
UNIVERSITY OF CALIFORNIA

SANTA BARBARA

Interactive Remote Collaboration

Using Augmented Reality

A dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Steffen Gauglitz

Committee in charge:

Professor Tobias Höllerer, Co-Chair

Professor Matthew Turk, Co-Chair

Professor Pradeep Sen

Professor Susan Fussell, Cornell University

Gerhard Reitmayr, Ph.D., Qualcomm Research

September 2014

The dissertation of

Steffen Gauglitz is approved:

Pradeep Sen

Susan Fussell

Gerhard Reitmayr

Tobias Höllerer, Committee Co-Chair

Matthew Turk, Committee Co-Chair

August 2014

Interactive Remote Collaboration Using Augmented Reality

Copyright c© 2014

by

Steffen Gauglitz

iii

Acknowledgements

I thank my advisors Tobias Höllerer and Matthew Turk for advising, supervising, guiding and

supporting me throughout graduate school. You have taught me about the art and science of

human-computer interaction and computer vision, about research, academia, writing grants and

papers. I feel that it has always been a comfortable environment and respectful relationship,

which I believe cannot be overrated.

I thank Sue Fussell, Gerhard Reitmayr, and Pradeep Sen for serving on my dissertation

committee: You have provided expertise and feedback from other angles; and I believe that

this has made this work stronger and more well-rounded.

I thank Qualcomm, and in particular Serafin Diaz, Daniel Wagner and Alessandro Mulloni,

for making an important piece of software available to us for this work, and for supporting us

to put it to use most effectively. This has allowed us to build upon a very reliable solution and

concentrate on other research aspects; I hope that the collaboration was to mutual benefit.

I thank my collaborators and co-authors Lukas Gruber, Stefanie Zollmann, Victor Fragoso,

Luca Foschini, Cha Lee, Jon Ventura, Chris Sweeney, and in particular Ben Nuernberger; you

have helped me to implement and realize ideas and write great papers about them. I hope that

the collaborations and friendships may endure. I also thank all other members, and visitors, of

the Four Eyes Lab (and my advisors for attracting them); all of you let me bounce ideas off,

have given me input on my work, or helped shape it in other ways.

iv

I further thank Janet Kayfetz, Andy Beall, Yuqi Chen and Daniel Sheinson, who have

provided expertise and advised me professionally and/or scientifically in different ways.

Last, but certainly not least, I thank my parents for supporting me to go on an adventure

9000 kilometers away, and my wonderful wife, Julia, for supporting me throughout this jour-

ney, proofreading, bringing food to lab, lending her voice to our videos, celebrating successes

and enduring stressful times, and spending lots of time with our daughter on top of pursuing

her own career.

v

Curriculum Vitæ

Steffen Gauglitz

September 2014

Education

2014 Doctor of Philosophy, Computer Science, UC Santa Barbara

2008 Diplom-Ingenieur, Computer Engineering, RWTH Aachen University

Work Experience

2012 Intern, Google, Inc.

2010 Intern, Qualcomm, Inc. Corporate Research & Development

2008 – 2014 Graduate student research assistant,

Department of Computer Science, UC Santa Barbara

2007 – 2008 Intern, WorldViz, LLC

2005 – 2006 Student research assistant,

Institute of Man-Machine Interaction, RWTH Aachen University (part time)

2003 – 2005 Programmer, linear GmbH (part time)

Awards & Fellowships

2014 Outstanding Dissertation Honorable Mention, Department of Computer Sci-

ence, UC Santa Barbara

2013 Second-best Paper Award, UC Santa Barbara Computer Science Graduate Stu-

dent Workshop on Computing

2012 Best Paper Award, IEEE International Symposium on Mixed and Augmented

Reality (ISMAR)

2012 Best Paper Honorable Mention, ACM SIGCHI’s International Conference on

Human-Computer Interaction with Mobile Devices and Services (MobileHCI)

2012 Outstanding Graduate Student Award, Department of Computer Science, UC

Santa Barbara

2010 Outstanding Teaching Assistant Award, Department of Computer Science, UC

Santa Barbara

2010 Springorum Coin, RWTH Aachen University, “in recognition of outstanding

academic achievement”

2008 – 2013 Chancellor’s Fellowship, UC Santa Barbara

vi

2006 – 2007 Fellow of the Deutsche Akademische Austausch Dienst (German Academic

Exchange Service)

2003 – 2008 Fellow of the Studienstiftung des deutschen Volkes (German National Aca-

demic Foundation)

Publications

In Journals:

S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. Höllerer: Model estimation

and selection towards unconstrained real-time tracking and mapping. In IEEE

Transactions on Visualization and Computer Graphics (TVCG), vol.20, no.6,

pp.825-838, 2014

S. Gauglitz, T. Höllerer, and M. Turk: Evaluation of interest point detectors and

feature descriptors for visual tracking. In International Journal of Computer

Vision (IJCV), vol.94, no.3, pp.335-360, 2011

In Conference Proceedings:

S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer: In Touch with the Remote

World: Remote Collaboration with Augmented Reality Drawings and Virtual

Navigation. In Proceedings of the ACM Symposium on Virtual Reality Soft-

ware and Technology (VRST) 2014, Edinburgh, UK, to appear

S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer: World-stabilized Annotations

and Virtual Scene Navigation for Remote Collaboration. In Proceedings of the

ACM Symposium on User Interface Software and Technology (UIST) 2014,

Honolulu, USA, to appear

S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. Höllerer: Live tracking and

mapping from both general and rotation-only camera motion. In Proceedings

of the IEEE International Symposium on Mixed and Augmented Reality (IS-

MAR) 2012, Atlanta, USA

S. Gauglitz, C. Lee, M. Turk, and T. Höllerer: Integrating the physical environment

into mobile remote collaboration. In Proceedings of the ACM SIGCHI In-

ternational Conference on Human-Computer Interaction with Mobile Devices

and Services (MobileHCI) 2012, San Francisco, USA

S. Gauglitz, M. Turk, and T. Höllerer: Improving keypoint orientation assignment.

In Proceedings of the British Machine Vision Conference (BMVC) 2011, Dun-

dee, UK

vii

S. Gauglitz, L. Foschini, M. Turk, and T. Höllerer: Efficiently selecting spatially

distributed keypoints for visual tracking. In Proceedings of the IEEE Interna-

tional Conference on Image Processing (ICIP) 2011, Brussels, Belgium

V. Fragoso, S. Gauglitz, S. Zamora, J. Kleban, and M. Turk: TranslatAR: a mo-

bile augmented reality translator. In Proceedings of the IEEE Workshop on

Applications of Computer Vision (WACV) 2011, Kona, USA

L. Gruber, S. Gauglitz, J. Ventura, S. Zollmann, M. Huber, M. Schlegel, Gudrun

Klinker, Dieter Schmalstieg, and Tobias Höllerer: The City of Sights: design,

construction, and measurement of an augmented reality stage set. In Proceed-

ings of the IEEE International Symposium on Mixed and Augmented Reality

(ISMAR) 2010, Seoul, Korea

B. Sturm, J. Shynk, and S. Gauglitz: Agglomerative clustering in sparse atomic

decompositions of audio signals. In Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) 2008, Las

Vegas, USA

Extended Abstracts/Posters:

B. Nuernberger, S. Gauglitz, T. Höllerer, and M. Turk: Investigating viewpoint visu-

alizations for Click & Go navigation. In Proceedings of the IEEE Symposium

on 3D User Interfaces (3DUI) 2014, Minneapolis, USA

C. Lee, S. Gauglitz, T. Höllerer, and D. A. Bowman: Examining the equivalence

of simulated and real AR on a visual following and identification task. In

Proceedings of IEEE Virtual Reality (VR) 2012, Orange County, USA

S. Gauglitz, T. Höllerer, P. Krahwinkler, and J. Roßmann: A setup for evaluating

detectors and descriptors for visual tracking. In Proceedings of the IEEE In-

ternational Symposium on Mixed and Augmented Reality (ISMAR) 2009, Or-

lando, USA

viii

Abstract

Interactive Remote Collaboration Using Augmented Reality

Steffen Gauglitz

With the widespread deployment of fast data connections and availability of a variety of sensors

for different modalities, the potential of remote collaboration has greatly increased. While the

now ubiquitous video conferencing applications take advantage of some of these capabilities,

the use of video between remote users is limited to passively watching disjoint video feeds

and provides no means for interaction with the remote environment. However, collaboration

often involves sharing, exploring, referencing, or even manipulating the physical world, and

thus tools should provide support for these interactions.

We suggest that augmented reality is an intuitive and user-friendly paradigm to commu-

nicate information about the physical environment, and that integration of computer vision

and augmented reality facilitates more immersive and more direct interaction with the remote

environment than what is possible with today’s tools.

In this dissertation, we present contributions to realizing this vision on several levels. First,

we describe a conceptual framework for unobtrusive mobile video-mediated communication

in which the remote user can explore the live scene independent of the local user’s current

camera movement, and can communicate information by creating spatial annotations that are

immediately visible to the local user in augmented reality. Second, we describe the design

and implementation of several, increasingly more flexible and immersive user interfaces and

ix

system prototypes that implement this concept. Our systems do not require any preparation or

instrumentation of the environment; instead, the physical scene is tracked and modeled incre-

mentally using monocular computer vision. The emerging model then supports anchoring of

annotations, virtual navigation, and synthesis of novel views of the scene. Third, we describe

the design, execution and analysis of three user studies comparing our prototype implemen-

tations with more conventional interfaces and/or evaluating specific design elements. Study

participants overwhelmingly preferred our technology, and their task performance was signifi-

cantly better compared with a video-only interface, though no task performance difference was

observed compared with a “static marker” interface. Last, we address a particular technical

limitation of current monocular tracking and mapping systems which was found to be imped-

ing and present a conceptual solution; namely, we describe a concept and proof-of-concept

implementation for automatic model selection which allows tracking and modeling to cope

with both parallax-inducing and rotation-only camera movements.

We suggest that our results demonstrate the maturity and usability of our systems, and,

more importantly, the potential of our approach to improve video-mediated communication

and broaden its applicability.

x

Table of Contents

Acknowledgements iv

Curriculum Vitæ vi

Abstract ix

List of Figures xv

List of Tables xvii

1 Introduction 1

Thesis statement . 2

2 Related Work 6

2.1 Video-Mediated Communication . 6

2.2 Spatial References to the Remote Physical Environment 7

2.3 World-stabilized Spatial References . 10

2.4 Vision-based Tracking and Mapping . 12

2.5 Virtual Navigation . 14

3 A Concept for Mobile Unobtrusive Remote Collaboration 16

3.1 Local User’s Interface . 17

3.2 Remote User’s Interface . 18

3.3 Visual Tracking & Environment Modeling 18

3.4 Hardware . 19

4 Design of Interfaces & Implementation of Prototype Systems 21

4.1 Prototype 1 . 23

xi

4.1.1 Local user’s interface . 23

4.1.2 Remote user’s interface . 26

4.1.3 Visual tracking & environment modeling 27

4.2 Prototype 2 . 31

4.2.1 Local user’s system . 31

4.2.2 Remote user’s system: Overview & Architecture 33

4.2.3 Remote user’s system: Network module 35

4.2.4 Remote user’s system: 3D modeler 35

4.2.5 Remote user’s system: Camera control (virtual navigation) 38

4.2.6 Remote user’s system: Annotation control 42

4.2.7 Remote user’s system: Renderer . 44

4.3 Prototype 3 . 46

4.3.1 Motivation for using a touchscreen rather than 3D input 46

4.3.2 Touchscreen interface elements . 48

4.3.3 2D drawings as annotations in 3D space 49

4.3.4 Gesture-based virtual navigation . 53

5 Evaluation via User Studies 61

5.1 User Study 1 . 61

5.1.1 Task & physical setup . 62

5.1.2 Conditions . 65

5.1.3 Experimental design . 67

5.1.4 Participants . 67

5.1.5 Procedure . 68

5.1.6 Results . 69

5.2 User Study 2 . 75

5.2.1 Task & physical setup . 76

5.2.2 Conditions . 77

5.2.3 Experimental design . 78

5.2.4 Participants . 78

5.2.5 Procedure . 79

5.2.6 Results . 80

5.3 Discussion of Studies 1 and 2 . 86

5.3.1 Use of features . 86

5.3.2 Task performance with interface C vs. interface B 87

5.4 User Study 3 . 92

5.4.1 Participants . 92

5.4.2 2D drawings in 3D . 93

5.4.3 Gesture-based navigation . 97

xii

6 Model Estimation and Selection towards Unconstrained Tracking and Mapping 100

6.1 Alternative Approaches . 103

6.2 System Overview . 106

6.2.1 Two-view relations and model-based poses 107

6.2.2 Data structures . 109

6.3 Tracking . 110

6.3.1 Coarse-to-fine feature tracking . 112

6.3.2 Model estimation and outlier re-estimation 113

6.3.3 Inserting a new keyframe . 114

6.3.4 Relocalizing vs. starting a new track 116

6.4 Mapping . 117

6.4.1 Triangulating features . 118

6.4.2 Bundle adjustment . 118

6.4.3 Merging disjoint tracks . 119

6.4.4 Estimation of feature normals . 121

6.4.5 Cleaning up residual data . 123

6.5 Model Selection . 123

6.5.1 Generalized GRIC score for two-view relations 125

6.5.2 GRIC score for absolute pose models 132

6.6 Evaluation . 134

6.6.1 Tracking accuracy . 136

6.6.2 Qualitative comparison with PTAM 138

6.7 Discussion: Aspects for Further Investigation, Applications & Limitations . . 140

6.7.1 On estimating the probability density function 140

6.7.2 On improving coarse-to-fine matching 141

6.7.3 On tracking robustness . 142

6.7.4 On merging of maps . 143

6.7.5 On applications & limitations of the hybrid map 144

6.7.6 On model selection and scene segmentation 145

7 Conclusions 146

7.1 Summary . 146

7.2 Contributions . 148

7.3 Limitations of the Current Implementation 150

7.3.1 Level of detail of the model . 151

7.3.2 Static scene . 151

7.3.3 Stereo initialization . 152

7.3.4 Occlusion of annotations on local side 153

7.4 Opportunities for Future Research . 153

7.4.1 Other types of AR displays . 154

xiii

7.4.2 Further work on live navigation of remote environments 155

7.4.3 Integration of large-scale maps and further digital data 155

7.4.4 Extension to more than two users and other roles 157

Bibliography 158

xiv

List of Figures

3.1 Overview of the proposed concept for remote collaboration. 17

4.1 Prototype 1: Hand-held device for the local user. 24

4.2 Prototype 1: View for local and remote user. 24

4.3 Prototype 2: System architecture of local and remote user’s system. 32

4.4 Prototype 2: Screenshot of the remote user’s interface. 41

4.5 Prototype 3: Screenshot of the remote user’s touchscreen interface. 48

4.6 Prototype 3: Depth interpretations of 2D drawings. 51

4.7 Prototype 3: Navigation features. 54

4.8 Prototype 3: Software stack for processing events from pointing devices. . . . 55

4.9 Prototype 3: “Zooming in” via decreasing the field of view and dollying. . . . 56

4.10 Prototype 3: Screenshot during an orbit operation. 60

5.1 Study 1: Testbed: view of an airplane cockpit. 63

5.2 Study 1: Local user with tablet; overview of the remote user’s interface. . . . 64

5.3 Study 1: Number of tasks completed as a function of the three interfaces. . . . 70

5.4 Study 1: User responses from post-study questionnaire. 72

5.5 Study 1: Users’ perceptions of tracking loss. 75

5.6 Study 2: one example out of the 80 individual tasks. 77

5.7 Study 2: Histogram of task times per interface. 81

5.8 Study 2: Results from intermediate questionnaires: interface ratings. 83

5.9 Study 2: Results from intermediate questionnaires: individual features. 84

5.10 Study 2: Results from post-study questionnaire: interface preference. 85

5.11 Study 3: Users’ preference among the four different depth interpretations. . . 95

5.12 Study 3: Ratings of two visualization options. 96

5.13 Study 3: Ratings of various navigation elements. 98

6.1 A combination of 3D structure and panoramic maps as created by our system. 102

6.2 Conceptual overview of the system’s operation. 107

xv

6.3 Schematic overview of the data structures used to store the emerging map(s). . 109

6.4 Flowchart of the tracking thread. 111

6.5 Merging of tracks vs. relocalization. 116

6.6 Effect of normal estimation on lifespan of features. 123

6.7 Illustration why model selection is difficult. 124

6.8 Model selection according to Torr’s GRIC score, illustration of bias towards H . 130

6.9 Breakdown of timings in tracking thread. 135

6.10 Reconstructing a scene in 3D while recovering the camera trajectory. 136

6.11 Tracking accuracy with and without model-based tracking. 137

6.12 Qualitative comparison of camera trajectories for PTAM and our prototype. . 138

xvi

List of Tables

4.1 Characteristics of the three prototype implementations. 22

4.2 Prototype 2: Timings of the 3D modeler to process a new keyframe. 37

5.1 Study 1: Gender distribution and participant teams. 68

5.2 Study 1: Tukey’s posthoc analysis. 71

5.3 Study 2: Gender distribution and participant teams. 79

5.4 Study 3: Usage of different styles of arrow heads. 94

6.1 Estimation algorithms for the four models considered here. 113

6.2 GRIC score parameters for the four models considered here. 132

xvii

Chapter 1

Introduction

With the widespread deployment of fast data connections and availability of a variety of sensors

for different modalities, the potential of remote collaboration has greatly increased. While the

now ubiquitous video conferencing applications take advantage of some of these capabilities,

they lack the ability to interact with the remote physical environment; the use of video between

remote and local users is limited largely to passively watching disjoint video feeds. This is aptly

summarized by Gelb et al. (2011): “Current systems, however, do a poor job of integrating

video streams [...]. Real and virtual content are unnaturally separated, leading to problems with

nonverbal communication and the overall conference experience.” Thus, teleconference-like

applications have been largely successful when the matter at hand can be discussed verbally or

with the help of purely digital data (such as presentations slides), but they hit severe limitations

when real-world objects or environments are involved.

As effective collaboration often involves sharing, exploring, referencing, or even manip-

ulating the physical environment, tools for remote collaboration should provide support for

these interactions. For example, gesturing and pointing are very natural and effective parts of

1

Chapter 1. Introduction

human communication, without which communication can be ineffective and frustrating (“If

I could just point to it, its right there,” “if only I could show you how to do it” (Fussell et al.,

2004)). To incorporate these means of communication, researchers have explored various ways

to support remote pointing. However, two of the most common limitations in existing work are

that the remote user’s view onto the scene is constrained to the typically small field of view of

the local user’s camera, and that any support for spatially referencing the scene is contingent

upon a stationary camera, as otherwise the pointers lose their referents.

Advances in computer vision facilitate applications which are to some degree able to un-

derstand where mobile cameras are pointed and what is seen. These new capabilities should

be exploited to enable the remote user to interact with what he/she sees, instead of forcing

him/her to passively watch whatever is in view of the local user’s camera. Further, we suggest

that mobile augmented reality (AR) provides a natural and user-friendly paradigm to communi-

cate spatial information about the scene and to browse an environment remotely. This concept

leads to the following thesis statement:

Integrating computer vision and augmented reality can significantly improve

video-mediated communication and broaden its applicability. In particular,

integrating those technologies enables telecommunication participants to ef-

fectively reference and communicate information about the remote physical

environment. Significant benefits can be achieved without instrumentation of

2

Chapter 1. Introduction

the environment and with off-the-shelf hardware with relatively low sensory

fidelity, making this approach suitable for widespread adoption.

In this dissertation, we support this thesis with contributions on multiple levels:

• We describe a system framework for unobtrusive mobile remote collaboration that inte-

grates the physical environment. Our concept does not require specialized equipment or

preparation of the environment and is compatible with a wide range of hardware con-

figurations, including systems that are already ubiquitous (e.g., smartphones) as well as

more advanced immersive systems (Chapter 3).

• We designed three prototypes that implement the aforementioned framework and feature

several novel interface elements for unobtrusive mobile telecollaboration in unprepared

environments. Our prototypes use model-free, markerless, expanding visual tracking and

modeling to enable a remote user to provide visual/spatial feedback by means of world-

stabilized annotations that are displayed to a local user in AR. Further, our system enables

decoupling of the local user’s view from the remote user’s view while maintaining live

updates. This gives the remote user control over his/her viewpoint and allows him/her to

study and annotate (and thus direct attention to) parts of the scene that are not currently

in the field of view of the local user. The prototypes’ interfaces include several other

novel features, such as the interpretation of 2D drawings as world-stabilized annotations

in 3D and virtual navigation designed specifically to explore a partially modeled remote

scene (Chapter 4).

3

Chapter 1. Introduction

• We conducted user studies to validate the usability of our prototypes and evaluate their

benefits over more conventional interfaces, and discuss both quantitative results and qual-

itative observations in detail. To our knowledge, our studies are among the first formal

user studies overall to rely solely on markerless, model-free visual tracking (Chapter 5).

• Lastly, we address one particular limitation of current visual environment modeling, as

an important enabling technology of our framework, and describe a conceptual solution

and proof-of-concept implementation. Namely, we describe a novel approach to live

vision-based environment modeling which supports both general (parallax-inducing) and

degenerate (rotation-only) camera motions in environments of arbitrary geometric com-

plexity (Chapter 6).

We will discuss related work in Chapter 2, then present these contributions in the above order.

We conclude in Chapter 7.

Authorship. I am the primary author of all aspects of the work constituting this dissertation.

However, in addition to the guidance of my advisors Tobias Höllerer and Matthew Turk on

all parts of this work — and several people to whom we are indebted for providing additional

advice, as expressed in the acknowledgements — several of my colleagues have contributed

to individual parts of this work, as attributed via their co-authorship on the respective peer-

reviewed publications.

Specifically, in the order of appearance of the respective contents in this dissertation: Ben

Nuernberger has contributed to the design, implementation, and description of prototypes 2 and

4

Chapter 1. Introduction

3 (Sections 4.2 and 4.3) as well as the administration, analysis, and description of user study 2

(Section 5.2); Cha Lee has contributed to the design, administration, analysis, and description

of user study 1 (Section 5.1); and Chris Sweeney and Jon Ventura have contributed to the

formulation, implementation, testing, and description of the tracking and modeling approach

described in Chapter 6.

5

Chapter 2

Related Work

2.1 Video-Mediated Communication

Research on video-mediated communication is multifaceted. The body of research includes

investigations on various video configurations (Kraut et al., 1996; Gergle et al., 2004; Fussell

et al., 2000, 2003a) and systems aiming at increasing the level of immersion of teleconferences

by transferring live three-dimensional or perspectively corrected imagery of the participants

(Raskar et al., 1998; Regenbrecht et al., 2004; Sadagic et al., 2001; Kurillo et al., 2008; Mai-

mone and Fuchs, 2011; Maimone et al., 2013). Collaboration is possible on purely virtual data

(as demonstrated in Sadagic et al., 2001; Regenbrecht et al., 2004; Kurillo et al., 2008), but

spatial references to the physical world are not supported.

6

Chapter 2. Related Work

There are several AR frameworks that focus on collaborative work and more mobile in-

frastructure (Billinghurst et al., 1998a,b; Butz et al., 1999; Reitmayr and Schmalstieg, 2001).

However, most of these also facilitate collaboration on virtual data only.1

2.2 Spatial References to the Remote Physical Environment

Support for spatial references to the remote physical scene has been an active research topic.

Notable early works include “VideoDraw” (Tang and Minneman, 1991) and the “DoubleDigi-

talDesk” (Wellner and Freeman, 1993).

While many of the above systems focus on symmetric setups (i.e., both participants have the

same equipment and share their own environment to the same degree), further work has been

done on asymmetric local worker/remote expert scenarios (Alem et al., 2011; Bauer et al.,

1999; Fussell et al., 2004; Kurata et al., 2004; Chastine et al., 2008; Ou et al., 2003; Kirk,

2006). These systems typically focus on tasks involving objects in the local worker’s physical

environment (“collaborative physical tasks” (Kirk, 2006)).

Various ways to support the visual/spatial referencing have been studied, for example re-

mote pointers or markers (Bauer et al., 1999; Fussell et al., 2004; Chastine et al., 2008; Kim

et al., 2013), laser pointers (Kurata et al., 2004), drawing onto a live video stream (Ou et al.,

2003; Kirk and Fraser, 2006; Fussell et al., 2004; Gurevich et al., 2012; Kim et al., 2013),

1Cf. the following quote by Butz et al. (1999): “We present [...] a prototype experimental user interface to a

collaborative augmented environment. Users share a 3D virtual space and manipulate virtual objects that represent

information to be discussed.”

7

Chapter 2. Related Work

or directly transferring videos of hand gestures (Kirk and Fraser, 2006; Li et al., 2007; Alem

et al., 2011; Kirk, 2006; Huang and Alem, 2013; Oda et al., 2013). These annotations are then

displayed to the collaborator on a separate screen in a third-person perspective (Fussell et al.,

2004; Huang et al., 2013), on a head-worn display (Bauer et al., 1999; Huang and Alem, 2013;

Oda et al., 2013), or via projectors (Gurevich et al., 2012).

The studies by Fussell et al. (2004), Bauer et al. (1999), Chastine et al. (2008), and Kurata

et al. (2004) are especially pertinent to our work in several regards. In Fussell et al. (2004),

the local user had to assemble a toy robot with guidance from the remote user. The remote

user saw the local user’s workspace by means of a static camera looking over the local user’s

shoulder, while the local user saw the same view on a separate monitor in front of him/her. The

remote user controlled a cursor which was visible on both screens.

In Bauer et al. (1999), the local user was wearing a video-see-through head-worn display

(HWD) and had to solve a puzzle-like task. The remote expert saw the video and controlled a

pointer visible to both of them. To be able to accurately reference objects despite movement

of the local camera, the remote expert could freeze the video. However, they did not employ

any kind of tracking and thus had to freeze the local worker’s view simultaneously to be able

to display the pointer.

In Chastine et al. (2008), the local user was asked to build a structure of wooden blocks,

for which the remote user sees a virtual model in AR. Fiducial marker-based tracking was used

to establish a shared coordinate system for both the virtual model (on the remote user’s side)

and the physical model (to be built on the local user’s side), and the remote user could place

8

Chapter 2. Related Work

pointers by placing additional fiducial markers around the virtual object. Note that in their

setup, the virtual model serves not only as “expert knowledge,” but additionally as surrogate

for the physical model when placing the markers around it.

Kurata et al. (2004) developed a shoulder-worn device with a camera and laser pointer

mounted on a pan-tilt unit which is controlled by a remote user. The remote user thus has some

control over the viewpoint; in addition, their system can build pseudo-panoramic maps (while

the local user is holding still).

However, in order to support spatially referencing objects in the physical world, all of these

systems either assume a static camera (at least for the duration of the relevant interaction), since

otherwise virtual annotations lose their referents (Fussell et al., 2003b, 2004; Bauer et al.,

1999; Kurata et al., 2004; Kirk and Fraser, 2006; Kirk, 2006; Li et al., 2007; Alem et al.,

2011; Gurevich et al., 2012; Huang and Alem, 2013; Kim et al., 2013), or require extensive

equipment and prepared environments to track and thus maintain the annotations’ locations

(Chastine et al., 2008; Oda et al., 2013). Furthermore, in all of these systems, the remote user’s

view into the local environment is either restricted to a static camera (Fussell et al., 2004; Kirk

and Fraser, 2006) or tightly coupled to the local user’s head or body movement (Bauer et al.,

1999; Alem et al., 2011; Kurata et al., 2004; Chastine et al., 2008; Huang and Alem, 2013;

Kim et al., 2013), thus forcing the remote user to constantly re-orient and ask the local user to

hold still (or, in the case of Bauer et al. (1999), enforcing this by freezing both users’ views)

while pointing at an object.

9

Chapter 2. Related Work

2.3 World-stabilized Spatial References

To overcome the restrictions mentioned above, we leverage computer vision-based tracking

and modeling and the paradigm of AR in order to (a) correctly anchor virtual annotations to

their real-world referents despite a moving camera, and (b) decouple the views of local and

remote user, thus enabling the remote user to explore the environment virtually.

Using world-stabilized annotations for the purpose of remote collaboration has been envi-

sioned before. Davison et al. (2003) describe this goal, and present a Simultaneous Localiza-

tion and Mapping system (cf. Section 2.4) for a shoulder-worn robot with camera towards its

realization. Similarly, Reitmayr et al. (2007) discuss tracking of landmarks of varying com-

plexity in order to anchor annotations for the same purpose. Ladikos et al. (2008) present a

tracking system to maintain the location of annotations on planar objects. Also designed for

planar environments, the system by Lee and Höllerer (2006) supports not only world-stabilized

drawings, but also viewpoint stabilization for the remote user, which is closely related to our

notion of camera control.

AR-based collaboration between a local (“outdoor”) user and a remote (“indoor”) user was

also discussed by Höllerer et al. (1999) and Stafford et al. (2006), albeit using sensor-based

localization and maps and/or 3D models of the local user’s environment rather than real-time

capture and reconstruction.

Sodhi et al. (2013) present a system which is very closely related to our work. They use a

customized setup with a mobile device and two active depth sensors mounted onto a monopod

10

Chapter 2. Related Work

which gives the ability to reconstruct the environment (on the local user’s side) and to recon-

struct and transfer hand gestures (from the remote user’s side) in 3D. In contrast, our system

needs only an off-the-shelf tablet, but uses simpler annotations. Another difference worth not-

ing is the method of scene navigation by the remote user: Sodhi et al. equip the remote user

with a mobile device as well and use the device’s physical movement to navigate the remote

(virtual) environment, while we use virtual navigation. We will contrast the two approaches

with respect to both navigation and input modality in more detail in Sections 4.2.5 and 4.3.1,

respectively. They conducted a usability study reporting results with respect to ease of use,

etc., but no comparative or performance-based evaluation was reported.

The system by Adcock et al. (2013) also reconstructs the environment via active depth

sensors and allows the remote user to control the viewpoint (via a touch interface) and draw

annotations; however, these annotations are displayed using a statically mounted projector.

Further, Jo and Hwang (2013) presented an interactive, fully mobile system which allows

for world-stabilized drawings, albeit only for panoramas (i.e., rotation movements). Two par-

ticular interesting aspects of this work are the physical navigation of the panorama by the

remote user and switching between front and back cameras (upon permission by the local

user).

One alternative to a wearable setup is to use a camera and projective device mounted to

a robot which is controlled by the remote user (Kuzuoka et al., 2000; Gurevich et al., 2012).

However, this requires specialized hardware which needs to be carried around and put in place,

and the range and speed of operation are limited by the robot.

11

Chapter 2. Related Work

2.4 Vision-based Tracking and Mapping

A key component of our approach is the integration of vision-based tracking and mapping

of the environment to support navigating the environment and anchoring of annotations to it.

Our work is thus related to work in vision-based tracking and mapping, which are important

enabling technologies for the area of AR in general.

Monocular vision-based Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the problem of determining the pose of

the observer relative to an unknown environment while concurrently creating a model of the

environment (which may have arbitrary geometric complexity) as the observer moves around.

In the case of monocular vision-based SLAM (Davison et al., 2007), the only sensor used to

accomplish this task is a single camera.

Filter-based SLAM systems (Civera et al., 2008a; Davison et al., 2007; Eade and Drum-

mond, 2008) maintain estimates of both camera and feature positions (i.e., the map) in a large

state vector which is updated using Kalman filters in each frame. In contrast, keyframe-based

systems (Klein and Murray, 2007, 2008; Mouragnon et al., 2006) track features in each frame,

but use only selected frames to update their map, typically using bundle adjustment for the lat-

ter. While all aforementioned systems are based on sparse features, Newcombe et al. (2011a)

presented a keyframe-based system that uses dense mapping. They report extremely robust

results, but (in contrast to the above systems) require a powerful GPU for real-time operation.

12

Chapter 2. Related Work

In both types of systems, the map is designed to store structure-from-motion (SfM) data,

that is, feature positions in 3D that have been triangulated using observations from multiple

viewpoints. Thus, they require parallax-inducing camera motion in order to bootstrap their

map (Davison et al., 2007; Klein and Murray, 2007; Newcombe et al., 2011a), as otherwise,

the features cannot be triangulated and integrated into the map. In some systems (Klein and

Murray, 2007; Newcombe et al., 2011a), the initialization is performed as a dedicated separate

step, and tracking quality crucially depends on the quality of this initialization. Rotation-only

motions are supported only if they are constrained to the already observed part of the scene.

For filter-based systems, an alternative, six-dimensional parametrization of the feature lo-

cations (Civera et al., 2008a) can provide a remedy: Here, rotation-only motions are supported

by admitting features with a depth prior that represents extreme uncertainty and filtering the

features through multiple motion models (Civera et al., 2008b) to constrain their uncertainty.

However, this support comes at a high computational cost: The already high cost of filtering of

each feature point is further increased by doubling the dimensionality of the feature state vector

as well as computing the results for multiple motion models (note that Civera et al. (2008b) use

seven models in each frame).

We will return to this particular problem in Chapter 6.

13

Chapter 2. Related Work

Panorama tracking and mapping

Like a SLAM system, a panorama tracking and mapping system aims at modeling the envi-

ronment while determining the pose of the camera,2 but in this case, the camera is assumed

to rotate around its optical center, so that only its orientation has to be determined. An early

real-time system is Envisor (DiVerdi et al., 2009). Wagner et al. (2010) describe a system that

operates robustly and in real time on a mobile device.

The tracking system that we developed for our first prototype system (Section 4.1) is tech-

nically equivalent to a panorama tracking system.

2.5 Virtual Navigation

Virtual navigation is a large research area in itself, including a large body of work concerning

3D navigation from 2D inputs (Hanson and Wernert, 1997; Zeleznik and Forsberg, 1999; Tan

et al., 2001; Hachet et al., 2008; Christie and Olivier, 2009; Jankowski and Hachet, 2013;

Bowman et al., 2005; Marchal et al., 2013). Most of these works assume that the scene to

be navigated is known completely (that is, it can be rendered from any viewpoint, such as an

architectural model, the virtual environment in a game, etc.).

2Depending on the exact interpretation of the word “localization,” one may argue that a panorama tracking and

mapping system is a SLAM system, as advocated by Lovegrove and Davison (2010). This interpretation would

render the term “tracking and mapping,” which we chose to refer to the general class following Klein and Murray

(2007); Pirchheim and Reitmayr (2011); Wagner et al. (2010), obsolete.

14

Chapter 2. Related Work

In our context, the scene is only partially reconstructed from image data, with highest

rendering fidelity from a constrained set of previously visited viewpoints, and can be navigated

only based on this reconstruction. In this respect, our work bears similarity in particular with

the work by Snavely et al.’s “Photo tourism” (Snavely et al., 2006) and similar works. However,

while Photo tourism deals with a (potentially large) set of photos in a batch manner and offers

offline navigation, we process a live video in real time and offer live viewing of the evolving

model.

15

Chapter 3

A Concept for Mobile Unobtrusive

Remote Collaboration

Figure 3.1 illustrates the proposed concept which enables the remote user to explore a physical

environment by means of live imagery from a camera that the local user holds or wears. The

remote user is able to interact with the model fused from these images by creating virtual

annotations in it or transferring live imagery (e.g., of gestures) back.

At the core of the concept is a tracking and environment modeling core, which enables

the system to (1) synthesize novel views of the environment and thus decouple the remote

user’s viewpoint from that of the local user, giving the remote user some control over his/her

viewpoint, and (2) correctly register virtual annotations to their real world referents.

This concept has first been presented in our paper in the proceedings of the ACM Inter-

national Conference on Human-Computer Interaction with Mobile Devices and Services 2012

(Gauglitz et al., 2012a).

16

Chapter 3. A Concept for Mobile Unobtrusive Remote Collaboration

Figure 3.1: Overview of the proposed concept for unobtrusive, mobile remote collaboration

that integrates the physical environment. This figure depicts the situation that the user on the

left is situated in the physical task environment and thus assumes the role of the local user,

while the user on the right assumes the role of the remote user.

3.1 Local User’s Interface

The local user is assumed to hold or wear a device that integrates a camera and a display

system (e.g., hand-held tablet or head-worn display with camera), which is used to both sense

the environment and display visual/spatial feedback from the remote user correctly registered

to the real world. In the case of a video see-through hand-held device, it acts as a magic lens,

that is, it shows the live camera feed plus virtual annotations. Since a collaboration system has

to aid the user in his/her actual task rather than distract from it, an interface which is simple

and requires a minimal mental load to operate is essential. It should facilitate an active user

who may be looking at and working in multiple areas.

17

Chapter 3. A Concept for Mobile Unobtrusive Remote Collaboration

3.2 Remote User’s Interface

The remote user is presented with a view into the local user’s environment, rendered from im-

ages obtained by the local user’s camera. The remote user can place annotations that will be dis-

played to both users, correctly registered to their real-world referents from their respective point

of views. Annotations may include point-based markers, more complex three-dimensional an-

notations, drawings, or live imagery (e.g., of hand gestures).

In the simplest case, the remote user’s viewpoint may be restricted to being identical to the

local user’s current camera view. In this case, no further image synthesis is needed. Ideally,

however, the remote user should be able to decouple his/her viewpoint and control it indepen-

dently, as far as supported by the available imagery of the environment.

If the system allows for decoupled views, it is important that only the viewpoint is decou-

pled; the video is still synthesized and updated from live images in order to enable consistent

communication. (For example, in the case of our first prototype system, the effect of this can be

observed in Figure 4.2(b): although the viewpoints are different, the remote user can observe

how the local user is pointing to a control element on the panel in front of him.)

3.3 Visual Tracking & Environment Modeling

We assume that the environment may be completely unknown prior to the start of the system,

that is, we do not require any model information. While using model information bears the

potential to make the system more robust, any kind of model information has to be collected

18

Chapter 3. A Concept for Mobile Unobtrusive Remote Collaboration

in some way prior to the task, which either severely limits the generality of the system or puts

a burden on the user.

Instead, we assume that the system starts with no prior knowledge about the scene and

builds up an internal representation on the fly, which automatically expands to include new

areas as the camera moves. This does not preclude the use of additional data that may be

available from online sources — cf. the “Anywhere Augmentation” paradigm (Höllerer et al.,

2007) — to provide additional information should a specific location or object have been iden-

tified, but it means that our system will not require such data (in particular, no model of the

environment), in order to operate. Our concept is compatible with environment modeling sys-

tems of different levels of flexibility and generality, including panorama mapping and SLAM.

If admissible by the application, other sensors such as active depth cameras could also be used

(Newcombe et al., 2011b).

3.4 Hardware

We note that only very few requirements for the hardware that this concept could run on were

specified thus far. Indeed, this concept is compatible with a wide range of hardware systems,

including systems that are already ubiquitous (e.g., smartphones), as well as more immersive

systems which may serve specialized applications or become more wide-spread in the future.

This flexibility is important as the decision of which type of hardware to use may depend on

19

Chapter 3. A Concept for Mobile Unobtrusive Remote Collaboration

external factors such as cost, market penetration and task- or environment-specific considera-

tions.

In particular, our concept is compatible with various types of displays for the local user,

including smartphones or tablets, head-worn displays (used in the context of remote collabo-

ration for example by Bauer et al. (1999); Huang and Alem (2013); Oda et al. (2013)), as well

as projective displays (used in the context of remote collaboration for example by Gurevich

et al. (2012)). To demonstrate that our concept does not hinge on benefits of more immersive

technology and is suitable for wide-spread adoption, we used hand-held tablets in this work.

Likewise, the remote user’s interface could consist of a standard PC interface with screen,

mouse, keyboard; a touchscreen; a head-worn (and -tracked) virtual reality (VR) display; or a

multitude of other VR displays. With the system prototypes described in Chapter 4, we explore

the first two options.

20

Chapter 4

Design of Interfaces & Implementation of

Prototype Systems

In this chapter, we describe the design and implementation of three prototype systems that im-

plement the concept presented in Chapter 3. From Prototype 1 to 3, they describe an evolution

from an initial proof-of-concept system to a flexible, feature-rich mobile system that allows

untrained users to interact with the remote environment and communicate spatial information.

Important characteristics of and differences between the three prototypes are summarized in

Table 4.1.

Prototype 1 (Section 4.1) is an initial proof-of-concept implementation. It is not actually net-

worked, but uses two interfaces connected to the same physical computer. It is a complete, but

in several ways the simplest or least immersive implementation of our concept. Most notably,

the remote user’s camera control is limited to a “freeze” (and “un-freeze”) feature. Techni-

cally, it is limited in generality in one particular aspect: its tracking and modeling capabilities

are restricted to homographic warps, that is, it is compatible with planar scenes or rotation-only

21

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Table 4.1: Characteristics of the three prototype implementations.

movements, but not with general camera motion in general environments. With the user study

described in Section 5.1, we will show that even with this low-immersion implementation, our

concept provides significant benefits in a remote collaborative task.

Prototype 2 (Section 4.2) is a more general and feature-rich implementation. In particular,

(1) it consists of two stand-alone entities communicating via wireless network, (2) it operates in

environments of arbitrary geometric complexity, and (3) it enables the remote user to explore

the remote scene via a set of virtual navigation controls. This prototype is evaluated via a

second user study which will be described and discussed in Section 5.2.

22

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Prototype 3 (Section 4.3) builds upon Prototype 2, sharing much of the underlying system

infrastructure and architecture, but provides a more intuitive and immersive user experience

for the remote user, and improves individual interface aspects by building upon user feedback

from the second study. In particular, we incorporated a touchscreen interface to allow more

direct interaction, added support for free-hand drawings as more flexible and expressive anno-

tations, and added gesture-based virtual navigation. Adding these new elements involved new,

unique design challenges, which are evaluated via a qualitative user study to be described in

Section 5.4.

4.1 Prototype 1

The prototype presented in this section has first been described in our paper in the proceedings

of the ACM International Conference on Human-Computer Interaction with Mobile Devices

and Services 2012 (Gauglitz et al., 2012a).

4.1.1 Local user’s interface

As hardware interface for the local user, we decided to use a hand-held tablet screen, since

we wanted to show that benefits can be achieved using hardware setups that are already in

widespread deployment. This prototype being the initial proof-of-concept system, for ease of

implementation and flexibility with respect to the hardware components to be used, we use a

USB-driven screen with a camera mounted on the back (Figure 4.1) instead of a stand-alone

23

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.1: Hand-held device for the local user: 10” USB tablet screen with camera mounted

on back.

(a) view for local user (b) view for remote user

Figure 4.2: View for local and remote user. The remote user’s viewpoint (b) is frozen, but

the live video frame is — correctly registered with the frozen frame — blended in, such that the

remote user can still observe the local user’s actions. The remote user has set three markers

in his view. Two are inside the local user’s current field of view (a), the third lies outside

his view on the left, as indicated by the (accordingly colored) arrow on the left. Note that the

view is correctly tracked (as apparent from the correctly registered frames and markers) despite

significant occlusion from the local user’s hand.

24

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

tablet computer, and all computations are executed on the connected PC. However, we do not

make use of a GPU and the computation-intensive part (i.e., the tracking with the template

matching core, cf. Section 4.1.3) is very similar to the tracking system by Wagner et al. (2009),

which operates in real time on a 2009 smart phone. Thus, our system could be implemented on

a mobile device (such as a light-weight tablet or smartphone) given appropriate optimizations.

When tracking is lost and needs to be recovered, the local user sees a large red ‘X’ across

the screen to indicate that tracking is lost and hence virtual annotations cannot be drawn. By

pointing back to a previously seen location, the user can help the system to recover tracking

(cf. Section 4.1.3). Even if tracking is lost, the live video feed is not interrupted and the local

user may continue to work.

As virtual annotations, our prototype supports point-based markers which the remote user

controls. They are displayed to both users in their respective views as an ‘X’ anchored to the

real world, with a number attached to it and additionally color coded to disambiguate between

multiple markers. When a marker is set outside the current view or moves outside the current

view, a correspondingly colored arrow appears on the border of the screen pointing towards the

marker’s location (see Figure 4.2(a)). (Cf. (Baudisch and Rosenholtz, 2003; Gustafson et al.,

2008) for other visualizations of off-screen objects.)

25

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

4.1.2 Remote user’s interface

The remote user is presented with a view of the local user’s environment and can place markers

by clicking into this view (Figure 4.2(b)).

We provided one particular feature that allows control over the remote user’s viewpoint: the

remote user can “freeze” (and un-freeze) his/her viewpoint at any time. Despite its simplicity,

this feature allows decoupling of the remote view from local movement, and thus enables for

example precise clicking on objects despite the movement of the camera on the local user’s

side. This feature resembles the “Frame & Freeze” technique by Güven et al. (2006), which

was developed for a mobile AR user to interact with his own view.

The local user’s screen is not affected by the freezing and remains “live” at all times. Using

visual tracking, the remote user’s view is still registered to the local user’s live view. Therefore,

when markers are set, they immediately appear at the correct position with respect to the world

on both the local and remote views. The remote user can return to the live view at any time by

right-clicking again, and the view transitions back to the live view, animated by interpolating a

few frames between the two viewpoints.

Note that rather than freezing the remote user’s video frame — this would have the crucial

disadvantage that the remote user would not receive any visual updates and could not observe

the local user’s action — we freeze the viewpoint of the remote user and display a transparent

image of the live stream on top of the remote user’s frozen view, correctly registered with the

frozen viewpoint. Thus, when the local user points to something within his camera’s field of

26

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

view, the remote user sees a half-transparent hand correctly indicating the object of interest.

Blending the two frames, rather than displaying only the warped live frame, has the advantage

that the initial frozen frame remains visible and stable even if the warped view becomes jittery

or blurry (due to jittery tracking, motion blur, or extreme warping angles), and it reduces arti-

facts along the border of the live frame. The blended view with the local user’s half-transparent

hand (Figure 4.2(b)) bears noteworthy resemblance to the blended video feeds in several related

systems (Tang and Minneman, 1991; Wellner and Freeman, 1993; Kirk and Fraser, 2006), but

these systems require a static setup with known camera pose.

4.1.3 Visual tracking & environment modeling

As visual tracking system we used a multi-level, active search patch tracker with normalized

cross-correlation (NCC)-based template matching and keyframe-based recovery, inspired by

the systems of Wagner et al. (2009) and Klein and Murray (2008). In preliminary investiga-

tions, this algorithm was found to perform favorably in terms of speed/robustness trade-off

compared to several image alignment- and other feature-based algorithms.

As postulated by our concept, we do not use any model information; that is, the environment

is completely unknown prior to the start of the system. Instead, our system builds up an internal

representation on the fly which automatically expands to include new areas as the camera

moves.

27

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

The tracking system could enable further features that may improve the collaboration. Most

notably, it could effectively increase the field of view of the remote user by displaying the

entire map collected by a panning camera. However, we decided to make only minimal use of

the tracking by only world-referencing annotations and the remote user’s viewpoint, to allow

evaluation of these features in particular.

Details of the Tracking Algorithm. From the first frame, the tracker creates an image pyra-

mid by half-sampling the image twice. On each level, keypoints are detected with the FAST

corner detector (Rosten and Drummond, 2006), and a subset that is spatially well-distributed

across the image is selected with the algorithm described in Gauglitz et al. (2011). Those

keypoints constitute the features that are tracked and based on which the camera viewpoint

(modeled as homography) is estimated for each frame.

Each incoming frame is projected back to the initial viewpoint, taking the previous frame’s

estimated homography as prior estimate (such that the patch tracker has to be robust to the

distortion between two subsequent frames only). Then, each feature’s new position is estab-

lished by NCC-based template matching of an 11×11 pixel image patch. This is done for the

top-most (smallest) image level first, then the homography is re-estimated from the putative

feature correspondences using RANSAC (Fischler and Bolles, 1981) and used to project the

features into the next level. This ensures robustness to relatively large inter-frame movements

despite a small template matching area. We used a radius of 5 pixels on the top-most level,

resulting in tolerable movements of 20 pixels between two subsequent frames.

28

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

As new areas come into view, features are detected in those areas as well and added to

the internal map by storing their position and NCC template with respect to the initial frame’s

coordinate system.

Tracking Loss & Recovery. We implemented a recovery algorithm similar to that of Klein

and Murray (2008). In certain intervals and if tracking quality is deemed good (as determined

by the fraction of inliers found by RANSAC), the system creates a keyframe by downsampling

the current frame to 80×60 pixels, blurring it with a Gaussian kernel (σ = 1.5), and storing it

together with the current pose information.

The system declares tracking to be lost if RANSAC fails to find a certain fraction of visible

features (25%) that agree on one pose estimate. If tracking is lost, each new frame is also

downsampled and blurred, and the NCC score between this frame and all stored keyframes is

computed. The keyframe with the highest score is then aligned to the downsampled current

frame. During this image alignment step, the homography is restricted to be affine, which

increases both the speed and the convergence rate. The refined pose of the stored keyframe

is then fed back into the tracking algorithm. If RANSAC is able to again find a sufficiently

large fraction of inliers among the feature correspondences, tracking is assumed to be restored

successfully; otherwise, the recovery algorithm is run again with the next frame.

When It Is Not Necessary to Recover Tracking. Unless tracking recovery succeeds quasi-

instantaneously and thus fully automatically, the user has to help out by pointing towards a

29

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

previously seen location. This is a distraction from his actual task, and thus should only be

done if necessary. Therefore, it is important to understand when recovery is dispensable and

design the system appropriately.

In our system, tracking is needed in two cases: when annotations (markers) are present,

and when the remote user has frozen his/her viewpoint. If neither is the case, tracking is not

currently needed and hence the user should not be bothered with requests to recover it. In

this case, recovery is attempted only for a maximum of 10 frames. If unsuccessful, tracking

is simply reset and re-initialized with the current frame. If, however, tracking is needed to

maintain currently active markers or the registration with the remote user’s frozen viewpoint,

recovery is attempted for much longer, asking the user to help with recovery by displaying the

red ‘X’ if needed. If recovery is not successful after 240 frames, it is assumed that the user

does not want or is unable to recover tracking, and the tracking is reset.

Real-time Performance. Overall, this system is fast enough to operate in real time — the

framerate is limited by the camera (30 Hz) and not by the tracking algorithms — and is robust

enough to be used by our study participants without any specific instructions, while coping with

(or successfully recovering from) free camera movement, motion blur, specular reflections, and

significant occlusion (e.g., due to the user’s hand, cf. Figures 4.2(b) and 5.2(b)).

30

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

4.2 Prototype 2

While Prototype 1 is a complete proof-of-concept implementation of our concept — and was

rated very favorably by users, as we will describe in Section 5.1 in detail — it suffers from

one particular technical limitation (namely, it can operate only in planar environments) and

provides only a very simplistic camera control for the remote user, which however is one of

the key components of our concept. We addressed both limitations with the implementation

of the prototype described in this section. As a further advance denoting a shift from a proof-

of-concept to a fully operational system, this prototype consists of two stand-alone entities

communicating via wireless network; the local user’s device is an off-the-shelf Android-based

smartphone or tablet.

This prototype will be published in the proceedings of the ACM Symposium on User In-

terface Software and Technology 2014 (Gauglitz et al., 2014a).

Figure 4.3 shows an overview of the system architecture of both the local user’s and the

remote user’s system. Since device hardware (camera and display), network communication,

real-time processing, and background tasks are involved, both systems employ a host of com-

ponents and threads.

4.2.1 Local user’s system

The local user’s interface, running on a lightweight tablet, is intentionally simple. As in Pro-

totype 1 Section 4.1.1, from the user’s perspective, it behaves exactly like a live video of the

31

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.3: System architecture of Prototype 2 including the local user’s system (left; running

on an Android-based lightweight tablet or smartphone) and the remote user’s system (right;

running on a commodity PC with Ubuntu). The main components are described in the text in

detail.

user’s own view plus AR annotations, i.e., a classic magic lens. The only control the user exerts

during its operation is by manipulating the position and orientation of the device.

Under the hood, the system runs a SLAM system and sends the tracked camera pose along

with the encoded live video stream to the remote system. The local user’s system receives

information about annotations from the remote system and uses this information together with

the live video to render the augmented view.

As in Prototype 1, tracking can get lost, which is communicated to the user via a red border

around the screen. The SLAM system continuously tries to relocalize until successful; the user

can help this effort by going back to a pose in which tracking is known to work. The live video

transmission continues despite tracking loss.

The system is implemented as an Android app, running on several state-of-the-art Android

devices. For the user study, we used a Google Nexus 7 2013, a 7” tablet powered by a Qual-

32

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

comm Snapdragon S4 Pro with 1500 MHz Krait quad core CPU. The core SLAM implementa-

tion, including access to the live camera frames and support for rendering them, was provided

to us for this work by Qualcomm, Inc. Communication with the SLAM system, handling of

the raw image data, and rendering are implemented in C/C++, while higher-level app struc-

ture, user interface, and network communication are implemented in Java, with data exchange

between the two layers via JNI. The live frames are encoded as a H.264 video stream. A mini-

mal HTTP server streams the data (encoded video, tracked camera pose, and other meta-data)

upon request from a remote connection, and manages remote requests for insertion/deletion of

annotations (encoded as HTTP requests).

The system operates at 30 frames per second. We measured system latencies using a camera

with 1000 fps which observed a change in the physical world (a falling object passing a certain

height) as well as its image on the respective screen. The latency between physical effect and

the local user’s tablet display — including image formation on the sensor, retrieval, processing

by the SLAM system, rendering of the image, and display on the screen — was measured as

205± 22.6 ms (average and standard deviation over a series of measurements).

4.2.2 Remote user’s system: Overview & Architecture

The remote user’s interface, running on a commodity PC (without high-end GPUs or such),

starts off as a live video stream, but is augmented by two controls, the camera control and the

annotation control.

33

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

The system consists of five main modules — network module, 3D modeler, camera control,

annotation control, and renderer — and the framework to hold them together. Due to this mod-

ular architecture, different implementations for each module can be readily swapped in and out

upon the start of the program via command line arguments. This flexibility enabled several use

cases:

1. For comparing our interface against two baseline interfaces in our user study (Sec-

tion 5.2), we simply replaced the respective components with simpler ones;

2. For development and testing, we also implemented modules that load virtual 3D models

(instead of modeling from live video) and allow for other types of camera control;

3. Prototype 3 utilizes the same architecture and was realized by implementing appropriate

new modules (Section 4.3);

4. Due to this flexibility, the overall system was used not only to implement and evaluate

the prototypes presented here, but was also used as platform for other studies, published

in Nuernberger et al. (2014), targeting the evaluation of other interface elements.

Here, we describe the module implementations that constitute our Prototype 2.

Using the same setup as above (Section 4.2.1), the latency between physical effect and

the remote user’s display — including image formation on the local user’s sensor, retrieval,

processing by the SLAM system, video encoding, transmission via wireless network, video

decoding, rendering, and display — was measured as 251± 22.2 ms.

34

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

4.2.3 Remote user’s system: Network module

The network module receives the data stream from the local user’s device, sends the incoming

video data on to the decoder, and finally notifies the main module when a new frame (decoded

image data + meta-data) is available.

4.2.4 Remote user’s system: 3D modeler

From the live video stream and associated camera poses, we construct a 3D surface model

on the fly as follows. We select keyframes based on a set of heuristics (tracking quality, low

device movement, minimum time & translational distance between keyframes), then detect

and describe features in the new frame using SIFT (Lowe, 2004). We then choose the four

closest existing keyframes, match against their features (one frame at a time) via an approxi-

mate nearest neighbor algorithm (Muja and Lowe, 2009) and collect matches that satisfy the

epipolar constraint (which is known due to the received camera poses) within some tolerance

as tentative 3D points. If a feature has previously been matched to features from other frames,

we check for mutual epipolar consistency of all observations and merge them into a single 3D

point if possible; otherwise, the two 3D points remain as competing hypotheses.

Next, all tentative 3D points are sorted by the number of supporting observations and are

accepted one by one unless one of their observations has been previously “claimed” by an

already accepted 3D point (which, by construction, had more support). We require at least four

observations for a point to be accepted, and we further remove a fraction of points with the

35

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

largest 3D distances to their two nearest neighbors. The algorithm is thus robust to even large

fractions of mismatches from the stereo matching stage.

To obtain a surface model from the 3D point cloud, we implemented the algorithm by

Hoppe et al. (2013): First, a Delaunay tetrahedralization of the point cloud is created. Each

tetrahedron is then labeled as “free” or “occupied,” and the interface between free and occupied

tetrahedra is extracted as the scene’s surface. The labeling of the tetrahedra works as follows:

A graph structure is created in which each tetrahedron is represented by a node, and nodes of

neighboring tetrahedra are linked by edges. Each node is further linked to a “free” (sink) node

and an “occupied” (source) node. The weights of all edges depend on the observations that

formed each vertex; for example, an observation ray that cuts through a cell indicates that this

cell is free, while a ray ending in front of a cell indicates that the cell is occupied. Finally, the

labels for all tetrahedra are determined by solving a dynamic graph cut problem. For details on

how the edge weights are computed we refer the reader to Hoppe et al. (2013).

We refined Hoppe et al. (2013)’s algorithm by taking the orientation of observation rays to

cell interfaces into account, which reduces the number of “weak” links and thus the risk that

the graph cut finds a minimum that does not correspond to a true surface.

As Hoppe et al. describe, both updating the graph costs and solving the graph cut can be

implemented in an incremental manner, with cost almost independent of the overall model

size. As these steps were found to take up a negligible amount of time in our application (cf.

Table 4.2), for simplicity we did not even implement the incremental algorithm. Nonetheless,

the entire processing of a new keyframe and updating of the 3D surface model is completed

36

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

of keyframes in model 1–10 11–25 > 25

Keypoint detection 32± 2 32± 3 34± 2

Keypoint description 904± 124 868± 144 795± 167

Stereo matching 121± 59 166± 38 153± 45

Merging & filtering of vertices <1± 1 5± 1 9± 2

Updating tetrahedralization <1± 1 2± 2 3± 3

Calculating graph costs 10± 6 51± 14 128± 28

Solving graph cut <1±<1 1±<1 1± 1

Extracting & smoothing surface 4± 8 9± 21 21± 9

Total time 1082± 140 1159± 175 1201± 208

Table 4.2: Average timings of the 3D modeler to process and integrate one new keyframe into

the model, running on a single core of a 3 GHz Intel i7 CPU with 4 GB RAM. All times are

given in milliseconds, with associated standard deviations. Incorporating all logs from the user

study to be discussed below, the data in the three columns are based on 300, 429, and 481

keyframe integrations, respectively.

within 1-1.5 seconds (cf. Table 4.2), which is easily fast enough for our purposes, as it is

smaller than the interval at which keyframes are added on average. Currently, the vast majority

of the time is taken up by the keypoint description, which is independent of the model size. If

necessary, the computation could be significantly sped up by using a more efficient descriptor

implementation or algorithm and/or implementing the incremental graph update. Thus, the

overall modeling algorithm is highly scalable to environments much larger than demonstrated

here.

37

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

4.2.5 Remote user’s system: Camera control (virtual navigation)

The remote user’s ability to navigate the remote world via a virtual camera, independent of the

local user’s current location, is one of the key contributions of our work.

As mentioned earlier, Sodhi et al. (2013) provide a similar feature, but use physical device

movement for navigation. While this is arguably very intuitive, using physical navigation also

has two disadvantages; one being generally true for physical navigation and the other one being

specific to the application of live collaboration.

First, the remote user needs to be able to physically move and track his/her movements

in a space corresponding in size to the remote environment of interest, and “supernatural”

movements or viewpoints (e.g., quickly covering large distances or adopting a bird’s-eye view)

are impossible (cf. Bowman et al. (2005) for a more detailed discussion of physical vs. virtual

travel, and Sukan et al. (2012) for a comparison on a particular task in the context of AR).

Second, it does not allow coupling of the remote user’s view to the local user’s view (and

thus have the local user control the viewpoint) without breaking the frame of reference in

which the remote user navigates. Lanir et al. (2013) presented a study on the issue of control

of viewpoint with mixed results, suggesting that it may be dependent on the particular task.

We thus decided to use virtual navigation, and we deem it important that our navigation

gives the remote user the option of coupling his/her view to that of the local user.

Within virtual navigation, we decided to use a keyframe-based navigation as explained in

the following for several reasons: first, mapping unconstrained 3D navigation to 2D controls

38

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

requires relatively complex interfaces (Jankowski and Hachet, 2013); second, our model is

inherently constrained by what has been observed by the local user’s camera, and a keyframe-

based approach offers a natural way to constrain the navigation accordingly; third, a keyframe-

based approach allows for image-based rendering with high levels of fidelity. (We note that

these keyframes do not have anything to do with the ones used by the modeler, they serve a

different purpose and are maintained separately.)

The resulting interactions were designed to be as intuitive as possible and resemble controls

familiar from other exploration tools such as Google Street View and Photo tourism (Snavely

et al., 2006). Viewpoint transitions are implemented by smoothly interpolating between the

camera poses and are rendered as visually seamlessly as possible (see below).

Freeze & back to live

The application starts with the remote view coupled to the local user’s live view. With a single

right-click, the remote user “freezes” his/her camera at the current pose, for example in order

to precisely set annotations, or as a starting point for further navigation. Whenever the remote

user’s view is not coupled to the local user’s view, the latter is displayed to the remote user

as an inset (cf. Figure 4.4). A click onto this inset or pressing 0 immediately transitions back

to the live view. (This feature is the only camera control feature provided in Prototype 1

(Section 4.1).)

39

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Panning & zooming

By moving the mouse while its right button is pressed, the user can pan the view in a panorama-

like fashion (rotate around the current camera position). We maintain the original up vector

(typically: gravity, as reported by the local user’s device) by keeping track of the original

camera position, accumulating increments for yaw and pitch separately and applying one final

rotation for each yaw and pitch (rather than a growing sequence of rotations, which would skew

the up vector).

To prevent the user from getting lost in unmapped areas, we constrain the panning to the

angular extent of the modeled environment. To enforce this constraint, we allow a certain

amount of “overshoot” beyond the allowed extent; here, further mouse movement away from

the modeled environment causes an exponentially declining increase in rotation and we show

visual feedback in the form of an increasingly intense blue gradient along the respective screen

border (Figure 4.4). Once the mouse button is released, the panning quickly snaps back to the

allowed range. Thus, the movement appears to be constrained by a (nonlinear) spring rather a

hard wall.

The user can also zoom into and out of the view with the scroll wheel. Zooming is imple-

mented as a change of the virtual camera’s field of view (rather than dollying) to avoid having

to deal with corrections for parallax or occlusions from objects behind the original camera

position.

40

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.4: Screenshot of the remote user’s interface.

41

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Click to change viewpoint

The camera control module continually stores new keyframes with their associated camera

poses from the live video stream (if tracking quality is good enough). Keyframes that have

become obsolete because they are close to a newer keyframe are automatically discarded.

When the user right-clicks into the view, we compute the 3D hit point, and subsequently

find the camera whose optical axis is closest to this point (which may be the current camera as

well). We then transition to this camera and adapt yaw and pitch such that the new view centers

around the clicked-upon point. This allows the user to quickly center on a nearby point as well

as quickly travel to a far away point with a single click. We note that a similar control is used

for traveling in Google Street View and Microsoft Photosynth (cf. Nuernberger et al., 2014).

Saving & revisiting viewpoints

Further, the user can actively save a particular viewpoint to revisit it later (similar to the naviga-

tion investigated by Sukan et al. (2012)). Pressing Alt plus any number key saves the current

viewpoint; pressing the respective number key alone revisits this view later. Small numbers

along the top of the screen indicate which numbers are currently in use (see Figure 4.4).

4.2.6 Remote user’s system: Annotation control

In addition to being able to control the viewpoint, the remote user can set and remove virtual

annotations. Annotations are saved in 3D world coordinates, are shared with the local user’s

42

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

mobile device via the network, and immediately appear in all views of the world correctly

anchored to their 3D world position (cf. Figures 4.2 and 4.4).

For this prototype, we implemented only simple, animated spherical markers. If annota-

tions are outside the user’s current field of view, an arrow appears along the border of the screen

pointing towards the annotation (see Figure 4.4; also cf. Gauglitz et al., 2012a). Annotations

are “pulsing” with 1 Hz and 15% amplitude to increase their visual saliency. Together with the

independent viewpoint control as described above, the remote user can thus effectively direct

the local user to elements outside the local user’s current field of view.

The remote user sets a marker by simply left-clicking into the view (irrespective if “live”

or “decoupled”). The depth of the marker is derived from the 3D model, presuming that the

user wants to mark things on physical surfaces rather than in mid-air. Pressing the space bar

removes all the annotations. More complex and/or automatic erasure management (Fussell

et al., 2004; Jo and Hwang, 2013) could be integrated as desired.

These annotations were sufficient for our task (cf. user study tasks below), but other tasks

may require more complex annotations. As discussed earlier, other works have experimented

with 2D drawings (Ou et al., 2003; Kirk and Fraser, 2006; Gurevich et al., 2012) or transfer of

hand gestures (Kirk and Fraser, 2006; Huang and Alem, 2013; Huang et al., 2013), which are

undoubtedly more expressive but thus far have been used mostly with stationary cameras. More

complex annotations like this could be integrated (now world-stabilized as well) as needed.

43

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Setting annotations while tracking is lost

As explained in Section 4.2.1, the local user’s system may lose tracking, in which case anchored

annotations cannot be displayed. However, the remote user can decouple his/her camera from

the live view and continue to set annotations anchored to the model, which are displayed to the

local user as soon as tracking resumes.

Additionally, if the remote user’s view is “live,” we still enable the remote user to set

annotations, which however cannot be anchored and thus are stored (and displayed) in 2D

image-referenced coordinates. These annotations are set to disappear automatically after a few

seconds. Thus, the local user is not forced to recover tracking first if the static annotations are

deemed “good enough” in that particular moment.

4.2.7 Remote user’s system: Renderer

Finally, the renderer renders the scene using the 3D model, the continually updated keyframes,

the incoming live camera frame (including live camera pose), the virtual camera pose, and the

annotations. In addition to a generally desirable high level of realism, a particular challenge

rather unique to our application is the seamless transition to and from the live video. That

is, as the virtual camera approaches the physical camera, the views should become identical,

with no noticeable transition from “model view” to “live view.” (Very recently, Tatzgern et al.

(2014) presented a system which features similar transitions between a live video (“AR view”)

44

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

and synthesized views of a reconstructed environment (“VR view”).) We achieve this by using

image-based rendering as follows.

The 3D model is rendered as a polygonal model, upon which the images of the live frame

and closest keyframes are projected using projective texture mapping. As the virtual camera

moves, the different textures are faded in and out by adapting their opacity. In areas which are

modeled accurately, transitions are thus completely seamless, with lighting effects naturally

blending in. More sophisticated image-based rendering techniques (e.g., Chaurasia et al., 2013)

could be integrated as appropriate.

We note that the live view may extend beyond the area currently modeled in 3D. To ensure

that these areas do not suddenly “disappear” immediately after transitioning away from the live

view, we extend the model (using its average distance to the camera) with a proxy surface on

which textures can be projected. To soften artifacts, we blur the parts of the projective textures

that fall onto this part.

In effect, when the remote user’s virtual camera pose is identical (coupled) to the local

user’s current physical camera pose, the rendered image is identical to the live video, and the

transition to and away from it are seamless.

Due to the structure of our camera control, the camera is often at the location of a pre-

viously cached keyframe (albeit with possibly modified yaw, pitch, or field-of-view), which

enables image-based rendering with high levels of fidelity. The 3D model is rarely visible as

a polygonal model, thus modeling artifacts are rarely disturbing. However, the more accurate

45

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

the model, the better the transitions can be rendered, and the more precisely annotations can be

anchored.

4.3 Prototype 3

Prototype 3 builds on Prototype 2 and improves in particular the remote user’s interface. The

overall architecture, the local user’s system as well as the architecture and underlying compo-

nents of the remote user’s system remained the same.

This prototype will be published in the proceedings of the ACM Symposium on Virtual

Reality Software and Technology (VRST) 2014 (Gauglitz et al., 2014b).

Two of the drawbacks of the mouse-and-keyboard-based interface of Prototype 2 (Sec-

tion 4.2) are (a) the need to memorize keyboard shortcuts, and (b) the level of indirection of

the mouse-based interaction. In Prototype 3, we thus introduce a novel interface for the remote

user, who now uses a touchscreen for all interactions with the system. In Section 4.3.2, we

describe the main elements of the graphical user interface before focusing on two particular

aspects — namely, the use of 2D drawings as world-stabilized annotations in 3D and gesture-

based virtual navigation — in Sections 4.3.3 and 4.3.4, respectively.

4.3.1 Motivation for using a touchscreen rather than 3D input

One may argue that, for interaction in a three-dimensional space, one should use an interface

which affords three-dimensional input and thus can, for example, create annotations in 3D.

46

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Sodhi et al. (2013) described a prototype system which uses three-dimensional input for the

purpose of remote collaboration, by reconstructing the remote user’s hand in 3D and transfer-

ring this reconstruction and a 3D “motion trail” into the local user’s space.

However, even if sensors that support unthethered, unobtrusive 3D input (e.g., high resolu-

tion active depth sensors) become commonplace, additional issues remain. First, unless such

sensors are matched with an immersive 3D display that can synthesize images in any physical

space (such as a stereo head-worn display), the space in which the input is provided and the

space in which objects are visualized remain separate, in much the same way as is the case

with a standard computer mouse. This has the effect that relative spatial operations are very

natural and intuitive (e.g., moving the mouse cursor downwards/indicating a direction in 3D,

respectively), but absolute spatial operations (e.g., pointing to an object, which is arguably

very important in our context) remain indirect and require the user to first locate the mouse

cursor/representation of the hand, respectively, and position it with respect to the object of

interest. This can be well observed in the illustrations and discussion by Sodhi et al. (2013).

Second, even with such an immersive 3D display, haptic feedback is typically missing (Xin

et al., 2008).

In contrast, touchscreens are not only ubiquitous today, but they afford direct interaction

without the need for an intermediate representation (i.e., a mouse cursor), and provide haptic

feedback during the touch. In our context, however, they have the downside of providing

2D input only. Discussing the implications of this limitation and describing and evaluating

47

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.5: Screenshot of the remote user’s touchscreen interface.

appropriate solutions in the context of live remote collaboration is an important part of this

section.

4.3.2 Touchscreen interface elements

Figure 4.5 presents the elements of the graphical user interface. The main part of the screen

shows the main view, in which annotations can be created (Section 4.3.3) and gesture-based

virtual navigation takes place (Section 4.3.4).

A side pane contains, from top to bottom, (1) a button to save the current viewpoint, (2)

small live views of saved viewpoints, and (3) the local user’s live view (whenever the main

48

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

view is not identical to it). A tap onto any of the views in the side pane causes the main view

to transition to that respective viewpoint.

A two-finger tap onto the main view while it is coupled to the local user’s live view freezes

the current viewpoint. (As in Prototype 2, only the viewpoint is frozen; the live image is still

projected into the view.)

When the user starts to draw an annotation while the main view is coupled to the (potentially

moving) live view, the viewpoint is temporarily frozen in order to enable accurate drawing. In

this case, the view automatically transitions back to the live view as soon as the finger is lifted.

Thus, all interface functions are immediately accessible on the screen, allowing quick ac-

cess and, in contrast to Prototype 2, avoiding the need to memorize keyboard shortcuts.

4.3.3 2D drawings as annotations in 3D space

Using a single finger, the remote user can draw annotations into the scene; a few examples are

shown in Figure 4.6(a). Since the camera is tracked with respect to the scene, these annotations

automatically obtain a position in world coordinates. However, due to our use of a touchscreen,

the depth of the drawing along the current viewpoint’s optical axis is unspecified.

While drawings have been used for the purpose of remote collaboration (Ou et al., 2003;

Kirk and Fraser, 2006; Fussell et al., 2004), they were created on a 2D surface as well as

displayed in a 2D space (e.g., a live video), and it remains up to the user to mentally “unproject”

49

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

them and interpret them in 3D. This is fundamentally different from creating annotations that

are anchored and displayed in 3D space, that is, in AR.

In other areas such as computer-aided design (CAD), the interpretation of 2D drawings

in 3D is more common (Tolba et al., 1999; Igarashi et al., 2007; Zeleznik et al., 2007; Xin

et al., 2008). Another example for 3D interpretation of 2D input is the interactive image-

based modeling by van den Hengel et al. (2007). However, the purpose (design/modeling

vs. communication), intended recipient (computer vs. human collaborator) and, in most cases,

scene (virtual model vs. physical scene) all differ fundamentally from our application, and

the interpretation of 2D input is typically guided and constrained by task/domain knowledge.

Thus, these techniques cannot immediately be applied here.

To our knowledge, freehand 2D drawings have not been used before as world-stabilized

annotations unprojected into 3D space for live collaboration.

In principle, it is possible to ask the user to explicitly provide depth, for example by pro-

viding a second view onto the scene and having the user shift points along the unspecified

dimension. This may be appropriate for professional tools such as CAD. However, in our case,

we want to enable the user to quickly and effortlessly communicate spatial information, such

as with hand gestures in face-to-face communication. Thus, we concentrate on ways to infer

depth automatically. In this section, we discuss and evaluate several alternatives to do so.

50

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

(a) original view (b) spray paint (c) minimum depth (d) median depth (e) dominant plane

Figure 4.6: Depth interpretations of 2D drawings. In each row, (a) shows the viewpoint from

which the drawing was created, and (b-e) show different depth interpretations from a second

viewpoint (all interpretations have the same shape if seen from the original viewpoint). An-

notation segments that fall behind object surfaces are displayed semi-transparently, which was

deemed “very helpful” by 7 of 11 users (cf. Figure 5.12).

Depth interpretations

We start with the assumption that the annotation shall be in contact with the 3D surface in some

way; i.e., annotations floating in mid-air are, for now, not supported.

Given an individual 2D input location p = (x, y), a depth d can thus be obtained by un-

projecting p onto the model of the scene. For a sequence of 2D inputs (a 2D drawing) p1, ..., pn,

this results in several alternatives to interpret the depth of the drawing as a whole:

51

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

• “Spray paint.” Each sample pi gets assigned its own depth di independently; the anno-

tation is thus created directly on the 3D surface as if spray painted onto it (Figure 4.6(b)).

• Plane orthogonal to viewing direction. The annotation is created on a plane orthogonal

to the viewing direction. Its depth can be set to any statistic of {di}, for example, the

minimum (to ensure that no part of the annotation lands behind surfaces; Figure 4.6(c))

or the median (Figure 4.6(d)).

• Dominant surface plane. Using a robust estimation algorithm such as RANSAC or

Least Median of Squares, one can estimate the dominant plane of the 3D points formed

by {pi} and the associated {di}, and then project the drawn shape onto this plane (Fig-

ure 4.6(e)).

It should be noted that all of these alternatives result in the same shape in the case of a planar

surface orthogonal to the optical axis.

All of these approaches have merits; which one is most suitable will depend on the context

and task. Spray paint appears to be the logical choice if the user intends to “draw” or “write

onto” the scene, trace specific features, etc.1

For other types of annotations, planarity may be preferable. To refer to an object in its

entirety, the user might draw an outline around the object. Drawings used as proxies for ges-

1Note that projective displays — used for remote collaboration for example by Gurevich et al. (2012) and

appealing due to their direct, un-mediated overlay of annotations — can intrinsically only produce spray paint-

like effects, unless not only the projector, but also the user’s eyes are tracked and active stereo glasses (synced

with the projector) are used in order to create the illusion of a different depth.

52

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

tures — for example, drawing an arrow to indicate a direction, orientation, or rotation (cf. Fig-

ure 4.6 top two rows) — are likely more easily understood if projected onto a plane.

Another aspect for consideration, especially in the case of models reconstructed via com-

puter vision, is the sensitivity to noise and artifacts in the model. A spray-painted annotation

may get unintelligibly deformed and the minimum depth plane may be shifted. The median

depth and dominant plane are more robust as single depth measurements carry less importance.

4.3.4 Gesture-based virtual navigation

As discussed in Section 4.3.2, the user can freeze the viewpoint (Figure 4.7(a)), save the current

viewpoint, and go to the live view or any previously saved view (Figure 4.7(b)), all with a single

tap onto the respective region in the interface. In addition, we implemented gesture-based nav-

igation controls (Figure 4.7(c)–(e)) which we will discuss in this section. As a distinguishing

element from drawing annotations (Section 4.3.3), all navigation-based controls on the main

view are triggered by two fingers.

The reasoning for using keyframe-based navigation (cf. Section 4.2.5) has remained un-

changed: While we want to empower the remote user to explore the scene as freely as possible,

only parts of the scene that have previously been observed by the local user’s camera are known

and can be rendered. However, it now has to be realized via touchscreen-based input.

Thus, our navigation shares an important characteristic with the work by Snavely et al.

(2008): from a more or less sparse set of camera poses we want to find paths/transitions that

53

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

two-finger tap on main view

⇒ freeze/go to point of interest

(a)

tap on thumbnail view

⇒ go to respective viewpoint

(b)

two-finger swipe

⇒ pan camera

(c)

two-finger pinch

⇒ zoom

(d)

orbit

⇒ orbit around point

(e)

Figure 4.7: Navigation features.

can be mapped to specific input controls. However, in contrast to their work, we do not attempt

to mine longer paths and suggest them to the user, but rather to find suitable transitions given a

user’s specific input.

For all gestures, we designed the controls such that the 3D scene points underneath the

touching fingers follow (i.e., stay underneath) those fingers throughout the gesture (i.e., “con-

tact trajectories match the scene transformations caused by viewpoint modifications” (Marchal

et al., 2013)) as far as possible.

The software stack that we implemented to process the touchscreen and mouse input is

depicted in Figure 4.8. A pointing device handler receives low-level mouse and touchscreen

54

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.8: Software stack for processing events from pointing devices (mouse &

touchscreen).

events (from GLUT and the Ubuntu utouch-frame library2, respectively) and generates events

that are unified across the devices and of slightly higher level (e.g., recognize “click”/“tap”

from down+(no move)+up events, distinguish from drag-begin, etc.). These events are re-

ceived by the main application. Multi-stage events (i.e., gestures) are sent on to a gesture

classifier which classifies them or, after successful classification, validates the compatibility

of the continuing gesture. The gesture classifier operates on relatively simple geometric rules

(e.g., for swipe, the touch trails have to be of roughly the same length and roughly parallel),

which worked sufficiently for our purposes, as our qualitative evaluation (cf. Section 5.4.3)

confirmed.

2Open Input Framework Frame Library, https://launchpad.net/frame

55

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.9: “Zooming in” via decreasing the field of view (left) and dollying forward (right).

Panning

By moving two fingers in parallel, the user can pan, i.e., rotate the virtual camera around

its optical center (Figure 4.7(c)). As in Prototype 2, we constrain the panning to the angular

extent of the known part of the scene and provide visual feedback in the form of an increasingly

intense blue gradient along the respective screen border.

Transitional zoom

There are two different ways of implementing the notion of “zoom” in 3D: either via modi-

fying the field of view (FOV) (Figure 4.9 left) or via dollying (i.e., moving the camera for-

ward/backward; Figure 4.9 right). For objects at a given depth, both changes are equivalent;

differences arise due to varying depths (i.e., parallax). Which motion is desired by the user

may depend on the particular scene. Given the large overlap in effect (cf. optical flow diagrams

by Marchal et al. (2013)), we wanted to avoid providing two separate controls.

56

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

In our context, with an incomplete and/or imperfect model of the environment, changing

the FOV has the advantage that it is trivial to render, while rendering a view correctly after

dollying the camera might be impossible due to occlusions. Therefore, Prototype 2 supported

zooming (controlled by the scrollwheel) via change of FOV only. However, changing the FOV

disallows exploration of the scene beyond a fixed viewpoint, and its usefulness is limited to a

certain range by the resolution of the image.

We thus developed a novel hybrid approach: changing the FOV to allow for smooth,

artifact-free, fine-grained control combined with transitioning to a suitable keyframe, if avail-

able, in front or behind the current location for continued navigation. We note that the avail-

ability of a keyframe automatically implies that it may be reasonable to move there (e.g., walk

in this direction), while free dollying has to be constrained intelligently to not let the user fly

through the physical surface when his/her intent may have been to get a close-up view. We

implemented this hybrid solution as follows.

Given a two-finger “pinch” gesture (Figure 4.7(d)) with start points s1,2 and end points e1,2,

we first calculate the change in FOV that corresponds to the change in distance |s1 − s2| to

|e1−e2|. We then adapt yaw and pitch such that the scene point under (s1+s2)/2 gets mapped

to (e1 + e2)/2. (We disallow roll on purpose as it is rarely used or needed; cf. Marchal et al.

(2013).)

To determine if transitioning to a different keyframe is in order, we determine the 3D world

points {c3D
i }i=1..4 which, with the modified projection matrix, get mapped into the corners of

the view {ci}. The ideal camera pose R is the one that projects {c3D
i } to {ci} with its native

57

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

projection matrix P (i.e., unmodified FOV). Therefore, we project {ci} using the camera pose

of each of the stored keyframes, and select the camera k∗ for which the points land closest to

the image corners {ci}; i.e.,

k∗ = argmin
k

4∑

i=1

∣
∣P ·Rk · c3D

i − ci
∣
∣
2

(4.1)

To ensure that the transition is consistent with the notion of dollying, we only consider cameras

whose optical axis is roughly parallel to the current camera’s optical axis.

If k∗ is not identical to the current camera, we thus transition to Rk∗ and adapt FOV, yaw

and pitch again as described above. A hysteresis threshold can be used to decrease erratic

behavior.

In effect, the user can “zoom” through the scene as far as covered by available imagery

via a single, fluid control, and the system automatically choses camera positions and view

parameters (FOV, yaw, pitch) based on the available data and the user’s input.

Orbiting with snap-to-keyframe

As a third gesture, we added orbiting around a given world point p3D. The corresponding

gesture is to keep one finger (relatively) static at a point p and move the second finger in an

arc around it (Figure 4.7(e)). The orbit center p3D is determined by un-projecting p onto the

scene and remains fixed during the movement; additionally, we maintain the gravity vector

(as reported by the local user’s device). The rotation around the gravity vector at p3D is then

specified by the movement of the second finger.

58

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Again, we want to guide the user to keyframe positions if possible as the rendering from

those positions naturally has the highest fidelity. Thus, once the user finishes the orbit, the

camera “snaps” to the closest keyframe camera pose. (The idea of orbiting constrained to

keyframes again resembles the approach by Snavely et al. (2008), where possible orbit paths

are mined from the set of pictures and then suggested to the user for exploration of the scene,

but differs in that we do not find paths beforehand, but find a suitable transition given the user’s

input.)

Selection of the “snap” target pose. Given the list of available camera positions, we first

filter out all cameras for which p3D is not within the field of view. Among the remaining poses,

we select the one which minimizes the following distance function with respect to the camera

pose at which the user ended the orbit:

d(R1, R2) =







dt(R1,R2)
d∡(R1,R2)

if d∡(R1, R2) > 0

∞ otherwise

where dt(·, ·) is the translational distance between the camera origins, and d∡(·, ·) is the dot

product of the optical axes.

Preview visualization “snap” target. During an on-going orbit process, we provide two

visualizations that indicate where the camera would snap to if the orbit ended at the current

location (see Figure 4.10): First, we display the would-be target keyframe as a preview in a

small inset in the bottom left corner of the main view. Second, we display a semi-transparent

59

Chapter 4. Design of Interfaces & Implementation of Prototype Systems

Figure 4.10: Screenshot during an orbit operation, with the two visualizations of the “snap”

position: 1. the inset image in the bottom left corner of the main view previews the target

image; 2. the red line connects the orbit point and the target camera origin.

red line from the orbit point p3D to the would-be target camera origin. While less expressive

than the image, this visualization has the advantage of being in-situ: the user does not have

to take their eyes off the model that he/she is rotating. We opted for a minimal visualization

(instead of, for example, visualizing a three-dimensional camera frustum) in order to convey

the essential information but keep visual clutter to a minimum.

60

Chapter 5

Evaluation via User Studies

In this chapter, we describe three user studies to validate the usability of our prototype systems,

compare them with more conventional interfaces, and gain insights on the design of particular

interface features.

5.1 User Study 1

In user study 1, we compared Prototype 1 (Section 4.1) with one interface without any anno-

tations and one interface with static markers. The study’s scenario was that of a remote expert

instructing and directing a novice local user in operating an airplane.

This study was first presented together with Prototype 1 in our paper in the proceedings of

the ACM International Conference on Human-Computer Interaction with Mobile Devices and

Services 2012 (Gauglitz et al., 2012a).

Various parameters of the study as reported below were refined during several pilot study

trials with a total of twelve users.

61

Chapter 5. Evaluation via User Studies

5.1.1 Task & physical setup

We created a mock-up airplane cockpit by printing a high-resolution image of the interior of

an airplane cockpit (Figure 5.1) on 3’×4’ paper and mounting it to a metal panel on the wall.

To simulate a remote user in another location, we placed a room divider next to the poster and

placed the remote user’s station on the other side. This allowed both users to communicate

verbally by simply talking out loud while blocking any direct visual communication.

The device for the local user consisted of a MIMO 10.1” ‘iMo Monster’ Touchscreen (used

as display only, touch disabled) with a Point Grey Firefly (34◦ horizontal field of view) mounted

on the back to deliver 640×480 Bayer images at 30 Hz. To make the tablet more comfortable

to hold, we added some rubber padding on both sides of the tablet and a strap to go around the

user’s hand (cf. Figure 4.1).

The remote participant used a standard desktop PC interface with monitor, keyboard, and

mouse. The system ran on a standard PC with an Intel i7 Core with 4 GB RAM running Ubuntu

10.10. All interfaces and further system components were implemented in C++, making use of

the OpenCV and libCVD libraries for the vision system.

The task that each pair of participants performed was to identify and “operate” a series

of control elements in our mock-up cockpit, in order to, e.g., “safely land the airplane.” The

local user was assumed to be a novice, not knowing which elements to operate, and had to be

instructed by the remote expert. “Operating” an element was simulated by placing a magnetic

pin onto it. The pins were numbered so that the study administrator could later verify the

62

Chapter 5. Evaluation via User Studies

Figure 5.1: Our testbed: view of an airplane cockpit. This image was printed in size 3’×4’ and

mounted to a metal panel on the wall. The resolution is high enough that most of the control

element labels are readable. Original image file obtained from iStockphoto.com/Smaglov.

63

Chapter 5. Evaluation via User Studies

(a) local user (b) remote user’s interface

Figure 5.2: (a) Local user with tablet, putting a magnetic pin on one of the “buttons.” (b)

Overview of the remote user’s interface with live video view on the top left and “expert knowl-

edge” information (consisting of overview image on the top and detail on the bottom) on the

right.

correct placement and order. We chose the testbed such that it would neither be too easy nor

too difficult to reference the control elements verbally. Many of the elements had readable

labels, visually distinguishable features, and/or could be described by their relative position in

the cockpit. However, labels were relatively small, and some switches were in a series of alike-

looking elements. It would be easy to design a testbed that would be much easier or much

harder, but through pilot studies we arrived at this setup as a reasonable and, in particular,

realistic compromise between the two extremes.

One participant played the role of the local user. This participant stood in front of the poster

with the display device (as seen in Figure 5.2(a)) and was instructed by the remote user as to

which control elements to “operate,” i.e., place a pin onto.

64

Chapter 5. Evaluation via User Studies

The other participant played the role of the remote expert and was responsible for directing

the local user as to which control element to operate. The remote user sat in front of a desktop

monitor which showed the camera feed from the local user on the left side. On the right side,

the remote user saw a detail of the cockpit with a sequence of buttons clearly marked and,

above, an overview image in which the location of the detail was indicated (Figure 5.2(b)).

These images simulated the “expert knowledge” that the remote user was assumed to possess.

The remote user then communicated the locations of each element to the local user verbally and

via the interface functions. In addition to directing the local user, the remote user was asked to

monitor correct pin placement. (Users were allowed to remove and re-place incorrectly placed

pins, and the remote user was instructed to inform the local user accordingly.)

Each page of the expert knowledge information indicated a sequence of five random but-

tons. When completed, the remote user could press a key to proceed to the next page. After

five pages (25 buttons), we introduced a brief break in which the study administrator would

take down the pins, comparing them with a control sheet and noting down errors (if any).

5.1.2 Conditions

With all interfaces, the participants were able to talk to each other without restriction.

• Interface A: video only. In this interface, the live video from the tablet’s camera is

streamed to the remote user’s screen (i.e., one-way video), but the remote user does not

65

Chapter 5. Evaluation via User Studies

have any means of providing visual feedback. This is similar to using a current tablet PC

with rear-facing camera and standard video conferencing software.

• Interface B: video + static markers. In this interface, the remote user can click into

the video view to create a marker — a colored ‘X’ — that is visible on both screens (the

remote user’s screen as well as the local user’s tablet screen). However, the marker is

static within image coordinates, so it appears to “swim away” from its original position

if the tablet’s camera is moved. The remote user can set up to five of those markers, and

clear them by pressing the space bar at any time. By pressing a number key between

1 and 5, the user can select the next marker to be set; without pressing number keys,

the system rotates through markers 1 to 5. The next marker to be set is indicated by a

small white number next to the mouse cursor. This condition is similar to the pointing in

Fussell et al. (2004) in that it assumes a stationary camera.

• Interface C: video + world-stabilized markers. This interface is using Prototype 1 as

described in Section 4.1. As with interface B, the remote user can set up to five markers

by clicking into the video view (space bar to clear, number keys to select marker as in

B). However, now the markers are stored in world-stabilized coordinates and thus stick

to their original positions despite movement of the camera. With a right-click, the remote

user can freeze his/her viewpoint as described in Section 4.1.

66

Chapter 5. Evaluation via User Studies

5.1.3 Experimental design

We used a within-subjects design with a single independent variable (interface type A, B, C)

and a single dependent variable (total number of tasks completed). We also recorded the num-

ber of errors. The order of the interfaces was completely balanced for all six possible orderings,

with each possible ordering traversed by four teams, and the tasks were randomly selected for

each interface from a set of tasks.

Our hypotheses about the study’s outcome were as follows:

H1.1 Users will complete more tasks with both interface B and C than with interface A.

H1.2 Users will complete more tasks with C than with B.

H1.3 Users will prefer interface C over both A and B.

H1.4 Users will feel more confident about their task performance with interface C.

5.1.4 Participants

We had a total of 48 participants in the main study, 18 to 39 years old (average 23.3), 27 male

and 21 female, who worked together on 24 teams as detailed in Table 5.1.

All participants had normal or corrected vision. 40 reported they did not know the other

participant, 4 had “met before,” and 4 “knew each other well.” 93% stated they had at least 10

years of experience speaking English. Each user was compensated for their time commitment

of about one hour with a nominal amount of USD 10. We had two further participant teams

67

Chapter 5. Evaluation via User Studies

local user female female male male

remote user female male female male

of teams 6 4 5 9

Table 5.1: Gender distribution and participant teams.

whose data we did not include in the analysis. In one team, one individual had a form of color-

blindness; in the other team, one participant did not adequately follow the study administrator’s

instructions during the training period.

5.1.5 Procedure

At the beginning of the study, each participant was given a color blind test and filled out a pre-

study questionnaire with demographic and background information. The study administrator

then verbally explained the scenario and the roles each participant would play. Next, the local

user was given the hand-held display and adjustments to the strap were made so that the user

was comfortable holding the device in one hand.

For each interface, the administrator explained the respective interface. The administrator

was careful to only explain the individual features and to not recommend any particular strat-

egy; instead, the users were explicitly told that it was up to them to determine how exactly they

would make use of the features. Next, the users were given a training session of five minutes to

get accustomed to the interface and develop a strategy for using it. During this training session,

the administrator would correct any mistakes made by either user, and would also encourage

68

Chapter 5. Evaluation via User Studies

the users to try out the different features if they had not already done so. After the training

session, a measured session of seven minutes was started. Before starting this session, the

administrator gave the stipulation that selecting the correct elements in the correct order was

important and that participants should confirm with each other if in doubt, but that within that,

users should work as fast as possible.

After each interface, users filled out a brief questionnaire asking about their experience with

the interface and any physical discomfort they may have felt. While some local users indicated

that their arms got tired, all of them explicitly confirmed verbally that they did not have any

concerns about continuing the study.

Finally, the participants were asked to fill out a post-study questionnaire, asking them to

compare the interfaces and to note any further comments on the study.

5.1.6 Results

Task performance

The stipulation to not make mistakes and confirm with each other when in doubt worked very

well: 16 out of 24 teams completed all three trials without a single error, and only two teams

made more than one error in one trial (in which users would select around 20 to 60 buttons).

The errors were spread evenly among the three interfaces. We conclude that all users worked

meticulously and thus that the comparison of the number of completed tasks is meaningful.

69

Chapter 5. Evaluation via User Studies

interface A interface B interface C
0

10

20

30

40

50

#
 o

f
ta

s
k
s
 c

o
m

p
le

te
d

Figure 5.3: Main quantitative result: number of tasks completed as a function of the three

different interfaces, shown are mean and 95% confidence intervals. Users were significantly

faster with B than with A, and significantly faster with C than with A (cf. Table 5.2).

On average, participants completed 28.9 tasks with Interface A, 37.3 tasks with Interface

B, and 40.8 tasks with Interface C (Figure 5.3). Analyzing the results, Mauchly’s test did

not show a violation of sphericity against interface (W(2) = 0.94, p = 0.49). With a one-way

repeated measures ANOVA, we found a significant effect of interface on the number of tasks

completed with F(2,46) = 23.45, p< 0.001, and η2partial = 0.50. Using Tukey’s posthoc analysis

(Table 5.2), we found that users completed significantly more tasks with both interfaces B

and C than with interface A, thus confirming hypothesis H1.1. We did not find a significant

difference between B and C, hence hypothesis H1.2 could not be confirmed despite the higher

average number of completed tasks with interface C.

70

Chapter 5. Evaluation via User Studies

Interfaces Difference Lower Upper P Adj.

B – A 8.42 4.08 12.75 < 0.001 *

C – A 11.92 7.58 16.25 < 0.001 *

C – B 3.50 -0.83 7.83 0.135

Table 5.2: Tukey’s posthoc analysis for all pairwise comparisons with a 95% family confidence

interval. * indicates significant differences.

Questionnaires

In the post-study questionnaire, users were asked to rate their level of agreement to the state-

ments “This interface helped me to solve the task” (‘helpfulness’), “This interface made me

feel confident that I was doing the task correctly” (‘confidence’), and “I had difficulties using

this interface” (‘difficulties’) for each interface, as well as rank them (“Which of the interfaces

did you like best/would you choose to use for a real task?”). The results are aggregated in

Figure 5.4.

Assuming that the scale of the ratings is linear and analyzing them with a mixed model

ANOVA, with interface and user role as fixed effects and team ID as random effect to account

for within-team correlations (note that the questionnaire responses are per user, while the task

performance discussed above are measured per team), the following effects were found:1

1We note that a different model was used in the first publication of these results (Gauglitz et al., 2012a). The

linear mixed model used here models the design of the study more closely, and the report here is more detailed.

However, we emphasize that all effects reported in Gauglitz et al. (2012a) based on the previous analysis are

confirmed by our new analysis.

71

Chapter 5. Evaluation via User Studies

Figure 5.4: User responses from post-study questionnaire.

72

Chapter 5. Evaluation via User Studies

There is a significant effect of interface on the rating for ‘helpfulness’ (F(2,109) = 34.05,

p< 0.001) and ‘confidence’ (F(2,109) = 15.55, p< 0.001). Post-hoc tests indicated that inter-

face C was rated significantly better than both A and B for both questions; interface B was

better than A for ‘helpfulness’, but not ‘confidence.’ Looking at the histograms (Figure 5.4)

for ‘helpfulness’ and ‘confidence’, it is notable that users rated interfaces A and B well overall,

but frequently reserved the highest rating for interface C alone: C received the highest rating

with regards to ‘helpfulness’ from 72% of the users (compared with 8.5% for A and 23% for

B) and the highest rating with regards to ‘confidence’ from 68% (compared with 17% for A

and 11% for B).

Further, there was a signification interaction of interface and role on ‘helpfulness’ (F(2,109)

= 4.09, p = 0.02): for the local users alone, there was no difference between interfaces A and B.

The remote users were more ‘confident’ about task execution than the local users according to

a borderline significant effect (F(1,109) = 4.01, p = 0.048), but the interaction between role and

interface was not significant for this question (p = 0.07).

There were no significant differences in the answers to “I had difficulties using this inter-

face” despite a trend towards better ratings for interface C (F(2,109) = 2.12, p = 0.13).

With respect to the ranking of the three interfaces, there is a significant difference in rank-

ing according to Friedman’s test for both user roles (χ2(2) = 15.36, p = 0.0005 (local user), and

χ2(2) = 25.58, p < 0.0001 (remote user), respectively). Pairwise comparisons (with Bonfer-

roni’s correction applied) indicated that interface C —,selected by 79% of the users as their

first choice — was ranked significantly better than both other interfaces in all cases.

73

Chapter 5. Evaluation via User Studies

Many users further confirmed their preference for interface C with comments: “The in-

terface with vision tracking was better and easier.”; “I was very impressed with the tracking

capabilities. The interface was very easy to understand”; “This interface is an order of mag-

nitude better than the others”; “The tracked markers [were] much eas[ier] to give direction[s]

with.”

These results confirm hypotheses H1.3 and H1.4.

Very few users seemed to be distracted by the additional features and the multimodality of

the task or commented to that effect, for example: “It was actually easier to just talk it [out]

rather than worry about clicking the mouse which left me distracted.”

Perception of tracking loss

Since our tracking system was not perfect and tracking loss would be clearly noticeable to

participants, we were also interested in the users’ subjective perception of the frequency and

impact of tracking loss. The results are aggregated in Figure 5.5.

Overall, 61% of the users reported ‘at most a little’ or ‘no’ impact on task performance, an-

other 29% ‘some’ impact. One user commented: “The tracking did disappear once in awhile,

but it was easy enough to communicate until the tracking reappeared. Overall, the tracking

[...] was really helpful and effective.” Only one tablet user found that tracking loss had made

the task difficult. It is interesting that three of the remote users had the impression that tracking

‘never’ got lost: it is very unlikely that this was indeed the case, but the interface (in particular,

the freezing) might have made the tracking loss transparent to the remote user.

74

Chapter 5. Evaluation via User Studies

Figure 5.5: Users’ perceptions of tracking loss. The matrices aggregate the results of two dif-

ferent questions on the intermediate questionnaire filled out immediately after using interface

C.

As study 2 followed a similar pattern as study 1, we first describe study 2, then discuss the

results of both studies together in Section 5.3.

5.2 User Study 2

In user study 2, we compared Prototype 2 (Section 4.2) with two baselines: a video+audio

only interface and an interface with static annotations (also called “markers” throughout the

study). Both the local and the remote users were study participants. The general design and

method were, purposefully, very similar to study 1: we wanted to create a similar validation

and comparison with baselines of the new prototype system.

75

Chapter 5. Evaluation via User Studies

This study will be published, together with Prototype 2, in the proceedings of the ACM

Symposium on User Interface Software and Technology (UIST) 2014 (Gauglitz et al., 2014a).

We first conducted several pilot study trials with a total of 20 users (10 teams), during which

we refined study parameters, overall procedure, and training procedure.

5.2.1 Task & physical setup

We chose a “car repair” task for the study. That is, the local user stood in front of a car,

hood open, and received help from the remote user in “identifying the problem” (cf. Chen

et al. (2013) for a similar scenario). The study took place outdoors, and while we used a

relatively isolated location with no direct sunlight, several environment factors were beyond

our control, including light conditions, passers-by, noise from a nearby street and a nearby

airport, all of which added to the realism of our study. The remote user’s PC, including network

infrastructure, was mounted onto a metal cart on wheels and positioned adjacent to the car such

that the participants could verbally communicate but not see each other.

To make sure that the individual tasks were roughly equivalent, quick enough to perform,

independent of each user’s dexterity, and not dangerous in any way, we used proxy tasks that

would require similar communication between the users but little or no physical labor, such

as locating individual elements and finding pieces of information. For example, instead of

unscrewing a bolt, we asked the users to identify its size by testing it with a set of provided

nuts, which requires the same communication between the users in order to identify the correct

76

Chapter 5. Evaluation via User Studies

Figure 5.6: One example out of the 80 individual tasks. These instructions were provided to

the remote user, who then needed to communicate them to the local user.

element. The remote user was given simulated expert knowledge as a list of diagrams with

specific questions (e.g., size or label on a particular screw or cable, rating of a particular fuse,

serial number of a part) as well as where its answer could be located (see Figure 5.6). The

remote user then had to communicate this information to the local user, who would locate the

requested information and write it down.

5.2.2 Conditions

As in study 1, in all conditions, the two users were able to talk to each other without restrictions.

• Interface A: video only.

77

Chapter 5. Evaluation via User Studies

• Interface B: video + static markers.

• Interface C: Prototype 2 as presented in Section 4.2.

Again, conditions B and C both allowed up to five concurrent markers in different colors, with

further clicks re-setting the oldest marker.

5.2.3 Experimental design

We used a within-subjects design with one independent variable (interface type) and one de-

pendent variable (task completion time). We also recorded the number of errors and obtained

several user ratings via questionnaires. The order of the interfaces was completely balanced,

with each of the six possible orderings traversed by five of the 30 teams. For each team, three

lists with 15 tasks were created at random, with the remaining tasks reserved for training.

Our hypotheses about the study’s outcome were as follows:

H2.1 Users will complete the task faster with interfaces B and C than with interface A.

H2.2 Users will complete the task faster with C than with B.

H2.3 Users will prefer interface C over both A and B.

5.2.4 Participants

60 users (18–30 years (mean 20.8), 29 female, 31 male) participated in the main study, working

together in 30 teams as detailed in Table 5.3. Each user received a compensation of USD 10; all

78

Chapter 5. Evaluation via User Studies

local user female female male male

remote user female male female male

of teams 8 7 6 9

Table 5.3: Gender distribution and participant teams.

teams additionally competed for a bonus of USD 10 / 20 / 40 per person for the top 5 / second

fastest / fastest error-free task performances for all three conditions combined.

In two teams not included in the numbers above, one user was color blind. It remains un-

clear whether this affected the task performance. However, we used color extensively (markers,

labels in the car, etc.), and at least one of the users was unable to disambiguate a few of the

elements. We thus decided not to include the data from these two trials in the analysis.

5.2.5 Procedure

Each participant completed a color blind test and a pre-study questionnaire with background

information. The general setup and task was then explained in detail.

For each session, the study administrator explained the respective interface features in de-

tail, then the users conducted several training tasks with the respective interface. Each user

completed a minimum of five training tasks for each new feature and was asked explicitly if

they were comfortable using the interface before proceeding to the timed session. After each

session, the users filled out an intermediate questionnaire rating this interface. Lastly, each user

filled out a post-study questionnaire and received their compensation.

79

Chapter 5. Evaluation via User Studies

During the pilot study trials, it quickly became clear that not all of the camera control

features that our prototype (interface C) featured were necessary for this particular environment

and task, and that the limited amount of time prohibited explaining and training the user on

each of them. We thus concentrated the training on a subset of features that appeared to be

most useful in this context, namely, the freezing of the camera, and the saving/revisiting of

viewpoints. However, the other features (panning, zooming, change viewpoint via click) were

still available and were occasionally discovered and used by participants.

Like any monocular SLAM system, our system requires a stereo initialization (i.e., a dis-

tinct camera movement) before it tracks robustly. We address this particular limitation in Chap-

ter 6. For the time being, to ensure a consistently high quality of initialization, we conducted

this initialization step (until the modeler had started to extract 3D surface) before handing the

device to the local user.

5.2.6 Results

Task performance

Overall, 98.5% of the tasks were answered correctly (21 errors at a total of 30×3×15 tasks).

Analyzing the number of errors, Mauchly’s test indicated that the assumption of sphericity

against interface had not been violated (W(2) = 0.95, p = 0.50), and no significant effect of

interface on the number of errors was found using a one-way repeated measures ANOVA

(F(2,58) = 0.47, p = 0.63, and η2partial = 0.016). Additionally, we note that 5 of the 21 errors

80

Chapter 5. Evaluation via User Studies

0

100

200

300

400

500

600

700

0
interface A

2 4 6 8 0
interface B

2 4 6 8 0
interface C

2 4 6 8

ta
s
k
 t
im

e
 [
s
]

Figure 5.7: Histogram of task times per interface.

were made on two particular subtasks in which the participant may have misread the expert

knowledge diagram. As in study 1, we conclude that all users worked meticulously and thus

that the comparison of the task times is meaningful.

Analyzing the task time, Mauchly’s test indicated that the assumption of sphericity had

not been violated (W(2) = 0.99, p = 0.93). With a one-way repeated measures ANOVA, we

found a significant effect of interface on task completion time with F(2,58) = 6.94, p = 0.0020,

and η2partial = 0.19. Post hoc comparisons using Tukey’s HSD test indicated that users were

significantly faster with both interfaces B (M = 313.6, SD = 69.6) and C (M = 317.5, SD = 57.6)

than with interface A (M = 364.7, SD = 96.7), thus supporting hypothesis H2.1. No significant

difference was found between B and C; hence, hypothesis H2.2 was not supported.

81

Chapter 5. Evaluation via User Studies

Questionnaires

In the intermediate questionnaires filled out immediately after each session, the users were

asked to rate their level of agreement to the statements, “This interface helped me to solve

the task” (‘helpfulness’), “This interface made me feel confident that I was doing the task cor-

rectly” (‘confidence’), and “I had difficulties using this interface” (‘difficulties’). The responses

are aggregated in Figure 5.8.

We note two differences in methodology compared to the respective questions in study 1:

First, we used a 7-point scale rather than a 5-point scale as before, in order to allow for more

nuanced ratings. Second, in study 1, these questions and the ranking of the interfaces appeared

together on the post-study questionnaire. Due to this, the users may have taken their ranking

into account when filling out the ratings on the individual questions. To seperate the ratings and

the ranking from each other, the ratings were now obtained in the intermediate questionnaries,

that is, before the next interface was introduced.

Analyzing the ratings with a mixed model ANOVA, with interface and user role as fixed

effects and team ID as random effect to account for within-team correlations as in the analysis

of study 1, the following effects were found:2

There is a significant effect of interface on the rating for all of the above questions (in

the above order: F(2,145) = 18.89, p< 0.001; F(2,145) = 20.69, p< 0.001; F(2,145) = 4.05,

2We note that a different model was used in the publication of these results in Gauglitz et al. (2014a). The

linear mixed model used here makes more assumptions about the nature of the data, but models the design of

the study more closely, and the report here is more detailed. However, we emphasize that all statistical effects

reported in Gauglitz et al. (2014a) based on the previous analysis are confirmed by the analysis here.

82

Chapter 5. Evaluation via User Studies

Figure 5.8: Results from intermediate questionnaires: interface ratings.

p = 0.02). Post-hoc tests indicated that on the first two questions, interfaces B and C were

rated better than A; for ‘difficulties,’ interface C was rated better than A.

There were no significant effects of user role or the interaction of interface and user role

on ‘helpfulness’ and ‘confidence.’ With regards to ‘difficulties,’ user role had a significant

effect — local users found it less difficult than remote users — (F(1,145) = 30.51, p< 0.0001),

and there was a significant interaction of interface and user role (F(2,145) = 3.27, p = 0.04),

indicating that (a) the difference between the interfaces was mainly due to the local users’

ratings (with no difference present for the remote users alone), and (b) the local users reported

less difficulties than the remote users for both interfaces B and C, but no difference between

the roles was found for interface A.

83

Chapter 5. Evaluation via User Studies

Figure 5.9: Results from intermediate questionnaires: individual features.

Users were further asked to rate the helpfulness of individual features on a 5-point scale

from “extremely helpful” to “not helpful at all” (Figure 5.9). The anchored markers in inter-

face C were perceived as more helpful than the static markers in interface B (F(1,87) = 17.30,

p = 0.0001), with 80% of the users perceiving the former as “extremely helpful.” There was no

effect of user role or interaction. The camera control features were perceived as “extremely”

or “very” helpful by 77% of the remote users.

In the post-study questionnaire, users were asked to rank the three interfaces (“Which in-

terface did you like best / would you choose to use for a real task?”). There is a significant dif-

ference in ranking according to Friedman’s test for both user roles (χ2(2) = 41.86, p < 0.0001

(local user), and χ2(2) = 32.34, p < 0.0001 (remote user), respectively). Pairwise comparisons

(with Bonferroni’s correction applied) indicated that all pairwise differences are significant.

80% of the users selected interface C as their first choice (cf. Figure 5.10), supporting H2.3.

The preference for C is 83% among tablet users and 77% among PC users, but this difference

was not significant according to Wilcoxon’s paired signed rank test (V = 29, p = 0.45).

84

Chapter 5. Evaluation via User Studies

Figure 5.10: Results from post-study questionnaire: interface preference.

Observations and open-ended questions on the questionnaires revealed several interesting

details, most notably an inadvertent side effect of the world-stabilization of markers: Since the

markers in interface C has a constant world size, they ended up being quite large when the

user got very close to the object, and were thus too large for some tasks, as described by this

user: “Overall, the markers and viewpoints were extremely helpful. However, [...] for the tasks

where text needed to be located, the marker was much bigger than the words.” Having constant

screen size, the markers in B did not have this side effect.

Several users expressed their preference for interface C, but commented that too many keys

had to be memorized: “[C] was more useful [...] but it was sometimes difficult to remember

which buttons would navigate to which screen shots, what to press to unfreeze the pane, and so

on. However, I imagine it would get much easier with additional practice”; “[C] was by far

the most helpful user interface, but it was a bit difficult to use due to the [number of] buttons.”

85

Chapter 5. Evaluation via User Studies

5.3 Discussion of Studies 1 and 2

To summarize the results of studies 1 and 2, in both studies, an overwhelming majority of the

participants (in both roles) preferred our respective prototype C over both baselines (H1.3 and

H2.3 supported); users performed significantly faster with it than with the respective video-

only baseline A (H1.1 and H2.1 supported); but no significant difference in task performance

was found in comparison with the respective static marker condition B (H1.2 and H2.2 not

supported).

Overall, most participants seemed very engaged with the task in both studies, and many

explicitly commented that they liked the experience. In both studies, with both interfaces B

and C, most teams effectively used multimodal communication, by indicating elements with

markers as well as providing verbal explanations at the same time.

5.3.1 Use of features

The use of the interface features varied among teams. In both studies, almost all teams used

markers for the overwhelming majority of tasks. Most used the freeze feature (in study 1)

and save/go-to-viewpoint feature (in study 2), though some remote users consciously decided

against it. In study 1, only a few people used the number keys to change the sequence of

markers.

86

Chapter 5. Evaluation via User Studies

5.3.2 Task performance with interface C vs. interface B

Given the overall very promising user ratings of the respective interface C and few usability

problems, the question remains why no significant difference was found between C and B in

terms of task performance (i.e., number of tasks completed in study 1 and time to complete the

set of tasks in study 2). We observed indications for several possible reasons that may have

reduced the differences between the interfaces in general and/or counteracted potential benefits

of interface C in particular. They largely fall into three categories: limitations of our respective

interface, nature of the chosen task, and user study artifacts.

Limitations of our respective prototype (i.e., interface C):

• Imperfect tracking. We emphasize that our prototypes are built upon visual tracking,

which is naturally imperfect, but being compared against interfaces which (in our studies)

were technically failsafe. Although not perceived as a large problem by most users in

study 1 (cf. Figure 5.5), occasional or more frequent tracking loss may have impacted

the task performance. One noteworthy circumstance is that, in both systems, tracking

got lost if users moved very close to the object surface (due to fewer trackable features in

the field of view), so that users had to step back a little to recover tracking: “I found that

when I [...] needed to ‘zoom in’ to physically put the push pins in the correct spots, the

tracking marks sometimes did not show up [...] until I zoomed out again... this slowed

87

Chapter 5. Evaluation via User Studies

things down a bit” (study 1). Improving tracking for this condition in particular would

be beneficial.

• Suboptimal interface design. While the interface received very good ratings, and there

was no indication that it was perceived as more difficult to use than the baselines (cf.

Figures 5.4 and 5.8), individual elements were found to be suboptimal. In particular, in

Prototype 2, several users had commented that memorizing the keys was a burden, and

the size of the markers was unsuitable for some tasks (cf. the discussion of this aspect in

Section 5.2.6). We note that both of these issues are resolved in Prototype 3.

Nature of the task:

• Since the local user had to wait for instructions from the remote expert for each step, it

was relatively easy (although, as some users in study 1 commented, more strenuous) to

hold the tablet still while the remote expert referenced elements. A task that required

more autonomous work from the local user would likely show a greater benefit of the

decoupling of views.

User study artifacts:

• Statistical power (study 1 in particular). As evident from Figure 5.3 and Table 5.2, in

study 1, the average task performance with C was better than with B; the p value of

0.135 suggests that with higher statistical power (i.e., more participants), C might have

88

Chapter 5. Evaluation via User Studies

been shown to have a significant benefit in task performance as well (even with all other

factors unchanged).

• Training effect & small task environment. As users started, the difficulty of verbally

giving spatial and directional instructions — including confusion regarding “left” and

“right” (relative to the car’s driving direction or the user’s perspective?) and “up” and

“down” (in world or screen coordinates?), as well as misidentification of elements — was

very apparent, which supports the need for spatial annotations. However, as an artifact

of the training, the within-subjects design, and the small task environment, users quickly

became experts in giving and understanding directions for this particular task, possibly

more so than becoming experts in using the interfaces. Oftentimes, users came up with

names for different parts of the object, which did not have to be technically accurate

in order to be effective (the most creative moniker we heard may have been “rainbow

keyboard” for the fuse box of the car in study 2). As one user commented when asked

about the usefulness of the camera control (in study 2): “[It] wasn’t very useful since

I already knew the layout of the engine from previous tasks.” For real applications,

we might assume the opposite: users become familiar with the interfaces available to

them and communicate with new partners in new environments. To account for this,

significantly different environments could be used for each training and interface session;

however, this may be challenging in terms of practicality and ensuring fair conditions

across all sessions.

89

Chapter 5. Evaluation via User Studies

• Simulated expert knowledge & proxy tasks (study 2 in particular). Due to the increas-

ingly familiar environment, and additionally motivated by the rewards in study 2, the

tasks became very fast-paced. Thus, the remote user’s mental load of understanding the

next instructions (cf. Figure 5.6), aligning them with his/her mental model of the scene,

and then with his/her view of the scene, was oftentimes slower than the actual task ex-

ecution, which required little physical labor and could thus be completed very quickly.

As the time-critical path shifted from the local to the remote user, a potential benefit of

the virtual camera control — namely, that the remote user could browse and familiarize

him/herself with the environment (e.g., for the next task) — became less relevant, while a

potential downside (increased complexity) became more relevant. One user commented

(in study 2): “Using the multiple views was a little more hectic on the ‘expert’s’ side, but

only because we were trying to complete the tasks as quickly as possible. In a situation

in which this technology would be used, this feature would no doubt be very helpful for

quality and efficiency of task completion.” We note that this is also an artifact of the

study setup: in a real application, no simulated expert knowledge has to be understood,

and the local user’s task may require more physical labor or travel.

• Limited training time. While the user’s ratings suggest that users did not perceive the

interface as more difficult to use (cf. Figures 5.4 and 5.8), it may require more training

than was alotted here for optimal use. Individual users commented that C might benefit

from longer-term use: “I would utilize B [...]. However, with more time to adapt, I

90

Chapter 5. Evaluation via User Studies

probably would utilize C” (study 1); “I thought using the markers and the freeze was

more difficult [...]. I think with another trial’s worth of practice it would have less effect.”

(study 1); “... I imagine [using interface C] would get much easier with additional

practice” (study 2).

• Limited amortization of one-time time investments due to short task duration (study

2). In study 2, with interface C, some users took extra time to carefully position the

camera to save viewpoints for later use, but the amortization of this time investment was

limited by the relatively short task duration.

We further note that due to our use of a magic lens tablet, our AR experience was indirect.

Some users explicitly commented on this: “I had to see where the X was on the screen then

find it again in ‘real life.’ That transition added a non-trivial delay” (study 1). Due to this

indirection and since they could hold the tablet in one hand, putting down pins with the other,

interfaces B and C are effectively more similar to each other than with a direct view (e.g., with

an HWD or projective display).

Given that certain aspects of the interface mentioned above have specifically been addressed

with the design of Prototype 3, and that several of the other observations hint at artifacts of the

study setup (rather than fundamental limitations of the prototypes or interfaces), we believe

that we have gathered strong evidence for the benefits of our paradigm, in particular given that

underlying technologies (such as SLAM) will continue to improve.

91

Chapter 5. Evaluation via User Studies

5.4 User Study 3

In contrast to studies 1 and 2, study 3 does not aim at evaluating the interaction with a sys-

tem as a whole, but rather shed light on the design of individual features. In particular, we

wanted to obtain insights on the interpretation of 2D drawings in 3D (Section 4.3.3) and the

suitability of gesture-based virtual navigation for constrained spaces (Section 4.3.4), both of

which differ significantly compared to their use in existing work. Rather than a comparative,

task performance-based study, study 3 was thus designed as a qualitative study.

This study will be published, together with Prototype 3, in the proceedings of the ACM

Symposium on Virtual Reality Software and Technology (VRST) 2014 (Gauglitz et al., 2014b).

5.4.1 Participants

We asked eleven users to interact with the system following a structured protocol and provide

feedback on particular design elements. They were compensated for their time commitment of

about 50 minutes with US-$ 10. Of these study participants, five were female; the age range

was 18–22 years. Four stated that they were “somewhat familiar” with interactive 3D software

(e.g., 3D modelers). All had used small-scale touchscreens (e.g., smartphones) on a daily basis,

but only one had used large-scale touchscreens more than “occasionally to rarely.” Five of the

participants had participated in study 2 (Section 5.2) and were thus also asked to comment on

the differences compared to the earlier design.

92

Chapter 5. Evaluation via User Studies

5.4.2 2D drawings in 3D

We asked the users to communicate a piece of information to a hypothetical partner via a

drawing. For example, for Figure 4.6(a) top to bottom: “In which direction do you have to turn

the knob?”; “Where should the microwave be placed?”; “Where is the motor block?”.

We tried to cover a range of different questions to prompt a variety of drawings. We also

used scenes in which the original viewpoint was roughly perpendicular to the object’s main

surface (Figure 4.6 top) as well as slanted surfaces (Figure 4.6 bottom two rows). Further, to

be able to distinguish conceptual issues from sensitivity to noise, we used both virtual mod-

els (Figure 4.6 top two rows) and models created by our system via SLAM and approximate

surface modeling (Figure 4.6 bottom). We avoided situations in which all variants result in the

same or nearly the same shape, that is, single planar surfaces.

We then moved to a different viewpoint and asked the users which of the four depth inter-

pretations (Figure 4.6(b-e)) was most suitable.

We emphasize that we did not tell the users what they should draw, and thus the drawn

shapes varied appreciably in nature. For example, to refer to a particular object, some users

traced the object’s outline (similar to Figure 4.6 bottom), some circled it loosely, and others

drew an arrow pointing towards it.

Arrow heads and indicating direction. To indicate a direction of rotation (e.g., Figure 4.6

top row), all users used arrow-like drawings. However, the type of arrow head varied, as

detailed in Table 5.4. Initially, roughly one quarter of all arrows were drawn without head; that

93

Chapter 5. Evaluation via User Studies

arrow head none attached detached

example

initially: 24.6% 23.1% 52.3%

with animation: 72.3% 15.4% 12.3%

Table 5.4: Usage of different styles of arrow heads initially and after an animation visualizing

the drawings’ direction was introduced.

is, the shape itself does not actually convey the direction. Users evidently assumed that the

direction of the drawing would implicitly be communicated. As the drawings mimic gestures

(and one would rarely add an arrow head at the end of a hand gesture motioned in mid-air),

this assumption is reasonable.

We had anticipated this variant due to prior observations and thus implemented an animated

visualization to do so: here, the line contains lighter dashes which flow in the direction in

which the line was drawn.3 Thus far, we use a fixed speed of flow, but one could extend this

visualization by additionally visualizing the speed of drawing via the speed of flow.

After this animation was introduced after the first set of tasks, almost three quarter of all

arrows were drawn without head (cf. Table 5.4). The animation was rated as “very helpful”

or “helpful” by 10 of 11 users; nobody perceived it as distracting (even though it was not

necessary for some of the drawings) (cf. Figure 5.12).

3The design was inspired by the visual appearance of animated Line Integral Convolution (Cabral and Leedom,

1993) and can loosely be thought of as a coarse approximation for it for a single dimension and constant speed.

94

Chapter 5. Evaluation via User Studies

Figure 5.11: Users’ preference among the four different depth interpretations, broken down by

various subsets. Per each row, the areas of the squares and the numbers indicate the preference

for a particular variant in percent.

User preference among depth interpretations. Figure 5.11 details the users’ preference

among the depth interpretations, broken down by various subsets. Overall, in every category,

users tended to prefer the planar projections in general, and the dominant plane version in

particular, which was the most frequently chosen variant in every category but one.

Limitations. One limitation of our current implementation is that drawings are treated as

separate annotations as soon as the finger is lifted, which means that they get moved onto sepa-

rate planes by the three planar projection methods (cf. Figure 4.6(c-e) middle row). Individual

segments that are created in very close succession — such as a detached head for an arrow,

95

Chapter 5. Evaluation via User Studies

Figure 5.12: Ratings of two visualization options (# of users).

which was by far the most commonly used style of arrow before we introduced the animation

indicating direction (cf. Table 5.4) — should ideally be treated as one entity.

Further, the “dominant plane” method is susceptible to extreme artifacts if the points lie on

or close to a single line, such as seen in Figure 4.6(e) middle row. When removing the cases in

which this occurred from consideration, the general preference for the dominant plane version

increases further (last row in Figure 5.11). In future work, these degenerate configurations

should be detected and one of the other variants (e.g., median depth) used instead.

Naturally, there are several cases in which none of these options will work satisfactorily,

such as when trying to create an annotation in mid-air or behind physical surfaces. Of course,

an interface may also offer to change the type of depth inference used, e.g., for advanced users.

Even for 2D only, some interfaces offer a whole array of drawing tools (Gurevich et al., 2012);

however, it has been reported that users use freehand drawing most often (Gurevich et al.,

2012). With this consideration, the quest here is to find out what the default setting should

be, such that gestures used in face-to-face communication can be emulated as efficiently as

possible.

96

Chapter 5. Evaluation via User Studies

Given our results, we suggest that a planar projection will likely serve this purpose best, in

particular if the implementations described here are improved upon. Three areas for improve-

ment are: 1. group segments created in close succession; 2. avoid degenerate cases for the case

of dominant plane estimation; 3. combine the methods and choose, for example, the dominant

plane if the fraction of supporting inliers is large, and median depth plane otherwise. These

ideas are left to future work.

5.4.3 Gesture-based navigation

We asked the users to try out the individual navigation controls and rate them. The results are

aggregated in Figure 5.13.

After having been told only that two-finger gestures would control the camera (since one-

finger gestures draw annotations), and asked to pan, all users intuitively guessed the gesture

(i.e., swipe) correctly — unsurprisingly, perhaps, given their exposure to touchscreen inter-

faces — and were able to control the camera as suggested; the control received high ratings in

terms of both intuitiveness and ease of use. Additionally, all users correctly identified what the

intensifying blue gradient communicated; this visualization was rated as “very helpful” by 7 of

11 users, and as “helpful” by the others (cf. Figure 5.13).

For zooming, again all users intuitively guessed the gesture (i.e., pinch) correctly and were

able to control the camera as suggested. We let them try out zoom first with the transitional

component disabled, i.e., only the FOV was changed. This control was given the highest rating

97

Chapter 5. Evaluation via User Studies

Figure 5.13: Ratings of various navigation elements (areas of squares are proportional to num-

ber of users).

98

Chapter 5. Evaluation via User Studies

on a 5-point scale for intuitiveness and ease of use by 9 and 10 out of 11 users, respectively.

With transitional component enabled (labeled “zoom*” in Figure 5.13), the control still re-

ceived high ratings, though clearly lower than without. Several users appreciated the fact that it

transitioned to other frames and thus allowed to zoom further, however, the decreased smooth-

ness and possibility of getting “stuck” were noted as downsides. The idea of using a hysteresis

threshold to decrease artifacts was a result of this feedback (i.e., it was not implemented at the

time of this evaluation).

For orbiting, we first introduced the control on a virtual model without any constraints/snap-

to-keyframe. While the ratings for intuitiveness are lower than for the other methods, the rat-

ings for ease of use are similar. With snap-to-keyframe, on a model reconstructed from images

(labeled “orbit*” in Figure 5.13), the ratings are very similar, suggesting that the constraint

was not irritating. The two visualizations received very different ratings, however: while the

preview image was rated as “very helpful” by 8 of 11 users, the red line was perceived as

“(somewhat or slightly) helpful” by only half the users, and as “(somewhat or slightly) dis-

tracting” by the other half. Conversations made clear that despite explanations, not all users

understood and/or saw value in this visualization.

We suggest that the consistently high ratings indicate that the controls are designed ap-

propriately. By design, our controls are dependent on the viewpoint distribution; an area that

deserves further investigation is how to ensure that the user cannot get “stuck” in the case of

unfavorable viewpoint distributions.

99

Chapter 6

Model Estimation and Selection towards

Unconstrained Tracking and Mapping

A key component of our approach (as described in Chapter 3) is the ability to track and map

the environment from the video stream (or, more generally speaking, the input that the sensors

provide).

This is a research problem which has received considerable attention from the robotics,

computer vision, and augmented reality communities. Two important characteristics of a track-

ing and mapping (T&M) system are the type of camera motion and the geometry of the en-

vironment that it supports. For example, a T&M system may assume a planar environment

(as done in Prototype 1 (Section 4.1) and, for example, Pirchheim and Reitmayr, 2011) or a

camera that is rotating around its optical center (DiVerdi et al., 2009; Wagner et al., 2010).

SLAM systems (such as Davison et al., 2007; Eade and Drummond, 2008; Klein and Murray,

2007; Newcombe et al., 2011a, as well as the one employed in Prototype 2 (Section 4.2)) can

deal with environments of arbitrary geometry and any camera motion that induces parallax.

However, with few exceptions (Civera et al., 2008b), they do not support rotation-only camera

100

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

motion: Their mapping is intrinsically built upon triangulation of features; thus, they require

that each feature be observed from two distinct camera locations and may produce degenerate

maps or fail completely if the camera rotates from one part of the environment to another.

Therefore, most monocular visual SLAM systems need to be initialized with a distinct

“traveling” movement of the camera for each newly observed part of the environment, and

the required travel distance is directly proportional to the distance to the environment. This

restriction is acceptable for vehicle navigation or if building a model of the environment is the

user’s main intent. However, it is a major limitation for the use of SLAM systems in AR in

general and in our framework in particular, where the environment modeling is assumed to be

done in the background and ideally transparent to the user, who should not be required to move

a certain way in order to make the system work. Moreover, rotation-only “looking around”

is a very natural motion and may occur in many application scenarios (Langlotz et al., 2011;

Wagner et al., 2010), particularly in ours (imagine a local user wanting to give an overview of

his/her current environment).

Thus, the paradigm for modeling the environment should be to make the best possible use

of all data that can be casually collected and to enable viewing and placement of annotations

for as much time as possible. In particular, this means not forcing the user to concentrate on

model building, and not discarding all frames that stem from rotation-only movements (as in

most monocular SLAM systems) or translations (as with panorama mapping).

In this chapter, we present an approach and proof-of-concept implementation that fulfills

these criteria: We describe a real-time tracking and mapping system that explicitly supports

101

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.1: Our system supports both parallax-inducing and rotation-only camera motion. In

the former case, it acts as a SLAM system and models 3D structure in the environment; in the

latter case, it acts as a panorama mapper. It seamlessly switches between the two modes, thus

being able to track and map through arbitrary sequences of parallax-inducing and rotation-only

camera movements and — fully automatically and in real time — creating combinations of 3D

structure and panoramic maps, as shown here. c© IEEE 2014.

both parallax-inducing and rotation-only camera motions in 3D environments (Figure 6.1),

does not need a separate initialization step, and continues to collect data despite intermittent

tracking loss. In the case of intermittent tracking loss, it creates several disjoint maps which

are later merged if possible. One key element of our approach is the use of the ‘Geometric

Robust Information Criterion’ (GRIC) by Torr (2002) (adapted to support large search regions

(Section 6.5.1) and the absolute pose models (cf. Section 6.5.2)) to decide whether the current

camera motion can best be represented as a parallax-inducing motion or a rotation-only motion.

Here, the GRIC score is one representative of a class of metrics, sometimes called infor-

mation criteria, that have been proposed to assess the fitness of a particular model given the

102

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

data. In SfM, the GRIC score has been applied particularly to detect homographies in order to

avoid them during keyframe selection (Pollefeys et al., 2002; Repko and Pollefeys, 2005). In

contrast, we use the GRIC score to select between two models, but we use the data in either

case.

An earlier iteration of the work described in this chapter was presented at the IEEE In-

ternational Symposium for Mixed and Augmented Reality 2012 (Gauglitz et al., 2012b); the

present version, presenting a significant generalization of the work over the first publication,

was published in the IEEE Transactions on Visualization and Computer Graphics (Gauglitz

et al., 2014c); c© IEEE 2012/2014, reprinted with permission.

6.1 Alternative Approaches

In theory, using stereo cameras eliminates the problem of requiring the camera to travel, since

the baseline required to triangulate features is built-in. In practice, however, using stereo cam-

eras is only a partial remedy, since the baseline has to be significant in relation to the distance to

the environment in order to reliably estimate depth. Thus, a wearable stereo system would be

unable to map a building across the street without requiring the user to provide additional base-

line by traveling (while a panorama system, though unable to provide depth, would produce

very usable information).

Similarly, systems based on active depth sensors (Lieberknecht et al., 2011; Newcombe

et al., 2011b) do not require the sensor to move. However, they have other inherent limitations

103

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

such as limited range, inability to work in sunlight, power consumption, and need for additional

special hardware.

We are thus interested in addressing this problem for monocular vision.

As briefly mentioned in Section 2.4, Civera et al. (2008a) have proposed the use of an

alternative, six-dimensional parametrization for filter-based SLAM systems which supports

rotation-only motions, but does so at a high computational cost. As a result, the number of

features that can be tracked in real time, which is typically already smaller for filter-based

SLAM than for keyframe-based SLAM,1 is further decreased. In the case of long sequences

of camera rotation, many of those computation cycles are spent filtering data where no gain

is to be expected (namely, on re-estimating the (still undefined) feature depth). Conceptually,

assuming that feature depths are likely to be correlated, whether or not existing features can

be triangulated using a new camera view depends more on the camera movement than on

each individual feature, and could thus be decided once per frame. In Civera et al. (2008a,b),

however, the question is answered for each feature individually.

Therefore, we consider it an advantage of our approach that we explicitly switch to pano-

ramic mapping if supported by the observations, thus taking advantage of some of the advan-

tages that panoramic mapping offers, such as a robust outlier-resilient model (homography)

and a straightforward mapping of the entire frame instead of sparse features, both of which are

especially important for AR. On the other hand, the approach of Civera et al. (2008b) may be

1For an interesting analysis of the relative computational cost of the two approaches see Strasdat et al. (2010).

104

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

preferable when modeling the transition between two types of movement or when only some

of the features exhibit parallax.

While admitting features without depth could in principle be adopted for keyframe-based

SLAM (in Klein and Murray (2009), this approach is employed to admit features before their

depths are known), the ability to rely on them exclusively would require fundamental and

possibly costly changes to the underlying mapping and bundle adjustment.

Concurrent to our second publication (Gauglitz et al., 2014c) on this topic, Pirchheim et al.

(2013) have published an approach to the same problem. On a high level, both approaches

are similar: both distinguish rotation-only and parallax-inducing motion and switch between

panorama mapping and SfM mapping accordingly. Based on an existing SLAM system, the

implementation presented by Pirchheim et al. (2013) was demonstrated to operate in real time

on a mobile device. However, their approach is significantly less general: Their system sup-

ports embedding of panoramas into an existing SfM map to support temporary rotation-only

sequences, but assumes that the system has been initialized with a standard stereo initializa-

tion. It is effectively similar to the model-based part of our system (i.e., the left branch in

Figure 6.4) and thus, in contrast to our approach, supports neither starting with rotation nor

tracking through arbitrary sequences of rotation-only and parallax-inducing motions.2

2We note that Pirchheim et al. (2013) include a detailed theoretical comparison of their approach with the first

iteration of our work (Gauglitz et al., 2012b), but several aspects of this comparison no longer apply to the second

iteration (as described here and in Gauglitz et al. (2014c)).

105

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

6.2 System Overview

Our concept borrows two key ideas from Klein and Murray’s PTAM system (Klein and Murray,

2007, 2008, 2009), namely, the central role of keyframes and the splitting of tracking and

mapping into two parallel threads.

The split and design of the threads follows two guidelines: (1) the tracking thread should

be as fast as possible and leave all tasks that are not imminent in order for the next frame to

be processed to the mapping thread, which runs asynchronously in the background; (2) the

first steps in the pipeline should not be dependent on the motion model (parallax-inducing vs.

rotation-only) that will be selected, in order to minimize redundant computations.

Figure 6.2 presents a conceptual overview of the system’s operation. Briefly summarized,

the system operates as follows: The tracking thread receives a new frame and locates features

via template-based matching, which stem either from the previous frame or, if a map of the

environment has already been built, were projected from the map into the frame. From these

feature correspondences, it then estimates both a model for parallax-inducing camera motion

as well as a model for rotation-only motion, and selects the model that better represents the

data via comparing their GRIC scores. Under certain conditions, a keyframe is inserted. Con-

secutive keyframes of the same kind (SfM or panorama) are collected into a keyframe group.

The mapping thread operates on these sets of collected keyframes and creates an appropriate

environment model (SfM or panorama).

106

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.2: Conceptual overview of the system’s operation. c© IEEE 2014.

The tracking and mapping threads are described in detail in Sections 6.3 and 6.4, respec-

tively. Section 6.5 describes the problem of model selection and the GRIC score.

6.2.1 Two-view relations and model-based poses

Conceptually, two two-view relations (namely, the essential matrix E and the homography H)

are all-encompassing in that they describe all cases of camera movements that can occur in

a static environment. Consequently, our initial implementation used only these two models

(Gauglitz et al., 2012b). However, this implementation does not make optimal use of the envi-

ronment model that is built in the background; by sequentially estimating E from potentially

small baselines, tracking remains relatively brittle and jittery (cf. Figure 6.11).

Therefore, we have extended our concept to include both two-view relations (for initializa-

tion, after tracking loss, or when rotating into uncharted territory) as well as two model-based

107

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

absolute poses [R|t] and [R|0]3 (whenever the camera observes a part of the environment for

which a 3D model has been built). It should be noted that, in each frame, we still estimate only

two models (the two-view relations or the absolute pose models); thus, the computational load

has not increased.

The integration of absolute pose models has two further advantages: First, it allows to

distinguish rotation-only movement from planar environments (which is difficult in the model-

free case, since in both cases, the resulting transformations are described by the same relation,

namely, a homography). Second, it decreases the risk of fragmentation of the model into

connected sub-maps of alternating types (which a linear sequence of E’s and H’s may produce,

as discussed in Gauglitz et al. (2012b)), since the system can connect incoming frames directly

to an existing model (rather than only to the previous keyframe).

Why is estimating [R|0] necessary? Unlike in the case of E vs. H , when a model is available,

the absolute pose [R|t] is well-defined and can be estimated irrespective of the (relative) camera

motion. Thus, it is less obvious why estimating [R|0] and the subsequent model selection step

is necessary. We do so for the following reason: Consider the case that the camera observes a

known scene (thus using model-based tracking), then rotates towards unobserved parts of the

scene. Due to the rotation-only movement, no new features can be triangulated. If [R|t] is

the only model-based pose that is estimated, and has priority as long as enough triangulated

features are visible, the system will switch to H only when very few (if any) of the existing

3More precisely, [R|t]prev ◦ [R|(0, 0, 0)T], where [R|t]prev is the (fixed) pose of the previous keyframe.

108

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.3: Schematic overview of the main data structures used to store the emerging map(s).
c© IEEE 2014.

features are left, risking tracking loss in between and generating a panorama that has very

little overlap with the existing model. By estimating [R|0] and thus explicitly switching to

panorama mode (if [R|0] proves to better represent the data), we can start building the panorama

immediately, ensuring that it is well-connected to the existing structure by the time the system

switches to H , seamlessly continuing the panorama as it extends into newly observed parts of

the scene.

6.2.2 Data structures

Figure 6.3 visualizes the main data objects that store the current system state and the emerging

map as well as their relations.

The most central element is the keyframe group: each keyframe group governs one sub-

map consisting of a set of keyframes which are either all linked by 3D pose information (SfM

group) or all linked by homographies (panorama group). The keyframe group also determines

109

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

the frame of reference, with respect to which all pose information is stored. A keyframe may

be part of a panorama group as well as a SfM group (e.g., keyframe 3 in Figure 6.3), in which

case it gets assigned a pose in both groups. The set of keyframes and keyframe groups can

be thought of as a graph, similar to the representations by Eade and Drummond (2008) and

Klopschitz et al. (2010). Initially, this graph is linear, consisting of a chain of E’s and H’s

modeling the (linear) video stream. As soon as the system has built a model of the environment

and is using model-based tracking however, new keyframes are linked directly to the model,

creating a branching graph.

When tracking is lost, all links to the current map are lost, and the tracker starts a new track.

Initially, the new track is completely unconnected to the previous data, but can later be merged

(if there is some overlap in what is observed during both tracks) as explained in Section 6.4.3.

6.3 Tracking

A flowchart of the tracking thread is presented in Figure 6.4. This section describes the main

operations in detail.

When a new keyframe is added, new keypoints are detected using a corner detector (such

as FAST (Rosten and Drummond, 2006) or Shi-Tomasi (Shi and Tomasi, 1994)) in all areas

not already covered by keypoints. We enforce a spatially well-distributed set of keypoints,

which was shown to improve tracking robustness (Gauglitz et al., 2011; Gruber et al., 2010b),

110

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.4: Flowchart of the tracking thread. c© IEEE 2014.

111

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

by overlaying a simple rectangular grid over the image and selecting the strongest keypoint in

each cell.

To project existing features into the frame and predict their appearance, as much infor-

mation about the feature as possible is used. That is, if the 3D position and the normal (cf.

Section 6.4.4) of the feature are available, it is sampled from the original keyframe using a

fully qualified homography (representing a 3D plane rotation). If only the 2D location of the

feature is known, the patch is sampled in 2D.

6.3.1 Coarse-to-fine feature tracking

Frame-to-frame feature correspondences are created using a multi-level (i.e., coarse-to-fine),

active search patch tracker with normalized cross-correlation (NCC)-based template matching.

On the full-resolution image, the feature location is refined to subpixel accuracy by using a

quadratic fit to neighboring scores.

This is similar to the keypoint tracking by other systems (Klein and Murray, 2007; Wagner

et al., 2010, 2009); however in contrast to these system, the multi-level tracking is executed on a

per-feature basis (instead of interleaved with the pose estimation), since we do not know which

type of camera motion to expect (and thus which model to enforce) until after the tracking step.

We have designed, but not yet fully integrated, a more sophisticated approach that retains the

advantages of the interleaved pose estimation, and discuss this approach in Section 6.7.2.

112

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Model Estimation algorithm

Essential matrix E MAPSAC (Torr, 2002) with five-point algorithm (Nistér, 2004)

Homography H MAPSAC (Torr, 2002)

Abs. pose [R|t] Gradient descent with M-estimator (cf. Klein and Murray, 2007)

Abs. orientation [R|0] Gradient descent with M-estimator (cf. Wagner et al., 2010)

Table 6.1: Estimation algorithms for the four models considered here. In each frame, only two

models are estimated. c© IEEE 2014.

6.3.2 Model estimation and outlier re-estimation

After all features are located in the full-resolution image, the motion model is estimated. If a

3D model of the observed scene is available (that is, there exists a SfM group which contains

sufficiently many of the successfully tracked features), we estimate [R|t] and [R|0] using itera-

tive gradient descent of an M-estimator (cf. Table 6.1 bottom). Otherwise, we instead estimate

both a homography H and an essential matrix E between the previous keyframe and the current

frame using MAPSAC (cf. Table 6.1 top).

The probability density function that is assumed for inliers and outliers is an important

part of the model selection process. Here, we make the common assumption that inliers are

distributed normally with measurement error σ, and outliers are distributed uniformly across

the search region. Thus, after model estimation, the measurement error σ and inlier ratio γ,

which are needed for the model selection step, are estimated using expectation-maximization.

Next, the GRIC score is computed for both models, and the better model (i.e., the one with

lower GRIC score) is selected. The model selection and the GRIC score will be explained

113

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

in more detail in Section 6.5. If E is determined to be the better fit, it is decomposed into a

relative pose [Rrel|trel].

In an attempt to retain individual features as long as possible, outliers are re-estimated after

the model selection. This is trivial in the cases of H , [R|t], and [R|0], since the model defines

a unique mapping for each point. In the case of E, each outlier is re-estimated by running the

NCC-based template matching again on a thin rectangular matching area that was rotated to

align with the epipolar line. Features that prove unreliable (i.e., that repeatedly are outliers and

need to be re-estimated) are removed.

If no keyframe is added (cf. next section), processing of this frame is completed.

6.3.3 Inserting a new keyframe

The current frame is added as a new keyframe knew when several conditions (similar to the ones

suggested by Klein and Murray (2007)) are met: (1) tracking quality is good (as determined by

the fraction of inliers that MAPSAC finds); (2) enough time has passed since the last keyframe

insertion; (3) in the case of rotation-only motion (H and [R|0]), when the median 2D distance

that the keypoints “traveled” since the last keyframe is large enough, and in the case of parallax-

inducing motion (E and [R|t]), when the median feature triangulation angle is large enough.

If the estimated motion model connects knew to an existing keyframe group of the respective

type (i.e., a SfM group for E or [R|t], and a panorama group for H or [R|0]), knew gets merged

into the existing group (detailed below for the case of E, and straightforward in all other cases).

114

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Otherwise, a new keyframe group consisting of knew and the previous keyframe kprev gets

created. Insertion of a new group marks the beginning of a new sub-map, but it does not in-

validate any of the existing map data: particularly during model-based tracking, where both

feature and camera positions are known in 3D, the tracker can still refer to all currently regis-

tered features and project them into incoming frames. Note that a switch from [R|0] to [R|t]

does not cause creation of a new SfM group: coming from [R|0] implies that 3D features are

visible and thus that there is an SfM group to which the new keyframe is connected even after

intermittent rotation-only motion.

Lastly, new features are detected in all uncovered image regions by applying the same grid

as in the first frame and choosing new features for each cell that is not covered by currently

tracked features.

Merging essential matrices. While E can be decomposed into relative pose information

[Rrel|trel] between the new frame and the previous keyframe kprev, the scale of trel is arbitrary.

Before it can be integrated into an existing SfM group, a common scale has to be found. In

order to do so, we use the set of all features that have been observed (and thus have a triangu-

lated position) in both the existing SfM group as well as with respect to [Rrel|trel], and calculate

the ratios of their distances to kprev in both coordinate systems. We then take the median of

those ratios as a robust measure of the scale between the two coordinate systems and scale trel

accordingly.

115

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.5: Merging of tracks (top) vs. relocalization (bottom). The rotation-only input video

for the data shown here contains several rapid camera motions (cf. description of the dataset in

Coffin et al. (2011)), resulting in intermittent tracking loss. After each loss, our system starts a

new partial panorama, and, while the incoming live frames are being processed, stitches them

together in the background. The final panorama (top and right) was stitched together from 11

partial panoramas. In comparison, with the same tracking system but using relocalization, only

the model at the bottom gets created. Here, two pairs of keyframes were estimated to have a

small non-zero baseline, thus two parts of the panorama — displayed with a white border — are

offset slightly from the rotation axis. c© IEEE 2014.

6.3.4 Relocalizing vs. starting a new track

When tracking gets lost — i.e., when the number of inliers for the selected model falls below a

set threshold — the standard strategy employed by most T&M systems (e.g., Klein and Murray,

2007; Pirchheim and Reitmayr, 2011; Wagner et al., 2010) is to continuously try to relocalize

the camera with respect to the current map with each new frame until successful. However, this

means that tracking and mapping are suspended and no data is collected until relocalization is

successful.

116

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Here, we employ an alternative strategy proposed by Eade and Drummond (2008): instead

of trying to relocalize, we start a new track immediately, and leave it to the background thread to

merge tracks if possible (cf. Section 6.4.3). The benefit of this method, illustrated in Figures 6.5

and 6.12, is that the system continues to collect data even after tracking failure occurs, and, if

the tracks are later found to overlap, merges the created maps. If they do not overlap, the maps

remain separate. (Note that in this case, a recovery-based system would never recover.)

6.4 Mapping

The mapping thread runs in parallel to the tracking thread and is responsible for the following

tasks:

1. triangulate new features (Section 6.4.1),

2. run bundle adjustment (Section 6.4.2),

3. merge disjoint tracks (Section 6.4.3),

4. estimate feature normals (Section 6.4.4),

5. clean up residual data (Section 6.4.5).

These tasks are allowed to be more computationally intensive than the tracker’s tasks, since the

system does not depend on them in order to process the next frame.

Each of the tasks gets assigned a priority which depends on the time it was last executed

and the system’s current state. In each iteration, the task with highest priority is executed. For

example, after a new keyframe is inserted, triangulation of new features becomes important; if

117

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

tracking got lost and thus a new track is started, merging of tracks is prioritized to enable quick

merging of tracks. Thus, assuming that the two threads run on two independent cores, the latter

can happen as quickly as conventional relocalization.

6.4.1 Triangulating features

A feature that was observed in at least two keyframes within the same SfM group, but not

bundle adjusted yet, is triangulated and gets assigned a 3D location with respect to this group’s

frame of reference. When the tracker adds a new keyframe with a new observation of a feature

f , f is re-triangulated using all information when the mapper cycles through this step the next

time.

6.4.2 Bundle adjustment

SfM groups with at least three keyframes get passed through a standard bundle adjuster (Lou-

rakis and Argyros, 2009) that globally optimizes all keyframe (i.e., camera) poses and feature

positions in this group’s frame of reference. If there are multiple such groups, the group with

the newest keyframe (that is, the keyframe that got adjusted the least number of times) is pro-

cessed.

More sophisticated bundle adjustment strategies with local and global adjustment steps

(Klein and Murray, 2007) could be integrated as needed.

118

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

6.4.3 Merging disjoint tracks

When tracking gets lost, the tracker immediately starts a new, independent track, rather than

continuously trying to relocalize with respect to the existing map. In doing so, the tracker

continues to collect and ‘stitch together’ data even though the spatial relation to the first map

is initially unknown.

The algorithm that merges tracks is similar to the keyframe-based recovery by Klein and

Murray (2008) (also used in Pirchheim and Reitmayr (2011); Wagner et al. (2010), among oth-

ers): as observed by Eade and Drummond (2008), recovery, loop closure, and (here) merging

of tracks are effectively similar to each other; the main difference lies in when the algorithm is

executed and how its result is used.

Whenever a new keyframe is taken, the system stores a downsampled, blurred copy of the

image (here: 80×60 pixels, blurred with a Gaussian with σ = 1.5px), dubbed small blurry

image (SBI).

Merging of tracks is implemented as follows: The algorithm chooses a keyframe k1 and

computes the normalized cross-correlation (NCC) of its SBI with the SBI of all other key-

frames. Keyframes on the same track as k1 are omitted, as are keyframes to which a previous

merge attempt failed. The keyframe k2 with the highest NCC score is selected, and the SBIs

of k1 and k2 are aligned to each other using inverse compositional image alignment (Baker and

Matthews, 2002) of an affine homography HA. The features of k1 are then projected into k2

using HA, and a regular “tracking” step (cf. Section 6.3) is executed.

119

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

If the tracking step fails, k2 is “blacklisted” in k1 as a failed attempt (so that the algorithm

does not attempt the same combination again), and k1 stores a timestamp of when this merge

attempt occurred. The next time the algorithm tries to merge tracks, the keyframe that has not

been chosen as k1 the longest is chosen as k1.

If the tracking step succeeds in estimating a model that is supported by a sufficient fraction

of feature correspondences, the two tracks are considered successfully merged. Several differ-

ent cases have to be considered in actually merging the environment models, depending on the

type of transition connecting the two tracks, and whether or not k1 and k2 are already part of

a keyframe group of the respective type. If available, the transition is preferred that would not

introduce a new keyframe group. (For example, if k1 and k2 are both part of a panorama group,

and could be connected with either H or E, H is preferred.) Adding of a group (if needed)

as well as merging of panorama groups is straightforward (the latter only requires concatenat-

ing the homographies accordingly). To merge SfM groups, features that are observed in both

groups are needed. To generate those, we track the features that are connecting k1 and k2 one

frame “into” k2’s group via epipolar search. Then, a common scale is computed as described

in Section 6.3.3.

The benefit of merging of tracks is visualized in the case of panorama data in Figure 6.5.

In this particular case, the map of the merged tracks consists of an almost complete horizontal

panorama, to which 1605 frames (68% of the input data) are registered. Another 410 frames are

registered to partial panoramas (not shown) which the system was unable to connect to the main

model (whether these should be counted as success or failure depends on the application). In

120

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

comparison, with the same tracking system but using relocalization, while the system is able to

recover and expand the initial map several times, only 1154 frames (49%) are tracked; all other

data (which “passed by” while the system unsuccessfully tried to relocalize) are discarded. A

similar result for 3D data is presented in Figure 6.12.

6.4.4 Estimation of feature normals

To properly predict a feature’s appearance from an assumed camera pose, one needs to know

not only its 3D position, but also its local structure. Assuming that sufficiently many features

are located on locally approximately planar surfaces, this structure can be defined by a normal

vector n, and the change in appearance between two views of the feature is given by a homog-

raphy H⊥, which can be expressed in terms of n, the relative camera pose [Rrel|trel], and the

feature’s 3D position x (Molton et al., 2004; Wuest et al., 2008):

H⊥ = Rrel +
trel · nT

nTx
⇔ H⊥ = Rrel(n

Tx · I3×3 + trel · nT) (6.1)

(Note that H⊥ is a homogeneous quantity, i.e., its scale is arbitrary.) The two views will be

reasonably similar, as otherwise the tracker would have failed to locate the feature. Yet, small

differences between them allow to estimate H⊥ and thus n using image alignment (Molton

et al., 2004; Wuest et al., 2008).

If we assume n to be the only unknown, H⊥ has only two degrees of freedom, and it is

possible to parametrize it accordingly (Molton et al., 2004). However, as Molton et al. (2004)

note, noise in other variables will cause the projections to not coincide precisely, such that one

121

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

has to allow for at least two additional degrees of freedom for shift. We have had more success

with using an affine homography (as in Wuest et al., 2008) with a straightforward six-degree-of-

freedom parametrization, which we use in a standard inverse-compositional image alignment

framework (Baker and Matthews, 2002), and afterwards extracting n from the over-determined

system given by Equation (6.1) using singular value decomposition.

Executing the image alignment step for each feature is fairly expensive; however, it should

be noted that it can be run feature-by-feature in the background and is highly parallelizable,

and none of the other steps are immediately dependent on it. (While no normal estimate is

available, the tracker will continue to use a 2D projection of the feature.)

To maintain and refine the normal vector n over time, instead of feeding it through a Kalman

filter (Molton et al., 2004; Wuest et al., 2008), we simply collect independent estimates of n

from random pairs of views, the average of which is taken as the currently assumed value of

n. This allows us to adapt elastically to the amount of processing power available. For well-

textured and indeed planar features, the set of estimates is highly consistent, while less textured

and highly non-planar features cause the image alignment to fail to converge or produce a set of

wildly diverging estimates. This information could be used to further characterize the features

and potentially remove them; this idea is left to future work.

In our current implementation, apart from the added value of having a richer environment

model, estimation of normals extended the lifetime of individual features (that is, the number

of frames that they were correctly tracked) by a moderate but noticeable amount, as shown in

Figure 6.6.

122

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

frame number

fr
a

c
ti
o

n
 o

f
fe

a
tu

re
s
 f

ro
m

fi
rs

t
fr

a
m

e
 s

ti
ll

p
re

s
e

n
t

w/o estim. of normals

w/ estim. of normals

Figure 6.6: Effect of normal estimation on lifespan of features. The data in this figure stems

from the first part of the video to Figure 6.1, in which the camera slowly descends around the

building on the left. c© IEEE 2014.

6.4.5 Cleaning up residual data

When a new track is started and thus a new keyframe is created (Section 6.3.4), but tracking

gets lost again immediately after that, this new keyframe (and all features found in it) are

not connected to any other data and provide very little useful information. To make sure that

this kind of residual data does not accumulate, the mapping thread goes through the set of

keyframes, identifies isolated keyframes and removes them.

6.5 Model Selection

If observed data may have arisen from several different models, one faces the problem of se-

lecting the right model in addition to the common problem of estimating the model parameters.

Model selection is a complex problem in particular if the models in question are of fundamen-

123

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.7: Illustration why model selection is difficult: Fitting a 2D point and a 2D line

to a set of noisy measurements. Even though both models have the same number of degrees

of freedom (2), the dimensionality of the error is different (2 vs. 1), and the sum of errors is

guaranteed to be smaller in the case of the line, regardless of how “point-like” the distribution

may appear. Cf. Torr et al. (1999), Fig. 16. c© IEEE 2014.

tally different kind, as is the case here: a homography is a bijective 2D map, and thus the

observed residual between an estimated and measured feature location is two-dimensional,

whereas the essential matrix maps a 2D point to a line in 2D, and thus the residual is one-

dimensional (perpendicular to the line). This is analogous to trying to determine whether an

observed set of 2D points can best be represented by a point or a line (Figure 6.7). It becomes

apparent that residuals alone are not sufficient to select the model.

For this reason, several different metrics have been proposed (Akaike, 1974; Rissanen,

1978; Schwarz, 1978; Torr et al., 1999; Torr, 2002). Here, we use the Bayesian formulation of

the ‘Geometric Robust Information Criterion’ (GRIC) by Torr (2002), which is based on the

Bayesian probability that a given model generated the observed data. In this section, we first

describe the GRIC score for the case of the two-view relations E and H , then its application

to the estimation of the absolute poses [R|t] and [R|0]. We use the same notation and variable

124

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

names as Torr (2002). The subscript m is used to indicate that a quantity is dependent on the

models that are being compared. log(x) denotes the natural logarithm.

6.5.1 Generalized GRIC score for two-view relations

The generic formula of Torr’s Bayesian GRIC score is

GRICm = −2LMAP,m + km log n (6.2)

(cf. (Torr, 2002, Eq. 46)) where km is the number of parameters of the model, n is the number of

observations, and LMAP,m denotes the maximum a-posteriori log likelihood of model m given

the data, which is based on the probability density functions (PDFs) that the data are assumed

to stem from. (Note that the GRIC score is a cost function, i.e., lower score indicates better

model fit.)

For the problem at hand, we assume a mixture of inliers affected by Gaussian noise, and

outliers sprinkled uniformly in the search region. Specifically (cf. (Torr, 2002, Eq. 15)):

LMAP,m =
∑

i

log(γi · pin + (1− γi) · pout) (6.3)

with pin =

√
2πσ2

dm−D

cm
· exp

(

−
e2i,m
2σ2

)

, (6.4)

pout = 1/v , (6.5)

γi ∈ {1, 0} indicates if correspondence i is an inlier, ei,m are the individual reprojection errors,

σ is their standard deviation, D is the dimensionality of each datum (here: a pair of 2D points,

i.e., D = 4), dm is the dimensionality of the model manifold, D − dm is the dimensionality

125

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

of the error (for H , D − dm = 2, while for E, D − dm = 1 (perpendicular to the epipolar

constraint, in analogy to Figure 6.7)), and cm and v are the volumes of the spaces from which

inliers and outliers, respectively, arise (cf. Torr, 2002).

Let γ denote the expected inlier ratio E(γi), and maximize over γi:

⇒ GRICm = −2
∑

i

log(max{γ · pin; (1− γ)pout}) + km log n

=
∑

i

min{−2 log(γ · pin)
︸ ︷︷ ︸

(∗)

;−2 log((1− γ)pout)
︸ ︷︷ ︸

(∗∗)

}) + km log n (6.6)

(∗) = −2 log

(

γ

√
2πσ2

dm−D

cm
· exp

(

−
e2i,m
2σ2

))

(6.7)

=
e2i,m
σ2

+ (D − dm) log 2πσ
2 + 2 log

cm
γ

(6.8)

(∗∗) = −2 log

(
1− γ

v

)

(6.9)

= Tm + (D − dm) log 2πσ
2 + 2 log

cm
γ

(6.10)

where Tm = 2 log

(
γ

1− γ
· v

cm

)

− (D − dm) log 2πσ
2 . (6.11)

Thus, the final formula is given by:

GRICm =
∑

i

ρ2

(
e2i,m
σ2

)

+ n

(

(D − dm) log 2πσ
2 + 2 log

cm
γ

)

+ km log n (6.12)

with ρ2(x) = min{x, Tm}.

Difference to Torr’s formula

It should be noted that our formula differs from that given by Torr (Torr, 2002, Eq. 48), even

though both are based on PDFs of the form of Equations (6.4) and (6.5). The difference is that

126

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

in Torr’s formula, it is assumed that the inliers are uniformly distributed in disparity across the

entire search region, which is not the case for large active search regions. (Torr (2002) explicitly

warns that “care should be taken to rederive [this quantity] according to the exact distribution

[...] in different scenarios.”). To explain, we first elaborate on a few of the quantities that are

included in the calculation of the score (cf. Equations (6.11) and (6.12) and Table 6.2).

The GRIC score takes into account the volumes of the spaces in which certain measure-

ments may occur. For example, assuming that each image has dimensions L × L, then any

individual 2D point measurement may occur on the volume L × L. In an application that

uses constrained search regions to establish correspondences (like ours), an arbitrary corre-

spondence (i.e., pair of points) may occur on the volume v = L × L × S × S, where S is

the size of the search region. However, a correspondence that is an inlier to a (given) bijective

2D map such as a homography is distributed on the volume cH = L × L (because the second

point is uniquely fixed by the bijective map). If the model is a non-bijective relation such as

an essential or fundamental matrix, which constrain a point to lie on a line but do not fix its

position along the line, the volume becomes cE = L × L × R, where R is the range of the

disparity along which the feature match is expected to occur.

∆ is limited to be no greater than S, as otherwise the match will not be found and the

correspondence will become an outlier. For simplicity, Torr sets ∆ = S, which causes several

terms to cancel each other in the derivation of the final GRIC score. However, this effectively

assumes that the inliers are uniformly distributed in disparity in the entire search region. For

large S, this is not the case: The search region is large because we want tracking to be robust

127

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

to fast camera movement (including camera rotations), but we expect the (2D) movement of all

features to be strongly correlated; the range of disparity is still likely to be only a few pixels.

Thus, setting ∆ = S causes the likelihood for E to decrease (because the observations

do not match the model’s assumption) and creates a significant bias towards selecting H . It

should be noted that this should not be considered a principle flaw in Torr’s formula: most

any modeling process makes assumptions about the data in a trade-off of accuracy and model

complexity; and here, one particular assumption does not hold well in our case.

Evidence that this bias is significant and can lead to incorrect model selection

Assume that a traveling camera observes a scene which contains a near-planar object on which

many (but not all) correctly and accurately tracked feature correspondences lie. Those cor-

respondences will be inliers to both E and H , with ei ≈ 0. Assume that there are further

accurately tracked features on other surfaces (will be inliers to E, but outliers for H), and,

optionally, several spurious correspondences.

With Torr’s formula (Torr, 2002, Eq. 48), the GRIC score for either model m then is

GRICm ≈ (n− nin,m) · Tm + ndm log S2

2πσ2 + km log n+ const (6.13)

where nin,m is the number of inliers for model m. We are interested in the threshold when the

scores for the essential matrix E and the homography H are equal:

(n− nin,E)·TE + ndE log S2

2πσ2 + kE log n =

(n− nin,H)·TH + ndH log S2

2πσ2 + kH log n

(6.14)

128

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Assuming that (kE − kH) log n << (n− nin,m) · Tm:

⇒ nin,E

nin,H

=
2 log γ

1−γ
+ (D − dH) · log S2

2πσ2

2 log γ

1−γ
+ (D − dE) · log S2

2πσ2

(6.15)

With D − dE = 1 and D − dH = 2 (cf. Table 6.2):

⇒ nin,E

nin,H

=
2 log γ

1−γ
+ 2 log

(
S2

2πσ2

)

2 log γ

1−γ
+ 1 log

(
S2

2πσ2

) (6.16)

This ratio is plotted for a range of reasonable values for S, σ, γ in Figure 6.8(a). It can be seen

that the range of nin,E/nin,H for which the algorithm will prefer H (i.e., the area below the line)

increases with the search region S, up to the point that the algorithm will, for very large S and

γ close to 0.5, prefer H even if E produces almost twice as many inliers (nin,E/nin,H = 2).

Figure 6.8(b,c) illustrates a real-world case in which exactly this is the case: GRICH <

GRICE even though E models all correspondences correctly (including rejection of three spu-

rious correspondences), while H discards a sizable set of correct correspondences as outliers.

It could be argued that this result comes about because γ (the assumed fraction of inliers) is not

chosen optimally for this particular frame — i.e., the model is “looking for” more outliers than

there are — however, as we will discuss in Section 6.7.1, estimating γ accurately is challenging

itself, and the actual inlier rate can vary greatly from one from to the next. Thus, it seems pru-

dent to not rely on an accurate estimate of γ and address the non-matching assumption ∆ = S

independently.

We thus re-derived the GRIC score for the general case of ∆ independent of S. For com-

pleteness, we include a proof that our formula is equivalent to Torr’s formula ((Torr, 2002,

Eq. 48)) for the special case ∆ = S.

129

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

10 20 30 40 50 60 70 80
1

1.2

1.4

1.6

1.8

2

2.2

S / σ

n
in

,E
 /

 n
in

,H

H preferred

E preferred

(a) preferred model w.r.t. inlier ratio (b) tracking with H (c) tracking with E

Figure 6.8: (a) Model selection (according to Torr’s GRIC score) as a function of the inlier

ratio nin,E/nin,H , expressed as a function of S/σ along the x-axis and γ = {0.5, 0.6, 0.7, 0.8}
(lines from top to bottom). Below the respective line, the GRIC score will prefer H , even if E
produces more inliers. (b) Tracked feature correspondences in scene classified by H , (c) the

same correspondences classified by E. Inliers are shown in green, outliers in red. Even though

E models all correct correspondences correctly and H misclassifies 19 correct correspondences

as outliers, GRICH = 1633.83 < GRICE = 1919.53 and the algorithm would chose H over

E. (Here: n = 112, S = 40, σ = 1, γ = 0.5.) The more general score derived in Section 6.5.1

decreases this problem. c© IEEE 2012.

130

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Proof that the generalized GRIC Score is equivalent to Torr’s formula for ∆ = S

For the special case of ∆ = S, note that U := (v/cm)
1

D−dm = S and U ′ := cm/U
dm = L2/S2

(i.e., both are independent of the model m) for all models considered here. Starting with

Equation (6.11),

Tm = 2 log

(
γ

1− γ

)

+ 2 log
(
UD−dm

)
− (D − dm) log 2πσ

2 (6.17)

= 2 log

(
γ

1− γ

)

+ (D − dm) log

(
U2

2πσ2

)

(6.18)

which, with λ1 := log(U2/(2πσ2)), is equivalent to Torr’s definition of T (Torr, 2002, Eq. 18).

Further, starting with Equation (6.12),

GRICm =
∑

i

ρ2

(
e2i,m
σ2

)

+ Am + km log n (6.19)

with Am = n

(

(D − dm) log 2πσ
2 + 2 log

cm
γ

)

(6.20)

= n

(

(D − dm) log 2πσ
2 + 2 log

cm
γ

+ dm logU2 − dm logU2

)

(6.21)

= n

(

λ1dm +D log 2πσ2 + 2 log
cm
γ

− dm logU2

)

(6.22)

= λ1ndm + log

(
(2πσ2)D

γ2
·
(cm
Udm

)2
)

(6.23)

= λ1ndm + log

(
(2πσ2)D

γ2
· U ′2

)

(6.24)

= λ1ndm + const (6.25)

⇒ GRICm =
∑

i

ρ2

(
e2i,m
σ2

)

+ λ1ndm + km log n+ const

131

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Model m km D − dm cm v

E 5 1 L× L×∆ L× L× S × S
H 8 2 L× L L× L× S × S

[R|t] 6 2 V V × S × S
[R|0] 3 2 V V × S × S

Table 6.2: GRIC score parameters for the four models considered here. L×L is the area of one

camera frame, S × S is the area of the constrained search region, ∆ is the range of disparity.

See Section 6.5.2 for discussion of V . c© IEEE 2014.

which is equivalent to (Torr, 2002, Eq. 48). (Note that all terms that are not dependent on m

are considered constant in this context, even if they change from frame to frame.)

6.5.2 GRIC score for absolute pose models

With appropriate model-specific parameters as given in Table 6.2, Equations (6.11) and (6.12)

are applicable to [R|0] and [R|t] as well, since the PDFs on which they are based follow the

shape of Equations (6.4) and (6.5). Arguably, this case is actually less complex than the two-

view relation case, since the dimension of the error D − dm is the same for both models (see

Table 6.2).

Two aspects are worth noting: First, in analogy to the two-view case, cm and v are defined

as the volumes of the spaces from which observations arise. This appears to necessitate to

define the “volume” V of the 3D model, and to raise the question whether one assumes it to

be part of the noisy estimation process, or (in comparison with the current measurement error)

to be noise-free. However, a look at the GRIC score equations (Equations (6.11) and (6.12))

132

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

and Table 6.2 reveals that, in the comparison of [R|t] vs. [R|0], only the quotient cm/v and

difference D − dm are needed, and the values of V and D fall out as constant terms.

Second, in the case of E vs. H , one parameter to the GRIC score is the range of disparity

∆ that we expect for E. Conveniently, this parameter gives some control over how the process

handles motions that are very close to rotation-only, i.e., have a very small baseline and thus

very little parallax: the bigger ∆, the more likely H is selected in those cases.

When comparing [R|t] and [R|0], this free parameter does not exist: all features are mapped

to a unique image point. Further, especially for a good model and slow camera motion, the

measurement noise σ becomes very small, and we observed that consequently, the GRIC score

becomes extremely accurate in discerning even small shifts in baseline. Thus, [R|0] is rarely

selected (despite the smaller value of km, which gives it a slight advantage in case of close-

to-equal error sums). Probabilistically, this makes perfect sense: the likelihood for ‖t‖ exactly

equal to 0 is virtually non-existent, and whenever the error distribution hints to even the slight-

est shift, [R|t] should be selected.

Practically, however, motions with very small t— imagine a camera mounted on a tripod

with the optical center and the rotation axis in slight misalignment — are arguably better mod-

eled as a panorama: For a panorama, a small shift of the optical center causes minor distortion

artifacts, but no fatal harm to tracking and mapping. (DiVerdi et al. (2009) analyze this type of

error in detail.) For structure-from-motion, it results in features with unreliable depth estimates

from extremely ill-conditioned triangulations, and, as soon as only those features are visible,

likely tracking failure.

133

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Therefore, we adapt the model that is estimated as follows: instead of estimating [R|0], we

estimate [R|t ≤ tmax] (more precisely, [R|t]prev ◦ [R|t] | ‖t‖ ≤ tmax). Practically, we imple-

mented this by estimating [R|t], but constraining ‖t‖ to [0; tmax] after each gradient descent

iteration. tmax can be understood as a soft threshold regulating how much baseline shift the

system shall observe before preferring [R|t] over [R|0], analogous to ∆ for E vs. H . By di-

viding by the distance to the environment (which is available, since we are in the model-based

condition), tmax can be transformed into a scale-independent feature observation angle αmax,

which we use as input parameter to the system.

6.6 Evaluation

We implemented our system prototype in C++, making use of the OpenCV4, TooN5 and

libCVD6 libraries. Our system runs in real time (at about 20-25 ms per frame) on a com-

modity PC without specific optimizations. Typical timings are presented in Figure 6.9. They

are, of course, strongly dependent on the hardware and parameter configuration (e.g., number

of keypoints per frame) and presented here only as a coarse reference point.

Currently, our implementation is not optimized to run in real time on a mobile device.

However, the most expensive parts (in particular, the tracking with NCC-based matching, cf.

Figure 6.9) are computationally similar to T&M systems that were shown to operate in real

4http://opencv.willowgarage.com/
5http://www.edwardrosten.com/cvd/toon.html
6http://www.edwardrosten.com/cvd/

134

http://opencv.willowgarage.com/
http://www.edwardrosten.com/cvd/toon.html
http://www.edwardrosten.com/cvd/

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.9: Breakdown of timings in tracking thread. These times were taken on a commodity

PC (Intel i7 Core, 4 GB RAM, Ubuntu 12.04), without specific optimizations or the use of a

GPU. All times are averaged per frame over the entire sequence. Since creating a new keyframe

is not executed every frame, its contribution to the average time is minimal. c© IEEE 2014.

time on such devices several years ago (Klein and Murray, 2009; Wagner et al., 2010). Thus,

we argue that with appropriate algorithmic and device-specific optimizations, running an im-

plementation of our concept on a mobile device is feasible.

We tested our system on a variety of video sequences, including rotation-only sequences

from a panorama dataset by Coffin et al.7 (Coffin et al., 2011), sequences from the “City of

Sights” repository8 (Gruber et al., 2010a), as well as further self-recorded videos, using models

from the “City of Sights” as backdrop. Results from those videos are presented in Figures 6.1,

6.5, 6.10, 6.11, and 6.12.

7http://tracking.mat.ucsb.edu
8http://cityofsights.icg.tugraz.at

135

http://tracking.mat.ucsb.edu
http://cityofsights.icg.tugraz.at

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.10: Our system acting as a SLAM system, reconstructing the scene in 3D and recov-

ering the camera trajectory fully automatically. Each reconstructed 3D feature is visualized as a

small image patch (sampled from the frame in which it was first observed), oriented according

to its estimated normal vector. c© IEEE 2014.

6.6.1 Tracking accuracy

To evaluate the benefits of integrating model-based tracking, we ran our system with and with-

out model-based tracking (i.e., for the latter case, the left branch in Figure 6.4 is disabled) on

800 frames of video from the “City of Sights” repository for which accurate ground truth of

the camera trajectory is provided. The 3D model that our system generates from this video

sequence (with model-based tracking) is shown in Figure 6.10.

Since the reconstructions including camera locations are arbitrary up to a similarity trans-

form, we first aligned the point cloud of the camera locations for both conditions to the ground

truth by aligning the first camera position, and choosing scale and rotation such that the overall

136

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

ground truth

w/ model−based tracking

w/o model−based tracking

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

frame number

a
b

s
o

lu
te

 e
rr

o
r

[m
m

]

w/ model−based tracking

w/o model−based tracking

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

frame number

fr
a

m
e

−
to

−
fr

a
m

e
 j
it
te

r
[m

m
]

w/ model−based tracking

w/o model−based tracking

Figure 6.11: Tracking accuracy with and without model-based tracking. The point clouds are

aligned to the ground truth as described in the text. From top to bottom: camera locations in

3D, absolute error per frame, jitter (i.e., camera displacement from one frame to the next) per

frame. c© IEEE 2014.

137

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Figure 6.12: Qualitative comparison of camera trajectories for PTAM (top) and our prototype

(bottom) on selected videos, highlighting a few particular characteristics. Each video is 300-

500 frames long, the camera travels a few feet along a scene similar to the one in Figure 6.10.

The trajectories from both systems were aligned to each other as described in Section 6.6.1.

The color bar underneath each panel shows per-frame tracking/model selection information

over time. A blue circle indicates that our prototype selected a rotation-only model (note that

this does not have a permanent effect (i.e., there is no effect on the map) unless a keyframe

is added at that point). The circle’s radius is logarithmically proportional to the length of the

rotation-only sequence. c© IEEE 2014.

error was minimal (in a least-squares sense). The results are presented in Figure 6.11, showing

that with model-based tracking, tracking is highly accurate and very smooth.

6.6.2 Qualitative comparison with PTAM

In Figure 6.12, we present a qualitative comparison of our prototype with PTAM9 (Klein and

Murray, 2007, 2008) on four representative videos:

9http://www.robots.ox.ac.uk/˜gk/PTAM/

138

http://www.robots.ox.ac.uk/~gk/PTAM/

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

For slow, smooth parallax-incuding camera movement (Figure 6.12 far left), both systems

produce very similar trajectories. On a parallax-inducing movement followed by extended

rotation-only movement (Figure 6.12 second from left), PTAM loses track and unsuccessfully

attempts to recover for the remainder of the sequence, while our prototype keeps track through-

out, attaching a panorama to the triangulated model. In Figure 6.12 second from right, both

systems lose track due to occlusion. PTAM successfully recovers as the camera moves back

to the known part of the scene, but misses out on a long stretch, while our prototype starts

a new track and successfully connects the two; thus, its final map covers a larger part of the

environment. Finally, on a parallax-inducing movement with relatively quick movement in the

middle (Figure 6.12 far right), PTAM is able to maintain tracking, while our prototype loses

track. It automatically starts a new track (shown in light blue, aligned separately to PTAM’s

track), but is unable to connect the two tracks.

Thus, the results demonstrate the conceptual advantages of supporting rotation-only move-

ment and linking of tracks instead of recovery, but they also underscore that our current imple-

mentation is to be regarded a proof-of-concept prototype, and certain aspects are left unopti-

mized. In particular, tracking during parallax-inducing motion is not as robust as PTAM.

139

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

6.7 Discussion: Aspects for Further Investigation, Applica-

tions & Limitations

6.7.1 On estimating the probability density function

Optimally estimating both a motion model and the parameters of the probability density func-

tion (PDF) of the measurement error (e.g., standard deviation σ of the measurement error and

inlier ratio γ) is a chicken-and-egg problem: either result requires the other. In many T&M

systems, knowing the PDF exactly is not crucial: with appropriate cost functions, pose estima-

tion algorithms (both via sample consensus and M-estimators) are reasonably robust to noise

in σ and γ, and “bad” values may merely be an indicator for inevitable tracking failure. Model

selection however gets more accurate the better the estimate of the PDF is.

If the observed error distribution matches the expected shape (i.e., Equations (6.4) and

(6.5)), the described process via expectation-maximization (Section 6.3.2) works well and ap-

pears to produce accurate estimates of its parameters. If however the observed distribution

does not match the expected shape, for example due to questionable tracking, expectation-

maximization appears to intensify the problem by producing unusable values. This effect can

be limited by ad-hoc measures such as filtering over several frames and clamping of the values,

but we suggest that further investigation is warranted to find an optimal and principled solution

balancing accurate estimates and leniency for tracking.

140

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

6.7.2 On improving coarse-to-fine matching

The standard approach to coarse-to-fine matching (approximately as employed by Klein and

Murray (2007); Wagner et al. (2010, 2009)) is to 1. locate features in a coarse (downsampled)

image, 2. estimate the camera pose, 3. reproject features into the higher resolution image using

the new pose estimate, 4. refine their position (in a tightly constrained area), and lastly 5. refine

the camera pose using the refined features.

Unfortunately, this approach cannot be applied directly here, because we do not know

which type of camera motion to expect (and thus which model to enforce) until after the track-

ing step. As described in Section 6.3.1, thus far, we have simply omitted the intermediate pose

estimation (step 2). This however results in a higher risk of losing individual features, as they

must be found independently in an effectively larger search region.

There are several alternative approaches in which this could be solved, for example, exe-

cuting steps 2 to 5 for each motion model under consideration, or selecting the model after step

2. We have designed another, more sophisticated approach, which retains the advantages of

the interleave pose estimation at little additional cost: We propose to estimate a superset model

which admits all features that are inliers to either motion model under consideration (thus,

the tracking step remains agnostic to the type of model that is later selected), yet constrains

the features such that many outliers can be identified. For model-based tracking, [R|t] is this

superset model, as it trivially encompasses [R|0].

141

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

For the two-view relations H and E, the existence of such a superset model is less obvious.

However, a closer look reveals that indeed, E fulfills these criteria: while the epipolar geometry

is, strictly speaking, not defined in the case of rotation-only movement, an algorithm used to

compute E will return some result Ĕ, and true inliers for either H or E will fulfill xT
2 ·Ĕ ·x1 = 0

(cf. in particular Hartley and Zisserman, 2004, Section 11.9.3). Thus, while Ĕ may lack a

geometric interpretation (in the case of rotation-only movement), it does provide a necessary

condition for any correct correspondence. Assuming that outliers are statistically independent,

the chances for a random outlier to satisfy xT
2 · Ĕ · x1 ≈ 0 are small.

We have implemented and verified this approach on several videos (including rotation-only

sequences, which, for Ĕ, is the most unfavorable case). However, we have not integrated it

completely with the rest of our system, so the evaluation of potential robustness and perfor-

mance improvements is left for future work. One particular challenge is to robustly estimate

the PDF parameters (cf. Section 6.7.1) in the now effectively much smaller active search re-

gions.

6.7.3 On tracking robustness

We emphasize that our current implementation is to be regarded a proof-of-concept implemen-

tation. As demonstrated in Section 6.6.2, tracking robustness during general motion is not yet

comparable to systems such as PTAM (Klein and Murray, 2007) or DTAM (Newcombe et al.,

2011a).

142

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

Techniques that were proven to increase robustness or scalability — such as estimation of

in-plane rotation before the pose estimation (Klein and Murray, 2008), more advanced map

feature management including filtering of outliers, proactive search for new features in existing

frames (Klein and Murray, 2007), and more sophisticated bundle adjustment strategies — will

need to be integrated as appropriate.

6.7.4 On merging of maps

As discussed in Section 6.4.3, the algorithm we use to detect overlap between disjoint tracks

and thus initiate their merging is basically the same as what is commonly employed for relo-

calization, which implies that similar detection performance can be expected. An interesting

area for future research is to exploit the fact that we actually have more data than what is avail-

able with the relocalization strategy: instead of one individual new frame, we have a new map

consisting of multiple frames; thus, overlap detection could potentially yield higher detection

performance than relocalization. This could be exploited even within the SBI-based recovery

framework: For example, Kim et al. (2009) have explored the use of “virtual keyframes,” i.e.,

renderings of the model from strategically distributed viewpoints, rather than actual keyframes.

As we now seek to connect two models, this strategy could be applied on both sides.

Similarly, the overlap between the tracks may encompass an area larger than a single frame.

While we currently use only features from one pair of keyframes to merge the maps, the reg-

istration could be improved by explicitly calculating and then using the entire extent of the

143

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

overlap. Note however that a much larger overlap is unlikely, since otherwise it would likely

have been detected earlier.

6.7.5 On applications & limitations of the hybrid map

It is clear that hybrid maps consisting of both SfM and panorama data (such as Figure 6.1 or

the map produced from Figure 6.12 second from left) do not possess all properties that one

would look for in an ideal environment map. Most obviously, the panorama part lacks depth

information, but furthermore, the individual SfM reconstructions do not share a common scale,

since the rotation-only movement cannot propagate scale. Thus, this type of data may not suit

the needs of all applications. We emphasize that this is not a limitation of our design, but a

limitation inherent to the input data; the alternative is not to create a fully three-dimensional

model, but to lose tracking altogether. If a fully three-dimensional model of the environment

is required, one has to either employ additional and/or active sensors, or put constraints on

the camera movement. However, even if one aims for a fully three-dimensional model, it is

arguably better to collect the panoramas than to discard them. For example, Pan et al. (2011)

describe how to first collect panoramas, and then treat them as single images with wide field of

view for 3D reconstruction afterwards.

We note that the virtual navigation techniques discussed in Sections 4.2.5 and 4.3.4 are

perfectly suited for this data: Each camera position tied to the model provides a keyframe for

144

Chapter 6. Model Estimation and Selection towards Unconstrained Tracking and Mapping

rendering and navigation, the structural components can be exploited during the model building

process, and (partial) panoramas extend the range in which the user can pan.

6.7.6 On model selection and scene segmentation

While we currently select only one model for the entire frame — which is, theoretically, the

correct thing to do, since the motion refers to the camera and thus to the entire frame — there

may be cases especially in outdoor scenes in which the foreground exhibits enough parallax

to be modeled in 3D, while the background exhibits little parallax and might benefit from the

stable, dense mapping that homographies offer. This leads to an interesting problem in which

image segmentation and environment modeling interact.

145

Chapter 7

Conclusions

This chapter concludes the dissertation. We briefly summarize the presented work, review the

contributions of this dissertation, discuss limitations of the described systems, and finally offer

an outlook on opportunities for future work.

7.1 Summary

In this dissertation, we described a framework to integrate the physical environment into video-

mediated remote communication using unobtrusive, mobile AR (Chapter 3). Our framework

does not require preparation of the environment or specialized equipment, and is compatible

with a wide range of hardware, including systems that are already ubiquitous (e.g., smart-

phones) as well as more complex immersive systems. We further described the implementa-

tion of three prototypes with increasing complexity and flexibility (both in terms of technical

capabilities as well as user interfaces) (Chapter 4), as well as several user studies to validate

their usability, evaluate individual interface components, and establish their benefits over more

146

Chapter 7. Conclusions

conventional interfaces (Chapter 5). Lastly, we addressed one particular technical limitation

of current visual environment modeling which becomes apparent in this context in particu-

lar, and described a conceptual solution and proof-of-concept implementation for it. Namely,

we described a system that is able to track and map through motion sequences that neither

conventional six-degree-of-freedom SLAM systems nor panoramic mapping systems can pro-

cess (Chapter 6), which we believe is an important conceptual step towards the vision of fully

transparent tracking and mapping for “Anywhere Augmentation” (Höllerer et al., 2007).

Even though our prototypes rely on noticeably imperfect computer vision-based tracking

(while being compared to more conventional interfaces which were failsafe), and users received

a very limited amount of training time with the new technology, they were shown to be over-

whelmingly preferred by users (by 79% and 80%, respectively) in two extensive comparative

user studies, and, in both studies, the task performance was significantly better compared with

a video-only interface.

However, in both studies, no task performance difference was found in comparison with a

(technically much simpler) “static marker” interface. Possible reasons have been discussed in

detail in Section 5.3; they mainly fall into three categories: (1) limitations of our respective

prototype (e.g., imperfect tracking), (2) nature of the chosen task, and (3) artifacts of the user

study (e.g., training effect, simulated expert knowledge, and proxy tasks), that is, effects that

would not be present in an actual application. Certain aspects in the first category have already

been remediated with the design of the third prototype.

147

Chapter 7. Conclusions

7.2 Contributions

The vision for this work is to enable unobtrusive, mobile remote collaboration that allows the

remote user to intuitively and directly interact with the remote environment, and thus collab-

orate on physical tasks. This vision itself is not new — we have pointed out related work that

shares it in Chapter 2 — however, we believe that this dissertation has brought it significantly

closer to realization.

We provided contributions on multiple levels: Conceptually, we provided a framework to

formalize our approach which is explicit enough to be used as a guide for implementation,

yet flexible enough to to compatible with a wide array of (hardware and software) configura-

tions. Practically, many individual features of the presented systems are novel and — despite

the concurrent publication of closely related work (such as Sodhi et al., 2013; Jo and Hwang,

2013) which share certain aspects — unique. Perhaps most notably among them is our camera

control, which supports both a coupled and a decoupled camera, including seamless transitions

between the two (Section 4.2.5), as it is an important factor in a bigger picture:

First, while the system is complex under the hood, one important advantage of our approach

is that it seamlessly extends the ubiquitous videoconferencing paradigm: it adds to it, but it does

not take anything away. If desired, the user can fall back to simply watching the live video

feed. In combination with the compatibility with low-cost, existing hardware, this significantly

lowers the barrier for introduction and user acceptance: the technology can be added to existing

148

Chapter 7. Conclusions

solutions without disrupting existing workflows or habits. It may prove invaluable in some

situations, and it does not hamper other situations in which it might not be needed.

Second, our work bridges and creates a synergy between video conferencing (Skype, Ap-

ple FaceTime, Google Hangouts, etc.) and remote world exploration (Microsoft Photosynth,

Quicktime VR (Chen, 1995), Google StreetView, Uyttendaele et al. (2004), etc.) in a unique

coherent interface. This synergy is a direct result of our approach and certain design decisions,

particularly our camera control that allows both a coupled and a decoupled camera. We believe

that this synergy bears significant potential which our systems have only started to tap into.

(We will outline a particular aspect for future work that this synergy entails in Section 7.4.3.)

Our systems are designed to put the user’s needs first: they should support the user’s com-

munication as good as possible, rather than forcing them to communicate in a certain way. This

is important in particular when working with technologies that may fail, as is the case here for

visual tracking and modeling; effects of failure need to be mitigated with the user’s needs in

mind. This paradigm manifests itself in individual features which might seem minor from a

technical point of view, but were found to be important through extensive practical testing.

Particular examples are that (1) in Prototype 1, tracking automatically resets, depending on the

situation, rather than bothering the user to recover it (Section 4.1.3), (2) in Prototype 2, the user

may set (static) annotations even if tracking is lost (Section 4.2.6), and (3) in Prototype 3, the

video freezes automatically when drawing an annotation (Section 4.3.2).

Further individual contributions include establishing the need to visualize direction of

drawings (Section 5.4.2) as well as the discussion on the interpretation of 2D annotations in 3D

149

Chapter 7. Conclusions

and study-based design recommendations regarding it (Sections 4.3.3 and 5.4.2). The concept

proposed in Chapter 6 is the first approach to keyframe-based tracking and mapping that can

cope with rotation-only as well as parallax-inducing motion.

Our user studies demonstrate the level of maturity and usability of our systems, and more

importantly, have demonstrated that the proposed concept is promising and has the poten-

tial to greatly improve video-mediated communication and broaden its applicability. We have

demonstrated that achieving benefits requires neither futuristic, specialized, or fully immersive

hardware interfaces nor special training, but is achievable with low-cost hardware and little

training, making it suitable for widespread adoption. (This does not imply, however, that more

immersive systems could not offer additional benefits.) We have also discussed artifacts that

posed challenges in conducting the user studies in detail, and hope that researchers interested in

conducting futures studies in this area will find our report helpful to inform their study designs.

7.3 Limitations of the Current Implementation

In the iterations from the initial proof-of-concept implementation (Prototype 1) to the last in-

stantiation (Prototype 3), our systems have become increasingly more flexible and technical

limitations have been removed. However, a few assumptions and technical limitations remain,

which we discuss here.

150

Chapter 7. Conclusions

7.3.1 Level of detail of the model

Building upon a tetrahedralization of a sparse point cloud, the modeling approach taken in Pro-

totypes 2 and 3 is very fast (as demonstrated in Section 4.2.4), but results in a model that does

not exhibit the level of detail that is achievable with, for example, dense voxel-based volumet-

ric fusion (Curless and Levoy, 1996; Newcombe et al., 2011b; Pradeep et al., 2013). While

the existence of a 3D model is quintessential for the anchoring of annotations and rendering, a

relatively coarse level of detail is, arguably, acceptable, as the keyframe-based navigation and

rendering de-emphasize modeling artifacts.

However, techniques to create a more detailed model exist. Conceptually as well as imple-

mentation-wise, our approach is modular: none of the other components depend on the partic-

ular modeling algorithm. Thus, other algorithms could be plugged in as needed. This includes

algorithms to densify the point cloud (Furukawa and Ponce, 2010) while keeping the over-

all approach the same; using other, computationally more intensive vision-based algorithms

(Pradeep et al., 2013); or (where permissible by the application) active depth sensor-based

modeling (Newcombe et al., 2011b).

7.3.2 Static scene

Somewhat more fundamentally, the system assumes that the scene is largely static. This as-

sumption can be found in several of the components and needs to be remediated in different

ways. The first component is the SLAM system on the local user’s side. However, we found it

151

Chapter 7. Conclusions

to be reasonable robust to occlusions and partial and/or gradual changes in the scene. Further,

there are SLAM systems that have been specifically designed to handle (semi-)dynamic scenes,

most recently for example Tan et al. (2013).

Other components that are affected by this assumption — and where a solution is arguably

less readily available — include the modeler, the keyframe-based navigation and keyframe-

based rendering. Here, a solution will likely require an active detection and invalidation of

changed regions, likely fed in by the tracker. Alternatively or in conjunction to the technical

solution, the user interface can be designed to account for a potentially changing environment.

This could entail visualizing how recently a specific part of the environment has been observed

(e.g., by slowly decreasing the saturation of the imagery) and thus communicating to the user

that certain observations may be outdated.

7.3.3 Stereo initialization

Thus far, like almost all monocular SLAM systems, our prototype requires a stereo initializa-

tion — i.e., a distinct camera movement — before it tracks robustly. This is done quickly and

thus not a problem if the user is aware of the requirement; however, we feel that it is an obsta-

cle for truly transparent and user-friendly operation. A more flexible approach with automatic

model estimation and selection towards unconstrained tracking and mapping was presented

in Chapter 6. However, this solution has not reached the robustness and maturity needed for

152

Chapter 7. Conclusions

transparent operation. The research community is also investigating ways to reduce the burden

of initialization in other ways (Mulloni et al., 2013).

7.3.4 Occlusion of annotations on local side

Currently, the 3D model is available only on the remote user’s side. Thus, virtual annotations

can be correctly occluded by the physical scene by the remote user’s renderer, but not by

the local user’s renderer. While other depth cues (most notably, parallax) still indicate the

annotation’s location, it would be desirable to allow for occlusions. The remote system could

send either the entire model geometry or alternatively some sort of local visibility information

per annotation back to the local device. Designing an elegant, bandwidth-efficient solution for

either approach is an interesting aspect for future work.

7.4 Opportunities for Future Research

Opportunities for future research — within the proposed concept and beyond — are plentiful.

Future work may address the limitations described in the previous section. Specific aspects

in the context of our work on model estimation and selection (Chapter 6) that warrant further

investigation have been discussed in Section 6.7. We outline further opportunities prompted by

our work in this section.

153

Chapter 7. Conclusions

7.4.1 Other types of AR displays

Even Prototype 3 as the culmination of our series of implementations does not exhaust the

potential of the proposed framework, which leaves ample opportunity for future work: Guided

by Figure 3.1, several other components may be substituted with other implementations and

evaluated.

One particular example is the AR display for the local user. In all of the systems described

here, we used a “magic lens” tablet as the local user’s AR display. However, the proposed con-

cept is compatible with other display types, and it would be interesting to evaluate other choices

such as pico-projectors or head-worn displays. Both have been explored in the literature for

remote collaboration (e.g., Gurevich et al. (2012) and Huang and Alem (2013), respectively),

but not in combination with the other features of our approach (in particular, world-stabilized

annotations and virtual scene navigation), which may alter potential benefits significantly.

As briefly alluded to in Section 5.3.2, we speculate that the benefits of decoupled views and

world-stabilized annotations are, in fact, more apparent when using a head-worn or projective

display: The hand-held device functions as a separate object that creates a level of indirection

in the AR experience — the annotations appear on the screen rather than “in the real world” —

and that the local user can consciously move according to the remote user’s instructions (most

notably, holding it still if required). In contrast, a head-worn display or (head or body-worn)

pico-projector is subjected to the user’s natural head and body movement, making the need

for tracked annotations and “view stabilization” for the remote user quite apparent. (Bauer

154

Chapter 7. Conclusions

et al. (1999), who used a head-worn display and non-tracked annotations, noted that “initial

observations indicated that movements of the head-mounted camera made it very difficult to

use the telepointer without image freezing.”)

Examples of other components to be investigated include the integration of cues such as

gestures (Sodhi et al., 2013) or gaze.

7.4.2 Further work on live navigation of remote environments

On the topic of live navigation of remote environments, we have presented two interfaces for

virtual navigation in this dissertation (Sections 4.2.5 and 4.3.4, respectively). In parallel, Sodhi

et al. (2013) and Jo and Hwang (2013) have presented prototypes using physical navigation.

In Sections 4.2.5 and 4.3.1, we explained our reasoning for opting for virtual navigation

rather than physical navigation for the prototypes presented here. However, these interfaces

should be seen as a starting point; this area is very new and warrants further investigation

under consideration of the specific requirements of live collaboration. This includes “smart”

camera control based on semantic (scene or task) knowledge, comparative evaluation of differ-

ent methods of virtual navigation as well as in comparison to physical navigation.

7.4.3 Integration of large-scale maps and further digital data

As described in the introduction, the main motivation of this work was to better integrate the

physical world into remote collaboration, as we felt that this was an element crucially lacking

155

Chapter 7. Conclusions

in current solutions. (This gave rise to the title of our first relevant publication (Gauglitz et al.,

2012a).) As such, digital data aside from the live video (and the model built from it) did not

play a big role; and while AR is the underlying paradigm to enable our approach, the actual

augmentations we used are rather minimal.

Looking forward, AR also offers the opportunity to embed rich digital data in this context.

We mention two examples: First, the remote user may have access to additional data, for

example a manual of the object in need of repair in the remote assistance scenario. Current

video conferencing solutions oftentimes provide separate channels to exchange digital data,

such as text snippets or files, but these remain wholly unconnected to the scene. Future AR-

based systems should allow the remote user to take digital data such as this — for example, a

specific diagram or description from the manual — and not only share it with the local user, but

do so by placing it at the relevant place in the scene.

Second, the described synergy between video conferencing and remote world exploration

suggests the integration of another type of data: When the physical location of the local user’s

environment is or becomes known — this may happen automatically via sensors such as GPS,

via image-based localization, or be provided by one of the users — the system could automat-

ically extend the (live, but small-scale) model from the local user with existing, large-scale

maps or models of the environment, in a way that allows the remote user to seamlessly nav-

igate both together, and, for example, provide directions by selecting targets which the local

user has not even observed yet.

156

Chapter 7. Conclusions

7.4.4 Extension to more than two users and other roles

The conceptual description, as well as the user study tasks, in this dissertation focused on

a scenario with two users in clearly defined roles: a local user requesting assistance from

a remote expert. However, much of the work, including the framework and the presented

systems, are applicable (or can be extended) to a much wider range of scenarios regarding both

roles and numbers of users.

With regards to roles of the users, we focused on a local worker-remote expert scenario here

for ease of description; however, the system is agnostic to the actual task at hand or distribution

of (domain) knowledge. For example, an alternative scenario is that a realtor or event planner

wants to show a property/venue to a remote customer: here, the local user is the ‘expert.’

Following our paradigm, the customer can browse the space, ask questions and refer to specific

features in the environment while doing so.

With regards to number of users, we note that the presented framework naturally extends

to more than one local user as well as more than one remote user. In the case of multiple

local users, all of their sensors can contribute data to a central model building process, and

each local user has their own view of the shared space including shared annotations. Likewise,

each remote user has their own view of the shared space and can create annotations. While our

framework naturally scales to these scenarios, new interface questions arise which will have

to be investigated, including visualization of the other collaborator’s visual attention focus (if

desired), ownership of shared annotations, and/or the need for private (not-shared) annotations.

157

Bibliography

Adcock, M., Anderson, S., and Thomas, B. RemoteFusion: Real time depth camera fusion

for remote collaboration on physical tasks. In Proceedings of the 12th ACM SIGGRAPH In-

ternational Conference on Virtual-Reality Continuum and Its Applications in Industry (VR-

CAI), pages 235–242, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2590-5. doi:

10.1145/2534329.2534331.

Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 19(6):716–723, 1974.

Alem, L., Tecchia, F., and Huang, W. HandsOnVideo: Towards a gesture based mobile AR

system for remote collaboration. In Alem, L. and Huang, W., editors, Recent Trends of Mo-

bile Collaborative Augmented Reality Systems, pages 135–148. Springer, New York, 2011.

ISBN 978-1-4419-9845-3.

Baker, S. and Matthews, I. Lucas-Kanade 20 years on: A unifying framework, part 1. Techni-

cal Report CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, Pittsburgh,

USA, July 2002.

Baudisch, P. and Rosenholtz, R. Halo: a technique for visualizing off-screen objects. In Pro-

ceedings of the ACM SIGCHI Annual Conference on Human Factors in Computing Systems

(CHI), pages 481–488. ACM, 2003.

Bauer, M., Kortuem, G., and Segall, Z. “Where are you pointing at?” A study of remote

collaboration in a wearable videoconference system. In Proceedings of the 3rd International

Symposium on Wearable Computers (ISWC), pages 151–158, 1999. doi: 10.1109/ISWC.

1999.806696.

Billinghurst, M., Bowskill, J., Jessop, M., and Morphett, J. A wearable spatial conferencing

space. In Proceedings of the 2nd International Symposium on Wearable Computers (ISWC),

pages 76–83, October 1998a. doi: 10.1109/ISWC.1998.729532.

Billinghurst, M., Weghorst, S., and Furness, T. Shared space: An augmented reality approach

for computer supported collaborative work. Virtual Reality, 3:25–36, 1998b. ISSN 1359-

4338. 10.1007/BF01409795.

158

BIBLIOGRAPHY

Bowman, D. A., Kruijff, E., LaViola, J., and Poupyrev, I. 3D User Interfaces: Theory and

Practice. Addison-Wesley, Boston, 2005.

Butz, A., Höllerer, T., Feiner, S., MacIntyre, B., and Beshers, C. Enveloping users and com-

puters in a collaborative 3D augmented reality. In Proceedings of the 2nd IEEE and ACM

International Workshop on Augmented Reality, pages 35–44, Washington, DC, USA, 1999.

ISBN 0-7695-0359-4.

Cabral, B. and Leedom, L. C. Imaging vector fields using line integral convolution. In Pro-

ceedings of the 20th ACM SIGGRAPH Annual Conference on Computer Graphics and Inter-

active Techniques (SIGGRAPH), pages 263–270, New York, NY, USA, 1993. ACM. ISBN

0-89791-601-8. doi: 10.1145/166117.166151.

Chastine, J., Nagel, K., Zhu, Y., and Hudachek-Buswell, M. Studies on the effectiveness of

virtual pointers in collaborative augmented reality. In Proceedings of the IEEE Symposium

on 3D User Interfaces (3DUI), pages 117–124, March 2008. doi: 10.1109/3DUI.2008.

4476601.

Chaurasia, G., Duchene, S., Sorkine-Hornung, O., and Drettakis, G. Depth synthesis and local

warps for plausible image-based navigation. ACM Transactions on Graphics, 32(3):30:1–

30:12, July 2013. ISSN 0730-0301. doi: 10.1145/2487228.2487238.

Chen, S. E. QuickTime VR: An image-based approach to virtual environment navigation. In

Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Tech-

niques (SIGGRAPH), pages 29–38, New York, NY, USA, 1995. ACM. ISBN 0-89791-701-

4. doi: 10.1145/218380.218395.

Chen, S., Chen, M., Kunz, A., Yantaç, A. E., Bergmark, M., Sundin, A., and Fjeld, M. SEMar-

beta: Mobile sketch-gesture-video remote support for car drivers. In Proceedings of the 4th

Augmented Human International Conference, pages 69–76. ACM, 2013.

Christie, M. and Olivier, P. Camera control in computer graphics: Models, techniques and

applications. In ACM SIGGRAPH ASIA 2009 Courses, SIGGRAPH ASIA ’09, pages 3:1–

3:197, New York, NY, USA, 2009. ACM. doi: 10.1145/1665817.1665820.

Civera, J., Davison, A., and Montiel, J. Inverse depth parametrization for monocular SLAM.

IEEE Transactions on Robotics, 24(5):932–945, 2008a.

Civera, J., Davison, A., and Montiel, J. Interacting multiple model monocular SLAM. In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),

pages 3704–3709, 2008b.

Coffin, C., Ventura, J., and Höllerer, T. A repository for the evaluation of image-based ori-

entation tracking solutions. In Proceedings of the 2nd International Workshop on AR/MR

159

BIBLIOGRAPHY

Registration, Tracking and Benchmarking (TrakMark 2011), held in conjunction with the

IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 2011, 2011.

Curless, B. and Levoy, M. A volumetric method for building complex models from range

images. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH), pages 303–312, 1996. ISBN 0-89791-746-4. doi:

10.1145/237170.237269.

Davison, A. J., Mayol, W. W., and Murray, D. W. Real-time localisation and mapping with

wearable active vision. In Proceedings of the IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pages 18–27, Tokyo, Japan, October 2003.

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. MonoSLAM: Real-time single

camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):

1052–1067, 2007. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1049.

DiVerdi, S., Wither, J., and Höllerer, T. All around the map: Online spherical panorama

construction. Computers & Graphics, 33(1):73–84, 2009.

Eade, E. and Drummond, T. Unified loop closing and recovery for real time monocular SLAM.

In Proceedings of the British Machine Vision Conference (BMVC), 2008.

Fischler, M. A. and Bolles, R. C. Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Communications of the ACM, 24

(6):381–395, June 1981. ISSN 0001-0782. doi: 10.1145/358669.358692.

Furukawa, Y. and Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376, 2010. ISSN 0162-

8828. doi: 10.1109/TPAMI.2009.161.

Fussell, S. R., Kraut, R. E., and Siegel, J. Coordination of communication: Effects of shared

visual context on collaborative work. In Proceedings of the ACM Conference on Computer

Supported Cooperative Work (CSCW), pages 21–30, New York, USA, 2000. ACM. ISBN

1-58113-222-0. doi: 10.1145/358916.358947.

Fussell, S. R., Setlock, L. D., and Kraut, R. E. Effects of head-mounted and scene-oriented

video systems on remote collaboration on physical tasks. In Proceedings of the ACM

SIGCHI conference on Human factors in computing systems (CHI), pages 513–520, New

York, USA, 2003a. ACM. ISBN 1-58113-630-7. doi: 10.1145/642611.642701.

Fussell, S. R., Setlock, L. D., Parker, E. M., and Yang, J. Assessing the value of a cursor

pointing device for remote collaboration on physical tasks. In Extended Abstracts, ACM

SIGCHI Annual Conference on Human Factors in Computing Systems (CHI), pages 788–

789, New York, USA, 2003b. ACM. ISBN 1-58113-637-4. doi: 10.1145/765891.765992.

160

BIBLIOGRAPHY

Fussell, S. R., Setlock, L. D., Yang, J., Ou, J., Mauer, E., and Kramer, A. D. I. Gestures over

video streams to support remote collaboration on physical tasks. Human-Computer Interac-

tion, 19:273–309, September 2004. ISSN 0737-0024. doi: 10.1207/s15327051hci1903 3.

Gauglitz, S., Foschini, L., Turk, M., and Höllerer, T. Efficiently selecting spatially distributed

keypoints for visual tracking. In Proceedings of the IEEE International Conference on Image

Processing (ICIP), Brussels, Belgium, September 2011. doi: 10.1109/ICIP.2011.6115832.

Gauglitz, S., Lee, C., Turk, M., and Höllerer, T. Integrating the physical environment into

mobile remote collaboration. In Proceedings of the ACM SIGCHI International Confer-

ence on Human-Computer Interaction with Mobile Devices and Services (MobileHCI), San

Francisco, USA, September 2012a. doi: 10.1145/2371574.2371610.

Gauglitz, S., Sweeney, C., Ventura, J., Turk, M., and Höllerer, T. Live tracking and mapping

from both general and rotation-only camera motion. In Proceedings of the IEEE Inter-

national Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, USA, November

2012b. doi: 10.1109/ISMAR.2012.6402532.

Gauglitz, S., Nuernberger, B., Turk, M., and Höllerer, T. World-stabilized annotations and

virtual scene navigation for remote collaboration. In Proceedings of the 27th ACM Sympo-

sium on User Interfaces Software and Technology (UIST), Honolulu, Hawaii, USA, October

2014a. doi: 10.1145/2642918.2647372. To appear.

Gauglitz, S., Nuernberger, B., Turk, M., and Höllerer, T. In touch with the remote world: Re-

mote collaboration with augmented reality drawings and virtual navigation. In Proceedings

of the 20th ACM Symposium on Virtual Reality Software and Technology (VRST), Edinburgh,

UK, November 2014b. To appear.

Gauglitz, S., Sweeney, C., Ventura, J., Turk, M., and Höllerer, T. Model estimation and se-

lection towards unconstrained real-time tracking and mapping. IEEE Transactions on Vi-

sualization and Computer Graphics, 20(6):825–838, June 2014c. ISSN 1077-2626. doi:

10.1109/TVCG.2013.243.

Gelb, D., Subramanian, A., and Tan, K.-H. Augmented reality for immersive remote collabo-

ration. In Proceedings of the IEEE Workshop on Person-Oriented Vision (POV), pages 1–6,

January 2011. doi: 10.1109/POV.2011.5712368.

Gergle, D., Kraut, R., and Fussell, S. Action as language in a shared visual space. In Pro-

ceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW), pages

487–496, 2004.

Gruber, L., Gauglitz, S., Ventura, J., Zollmann, S., Huber, M., Schlegel, M., Klinker, G.,

Schmalstieg, D., and Höllerer, T. The City of Sights: Design, construction, and measurement

of an augmented reality stage set. In Proceedings of the 9th IEEE International Symposium

161

BIBLIOGRAPHY

on Mixed and Augmented Reality (ISMAR), pages 157–163, Seoul, Korea, October 13-16

2010a.

Gruber, L., Zollmann, S., Wagner, D., Schmalstieg, D., and Höllerer, T. Optimization of target

objects for natural feature tracking. In Proceedings of the 20th International Conference on

Pattern Recognition (ICPR), pages 3607–3610, Istanbul, August 2010b. doi: 10.1109/ICPR.

2010.880.

Gurevich, P., Lanir, J., Cohen, B., and Stone, R. TeleAdvisor: a versatile augmented reality tool

for remote assistance. In Proceedings of the ACM SIGCHI Annual Conference on Human

Factors in Computing Systems (CHI), pages 619–622. ACM, 2012.

Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P. Wedge: clutter-free visualization of off-

screen locations. In Proceedings of the ACM SIGCHI Annual Conference on Human Factors

in Computing Systems (CHI), pages 787–796. ACM, 2008.

Güven, S., Feiner, S., and Oda, O. Mobile augmented reality interaction techniques for au-

thoring situated media on-site. In Proceedings of the 5th IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR), pages 235–236, 2006. ISBN 1-

4244-0650-1. doi: 10.1109/ISMAR.2006.297821.

Hachet, M., Declec, F., Knodel, S., and Guitton, P. Navidget for easy 3D camera positioning

from 2D inputs. In Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI),

pages 83–89, 2008. doi: 10.1109/3DUI.2008.4476596.

Hanson, A. J. and Wernert, E. A. Constrained 3D navigation with 2D controllers. In Proceed-

ings of the 8th Conference on Visualization, 1997. ISBN 1-58113-011-2.

Hartley, R. and Zisserman, A. Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press, second edition, 2004. ISBN 0521540518.

Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., and Hallaway, D. Exploring MARS: develop-

ing indoor and outdoor user interfaces to a mobile augmented reality system. Computers &

Graphics, 23(6):779 – 785, 1999. ISSN 0097-8493. doi: 10.1016/S0097-8493(99)00103-X.

Höllerer, T., Wither, J., and DiVerdi, S. “Anywhere Augmentation”: Towards mobile aug-

mented reality in unprepared environments. In Gartner, G., Cartwright, W., and Peterson,

M. P., editors, Location Based Services and TeleCartography, Lecture Notes in Geoinforma-

tion and Cartography, pages 393–416. Springer, Berlin/Heidelberg, 2007.

Hoppe, C., Klopschitz, M., Donoser, M., and Bischof, H. Incremental surface extraction from

sparse structure-from-motion point clouds. In Proceedings of the British Machine Vision

Conference (BMVC), Bristol, UK, 2013.

162

BIBLIOGRAPHY

Huang, W. and Alem, L. HandsInAir: A wearable system for remote collaboration on physical

tasks. In Proceedings of the Conference on Computer Supported Cooperative Work, pages

153–156. ACM, 2013. ISBN 978-1-4503-1332-2. doi: 10.1145/2441955.2441994.

Huang, W., Alem, L., and Tecchia, F. HandsIn3D: Augmenting the shared 3D visual space

with unmediated hand gestures. In SIGGRAPH Asia 2013 Emerging Technologies, pages

10:1–10:3. ACM, 2013. ISBN 978-1-4503-2632-2. doi: 10.1145/2542284.2542294.

Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: A sketching interface for 3D freeform

design. In ACM SIGGRAPH 2007 Courses, New York, NY, USA, 2007. ACM. ISBN 978-

1-4503-1823-5. doi: 10.1145/1281500.1281532.

Jankowski, J. and Hachet, M. A survey of interaction techniques for interactive 3D environ-

ments. In Eurographics – STAR, pages 65–93, 2013.

Jo, H. and Hwang, S. Chili: Viewpoint control and on-video drawing for mobile video calls.

In Extended Abstracts, ACM SIGCHI Annual Conference on Human Factors in Computing

Systems (CHI), pages 1425–1430. ACM, 2013. ISBN 978-1-4503-1952-2. doi: 10.1145/

2468356.2468610.

Kim, S., Coffin, C., and Höllerer, T. Relocalization using virtual keyframes for online envi-

ronment map construction. In Proceedings of the 16th ACM Symposium on Virtual Reality

Software and Technology (VRST), pages 127–134, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-869-8. doi: 10.1145/1643928.1643958.

Kim, S., Lee, G. A., Sakata, N., Vartiainen, E., and Billinghurst, M. Comparing pointing and

drawing for remote collaboration. In Extended Abstracts, IEEE International Symposium

on Mixed and Augmented Reality (ISMAR), pages 1–6, 2013. doi: 10.1109/ISMAR.2013.

6671833.

Kirk, D. and Fraser, D. S. Comparing remote gesture technologies for supporting collaborative

physical tasks. In Proceedings of the ACM SIGCHI Annual Conference on Human Factors

in Computing Systems (CHI), pages 1191–1200, 2006. ISBN 1-59593-372-7. doi: 10.1145/

1124772.1124951.

Kirk, D. S. Turn It This Way: Remote Gesturing in Video-Mediated Communication. PhD

thesis, University of Nottingham, 2006.

Klein, G. and Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceed-

ings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR), 2007.

Klein, G. and Murray, D. Improving the agility of keyframe-based SLAM. In Proceedings

of the 10th European Conference on Computer Vision (ECCV), pages 802–815, Marseille,

France, October 2008.

163

BIBLIOGRAPHY

Klein, G. and Murray, D. Parallel tracking and mapping on a camera phone. In Proceedings

of the 8th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages

83–86, October 2009. doi: 10.1109/ISMAR.2009.5336495.

Klopschitz, M., Irschara, A., Reitmayr, G., and Schmalstieg, D. Robust incremental struc-

ture from motion. In Proceedings of the International Symposium on 3D Data Processing,

Visualization and Transmission (3DPVT), 2010.

Kraut, R., Miller, M., and Siegel, J. Collaboration in performance of physical tasks: Effects

on outcomes and communication. In Proceedings of the ACM Conference on Computer

Supported Cooperative Work (CSCW), pages 57–66, 1996.

Kurata, T., Sakata, N., Kourogi, M., Kuzuoka, H., and Billinghurst, M. Remote collaboration

using a shoulder-worn active camera/laser. In Proceedings of the 8th International Sympo-

sium on Wearable Computers (ISWC), pages 62–69, Washington, DC, USA, 2004. ISBN

0-7695-2186-X. doi: 10.1109/ISWC.2004.37.

Kurillo, G., Bajcsy, R., Nahrsted, K., and Kreylos, O. Immersive 3D environment for remote

collaboration and training of physical activities. In Proceedings of IEEE Virtual Reality

(VR), pages 269 –270, 2008. doi: 10.1109/VR.2008.4480795.

Kuzuoka, H., Oyama, S., Yamazaki, K., Suzuki, K., and Mitsuishi, M. GestureMan: A mobile

robot that embodies a remote instructor’s actions. In Proceedings of the ACM Conference

on Computer Supported Cooperative Work (CSCW), pages 155–162, New York, NY, USA,

2000. ISBN 1-58113-222-0. doi: 10.1145/358916.358986.

Ladikos, A., Benhimane, S., Appel, M., and Navab, N. Model-free markerless tracking for

remote support in unknown environments. In Proceedings of the International Conference

on Computer Vision Theory and Applications, 2008.

Langlotz, T., Degendorfer, C., Mulloni, A., Schall, G., Reitmayr, G., and Schmalstieg, D. Ro-

bust detection and tracking of annotations for outdoor augmented reality browsing. Comput-

ers & Graphics, 35(4):831–840, 2011. ISSN 0097-8493. doi: 10.1016/j.cag.2011.04.004.

Lanir, J., Stone, R., Cohen, B., and Gurevich, P. Ownership and control of point of view

in remote assistance. In Proceedings of the ACM SIGCHI Annual Conference on Human

Factors in Computing Systems (CHI), pages 2243–2252, 2013. ISBN 978-1-4503-1899-0.

doi: 10.1145/2470654.2481309.

Lee, T. and Höllerer, T. Viewpoint stabilization for live collaborative video augmentations. In

Proceedings of the 5th IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR), pages 241–242, Washington, DC, USA, 2006. ISBN 1-4244-0650-1. doi:

10.1109/ISMAR.2006.297824.

164

BIBLIOGRAPHY

Li, J., Wessels, A., Alem, L., and Stitzlein, C. Exploring interface with representation of

gesture for remote collaboration. In Proceedings of the 19th Australasian conference on

Computer-Human Interaction (OZCHI), pages 179–182, 2007. ISBN 978-1-59593-872-5.

doi: 10.1145/1324892.1324926.

Lieberknecht, S., Huber, A., Ilic, S., and Benhimane, S. RGB-D camera-based parallel track-

ing and meshing. In Proceedings of the IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pages 147–155, October 2011. doi: 10.1109/ISMAR.2011.

6092380.

Lourakis, M. A. and Argyros, A. SBA: A software package for generic sparse bun-

dle adjustment. ACM Transactions on Mathematical Software, 36(1):1–30, 2009. doi:

10.1145/1486525.1486527.

Lovegrove, S. and Davison, A. J. Real-time spherical mosaicing using whole image alignment.

In Proceedings of the European Conference on Computer Vision (ECCV), volume 6313,

pages 73–86, 2010. ISBN 978-3-642-15557-4. doi: 10.1007/978-3-642-15558-1 6.

Lowe, D. G. Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision, 60(2):91–110, November 2004.

Maimone, A. and Fuchs, H. Encumbrance-free telepresence system with real-time 3D capture

and display using commodity depth cameras. In Proceedings of the 10th IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), pages 137–146, October 2011. doi:

10.1109/ISMAR.2011.6092379.

Maimone, A., Yang, X., Dierk, N., State, A., Dou, M., and Fuchs, H. General-purpose telep-

resence with head-worn optical see-through displays and projector-based lighting. In Pro-

ceedings of IEEE Virtual Reality (VR) 2013, Orlando, USA, March 2013.

Marchal, D., Moerman, C., Casiez, G., and Roussel, N. Designing intuitive multi-touch 3D

navigation techniques. In Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., and Winckler,

M., editors, Human-Computer Interaction – INTERACT 2013, volume 8117 of Lecture Notes

in Computer Science, pages 19–36. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-

40482-5. doi: 10.1007/978-3-642-40483-2 2.

Molton, N., Davison, A., and Reid, I. Locally planar patch features for real-time structure from

motion. In Proceedings of the 15th British Machine Vision Conference (BMVC), 2004.

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., and Sayd, P. Real time localization

and 3D reconstruction. In Proceedings of IEEE Computer Vision and Pattern Recognition

(CVPR), volume 1, pages 363–370, 2006. doi: 10.1109/CVPR.2006.236.

165

BIBLIOGRAPHY

Muja, M. and Lowe, D. G. Fast approximate nearest neighbors with automatic algorithm

configuration. In International Conference on Computer Vision Theory and Application

(VISSAPP), pages 331–340. INSTICC Press, 2009.

Mulloni, A., Ramachandran, M., Reitmayr, G., Wagner, D., Grasset, R., and Diaz, S. User

friendly SLAM initialization. In IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pages 153–162, October 2013. doi: 10.1109/ISMAR.2013.6671775.

Newcombe, R., Lovegrove, S., and Davison, A. DTAM: Dense tracking and mapping in real-

time. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),

pages 2320–2327, 2011a.

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P.,

Shotton, J., Hodges, S., and Fitzgibbon, A. KinectFusion: Real-time dense surface mapping

and tracking. In Proceedings of the IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), 2011b.

Nistér, D. An efficient solution to the five-point relative pose problem. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(6):756–770, 2004.

Nuernberger, B., Gauglitz, S., Höllerer, T., and Turk, M. Investigating viewpoint visualizations

for click & go navigation. In Proceedings of the IEEE Symposium on 3D User Interfaces

(3DUI), 2014.

Oda, O., Sukan, M., Feiner, S., and Tversky, B. Poster: 3D referencing for remote task assis-

tance in augmented reality. In Proceedings of the IEEE Symposium on 3D User Interfaces

(3DUI), pages 179–180, March 2013. doi: 10.1109/3DUI.2013.6550237.

Ou, J., Fussell, S. R., Chen, X., Setlock, L. D., and Yang, J. Gestural communication over

video stream: supporting multimodal interaction for remote collaborative physical tasks. In

Proceedings of the 5th International Conference on Multimodal interfaces (ICMI), pages

242–249, 2003. ISBN 1-58113-621-8. doi: 10.1145/958432.958477.

Pan, Q., Arth, C., Reitmayr, G., Rosten, E., and Drummond, T. Rapid scene reconstruction

on mobile phones from panoramic images. In Proceedings of the 10th IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), pages 55–64, 2011. doi: 10.1109/

ISMAR.2011.6092370.

Pirchheim, C., Schmalstieg, D., and Reitmayr, G. Handling pure camera rotation in keyframe-

based slam. In Proceedings of the IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pages 229–238, October 2013. doi: 10.1109/ISMAR.2013.6671783.

Pirchheim, C. and Reitmayr, G. Homography-based planar mapping and tracking for mobile

phones. In Proceedings of the IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pages 27–36, 2011. doi: 10.1109/ISMAR.2011.6092367.

166

BIBLIOGRAPHY

Pollefeys, M., Verbiest, F., and Van Gool, L. Surviving dominant planes in uncalibrated struc-

ture and motion recovery. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 613–614, 2002.

Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., and Bathiche, S. Monofusion: Real-

time 3D reconstruction of small scenes with a single web camera. In Proceedings of the

IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 83–88,

2013. doi: 10.1109/ISMAR.2013.6671767.

Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. The office of the fu-

ture: A unified approach to image-based modeling and spatially immersive displays. In

Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics and In-

teractive Techniques (SIGGRAPH), pages 179–188, 1998. ISBN 0-89791-999-8. doi:

10.1145/280814.280861.

Regenbrecht, H., Lum, T., Kohler, P., Ott, C., Wagner, M., Wilke, W., and Mueller, E. Using

augmented virtuality for remote collaboration. Presence: Teleoperators and Virtual Envi-

ronments, 13:338–354, July 2004. ISSN 1054-7460. doi: 10.1162/1054746041422334.

Reitmayr, G. and Schmalstieg, D. Mobile collaborative augmented reality. In Proceedings of

the IEEE and ACM International Symposium on Augmented Reality (ISAR), pages 114–123,

2001. doi: 10.1109/ISAR.2001.970521.

Reitmayr, G., Eade, E., and Drummond, T. Semi-automatic annotations in unknown envi-

ronments. In Proceedings of the IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pages 67–70, Nara, Japan, November 13–16 2007.

Repko, J. and Pollefeys, M. 3D models from extended uncalibrated video sequences: Address-

ing key-frame selection and projective drift. In Proceedings of the 5th IEEE International

Conference on 3D Digital Imaging and Modeling (3DIM), pages 150–157, 2005.

Rissanen, J. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

Rosten, E. and Drummond, T. Machine learning for high-speed corner detection. In Pro-

ceedings of the IEEE European Conference on Computer Vision (ECCV), volume 1, pages

430–443, May 2006. doi: 10.1007/11744023 34.

Sadagic, A., Towles, H., Holden, L., Daniilidis, K., and Zeleznik, B. Tele-immersion portal:

Towards an ultimate systhesis. In Proceedings of the 4th Annual International Workshop on

Presence of Computer Graphics and Computer Vision Systems, 2001.

Schwarz, G. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

167

BIBLIOGRAPHY

Shi, J. and Tomasi, C. Good features to track. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 593–600, 1994. doi: 10.1109/CVPR.1994.

323794.

Snavely, N., Seitz, S., and Szeliski, R. Photo tourism: Exploring photo collections in 3D. ACM

Transactions on Graphics, 25(3):835–846, 2006.

Snavely, N., Garg, R., Seitz, S. M., and Szeliski, R. Finding paths through the world’s photos.

In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH), pages 15:1–15:11, New York, NY, USA, 2008. ISBN

978-1-4503-0112-1. doi: 10.1145/1399504.1360614.

Sodhi, R. S., Jones, B. R., Forsyth, D., Bailey, B. P., and Maciocci, G. BeThere: 3D mobile

collaboration with spatial input. In Proceedings of the ACM SIGCHI Conference on Human

Factors in Computing Systems (CHI), pages 179–188, 2013. ISBN 978-1-4503-1899-0. doi:

10.1145/2470654.2470679.

Stafford, A., Piekarski, W., and Thomas, B. Implementation of god-like interaction techniques

for supporting collaboration between outdoor AR and indoor tabletop users. In Proceed-

ings of the 5th IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR), pages 165–172, 2006. ISBN 1-4244-0650-1. doi: 10.1109/ISMAR.2006.297809.

Strasdat, H., Montiel, J., and Davison, A. Real-time monocular SLAM: Why filter? In Pro-

ceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages

2657–2664, 2010.

Sukan, M., Feiner, S., Tversky, B., and Energin, S. Quick viewpoint switching for manipulating

virtual objects in hand-held augmented reality using stored snapshots. In Proceedings of the

11th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2012.

Tan, D. S., Robertson, G. G., and Czerwinski, M. Exploring 3D navigation: combining speed-

coupled flying with orbiting. In Proceedings of the ACM SIGCHI Conference on Human

Factors in Computing Systems (CHI), pages 418–425, New York, NY, USA, 2001. ISBN

1-58113-327-8. doi: 10.1145/365024.365307.

Tan, W., Liu, H., Dong, Z., Zhang, G., and Bao, H. Robust monocular SLAM in dynamic en-

vironments. In Proceedings of the IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pages 209–218, October 2013. doi: 10.1109/ISMAR.2013.6671781.

Tang, J. C. and Minneman, S. L. VideoDraw: a video interface for collaborative drawing.

ACM Transactions on Information Systems, 9:170–184, April 1991. ISSN 1046-8188. doi:

10.1145/123078.128729.

168

BIBLIOGRAPHY

Tatzgern, M., Grasset, R., Kalkofen, D., and Schmalstieg, D. Transitional augmented reality

navigation for live captured scenes. In Proceedings of IEEE Virtual Reality (VR), Minnesota,

USA, March 2014.

Tolba, O., Dorsey, J., and McMillan, L. Sketching with projective 2D strokes. In Proceedings

of the 12th ACM Symposium on User Interface Software and Technology (UIST), pages 149–

157, New York, NY, USA, 1999. ISBN 1-58113-075-9. doi: 10.1145/320719.322596.

Torr, P. H., Fitzgibbon, A. W., and Zisserman, A. The problem of degeneracy in structure and

motion recovery from uncalibrated image sequences. International Journal of Computer

Vision (IJCV), 32:27–44, 1999. ISSN 0920-5691. doi: 10.1023/A:1008140928553.

Torr, P. Bayesian model estimation and selection for epipolar geometry and generic manifold

fitting. International Journal of Computer Vision (IJCV), 50(1):35–61, 2002.

Uyttendaele, M., Criminisi, A., Kang, S. B., Winder, S., Szeliski, R., and Hartley, R. Image-

based interactive exploration of real-world environments. IEEE Computer Graphics and

Applications, 24(3):52–63, May 2004. ISSN 0272-1716. doi: 10.1109/MCG.2004.1297011.

van den Hengel, A., Dick, A., Thormählen, T., Ward, B., and Torr, P. H. S. VideoTrace: Rapid

interactive scene modelling from video. ACM Transactions on Graphics, 26(3), July 2007.

ISSN 0730-0301. doi: 10.1145/1276377.1276485.

Wagner, D., Schmalstieg, D., and Bischof, H. Multiple target detection and tracking with

guaranteed framerates on mobile phones. In Proceedings of the 8th IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), pages 57–64, October 2009. doi:

10.1109/ISMAR.2009.5336497.

Wagner, D., Mulloni, A., Langlotz, T., and Schmalstieg, D. Real-time panoramic mapping and

tracking on mobile phones. In Proceedings of IEEE Virtual Reality (VR), March 2010.

Wellner, P. and Freeman, S. The DoubleDigitalDesk: Shared editing of paper documents.

Technical Report EPC-93-108, EuroPARC, 1993.

Wuest, H., Wientapper, F., and Stricker, D. Acquisition of high quality planar patch features.

Advances in Visual Computing, pages 530–539, 2008.

Xin, M., Sharlin, E., and Sousa, M. C. Napkin Sketch: Handheld mixed reality 3D sketching.

In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST),

pages 223–226, 2008. ISBN 978-1-59593-951-7. doi: 10.1145/1450579.1450627.

Zeleznik, R. and Forsberg, A. Unicam – 2D gestural camera controls for 3D environments.

In Proceedings of the ACM Symposium on Interactive 3D Graphics (I3D), pages 169–173,

1999. ISBN 1-58113-082-1. doi: 10.1145/300523.300546.

169

BIBLIOGRAPHY

Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. SKETCH: An interface for sketching

3D scenes. In ACM SIGGRAPH 2007 Courses, 2007. ISBN 978-1-4503-1823-5. doi:

10.1145/1281500.1281530.

170

	Title page
	Acknowledgements
	Curriculum Vitæ
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	Thesis statement

	2 Related Work
	2.1 Video-Mediated Communication
	2.2 Spatial References to the Remote Physical Environment
	2.3 World-stabilized Spatial References
	2.4 Vision-based Tracking and Mapping
	2.5 Virtual Navigation

	3 A Concept for Mobile Unobtrusive Remote Collaboration
	3.1 Local User's Interface
	3.2 Remote User's Interface
	3.3 Visual Tracking & Environment Modeling
	3.4 Hardware

	4 Design of Interfaces & Implementation of Prototype Systems
	4.1 Prototype 1
	4.1.1 Local user's interface
	4.1.2 Remote user's interface
	4.1.3 Visual tracking & environment modeling

	4.2 Prototype 2
	4.2.1 Local user's system
	4.2.2 Remote user's system: Overview & Architecture
	4.2.3 Remote user's system: Network module
	4.2.4 Remote user's system: 3D modeler
	4.2.5 Remote user's system: Camera control (virtual navigation)
	4.2.6 Remote user's system: Annotation control
	4.2.7 Remote user's system: Renderer

	4.3 Prototype 3
	4.3.1 Motivation for using a touchscreen rather than 3D input
	4.3.2 Touchscreen interface elements
	4.3.3 2D drawings as annotations in 3D space
	4.3.4 Gesture-based virtual navigation

	5 Evaluation via User Studies
	5.1 User Study 1
	5.1.1 Task & physical setup
	5.1.2 Conditions
	5.1.3 Experimental design
	5.1.4 Participants
	5.1.5 Procedure
	5.1.6 Results

	5.2 User Study 2
	5.2.1 Task & physical setup
	5.2.2 Conditions
	5.2.3 Experimental design
	5.2.4 Participants
	5.2.5 Procedure
	5.2.6 Results

	5.3 Discussion of Studies 1 and 2
	5.3.1 Use of features
	5.3.2 Task performance with interface C vs. interface B

	5.4 User Study 3
	5.4.1 Participants
	5.4.2 2D drawings in 3D
	5.4.3 Gesture-based navigation

	6 Model Estimation and Selection towards Unconstrained Tracking and Mapping
	6.1 Alternative Approaches
	6.2 System Overview
	6.2.1 Two-view relations and model-based poses
	6.2.2 Data structures

	6.3 Tracking
	6.3.1 Coarse-to-fine feature tracking
	6.3.2 Model estimation and outlier re-estimation
	6.3.3 Inserting a new keyframe
	6.3.4 Relocalizing vs. starting a new track

	6.4 Mapping
	6.4.1 Triangulating features
	6.4.2 Bundle adjustment
	6.4.3 Merging disjoint tracks
	6.4.4 Estimation of feature normals
	6.4.5 Cleaning up residual data

	6.5 Model Selection
	6.5.1 Generalized GRIC score for two-view relations
	6.5.2 GRIC score for absolute pose models

	6.6 Evaluation
	6.6.1 Tracking accuracy
	6.6.2 Qualitative comparison with PTAM

	6.7 Discussion: Aspects for Further Investigation, Applications & Limitations
	6.7.1 On estimating the probability density function
	6.7.2 On improving coarse-to-fine matching
	6.7.3 On tracking robustness
	6.7.4 On merging of maps
	6.7.5 On applications & limitations of the hybrid map
	6.7.6 On model selection and scene segmentation

	7 Conclusions
	7.1 Summary
	7.2 Contributions
	7.3 Limitations of the Current Implementation
	7.3.1 Level of detail of the model
	7.3.2 Static scene
	7.3.3 Stereo initialization
	7.3.4 Occlusion of annotations on local side

	7.4 Opportunities for Future Research
	7.4.1 Other types of AR displays
	7.4.2 Further work on live navigation of remote environments
	7.4.3 Integration of large-scale maps and further digital data
	7.4.4 Extension to more than two users and other roles

	Bibliography

