigate the negative shift predicted by the signaling

model. Therefore, general equilibrium effects will only make it less likely that I will be

able to detect any signaling effects in the asymmetric information model.

2.4 Data

I implement this empirical approach using data from the National Center for Ed-

ucation Statistics’ Baccalaureate & Beyond Longitudinal Study (B&B), the Integrated

Postsecondary Education Data System (IPEDS), and the U.S. News Best Colleges 2013

rankings (USN). I utilize the USN rankings data to create a measure of college qual-

ity.10 The USN data include the 75th percentile SAT/ACT scores for each school’s 2012

freshman class. I convert ACT scores into SAT scores using the correspondences sug-

gested in Dorans (1999) and then sort schools based on the derived 75th percentile SAT

score. Colleges in the top 5% of all 1,525 USN colleges are classified as elite schools and

the remaining colleges are classified as non-elite. The list of all elite colleges under this

10The U.S. News rankings are divided into 10 separate categories (by Carnegie classification). Absent
a method of comparing the #3 ranked National University with the #3 ranked Liberal Arts College, I
cannot use the actual rankings as a metric for college quality.
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definition is given in Appendix Table B.1.11

The B&B study surveys 3 cohorts of individuals who completed bachelor’s degrees

in 1993, 2000, and 2008. The data contain extensive information on the undergradu-

ate experience, including institution attended and field of study. The data also con-

tain demographic and background characteristics including: age at graduation, gender,

race/ethnicity, parents’ highest level of education, and SAT and ACT exam scores. Us-

ing the B&B data, I define STEM majors to include individuals in the following fields:

mathematics, natural sciences, engineering, and computer science. Non-STEM majors

include: all social sciences, liberal arts and humanities, education, business, and voca-

tional fields.12

The combined 3 cohorts of the B&B data provide 32,490 observations13 with complete

institution, major, and demographic information and of this total, 28,100 attend non-

elite colleges.14 I use individual-level SAT scores from the B&B data to limit the sample

to students who are unlikely to be directly constrained (ai < aQH ). This derived score

is also a combination of SAT scores and ACT scores that have been converted using the

correspondence tables in Dorans (1999). For each of the 3 B&B cohorts and using the

USN college quality measure, I find the derived SAT score, S∗, for which approximately

80% of students’ scores at elite colleges are above S∗. This cutoff falls at 1,100 for the

1993 cohort, 1,160 for the 2000 cohort, and 1,200 for the 2008 cohort. I use these scores as

11In order to address any concern that the quality of these schools may be changing over time, I use
IPEDS data on 75th percentile SAT score in 2001 (the earliest year available) to show the 2001 rankings
of each school in columns 3 and 4 of Table B.1.

12There is some evidence that economics graduates have earnings and SAT scores much more in line
with STEM graduates than with other social sciences graduates (Black et al., 2003). I define economics
to be a non-STEM field in this analysis, however the main results are robust to including economics in
the STEM category.

13All observation counts are rounded to the nearest 10, in compliance with NCES security require-
ments.

141,380 observations are dropped because they did not match with any institution within the USN
data and an additional 1,050 observations are dropped because the institution did not report the 75th
percentile SAT/ACT score for incoming freshmen. The remaining 1,970 students attended elite colleges.
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the estimate for aQH and limit the sample to students who attend a non-elite college and

who have a derived SAT score less than the aQH cutoff corresponding to their cohort.15

This provides a final sample size of 22,330 non-elite college students who are below the

aQH cutoff.

I employ the IPEDS data on each institution’s latitude and longitude coordinates

as well as each school’s total freshman enrollment in Fall 2007 to identify which non-

elite colleges are in high or low access areas. I first calculate both the number of elite

colleges within a 100-mile radius of each non-elite school and the % of total freshman

enrollment (“open seats”) within that same radius that is at elite colleges. Each non-

elite institution is then categorized as being in either a high or low access area based on

various combined threshold values of these 2 measures of local elite college access. Using

both of these measures ensures that I capture the effect of many small elite liberal arts

colleges in an area as well as the effect of a single elite institution that is relative large

compared to the local non-elite alternatives. One advantage of this identification strategy

is that it allows for the inclusion of state fixed effects in the regression model so that

instead of comparing students in Alabama to students in California, I compare students

in Bakersfield, CA to students in San Francisco, CA. The choice of a 100 mile radius is

meant to encompass the credible set of options for the average student attending each

non-elite college and is consistent with the raw data. In the B&B sample of students

who attend non-elite colleges, the median distance between a student’s college and his

hometown is 45 miles and over 75% of these students attend a school within 150 miles

of their parents’ residence.16 As a robustness check, Section 2.5 provides two additional

identification strategies: one that classifies each U.S. state as high or low access and

15Students who did not report an SAT/ACT score are presumed to be below the aQH cutoff and are
included in the main sample. I show that the main results are robust to excluding these individuals and
to changes in the cutoff threshold in Section 2.5.1

16This excludes all student whose distance to home is greater than 3,500 miles to rule out international
students.
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another that identifies groups of states (regions) as high or low access.

The model to be estimated via Maximum Likelihood is:

P (STEMicst = 1) = Φ (α + βHighAccessc + δ′Xi + θ′Zc + γs + ηt) , (2.12)

where the variable STEMicst is an indicator that equals 1 if individual i at college c

located in state s from cohort t chooses a STEM major. The variable HighAccessc is a

measure of how many elite colleges exist in the 100 mile radius surrounding the college

attended and/or the percent of local college enrollment that belongs to elite insitutions.

The vector Xi captures individual characteristics including: age, gender, race/ethnicity,

and parents’ education. The vector Zc captures school-level characteristics, namely in-

dicators based on the school’s carnegie classification and indicators for the level of ur-

banization in the area surrounding the college. The vector γs captures all time-invariant

state fixed effects. The standard errors are estimated using the cluster-robust estimator

with clustering at the institution-level.17 Recall from Section 2.3 that if the estimate of

β is negative, then the data supports the prediction of the signaling model.

17Standard errors estimated with clustering at the state-level are somewhat smaller than those reported
in the tables below. Thus, the reported estimates can be considered a conservative bound on variance
of the estimator.
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Table 2.1: Summary Statistics

Institutions1 States Regions

High Low High Low High Low
Access Access Access Access Access Access

P(STEM = 1) 0.12 0.16 0.14 0.17 0.14 0.16
Age 25.2 25.6 25.4 25.7 25.3 25.8
Female 0.62 0.59 0.6 0.58 0.6 0.58
SAT Score 693.8 642.5 676.8 608.5 694.9 586.7
Missing SAT Score 0.28 0.34 0.3 0.37 0.28 0.40
Race/Ethnicity:

White 0.71 0.79 0.76 0.8 0.76 0.80
Black 0.084 0.091 0.092 0.083 0.096 0.077
Hispanic 0.11 0.061 0.073 0.072 0.074 0.072
Asian 0.07 0.031 0.05 0.023 0.049 0.028
Parents’ Highest Education:
High School or Less 0.30 0.28 0.29 0.29 0.29 0.29
Some College 0.23 0.23 0.24 0.22 0.24 0.22
Bachelor’s Degree 0.24 0.25 0.24 0.25 0.24 0.25
Master’s Degree or Higher 0.23 0.24 0.24 0.23 0.24 0.23
Institution Type:2

National University 0.36 0.50 0.44 0.51 0.44 0.51
Liberal Arts College 0.046 0.041 0.048 0.031 0.049 0.032
Regional College 0.046 0.071 0.054 0.087 0.064 0.065
Regional University 0.55 0.39 0.46 0.37 0.45 0.40
Urbanization Level:
Large City 0.30 0.18
Mid-size City 0.27 0.40
Urban Fringe of Large City 0.25 0.085
Urban Fringe of Mid-size City 0.095 0.071
Large Town 0.009 0.075
Small Town 0.032 0.15
Rural 0.034 0.026
Elementary & Secondary Education:
Expenditures per Pupil 10,564 8,315 10,773 8,281
Pupil-to-Teacher Ratio 16.9 16.4 16.8 16.7
Math NAEP Score 277.6 275.0 277.3 276.0
Reading NAEP Score 262.9 260.4 262.4 261.5
Observations 5,570 16,760 15,540 6,790 13,960 8,370
1Institutions are defined as high access if there are ≥ 4 elite schools within a 100 mile radius or ≥ 15%
of seats within 100 miles are at elite schools. States are defined as high access if they have > 1, 000 elite
seats or > 5% of the state’s freshman attend an elite school anywhere in the country. Regions are defined
using the classification shown in Figure 2.3 and are high access if they have at least 10,000 elite seats.
2Institution types are defined by U.S. News and World Report
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2.5 Results

Table 2.2 shows the marginal effects results of estimating the specification described

by (2.12) using both number of nearby elite colleges and/or the percent of freshman

enrollemnt that is at elite schools within a 100 mile radius of each non-elite school to

identify high access areas. The first two columns show the results of using continuous

measures for the level of access. These results indicate that 1 additional elite school

within a 100 mile radius decreases the probability of choosing a STEM major for lower

ability students at non-elite colleges by 0.4 percentage points. Given that the average

probability of choosing a STEM major in this sample is approximately 14.7%, this effect

is equivalent to a 3% decrease in STEM prevalence. Similarly, increasing the percent of

available freshman seats within a 100 mile radius that are at elite schools decreases the

probability of choosing STEM by 0.2 percentage points or 2%. However, the best measure

Table 2.2: Effect of Elite Presence Within 100 Mile Radius on P(STEM) at Non-Elite
Colleges

# % ≥ 2 Schools ≥ 3 Schools ≥ 3 Schools ≥ 4 Schools
Schools Seats or ≥ 10% Seats or ≥ 10% Seats or ≥ 15% Seats or ≥ 15% Seats

(1) (2) (3) (4) (5) (6)
High Access -0.0040∗∗ -0.0024∗ -0.0230∗ -0.0285∗∗ -0.0365∗∗∗ -0.0329∗∗

(0.0018) (0.0014) (0.0122) (0.0128) (0.0115) (0.0127)
High Access % 0.42 0.35 0.31 0.26
Observations 22,330 22,330 22,330 22,330 22,330 22,330
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All specifications include controls for demographic variables, institution type, urbanization, cohort fixed effects, and state
fixed effects. Standard errors in parentheses are clustered by institution.

of elite college access should capture both the number of schools and their relative sizes,

so the remaining columns use indicator variables for various combined thresholds of the

two access measures. Column (3) is the most liberal definition of high access, requiring

only 2 nearby elite colleges or 10% of local freshman enrollment to be at elite schools

in order for a non-elite school to be classified as high access. The thresholds become

stricter in each column to the right in Table 2.2, with the strictest definition in column
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(6) being the preferred specification. The results of these threshold specifications indicate

that the effect of having a higher elite college presence within a 100 mile radius is a 2.3-

3.7 percentage point decrease in the probability of choosing a STEM major at non-elite

colleges, which is equivalent to a 16-25% decline. This represents a considerable positive

shift of the major cutoff point at non-elite colleges in high access areas and is consistent

with the signaling model prediction.

To check that these results are not specific to this 100-mile radius strategy of defining

high access areas, I also estimate the model using two alternative identification strategies.

In the first approach, I classify each U.S. state as a high or low access area so that all

students attending a non-elite college in a high access state are assumed to have faced a

lower probability of being constrained from entering an elite college than those students

attending non-elite schools in low access states. Of course, the boundaries between states

are largely arbitrary and, especially in the East where states are smaller, the barriers to

moving across state lines are low. Thus, classifying students in Delaware as having less

access to the elite colleges of New York City than the students in Albany, NY is somewhat

misleading given that Delaware is actually located at a closer distance to New York City.

To minimize this type of misclassification, in the second alternative identification strategy,

I define groups of states (regions) as high or low access.

The IPEDS data provide each institution’s freshman enrollment by state of high school

residence for the years 1988, 1996, and 2004 (the years that each B&B cohort were likely

freshmen).18 In the state-level identification strategy, I use this data to determine which

U.S. states have a high concentration of open seats at elite colleges and which states

send a large fraction of their students to elite schools located anywhere within the U.S.

(averaged over the years 1988, 1996, 2004). I use both of these measures in order to

18The 1993 cohort would most likely have been freshmen in the Fall of 1989, but high school residence
data is not available in IPEDS for that year.
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mitigate the problem of arbitrary state boundaries mentioned above. For example, Table

2.3 shows that while Connecticut only has 2 very small elite schools, 13.4% of freshmen

from Connecticut attend elite schools, which is one of the highest percentages in the

country. These students may be attending elite colleges in neighboring states such as

Massachusetts. Using only the number of elite schools or elite seats within each state to

measure accessibility would lead to the misclassification of states like Connecticut into

the low access group. I define high access states to be those that satisfy either of the

following criteria: (1) more than 1,000 seats at local elite schools, or (2) send more than

5% of their students to elite colleges anywhere in the U.S. (shown in Figure 2.2).19

Figure 2.2: Access to Elite Colleges by State
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19As a robustness check, I drop all students from the sample who attend an institution within 50 miles
of any state border. This removes more than half of the sample, but the resulting estimates are actually
larger and remain statistically significant.
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Table 2.3: Prevalence of Elite Colleges by State

State
# of Elite 
Colleges

# of Freshman 
Seats at Elite 

Colleges in State

% of Freshmen 
from State at Any 

Elite College
High 

Access
CA 9 19,520 16.0 1
NY 11 17,488 12.5 1
MA 11 14,282 17.7 1
MI 1 6,871 8.0 1
VA 3 6,089 12.7 1
PA 5 5,808 6.3 1
GA 2 4,959 8.5 1
IL 3 4,008 5.5 1
CO 2 3,272 5.0 1
TN 2 2,202 4.6 1
MO 1 2,185 3.3 1
NC 2 2,138 2.9 1
IN 1 2,122 2.0 1
OH 3 2,082 4.3 1
CT 2 2,056 13.4 1
MD 1 1,875 10.6 1
MN 3 1,819 5.7 1
DC 1 1,748 22.1 1
ME 3 1,488 12.9 1
RI 1 1,429 11.1 1
NJ 1 1,172 11.5 1
NH 1 1,081 10.2 1
TX 1 726 3.4 0
VT 1 580 10.5 1
IA 1 434 2.6 0
WA 1 417 5.9 1
OR 1 338 5.6 1
AR 1 320 2.8 0
FL 1 232 6.3 1
HI 0 0 7.7 1
DE 0 0 5.6 1
AZ 0 0 4.7 0
AK 0 0 4.6 0
NM 0 0 3.8 0
NV 0 0 3.4 0
WY 0 0 2.9 0
MT 0 0 2.9 0
AL 0 0 2.9 0
KS 0 0 2.7 0
SC 0 0 2.6 0
WI 0 0 2.4 0
MS 0 0 2.4 0
ID 0 0 2.4 0
KY 0 0 2.2 0
OK 0 0 2.0 0
UT 0 0 1.9 0
NE 0 0 1.8 0
WV 0 0 1.8 0
SD 0 0 1.7 0
ND 0 0 1.6 0
LA 0 0 1.6 0
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The regression to be estimated for the state-level identification approach is:

P (STEMicst = 1) = Φ (α + βHighAccesss + δ′Xi + θ′Zc + γ′Est + ηt) . (2.13)

This differs from the main specification (2.12) in the variable of interest, HighAccesss,

which now indicates whether the college attended is in a state with high access to elite

colleges. Clearly, the state fixed effects can no longer be included and are replaced by the

vector Est, which captures state-level characteristics that might influence major choice

for each cohort: expenditure per pupil in public elementary and secondary schools, pupil-

to-teacher ratio in public elementary and secondary schools, and National Assessment

of Educational Progress (NAEP) 8th grade math and reading scores.20 Ideally, I would

also control for state economic indicators such as median household income, however the

number of time-varying controls is limited by the fact that I only have 3 years of data.

Table 2.4: Effect of State-Level Access to Elite Colleges on P(STEM) at Non-Elite Colleges

High Access = High Access = High Access = High Access =
> 1, 000 seats > 1, 000 seats > 5% students > 4, 000 seats

or > 5% students only only or > 10% students
(1) (2) (3) (4)

High Access -0.0258∗∗∗ -0.0172∗∗ -0.0204∗∗ -0.0145∗

(0.0083) (0.0071) (0.0107) (0.0087)
High Access % 69.3 59.8 51.4 39.9
Observations 22,330 22,330 22,330 22,330
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns include controls for age, gender, parents’ education, race/ethnicity, institution type, state-level
expenditures-per-pupil and pupil-to-teacher ratio, state NAEP scores for math and reading, and cohort fixed
effects. Standard errors in parentheses are clustered by state.

Table 2.4 displays the marginal effects results of estimating equation (2.13) using a

Maximum Likelihood estimator. Column (1) shows the results using the preferred def-

20Education expenditure and pupil-to-teacher ratio data are from the NCES Common Core of Data
surveys from the 1988-1989, 1995-1996, and 2003-2004 school years. NAEP scores from 2003 are used
for all cohorts as this is the first year that data for all states is available.
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inition of high access states (more than 1,000 elite seats or more than 5% of students

attending elite schools) while columns (2)-(4) show the results using increasingly strict

cutoff points for inclusion in the high access group. These estimates are consistent across

definitions at approximately a 1.5-2.6 percentage point (or 10-18%) decrease in the prob-

ability of choosing a STEM major for low ability students at non-elite colleges in high

access states. These results are also consistent with the main findings in Table 2.2, al-

though somewhat smaller, and support the predictions of the asymmetric information

model.

To further minimize the possibility of misclassification, I next aggregate up to the

region level in the second alternative identification strategy. Using the IPEDS data, I

divide the country into 9 regions, keeping states with high inter-mobility of students

grouped together. I define high access regions to be those at least 10,000 seats at local

elite colleges (shown in Figure 2.3).21

Table 2.5: Prevalence of Elite Colleges by Region (9 Region Classification)

# of Freshman # of Elite
Seats at Elite Colleges High

Region States Colleges in Region in Region Access
1 DE, DC, MD, NJ, NY, PA 28,091 19 1
2 CT, ME, MA, NH, RI, VT 20,916 19 1
3 CA, HI, OR 19,858 10 1
4 IL, IN, MI, OH, WI 15,083 8 1
5 FL, GA, NC, SC, VA, WV 13,418 8 1
6 IA, KS, MN, MO, NE, ND, SD 4,438 5 0
7 AK, CO, ID, MT, NV, UT, WA, WY 3,689 3 0
8 AL, AR, KY, LA, MS, PR, TN 2,522 3 0
9 AZ, NM, OK, TX 726 1 0

21This cutoff forms a natural break point in the data (shown in Table 2.5) and the results shown
below are not sensitive to decreasing this requirement (and thereby including the Plains region in the
high access group) or to increasing the requirement (and thereby excluding the Southeast region from
the high access group).
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Figure 2.3: Access to Elite Colleges by Region
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The regression model corresponding to this region-level strategy is:

P (STEMicrt = 1) = Φ (α + βHighAccessr + δ′Xi + θ′Zc + ηt) , (2.14)

where the variable STEMicrt is now an indicator that equals 1 if individual i at college c

located in region r from cohort t chooses a STEM major and the variable HighAccessr

indicates whether the college attended is in a high access region.

Table 2.6 shows the results of estimating the region-level model given by (2.14).

Column (1) shows the marginal effects estimates using the region definitions shown in

Figure 2.3. The magnitude of this estimate is consistent with the institution and state-

level findings at approximately 2.5 percentage points. However, because of the small

number of clusters in this model (9 regions), conducting proper inference is problematic.

To address this issue, I apply the two-step approach of Donald and Lang (2007), which
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Table 2.6: Effect of Region-Level Access to Elite Colleges on P(STEM) at Non-Elite Colleges

9 Regions 17 Regions

Probit D&L Probit D&L
(1) (2) (3) (4)

High Access -0.0249∗∗∗ -0.0307∗∗ -0.0249∗∗∗ -0.0286∗∗

(0.0078) (0.0112) (0.0079) (0.0098)
High Access % 63.9 63.9 54.1 54.1
Observations 22,330 9 22,330 17
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns include controls for demographic variables, institution type,
and cohort fixed effects. Standard errors in parentheses are clustered
by region for columns (1) and (3). Estimates and standard errors in
columns (2) and (4) are obtained from the two-stage D&L method.

can provide more conservative standard errors. Under the two-stage Donald and Lang

(D&L) approach using a probit model, it is unclear how one might obtain marginal effects.

For this reason I estimate the first stage using a linear probability model. Column (2)

shows the results of this estimation method, which are actually somewhat larger (a 3.1

percentage point increase) and statistically significant at the 5% level.22 To ensure that

these results are not specific to this particular region classification, I also create a 17

region classification of the states that is shown in Appendix Figure B.1. The results

of estimating the model using this region definition (shown in columns (3) and (4) of

Table 2.6) are very similar to all previous specifications. The effect of being in a region

with high access to elite schools is a 2.5-3.1 percentage point, or 17-21%, decrease in the

probability of choosing a STEM major.

The two main concerns with the above specifications stem from potential failures

of Assumptions 1 and 2 (as stated in Section 2.2.1). Specifically, if the distribution of

ability is shifted to the left in high access areas or if the cost of choosing a STEM major

22The point estimates differ between the probit model in column (1) and the D&L method in column
(2) for two reasons: first, the use of the linear probability model in the first stage, and second, the
unequal sizes of the region clusters.
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Figure 2.4: Distribution of SAT Scores by Parents’ State of Residence
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is greater in high access areas, then the decrease in the probability of choosing a STEM

major could be explained by the full information model. To address the first concern, I

use data from the 1993 cohort, which includes parents’ state of residence, to test whether

the SAT score distribution of students from high access states is lower than the SAT

score distribution of students from low access states. Figure 2.5 shows the density of

combined SAT scores for these two groups. The two density functions certainly do not

appear to be shifted in either direction and a Kolmogorov-Smirnov test for equality of

the two distributions fails to reject the null hypothesis of identical distributions with a

p-value of 0.838.

The second concern is more difficult to address empirically. I provide 4 pieces of

evidence that shed light on the possibility of differential STEM costs across access-types.

The first is a test of differential college quality across high and low access areas. If the

quality of non-elite schools in high access areas is higher, then it might be possible that
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it is more costly to enter into a STEM major at those schools. This would cause a shift

in the major cutoff point even in the full information framework. Table 2.7 shows that

the distribution of non-elite college quality is similar across low and high access areas,

regardless of whether those areas are defined by region, state, or the 100 mile radius

around each institution. A chi-squared test fails to reject the null hypothesis that the

distributions are the same for both the low and high access areas.

Table 2.7: Quality Distribution of Non-Elite Schools

Institutions States Regions

High Low High Low High Low
Tier Access Access Access Access Access Access
0: Missing USN data 8.2% 6.7% 7.3% 6.7% 6.9% 7.4%
1: Bottom 25% 12.8% 10.4% 10.5% 12.3% 11.8% 9.6%
2: Top 51-75% 29.9% 37.6% 33.2% 41.0% 34.1% 38.2%
3: Top 26-50% 26.7% 23.7% 25.9% 21.3% 25.2% 23.2%
4: Top 11-25% 16.7% 17.7% 18.2% 15.7% 17.1% 18.1%
5: Top 6-10% 5.7% 3.9% 4.9% 3.0% 4.9% 3.4%

χ2
(4) = 7.57, p = 0.181 χ2

(5) = 8.69, p = 0.122 χ2
(5) = 3.85, p = 0.572

Rows/tiers defined by the 75th percentile freshman SAT score given by the USN data.

Institutions are defined as high access if there are ≥ 4 elite schools within a 100 mile radius or ≥ 15% of seats
within 100 miles are at elite schools. States are defined as high access if they have > 1, 000 elite seats or > 5% of
the state’s freshman attend an elite school anywhere in the country. Regions are defined using the classification
shown in Figure 2.3 and are high access if they have at least 10,000 elite seats.

A second strategy is to look for systematic mobility among students at non-elite

colleges. Given that the quality of non-elite institutions is similar across high and low

access areas, if the effort cost of choosing STEM is greater in higher access areas, then

the full information model would predict a flow of STEM students from high access areas

into low access areas. Using the B&B 1993 cohort data, I find that the fraction of non-

elite college students who move from a high access state to a low access state is quite

low at 8.5% (movement in the opposite directions is slightly more prevalent at 11.5%).

Table 2.8 shows that these students are no more likely to major in a STEM field than the

students who stay behind in the high access states. They are also no more likely to major
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in STEM than the non-elite college students that they join in the low access states. The

same is true of the students who move in the other direction from a low access state to

a high access state. This finding suggests that the cost of a STEM major is equal across

high and low access areas.

Table 2.8: Probability of Choosing a STEM Major At Non-Elite Colleges

State of College Attended
Parents’ State
of Residence

High Low Diff.
Access Access High-Low p-value

High Access 18.6% 19.5% -0.86% 0.724
Low Access 19.6% 19.5% 0.02% 0.995
Diff. High-Low -0.97% -0.09%
p-value 0.739 0.972

States are defined as high access if they have > 1, 000 elite seats or > 5% of
the state’s freshman attend an elite school anywhere in the country.

Thirdly, I estimate the specification in column (1) of Table 2.4 excluding all students

whose high school and college are not in the same state. The resulting point estimate

is actually much larger at 5.3 percentage points and remains significant at the 1% level.

This indicates that the results are not being driven by student mobility across state lines.

Finally, and most importantly, the inclusion of state fixed effects in the main spec-

ification (shown in Table 2.2) means that the ability distribution and/or the cost of a

STEM major would have to vary systematically within each state in order for pure hu-

man capital accumulation to have caused the observed differences in major choice. Given

all of these findings, it seems unlikely that any observed decrease in the probability of

choosing STEM at non-elite schools is due to differences in human capital accumulation

rather than a signaling effect.

51



Signaling in Higher Education: The Effect of Access to Elite Colleges on Choice of Major Chapter 2

2.5.1 Robustness Checks

The shift in the major cutoff estimated above is robust to a number of alternative

specifications. Tables 2.9 - 2.12 display the results of several of these robustness checks.

In each table, the “Inst” columns show estimates of equation (2.12), including state fixed

effects, using the preferred definition of high access non-elite colleges: at least 4 elite

schools within a 100 mile radius or at least 15% of local freshman enrollment at elite

colleges (as in column (6) of Table 2.2). The “State” columns show estimates of equation

(2.13) using the preferred definition of high access states: more than 1,000 elite seats

or more than 5% of the state’s freshmen attend an elite school (as in column (1) of

Table 2.4). The “Region” columns show estimates of equation (2.14) using the 9 region

classification shown in Figure 2.3 and employing the two-stage D&L method of estimation

(as in column (2) of Table 2.6).

One variable that has thus far been excluded from estimation is intelligence/academic

ability. The closest measure of academic ability in the B&B data is SAT/ACT score;

unfortunately the sample includes more than 5,000 individuals who did not report an

SAT or ACT score. I offer three methods for dealing with this missing data. Columns

(1)-(3) of Table 2.9 show the results from assigning an SAT/ACT score of zero to those

students who are missing a score and including both the score and an indicator for

individuals with missing scores in the vector of covariates. Alternatively, columns (4)-(6)

use a linear regression of observed SAT/ACT scores on age bins, gender, race/ethnicity,

and parents’ education to impute scores for those individuals with missing data. Finally,

since it is unclear whether an individual’s combined SAT/ACT score is the best measure

of ability in this model, given that the focus is on the choice of a quantitative field of

study, the estimates in columns (7)-(9) show the results of using only the math portion
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of the imputed score to measure ability.23 These alternative specifications show that the

main results are robust to including measures of individual academic ability in the model.

These estimates are approximately equivalent to an 11-22% decrease in the probability

of choosing a STEM field.

Table 2.9: Robustness Checks - Controlling for Ability

Include SAT Impute Missing Impute Missing
Control SAT Scores SAT I Math

Inst State Region Inst State Region Inst State Region
(1) (2) (3) (4) (5) (6) (7) (8) (9)

High Access -0.0316∗∗ -0.0230∗∗∗ -0.0278∗∗ -0.0297∗∗ -0.0192∗∗ -0.0284∗∗ -0.0228∗ -0.0166∗∗ -0.0263∗

(0.0126) (0.0083) (0.0117) (0.0125) (0.0083) (0.0115) (0.0114) (0.0082) (0.0116)
SAT Combined Score 0.0272∗∗∗ 0.0274∗∗∗ 0.0259∗∗∗ 0.0250∗∗∗ 0.0253∗∗∗ 0.0249∗∗∗

(0.0032) (0.0040) (0.0030) (0.0032) (0.0037) (0.0032)
SAT Missing Indicator 0.351∗∗∗ 0.348∗∗∗ 0.267∗∗∗ 0.0083 0.0047 0.0048 0.0251∗∗∗ 0.0225∗∗ 0.0263∗∗∗

(0.0451) (0.0601) (0.0289) (0.0090) (0.0094) (0.0093) (0.0090) (0.0102) (0.0092)
SAT Math Score 0.0416∗∗∗ 0.0427∗∗∗ 0.0410∗∗∗

(0.0060) (0.0068) (0.0058)
State Fixed Effects X X X
State Education Variables X X X
Observations 22,330 22,330 9 21,070 21,070 9 20,300 20,300 9
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates and standard errors in columns (3), (6), and (9) are obtained from the two-stage D&L method. Standard errors in parentheses are clustered
by state for columns (2), (5), and (8) and by institution for columns (1), (4), and (7). All specifications include controls for demographic variables,
institution type, and cohort fixed effects.

Institutions are defined as high access if there are ≥ 4 elite schools within a 100 mile radius or ≥ 15% of seats within 100 miles are at elite schools.
States are defined as high access if they have > 1, 000 elite seats or > 5% of the state’s freshman attend an elite school anywhere in the country.
Regions are defined using the classification shown in Figure 2.3 and are high access if they have at least 10,000 elite seats.

Table 2.10 shows that the results are not sensitive to the cutoff point, aQH , that de-

termines which students are unlikely to be directly constrained (ai < aQH ) and therefore

included in the sample. In columns (1)-(3), I find the SAT score, S∗, for which 95%

of students at elite colleges score above S∗. This value is 930 for the 1993 cohort, 980

for the 2000 cohort, and 1,030 for the 2008 cohort. All students at non-elite colleges

who score above S∗ are then excluded from the sample. This lower cutoff point ensures

that the results are not driven by the inclusion of directly constrained students choosing

STEM majors at non-elite colleges in low access areas. If, however, it is possible to buy a

spot at an elite college regardless of having lower academic qualifications, then students

23Note that I also recalculate the high ability cutoff point (ai < aQH ) using the imputed SAT/ACT
combined scores in columns (4)-(6) and using the imputed SAT/ACT math scores in columns (7)-(9).
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from very high income families should also be excluded from the sample. I use the entire

B&B sample to find the 90th percentile family income, which is $158,000 in 2008 dollars.

Columns (4)-(6) drop all students with a family income above this amount from the

sample. Finally, Columns (7)-(9), combine these requirements and drop all students who

either have an SAT score above the 95% S∗ or who have a family income above $158,000.

The results in each of these specifications vary between an 11% and 22% decrease in the

probability of choosing a STEM field, demonstrating that the major choices of directly

constrained students are likely not driving the estimated shift in the major cutoff point.

Table 2.10: Robustness Checks - Cutoff for Directly Constrained Students

5th Percentile Drop Incomes 5th Pctl Elite SAT
Elite SAT Score Above $158,000 & Drop High Incomes

Inst State Region Inst State Region Inst State Region
(1) (2) (3) (4) (5) (6) (7) (8) (9)

High Access -0.0248∗ -0.0157∗ -0.0303∗ -0.0309∗∗ -0.0264∗∗∗ -0.0320∗∗ -0.0253∗ -0.0169∗ -0.0304∗

(0.0122) (0.0097) (0.0138) (0.0127) (0.0085) (0.0108) (0.0128) (0.0103) (0.0133)

State Fixed Effects X X X
State Education Variables X X X
Observations 15,040 15,040 9 20,860 20,860 9 14,300 14,300 9
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates and standard errors in columns (3), (6), and (9) are obtained from the two-stage D&L method. Standard errors in parentheses are clustered
by state for columns (2), (5), and (8) and by institution for columns (1), (4), and (7). All specifications include controls for demographic variables,
institution type, and cohort fixed effects.

Institutions are defined as high access if there are ≥ 4 elite schools within a 100 mile radius or ≥ 15% of seats within 100 miles are at elite schools.
States are defined as high access if they have > 1, 000 elite seats or > 5% of the state’s freshman attend an elite school anywhere in the country.
Regions are defined using the classification shown in Figure 2.3 and are high access if they have at least 10,000 elite seats.

Table 2.11 shows that the results are not sensitive to the definition of elite schools.

Columns (1) - (3) include all students at schools that were not matched with the USN

rankings data (and were therefore missing college quality data) as non-elite institutions.

Columns (4) - (6) show the results of decreasing the requirement that determines which

schools are elite to include the top 10% of schools as ranked by their 75th percentile

SAT score. Finally, columns (7) - (9) use data from IPEDS on the 25th percentile SAT

math score of applicants to each school and average over the years 2005-2008 to rank

each institution. Using this alternative ranking, the top 5% of schools are classified as
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elite and all others as non-elite. The results in each of these specifications indicate a

15-25% decrease in the probability of choosing a STEM field, demonstrating that the

estimated shift in the major cutoff point is robust to varying definitions of elite and

non-elite schools.

Table 2.11: Robustness Checks - Elite Definitions

Add Elite = IPEDS
Missing Top 10% Tiers

Inst State Region Inst State Region Inst State Region
(1) (2) (3) (4) (5) (6) (7) (8) (9)

High Access -0.0259∗ -0.0220∗∗∗ -0.0280∗∗ -0.0204 -0.0215∗∗ -0.0310∗∗ -0.0307∗∗ -0.0338∗∗∗ -0.0370∗∗

(0.0131) (0.0084) (0.0115) (0.0125) (0.0090) (0.0118) (0.0151) (0.0093) (0.0145)
State Fixed Effects X X X
State Education Variables X X X
Institution Type Variables X X X X X X
Observations 23,300 23,300 9 19,090 19,090 9 21,230 21,230 9
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates and standard errors in columns (2), (4), and (6) are obtained from the two-stage D&L method. Standard errors in parentheses are clustered
by state for columns (1), (3), and (5). All specifications include controls for demographic variables and cohort fixed effects.

Institutions are defined as high access if there are ≥ 4 elite schools within a 100 mile radius or ≥ 15% of seats within 100 miles are at elite schools.
States are defined as high access if they have > 1, 000 elite seats or > 5% of the state’s freshman attend an elite school anywhere in the country.
Regions are defined using the classification shown in Figure 2.3 and are high access if they have at least 10,000 elite seats.

Finally, because engineering departments often require a separate application in the

admissions process and may have different admissions criteria, it is unclear that engineer-

ing students face the same decision problem as other college applicants. Table 2.12 shows

that the main results are robust to dropping all engineering majors from the analysis.

The results in Tables 2.2 - 2.12 provide empirical evidence of a positive shift of the

major cutoff point at non-elite colleges in high access areas. These results are consistent

across 3 separate identification strategies and are robust to many possible variations of

each specification. These estimates range between a 1.5 and 3.7 percentage point (or

10-25%) decrease in the probability of choosing a STEM major for students at non-elite

colleges in areas with a large elite college presence. This shift is consistent with the

predictions of a signaling model of college major choice.
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Table 2.12: Robustness Checks - Drop Engineering Majors

Institution State Region
(1) (2) (3)

High Access -0.0156 -0.0169∗∗ -0.0296∗∗

(0.0106) (0.0077) (0.0104)

State Fixed Effects X
State Education Variables X
Observations 21,310 21,310 9
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates and standard errors in column (3) are obtained from the two-
stage D&L method. Standard errors in parentheses are clustered by
institution for column (1) and by state for column (2). All specifications
include controls for demographic variables, institution type, and cohort
fixed effects.

Institutions are defined as high access if there are ≥ 4 elite schools within
a 100 mile radius or ≥ 15% of seats within 100 miles are at elite schools.
States are defined as high access if they have > 1, 000 elite seats or > 5%
of the state’s freshman attend an elite school anywhere in the country.
Regions are defined using the classification shown in Figure 2.3 and are
high access if they have at least 10,000 elite seats.

2.6 Conclusion

In this paper, I have developed an asymmetric information framework for college edu-

cation in which college major field of study is used by individuals to signal productivity to

employers. I show that this signaling model predicts that increased access to elite colleges

leads to a decrease in the proportion of STEM majors, specifically among lower ability

students at non-elite colleges. This is distinct from the prediction of a full information

model where increased access to elite colleges only affects those high ability individuals

who are directly constrained from attending elite schools. Using geographic variation in

the concentration of elite colleges in the U.S., I provide empirical evidence that supports

the signaling model prediction. I find that in areas with substantial access to elite schools

the probability of choosing a STEM major for students at non-elite schools who are not

at the top of the ability distribution is approximately 10-25% lower. This result indicates
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that there is scope for signaling behavior within the context of postsecondary education

and that qualitative measures of education, such as the choice of major, can be used as

labor market productivity signals.
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Chapter 3

Saved By the Morning Bell: School
Start Time and Teen Car Accidents

3.1 Introduction

Recent medical research has found that adolescents experience changes to the biolog-

ical clock near the onset of puberty that induce ”night owl” sleep patterns. This effect,

combined with early high school start times has led to widespread, chronic sleep depri-

vation among teens. Surveys show that less than one in ten high school students get the

recommended amount of sleep on school nights (NSF, 2006). This type of chronic sleep

loss can have significant health and economic consequences such as increased feelings of

depression, impaired memory and focus, and increased risk of adolescent obesity (Ped,

2014). In susceptible young people, this pattern may lead to academic and behavioral

problems as well as increased risk for accidents and injuries.

One oft-proposed solution to this problem of sleep deprivation is to allow teenagers

additional sleep time in the mornings by delaying high school start times. This paper

explores an unexpected health consequence of changes to school start times: the impact

on teen car accidents. Changes to school start times may alter teen car accident risk

both through a direct effect on sleep deprivation and indirectly through changes to the
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driving environment, making the direction of the overall effect theoretically ambiguous.

Using data from the state of Kansas, I exploit within-school variation in start times over

a 9 year period to identify the effect of high school start time on the average number

of teen car accidents. Implementing a Fixed-Effects Poisson Quasi-Maximum Likelihood

approach, I find that a 15 minute delay in high school start times leads to a 21% increase

in teen car accidents during the morning commuting hours. At the average, this effect is

equivalent to approximately 124 additional morning teen car accidents per year across all

of rural Kansas. This suggests that any effect stemming from avoided sleep deprivation

is being offset by the effect of shifting teen driving into the high volume “rush hour”

of the morning. However, by focusing on late-night accidents when there is little to no

possibility of traffic congestion, I am able to disentangle the two mechanisms and find

evidence of a persistent sleep effect. The avoided sleep deprivation caused by a 15 minute

delay in school start time leads to a 26% decrease in late-night teen accidents. At the

average, this effect is equivalent to approximately 68 fewer accidents of this type per year

for teen drivers across all of rural Kansas.

The remainder of this paper is organized as follows. Section 3.2 provides background

information on teenage sleep patterns and their potential effects. This section also sum-

marizes the existing literature showing significant effects of school start time on academic

outcomes and survey findings showing a correlation between school start times and teen

car accident rates. Section 3.3 describes the data and the empirical context of rural

Kansas. Section 3.4 lays out the empirical strategy and the advantages of using the

Fixed-Effects Poisson Quasi-Maximum Likelihood estimator. Section 3.5 presents the

results and Section 3.6 offers some concluding remarks.
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3.2 Teens & Sleep

Until recently, it has been the general understanding that delayed bed times of

teenagers were the result of peer culture and other psychosocial factors. However, recent

medical research has found that there are biological explanations for the later sleep sched-

ules of teenagers. After the onset of puberty, adolescents experience delayed secretion

of nocturnal melatonin, a lengthening of the period of the circadian clock, and a slower

build-up of homeostatic sleep pressure (Carskadon et al., 1998; Jenni et al., 2005). The

combined effect of these changes is that teens experience a sleep cycle delay of approx-

imately 2 hours relative to their pre-adolescent baseline (Ped, 2014). In practice, this

means that the average teenager has trouble falling asleep before 11pm and imposition of

early school start times may require unrealistic or even unattainable bedtimes to provide

adequate time for sleeping (Wahlstrom, 2002). Research has shown that early school

start times are associated with significant sleep deprivation to the point where students

can fall into REM sleep in only 3.4 minutes – a level that is consistent with the sleep

patterns of patients with narcolepsy (Carskadon et al., 1998).

The public reaction to these findings has been widespread in the US. At the national

level, bill H.R. 1306: ZZZ’s to A’s Act has been introduced in the House of Represen-

tatives and proposes “to conduct a study to determine the relationship between school

start times and adolescent health, well-being, and performance.” At the local level, school

districts in at least 43 states have made policy changes aimed at improving adolescent

sleep levels by delaying high school and/or middle school start times.1 Most recently,

Fairfax County in Virginia implemented a new policy starting in 2015-2016 requiring all

high schools to start between 8-8:10am. Unfortunately, such policies can be very costly.

One of the main reasons for early high school start times is to maintain a tiered busing

1http://www.startschoollater.net/success-stories.html

60



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

system. In many districts, school buses run on a loop schedule wherein high school stu-

dents are dropped off first, then middle school students, and pick-up of elementary school

students is last. In the case of Fairfax County, the new policy required the purchase of

27 new buses and cost a total of $4.9 million.2 Furthermore, there are concerns that

moving school start times might add to rush hour traffic congestion or that lower-income

students might be adversely affected by a decreased ability to work after-school jobs or

to care for younger siblings.

Despite these costs, there may be room for substantial gains from decreasing teenage

sleep deprivation through improved academic, behavioral, and health outcomes. Several

papers have attempted to establish a link between later school start times and improved

cognitive function through test scores and/or grades among adolescent students (Carrell

et al., 2011; Hinrichs, 2011; Edwards, 2012). Carrell et al. (2011) find that freshmen at

the US Air Force Academy benefit greatly from a delay in school start time. They show

that a 50 minute delay has the same effect on academic achievement as increasing teacher

quality by 1 standard deviation and that the effect persists throughout the day (rather

than being driven by first period performance alone). Edwards (2012) finds a similar

positive effect of school start time on standardized test scores in the middle-school age

group. Hinrichs (2011) conducts two similar analyses and finds no effect of high school

start time on individual-level SAT/ACT scores or on school-level standardized test scores.

However, this may be due to the dependent variable being a noisier measure of in-school

learning in the first case and of being limited to school-level data in the second case.

A second line of survey work has explored the possible correlation between later school

start times and decreased teen car accidents (Danner and Phillips, 2008; Vorona et al.,

2011; Martiniuk et al., 2013; Wahlstrom et al., 2014). This is a potentially important

health outcome as medical studies show that sleep deprivation can produce psychomotor

2http://www.fcps.edu/news/starttimes.shtml
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impairments equivalent to those induced by alcohol consumption at or above the legal

limit. Furthermore, it is known that young drivers are at a much higher risk for drowsy

driving and sleep-related crashes (Durmer and Dinges, 2005). Danner and Phillips (2008)

conducted a questionnaire investigating the effects of a 1-hour delay in school start times

in a single large school district in Kentucky. They find that average hours of nightly sleep

increased after the policy change and that average car accident rates for teen drivers in the

study dropped 16.5% compared with the 2 years prior, whereas teen accident rates for the

rest of the state increased 7.8% over the same time period. In another survey of over 9,000

students in eight public high schools, Wahlstrom et al. (2014) find a negative correlation

between school start times and the number of car accidents involving surveyed students.

The average number of car accidents reported by teens in the survey was reduced by 70%

when the surveyed schools shifted start times from 7:35 AM to 8:55 AM.3

While the average changes reported in these papers provide only descriptive evidence

of a school start time effect on teen car accidents, they are also quite large. The avoided

financial and health/mortality costs corresponding to causal effects of such magnitudes

could easily make start time policy changes worthwhile. This paper contributes to this

line of exisiting descriptive research by providing regression-based analysis to control for

other factors that might influence teen accident rates and by distinguishing between the

separate (and potentially opposing) effects of avoided sleep deprivation and increased

traffic congestion.

3There is related evidence showing that sleep-deprivation can also increase adult car accident risk in
the short-run. Smith (2015) finds that the transition to Daylight Savings Time (DST) increases adult
fatal car accidents specifically through an effect on sleep-deprivation rather than through changes to the
driving environment (through ambient light). However, this effect persists for less than a week in the
adult population, whereas in the teenage population early start times can cause a persistent increase in
car accident risk throughout the school-year.

62



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

3.3 Data & The Kansas Context

The data on high school start time includes each public high school in the state of

Kansas over the school-years 2004-2005 to 2012-2013.4 School-level covariates including

enrollment by grade, enrollment by race/ethnicity, and urbanization codes were obtained

from the National Center for Education Statistics’ Common Core of Data (CCD) for

school-years 2004-2005 to 2012-2013. Over this time period, there were a substantial

number of small changes to high school start times across the state. These shifts were

primarily driven by budgetary concerns. Many Kansas high schools chose to lengthen the

school day by small amounts in order to reduce the total number of days in the school

year. Table 3.1 displays the amount of within-school variation in start time. In each

year, approximately 10% of schools changed their start times by an average of 9 minutes.

This average time change encompasses substantial variation with some schools shifting

by as much as 55 minutes.

Table 3.1: Variation in High School Start Time (Within School)

# Start % Avg Mins Std. Dev. Max Mins
Year # Schools Changers Changed Changed Mins Changed Changed
2005 323
2006 321 25 7.79 9.68 12.07 55
2007 315 29 9.21 9.17 8.59 35
2008 310 26 8.39 8.35 6.14 35
2009 312 29 9.29 8.69 4.58 20
2010 308 57 18.51 9.09 4.77 25
2011 305 49 16.07 9.43 5.82 30
2012 304 36 11.84 7.08 5.22 30
2013 294 23 7.82 6.83 3.52 15
Total 2,792 274 9.81 8.65 6.48 55

One advantage to focusing on the state of Kansas for this analysis is that it has one

of the highest rates of teen driving in the country. The 2013 Youth Risk Behavior Survey

4Data for the years 2006-2007 through 2012-2013 was provided by the Kansas Department of Edu-
cation. Additional years of data were provided thanks to Dr. Peter Hinrichs (2004-2005 to 2005-2006).
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found that over 86% of Kansas teens aged 16-19 reported driving in the month prior to

the survey (compared to 76% nationally) (Shults et al., 2015). An earlier survey, the

2006 National Young Driver Survey, indicates that a large fraction of this teen driving

includes trips to and from school. This nationally-representative survey finds that 57%

of 9th-11th graders report driving to school (Winston, 2007). In studying teen driving

outcomes, it is important to note that teen drivers have a much higher accident rate than

adult drivers. Drivers aged 16-19 are 3 times more likely to be in a fatal car accident than

adults according to the US Department of Transportation’s Fatality Analysis Reporting

System.5 However, improved car safety and stricter driving laws have made substantial

progress in mitigating teen riskiness such that fatal teen car accidents have actually

declined by 55% in the years 2004-2013 (Shults et al., 2015). One such law targeted

at teen driving behavior was implemented in Kansas during this period. Prior to 2010,

Kansas teens were eligible to receive a learner’s permit at the age of 14 and a full driver’s

license at the age of 16. Starting in 2010, the state implemented a graduated driver’s

license program which introduced an intermediate step called a conditional driver’s license

between receiving the learner’s permit and the full license. The conditional permit is

granted starting at age 16 and restricts underage passengers to siblings only and driving

times to the hours of 5am-9pm. The full driver’s license is then granted at age 17 or 6

months after receiving the conditional license, whichever is first.

Car accident data was provided by the Kansas Department of Transportation for the

years 2004 to 2014. These data encompass every accident involving a driver aged 14-18

and include a unique accident identification number, date and time of accident, number of

cars involved, and latitude/longitude coordinates for the location of the accident. I map

each high school (excluding online schools and 24-hour schools) using latitude/longitude

coordinates from the CCD and use Thiessen polygons to create a zone for each school

5http://www.nhtsa.gov/FARS
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Figure 3.1: 2013 Urbanization of Kansas High Schools & Thiessen Polygons
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such that all space within school A’s zone is closer to school A than to the next nearest

school. I then use the latitude/longitude coordinates from the car accident data to map

each accident to a high school zone. This results in a count of car accidents involving

a teen driver for each school in each month of each year (excluding weekends and sum-

mer months). In order to minimize misclassification and spill-over effects across closely

clustered schools, I drop all schools that fall into in the Large City and Midsize City

urbanization categories according to the CCD. Figure 3.1 maps each Kansas high school

along with the corresponding Thiessen polygon and urbanization code for the most re-

cent year of the data. Table 3.2 shows that, as Kansas is a predominantly rural state,
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dropping these 2 urban categories eliminates only 8% of schools (although those schools

do account for 39% of teen car accidents within the state).

Table 3.2: Urbanization Summary Statistics
% of Obs % of Teen Crashes

Large City 3.09 16.3
Midsize City 5.00 23.1
Urban Fringe of Large City 4.67 16.4
Urban Fringe of Midsize City 0.76 0.8
Large Town 1.94 5.3
Small Town 14.25 17.0
Rural, Outside MSA 58.06 8.8
Rural, Inside MSA 12.21 12.4
All data is aggregated to the school-year observation level and excludes the
summer months (June-August) and weekends. Categories to be dropped:
Large City & Midsize City.

Figure 3.2: Histogram of High School Start Times

The final sample is an unbalanced panel of 369 schools spanning 9 school-years (2004-
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2005 to 2012-2013), resulting in 25,128 school-year-month observations.6 A summary

of the data is shown in Table 3.3. Additionally, Figure 3.2 shows the distribution of

school start times along with the raw negative correlation between start time and average

number of teen car accidents.

Table 3.3: Summary Statistics
mean sd min max

School Start Time 8:06am 11.26mins 7:00am 8:55am
Enrollment Grades 9-12 (10’s) 33.53 41.94 0.500 216.5
% Students Black 1.977 3.837 0 35.44
% Students Hispanic 7.125 11.34 0 85.19

Car Accidents - Drivers Aged 14-18:
Total 0.978 2.347 0 30

2-Car Only 0.658 1.784 0 22
Single-Car Only 0.241 0.592 0 8

Morning Commute (6am-10am) 0.194 0.603 0 9
2-Car Only 0.135 0.476 0 6
Single-Car Only 0.042 0.215 0 3

Late-Night (9pm-4am) 0.063 0.280 0 4
2-Car Only 0.023 0.168 0 3
Single-Car Only 0.039 0.206 0 3

All data is aggregated to the school-year-month observation level and excludes the summer
months (June-August), weekends, and urban areas. N =25,128.

3.4 Empirical Strategy

To accomodate the count nature of the car accident data, I model the following log-

linear relationship,

logE[Aiym] = βSiy + ηXiy +DSTym +GDLym +Di +Dy +Dm, (3.1)

6All results reported in Section 3.5 are robust to limiting the data to a balanced panel of 259 schools.

67



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

where the dependent variable, Aiym, is the count of accidents involving teens aged 14-18

near high school i, in year y and month m. The variable Siy measures the start time

for each high school as the number of minutes after midnight and is then divided by

15 (e.g. 8am=8*60/15=32) so that the coefficient, β, can be interpreted as the effect

of a 15 minute delay in school start time. The vector Xiy includes total enrollment

for grades 9-12, the percent of students who are black, percent of students who are

hispanic, and urbanization indicators for each school and year. The vector DSTym is

a set of indicators meant to capture the 2007 change in the span of Daylight Savings

Time. The Energy Policy Act of 2005 moved the start of Daylight Savings Time from

April to March and the end from October to November. Therefore, DSTym includes 4

indicators for March, April, October, and November each interacted with a post-change

indicator (1[y ≥ 2007]). The variable GDLym is an indicator variable for all months

after the introduction of the graduated driver’s license in January of 2010. The model

also includes fixed effects for each school, year, and month.

This model is not well-estimated by Least Squares because of the high incidence of

zero-count observations on monthly teen car accidents. I instead estimate the model

using Fixed-Effects Poisson Quasi-Maximum Likelihood (QML).7 This estimator has the

useful property of being robust to misspecification of the density function as Poisson and

instead requires only that the conditional mean be correctly specified: E[Aiym|Ziym] =

Di exp (Z ′iymγ) where Ziym = (Siy, X
′
iy, DSTym, GDLym, Dy, Dm) and γ is the correspond-

ing vector of coefficients in (3.1). The QML estimator also corrects for the common prob-

lem of excess zeros in count data. This issue arises when the count variable includes a high

incidence of zero-count observations (as in the teen accident data) – much higher than a

Poisson distribution would predict. A benefit of the QML estimator is that once condi-

7To account for the fact that each school has a different student population, and therefore a different
potential for teen car accidents, I include total enrollment for grades 9-12 as the exposure variable in
the Poisson regressions.
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tioned on the total number of accidents within a school, the conditional density becomes

a multinomial distribution (Hausman et al., 1984). The multinomial density will easily

fit a large number of zero-count observations to a school that has a low total count of

accidents over all time periods.8 Thus, the Fixed-Effects Poisson Quasi-Maximum Like-

lihood approach is particularly well-suited to the context of teen car accident data. To

address the possibility that overdispersion of the data may lead to understated standard

errors, I implement cluster-robust standard errors which account for both overdispersion

and within-school correlation in the dependent variable (Wooldridge, 1999).9

3.5 Results

The results of estimating equation (3.1) via Poisson Fixed-Effects QML are shown in

Table 3.4. Coefficients can be interpreted as the percent change in teen car accidents due

to a 15 minute change in school start time. Columns (1) and (2) include accidents at all

times of day and show that there is no overall effect of school start time on either 2-car

or single-car teen accidents. However, it is likely that these estimates incorporate a sig-

nificant amount of noise if the effect is concentrated during students’ morning commute.

Columns (3) and (4) include only accidents occurring between 6am and 10am (this spans

from 1 hour before the earliest start time to 1 hour after the latest). Here we see that

the estimated effect of a 15 minute delay in school start time is a 21% increase in 2-car

8Note that this model cannot be estimated for schools where the total count of accidents over all
time periods is zero. Thus any schools that do not experience a teen car accident at any point over
the 9 years of the data will be dropped from the estimation sample. (This will be especially salient
in the specifications where I limit the dependent variable to teen accidents occuring during narrow
time windows within the school day.) However, the QML estimator for a Poisson model is analytically
identical to the unconditional Maximum Likelihood (ML) estimator in a model that includes dummy
variables for each individual school (Lancaster, 2000). The primary disadvantage to the ML approach
is that estimation with the inclusion of so many indicator variables is often computationally infeasible.

9The QML estimator only restricts the within-school mean and variance to be equal, so that the
vast majority of the overdispersion in the teen car accident data is accounted for even without robust
standard errors.
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teen accidents. Given that the average number of 2-car morning teen car accidents per

school per month is 0.135, this effect is equivalent to approximately 124 additional teen

accidents per year across all of rural Kansas. This result indicates that any potential

effect of a delay in school bell time due to decreased sleep deprivation is completely offset

by the congestion effect of moving student commute times into high-volume traffic hours.

This finding is, to some extent, specific to the context of this data in that the majority

of school start times in Kansas are between 7:30-8:30am so that the effect of delays to

school start times are identified off of movement in and around peak worker commuting

hours.

Table 3.4: Effect of High School Start Time on Teen Car Accidents

Morning Commute Late-Night
All Day (6-10am) (9pm - 4am)

2-Car Single-Car 2-Car Single-Car 2-Car Single-Car
(1) (2) (3) (4) (5) (6)

Start Time 0.037 -0.086 0.207∗∗ 0.080 -0.241 -0.292∗∗

(0.071) (0.059) (0.104) (0.094) (0.214) (0.133)
School FEs X X X X X X
Year FEs X X X X X X
Month FEs X X X X X X
N 23,373 24,066 18,954 18,099 10,332 17,649
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Standard errors in parentheses are clustered by school. All columns include: total enrollment, % stu-
dents black, % students hispanic, urbanization indicators, indicators for the 2007 change to Daylight
Savings Time and the 2010 change to teen driver’s license requirements. Each column also includes total
enrollment as the exposure variable with coefficient constrained to be one.

In order to isolate the sleep effect of delayed start time from this congestion effect, I

next focus on the late-night time period when there is little scope for congestion effects on

teen accident risk. If there is a sleep effect, then it should still be detectable in the evening

as medical research indicates that the physical effect of sleep deprivation persists – and in

fact increases – throughout the day (Durmer and Dinges, 2005). Column (5) of Table 3.4

shows the results of estimating the model in (3.1) with the dependent variable restricted

70



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

to 2-car teen accidents occuring between the hours of 9pm and 4am on weeknights (this

excludes both Friday night and the early-morning hours of Monday) during the school

year. The estimate of the effect of a 15 minute delay in school start time on 2-car teen

accidents is now negative and very large, although not statistically significant. However,

this is not surprising given that the vast majority of late-night accidents are single-car

events. Figure 3.3 shows that between midnight and 5am approximately 80% of all teen

accidents involve only 1 driver.10 Additionally, previous survey research shows that young

drivers are both more likely to be in single-car accidents and to cite drowsiness as the

cause of such accidents (Gislason et al., 1997).

Figure 3.3: Teen Car Accidents By Hour

For this reason, I next analyze the sample of single-car accidents involving one teen

driver in column (6) of Table 3.4. The estimated effect on this type of teen accident is a

26% decrease in the late-night hours. Given that the average number of late-night, single

10Note that this is also reflected in the very small sample in column (5). Most schools in the sample
have zero-count observations for 2-car, late-night accidents in all years.
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car teen accidents per school in a month is 0.039, this effect is equivalent to approximately

68 fewer accidents of this type per year for teen drivers across all of rural Kansas. This

result suggests that there is a significant sleep effect on teen accident rates. This finding

coincides with research on sleep apnea, which finds that sleep apnea patients had no

more multi-car accidents than control drivers but were 7 times more likely to experience

single-car accidents (Haraldsson et al., 1990). An alternative explanation might be that

teens are simply driving less at night when start times are later in the morning. While I

cannot test this directly due to a lack of age- and location-specific data on vehicle miles

traveled, it is a seemingly counterintuitive theory.

Given that most late-night accidents involve only one car, there is likely very little

interaction between teen drivers and adult drivers during this time window. This inde-

pendence make a difference-in-differences analysis using adult drivers as the “control”

group feasible. This type of analysis is attractive for 2 reasons: first, including adult ac-

cidents may better control for school-specific time trends in road safety; and second, each

school is unlikely to have a total count of zero car accidents over all time periods once

adult accidents are included so that very few schools will be dropped from the estimation

sample.

Data on adult car accidents was provided by the Kansas Department of Transporta-

tion for drivers aged 30-35 in the years 2004 to 2014. This age group is ideal because

these drivers are well past their teenage years, but also not generally old enough to have

high school children of their own. As with the teen accident data, I use latitude/longitude

coordinates to map each adult accident into a high school zone. This results in a count

of car accidents involving an adult driver aged 30-35 for each school in each month of

each year (dropping weekends and summer months). I then estimate the following model

72



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

using Poisson Fixed-Effects QML,

logE[Aigym] = β1Siy+β2Tg+β3Siy ∗Tg+X ′iyη+DSTym+GDLym+Di+Dy+Dm, (3.2)

where the dependent variable, Aigym, is the count of single-car accidents involving a driver

in age group g ∈ {14 − 18, 30 − 35}, near high school i, in year y and month m. The

variable Tg is an indicator for age group g = 14−18 so that the coefficient, β1 captures the

effect of a delay in start time on adult accidents (this is expected to be zero), β2 captures

the baseline difference in accident rates between teens and adults, and β3 captures the

difference in the effect of a start time delay between teens and adults. The total effect

of a delay in start time on teen drivers is thus captured by the sum of the coefficients

β1 + β3.

Table 3.5: Difference-in-Differences Analysis of Single-Car, Late-Night Accidents

9pm-4am 8pm-5am 7pm-6am
(1) (2) (3)

Start Time -0.095 -0.046 0.001
(0.097) (0.080) (0.070)

Teen 7.010∗∗∗ 7.106∗∗∗ 7.600∗∗∗

(2.162) (1.949) (1.911)
Start*Teen -0.235∗∗∗ -0.240∗∗∗ -0.259∗∗∗

(0.067) (0.060) (0.059)
Total Effect on -0.330∗∗∗ -0.285∗∗∗ -0.258∗∗∗

Teen Accidents (0.109) (0.092) (0.088)
N 45,828 47,736 48,798
School FEs Yes Yes Yes
Year FEs Yes Yes Yes
Month FEs Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Standard errors in parentheses are clustered by school. All columns
include: total enrollment, % students black, % students hispanic,
urbanization indicators, indicators for the 2007 change to Daylight
Savings Time and the 2010 change to teen driver’s license require-
ments. Each column also includes total enrollment as the exposure
variable with coefficient constrained to be one.
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Table 3.5 displays the results of this estimation for 3 time periods: 9pm-4am, 8pm-

5am, and 7pm-6am. The estimated effect of a 15 minute delay in school start time is

now somewhat larger and more precise at a 26-33% decrease in late-night, single-car teen

accidents. As expected, the point estimate of the effect of start time on adult single-

car accidents is small and insignificant, indicating an absence of systematic, confounding

factors that would cause a simultaneous decrease in both teen and adult accidents. These

results further bolster the findings in Table 3.4, suggesting that there is a persistent sleep

mechanism affecting teen car accident risk.

Table 3.6 shows that the main results are also robust to alternative definitions of both

the morning commute and the late-night period. Columns (1) and (2) allow for a more

generous definition of the morning commute window (5-10am). Meanwhile, columns (3)

and (4) allow for a more flexible definition with a separate time window defined for each

school based on its own start time in each year. Columns (5) and (6) show that the main

results are consistent for an alternative late-night window of 7pm-6am.

Table 3.6: Robustness Check: Alternative Time Windows
Morning Commute Late-Night

(5-10am) (1hr before bell - 1hr after) (7pm - 6am)

2-Car Single-Car 2-Car Single-Car 2-Car Single-Car
(1) (2) (3) (4) (5) (6)

Start Time 0.207∗∗ 0.068 0.234∗∗ 0.037 -0.159 -0.260∗∗

(0.103) (0.092) (0.113) (0.108) (0.116) (0.108)
School FEs X X X X X X
Year FEs X X X X X X
Month FEs X X X X X X
N 19,035 18,504 18,666 16,821 14,598 20,556
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Standard errors in parentheses are clustered by school. All columns include: total enrollment, % students black, %
students hispanic, urbanization indicators, indicators for the 2007 change to Daylight Savings Time and the 2010
change to teen driver’s license requirements. Each column also includes total enrollment as the exposure variable
with coefficient constrained to be one.

Finally, to ensure further that these findings are not being driven by some unobserved

factor rather than by changes in school start time, I employ a placebo test with randomly

74



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

assigned start times. For the balanced panel of 259 schools, I draw a random start time

for each year from a normal distribution with a mean of 8:05am and a standard deviation

of 11 minutes (this is a relatively close approximation of the actual start time distribution

as seen in Figure 3.2). With this simulated data I then re-estimate the 2-car regression

for the morning commute hours (column 3 of Table 3.4), the single-car estimates for

late-night hours (column 6 of Table 3.4), and the difference-in-differences estimate for

single-car, late-night accidents (column 1 of Table 3.5). Table 3.7 reports the point

estimates of interest averaged over 1,000 iterations of simulated start time data as well

as the rejection rate for a 5% t-test. The point estimates are all very close to zero and

the rejection rates are all nearly 5% indicating that there is no placebo effect driving the

main results. Furthermore, note that all of the point estimates from the main findings

lie outside the range of even the largest estimates arising from the simulated data.

Table 3.7: Placebo Test: Randomly Assigned Start Times

Morning Commute Late-Night Diff-in-Diff
(6-10am) (9pm-4am) (9pm-4am)

2-Car Single-Car Single-Car
(1) (2) (3)

Avg. Start Time Coefficient -0.001 0.007 0.006
Range of Start Time Coeff. [-0.084, 0.057] [-0.106, 0.171] [-0.103, 0.152]
5% Rejection Rate 0.059 0.039 0.049
Iterations 1,000 1,000 1,000

In each iteration, start times are drawn randomly for each school-year observation from a normal distri-
bution with a mean of 8:05am and standard deviation of 11 minutes.

All iterations in all columns include: school fixed effects, year indicators, month indicators, total enroll-
ment, % students black, % students hispanic, urbanization indicators, indicators for the 2007 change
to Daylight Savings Time and the 2010 change to teen driver’s license requirements as well as total
enrollment as the exposure variable with coefficient constrained to be one.

75



Saved By the Morning Bell: School Start Time and Teen Car Accidents Chapter 3

3.6 Conclusion

To combat the problem of chronic sleep deprivation among today’s youth, many

US school districts are opting to delay high school start times, thereby allowing teens

additional sleep time in the morning. However, this solution may have unexpected conse-

quences in the form of changes to teen driving patterns and car accident rates. Changes

to school start times can alter teen car accident risk both through a direct effect on

sleep deprivation and indirectly through changes to the driving environment, making the

direction of the overall effect theoretically ambiguous.

I utilize within-school variation in start times across the state of Kansas to identify

the effect of high school start time on the average number of teen car accidents. I

find evidence suggesting that this effect is positive during the morning commute hours,

indicating that any effect stemming from avoided sleep loss is completely offset by the

effect of shifting teen driving into a more congested hour of morning traffic patterns.

The estimated effect of a 15 minute delay in high school start times is a 21% increase

in morning, 2-car teen accidents. However, I also find evidence of a persistent sleep-

deprivation effect by focusing on late-night, single-car accidents. At these times there is

very low traffic volume, making it possible to observe the direct effect of decreased sleep

deprivation on teen accidents. I find that a 15 minute delay in school start times leads

to a 26% decrease in late-night teen accidents.

Taken together, these findings provide evidence that changes to school start time do

have an effect on teen car accidents and that both a sleep effect and an opposing traffic

congestion effect are in play. Whether these two effects balance out to be a cost to later

start times or a benefit may depend on the local traffic environment. The estimates

presented here may be somewhat specific to the rural, midwestern context. In a more

urban setting with higher traffic volume throughout the day, there might be a much
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larger positive effect during the morning commute and a much smaller negative effect in

the evening hours. Additionally, urban settings have a much higher overall teen accident

rate such that a 21% increase in morning teen accidents might amount to a significant

cost to consider in the start time policy decision.
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Appendix for Chapter 1

The following Stata code was used to create Table 1.2. The code estimates the model in

Section 1.5 under the alternative hypothesis of two regimes using the EM algorithm and

then under the null hypothesis of a single regime using the Stata ml command. Finally,

the QLR test statistic is calculated.

* Estimating QLR test statistic for Bloom et al (2003)

* Log likelihood function with 2 regimes

capture program drop llf

program define llf

version 10.1

args lnf theta1 theta0 delta sigma lambda

quietly replace ‘lnf’=(1/_N)*((1-etahat)*(ln((2*_pi*‘sigma’^2)^(-1/2))

+((-1/(2*‘sigma’^2))*(lgdp-‘theta0’-‘delta’*latitude)^2)+ln(1-‘lambda’))

+etahat*(ln((2*_pi*‘sigma’^2)^(-1/2))+((-1/(2*‘sigma’^2))*(lgdp-‘theta1’

-‘delta’*latitude)^2)+ln(‘lambda’)))

end

* Log likelihood function for a single regime

capture program drop llfsingle

program define llfsingle
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version 10.1

args lnf theta delta sigma

quietly replace ‘lnf’= (1/_N)*ln(((2*_pi*‘sigma’^2)^(-1/2))*

exp((-1/(2*‘sigma’^2))*(lgdp-‘theta’-‘delta’*latitude)^2))

end

/***************************************************/

* First estimate parameters and log likelihood for the case of 2 regimes:

* lgdp = theta0 + delta*latitude + u~N(0,sigma2) with probability (1-lambda)

* lgpp = theta1 + delta*latitude + u~N(0,sigma2) with probability lambda

/***************************************************/

* Start with initial guess for theta0, theta1, delta, sigma2, and lambda:

reg lgdp latitude

mat beta=e(b)

svmat double beta, names(matcol)

scalar dhat=betalatitude

gen intercept=lgdp-dhat*latitude

summarize intercept

scalar t0hat=r(mean)-r(Var)

scalar t1hat=r(mean)+r(Var)

scalar shat=sqrt(r(Var))

scalar lhat=0.5

matrix gammahat=(t1hat, t0hat, dhat, shat, lhat)

di "Original guess for parameter values: "

matrix list gammahat

/***************************************************/

* Start loop that continues until parameter estimates have converged

gen error1=10

gen error2=10
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gen error3=10

gen tol=1/_N

gen count=0

gen count1=1

gen count2=1

gen count3=1

gen f1=0

gen f0=0

gen fboth=0

gen etahat=0

gen llfhat=0

gen llfnew=0

gen fdelta=0

gen fnew=0

gen Inllfnew=0

gen Inllfdelta=0

gen nd1=0

gen nd2=0

gen nd3=0

gen nd4=0

gen nd5=0

while error1>tol | error2>tol | error3>tol {

* Calculate guess for eta_t=Pr(St=1|sample)

* Calculate f(Yt|St=1, gammahat)

quietly replace f1=((2*_pi*gammahat[1,4]^2)^(-1/2))*

exp((-1/(2*gammahat[1,4]^2))*(lgdp-gammahat[1,1]-gammahat[1,3]*

latitude)^2)

* Calculate f(Yt|St=0, gammahat)

quietly replace f0=((2*_pi*gammahat[1,4]^2)^(-1/2))*
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exp((-1/(2*gammahat[1,4]^2))*(lgdp-gammahat[1,2]-gammahat[1,3]*

latitude)^2)

* Calculate f(Yt|gammahat)

quietly replace fboth=gammahat[1,5]*f1+(1-gammahat[1,5])*f0

quietly replace etahat=gammahat[1,5]*f1/fboth

/***************************************************/

* Now use etahat to create and maximize log likelihood function

ml model lf llf /theta1 /theta0 /delta /sigma /lambda

ml init gammahat, copy

ml max

mat gammanew=e(b)

/***************************************************/

* Check whether the parameter estimates have converged

mata: st_matrix("temp", max(abs(st_matrix("gammanew")-st_matrix("gammahat"))))

quietly replace error1=temp[1,1]

* Check whether the log likelihood has converged

quietly replace llfnew=e(ll)

quietly replace llfhat=(1/_N)*((1-etahat)*(ln((2*_pi*gammahat[1,4]^2)^(-1/2))

+((-1/(2*gammahat[1,4]^2))*(lgdp-gammahat[1,2]-gammahat[1,3]*latitude)^2)

+ln(1-gammahat[1,5]))+etahat*(ln((2*_pi*gammahat[1,4]^2)^(-1/2))

+((-1/(2*gammahat[1,4]^2))*(lgdp-gammahat[1,1]-gammahat[1,3]*latitude)^2)

+ln(gammahat[1,5])))

quietly summarize llfhat

quietly replace llfhat=r(sum)

quietly replace error2=abs(llfhat-llfnew)

* Check whether the numeric derivative is zero
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* Recalculate incomplete log likelihood with new gamma estimates

quietly replace f1=((2*_pi*gammanew[1,4]^2)^(-1/2))*

exp((-1/(2*gammanew[1,4]^2))*(lgdp-gammanew[1,1]-gammanew[1,3]*latitude)^2)

quietly replace f0=((2*_pi*gammanew[1,4]^2)^(-1/2))*

exp((-1/(2*gammanew[1,4]^2))*(lgdp-gammanew[1,2]-gammanew[1,3]*latitude)^2)

quietly replace fnew=gammanew[1,5]*f1+(1-gammanew[1,5])*f0

quietly replace Inllfnew=log(fnew)

quietly summarize Inllfnew

quietly replace Inllfnew=r(sum)/_N

* Calculate incomplete log likelihood for gamma + 0.0001

forval i=1/5 {

matrix gammadelta=gammanew

matrix gammadelta[1,‘i’]=gammadelta[1,‘i’]+.0001

quietly replace f1=((2*_pi*gammadelta[1,4]^2)^(-1/2))*

exp((-1/(2*gammadelta[1,4]^2))*(lgdp-gammadelta[1,1]-gammadelta[1,3]*

latitude)^2)

quietly replace f0=((2*_pi*gammadelta[1,4]^2)^(-1/2))*

exp((-1/(2*gammadelta[1,4]^2))*(lgdp-gammadelta[1,2]-gammadelta[1,3]*

latitude)^2)

quietly replace fdelta=gammadelta[1,5]*f1+(1-gammadelta[1,5])*f0

quietly replace Inllfdelta=log(fdelta)

quietly summarize Inllfdelta

quietly replace Inllfdelta=r(sum)/_N

quietly replace nd‘i’=abs(Inllfdelta-Inllfnew)/.0001

}

quietly replace error3=max(nd1,nd2,nd3,nd4,nd5)

/***************************************************/

* Keep track of when each convergence criterion is met

quietly replace count1=count1+1 if error1>tol

quietly replace count2=count2+1 if error2>tol
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quietly replace count3=count3+1 if error3>tol

* Update gammahat and overall iteration count

matrix gammahat=gammanew

quietly replace count=count+1

* End of loop

}

/***************************************************/

* Calculate final log likelihood for 2 regimes

quietly replace f1=((2*_pi*gammanew[1,4]^2)^(-1/2))*

exp((-1/(2*gammanew[1,4]^2))*(lgdp-gammanew[1,1]-gammanew[1,3]*latitude)^2)

quietly replace f0=((2*_pi*gammanew[1,4]^2)^(-1/2))*

exp((-1/(2*gammanew[1,4]^2))*(lgdp-gammanew[1,2]-gammanew[1,3]*latitude)^2)

gen f2reg=gammanew[1,5]*f1+(1-gammanew[1,5])*f0

gen llf2reg=ln(f2reg)

quietly summarize llf2reg

quietly replace llf2reg=r(sum)

* Output final parameter estimates

disp "Final estimated parameter values for 2 regimes: "

matrix list gammanew

disp "Final estimated log likelihood for 2 regimes: " llf2reg

disp "Total number of loop iterations: " count

disp "Parameter values converged after "count1 " iterations"

disp "Log likelihood value converged after " count2 " iterations"

disp "Gradient of Log likelihood converged after " count3 " iterations"

/***************************************************/

* Second, estimate parameters and log likelihood for the case of only 1 regime:
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* Maximize log likelihood with only 1 regime

* lgdp = theta + delta*lat + u~N(0,sigma2)

quietly summarize intercept

matrix gamma0=(r(mean), dhat, .1)

* Maximize to find new estimate of gamma

ml model lf llfsingle /theta /delta /sigma

ml init gamma0, copy

ml max

mat gammasingle=e(b)

*Calculate log likelihood for 1 regime with estimated gamma

gen llf1reg=ln(((2*_pi*gammasingle[1,3]^2)^(-1/2))*

exp((-1/(2*gammasingle[1,3]^2))*(lgdp-gammasingle[1,1]-gammasingle[1,2]*

latitude)^2))

quietly summarize llf1reg

quietly replace llf1reg=r(sum)

* Output final parameter estimates

disp "Final estimated parameter values for 1 regime: "

matrix list gammasingle

disp "Final estimated log likelihood for 1 regime: " llf1reg

/***************************************************/

* Finally, calculate QLR test statistic:

gen QLR=2*(llf2reg-llf1reg)

disp "Quasi-Likelihood Ratio test statistic of 1 regime: " QLR

84



Appendix B

Appendix for Chapter 2

Figure B.1: Access to Elite Colleges by Region (17 Region Classification)
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Table B.1: Elite Colleges (Top 5%)

Institution Name

75th 
Percentile 

SAT 
Score

2012 
Rank

75th 
Percentile 

SAT 
Score

2001 
Rank

California Institute of Technology 1590 1 1580 2
Harvard University 1590 2 1580 1
Princeton University 1590 3 1540 6
Yale University 1590 4 1510 12
Harvey Mudd College 1570 5 1540 5
Massachusetts Institute of Technology 1570 6 1560 3
University of Chicago 1570 7 1490 16
Columbia University 1560 8 -- --
Dartmouth College 1560 9 1520 8
Pomona College 1550 10 1520 9
Stanford University 1550 11 1550 4
Amherst College 1530 12 1510 10
Duke University 1530 13 -- --
Rice University 1530 14 1440 35
Swarthmore College 1530 15 1530 7
University of Pennsylvania 1530 16 1490 18
Williams College 1530 17 1510 11
Brown University 1520 18 1490 15
Northwestern University 1520 19 1470 20
University of Notre Dame 1520 20 1450 26
Vanderbilt University 1520 21 1400 60
Washington University in St Louis 1520 22 1470 19
Carleton College 1510 23 1460 23
Carnegie Mellon University 1510 24 1460 24
Johns Hopkins University 1510 25 1490 17
Cooper Union for the Advancement of Science and Art 1500 26 -- --
Cornell University 1500 27 1500 13
Haverford College 1500 28 1450 27
Tufts University 1500 29 1410 54
Barnard College 1490 30 1410 55
Bowdoin College 1490 31 1440 33
Georgetown University 1490 32 1460 21
University of California-Berkeley 1490 33 1450 28
University of Southern California 1490 34 1400 59
Wellesley College 1490 35 1440 32
Claremont McKenna College 1480 36 1440 34
Middlebury College 1480 37 -- --
Washington and Lee University 1480 38 1420 48

USN IPEDS
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Table B.1: Elite Colleges (Top 5%)

Institution Name

75th 
Percentile 

SAT 
Score

2012 
Rank

75th 
Percentile 

SAT 
Score

2001 
Rank

Wesleyan University 1480 39 1460 22
Emory University 1470 40 1460 25
Hamilton College 1470 41 1370 84
Reed College 1470 42 1420 44
Rensselaer Polytechnic Institute 1470 43 1400 61
Vassar College 1470 44 1430 36
New York University 1460 45 1420 43
Oberlin College 1460 46 1420 41
University of Virginia-Main Campus 1460 47 1420 42
Brandeis University 1450 48 1430 38
College of William and Mary 1450 49 1420 40
Davidson College 1450 50 1410 51
Georgia Institute of Technology-Main Campus 1450 51 1420 47
Scripps College 1450 52 1360 87
Boston College 1440 53 1390 64
Case Western Reserve University 1440 54 1440 31
Colgate University 1440 55 1400 58
Macalester College 1440 56 1430 39
Smith College 1440 57 1370 78
University of California-Los Angeles 1440 58 1400 63
University of Rochester 1440 59 1410 50
Whitman College 1440 60 1370 73
Bryn Mawr College 1430 61 1380 69
Kenyon College 1430 62 1380 67
Northeastern University 1430 63 1230 313
Rhodes College 1425 64 1380 68
Bard College 1420 65 -- --
Bates College 1420 66 1400 62
Colby College 1420 67 1410 53
Colorado College 1420 68 1380 70
Grinnell College 1420 69 1440 30
Hendrix College 1420 70 1340 108
Mount Holyoke College 1420 71 -- --
New College of Florida 1420 72 1420 46
St Olaf College 1420 73 1360 88
United States Air Force Academy 1420 74 1360 93
University of Michigan-Ann Arbor 1420 75 1402 57
Wheaton College 1420 76 1410 52

USN IPEDS
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B.1 Simultaneous Decision Model

As in Section 2.2.1, let every individual have an ability level, ai, drawn from a contin-

uous distribution, f(a). Employers cannot directly observe an individual’s ability level,

but instead receive two potential signals: college quality (Q) and major choice (M). I

focus here on the simple case of only 2 college types (QH = elite and QL = non-elite)

and 2 major choices (MH = STEM and ML = non-STEM).

Students must simultaneously decide where to apply to college and which field to

major in. To identify the pure signaling effect, I assume that there is no human capital

accumulation due to college quality and major choice so that, in equilibrium, firms set

wages equal to expected ability. The individual’s decision can then be written as,

max
Qi,Mi

E[a|Qi,Mi]− CQH (ai)− CMH
(ai, Qi). (B.1)

The function CQH (ai) represents the effort cost of attending an elite college (relative to the

cost of attending a non-elite college). The function CMH
(ai, Qi) represents the additional

effort cost of choosing a STEM major, which depends on both ability and college quality.

Both of these costs are decreasing in ability, ∂CMH
/∂ai < 0 and ∂CQH/∂ai < 0, as in

the traditional Spence model (Spence, 1973). As Spence points out, it is this decreasing

cost assumption that is critical to ensuring that college quality and major choice serve as

distinguishing signals and lead to a separating equilibrium. Furthermore, I assume that

CQH (ai) > CMH
(ai, QL) so that the equilibrium ability sorting is restricted to the case

where the highest ability students choose (QH ,MH), followed by the next highest ability

group choosing (QH ,ML), then (QL,MH), and finally (QL,ML). Removing this condition

results in a separating equilibrium in which either no students at elite colleges choose non-

STEM majors, which is clearly not supported by empirical evidence, or where the average
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ability of STEM students at non-elite schools exceeds that of non-STEM students at elite

colleges. Using the data and definitions described in Section 2.4, I find that this type of

separating equilibrium is not consistent with the raw data on SAT scores. The average

SAT scores are: 1,318 for STEM majors at elite schools, 1,264 for non-STEM majors

at elite schools, 1,123 for STEM majors at non-elite schools, and 1,033 for non-STEM

majors at non-elite schools.

Of course, the decision of where to attend college is not based on effort cost alone.

There will also be some very high ability individuals who do not attend the best possible

school that they qualify for. This could be due to the high financial cost or for other

reasons such as a desire to stay close to home, etc. To account for this, I allow for a

uniformly distributed constraint so that some fraction, 1− p, of all eligible students are

directly constrained from attending an elite college. The resulting separating equilibrium

is shown for a uniform ability distribution in the top panel of Figure B.2.

However, this equilibrium does not yet include the college admissions decision. It is a

well-known empirical fact that there exists an excess supply of applicants to elite colleges.

The top 5% of colleges (as defined in Section 2.4) admitted on average only 28.5% of

applicants in the Fall of 2011 with some schools admitting less than 10% of applicants.

This excess supply allows elite colleges to set a strict cutoff point in the distribution of

ability, aQH , that is higher than the minimum ability student who would like to attend

an elite college, aQH >> aQHML
(See bottom panel of Figure B.2). Students must now take

the college admissions cutoff point as exogenously given, and adjust their college major

choices accordingly. The students’ maximization problem is now represented by (2.1) and

it is clear that the resulting separating equilibrium and comparative statics will follow

directly from the sequential model described in Section 2.2.1.
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a

f(a)

p

aQHML
aQHMH

aQLMH

(QH ,ML) (QH ,MH)(QL,ML)

(QL,MH)

College Applications

a

f(a)

aQH

p

aQHMH
aQLMH

(QH ,ML)(QH ,MH)(QL,ML)

(QL,MH)

College Enrollment

Figure B.2: Separating equilibrium for uniform ability before and after college ad-
missions decisions

B.2 An Increasing Constraint Function

Consider a constraint function, p(a) satisfying the following two conditions: (1) p(a)

must be increasing in ability (so that the fraction constrained, 1 − p(a), is smallest for

the most able); and (2) p(a) < 1 for all ability levels in both the high and low access

scenarios. Then the separating equilibrium for the model given in Section 2.2.1 must
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satisfy the following modified conditions:

E[a(p(a))|aQH ≤ a < aQHMH
] = E[a(p(a))|a ≥ aQHMH

]− CMH
(aQHMH

, QH), (B.2)

E[a|a < aQLMH
] = ψ(a)− CMH

(aQLMH
, QL), (B.3)

where

ψ(a) = (B.4)

[F (aQH )− F (aQLMH
)]E[a|aQLMH

≤ a < aQH ] + (1− θ)[1− F (aQH )]E[a(1− p(a))|a ≥ aQH ]

F (aQH )− F (aQLMH
) + (1− θ)[1− F (aQH )]

,

and

θ =

∫ a

aQH
p(a)da.

The effect of an increase in p(a) on the expected ability of non-elite, non-STEM students

is now:

∂ψ(a)

∂p(a)
= (B.5)

[1− F (aQH )][F (aQH )− F (aQLMH
)]

γ
(E[a|aQLMH

≤ a < aQH ]− E[a(1− p(a))|a > aQH ])
∂θ

∂p(a)

+
(1− θ)[1− F (aQH )]

γ

∂E[a(1− p(a))|a > aQH ]

∂p(a)

where γ = F (aQH )− F (aQLMH
) + (1− θ)[1− F (aQH )]. The first fraction in (B.5) is a ratio

of populations, which is clearly positive: 1− F (aQH ) > 0; F (aQH )− F (aQLMH
) > 0; γ > 0.

The term (E[a|aQLMH
≤ a < aQH ] − E[a(1 − p(a))|a > aQH ]) is the difference between

the expected ability of STEM majors at non-elite schools who are below the admissions

cutoff and the expected ability of the directly constrained students who are above the
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admissions cutoff, which is clearly negative. The change in the area under the constraint

function, ∂θ/∂p(a), is positive making the entire first term of equation (B.5) negative.

The second term in (B.5) is the product of a ratio of populations (positive) and

the change in the expected value of the ability of directly constrained students given a

decrease in the fraction constrained from 1−p(a) to 1−p̃(a). Given that 1−p(a) ≥ 1−p̃(a)

∀a, it follows that a(1− p(a)) ≥ a(1− p̃(a)) ∀a and therefore E[a(1− p(a))|a > aQH ] ≥

E[a(1 − p̃(a))|a > aQH ]. Given this decrease in the expected value of the ability of

directly constrained students, the second term of (B.5) is also non-positive, and ∂ψ(a)
∂p(a)

< 0.

Thus, the main result is unchanged and the effect of decreasing the fraction of students

constrained increases the non-elite cutoff point,
da
QL
MH

dp(a)
> 0.

B.3 Violation of the Upper Bound on Effort Cost

The separating equilibrium defined by (2.3)-(2.4) requires that the equilibrium cutoff

for choosing a STEM major at non-elite schools is below the elite college admissions

cutoff point, aQLMH
≤ aQH . This is guaranteed by an assumption on the upper bound of

the cost of choosing STEM at non-elite schools; CMH
(aQH , QL) ≤ aQH − E[a|a < aQH ],

such that it is optimal to choose a STEM major for at least the most able student who is

not eligible to attend an elite college. If this assumption does not hold and aQLMH
> aQH

then the resulting separating equilibrium must satisfy the following conditions:

E[a|aQH ≤ a < aQHMH
] = E[a|a ≥ aQHMH

]− CMH
(aQHMH

, QH), (B.6)

φ(a) = E[a|a ≥ aQLMH
]− CMH

(aQLMH
, QL), (B.7)
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where

φ(a) =
F (aQH )E[a|a < aQH ] + (1− p)[F (aQLMH

)− F (aQH )]E[a|aQH ≤ a < aQLMH
]

F (aQH ) + (1− p)[F (aQLMH
)− F (aQH )]

. (B.8)

Here φ(a) is the expected ability of individuals at non-elite colleges who choose non-

STEM majors. This is a weighted average of the ability of all individuals who are below

the admission cutoff, ai < aQH , and the individuals who are directly constrained into

attending a non-elite college and choose a non-STEM major, aQH ≤ ai < aQLMH
.

The effect of decreasing the fraction of constrained students can be found by taking

the total derivative of (B.7) and (B.8),

daQLMH

dp
=

−∂φ(a)/∂p

∂φ(a)/∂aQLMH
− ∂E[a|a > aQLMH

]/∂aQLMH
+ ∂CMH

(aQLMH
, QL)/∂aQLMH

. (B.9)

The quantity in the denominator, ∂φ(a)/∂aQLMH
− ∂E[a|a > aQLMH

]/∂aQLMH
+

∂CMH
(aQLMH

, QL)/∂aQLMH
, is negative under local stability of the equilibrium. The quantity

in the numerator, −∂φ(a)/∂p is the reverse of the direct effect of decreasing the fraction

constrained on the expected ability of STEM majors at non-elite schools,

−∂φ(a)

∂p
= −

[F (aQLMH
)− F (aQH )]F (aQH )

F (aQH ) + (1− p)[F (aQLMH
)− F (aQH )]

(E[a|a < aQH ]−E[a|aQH < a < aQLMH
]).

(B.10)

The difference in expected abilities, E[a|a < aQH ] − E[a|aQH < a < aQLMH
], is clearly

negative, making the above equation positive, −∂φ(a)
∂p

> 0 . Therefore, removing the

upper bound on the non-elite cost of choosing a STEM major reverses the effect of

shifting the constraint on the non-elite cutoff point.

If aQLMH
> aQH then the effect of increased access to elite colleges and a smaller fraction

of students who are directly constrained is a decrease in the non-elite major cutoff point,
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da
QL
MH

dp
< 0. While this scenario seems unlikely given the empirical evidence (it would imply

that only very high-ability students at non-elite schools participate in STEM majors),1

it can only cause a false rejection of the asymmetric information model predictions if I

do not observe a positive effect on the non-elite cutoff point in high access regions.

B.4 Differential College Admissions

Here I consider the possibility that the admissions cutoff may reflect differences in

the constraint, p. In regions where the fraction of directly constrained students is high,

administrators at elite colleges may respond by accepting additional students with lower

ability who are not constrained so that the admissions cutoff decreases to a lower point,

ãQH , (shown in Figure B.3 for a uniform ability distribution).

a

f(a)

aQHãQH

p

p̃

aQHMH
aQLMH

ãQLMH

(QH ,ML)(QH ,MH)

(QL,ML)

(QL,MH)

Figure B.3: Separating equilibrium for uniform ability with a shift in admissions standards

Taking the total derivative of (2.3) and (2.4) yields the shift in the non-elite major

1Using the data and definitions described in Section 2.4, I find that this type of separating equilibrium
is not consistent with the raw data on SAT scores. The average SAT scores are: 1,318 for STEM majors
at elite schools, 1,264 for non-STEM majors at elite schools, 1,123 for STEM majors at non-elite schools,
and 1,033 for non-STEM majors at non-elite schools.
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daQLMH

dp
=

∂ψ(a)/∂p+ (∂ψ(a)/∂aQH )(daQH/dp)

∂E[a|a < aQLMH
]/∂aQLMH

− ∂ψ(a)/∂aQLMH
+ ∂CMH

(aQLMH
, QL)/∂aQLMH

, (B.11)

which now involves an additional term, (∂ψ(a)/∂aQH )(daQH/dp). This term depends on

the direct effect on ψ(a) from shifting the admissions cutoff. The direction of this effect

depends on the relative positions of the expected ability of STEM majors at non-elite

colleges, ψ(a), and the admissions cutoff before the shift, aQH . If ψ(a) < aQH , then an

increase in the admissions cutoff will add relatively high ability students to the STEM

major group at non-elite colleges and ∂ψ(a)/∂aQH > 0. However, if ψ(a) > aQH , then

increasing the admissions cutoff will add relatively low ability students to the STEM

major group at non-elite colleges and ∂ψ(a)/∂aQH < 0. The relative positions of ψ(a)

and aQH will depend on both the constraint, p, and the position of the admissions cutoff

within the ability distribution. Therefore, it is unclear whether this admissions response

will magnify or mitigate the shift in the non-elite major cutoff due to the change in the

fraction of constrained students. Importantly, this change in the admissions cutoff will

have no effect on the predictions of the full information model (no shift in the non-elite

major cutoff) so it can only cause a false rejection of the asymmetric information model

predictions if I do not observe a positive effect on the non-elite cutoff point in high access

regions.
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